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ABSTRACT 

 It has become increasingly clear that transcription factors (TFs) play 

crucial roles in the development and day-to-day homeostasis that all biological 

systems experience. TFs target particular genes in a genome, at the appropriate 

place and time, to regulate their expression so as to elicit the most appropriate 

biological response from a cell or multicellular organism. TFs can often be 

grouped into families based on the presence of similar DNA binding domains, 

and these families are believed to have expanded and diverged throughout 

evolution by several rounds of gene duplication and mutation. The extent to 

which TFs within a family have functionally diverged, however, has remained 

unclear. We propose that systematic analysis of multiple aspects, or parameters, 

of TF functionality for entire families of TFs could provide clues as to how 

divergent paralogous TFs really are. 

 We present here a multiparameter integrated network of the activity of the 

basic helix-loop-helix (bHLH) TFs from the nematode Caenorhabditis elegans. 

Our data, and the resulting network, indicate that several parameters of bHLH 

function contribute to their divergence and that many bHLH TFs and their 

associated parameters exhibit a wide range of connectivity in the network, some 

being uniquely associated to one another, whereas others are highly connected 

to multiple parameter associations. 

 We find that 34 bHLH proteins dimerize to form 30 bHLH dimers, which 

are expressed in a wide range of tissues and cell types, particularly during the 
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development of the nematode. These dimers bind to E-Box DNA sequences and 

E-Box-like sequences with specificity for nucleotides central to and flanking those 

E-Boxes and related sequences. 

 Our integrated network is the first such network for a multicellular 

organism, describing the dimerization specificity, spatiotemporal expression 

patterns, and DNA binding specificities of an entire family of TFs. The network 

elucidates the state of bHLH TF divergence in C. elegans with respect to multiple 

functional parameters and suggests that each bHLH TF, despite many molecular 

similarities, is distinct from its family members. This functional distinction may 

indeed explain how TFs from a single family can acquire different biological 

functions despite descending from common genetic ancestry. 
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PREFACE TO CHAPTER I 

This chapter introduces the concepts of transcription factors (TFs), 

transcription regulatory networks (TRNs), and the impact of a variety of TF 

parameters on the functionality of individual TFs as well as TRNs in which TFs 

play the major role. Also introduced is the concept of DNA binding domains, TF 

families, and TF family expansion, and questions are raised about the divergence 

of TF parameters among the C. elegans bHLH family of TFs. 

Much of this chapter has been published separately in: 

Grove CA, Walhout AJM. Transcription factor functionality and transcription 
regulatory networks. Mol Biosyst. 2008 Apr ;4(4):309-314. 
 
and 

Grove CA, De Masi F, Barrasa MI, Newburger DE, Alkema MJ, Bulyk ML, 
Walhout AJM. A multiparameter network reveals extensive divergence between 
C. elegans bHLH transcription factors. Cell. 2009 Jul 23;138(2):314-327. 
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CHAPTER I 

 

Transcription Regulatory Networks, Transcription Factor 

Parameters, and the Divergence of Transcription Factor Families 
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Introduction 

Now that numerous high-quality complete genome sequences are 

available, many efforts are focusing on the “second genomic code”, namely the 

code that determines how the precise temporal and spatial expression of each 

gene in the genome is achieved. In this regard, the elucidation of transcription 

regulatory networks that describe combined transcriptional circuits for an 

organism of interest has become valuable to our understanding of gene 

expression at a systems level. Such networks describe physical and regulatory 

interactions between transcription factors (TFs) and the target genes they 

regulate under different developmental, physiological, or pathological conditions. 

The mapping of high-quality transcription regulatory networks depends not only 

on the accuracy of the experimental or computational method chosen, but also 

relies on the quality of TF predictions and experimental identification/verification. 

Moreover, the total repertoire of TFs is not only determined by the protein-coding 

capacity of the genome, but also by different protein properties, including 

dimerization, co-factor interactions and post-translational modifications. Here, we 

discuss the factors that influence TF functionality and, hence, the functionality of 

the networks in which they operate. 
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Transcription Factors and Transcription Regulatory Networks 

Transcription factor predictions 

There are two classes of TFs: basal TFs that are involved in transcription 

of most, if not all, genes, and regulatory TFs that control only subsets of genes 

(1). For the understanding of differential gene expression at a systems level, we 

only consider regulatory TFs (hereafter referred to as TFs). TFs interact with their 

target genes by binding specific cis-regulatory gene elements through a 

sequence-specific DNA binding domain. Different DNA binding domains are used 

to group TFs into TF families. Examples of DNA binding domains include basic 

region helix–loop–helix domains (bHLH), homeodomains and various types of 

zinc fingers. Computational tools have been developed both to define consensus 

DNA binding domains and to predict additional TFs of that family encoded by a 

genome of interest (2; 3). We found that, although such computational tools are 

powerful, they do incorporate false predictions and miss many known TFs (4). 

For instance, by using a combination of computational tools and extensive 

manual curation we predicted a high-quality compendium of 934 TFs in the 

nematode Caenorhabditis elegans, which extended purely computational 

predictions by ∼50% (4). However, even though this compendium is more 

complete than previous collections, it is not yet comprehensive as algorithms and 

experimental assays continue to improve and, therefore, additional TFs continue 

to be discovered (5). 
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DNA binding domains 

Over the past decades, many different sequence-specific DNA binding 

domains have been uncovered. However, we propose that it is unlikely that all 

DNA binding domains are known. This is because, by applying yeast one-hybrid 

assays to only 112 C. elegans gene promoters, we have already discovered 11 

C. elegans proteins that robustly interact with their target promoters in yeast, but 

that do not possess a known DNA binding domain. By using chromatin 

immunoprecipitation assays in yeast, we confirmed that these interactions are 

direct for nine of these proteins (6; 7). We do not know yet whether these 

proteins directly bind to DNA or if they are recruited to their target promoters by 

interacting with other DNA binding proteins. Future structure–function analysis 

will provide insight into the mechanism of action of these novel putative TFs. 

Importantly, the cataloging of the DNA binding domain(s) of these proteins may 

enable the identification of additional proteins with similar domains in C. elegans, 

and perhaps in other organisms as well. 

Emerging Properties of Transcription Regulatory Networks 

Transcription regulatory networks (TRNs) can be represented as graph 

models that combine physical and regulatory interactions between TFs and their 

target genes (reviewed in (8)). Several methods that can be used to identify 

physical interactions between TFs and their targets have been developed and 

applied to the study of both yeast and metazoan transcription regulatory 

networks. These include TF-centered methods such as chromatin 
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immunoprecipitations (9-11), protein binding microarrays (12), DamID (13; 14) 

and bacterial one-hybrid assays (15), as well as gene centered methods such as 

high-throughput yeast one-hybrid assays (16). The TF-DNA interaction data 

obtained by these methods are often visualized into network models. Figure I-1 

depicts a hypothetical network that contains several of the architectural and 

topological network features described to date, including TF hubs (TFs that bind 

a large number of target genes), target gene hubs (genes bound by a large 

number of TFs), and TF modules (sets of TFs that share numerous target 

genes). Metazoan TF hubs were uniquely revealed in the nematode 

Caenorhabditis elegans by using gene-centered yeast one-hybrid assays (6; 7). 

Specifically, we found that, whereas the majority of TFs bind only few promoters, 

a small subset of TFs bind up to 40% of all promoters tested. This suggests that 

these proteins play a more essential role in regulating transcription than most 

other TFs. By performing chromatin immunoprecipitation with eight TFs in the 

budding yeast Saccharomyces cerevisiae, Snyder and colleagues (17) showed 

that the genes that code for two of these TFs, MGA1 and PHD1, were 

themselves targeted by all eight TFs, suggesting that these two TFs may be 

target gene hubs. Interestingly, MGA1 and PHD1 are master regulators of 

pseudohyphal growth. The authors suggest that genes regulated by large 

number of TFs may function as master regulators of biological processes. In 

agreement with this, we found that the promoter of the master regulator of D-type 
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GABA-ergic motor neurons unc-30 in C. elegans can interact with 36 different 

TFs (7).  

TF modules are another feature of transcription regulatory networks that 

have recently emerged (7). TF modules are distinct from more extensively 

studied general network modules that are defined as highly interconnected 

groups of nodes without regard for directionality or node type (i.e., TFs vs. target 

genes) (18; 19). We have defined TF modules as sets of TFs that share many of 

their target genes (Figure I-1) (7). As such, these are uniquely found in bipartite 

transcription regulatory networks. Both general network modules and TF 

modules may reflect functionality, for instance within a cell or tissue type, or 

regarding a particular biological process. Finally, transcription regulatory 

networks are composed of recurring circuits, referred to as network motifs. For 

instance, feed forward loops are found frequently in networks from both 

prokaryotic and eukaryotic organisms. Such motifs represent widely used 

regulatory mechanisms that can, for instance, be used to stabilize gene 

expression (20; 21).  

The transcription regulatory networks that have been described to date 

represent compilations of multiple events that take place during the lifetime of an 

organism collapsed into a single model. However, in reality, only a subset of the 

network is active in particular cell types, under different developmental or 

physiological conditions, or at any given time (22-24). In addition, each TF in 

regulatory networks is represented as a single node, whereas it is known that 
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TFs exist in many different functional forms that are determined by a variety of 

factors including post-translational modifications and dimerization. These factors 

themselves may depend on specific developmental or physiological conditions. 

Each TF form may interact with distinct target genes, or with the same target 

gene, but under different conditions. Here, we discuss the factors that need to be 

taken into account to determine how many functional TFs occur in an organism 

of interest, and how this information can be incorporated into transcription 

regulatory network models to study differential gene expression at a systems 

level. 

Parameters of TF Function 

 We refer to the various aspects of TF functionality as parameters of TF 

function. As additional experimental evidence is acquired for individual TFs, we 

can include these parameters as important aspects of TF functionality and 

incorporate them into more holistic models of TF function within the grand 

scheme of transcription regulatory networks. The following list of TF parameters 

describes parameters that are known to be important for a variety of TFs, yet we 

do not yet know the extent to which these parameters play important roles in the 

function of TFs in general.  

Alternative splicing 

In metazoans, many gene transcripts, including those encoding TFs, are 

alternatively spliced, which often leads to multiple variants of a protein. 

Interestingly, it has been found that TF-encoding genes in mice undergo 
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alternative splicing more frequently than other genes (25). Alternative splicing 

may lead to TFs with different functions. For instance, DNA binding domains or 

transcription regulatory domains may be included or excluded from the TF 

variant. At least 144 C. elegans TFs undergo alternative splicing, resulting in 379 

different proteins, 30 of which lack a DNA-binding domain (4). The latter may 

function as regulators of TF function, for instance by titrating interaction partners 

of the corresponding TFs that do possess a DNA binding domain. Several C. 

elegans TFs contain more than one DNA binding domain and alternative splicing 

can affect which domains are present in the different protein products. For 

instance, several DAF-16 variants are generated as a result of alternative 

splicing, and each variant carries a unique combination of domains (26) (Figure I-

2A). DAF-16 is a critical regulator of various physiological processes including fat 

storage, aging, and the formation of dauers (an alternative larval stage of 

development, resistant to many forms of stress). It contains two potential 

forkhead DNA binding domains and is known to bind or regulate numerous target 

genes (27). It is tempting to speculate that each forkhead domain is responsible 

for the interaction with a distinct set of target genes, each of which may be 

involved in a particular biological process. A human example involves the 

homeodomain proteins hepatocyte nuclear factor HNF1 and vHNF1. There are 

three HNF1 splice variants, each of which encodes a protein with varying 

transcription activation properties. vHNF1 is also differentially spliced and one of 

the resulting protein products, vHNF1-C, functions as a trans-dominant repressor 
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of all three HNF1 variants (28). TF variants may be expressed in different cell 

types or under particular conditions, leading to variable outputs of the 

transcriptional circuits in which they function. For instance, the HNF isoforms are 

differentially expressed in the human digestive tract, liver and kidney, where they 

may either regulate distinct target genes or, alternatively, the same target genes 

but at different levels. Genome-scale analyses of alternative splicing, for instance 

using whole genome or exon junction tiling arrays (29), will greatly facilitate the 

accurate identification of all TF variants that are produced in each cell and tissue 

type, and in various model organisms. 

Dimerization 

Several TFs bind DNA as obligatory dimers, including members from the 

basic region leucine zipper (bZIP), bHLH and nuclear hormone receptor (NHR) 

families (30-32). Dimerization should be taken into account when considering the 

total complement of functional TFs because, if a particular TF only functions 

when it dimerizes with another TF, the dimer should be considered a single 

functional unit. Dimerization can affect the total number of functional TFs in 

different ways (Figure I-2B). In one model, each TF from a family can dimerize 

with itself and any other member of that family. If this would be the case, the 

number of functional TFs would be dramatically greater than the number of 

individually predicted TFs. For instance, dimerization between all 274 C. elegans 

NHRs (4) would result in a total of 37,675 NHR dimers. In another model, each 

TF dimerizes exclusively with one other TF of the same family. If this were the 
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case for the C. elegans NHRs, this would result in 137 functional TF complexes, 

which would reduce the total number of functional TFs. In a third, intermediate 

model, one or more TFs from a family could serve as central dimerization 

partners that can interact with multiple members of the relevant TF family. 

Although no comprehensive data regarding TF dimerization is as yet available, 

our data indicate that this third model is likely most relevant (33). Systematic 

protein–protein interaction mapping efforts will be required to identify all 

functional TF dimers. High-throughput yeast two-hybrid assays (34) are 

particularly well suited for this task as they identify binary interactions. For 

instance, we found by high-throughput yeast two-hybrid assays that NHR-49 

serves as a dimerization hub that can interact with at least 15 other NHRs (5). In 

the future, it will be important not only to identify all TF dimers, but to also 

determine the DNA-binding specificities of each dimer and where and when 

dimerization partners are co-expressed. 

DNA-Binding Specificity 

Arguably one of the most important features of a TF’s function is its ability 

to bind DNA and to do so in a sequence-specific manner. This functionality 

enables a TF to specifically target specific subsets of genes for regulation in 

response to developmental or environmental cues. Despite its importance, 

complete DNA-binding specificity profiles have only been described for a minority 

of TFs. This has been in large part due to the lack of appropriate techniques for 

the elucidation of comprehensive DNA binding profiles. Some methods that have 
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been used to determine the complete DNA binding specificity of TFs are SELEX 

(systematic evolution of ligands by exponential enrichment) (35; 36), SAAB 

(selected and amplified binding-sequence) (37; 38), bacterial one-hybrid assays 

(15; 39), and protein binding microarrays (PBM) (12; 40). These techniques are 

powerful, yet their application to entire families of TFs has only been recently 

implemented (41-43) and is likely to provide great insight into the nature of TF-

DNA binding. Future experimentation on the comprehensive determination of 

DNA binding specificities will allow a more thorough understanding of how TFs 

specifically recognize their cognate target genes, despite large genomic 

sequence-search spaces and similarities with other TF family members. 

Spatiotemporal Expression 

One important question about the function of TFs that remains to be 

determined is the extent to which any given TF determines the identity of a 

particular cell type and, conversely, how much the intracellular molecular 

environment of a given cell type affects the functionality of TFs expressed within 

that cell. For instance, in Drosophila melanogaster, the TF Antennapedia 

normally serves as an important determinant for the thorax in developing 

Drosophila larvae (44). Experiments have shown that ectopic expression of 

Antennapedia at the site of developing antennae will cause legs to form in the 

place of antennae, suggesting that this TF can override the developmental 

program normally intended to produce antennae (45). When ectopically 

expressed elsewhere in the developing larva, however, Antennapedia appears to 
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have no effect, suggesting that the tissue or cell type in which this TF is 

expressed must be somehow receptive to its activity in order to undergo the 

transition in developmental program (45). In addition, there is a specific window 

of time during development when Antennapedia expression must be induced in 

order to see the antenna-to-leg phenotype (45). Therefore, the time at which this 

TF is expressed must also play a crucial role in its function. Taken together, it is 

evident that the spatiotemporal expression patterns of TFs are important 

parameters of TF functionality. 

Post-Translational Modifications 

Many proteins, including TFs, are post-translationally modified under 

different conditions and by different modifiers. Several post-translational 

modifications of TFs have been reported, including phosphorylation, 

hydroxylation, acetylation, ubiquitination and sumoylation (Figure I-2C) (46). 

Such modifications often result from the activation of signal transduction 

pathways in response to environmental stimuli or developmental cues. Post-

translational modifications can affect the regulatory activity of a TF, as well as its 

localization or stability. For instance, estrogen receptor β  (ERβ), normally 

activated by ligand, can be phosphorylated by MAP kinase (MAPK) which leads 

to recruitment of the steroid receptor coactivator-1 (SRC-1) and, subsequently, 

ligand-independent activation of target genes (47). Erα can be acetylated by 

p300 at conserved lysine residues resulting in enhanced DNA-binding activity 

and, perhaps, ligand-dependent transcriptional activation (48). For most TFs it is 
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not clear which modified forms exist and how these forms function to regulate 

gene expression. For a thorough understanding of gene regulatory networks, it 

will be important to determine which modification each TF is subjected to, under 

which circumstances, and how these modifications affect TF functionality. 

Ligands 

Many TFs become activated or inactivated as a result of ligand binding 

(Figure I-2D). One of the most prominent classes of ligand-dependent TFs is the 

NHR family, which includes ER, androgen receptor (AR), peroxisome proliferator-

activated receptors (PPARs), retinoic acid receptor (RAR) and others. NHR 

ligands are hydrophobic molecules that can freely diffuse into the nucleus where 

they specifically interact with their target receptors. Most NHRs become potent 

transcriptional activators upon ligand binding. Human ER has been studied 

extensively because of its association with the development of breast cancer 

(49). A number of ER ligands (endogenous and exogenous) have been identified, 

some of which are non-steroidal compounds that are referred to as selective ER 

modulators (SERMs). Whereas steroidal compounds such as estrogen function 

to naturally modulate ER activity, SERMs such as tamoxifen are used in cancer 

treatment. Different ligands bind to ER with varying affinities and have different 

effects. Depending on tissue and cell-type context, ligands induce conformational 

changes in ER that promote transcriptional activation, whereas others promote 

transcriptional repression (50). The ligand(s) for most NHRs remain to be 

identified, and, therefore, such NHRs are referred to as “orphan” receptors. For 
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instance, the nematode C. elegans has 274 predicted NHRs (4), but a ligand 

(dafachronic acid) has only been identified for a single NHR, DAF-12 (51).  

Another class of ligand-binding TFs is the bHLH-PAS sub-family that 

includes the aryl hydrocarbon receptor (AHR). AHR can interact with a variety of 

exogenous compounds or toxins such as dioxin, and mediate a biological 

response (for a review see ref. (52)). The range of compounds that can activate 

AHR is still under investigation, and although most appear to be exogenous in 

origin, it has been proposed that endogenous AHR ligands may play a role in 

organism development or homeostasis (53). Indeed, the C. elegans ortholog of 

AHR, ahr-1, is required for the proper development and specification of touch-

receptor neurons, interneurons, and motor neurons (54; 55). 

Co-Factors 

Regulatory TFs often activate or repress transcription, either by recruiting 

the RNA polymerase II machinery, or by preventing its access to the transcription 

start site. While many TFs interact directly with general TFs or components of 

RNA polymerase II, others function by interacting with intermediate proteins 

called co-factors (Figure I-2E) (56-58). Depending on environmental or 

developmental circumstances, the same TF can interact with different 

coactivators or corepressors, illustrating the versatility of TFs in carrying out 

opposing regulatory effects in different contexts. RAR, for instance, can recruit 

the NcoR/SMRT corepressor complexes thereby repressing transcriptional 

activity of its target genes. Upon binding its ligand retinoic acid, however, RAR 
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changes conformation and adopts a form capable of recruiting coactivator 

complexes and subsequently activates transcription (57). Interestingly, cofactor 

interactions can also affect DNA binding specificity (59), implying that different 

TF-cofactor pairs may interact with different sets of target genes. Future large-

scale genomic and proteomic experiments are needed to identify the full 

spectrum of ligands and co-factors each TF in an organism can interact with and 

to unravel how these interactions affect the biochemical and biological function of 

each TF. 

Transcription Factor Variants and Disease 

TFs play a crucial role in numerous diseases, including congenital 

disorders and cancer. Mutations in TF-encoding genes can result in loss-of-

function, gain-of-function or neomorph TFs that attain a function not shared by 

the original TF. One of the best-studied TFs mutated in cancer is p53, a tumor 

suppressor gene that is inactivated by mutation in most human cancers. 

Interestingly, it appears that some mutations can also convert p53 into an 

oncogene (60). P53 regulates the expression of various cell cycle inhibitors and 

proteins involved in apoptosis. It will be interesting to see how the different forms 

of mutant p53 are affected in their biochemical and biological functions.  

Several mutated TFs have been found to result in a variety of human 

congenital disorders. For instance, altered dimerization between the bHLH TFs 

Twist1 and Hand2 was found in patients with Saethre–Chotzen syndrome (61). 

Common neomorph TF variants that are found in instances of leukemia are 
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fusion proteins resulting from chromosomal translocation/inversion (Figure I-2F). 

For example, an inversion on murine chromosome 16 leads to an aberrant Cbfb-

MYH11 fusion protein, resulting in the development of acute myeloid leukemia 

(62). It will be important to understand the variety of mutant forms of TFs that 

exist in different diseases and how they perturb the regulatory networks that 

contribute to a disease state. 

Integrating Multiple Parameters to Visualize and Understand TRNs 

Although complete genome sequences have provided a great first step 

toward the comprehensive identification of the compendium of TFs that function 

in an organism of interest, we are far from having a complete picture of all the 

protein variants that may exist for each predicted TF. As we’ve discussed here, 

there are numerous factors that affect the functional states of TFs throughout 

development, homeostasis, and in disease. Since the gene count is strikingly 

similar between organisms of widely different complexity, a larger number of TF 

permutations may contribute to more intricate regulatory networks in higher 

eukaryotes such as humans. In the future, different TF forms need to be 

incorporated as individual nodes in transcription regulatory networks to facilitate 

network modeling and hypothesis derivation (Figure I-3). 

Divergence of TF Families 

Paralogous TFs are grouped into families based on the type of DNA 

binding domain they possess. Such families grow by gene duplications upon 

which identical and therefore fully redundant TFs emerge. After acquiring 
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mutations, duplicate TFs diverge and may become partially redundant. Upon 

further mutation completely non-redundant, yet paralogous TFs may emerge 

(Figure I-4A).  

TF families often expand with organismal complexity. For instance, 

whereas the nematode Caenorhabditis elegans has 42 basic helix-loop-helix 

(bHLH) proteins (4), the human genome encodes more than 100 (63). The 

expansion and divergence of TFs has been proposed to lead to increased 

regulatory complexity, biological specificity and organismal complexity.  

Paralogous TFs often have different biological functions. For example, 

loss of C. elegans bHLH TFs results in phenotypes ranging from neuronal 

defects to embryonic lethality (see e.g. (64-66)). In humans, mutations in 

paralogous TFs can result in different diseases. Mutations in the human bHLH 

TFs TWIST and HAND1 can result in Saethre-Chotzen syndrome and heart 

hypoplasia, respectively (67; 68).  

As described above, differences in TF parameters are thought to be 

important determinants of regulatory and biological specificity. However, both the 

extent of TF functional divergence and the relative contribution of individual TF 

parameters remain undetermined. A main challenge in regulatory and genome 

biology is to understand the mechanisms of TF divergence and to disentangle 

the contribution of each of the parameters to this process. Specific questions are 

to what extent members of a TF family differ in each of these parameters, and if 
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differences in any one parameter are more prevalent than differences in another 

(Figure I-4B).  

Assessment of metazoan TF divergence requires the comprehensive and 

standardized measurement of multiple TF parameters and the incorporation of 

these parameters into a single, integrated network. Initial studies in the yeast 

revealed a large degree of redundancy for the eight Yap TFs, as well as 

functional divergence through DNA binding specificities and interactions with 

chromatin proteins (69; 70). However, the mechanisms of divergence in large 

metazoan TF families remain unexplored (Figure I-4B). Numerous metazoan TFs 

have been studied individually, but the resulting data are sparse due to assay 

incompleteness and heterogeneity. Therefore, such data could not be used to 

determine the extent and mechanisms of divergence of complete TF families.  

In the following chapters, we comprehensively identify dimerization 

partners, spatiotemporal expression patterns and DNA binding specificities for 

the C. elegans bHLH family of TFs, and model these data into an integrated 

network. This network displays both specificity and promiscuity, as some bHLH 

proteins, DNA sequences, and tissues are highly connected, whereas others are 

not. By comparing all bHLH TFs, we find extensive divergence, and that all three 

parameters contribute equally to bHLH divergence. Our approach provides a 

framework for examining divergence for other protein families in C. elegans and 

in other complex multicellular organisms, including humans. Cross-species 
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comparisons of integrated networks may provide further insights into molecular 

features underlying protein family evolution. 

The C. elegans bHLH TFs 

Classification of C. elegans bHLH Proteins 

Various bHLH classifications based on the presence of different domains, 

amino acid conservation, and known DNA-binding and dimerization specificities 

have been reported. We grouped the C. elegans bHLH proteins according to the 

classes outlined by Murre and colleagues (71) and supplemented by our own 

data described below (Figure I-5). Class I contains HLH-2, the C. elegans 

ortholog of human E12/E47 and Drosophila melanogaster daughterless; class II 

contains known and newly identified HLH-2 partners (see below); class III 

contains HLH-30 and SBP-1 (ortholog of the human Sterol Response Element 

Binding Protein); class IV contains bHLH-ZIP proteins (Max-like); class VI 

contains LIN-22 and the REF-1 family (based on DNA binding specificity data we 

generated; see Chapter IV), and class VII contains the C. elegans bHLH-PAS 

proteins. C. elegans does not have any known class V bHLH proteins (e.g. Id, 

emc) that lack the basic region. These classes provide a framework for our 

network and facilitate extrapolations of our findings to other organisms. 
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An Experimental Approach to Integrate Multiple Functional Parameters of 

the C. elegans bHLH TFs 

 Although there are numerous studies describing the characteristics of 

individual bHLH TFs in many different organisms, there are no systematically 

derived datasets that comprehensively determine the contributions of several 

parameters to an entire family of bHLH TFs in a single multicellular organism. We 

decided that using several high-throughput methods to systematically analyze all 

members of the C. elegans bHLH TF family could provide a reasonable approach 

to study the extent to which multiple parameters play a role in bHLH TF 

functionality. 

 The first dataset, described in Chapter II, is that of dimerization between 

all members of the C. elegans bHLH family. By performing pair-wise bHLH-bHLH 

interaction assays using the yeast two-hybrid (Y2H) system, we successfully 

identified all known dimers (for which clones were available) and identified 

several novel dimers. The dimerization network recapitulates what one might 

expect since many of the interactions appear to have interologs (i.e. interactions 

between orthologous proteins in a different organism). This yeast two-hybrid 

dimerization network more than doubles the number of dimerization interactions 

that were previously known for C. elegans bHLH proteins. 

 The second dataset, described in Chapter III, is that of bHLH TF 

spatiotemporal expression patterns. Generating transgenic worms carrying 

transcriptional fusion constructs of bHLH gene promoters fused to the gene 
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encoding green fluorescent protein (GFP), we annotated the transcriptional 

activity of each bHLH gene promoter as an indicator of bHLH TF expression. Our 

expression analyses, where applicable, agree closely with previously reported 

expression analyses using a variety of other methods, including immuno-staining 

of bHLH proteins and in situ RNA-hybridization. We describe numerous novel 

expression patterns which suggest when and where the various bHLH dimers 

identified in the network may be functioning in vivo. 

 The third dataset, presented in Chapter IV, describes the DNA binding 

specificity for a majority of the bHLH dimers in our dimerization network. Using 

protein binding microarrays (PBMs) we were able to determine the entire 

spectrum of DNA binding specificities for 19 C. elegans bHLH dimers in an 

unbiased manner. The data reveal two distinct clusters of DNA binding 

specificity, suggesting an early evolutionary divergence of the bHLH TFs with 

regards to DNA binding properties. The data also reveal the binding of several 

bHLH dimers to a variety of non-canonical bHLH binding sites, the specificity for 

nucleotides central to the bHLH-binding E-Boxes, and the contribution of E-Box-

flanking nucleotides to DNA binding. We then used the PBM-derived binding site 

data to make predictions of bHLH dimer target genes and functional annotation. 

 In Chapter V, we integrate all of the TF parameters from the previous 

three chapters into a multiparameter integrated network for the C. elegans bHLH 

TFs. This network, the first of its kind, displays the bHLH dimers and the 

aforementioned TF parameters as nodes in a network, connected by edges, 
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which are indicative of their relevant associations. As with the individual 

parameters, we see that nodes in the network display a wide array of 

connectivity, as some nodes are highly connected to other nodes, whereas 

others are more uniquely associated. The overall extent to which each bHLH TF 

in C. elegans has functionally diverged from one another is assessed by the use 

of a similarity score, a measure of overlap in parameter associations for a given 

bHLH-bHLH pair. Ultimately, we find that each bHLH TF is remarkably distinct 

from all others when all parameters are taken into account. 

 The systematic nature with which the data above was collected provides 

us with unique datasets that can now be used to address questions about bHLH 

TF functionality that were previously unresolved. Potential biases introduced by 

each method used are described in the following chapters, and, although biases 

may exist, we know that they are applied consistently within each dataset, 

allowing us to make adequate comparisons from each bHLH TF to another. For a 

complete overview of the experimental approach used, see Figure I-6. 
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Synopsis 

The understanding of the underlying principles of gene expression regulation 

may be revealed by the study of transcription regulatory networks (TRNs). 

Current models of TRNs are constructed from individual TF/target gene 

interactions identified by a variety of techniques, and typically ignore aspects of 

TF functionality such as protein-protein interactions, post-translational 

modifications, and TF spatiotemporal expression patterns. We refer to such 

aspects of TF functionality as TF parameters and suggest their inclusion in future 

models of TRNs to generate a more accurate and holistic understanding of the 

principles of regulation of gene expression. We have chosen to begin to create a 

more integrated TRN for the C. elegans bHLH family of TFs for a number of 

technical reasons, including the experimental tractability of the nematode C. 

elegans for the study of gene expression as well as the foundation of knowledge 

already present for the bHLH TFs in a variety of other organisms. In the following 

chapters, we will describe the experimental approaches for mapping such an 

integrated network and the implications of the results of such experiments.
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Figure I-1 

 
 
Figure I-1. Emerging features of transcription regulatory networks (TRNs) 
The mapping of physical interactions between transcription factors (TFs) and 
their target genes has resulted in the discovery of several interesting network 
features, some of which are shown here. Some TFs (circles) target a 
disproportionately large number of genes (diamonds) and are referred to as TF 
hubs. Sets of TFs that share many target genes are referred to as TF modules. 
Target gene hubs interact with a disproportionately large number of TFs. 
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Figure I-2 
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Figure I-2. Examples of parameters of TF functionality 
Various factors influence the functionality of TFs and impact transcription 
regulatory network modeling and analysis. Whether a TF binds to a promoter, 
and activates or represses transcription, depends on: (A) alternative splicing that 
may produce TF variants that carry unique combinations of functional domains 
involved in the regulation of gene expression. The example shows the C. elegans 
daf-16 gene that produces many splice variants, resulting in TFs that contain 
either of two possible forkhead DNA-binding domains, or neither. (B) Dimerizing 
TFs potentially combine in different ways to generate a large array of different 
hetero- or homodimers, each with its own function. (C, D) Some TFs may have 
an altered function after ligand binding or post-translational modifications (PTMs), 
such as phosphorylation (Phos), hydroxylation (OH), acetylation (Ac), 
ubiquitination (Ub), or sumoylation (Sumo). Such modifications can induce 
different conformational changes, thereby affecting TF functionality. (E) Co-
factors can mediate varying affects of TF activity. (F) Mutation or translocation of 
TF-encoding genes can result in TFs with reduced, enhanced, or novel activity. 
The asterisk indicates a point mutation and the horizontal line depicts the 
breaking point of translocation within the chromosome that carries the TF-
encoding gene. 
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Figure I-3 

 
 
Figure I-3. The integration of multiple TF parameters into novel TRNs 
Whereas traditional transcription regulatory networks have been visualized using 
a single node for a TF protein, the use of individual nodes for each functional TF 
state may help to depict the regulatory capacity of each TF. TF (blue circle) 
variant “a” forms heterodimers, variant “b” is post-translationally modified and 
variant “c” is a result of a mutation in the gene encoding the TF. Each variant has 
different target genes (diamonds) and/or different effects on those targets 
(arrows = transcriptional activation, flat arrows = repression). 
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Figure I-4 

 
 
 
Figure I-4. Functional and molecular divergence in paralogous TF families 
(A) Paralogous TFs arise by gene duplication and mutation. 
(B) TF divergence can be achieved by the accumulation of molecular and 
functional differences. Differently shaped nodes (rectangles, triangles and 
diamonds) between TFs (circles) represent different TF parameters (e.g. 
dimerization partners, spatiotemporal expression and DNA binding specificities). 
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Figure I-5 
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Figure I-5. Cladogram of aligned C. elegans bHLH domains 
(Left) bHLH domains were aligned using the Clustal X algorithm (72) and 
visualized as a cladogram with Tree View (73) 
(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). The bHLH class 
designation for each C. elegans bHLH protein is indicated immediately to the 
right of each bHLH protein name. (Right) Each C. elegans bHLH domain was 
BLASTed (BLASTP) against the RefSeq protein database for Drosophila 
melanogaster and humans. The closest homolog for each C. elegans bHLH 
domain is indicated with their respective BLASTP E-values. Note that there are 
48 bHLH domains aligned for this cladogram because bHLH proteins HLH-25, 
HLH-26, HLH-27, HLH-28, HLH-29, and REF-1 (the “REF-1 Family”) each have 
two bHLH domains. 
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Figure I-6 

 
 
Figure I-6. Schematic overview of experiments 
(A) Experimental pipeline, outlining the numbers of bHLH ORF and promoter 
clones used in each experiment and the data resulting from each experiment. 
ORFs = open reading frames, PPI = protein-protein interactions, Y2H = yeast 
two-hybrid, PBM = protein binding microarrays, GFP = green fluorescent protein. 
(B) Venn diagram delineating the overlap in the number of bHLH dimers present 
in the Y2H and PBM datasets. 
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PREFACE TO CHAPTER II 

This chapter discusses the importance of TF dimerization for many TF 

families and the implications of the capacity to dimerize. We describe an 

experimental approach to determine the dimerization network for the C. elegans 

bHLH TFs and discuss the findings that emerged as a result of the analysis. 

Much of this chapter has been published separately in: 

Grove CA, De Masi F, Barrasa MI, Newburger DE, Alkema MJ, Bulyk ML, 
Walhout AJM. A multiparameter network reveals extensive divergence between 
C. elegans bHLH transcription factors. Cell. 2009 Jul 23;138(2):314-327. 
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CHAPTER II 

 

The C. elegans bHLH Dimerization Network 
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Abstract 

Often integral to the functionality of TFs is the array of protein interaction partners 

that a particular TF has. TFs may interact with signaling proteins, cofactors, 

chromatin modifying enzymes as well as other TFs. The most frequent type of 

TF/TF interaction observed is in the form of homotypic dimerization, in which two 

TFs from the same family form dimers (homodimers or heterodimers), usually by 

virtue of the structural properties of the DNA binding domain itself. The basic 

helix-loop-helix (bHLH) TFs are believed to bind DNA as obligatory dimers, and, 

therefore, understanding which bHLH TFs dimerize with each other within an 

organism is critical to understanding the function of this family of TFs as a whole. 

In this chapter, we describe the technical approach for elucidating the 

dimerization interaction specificity of the C. elegans bHLH TFs and the 

dimerization interaction network as a whole. 
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Introduction 

Several TF families exhibit the property of homotypic dimerization, 

whereby two TFs from the same family interact stably to form dimers. These 

families include the basic leucine zipper (bZIP), the nuclear hormone receptor 

(NHR), and the basic helix-loop-helix (bHLH) TFs (reviewed in (74)). This 

dimerization is the result of the structural features of the DNA binding domain, 

which provides physical complementarity between certain members of each 

family of TFs, and, hence, enables a stable physical association between the two 

proteins. Whereas many TFs bind to DNA and carry out their regulatory activity 

as monomers, many families of TFs (like the bHLH, bZIP and NHR TFs) can only 

bind DNA as dimers, underlining the importance of dimerization to the 

functionality of these TFs. 

Dimerization creates the possibility for a large number of different 

functional TFs (dimers) to form from a relatively small number of individual 

proteins. For example, although there are only 42 predicted C. elegans bHLH 

TFs, the possibility exists that each TF dimerizes with all 42 bHLH TFs, 

generating as many as 903 possible functional homo- and heterodimers. 

Alternatively, each TF could heterodimerize exclusively with just one other 

protein, reducing the number of functional dimers to as low as 21. To elucidate 

the dimerization specificity, and hence to identify the functional dimers, of the C. 

elegans bHLH TFs, we have systematically analyzed dimerization interaction 
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specificity by the yeast two-hybrid (Y2H) method (75; 76). In this chapter, we 

describe the results of the yeast two-hybrid dimerization analysis and discuss the 

implications of our findings. 
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Results 

Updates to Various C. elegans bHLH Gene Models 

While attempting to clone all 42 C. elegans bHLH ORFs it became 

apparent that the current gene models for these bHLH genes were not all 

accurate (clone sources and cloning primers provided in Table II-1). Because 

ORF cloning begins at the step of PCR amplification of the ORF from a highly 

representative cDNA library, whether or not we can successfully amplify an ORF 

can indicate whether or not we have correctly predicted the 5’ or 3’ limits of the 

transcribed unit, or whether or not the predicted gene is even expressed. We 

were unable to amplify ORFs for three of the predicted C. elegans bHLH genes 

(hlh-12, hlh-31, and lin-22), and therefore tested only 39 bHLH ORFS. 

Improvements in gene finding algorithms and prediction methods, as well as 

experimental identifications of gene limits using such methods as 5’-RACE and 

3’-RACE, can dramatically improve definitions of genetic limits. 

For example, the Gene-Finder (77) model for hlh-19 was originally missing 

what we now know to be the first exon, which, importantly, encodes the N-

terminal portion of the bHLH domain for the HLH-19 protein. As a result, the 

original ORF clone for hlh-19 that was used in yeast two-hybrid (Y2H) 

experiments failed to yield any dimerization interactions, presumably because of 

the lack of a complete bHLH domain. With the release of the Twinscan C. 

elegans gene predictions (78; 79), an additional exon was predicted 5’ to what 

was thought to be the original first exon. When included into the hlh-19 gene 
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model, it became clear that the new exon encoded the missing amino acids of 

the bHLH domain. When this new ORF was then cloned and tested in the Y2H 

matrix experiments, we found a novel dimerization interaction between HLH-19 

and HLH-2 (see below). 

Auto-Activation of C. elegans bHLH Proteins in Yeast 

 As a prerequisite to carrying out well-controlled Y2H experiments, we 

perform a test for the ability of individual Y2H baits (the Gal4p DNA-binding 

domain hybrid protein) to activate reporter gene expression in the absence of any 

interacting partner. We refer to the activation of reporter genes by a single bait 

protein as “auto-activation”. If left unchecked, auto-activation can lead to the 

identification of a large number of spurious false positive interactions. Therefore, 

we systematically test each bait hybrid protein for auto-activation and remove 

from our experimental matrix any Y2H baits that activate both reporter genes 

above some threshold. Five of the C. elegans bHLH proteins (HLH-30, HLH-2, 

MXL-3, SBP-1, and HIF-1) exhibited strong auto-activation as Y2H baits and two 

(AHA-1 and HLH-1) exhibited weak to moderate auto-activation (Figure II-1). 

Because of strong auto-activation, the five auto-active bHLH baits were removed 

from further experiments. These same bHLH proteins could, however, be tested 

as Y2H preys. This allows us to detect heterodimerization interactions between 

any of these proteins (as prey) and a different non-auto-active bHLH bait. This 

does, however, exclude us from detecting homodimerization interactions for 

these five strongly auto-active bHLH proteins. 
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The C. elegans bHLH Dimerization Network 

Previous studies in C. elegans have identified ten bHLH homo- and 

heterodimers involving 14 TFs (80-84; 66; 85-87). However, dimerization 

partners for the majority of C. elegans bHLH TFs remained unidentified. Thus, 

we performed pair-wise Y2H assays to identify all bHLH-bHLH dimers (34). In 

total, we examined 765 bHLH-bHLH combinations involving 39 bHLH proteins 

(Figure I-6). In total, we detected 22 dimers (2 homodimers and 20 heterodimers) 

involving 26 bHLH proteins (Figure II-2A and II-2B). The complete dimerization 

network is shown in Figure II-3. We supplemented this network with homodimeric 

interactions for HLH-25, HLH-27, HLH-29, REF-1, HLH-11, MXL-3, and HLH-30, 

because we detected their specific DNA binding in protein binding microarray 

(PBM) and/or yeast one-hybrid assays (6) (see Chapter IV). Together, the 

resulting bHLH network contains 9 homodimers and 21 heterodimers involving 

34 proteins.  

Dimerization Interactions are Class Specific 

 One benefit of systematic dimerization analysis is the confidence to make 

statements about what kind of dimers can or cannot happen. Previously, data 

regarding dimerization interactions between bHLH proteins were generally 

acquired as the result of hypothesis-driven experiments that directly test the 

capability of two bHLH proteins to interact with one another. What these 

experiments do not reveal, however, is the extent to which any one bHLH protein 

will dimerize with any other bHLH protein. By performing systematic Y2H matrix 
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experiments, we can make a call as to how specific any dimerization interactions 

are for individual bHLH proteins. One interesting finding of the data presented 

here is that, after testing 765 pairwise bHLH-bHLH dimerization interactions, we 

find that all but two of the bHLH proteins in our dimerization network dimerize 

specifically with just one other bHLH protein. The two exceptions, HLH-2 and 

AHA-1, which we call dimerization hubs, are discussed in more detail below. This 

finding demonstrates that bHLH dimerization interactions are indeed highly 

specific. A subsequent finding is that all of the heterodimerization interactions 

appear to be restricted to the designated bHLH subclasses defined earlier. To 

this end, HLH-2 (Class I) interacts only with bHLH proteins predicted by 

sequence to belong to the Class II bHLH proteins. Likewise, Class IV bHLH 

proteins only dimerize with other Class IV proteins, and Class VII bHLH-PAS 

proteins only dimerize with AHA-1, the Class VII bHLH-PAS dimerization hub. As 

described later in this thesis, we believe we have provided further evidence that 

the bHLH proteins from the “REF-1 Family” are likely members of the 

Hairy/Enhancer-of-Split class (Class VI) of bHLH proteins. 

Two Dimerization Modules: The HLH-2 and AHA-1 Modules 

The majority of bHLH proteins exhibit highly specific dimerization as they 

interact with only a single other bHLH protein (Figure II-3). However, there are 

two bHLH proteins that interact with multiple other bHLH proteins. The first is 

AHA-1, the C. elegans ortholog of Arnt, that dimerizes with all known class VII 

members. Members of this class contain a PAS domain that mediates protein-
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protein interactions and ligand binding (88). The second is HLH-2, which binds to 

14 other bHLH proteins, many orthologs of which are known to interact with HLH-

2 orthologs in other organisms (interologs, Table II-2). We refer to the group of 

interactions between HLH-2 and AHA-1 and their partners as the HLH-2 and 

AHA-1 modules, respectively. Taken together, the dimerization network displays 

both specificity and promiscuity as most bHLH proteins interact with one, but 

some interact with many other bHLH proteins. 

