University of Massachusetts Medical School

Endogenous Small RNAs in the Drosophila Soma: A Dissertation

Megha Ghildiyal
University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss
Part of the Amino Acids, Peptides, and Proteins Commons, Animal Experimentation and Research Commons, Cells Commons, and the Nucleic Acids, Nucleotides, and Nucleosides Commons

Repository Citation

Ghildiyal M. (2010). Endogenous Small RNAs in the Drosophila Soma: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/d5wh-6e69. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/459

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

Endogenous small RNAs in the Drosophila soma

A Dissertation Presented
By
MEGHA GHILDIYAL

Submitted to the Faculty of the
University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

$$
\text { March } 11^{\text {th }}, 2010
$$

ENDOGENOUS SMALL RNAs IN THE DROSOPHILA SOMA

A Dissertation Presented By
Megha Ghildiyal

The signatures of the Dissertation Defense Committee signifies completion and approval as to style and content of the Dissertation

Phillip Zafmore, Ph.D.. Thesis Advisor

Michael Brodsky̌,LPh.D, Committee

Kirsten Hagstrom, Ph.D., Member of Committee

Nicholas Rhind, Ph.D., Member of Committee

Yukihide Tomari, Ph.D., Member of Committee

The signature of the Chair of the Committee signifies that the written dissertation meets the requirements of the Dissertation Committee

Craig Motho, Ph.D., Chair of Committee

The signature of the Dean of the Graduate School of Biomedical Sciences signifies that the student has met all graduation requirements of the School.

Anthony Carruthers, Ph.D.
Dean of the Graduate School of Biomedical Sciences
Interdisciplinary Graduate Program
March 11, 2010

DEDICATION

This thesis is dedicated to Kamala bua.

I wish I was there to say bye, but I was too late.
I will always miss you.

ACKNOWLEDGEMENTS

My thesis work would not have been possible without the support, encouragement and cooperation by many. First of all I owe my gratitude to my thesis adviser Phil Zamore. He has been a wonderful mentor, and has guided me at every step, to be a better scientist. I immensely appreciate the attention he pays to details, how we present our data, how we interact with other researchers and colleagues and how we perceive others and ours science. I have infinitely benefited from the direction provided by Phil, and will continue to do so throughout my scientific career. I am grateful to him for providing me with the opportunity to work in his lab and to all the avenues it opened for me.

I owe my gratitude to all past and present members of the Zamore lab; they were not just my colleagues but also my family for the last six years. I want to thank Klaus for his advice, patience and guidance. I am enormously grateful to Tingting, Vasia and Hervé, for sharing with me their secrets to a successful experiment. They were my partners in crime, both inside and outside the lab, and also my greatest support system. I wish them all the best and success in everything. I want to thank Jen for being the elder 'American' sister I always dreamt of, I admire you for your resilience and courage. My most wonderful time in the day was spent in my bay or $8^{\text {th }}$ floor kitchen. For that I want to thank all my past and present bay-mates, Elif, Wee, Ryuya and Zhao; and my talented companions Fabian and Tracey, who gulped a lot of coffee with me. You guys made me smile even through the hardest of times. I am also humbled by the generosity bestowed on me by Tiff, Shengmei, Gwen and Alicia; I always had my needs met and as a result, I
am a spoilt brat. Ira, I am greatly obliged to you for being the one I could run to with my problems and you were always there to listen. Especially, I would like to express my heartfelt gratitude to Stefan. Not only did you teach me all those cool experiments but also made me realize my passion for science. Thanks for being my friend and companion.

I am also grateful to my collaborators, Prof. Zhiping Weng and her lab members, Jia and Soo, for their scientific input and for improving my work. I would also like to thank my TRAC members (Craig Mello, Michael Brodsky, Nicholas Rhind, Kirsten Hagstrom and Yukihide Tomari) for their insightful suggestions, guidance for my research and for always keeping me in track.

I was very fortunate to receive a lot of love and support from my friends, both in India and US. I want to thank Divya, Ambika, Arunima, Mohita, Niti and Jaya for sticking with me through thick and thin. I made some great friends here in US, especially Madhavi, Sagar, Ermelinda (also my housemate), Prachi, Charu, Mukhi, Archana, Geoffrey, Ami, Katerina, Ling, Dimitra; thanks for all the fun times we had and the smiles we shared. Varun, you were with me through stress and sickness, and I can never thank you enough for all the happiness and love you brought to my life.

Above all, I am indebted to my family and all my relatives back home, for loving and supporting me. I love you all and miss you. To my parents, who taught me how to dream and then set me free to pursue those dreams. You made a lot sacrifices for me and I cannot even visit you enough. I apologize for the distance between us but I love you both most in the world, and your love and wisdom are with me in every step I take in life. And thank-you God for all your blessings, I am one lucky girl.

COPYRIGHT INFORMATION

The chapters of the dissertation have appeared in whole or part in publications below:

Argonaute loading improves the 5^{\prime} precision of both MicroRNAs and their miRNA* strands in flies.

Seitz H, Ghildiyal M, Zamore PD. Curr Biol. 2008 Jan 22;18(2):147-51.

Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Ghildiyal M*, Seitz H*, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD. Science. 2008 May 23;320(5879):1077-81.

Small silencing RNAs: an expanding universe.
Ghildiyal M, Zamore PD. Nat Rev Genet. 2009 Feb;10(2):94-108. Review.

Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway.

Ghildiyal M*, Xu J*, Seitz H, Weng Z, Zamore PD. RNA. 2010 Jan;16(1):43-56.

* These authors contributed equally to this work

Abstract

Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNAs have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, modes of target regulation and in the biological pathways they regulate.

Historically, siRNAs were believed to arise only from exogenous double-stranded RNA triggers in organisms lacking RNA-dependent RNA polymerases. However, the discovery of endogenous siRNAs in flies expanded the biological significance of siRNAs beyond viral defense. By high throughput sequencing we identified Drosophila endosiRNAs as 21 nt small RNAs, bearing a $2^{\prime}-O$-methyl group at their 3^{\prime} ends, and depleted in dicer- 2 mutants.

Methylation of small RNAs at the 3^{\prime} end in the soma, is a consequence of assembly into a mature Argonaute2-RNA induced silencing complex. In addition to endo-siRNAs, we observed certain miRNAs or their miRNA* partners loading into Argonaute2. We discovered, that irrespective of its biogenesis, a miRNA duplex can load into either Argonaute (Ago1 or Ago2), contingent on its structural and sequence features, followed by assignment of one of the strands in the duplex as the functional or guide strand. Usually the miRNA strand is selected as the guide in complex with Ago1 and miRNA* strand with Ago2.

In our efforts towards finding 3^{\prime} modified small RNAs in the fly soma, we also discovered 24-28nt small RNAs in certain fly genotypes, particularly ago2 and dcr-2

mutants. 24-28nt small RNAs share many features with piRNAs present in the germline, and a significant fraction of the $24-28$ nt small RNAs originate from similar transposon clusters as somatic endo-siRNAs. Therefore the same RNA can potentially act as a precursor for both endo-siRNA and piRNA-like small RNA biogenesis. We are analyzing the genomic regions that spawn somatic small RNAs in order to understand the triggers for their production. Ultimately, we want to attain insight into the underlying complexity that interconnects these small RNA pathways.

Dysregulation of small RNAs leads to defects in germline development, organogenesis, cell growth and differentiation. This thesis research provides vital insight into the network of interactions that fine-tune the small RNA pathways. Understanding the flow of information between the small RNA pathways, a great deal of which has been revealed only in the recent years, will help us comprehend how the pathways compete and collaborate with each other, enabling each other's optimum function.

TABLE OF CONTENTS

Title i
Signature page ii
Dedication iii
Acknowledgements iv
Copyright information vi
Abstract vii
Table of contents ix
List of figures xiv
List of tables xvii
CHAPTER I: Introduction 1
The Discovery of RNAi 4
siRNAs derived form exogenous agents 5
Endogenous siRNAs (endo-siRNAs) 10
Plant endo-siRNAs 10
Animal endo-siRNAs 14
miRNAs 15
miRNA Biogenesis 16
Target regulation by miRNAs 18
Functions of miRNAs 18
piRNAs: the longest small RNAs 19
piRNAs function in the germ-line 19
piRNA Biogenesis 21
piRNAs Function and Regulation 25
piRNAs outside the germ line? 26
Intertwined pathways 26
Competition for substrates during loading 27
Cross talk 28
Box 1: Amplifying silencing 30
Box 2: High throughput sequencing and small RNA discovery 32
CHAPTER II: Endogenous siRNAs derived form transposons and mRNAs in Drosophila somatic cells 34
Summary 34
Introduction 35
Results 36
High throughput pyrosequencing reveals endo-siRNAs in soma 36
Endo-siRNAs correspond to transposons and mRNAs 40
Endo-siRNAs are Dcr-2 dependent 44
Transposon silencing required Dcr-2 and Ago2 47
The composition of somatic small RNAs is altered in the absence of Ago2 50
Discussion 53
Materials and Methods 57
General methods 57
High throughput sequencing 58
Quantitative RT-PCR analysis 58
Computational analyses 59
Enrichment of endo-siRNAs in regions of overlapping transcripts 60
Supplemental Materials 61
CHAPTER III: Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway 123
Summary 123
Introduction 124
Results 127
miRNAs and miRNA *s partition differentially between Agol and Ago2 127
The siRNA-loading machinery sorts miRNA* strands into Ago2 135
miRNAs/miRNA* duplex structure determines Argonaute loading 139
The 5' terminal nucleotide of a small RNA reflects its partitioning between Agol and Ago2 142
For some miRNA and miRNA*, distinct isoforms load into Agol and Ago2 150
Discussion 153
Sorting combines structure and sequence information 155
Materials and Methods 159
General methods 159
Small RNA sequencing 160
Preparation of fly head extract 160
Immunoprecipitation 161
UV cross-linking 161
Computational analyses 161
Supplemental Materials 164
CHAPTER IV: Argonaute loading contributes to the precision of the 5^{\prime} ends of both microRNAs and their miRNA* strands in flies 182
Introduction 182
Results 185
Inaccurate cleavages and non-templated additions cause miRNA heterogeneity 185
miRNA and miRNA* have more defined 5^{\prime} ends than 3^{\prime} ends 193
Ago2 loading refines 5' ends of miRNA and miRNA* strands 195
Discussion 200
Terminal heterogeneity is not a ligation or degradation artifact 200
Potential 5' nucleotide purifying mechanisms 201
Materials and Methods 202
General methods 202
RNA preparation 203
Amplification and pyrosequencing 203
Computational analyses 204
Supplemental Materials 205
CHAPTER V: Conclusions and Discussion 211
The new small RNAs: endo-siRNAs 212
Making endo-siRNAs without RdRP 213
Function and biogenesis of endo-siRNAs 213
Possible cross-talk 214
The blurring of distinctions (the diminishing line) 215
Revisiting the definition of miRNA and miRNA* strands 216
The non-functional star strand? 218
Target prediction for Ago2 bound small RNAs 219
Conclusions 220
Future Prospects 220
APPENDIX I: Targeted deletion of loquacious 223
Introduction 223
Results 226
Generation of a loqs deficient allele by Flp-FRT mediated targeted deletion 226
Loqs is required in vivo for maximal silencing triggered by a long inverted repeat 228
Discussion 231
Materials and Methods 232
Fly stocks 232
Quantifying eye color 232
Preparation of lysate from heads 232
APPENDIX II: Target-directed destruction of small silencing RNAs 234
Introduction 234
Results 236
A complementary target RNA directs degradation of Agol-, but not Ago2- bound miR-277 236
The methyltransferase, Hen1, is required to stabilize Ago2-bound small RNAs 239
A model for small RNA degradation in Drosophila 248
Discussion 250
Materials and Methods 252
General methods 252
Small RNA library construction and deep sequencing 252
Supplemental Materials 253
BIBLIOGRAPHY 255

LIST OF FIGURES

Figure I-1. Small RNA silencing pathways in Drosophila. 6
Figure I-2. Plant endo-siRNA biogenesis. 12
Figure I-3. Feed-forward or "ping-pong" model for piRNA amplification. 23
Figure II-1. High throughput pyrosequencing revealed 3' terminally modified, 21-nt RNAs in the fly soma.

Figure II-2. Endo-siRNAs correspond to transposons. 42
Figure II-3. Transposon-matching siRNAs, but not miRNAs, are significantly changed in heads from dcr-2 ${ }^{\text {L81lfs } X}$ homozygous flies, compared to their heterozygous siblings (dcr-2 $\left.2^{L 811 f s X} / \mathbf{C y O}\right)$45

Figure II-4. Transposon silencing requires Dcr-2 and Ago2, but not Dcr-1. 48
Figure II-5. The composition of somatic small RNAs is altered in the absence of Ago2.

Figure II-6. Genomic Sources of dsRNA triggers for endo-siRNAs in flies and mammals.55

Figure II-S1. An unusual small RNA that maps to 17 stable hairpins on the X chromosome.

Figure II-S2. An unusual small RNA derived from a stable hairpin on chromosome 2L.

Figure II-S3. Endogenous siRNAs from adult fly heads.65

Figure II-S4. Endogenous siRNAs from cultured S2 cells. 67
Figure II-S5. Uniquely mapping endogenous siRNAs from cultured S2 cells. 69
Figure II-S6. In cultured S2 cells, transposon-derived siRNAs generally mapped about equally to sense and antisense orientations.

Figure III-1. miRNA* are loaded in Ago2. 131
Figure III-2. Exemplary miRNA and miRNA* duplexes.

Figure III-3. Association of miRNA* with Ago2 relies on the Ago2loading machinery.

Figure III-4. Pairing profiles of Ago1- and Ago2-loaded small RNA guides. 140
Figure III-5. miRNAs and miRNA* show an Argonaute-specific first nucleotide bias.

Figure III-6. Ago1 prefers to load miRNAs that begin with a 5^{\prime} uridine, while Ago2 prefers siRNAs that begin with a 5^{\prime} cytidine.

Figure III-7. miRNA and miRNA* can switch seeds between Ago1 and Ago2. 151
Figure III-8. A model for small RNA sorting.
Figure IV-1. Inaccurate processing of the 5^{\prime} end of a miRNA alters its seed sequence.

Figure IV-2. Cleavage inaccuracies are more frequent than non-templated additions.

Figure IV-3. The abundance of miRNAs with non-templated nucleotides is proportional to the abundance of the miRNA itself.

Figure IV-4. Mean heterogeneity for shorter and longer reads, compared to the most abundant variant for each miRNA.

Figure IV-5. miRNA and miRNA* 5^{\prime} ends are more precisely defined than their 3^{\prime} ends.

Figure IV-6. Ago2-loading, as evidenced by 3^{\prime} terminal 2^{\prime}-O-methylation, refines miRNA and miRNA* 5^{\prime} ends.