HLH-3, HLH-4, and HLH-10 vs. the TF-Array 

The fact that so many C. elegans bHLH proteins dimerize with HLH-2 

raises the question as to how these different dimers distinguish themselves 

functionally. One possibility is that each HLH-2 partner interacts specifically with 

other TFs to provide combinatorial control over the expression of target genes. 

To test the possibility of whether or not HLH-2 partners may provide functional 

specificity by interacting with other C. elegans TFs, we tested three HLH-2 

partners for protein-protein interactions with any of the other C. elegans TFs for 

which we have clones available. This collection of 785 C. elegans TFs is present 

in the form of AD-TFs in the appropriate yeast strain for mating to bait strains 

(either Y2H baits or Y1H baits) (5). We tested HLH-3, HLH-4, and HLH-10 for the 

ability to interact with any of the TFs in the array, the results of which are 

displayed in Figure II-4A – II-4C. To our surprise, we found that, although we 

could reproduce the interactions of each of these TFs with HLH-2, there were no 
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other TFs with which they could interact, demonstrating the high degree of 

specificity these proteins exhibit with regards to dimerization. 
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Discussion 

Yeast Two-Hybrid Assays: Data Quality 

Several observations indicate that the dimerization network is of high quality. (1) 

We recovered all nine previously reported dimers for which bHLH ORF clones 

were available in addition to identifying 20 novel interactions (Figure II-3). (2) We 

found evolutionarily conserved “interologs” (evolutionarily conserved interactions) 

(34) (Table II-2). (3) All dimers fall within the bHLH classes, or between class I 

and class II as expected, which indicates dimerization specificity within the 

context of the yeast two-hybrid system (Figure II-3). (4) We tested several bHLH 

proteins for interactions with our entire collection of 785 full-length TFs (5) and 

found that bHLH-bHLH interactions are indeed highly specific (Figure II-4A, II-4B, 

II-4C). (5) We used extensively validated Y2H methodology with low expression 

levels and multiple reporters. This has been shown to result in a low degree of 

“technical false positives” (89). (6) The Y2H data is validated by the protein 

binding microarray (PBM) data and vice versa since five combinations of bHLH-

bHLH proteins that do not dimerize in yeast failed to confer sequence-specific 

DNA binding in PBM assays (see Chapter IV). (7) The tissue overlap coefficient 

(TsOC) analysis demonstrates that bHLH proteins that bind to each other in Y2H 

assays are more co-expressed than bHLH proteins that do not bind to each other 

in Y2H assays (see Chapter III). (8) All of the proteins that dimerize with each 

other in yeast “meet” in the worm as indicated by our analysis of spatiotemporal 

bHLH promoter activity and demonstrated by our co-expression analysis of HLH-
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2 and its partners (see Chapter III). We did not detect dimerization partners by 

Y2H for 13 of the 39 available C. elegans bHLH proteins, even though it is likely 

that all bHLH proteins function as dimers. For some we cannot identify 

homodimers because they are highly auto-active. This is likely the case for HLH-

30 and SBP-1, orthologs of which homodimerize (90; 91). For three, no clone 

was available (see above). 

Dimerization Hub Proteins May Confer Transcriptional Activation Activity 

Interestingly, both AHA-1 and HLH-2, the dimerization hubs, are auto-

activators in Y2H assays (Figure II-1) whereas their dimerization partners are not 

(except for HIF-1, Figure II-1, Figure II-3). Previously, we had observed that 

known transcriptional activators confer strong auto-activation in the context of the 

Y2H system when fused to the Gal4 DNA binding domain (34). Thus, the bHLH 

dimerization hubs may confer the transcriptional activation activity to the different 

dimers of which they are a part, whereas their dimerization partners may 

contribute specificity in DNA binding. Indeed, HLH-2 orthologs are known 

transcriptional activators in a variety of organisms (71). Together, these results 

suggest that HLH-2 and AHA-1 may function as transcriptional activators in C. 

elegans as well. Except for HIF-1, all the other auto-activators form homodimers 

that may activate transcription in vivo. Finally, none of the four proteins that 

constitute the two class IV heterodimers (Figure II-1, Figure II-3) activate 

transcription in yeast, which suggests that these dimers may function as 
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transcriptional repressors, as do some of their mammalian counterparts (Max, 

Mad) (92). 

bHLH Structural Components that Potentially Contribute to Dimerization 

Specificity 

The α-helices of bHLH TFs are the physical components that enable 

dimerization between partner bHLH proteins. When dimerized, two helices from 

each bHLH monomer face the two helices from the other bHLH protein to form a 

left-handed four-helix bundle, the core of which is almost entirely comprised of 

hydrophobic residues (71). It is thought that this hydrophobic interface is most 

important for the formation of stable dimers of bHLH TFs. Therefore, it is possible 

that specificity of dimerization may be achieved when two individual bHLH 

monomers have compatible hydrophobic surfaces that can fit snugly into one 

another. Determining this compatibility a priori has proven a difficult task, as 

there may be no simple relationship between amino acid sequence and 

dimerization specificity. Our systematically obtained dimerization network, 

however, provides a unique opportunity to examine sequence and/or structural 

determinants that may dictate partner choice within bHLH classes.  

An interesting question that arises from the dimerization network is how a 

protein like HLH-2 can specifically interact with so many bHLH partners, but that 

none of the partners can interact with each other. To investigate this we 

performed a Clustal W alignment (93) of the individual bHLH domain amino acid 

sequences from HLH-2 and all of its partners, as well as HLH-2 with several 
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HLH-2 orthologs (i.e. E proteins) from other species (Figure II-5). As can be seen 

from the alignment of the bHLH domain amino acid sequences, there are several 

similarities between HLH-2 partners, as well as HLH-2 itself. There are two 

residues, however, that are consistently present among HLH-2 partner 

sequences that are lacking from HLH-2 and HLH-2 orthologs. 

The first distinguishing residue is a proline at either position 28 or 29 

(according to the numbering scheme of Atchley and Fitch (94)) at the end of helix 

#1 of HLH-2 partners (P28/29, Figure II-5 bottom panel, left red box). HLH-2 has 

a threonine at the equivalent position, and its orthologs have either a methionine 

or a glutamine (Figure II-5 top panel, left red box). Previously, Ellenberger et al. 

observed that helix #1 of mammalian Max (class IV) is one helical turn shorter 

than helix #1 of the HLH-2 ortholog E47, and that this is likely due to P28, which 

could act to break the turn of the helix (95). Thus, P28 of the HLH-2 partners may 

also shorten helix #1, whereas helix #1 of HLH-2 may be extended due to a lack 

of a proline at this position. 

The second distinguishing residue is a bulky aromatic tyrosine at position 

60 in helix #2 of HLH-2 partners (Y60, Figure II-5 bottom panel, right red box). 

There is a smaller, hydrophobic valine at the analogous position in HLH-2 and its 

orthologs (V60, Figure II-5 top panel, right red box). Y60 in Max has been 

reported to “cap” the C-terminal end of helix #1 (96). The aromatic ring of 

tyrosine 60 (in helix #2), which may be resting at the top of helix #1 in HLH-2 
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partners, may sterically hinder further turns of helix #1, thereby contributing to the 

shorter helix #1 for those bHLH proteins. 

The fact that all HLH-2 partners contain both P28/29 and Y60 suggests 

that their helix #1 is shorter than that of HLH-2 (Figure II-5). This is supported by 

the recently published co-crystal structure of E47/NeuroD heterodimers bound to 

DNA that shows that helix #1 of E47 is one turn longer than helix #1 of NeuroD 

(Figure II-6) (97). Taken together, it is likely that an extra helical turn in helix #1 of 

HLH-2 enables additional surface contacts between helix #1 of HLH-2 and helix 

#2 of HLH-2 partners, and between helix #1 of HLH-2 and its own helix #2. 

Based on these observations, we propose that HLH-2 partners fail to interact with 

each other because helix #1 is not long enough to stabilize dimerization.  

Most of the members of the other bHLH classes do contain P28, but lack 

Y60. This suggests that they may have a shorter helix #1, which may help to 

explain why they do not interact with HLH-2 partners, but does not explain why 

they do not dimerize with HLH-2. We could not find any other obvious differences 

between the AHA-1 module or class IV proteins and the HLH-2 partners in 

primary amino acid sequence. However, in contrast to the HLH-2 partners, class 

IV members exhibit less similarity to each other in their two dimerizing helices, 

and the same is true for the AHA-1 module. This may suggest that additional 

protein domains such as the leucine zipper (class IV) and the PAS domain (class 

VII) may contribute to specific dimerization of these proteins. 
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bHLH Proteins with no Yeast Two-Hybrid Data 

Although most evidence on bHLH proteins suggests that bHLH proteins 

must dimerize and bind to DNA to carry out their function, a limited number of 

cases suggest that some bHLH proteins may perform a major part of their 

biological roles independent of DNA binding even though relevant “target” genes 

are affected by their presence (98; 99). This raises the possibility that at least 

some bHLH proteins can perform their biological function independent of what is 

thought to be their primary molecular action: dimerization and DNA-binding. That 

said, it is possible that this is the case for many of the C. elegans bHLH proteins 

for which no dimerization data (e.g. HLH-16, HLH-17, HLH-31, etc.) or DNA 

binding data (e.g. HLH-6, HLH-13, HND-1, etc., see below) were obtained.  

Known Human bHLH Network 

Although a detailed and thorough dimerization network analysis of human 

bHLH TFs would be tremendously insightful, performing such an analysis on the 

human bHLH TFs would certainly prove to be difficult for a number of reasons: 

(1) The number of bHLH TFs in humans is likely to be at least 110 members, 

making pairwise dimerization analysis much more intensive (~6100 experiments) 

than for the 42 members of C. elegans (~900 experiments); (2) Performing any in 

vivo analysis of bHLH gene expression or target gene expression in humans is 

practically infeasible, or at least limited, since data collection may be limited to 

voluntarily contributed tissue samples, biopsies, blood samples, etc. This type of 

data collection certainly could not be applied to all tissue types and all life stages. 
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(3) Likewise, the creation of a comprehensive/representative human cDNA library 

for the cloning of human bHLH ORFs would also be difficult or impossible to 

acquire.  Beginning such an integrated network analysis is more practical in C. 

elegans both at the level of data acquisition and data analysis. 

 To get an idea of what is currently known about the human bHLH 

dimerization network, we can make use of publicly available datasets provided 

through online databases. The online database DBD (100) provides lists of 

predicted transcription factors from a variety of organisms. Another online 

database, BioGRID (101), provides information about experimentally defined 

protein-protein interactions for many different organisms. By defining the list of 

human bHLH TFs using the DBD database and querying the BioGRID database, 

we can reconstruct the currently known human bHLH dimerization network as 

shown in Figure II-7. An interesting observation is that, like the C. elegans bHLH 

network, the human bHLH dimerization interactions, with some exceptions, 

appear to be primarily restricted to class definitions: Class I bHLH TFs (TCF3, 

TCF4, TCF12, etc.) dimerize with Class II and Class V (ID1-3) bHLH TFs, Class 

III bHLH TFs dimerize with Class III and Class IV, and Class VII bHLH TFs (the 

bHLH-PAS TFs ARNT, NPAS, SIM, AHR) dimerize exclusively within their own 

class. 

 Another interesting observation is that, as a result of the expansion of the 

bHLH family, members such as TCF3, TCF4, and TCF12, which likely share a 

common ancestor with HLH-2, also exhibit characteristics of dimerization hubs. 
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This also appears to be the case for ARNT and ARNTL, both of which likely 

share a common ancestor with AHA-1. Perhaps this expansion of bHLH TF hubs 

is a contributor to the biological complexity that is conferred onto higher 

eukaryotic systems such as humans. 

 It is important to note, however, that this human bHLH network is likely 

incomplete, since dimerization interactions between human bHLH proteins have 

not been systematically determined. As can be seen from the human network 

(Figure II-7), almost half of the human bHLH TFs lack any dimerization 

interaction data at all. Future systematic studies of human bHLH proteins will be 

required to asses the full degree of connectivity within the human bHLH network, 

and whether or not the aspects of this connectivity contribute to the complexity of 

human biology. 

HLH-33: A Novel bHLH-PAS protein? 

As mentioned earlier, each of the bHLH proteins appear to dimerize 

specifically with members of its own class. Such is the case for the bHLH-PAS 

proteins, as we can see that every known bHLH-PAS protein in C. elegans is 

grouped into a single module of the dimerization network. These bHLH-PAS TFs 

include AHA-1, HIF-1, AHR-1, CKY-1, and HLH-34. The other TF that dimerizes 

with AHA-1 in this module that doesn’t immediately appear to belong to the 

bHLH-PAS class of bHLH TFs (Class VII) is the HLH-33 protein. At first glance, 

this protein does not contain a readily apparent PAS domain. If we look at some 

of HLH-33’s closest homologs in other species, however, we find that HLH-33 is 



 52 

most closely related (albeit weakly) outside the Caenorhabditis clade to the 

zebrafish Clock3 protein, a known bHLH-PAS protein. It is interesting to 

speculate that HLH-33 may indeed be a member of the bHLH-PAS family that is 

undergoing divergence to the point of being barely recognizable as a bHLH-PAS 

protein, and may lose it’s capacity to dimerize with this class in the near 

evolutionary future. 

Summary 

Critical to understanding the function of dimerizing TFs is the knowledge 

of the identity of the dimerization partners for each of these TFs. Because these 

TFs often function as obligate dimers, knowing if a TF forms a homodimer or a 

heterodimer with a different TF is essential to the identification of functional TF 

dimer-complexes which carry out the function of gene regulation. We have 

systematically analyzed the dimerization preferences for the C. elegans bHLH 

TFs using the yeast two-hybrid assay. Our results indicate the presence of two 

dimerization hubs, HLH-2 and AHA-1, show that most bHLH TFs dimerize 

specifically with just one other bHLH TF, and show that heterodimerization 

interactions take place between bHLH TFs within the same class or group of 

classes. We also observe that some C. elegans bHLH TFs, including the two 

dimerization hubs, can activate gene expression in yeast, suggesting that they 

may be transcriptional activators in C. elegans as well. Incorporating data from 

subsequent chapters reveals a dimerization network of 30 bHLH dimers involving 

34 bHLH proteins. This network represents the first systematically derived 
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dimerization network for all bHLH TFs in any organism. The following chapters 

will describe the analysis of spatiotemporal bHLH TF expression and the DNA-

binding specificities and their incorporation, along with the dimerization network, 

into a multiparameter integrated bHLH network. 
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Materials and Methods 

Open Reading Frame Cloning 

We obtained 28 C. elegans bHLH-encoding open reading frames (ORFs) 

as Gateway Entry clones from the C. elegans ORFeome (102), and one from the 

wTF2.1 clone array (5). Ten additional ORFs were PCR-amplified ab initio from a 

C. elegans cDNA library and subsequently Gateway-cloned into the Donor vector 

pDONR-221 as described (103). Finally, we failed to PCR-amplify three ORFs 

(hlh-12, hlh-31 and lin-22) from the cDNA library. All available ORFs were cloned 

by Gateway LR reactions into pAD-DEST and pDB-DEST for yeast two-hybrid 

(Y2H) experiments as described (104). All Y2H constructs were sequence-

verified. Clone sources and primer sequences are provided in Table II-1. 

Y2H Assays 

Y2H assays were performed as described (104). Briefly, all DB-bHLH and 

AD-bHLH destination clones were transformed into yeast strains MaV103 and 

MaV203, respectively (104). All DB-bHLH clones were tested for auto-activation, 

i.e., the ability to activate reporter gene expression in the absence of any AD 

clone (105). Highly auto-activating DB-bHLH strains were omitted from further 

experiments. The remaining DB-bHLH strains were grown as a lawn on 15-cm 

plates of synthetic complete media lacking leucine (Sc-Leu). AD-bHLH strains 

were spotted in rows of 12 onto 15-cm plates of Sc medium lacking tryptophan 

(Sc-Trp). The DB-bHLH lawn and AD-bHLH spots were replica-plated on top of 

each other onto YEPD media and incubated overnight at 30°C. Diploids were 
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selected on Sc-Leu-Trp media by overnight incubation at 30°C. The next day, 

diploids were replica-plated onto Sc-Leu-Trp media lacking histidine and 

containing 20 mM 3-aminotriazole (3AT) (Sc-Leu-Trp-His+20 mM 3AT) and onto 

YEPD media with nitrocellulose filters for β-galactosidase assays. Interaction 

phenotypes were assessed 3-5 days after plating. See (104) for details. 
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Table II-1. C. elegans bHLH ORF cloning information 
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C25A1.11 aha-1 ORFeome 
1.1 

  yes  

C41G7.5 ahr-1 ORFeome 
1.1 

  yes  

C15C8.2 cky-1 ORFeome 
1.1 

  yes I476V 

C34E10.7 cnd-1 ORFeome 
1.1 

  yes  

F38A6.3 hif-1 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
GGAAGACAAT
CGGAAAAGAA 

GGGGACCACT
TTGTACAAGA
AAGCTGGGCA
AGAGAGCATT
GGAAATGGG 

no  

B0304.1 hlh-1 ORFeome 
1.1 

  yes  

ZK682.4 hlh-10 ORFeome 
1.1 

  yes  

F58A4.7 hlh-11 ORFeome 
1.1   no  

C28C12.8 hlh-12 unable to 
be cloned 

  not cloned  

F48D6.3 hlh-13 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
GGATTCATCG
TATGATTCAT
ATTACTG 

GGGGACCACT
TTGTACAAGA
AAGCTGGGCG
CCACTTGATC
CAATTGAGC 

no  

C18A3.8 hlh-14 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
GGCCAAGAAG
AATCAAGTTG 

GGGGACCACT
TTGTACAAGA
AAGCTGGGTA
ATGGTGTGGA
TAATTGGAAT

ATGA 

no  

C43H6.8 hlh-15 ORFeome 
1.1   yes  

DY3.3 hlh-16 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTA
AGGCTTGAAT
GAGCAAGAAC

A 

GGGGACCACT
TTGTACAAGA
AAGCTGGGTT
TGTTGACACT
TTGAGCATTT

TG 

no  

F38C2.2 hlh-17 ORFeome 
3.1 

  yes  
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F57C12.3 hlh-19 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
GTCACGTGAA
CGTGCTAAC 

GGGGACCACT
TTGTACAAGA
AAGCTGGGCA
ATCATAGTTC
ACAACAAAAT

GACA 

yes  

M05B5.5 hlh-2 ORFeome 
1.1 

  yes  

C17C3.7 hlh-25 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
GCCAAAAGTT
ATTCAGTCTT

CAA 

GGGGACCACT
TTGTACAAGA
AAGCTGGGAG
TGATGGAAGA
ATGAATCGGA

G 

no  

C17C3.8 hlh-26 ORFeome 
1.1 

  yes  

C17C3.10 hlh-27 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
GCCAAAAGTT
ATCCCATCTT

C 

GGGGACCACT
TTGTACAAGA
AAGCTGGGTA
GTTACTAATA
TCGACGGTTT
CTTCATT 

no  

F31A3.2 hlh-28 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
GCCAAAAGTA
CATCAAGCAA

C 

GGGGACCACT
TTGTACAAGA
AAGCTGGGCA
GCCAATAATA
TCGATATCTT

CCTC 

no  

F31A3.4 hlh-29 ORFeome 
1.1 

  yes  

T24B8.6 hlh-3 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTC
TACATCCACC
AAAATTCCGT

CGTCA 

GGGGACCACT
TTGTACAAGA
AAGCTGGGTA
TACGGGAGAC
TGTTCTGGAG

TT 

no  

W02C12.3 hlh-30 ORFeome 
1.1 

  yes  

F38C2.8 hlh-31 unable to 
be cloned 

  not cloned  

Y105C5B.2
9 hlh-32 wTF array   yes  

Y39A3CR.
6 hlh-33 ORFeome 

1.1 
  no  

T01D3.2 hlh-34 ORFeome 
1.1 

  yes  

T05G5.2 hlh-4 ORFeome 
1.1   yes  

T15H9.3 hlh-6 ORFeome 
1.1 

  yes  

C02B8.4 hlh-8 ORFeome 
1.1 

  yes  
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C44C10.8 hnd-1 ORFeome 
1.1 

  yes  

Y54G2A.1 lin-22 unable to 
be cloned 

  not cloned  

T14F9.5 lin-32 ORFeome 
1.1 

  no  

R03E9.1 mdl-1 ORFeome 
1.1 

  yes D48E 

T20B12.6 mml-1 ORFeome 
1.1 

  yes  

T19B10.11 mxl-1 ORFeome 
1.1 

  yes  

F40G9.11 mxl-2 ORFeome 
1.1 

  yes  

F46G10.6 mxl-3 ORFeome 
1.1 

  yes  

Y69A2AR.
29 ngn-1 ORFeome 

3.1 
  yes  

T01E8.2 ref-1 cloned ab 
initio 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
GGTCCTCATC
AGTACCCCAC 

GGGGACCACT
TTGTACAAGA
AAGCTGGGTA
TTCCCATGGT
CTGAACAGCT

T 

yes S255G 

Y47D3B.7 sbp-1 ORFeome 
1.1 

  no E406G, 
T896A 

Y16B4A.1 unc-3 ORFeome 
1.1 

  yes F73L, 
S125G 

 
   

 
Table II-1. C. elegans bHLH ORF cloning information 
Listed are the ORF names and gene names for each C. elegans bHLH TF in this 
study. Also listed are the clone source (e.g. ORFeome), cloning primers (where 
applicable), whether or not the clone is full length (based on Wormbase version 
WS190 annotations), and mutations that remained in the ORFs used in GST 
vectors for PBM experiments. Red text in primer sequences indicates ORF-
specific sequence; black text indicates Gateway tails. 
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Figure II-1 

 
 
 
 
Figure II-1. Auto-activation of DB-bHLH Y2H baits.  
Top - DB-bHLH yeast strains were plated in spots on permissive media; middle - 
activation of the HIS3 reporter gene ; bottom – activation of the LacZ reporter 
gene (βGal). Auto-activators are: A1 - DB-AHA-1; A5 - DB-HLH-30; A6 - DB-
HLH-2; B3 - DB-HLH-1; B6 - DB-MXL-3; B9 - DB-SBP-1; D3 - DB-HIF-1. 
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Figure II-2A 

 
 
 
 
 
Figure II-2A. Example of Y2H matrix assay using DB-HLH-15 as bait 
Top – permissive media; middle - activation of the HIS3 reporter gene; bottom - 
activation of the LacZ reporter gene (βGal). * Bottom spots in each panel - Y2H 
controls (104). The Y2H positive in spot A6 is AD-HLH-2. 
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Figure II-2B 

 
Figure II-2B. Raw yeast two-hybrid data for the C. elegans bHLH TFs 
As in Figure II-2A, shown are the HIS3 and LacZ reporter gene readouts for each 
DB-bHLH bait hybrid protein (permissive plates not shown). Growth of yeast in 
the top panel for each protein indicates HIS3 expression; blue colored spots of 
yeast in the bottom panels indicate expression of the LacZ reporter gene.
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Figure II-3 

 
 
Figure II-3. The bHLH dimerization network.  
Each oval represents a single C. elegans bHLH protein. Lines connecting ovals 
represent dimerization interactions between the indicated bHLH proteins. Refer 
to the legend for what each color represents. Note that curved arrows indicate 
homodimerization interactions, and dashed curved arrows indicate inferred 
homodimerization interactions. PBM – protein binding microarray experiments, 
Y1H – yeast one-hybrid experiments. 
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Table II-2 
 

 
 
Table II-2. Interologs 
Several bHLH dimerization interactions identified are evolutionarily conserved 
interologs. 
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Figure II-4A. DB-HLH-3 vs. AD-TF-Array 
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Figure II-4B. DB-HLH-4 vs. AD-TF-Array 

TF Array 
Plate #1

TF Array 
Plate #7

TF Array 
Plate #3

TF Array 
Plate #6

TF Array 
Plate #8

TF Array 
Plate #2

TF Array 
Plate #4

TF Array 
Plate #9

TF Array 
Plate #5

Permissive HIS3 Gal



 67 

Figure II-4C. DB-HLH-10 vs. AD-TF-Array 
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Figure II-4. Individual bHLH proteins tested against AD-TF-Array 
Three different bHLH proteins were tested for protein-protein interactions against 
the entire collection of AD-TFs available in our TF clone resource (5). In this 
particular version of the TF-array, all AD-TFs are plated over nine 15cm plates, 
which can then be used in a yeast two-hybrid or yeast one-hybrid mating assay. 
The results of a mating experiment between the AD-TF array and DB-HLH-3 (A), 
DB-HLH-4 (B), and DB-HLH-10 (C) are shown. The left column of pictures in 
each panel represents permissive growth of diploid yeast resulting from the 
mating of each DB-bHLH TF strain to the TF-array. The second and third 
columns, respectively, represent the HIS3 and LacZ (“βGal”) reporter gene 
expression readout. Growth of yeast spots in the second column indicates HIS3 
expression and blue colored spots in the third column indicate β−Galactosidase 
expression. The experiment reproduces the interaction of these three TFs with 
HLH-2 (TF Array plate #5, row F, column 11). The other apparent interaction (TF 
Array plate #6, row A, column 11) is a contamination, as the interaction cannot 
be reproduced. 
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 Figure II-5 

 
Figure II-5. Alignment of bHLH domains of HLH-2, orthologs, and partners 
Residue numbering and secondary structure demarcations are based on bHLH 
domain consensus annotations by Atchley and Fitch (94). Red boxes indicate the 
28th (or 29th) and 60th residues of each bHLH domain (see text for details). (Top 
panel) Clustal W (93) alignment of HLH-2 bHLH domain and the bHLH domains 
of several of its orthologs. (Bottom panel) Clustal W alignment of HLH-2 and its 
dimerization partners. 
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Figure II-6 

 
 
Figure II-6. Structural insight from the E47/NeuroD crystal structure 
Utilizing amino acid sequence alignments and known crystal structures of bHLH 
protein dimers (like this one from Longo et al (2008) Biochemistry (97)) allows 
the generation of specific hypotheses as to which amino acid residues are likely 
important determinants of bHLH dimerization specificity. The solid and dashed 
lines in the bottom two panels indicate the extra helical turn helix #1 for E47 
(solid line, left) and the proline-28-truncated helix #1 of NeuroD (dashed line, 
right), respectively. 
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Figure II-7 
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Figure II-7. The human bHLH dimerization network 
Human bHLH TFs (identified by the DBD online database (100; 2)) and 
interactions between them (identified by the BioGRID interaction database (101)) 
have been visualized using the Cytoscape software (106-108). Colors of nodes 
indicate which class each bHLH TF likely belongs to: Red = Class I, Orange = 
Class II, Yellow = Class III, Green = Class IV, Light Blue = Class V, Dark Blue = 
Class VI, Purple = Class VII, and Pink = Unknown Class. Although this network is 
incomplete due to the lack of systematic experimental determination of 
dimerization specificities for the human bHLH TFs, we can see global similiarities 
with the C. elegans bHLH dimerization network. For example, dimerization 
interactions appear to be class specific, although perhaps less so than the worm. 
We also see multiple dimerization hubs such as TCF3, TCF4, TCF12 (homologs 
of HLH-2), MAX (homolog of MXL-1), ARNT, and ARNTL (homologs of AHA-1). 
Perhaps the expansion of hubs and interaction specificity are contributing factors 
to biological complexity. 
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PREFACE TO CHAPTER III 

This chapter describes the spatiotemporal expression patterns of the C. 

elegans bHLH TFs, based on the analysis of transgenic strains of C. elegans 

carrying bHLH-promoter::GFP fusion constructs. In addition, we describe a two-

fluorescent-protein reporter approach to more distinctly define the co-expression 

patterns of pairs of bHLH genes respectively encoding heterodimerizing bHLH 

TF proteins. 

Much of this chapter has been published separately in: 

Grove C. A., De Masi F., Barrasa M. I., Newburger D. E., Alkema M. J., Bulyk M. 
L., Walhout A. J. M. A multiparameter network reveals extensive divergence 
between C. elegans bHLH transcription factors. Cell. 2009 Jul 23; 138(2): 314-
327. 
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CHAPTER III 

 

The Spatiotemporal Expression Patterns of the C. elegans bHLH 

Transcription Factors 
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Abstract 

As described in chapter I of this thesis, when and where a TF is expressed 

in the body of a multicellular organism can play a critical role in the ultimate 

functionality of that TF. It appears that certain tissues and cell types can actually 

potentiate the function of a TF by providing a cellular/molecular environment that 

is suitable for its activity. The degree to which a TF determines the identity of a 

cell type and, conversely, the degree to which a cell type determines the 

functionality of a TF remain mysteries of TF functionality. The functionality of 

dimerizing TFs, such as the bHLH TFs, is additionally influenced by 

spatiotemporal expression since heterodimerizing TFs require co-expression at 

the same time and place in order to physically interact and carry out their 

cooperative function. In this chapter, we describe the spatiotemporal expression 

patterns for the C. elegans bHLH TFs by way of transgenic C. elegans 

expressing green fluorescent protein (GFP) under the control of bHLH gene 

promoters. The resulting expression patterns for individual bHLH genes are 

described, as well as the analysis of co-expression patterns for HLH-2 and its 

partners. 
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Introduction 

With the rise of multicellularity came a dramatic expansion of the bHLH 

family of TFs (109) which alone seems to suggest that these TFs play an 

important role in specifying and coordinating the functions of multiple cell types in 

higher eukaryotes. It has been long known that bHLH TFs are expressed in a 

variety of tissues and cell types in multicellular organisms and are often critical to 

the proper development and/or functioning of those tissues and cell types. These 

tissues include, but are not limited to, the nervous system (e.g. the achaete-scute 

complex, Atonal, Neurogenin, BETA2/Neurod) immune system (e.g. E2A, ABF-

1), blood (Lyl-1, Tal-1), muscle (e.g. MyoD, myogenin), and pancreas 

(BETA2/NeuroD) (reviewed in (71)).  

 Because most studies of bHLH proteins suggest that they must form 

dimers in order to function, when and where heterodimeric bHLH protein partners 

are expressed are important factors in the functionality of these proteins. 

Regulation of bHLH protein expression could in fact be a mode of regulating the 

function of these dimers, since the lack of the appropriate partner essentially 

renders that bHLH protein non-functional. Co-expression of bHLH dimer partners 

is an obvious prerequisite to dimer formation and is, therefore, an important 

determinant of bHLH TF function. Homodimeric bHLH TFs, of course, escape 

this limitation since, as long as more than one copy of a homodimeric bHLH 

protein is present in any cell, co-expression of partners is possible. 
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 Although tissue-specific expression patterns for various bHLH genes have 

been reported, there has been no systematic or comprehensive analysis of 

spatiotemporal bHLH TF expression in any whole multicellular organism. The 

work presented in this chapter describes the analysis of bHLH expression using 

a consistent methodology (i.e. the observation of GFP expression in transgenic 

worms carrying bHLH-promoter::GFP fusion constructs) and a controlled 

vocabulary to enable systematic annotations and comparisons of bHLH 

expression patterns. 
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Results 

Worm PCR Verification 

To analyze the spatiotemporal expression pattern of bHLH genes, we 

generated transgenic animals that express the green fluorescent protein (GFP) 

under the control of bHLH gene promoters (see Table III-1 and III-2 for cloning 

and transgenic line details; see Materials and Methods). To confirm that each of 

the transgenic strains carrying bHLH-gene promoter::GFP fusions is indeed 

carrying the promoter in question, we carried out PCR on individual worms using 

primers specific to each promoter. The resulting PCR reactions were separated 

and visualized by gel electrophoresis (Figure III-1; see Table III-3 for promoter-

specific primer sequences; see Materials and Methods). 

Temporal Expression Summary 

GFP expression was observed throughout the lifespan of the worm, from 

early embryogenesis (about 24 cell stage) to aged adults, with different bHLH 

gene promoters driving expression for various windows of time (Table III-4). 

There was no detectable GFP expression in the germline (aside from the 

spermatheca), which may be a result of transgene silencing of transgenic arrays. 

Therefore, our expression analysis was limited to post-zygotic expression 

patterns. For a couple of bHLH genes (cnd-1 and ngn-1) we observed expression 

as early as the 24-48 cell stage, but the majority of bHLH promoters began 

driving GFP expression in the mid-stage embryo (about the comma stage of 
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embryogenesis). This observation is in agreement with the fact that bHLH genes 

are known to be important regulators of development. 

Spatial Expression Summary 

bHLH gene promoters drove GFP expression in a wide variety of cell 

types, but were clearly more predominant in some tissues (Table III-4). We 

observed GFP expression in the hypodermis, body muscles, head muscles, 

neurons, intestine, excretory cell, pharynx, coelomocytes, spermatheca, vulva, 

distal tip cells, pharyngeal glands, pharyngeal-intestinal valve, P cells, seam 

cells, and rectum. As mentioned above, we did not observe GFP expression in 

the developing oocytes (germline), which may or may not reflect the actual 

expression of bHLH proteins. There appear to be some tissues that only express 

specific bHLH proteins or classes of bHLH proteins. For example, only REF-1 is 

expressed in the pharyngeal intestinal valve. HLH-6 is the only bHLH protein that 

appears to be expressed in the pharyngeal glands (HLH-2 appears to be 

expressed embryonically in cells that eventually become the pharyngeal glands). 

Other class-specific patterns are described below. 

 Although many bHLH genes appear to be expressed in C. elegans 

neurons, there may only be a minority of the 302 neurons in the worm that 

actually express bHLH genes. This is because of the difficulty of determining the 

exact neurons that express the fluorescent protein in question. A description of 

some higher resolution analyses of bHLH expression is described below. 
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Class III Expression Patterns 

The Class III bHLH TFs in C. elegans are represented by the genes hlh-30 

(the C. elegans ortholog of MITF/TFE3) and sbp-1 (the C. elegans ortholog of the 

Sterol Response Element Binding Protein, SREBP). Interestingly, both of these 

genes are expressed strongly throughout the intestine from the early larval 

stages through adulthood. This observation is in concordance with the fact that 

the intestine is the major site of fat storage and metabolism in C. elegans, as 

SREBP is a known regulator of cholesterol and lipid metabolism (reviewed in 

(110)) and TFE3 is a regulator of metabolic genes in mice (111). Whereas the 

sbp-1 gene is expressed exclusively in the intestine, hlh-30 is also expressed in a 

number of other tissues, including the spermatheca, head muscle, body muscle, 

the pharynx, the head and tail hypodermis, head neurons and the vulva. 

Class IV Expression Patterns 

The Class IV bHLH genes are represented by mxl-1, mxl-2, mxl-3, mdl-1, 

and mml-1. The promoter of the mxl-1 gene did not drive detectable GFP 

expression in the worm (see discussion). The remaining four genes are all 

expressed in the hypodermis, in the head, body, and/or tail. Based on the fact 

that few other bHLH TFs in C. elegans appear to be expressed in the 

hypodermis, it seems likely that these Class IV bHLH TFs play an important role 

in the biology of the hypodermis. Although two-color fluorescence co-expression 

analysis (as described below) was not performed for the mml-1 and mxl-2 genes, 

we can deduce the co-expression of these two genes based on their individual 
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expression patterns. The MML-1/MXL-2 heterodimer, therefore, appears to be 

expressed exclusively in the head, body, and tail hypodermis (Table III-5). Aside 

from the tail hypodermis, MXL-3 homodimers are expressed in multiple head 

neurons. Although we cannot confirm the expression pattern of the MDL-1/MXL-1 

dimer (because of lacking information regarding the mxl-1 expression pattern), 

the promoter of mdl-1 drives expression in body and tail neurons, the pharynx, 

coelomocytes, the vulva, rectum, and head, body, and tail hypodermis. Once the 

correct expression pattern of the mxl-1 gene is deduced, we can make 

conclusions as to where the respective heterodimer is expressed. 

REF-1 Family Expression Patterns 

The REF-1 family bHLH TFs, as described earlier, are a unique family of 

bHLH proteins in that they each contain two recognizable bHLH domains (112). 

The implications of this are not currently understood, and this phenomenon (two 

bHLH domains per protein) is unique to C. elegans and rice (109; 112). The 

promoters of the hlh-25, hlh-26, and hlh-28 genes did not drive detectable GFP 

expression in the worm (see discussion). Therefore, expression could only be 

analyzed for hlh-27, hlh-29, and ref-1. The hlh-28 and hlh-29 genes are in 

opposite orientations and separated by a bidirectional promoter. Interestingly, the 

same DNA sequence that drives GFP expression in head and tail neurons (the 

hlh-29 promoter) does not drive any detectable GFP expression when cloned in 

the opposite orientation upstream of GFP (the hlh-28 promoter). This unexpected 

result demonstrates that either the promoter sequence orientation is important for 
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proper gene expression, the relevant cis-regulatory element placement is 

important, or both. The hlh-27 promoter drives expression in a variety of cells 

including head, body, and tail neurons, the pharynx, coelomocytes, and the 

rectum. The ref-1 promoter drives expression in tail neurons, the pharynx, the 

vulva, and, unique to all other bHLH promoters, drives expression in the 

pharyngeal-intestinal valve. 

Class VII (bHLH-PAS) Expression Patterns 

As described above for the MML-1/MXL-2 co-expression, two-color 

fluorescence analysis was not performed on the Class VII bHLH-PAS gene 

promoters, yet we could reasonably assess co-expression patterns based on the 

individual promoter::GFP expression patterns for aha-1 and AHA-1 dimerization 

partners (Table III-5). The AHA-1/CKY-1 dimer is distinctly and exclusively 

expressed in the pharynx from early larval stages into adulthood. The AHA-

1/HLH-34 dimer also appears to have a restricted pattern of expression as the 

hlh-34 promoter drives expression only in a few head neurons. The other three 

heterodimers exhibit much broader expression: AHA-1/AHR-1 is expressed in 

coelomocytes and the vulva, AHA-1/HIF-1 is expressed in the pharynx, vulva, 

and tail hypodermis, and AHA-1/HLH-33 is expressed in body muscle, the 

pharynx, coelomocytes, body and tail hypodermis, and the vulva. Except for 

AHA-1/CKY-1, it appears that all dimers of this class are expressed in a variety of 

neurons in the head and tail of the worm, although definitive identification of co-

expression in these cells will require more detailed co-expression analysis. It has 
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been reported that the AHA-1/AHR-1 dimer is indeed expressed in the RMEL 

and RMER neurons and performs important developmental functions (55). 

Although determining co-expression of dimer partners is relatively easy in some 

tissues and cells (e.g. intestine, hypodermis, pharynx), the co-expression 

analyses based on GFP expression alone should be interpreted with caution. 

Co-Expression of Heterodimerizing bHLH Proteins 

If spatiotemporal expression plays an important role in functional TF 

divergence, one could expect that proteins that dimerize exhibit greater co-

expression than proteins that do not dimerize. To test this, we annotated the 

spatiotemporal expression of the bHLH gene promoters using a controlled 

vocabulary and calculated the tissue overlap coefficient (TsOC) (113) between all 

bHLH-bHLH pairs. As expected, dimerization partners are more likely to be co-

expressed than bHLH proteins that do not dimerize with each other (Figure III-2, 

Fisher’s exact test p < 0.001).  

Design of Co-expression Experiments 

To more accurately annotate which cells express both members of a 

particular bHLH dimer (in the case of heterodimers), we took advantage of a two-

color fluorescent protein approach, whereby expression of one bHLH gene can 

be indicated by expression of a red fluorescent protein, another can be indicated 

by expression of green fluorescent protein, and a merged fluorescent image can 

indicate when and where both proteins are co-expressed. We decided to apply 

this experimental approach to the HLH-2 module of bHLH dimers, as most of the 
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heterodimers in the network belong to this module. The fact that HLH-2 is a 

dimerization hub makes it a suitable candidate for tracking expression using a 

red fluorescent protein reporter, as all of the HLH-2 dimerization partners may be 

represented by the green fluorescent protein transgenic lines we have already 

generated. A number of technical considerations that came to our attention 

during these experiments are described here. 

Drawbacks of Transcriptional mCherry Fusions 

The red fluorescent protein reporter mCherry (short for “monomeric 

Cherry”) was originally designed to create a vibrant red fluorescent protein with 

optimal spectral properties for fluorescent microscopy as well as a protein that 

did not form aggregates in cells, as was known to happen with many fluorescent 

proteins, including the protein dsRed, from which mCherry was derived (114-

116). Fluorescent protein aggregates can make it difficult to assess expression 

patterns as fluorescence images can have a very speckled appearance, making 

cellular/sub-cellular identification challenging. It is also possible that these 

aggregates could potentially lead to deleterious effects on the health of the cells 

or organism being studied, thereby artificially altering results. Unfortunately, the 

original mCherry construct did not work well in worms, as expression of mCherry 

appeared to be stochastic and unreliable. Therefore, a C. elegans-specific 

version of mCherry was generated, in which C. elegans-preferred codons were 

incorporated into the reading frame and C. elegans-specific introns were 

introduced (117). This modified version of mCherry has given much more reliable 
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and reproducible results for expression in worms. When we generated transgenic 

C. elegans expressing mCherry under the control of the hlh-2 gene promoter, we 

observed a very speckled pattern of red fluorescence in transgenic animals, 

reminiscent of fluorescent protein aggregates. As an attempt to alleviate the 

speckled fluorescence problem, we constructed an mCherry::histone 

translational fusion construct which would express a translational, in-frame fusion 

protein of mCherry fused to the HIS-11 protein (the C. elegans H2B histone). 

This translational fusion construct indeed improved the appearance of the red 

fluorescence and created a non-speckled, nuclear localized red fluorescence in 

cells in which the hlh-2 promoter was active. Thus, all further experiments made 

use of mCherry::HIS-11 translational fusions for hlh-2 co-expression analysis. 

Drawbacks of Analyzing Co-expression under Hypoxic Conditions 

Another technical consideration that came to our attention was the 

photoactivation of GFP to a red fluorescent protein under hypoxic conditions (i.e. 

under a cover slip sealed to the microscope slide). We began to observe what 

appeared to be red fluorescence in exactly the same location as the green 

fluorescence, even in the absence of any red fluorescent protein expression, but 

only after visualizing the green fluorescence for at least a few seconds. Before 

observing green fluorescence, no red fluorescence could be observed in the 

absence of mCherry expression. We found that this had been observed 

previously by a number of research groups (118; 119) and it is caused by a 

photo-activatable red shift of green fluorescent protein to a more red fluorescent 
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protein under hypoxic (<2% oxygen) conditions. This red shift was also 

apparently more frequent in circumstances in which there was intense GFP 

fluorescence in a particular tissue or group of cells. We found that this shift could 

be alleviated (if not entirely avoided) when we mounted anesthetized worms on a 

thicker (1-2mm) agarose pad with an unsealed cover slip. Presumably, these 

conditions allowed for more oxygen penetration into the sample (as opposed to 

the previous methodology using a very thin pad and a sealed cover slip) thereby 

eliminating the red shift of GFP.  

Drawbacks of Analyzing Co-expression where GFP Expression is Intense 

One other consideration that came to our attention was that of 

fluorescence “bleed through”, a common concern for fluorescence microscopy. 

When the GFP fluorescence is particularly intense/bright, those tissues will 

appear to be simultaneously red when viewed through a Rhodamine filter, as the 

intense green fluorescence signal can “spill over” into the red spectrum. This 

phenomenon was independent of oxygenation, presence of red fluorescent 

protein, or whether or not the green fluorescence had been observed first. One 

solution to this problem was to reduce the intensity of GFP excitation so as to 

reduce the bleed through into the red portion of the visible spectrum. This was 

sometimes insufficient, however, and made it impossible to confidently determine 

co-expression of green and red fluorescent protein expression at the same time 

and place. 
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Class I/II (HLH-2 Module) Co-Expression 

To assess the spatiotemporal co-expression of hlh-2 and its dimerization 

partners, worms carrying an integrated Phlh-2::mCherry::his-11 fusion construct 

(as described above and in the materials and methods) were genetically crossed 

with worms carrying Phlh::GFP reporters representing each of the HLH-2 

dimerization partners. Thus, worms carrying both transgenes could be used to 

determine the cells in which HLH-2 and its partners are co-expressed, and 

therefore where the proteins likely “meet” in vivo.  

The hlh-2 promoter exhibits broad activity in the embryo, and its activity 

becomes more restricted in larvae and adults, consistent with previous HLH-2 

immunofluorescence data (Figure III-3, Figure III-4, Table III-4) (82). HLH-2 and 

most of its partners are first expressed at the comma stage of embryogenesis 

(Figure III-3), which is associated with the onset of cellular differentiation. This is 

in agreement with observations that orthologs of HLH-2 partners are important 

regulators of cell lineage commitment and differentiation (71). However, there is 

some temporal specificity as some HLH-2 dimers are expressed only during 

embryogenesis and in the first larval stage (e.g. HLH-2/HLH-3) whereas others 

are expressed throughout the lifetime of the animal (e.g. HLH-2/HLH-8). As has 

been observed for other organisms, we found that the HLH-2 partners exhibit a 

more tissue-restricted expression pattern as compared to HLH-2 (71) (Table III-

4). Post-hatching, most HLH-2 heterodimers are expressed only in a subset of 
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tissues, including neurons, the vulva, some hypodermal cells and distal tip cells 

(Figure III-4, Table III-5). 

Expression Annotation at Cellular Resolution 

To improve the overall spatiotemporal expression annotation resolution, 

we worked with Mark Alkema, a specialist in C. elegans neurobiology, to more 

precisely identify which neurons were expressing various bHLH genes. The 

results of this higher resolution analysis are shown in Figure III-5.  

Neuronal Expression of ngn-1 and hlh-13 

 We were able to identify the likely neurons (or pairs of neurons) that the 

genes hlh-4, hlh-10, hlh-15, ngn-1, and hlh-13 are expressed in. Detailed 

expression annotation for hlh-4, hlh-10, and hlh-15 are provided in Chapter V as 

part of the discussion on the integrated network and so will not be discussed 

further here. The ngn-1 gene appears to be expressed in a single neuron, which 

we believe to be the RID dorsal motor neuron (Figure III-5). This may suggest 

involvement of ngn-1 in C. elegans locomotion and/or behavior. Although the 

expression pattern of hlh-13 cannot be definitively narrowed down to individual 

cells, we can make observations about which ganglia hlh-13-positive neuronal 

cell bodies are likely part of and, in some instances, what specific cells may be 

expressing hlh-13. This gene appears to be expressed in 2 neurons of the 

retrovesicular ganglion, a bilaterally symmetric pair of interneurons of the lateral 

ganglion, a bilaterally symmetric pair of interneurons posterior to the posterior 
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pharyngeal bulb (likely the ADA or RMG neurons), and a single tail neuron (likely 

ALN) (Figure III-5). 

Distal Tip Cells: hnd-1, hlh-12, and lin-32 

One cell type in C. elegans that is very distinctive and therefore relatively 

easy to identify is the distal tip cell (DTC). These cells lie at the tip of each gonad 

arm (the germline of hermaphroditic C. elegans is a symmetric organ with two 

arms bending to form the shape of a narrow letter C). Part of the somatic gonad, 

these cells have distinct morphologies and can be seen leading the migration of 

the gonad arms throughout development of the C. elegans germline (120). One 

interesting finding of bHLH expression patterns was that three dimerization 

partners of HLH-2 are expressed in the DTCs at different times during 

development. The hnd-1 gene, the C. elegans homolog of the mammalian Hand-

1 gene, is expressed in the earliest precursors of the distal tip cells at about the 

first larval stage of development. By the second larval stage of development, 

hnd-1 expression dissipates, but expression of hlh-12 begins in the DTCs and 

continues through to adulthood. By the third larval stage, the DTCs are also 

expressing lin-32. The hlh-2 gene is present in the DTCs at all of these stages 

and can clearly be seen co-expressed with these three genes. 

 These results indicate that there may be a sequential role of the HLH-

2/HND-1, HLH-2/HLH-12, and HLH-2/LIN-32 heterodimers in the DTCs 

throughout the development of the worm. Consistent with this hypothesis, 

mutations in and/or RNAi against hlh-2, hlh-12, or hnd-1 all lead to DTC 
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migration defects and somatic gonad developmental defects (121; 85; 122). It will 

be interesting to see if HLH-2/HND-1 heterodimers “pave the way” for the HLH-

2/HLH-12 heterodimers which subsequently “pave the way” for HLH-2/LIN-32 

heterodimers by establishing a gene expression profile that is ultimately receptive 

to these later-forming dimers. 
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Discussion 

Spatiotemporal Expression Analysis: Data Quality 

A transcriptional reporter approach such as the one we used often 

recapitulates endogenous expression patterns (113; 123; 124). Indeed, our 

findings recapitulate broad and early expression for HLH-2 and more restricted 

expression for its partners (85; 122; 124; 125; 65; 126; 80; 127). However, parts 

of our expression analysis are relatively crude as some tissues could be 

annotated with greater resolution than others. For instance, we could confidently 

ascribe expression in several individual cells such as distal tip cells, and 

coelomocytes (Figure III-4, III-5). In contrast, we grouped expression in head 

neurons as a single category, even though there are approximately 200 

functionally distinct head neurons. We did annotate several neuronal patterns in 

detail for higher resolution network analysis (Figure III-5, Figure V-11). In the 

future it will be important to further annotate co-expression of each bHLH-bHLH 

dimer at single-cell resolution, such as by crossing our GFP lines into specific 

neuronal marker lines. In this regard, it is important to note that all strains are 

available through the Caenorhabditis Genetics Center (CGC). 

Non-overlapping Expression Patterns 

An interesting question that remains after our dimerization and 

spatiotemporal analyses is whether or not individual bHLH proteins which appear 

to only be active as heterodimers have any function when they are expressed in 

cells that lack their dimerization partners. If these proteins are truly only 
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functional when dimerized to a partner bHLH protein, then it would be assumed 

that these proteins are non-functional when expressed alone. The observation of 

some bHLH proteins being expressed (apparently) alone raises some interesting 

questions: (1) Are these proteins non-functional in these particular cells, and, if 

so, does this represent an evolutionary artifact and perhaps an example of 

spurious expression? (2) Does this represent a false positive expression 

annotation for the bHLH protein of interest, or, perhaps, a false negative 

expression annotation for the partner bHLH protein(s)? (3) Are we missing 

genuine dimerization partners from the yeast two-hybrid data (i.e. false negatives 

in the yeast two-hybrid system)? Future analyses of cell-specific bHLH gene 

knockdown will be required to address the question of whether or not these 

bHLH TFs have a functional role in cells in which they appear to be expressed in 

the absence of a dimerization partner. 

GFP Negative Transgenic Lines 

Five bHLH gene promoters that were tested for GFP expression activity 

appeared to be inactive, according to analysis of GFP expression in transgenic 

worms. The promoters for genes hlh-14, hlh-25, hlh-26, hlh-28, and mxl-1 did not 

drive any detectable levels of GFP expression at any life stages observed (Table 

III-4). There may be several reasons for this: (1) These promoters may not 

contain all cis-regulatory elements required for proper expression of these genes 

(e.g. other elements may exist in more distal upstream portions of the 

chromosome or in introns), (2) these genes may only be active under specific 
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environmental conditions (i.e. temperature, osmolarity, dauers, males, etc.) which 

were not tested, (3) expression of GFP may have been too weak to observe 

under the microscope, or (4) the genes may have been incorrectly annotated and 

therefore we have not cloned the correct promoter region into our GFP 

constructs. The fact that we can successfully clone the open reading frames for 

all five of these bHLH genes from a cDNA library suggests that these sequences 

are indeed transcribed (all ORF clones were verified by sequencing) and so lack 

of GFP expression is likely not the result of these genes being pseudogenes 

and/or simply unexpressed. 

Partial Intestine, Coelomocytes, & Head Muscle GFP Expression: Possible 

Artifacts? 

 An observation that we have made while performing promoter::GFP 

transgenic analyses in C. elegans is that some tissues seem to sporadically and 

inconsistently express GFP in a surprisingly large number of transgenic lines 

representing many different promoter fragments. For instance, the intestine of C. 

elegans appears to be a common site of such potentially spurious GFP 

expression. Gradients of GFP can sometimes appear in the anterior and/or 

posterior of the intestine, with the highest levels at the most extreme anterior or 

posterior cells. This “partial intestine” GFP expression does not present itself in 

all GFP transgenic lines, and it is inconsistent in those lines that do exhibit this 

pattern. Another cell type that appears to express GFP somewhat inconsistently 

in some transgenic lines is the coelomocyte. There are 6 distinct coelomocytes 
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that generally occupy certain regions of the worm, acting as macrophage-like 

cells, endocytosing small particles (128; 129). Given the nature of this cell type it 

is not difficult to imagine that GFP observed inside coelomocytes may be the 

result of GFP-uptake during the scavenging process, as opposed to actual 

endogenous GFP expression inside of the coelomocyte cell. This is indeed 

known to be the case in some instances, although coelomocytes do exhibit their 

own endogenous gene expression profiles (130-132). The third cell type in C. 

elegans that appears frequently in these GFP transgenic lines is head muscle. 

There are 16 head muscles in C. elegans that are responsible for moving the 

head of the worm during locomotion, olfactory perception, and foraging (133). 

These cells appear to express GFP in a surprisingly large number of transgenic 

lines, and often do so very weakly, such that GFP can only be observed at very 

low fluorescence intensities. 

Summary 

We found that some hlh promoters are active broadly, whereas others 

drive GFP expression in a more restricted fashion (Table III-4). The promoters 

corresponding to both bHLH proteins that dimerize with multiple partners, AHA-1 

and HLH-2, confer broad GFP expression, whereas their partners are generally 

expressed in a more restricted manner. Conversely, some tissues express few 

bHLH TFs, whereas other tissues express many. For instance, numerous hlh 

promoters drive expression in the vulva, but only the ref-1 promoter is active in 

the pharyngeal-intestinal valve. Together, our observations identify specificity 
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and promiscuity in the spatiotemporal expression network, both from the bHLH 

and from the tissue standpoint (visualized in the integrated network in Figure V-1, 

Chapter V). 

In summary, we observed broader, or “tissue-promiscuous”, activity for 

several bHLH promoters, including those that correspond to the bHLH proteins 

that interact with multiple partners, and we observed more restricted, or “tissue-

restricted”, activity for others. Conversely, we observed that some tissues 

express many, whereas others express few, bHLH genes. 
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Materials and Methods 

C. elegans Transgenesis 

Transgenic C. elegans were generated as described (13). Briefly, 

uncoordinated unc-119(ed3) mutant worms were bombarded with 1µm gold 

beads coated with precipitated, linearized promoter::GFP (or mCherry) construct 

DNA, each molecule of which also carries a wild type copy of the unc-119 locus. 

Worms that have taken up the DNA into the developing germline will produce 

offspring that have wild type movement, which allows for easy scoring and 

picking of transgenic worms from bombarded plates. Transgenic worms are 

singled out, allowed to self fertilize, and scored for transmission of transgene to 

subsequent generations. Worms that reliably express GFP (or mCherry) and 

transmit the transgene at relatively high frequency are kept for experiments. 

Double transgenic animals were generated by crossing males that carry Phlh-

2::mCherry::his-11 constructs into Phlh::GFP carrying hermaphrodites. Each 

transgenic line carrying a Phlh::GFP fusion was independently verified by PCR 

using promoter-specific primers (primer sequences are provided in Table III-3). 

Gateway Cloning of bHLH Promoters 

Fourteen bHLH gene promoters were obtained as Gateway Entry clones 

from the C. elegans Promoterome (15) (Table III-1). Twenty eight promoters 

were PCR-amplified from C. elegans genomic DNA ab initio as described (16), 

and subsequently cloned by Gateway BP reactions into the Donor vector, 
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pDONR-P4-P1R as described (15) (see Table III-1 for primer sequences). All 42 

bHLH gene promoters were cloned by Gateway LR reactions into pDEST-DD04, 

generating promoter::GFP transcriptional fusions. Phlh-2 was cloned upstream of 

mCherry::his-11 (see below) by a multisite LR reaction into pDEST-DD03 (15; 

17). All constructs were sequence verified. 

Generation of pDEST-mCherry::his-11 

The mCherry ORF was PCR-amplified from pAA64 plasmid DNA 

(generously provided by A. Audhya, Oegema Lab, University of California, San 

Diego) using the following att-B1 and att-B2 Gateway tailed primers: 

(GGGGACAAGTTTGTACAAAAAAGCAGGCTTGGTCTCAAAGGGTGAAGAAG 

and 

GGGGACCACTTTGTACAAGAAAGCTGGGTTATACAATTCATCCATGCCAC) 

and the resulting amplicon was cloned by a Gateway BP reaction into pDONR- 

221 to generate an mCherry Entry clone. A PCR fusion strategy was 

implemented to create an mCherry::his-11 fusion ORF. The his-11 gene encodes 

for C. elegans histone H2B, generating a nuclear localized mCherry when 

translationally fused. The his-11 ORF was amplified from pJH4.52 (generously 

provided by K. Hagstrom, University of Massachusetts Medical School, 

Worcester) using a his11-specific forward primer 

(CCACCAAAGCCATCTGCCAA) and an att-B2 Gateway-tailed (103) reverse 

primer specific to the 3’ end of the his11 ORF 

(GGGGACCACTTTGTACAAGAAAGCTGGGTACTTGCTGGAAGTGTACTTG). 
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PCR amplification was carried out for 15 cycles to minimize the introduction of 

mutations. A similar PCR reaction was used to amplify the mCherry ORF using 

the same att-B1 tailed forward primer mentioned above (to generate the mCherry 

Entry clone) and an mCherry-specific reverse primer carrying a his-11-specific 

tail at the 5’ end of the primer 

(TTGGCAGATGGCTTTGGTGGCTTATACAATTCATCCATGCCAC). Both PCR 

products were simultaneously cloned by Gateway BP reactions into pDONR221. 

The resulting plasmid contained the mCherry ORF fused in frame to the his-11 

ORF, generating an mCherry::his-11 fusion ORF. This fragment was then cloned 

by a Multisite Gateway LR reaction into pDEST-DD03 (134) along with Phlh-2. 

The resulting Phlh-2::mCherry::his-11 Destination clone was used directly in 

microparticle bombardment to create transgenic C. elegans (see below), and in a 

subsequent Gateway BP reaction with pDONR-P4-P1R to replace Phlh-2 with 

the ccdB Gateway cassette resulting in the novel Destination vector pDEST-

mCherry::his-11. 

Microscopy 

Nomarski and fluorescence images were obtained using a Zeiss 

Axioscope 2+ microscope. Image capture was performed with OpenLab 3.1.7 

(Improvision) and Axiovision (Zeiss) software. GFP fluorescent images were 

obtained using a FITC filter (excitation 460-500 nm, emission 510-565 nm). 

mCherry fluorescence images were taken using a rhodamine filter (excitation 

525-555 nm, emission 575-630 nm). Animals were placed into a drop of 0.1% 
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sodium azide in S-Basal on a fresh 2% agarose pad for observation. We 

examined GFP expression in mixed-stage populations of hermaphrodites. None 

of the promoters drove detectable GFP expression in the germline, which may be 

the result of transgene silencing (113; 123; 124). Therefore, our expression data 

are limited to post-zygotic expression. We annotated several head neuronal 

patterns in more detail. These are provided in Figure III-5 and Figure V-11. 

C. elegans PCR 

Worm lysis solution was prepared by mixing 2 ml proteinase K (15 mg/ml) 

in 1 ml of worm lysis buffer (50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl2, 

0.45% NP-40, 0.45% Tween-20, 0.01% gelatin). Individual worms were placed in 

3 ml of worm lysis solution in PCR tubes and heated in an MJ Research 

thermocycler at 60oC for 60 minutes and 95oC for 15 minutes. The lysate was 

then vortexed and briefly (30 seconds) centrifuged at 15,000 g. 35 cycles of PCR 

were performed using our “GFP-FW” primer (TTCTACTTCTTTTACTGAAGC) 

and promoter-specific reverse primers (see Table III-3). 

 

Online Data 

Additional expression pattern data available online at 

http://edgedb.umassmed.edu (135). 
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Table III-1. C. elegans bHLH promoter cloning information 
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C25A1.11 aha-1 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGATCCCCCATCAT

CCTAAAG 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTCTGAAAA
CTATAAAGAAAAGTTTTTT

TC 

C41G7.5 ahr-1 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGAAGTGTTTTTGA
AGTTTTACCGTTTTTTT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTCACAAA
TTCGAACGTCTGTTTAACC

T 

C15C8.2 cky-1 Promoterome   

C34E10.7 cnd-1 Promoterome   

F38A6.3 hif-1 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGTCAGAAGGGTAT

CCGTCA 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATATTGAATA
GTGTGCGATTTGGAGA 

B0304.1 hlh-1 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGATTTCAGGAAAA
TTTTTTCAAAACTGTAAAA

C 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTCTGGAA
AATTATTGGAAAATTTGG 

ZK682.4 hlh-10 Promoterome   

F58A4.7 hlh-11 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGCAGAAAATGTTT

CTTGGATCGGTT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTTCTACT

ATTGATCTACCTGA 

C28C12.8 hlh-12 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGCTGAAAAATGGG

AGTGTATTGCTTCTA 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTTAATAA
AATTGTGTAAGATGACGCT

A 

F48D6.3 hlh-13 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGGTGGAGATGCGA

CCCGGC 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTACATAA

GTGGTTCTGCTC 

C18A3.8 hlh-14 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGAATAATCAATAG

AAAAGTTTGTCAAT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATCCCCCCAT

TTTTAAGATTTCCA 

C43H6.8 hlh-15 Promoterome   

DY3.3 hlh-16 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGCTGGAACATCAG

AAATTTGAGAC 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATAATCGGAG

ATGAAGCTGT 

F38C2.2 hlh-17 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGGTTTATACATCA

GTATAGCAAGATGAA 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATGACTGGGG

TGTAAGTGAA 

F57C12.3 hlh-19 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGTGGGTAGAGAAA

GGCGCAGA 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATGTTGAATG

CGTTGCCGA 
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M05B5.5 hlh-2 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGAATCAGTTAGCT
TTTTGAGAATAATTTTTTG

T 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTGAGGTTC
TGAAAACTTTATTTCTGCG

A 

C17C3.7 hlh-25 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGTATGAGTCAAGG
ATCTGAAATATAATAATAA 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTAACCATT
TTTATCACTCATTTAATC 

C17C3.8 hlh-26 Promoterome   

C17C3.10 hlh-27 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGGACTAACACTGC

GAGACG 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTTGTAGC
AGATGTGAAGGTAAGA 

F31A3.2 hlh-28 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGCTGAAAAATTTT
AAAGTAATCAAAACATACG

A 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATGGAGAATG

TGGAGGT 

F31A3.4 hlh-29 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGGGAGAATGTGGA

GGTGTA 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATCTGAAAAA

TTTTAAAGTAATCAA 

T24B8.6 hlh-3 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGCAAGTTAAGTTT

ATTTGTCTGCTGT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATGTTTCTAT

AACTTTCCTTGGAT 

W02C12.3 hlh-30 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGGTGTCTAAACTT

TCTGATCGGGACCT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATGAATGCTC

TTATTCGCTG 

F38C2.8 hlh-31 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGACATTGAAAAGT
TTTCAATTTTTTCAATC 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATCTTTATTT
ATTTAATTTGTAGATAAT 

Y105C5B.
29 hlh-32 cloned ab 

initio 

GGGGACAACTTTGTATAGA
AAAGTTGTTTTTTGGCGAA
AGTTAAAATACATATTTC 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTTCTCTC

CAAATCTAACGACA 
Y39A3CR.

6 hlh-33 Promoterome   

T01D3.2 hlh-34 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGTTTACCTTCTTC

TCCATGCCAA 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTCTCAAG

TGGTTATAAGTCAA 

T05G5.2 hlh-4 Promoterome   

T15H9.3 hlh-6 Promoterome   

C02B8.4 hlh-8 Promoterome   

C44C10.8 hnd-1 Promoterome   

Y54G2A.1 lin-22 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGTTTTATTAGTCC

TAAGAACTTTTT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTCTGTAA
TAATTGTAATAATATTAGT

A 

T14F9.5 lin-32 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGCCTAATCGGAAC

GGTGTCT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATGGTTGGTC

TGACTGAA 
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R03E9.1 mdl-1 Promoterome   

T20B12.6 mml-1 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGTCATTCATAAAC

GAGAATAATGTCAC 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTTTGTCT
GAAAATATTGAAATCTTTT

G 

T19B10.11 mxl-1 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGTCTTTGTGGCTG

CGGAAATTATGT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTCTGAAAT

AGCTTCAGTGAGAT 

F40G9.11 mxl-2 Promoterome   

F46G10.6 mxl-3 Promoterome   

Y69A2AR.
29 ngn-1 cloned ab 

initio 

GGGGACAACTTTGTATAGA
AAAGTTGAGAAAAAGAAGT

GGTGCATATTTTGT 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTGTGCAAA

ACAAAAACACGTGG 

T01E8.2 ref-1 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGCCACAGTGTCAA
AATATAATACCGAAAA 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTTCTGGAA

AAAAAATTAAGTT 

Y47D3B.7 sbp-1 cloned ab 
initio 

GGGGACAACTTTGTATAGA
AAAGTTGCCAGGAGTTTTT
GAAAAAATTCAAAATTCAA

T 

GGGGACTGCTTTTTTGTAC
AAACTTGTCATTCTGAAAA
AAAAAAGTCAAATTTTGAG 

Y16B4A.1 unc-3 Promoterome   

 
Table III-1. C. elegans bHLH promoter cloning information 
Listed are the ORF names and gene names for each C. elegans bHLH TF in this 
study. Also listed are the clone source (e.g. Promoterome) and cloning primers 
(where applicable). Red text in primer sequences indicates promoter-specific 
sequence; black text indicates Gateway tails. 
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Table III-2. Transgenic C. elegans lines 

bHLH promoter # of Lines 
# of Lines with an 

Integrated Transgene 
aha-1 9 0 
ahr-1 8 0 
cky-1 4 0 
hif-1 8 1 

hlh-33 3 0 
hlh-34 9 0 
hlh-2 8 0 
cnd-1 3 0 
hlh-3 7 0 
hlh-4 8 0 
hlh-6 3 1 
hlh-8 8 0 

hlh-10 5 0 
hlh-12 8 0 
hlh-13 3 0 
hlh-14 3 0 
hlh-15 3 0 
hlh-19 3 0 
hnd-1 4 0 
lin-32 8 0 
ngn-1 3 0 
hlh-1 1 0 

hlh-11 3 0 
hlh-30 3 0 
mdl-1 3 1 
mxl-1 4 0 
mml-1 9 0 
mxl-2 8 0 
mxl-3 4 0 
hlh-25 6 0 
hlh-26 8 0 
hlh-27 2 0 
hlh-28 7 0 
hlh-29 7 0 
ref-1 5 0 

hlh-16 3 0 
hlh-17 7 0 
hlh-31 3 0 
hlh-32 3 0 
lin-22 3 0 
sbp-1 2 0 
unc-3 3 0 
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Table III-3. Promoter-specific diagnostic primers 
 

ORF gene Promoter Specific Reverse Primer 
C25A1.11 aha-1 GTTGTGCAATGGATCGAGAGTA 
C41G7.5 ahr-1 TTGTATCGTTCGGCTTATGCTA 
C15C8.2 cky-1 CATTGTTTGCTCGATCACTCTC 
C34E10.7 cnd-1 AGATAAGTGCACGGGATGTTCT 
F38A6.3 hif-1 ACCTTGCACTCACAAGTTCTCA 
B0304.1 hlh-1 AAAAGAGTTGAGCCGAGAGTTG 
ZK682.4   hlh-10 ACAACGATGTCACGTCAATAGG 
F58A4.7 hlh-11 TTTCTCAATTTTTGGAGGCAAT 

C28C12.8    hlh-12 ATGACGAGTTGTGAGCCAAGTA 
F48D6.3  hlh-13 TAGCTTTCTGACAACACCCAAC 
C18A3.8 hlh-14 GATGACTTACCCGAAAAATGGA 
C43H6.8   hlh-15 AAATTGCCTGTAAAAGGTTTGG 

DY3.3   hlh-16 AAGTGACACGTTTGGTTCACAC 
F38C2.2 hlh-17 ATTGGAAAAATTTTGAGCAAGC 

F57C12.3  hlh-19 AAACGAATGGAAAGCATATTGG 
M05B5.5 hlh-2 ATACTTCCAATGCCCGTCTCTA 
C17C3.7 hlh-25 CGAGCTCCGATTTTACCAAATA 
C17C3.8 hlh-26 TTTACGAGGTTTCCATCTCAGC 

C17C3.10 hlh-27 TCTCGAGTTTGACGTCAGGTAA 
F31A3.2 hlh-28 TGTTTGGAGTAGAATGCCAAGA 
F31A3.4 hlh-29 AAACTTATGGAAACAGTGGCAAA 
T24B8.6 hlh-3 CTTAGACAGTTCCGATGGGTTC 

W02C12.3 hlh-30 CAGAGAATTGTTACTCGGCAAA 
F38C2.8 hlh-31 TAGCAAAATTTTCCGCTCAAAC 

Y105C5B.29  hlh-32 ATTGAGGAATGAAGGGAAATGA 
Y39A3CR.6   hlh-33 TACGACAAAATGCACAGCTTCT 

T01D3.2 hlh-34 CAATTGAATTCTCCCCTCTTTG 
T05G5.2  hlh-4 CTGACGTTAGTGGGAGATCAGA 
T15H9.3 hlh-6 TTCCTCGTGATTTGACAAAATG 
C02B8.4 hlh-8 TGAAAGCATTTCACACGTTTTT 

C44C10.8  hnd-1 AGCACAACTTTTTGCCTCAAAT 
Y54G2A.1 lin-22 TTAACGGCTTTATTTTGTGGTG 
T14F9.5 lin-32 GCGATAATTTTCATGTCAATGC 
R03E9.1 mdl-1 ATTGAGCAGGGTTCAAGAAGAG 
T20B12.6 mml-1 GTGTGTGTGTGTGTGAGCGTAT 

T19B10.11 mxl-1 CAGTTAGGTCAACGGAAAACAGT 
F40G9.11 mxl-2 ATTTTCTGAACGGGTTTCTCAA 
F46G10.6  mxl-3 TGCTCTATCACGTAGGTCATGC 

Y69A2AR.29 ngn-1 TAATTTATCTCGCGGAAATTCG 
T01E8.2  ref-1 TTACCGCCAATTTATTTCTCGT 

Y47D3B.7 sbp-1 TTTTGCATGAAACATTTGAACG 
Y16B4A.1 unc-3 TGACGTCAGCACATTTTTAACC 
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Figure III-1 
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Figure III-1. Diagnostic PCR on individual worms carrying Phlh::GFP 
transgenes 
 
Each Phlh::GFP transgenic line of C. elegans was tested to ensure that the 
appropriate promoter was upstream of GFP. This was done by performing single 
worm PCR on individual worms using a generic forward primer and a promoter-
specific reverse primer. The identity of each promoter  represented is listed to the 
right of the figure. (Top panel) PCR bands representing (from left to right)  Paha-
1, Phif-1, Pahr-1, Phlh-1, Pcky-1, Phlh-3, Pcnd-1, Phlh-8, Phlh-31, Phlh-12, Phlh-
2, Phlh-17, Phlh-4, Phlh-25, Phlh-6, Phlh-26, Phlh-10, Phlh-28, Phlh-11, Phlh-29, 
Phlh-13, Phnd-1, Phlh-14, Plin-22. (Bottom panel) Plin-32, Phlh-15, Pmml-1, 
Phlh-16, Pmxl-1, Phlh-19, Pmxl-2, Phlh-27, Pmxl-3, Pmdl-1, Pngn-1, Phlh-33, 
Pref-1, Psbp-1, Phlh-34, Punc-3, Phlh-30, and Phlh-32. See Table III-3 for 
diagnostic PCR primers for each promoter. “1 Kb Plus DNA Ladder” from 
Invitrogen was used to identify PCR product sizes. 
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Table III-4. The bHLH expression matrix 
 
 

  

Temporal 
Expression Spatial Expression 

ORF Name Gene 0 1 2 3 4 5 6 7 I 
P 
I 

D 
T 
C 

G 
S 

H 
M 

B 
M 

H 
N 

B 
N 

T 
N P 

P 
G 

P 
I 
V 

H 
H 

B 
H 

T 
H 

P 
C 

S 
C X C S V R 

C25A1.11 aha-1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 
C41G7.5 ahr-1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 
T01D3.2 hlh-34 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
C15C8.2 cky-1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Y39A3CR.6 hlh-33 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 
F38A6.3 hif-1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 
M05B5.5 hlh-2 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 
T24B8.6 hlh-3 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 
T05G5.2 hlh-4 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
ZK682.4 hlh-10 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 
C43H6.8 hlh-15 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
F57C12.3 hlh-19 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
T14F9.5 lin-32 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 
C34E10.7 cnd-1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 
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Temporal 
Expression Spatial Expression 

ORF Name Gene 0 1 2 3 4 5 6 7 I 
P 
I 

D 
T 
C 

G 
S 

H 
M 

B 
M 

H 
N 

B 
N 

T 
N P 

P 
G 

P 
I 
V 

H 
H 

B 
H 

T 
H 

P 
C 

S 
C X C S V R 

C02B8.4 hlh-8 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
T15H9.3 hlh-6 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
F48D6.3 hlh-13 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
C44C10.8 hnd-1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
Y69A2AR.29 ngn-1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 
C28C12.8    hlh-12 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
F58A4.7 hlh-11 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
B0304.1 hlh-1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R03E9.1 mdl-1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 
T20B12.6 mml-1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
F40G9.11 mxl-2 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 
F46G10.6 mxl-3 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
W02C12.3 hlh-30 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 
T01E8.2 ref-1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 
C17C3.10 hlh-27 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 
F31A3.4 hlh-29 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
DY3.3   hlh-16 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Temporal 
Expression Spatial Expression 

ORF Name Gene 0 1 2 3 4 5 6 7 I 
P 
I 

D 
T 
C 

G 
S 

H 
M 

B 
M 

H 
N 

B 
N 

T 
N P 

P 
G 

P 
I 
V 

H 
H 

B 
H 

T 
H 

P 
C 

S 
C X C S V R 

F38C2.2 hlh-17 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 
F38C2.8 hlh-31 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Y105C5B.29 hlh-32 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 
Y54G2A.1 lin-22 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 
Y47D3B.7 sbp-1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y16B4A.1 unc-3 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
C18A3.8 hlh-14 No GFP Expression 
C17C3.7 hlh-25 No GFP Expression 
C17C3.8 hlh-26 No GFP Expression 
F31A3.2 hlh-28 No GFP Expression 
T19B10.11 mxl-1 No GFP Expression 
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Table III-4. The bHLH expression matrix 
The expression matrix makes use of a controlled vocabulary to systematically apply a binary code to each 
bHLH promoter to indicate observed expression (1) or lack of observed expression (0) for the indicated 
developmental time points (Temporal Expression) or tissues (Spatial Expression). The temporal expression 
code for the matrix is as follows: 0 = early embryogenesis, 1 = mid-embryogenesis, 2 = late embryogenesis, 
3 = first larval stage (L1), 4 = second larval stage (L2), 5 = third larval stage (L3), 6 = fourth larval stage (L4), 
7 = adult. The spatial expression code for the matrix is as follows: I = intestine, PI = partial intestine, DTC = 
distal tip cells, GS = gonadal sheath, HM = head muscle, BM = body wall muscle, HN = head neurons, BN = 
body neurons, TN = tail neurons, P = pharynx, PG = pharyngeal glands, PIV = pharyngeal-intestinal valve, 
HH = head hypodermis, BH = body hypodermis, TH = tail hypodermis, PC = P-cells, SC = seam cells, X = 
excretory cells, C = coelomocytes, S = spermatheca, V = vulva, R = rectum. 
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Figure III-2 

 
Figure III-2. Tissue overlap coefficient analysis 
Tissue overlap coefficient (TsOC) analysis was done as described (113) 
 

 
 
 
where HLH-X is the number of tissues where HLH-X is expressed, and HLH-Y is 
the number of tissues where HLH-Y is expressed. HLH-N is the smallest total 
number of tissues for either HLH-X or HLH-Y. 
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Figure III-3A 

 
 
 
 
 
Figure III-3A. Embryonic co-expression of HLH-2 and its partners 
Phlh-2::mCherry::his-11 transgenic animals were crossed with each of the Phlh-
x::GFP animals to determine co-expression The panels show DIC, GFP, 
mCherry and merged images depicting co-expression of HLH-2 and its indicated 
partners in the developing C. elegans embryo. 
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Figure III-3B 

 
 
Figure III-3B. Cartoon summary of embryonic co-expression of HLH-2 and 
its partners  
Cartoon summarizing the general distribution of mCherry::HIS-11 expression 
from the hlh-2 promoter and GFP expression from the HLH-2 partner gene 
promoters. Note that colored regions do not depict specific cells, only general 
regions of the embryo where promoter activity was observed. 
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Figure III-4 
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Figure III-4. Post-embryonic co-expression of HLH-2 and its partners 
Phlh-2::mCherry::his-11 transgenic animals were crossed with each of the Phlh-
x::GFP animals to determine co-expression (indicated by white arrowheads). We 
observed co-expression of HLH-2 and its partners in head neurons (left), tail 
neurons (upper right), the vulva (middle right), and distal tip cells (bottom right). 
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Table III-5. bHLH heterodimer co-expression matrix 
 
 Temporal Expression Spatial Expression 

Dimer 0 1 2 3 4 5 6 7 I 
P 
I 

D 
T 
C 

G 
S 

H 
M 

B 
M 

H 
N 

B 
N 

T 
N P 

P 
G 

P 
I 
V 

H 
H 

B 
H 

T 
H 

P 
C 

S 
C X C S V R 

HLH-2/HLH-3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
HLH-2/HLH-4 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
HLH-2/HLH-10 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 
HLH-2/HLH-15 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
HLH-2/HLH-19 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
HLH-2/LIN-32 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 
HLH-2/CND-1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
HLH-2/HLH-8 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
HLH-2/HLH-6 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
HLH-2/HLH-13 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
HLH-2/HND-1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
HLH-2/NGN-1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
HLH-2/HLH-12 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
MML-1/MXL-2 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
AHA-1/AHR-1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 
AHA-1/CKY-1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
AHA-1/HIF-1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 
AHA-1/HLH-33 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 
AHA-1/HLH-34 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure III-5.  
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Figure III-5. Cellular resolution expression annotations 
Pngn-1 appears to drive GFP expression in the RID neuron. Plin-32 drives GFP 
expression in both distal tip cells. Phlh-13 drives GFP expression in: i) 2 neurons 
of the retrovesicular ganglion, ii) 2 interneurons (1 bilaterally symmetric pair) of 
the lateral ganglion, iii) 2 interneurons (1 bilaterally symmetric pair) posterior to 
the posterior pharyngeal bulb; likely ADA or RMG, iv) 1 neuron of the tail; likely 
ALN. 
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PREFACE TO CHAPTER IV 

This chapter describes the comprehensive and unbiased determination of the 

DNA binding specificity for 19 C. elegans bHLH dimers. We then describe the 

use of the DNA binding profiles of the bHLH dimers to identify candidate target 

genes and, subsequently, enriched Gene Ontology terms associated with those 

candidate target genes to generate predictions of each dimer’s function. 

Much of this chapter has been published separately in: 

Grove C. A., De Masi F., Barrasa M. I., Newburger D. E., Alkema M. J., Bulyk M. 
L., Walhout A. J. M. A multiparameter network reveals extensive divergence 
between C. elegans bHLH transcription factors. Cell. 2009 Jul 23; 138(2): 314-
327. 
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CHAPTER IV 

 

The DNA Binding Specificities of the C. elegans bHLH 

Transcription Factors 
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Abstract 

The DNA-binding specificity of a TF is arguably the most important determinant 

of TF function, at least with regards to target gene recognition and regulation, 

thought to be the major functional role of a TF. The determination of the identity 

of C. elegans bHLH dimers in Chapter II of this thesis provides a unique 

opportunity to assess the complete DNA binding specificity of these dimers. 

Without information about which dimers form, systematic and comprehensive 

analysis of bHLH TF DNA binding profiles cannot be performed. Here we 

describe the use of protein binding microarrays (PBMs) to determine the in vitro 

DNA binding specificity for 19 C. elegans bHLH dimers, 9 homodimers and 10 

heterodimers. Such an analysis provides novel information regarding the degree 

to which different bHLH TFs in an organism recognize and bind to different or 

similar DNA sequences, and what potential implications this has for target gene 

identification in vivo. 
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Introduction 

The bHLH TFs, like all regulatory TFs, bind DNA in a sequence-specific 

manner, thereby binding to cis-regulatory elements within and around target 

genes. These proteins are generally thought to bind to E-Box sequences, defined 

by the sequence CANNTG, where N is any nucleotide. The abundance of E-

boxes in any typical genome, however, makes it difficult to search for target 

genes based on this information alone. Hence, it is likely that the central and 

flanking nucleotides of E-boxes must be important for bHLH dimer binding. 

However, the degree to which these nucleotides affect binding is, for the most 

part, undetermined. There has been no systematic analysis of the DNA binding 

preferences for an entire family of bHLH TFs in any organism. In this chapter, we 

describe the use of protein binding microarrays (PBMs) to determine the entire 

spectrum of sequences that 19 C. elegans bHLH dimers bind to, and the order of 

preference that each dimer has for these sequences. 

 We find that we can retrieve all seven known DNA binding sites for the C. 

elegans bHLH dimers, as well as 52 novel binding sites, including E-Boxes and 

E-Box-like sequence variants, similar to sites previously described for the 

Hairy/Enhancer of Split class of bHLH TFs. The bHLH dimers can be clustered 

into two distinct clusters based on sequence preference, suggesting an early 

evolutionary divergence of two classes of bHLH proteins with respect to DNA 

binding specificity. One cluster binds exclusively to E-Box sequences of various 

types, but typically do not bind to CACGTG sites. The second cluster binds 
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predominately to CACGTG sites as well as E-Box variants, such as CACGCG 

and CATGCG. Interestingly, neither cluster binds to CAA half-site-containing E-

Boxes, with the exception of HLH-1 homodimers, which bind to CAACTG sites, 

albeit relatively weakly. Analysis of the impact of E-Box flanking nucleotides 

suggests that a majority of bHLH dimers avoid binding to E-Boxes that are 

flanked at the 5’ end of the site by the nucleotide thymine (i.e. TCANNTG), with 

the exception of HLH-11 and HLH-30, which seem to either be ambivalent to the 

presence of a 5’ thymine (HLH-11) or bind preferentially to E-Boxes flanked by a 

5’ thymine (HLH-30). 

We made full use of the PBM-ranked and scored list of DNA sequences to 

predict candidate target genes for each bHLH dimer. The lists of putative target 

genes were then analyzed for enriched Gene Ontology (GO) terms, allowing the 

prediction of functions for each TF dimer. As may be expected, bHLH dimers 

expressed in neurons often associated with neuro-related GO terms, bHLH 

dimers expressed in the intestine often associated with metabolism GO terms, 

and many bHLH dimers expressed during embryogenesis are associated with 

developmental GO terms. 
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Results 

The Experimental Approach – Protein Binding Microarrays 

Protein binding microarrays (PBMs) are a relatively recent addition to the 

array of techniques for determining a protein’s DNA binding specificity. PBMs are 

double-stranded DNA (dsDNA) microarrays onto which transcription factors (or 

other DNA binding proteins) are incubated (and their binding subsequently 

detected) to determine their DNA binding specificity. Once binding equilibrium 

has been reached, a fluorescently labeled antibody (primary or secondary) is 

used to tag the spots of dsDNA that are bound by the protein of interest. Using 

various statistical analyses, one can acquire a relatively complete in vitro DNA 

binding profile for any soluble DNA-binding protein in an unbiased manner (40). 

Previous to this study, PBMs were applied almost exclusively to 

monomeric transcription factors or homo-oligomeric DNA binding complexes 

(e.g. homodimers). This standard approach was suitable for testing homodimeric 

bHLH complexes for in vitro DNA binding specificity, but we needed a slightly 

modified approach to identify DNA binding specificity for heterodimeric bHLH 

complexes, which we describe below. 

DNA Binding Specificity Analysis of Homo- and Heterodimeric bHLH TFs 

bHLH TFs bind DNA as obligatory homo- or heterodimers and are 

classically described as recognizing E-box sequences (CANNTG) (71). 

Previously, a handful of DNA sequences that can be bound by seven of the 

known C. elegans bHLH dimers had been identified (80; 82; 83; 66; 87; 86). 
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However, in those studies only one or a few of all possible E-boxes were 

considered, and no experiments were done to determine, comprehensively, the 

DNA binding preferences of all C. elegans bHLH dimers (all bHLH ORFs used in 

PBMs were clonal and, unless otherwise noted (see Table II-1) fully wild type; 

see Table IV-1 for a list of ORF sequencing primers).  

We used PBM assays (40; 43; 136) to comprehensively identify the 

sequence preferences of 19 bHLH dimers. We first tested each available bHLH 

TF individually in PBM assays, as a GST fusion protein and obtained DNA 

binding profiles for MXL-3, HLH-1, HLH-11 HLH-25, HLH-26, HLH-27, HLH-29, 

HLH-30 and REF-1, demonstrating that these proteins can bind DNA without 

protein partners, presumably as homodimers. We speculate that proteins that 

yielded sequence-specific DNA binding profiles in PBM assays but that were not 

detected as interacting with any bHLH protein by Y2H assays (e.g. HLH-25) may 

dimerize in a DNA-dependent manner, as has been reported previously for some 

TFs (137). 

Importantly, none of the bHLH proteins that participate in heterodimeric 

interactions exhibited significant sequence-specific DNA binding on their own 

(Figure IV-1, IV-4, and IV-5). This presented a convenient strategy to determine 

the DNA binding profiles of heterodimeric TFs, by incubating the DNA 

microarrays simultaneously with a GST-fusion bHLH protein that did not bind to 

DNA on its own, and a FLAG-tagged partner protein with subsequent detection 
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using a fluorophore-conjugated anti-GST antibody. We examined each of the 

bHLH heterodimers identified by our Y2H screen in this manner.  

We obtained DNA binding profiles for 9 homodimers and 10 heterodimers, 

including most heterodimers involving HLH-2, two class IV dimers, and five out of 

six REF-1 family proteins (Class VI) (Figure IV-2, IV-3, and IV-5). We did not 

detect any sequence-specific DNA binding by the bHLH-PAS class of dimers, 

even though these readily form heterodimers in the Y2H system. It is possible 

that sequence-specific DNA binding by members of this class requires ligands or 

post-translational modifications (88).  

PBM Results Support Y2H Findings 

There are a number of results from the findings of the PBM experiments 

that corroborate the findings of the Y2H dimerization results, and vice versa. 