Figure IV-7. Ago 2 loading, as evidenced by 3^{\prime} terminal 2^{\prime}-O-methylation, refines miRNA and miRNA* 5^{\prime} ends.

Figure AI-1. Construction of a loqs deletion allele.
Figure AI-2. Loqs facilitates RNAi in vivo.229

Figure AII-1. Methylation protects small RNAs from tailing and degradation. 237
Figure AII-2. Small RNA tailing and degradation in vivo.

Figure AII-3. Assembly, genetic requirements and potential destabilizing targets of three abundant structured loci endo-siRNAs.

Figure AII-4. Fold-change of esi-2.1, esi-1.1 and esi-1.2 in hen $1^{f 00810}$ and ago 2^{414} mutant fly heads.

LIST OF TABLES

Table I-1. Types of small silencing RNAs.
Table II-1. Endo-siRNAs preferentially map to overlapping, complementary mRNAs.

Table II-S1A. mRNA-matching endo-siRNAs in cultured S2 cells. 73
Table II-S1B. Summary of mRNA-matching, 21-nt reads from pyrosequencing of a small RNA library enriched for 3^{\prime} terminally modified small RNA.

Table II-S1C. mRNA-matching endo-siRNAs in wild-type fly heads.
Table II-S1D. Summary of mRNA-matching, 21-nt reads from pyrosequencing and sequencing-by-synthesis of a small RNA libraries enriched for 3^{\prime} terminally modified small RNA from wild-type heads.

Table II-S2. Endogenous siRNAs map to transposons.
Table II-S3A. Enodogenous siRNAs from S2 cells were clustered as described by Brennecke et al. (2007), using Drosophila melanogaster genome release R5.5 (http://flybase.bio.indiana.edu/).

Table II-S3B. siRNAs from fly heads were clustered as described by Brennecke et al. (2007), using Drosophila melanogaster genome release R5.5. 106

Table II-S3C. piRNA data from Brennecke et al. (2007) were clustered according using Drosophila melanogaster genome

Table II-S4. Endogenous siRNAs matching transposons are depleted in dcr-2 null mutant fly heads.

Table II-S5. The abundance of miRNA-matching reads was unchanged in $d c r-2^{L 811 f s X}$ heads, compared to their heterozygous siblings.

Table II-S6. Primers for quantitative RT-PCR. 119
Table II-S7. Sequencing statistics. 121
Table III-1. Pre-miRNAs whose miRNA* strands were more abundant than their miRNAs among small RNAs isolated from fly heads and fly ovaries.

Table III-S1A. Sequencing statistics: reads. 165
Table III-S1B. Sequencing statistics: species. 166
Table III-S2. miRNA and miRNA* significantly enriched or depleted in Ago1 or Ago2 using Fisher's exact test.

Table III-S3. Non-coding RNAs (ncRNAs) excluded prior to small RNA analyses.

Table IV-S1. Addition of non-templated nucleotides to miRNAs in fly heads and in cultured $\mathbf{S} 2$ cells.

Table IV-S2. Templated heterogeneity is unlikely to result from the addition of non-templated nucleotides fortuitously identical to the templated sequence. 207

Table IV-S3. 5^{\prime} end heterogeneity of miRNA and miRNA* sequences bearing a modified 3^{\prime} terminus.

Table AII-S1. Sequencing statistics: Analysis of genome matching reads. 253
Table AII-S2. Sequencing statistics: Analysis of 5' prefix-matching reads. 254

CHAPTER I

Introduction

Small silencing RNAs, 20-29 nucleotides (nt) long, are the master-regulators of several biological processes and fine-tune many developmental aspects of eukaryotes. They serve as specificity determinants for Argonaute (Ago) proteins, which they guide to their targets, typically resulting in reduced expression of target genes. Small RNAs exercise their regulation by base pairing with target mRNAs and repress their expression, via transcriptional or post-transcriptional silencing. Beyond these defining features, different small RNA classes guide diverse and complex schemes of gene regulation. Some small silencing RNAs, such as siRNAs, derive from double-stranded RNA (dsRNA), whereas others, such as piRNAs, do not. These different classes of regulatory RNAs also differ in the proteins required for their biogenesis, the constitution of the Argonaute-containing complexes that execute their regulatory functions, their modes of gene regulation, and the biological functions in which they participate (Table 1). New small RNA classes and new examples of existing classes continue to be discovered. The discovery of the overwhelming diversity between the small RNA pathways is constantly accompanied with evidence of their interaction and inter-dependence. There is a growing realization that these distinct small RNA pathways are interconnected and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.

Table I-1. Types of small silencing RNAs.

Name	Organism	Length (nt)	Proteins	Source of Trigger	Function	References
miRNA	Plants, algae, animals, viruses, protists	20-25	Drosha (animals only) + Dicer	Pol II transcription (primiRNAs)	Regulation of mRNA stability, translation	1-6
casiRNA	Plants	24	DCL3	Transposons, repeats	Chromatin modification	7-13
tasiRNA	Plants	21	DCL4	$\begin{aligned} & \text { miRNA-cleaved } T A S \\ & \text { RNAs } \end{aligned}$	Post transcriptional regulation	14-18
natsiRNA	Plants primary secondary	$\begin{aligned} & 24 \\ & 21 \end{aligned}$	$\begin{aligned} & \text { DCL2 } \\ & \text { DCL1 } \end{aligned}$	Bidirectional transcripts induced by stress	Regulate stress response genes	19,20
$\begin{gathered} \text { Exo- } \\ \text { siRNA } \end{gathered}$	Animals, fungi, protists Plants	$\begin{gathered} \sim 21 \\ 21 \& 24 \end{gathered}$	Dicer	Transgenic, viral or other exogenous dsRNA	Post transcriptional regulation, anti-viral defense	21-24
EndosiRNA	Plants, algae, animals, fungi, protists,	~ 21	Dicer (Except secondary siRNAs in C. elegans, which are products of RdRP transcription, and are therefore not technically siRNAs.)	Structured loci, convergent and bidirectional transcription, mRNAs paired to antisense pseudogene transcripts	Post transcriptional regulation of transcripts and transposons Transcriptional gene silencing	1,2,25-34
piRNA germ line	Drosophila melanogaster, mammals, zebrafish	24-30	Dicer-independent	Long, primary transcripts?	Transposon regulation, unknown functions	35-43

piRNA- like (soma)	Drosophila melanogaster	$24-30$	Dicer-independent	In ago2 mutants in Drosophila	Unknown	26
21U- RNA piRNAs	Caenorhabditis elegans	21	Dicer-independent	Individual transcription of each piRNA?	Transposon regulation, unknown functions	$44-47$
26G RNA	Caenorhabditis elegans	26	RdRP?	Enriched in sperm	Unknown	44

The Discovery of RNAi

RNA silencing was inadvertently triggered when two groups attempted to make petunia leaves more purple by over expressing chalcone synthase (CHS) from a highly expressed transgene; instead, pigmentation was lost or reduced in $25-40 \%$ of the plants ${ }^{48,49}$.

Because expression of both the endogenous and transgenic CHS genes was reduced, the phenomenon was called "co-suppression." Co-suppression was also held responsible for inducing anti-viral resistance in plants following introduction of a virally derived transgene ${ }^{50-52}$. A follow up study in plants suggested nucleic acid as a possible mediator of co-suppression because of its ability to act as a systemic signal and specifically target complementary RNAs ${ }^{53}$.

In parallel, paradoxical results were reported for the nematode, Caenorhabditis elegans: introduction of either sense or antisense RNA was able to repress expression of the corresponding gene ${ }^{54}$. In 1998, Fire and Mello, in their Nobel prize-winning work, established double-stranded RNA as the silencing trigger in C. elegans ${ }^{55}$. Their experiments overturned the contemporary view that antisense RNA induced silencing by base pairing to its mRNA counterpart, thereby preventing its translation into protein. In worms and other animals, siRNA-mediated silencing is known as RNA interference (RNAi). Remarkably, RNAi is systemic in both plants and nematodes, spreading from cell to cell ${ }^{56}$. In C. elegans, RNAi is also heritable: silencing can be transferred to the progeny of the worm originally injected with the trigger dsRNA ${ }^{57}$. Viral infection, inverted repeat transgenes, or aberrant transcription products, all lead to the production of dsRNA. dsRNA is converted to siRNAs that direct RNAi. siRNAs were discovered in
plants ${ }^{21}$ and later shown in animal extracts to serve as guides that direct endonucleolytic cleavage of their target RNAs ${ }^{22,58}$. siRNAs can be classified according to the proteins involved in their biogenesis, their mode of regulation or their size. Here, we differentiate the major types of siRNAs according to the molecules that trigger their production, a classification scheme that best captures the biological distinctions among small silencing RNAs.

siRNAs derived from exogenous agents.

Early examples of RNAi were triggered by exogenous dsRNA. In these cases, long, exogenous dsRNA is cleaved into double-stranded siRNAs by Dicer (Dcr), a dsRNAspecific RNase III family ribonuclease ${ }^{59}$ (Fig. 1). siRNA duplexes produced by Dicer comprise two $\sim 21 \mathrm{nt}$ strands, each bearing a 5^{\prime} phosphate and 3^{\prime} hydroxyl group, paired in a way that leaves two-nucleotide overhangs at the 3^{\prime} ends ${ }^{22,24,60}$. The strand that directs silencing is called the guide, whereas the other strand, which is ultimately destroyed, is the passenger. Target regulation by siRNAs is mediated by the RNA-induced silencing complex (RISC), the generic name for an Argonaute-small RNA complex ${ }^{58}$. In addition to an Argonaute protein and a small RNA guide, RISC may also contain auxiliary proteins that extend or modify its function, for example, proteins that re-direct the target mRNA to a site of general mRNA degradation ${ }^{61}$.

Figure I-1. Small RNA silencing pathways in Drosophila. The three small RNA silencing pathways in flies are the siRNA, miRNA and piRNA pathways. These pathways differ in their substrates, biogenesis, effector proteins and modes of target regulation. (i) DsRNA precursors are processed by Dcr-2 to generate siRNA duplexes containing guide and passenger strands. Dcr-2 along with R2D2, loads the duplex into Ago2. A subset of endo-siRNAs exhibit Loqs dependence, rather than R2D2. The passenger strand is later destroyed and the guide strand directs Ago2 to the target RNA. (ii) miRNAs are encoded in the genome and are transcribed to yield a pri-miRNA transcript, which is cleaved by Drosha to yield a short pre-miRNA. Alternatively, miRNAs can be present in introns that are liberated following splicing to yield authentic pre-miRNAs. pre-miRNAs are exported from the nucleus to cytoplasm, where they are further processed by Dcr-1 to generate a miRNA/miRNA* duplex. Once loaded into Ago1, the miRNA strand guides translational repression of target RNAs. (iii) piRNAs are thought to derive from single-stranded RNA precursors and made without a dicing step. piRNAs are mostly antisense, but a small fraction is in the sense orientation. Antisense piRNAs are preferentially loaded into Piwi and Aub, whereas sense piRNAs associate with Ago3. Piwi and Aub collaborate with Ago3 to mediate an inter-dependent amplification cycle that generates additional piRNAs, preserving the bias towards antisense. The antisense piRNAs likely direct transposon mRNA cleavage or chromatin modification at transposon loci.

Figure I-1.

Mammals and C. elegans each have a single Dicer that makes both miRNAs and siRNAs ${ }^{62-65}$, whereas Drosophila species has two Dicers: Dcr-1 makes miRNAs, whereas Dcr-2 is specialized for siRNA production ${ }^{66}$. The fly RNAi pathway defends against viral infection, and Dicer specialization may reduce competition between pre-miRNAs and viral dsRNAs for Dicer. Alternatively, Dcr-2 and Ago2 specialization might reflect the evolutionary pressure on the siRNA pathway to counter rapidly evolving viral strategies to escape RNAi. In fact, dcr-2 and ago2 are among the most rapidly evolving Drosophila genes ${ }^{67}$. C. elegans may achieve similar specialization with a single Dicer by using the double-stranded RNA-binding protein, RDE-4, as the gatekeeper for entry into the RNAi pathway ${ }^{68}$. However, no natural virus infection has been documented in C. elegans ${ }^{69}$. By contrast, mammals may not use the RNAi pathway to respond to viral infection, having evolved an elaborate, protein-based immune system ${ }^{70-72}$.

The relative thermodynamic stabilities of the 5^{\prime} ends of the two siRNA strands in the duplex determines the identity of the guide and passenger strands ${ }^{73-75}$. In flies, this thermodynamic difference is sensed by the dsRNA-binding protein R2D2, the partner of Dcr-2 and a component of the RISC Loading Complex (RLC) ${ }^{76,77}$. The RLC recruits Argonaute2 (Ago2), to which it transfers the siRNA duplex. Ago2 can then cleave the passenger strand as if it were a target RNA ${ }^{78-82}$. Ago2 always cleaves its RNA target at the phosphodiester bond that lies between the nucleotides paired to guide nucleotides 10 and $11^{24,60}$. Release of the passenger strand after its cleavage converts pre-RISC to mature RISC, which contains only single-stranded guide RNA. In flies, the guide strand is $2^{\prime}-O$-methylated at its 3^{\prime} end by the S-adenosyl methionine-dependent
methyltransferase, Hen1, completing RISC assembly ${ }^{83,84}$. In plants, both miRNAs and siRNAs are terminally methylated, which is crucial for their stability ${ }^{85-87}$.

Plants exhibit a surprising diversity of small RNA types and the proteins that generate them. The diversification of RNA silencing pathways in plants may reflect the need of a sessile organism to cope with biotic and abiotic stress. The number of RNA silencing proteins can vary enormously among animals too, with C. elegans producing 27 distinct Argonaute proteins compared with 5 in flies. Phylogenetic data suggest that nearly all of these 'extra' C. elegans Argonautes act in the secondary siRNA pathway, perhaps because endogenous, secondary siRNAs are so plentiful in worms ${ }^{88}$. Arabidopsis thaliana has four Dicer-like (DCL) proteins and 10 Argonautes, with both unique and redundant functions. In plants, inverted repeat transgenes or co-expressed sense and antisense transcripts produce two sizes of siRNAs, 21 nt and $24 \mathrm{nt}^{10,89}$. The 21 nt siRNAs are produced by DCL4, but in the absence of DCL4, DCL2 can substitute, making 22 nt siRNAs ${ }^{13,90-93}$. The DCL4-produced 21-mers typically associate with AGO1 and guide mRNA cleavage. The 24-mers associate with AGO4 (major) and AGO6 (surrogate), and promote the formation of repressive chromatin ${ }^{94}$.