First, the only proteins for which dimerization interactions were found in the Y2H 

assay and were capable of binding DNA as single proteins (or presumably 

homodimers in solution) were those that were found to homodimerize in the Y2H 

experiments. All other proteins from the Y2H dimerization network (involved 

exclusively in heterodimers) were incapable of binding DNA individually. Second, 

when most of the proteins implicated in heterodimerization via Y2H experiments 

were specifically incubated on PBMs with their Y2H-determined dimerization 

partners, a specific DNA binding profile was detected. Third, negative control 

experiments (described below) in which bHLH proteins within the same class or 

from different classes were incubated pairwise on PBMs, no DNA binding was 



 128 

detected, indicating that the DNA binding activity of these bHLH heterodimers 

was specific to those heterodimers found by the Y2H assay. 

Two Clusters of DNA-Binding Specificity 

The PBM-derived 8-mer data span the full affinity range of DNA binding 

preferences (1). We calculated enrichment scores (ESs) from the PBM signal 

intensities for all possible 8-mers, and for each bHLH dimer that yielded 

sequence-specific DNA binding, and derived position weight matrices (PWMs) for 

each dimer (Table IV-2, Figure IV-2). We imposed a conservative threshold (ES 

≥ 0.40) to identify significantly bound 8-mers. We then hierarchically clustered 

both the dimers and the 8-mers and found that the bHLH proteins can be 

grouped into two clusters corresponding to different bHLH classes: Cluster I 

contains HLH-2 and its partners, HLH-1 and HLH-11, and cluster II contains 

class III, IV, and VI bHLH proteins (Figure IV-3). 

As expected, HLH-2-containing dimers (cluster I) exhibit a strong 

preference for E-box sequences (CANNTG) (2). Surprisingly, however, cluster II 

dimers, in addition to binding a few E-boxes, also bind multiple non-E-box 

sequences. These resemble E-boxes, but contain a C or A in the fifth position 

and a G or T in the sixth position of the binding site (CAYRMK). These “E-box-

like sequences” include the reported CACGCG binding site of Drosophila Hairy, 

and N-boxes (CACNAG), which are bound by Drosophila Enhancer of Split (138). 

We determined the statistical significance of the preference of each bHLH 

dimer for E-box and E-box-like sequences as compared to all other 8-mers 
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(Figure IV-4, IV-5, and IV-6A). As shown in Figure IV-4, neither HLH-2 nor HLH-

10 alone can bind significantly to any E-box or E-box-like sequence. However, 

when combined, they can bind five different sequences. Figure IV-6B shows that 

the bHLH DNA binding network also displays degrees of specificity and 

promiscuity. For instance, only HLH-1 homodimers can bind CAA-containing E-

boxes (Figure IV-6A). Some E-boxes and E-box-like sequences are preferred by 

relatively few dimers, whereas others are bound by many dimers. For example, 

CACATG is bound by only four dimers, but CACCTG is bound by ten distinct 

dimers. Conversely, some bHLH dimers bind few E-boxes or E-box-like 

sequences whereas others bind many: HLH-30 only binds CACGTG, but HLH-

2/HLH-10 binds five different E-boxes (Figure IV-6B). This demonstrates that 

there is specificity and promiscuity in the bHLH DNA binding network, both from 

the perspective of the dimers and from the perspective of their DNA binding 

sequences. 

The REF-1 Family: The Missing C. elegans Class VI bHLH Proteins? 

The group of C. elegans bHLH genes referred to as the “REF-1 family” of bHLH 

proteins are a unique class of bHLH genes, each predicted to encode proteins 

with two bHLH domains. These genes include hlh-25, hlh-26, hlh-27, hlh-28, hlh-

29, and ref-1. These genes are highly similar to one another with regards to 

amino acid sequence, and are presumably the result of evolutionarily recent 

gene duplications (Figure I-5). Although there have been no clear representatives 

of the Class VI bHLH genes (e.g. Hairy, Enhancer of Split) in C. elegans, a 
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number of observations have indicated that the REF-1 family may represent an 

evolutionarily divergent form of the Class VI bHLH genes (112). Our DNA binding 

specificity analysis also support this hypothesis, as some of the non-canonical E-

Box binding sites identified for this group (particularly HLH-25, HLH-27, and HLH-

29) are similar (or identical) to those previously identified for Drosophila enhancer 

of split (E(spl)) and mammalian HES1 and HES5 Class VI bHLH  proteins (the E-

box-related N-box, CACNAG) (139-141) and for Drosophila hairy homodimers 

(the N-box related CACGCG) (142; 143). 

 Although the HLH-25 and HLH-27 proteins are, with the exception of four 

amino acids, identical (likely the result of a gene duplication in recent 

evolutionary history) their DNA binding profiles are reproducibly distinct. In fact, 

there is only one amino acid difference between the two proteins within the bHLH 

domain, presumed to be the sole determinant of DNA binding specificity. Their 

DNA binding specificity profiles are indeed very similar in that virtually all DNA 

binding sites bound by HLH-27 are also bound by HLH-25, but HLH-25 also 

binds to a large number of other related sites, suggesting that HLH-25 binds to 

DNA much more promiscuously than its bHLH TF “twin”. This observation could 

be the result of a relatively increased affinity of HLH-25 for DNA, whereby a 

reduced nuclear concentration of HLH-25 compared to HLH-27 could effectively 

occupy the same (or similar) binding sites. 
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C. elegans bHLH Dimers Bind E-box and E-box-related Sequences, but 

Avoid CAA-Containing E-boxes 

Next, we examined E-box and E-Box-like sequences bound by the 

different dimers in a more detailed and unbiased manner (i.e., without choosing 

an ES threshold). First, we determined the statistical significance of the 

preference of each bHLH dimer for E-box and E-box-like sequences as 

compared to all non-E-Box/E-box-like sequences using one-way ANOVA applied 

to the distributions of enrichment scores of a dimer for each site (Figure IV-4, IV-

5) (see Materials and Methods). The statistical results from the overall analysis 

are shown in Figure IV-6A and 6B.  

We successfully retrieved all known C. elegans bHLH binding sites for 

those bHLH dimers that yielded DNA binding profiles at our PBM threshold 

(Figure IV-6A, red boxes). Moreover, we obtained 52 novel bHLH dimer binding 

sites, including novel sites for several bHLH dimers for which interacting 

sequences had previously been published (Figure IV-6A). Gel shift studies had 

previously detected DNA binding for HLH-2 and HLH-8 homodimers (3; 4), 

suggesting that these two proteins can form homodimers. In contrast, we did not 

observe HLH-8 homodimers in Y2H assays, nor did we observe DNA binding of 

HLH-2 and HLH-8 individually, even at high (up to 1 µM) protein concentrations 

(Figure IV-5 and data not shown).  

Surprisingly, these results revealed that, except for the HLH-1 homodimer, 

none of the bHLH dimers bound CAA-containing E-boxes (Figure IV-6A). In 
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addition, these results show that some binding sites are preferred by relatively 

few dimers, whereas others are bound by many dimers; for example, the 

CACATG E-box is bound by only four different dimers, whereas the CACCTG E-

box is bound by ten distinct dimers.  

DNA Binding Preferences of Individual bHLH Dimers 

The DNA binding profiles revealed that the bHLH dimers can be further 

sub-divided into five groups: four that most highly prefer different E-box 

sequences, and one that prefers an E-box-like sequence (Figure IV-2). We found 

numerous subtle differences among bHLH dimers that belong to the same class 

or module, with regard to both the preferred E-Box/E-Box-like sequences and the 

preferred 5’ flanking nucleotide position (see below). These differences may help 

in functional specification. Even though the different dimers belonging to the 

HLH-2 module exhibit overall similar DNA binding profiles with specificity for E-

boxes (Figure IV-6A,6B), some of these dimers bind more distinct sets of 

sequences. Indeed, HLH-2/HLH-3 and HLH-2/HLH-8 heterodimers share only 

one E-Box sequence (CATCTG). Taken together, we observed different degrees 

of specificity and promiscuity in DNA binding both for different bHLH dimers, and 

for the different E-Box and E-Box-like sequences that were bound.  

Half-Site Preferences of Individual bHLH Proteins 

In order to gain further insight into the functional specification of each 

individual bHLH protein, we examined their individual DNA binding preferences. 

Since each bHLH protein contacts a half-site within the CANNTG sequence (96; 
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95; 97), we reasoned that the DNA binding profiles of individual dimers may allow 

the inference of bHLH monomer half-site preferences. Specifically, we assumed 

that when a dimer binds a palindromic DNA sequence, each of the monomers 

must recognize the same half-site, and used this reasoning to infer half-site 

preferences of each bHLH protein.  

There are no palindromic E-Box-like sequences and thus all of the 

palindromic sites retrieved from the PBM data are E-boxes. There are 10 

possible E-boxes when both the forward and reverse complement orientations 

are considered (e.g., we consider CACCTG and CAGGTG to indicate the same 

E-box), including four palindromes, one of which (CAATTG) is not bound by any 

dimer (Figure IV-6A). We first focused on homodimer-palindrome interactions. 

Class III, IV and VI homodimers (HLH-30, MXL-3, and some REF-1 family 

members) exclusively interact with the CACGTG palindrome, and so each 

protein must be able to specify the CAC half-site. Similarly, HLH-1 binds only the 

CAGCTG palindrome, and so each HLH-1 monomer likely contacts CAG. The 

observation that most of the homodimers bind only a single palindrome suggests 

that these proteins most highly prefer the corresponding half-site. Indeed, in most 

cases these palindromes exhibited the highest PBM enrichment scores (Table 

IV-2, Figure IV-5). Many homodimers can also bind non-palindromic sequences, 

most of which contain the half-site present in the preferred palindromic 

sequences. Finally, we found that palindromes of less preferred half-sites are 

typically not bound at ES ≥  0.40. For example, whereas the MXL-3 homodimer 
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most highly prefers the CACGTG E-box, it can also interact with CACATG sites 

(Figure IV-5, IV-6A, IV-6B). However, it does not interact with CATATG sites, 

indicating that it prefers CAC over CAT. These data suggest that when one of the 

half-sites provides a high-affinity platform for one of the members of a bHLH 

dimer, the other member can tolerate a lower affinity half-site.  

Next, we investigated the half-site preferences of heterodimeric bHLH 

proteins. The MDL-1/MXL-1 dimer binds the CACGTG palindrome and a number 

of non-palindromic E-Box-like sequences, most of which contain a CAC half-site 

(Figure IV-5, Figure IV-6A,6B). However, since neither MDL-1 nor MXL-1 

dimerizes with any other bHLH proteins, it is not possible to determine which of 

these proteins is contacting which half-site in the non-palindromic sequences.  

HLH-2-containing dimers bind all palindromic E-boxes except CAATTG. 

Thus, HLH-2 must be able to bind CAT, CAC and CAG half-sites (Figure IV-7). 

We cannot be sure that the HLH-2 monomer has preference for these half sites 

or if it merely tolerates their presence, but the conclusion still stands. This is in 

agreement with crystal structures of E47 dimers that show that E proteins are 

capable of binding to each of these half-sites (21; 22). HLH-2 binds 14 other 

bHLH proteins, and these heterodimers have partially overlapping DNA binding 

specificities (Figure II-3, Figure IV-3, IV-5, IV-6). The fact that these specificities 

are non-identical suggests that each HLH-2 partner must, at least in part, be 

responsible for the specification of particular half-sites. For example, upon close 

examination of the binding specificity of the HLH-2/HLH-3 dimer, we noticed that 
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in addition to binding CAGCTG palindromes, this dimer recognizes CACCTG and 

CATCTG sequences (Figure IV-8). Each of these sequences contains a CAG 

half-site that HLH-3 could bind and another half-site that could be bound by HLH-

2 (Figure IV-7, Table IV-3). Thus, we propose that HLH-3 specifies the CAG half-

site, and that HLH-2 contacts the other half-site, although we cannot exclude the 

possibility that HLH-3 half-site recognition may be E-box-dependent. By similar 

reasoning, we propose that HLH-8, which together with its partner HLH-2 

recognizes the CATATG palindromic E-box and the CATCTG and CACATG non-

palindromic E-boxes (Figure IV-8), contacts the CAT half-site within these 

sequences. A general scheme of the half-site logic is provided in Figure IV-7 and 

IV-9. All deduced half-site preferences for HLH-2 and its partners are provided in 

Table IV-3. 

E-Box Flanking Nucleotides Contribute to bHLH DNA Binding Specificity  

The PBM ES of a particular DNA sequence bound by a dimer is a 

reflection of relative DNA binding affinities (1). We noticed that the ES distribution 

for 8-mers corresponding to a particular dimer/sequence combination varied 

greatly. For instance, both HLH-26 and MDL-1/MXL-1 bind CACGTG E-boxes, 

but HLH-26 does so with a broad ES range and MDL-1/MXL-1 with a very narrow 

ES range (Figure IV-10). This suggests that, in contrast to MDL-1/MXL-1, not all 

CACGTG E-boxes are bound equally well by HLH-26. We considered the 

possibility that differences may be due to effects of nucleotides flanking the core 

CACGTG E-box. Indeed, flanking nucleotides have been reported previously to 
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contribute to bHLH dimer DNA binding (144-146). However, the effects of 

nucleotides flanking the E-box and E-box-like sequences had not been analyzed 

systematically for most bHLH TFs. Since each bHLH monomer may directly 

contact the flanking nucleotide immediately 5’ of the E-box (95; 144), we 

examined the influence of this position on relative DNA binding preferences. We 

found that for the MDL-1/MXL-1 dimer each of the four possible nucleotides 

flanking the CACGTG core sequence is recognized approximately equally well; 

the ES for each relevant 8-mer is between 0.49 and 0.50 (Figure IV-10). 

However, HLH-26 exhibits a strong preference for a 5’ A or G (median 8-mer ES 

> 0.40), and disfavors a 5’ T (median 8-mer ES < 0.10) and, to a lesser extent, a 

5’ C (0 ≤ ES ≤ 0.40) (Figure IV-10).  

We found that most bHLH proteins exhibit preferences at the 5’ flanking 

nucleotide position (Figure IV-11). We found that most dimers disfavor a 5’ T; this 

observation is similar to what has been reported for the yeast bHLH homodimer 

Pho4p (144). However, there are exceptions: HLH-11 and MDL-1/MXL-1 

heterodimer both tolerate a 5’ T, and HLH-30 actually favors a 5’ T (Figure IV-

11).  

E-Box-dependent Flanking Nucleotide Preferences 

 Another common question in the field of TF-DNA interaction is whether or 

not there are nucleotide inter-dependencies with respect to TF DNA binding 

affinity. In other words, are certain nucleotides in a binding site favorable or 

disfavored only in the presence of other specific nucleotides? The implications of 
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the answer to this question affect the reliability of position weight matrices and 

associated logos as a common format for representing DNA binding sites (147; 

148). Our data indicate that there are indeed nucleotide inter-dependencies as 

indicated by E-Box-dependent flanking nucleotide preferences exhibited by 

dimers in our study. For example, the HLH-2/HLH-10 heterodimer binds to both 

CACGTG and CAGCTG palindromic E-Boxes. However, in the context of 

CACGTG, HLH-2/HLH-10 favors a flanking adenine or a guanine and disfavors 

both a cytosine and a thymine, whereas the same heterodimer disfavors only a 

flanking thymine when bound to the CAGCTG binding site (Figure IV-12A). This 

context-specific affect of a flanking cytosine suggests that nucleotides central to 

these E-Boxes can affect whether or not flanking nucleotides influence the DNA 

binding affinity for the same dimer. The important consideration of this result is 

that, when observing position weight matrices and their corresponding logos, the 

individual nucleotide positions cannot always be considered as independent 

entities. Therefore, it will be important in future TF/DNA interaction studies to pay 

close attention to the actual individual sequences bound by a TF and the order of 

preference that a TF has for each sequence. 

Dimer-dependent Flanking Nucleotide Preferences 

The converse to E-Box dependent flanking nucleotide preference is dimer-

dependent flank preference for a given E-Box. For example, we find that HLH-

2/HLH-3 heterodimers and HLH-2/HLH-4 heterodimers differentially bind the 

CACCTG/CAGGTG E-Box with respect to flanking nucleotide preference. We 
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found that whereas the HLH-2/HLH-3 heterodimer binds to CACCTG/CAGGTG 

with distinct “avoidance” of a 5’ flanking thymine, the HLH-2/HLH-4 heterodimer 

binds to the same core E-Box with less preference for flanking nucleotides, 

particularly at the 5’ end of the CACCTG E-Box, perhaps as a result of one 

monomer of the dimer being influenced more than the other (Figure IV-12B). Our 

half-site analysis (described above) would suggest that it is HLH-2 that is 

differentially affected by the flanking nucleotides in a partner-dependent manner. 

In summary, we identified both prominent and subtle differences in E-box 

or E-box-like sequence recognition and flanking site preferences between 

different bHLH dimers, which likely contribute to target site selection and gene 

regulation in vivo. 

Negative Control Experiments 

 Although we found that none of the bHLH proteins implicated in 

heterodimers (by the Y2H system) were capable of binding to DNA on PBMs in 

the absence of a bHLH partner, we wanted to be sure that combinations of bHLH 

TFs not found to heterodimerize in Y2H would also not bind to DNA on PBMs. To 

address this possibility, we randomly chose bHLH TFs from different or similar 

bHLH classes and incubated them in equimolar concentrations (at concentrations 

equivalent to previous experiments (i.e. ~200nM)) as a 1:1 protein mixture on 

PBMs. We found that, as expected, none of the randomly assigned pairs of 

bHLH proteins were found to bind to DNA (Figure IV-13). This observation 
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corroborates the Y2H data, suggesting that the dimers tested here are, in fact, 

truly negative interactions.  

Identifying bHLH Dimer Candidate Target Genes 

Aside from achieving an understanding about how transcription factors 

recognize specific sequences of DNA, it is hoped that determining DNA binding 

specificities for various TFs will allow researchers to make predictions of target 

genes. To this end, we tried to make the best use of the PBM data to predict 

which target gene promoters the various bHLH dimers may bind to. The PBM 

results provided us with a rank-ordered list of 8-mers, the vast majority of which 

contained E-box or E-box related sequences.  

Because each 8-mer could contain an NN-E-box, N-E-box-N, or an E-Box-

NN sequence, and because it is possible that flanking nucleotides could 

positively or negatively influence DNA binding by a particular dimer, we wanted 

to incorporate all of the 8-mer data into a more comprehensive predictor of 

binding. We reasoned that by averaging enrichment scores from three 8-mers 

that constitute a single 10-mer, we could create a new rank-ordered list of 10-mer 

DNA sequences which we could use to predict target genes. For example, the 

three 8-mers TGCACGTG, GCACGTGA, and CACGTGAT can be combined to 

generate the 10-mer sequence TGCACGTGAT, and the enrichment scores from 

these three 8-mers could be averaged to approximate the relative binding 

preference for the 10-mer sequence. The additional benefit of using 10-mers is 
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that we can be more specific with our target gene predictions, as 10-mers will 

predict 16-fold fewer sites in a genome than 8-mers. 

To assess the validity of this approach, we generated the rank ordered list 

of 10-mers for each bHLH dimer and looked at the raw PBM intensity scores for 

each 60 nucleotide deBruijn sequence to see if there is a genuine correlation 

between PBM spot intensity and the presence of a high-scoring 10-mer 

sequence. We noticed a strong correlation between the presence of the highest 

scoring 10-mers and the deBruijn sequences of the brightest spots on the PBM. 

Although we did not perform a systematic analysis of all dimers and 10-mers, this 

approach seemed like the best use of PBM 8-mer data for making target gene 

predictions. 

The highest level of sequence conservation of gene regulatory regions 

within related nematode species lies in the 500 bp upstream of gene starts (149). 

Therefore, we searched this genomic region for all predicted C. elegans genes 

for the different bHLH binding sequences (10-mers with average ES above 0.3) 

to identify candidate bHLH target genes (Table IV-4, provided only electronically 

due to size; see Figure IV-14 for the candidate target gene identification 

pipeline). We calculated a cumulative ES for each gene (sum of all 10-mer 

average ESs), with respect to each of the bHLH dimers, and kept only genes that 

score 0.4 or greater to identify genes with either single “high-affinity” binding 

sites, or with multiple “lower affinity” binding sites, or a combination of both. 
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Functional Annotation of Candidate bHLH Target Genes 

We used lists of candidate target genes mentioned above to initiate 

functional annotation of the dimers by searching for over-represented Gene 

Ontology (GO) categories (150) within each list. We then identified over-

represented GO annotation terms associated with these putative target genes, 

and, hence, with the relevant bHLH dimer (Table IV-5; see Materials and 

Methods). 

 We identified multiple enriched GO terms, including Molecular Function 

terms associated with transcription and signaling, and Biological Process terms 

associated with development and metabolism. Some of the annotations we 

obtained are in agreement with what was previously known, either in C. elegans 

or for orthologs in other organisms. For instance, the connection of MDL-1/MXL-1 

to “cell division” is evolutionarily conserved with the orthologous human dimer 

MAD/MAX (8). However, the majority of functional annotations are novel. 

 As described in the next chapter, we find that HLH-30 is associated 

through its DNA binding specificity to several metabolic and reproductive terms. 

The fact that we also see Phlh-30 driving GFP expression in the intestine, vulva, 

and spermatheca suggests that HLH-30 may indeed regulate genes involved in 

metabolism and reproduction. To test this hypothesis, we performed a microarray 

experiment to assess the gene expression profile of worms harboring a deletion 

of the bHLH domain-encoding region of the hlh-30 gene locus. The results, as 
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will be explained, corroborate our findings of predicted HLH-30 target genes and 

functionality. 
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Discussion 

Protein Binding Microarrays: Data Quality 

Several observations indicate that the PBM data are of high quality: (1) As 

mentioned above, for bHLH-bHLH pairs that do not form heterodimers in Y2H 

assays, no specifically bound E-boxes or E-box-like sequences were obtained 

(Figure IV-13). (2) The PBM experiments yielded E-boxes and similar 

sequences, several of which constitute known bHLH binding sequences. (3) We 

identified all previously known C. elegans bHLH binding sequences for those 

bHLH dimers that yielded sequence-specific DNA binding profiles (Figure IV-

6A,6B). (4) We have previously demonstrated that PBM assays retrieve DNA 

binding sites that are highly relevant in vivo (43; 136; 12; 151). Taken together, 

we are confident that the DNA binding specificities determined by PBMs are of 

high quality and are relevant to the biology of C. elegans. 

Two Clusters of bHLH DNA Binding Profiles 

The PBM data collected here allowed us the opportunity to compare and 

contrast the bHLH dimers with respect to their DNA binding preferences. By 

clustering each of the 19 bHLH dimers for which PBM-derived DNA binding 

specificities were acquired, we found that two groups, or clusters, of bHLH 

dimers emerged, the members of which share general similarities in sequences 

bound (Figure IV-3). This observation suggests that the bHLH TFs underwent a 

relatively early evolutionary divergence into two classes with regards to DNA 

binding specificity. Further systematic analysis of DNA binding for bHLH TFs in 
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other organisms will be needed to see if these two clusters of DNA binding 

profiles exist in other species as well. 

E-Boxes and E-Box-like Sequences 

The 19 bHLH dimers for which we acquired PBM data bound DNA 

sequences that almost always contained E-Box sequences (CANNTG) or E-Box-

like sequences (e.g. CACGCG, CATGCG, etc.). The question of how nucleotides 

central to an E-Box binding site affect bHLH dimer binding seemed to be 

answered by the observation that all possible E-Box sequences were bound 

except for E-Boxes containing a CAA half-site (i.e. CAATTG, CAACTG, 

CAAGTG, or CAAATG). HLH-1 homodimers can bind to CAACTG sites, although 

they are not the most preferred of HLH-1 binding sites. Further experiments will 

be necessary to understand the biochemical reason behind this observation. 

In addition to E-Boxes, several E-Box-like sequences were bound by 

bHLH dimers: CACGCG, CATGCG, CACACG, CATACG, CACGAG, and 

CACGCT. These sequences, particularly CACGCG, resemble the binding site 

that has been reported for homodimers of the Drosophila Hairy bHLH protein. 

The sequence CACGCG is predominately bound by HLH-25, HLH-27 and HLH-

29, members of the REF-1 family of bHLH proteins. This family of proteins has 

been identified as a target of Notch signaling in the developing C. elegans 

embryo (14), which, taken together with the fact that these proteins have weak 

homology to Hairy and/or Enhancer of Split proteins (Figure I-5), suggests that 
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the REF-1 family of proteins may in fact represent the C. elegans Class VI bHLH 

proteins. 

Flanking Nucleotide Contribution to bHLH Dimer Binding 

There has been little conclusive evidence to suggest the extent to which 

nucleotides flanking E-Box binding sites contribute to bHLH dimer binding affinity. 

Studies as early as 1992 suggested that the Pho4p yeast bHLH TF bound to E-

Boxes less effectively when a 5’ flanking thymine was present in the binding site 

(144). Maerkl and Quake used their MITOMI technique to demonstrate that the 

bHLH TFs Pho4p, Cbf1p, and MAX each had varying degrees of sensitivity to 

nucleotides flanking the E-Box (146). Our data also suggest that bHLH TF dimers 

are sensitive to E-Box flanking nucleotides, although this sensitivity can be E-

Box-dependent for a given dimer, and dimer-dependent for a given E-Box. Our 

systematically derived DNA binding specificity data provide a novel opportunity to 

address the questions of overall flanking nucleotide affects for most bHLH dimers 

in a multicellular organism. 

One interesting observation was that a large number of bHLH dimers 

exhibited an avoidance of E-Box sites bearing a thymine at the 5’ flanking 

position. Fisher and Goding had made the observation that the yeast Pho4p 

bHLH TF also avoided binding to E-Boxes bearing a 5’ thymine, and showed that 

it was most likely the presence of the methyl group of thymine in the major 

groove of DNA that sterically hindered binding of Pho4p to the E-Box site (144). It 

is not entirely clear from the bHLH amino acid sequences which residues or 
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general architectural features of the bHLH domain may be responsible for this 

avoidance of sites with a 5’ thymine, although bHLH crystal structures suggest 

that it may be the 8th and/or 12th residues of the bHLH domain that make direct 

contact with the 5’ flanking nucleotide (152; 153; 96; 97; 154) 

Candidate bHLH Target Genes and Enriched GO Terms 

 We used the PBM-derived DNA binding specificity data to make 

predictions about which genes are targeted for regulation by the different bHLH 

dimers. Based on sequence conservation between nematode species, we chose 

a search space of 500bp upstream of gene starts (start codons, ATG, in this 

case). We scanned these genomic regions for 10-mers with an average ES 

above 0.3, summed these scores for each promoter region, and kept only gene 

promoters that score 0.4 or greater. This enables the favoring of genes that have 

multiple bHLH binding sites in their promoter regions.  

We then took the candidate target gene list for each bHLH dimer to search 

for Gene Ontology (GO) terms that are statistically enriched for specific Biological 

Process and/or Molecular Function terms. Virtually all functional associations 

made by this approach are novel annotations for the designated bHLH dimers. 

Assigning molecular functions and biological process terms to TFs 

simultaneously may begin to bridge the gap in our understanding of exactly how 

the molecular activities of TFs and target genes manifest as more macroscopic 

biological processes. 
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Materials and Methods 

Protein Binding Microarray Experiments  

Microarray design, preparation and PBM experiments were performed as 

described previously (1). All experiments were performed using previously 

described custom-designed “all 10-mer” arrays synthesized in the “4x44K” array 

format (Agilent Technologies, Inc.) (43; 136). TFs were diluted to a final 

concentration, in the protein binding reactions, of 200 nM except for HLH-1, HLH-

2/HLH15, HLH-2/HLH-19, HLH-2/HLH-14, and HLH-29, which were diluted to 

400 nM, and HLH-11, which was diluted to 700 nM.  In order to minimize 

potential bias resulting from the array design, each sample was assayed in 

duplicate, on arrays designed using different de Bruijn sequences (40; 155).  

Binding Site Annotation, Mapping and Prediction of bHLH Target Genes 

Target genes were predicted by initially calculating for each dimer the average 8-

mer enrichment score (AvgES) within all 10-mers that contained an E-box (NN-E-

box, N-E-box-N, E-box-NN)(similar for E-box-like sequence). For each bHLH 

dimer, genomic sequences 500 bp upstream of each WBGene (referred to as 

transcriptional start) were scanned with the corresponding set of 10-mers with 

AvgES ≥  0.3.  Each gene was scored by summing the AvgES of all 10-mers 

found in the 500 bp upstream sequence. All genes having a Sum of AvgESs ≥ 

0.4 were considered for analysis of functional category enrichment using the 

GOMiner algorithm (http://discover.nci.nih.gov/gominer/) (156).  
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Gateway Cloning of bHLH ORFs into Expression Vectors  

All C. elegans bHLH ORFs were cloned into the pDEST-15 Destination vector 

(Invitrogen Technologies) by Gateway cloning from bHLH ORF Entry clones. 

Select C. elegans bHLH ORFs were similarly cloned into the pCAL-n-FLAG 

Destination vector (157). All bHLH constructs were sequence verified to obtain 

wild-type clones (see exceptions in Table II-1).  

Protein Expression and Quantification  

All bHLH proteins were individually expressed using the Active Pro coupled T7 in 

vitro transcription and translation kit (Ambion) following the manufacturer's 

specifications. Briefly, proteins were expressed using a final concentration of 20 

ng/µl of plasmid DNA, shaking at 1350 rpm in an Eppendorf Thermomixer for 90 

minutes at 37°C. Concentrations of expressed proteins were estimated by 

Western blotting using a dilution series of recombinant GST (Sigma) or of the 

amino terminal BAP-FLAG control protein (Sigma), as described previously 

(Berger et al., 2006). 1:3000 dilution (vol/vol) of rabbit anti-GST polyclonal 

primary antibody (Sigma), followed by 1:5000 dilution (vol/vol) of HRP-

conjugated goat anti-rabbit IgG secondary antibody (Pierce), was used in 

Western blotting. For FLAG-tagged HLH-2 we used HRP-conjugated murine 

monoclonal anti-FLAG antibody (M2 clone, Sigma) at 1:1000 dilution (vol/vol). 

Proteins were aliquoted and stored at –80°C.  

 



 149 

 

Protein Binding Microarray Data Normalization and Motif Analysis  

Microarray scanning, spot quantification, and data filtering and normalization 

were performed as described previously (9). Briefly, we calculated a PBM 

enrichment score (ES) for each contiguous and gapped 8-mer. Enrichment 

scores for each 8-mer from each of the two array designs were averaged. We 

constructed position weight matrices (PWMs) using the previously described 

“Seed-and-Wobble” algorithm (40; 158). Sequence logos were then generated 

from the Seed-and-Wobble PWMs essentially as described previously (1) using 

enoLOGOS (159). 

Protein Binding Microarray Data Clustering  

All data clustering and associated statistics were performed using Matlab with the 

“statistics” and “bioinformatics” toolboxes (MathWorks, MA). We performed two-

dimensional hierarchical clustering of all the TFs’ 8-mer ES data using only those 

8-mers that had ES ≥ 0.40 in at least one bHLH dataset, using average linkage 

and the Pearson correlation distance metric.  

Statistical Significance of bHLH Dimer Binding to E-box and E-box Variants  

We grouped 8-mers according to the presence or absence of each considered 6 

nucleotide E-box or E-box-like sequence. We compared each resulting 8-mer 

group (i.e., foreground set) to all 8-mers lacking E-box or E-box-like sequences 

(i.e., background set) by calculating the area under a receiver operating 

characteristic curve (AUC). AUC is a non-parametric statistic that represents the 
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probability that a random 8-mer from the foreground set will rank higher than a 

random 8-mer from the background set. In order to assess the statistical 

significance of the AUC for each foreground set, we utilized a permutation-based 

approach, as described and implemented previously (160). This approach 

provides an estimate of the statistical significance of each AUC value by 

calculating false discovery rate (FDR) Q-values from 1,000 permutations of the 

foreground/background assignments of the 8-mers. By controlling for both AUC 

and Q-value, we can identify 8-mer groups that are significantly different from the 

background set of 8-mers in a manner that does not rely upon assumptions 

about the underlying distribution of 8-mer enrichment scores and that addresses 

potential sample size variability of the groups (i.e., the number of spots 

containing a given 8-mer).  

Gene Ontology Annotation Term Analysis  

Predicted target genes for each bHLH dimer were analyzed for enriched GO 

terms using the GOMiner high-throughput analysis tool 

(http://discover.nci.nih.gov/gominer) (156). The following parameters were 

chosen for the GOMiner search: Data source: Wormbase (WB), Organism: C. 

elegans, Root Category: All/Gene Ontology. Default settings were used for all 

other parameters. A significance threshold of p < 0.05 (Log10(p) < -1.3) for 

GOMiner results was used to determine which GO terms were considered to be 

significantly enriched. For incorporation of predicted target gene GO terms into 

the integrated network (see Chapter V), any term represented by fewer than 10 
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genes in the predicted target gene list were not included. However, these were 

included in the overall parameter analysis. 

Online Data 

Additonal PBM data are available at 

http://thebrain.bwh.harvard.edu/pbms/webworksW/ and in the UniPROBE 

database (161).  
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Table IV-1 
 

ORF gene ORF Sequencing Primer FW or RV 
C25A1.11 aha-1 ATTTGATTCTAGAAGCAGCG FW 
C25A1.11 aha-1 AAAAATGCTCCACCACAGGG FW 
C41G7.5 ahr-1 GGAACACCAATGTTGGACCC FW 
C41G7.5 ahr-1 ATGTAATGGGAAGAACTGCC FW 
C41G7.5 ahr-1 CGAAGTGGAAGGTACAATGC FW 
C15C8.2 cky-1 CAAATGTCATCTCCAATGCC FW 
C15C8.2 cky-1 TTCTCGGCTTATTGTCAACC FW 
C15C8.2 cky-1 AAGCTGCGACTCTTCAAGCG FW 
F38A6.3 hif-1 TCATCCATCCGACTATGACG FW 
F38A6.3 hif-1 CGAATTGGTACATCCAGCCG FW 
F38A6.3 hif-1 CGTTGGTGGAGAAGAACCTG FW 
F38A6.3 hif-1 GACGCTCGATCTATGGGACG FW 
B0304.1 hlh-1 CCAGATCTCAAGATTTCGCATC FW 
F58A4.7 hlh-11 CAAAGGAGAAGATATACCTGACGG FW 

W02C12.3 hlh-30 TGACGATTGGTGGAGAAAAAAC FW 
W02C12.3 hlh-30 ACAAACGATCCGGTCGG RV 

Y39A3CR.6   hlh-33 ATGATTGGAAAAGATATCCG FW 
T20B12.6 mml-1 AGCCGAAAAAACCATTCTGC FW 
T20B12.6 mml-1 CTCTGAGTGAACCTTACATG FW 
T20B12.6 mml-1 TGGACTATCGATTAATGCCG FW 
T20B12.6 mml-1 CTCCATCGAGATCATGGTGG FW 
T20B12.6 mml-1 CATATAGTAGAAGGATCGCC FW 
T01E8.2  ref-1 CTTTGAAGAACTTTATCATTGAGAACA FW 

Y47D3B.7 sbp-1 AGAAGGTCCTGCAAGTATGCTT FW 
Y47D3B.7 sbp-1 TCGATTGAAGATGCTCCAGAG FW 
Y47D3B.7 sbp-1 GGGATGAAGCTAAGCTTTCAAA FW 
Y47D3B.7 sbp-1 TGGAAGAGTGATTGATGACCC FW 
Y47D3B.7 sbp-1 GTCTCAGTCGTTTGTAGGAGTCAT FW 
Y47D3B.7 sbp-1 TGTTGAGCTCGAAGCAGAAG FW 
Y47D3B.7 sbp-1 CTGATCAGGAACTGTCCGC FW 
Y16B4A.1 unc-3 AATGTTTCAGAATGGAATCCG FW 
Y16B4A.1 unc-3 ACATGTTCGTCCACAACAACTC FW 

General Forward Primer TTCTACTTCTTTTACTGAAGC FW 
General Reverse Primer CTCCACTGACAGAAAATTTG RV 

 
 
Table IV-1. ORF sequencing primers 
 
All C. elegans bHLH ORFs were sequenced to verify full-length wild type 
sequences in all GST clones to be used in PBM assays (see Table II-1). All 
ORFs were sequenced at 5’ and 3’ ends with the general forward and reverse 
primers. In cases where the ORF was too long to get reliable sequence reads for 
the entire ORF, additional ORF-specific primers (listed in this table) were 
generated. Rows for every other bHLH ORF are shaded gray for clarity. 
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Figure IV-1 
 

 
 
 
 
 
Figure IV-1. Protein binding microarray (PBM) raw data 
Three panels depicting the results of typical PBM experiments. The top image in each panel depicts an image from 
a portion of the scanned microarray, in which dark blue and black spots indicate little or no TF binding, whereas 
light blue and yellow/orange/red spots indicate strong binding. The bottom image in each panel represents the 
Seed-and-Wobble output sequence logo for the indicated bHLH protein or dimer (see Materials and Methods). As 
can be seen from the PBM experiments for HLH-3 and HLH-2 alone, there is no significant DNA binding. Upon 
mixing the two proteins at equimolar concentrations, however, we observe significant binding to sequences 
containing E-Box bHLH binding sites. 
 
 
 
Table IV-2. 8-mer enrichment score data (Due to space limitations, see electronic file for data) 
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Figure IV-2 

 
 
Figure IV-2. Binding site logos for 19 C. elegans bHLH dimers 
Logo representations of all position weight matrices generated from the PBM data using the Seed-and-Wobble 
algorithm. We can generally divide the 19 bHLH dimers into five categories of DNA binding specificity, dimers that 
tend to prefer CAGCTG, CATATG, CACCTG, CACGTG, or CACGCG binding sites. 
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Figure IV-3 

 
 
Figure IV-3. Clustergram of all bHLH dimers that yielded DNA binding 
profiles at a PBM ES ≥ 0.40  
8-mer sequences of DNA (horizontal axis) were clustered according to sequence 
similarity, and bHLH dimers (vertical axis) were clustered according to similarities 
in DNA binding profiles. Orange box – cluster I; blue box – cluster II. 
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Figure IV-4 

 
 
Figure IV-4. Inidividual bHLH monomers that heterodimerize do not bind DNA independently 
8-mer enrichment score (ES) distributions of HLH-2, HLH-10 and HLH-2/HLH-10 binding to E-boxes and E-box-
related sequences. E-boxes bound preferentially (AUC ≥ 0.85, Q < 0.001) by HLH-2/HLH-10 are indicated in blue 
(right panel). The corresponding E-boxes are colored gray in the single protein box plots for comparison (left and 
middle panel). In each box plot, the central bar indicates the median, the edges of the box indicate the 25th and 
75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and individual points 
that are plotted correspond to outliers. 
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Figure IV-5 
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Figure IV-5: Box plots of all bHLH dimer-E-Box and dimer-E-Box-like 
combinations 
Shown are graphical representations of the ES distributions of each group of 8-
mers containing an E-Box or E-Box-like sequence. Dark blue indicates significant 
binding (AUC ≥  0.85 and Q-val < 0.001); for heterodimers the corresponding E-
Box or E-Box-like sequences are colored gray in the single protein box plots for 
comparison; white indicates ‘non-binding’. All box plots and error bars are as 
indicated in the legend of Figure IV-4. 
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Figure IV-6A 

 
 
Figure IV-6A. Statistics of E-box and E-box-like sequence binding 
Grid representation of the statistical significance of each bHLH dimer binding 
each E-box and E-box-like sequence according to their AUC and Q-values. We 
considered highly significant any combination showing a Q-value < 0.001 and 
AUC ≥ 0.85. The color scheme shows increasing significance according to AUC 
value. Red boxes indicate previously reported E-Box binding sites for the 
respective bHLH dimers. 



 161 

Figure IV-6B 

 
 
Figure IV-6B. The C. elegans bHLH dimer/binding site network 
bHLH dimers are indicated in circles, E-Box and E-box-like sequences are 
indicated in hexagons. Red – cluster I; blue – cluster II. Blue lines – novel 
interactions; dashed red lines – previously reported interactions. 
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Figure IV-7 
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Figure IV-7. Half-site logic scheme 
The general scheme of deducing half-site preferences for bHLH proteins is 
shown. There are 10 possible E-boxes (when redundant reverse complements 
are removed), four of which are palindromes (CAATTG, CACGTG, CAGCTG, 
and CATATG). By noting which palindromic E-Box each bHLH dimer binds to, we 
can deduce which half-sites each monomer of a heterodimer must be capable of 
binding. Once likely half-site preferences have been deduced, we can examine 
bHLH dimer binding to the six remaining non-palindromic E-Boxes to see if we 
can infer which monomer of a dimer specifies which half-site. In the example 
provided, the HLH-2 heterodimers can bind to CACGTG, CAGCTG, or CATATG 
palindromic E-Boxes, but not to CAATTG palindromic E-Boxes. This suggests 
that HLH-2 must be able to bind the CAC, CAG, and CAT half-sites, respectively. 
We then notice that the HLH-2/HLH-3 heterodimer only binds to the CAGCTG 
palindromic E-Box, indicating that HLH-3 can bind to the CAG half-site, but 
maybe not CAC or CAT. Indeed, the only E-Boxes bound by the HLH-2/HLH-3 
heterodimer are CAGCTG, CAGGTG, and CAGATG, perhaps suggesting that 
HLH-3 binds to the CAG half-site in all three cases, whereas HLH-2 may bind the 
CAG, CAC, and CAT half-sites, respectively. 
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Figure IV-8 

  
 
Figure IV-8. Deducing half-site preference for HLH-3 and HLH-8 
HLH-2/HLH-3 heterodimers most prefer binding to the CAGCTG palindromic E-
Box (i.e. two CAG half-sites), and bind to other E-Boxes containing CAG half 
sites. HLH-2/HLH-8, on the other hand most prefers binding to the CATATG 
palindromic E-Box (two CAT half-sites), and binds two other CAT containing E-
Boxes. Our model suggests that CAG half-sites are specified by the HLH-3 
monomer in HLH-2/HLH-3 heterodimers and the CAT half-site is specified by the 
HLH-8 monomer in HLH-2/HLH-8 heterodimers. 
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Table IV-3 
 

bHLH protein palindrome specified half-site 
specified 

HLH-30 CACGTG CAC 
MDL-1 CACGTG CAC 
MXL-1 CACGTG CAC 
MXL-3 CACGTG CAC 
HLH-29 none NA 
HLH-27 none NA 
HLH-26 CACGTG CAC 
HLH-25 CACGTG CAC 
REF-1 CACGTG CAC 

HLH-11 CATATG; CAGCTG CAT; CAG 
CND-1 CATATG; CAGCTG CAT; CAG 
HLH-19 CATATG; CAGCTG CAT; CAG 
HLH-14 CATATG; CAGCTG CAT; CAG 
LIN-32 CATATG; CAGCTG CAT; CAG 
HLH-8 CATATG CAT 

HLH-15 CAGCTG CAG 
HLH-10 CACGTG; CATATG; CAGCTG CAC; CAT; CAG 
HLH-4 CAGCTG CAG 
HLH-3 CAGCTG CAG 
HLH-1 CAGCTG CAG 
HLH-2 CACGTG; CATATG; CAGCTG CAC; CAT; CAG 

 
 
Table IV-3. List of predicted half sites specified by each individual bHLH 
protein 
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Figure IV-9 

 
Figure IV-9. Half-site preference prediction for HLH-2 and partners 
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Figure IV-10 

 
 
Figure IV-10. Variation in ES distribution suggests flanking nucleotide 
affects 
(Left) Shown are box plots of 8-mer ES distributions for the 6-mers indicated at 
the bottom of the panel (as in Figure IV-4 and IV-5). Whereas HLH-26 binds to 
the CACGTG E-Box with a wide variation in relative affinity, MDL-1/MXL-1 
heterodimers appear to bind CACGTG with a very narrow range of ES 
distribution (note that the box plot is barely visible due to such high ES), 
suggesting the importance of additional nucleotides flanking the E-Box when 
bound by HLH-26, but not MDL-1/MXL-1. (Right) If we break up the 8-mer ES 
distributions to represent 7-mers with the indicated fixed 5’ flanking nucleotide, 
we find that a 5’ flanking cytosine or thymine can be inhibitory to CACGTG 
binding by the HLH-26 homodimer. MDL-1/MXL-1, on the other hand, is 
ambivalent towards flanking nucleotides, as indicated by the nearly equivalent 
ES distributions for each flank (note the scale of each panel). All box plots and 
error bars are as indicated in the legend of Figure IV-4. 
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Figure IV-11A 
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Figure IV-11A. Flanking nucleotide preference for Cluster I dimers 
ES box plots for 7-mers having the indicated 5’ flanking nucleotides adjacent to 
indicated E-boxes and E-box-like sequences. Dimers are represented in rows; 
sequences are represented in columns (as in Figure IV-6A). Flanking nucleotides 
are indicated below each box plot. Because we cannot assign a 5’ flanking 
nucleotide to a particular side of a palindromic E-box, we merged all data for 5’ 
flanks of palindromic E-boxes into four box plots. All non-palindromic sites are 
represented by eight box plots: the four left box plots for flanks of the site 
indicated at the top and bottom of the figure, and the four right box plots for 
flanks of the reverse complement (as in Figure IV-12). Note that Y-axis scales 
are different for each series of box plots. All box plots and error bars are as 
indicated in the legend of Figure IV-4. 
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Figure IV-11B 

 
 
 
Figure IV-11B. Flanking nucleotide preference for Cluster II dimers 
Same as Figure IV-11A  
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Figure IV-12 
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Figure IV-12. Influence of flanking nucleotides on bHLH dimer binding 
(A) Enrichment score distributions for the HLH-2/HLH-10 heterodimer bound to 
CACGTG (left) and CAGCTG (right) with respect to 5’ flanking nucleotides 
(indicated at the bottom of each panel). The influence of flanking nucleotides on 
HLH-2/HLH-10 binding is dependent on the core E-Box bound. (B) Enrichment 
score distributions for the CACCTG/CAGGTG E-Box bound by HLH-2/HLH-3 
heterodimers (left) and HLH-2/HLH-4 heterodimers (right). These two 
heterodimers bind to the same E-Box binding site with different relative affinities 
for flanking nucleotides. All box plots and error bars are as indicated in the 
legend of Figure IV-4. 
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Figure IV-13 

 
 
Figure IV-13. Negative control PBM experiments with bHLH-bHLH pairs that 
do not dimerize in Y2H assays 
Box plot representation of the E-box and E-box-like sequence ES distributions for 
PBM experiments carried out with bHLH pairs that did not dimerize in Y2H 
assays. 
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Figure IV-14 

 
 
Figure IV-14. Pipeline for predicting bHLH dimer target genes 
Flow diagram describing how GO annotations were obtained (see Materials and 
Methods for details). 
 