In plants, exogenous sources of siRNAs are not confined to dsRNAs. Singlestranded sense transcripts from tandemly repeated or highly expressed single-copy transgenes are converted to dsRNA by RDR6, a member of the RNA-dependent RNA Polymerase (RdRP) family, transcribe single-stranded RNA from an RNA template ${ }^{95}$ (Box 1). RDR6 and RDR1, also convert viral single-stranded RNA into dsRNA, initiating an anti-viral RNAi response ${ }^{96}$. The resulting dsRNA is cleaved by Dicer into siRNAs that
are terminally $2^{\prime}-O$-methylated by HEN $1{ }^{87}$. Why plants RNAs expressed from transgenes are converted by RDR6 into dsRNA, but abundant, endogenous mRNAs are not, is poorly understood. Recent evidence that some housekeeping exonucleases compete with plant RNA silencing pathways for aberrant RNAs suggests that substandard RNA transcripts—e.g. those lacking a 5^{\prime} cap or 3^{\prime} poly(A) tail—act as substrates for RdRPs. Highly expressed transgenes might overwhelm normal RNA quality control pathways, escape destruction, and be converted to dsRNA by RdRPs ${ }^{96-98}$.

Endogenous siRNAs (endo-siRNAs)

The first endo-siRNAs were detected in plants and C. elegans ${ }^{9,10,99}$. Plants too produce a variety of endo-siRNAs, and, the recent discovery of endo-siRNAs in flies and mammals suggests that endo-siRNAs are ubiquitous among higher eukaryotes.

Plant endo-siRNAs. In plants, cis-acting siRNAs (casiRNAs) originate from transposons, repetitive elements, and tandem repeats such as 5S rRNA genes, and comprise the bulk of endo-siRNAs ${ }^{13}$ (Fig. 2). CasiRNAs are predominantly 24 nt long and methylated by HEN1. Their accumulation requires DCL3 and the RNA polymerases, RDR2 and POL IV, and either AGO6 (primarily) or AGO4, which act redundantly ${ }^{7,9,13,100-107}$. CasiRNAs promote heterochromatin formation by directing DNA methylation and histone modification of the loci from which they originate ${ }^{7-13}$.

Another class of plant endo-siRNAs illustrates how distinct small RNA pathways interact. Trans-acting siRNAs (tasiRNAs) are endo-siRNAs generated by the
convergence of the miRNA and siRNA pathways in plants ${ }^{14-18}$ (Fig. 2). miRNA-directed cleavage of certain transcripts recruits the RdRP enzyme, RDR6. RDR6 then copies the cleaved transcript into dsRNA, which DCL4 dices into tasiRNAs that are phased. This phasing suggests that DCL4 begins dicing precisely at the miRNA cleavage site, making a tasiRNA every $21 \mathrm{nt}^{18}$. The site of miRNA cleavage is critical, because in determining the entry point for Dicer, it establishes the target specificity of the tasiRNAs produced. One of the determinants that seems to predispose a transcript to produce tasiRNAs after its cleavage by a miRNA is the presence of a second miRNA or siRNA complementary site on the transcript. Of special mention is the TAS3 locus, whose RNA transcript has two binding sites for miR-390. Only one of these sites is efficiently cleaved by miR-390, but binding of the miRNA to both appears to be required to initiate conversion of the TAS3 transcript to dsRNA by RDR6 ${ }^{108,109}$.

Natural antisense transcript-derived siRNAs (natsiRNAs) are produced in response to stress in plants ${ }^{19,20}$ (Fig. 2). They are generated from a pair of convergently transcribed RNAs: typically, one transcript is expressed constitutively, whereas the complementary RNA is transcribed only when the plant is subject to environmental stress, such as high salt. Production of 21- and 24-nt siRNAs from region of overlap of the two transcripts requires DCL2 and/or DCL1, RDR6, and SGS3 (SUPPRESSOR OF GENE SILENCING3, probably an RNA-binding protein) ${ }^{110}$ and Pol IV ${ }^{19,20}$. The natsiRNAs then direct cleavage of one of the mRNAs of the pair, and in one such case, trigger the DCL1-dependent production of 21 nt secondary siRNAs ${ }^{20}$. In addition to natsiRNAs, "long" siRNAs (lsiRNAs) in Arabidopsis also originate from NAT pairs and
are stress-induced. Unlike natsi-RNAs, 1 siRNAs are $30-40 \mathrm{nts}$ long and require DCL1, DCL4, AGO7, RDR6 and POL IV for their production ${ }^{111}$.

Figure I-2. Plant endo-siRNA biogenesis. Casi, tasi and natsiRNAs are derived from distinct loci. Several of the proteins involved in their biogenesis are genetically redundant, while others have specialized roles. (i) CasiRNAs are the most abundant endogenously produced siRNAs in plants. POL IV and RDR2 are proposed to generate dsRNA precursors, which are then diced by DCL3 to generate 24 nt casiRNAs. These small RNAs load into AGO4 and perhaps AGO6; they promote heterochromatin assembly by targeting DNA methylation and histone modification at the corresponding loci. (ii) TasiRNA biogenesis requires miRNA-mediated cleavage of TAS transcripts, which triggers the production of dsRNA by RDR6. The dsRNA is diced into 21 nt tasiRNAs by DCL4 and acts through either AGO1 or AGO7. (iii) NatsiRNAs are derived from overlapping regions of convergent transcripts and require DCL1 and or DCL2, POL IV, RDR6 and SGS3 for their biogenesis.

Figure I-2.

Animal endo-siRNAs. Plant and worm endo-siRNAs are typically produced through the action of RdRPs (Box 1). The genomes of flies and mammals do not seem to encode such RdRP proteins, so the recent discovery of endo-siRNAs in flies and mice was unexpected.

The first mammalian endo-siRNAs to be reported corresponded to the long interspersed nuclear element (L1) retrotransposon and were detected in cultured human cells ${ }^{25}$. Full length LINE-1 (L1) contains both sense and antisense promoters in its 5^{\prime} untranslated region (UTR) that could, in principle, drive bi-directional transcription of L1, producing overlapping, complementary transcripts to be processed into siRNAs by Dicer, but the precise mechanism by which transposons trigger siRNA production in mammals remains unknown.

More recently, endogenous siRNAs have been detected in Drosophila somatic and germ cells and in mouse oocytes. High throughput sequencing of small RNAs from germ-line and somatic tissues of Drosophila and of Ago2 immunoprecipitates revealed a small RNA population that could readily be distinguished from miRNAs and piRNAs ${ }^{26-}$ 29,112,113. These small RNAs are nearly always exactly 21 nt long, are present in both sense and antisense orientations, have modified 3^{\prime} ends, and, unlike miRNAs and piRNAs, are not biased toward beginning with uracil. Production of the 21-mers requires Dcr-2, although in the absence of Dcr-2 a remnant of the endo-siRNA population inexplicably persists. Expression of transposon mRNAs increases in both dcr-2 and ago2 mutants, implicating an endogenous RNAi pathway in the silencing of transposons in flies, as reported previously for C. elegans ${ }^{30,31}$.

Endo-siRNAs have also been identified in mouse oocytes ${ }^{33,34}$. As in flies, mouse endo-siRNAs are 21 nt long, Dicer-dependent, and derived from a variety of genomic sources (see Discussion in Chapter II and Fig. II-6). The mouse endo-siRNAs were bound to Ago2, the sole mammalian Ago protein thought to mediate target cleavage, although it is not known if they also associate with any of the other three mouse Ago proteins. (Mammalian Ago2 is not, however, the ortholog of fly Ago2, whose sequence is considerably diverged from other Ago proteins.)

A subset of mouse oocyte endo-siRNAs maps to regions of protein-coding genes capable of pairing to their cognate pseudogenes and to regions of pseudogenes capable of forming inverted-repeat structures. Pseudogenes can no longer encode proteins, yet they drift from their ancestral sequence more slowly than would be expected if they were simply junk. Perhaps some pseudogene sequences are under evolutionary selection to retain the ability to produce antisense transcripts that can pair with their cognate genes so as to produce endo-siRNAs ${ }^{114}$.

miRNAs

The first microRNA, lin-4, was identified in a screen for genes required for postembryonic development in C. elegans ${ }^{115}$. The lin-4 locus produces a 22 nt RNA that is partially complementary to sequences in the 3^{\prime} UTR of its regulatory target, the lin-14 mRNA ${ }^{116-118}$. miRNA binding to partially complementary sites in mRNA 3^{\prime} UTRs is now considered a hallmark of animal miRNA regulation. In 2001, tens of miRNAs were identified in humans, flies, and worms by small RNA cloning and sequencing,
establishing miRNAs as a new class of small silencing RNAs ${ }^{3-5}$. miRBase (Release 12.0), the registry that coordinates miRNA naming, now lists 1,638 distinct miRNAs in plants and 6,930 in animals and their viruses ${ }^{119}$.
miRNA Biogenesis. miRNAs derive from precursor transcripts called primary miRNAs (pri-miRNAs), which are typically transcribed by Polymerase II ${ }^{120-123}$. Several miRNA genes are present as clusters in the genome and probably derive from a common primiRNA transcript. Liberating a 20-24 nt miRNA from its pri-miRNA requires the sequential action of two RNase III endonucleases, assisted by their double-stranded RNA-binding domain (dsRBD) partner proteins (Fig. 1). First, the pri-miRNA is processed in the nucleus into a 60-70 nt long pre-miRNA by Drosha, acting with its dsRBD partner, called DGCR8 in mammals and Pasha in flies ${ }^{120,124-128}$. The resulting premiRNA has a hairpin structure: a loop flanked by base-paired arms that form a stem. PremiRNAs have a two-nt overhang at their 3^{\prime} ends and a 5^{\prime} phosphate group, which are indicative of their production by an RNase III. The nuclear export protein Exportin-5 carries the pre-miRNA to the cytoplasm bound to Ran, a GTPase that moves RNA and proteins through the nuclear pore ${ }^{129-132}$.

In the cytoplasm, Dicer and its dsRBD partner protein, TRBP in mammals and Loqs in flies, cleaves the pre-miRNA ${ }^{59,62-64,133-137}$. Drosha and Dicer differ in that Dicerlike Argonaute proteins, but unlike Drosha-contains a PAZ domain, presumably allowing it to bind the two-nucleotide, 3^{\prime} overhanging end left by Drosha. Dicer cleavage generates a duplex containing two strands, the miRNA and miRNA*, corresponding to
the two sides of the base of the stem. These roughly correspond to the guide and passenger strands of an siRNA, and similar thermodynamic criteria influence the choice of miRNA versus miRNA* ${ }^{73,74}$. miRNAs can arise from either arm of the pre-miRNA stem, and some pre-miRNAs produce mature miRNAs from both arms, whereas others show such pronounced asymmetry that the miRNA* is rarely detected even in high throughput sequencing experiments ${ }^{44}$ (Box 2).

In flies, worms and mammals, a few pre-miRNAs are produced by the nuclear pre-mRNA splicing pathway instead of Drosha processing ${ }^{138-142}$. These pre-miRNA-like introns, "mirtrons," are spliced out of mRNA precursors whose sequence suggests they encode proteins. The spliced introns first accumulate as lariat products that require $2^{\prime}-5^{\prime}$ debranching by the lariat debranching enzyme. Debranching yields an authentic premiRNA, which can then enter the standard miRNA biogenesis pathway.

In plants, DCL1 fills the roles of both Drosha and Dicer, converting pri-miRNAs to miRNA/miRNA* duplexes ${ }^{13,143-145}$. DCL1, assisted by its dsRBD partner HYL1, converts pri-miRNAs to miRNA/miRNA* duplexes in the nucleus, after which the miRNA/miRNA* duplex is thought to be exported to the cytoplasm by HASTY, an Exportin-5 homolog (HASTY mutants develop precociously, hence their name) ${ }^{15,145-147}$. Unlike animal miRNAs, plant miRNAs are $2^{\prime}-O$-methylated at their 3^{\prime} ends by HEN1 ${ }^{85,143,148}$. HEN1 protects plant miRNAs from 3' uridylation, thought to be a signal for degradation ${ }^{87}$. HEN1 likely acts before miRNAs are loaded into AGO1, because both miRNA* and miRNA strands are modified in plants ${ }^{85}$.

Target regulation by miRNAs. The mechanism by which a miRNA regulates its mRNA target reflects both the specific Argonaute protein into which the small RNA is loaded and the extent of complementarity between the miRNA and the mRNA ${ }^{149-151}$. A few miRNAs in flies and mammals are nearly fully complementary to their mRNA targets; these direct endonucleolytic cleavage of the mRNA ${ }^{152-156}$. Such extensive complementarity is considered the norm in plants, as target cleavage was thought to be the main mode of target regulation in plants ${ }^{11,89,157}$. However, in flies and mammals, most miRNAs pair with their targets through only a limited region of sequence at the 5^{\prime} end of the miRNA, the "seed"; these repress translation and direct degradation of their mRNA targets ${ }^{158-163}$. The "seed" region of all small silencing RNAs contributes most of the energy for target binding ${ }^{164,165}$. Thus, the seed is the primary specificity determinant for target selection. The small size of the seed means that a single miRNA can regulate many—even hundreds—of different genes ${ }^{166,167}$. Intriguingly, recent data suggests that the nuclear transcriptional history of an mRNA influences if a miRNA represses its translation at the initiation or the elongation step ${ }^{168}$.

As plant miRNAs are highly complementary to their mRNA targets, they can direct mRNA target cleavage. Nonetheless, AGO1-loaded plant miRNAs can also block translation, suggesting a common mechanism between plant and animal miRNAs, despite the absence of specific miRNAs shared between the two kingdoms ${ }^{169}$.

Functions of miRNAs. Like transcription factors, miRNAs regulate diverse cellular pathways, and are widely believed to regulate most biological processes, in both plants
and animals, ranging from housekeeping functions to responses to environmental stress. The cited reviews cover this vast body of work and provide valuable insight ${ }^{170-172}$.

The study of miRNA pathway mutants provided early evidence for the influence of miRNAs on biological processes in both plants and animals. Loss of Dicer or miRNAassociated Argonaute proteins is nearly always lethal in animals, and such mutants show severe developmental defects in both plants and animals. In Drosophila, dcr-1 mutant germ-line stem cell clones divide slowly; in Arabidopsis, embryogenesis is abnormal in $d c l 1$ mutants; in C. elegans, dcr-1 mutants display defects in germ-line development and embryonic morphogenesis; zebrafish lacking both maternal and zygotic Dicer are similarly defective in embryogenesis; and mice lacking Dicer die as early embryos, apparently devoid of stem cells ${ }^{65,143,173-176}$. Loss of Dicer in mouse embryonic fibroblasts causes increased DNA damage and consequently, the up-regulation of p19 ${ }^{\text {Arf }}$ and p53 signaling that induces premature senescence ${ }^{177}$.