 
 
Table IV-4. bHLH dimer candidate target gene lists (Due to space 
limitations, see electronic file for data) 
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Table IV-5. GO categories enriched among bHLH dimer candidate target 
genes 
 
HLH-2/CND-1 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0005488_binding 5055 457 -2.704494 
GO:0005575_cellular_component 4970 444 -2.161453 
GO:0009987_cellular_process 4977 438 -1.644553 
GO:0005623_cell 4804 434 -2.491572 
GO:0044464_cell_part 4788 432 -2.429721 
GO:0008152_metabolic_process 4176 372 -1.675568 
GO:0032501_multicellular_organismal_process 3705 336 -1.944052 
GO:0007275_multicellular_organismal_development 3428 308 -1.573588 
GO:0044237_cellular_metabolic_process 3372 304 -1.627429 
GO:0044238_primary_metabolic_process 3216 290 -1.562883 
GO:0005622_intracellular 2808 277 -3.789383 
GO:0043170_macromolecule_metabolic_process 2663 255 -2.673899 
GO:0009790_embryonic_development 2693 247 -1.66762 
GO:0009792_embryonic_development_ending_in_birth_o
r_egg_hatching 2645 240 -1.436608 

GO:0044424_intracellular_part 2280 225 -3.05959 
GO:0043226_organelle 1749 179 -3.204146 
GO:0043229_intracellular_organelle 1740 178 -3.177865 
GO:0043231_intracellular_membrane-bounded_organelle 1392 155 -4.571543 
GO:0043227_membrane-bounded_organelle 1399 155 -4.455018 
GO:0003676_nucleic_acid_binding 1510 151 -2.346986 
GO:0005634_nucleus 1121 132 -5.099949 
GO:0006139_nucleobase__nucleoside__nucleotide_and_
nucleic_acid_metabolic_process 1228 128 -2.665592 

GO:0040011_locomotion 1157 113 -1.58267 
GO:0010467_gene_expression 1101 109 -1.692772 
GO:0050794_regulation_of_cellular_process 1029 103 -1.745097 
GO:0003677_DNA_binding 873 98 -3.136263 
GO:0009653_anatomical_structure_morphogenesis 879 87 -1.441118 
GO:0010468_regulation_of_gene_expression 760 85 -2.736186 
GO:0016043_cellular_component_organization_and_biog
enesis 804 85 -2.073686 

GO:0016070_RNA_metabolic_process 837 83 -1.412752 
GO:0032991_macromolecular_complex 721 80 -2.51094 
GO:0031323_regulation_of_cellular_metabolic_process 755 80 -2.003723 
GO:0019222_regulation_of_metabolic_process 783 80 -1.644839 
GO:0006350_transcription 747 79 -1.965138 
GO:0019219_regulation_of_nucleobase__nucleoside__nu
cleotide_and_nucleic_acid_metabolic_process 724 78 -2.137655 

GO:0045449_regulation_of_transcription 709 77 -2.201273 
GO:0030528_transcription_regulator_activity 647 71 -2.172277 
GO:0043234_protein_complex 549 70 -3.90039 
GO:0044422_organelle_part 553 70 -3.804085 
GO:0044446_intracellular_organelle_part 546 69 -3.735784 
GO:0043228_non-membrane-bounded_organelle 535 61 -2.286223 
GO:0043232_intracellular_non-membrane-
bounded_organelle 535 61 -2.286223 

GO:0006996_organelle_organization_and_biogenesis 418 50 -2.361946 
GO:0007610_behavior 389 43 -1.561443 
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GO:0005694_chromosome 200 38 -6.111269 
GO:0022607_cellular_component_assembly 202 37 -5.569751 
GO:0044427_chromosomal_part 156 36 -8.056878 
GO:0051276_chromosome_organization_and_biogenesis 161 34 -6.644436 
GO:0005216_ion_channel_activity 288 34 -1.698373 
GO:0022838_substrate_specific_channel_activity 288 34 -1.698373 
GO:0015267_channel_activity 290 34 -1.658314 
GO:0022803_passive_transmembrane_transporter_activit
y 290 34 -1.658314 

GO:0000785_chromatin 123 33 -9.213668 
GO:0006333_chromatin_assembly_or_disassembly 111 32 -9.830051 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 32 -8.880766 

GO:0065003_macromolecular_complex_assembly 178 32 -4.728201 
GO:0031497_chromatin_assembly 89 28 -9.653004 
GO:0006323_DNA_packaging 96 28 -8.806505 
GO:0065004_protein-DNA_complex_assembly 104 28 -7.94889 
GO:0006334_nucleosome_assembly 85 27 -9.43661 
GO:0000786_nucleosome 86 27 -9.307694 
GO:0006629_lipid_metabolic_process 233 27 -1.365751 
GO:0046873_metal_ion_transmembrane_transporter_acti
vity 206 25 -1.504615 

GO:0030001_metal_ion_transport 215 25 -1.314771 
GO:0005261_cation_channel_activity 172 23 -1.86649 
GO:0005525_GTP_binding 161 20 -1.389152 
GO:0032561_guanyl_ribonucleotide_binding 161 20 -1.389152 
GO:0044255_cellular_lipid_metabolic_process 118 18 -2.121962 
GO:0006813_potassium_ion_transport 115 16 -1.591345 
GO:0005267_potassium_channel_activity 108 15 -1.516194 
GO:0016810_hydrolase_activity__acting_on_carbon-
nitrogen_(but_not_peptide)_bonds 59 10 -1.679823 

GO:0006631_fatty_acid_metabolic_process 36 9 -2.692298 
GO:0032787_monocarboxylic_acid_metabolic_process 51 9 -1.662792 
GO:0016071_mRNA_metabolic_process 52 9 -1.611933 
GO:0001708_cell_fate_specification 57 9 -1.381327 
GO:0048598_embryonic_morphogenesis 33 7 -1.797955 
GO:0007517_muscle_development 34 7 -1.728819 
GO:0008134_transcription_factor_binding 38 7 -1.481863 
GO:0045138_tail_tip_morphogenesis 30 6 -1.486068 
GO:0005777_peroxisome 17 5 -2.002492 
GO:0042579_microbody 17 5 -2.002492 
GO:0042692_muscle_cell_differentiation 18 5 -1.890973 
GO:0003997_acyl-CoA_oxidase_activity 8 4 -2.615709 
GO:0006635_fatty_acid_beta-oxidation 10 4 -2.196601 
GO:0009062_fatty_acid_catabolic_process 10 4 -2.196601 
GO:0016054_organic_acid_catabolic_process 10 4 -2.196601 
GO:0016634_oxidoreductase_activity__acting_on_the_C
H-CH_group_of_donors__oxygen_as_acceptor 10 4 -2.196601 

GO:0019395_fatty_acid_oxidation 10 4 -2.196601 
GO:0046395_carboxylic_acid_catabolic_process 10 4 -2.196601 
GO:0007519_skeletal_muscle_development 13 4 -1.750832 
GO:0014706_striated_muscle_development 13 4 -1.750832 
GO:0048741_skeletal_muscle_fiber_development 13 4 -1.750832 
GO:0048747_muscle_fiber_development 13 4 -1.750832 
GO:0044242_cellular_lipid_catabolic_process 14 4 -1.633283 
GO:0016812_hydrolase_activity__acting_on_carbon- 16 4 -1.430509 
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nitrogen_(but_not_peptide)_bonds__in_cyclic_amides 
GO:0044463_cell_projection_part 8 3 -1.645371 
GO:0040040_thermosensory_behavior 9 3 -1.496191 

 
HLH-1 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0009790_embryonic_development 2693 29 -1.654142 
GO:0040007_growth 2387 28 -2.094258 
GO:0043231_intracellular_membrane-bounded_organelle 1392 17 -1.517205 
GO:0043227_membrane-bounded_organelle 1399 17 -1.498714 
GO:0005634_nucleus 1121 15 -1.691271 
GO:0044446_intracellular_organelle_part 546 9 -1.654586 
GO:0043234_protein_complex 549 9 -1.640948 
GO:0044422_organelle_part 553 9 -1.622947 
GO:0043228_non-membrane-bounded_organelle 535 8 -1.305504 
GO:0043232_intracellular_non-membrane-
bounded_organelle 535 8 -1.305504 

GO:0000785_chromatin 123 7 -4.407705 
GO:0044427_chromosomal_part 156 7 -3.756051 
GO:0005694_chromosome 200 7 -3.103464 
GO:0006334_nucleosome_assembly 85 5 -3.343131 
GO:0000786_nucleosome 86 5 -3.319684 
GO:0031497_chromatin_assembly 89 5 -3.251161 
GO:0006323_DNA_packaging 96 5 -3.101028 
GO:0065004_protein-DNA_complex_assembly 104 5 -2.944127 
GO:0006333_chromatin_assembly_or_disassembly 111 5 -2.817888 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 5 -2.6686 

GO:0051276_chromosome_organization_and_biogenesis 161 5 -2.125467 
GO:0065003_macromolecular_complex_assembly 178 5 -1.948036 
GO:0008237_metallopeptidase_activity 192 5 -1.817287 
GO:0022607_cellular_component_assembly 202 5 -1.731187 
GO:0006629_lipid_metabolic_process 233 5 -1.496402 
GO:0004175_endopeptidase_activity 258 5 -1.335978 
GO:0004222_metalloendopeptidase_activity 120 4 -1.885649 
GO:0006816_calcium_ion_transport 19 2 -2.048368 
GO:0008652_amino_acid_biosynthetic_process 22 2 -1.924135 
GO:0015674_di-__tri-valent_inorganic_cation_transport 23 2 -1.886752 
GO:0009309_amine_biosynthetic_process 31 2 -1.639376 
GO:0044271_nitrogen_compound_biosynthetic_process 31 2 -1.639376 
GO:0004245_neprilysin_activity 36 2 -1.518046 
GO:0009219_pyrimidine_deoxyribonucleotide_metabolic_
process 5 1 -1.427393 

GO:0030658_transport_vesicle_membrane 5 1 -1.427393 
GO:0030660_Golgi-associated_vesicle_membrane 5 1 -1.427393 
GO:0005125_cytokine_activity 6 1 -1.349835 
GO:0006694_steroid_biosynthetic_process 6 1 -1.349835 
GO:0008060_ARF_GTPase_activator_activity 6 1 -1.349835 
GO:0032312_regulation_of_ARF_GTPase_activity 6 1 -1.349835 
GO:0032934_sterol_binding 6 1 -1.349835 
GO:0040032_post-embryonic_body_morphogenesis 6 1 -1.349835 

 
HLH-2/HLH-3 
GO CATEGORY TOTAL TARGET LOG10(p) 
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GENES GENES 
GO:0005575_cellular_component 4970 786 -7.176496 
GO:0005623_cell 4804 761 -6.948169 
GO:0044464_cell_part 4788 758 -6.850771 
GO:0032501_multicellular_organismal_process 3705 553 -1.845643 
GO:0005622_intracellular 2808 435 -2.564235 
GO:0009790_embryonic_development 2693 404 -1.508977 
GO:0009792_embryonic_development_ending_in_birth_o
r_egg_hatching 2645 397 -1.499263 

GO:0016020_membrane 2210 356 -3.293018 
GO:0044424_intracellular_part 2280 349 -1.787246 
GO:0043229_intracellular_organelle 1740 273 -1.96183 
GO:0043226_organelle 1749 273 -1.853084 
GO:0003676_nucleic_acid_binding 1510 254 -3.515542 
GO:0043231_intracellular_membrane-bounded_organelle 1392 242 -4.294566 
GO:0043227_membrane-bounded_organelle 1399 242 -4.145268 
GO:0044425_membrane_part 1452 232 -2.071235 
GO:0005634_nucleus 1121 207 -5.403964 
GO:0031224_intrinsic_to_membrane 1270 203 -1.871259 
GO:0016021_integral_to_membrane 1261 199 -1.631515 
GO:0004871_signal_transducer_activity 1141 193 -2.873047 
GO:0060089_molecular_transducer_activity 1141 193 -2.873047 
GO:0004872_receptor_activity 1061 188 -3.858788 
GO:0003677_DNA_binding 873 164 -4.771814 
GO:0004888_transmembrane_receptor_activity 740 145 -5.24884 
GO:0016043_cellular_component_organization_and_biog
enesis 804 138 -2.414859 

GO:0032991_macromolecular_complex 721 134 -3.765392 
GO:0016070_RNA_metabolic_process 837 134 -1.410078 
GO:0010468_regulation_of_gene_expression 760 126 -1.772008 
GO:0031323_regulation_of_cellular_metabolic_process 755 121 -1.330397 
GO:0019219_regulation_of_nucleobase__nucleoside__nu
cleotide_and_nucleic_acid_metabolic_process 724 117 -1.389919 

GO:0045449_regulation_of_transcription 709 116 -1.517665 
GO:0043234_protein_complex 549 114 -5.409836 
GO:0032774_RNA_biosynthetic_process 646 108 -1.684094 
GO:0006351_transcription__DNA-dependent 643 107 -1.620811 
GO:0006355_regulation_of_transcription__DNA-
dependent 628 106 -1.771823 

GO:0051252_regulation_of_RNA_metabolic_process 634 106 -1.662851 
GO:0044446_intracellular_organelle_part 546 105 -3.615467 
GO:0044422_organelle_part 553 105 -3.404 
GO:0007166_cell_surface_receptor_linked_signal_transd
uction 590 99 -1.62447 

GO:0043228_non-membrane-bounded_organelle 535 91 -1.671474 
GO:0043232_intracellular_non-membrane-
bounded_organelle 535 91 -1.671474 

GO:0007186_G-
protein_coupled_receptor_protein_signaling_pathway 506 85 -1.475904 

GO:0006996_organelle_organization_and_biogenesis 418 84 -3.627829 
GO:0004930_G-protein_coupled_receptor_activity 464 78 -1.401326 
GO:0001584_rhodopsin-like_receptor_activity 446 76 -1.495359 
GO:0005694_chromosome 200 57 -7.369008 
GO:0051276_chromosome_organization_and_biogenesis 161 55 -10.330653 
GO:0022607_cellular_component_assembly 202 55 -6.414193 
GO:0044427_chromosomal_part 156 54 -10.404097 
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GO:0003008_system_process 222 54 -4.719048 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 52 -14.568796 

GO:0000785_chromatin 123 52 -14.030152 
GO:0065003_macromolecular_complex_assembly 178 52 -7.160061 
GO:0006333_chromatin_assembly_or_disassembly 111 51 -15.594476 
GO:0006323_DNA_packaging 96 49 -17.389627 
GO:0031497_chromatin_assembly 89 48 -18.350666 
GO:0065004_protein-DNA_complex_assembly 104 48 -14.808971 
GO:0050877_neurological_system_process 189 48 -4.782442 
GO:0006334_nucleosome_assembly 85 47 -18.577576 
GO:0000786_nucleosome 86 47 -18.295871 
GO:0005886_plasma_membrane 245 47 -1.906753 
GO:0007600_sensory_perception 128 42 -7.461293 
GO:0007606_sensory_perception_of_chemical_stimulus 109 40 -8.717423 
GO:0044459_plasma_membrane_part 198 38 -1.645373 
GO:0006813_potassium_ion_transport 115 25 -1.854533 
GO:0005267_potassium_channel_activity 108 23 -1.647311 
GO:0031226_intrinsic_to_plasma_membrane 100 22 -1.750675 
GO:0005887_integral_to_plasma_membrane 99 21 -1.529933 
GO:0005244_voltage-gated_ion_channel_activity 74 18 -1.952278 
GO:0022832_voltage-gated_channel_activity 74 18 -1.952278 
GO:0022843_voltage-gated_cation_channel_activity 66 15 -1.4598 
GO:0005249_voltage-gated_potassium_channel_activity 61 14 -1.426046 
GO:0046983_protein_dimerization_activity 56 13 -1.39283 
GO:0008076_voltage-gated_potassium_channel_complex 57 13 -1.337103 
GO:0005179_hormone_activity 43 11 -1.526099 
GO:0004527_exonuclease_activity 33 10 -1.93529 
GO:0008134_transcription_factor_binding 38 10 -1.507279 
GO:0035121_tail_morphogenesis 35 9 -1.341139 
GO:0045138_tail_tip_morphogenesis 30 8 -1.321873 
GO:0003712_transcription_cofactor_activity 24 7 -1.398925 
GO:0004198_calcium-dependent_cysteine-
type_endopeptidase_activity 15 6 -1.934236 

GO:0005089_Rho_guanyl-
nucleotide_exchange_factor_activity 20 6 -1.309746 

GO:0007178_transmembrane_receptor_protein_serine_th
reonine_kinase_signaling_pathway 20 6 -1.309746 

GO:0007635_chemosensory_behavior 20 6 -1.309746 
GO:0035023_regulation_of_Rho_protein_signal_transduct
ion 20 6 -1.309746 

GO:0043068_positive_regulation_of_programmed_cell_de
ath 20 6 -1.309746 

GO:0009109_coenzyme_catabolic_process 13 5 -1.598197 
GO:0051187_cofactor_catabolic_process 13 5 -1.598197 
GO:0022411_cellular_component_disassembly 15 5 -1.332949 
GO:0030512_negative_regulation_of_transforming_growt
h_factor_beta_receptor_signaling_pathway 5 4 -2.781575 

GO:0008060_ARF_GTPase_activator_activity 6 4 -2.355246 
GO:0032312_regulation_of_ARF_GTPase_activity 6 4 -2.355246 
GO:0006563_L-serine_metabolic_process 7 4 -2.037777 
GO:0009070_serine_family_amino_acid_biosynthetic_pro
cess 7 4 -2.037777 

GO:0012502_induction_of_programmed_cell_death 7 4 -2.037777 
GO:0017015_regulation_of_transforming_growth_factor_b
eta_receptor_signaling_pathway 8 4 -1.786963 
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GO:0007218_neuropeptide_signaling_pathway 9 4 -1.581607 
GO:0007509_mesoderm_migration 9 4 -1.581607 
GO:0008078_mesodermal_cell_migration 9 4 -1.581607 
GO:0003746_translation_elongation_factor_activity 10 4 -1.409369 
GO:0042074_cell_migration_involved_in_gastrulation 10 4 -1.409369 
GO:0000097_sulfur_amino_acid_biosynthetic_process 5 3 -1.666796 
GO:0006534_cysteine_metabolic_process 5 3 -1.666796 
GO:0006917_induction_of_apoptosis 6 3 -1.412708 
GO:0008629_induction_of_apoptosis_by_intracellular_sig
nals 6 3 -1.412708 

GO:0008630_DNA_damage_response__signal_transducti
on_resulting_in_induction_of_apoptosis 6 3 -1.412708 

 
HLH-2/HLH-4 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0005575_cellular_component 4970 673 -6.732784 
GO:0005623_cell 4804 646 -5.784778 
GO:0044464_cell_part 4788 643 -5.648466 
GO:0016020_membrane 2210 323 -5.335643 
GO:0044425_membrane_part 1452 224 -5.258831 
GO:0003676_nucleic_acid_binding 1510 203 -1.688151 
GO:0031224_intrinsic_to_membrane 1270 201 -5.475017 
GO:0043231_intracellular_membrane-bounded_organelle 1392 199 -2.816067 
GO:0043227_membrane-bounded_organelle 1399 199 -2.709831 
GO:0016021_integral_to_membrane 1261 197 -4.993389 
GO:0004871_signal_transducer_activity 1141 191 -6.923088 
GO:0060089_molecular_transducer_activity 1141 191 -6.923088 
GO:0004872_receptor_activity 1061 186 -8.279762 
GO:0007154_cell_communication 1099 169 -3.949147 
GO:0005634_nucleus 1121 166 -3.079829 
GO:0007165_signal_transduction 1016 160 -4.293935 
GO:0004888_transmembrane_receptor_activity 740 146 -10.069319 
GO:0003677_DNA_binding 873 131 -2.738187 
GO:0032991_macromolecular_complex 721 103 -1.670375 
GO:0007166_cell_surface_receptor_linked_signal_transd
uction 590 99 -3.811668 

GO:0045449_regulation_of_transcription 709 99 -1.392539 
GO:0032774_RNA_biosynthetic_process 646 93 -1.634084 
GO:0006351_transcription__DNA-dependent 643 92 -1.55996 
GO:0006355_regulation_of_transcription__DNA-
dependent 628 91 -1.675912 

GO:0051252_regulation_of_RNA_metabolic_process 634 91 -1.579709 
GO:0043234_protein_complex 549 86 -2.467896 
GO:0007186_G-
protein_coupled_receptor_protein_signaling_pathway 506 85 -3.364551 

GO:0004930_G-protein_coupled_receptor_activity 464 81 -3.77396 
GO:0001584_rhodopsin-like_receptor_activity 446 79 -3.905268 
GO:0044446_intracellular_organelle_part 546 79 -1.507306 
GO:0044422_organelle_part 553 79 -1.395518 
GO:0006996_organelle_organization_and_biogenesis 418 64 -1.769134 
GO:0003008_system_process 222 49 -5.035934 
GO:0050877_neurological_system_process 189 45 -5.586121 
GO:0005694_chromosome 200 41 -3.571147 
GO:0007600_sensory_perception 128 40 -8.473058 
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GO:0005886_plasma_membrane 245 39 -1.498678 
GO:0007606_sensory_perception_of_chemical_stimulus 109 38 -9.611467 
GO:0044427_chromosomal_part 156 38 -5.059084 
GO:0051276_chromosome_organization_and_biogenesis 161 38 -4.72284 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 36 -7.179089 

GO:0000785_chromatin 123 35 -6.377593 
GO:0006333_chromatin_assembly_or_disassembly 111 34 -7.059986 
GO:0022607_cellular_component_assembly 202 34 -1.68464 
GO:0030234_enzyme_regulator_activity 200 33 -1.537309 
GO:0006323_DNA_packaging 96 32 -7.654577 
GO:0065003_macromolecular_complex_assembly 178 32 -2.007881 
GO:0044459_plasma_membrane_part 198 32 -1.395954 
GO:0031497_chromatin_assembly 89 31 -7.948749 
GO:0065004_protein-DNA_complex_assembly 104 31 -6.202928 
GO:0006334_nucleosome_assembly 85 30 -7.865185 
GO:0000786_nucleosome 86 30 -7.730227 
GO:0009966_regulation_of_signal_transduction 114 21 -1.599593 
GO:0004857_enzyme_inhibitor_activity 89 18 -1.820808 
GO:0031226_intrinsic_to_plasma_membrane 100 18 -1.353661 
GO:0030414_protease_inhibitor_activity 82 17 -1.850147 
GO:0005102_receptor_binding 77 16 -1.779935 
GO:0004866_endopeptidase_inhibitor_activity 78 16 -1.728971 
GO:0004867_serine-type_endopeptidase_inhibitor_activity 69 15 -1.872832 
GO:0051056_regulation_of_small_GTPase_mediated_sig
nal_transduction 76 15 -1.512215 

GO:0046578_regulation_of_Ras_protein_signal_transduct
ion 61 14 -1.986134 

GO:0007265_Ras_protein_signal_transduction 69 14 -1.5359 
GO:0005083_small_GTPase_regulator_activity 66 13 -1.366395 
GO:0005179_hormone_activity 43 11 -2.015887 
GO:0005089_Rho_guanyl-
nucleotide_exchange_factor_activity 20 7 -2.215012 

GO:0035023_regulation_of_Rho_protein_signal_transduct
ion 20 7 -2.215012 

GO:0005088_Ras_guanyl-
nucleotide_exchange_factor_activity 21 7 -2.084807 

GO:0007266_Rho_protein_signal_transduction 21 7 -2.084807 
GO:0007178_transmembrane_receptor_protein_serine_th
reonine_kinase_signaling_pathway 20 6 -1.616573 

GO:0043068_positive_regulation_of_programmed_cell_de
ath 20 6 -1.616573 

GO:0008652_amino_acid_biosynthetic_process 22 6 -1.420819 
GO:0009069_serine_family_amino_acid_metabolic_proce
ss 16 5 -1.485148 

GO:0030512_negative_regulation_of_transforming_growt
h_factor_beta_receptor_signaling_pathway 5 4 -3.055733 

GO:0006563_L-serine_metabolic_process 7 4 -2.296064 
GO:0009070_serine_family_amino_acid_biosynthetic_pro
cess 7 4 -2.296064 

GO:0017015_regulation_of_transforming_growth_factor_b
eta_receptor_signaling_pathway 8 4 -2.037449 

GO:0001764_neuron_migration 11 4 -1.490029 
GO:0000097_sulfur_amino_acid_biosynthetic_process 5 3 -1.86349 
GO:0006534_cysteine_metabolic_process 5 3 -1.86349 
GO:0008060_ARF_GTPase_activator_activity 6 3 -1.602134 
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GO:0032312_regulation_of_ARF_GTPase_activity 6 3 -1.602134 
GO:0000096_sulfur_amino_acid_metabolic_process 7 3 -1.398489 
GO:0012502_induction_of_programmed_cell_death 7 3 -1.398489 
GO:0044272_sulfur_compound_biosynthetic_process 7 3 -1.398489 

 
HLH-2/HLH-8 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0009987_cellular_process 4977 60 -1.532413 
GO:0044238_primary_metabolic_process 3216 41 -1.390553 
GO:0043170_macromolecule_metabolic_process 2663 36 -1.58965 
GO:0043167_ion_binding 1592 24 -1.630094 
GO:0043169_cation_binding 1534 23 -1.551212 
GO:0046872_metal_ion_binding 1525 22 -1.337147 
GO:0016772_transferase_activity__transferring_phosphor
us-containing_groups 622 13 -2.047723 

GO:0003700_transcription_factor_activity 539 10 -1.367622 
GO:0043234_protein_complex 549 10 -1.322679 
GO:0005216_ion_channel_activity 288 7 -1.598116 
GO:0022838_substrate_specific_channel_activity 288 7 -1.598116 
GO:0015267_channel_activity 290 7 -1.583817 
GO:0022803_passive_transmembrane_transporter_activit
y 290 7 -1.583817 

GO:0005509_calcium_ion_binding 221 6 -1.632579 
GO:0016779_nucleotidyltransferase_activity 76 5 -3.019638 
GO:0005261_cation_channel_activity 172 5 -1.538768 
GO:0022836_gated_channel_activity 194 5 -1.348094 
GO:0015276_ligand-gated_ion_channel_activity 115 4 -1.552589 
GO:0022834_ligand-gated_channel_activity 115 4 -1.552589 
GO:0003899_DNA-directed_RNA_polymerase_activity 27 3 -2.622522 
GO:0034062_RNA_polymerase_activity 29 3 -2.532167 
GO:0006260_DNA_replication 57 3 -1.716095 
GO:0008236_serine-type_peptidase_activity 74 3 -1.423152 
GO:0017171_serine_hydrolase_activity 74 3 -1.423152 
GO:0015464_acetylcholine_receptor_activity 11 2 -2.289691 
GO:0030258_lipid_modification 11 2 -2.289691 
GO:0042166_acetylcholine_binding 11 2 -2.289691 
GO:0034061_DNA_polymerase_activity 17 2 -1.913465 
GO:0043176_amine_binding 18 2 -1.865129 
GO:0004889_nicotinic_acetylcholine-activated_cation-
selective_channel_activity 20 2 -1.776695 

GO:0043087_regulation_of_GTPase_activity 30 2 -1.444965 
GO:0044445_cytosolic_part 30 2 -1.444965 
GO:0045138_tail_tip_morphogenesis 30 2 -1.444965 
GO:0051336_regulation_of_hydrolase_activity 32 2 -1.393546 
GO:0005231_excitatory_extracellular_ligand-
gated_ion_channel_activity 33 2 -1.369178 

GO:0035121_tail_morphogenesis 35 2 -1.322855 
GO:0005942_phosphoinositide_3-kinase_complex 5 1 -1.309873 
GO:0006188_IMP_biosynthetic_process 5 1 -1.309873 
GO:0009374_biotin_binding 5 1 -1.309873 
GO:0030155_regulation_of_cell_adhesion 5 1 -1.309873 
GO:0031344_regulation_of_cell_projection_organization_
and_biogenesis 5 1 -1.309873 

GO:0045178_basal_part_of_cell 5 1 -1.309873 
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GO:0046040_IMP_metabolic_process 5 1 -1.309873 
 
HLH-2/HLH-10 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0005575_cellular_component 4970 1125 -6.34995 
GO:0005623_cell 4804 1086 -5.868558 
GO:0044464_cell_part 4788 1082 -5.799364 
GO:0005488_binding 5055 1082 -1.672207 
GO:0005622_intracellular 2808 620 -1.957025 
GO:0016020_membrane 2210 508 -3.037127 
GO:0044424_intracellular_part 2280 498 -1.332135 
GO:0043229_intracellular_organelle 1740 387 -1.502163 
GO:0043226_organelle 1749 387 -1.386178 
GO:0003676_nucleic_acid_binding 1510 357 -3.054953 
GO:0043231_intracellular_membrane-bounded_organelle 1392 337 -3.674603 
GO:0043227_membrane-bounded_organelle 1399 337 -3.503225 
GO:0044425_membrane_part 1452 327 -1.587401 
GO:0004871_signal_transducer_activity 1141 295 -5.545571 
GO:0060089_molecular_transducer_activity 1141 295 -5.545571 
GO:0031224_intrinsic_to_membrane 1270 290 -1.733837 
GO:0016021_integral_to_membrane 1261 286 -1.578752 
GO:0004872_receptor_activity 1061 283 -6.573909 
GO:0005634_nucleus 1121 281 -4.198579 
GO:0007154_cell_communication 1099 258 -2.158765 
GO:0007165_signal_transduction 1016 243 -2.470132 
GO:0050794_regulation_of_cellular_process 1029 237 -1.652531 
GO:0003677_DNA_binding 873 227 -4.519128 
GO:0004888_transmembrane_receptor_activity 740 214 -7.89794 
GO:0010468_regulation_of_gene_expression 760 185 -2.320829 
GO:0019222_regulation_of_metabolic_process 783 181 -1.426213 
GO:0006350_transcription 747 177 -1.77864 
GO:0031323_regulation_of_cellular_metabolic_process 755 177 -1.611655 
GO:0032991_macromolecular_complex 721 176 -2.284326 
GO:0019219_regulation_of_nucleobase__nucleoside__nu
cleotide_and_nucleic_acid_metabolic_process 724 173 -1.88524 

GO:0045449_regulation_of_transcription 709 172 -2.133755 
GO:0032774_RNA_biosynthetic_process 646 158 -2.136343 
GO:0006351_transcription__DNA-dependent 643 157 -2.098036 
GO:0006355_regulation_of_transcription__DNA-
dependent 628 155 -2.258037 

GO:0051252_regulation_of_RNA_metabolic_process 634 155 -2.098831 
GO:0030528_transcription_regulator_activity 647 154 -1.677266 
GO:0007166_cell_surface_receptor_linked_signal_transd
uction 590 151 -2.862353 

GO:0043234_protein_complex 549 148 -3.880272 
GO:0044446_intracellular_organelle_part 546 136 -2.18655 
GO:0044422_organelle_part 553 136 -1.992626 
GO:0007186_G-
protein_coupled_receptor_protein_signaling_pathway 506 131 -2.751069 

GO:0003700_transcription_factor_activity 539 130 -1.662237 
GO:0004930_G-protein_coupled_receptor_activity 464 119 -2.403912 
GO:0001584_rhodopsin-like_receptor_activity 446 113 -2.137444 
GO:0043565_sequence-specific_DNA_binding 464 111 -1.403095 
GO:0006996_organelle_organization_and_biogenesis 418 107 -2.191251 
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GO:0015267_channel_activity 290 76 -1.955539 
GO:0022803_passive_transmembrane_transporter_activit
y 290 76 -1.955539 

GO:0005216_ion_channel_activity 288 75 -1.870845 
GO:0022838_substrate_specific_channel_activity 288 75 -1.870845 
GO:0005694_chromosome 200 70 -5.913745 
GO:0003008_system_process 222 67 -3.405486 
GO:0051276_chromosome_organization_and_biogenesis 161 63 -7.369018 
GO:0022607_cellular_component_assembly 202 63 -3.666815 
GO:0044427_chromosomal_part 156 61 -7.142651 
GO:0050877_neurological_system_process 189 58 -3.226783 
GO:0000785_chromatin 123 57 -9.994762 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 55 -9.441926 

GO:0065003_macromolecular_complex_assembly 178 55 -3.169975 
GO:0006333_chromatin_assembly_or_disassembly 111 53 -9.941449 
GO:0006323_DNA_packaging 96 51 -11.822753 
GO:0022836_gated_channel_activity 194 50 -1.347782 
GO:0031497_chromatin_assembly 89 49 -12.159596 
GO:0065004_protein-DNA_complex_assembly 104 49 -8.990191 
GO:0006334_nucleosome_assembly 85 48 -12.482245 
GO:0000786_nucleosome 86 48 -12.223149 
GO:0007600_sensory_perception 128 47 -4.789661 
GO:0005261_cation_channel_activity 172 45 -1.358565 
GO:0007606_sensory_perception_of_chemical_stimulus 109 44 -5.769042 
GO:0006813_potassium_ion_transport 115 32 -1.426241 
GO:0005267_potassium_channel_activity 108 30 -1.3583 
GO:0031226_intrinsic_to_plasma_membrane 100 28 -1.339525 
GO:0004857_enzyme_inhibitor_activity 89 27 -1.733652 
GO:0030414_protease_inhibitor_activity 82 25 -1.669051 
GO:0004866_endopeptidase_inhibitor_activity 78 23 -1.414188 
GO:0005244_voltage-gated_ion_channel_activity 74 22 -1.410379 
GO:0022832_voltage-gated_channel_activity 74 22 -1.410379 
GO:0000151_ubiquitin_ligase_complex 18 8 -1.720684 
GO:0043068_positive_regulation_of_programmed_cell_de
ath 20 8 -1.429652 

GO:0006576_biogenic_amine_metabolic_process 16 7 -1.514812 
GO:0030512_negative_regulation_of_transforming_growt
h_factor_beta_receptor_signaling_pathway 5 5 -3.437137 

GO:0017015_regulation_of_transforming_growth_factor_b
eta_receptor_signaling_pathway 8 5 -1.931659 

GO:0007218_neuropeptide_signaling_pathway 9 5 -1.659285 
GO:0031461_cullin-RING_ubiquitin_ligase_complex 9 5 -1.659285 
GO:0003746_translation_elongation_factor_activity 10 5 -1.437481 
GO:0031625_ubiquitin_protein_ligase_binding 10 5 -1.437481 
GO:0005024_transforming_growth_factor_beta_receptor_
activity 6 4 -1.728402 

GO:0008060_ARF_GTPase_activator_activity 6 4 -1.728402 
GO:0032312_regulation_of_ARF_GTPase_activity 6 4 -1.728402 
GO:0006563_L-serine_metabolic_process 7 4 -1.43691 
GO:0009070_serine_family_amino_acid_biosynthetic_pro
cess 7 4 -1.43691 

GO:0012502_induction_of_programmed_cell_death 7 4 -1.43691 
GO:0031594_neuromuscular_junction 7 4 -1.43691 
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HLH-11 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0007165_signal_transduction 1016 28 -2.143064 
GO:0007154_cell_communication 1099 28 -1.713111 
GO:0004871_signal_transducer_activity 1141 28 -1.523651 
GO:0060089_molecular_transducer_activity 1141 28 -1.523651 
GO:0004872_receptor_activity 1061 27 -1.660433 
GO:0004888_transmembrane_receptor_activity 740 23 -2.441307 
GO:0007166_cell_surface_receptor_linked_signal_transd
uction 590 16 -1.355865 

GO:0004930_G-protein_coupled_receptor_activity 464 15 -1.890111 
GO:0007186_G-
protein_coupled_receptor_protein_signaling_pathway 506 15 -1.585825 

GO:0001584_rhodopsin-like_receptor_activity 446 14 -1.695705 
GO:0008168_methyltransferase_activity 77 4 -1.375304 
GO:0004866_endopeptidase_inhibitor_activity 78 4 -1.358032 
GO:0016741_transferase_activity__transferring_one-
carbon_groups 78 4 -1.358032 

GO:0005783_endoplasmic_reticulum 81 4 -1.307945 
GO:0043068_positive_regulation_of_programmed_cell_de
ath 20 3 -2.349399 

GO:0043067_regulation_of_programmed_cell_death 41 3 -1.491334 
GO:0009219_pyrimidine_deoxyribonucleotide_metabolic_
process 5 2 -2.554716 

GO:0009262_deoxyribonucleotide_metabolic_process 9 2 -2.017912 
GO:0008083_growth_factor_activity 10 2 -1.92586 
GO:0006665_sphingolipid_metabolic_process 11 2 -1.843561 
GO:0006221_pyrimidine_nucleotide_biosynthetic_process 12 2 -1.769224 
GO:0006220_pyrimidine_nucleotide_metabolic_process 14 2 -1.639395 
GO:0009123_nucleoside_monophosphate_metabolic_pro
cess 15 2 -1.58207 

GO:0009124_nucleoside_monophosphate_biosynthetic_p
rocess 15 2 -1.58207 

GO:0032269_negative_regulation_of_cellular_protein_met
abolic_process 16 2 -1.528895 

GO:0051248_negative_regulation_of_protein_metabolic_p
rocess 16 2 -1.528895 

GO:0033043_regulation_of_organelle_organization_and_
biogenesis 18 2 -1.432998 

GO:0051493_regulation_of_cytoskeleton_organization_an
d_biogenesis 18 2 -1.432998 

 
HLH-2/HLH-14 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0005575_cellular_component 4970 487 -4.820709 
GO:0005623_cell 4804 472 -4.733827 
GO:0044464_cell_part 4788 469 -4.526545 
GO:0005488_binding 5055 467 -1.961882 
GO:0032501_multicellular_organismal_process 3705 361 -2.998512 
GO:0032502_developmental_process 3651 342 -1.716646 
GO:0007275_multicellular_organismal_development 3428 321 -1.60695 
GO:0005622_intracellular 2808 287 -3.697191 
GO:0009790_embryonic_development 2693 266 -2.493713 
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GO:0009792_embryonic_development_ending_in_birth_o
r_egg_hatching 2645 259 -2.227347 

GO:0043170_macromolecule_metabolic_process 2663 253 -1.565201 
GO:0044424_intracellular_part 2280 226 -2.210878 
GO:0000003_reproduction 1895 188 -1.89959 
GO:0043229_intracellular_organelle 1740 177 -2.227614 
GO:0043226_organelle 1749 177 -2.137404 
GO:0003676_nucleic_acid_binding 1510 164 -3.298471 
GO:0043231_intracellular_membrane-bounded_organelle 1392 157 -3.955295 
GO:0043227_membrane-bounded_organelle 1399 157 -3.845916 
GO:0005634_nucleus 1121 132 -4.203501 
GO:0046914_transition_metal_ion_binding 1256 131 -2.087031 
GO:0005515_protein_binding 1159 117 -1.521189 
GO:0008270_zinc_ion_binding 1083 113 -1.864879 
GO:0003677_DNA_binding 873 99 -2.710427 
GO:0016043_cellular_component_organization_and_biog
enesis 804 98 -3.758583 

GO:0009653_anatomical_structure_morphogenesis 879 91 -1.515363 
GO:0032991_macromolecular_complex 721 90 -3.848509 
GO:0043234_protein_complex 549 78 -5.336245 
GO:0044446_intracellular_organelle_part 546 74 -4.374889 
GO:0044422_organelle_part 553 74 -4.190904 
GO:0043228_non-membrane-bounded_organelle 535 66 -2.826726 
GO:0043232_intracellular_non-membrane-
bounded_organelle 535 66 -2.826726 

GO:0006996_organelle_organization_and_biogenesis 418 59 -4.083772 
GO:0005694_chromosome 200 43 -7.944692 
GO:0044427_chromosomal_part 156 42 -11.019662 
GO:0051276_chromosome_organization_and_biogenesis 161 42 -10.535748 
GO:0000785_chromatin 123 40 -13.466246 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 39 -13.134164 

GO:0022607_cellular_component_assembly 202 39 -5.980671 
GO:0006333_chromatin_assembly_or_disassembly 111 38 -13.634837 
GO:0006323_DNA_packaging 96 37 -15.203773 
GO:0065003_macromolecular_complex_assembly 178 37 -6.52909 
GO:0031497_chromatin_assembly 89 36 -15.602111 
GO:0048609_reproductive_process_in_a_multicellular_or
ganism 303 36 -1.55938 

GO:0032504_multicellular_organism_reproduction 304 36 -1.540429 
GO:0006334_nucleosome_assembly 85 35 -15.474457 
GO:0000786_nucleosome 86 35 -15.283967 
GO:0065004_protein-DNA_complex_assembly 104 35 -12.354032 
GO:0018991_oviposition 295 34 -1.338932 
GO:0033057_reproductive_behavior_in_a_multicellular_or
ganism 295 34 -1.338932 