Many miRNAs function in specific biological processes, in specific tissues, and at specific times ${ }^{178}$. The importance of small silencing RNAs goes far beyond the RNA silencing field: long-standing questions about the molecular basis of pluripotency, tumorogenesis, apoptosis, cell identity, etc. are finding answers in small RNAs ${ }^{170,179}$.

piRNAs: the longest small RNAs

piRNAs function in the germ-line. Piwi-interacting RNAs (piRNAs) are the most recently discovered class of small RNAs, and, as their name suggests, they bind to the Piwi clade of Argonaute proteins. (Animal Argonaute proteins can be subdivided by
sequence relatedness into Ago and Piwi sub-families.) The Piwi clade comprises Piwi, Aubergine (Aub) and Ago3 in flies, MILI, MIWI and MIWI2 in mice, and HILI, HIWI1, HIWI2 and HIWI3 in humans.
piRNAs were first proposed to ensure germ line stability by repressing transposons when Aravin and colleagues discovered in flies a class of longer small RNAs ($\sim 25-30 \mathrm{nt})$ associated with silencing of repetitive elements ${ }^{35}$. Later, these 'repeat associated small interfering RNAs'—subsequently renamed piRNAs—were found to be distinct from siRNAs: they bind Piwi proteins and do not require Dcr-1 or Dcr-2 for their production, unlike miRNAs and siRNAs ${ }^{84,180,181}$. Moreover, they are $2^{\prime}-O$-methylated at their 3^{\prime} termini, unlike miRNAs, but like siRNAs in flies ${ }^{83,180,182-184}$.

High throughput sequencing of vertebrate piRNAs revealed a class of piRNAs unrelated to repetitive sequences ${ }^{34,36-42}$. Mammalian piRNAs can be divided into prepachytene and pachytene piRNAs, according to the stage of meiosis at which they are expressed in developing spermatocytes. Like piRNAs in flies, pre-pachytene piRNAs predominantly correspond to repetitive sequences and are implicated in silencing transposons, such as L1 and intracisternal A-particle (IAP) ${ }^{39}$. In male mice, gametic methylation patterns are established when germ cells arrest their cell cycle 14.5 days postcoitum, resuming cell division 2-3 days after birth ${ }^{185,186}$. Both MILI and MIWI2 are expressed during this period, and miwi2 and mili deficient mice lose DNA methylation marks on transposons ${ }^{187}$. The pre-pachytene piRNAs, which bind MIWI2 and MILI, may serve as guides to direct DNA methylation of transposons. In contrast to pre-pachytene
piRNAs, the pachytene piRNAs mainly arise from unannotated regions of the genome, not transposons, and their function remains unknown ${ }^{39}$.

Three recent studies report that the previously discovered germ-line '21U' RNAs in C. elegans are piRNAs ${ }^{44-47}$. These small RNAs were initially identified by high throughput sequencing ${ }^{44}$. They are precisely 21 nt long, begin with a uridine 5^{\prime} monophosphate, and are 3^{\prime} modified. They bind Piwi-Related Gene-1 (PRG-1), a C. elegans Piwi protein. Each 21U-RNA may be transcribed separately, as all are flanked by a common upstream motif. Like piRNAs in Drosophila, the 21U-RNAs are required for maintenance of the germ line and fertility, and like Drosophila Aub and other piRNA pathway components, PRG-1 is found in specialized granules, P granules, associated with germ-line function, in a cytoplasmic, perinuclear ring called "nuage." Worm piRNAs resemble pachytene piRNAs in mammals: their targets and functions are largely unknown.
piRNA Biogenesis. piRNA sequences are stunningly diverse, with more than 1.5 million distinct piRNAs identified thus far in flies, but collectively they map to a few hundred genomic clusters $27,29,43,113,181,188,189$. The best-studied cluster is the flamenco locus. flamenco was identified genetically as a repressor of the gypsy, ZAM and Idefix transposons ${ }^{84,190-194}$. Unlike siRNAs, flamenco piRNAs are mainly antisense, suggesting that piRNAs arise from long, single-stranded precursor RNAs. In fact, disruption of flamenco by insertion of a P-element near the 5^{\prime} end of the locus blocks the production of
distal piRNAs up to 168 kbp away. Thus, an enormously long, single-stranded RNA transcript appears to be the source of those piRNAs that derive from the flamenco locus ${ }^{43}$.

The current model for piRNA biogenesis was inferred from the sequences of piRNAs bound to Piwi, Aubergine and Ago3 ${ }^{43,195}$. piRNAs bound to Piwi and Aubergine are typically antisense to transposon mRNAs, whereas Ago3 is loaded with piRNAs corresponding to the transposon mRNAs themselves (Fig. 1). Moreover, the first 10 nucleotides of antisense piRNAs are frequently complementary to the sense piRNAs found in Ago3. This unexpected sequence complementarity has been proposed to reflect a feed-forward amplification mechanism-"piRNA ping-pong"-that is activated only transcription of transposon mRNA (Fig. 3) ${ }^{43,195}$. A similar amplification loop has been inferred from high throughput piRNA sequencing in vertebrates, implying its conservation through evolution ${ }^{36,187}$. Many aspects of the ping-pong model remain speculative. Why Ago3 appears to bind only sense piRNAs derived from transposon mRNAs is unknown. An untested idea is that different forms of RNA Pol II transcribe primary piRNA transcripts and transposon mRNAs and that the specialized RNA Pol II that transcribes the primary piRNA precursor recruits Piwi and Aub, but not Ago3. How the 3^{\prime} ends of piRNAs are made is also not known.

Figure I-3. Feed-forward or "ping-pong" model for piRNA amplification. According to this model, antisense piRNAs in Piwi or Aub first bind transposon mRNAs and cleave them across from position 10 of the antisense piRNA guide. The 5^{\prime} end of the cleaved product is proposed to then load into Ago3 and generate an Ago3-bound sense piRNA. The sense piRNA can, in turn, guide cleavage of an antisense piRNA precursor transcript, fueling the feed-forward amplification loop. A key postulates of the model is that the intracellular concentrations of piRNA-loaded Piwi and Aub are much greater than of piRNA-loaded Ago3. The amplification loop is proposed to facilitate piRNA surveillance of transposon transcription in the germ-line.

Figure I-3.


```
AUB-associated antisense piRNA
12345678910 \(\mathrm{O}_{3} \mathrm{PO}-5^{\prime} 0000000000000000000000000^{\prime}\) \(3.0000000000000000000000010000000000000000005^{\prime}\) 23
piRNA Function and Regulation. Piwi family proteins are indispensable for germ-line development in many, perhaps all, animals; but they have thus far been most extensively studied in Drosophila. Piwi is restricted to the nucleoplasm of Drosophila germ cells and adjacent somatic cells. Piwi is required to maintain germ line stem cells and to promote their division; the protein is required in both the somatic niche cells that support germline stem cells and in the stem cells themselves \({ }^{196,197}\). In the male germ line, Aub is required for the silencing of the repetitive Stellate locus, which would otherwise cause male sterility. Expression of Stellate is controlled by the related, repetitive Suppressor of Stellate locus, the source of antisense piRNAs that act through Aub to repress Stellate \({ }^{35,180,198}\).
\(a u b\) was originally identified because it is required for specification of the embryonic axes \({ }^{199}\). The loss of anterior-posterior and dorsal-ventral patterning in embryos from mothers lacking Aub is an indirect consequence of the double-stranded DNA breaks that occur in the oocyte in its absence \({ }^{200}\). The breaks appear to activate a DNA-damage checkpoint that disrupts patterning of the oocyte and, consequently, of the embryo. The defects in patterning, but not in silencing repetitive elements, are rescued by mutations that bypass the DNA damage signaling pathway, suggesting the breaks are caused by transposition. That activation of a DNA damage checkpoint should inappropriately reorganize embryonic polarity was most unexpected, but further underscores the vital role piRNAs play in germ-line development.
piRNAs outside the germ line? The role of piRNAs in the fly soma is hotly debated. Piwi and Aub are required to silence tandem arrays of white, a gene required to produce red eye pigment \({ }^{201}\). It is not understood if piRNAs are produced in the soma as well as in the germ line, or if piRNAs present during germ-line development deposit long-lived chromatin marks that exert their effects days later.

Both piRNAs and endo-siRNAs repress transposons in the germ line, where mutations caused by transposition, of course, would propagate to the next generation. siRNAs-that is, the RNAi pathway-likely provide a rapid response to the introduction of a new transposon into the germ line, a challenge not dissimilar to a viral infection. In contrast, the piRNA system appears to provide a more robust, permanent solution to the acquisition of a transposon. In the soma, however, endo-siRNAs are the predominant transposon-derived small RNA class, and their loss in \(d c r-2\) and ago2 mutants increases transposon expression \({ }^{26,27,29,113}\). Somatic piRNA-like small RNAs have been observed in ago 2 mutant flies \({ }^{26}\). Perhaps, in the absence of endo-siRNAs, piRNAs are produced somatically and resume transposon surveillance. Such a model implies significant cross talk between the piRNA and endo-siRNA-generating machineries.

\section*{Intertwined pathways}

The RNAi, miRNA and piRNA pathways were initially believed to be independent and distinct. However, the lines distinguishing them continue to fade. These pathways interact and rely on each other at several levels, competing for and sharing substrates, effector proteins and cross-regulating each other.

Competition for substrates during loading. Both the siRNA and miRNA pathways load dsRNA duplexes containing a 19 bp double-stranded core flanked by 2 nt \(3^{\prime}\) overhangs. An siRNA duplex contains guide and passenger strands and is complementary throughout its core; a miRNA/miRNA* duplex contains mismatches, bulges and \(\mathrm{G}: \mathrm{U}\) wobble pairs. In Drosophila, biogenesis of small RNA duplexes is uncoupled from its loading into Ago1 or Ago2 \(2^{202,203}\). Instead, loading is governed by the structure of the duplex: duplexes bearing bulges and mismatches are sorted into the miRNA pathway and hence loaded into Ago1; duplexes with greater double-stranded character partition into Ago2, the Argonaute protein associated with RNAi.

The partitioning of small RNAs between Ago1 and Ago2 also has implications for target regulation. Ago1 primarily represses translation whereas Ago2 represses by target cleavage, reflecting the faster rate of target cleavage by Ago2 compared to Ago1 \({ }^{203}\). Sorting creates competition between the two pathways for substrates \({ }^{202,203}\). In Drosophila loading of a small RNA duplex into one pathway decreases its association with other pathway.

Different dsRNA precursors require distinct combinations of proteins to produce small silencing RNAs. For example, Drosophila endo-siRNAs derived from structured loci require Loqs, rather than R2D2 \({ }^{27-29}\). We presume that under some circumstances the endo-siRNA and miRNA pathways might therefore compete for Loqs. The endo-siRNA and RNAi pathways likely also compete for shared components.

In contrast to Drosophila, plants load small RNAs into Argonautes according to the identity of the \(5^{\prime}\) nt of the small RNA \({ }^{108,204}\). AGO1 is the main effector Argonaute for
miRNAs, and the majority of miRNAs begin with uridine; and AGO4 is the major effector of the heterochromatic pathway and is predominantly loaded with small RNAs beginning with an adenosine \({ }^{205}\). AGO2 and AGO5, however have no characterized function in plants \({ }^{205}\). Changing the \(5^{\prime}\) nt from A to \(U\) shifts the loading bias of a plant small RNA from AGO2 to AGO1, and vice versa. Similarly, Arabidopsis AGO4 binds small RNAs that begin with adenosine, while AGO5 prefers cytidine.

Aub- and Piwi-bound piRNAs typically begin with U , whereas those bound to Ago3 show no \(5^{\prime}\) nucleotide bias. It remains to be determined if this reflects a \(5^{\prime}\) nucleotide preference like the situation for the plant AGOs or some feature of an as-yetdiscovered piRNA loading machinery that sorts piRNAs between Piwi proteins.

Cross talk. Small RNA pathways are often entangled. TasiRNA biogenesis in Arabidopsis is a classic example of such cross talk between pathways. miRNA-directed cleavage of tasiRNA-generating transcripts initiates tasiRNA production and subsequent regulation of tasiRNA targets \({ }^{14-18}\). In C. elegans, at least one piRNA has been implicated in initiating endo-siRNA production \({ }^{45,46}\), and in flies, the endo-siRNA pathway may repress expression of piRNAs in the soma \({ }^{26}\). Moreover, small RNA levels may be buffered by negative feedback loops in which small RNAs from one pathway alter the expression levels of RNA silencing proteins that act in the same or in other RNA silencing pathways. In flies, endo-siRNAs have been identified that target siRNA pathway genes like ago \(^{26}\). Similarly, let- 7 and perhaps other miRNAs repress Dicer expression in mammals, creating a negative feedback loop that buffers miRNA
levels \({ }^{206,207}\). Arabidopsis miRNAs can also regulate their own biogenesis: miR-168 controls AGO1 levels and miR-162 can target DCL1 \({ }^{208-210}\).

Understanding the flow of information between the small RNA pathways, a great deal of which has been revealed only in the recent years, will help us comprehend how the pathways compete and collaborate with each other, enabling each other's optimum function.

\section*{Box 1. Amplifying silencing.}

RNA-dependent RNA polymerases (RdRPs) amplify the silencing response. Primary siRNAs derived from exogenous triggers by Dicer processing bind their mRNA targets and direct cleavage by AGO complexes \({ }^{211}\). In plants, RdRPs uses these cleaved transcript fragments as templates to synthesize long dsRNA; the dsRNA is then diced into secondary siRNAs \({ }^{13,91,92,95,212-214}\). Secondary siRNAs are formed both \(5^{\prime}\) and \(3^{\prime}\) of the primary targeted interval, suggesting that mRNA cleavage per se, rather than priming of RdRP by primary siRNAs is the signal for siRNA amplification. Other data suggest that production of secondary siRNAs in Arabidopsis may sometimes be primed \({ }^{215}\). RdRP amplification of siRNAs is especially important in defending plants against viral infection.

In C. elegans, primary siRNAs are amplified into secondary siRNAs by a different mechanism \({ }^{211}\). In worms, primary siRNAs are bound to RDE-1, a "primary Argonaute" \({ }^{216,217}\). The primary siRNAs guide RDE-1 to the target mRNA, to which it recruits RdRPs that synthesize secondary siRNAs \({ }^{218,219}\). Worm secondary siRNAs have a \(5^{\prime}\) di- or triphosphate, indicating that they are produced by transcription rather than dicing \({ }^{216,217,220}\), and, at least in vitro, secondary siRNA production does not require Dicer \({ }^{219}\). How the length of siRNA transcription is controlled is perplexing, but in vitro, the Neurospora RdRP, QDE1, can directly transcribe short RNA oligomers \(\sim 22\) nt long from a much longer template \({ }^{220}\). As a consequence of their production by an RdRP, secondary siRNAs in C. elegans are exclusively antisense to their mRNA targets \({ }^{216,221}\).

Secondary siRNAs act bound to secondary Argonautes, such as CSR-1, which can cleave its mRNA targets just like fly and human Ago2 proteins \({ }^{219}\).

The presence of siRNA amplification in plants, worms, fungi, and according to some early reports, in flies, led to the speculation that RdRPs are a universal feature of RNAi. An amplification step in human RNAi could produce secondary siRNAs bearing homology to other genes, a significant impediment to the use of RNAi as a target discovery tool or as therapy for human diseases. However, the success of allele-specific RNAi in cultured human cells and in mice makes it unlikely that an RdRP-catalyzed amplification step occurs in mammals \({ }^{222-226}\). Similarly, extensive biochemical and genetic studies have demonstrated that the fly RNAi pathway does not use an RdRP enzyme \({ }^{22,89,227-230}\).


\section*{Box 2. High throughput sequencing and small RNA discovery.}

Much of the credit for the identification of small RNAs rests with advances in high throughput sequencing. Presently, there are three commercial "high depth" sequencing systems: Roche's 454 GS FLX Genome Analyzer, Illumina’s Solexa Analyzer and, most recently, Applied Biosystem's SOLiD System. Reference 231 describes how each method works. Whereas 454 has the advantage of sequencing >250 bp per read, compared to \(\sim 35-50\) bp for Solexa and SOLiD, these two platforms provide 70- to 400fold greater sequencing depth. All three platforms have been used successfully to identify novel small RNA species and to discover new small RNA classes in mutant plants and animals. Using less than \(10 \mu \mathrm{~g}\) total RNA, high throughput sequencing, together with advances in small RNA library preparation, has revealed the length distribution, sequence identity, terminal structure, sequence and strand biases, isoform prevalence, genomic origins, and mode of biogenesis for millions of small RNAs. Initial small RNA sequencing experiments sought simply to identify novel small RNA species and classes. Increasingly, high throughput sequencing is being used to profile small RNA expression across the stages of development and in different tissues and disease states. Profiling by deep sequencing provides quantitative information about small RNA expression, like PCR- or microarray-based approaches, but can also precisely detect subtle changes in small RNA sequence or length.

Perhaps the most problematic step in small RNA sequencing is preparing the small RNA library. The most frequently employed cloning protocols require the small RNAs to have 5' phosphate and a 3' hydroxyl groups, the hallmarks of Dicer products.

This approach identifies small RNAs with the expected termini, but alternative methods must be used to find small RNAs, such as C. elegans secondary siRNAs, with other terminal structures. Additionally, finding every possible small RNA in a cell using exhaustive deep sequencing is a game with diminishing returns. For example, while many miRNAs have been sequence 100,000 's or even a million times, the \(C\). elegans miRNA \(l s y-6\), which is apparently expressed in less than ten cells of the adult, has so far eluded high depth sequencing \({ }^{232}\)

\section*{CHAPTER II}

\section*{Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells}

The following chapter is a collaborative effort. The author conceived the experimental plan and performed experiments for all figures, except Figure 3. Figure 4 was collaboration between the author, Michael Horwich and Tingting Du.Tingting Du did Ago2 knockdown in S2 cells for Figure 4. Hervé Seitz, Soohyun Lee, Jia Xu and Zhiping Weng performed bioninformatic analyses. The author, Hervé Seitz and Phillip Zamore wrote the paper. This chapter appeared in Science. 2008 May 23;320(5879):1077-81.

\section*{Summary}

Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA as a defense against viral infection. We identified endogenous siRNAs (endo-siRNAs), 21 nucleotides in length that correspond to transposons and heterochromatic sequences in the somatic cells of Drosophila melanogaster. We also detected endo-siRNAs complementary to messenger RNAs (mRNAs); these siRNAs disproportionately mapped to the complementary regions of overlapping mRNAs predicted to form double-stranded RNA in vivo. Normal accumulation of somatic endo-siRNAs requires the siRNA-generating ribonuclease Dicer-2 and the RNAi effector protein Argonaute2 (Ago2). We propose that
endo- siRNAs generated by the fly RNAi pathway silence selfish genetic elements in the soma, much as piRNAs do in the germ line.

\section*{Introduction}

Three RNA-silencing pathways have been identified in flies and mammals: RNA interference (RNAi), guided by small interfering RNAs (siRNAs) derived from exogenous double-stranded RNA (dsRNA); the microRNA (miRNA) pathway, in which endogenous small RNAs repress partially complementary mRNAs; and the Piwiinteracting RNA (piRNA) pathway, whose small RNAs repress transposons in the germ line \({ }^{43,180,195}\) and can activate transcription in heterochromatin \({ }^{233}\).