GO:0002009_morphogenesis_of_an_epithelium 254 32 -1.761678 
GO:0003008_system_process 222 30 -2.084554 
GO:0005886_plasma_membrane 245 30 -1.533379 
GO:0050877_neurological_system_process 189 26 -1.972386 
GO:0044459_plasma_membrane_part 198 25 -1.497042 
GO:0005525_GTP_binding 161 23 -1.991043 
GO:0032561_guanyl_ribonucleotide_binding 161 23 -1.991043 
GO:0019001_guanyl_nucleotide_binding 172 23 -1.671436 
GO:0007606_sensory_perception_of_chemical_stimulus 109 21 -3.486622 
GO:0007600_sensory_perception 128 21 -2.556589 
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GO:0006813_potassium_ion_transport 115 18 -2.055666 
GO:0005887_integral_to_plasma_membrane 99 16 -2.013716 
GO:0031226_intrinsic_to_plasma_membrane 100 16 -1.972776 
GO:0005267_potassium_channel_activity 108 16 -1.672505 
GO:0004518_nuclease_activity 81 14 -2.075229 
GO:0005244_voltage-gated_ion_channel_activity 74 13 -2.021745 
GO:0022832_voltage-gated_channel_activity 74 13 -2.021745 
GO:0007369_gastrulation 81 13 -1.706825 
GO:0003924_GTPase_activity 88 13 -1.440197 
GO:0001703_gastrulation_with_mouth_forming_first 60 10 -1.521435 
GO:0050660_FAD_binding 60 10 -1.521435 
GO:0005249_voltage-gated_potassium_channel_activity 61 10 -1.476963 
GO:0004527_exonuclease_activity 33 9 -2.853284 
GO:0008134_transcription_factor_binding 38 9 -2.395747 
GO:0005179_hormone_activity 43 8 -1.558121 
GO:0003712_transcription_cofactor_activity 24 6 -1.863562 
GO:0045138_tail_tip_morphogenesis 30 6 -1.408894 
GO:0008632_apoptotic_program 23 5 -1.377149 
GO:0009109_coenzyme_catabolic_process 13 4 -1.689393 
GO:0051187_cofactor_catabolic_process 13 4 -1.689393 
GO:0005253_anion_channel_activity 14 4 -1.573074 
GO:0044242_cellular_lipid_catabolic_process 14 4 -1.573074 
GO:0008138_protein_tyrosine_serine_threonine_phospha
tase_activity 15 4 -1.468075 

GO:0022411_cellular_component_disassembly 15 4 -1.468075 
GO:0006576_biogenic_amine_metabolic_process 16 4 -1.372726 
GO:0009069_serine_family_amino_acid_metabolic_proce
ss 16 4 -1.372726 

GO:0006563_L-serine_metabolic_process 7 3 -1.772616 
GO:0009070_serine_family_amino_acid_biosynthetic_pro
cess 7 3 -1.772616 

GO:0012502_induction_of_programmed_cell_death 7 3 -1.772616 
GO:0003997_acyl-CoA_oxidase_activity 8 3 -1.596711 
GO:0008308_voltage-gated_anion_channel_activity 8 3 -1.596711 
GO:0006821_chloride_transport 9 3 -1.448693 
GO:0007509_mesoderm_migration 9 3 -1.448693 
GO:0008078_mesodermal_cell_migration 9 3 -1.448693 
GO:0003746_translation_elongation_factor_activity 10 3 -1.321721 
GO:0006308_DNA_catabolic_process 10 3 -1.321721 
GO:0006309_DNA_fragmentation_during_apoptosis 10 3 -1.321721 
GO:0006635_fatty_acid_beta-oxidation 10 3 -1.321721 
GO:0009062_fatty_acid_catabolic_process 10 3 -1.321721 
GO:0016054_organic_acid_catabolic_process 10 3 -1.321721 
GO:0016634_oxidoreductase_activity__acting_on_the_C
H-CH_group_of_donors__oxygen_as_acceptor 10 3 -1.321721 

GO:0019395_fatty_acid_oxidation 10 3 -1.321721 
GO:0030262_apoptotic_nuclear_changes 10 3 -1.321721 
GO:0042074_cell_migration_involved_in_gastrulation 10 3 -1.321721 
GO:0046395_carboxylic_acid_catabolic_process 10 3 -1.321721 

 
HLH-2/HLH-15 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0003674_molecular_function 8423 37 -1.857026 
GO:0005488_binding 5055 31 -4.151057 
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GO:0009987_cellular_process 4977 26 -1.914066 
GO:0008152_metabolic_process 4176 24 -2.303481 
GO:0005622_intracellular 2808 22 -4.053039 
GO:0050789_regulation_of_biological_process 2843 22 -3.966008 
GO:0065007_biological_regulation 2922 22 -3.775308 
GO:0043170_macromolecule_metabolic_process 2663 21 -3.865139 
GO:0032502_developmental_process 3651 21 -1.952353 
GO:0003676_nucleic_acid_binding 1510 20 -7.223284 
GO:0007275_multicellular_organismal_development 3428 20 -1.918418 
GO:0032501_multicellular_organismal_process 3705 20 -1.538642 
GO:0043231_intracellular_membrane-bounded_organelle 1392 19 -7.010799 
GO:0043227_membrane-bounded_organelle 1399 19 -6.975486 
GO:0043229_intracellular_organelle 1740 19 -5.479309 
GO:0043226_organelle 1749 19 -5.444945 
GO:0048518_positive_regulation_of_biological_process 1955 19 -4.716498 
GO:0044424_intracellular_part 2280 19 -3.757226 
GO:0040007_growth 2387 19 -3.483217 
GO:0009792_embryonic_development_ending_in_birth_o
r_egg_hatching 2645 19 -2.893077 

GO:0009790_embryonic_development 2693 19 -2.793215 
GO:0005634_nucleus 1121 18 -7.682881 
GO:0045927_positive_regulation_of_growth 1836 18 -4.484069 
GO:0040008_regulation_of_growth 1886 18 -4.322361 
GO:0003677_DNA_binding 873 17 -8.466021 
GO:0040010_positive_regulation_of_growth_rate 1727 17 -4.22856 
GO:0040009_regulation_of_growth_rate 1728 17 -4.225278 
GO:0000785_chromatin 123 15 -19.036322 
GO:0044427_chromosomal_part 156 15 -17.435083 
GO:0005694_chromosome 200 15 -15.790495 
GO:0043228_non-membrane-bounded_organelle 535 15 -9.558229 
GO:0043232_intracellular_non-membrane-
bounded_organelle 535 15 -9.558229 

GO:0044446_intracellular_organelle_part 546 15 -9.434727 
GO:0044422_organelle_part 553 15 -9.35756 
GO:0016043_cellular_component_organization_and_biog
enesis 804 15 -7.143331 

GO:0006334_nucleosome_assembly 85 14 -19.651493 
GO:0000786_nucleosome 86 14 -19.575311 
GO:0031497_chromatin_assembly 89 14 -19.352484 
GO:0006323_DNA_packaging 96 14 -18.863106 
GO:0065004_protein-DNA_complex_assembly 104 14 -18.349463 
GO:0006333_chromatin_assembly_or_disassembly 111 14 -17.934117 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 14 -17.43998 

GO:0051276_chromosome_organization_and_biogenesis 161 14 -15.603629 
GO:0065003_macromolecular_complex_assembly 178 14 -14.98536 
GO:0022607_cellular_component_assembly 202 14 -14.212398 
GO:0006996_organelle_organization_and_biogenesis 418 14 -9.902316 
GO:0043234_protein_complex 549 14 -8.354568 
GO:0032991_macromolecular_complex 721 14 -6.856478 
GO:0040011_locomotion 1157 13 -3.766113 
GO:0002119_nematode_larval_development 1625 13 -2.362779 
GO:0002164_larval_development 1627 13 -2.35808 
GO:0009791_post-embryonic_development 1643 13 -2.320806 
GO:0006694_steroid_biosynthetic_process 6 1 -1.657372 
GO:0008060_ARF_GTPase_activator_activity 6 1 -1.657372 
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GO:0032312_regulation_of_ARF_GTPase_activity 6 1 -1.657372 
GO:0032934_sterol_binding 6 1 -1.657372 
GO:0046839_phospholipid_dephosphorylation 6 1 -1.657372 
GO:0000790_nuclear_chromatin 7 1 -1.591207 
GO:0012502_induction_of_programmed_cell_death 7 1 -1.591207 
GO:0043071_positive_regulation_of_non-
apoptotic_programmed_cell_death 7 1 -1.591207 

GO:0005496_steroid_binding 9 1 -1.483626 
GO:0040013_negative_regulation_of_locomotion 9 1 -1.483626 
GO:0000323_lytic_vacuole 10 1 -1.43865 
GO:0005764_lysosome 10 1 -1.43865 
GO:0008202_steroid_metabolic_process 11 1 -1.398038 
GO:0030258_lipid_modification 11 1 -1.398038 
GO:0032011_ARF_protein_signal_transduction 11 1 -1.398038 
GO:0032012_regulation_of_ARF_protein_signal_transduc
tion 11 1 -1.398038 

GO:0043070_regulation_of_non-
apoptotic_programmed_cell_death 12 1 -1.36103 

GO:0044454_nuclear_chromosome_part 12 1 -1.36103 
GO:0016244_non-apoptotic_programmed_cell_death 13 1 -1.327047 

 
HLH-2/HLH-19 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0005575_cellular_component 4970 193 -1.812954 
GO:0005623_cell 4804 185 -1.568829 
GO:0044464_cell_part 4788 183 -1.420881 
GO:0005622_intracellular 2808 112 -1.352614 
GO:0043170_macromolecule_metabolic_process 2663 109 -1.610909 
GO:0016787_hydrolase_activity 1451 67 -2.124863 
GO:0043231_intracellular_membrane-bounded_organelle 1392 64 -2.006368 
GO:0043227_membrane-bounded_organelle 1399 64 -1.960577 
GO:0005634_nucleus 1121 51 -1.605036 
GO:0050794_regulation_of_cellular_process 1029 47 -1.538911 
GO:0032991_macromolecular_complex 721 37 -1.992413 
GO:0010468_regulation_of_gene_expression 760 37 -1.663633 
GO:0031323_regulation_of_cellular_metabolic_process 755 36 -1.512538 
GO:0019222_regulation_of_metabolic_process 783 36 -1.315839 
GO:0045449_regulation_of_transcription 709 34 -1.484214 
GO:0019219_regulation_of_nucleobase__nucleoside__nu
cleotide_and_nucleic_acid_metabolic_process 724 34 -1.374273 

GO:0043234_protein_complex 549 32 -2.57648 
GO:0044446_intracellular_organelle_part 546 27 -1.408581 
GO:0044422_organelle_part 553 27 -1.35126 
GO:0006508_proteolysis 465 26 -1.96454 
GO:0008233_peptidase_activity 441 24 -1.722676 
GO:0044459_plasma_membrane_part 198 16 -2.848582 
GO:0005886_plasma_membrane 245 16 -1.952024 
GO:0008237_metallopeptidase_activity 192 14 -2.162931 
GO:0005694_chromosome 200 14 -2.013425 
GO:0044427_chromosomal_part 156 13 -2.528638 
GO:0050793_regulation_of_developmental_process 201 12 -1.330815 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 11 -2.533863 

GO:0000785_chromatin 123 11 -2.450606 
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GO:0051276_chromosome_organization_and_biogenesis 161 11 -1.617745 
GO:0006333_chromatin_assembly_or_disassembly 111 10 -2.296456 
GO:0005887_integral_to_plasma_membrane 99 9 -2.141559 
GO:0031226_intrinsic_to_plasma_membrane 100 9 -2.113629 
GO:0031497_chromatin_assembly 89 8 -1.929144 
GO:0006323_DNA_packaging 96 8 -1.745337 
GO:0016477_cell_migration 96 8 -1.745337 
GO:0006928_cell_motility 102 8 -1.603527 
GO:0051674_localization_of_cell 102 8 -1.603527 
GO:0007606_sensory_perception_of_chemical_stimulus 109 8 -1.453985 
GO:0006334_nucleosome_assembly 85 7 -1.559217 
GO:0000786_nucleosome 86 7 -1.534909 
GO:0001708_cell_fate_specification 57 6 -1.868242 
GO:0016810_hydrolase_activity__acting_on_carbon-
nitrogen_(but_not_peptide)_bonds 59 6 -1.799113 

GO:0000902_cell_morphogenesis 69 6 -1.497894 
GO:0032989_cellular_structure_morphogenesis 69 6 -1.497894 
GO:0005921_gap_junction 25 4 -1.998291 
GO:0014704_intercalated_disc 25 4 -1.998291 
GO:0009888_tissue_development 29 4 -1.771667 
GO:0004180_carboxypeptidase_activity 31 4 -1.672912 
GO:0004527_exonuclease_activity 33 4 -1.582131 
GO:0008134_transcription_factor_binding 38 4 -1.383955 
GO:0007509_mesoderm_migration 9 3 -2.529174 
GO:0008078_mesodermal_cell_migration 9 3 -2.529174 
GO:0042074_cell_migration_involved_in_gastrulation 10 3 -2.385486 
GO:0001707_mesoderm_formation 14 3 -1.948221 
GO:0048332_mesoderm_morphogenesis 14 3 -1.948221 
GO:0007498_mesoderm_development 16 3 -1.783338 
GO:0009069_serine_family_amino_acid_metabolic_proce
ss 16 3 -1.783338 

GO:0001704_formation_of_primary_germ_layer 18 3 -1.641957 
GO:0043068_positive_regulation_of_programmed_cell_de
ath 20 3 -1.518778 

GO:0048729_tissue_morphogenesis 20 3 -1.518778 
GO:0004181_metallocarboxypeptidase_activity 21 3 -1.462818 
GO:0004182_carboxypeptidase_A_activity 21 3 -1.462818 
GO:0048646_anatomical_structure_formation 21 3 -1.462818 
GO:0022603_regulation_of_anatomical_structure_morpho
genesis 23 3 -1.360358 

GO:0003712_transcription_cofactor_activity 24 3 -1.313288 
GO:0016811_hydrolase_activity__acting_on_carbon-
nitrogen_(but_not_peptide)_bonds__in_linear_amides 24 3 -1.313288 

GO:0008305_integrin_complex 6 2 -1.786783 
GO:0003705_RNA_polymerase_II_transcription_factor_ac
tivity__enhancer_binding 7 2 -1.650622 

GO:0006563_L-serine_metabolic_process 7 2 -1.650622 
GO:0009070_serine_family_amino_acid_biosynthetic_pro
cess 7 2 -1.650622 

GO:0012502_induction_of_programmed_cell_death 7 2 -1.650622 
GO:0017145_stem_cell_division 7 2 -1.650622 
GO:0042078_germ-line_stem_cell_division 7 2 -1.650622 
GO:0003997_acyl-CoA_oxidase_activity 8 2 -1.535621 
GO:0004407_histone_deacetylase_activity 8 2 -1.535621 
GO:0006476_protein_amino_acid_deacetylation 8 2 -1.535621 
GO:0008037_cell_recognition 8 2 -1.535621 
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GO:0008038_neuron_recognition 8 2 -1.535621 
GO:0033558_protein_deacetylase_activity 8 2 -1.535621 
GO:0043235_receptor_complex 8 2 -1.535621 
GO:0019213_deacetylase_activity 9 2 -1.436384 
GO:0006612_protein_targeting_to_membrane 10 2 -1.349351 
GO:0006635_fatty_acid_beta-oxidation 10 2 -1.349351 
GO:0009062_fatty_acid_catabolic_process 10 2 -1.349351 
GO:0010558_negative_regulation_of_macromolecule_bio
synthetic_process 10 2 -1.349351 

GO:0016054_organic_acid_catabolic_process 10 2 -1.349351 
GO:0016634_oxidoreductase_activity__acting_on_the_C
H-CH_group_of_donors__oxygen_as_acceptor 10 2 -1.349351 

GO:0017148_negative_regulation_of_translation 10 2 -1.349351 
GO:0019395_fatty_acid_oxidation 10 2 -1.349351 
GO:0046395_carboxylic_acid_catabolic_process 10 2 -1.349351 

 
HLH-25 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0032501_multicellular_organismal_process 3705 927 -2.823828 
GO:0032502_developmental_process 3651 926 -3.684049 
GO:0007275_multicellular_organismal_development 3428 877 -4.022807 
GO:0065007_biological_regulation 2922 730 -2.132016 
GO:0050789_regulation_of_biological_process 2843 713 -2.246649 
GO:0005622_intracellular 2808 692 -1.524683 
GO:0009790_embryonic_development 2693 689 -3.084198 
GO:0009792_embryonic_development_ending_in_birth_o
r_egg_hatching 2645 674 -2.823476 

GO:0040007_growth 2387 620 -3.481976 
GO:0048518_positive_regulation_of_biological_process 1955 500 -2.265009 
GO:0000003_reproduction 1895 494 -2.93751 
GO:0040008_regulation_of_growth 1886 481 -2.099479 
GO:0045927_positive_regulation_of_growth 1836 465 -1.832267 
GO:0040010_positive_regulation_of_growth_rate 1727 442 -2.061449 
GO:0040009_regulation_of_growth_rate 1728 442 -2.044078 
GO:0043226_organelle 1749 440 -1.575104 
GO:0043229_intracellular_organelle 1740 439 -1.647489 
GO:0009791_post-embryonic_development 1643 437 -3.365444 
GO:0002164_larval_development 1627 433 -3.359765 
GO:0002119_nematode_larval_development 1625 432 -3.310844 
GO:0048856_anatomical_structure_development 1280 328 -1.662375 
GO:0040011_locomotion 1157 297 -1.583171 
GO:0005737_cytoplasm 1068 275 -1.559051 
GO:0022414_reproductive_process 860 224 -1.547576 
GO:0048731_system_development 734 193 -1.546293 
GO:0048513_organ_development 692 182 -1.489829 
GO:0044444_cytoplasmic_part 612 173 -2.690686 
GO:0003006_reproductive_developmental_process 594 156 -1.328339 
GO:0048806_genitalia_development 515 138 -1.47661 
GO:0040035_hermaphrodite_genitalia_development 511 137 -1.476265 
GO:0051641_cellular_localization 294 86 -1.989035 
GO:0051649_establishment_of_cellular_localization 288 83 -1.773207 
GO:0007049_cell_cycle 248 76 -2.346025 
GO:0033036_macromolecule_localization 242 74 -2.273743 
GO:0008104_protein_localization 240 73 -2.189875 
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GO:0022402_cell_cycle_process 230 70 -2.129431 
GO:0048519_negative_regulation_of_biological_process 235 68 -1.58452 
GO:0005856_cytoskeleton 179 58 -2.483006 
GO:0007010_cytoskeleton_organization_and_biogenesis 186 56 -1.718332 
GO:0018988_molting_cycle__protein-based_cuticle 194 56 -1.376243 
GO:0018996_molting_cycle__collagen_and_cuticulin-
based_cuticle 194 56 -1.376243 

GO:0042303_molting_cycle 194 56 -1.376243 
GO:0044430_cytoskeletal_part 141 48 -2.621317 
GO:0051301_cell_division 148 48 -2.160875 
GO:0031090_organelle_membrane 122 40 -1.975025 
GO:0006470_protein_amino_acid_dephosphorylation 132 40 -1.414144 
GO:0000910_cytokinesis 121 39 -1.811677 
GO:0000278_mitotic_cell_cycle 113 36 -1.634364 
GO:0045165_cell_fate_commitment 84 33 -3.119818 
GO:0015630_microtubule_cytoskeleton 99 33 -1.830827 
GO:0012505_endomembrane_system 87 31 -2.202756 
GO:0007369_gastrulation 81 28 -1.848385 
GO:0000226_microtubule_cytoskeleton_organization_and
_biogenesis 87 28 -1.434997 

GO:0005783_endoplasmic_reticulum 81 27 -1.590304 
GO:0045926_negative_regulation_of_growth 83 27 -1.457251 
GO:0005739_mitochondrion 80 26 -1.416338 
GO:0031975_envelope 78 25 -1.312241 
GO:0007267_cell-cell_signaling 70 24 -1.612738 
GO:0031967_organelle_envelope 73 24 -1.399411 
GO:0001708_cell_fate_specification 57 21 -1.828603 
GO:0006732_coenzyme_metabolic_process 60 21 -1.569353 
GO:0005938_cell_cortex 40 18 -2.690873 
GO:0030029_actin_filament-based_process 47 18 -1.818595 
GO:0032940_secretion_by_cell 50 18 -1.533155 
GO:0044429_mitochondrial_part 49 17 -1.324066 
GO:0016790_thiolester_hydrolase_activity 42 16 -1.646552 
GO:0030036_actin_cytoskeleton_organization_and_bioge
nesis 42 15 -1.323797 

GO:0005813_centrosome 30 14 -2.377473 
GO:0005815_microtubule_organizing_center 31 14 -2.219849 
GO:0044432_endoplasmic_reticulum_part 25 12 -2.225118 
GO:0000793_condensed_chromosome 28 12 -1.762929 
GO:0019866_organelle_inner_membrane 30 12 -1.510927 
GO:0005635_nuclear_envelope 31 12 -1.39873 
GO:0005789_endoplasmic_reticulum_membrane 24 11 -1.897328 
GO:0016407_acetyltransferase_activity 24 11 -1.897328 
GO:0042175_nuclear_envelope-
endoplasmic_reticulum_network 26 11 -1.60759 

GO:0001704_formation_of_primary_germ_layer 18 10 -2.503584 
GO:0008483_transaminase_activity 21 10 -1.898833 
GO:0048646_anatomical_structure_formation 21 10 -1.898833 
GO:0008080_N-acetyltransferase_activity 22 10 -1.735425 
GO:0016410_N-acyltransferase_activity 23 10 -1.587098 
GO:0008105_asymmetric_protein_localization 25 10 -1.3289 
GO:0051728_cell_cycle_switching__mitotic_to_meiotic_ce
ll_cycle 16 8 -1.745168 

GO:0051729_germline_cell_cycle_switching__mitotic_to_
meiotic_cell_cycle 16 8 -1.745168 

GO:0060184_cell_cycle_switching 16 8 -1.745168 
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GO:0015980_energy_derivation_by_oxidation_of_organic
_compounds 18 8 -1.407866 

GO:0043176_amine_binding 18 8 -1.407866 
GO:0044453_nuclear_membrane_part 18 8 -1.407866 
GO:0005882_intermediate_filament 9 7 -3.068523 
GO:0045111_intermediate_filament_cytoskeleton 10 7 -2.643664 
GO:0009109_coenzyme_catabolic_process 13 7 -1.779429 
GO:0051187_cofactor_catabolic_process 13 7 -1.779429 
GO:0008287_protein_serine_threonine_phosphatase_co
mplex 14 7 -1.574378 

GO:0007219_Notch_signaling_pathway 15 7 -1.396791 
GO:0009306_protein_secretion 8 6 -2.540213 
GO:0033058_directional_locomotion 9 6 -2.158655 
GO:0006099_tricarboxylic_acid_cycle 11 6 -1.607584 
GO:0008593_regulation_of_Notch_signaling_pathway 11 6 -1.607584 
GO:0009060_aerobic_respiration 11 6 -1.607584 
GO:0015464_acetylcholine_receptor_activity 11 6 -1.607584 
GO:0016055_Wnt_receptor_signaling_pathway 11 6 -1.607584 
GO:0042166_acetylcholine_binding 11 6 -1.607584 
GO:0045333_cellular_respiration 11 6 -1.607584 
GO:0046356_acetyl-CoA_catabolic_process 11 6 -1.607584 
GO:0043070_regulation_of_non-
apoptotic_programmed_cell_death 12 6 -1.400231 

GO:0005759_mitochondrial_matrix 7 5 -2.026309 
GO:0031980_mitochondrial_lumen 7 5 -2.026309 
GO:0033205_cytokinesis_during_cell_cycle 7 5 -2.026309 
GO:0043057_backward_locomotion 7 5 -2.026309 
GO:0030031_cell_projection_biogenesis 8 5 -1.692614 
GO:0034330_cell_junction_assembly_and_maintenance 8 5 -1.692614 
GO:0045216_cell-
cell_junction_assembly_and_maintenance 8 5 -1.692614 

GO:0004016_adenylate_cyclase_activity 5 4 -1.919786 
GO:0006637_acyl-CoA_metabolic_process 5 4 -1.919786 
GO:0030055_cell-substrate_junction 5 4 -1.919786 
GO:0045178_basal_part_of_cell 5 4 -1.919786 
GO:0045747_positive_regulation_of_Notch_signaling_pat
hway 6 4 -1.531317 

 
HLH-26 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0003674_molecular_function 8423 162 -1.339745 
GO:0009987_cellular_process 4977 102 -1.34402 
GO:0008152_metabolic_process 4176 93 -2.232527 
GO:0003824_catalytic_activity 3551 85 -2.987214 
GO:0044238_primary_metabolic_process 3216 75 -2.271962 
GO:0044237_cellular_metabolic_process 3372 75 -1.748455 
GO:0043170_macromolecule_metabolic_process 2663 59 -1.375545 
GO:0043283_biopolymer_metabolic_process 1859 47 -2.078 
GO:0044260_cellular_macromolecule_metabolic_process 1588 46 -3.223559 
GO:0044267_cellular_protein_metabolic_process 1536 45 -3.263391 
GO:0019538_protein_metabolic_process 1591 45 -2.937299 
GO:0017076_purine_nucleotide_binding 1136 32 -2.151675 
GO:0000166_nucleotide_binding 1283 32 -1.452077 
GO:0032553_ribonucleotide_binding 1066 31 -2.293838 
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GO:0032555_purine_ribonucleotide_binding 1066 31 -2.293838 
GO:0043687_post-translational_protein_modification 663 29 -5.115601 
GO:0006464_protein_modification_process 752 29 -4.102843 
GO:0043412_biopolymer_modification 771 29 -3.912379 
GO:0030554_adenyl_nucleotide_binding 976 29 -2.299923 
GO:0005524_ATP_binding 916 28 -2.403068 
GO:0032559_adenyl_ribonucleotide_binding 917 28 -2.396483 
GO:0006793_phosphorus_metabolic_process 642 26 -4.060057 
GO:0006796_phosphate_metabolic_process 642 26 -4.060057 
GO:0016772_transferase_activity__transferring_phosphor
us-containing_groups 622 23 -3.085129 

GO:0016310_phosphorylation 497 20 -3.188608 
GO:0016773_phosphotransferase_activity__alcohol_grou
p_as_acceptor 505 20 -3.102204 

GO:0016301_kinase_activity 531 20 -2.836682 
GO:0006468_protein_amino_acid_phosphorylation 444 19 -3.376583 
GO:0004672_protein_kinase_activity 452 19 -3.281161 
GO:0004674_protein_serine_threonine_kinase_activity 411 17 -2.90969 
GO:0004713_protein-tyrosine_kinase_activity 324 14 -2.654386 
GO:0019787_small_conjugating_protein_ligase_activity 48 4 -1.967618 
GO:0016881_acid-amino_acid_ligase_activity 58 4 -1.689218 
GO:0016853_isomerase_activity 66 4 -1.506925 
GO:0008316_structural_constituent_of_vitelline_membran
e 20 3 -2.278979 

GO:0030704_vitelline_membrane_formation 20 3 -2.278979 
GO:0030198_extracellular_matrix_organization_and_biog
enesis 23 3 -2.104878 

GO:0043062_extracellular_structure_organization_and_bi
ogenesis 35 3 -1.60557 

GO:0008533_astacin_activity 41 3 -1.427624 
GO:0016638_oxidoreductase_activity__acting_on_the_C
H-NH2_group_of_donors 8 2 -2.073401 

GO:0007283_spermatogenesis 11 2 -1.795646 
GO:0048232_male_gamete_generation 11 2 -1.795646 
GO:0030239_myofibril_assembly 12 2 -1.7216 
GO:0031032_actomyosin_structure_organization_and_bio
genesis 12 2 -1.7216 

GO:0045445_myoblast_differentiation 12 2 -1.7216 
GO:0048627_myoblast_development 12 2 -1.7216 
GO:0048628_myoblast_maturation 12 2 -1.7216 
GO:0051146_striated_muscle_cell_differentiation 12 2 -1.7216 
GO:0055002_striated_muscle_cell_development 12 2 -1.7216 
GO:0007519_skeletal_muscle_development 13 2 -1.654176 
GO:0014706_striated_muscle_development 13 2 -1.654176 
GO:0048741_skeletal_muscle_fiber_development 13 2 -1.654176 
GO:0048747_muscle_fiber_development 13 2 -1.654176 
GO:0055001_muscle_cell_development 13 2 -1.654176 
GO:0009069_serine_family_amino_acid_metabolic_proce
ss 16 2 -1.482424 

GO:0016563_transcription_activator_activity 16 2 -1.482424 
GO:0042692_muscle_cell_differentiation 18 2 -1.387097 

 
HLH-27 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 



 195 

GO:0008150_biological_process 8808 595 -3.84523 
GO:0009987_cellular_process 4977 344 -1.790902 
GO:0032502_developmental_process 3651 292 -6.260899 
GO:0008152_metabolic_process 4176 287 -1.347597 
GO:0032501_multicellular_organismal_process 3705 286 -4.678458 
GO:0007275_multicellular_organismal_development 3428 274 -5.730074 
GO:0044237_cellular_metabolic_process 3372 236 -1.432818 
GO:0065007_biological_regulation 2922 222 -3.04874 
GO:0005622_intracellular 2808 215 -3.134729 
GO:0050789_regulation_of_biological_process 2843 215 -2.837089 
GO:0040007_growth 2387 205 -6.219237 
GO:0009790_embryonic_development 2693 204 -2.725049 
GO:0009792_embryonic_development_ending_in_birth_o
r_egg_hatching 2645 200 -2.632067 

GO:0044424_intracellular_part 2280 170 -2.012929 
GO:0048518_positive_regulation_of_biological_process 1955 165 -4.475021 
GO:0000003_reproduction 1895 164 -5.072773 
GO:0040008_regulation_of_growth 1886 159 -4.282779 
GO:0009791_post-embryonic_development 1643 156 -7.303282 
GO:0045927_positive_regulation_of_growth 1836 156 -4.380721 
GO:0002119_nematode_larval_development 1625 155 -7.387346 
GO:0002164_larval_development 1627 155 -7.351304 
GO:0040010_positive_regulation_of_growth_rate 1727 147 -4.16627 
GO:0040009_regulation_of_growth_rate 1728 147 -4.153675 
GO:0043229_intracellular_organelle 1740 131 -1.745789 
GO:0043226_organelle 1749 131 -1.679313 
GO:0019538_protein_metabolic_process 1591 124 -2.126253 
GO:0044260_cellular_macromolecule_metabolic_process 1588 122 -1.905378 
GO:0044267_cellular_protein_metabolic_process 1536 121 -2.231382 
GO:0048856_anatomical_structure_development 1280 111 -3.50053 
GO:0000166_nucleotide_binding 1283 101 -1.918427 
GO:0040011_locomotion 1157 96 -2.473693 
GO:0017076_purine_nucleotide_binding 1136 91 -1.958153 
GO:0005737_cytoplasm 1068 90 -2.535812 
GO:0032553_ribonucleotide_binding 1066 86 -1.949427 
GO:0032555_purine_ribonucleotide_binding 1066 86 -1.949427 
GO:0009653_anatomical_structure_morphogenesis 879 74 -2.154856 
GO:0022414_reproductive_process 860 71 -1.898912 
GO:0043412_biopolymer_modification 771 65 -1.963447 
GO:0006464_protein_modification_process 752 63 -1.862976 
GO:0044444_cytoplasmic_part 612 60 -3.329858 
GO:0032991_macromolecular_complex 721 59 -1.589923 
GO:0043687_post-translational_protein_modification 663 58 -2.116703 
GO:0048731_system_development 734 58 -1.319089 
GO:0006793_phosphorus_metabolic_process 642 57 -2.2187 
GO:0006796_phosphate_metabolic_process 642 57 -2.2187 
GO:0048513_organ_development 692 56 -1.453249 
GO:0003006_reproductive_developmental_process 594 51 -1.778961 
GO:0007548_sex_differentiation 574 50 -1.861278 
GO:0040035_hermaphrodite_genitalia_development 511 48 -2.396776 
GO:0048806_genitalia_development 515 48 -2.331967 
GO:0044422_organelle_part 553 46 -1.44585 
GO:0043228_non-membrane-bounded_organelle 535 45 -1.494467 
GO:0043232_intracellular_non-membrane-
bounded_organelle 535 45 -1.494467 

GO:0044446_intracellular_organelle_part 546 45 -1.368279 
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GO:0044249_cellular_biosynthetic_process 459 40 -1.591247 
GO:0007610_behavior 389 34 -1.441578 
GO:0048609_reproductive_process_in_a_multicellular_or
ganism 303 30 -1.985031 

GO:0032504_multicellular_organism_reproduction 304 30 -1.966002 
GO:0007242_intracellular_signaling_cascade 330 29 -1.325089 
GO:0009059_macromolecule_biosynthetic_process 283 28 -1.883608 
GO:0018991_oviposition 295 28 -1.665163 
GO:0033057_reproductive_behavior_in_a_multicellular_or
ganism 295 28 -1.665163 

GO:0019098_reproductive_behavior 300 28 -1.580555 
GO:0035264_multicellular_organism_growth 309 28 -1.437145 
GO:0040014_regulation_of_multicellular_organism_growt
h 309 28 -1.437145 

GO:0051641_cellular_localization 294 27 -1.465144 
GO:0008104_protein_localization 240 26 -2.272768 
GO:0033036_macromolecule_localization 242 26 -2.2259 
GO:0002009_morphogenesis_of_an_epithelium 254 25 -1.711476 
GO:0040018_positive_regulation_of_multicellular_organis
m_growth 229 23 -1.706659 

GO:0006412_translation 232 23 -1.647266 
GO:0019001_guanyl_nucleotide_binding 172 22 -2.883252 
GO:0005525_GTP_binding 161 21 -2.885566 
GO:0032561_guanyl_ribonucleotide_binding 161 21 -2.885566 
GO:0030529_ribonucleoprotein_complex 183 20 -1.908971 
GO:0045184_establishment_of_protein_localization 189 20 -1.767266 
GO:0042578_phosphoric_ester_hydrolase_activity 211 20 -1.323599 
GO:0015031_protein_transport 184 19 -1.604922 
GO:0005856_cytoskeleton 179 18 -1.447153 
GO:0006470_protein_amino_acid_dephosphorylation 132 16 -2.024315 
GO:0016311_dephosphorylation 135 16 -1.934891 
GO:0004721_phosphoprotein_phosphatase_activity 136 16 -1.905929 
GO:0003735_structural_constituent_of_ribosome 137 16 -1.877377 
GO:0005840_ribosome 138 16 -1.84923 
GO:0040012_regulation_of_locomotion 143 16 -1.71434 
GO:0040017_positive_regulation_of_locomotion 119 13 -1.411057 
GO:0031090_organelle_membrane 122 13 -1.337293 
GO:0045165_cell_fate_commitment 84 12 -2.181534 
GO:0005739_mitochondrion 80 10 -1.527578 
GO:0001708_cell_fate_specification 57 9 -2.032311 
GO:0006457_protein_folding 75 9 -1.323364 
GO:0006732_coenzyme_metabolic_process 60 8 -1.45417 
GO:0044429_mitochondrial_part 49 7 -1.467722 
GO:0043284_biopolymer_biosynthetic_process 19 6 -3.06713 
GO:0005921_gap_junction 25 6 -2.394387 
GO:0014704_intercalated_disc 25 6 -2.394387 
GO:0008135_translation_factor_activity__nucleic_acid_bi
nding 35 6 -1.666156 

GO:0045182_translation_regulator_activity 38 6 -1.504958 
GO:0016917_GABA_receptor_activity 41 6 -1.362216 
GO:0043067_regulation_of_programmed_cell_death 41 6 -1.362216 
GO:0005911_intercellular_junction 42 6 -1.318225 
GO:0006414_translational_elongation 14 5 -2.89794 
GO:0000793_condensed_chromosome 28 5 -1.526935 
GO:0008287_protein_serine_threonine_phosphatase_co
mplex 14 4 -2.013085 
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GO:0015980_energy_derivation_by_oxidation_of_organic
_compounds 18 4 -1.615541 

GO:0033205_cytokinesis_during_cell_cycle 7 3 -2.131925 
GO:0004722_protein_serine_threonine_phosphatase_acti
vity 8 3 -1.948648 

GO:0003746_translation_elongation_factor_activity 10 3 -1.659119 
GO:0032153_cell_division_site 10 3 -1.659119 
GO:0032154_cleavage_furrow 10 3 -1.659119 
GO:0032155_cell_division_site_part 10 3 -1.659119 
GO:0006099_tricarboxylic_acid_cycle 11 3 -1.541436 
GO:0009060_aerobic_respiration 11 3 -1.541436 
GO:0045333_cellular_respiration 11 3 -1.541436 
GO:0046356_acetyl-CoA_catabolic_process 11 3 -1.541436 
GO:0043070_regulation_of_non-
apoptotic_programmed_cell_death 12 3 -1.437041 

GO:0003887_DNA-directed_DNA_polymerase_activity 13 3 -1.343565 
GO:0006084_acetyl-CoA_metabolic_process 13 3 -1.343565 
GO:0009109_coenzyme_catabolic_process 13 3 -1.343565 
GO:0016244_non-apoptotic_programmed_cell_death 13 3 -1.343565 
GO:0051187_cofactor_catabolic_process 13 3 -1.343565 
GO:0004016_adenylate_cyclase_activity 5 2 -1.449963 
GO:0007143_female_meiosis 5 2 -1.449963 
GO:0007187_G-
protein_signaling__coupled_to_cyclic_nucleotide_second_
messenger 

5 2 -1.449963 

GO:0007188_G-
protein_signaling__coupled_to_cAMP_nucleotide_second
_messenger 

5 2 -1.449963 

GO:0019933_cAMP-mediated_signaling 5 2 -1.449963 
GO:0019935_cyclic-nucleotide-mediated_signaling 5 2 -1.449963 
GO:0030104_water_homeostasis 5 2 -1.449963 
GO:0043405_regulation_of_MAP_kinase_activity 5 2 -1.449963 

 
HLH-29 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0008150_biological_process 8808 310 -4.207307 
GO:0032501_multicellular_organismal_process 3705 166 -6.972812 
GO:0032502_developmental_process 3651 163 -6.681953 
GO:0007275_multicellular_organismal_development 3428 158 -7.394551 
GO:0065007_biological_regulation 2922 124 -3.661856 
GO:0050789_regulation_of_biological_process 2843 118 -3.069353 
GO:0009790_embryonic_development 2693 117 -3.869317 
GO:0040007_growth 2387 116 -6.205295 
GO:0009792_embryonic_development_ending_in_birth_o
r_egg_hatching 2645 115 -3.809886 

GO:0005622_intracellular 2808 107 -1.613919 
GO:0048518_positive_regulation_of_biological_process 1955 93 -4.483244 
GO:0040008_regulation_of_growth 1886 92 -4.870525 
GO:0000003_reproduction 1895 91 -4.54299 
GO:0045927_positive_regulation_of_growth 1836 89 -4.597618 
GO:0002119_nematode_larval_development 1625 85 -5.681008 
GO:0002164_larval_development 1627 85 -5.65894 
GO:0009791_post-embryonic_development 1643 85 -5.484656 
GO:0040010_positive_regulation_of_growth_rate 1727 85 -4.633011 
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GO:0040009_regulation_of_growth_rate 1728 85 -4.623489 
GO:0048856_anatomical_structure_development 1280 64 -3.705399 
GO:0040011_locomotion 1157 50 -1.736268 
GO:0005737_cytoplasm 1068 46 -1.608726 
GO:0022414_reproductive_process 860 44 -2.853894 
GO:0009653_anatomical_structure_morphogenesis 879 39 -1.604739 
GO:0048731_system_development 734 35 -1.9052 
GO:0048513_organ_development 692 34 -2.047711 
GO:0032991_macromolecular_complex 721 33 -1.591945 
GO:0003006_reproductive_developmental_process 594 32 -2.534751 
GO:0007548_sex_differentiation 574 31 -2.486938 
GO:0044444_cytoplasmic_part 612 31 -2.087321 
GO:0040035_hermaphrodite_genitalia_development 511 30 -2.971658 
GO:0048806_genitalia_development 515 30 -2.918269 
GO:0044422_organelle_part 553 26 -1.471022 
GO:0044446_intracellular_organelle_part 546 25 -1.318597 
GO:0048609_reproductive_process_in_a_multicellular_or
ganism 303 18 -2.035098 

GO:0032504_multicellular_organism_reproduction 304 18 -2.021177 
GO:0002009_morphogenesis_of_an_epithelium 254 17 -2.452937 
GO:0009059_macromolecule_biosynthetic_process 283 17 -1.994667 
GO:0035264_multicellular_organism_growth 309 17 -1.653169 
GO:0040014_regulation_of_multicellular_organism_growt
h 309 17 -1.653169 

GO:0018991_oviposition 295 16 -1.53436 
GO:0033057_reproductive_behavior_in_a_multicellular_or
ganism 295 16 -1.53436 

GO:0019098_reproductive_behavior 300 16 -1.476665 
GO:0005525_GTP_binding 161 14 -3.159096 
GO:0032561_guanyl_ribonucleotide_binding 161 14 -3.159096 
GO:0019001_guanyl_nucleotide_binding 172 14 -2.87868 
GO:0040018_positive_regulation_of_multicellular_organis
m_growth 229 13 -1.467001 

GO:0006412_translation 232 13 -1.428321 
GO:0008104_protein_localization 240 13 -1.329808 
GO:0033036_macromolecule_localization 242 13 -1.306192 
GO:0000279_M_phase 137 9 -1.483309 
GO:0022403_cell_cycle_phase 142 9 -1.398607 
GO:0065008_regulation_of_biological_quality 142 9 -1.398607 
GO:0042592_homeostatic_process 85 8 -2.225755 
GO:0016192_vesicle-mediated_transport 104 8 -1.723981 
GO:0045165_cell_fate_commitment 84 7 -1.735365 
GO:0043284_biopolymer_biosynthetic_process 19 6 -4.692126 
GO:0008415_acyltransferase_activity 60 6 -1.906842 
GO:0019725_cellular_homeostasis 64 6 -1.777652 
GO:0006457_protein_folding 75 6 -1.474917 
GO:0006414_translational_elongation 14 5 -4.275626 
GO:0008135_translation_factor_activity__nucleic_acid_bi
nding 35 5 -2.306798 

GO:0048878_chemical_homeostasis 36 5 -2.253234 
GO:0045182_translation_regulator_activity 38 5 -2.151636 
GO:0022613_ribonucleoprotein_complex_biogenesis_and
_assembly 52 5 -1.595399 

GO:0006732_coenzyme_metabolic_process 60 5 -1.362169 
GO:0016407_acetyltransferase_activity 24 4 -2.171132 
GO:0005921_gap_junction 25 4 -2.106375 
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GO:0014704_intercalated_disc 25 4 -2.106375 
GO:0008533_astacin_activity 41 4 -1.376582 
GO:0005911_intercellular_junction 42 4 -1.343848 
GO:0033205_cytokinesis_during_cell_cycle 7 3 -2.977836 
GO:0003746_translation_elongation_factor_activity 10 3 -2.474056 
GO:0008080_N-acetyltransferase_activity 22 3 -1.48947 
GO:0016410_N-acyltransferase_activity 23 3 -1.438967 
GO:0051258_protein_polymerization 24 3 -1.391152 
GO:0055080_cation_homeostasis 25 3 -1.345793 
GO:0007143_female_meiosis 5 2 -2.013423 
GO:0030104_water_homeostasis 5 2 -2.013423 
GO:0043405_regulation_of_MAP_kinase_activity 5 2 -2.013423 
GO:0003705_RNA_polymerase_II_transcription_factor_ac
tivity__enhancer_binding 7 2 -1.709772 