Endogenous siRNAs (endo-siRNAs) silence retrotransposons in plants \({ }^{10,234}\), and siRNAs corresponding to the L1 retrotransposon have been detected in cultured mammalian cells \({ }^{25}\). Genetic and molecular evidence suggests that in addition to suppressing viral infection, the RNAi pathway silences selfish genetic elements in the fly soma: Mutations in the RNAi gene, \(r m 62^{235}\), suppress mutations caused by retroelement insertion \({ }^{236}\); depletion of the Argonaute proteins Ago1 or Ago2 increases transposon expression in cultured Drosophila Schneider 2 (S2) cells \({ }^{237}\); small RNAs have been detected in Drosophila Kc cells for the 1360 transposon \({ }^{238}\) and are produced during transgene silencing in flies \({ }^{239}\); and siRNAs have been proposed to repress germ-line expression of suffix, a short interspersed nuclear element (SINE) \({ }^{240}\).

The defining properties of Drosophila siRNAs are their production from long double-stranded RNA by Dicer-2 (Dcr-2), which generates \(5^{\prime}\)-monophosphate termini;
their loading into Argonaute2 (Ago2); and their Ago2-dependent, \(3^{\prime}\) terminal, \(2^{\prime}-O-\) methylation by the methyltransferase Hen \(1{ }^{83,84,182}\), unlike most miRNAs \({ }^{241}\). In vivo (Fig. 1 A , rightmost panel) and in vitro \({ }^{228}\), nearly all siRNAs produced by Dcr-2 from exogenous dsRNA are 21 nucleotides (nt) in length.

\section*{Results}

\section*{High throughput pyrosequencing reveals endo-siRNAs in soma}

We characterized the somatic small RNA content of S2 cells \({ }^{242}\) and of heads expressing an RNA hairpin silencing the white gene by RNAi \({ }^{243}\). To identify endo-siRNA candidates, we analyzed two types of RNA libraries. For total 18-30 nt RNA libraries, \(89 \%\) (S2 cells) and \(96 \%\) (heads) mapped to annotated miRNA loci. In contrast, libraries enriched for small RNAs bearing a \(3^{\prime}\) terminal, \(2^{\prime}-O\)-methyl modification \({ }^{244}\) were depleted of miRNAs: only \(19 \%\) (S2 cells) and \(49 \%\) (heads) of reads and \(2.4 \%\) (S2 cells; 58,681 reads; 12,036 sequences) and \(12 \%\) (heads; 22,685 reads; 2,929 sequences) of unique sequences mapped to miRNA loci.

Figure 1 shows the length distribution and sequence composition of the four libraries. The total RNA samples were predominantly miRNAs, a bias reflected in their modal length (22 nt) and pronounced tendency to begin with uracil. Excluding miRNAs, revealed a class of small RNAs with a narrow length distribution and no tendency to begin with uracil. Except for an unusual cluster of X chromosome small RNAs (Fig. S1) and a miRNA-like sequence with an unusual putative precursor on chromosome 2 (Fig. S2), few of these small RNAs are likely to correspond to novel miRNAs: none lie in the
arms of hairpins predicted to be as stable as most pre-miRNAs (i.e., \(<-15 \mathrm{kcal} / \mathrm{mol}\) ). However, the small RNAs derived form these clusters were indeed endo-siRNAs derived from structured loci which can fold to form hairpin shaped precursors, albeit much longer in length that miRNA precursors (see Discussion) \({ }^{27-29}\). These were missed in our study, due to folding of only short genomic precursors (Figs. S1 and S2).

After excluding known miRNAs, \(64 \%\) for heads (Fig. 1A) and \(78 \%\) for S 2 cells of sequences in the libraries enriched for \(3^{\prime}\) terminally modified small RNAs-i.e., those likely to be Ago2-associated-were 21 nt long (Fig. 1B). For fly heads, \(37 \%\) (8,404 reads) derived from the white dsRNA hairpin. The abundance of these exo-siRNAs can be estimated by comparing them to the number of reads for individual miRNAs in the total small RNA library, where \(1.6 \%\) ( 660 antisense and 491 sense reads) were 21-mers and matched the white sequences in the dsRNA- expressing transgene. The collective abundance of all white exo-siRNAs was less than the individual abundance of the ten most abundant miRNAs in this sample; the median abundance of any one exo-siRNA species was 2 reads. The white-IR transgene phenocopies a nearly null mutation in white, yet the sequence of the most abundant exo-siRNA was read just 37 times.

In heads, the sequence composition of the \(21 \mathrm{nt}, 3^{\prime}\) terminally modified small RNAs closely resembled that of exo-siRNAs, which tended to begin and end with cytosine. In heads and S2 cells, the 21-mers lacked the sequence features of piRNAs, which either begin with uracil (Aub- and Piwi-bound) or contain an adenine at position 10 (Ago3-bound) and are 23-29 nt long. These data suggest that the 21 nt small RNAs are somatic endo-siRNAs.

Figure II-1. High throughput pyrosequencing revealed \(\mathbf{3}^{\prime}\) terminally modified, 21-nt RNAs in the fly soma. (A) Length and sequence composition of the small RNA sequences from a library of total small RNA from the heads of flies expressing an inverted repeat (IR) silencing the white gene and for a parallel library enriched for RNAs modified at their \(3^{\prime}\) ends. (B) Similar analysis for small RNA sequences from Drosophila S2 cells. Without miRNAs: pre-miRNA matching sequences were removed computationally.

Figure II-1.


\section*{Endo-siRNAs correspond to transposons and mRNAs.}

In S 2 cells, endo-siRNAs mapped largely to transposons ( \(86 \%\) ); in fly heads they mapped about equally to transposons, intergenic and unannotated sequences, and mRNAs. \(41 \%\) mapped to mRNAs without mapping to transposons, suggesting that endo-siRNAs may regulate mRNA expression. Endo-siRNAs mapping to mRNAs were > 10 -fold more likely than expected by chance ( \(5.22 \times 10-161<p\)-value \(<8 \times 10-151\) ) to derive from genomic regions annotated to produce overlapping, complementary transcripts (Table 1 and Table S1). These data suggest that such overlapping, complementary transcripts anneal in vivo to form dsRNA that is diced into endo-siRNAs. We note that among the mRNAs for which we detected complementary 21-mers was ago2 itself.

Table II-1. Endo-siRNAs preferentially map to overlapping, complementary mRNAs.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ sample } & \multirow{2}{*}{ enrichment } & \multicolumn{2}{|c|}{ enrichment after randomization } & & \\
\cline { 3 - 4 } & & mean & standard deviation & \multirow{2}{*}{ Z-score } & \(p\)-value \\
\hline Fly heads & 10.9 & 1.0 & 0.38 & 26.1 & \(7.9 \times 10^{-151}\) \\
\hline S2 cells & 12.3 & 1.1 & 0.42 & 27.0 & \(5.2 \times 10^{-161}\) \\
\hline
\end{tabular}

Endo-siRNAs mapped to all three large chromosomes (Figs. S3, S4, and S5). siRNAs corresponding to the three transposon types in Drosophila were detected, but long terminal repeat (LTR) retrotransposons, the dominant class of selfish genetic elements in flies, were over-represented even after accounting for their abundance in the genome (Fig. 2A; Table S2). Unlike piRNAs, which are disproportionately antisense to transposons, but like siRNAs derived from exogenous dsRNA, about equal numbers of sense and antisense transposon-matching endo-siRNAs were detected (Fig. 2B and Fig. S6 \({ }^{22,43,180,195}\). Like piRNAs, endo-siRNAs map to large genomic clusters (Table S3). Of 172 endo-siRNA clusters in S2 cells, four coincided with previously identified piRNA clusters (cluster \#1, at 42A of chromosome 2R; clusters 7 and 10 in unassembled genomic sequence; and cluster \#15 in the chromosome 3L heterochromatin). In heads, we detected 17 clusters; five corresponded to clusters found in S2 cells, but only one was shared with the germ-line piRNAs: the flamenco locus, consistent with recent genetic evidence that a Piwi-independent but flamenco-dependent pathway represses the Idefix and ZAM transposons in the soma \({ }^{192}\). That both endo-siRNAs and piRNAs can arise from the same region suggests either that a single transcript can be a substrate for both piRNA and siRNA production or that distinct classes of transcripts arise from a single locus.

Figure II-2. Endo-siRNAs correspond to transposons. (A) Distribution of annotations for the genomic matches of endo-siRNA sequences. Bars total more than 100 percent because some siRNAs match both LTR- and non-LTR retrotransposons or match both mRNA and transposons. (B) Transposon-derived siRNAs with more than fifty 21-nt reads mapped about equally to sense and antisense orientations. (C) Alignment of endosiRNA sequences to Drosophila transposons. The abundance of each sequence is shown as a percentage of all transposon-matching siRNA sequences. LTR, long terminal repeat; TIR, terminal inverted repeat. Here and in subsequent figures, data from high throughput pyrosequencing and sequencing-by-synthesis were pooled for wild-type heads.

Figure II-2.


C


\section*{Endo-siRNAs are Dcr-2 dependent}

Statistically significant reductions in siRNA abundance were observed in \(d c r-2^{L 81 l_{s} X}\) null mutant heads relative to heads from heterozygous siblings for 38 transposons (Fig. 3 and Table S4). Normalized for sequencing depth, sequencing results from homozygous \(d c r\) - 2 mutant heads yielded 3.1 times fewer 21-mers overall and 6.3 times fewer 21-mers corresponding to transposons than their heterozygous siblings ( \(p\) value \(<2.2 \times 10-16\); chi-squared test). In contrast, overall miRNA abundancenormalized to sequencing depth-was essentially unchanged between \(d c r-2\) heterozygotes and homozygotes (Fig. 3 and Table S5). These data suggest that endosiRNAs are produced by Dcr-2, but we do not yet know why some endo-siRNAs persist in \(d c r-2^{\text {L81 lfs } X}\) mutants.

Figure II-3. Transposon-matching siRNAs, but not miRNAs, are significantly changed in heads from \(d c r-2^{L 811 f s X}\) homozygous flies, compared to their heterozygous siblings (der-2 \(\mathbf{L}^{L 811 f_{s} X} / \mathbf{C y O}\) ). (A) Box plots for the ratio of reads for all miRNAs and transposon-matching siRNAs, normalized to sequencing depth, for the two genotypes. Only miRNAs whose sequence was read \(\geq 100\) times in at least one of the two genotypes were evaluated. Because miRBase does not always report the most abundant isoform of each miRNA, up to 9 nts were tolerated between the termini of each observed miRNA read and the miRBase entry, provided the miRNA matched the pre-miRNA perfectly. \(p\) value calculated using Wilcoxon test. (B) The fold decrease for transposon-derived siRNAs for which \(\geq 20\) reads were detected in \(d c r-2^{L 811 f s X} / \mathrm{CyO}\). The changes of all transposons were statistically significant ( \(p\)-value \(<0.029\), Fisher's exact test); the \(p\) values for the change in individual miRNA and siRNA abundance are listed in Tables S4 and S5.

Figure II-3.

A


\section*{Transposon silencing requires Dcr-2 and Ago2}

Transposon expression in the soma reflects both the silencing of transposons-potentially by either or both post-transcriptional and transcriptional mechanisms-and the tissue specificity of transposon promoters. Drosophila somatic cells may contain siRNAs targeting transposons that would not be highly expressed even in the absence of those siRNAs, because the promoters of those transposons are not active in some or all somatic tissues or because they are repressed by additional mechanisms. We analyzed the expression of a panel of transposons in heads from ago2 and dcr-2 mutants and in S2 cells depleted of Dcr-1, Dcr-2, or Ago2 by RNAi (Fig. 4). We found that the steady-state abundance of RNA from the LTR-retrotransposons 297 and 412 increased in heads from \(d c r-2^{L 81 l f_{s} X}\) null mutants (Fig. 4A). Similarly, the steady-state abundance of RNA from the LTR-retrotransposons, 297, 412, mdg1, and roo, the non-LTR retrotransposon, \(F\) element, and the SINE-like element INE-1 increased in ago2 \({ }_{414}\) mutant heads (Fig. 4B).

In S2 cells, RNA expression from the LTR-retrotransposons 297, 1731, mdg1, blood, and gypsy, and the DNA transposon, S-element, all increased significantly (0.00001 < p-value \(<0.002\) ) when Dcr-2 or Dcr-2 and Dcr-1 together, but not Dcr-1 alone, was depleted (Fig. 4C). ago2(RNAi) in S2 cells similarly desilenced transposons, including nine LTR- and non-LTR retrotransposons and the DNA transposon, S-element (Fig. 4).

Figure II-4. Transposon silencing requires Dcr-2 and Ago2, but not Dcr-1. The change in mRNA expression (mean \(\pm \mathrm{SD}, N=3\) ) for each transposon between \(d c r-2^{L 81 / f_{s} X}\) (A) or \(\operatorname{ago}^{414}\) (B) heterozygous and homozygous heads was measured by qRT- PCR. The data were corrected for differences in transposon copy number between the paired genotypes. (C) The change in transposon expression (mean \(\pm \mathrm{SD}, N=3\) ) in S 2 cells was measured for the indicated RNAi depletion, relative to a control dsRNA.

Figure II-4.




\section*{The composition of somatic small RNAs is altered in the absence of Ago2}

Is Ago2 required for the production or accumulation of endogenous siRNAs? We sequenced 18-29 nt small RNAs from ago2 \({ }^{414}\) homozygous fly heads and the same small RNA treated to enrich for \(3^{\prime}\) terminally modified RNAs. After computationally removing miRNAs, the sequences from the untreated library contained a prominent 21 nt peak (Fig. 5A) that predominantly began with uracil (Fig. 5B), much like miRNAs and unlike siRNAs in wild-type heads, which often began with cytosine (Fig. 1A). Perhaps in the absence of Ago2, only a subpopulation of endo-siRNAs that can bind Ago1 accumulates. The small RNAs from the \(a g o 2^{414}\) library enriched for \(3^{\prime}\) terminally modified sequences were predominantly 24-27 nt long and often began with uracil, a length distribution and sequence bias characteristic of piRNAs, which, like siRNAs, are \(2^{\prime}-O\)-methylated at their \(3^{\prime}\) ends. Both the 21-nt small RNAs and the piRNA-like RNAs in the ago2 mutant heads mapped to transposons, unannotated heterochromatic and unassembled sequences, but the piRNA-like sequences mapped to mRNAs far less frequently than either the 21-mers or wild-type endo-siRNAs (Fig. 5C). How these piRNA-like small RNAs are generated and if they contribute to transposon silencing in the fly soma remains to be answered.

Figure II-5. The composition of somatic small RNAs is altered in the absence of
Ago2. Size distribution (A) and sequence composition (B) of sequences from a library of total 18-29 nt RNA from the heads of ago2 null mutant flies or a library enriched for 3' terminally modified RNAs. Reads matching pre-miRNA sequences were removed. (C) Distribution of annotations for the genomic matches of small RNA sequences from the two ago2 libraries.

\section*{Figure II-5.}


B




\section*{Discussion}

The abundance and distribution of endo-siRNAs across the sequences of individual transposon species reflected when the elements entered the fly genome, but not their mechanism of transposition (Fig. 2C). The retrotransposon 297 (80 copies per haploid genome) is the second most abundant retroelement in flies. 297 entered Drosophila recently through the ancestor of the melanogaster species group 44 million years ago \({ }^{245}\). Compared to flies, 297 has expanded dramatically in S2 cells \({ }^{246} .297\) matching siRNAs represent \(29.2 \%\) of all endo-siRNAs in S2 cells, but only \(3.3 \%\) of endo-siRNAs in heads (Table S2). Remarkably, many of the siRNAs that correspond to 297 in heads map to its LTRs (Fig. 2C). It is difficult to imagine that antisense transcription arising in an adjacent protein-coding gene or an adjacent transposon could produce a precursor dsRNA that would lead to the production of siRNAs so tightly constrained to the LTR sequences. The LTRs of retrotransposons are direct repeats, so intramolecular pairing between LTRs within an RNA transcript—as has been proposed for the terminal inverted repeats (TIRs) of the DNA transposon \(T C 1\) in C. elegans \({ }^{32}\)-also cannot explain the peculiar pattern of siRNA production from 297. Perhaps endo-siRNAs arise from an orphaned 297 LTR sequence in flies, but from one or more complete 297 elements in S2 cells. Moreover, somatic siRNAs are not generally confined to specific regions of the other transposons examined (Fig. 2C). (Notably, the endo-siRNAs derived from the DNA transposon, \(S\) element, do not appear to arise from intramolecular base-pairing between the complementary \(5^{\prime}\) and \(3^{\prime}\) TIRs, as occurs for \(T C 1\) in C. elegans \({ }^{32}\).) The 1731 element has also expanded in S 2 cells, from a single active copy in the fly to many highly active
copies in the cultured cell line \({ }^{247}\). Our endo-siRNA data reflects this expansion: 1731 matching siRNAs represent \(39 \%\) of all endo- siRNAs in S2 cells, but only \(0.02 \%\) in fly heads, where we found only a single 1731 - matching siRNA ( \(p\)-value \(<2.2 \times 10-16\), chisquare test).

Fly endo-siRNAs are not only limited to transposons, but are also derived from heterochromatic sequences, intergenic regions, long RNA transcripts with extensive structure, and, most interestingly, from mRNAs (Fig. 6). siRNAs derived from mRNAs are \(>10\) times more likely to come from regions predicted to produce overlapping, convergent transcripts than expected by chance, suggesting that endo-siRNAs originate from endogenous dsRNA formed when these complementary transcripts pair.

A subset of fly endo-siRNAs derive from "structured loci" whose RNA transcripts can fold into long, intramolecularly paired hairpins \({ }^{27-29}\). Accumulation of these siRNAs requires Dcr-2 and the dsRNA-binding protein Loquacious (Loqs)—typically considered the partner of Dcr-1, the dicer that produces miRNA-rather than R2D2 \({ }^{248}\), the usual partner of Dcr-2. While surprising, a role for Loqs in the biogenesis of endosiRNAs from structured loci was anticipated by the earlier finding that Loqs plays a role in the production of siRNAs from transgenes designed to produce long, intramolecularly paired inverted repeat transcripts so as to trigger RNAi in flies \({ }^{134}\).

Endo-siRNAs have also been identified in mouse oocytes and a subset of them are derived from pseudogenes \({ }^{33,34}\). Taking all the endo-siRNA studies into consideration, we can speculate about various potential precursors for endo-siRNAs. As flies and mammals
don't have a RdRP, the endo-siRNA precursors are genomic loci that can form dsRNA structures, which can then act as substrates for Dcr-2 (Fig. 6).

\section*{Figure II-6. Genomic Sources of dsRNA triggers for endo-siRNAs in flies and} mammals. siRNAs are derived from dsRNA precursors. Endo-siRNAs can arise from structured loci that can pair intramolecularly to produce long dsRNA, complementary overlapping transcripts, and bidirectionally transcribed loci. Endo-siRNAs may also originate form protein-coding genes that can pair with their cognate pseudogenes and from regions of pseudogenes that can form inverted-repeat structures.

\section*{Figure II-6.}


A key challenge for the future will be to understand the biological function of endo-siRNAs, especially those that can pair with protein-coding mRNAs. Do they regulate mRNA expression? Can endo-siRNAs act like miRNAs, tuning the expression of large numbers of genes? Recent evidence implied a role for endo-siRNAs in robust development of Drosophila embryo \({ }^{249}\). This study demonstrated a requirement for Dcr-2 and Ago2 for normal segmentation of embryos exposed to differential temperatures at their anterior and posterior halves. Ago2 has also been implicated in early embryogenesis, assembly of centric heterchromatin, nuclear division and migration, and germ-cell formation \({ }^{250}\). Moreover, in our lab we have observed that ago2, dcr-2 or r2d2 homozygotes are up to 5 times less observed than expected, relative to heterozygotes. Since, siRNA pathways mutants are viable but probably are less likely to hatch than their heterozygous couterparts, the requirement of the pathway may be manifested only under unfavorable environmental conditions, similar to what has been observed for miRNAmediated gene regulation \({ }^{251}\).

\section*{Materials and Methods}

\section*{General methods}

RNA was isolated as described \({ }^{244}\) from heads of Oregon R flies or white-IR flies \({ }^{243}\) or from Schneider 2 (S2) cells, a phagocytic, cultured cell line derived from late-stage Drosophila embryos \({ }^{242}\). S2 cells were a clonal cell line containing a stably integrated GFP transgene, pKF63, transiently transfected with dsRNA targeting GFP \({ }^{203}\). dsRNA was prepared \({ }^{134}\) and transfected into S 2 cells as described \({ }^{83}\).

\section*{High throughput sequencing}

High throughput pyrosequencing was as described \({ }^{244}\). Libraries were constructed using a method that selects for RNAs bearing \(5^{\prime}\) monophosphates \({ }^{4}\). For pyrosequencing, the total small RNA libraries yielded 63,315 (S2 cells) and 71,268 (heads) reads corresponding to 4,971 ( S 2 cells) and 1,884 (heads) unique sequences. High throughput sequencing-bysynthesis (Genome Analyzer, Illumina, San Diego, CA, USA) was as for pyrosequencing except that RNA Ligase 2 [Rnl2(1-249)K227Q] (Addgene, Cambridge, MA, USA) was used for \(3^{\prime}\) ligation. Linkers and primers for sequencing-by-synthesis were: \(5^{\prime}\) adaptor, 5'-rGrUrU rCrArG rArGrU rUrCrU rArCrA rGrUrC rCrGrA rCrGrA rUrC-3' (Dharmacon, Lafayette, CO, USA); 3' preadenylated linkers, 5'rAppdCdT dGdTdA dGdGdC dAdCdC dAdTdC dAdAdT ddC- \(3^{\prime}\).

After linker addition, the cDNA was synthesized using a reverse-transcriptase primer corresponding to the \(3^{\prime}\) adapter and amplified by PCR using forward ( \(5^{\prime}-\mathrm{dAdAdT}\) dGdAdT dAdCdG dGdCdG dAdCdC dAdCdC dGdAdC dAdGdG dTdTdC dAdGdA dGdTdT dCdTdA dCdAdG dTdCdC dGdA - \(3^{\prime}\) ) and reverse ( \(5^{\prime}-\mathrm{dCdAdA}\) dGdCdA dGdAdA dGdAdC dGdGdC dAdTdA dCdGdA dAdTdT dGdAdT dGdGdT dGdCdC dTdAdC dAdG-3') primers. The PCR pool was gel purified (4\% Metaphor Agarose, Cambrex, East Rutherford, NJ, USA) with Qiaex II (Qiagen, Valencia, CA, USA) then sequenced (Genome Analyzer, Illumina) according to the manufacturer's protocol.

\section*{Quantitative RT-PCR analysis}

Two micrograms of total RNA was treated with RQ1 DNase (Promega, Madison,

WI, USA) or Turbo DNase (Ambion, Austin, TX, USA) according to manufacturer's instructions and then reverse transcribed using oligo(dT) primer and Superscript III and Superscript II reverse transcriptases (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's directions. The resulting cDNA was analyzed by quantitative RT-PCR performed in a DNA Engine OPTICON 2 (MJ Research, Bio-Rad, Hercules, CA, USA) or an iQ5 (Bio-Rad, Hercules, CA, USA) instrument using a SYBR Green PCR kit (Qiagen or Bio-Rad) according to manufacturer's instructions. Relative steady-state mRNA levels were determined from the threshold cycle for amplification using the \(\Delta \Delta C T\) method \({ }^{252}\) or DART-PCR \({ }^{253}\). Table S6 lists the PCR primer sequences.

\section*{Computational analyses}

For each transposon, reads mapping to at least one genomic copy of that transposon were aligned on the transposon consensus sequence using WU-BLAST (http://blast.wustl.edu/) at low stringency (word size, 1 ; expectancy threshold, 100). For each aligned read, the top-scoring segment pair was selected; if N segment pairs were equally high-scoring, they were all selected, and were weighted by \(1 / \mathrm{N}\) (especially true for LTR-matching reads). When the segment pair alignment did not reach the extremities of the read, the alignment was extended in order to cover the complete read. Where reads are reported normalized to sequencing depth, the number of genome-matching reads was used for normalization. Total small RNA data sets correspond to all reads matching the Drosophila genome after excluding annotated non-coding RNAs such as ribosomal RNA, snRNAs, snoRNAs, etc. Other computational methods were as described \({ }^{43}\). Programs are
freely available upon request. Sequencing statistics are in Table S7.

\section*{Enrichment of endo-siRNAs in regions of overlapping transcripts}

The annotated transcriptome (defined as the genomic regions of all annotated mRNAs, including exons and introns) was first divided into the regions that produced overlapping, complementary transcripts and regions that produce transcripts only from one strand. Then all allowable positions that can be the starting position of a non-transposonoverlapping 21-mer were separately determined for the plus and minus strands. The scope of double-stranded regions was defined as the union of the allowable positions for which the anti-sense positions are also allowable. The scope of single-stranded regions is defined as the union of the remaining allowable positions.

We then mapped the endo-siRNAs from wild-type fly heads or S2 cells onto the transcriptome and computed an enrichment score: [(total number of mapped endo-siRNAs whose \(5^{\prime}\)-end position falls in the scope of double-stranded regions)*(size of the scope of double-stranded regions + size of the scope of single-stranded regions) \(] /[\) (total number of endo-siRNAs) \(*\) (size of the scope of double- stranded regions)].

To determine the statistical significance of the resulting enrichment scores, we randomly selected the same number of allowable positions as the number of endo-siRNAs in the sample and recomputed the enrichment score, 100 times per sample. The random distribution had a mean \(\sim 1\), as expected. The \(p\)-values of the actual enrichment scores of the two libraries were determined with reference to the normal
distribution. Results are summarized in Table 1.

\section*{Supplemental Material}

\section*{Supplemental Figures}

Figure II-S1. An unusual small RNA that maps to 17 (13 exact matches and 4 with one mismatch) stable hairpins on the \(X\) chromosome ( \(\Delta \Delta \mathbf{G}=\mathbf{- 2 2 . 9 0} \mathbf{k c a l} / \mathrm{mol})\). The small RNA sequence was enriched in the oxidized, \(\beta\)-eliminated library, suggesting it is \(2^{\prime}-O\)-methylated in cultured S 2 cells. (A) The sequence of the 13 identical hairpins containing the unusual small RNA. Their extraordinary conservation may indicate a recent series of gene duplication events. (B) The genomic locations of the sequence on the minus strand of the X chromosome.

Note added in proof: The loci described here in Figs. S1 and S2 correspond to endo-siRNA-generating hairpins recently identified in \({ }^{27-29}\).

\section*{Figure II-S1.}


Figure II-S2. An unusual small RNA derived from a stable hairpin ( \(\Delta \Delta \mathbf{G}=\mathbf{- 2 4 . 2 0}\)
\(\mathbf{k c a l} / \mathbf{m o l}\) ) on chromosome 2L. The small RNA sequence was enriched in the oxidized, \(\beta\)-eliminated libraries, suggesting it is \(2^{\prime}-O\)-methylated in cultured S 2 cells and adult fly heads.

Note added in proof: The loci described here in figs. S1 and S2 correspond to endo-siRNA-generating hairpins recently identified in \({ }^{27-29}\).

\section*{Figure II-S2.}


Figure II-S3. Endogenous siRNAs from adult fly heads. Small RNAs mapping to more than one genomic location were attributed to each site to which they were complementary, but normalized for the number of sites. piRNA data are from Brennecke et al. (Cell 2007). The figure was drawn using pooled wild-type head data as indicated in Table S7.

Figure II-S3.


Figure II-S4. Endogenous siRNAs from cultured S2 cells. Small RNAs mapping to more than one genomic location were attributed to each site to which they were complementary, but normalized for the number of sites. piRNA data are from Brennecke et al. (Cell 2007).

Figure II-S4.


Figure II-S5. Uniquely mapping endogenous siRNAs from cultured S2 cells.

Figure II-S5.




Figure II-S6. In cultured S2 cells, transposon-derived siRNAs generally mapped about equally to sense and antisense orientations. Only transposons with more than fifty 21-nt reads were analyzed.

Figure II-S6.
\begin{tabular}{|c|c|}
\hline 83\% antisense & - 1360 \\
\hline & - 1731 \\
\hline \multirow[t]{2}{*}{75\% antisense} & - 17.6 \\
\hline & - 297 \\
\hline \multirow[t]{2}{*}{50\% each} & - 3S18 \\
\hline & - blood \\
\hline 75\% sense & - Burdock \\
\hline & - copia \\
\hline \multirow[t]{33}{*}{83\% sense} & - Cr1a \\
\hline & \(\square\) diver \\
\hline & - diver2 \\
\hline & - Dm88 \\
\hline & - Doc \\
\hline & - F \\
\hline & - flea \\
\hline & - gypsy12 \\
\hline & gypsy2 \\
\hline & \(\square\) gypsy8 \\
\hline & \(\square\) HB \\
\hline & - INE-1 \\
\hline & - invader1 \\
\hline & \(\square\) Ivk \\
\hline & jockey \\
\hline & - Juan \\
\hline & - McClintock \\
\hline & \(\square m d g 1\) \\
\hline & - mdg3 \\
\hline & micropia \\
\hline & - NOF \\
\hline & \(\square\) Quasimodo \\
\hline & roo \\
\hline & - rooA \\
\hline & Rt1b \\
\hline & S \\
\hline & - Stalker \\
\hline & - Stalker2 \\
\hline & Stalker4 \\
\hline & Tirant \\
\hline & transib1 \\
\hline & transib3 \\
\hline & Transpac \\
\hline
\end{tabular}