GO:0030728_ovulation 7 2 -1.709772 
GO:0004129_cytochrome-c_oxidase_activity 8 2 -1.594079 
GO:0006743_ubiquinone_metabolic_process 8 2 -1.594079 
GO:0006744_ubiquinone_biosynthetic_process 8 2 -1.594079 
GO:0015002_heme-copper_terminal_oxidase_activity 8 2 -1.594079 
GO:0016675_oxidoreductase_activity__acting_on_heme_
group_of_donors 8 2 -1.594079 

GO:0016676_oxidoreductase_activity__acting_on_heme_
group_of_donors__oxygen_as_acceptor 8 2 -1.594079 

GO:0042375_quinone_cofactor_metabolic_process 8 2 -1.594079 
GO:0045426_quinone_cofactor_biosynthetic_process 8 2 -1.594079 
GO:0030005_cellular_di-__tri-
valent_inorganic_cation_homeostasis 10 2 -1.406438 

GO:0032153_cell_division_site 10 2 -1.406438 
GO:0032154_cleavage_furrow 10 2 -1.406438 
GO:0032155_cell_division_site_part 10 2 -1.406438 
GO:0015464_acetylcholine_receptor_activity 11 2 -1.328456 
GO:0030003_cellular_cation_homeostasis 11 2 -1.328456 
GO:0042166_acetylcholine_binding 11 2 -1.328456 
GO:0048546_digestive_tract_morphogenesis 11 2 -1.328456 
GO:0055066_di-__tri-
valent_inorganic_cation_homeostasis 11 2 -1.328456 

 
HLH-30 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0003674_molecular_function 8423 697 -2.017732 
GO:0008152_metabolic_process 4176 370 -2.496802 
GO:0003824_catalytic_activity 3551 346 -5.924826 
GO:0044237_cellular_metabolic_process 3372 309 -2.974913 
GO:0044238_primary_metabolic_process 3216 294 -2.747489 
GO:0043283_biopolymer_metabolic_process 1859 175 -2.177126 
GO:0044260_cellular_macromolecule_metabolic_process 1588 150 -1.965251 
GO:0044267_cellular_protein_metabolic_process 1536 148 -2.248618 
GO:0019538_protein_metabolic_process 1591 148 -1.725343 
GO:0016787_hydrolase_activity 1451 135 -1.610795 
GO:0016740_transferase_activity 1098 111 -2.404356 
GO:0030554_adenyl_nucleotide_binding 976 94 -1.578953 
GO:0043412_biopolymer_modification 771 93 -4.633085 
GO:0006464_protein_modification_process 752 91 -4.596523 
GO:0005524_ATP_binding 916 90 -1.729857 
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GO:0032559_adenyl_ribonucleotide_binding 917 90 -1.718669 
GO:0043687_post-translational_protein_modification 663 83 -4.767324 
GO:0006793_phosphorus_metabolic_process 642 79 -4.298272 
GO:0006796_phosphate_metabolic_process 642 79 -4.298272 
GO:0016772_transferase_activity__transferring_phosphor
us-containing_groups 622 73 -3.379342 

GO:0016301_kinase_activity 531 63 -3.108459 
GO:0016773_phosphotransferase_activity__alcohol_grou
p_as_acceptor 505 58 -2.577493 

GO:0016310_phosphorylation 497 55 -2.139457 
GO:0004672_protein_kinase_activity 452 52 -2.380791 
GO:0006468_protein_amino_acid_phosphorylation 444 51 -2.331825 
GO:0016788_hydrolase_activity__acting_on_ester_bonds 426 49 -2.272783 
GO:0004674_protein_serine_threonine_kinase_activity 411 46 -1.957772 
GO:0042578_phosphoric_ester_hydrolase_activity 211 33 -3.897682 
GO:0016791_phosphoric_monoester_hydrolase_activity 185 31 -4.266473 
GO:0006082_organic_acid_metabolic_process 196 29 -3.093127 
GO:0019752_carboxylic_acid_metabolic_process 196 29 -3.093127 
GO:0006629_lipid_metabolic_process 233 27 -1.519513 
GO:0004721_phosphoprotein_phosphatase_activity 136 24 -3.787757 
GO:0006470_protein_amino_acid_dephosphorylation 132 23 -3.570789 
GO:0016311_dephosphorylation 135 23 -3.424656 
GO:0006807_nitrogen_compound_metabolic_process 159 23 -2.444194 
GO:0009308_amine_metabolic_process 155 22 -2.26225 
GO:0004725_protein_tyrosine_phosphatase_activity 121 21 -3.287292 
GO:0006519_amino_acid_and_derivative_metabolic_proc
ess 148 21 -2.182392 

GO:0016874_ligase_activity 146 19 -1.652261 
GO:0006520_amino_acid_metabolic_process 129 18 -1.874562 
GO:0007276_gamete_generation 116 17 -2.000067 
GO:0031975_envelope 78 13 -2.0928 
GO:0005739_mitochondrion 80 12 -1.628589 
GO:0016879_ligase_activity__forming_carbon-
nitrogen_bonds 87 12 -1.378191 

GO:0031967_organelle_envelope 73 11 -1.545207 
GO:0007292_female_gamete_generation 76 11 -1.431533 
GO:0006913_nucleocytoplasmic_transport 52 10 -2.1524 
GO:0051169_nuclear_transport 52 10 -2.1524 
GO:0048477_oogenesis 70 10 -1.309391 
GO:0032787_monocarboxylic_acid_metabolic_process 51 9 -1.747664 
GO:0008238_exopeptidase_activity 53 9 -1.645581 
GO:0007268_synaptic_transmission 57 9 -1.460143 
GO:0016881_acid-amino_acid_ligase_activity 58 9 -1.417327 
GO:0019787_small_conjugating_protein_ligase_activity 48 8 -1.469265 
GO:0008134_transcription_factor_binding 38 7 -1.550675 
GO:0022603_regulation_of_anatomical_structure_morpho
genesis 23 6 -2.111871 

GO:0006605_protein_targeting 32 6 -1.422853 
GO:0031966_mitochondrial_membrane 33 6 -1.36474 
GO:0006606_protein_import_into_nucleus 12 5 -2.81023 
GO:0051170_nuclear_import 12 5 -2.81023 
GO:0009064_glutamine_family_amino_acid_metabolic_pr
ocess 17 5 -2.062577 

GO:0048489_synaptic_vesicle_transport 18 5 -1.950078 
GO:0017038_protein_import 19 5 -1.846211 
GO:0008652_amino_acid_biosynthetic_process 22 5 -1.577046 
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GO:0001505_regulation_of_neurotransmitter_levels 23 5 -1.499059 
GO:0004842_ubiquitin-protein_ligase_activity 23 5 -1.499059 
GO:0007283_spermatogenesis 11 4 -2.080105 
GO:0048232_male_gamete_generation 11 4 -2.080105 
GO:0016860_intramolecular_oxidoreductase_activity 12 4 -1.931835 
GO:0022604_regulation_of_cell_morphogenesis 12 4 -1.931835 
GO:0009072_aromatic_amino_acid_family_metabolic_pro
cess 13 4 -1.799866 

GO:0005643_nuclear_pore 14 4 -1.68138 
GO:0046930_pore_complex 14 4 -1.68138 
GO:0004198_calcium-dependent_cysteine-
type_endopeptidase_activity 15 4 -1.574232 

GO:0016903_oxidoreductase_activity__acting_on_the_ald
ehyde_or_oxo_group_of_donors 15 4 -1.574232 

GO:0043623_cellular_protein_complex_assembly 15 4 -1.574232 
GO:0010564_regulation_of_cell_cycle_process 16 4 -1.476751 
GO:0006887_exocytosis 17 4 -1.387609 
GO:0044453_nuclear_membrane_part 18 4 -1.305734 
GO:0030151_molybdenum_ion_binding 5 3 -2.353515 
GO:0004869_cysteine_protease_inhibitor_activity 6 3 -2.078865 
GO:0008360_regulation_of_cell_shape 6 3 -2.078865 
GO:0016079_synaptic_vesicle_exocytosis 6 3 -2.078865 
GO:0016641_oxidoreductase_activity__acting_on_the_C
H-NH2_group_of_donors__oxygen_as_acceptor 6 3 -2.078865 

GO:0016861_intramolecular_oxidoreductase_activity__int
erconverting_aldoses_and_ketoses 7 3 -1.862089 

GO:0046546_development_of_primary_male_sexual_char
acteristics 7 3 -1.862089 

GO:0046661_male_sex_differentiation 7 3 -1.862089 
GO:0051932_synaptic_transmission__GABAergic 7 3 -1.862089 
GO:0016638_oxidoreductase_activity__acting_on_the_C
H-NH2_group_of_donors 8 3 -1.684113 

GO:0007218_neuropeptide_signaling_pathway 9 3 -1.534046 
GO:0007270_nerve-nerve_synaptic_transmission 9 3 -1.534046 
GO:0040022_feminization_of_hermaphroditic_germ-line 10 3 -1.405047 

 
HLH-2/LIN-32 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0005575_cellular_component 4970 602 -3.512121 
GO:0005488_binding 5055 590 -1.757538 
GO:0005623_cell 4804 586 -3.748586 
GO:0044464_cell_part 4788 584 -3.725366 
GO:0032501_multicellular_organismal_process 3705 456 -3.048328 
GO:0032502_developmental_process 3651 438 -2.038032 
GO:0007275_multicellular_organismal_development 3428 415 -2.198174 
GO:0005622_intracellular 2808 349 -2.567713 
GO:0009790_embryonic_development 2693 337 -2.676414 
GO:0009792_embryonic_development_ending_in_birth_o
r_egg_hatching 2645 329 -2.443957 

GO:0043170_macromolecule_metabolic_process 2663 324 -1.850566 
GO:0044424_intracellular_part 2280 284 -2.16352 
GO:0043226_organelle 1749 219 -1.831338 
GO:0043229_intracellular_organelle 1740 218 -1.835096 
GO:0003676_nucleic_acid_binding 1510 198 -2.531601 
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GO:0043231_intracellular_membrane-bounded_organelle 1392 191 -3.417999 
GO:0043227_membrane-bounded_organelle 1399 191 -3.30343 
GO:0005634_nucleus 1121 168 -5.079146 
GO:0006139_nucleobase__nucleoside__nucleotide_and_
nucleic_acid_metabolic_process 1228 155 -1.519222 

GO:0040011_locomotion 1157 148 -1.644167 
GO:0010467_gene_expression 1101 139 -1.410777 
GO:0004872_receptor_activity 1061 134 -1.380474 
GO:0050794_regulation_of_cellular_process 1029 131 -1.451061 
GO:0003677_DNA_binding 873 128 -3.539742 
GO:0009653_anatomical_structure_morphogenesis 879 115 -1.627649 
GO:0016070_RNA_metabolic_process 837 111 -1.742537 
GO:0016043_cellular_component_organization_and_biog
enesis 804 110 -2.113892 

GO:0010468_regulation_of_gene_expression 760 109 -2.749291 
GO:0032991_macromolecular_complex 721 106 -3.054823 
GO:0019222_regulation_of_metabolic_process 783 106 -1.925343 
GO:0006350_transcription 747 105 -2.388503 
GO:0031323_regulation_of_cellular_metabolic_process 755 105 -2.247729 
GO:0019219_regulation_of_nucleobase__nucleoside__nu
cleotide_and_nucleic_acid_metabolic_process 724 103 -2.513991 

GO:0045449_regulation_of_transcription 709 102 -2.647821 
GO:0004888_transmembrane_receptor_activity 740 98 -1.580774 
GO:0043234_protein_complex 549 93 -4.976706 
GO:0030528_transcription_regulator_activity 647 92 -2.294054 
GO:0032774_RNA_biosynthetic_process 646 90 -2.018667 
GO:0006351_transcription__DNA-dependent 643 89 -1.930068 
GO:0006355_regulation_of_transcription__DNA-
dependent 628 87 -1.90748 

GO:0051252_regulation_of_RNA_metabolic_process 634 87 -1.807126 
GO:0044422_organelle_part 553 83 -2.759586 
GO:0044446_intracellular_organelle_part 546 82 -2.740507 
GO:0010171_body_morphogenesis 551 76 -1.689753 
GO:0003700_transcription_factor_activity 539 72 -1.357591 
GO:0006996_organelle_organization_and_biogenesis 418 63 -2.265408 
GO:0005694_chromosome 200 44 -5.354823 
GO:0044427_chromosomal_part 156 42 -7.686028 
GO:0051276_chromosome_organization_and_biogenesis 161 42 -7.258139 
GO:0022607_cellular_component_assembly 202 42 -4.511352 
GO:0005216_ion_channel_activity 288 41 -1.31026 
GO:0022838_substrate_specific_channel_activity 288 41 -1.31026 
GO:0006325_establishment_and_or_maintenance_of_chr
omatin_architecture 120 39 -9.763166 

GO:0000785_chromatin 123 39 -9.404255 
GO:0006333_chromatin_assembly_or_disassembly 111 38 -10.28504 
GO:0065003_macromolecular_complex_assembly 178 38 -4.402151 
GO:0006323_DNA_packaging 96 34 -9.724069 
GO:0065004_protein-DNA_complex_assembly 104 34 -8.668833 
GO:0031497_chromatin_assembly 89 33 -10.06869 
GO:0003008_system_process 222 33 -1.361734 
GO:0006334_nucleosome_assembly 85 32 -9.983647 
GO:0000786_nucleosome 86 32 -9.829107 
GO:0030001_metal_ion_transport 215 32 -1.341625 
GO:0044459_plasma_membrane_part 198 30 -1.374677 
GO:0005261_cation_channel_activity 172 27 -1.450142 
GO:0007600_sensory_perception 128 22 -1.659363 
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GO:0007606_sensory_perception_of_chemical_stimulus 109 21 -2.146624 
GO:0006813_potassium_ion_transport 115 19 -1.346755 
GO:0005887_integral_to_plasma_membrane 99 17 -1.389811 
GO:0031226_intrinsic_to_plasma_membrane 100 17 -1.353741 
GO:0005244_voltage-gated_ion_channel_activity 74 14 -1.53722 
GO:0022832_voltage-gated_channel_activity 74 14 -1.53722 
GO:0001708_cell_fate_specification 57 11 -1.360515 
GO:0008076_voltage-gated_potassium_channel_complex 57 11 -1.360515 
GO:0008134_transcription_factor_binding 38 10 -2.183906 
GO:0045138_tail_tip_morphogenesis 30 8 -1.875526 
GO:0004180_carboxypeptidase_activity 31 8 -1.788655 
GO:0003702_RNA_polymerase_II_transcription_factor_ac
tivity 33 8 -1.628404 

GO:0004527_exonuclease_activity 33 8 -1.628404 
GO:0035121_tail_morphogenesis 35 8 -1.484095 
GO:0004245_neprilysin_activity 36 8 -1.417261 
GO:0008158_hedgehog_receptor_activity 30 7 -1.395202 
GO:0003712_transcription_cofactor_activity 24 6 -1.384662 
GO:0000151_ubiquitin_ligase_complex 18 5 -1.396129 
GO:0005319_lipid_transporter_activity 18 5 -1.396129 
GO:0006869_lipid_transport 18 5 -1.396129 
GO:0042692_muscle_cell_differentiation 18 5 -1.396129 
GO:0031461_cullin-RING_ubiquitin_ligase_complex 9 4 -1.935878 
GO:0030258_lipid_modification 11 4 -1.595493 
GO:0005254_chloride_channel_activity 12 4 -1.458006 
GO:0008060_ARF_GTPase_activator_activity 6 3 -1.688653 
GO:0032312_regulation_of_ARF_GTPase_activity 6 3 -1.688653 
GO:0004365_glyceraldehyde-3-
phosphate_dehydrogenase_(phosphorylating)_activity 7 3 -1.482166 

GO:0008943_glyceraldehyde-3-
phosphate_dehydrogenase_activity 7 3 -1.482166 

GO:0012502_induction_of_programmed_cell_death 7 3 -1.482166 
GO:0017145_stem_cell_division 7 3 -1.482166 
GO:0042078_germ-line_stem_cell_division 7 3 -1.482166 
GO:0003997_acyl-CoA_oxidase_activity 8 3 -1.314354 
GO:0008037_cell_recognition 8 3 -1.314354 
GO:0008038_neuron_recognition 8 3 -1.314354 

 
MDL-1/MXL-1 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0044237_cellular_metabolic_process 3372 782 -1.354231 
GO:0044238_primary_metabolic_process 3216 751 -1.54768 
GO:0043283_biopolymer_metabolic_process 1859 448 -1.817169 
GO:0044260_cellular_macromolecule_metabolic_process 1588 382 -1.563098 
GO:0043412_biopolymer_modification 771 196 -1.844939 
GO:0006464_protein_modification_process 752 189 -1.609212 
GO:0048513_organ_development 692 175 -1.619905 
GO:0043687_post-translational_protein_modification 663 173 -2.121919 
GO:0006793_phosphorus_metabolic_process 642 166 -1.905225 
GO:0006796_phosphate_metabolic_process 642 166 -1.905225 
GO:0003006_reproductive_developmental_process 594 154 -1.845748 
GO:0007548_sex_differentiation 574 149 -1.821264 
GO:0048806_genitalia_development 515 135 -1.8356 
GO:0040035_hermaphrodite_genitalia_development 511 134 -1.831034 
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GO:0009056_catabolic_process 306 83 -1.658205 
GO:0044248_cellular_catabolic_process 253 69 -1.513988 
GO:0007049_cell_cycle 248 68 -1.547044 
GO:0022402_cell_cycle_process 230 64 -1.613903 
GO:0042578_phosphoric_ester_hydrolase_activity 211 63 -2.279446 
GO:0016791_phosphoric_monoester_hydrolase_activity 185 59 -2.882965 
GO:0009057_macromolecule_catabolic_process 190 53 -1.442962 
GO:0004721_phosphoprotein_phosphatase_activity 136 49 -3.831556 
GO:0006470_protein_amino_acid_dephosphorylation 132 48 -3.877282 
GO:0016311_dephosphorylation 135 48 -3.609383 
GO:0004725_protein_tyrosine_phosphatase_activity 121 41 -2.707323 
GO:0044262_cellular_carbohydrate_metabolic_process 117 36 -1.727661 
GO:0031090_organelle_membrane 122 36 -1.457538 
GO:0000278_mitotic_cell_cycle 113 33 -1.31864 
GO:0007369_gastrulation 81 29 -2.460716 
GO:0016052_carbohydrate_catabolic_process 70 24 -1.874941 
GO:0045137_development_of_primary_sexual_characteri
stics 77 24 -1.376469 

GO:0001703_gastrulation_with_mouth_forming_first 60 23 -2.481713 
GO:0044275_cellular_carbohydrate_catabolic_process 67 23 -1.82474 
GO:0006732_coenzyme_metabolic_process 60 21 -1.808086 
GO:0007051_spindle_organization_and_biogenesis 64 21 -1.490998 
GO:0007052_mitotic_spindle_organization_and_biogenesi
s 58 20 -1.672808 

GO:0016810_hydrolase_activity__acting_on_carbon-
nitrogen_(but_not_peptide)_bonds 59 20 -1.591394 

GO:0005976_polysaccharide_metabolic_process 53 19 -1.797553 
GO:0044264_cellular_polysaccharide_metabolic_process 53 19 -1.797553 
GO:0006030_chitin_metabolic_process 45 17 -1.898321 
GO:0006040_amino_sugar_metabolic_process 47 17 -1.698556 
GO:0006041_glucosamine_metabolic_process 47 17 -1.698556 
GO:0006044_N-acetylglucosamine_metabolic_process 47 17 -1.698556 
GO:0032940_secretion_by_cell 50 17 -1.435095 
GO:0045045_secretory_pathway 35 14 -1.880192 
GO:0005819_spindle 33 13 -1.71929 
GO:0000272_polysaccharide_catabolic_process 36 13 -1.40043 
GO:0004568_chitinase_activity 36 13 -1.40043 
GO:0006032_chitin_catabolic_process 36 13 -1.40043 
GO:0006043_glucosamine_catabolic_process 36 13 -1.40043 
GO:0006046_N-acetylglucosamine_catabolic_process 36 13 -1.40043 
GO:0044247_cellular_polysaccharide_catabolic_process 36 13 -1.40043 
GO:0046348_amino_sugar_catabolic_process 36 13 -1.40043 
GO:0031966_mitochondrial_membrane 33 12 -1.348288 
GO:0005743_mitochondrial_inner_membrane 27 11 -1.635954 
GO:0006887_exocytosis 17 9 -2.271112 
GO:0048489_synaptic_vesicle_transport 18 9 -2.064008 
GO:0008287_protein_serine_threonine_phosphatase_co
mplex 14 8 -2.326366 

GO:0009064_glutamine_family_amino_acid_metabolic_pr
ocess 17 8 -1.695716 

GO:0007283_spermatogenesis 11 7 -2.436139 
GO:0048232_male_gamete_generation 11 7 -2.436139 
GO:0009072_aromatic_amino_acid_family_metabolic_pro
cess 13 7 -1.903167 

GO:0009451_RNA_modification 13 7 -1.903167 
GO:0016903_oxidoreductase_activity__acting_on_the_ald 15 7 -1.510283 
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ehyde_or_oxo_group_of_donors 
GO:0006904_vesicle_docking_during_exocytosis 8 6 -2.663235 
GO:0007218_neuropeptide_signaling_pathway 9 6 -2.276422 
GO:0022406_membrane_docking 9 6 -2.276422 
GO:0048278_vesicle_docking 9 6 -2.276422 
GO:0006084_acetyl-CoA_metabolic_process 13 6 -1.321925 
GO:0009109_coenzyme_catabolic_process 13 6 -1.321925 
GO:0012506_vesicle_membrane 13 6 -1.321925 
GO:0051187_cofactor_catabolic_process 13 6 -1.321925 
GO:0046546_development_of_primary_male_sexual_char
acteristics 7 5 -2.127406 

GO:0046661_male_sex_differentiation 7 5 -2.127406 
GO:0004722_protein_serine_threonine_phosphatase_acti
vity 8 5 -1.788679 

GO:0016638_oxidoreductase_activity__acting_on_the_C
H-NH2_group_of_donors 8 5 -1.788679 

GO:0043073_germ_cell_nucleus 8 5 -1.788679 
GO:0007200_G-
protein_signaling__coupled_to_IP3_second_messenger_(
phospholipase_C_activating) 

9 5 -1.52306 

GO:0030120_vesicle_coat 9 5 -1.52306 
GO:0030659_cytoplasmic_vesicle_membrane 9 5 -1.52306 
GO:0030662_coated_vesicle_membrane 9 5 -1.52306 
GO:0042770_DNA_damage_response__signal_transducti
on 9 5 -1.52306 

GO:0006402_mRNA_catabolic_process 10 5 -1.307886 
GO:0009110_vitamin_biosynthetic_process 10 5 -1.307886 
GO:0042364_water-soluble_vitamin_biosynthetic_process 10 5 -1.307886 
GO:0030976_thiamin_pyrophosphate_binding 5 4 -2.003957 
GO:0004448_isocitrate_dehydrogenase_activity 6 4 -1.610647 
GO:0006917_induction_of_apoptosis 6 4 -1.610647 
GO:0008060_ARF_GTPase_activator_activity 6 4 -1.610647 
GO:0008629_induction_of_apoptosis_by_intracellular_sig
nals 6 4 -1.610647 

GO:0008630_DNA_damage_response__signal_transducti
on_resulting_in_induction_of_apoptosis 6 4 -1.610647 

GO:0016211_ammonia_ligase_activity 6 4 -1.610647 
GO:0016641_oxidoreductase_activity__acting_on_the_C
H-NH2_group_of_donors__oxygen_as_acceptor 6 4 -1.610647 

GO:0016880_acid-ammonia_(or_amide)_ligase_activity 6 4 -1.610647 
GO:0032312_regulation_of_ARF_GTPase_activity 6 4 -1.610647 
GO:0012502_induction_of_programmed_cell_death 7 4 -1.325617 
GO:0030728_ovulation 7 4 -1.325617 
GO:0051087_chaperone_binding 7 4 -1.325617 
GO:0051932_synaptic_transmission__GABAergic 7 4 -1.325617 

 
MXL-3 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0003674_molecular_function 8423 586 -3.089456 
GO:0009987_cellular_process 4977 357 -2.00616 
GO:0008152_metabolic_process 4176 315 -3.17905 
GO:0003824_catalytic_activity 3551 303 -8.077067 
GO:0044237_cellular_metabolic_process 3372 258 -2.878978 
GO:0044238_primary_metabolic_process 3216 247 -2.84082 
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GO:0043283_biopolymer_metabolic_process 1859 140 -1.429268 
GO:0044260_cellular_macromolecule_metabolic_process 1588 124 -1.729896 
GO:0019538_protein_metabolic_process 1591 122 -1.493006 
GO:0044267_cellular_protein_metabolic_process 1536 121 -1.806387 
GO:0016740_transferase_activity 1098 92 -2.125625 
GO:0017076_purine_nucleotide_binding 1136 90 -1.504063 
GO:0032553_ribonucleotide_binding 1066 85 -1.50373 
GO:0032555_purine_ribonucleotide_binding 1066 85 -1.50373 
GO:0043412_biopolymer_modification 771 80 -4.669794 
GO:0030554_adenyl_nucleotide_binding 976 80 -1.692051 
GO:0006464_protein_modification_process 752 78 -4.557738 
GO:0043687_post-translational_protein_modification 663 75 -5.747817 
GO:0005524_ATP_binding 916 75 -1.605281 
GO:0032559_adenyl_ribonucleotide_binding 917 75 -1.595624 
GO:0006793_phosphorus_metabolic_process 642 72 -5.398527 
GO:0006796_phosphate_metabolic_process 642 72 -5.398527 
GO:0016772_transferase_activity__transferring_phosphor
us-containing_groups 622 66 -4.222939 

GO:0016301_kinase_activity 531 56 -3.590667 
GO:0016773_phosphotransferase_activity__alcohol_grou
p_as_acceptor 505 51 -2.891475 

GO:0016491_oxidoreductase_activity 566 51 -1.906936 
GO:0016310_phosphorylation 497 50 -2.809528 
GO:0006468_protein_amino_acid_phosphorylation 444 46 -2.883955 
GO:0004672_protein_kinase_activity 452 46 -2.726625 
GO:0016788_hydrolase_activity__acting_on_ester_bonds 426 44 -2.755887 
GO:0004674_protein_serine_threonine_kinase_activity 411 42 -2.56907 
GO:0009056_catabolic_process 306 33 -2.488363 
GO:0004713_protein-tyrosine_kinase_activity 324 33 -2.112419 
GO:0044248_cellular_catabolic_process 253 30 -2.93866 
GO:0042578_phosphoric_ester_hydrolase_activity 211 29 -3.932518 
GO:0016791_phosphoric_monoester_hydrolase_activity 185 27 -4.147818 
GO:0006082_organic_acid_metabolic_process 196 24 -2.645986 
GO:0019752_carboxylic_acid_metabolic_process 196 24 -2.645986 
GO:0005975_carbohydrate_metabolic_process 222 24 -1.96814 
GO:0006629_lipid_metabolic_process 233 23 -1.490568 
GO:0006807_nitrogen_compound_metabolic_process 159 22 -3.163177 
GO:0048037_cofactor_binding 205 22 -1.8133 
GO:0004721_phosphoprotein_phosphatase_activity 136 21 -3.698753 
GO:0006519_amino_acid_and_derivative_metabolic_proc
ess 148 21 -3.190354 

GO:0009308_amine_metabolic_process 155 21 -2.92632 
GO:0006470_protein_amino_acid_dephosphorylation 132 20 -3.439131 
GO:0016311_dephosphorylation 135 20 -3.309118 
GO:0006520_amino_acid_metabolic_process 129 19 -3.140481 
GO:0044265_cellular_macromolecule_catabolic_process 164 18 -1.662259 
GO:0004725_protein_tyrosine_phosphatase_activity 121 16 -2.256424 
GO:0050662_coenzyme_binding 138 16 -1.731733 
GO:0016874_ligase_activity 146 16 -1.526701 
GO:0019842_vitamin_binding 93 13 -2.12724 
GO:0006066_alcohol_metabolic_process 102 13 -1.803936 
GO:0044262_cellular_carbohydrate_metabolic_process 117 13 -1.369208 
GO:0016853_isomerase_activity 66 12 -2.96938 
GO:0016879_ligase_activity__forming_carbon-
nitrogen_bonds 87 11 -1.577763 

GO:0005739_mitochondrion 80 10 -1.446673 
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GO:0019318_hexose_metabolic_process 48 9 -2.44917 
GO:0005996_monosaccharide_metabolic_process 49 9 -2.386439 
GO:0007267_cell-cell_signaling 70 9 -1.413975 
GO:0019787_small_conjugating_protein_ligase_activity 48 8 -1.919635 
GO:0016881_acid-amino_acid_ligase_activity 58 8 -1.461532 
GO:0008652_amino_acid_biosynthetic_process 22 6 -2.629088 
GO:0009310_amine_catabolic_process 28 6 -2.071815 
GO:0044270_nitrogen_compound_catabolic_process 28 6 -2.071815 
GO:0009309_amine_biosynthetic_process 31 6 -1.853287 
GO:0015669_gas_transport 31 6 -1.853287 
GO:0015671_oxygen_transport 31 6 -1.853287 
GO:0044271_nitrogen_compound_biosynthetic_process 31 6 -1.853287 
GO:0019825_oxygen_binding 32 6 -1.787191 
GO:0016616_oxidoreductase_activity__acting_on_the_C
H-OH_group_of_donors__NAD_or_NADP_as_acceptor 40 6 -1.351449 

GO:0009072_aromatic_amino_acid_family_metabolic_pro
cess 13 5 -3.004165 

GO:0009064_glutamine_family_amino_acid_metabolic_pr
ocess 17 5 -2.417648 

GO:0004842_ubiquitin-protein_ligase_activity 23 5 -1.824064 
GO:0009063_amino_acid_catabolic_process 24 5 -1.746082 
GO:0000287_magnesium_ion_binding 28 5 -1.475464 
GO:0006512_ubiquitin_cycle 28 5 -1.475464 
GO:0016860_intramolecular_oxidoreductase_activity 12 4 -2.225699 
GO:0008287_protein_serine_threonine_phosphatase_co
mplex 14 4 -1.965503 

GO:0042692_muscle_cell_differentiation 18 4 -1.570768 
GO:0048489_synaptic_vesicle_transport 18 4 -1.570768 
GO:0030151_molybdenum_ion_binding 5 3 -2.594352 
GO:0030976_thiamin_pyrophosphate_binding 5 3 -2.594352 
GO:0004448_isocitrate_dehydrogenase_activity 6 3 -2.314997 
GO:0016861_intramolecular_oxidoreductase_activity__int
erconverting_aldoses_and_ketoses 7 3 -2.093556 

GO:0004722_protein_serine_threonine_phosphatase_acti
vity 8 3 -1.910956 

GO:0019319_hexose_biosynthetic_process 10 3 -1.622765 
GO:0031625_ubiquitin_protein_ligase_binding 10 3 -1.622765 
GO:0046165_alcohol_biosynthetic_process 10 3 -1.622765 
GO:0046364_monosaccharide_biosynthetic_process 10 3 -1.622765 
GO:0006099_tricarboxylic_acid_cycle 11 3 -1.505743 
GO:0007283_spermatogenesis 11 3 -1.505743 
GO:0009060_aerobic_respiration 11 3 -1.505743 
GO:0009084_glutamine_family_amino_acid_biosynthetic_
process 11 3 -1.505743 

GO:0045333_cellular_respiration 11 3 -1.505743 
GO:0046356_acetyl-CoA_catabolic_process 11 3 -1.505743 
GO:0048232_male_gamete_generation 11 3 -1.505743 
GO:0006071_glycerol_metabolic_process 13 3 -1.309177 
GO:0006084_acetyl-CoA_metabolic_process 13 3 -1.309177 
GO:0009109_coenzyme_catabolic_process 13 3 -1.309177 
GO:0019751_polyol_metabolic_process 13 3 -1.309177 
GO:0051187_cofactor_catabolic_process 13 3 -1.309177 
GO:0006072_glycerol-3-phosphate_metabolic_process 5 2 -1.424391 
GO:0006094_gluconeogenesis 5 2 -1.424391 
GO:0006560_proline_metabolic_process 5 2 -1.424391 
GO:0007026_negative_regulation_of_microtubule_depoly 5 2 -1.424391 
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merization 
GO:0009374_biotin_binding 5 2 -1.424391 
GO:0016854_racemase_and_epimerase_activity 5 2 -1.424391 
GO:0030055_cell-substrate_junction 5 2 -1.424391 
GO:0031110_regulation_of_microtubule_polymerization_o
r_depolymerization 5 2 -1.424391 

GO:0031111_negative_regulation_of_microtubule_polyme
rization_or_depolymerization 5 2 -1.424391 

GO:0031114_regulation_of_microtubule_depolymerization 5 2 -1.424391 
GO:0032886_regulation_of_microtubule-based_process 5 2 -1.424391 

 
REF-1 
GO CATEGORY TOTAL 

GENES 
TARGET 
GENES LOG10(p) 

GO:0003674_molecular_function 8423 470 -1.804929 
GO:0009987_cellular_process 4977 295 -2.213976 
GO:0008152_metabolic_process 4176 259 -3.06592 
GO:0003824_catalytic_activity 3551 249 -7.22154 
GO:0044237_cellular_metabolic_process 3372 207 -2.145293 
GO:0044238_primary_metabolic_process 3216 199 -2.216952 
GO:0044260_cellular_macromolecule_metabolic_process 1588 102 -1.645129 
GO:0019538_protein_metabolic_process 1591 100 -1.398088 
GO:0044267_cellular_protein_metabolic_process 1536 99 -1.644548 
GO:0016787_hydrolase_activity 1451 94 -1.633452 
GO:0000166_nucleotide_binding 1283 86 -1.867948 
GO:0017076_purine_nucleotide_binding 1136 80 -2.280431 
GO:0032553_ribonucleotide_binding 1066 75 -2.154812 
GO:0032555_purine_ribonucleotide_binding 1066 75 -2.154812 
GO:0016740_transferase_activity 1098 75 -1.859755 
GO:0030554_adenyl_nucleotide_binding 976 71 -2.403511 
GO:0005524_ATP_binding 916 66 -2.172803 
GO:0032559_adenyl_ribonucleotide_binding 917 66 -2.16232 
GO:0006464_protein_modification_process 752 61 -3.230948 
GO:0043412_biopolymer_modification 771 61 -2.959117 
GO:0043687_post-translational_protein_modification 663 60 -4.485026 
GO:0006793_phosphorus_metabolic_process 642 58 -4.32935 
GO:0006796_phosphate_metabolic_process 642 58 -4.32935 
GO:0016772_transferase_activity__transferring_phosphor
us-containing_groups 622 56 -4.155174 

GO:0016301_kinase_activity 531 48 -3.67278 
GO:0016773_phosphotransferase_activity__alcohol_grou
p_as_acceptor 505 43 -2.819066 

GO:0016310_phosphorylation 497 41 -2.463102 
GO:0006468_protein_amino_acid_phosphorylation 444 37 -2.344385 
GO:0004672_protein_kinase_activity 452 37 -2.219881 
GO:0004674_protein_serine_threonine_kinase_activity 411 34 -2.149186 
GO:0016788_hydrolase_activity__acting_on_ester_bonds 426 33 -1.709584 
GO:0004713_protein-tyrosine_kinase_activity 324 29 -2.369058 
GO:0009056_catabolic_process 306 24 -1.42908 
GO:0044248_cellular_catabolic_process 253 22 -1.789953 
GO:0006082_organic_acid_metabolic_process 196 21 -2.752497 
GO:0019752_carboxylic_acid_metabolic_process 196 21 -2.752497 
GO:0042578_phosphoric_ester_hydrolase_activity 211 20 -2.050702 
GO:0016791_phosphoric_monoester_hydrolase_activity 185 19 -2.338912 
GO:0005975_carbohydrate_metabolic_process 222 19 -1.551421 
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GO:0006807_nitrogen_compound_metabolic_process 159 17 -2.322239 
GO:0048037_cofactor_binding 205 17 -1.329747 
GO:0006520_amino_acid_metabolic_process 129 16 -2.869336 
GO:0006519_amino_acid_and_derivative_metabolic_proc
ess 148 16 -2.262837 

GO:0009308_amine_metabolic_process 155 16 -2.073021 
GO:0006470_protein_amino_acid_dephosphorylation 132 15 -2.354375 
GO:0016311_dephosphorylation 135 15 -2.263178 
GO:0004721_phosphoprotein_phosphatase_activity 136 15 -2.233571 
GO:0050662_coenzyme_binding 138 13 -1.487841 
GO:0016874_ligase_activity 146 13 -1.320522 
GO:0004725_protein_tyrosine_phosphatase_activity 121 12 -1.55863 
GO:0016853_isomerase_activity 66 9 -2.098082 
GO:0007267_cell-cell_signaling 70 8 -1.494461 
GO:0008238_exopeptidase_activity 53 7 -1.665565 
GO:0019787_small_conjugating_protein_ligase_activity 48 6 -1.38735 
GO:0000287_magnesium_ion_binding 28 5 -1.824216 
GO:0004180_carboxypeptidase_activity 31 5 -1.643159 
GO:0008235_metalloexopeptidase_activity 32 5 -1.588209 
GO:0016860_intramolecular_oxidoreductase_activity 12 4 -2.552078 
GO:0009072_aromatic_amino_acid_family_metabolic_pro
cess 13 4 -2.410895 

GO:0042692_muscle_cell_differentiation 18 4 -1.87151 
GO:0004181_metallocarboxypeptidase_activity 21 4 -1.634926 
GO:0004182_carboxypeptidase_A_activity 21 4 -1.634926 
GO:0008652_amino_acid_biosynthetic_process 22 4 -1.56595 
GO:0022603_regulation_of_anatomical_structure_morpho
genesis 23 4 -1.50111 

GO:0009063_amino_acid_catabolic_process 24 4 -1.440023 
GO:0016861_intramolecular_oxidoreductase_activity__int
erconverting_aldoses_and_ketoses 7 3 -2.34803 

GO:0019319_hexose_biosynthetic_process 10 3 -1.865066 
GO:0046165_alcohol_biosynthetic_process 10 3 -1.865066 
GO:0046364_monosaccharide_biosynthetic_process 10 3 -1.865066 
GO:0016564_transcription_repressor_activity 12 3 -1.636335 
GO:0016323_basolateral_plasma_membrane 14 3 -1.451959 
GO:0005912_adherens_junction 15 3 -1.372121 
GO:0004555_alpha_alpha-trehalase_activity 5 2 -1.593966 
GO:0006094_gluconeogenesis 5 2 -1.593966 
GO:0007143_female_meiosis 5 2 -1.593966 
GO:0009374_biotin_binding 5 2 -1.593966 
GO:0015927_trehalase_activity 5 2 -1.593966 
GO:0030055_cell-substrate_junction 5 2 -1.593966 
GO:0030151_molybdenum_ion_binding 5 2 -1.593966 
GO:0030976_thiamin_pyrophosphate_binding 5 2 -1.593966 
GO:0006090_pyruvate_metabolic_process 6 2 -1.433319 
GO:0007050_cell_cycle_arrest 6 2 -1.433319 
GO:0008360_regulation_of_cell_shape 6 2 -1.433319 
GO:0045747_positive_regulation_of_Notch_signaling_pat
hway 6 2 -1.433319 

GO:0048500_signal_recognition_particle 6 2 -1.433319 
GO:0005759_mitochondrial_matrix 7 2 -1.30256 
GO:0005984_disaccharide_metabolic_process 7 2 -1.30256 
GO:0005991_trehalose_metabolic_process 7 2 -1.30256 
GO:0006563_L-serine_metabolic_process 7 2 -1.30256 
GO:0009070_serine_family_amino_acid_biosynthetic_pro 7 2 -1.30256 
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cess 
GO:0031980_mitochondrial_lumen 7 2 -1.30256 
GO:0033205_cytokinesis_during_cell_cycle 7 2 -1.30256 
GO:0043057_backward_locomotion 7 2 -1.30256 
GO:0046546_development_of_primary_male_sexual_char
acteristics 7 2 -1.30256 

GO:0046661_male_sex_differentiation 7 2 -1.30256 
GO:0051932_synaptic_transmission__GABAergic 7 2 -1.30256 
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PREFACE TO CHAPTER V 

This chapter describes an integrated network of C. elegans bHLH dimers 

with their associated TF parameters: dimerization, spatiotemporal expression, 

DNA binding specificity, and functional annotation. Analysis of the network 

reveals that, despite similarities in individual parameters, individual bHLH 

proteins and dimers are quite distinct from one another when many parameters 

are considered. 

Much of this chapter has been published separately in: 

Grove C. A., De Masi F., Barrasa M. I., Newburger D. E., Alkema M. J., Bulyk M. 
L., Walhout A. J. M. A multiparameter network reveals extensive divergence 
between C. elegans bHLH transcription factors. Cell. 2009 Jul 23; 138(2): 314-
327. 
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CHAPTER V 

 

A Multiparameter Integrated Network of C. elegans bHLH 

Transcription Factors 
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Abstract 

We have combined the data presented in the previous chapters for 

dimerization, spatiotemporal expression, and DNA binding specificity of the C. 

elegans bHLH TFs combined with the lists of candidate target genes and 

predicted functional annotations into a single, integrated network. As described in 

Chapter I, such integrated networks will likely provide important insight into the 

functionality of TFs, transcription regulatory networks, and perhaps other protein 

families and their relevant networks as well. In this chapter, we describe some 

features of the integrated network, and provide in vivo support for our network by 

identifying target genes of HLH-30 by assessing the gene expression profile of 

an hlh-30 deletion mutant. Additionally we calculate similarity scores for each 

bHLH-bHLH pair and TF parameter to measure the extent to which the bHLH 

TFs in C. elegans have diverged from each other. 
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Introduction 

 The incorporation of multiple TF parameters into transcription regulatory 

networks (TRNs) can provide clarity and understanding of such networks, not 

only because of the cognitive simplicity of viewing data in this manner, but also 

because different data types are often so reliant on each other. For example, 

determination of the DNA binding specificities of the bHLH TFs from C. elegans 

required knowledge of which bHLH proteins dimerize with which other bHLH 

proteins. Without such knowledge, biochemistry of individual bHLH dimer-

complexes would be difficult, if not impossible. Thus, the incorporation of 

dimerization specificity is crucial to approaching the question of systematic bHLH 

DNA binding specificity determination. Likewise, understanding which bHLH 

dimers form requires knowledge of when and where different bHLH proteins are 

co-expressed, since two bHLH proteins could form strong dimers in vitro (or, in 

our case, in the yeast two hybrid system), but if they never encounter each other 

in vivo, the dimer will be non-existent and, hence, irrelevant. 

 Although our datasets end with spatiotemporal analysis, it is reasonable to 

suggest that complete understanding of spatiotemporal expression requires the 

knowledge of post-transcriptional gene regulation, among, perhaps, other 

aspects of gene function and regulation. Our data do, however, provide a 

substantial step towards the systematic determination of how various TF 

parameters contribute to the functionality of TFs in a family-wide manner. 
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 To test the integrity of the information provided by the network, we have 

performed microarray analysis of the gene expression profile of C. elegans 

mutants in which the bHLH-domain-encoding portion of the hlh-30 locus has 

been deleted, presumably rendering the HLH-30 protein non-functional, at least 

with respect to the DNA binding properties of the protein. We chose hlh-30 

because it is expressed strongly in the intestine of the worm for most of its life, 

and since the intestine is the largest organ volumetrically, we considered it a 

good candidate for studying the effects of its loss. Overall gene expression 

changes assessed by total RNA from worms in which the mutation affects only a 

small portion of the total RNA may be more difficult to detect. Our dimerization, 

spatiotemporal expression, and DNA binding data suggest that HLH-30 functions 

as a homodimer predominately in the intestine, spermatheca, vulva, and to a 

lesser extent in muscle, hypodermis, pharynx, and small number of neurons. Our 

data also indicate that HLH-30 likely targets genes predominately involved in 

metabolism (lipid metabolism and amino acid metabolism), signaling (kinase and 

phosphatase activity), and reproduction (oogenesis, spermatogenesis). The 

results of the microarray, as explained below, support our predictions of target 

genes for HLH-30, both in terms of the actual target genes as well as the 

enriched Gene Ontology (GO) terms, providing in vivo support for our network. 

 The ultimate goal of this work has been to determine the extent to which 

the C. elegans bHLH TFs have functionally diverged from each other with 

respect to various TF parameters. To assess the degree to which any bHLH TF 
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is distinct from all other bHLH TFs, we formulated a simple calculation, called a 

Similarity Score (SS), to measure overlap in parameter associations. This score 

is simply the overlap in the number of parameter associations divided by the 

union of all parameter associations exhibited by both TFs. We find that, although 

many of the C. elegans bHLH TFs are apparently similar in one or more 

parameters, they are actually quite distinct. This is most obvious when we 

compare lists of predicted target genes for bHLH TFs that initially appear to have 

very similar DNA binding specificities. The target genes of several bHLH TFs that 

bind to CACGTG E-Boxes were compared and found predominately to be distinct 

from one another (SS < ~0.30). This distinction in target genes as a result of 

apparently subtle DNA binding specificities could help explain how various TFs 

from the same family can achieve distinct biological functions despite their 

molecular similarities. 
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Results 

An Integrated bHLH Dimerization, DNA Binding and Expression Network 

We assembled all separately measured functional bHLH parameters into 

the first integrated network for any TF family, combining dimerization, 

spatiotemporal expression patterns, DNA binding specificities, and enriched GO 

annotations of candidate target genes (Figure V-1). 

 As discussed in previous chapters, all the nodes, i.e. dimers, tissues and 

DNA binding sequences, exhibit specificity and promiscuity in this network. In 

addition, we observed specificity and promiscuity for the different GO categories: 

some are associated with few bHLH dimers, whereas others are associated with 

many. For instance, “cell division” is associated only with MDL-1/MXL-1 and 

HLH-25, whereas “development” is associated with 11 different dimers (Figure V-

1). Conversely, some bHLH dimers are associated with few categories, whereas 

others are associated with many; HLH-1 is connected solely to “development”, 

but HLH-25 is connected to nine different GO terms. However, it is important to 

note that “development” can be divided into “embryonic development”, “larval 

development” and several other terms that exhibit only partial overlap between 

different bHLH dimers. Similarly, “signaling”, “metabolism” and “reproduction” can 

be divided into more specific terms that enable the further differentiation between 

distinct bHLH dimers (Figure V-2 and Figure V-10).   
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HLH-30: in vivo Validation of the Network 

To assess the validity of our integrated network, we focused on HLH-30, 

for which we had a viable deletion mutant available [hlh-30(tm1978)]. HLH-30 is 

strongly expressed in the intestine and weakly in other tissues (Figure V-3). This 

enables the identification of downstream target genes by expression profiling in 

vivo (i.e. this would be more difficult for bHLH TFs that exhibit more restricted 

expression patterns). RNAi knockdown of hlh-30 leads to a reduced fat 

phenotype (162). Our integrated bHLH network contains a unique path that 

connects HLH-30 to the intestine, the main organ of fat storage, and to the GO 

categories “metabolism”, “reproduction” and “signaling” (Figure V-1). HLH-30 

specifically binds CACGTG E-boxes, and favors a flanking 5’ T (Figure V-4). This 

leads to the prediction that HLH-30 regulates (fat) metabolism in the intestine by 

binding target genes that contain HLH-30-bound CACGTG E-boxes in their 

promoter. 

 To test this prediction, we performed gene expression profiling of wild type 

and hlh-30(tm1978) mutant animals and compared the resulting expression data. 

We identified 134 genes that were significantly differentially expressed: 122 

exhibited decreased, and 12 exhibited increased expression in the mutant 

(Figure V-5, Table V-1). This suggests that HLH-30 is primarily a transcriptional 

activator, which is in agreement with our observation that it is a strong auto-

activator in Y2H assays (Figure II-1). We refer to all genes that change in 

expression in the hlh-30(tm1978) mutant as “HLH-30 target genes”, although 
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some may change in expression due to indirect effects rather than direct 

regulation by HLH-30. 

 HLH-30 target genes more frequently possess an HLH-30 binding site in 

500 bp promoter sequences than non-target genes (Figure V-6; Fisher’s exact 

test p = 1.9 x 10-9). The consistency between the PBM-derived and 

experimentally identified HLH-30 target genes supports our overall approach for 

identifying candidate bHLH target genes using PBM data. When we searched 

genomic sequences downstream of the transcriptional start, we also observed an 

increase in HLH-30 binding sites in targets versus non-targets, albeit less 

significantly (Figure V-7; Fisher’s exact test p = 0.007). Finally, we found that 

HLH-30 targets significantly more frequently possess multiple HLH-30 binding 

sites than non-targets (Figure V-8, chi-square test p = 2.2 x 10-16). 

 Next, we examined the experimentally determined HLH-30 target genes 

for over-represented GO terms, and found enrichment for various metabolic, as 

well as aging terms (Table V-2). Interestingly, the human ortholog of HLH-30, 

TFE3, has been reported to activate metabolic genes through E-boxes as well 

(111). This suggests that both the molecular and biological functions of HLH-30 

are evolutionarily conserved. 

 We have likely underestimated the number of in vivo HLH-30 target genes 

because only changes in genes that are broadly or highly expressed can be 

detected in whole animal gene expression analysis. Thus, it is more difficult to 

evaluate the association of HLH-30 with the GO term "reproduction" even though 
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Phlh-30 drives expression in the spermatheca and the vulva (Figure V-3). 

Nevertheless, the whole animal gene expression analysis does provide support 

for our overall method and approach. 

Multiparameter Analysis of bHLH TFs – Similarity Scores 

To examine the overall extent to which bHLH TFs differ from each other 

we compared all possible 861 bHLH-bHLH pairs. We derived a Similarity Score 

(SS) for each pair and for each parameter (Figure V-9), clustered the bHLH TFs 

and dimers according to these scores, and visualized these as heat maps, 

resulting in one heat map per parameter (Figure V-10). We observed that for 

each parameter the majority of the pairs have a low SS. For instance, more than 

80% of the bHLH-bHLH pairs share fewer than 25% of their target genes (Figure 

V-9). We observed the lowest degree of divergence in spatial expression; 

however, this is likely because not all expression could be resolved to the level of 

individual cells. 

HLH-4, HLH-10, HLH-15, and HLH-19 – A Closer Look 

 Several bHLH-bHLH pairs are more similar in one or more parameter than 

most other pairs. A sub-network of the most similar bHLH TFs is shown in Figure 

V-11. These all share HLH-2 as their dimerization partner and, for clarity, 

heterodimers are depicted as single nodes. The parameter comparisons among 

these dimers are provided in Figure V-12. Several observations can be made 

from this analysis. First, several tissues and GO categories can be connected by 

paths that go through these different dimers. For instance, head neurons can be 
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connected to sensory perception via both HLH-2/HLH-4 and HLH-2/HLH10. We 

refer to such similar connections as “network paths”. In fact, we found that HLH-4 

and HLH-10 share ~40% of their network paths in the integrated network (SS = 

0.43, Figure V-1). This suggests that they may be highly similar in various TF 

parameters. Indeed, they share more than 50% of each of the parameters 

measured (SS = 0.52 – 0.67, Figure V-12). HLH-15 and HLH-19 also share 

~40% of their network paths in the integrated network (SS = 0.4, Figure V-1). 

These two dimers connect head and tail neurons to chromatin. Surprisingly, in 

this case they are quite divergent in each of the individual parameters. In fact, 

they share fewer than 10% of their predicted target genes (SS = 0.06, Figure V-

12). This means that HLH-4 and HLH-10 may regulate an overlapping set of 

target genes in head neurons to control sensory perception, whereas HLH-15 

and HLH-19 may regulate different sets of chromatin genes in (developing) head 

neurons. The annotation “head neurons” is very broad as there are ~200 different 

neurons comprising this category. Therefore, we further refined the expression 

annotations of HLH-4, HLH-10 and HLH-15 (the expression of HLH-19 

diminishes after the animals hatch and could not be annotated in more detail). 

We found that HLH-4 and HLH-10 may be expressed in a similar set of neurons, 

whereas the expression of HLH-15 is clearly distinct (Figure V-13). This supports 

the hypothesis that HLH-4 and HLH-10 may share target genes in the same 

cell(s). 
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 HLH-4 and HLH-15 confer different loss-of-function phenotypes: RNAi of 

hlh-15 results in high fat content (162), but no other detectable phenotype, and 

RNAi of hlh-4 results in slow growth and protruding vulva (163). These two TFs 

share almost 25% of their DNA binding sites (SS = 0.24) but less than 5% of their 

candidate target genes (SS = 0.01), most likely because HLH-2/HLH-4 has a 

broader DNA binding specificity than HLH-2/HLH15. In addition, HLH-4 and HLH-

15 are expressed in distinct neurons (Figure V-13). This indicates that the 

functional divergence of these two bHLH TFs is likely accomplished by relatively 

small changes in spatiotemporal expression and DNA binding specificities.  

 Even though the bHLH TFs shown in Figure V-11 exhibit a relatively high 

degree of similarity, there are also important differences that can contribute to TF 

divergence. For instance, of the four bHLH dimers shown, only one is expressed 

in the vulva (HLH-2/HLH-10). Similarly, only two of the dimers are expressed in 

later stages of development (HLH-2/HLH-4 and HLH-2/HLH-10), whereas the 

other two are exclusively expressed during embryogenesis and in the first larval 

stage (Figure III-3, III-4, Table III-5). 

Target Gene Overlap of CACGTG-Binding bHLH Dimers 

 Finally, we analyzed molecular and functional divergence among a set of 

bHLH dimers that can all bind the CACGTG E-box. Three of these dimers 

exclusively bind this E-box (HLH-30, HLH-26 and REF-1) whereas the others 

(HLH-2/HLH-10, MXL-3, HLH-25 and MDL-1/MXL-1) also bind other E-box 

and/or E-box-like sequences (Figure IV-6A, IV-6B). Interestingly, we find little 
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overlap between these different dimers in their candidate target genes (Figure V-

14). This indicates that several of these dimers may utilize multiple different E-

box and E-box-like sequences in their target genes and that target genes may 

discriminate bHLH dimers by harboring different combinations of E-box and E-

box-like sequences. Even for dimers that exclusively bind the CACGTG E-box, 

we find little overlap in their candidate target genes. Indeed, HLH-30 favors a 

flanking T, HLH-26 favors an A or G and REF-1 disfavors a T, indicating that 

flanking nucleotides may play an important role in functional TF divergence. 

Finally, the pair that shares the largest proportion of predicted target genes, REF-

1 and MXL-3, exhibits non-overlapping spatiotemporal expression patterns, 

which likely contributes to their functional divergence (Table III-4). 

Parameter Similarity Score Heatmaps 

To visualize the pairwise bHLH similarity score analysis, we generated 

similarity score heatmaps for each parameter (Figure V-10). Yellow boxes 

indicate a high degree of similarity (SS ~ 1.0) for each parameter/bHLH-bHLH 

pair combination, black indicates intermediate similarity (SS ~0.5) and light blue 

indicates no similarity (SS ~ 0). As you can see from the heatmaps, most bHLH-

bHLH pairs are quite distinct from each other. The large yellow blocks in the 

dimerization heatmap are a reflection of several bHLH proteins sharing HLH-2 or 

AHA-1 as a dimerization partner. 
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DISCUSSION 

 We present the first integrated network for any TF family that provides 

connections between proteins, the tissues in which they are expressed, the DNA 

sequences they preferentially bind, their candidate target genes and enriched 

GO categories associated with these target genes. Several observations indicate 

that our individual TF parameter datasets are of high quality, and most 

importantly, each of the different datasets validate each other. For instance, PBM 

assays with five combinations of bHLH proteins that did not heterodimerize in 

Y2H assays did not yield any specific DNA binding motifs (Figure IV-13). This 

indicates that PBMs validate Y2H, and vice versa. Similarly, the observation that 

bHLH proteins that dimerize are more likely co-expressed than those that do not 

dimerize validates the Y2H data. 

 The integrated bHLH network is likely not yet complete. For instance, we 

used only bHLH promoter activity, and did not include other potential regulatory 

sequences. In addition, we did not annotate bHLH expression in males or 

dauers, or under different conditions. Finally, for future models of gene regulation 

it will be important to incorporate expression levels of different bHLHs in different 

cell types, because protein levels will determine the binding to high or low affinity 

binding sites, and, hence the selection of tissue-specific target genes. 

 Previously, two other integrated networks were reported for C. elegans 

genes. The first connects genes involved in early embryogenesis by protein-

protein interactions, phenotypes and expression profiles (164). The second is a 
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probabilistic network that used various data types and that can be used to predict 

genetic interactions (165). Although powerful, neither network focused on TFs or 

provided interactions between proteins, DNA sequences, and tissues or cell 

types, and therefore could not address the question of divergence in paralogous 

TF families. 

 A priori, we reasoned that paralogous TFs could attain functional 

specificity by individualizing a single molecular parameter. However, we found a 

spectrum of differences among the TFs in all parameters; some bHLH TFs are 

relatively similar in one or more parameters, whereas others are highly divergent. 

This is reflected by the observation of both specificity and promiscuity in the 

integrated network; some nodes (e.g. DNA sequences, tissues) are highly 

connected to many bHLH TFs, and others are not. Considering all the 

parameters measured, most bHLH TFs differ substantially from each other. 

There are several relatively similar bHLH TFs that exhibit only limited divergence 

in one or more TF parameters. However, we found that a minor difference in 

DNA binding specificity, either in the core E-box or E-box-like sequence, or in the 

flanking nucleotides, can result in little overlap in candidate target genes. 

 Even though many paralogous TFs have distinct biological functions, there 

are also examples of redundant TF paralogs. For example, members of 

mammalian ETS family of TFs can function partially redundantly by binding to 

overlapping sets of target genes (166). Similarly, FLH TFs in C. elegans can 

redundantly regulate microRNA expression (167). Finally, in C. elegans, 



 226 

paralogous TFs such as paired homeodomains can function in modules in the 

context of neuronal regulatory networks (7). Future systematic studies of genetic 

interactions will reveal the extent of genetic redundancy within TF families. 

 In addition to enabling studies of TF divergence, this integrated network is 

also useful for generating specific hypotheses, as demonstrated by our gene 

expression profiling analysis of hlh-30 mutant animals. Moreover, each of the 

individual data types provides a first comprehensive catalog of dimers, 

expression patterns and binding sites for a metazoan TF family. These data will 

be useful for gaining insight into the molecular determinants of the interactions in 

which the various bHLH proteins participate.   

 The integrated bHLH network confirms previously reported features for the 

bHLH family, including a promiscuous role in dimerization, DNA binding 

specificity and expression for the E/Daughterless homolog, HLH-2, and more 

specific roles for its dimerization partners (71). AHA-1 and HLH-2, both of which 

dimerize with multiple bHLH proteins, are auto-activators in Y2H assays whereas 

most of their dimerization partners are not. Based on these observations, we 

propose that the bHLH dimerization hubs may confer the transcriptional 

activation activity to the different dimers, whereas their dimerization partners may 

contribute specificity in DNA binding. 

 Our data and methods provide a framework for similar studies of other C. 

elegans TF families and of TF families in other organisms, including humans. 

Similar studies will likely be useful for other protein families, such as kinases, in 
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the context of other types of regulatory networks. Such studies of paralogous 

genes, including comparisons of integrated networks across species, may 

provide further insights into the molecular features underlying the evolution of 

gene families. 
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Materials and Methods 

RNA Isolation  

N2 and hlh-30(tm1978) worms were grown to high density at 20°C on 10 

cm egg plates and bleached. Embryos were washed in M9 buffer, collected, and 

quantified. Approximately 100,000 embryos were isolated immediately for each 

of three biological replicates per genotype. Embryos were pelleted to 100 

microliters, resuspended in 1.0 ml Trizol reagent (Invitrogen), and flash frozen in 

liquid nitrogen and stored at -80° C for at least 16 hours. The remaining semi-

synchronized embryos were plated on 10 cm NGM plates (seeded with OP50) 

such that three biological replicates of approximately 80,000 L1s and 40,000 L2s 

could be harvested for each genotype. When harvesting, worms were washed 

several times with ~10 ml sterile water until no OP50 bacteria could be seen in 

solution. Worms were then incubated in 10 ml sterile M9 at 4°C for 30 minutes to 

allow digestion of any bacteria remaining in the digestive tracts of the worms. 

Immediately following this incubation, worms were pelleted to ~100 microliters, 

resuspended in 1.0 ml Trizol reagent (as above), flash frozen in liquid nitrogen, 

and stored for at least 16 hours at -80°C. RNA was then isolated from the 

samples as described previously (168).  

Gene Expression Microarray Experiments  

Three biological replicates were done. For each biological replicate, RNA 

from embryos, L1s, and L2s were pooled for processing and hybridization to 

each microarray. Affymetrix GeneChip® C. elegans Genome arrays were used to 



 229 

analyze gene expression in wild type and hlh-30(tm1978) mutant worms. One 

cycle cDNA synthesis was performed as suggested by the Affymetrix GeneChip® 

Expression Analysis Technical Manual. For cRNA in vitro transcription/labeling, 

the Enzo BioArray™ HighYield™ RNA Transcript Labeling Kit (Enzo Life 

Sciences) was used with overnight incubation. Remaining steps including 

fragmentation, hybridization, and wash were performed as recommended by the 

Affymetrix GeneChip® Expression Analysis Technical Manual.  

Gene Expression Microarray Analysis  

For the normalization and analysis of the microarray data we used R and 

the affy (169), gcrma (170) and limma (171) packages from Bioconductor 

(www.bioconductor.org). All microarrays for each experiment were normalized 

using the gcrma package. To avoid artifacts in fold-change due to very low probe 

intensities in both conditions, we trimmed the data keeping only probe sets that 

had a mean log2(signal intensity) of the three replicas of 8 or higher, in at least 

one condition. This threshold was chosen based on the signal intensities of the 

external polyA RNA and cRNA controls. The trimmed data were analyzed for 

differential expression using the limma package. We considered as differentially 

expressed those genes whose probe sets had a P < 0.01 and log2(fold-change) ≥ 

0.7. Probe sets were converted to WBGene IDs using the Affymetrix annotation 

file “Celegans.na26.annottrimmed. csv” and WormMart (www.wormbase.org). To 

avoid redundancy we kept only one gene per probe set and one probe set per 
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gene. We also removed genes encoded by the mitochondrial genome. The total 

number of genes detected was 6,591.    

Parameter Overlap Analysis 

For each pair-wise bHLH-bHLH parameter comparison Similarity Scores 

(SS) were calculated as follows:  

€ 

SS =
HLH − X ∩HLH −Y
HLH − X ∪HLH −Y

 

For instance, when bHLH-X binds 10 target genes and bHLH-Y binds 20 target 

genes, and they have 5 target genes in common, the SS would be 5/25 = 0.2. 

Heat maps were created by clustering the bHLH TFs based on their SSs. The 

clustering of heat maps depicting parameter comparisons were performed using 

MultiExperiment Viewer version 4.0 (172). 

Microarray Accession Number 

Gene expression microarray data have been deposited in the NCBI Gene 

Expression Omnibus (GEO) database under accession ID GSE15762.  
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Figure V-1 
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Figure V-1. The integrated C. elegans bHLH network  
Integrated bHLH network that combines dimerization, spatiotemporal expression, 
DNA binding specificities and GO categories. The blue lines depict a “network 
path” connecting the intestine to the “metabolism” GO category through HLH-30. 
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Figure V-2A 
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Figure V-2B 
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Figure V-2A,B. GO Subnetworks 
Many GO terms depicted in the integrated network in Figure V-1 can be further 
subdivided into more specific terms. Shown here are subcategories of 
development, metabolism (A), reproduction, and signaling (B) and the bHLH 
dimers which are associated with them via their candidate target genes. Red 
lines connecting dimers to GO terms indicate unique associations. 
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Figure V-3 

 
 
Figue V-3. Expression pattern of hlh-30 
Phlh-30 drives GFP expression in different tissues, including the intestine (white 
arrows), spermatheca (yellow arrow) and vulva (blue arrow). Top – DIC image; 
middle – GFP image; bottom – merged images. 
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Figure V-4 
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Figure V-4. Summary of HLH-30 DNA binding specificity 
(Top panel) HLH-30 strongly prefers the CACGTG E-box. (Bottom panel) HLH-30 
strongly favors a 5’ T flanking the CACGTG E-box. 
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Figure V-5 

 
 
Figure V-5. HLH-30 acts predominately as an activator of transcription 
HLH-30 activates gene expression. The majority of genes that change 
significantly in hlh-30(tm1978) mutant animals exhibit reduced expression (red), 
while the expression of a minority is increased (green). 
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Table V-1. Genes with significant difference in expression in hlh-30 mutant 
 
Genes with increased expression in hlh-30(tm1978) mutant   

Gene WB ID Gene Public 
Name 

Sequence 
Name (Gene) logFC P.Value adj.P.Val 

WBGene00021224 Y19D10A.9 Y19D10A.9 6.824813 4.87E-08 0.00041051 
WBGene00009874 F49C12.4 F49C12.4 3.104021 0.000296071 0.05551002 
WBGene00021219 Y19D10A.4 Y19D10A.4 3.076091 0.0000486 0.03205797 
WBGene00044734 Y19D10A.16 Y19D10A.16 1.815645 0.008236328 0.26222604 
WBGene00021731 Y49G5A.1 Y49G5A.1 1.712395 0.0000239 0.02885601 
WBGene00019311 K02E7.6 K02E7.6 1.534168 0.001469218 0.11268904 
WBGene00009429 F35E12.5 F35E12.5 1.205518 0.000185591 0.05340381 
WBGene00018911 F56A4.3 F56A4.3 1.045228 0.000295695 0.05551002 
WBGene00020869 T28A11.2 T28A11.2 1.003069 0.001212684 0.10204113 
WBGene00019538 K08D12.4 K08D12.4 0.92112 0.005186948 0.21586081 
WBGene00017560 F18C5.5 F18C5.5 0.80831 0.007041085 0.24530028 
WBGene00013007 Y48E1B.8 Y48E1B.8 0.732119 0.005593652 0.22313167 
      
Genes with decreased expression in hlh-30(tm1978) mutant   

Gene WB ID Gene Public 
Name 

Sequence 
Name (Gene) logFC P.Value adj.P.Val 

WBGene00006650 tts-1 F09E10.11 -7.22606 0.0000041 0.00865787 
WBGene00005832 srw-85 C25F9.1 -6.6146 0.00000101 0.00424488 
WBGene00016119 C25H3.10 C25H3.10 -3.18186 0.000106522 0.04085125 
WBGene00017964 F31F7.1 F31F7.1 -3.12091 0.00000664 0.01120184 
WBGene00010790 sodh-1 K12G11.3 -2.63264 0.000153385 0.04977336 
WBGene00011733 T12D8.5 T12D8.5 -2.59226 0.000038 0.03205797 
WBGene00022597 ZC395.5 ZC395.5 -2.54336 0.0000113 0.01593798 
WBGene00008547 F07A11.4 F07A11.4 -2.5423 0.00000309 0.00865787 
WBGene00009221 acs-2 F28F8.2 -2.47643 0.000290157 0.05551002 
WBGene00018564 F47D12.9 F47D12.9 -2.44567 0.000348539 0.0588125 
WBGene00007365 C06B3.6 C06B3.6 -2.2987 0.0000822 0.03649601 
WBGene00020930 hlh-30 W02C12.3 -2.27688 0.00362126 0.17730184 
WBGene00011089 R07B7.5 R07B7.5 -1.87825 0.0000765 0.03596451 
WBGene00011185 R10D12.1 R10D12.1 -1.79713 0.007323373 0.25116787 
WBGene00010480 K01G5.9 K01G5.9 -1.76149 0.002069184 0.13326494 
WBGene00016628 C44B7.6 C44B7.6 -1.6754 0.001307127 0.10407137 
WBGene00016052 dod-3 C24B9.9 -1.67455 0.002526118 0.14745864 
WBGene00009895 F49E11.10 F49E11.10 -1.67031 0.003760656 0.17925791 
WBGene00021086 W08E12.5 W08E12.5 -1.52355 0.000899225 0.09031858 
WBGene00009142 F26A3.4 F26A3.4 -1.50007 0.0000352 0.03205797 
WBGene00003616 nhr-17 C02B4.2 -1.46088 0.000057 0.03205797 
WBGene00004196 prx-11 C47B2.8 -1.43753 0.000459175 0.06692982 
WBGene00008915 F17C11.4 F17C11.4 -1.41426 0.001702288 0.12381209 
WBGene00018294 atgr-18 F41E6.13 -1.40806 0.0000521 0.03205797 
WBGene00044728 Y53F4B.45 Y53F4B.45 -1.39508 0.001179598 0.10204113 
WBGene00015350 C02F5.7 C02F5.7 -1.38723 0.000248714 0.05551002 
WBGene00021876 Y54G2A.11 Y54G2A.11 -1.38536 0.000887067 0.0901709 
WBGene00004145 pqn-62 T03G11.1 -1.38241 0.000701532 0.08141863 
WBGene00007958 C35C5.9 C35C5.9 -1.35352 0.000398745 0.0618289 
WBGene00006591 toh-1 T24A11.3 -1.33453 0.006237335 0.2332574 
WBGene00017484 F15E6.3 F15E6.3 -1.32847 0.006434345 0.23463087 
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WBGene00020031 R12E2.2 R12E2.2 -1.32523 0.000403057 0.0618289 
WBGene00016845 C50F7.5 C50F7.5 -1.28913 0.0000767 0.03596451 
WBGene00017565 F18E3.7 F18E3.7 -1.28859 0.000292377 0.05551002 
WBGene00009935 F52E10.4 F52E10.4 -1.2759 0.002442995 0.14722533 
WBGene00011662 T09F3.2 T09F3.2 -1.26448 0.000748934 0.08314155 
WBGene00017968 F32A5.2 F32A5.2 -1.24987 0.000927059 0.09094884 
WBGene00008925 F17H10.1 F17H10.1 -1.22162 0.00212637 0.13488862 
WBGene00019298 K02D7.1 K02D7.1 -1.21205 0.0000719 0.03596451 
WBGene00007811 C29F7.2 C29F7.2 -1.17477 0.002441965 0.14722533 
WBGene00013516 Y73F4A.3 Y73F4A.3 -1.17191 0.007483796 0.25459994 
WBGene00015159 psd-1 B0361.5 -1.1526 0.0000437 0.03205797 
WBGene00017789 F25E5.8 F25E5.8 -1.1405 0.002814173 0.15723958 
WBGene00001391 far-7 K01A2.2 -1.13633 0.000202608 0.05341898 
WBGene00018464 F45E1.3 F45E1.3 -1.12281 0.001290801 0.10407137 
WBGene00000981 dhs-18 C45B11.3 -1.11871 0.000524462 0.07136906 
WBGene00000784 cpr-4 F44C4.3 -1.11724 0.000644686 0.07882924 
WBGene00015403 clec-10 C03H5.1 -1.11379 0.009366678 0.28525464 
WBGene00016630 C44B7.10 C44B7.10 -1.10939 0.0002403 0.05551002 
WBGene00023382 Y57E12AL.3 Y57E12AL.3 -1.1048 0.008836526 0.27715156 
WBGene00021554 Y45G5AL.1 Y45G5AL.1 -1.09607 0.000273238 0.05551002 
WBGene00015484 C05D11.7 C05D11.7 -1.07189 0.001764893 0.12458812 
WBGene00013898 ZC443.3 ZC443.3 -1.06266 0.000958699 0.09171647 
WBGene00009042 F22B5.4 F22B5.4 -1.05929 0.000272573 0.05551002 
WBGene00009797 F46G10.2 F46G10.2 -1.03934 0.000938063 0.09097054 
WBGene00018731 F53A9.8 F53A9.8 -1.01692 0.002793373 0.15723958 
WBGene00014058 ZK673.2 ZK673.2 -1.01687 0.00078161 0.08564217 
WBGene00006587 tnt-2 F53A9.10 -1.00861 0.0000465 0.03205797 
WBGene00009724 F45D3.4 F45D3.4 -1.0065 0.002880857 0.15934456 
WBGene00022078 Y69A2AR.7 Y69A2AR.7 -1.0025 0.000055 0.03205797 
WBGene00007574 C14B1.3 C14B1.3 -1.00159 0.00069204 0.08141863 
WBGene00018268 F41C3.2 F41C3.2 -1.00042 0.002688612 0.15326903 
WBGene00010408 H19N07.4 H19N07.4 -0.99385 0.000267029 0.05551002 
WBGene00002078 imb-4 ZK742.1 -0.98687 0.001052524 0.09758397 
WBGene00003378 mml-1 T20B12.6 -0.98479 0.009142447 0.28151397 
WBGene00001523 gbh-2 M05D6.7 -0.98291 0.000815531 0.08667344 
WBGene00009050 F22D6.2 F22D6.2 -0.97914 0.00011333 0.04157255 
WBGene00008317 C54G4.7 C54G4.7 -0.97354 0.003502307 0.17663761 
WBGene00010681 K08F8.1 K08F8.1 -0.96258 0.000319101 0.05728201 
WBGene00001843 hgo-1 W06D4.1 -0.95973 0.000328279 0.0577019 
WBGene00016201 C28H8.11 C28H8.11 -0.95736 0.000987496 0.09257229 
WBGene00016594 C42D4.1 C42D4.1 -0.9485 0.000345269 0.0588125 
WBGene00008412 D2030.2 D2030.2 -0.9391 0.000839682 0.08667344 
WBGene00006603 tps-2 F19H8.1 -0.9352 0.000189891 0.05340381 
WBGene00008211 C49F5.7 C49F5.7 -0.93004 0.00433794 0.19571765 
WBGene00004997 spp-12 T22G5.7 -0.92809 0.00410788 0.18982535 
WBGene00000781 cpr-1 C52E4.1 -0.92087 0.006291293 0.2332574 
WBGene00016894 C53B7.3 C53B7.3 -0.91322 0.003640376 0.17730184 
WBGene00019294 K02A6.3 K02A6.3 -0.89876 0.000967496 0.09171647 
WBGene00004222 ptr-8 F44F4.4 -0.89309 0.006032982 0.23031795 
WBGene00004258 pyc-1 D2023.2 -0.88915 0.002056346 0.13326494 
WBGene00018953 F56C9.10 F56C9.10 -0.88647 0.009808621 0.29139203 
WBGene00000245 bca-1 T13C5.5 -0.88503 0.006656657 0.23807267 
WBGene00009595 F40F12.7 F40F12.7 -0.88178 0.003029141 0.16488297 
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WBGene00016061 C24G6.6 C24G6.6 -0.87862 0.00319743 0.17182621 
WBGene00003970 pek-1 F46C3.1 -0.87838 0.00036257 0.05937464 
WBGene00003096 lys-7 C02A12.4 -0.87361 0.00841689 0.26596743 
WBGene00019719 M01H9.3 M01H9.3 -0.85811 0.000252018 0.05551002 
WBGene00022233 Y73B6BL.4 Y73B6BL.4 -0.85534 0.000187371 0.05340381 
WBGene00006996 zyg-11 C08B11.1 -0.85296 0.001555447 0.11717239 
WBGene00014258 ZK1320.9 ZK1320.9 -0.84855 0.005880382 0.22833143 
WBGene00001993 hpd-1 T21C12.2 -0.84378 0.008953113 0.27873584 
WBGene00012140 T28F4.5 T28F4.5 -0.83931 0.000242625 0.05551002 
WBGene00015776 C14F5.1 C14F5.1 -0.83922 0.000714114 0.08141863 
WBGene00015251 B0546.4 B0546.4 -0.83305 0.001307522 0.10407137 
WBGene00007666 C18B12.4 C18B12.4 -0.82327 0.000302757 0.05552959 
WBGene00008233 C50F4.8 C50F4.8 -0.80952 0.000100703 0.0404586 
WBGene00017045 D2007.5 D2007.5 -0.8079 0.000599243 0.07778176 
WBGene00000110 alh-4 T05H4.13 -0.80153 0.004393162 0.19643203 
WBGene00012850 Y44A6C.1 Y44A6C.1 -0.79983 0.00055112 0.07380633 
WBGene00020142 aak-2 T01C8.1 -0.79976 0.001605363 0.11833233 
WBGene00008436 DH11.2 DH11.2 -0.79689 0.005606722 0.22313167 
WBGene00012988 Y48C3A.4 Y48C3A.4 -0.78479 0.00346959 0.17663761 
WBGene00011953 T23F11.1 T23F11.1 -0.76733 0.007953828 0.26010251 
WBGene00010628 K07C5.5 K07C5.5 -0.7646 0.00158302 0.11819414 
WBGene00006819 unc-87 F08B6.4 -0.7634 0.005899757 0.22833143 
WBGene00016610 C43G2.1 C43G2.1 -0.76051 0.006279515 0.2332574 
WBGene00009850 F48F7.5 F48F7.5 -0.75952 0.003725521 0.17859217 
WBGene00011939 T23B5.1 T23B5.1 -0.75939 0.009100501 0.2812488 
WBGene00003476 mtm-3 T24A11.1 -0.75634 0.007531771 0.25520304 
WBGene00007392 fbxa-156 C06H5.1 -0.75218 0.000521192 0.07136906 
WBGene00017262 F08F3.4 F08F3.4 -0.74575 0.003656575 0.17730184 
WBGene00010661 tyr-2 K08E3.1 -0.74191 0.005993894 0.23031795 
WBGene00020200 T04A6.1 T04A6.1 -0.74112 0.008935641 0.27873584 
WBGene00006754 unc-15 F07A5.7 -0.73998 0.003349763 0.17527954 
WBGene00002981 lgg-2 ZK593.6 -0.73302 0.001203552 0.10204113 
WBGene00019456 K06H7.2 K06H7.2 -0.7271 0.002516235 0.14745864 
WBGene00020658 T21F4.1 T21F4.1 -0.72159 0.005521606 0.2228321 
WBGene00020917 W01B11.6 W01B11.6 -0.72114 0.000433286 0.06527923 
WBGene00009660 F43G6.8 F43G6.8 -0.70498 0.001914129 0.12817069 
WBGene00002583 let-363 B0261.2 -0.70418 0.007710454 0.25814723 
WBGene00001561 gei-4 W07B3.2 -0.70299 0.004191101 0.19113686 
WBGene00022401 Y97E10AR.6 Y97E10AR.6 -0.66727 0.001612921 0.11833233 

 
Table V-1. Genes with significant difference in expression in hlh-30 mutant 
WB Gene ID = Wormbase gene identification number, FC = Fold change, 
adj.P.Val = Adjusted p-value 
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Figure V-6 
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Figure V-6 Enrichment for HLH-30 binding sites upstream of HLH-30 target 
genes 
(Top panel) Distribution of genes for which the location of the closest HLH-30 
binding site upstream of the transcriptional start is in the indicated window of 
distance (in increments of 500 bp). (Bottom panel) Venn diagram demonstrating 
association of gene expression change in hlh-30(tm1978) mutant animals with 
the region 500 bp upstream of the gene start harboring an HLH-30 binding site. 
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Figure V-7 
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Figure V-7. Enrichment for HLH-30 binding sites downstream of HLH-30 
target genes 
(Top panel) Distribution of genes for which the location of the closest HLH-30 
binding site downstream of the gene start is in the indicated genomic regions (in 
increments of 500 bp). (Bottom panel) Venn diagram demonstrating association 
of gene expression change in hlh-30(tm1978) mutant animals with the region 500 
bp downstream of the gene start harboring an HLH-30 binding site. 
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Figure V-8 

 
 
Figure V-8. HLH-30 targets tend to have multiple HLH-30 binding sites 
HLH-30 targets have two or more HLH-30 binding sites within 2 kb of each other 
in the region up or downstream of the gene start more often than do non-HLH-30 
targets. 
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Table V-2. GO categories enriched among HLH-30 target genes 
GO CATEGORY TOTAL 

GENES 
CHANGED 

GENES LOG10(p) 

GO:0003674_molecular_function 3503 69 -1.383628 
GO:0008152_metabolic_process 2043 53 -3.897661 
GO:0003824_catalytic_activity 1648 45 -3.612949 
GO:0044237_cellular_metabolic_process 1635 39 -1.852611 
GO:0044238_primary_metabolic_process 1538 37 -1.809855 
GO:0016491_oxidoreductase_activity 313 14 -2.993111 
GO:0006082_organic_acid_metabolic_process 137 7 -1.992595 
GO:0019752_carboxylic_acid_metabolic_process 137 7 -1.992595 
GO:0008340_determination_of_adult_life_span 143 7 -1.896173 
GO:0010259_multicellular_organismal_aging 143 7 -1.896173 
GO:0007568_aging 145 7 -1.86529 
GO:0009056_catabolic_process 181 7 -1.397965 
GO:0006519_amino_acid_and_derivative_metabolic_pr
ocess 98 6 -2.132734 

GO:0009308_amine_metabolic_process 103 6 -2.030035 
GO:0006807_nitrogen_compound_metabolic_process 107 6 -1.952535 
GO:0006629_lipid_metabolic_process 121 6 -1.709467 
GO:0022900_electron_transport_chain 136 6 -1.48916 
GO:0055114_oxidation_reduction 136 6 -1.48916 
GO:0016788_hydrolase_activity__acting_on_ester_bon
ds 140 6 -1.436243 

GO:0006520_amino_acid_metabolic_process 89 5 -1.698956 
GO:0005975_carbohydrate_metabolic_process 103 5 -1.457529 
GO:0016701_oxidoreductase_activity__acting_on_singl
e_donors_with_incorporation_of_molecular_oxygen 6 4 -5.875566 

GO:0016702_oxidoreductase_activity__acting_on_singl
e_donors_with_incorporation_of_molecular_oxygen__in
corporation_of_two_atoms_of_oxygen 

6 4 -5.875566 

GO:0051213_dioxygenase_activity 6 4 -5.875566 
GO:0006725_aromatic_compound_metabolic_process 44 4 -2.140964 
GO:0044255_cellular_lipid_metabolic_process 72 4 -1.422421 
GO:0009072_aromatic_amino_acid_family_metabolic_p
rocess 10 3 -3.231808 

GO:0009063_amino_acid_catabolic_process 19 3 -2.374612 
GO:0009310_amine_catabolic_process 19 3 -2.374612 
GO:0044270_nitrogen_compound_catabolic_process 19 3 -2.374612 
GO:0006644_phospholipid_metabolic_process 25 3 -2.032319 
GO:0006470_protein_amino_acid_dephosphorylation 28 3 -1.895201 
GO:0006643_membrane_lipid_metabolic_process 28 3 -1.895201 
GO:0004721_phosphoprotein_phosphatase_activity 29 3 -1.853267 
GO:0016311_dephosphorylation 29 3 -1.853267 
GO:0016791_phosphoric_monoester_hydrolase_activity 43 3 -1.401091 
GO:0030258_lipid_modification 7 2 -2.2122 
GO:0006576_biogenic_amine_metabolic_process 8 2 -2.092259 
GO:0006575_amino_acid_derivative_metabolic_proces
s 10 2 -1.89618 

GO:0006084_acetyl-CoA_metabolic_process 12 2 -1.739797 
GO:0016051_carbohydrate_biosynthetic_process 16 2 -1.499975 
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Figure V-9 

 
 

 
 
Figure V-9. A measure of divergence: the Similarity Score 
(Top panel) For each bHLH-bHLH pair we calculated a Similarity Score (SS) for 
each functional TF parameter as indicated. (Bottom panel) Integrated parameter 
overlap analysis of all bHLH-bHLH pairs and dimer pairs (see Figure V-10 for 
individual parameter analysis). SSs were binned into four groups as indicated. 
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Figure V-10A 

 

 
 
Figure V-10A. Heatmaps of similarity scores for comparisons of 
dimerization specificities between bHLH TFs 
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Figure V-10B 

 
 

 
 
Figure V-10B. Heatmaps of similarity scores for comparisons of expression 
patterns between individual bHLH gene promoters 
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Figure V-10C 

 
 

 
 
Figure V-10C. Heatmaps of similarity scores for comparisons between 
bHLH dimer expression patterns 
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Figure V-10D 

 
 

 
 
Figure V-10D. Heatmaps of similarity scores for comparisons between 
bHLH dimer 10-mer binding sites 
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Figure V-10E 

 
 

 
 
Figure V-10E. Heatmaps of similarity scores for comparisons between 
bHLH dimer candidate target genes 
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Figure V-10F 

 
 

 
 
Figure V-10F. Heatmaps of similarity scores for comparisons between 
bHLH “network paths” 
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Figure V-11 

 
 
 
Figure V-11. Sub-network for HLH-2/HLH-4, HLH-2/HLH-10, HLH-2/HLH-15, 
and HLH-2/HLH-19 
Sub-network of bHLH proteins with the highest degree of similarity. Red lines – 
unique functional parameters; blue lines – shared functional parameters. Blue 
Diamonds – Gene ontologies  
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Figure V-12 

 
 
Figure V-12. Similarity score profiles for HLH-2/HLH-4, HLH-2/HLH-10, HLH-
2/HLH-15, HLH-2/HLH-19 
Individual similarity scores for all bHLH-bHLH pairs shown in Figure V-11. Bar 
graphs presented as in Figure V-9. 
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Figure V-13 
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Figure V-13. Cellular resolution expression annotation for Phlh-4, Phlh-10, 
and Phlh-15 
Detailed analysis of neuronal expression conferred by Phlh-15, Phlh-4 and Phlh-
10. Phlh-15 appears to drive GFP expression in the pair of RIF neurons of the 
retrovesicular ganglion and the single DVA tail neuron. Phlh-4 drives GFP 
expression in: i) two sensory head neurons (one bilaterally symmetric pair) of the 
lateral ganglion, likely AWA or AWB; ii) three pairs of tail neurons of the lumbar 
ganglion, likely PVQ, PVC, PVW, and/or LUA; iii) two tail neurons (likely a 
bilaterally symmetric pair) of the lumbar ganglion with processes to the tail. Phlh-
10 drives GFP expression in: i) two interneurons (one bilaterally symmetric pair) 
of the retrovesicular ganglion, likely RIF or RIG; ii) two sensory head neurons 
(one bilaterally symmetric pair) of the lateral ganglion, likely AWA or AWB. 
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Figure V-14 

 
 
Figure V-14. Candidate target gene overlap for CACGTG binders 
Percentage overlap of candidate target genes comparing bHLH dimers that can 
bind CACGTG E-boxes. Blue bars indicate comparisons in which both dimers 
exclusively bind CACGTG, red indicates comparisons in which one or both 
dimers can also bind other E-boxes or E-box-like sequences. 
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