\section*{Supplemental Tables}

Table II-S1A. mRNA-matching endo-siRNAs in cultured S2 cells. Data are from
pyrosequencing of a small RNA library enriched for \(3^{\prime}\) terminally modified RNA.
\begin{tabular}{|c|c|c|c|}
\hline GENE & siRNA & orientation of small RNA & \[
\begin{gathered}
\mathrm{S} 2 \\
\text { cell } \\
\text { reads }
\end{gathered}
\] \\
\hline 5Ptasel & ATATATCGCCCTGTCCCGAGG & sense & 2 \\
\hline Aats-gln & TTTGCGTGACCGATGTGCAGG & antisense & 1 \\
\hline Ac3 & CTCGCGAACAAAGGTTATGTC & antisense & 3 \\
\hline Acer & CAGTATTCCGCACCGAAAAGG & sense & 1 \\
\hline Ack & TCCTCCTGCGCTCTGTTTTGC & antisense & 1 \\
\hline Act42A & CGGCCGTCCACGTCACCAGGG & sense & 12 \\
\hline Act42A & ATGGGGTACTTCAGGGTAAGG & antisense & 7 \\
\hline Act42A & AATATGGTTTGCTTATGCGTC & antisense & 1 \\
\hline Act42A & CTACAACTCAATCATGAAGTG & sense & 1 \\
\hline Ada2b & TGTGGCTCTTAATCGAAGGGG & antisense & 4 \\
\hline Ada2b & ATTGATTTTCAGTTTTGTAGT & antisense & 1 \\
\hline Ada2b & TTGATGAAAATGCCAACGACA & antisense & 1 \\
\hline ade2 & TGAGTTTTAAAGTTGTTTGAG & antisense & 1 \\
\hline ago(archipeligo) & CACCGTTCAAGGTATCCGTGG & antisense & 14 \\
\hline AGO2 & CCTGACCTTCCTCGATGCTGC & antisense & 8 \\
\hline AGO2 & GTTGGAAAGCTTATAATGGAG & sense & 7 \\
\hline AGO2 & TGGCGGACCATCTCAAGGCGG & antisense & 7 \\
\hline AGO2 & TTAAAAGCCGCCTTGAGATGG & sense & 7 \\
\hline AGO2 & TGGAATCAATAGAGATGCTCC & antisense & 3 \\
\hline AGO2 & TGTCCTAAAATGCCACAAACA & antisense & 3 \\
\hline AGO2 & TTGGAAAGCTTATAATGGAGT & sense & 3 \\
\hline AGO2 & CTCCATTATAAGCTTTCCAAC & antisense & 1 \\
\hline AGO2 & TTAATATTCCTAAAAGAAAGG & antisense & 1 \\
\hline AnnlX & TAAGGATTTCCTCGTTGGATC & sense & 5 \\
\hline AnnlX & AACAGGATGCGAGACTGGGGT & antisense & 3 \\
\hline AnnIX & TTTTGCGGAAGATTCATAGCC & sense & 1 \\
\hline AnnX & TGGTTGCTCCTGCCGACGAGC & antisense & 3 \\
\hline Aos1 & TGGTTACTAAATTGGAGGCGC & sense & 3 \\
\hline Apc2 & AACTATAGGAAAATTGAGACC & antisense & 1 \\
\hline Arf79F & CTTATGGGTTGGTGAAATGCG & antisense & 2 \\
\hline Arf79F & TCGGCTCGCTTGAAATCAGAG & antisense & 1 \\
\hline argos & TATACGAAACCCCATGGATCG & sense & 2 \\
\hline Arp5 & ATGCGCTCTACAGCTGGAAGC & sense & 2 \\
\hline Art1 & GTAAGGTGGCCGTGACCGAGC & sense & 3 \\
\hline Art4 & CTGGCATCTGCCATGGGCTGG & sense & 5 \\
\hline Art4 & CTTAAATTAGCTTAGGCTTAT & antisense & 1 \\
\hline ATPCL & CATGGGCACAGTTGGTGGTGG & antisense & 7 \\
\hline ATPCL & TGCTGGCAAAGGAAGCGTGGG & antisense & 5 \\
\hline ATPCL & TGTCGAACGAATCAGGAACGT & antisense & 1 \\
\hline aux & CTGCTGCTGGTACGTCACTGG & antisense & 7 \\
\hline aux & CTGCGAGATGTCCACCATGGT & sense & 4 \\
\hline aux & ATGTAAATTCATGTAAAAGTG & sense & 2 \\
\hline aux & TGTATGCAGATTTGCTGCGGG & sense & 2 \\
\hline aux & CTTTAAAGTTGAAGTATTGGC & sense & 1 \\
\hline Bap170 & CGTTTCAGGCTTCTCTTGGCC & antisense & 3 \\
\hline betaggt-I & TCGTGCTTTGTGCGGCTTCCC & antisense & 1 \\
\hline bigmax & TTAACCAGCAGAAACTCAAGC & sense & 3 \\
\hline bin3 & GTTAGAATCGTCTGTGTCCGC & antisense & 5 \\
\hline bin3 & CTGCCTAGCCCATGATCCGGC & antisense & 4 \\
\hline bin3 & TTGGAGTCTGTCTGCAGCTGG & antisense & 4 \\
\hline bin3 & GTAGAGCGGCGGGTGCTGGGC & antisense & 2 \\
\hline bin3 & GTCTGGTAAAGCGGCGAGGCG & antisense & 1 \\
\hline Bj1 & ACATTATCCTGCGGCGGGGTC & antisense & 2 \\
\hline blue & TGCGACTGCGATTTGGTGTGG & antisense & 7 \\
\hline bocksbeutel & TCTTTAATTGCTTGTTCTCGC & sense & 1 \\
\hline botv & TTACAGTCTGCCATATTGGGG & sense & 2 \\
\hline brat & CGGACCAGAATCTCACCAAGG & sense & 5 \\
\hline Bruce & CACGTGCCAAGAGATTATGCA & sense & 2 \\
\hline Bruce & ACGCTGTAGCAAAACACTAAG & antisense & 1 \\
\hline BRWD3 & CCTCCTCCTCTTCAATATCGC & antisense & 2 \\
\hline BtbVII & TACCGTGAACAACCTAGTCGG & sense & 5 \\
\hline btn & TGACCGGACGCCTGGGGAAGG & sense & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GENE & siRNA & orientation of small RNA & \[
\begin{gathered}
\mathrm{S} 2 \\
\text { cell } \\
\text { reads }
\end{gathered}
\] \\
\hline Bzd & GAAATCACAGTACCGCCTGGA & sense & 2 \\
\hline cact & ATAAAATGCTTGACATTCTGC & antisense & 1 \\
\hline Cap-D3 & TATGGCCATGTGCCTGCAGGA & sense & 1 \\
\hline Cap-H2 & CGTCAATCAAAAAGTCATTTG & antisense & 2 \\
\hline cbt & CAAGCTGGCGGAACTGATGGG & antisense & 9 \\
\hline cbt & CGAGCGATAGCACCGGCGGGC & sense & 7 \\
\hline cbt & GTATATTTTCATTTGTTGAGA & antisense & 2 \\
\hline Ccn & ATGATGATGATGATGATGATG & sense & 1 \\
\hline Cct1 & ATAAGTGTGTGTTCGTGGAGC & antisense & 4 \\
\hline Cct5 & CTGTTCAAATACACTAAAACG & sense & 2 \\
\hline Cct5 & TGAACAGGGATAGCCCCTTGT & antisense & 2 \\
\hline Cct5 & CAGGAGAAGTTCACCCAGATG & sense & 1 \\
\hline Cct5 & TCGTTTTAGTGTATTTGAACA & antisense & 1 \\
\hline cg & GATGTGGGGGCGTTCACCTGT & antisense & 2 \\
\hline CG10011 & TTTGTCGCTGCAATTGCTGTG & antisense & 1 \\
\hline CG10151 & CAAGGCGGCTGCAGCGGCTGC & sense & 4 \\
\hline CG10214 & TTGTTAAGCGTGAAGTTAGGC & sense & 2 \\
\hline CG10214 & AATATAAGCCTAACTTCACGC & antisense & 1 \\
\hline CG10214 & ATTGTTAAGCGTGAAGTTAGG & sense & 1 \\
\hline CG10225 & AATGGATAAATGTCTTTTGTC & antisense & 1 \\
\hline CG10249 & AATACGAAATGGCTTTACTGC & antisense & 3 \\
\hline CG10249 & TGTTCGTTATTTCTGGTTAGT & antisense & 1 \\
\hline CG10274 & CTTAAGTCGAATTCACATAGG & antisense & 2 \\
\hline CG10274 & TTTGCCACAGATGTTACAGGG & antisense & 2 \\
\hline CG10274 & CCCTCAACTGGTGGCGCGGGT & antisense & 1 \\
\hline CG10274 & CTTGAACTTCTTCTCCTGGGT & antisense & 1 \\
\hline CG10341 & CTCGTACTTTCGGGGGCTGGC & antisense & 4 \\
\hline CG10365 & GGCGGATGTCCTCGTGCGAGT & antisense & 6 \\
\hline CG10376 & CAGCAGGAAGCACTAAGCGGC & antisense & 4 \\
\hline CG10376 & AGAAAAAGTGCACAATTACGC & sense & 1 \\
\hline CG10376 & TTAAGAATGCCATTTACACGC & antisense & 1 \\
\hline CG10435 & ATATTTATTCTGCTGCTGAGG & antisense & 2 \\
\hline CG10435 & TAGGGAGCTGGCTGGTCCGGC & sense & 2 \\
\hline CG10445 & TAAAGTTGCACCTGGAGAAGC & sense & 1 \\
\hline CG10462 & CAATAGCGCGGACGATCTGGC & sense & 4 \\
\hline CG10516 & TGGTGTCTGTTTGGATCGAAC & sense & 1 \\
\hline CG10576 & ATCTGTGGAGCGCAGCGTTGG & antisense & 2 \\
\hline CG10669 & GCGTTCCTTTGTCGTTCAGCC & sense & 2 \\
\hline CG10889 & CGAGGGAAAGCCAGCCGCTGG & sense & 3 \\
\hline CG10903 & TAAGCCGGGCACTTTCGACGG & sense & 3 \\
\hline CG10971 & CGGAACAACAGCCTTTGGATG & sense & 4 \\
\hline CG10971 & AACTGGTGAAATCGTTTTGGG & antisense & 1 \\
\hline CG1104 & TGATTCTGCATTGTCTGCAAA & antisense & 1 \\
\hline CG11063 & TAGTTTGTTCTGGTTTTGTGC & antisense & 1 \\
\hline CG11109 & TGGTGGCCCTAGACAATTCGG & sense & 5 \\
\hline CG11109 & TGTTAATGCAGCGGTATCAGC & sense & 3 \\
\hline CG11109 & TTGCTCCGCTGTTGGAATGGC & sense & 2 \\
\hline CG11109 & TTTGCGTCCGTGTCCTGGATC & sense & 2 \\
\hline CG11109 & AGTGAATTCTCCCACGGGTGC & antisense & 1 \\
\hline CG11180 & TTGGTAAGCTTCATGGTTTAC & sense & 1 \\
\hline CG11198 & GTCGACTTCATGCCCACCAAG & sense & 2 \\
\hline CG11198 & CAAAAGGCTCTGTGTACAAAG & antisense & 1 \\
\hline CG11242 & GTATGCGGGTCTATTGATTGG & antisense & 9 \\
\hline CG11306 & CATTGGATCGATGGTCGTGGG & sense & 13 \\
\hline CG11306 & CATGGTGAACTCCTCGTGGAC & sense & 1 \\
\hline CG11377 & GTAAGAAGGGCTGGAGCATGG & sense & 3 \\
\hline CG11388 & CACGCCGGAGTTCAGGCCTGG & antisense & 3 \\
\hline CG11388 & AGAAGCTGACCCACTCGGAGG & sense & 2 \\
\hline CG11448 & AGGCGTCGCCCTCTGATGCGG & antisense & 2 \\
\hline CG11455 & CATCAGTTGCTTCTGCATGCC & antisense & 1 \\
\hline CG11526 & CCACACCAAATGCCTCGTTGG & sense & 9 \\
\hline CG11526 & TTTCGCATGCAGGCCGCCCGG & sense & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CG11620 & TAACGATCTCACCTCCGAAGG & antisense & 6 & CG15097 & TGAAACCCTACGTATTTGCGG & sense & 1 \\
\hline CG11777 & TAAATCTTAAAACCAGCCAAG & sense & 1 & CG15099 & AACAGCCGGTTTTCATCTCGG & antisense & 1 \\
\hline CG11790 & TGACAGACGGTACATTCGGCC & antisense & 6 & CG1516 & TGAGCTGGCTGTGCAGACCGG & sense & 5 \\
\hline CG11814 & ATCCAGTTCCTGCGGCTGAGG & antisense & 4 & CG15209 & CCATAGGGCTAGCAGGCGGGC & antisense & 5 \\
\hline CG11866 & TGACTGCCGGATTCGTGTGAT & antisense & 3 & CG15216 & CGGGTTCCAGTGCATGGGGGA & sense & 2 \\
\hline CG11872 & TATAGCTTCTGTTATTGTGGG & antisense & 2 & CG1531 & TCCTCTCTCAGCCAGGGCAGT & antisense & 4 \\
\hline CG11880 & ATGTACTGCTTTACGGAGAAG & antisense & 2 & CG15370 & ATGATGATGATGATGATGATG & antisense & 1 \\
\hline CG11880 & TAGTAGGTGGACGCCCCCGCC & antisense & 1 & CG1542 & AGTCAGCCGAGAATCGCAAGA & sense & 3 \\
\hline CG11927 & ATACAAATGCCAATGGCCGTC & antisense & 3 & CG15438 & AAATACTTGGCGTGTCTAGTC & sense & 2 \\
\hline CG11929 & TTGTTTCGTGGGATTTGCAGA & antisense & 1 & CG15482 & TCTTAGACTTAAATACATGGC & antisense & 1 \\
\hline CG11943 & CCGAGCAGGCGCTGGGCGTGC & sense & 2 & CG1553 & ATTGTCCAGCACGTTGCAGTC & antisense & 3 \\
\hline CG12016 & CCACACCAAATGCCTCGTTGG & antisense & 9 & CG1553 & TTTAGGTTTATCGTGTTATGA & antisense & 2 \\
\hline CG12016 & TAGTTATTATGGGTGACATGG & sense & 4 & CG15609 & CGAAATAGTATTGGTGGTGGT & sense & 6 \\
\hline CG12030 & ACCGACGGTCCGGAGATGTGG & sense & 11 & CG15609 & AGGGGTTGCTGTTTCTAGCGC & antisense & 5 \\
\hline CG12030 & GCCACGTTCCTGCCGCTCCGC & sense & 6 & CG15609 & TTTAGCTGCATCTGTCGCCGG & antisense & 3 \\
\hline CG12082 & AGTCGTTGGCCGGGTCGCTGG & antisense & 1 & CG15609 & CACGACCGTTGGCCGCCACCG & antisense & 2 \\
\hline CG12106 & CAGCGCCGAATCACTATGGGC & antisense & 10 & CG15609 & TCGCAATGGTTTACGCTGGTC & sense & 2 \\
\hline CG12106 & AAGCGGGTGCTGTCGTTCTTC & sense & 2 & CG15609 & TTGGGAGTGTGACATAAATGG & antisense & 2 \\
\hline CG12106 & TGAAGCTGCTTGTGCCGCCGC & antisense & 1 & CG15609 & TATTTCGGATTAGCCTAAGGA & antisense & 1 \\
\hline CG12118 & CAGCGCCGAATCACTATGGGC & sense & 10 & CG15891 & AGCTTGTCCAGTTCCTCCTCC & antisense & 1 \\
\hline CG12118 & AAGCGGGTGCTGTCGTTCTTC & antisense & 2 & CG15892 & AGCTTGTCCAGTTCCTCCTCC & antisense & 1 \\
\hline CG12118 & TGAAGCTGCTTGTGCCGCCGC & sense & 1 & CG15896 & CTCATCGCTGATGGCCACCGG & antisense & 6 \\
\hline CG12170 & GGAAAGTGCACTGTTTTGGTC & sense & 3 & CG15896 & AACTCCACATAGCTTTTGGCC & antisense & 1 \\
\hline CG12182 & CTATCGATTGCATCTGCAGGC & antisense & 6 & CG15930 & ATGATGATGATGATGATGATG & sense & 1 \\
\hline CG12182 & TCAAGGACCTTCTACTGGTGG & sense & 5 & CG1600 & GTGCGCTGGTCAAGTCGTCGG & sense & 3 \\
\hline CG12182 & TGGTCGTGGATCCCTTTCCGT & sense & 2 & CG1621 & CTACGGAGCCCATATGCGAGC & sense & 4 \\
\hline CG12262 & TTGGGATCCGGATTGGTGCGG & antisense & 4 & CG16742 & ATCTCGCGCTCGTGGACCTGC & sense & 1 \\
\hline CG12262 & GCATCATGACCGCCTTAGAGG & sense & 3 & CG16903 & CGATTTAGTAATGCTAATGTG & sense & 2 \\
\hline CG12299 & GTGCACGCACTGCGAGGCGAG & sense & 3 & CG16903 & TAGCATTACTAAATCGGTAGA & antisense & 1 \\
\hline CG12341 & TTTAAGTTAAGATCTAAGTAT & antisense & 1 & CG16972 & TGGGTGTATCAACTGGTAAGG & antisense & 6 \\
\hline CG12343 & TTTTGGAGGTATCCGCTGTGG & sense & 2 & CG16989 & AACATGCACTTTGAGGGACGC & sense & 2 \\
\hline CG12393 & GGGCTCGGTGTCACGTCGGGC & antisense & 6 & CG17264 & TCACTGGCACTGCACTTCTGG & antisense & 13 \\
\hline CG12576 & GAGGAAAGCCTGTCAAAGGGG & sense & 1 & CG17660 & AATGTATGTAATCGTAGTTCC & sense & 4 \\
\hline CG12785 & TATTAGGCGTTTCCTTTTGGG & antisense & 5 & CG17660 & AAGGGTGTTGCAGTTCAGCAC & sense & 2 \\
\hline CG12936 & TTTAAGTTAAGATCTAAGTAT & sense & 1 & CG17715 & TTAACTCTATACAGTGCCGCT & sense & 1 \\
\hline CG1311 & CATGTAGAAATTCAGACCGGG & antisense & 3 & CG17746 & AGGTGAAGATGGCGTCGCATC & sense & 2 \\
\hline CG13189 & GGTTGGCCTCAAAGAGTCTGG & sense & 2 & CG17746 & ATTGGGAATTCATCGTGCTGG & sense & 2 \\
\hline CG13220 & CTGGCGGGCTTGGGAACTGGC & sense & 8 & CG17746 & TGAGTTCAATCGCGTCAACGG & sense & 1 \\
\hline CG13349 & GCCTGATGCACTTCTGCTGGA & sense & 1 & CG17746 & TTGGATTGCTTCTGGCAGGGT & antisense & 1 \\
\hline CG13384 & CGTTGTGACCTTCGCAGGAGC & sense & 2 & CG18107 & GTCACTGTCTTTGTGCTTGGT & sense & 2 \\
\hline CG13384 & TTGGTCAAAGGTGTCAGGTCC & antisense & 1 & CG1812 & TCGCATCTATGCCTGCGGCGG & sense & 2 \\
\hline CG13484 & TTGTTATAGTTCTTGCGAGGG & antisense & 2 & CG1814 & GTCACTCTGTGCTCTATTTCG & sense & 4 \\
\hline CG13484 & AGAAGCCAACGTTTGGATTTT & antisense & 1 & CG18166 & CGTGGCTGATCAAGTGCTTGA & antisense & 1 \\
\hline CG1358 & CCGATCCACCGAGGGCGCTGC & sense & 8 & CG18259 & CCACCAACAGCCTTTCTCCGG & antisense & 6 \\
\hline CG1358 & CTGGGCTCCGTGGTATCGGGC & sense & 5 & CG18259 & GAAAGGAGCAGTTTGGTAAGC & sense & 2 \\
\hline CG1358 & TTGGTGGCGGTGCTGTTCCGC & antisense & 5 & CG18259 & TGAACAAGCCTTTTTTCAAGC & sense & 1 \\
\hline CG1358 & AGACGGTGGGCAGTGATCTGC & sense & 1 & CG18262 & CGAAATGTCTGGTTGCAGGCT & antisense & 2 \\
\hline CG1358 & ATGATGATGATGATGATGATG & antisense & 1 & CG18273 & CGTGGCTGATCAAGTGCTTGA & antisense & 1 \\
\hline CG13601 & TCTTTAGTTGTTTGTCTGCGG & antisense & 1 & CG18432 & TGGACAGCCCTTTGGCGCGCC & sense & 7 \\
\hline CG13762 & CGCTGTCCACCTGCACGTCGG & antisense & 4 & CG18542 & GGGTACGCCTCACTGGAGTGC & sense & 8 \\
\hline CG13893 & TTAAGGTCAACGTTGAGGAGC & sense & 1 & CG18809 & TAACGTAACGTAGCCGCAACG & sense & 7 \\
\hline CG13900 & CAGTGCAGCGAAGGTATCGTG & sense & 9 & CG18854 & CGGGAAACTATGGATCAAATG & sense & 15 \\
\hline CG13900 & CCAGGATCTCTGCTCGCCCTC & antisense & 7 & CG18854 & CATCGCAAGCCAGATTCTTGC & sense & 12 \\
\hline CG13900 & TAAAGAACCTGGTGCTTGTGG & sense & 5 & CG18854 & TCGGTTGAAGCGTTGGCTTTC & sense & 6 \\
\hline CG13900 & CTCGCAAATCCGTTGCCTGGA & sense & 1 & CG18854 & GATCTTGAACATTTCGCCCTC & sense & 5 \\
\hline CG13902 & GAGATACGGTTCCAGCTGGTC & antisense & 2 & CG18854 & GAGGTCCGGTCTGAGCGTGGC & sense & 4 \\
\hline CG13902 & TTGTACATGCCACCCAAATGG & sense & 2 & CG18854 & TAATATAGGGTGGAGCTCAGC & sense & 4 \\
\hline CG13924 & CTGCTCGTTGCGATTGATGGT & antisense & 2 & CG18854 & TTTGGCCCATAGTTTTCCATC & sense & 4 \\
\hline CG14102 & GCGACTGCTTCTCAATTTCGG & sense & 1 & CG18854 & ATGCTGCTGAAATGGATTCGG & sense & 3 \\
\hline CG14211 & CGGCGACGCACATGGAGACGC & sense & 6 & CG18854 & CTTGAAGCCAGGAATGCCATC & sense & 3 \\
\hline CG14215 & CTGATTTCAATGCAGTGGCGG & antisense & 2 & CG18854 & CTTGGTGATCGCTCGTGCCTC & sense & 3 \\
\hline CG14230 & TCCTCCTTCTTCTCCTCCTC & antisense & 4 & CG18854 & ATCACTATCATCATCATCCGA & sense & 2 \\
\hline CG1434 & AGGGTACAATCGATCTGGTGC & sense & 1 & CG18854 & ATGCTAATGACTCCGATGTGG & sense & 2 \\
\hline CG14435 & AATAAGTTTGTGTTGCCAGAC & sense & 1 & CG18854 & CAAGCTTTGGAGATGGAGGGC & sense & 2 \\
\hline CG14476 & GTTATGCTGCCATTTGGACGG & sense & 1 & CG18854 & CCTTGTAGTGGATTCGGATGA & sense & 2 \\
\hline CG14670 & TACTCGAACTCGGTGGCCTGG & antisense & 3 & CG18854 & CTTGCTTGGCTCTCAGGAATC & sense & 2 \\
\hline CG14782 & CAAGGTCGCGTTCTGGTGGGC & sense & 7 & CG18854 & GGATTCAGCTCGGTTAGAAAG & antisense & 2 \\
\hline CG14782 & ATGAGCCGCGCTTCTACGGGG & sense & 4 & CG18854 & TCTGATCTTGAACATTTCGCC & sense & 2 \\
\hline CG14786 & TGGCCGAGTTTCAGCGACTGG & sense & 6 & CG18854 & AACGGATCTCAGGACTGGAGG & antisense & 1 \\
\hline CG14799 & ATGATGATGATGATGATGATG & antisense & 1 & CG18854 & AAGGGTGGCCAAGATATGTGG & sense & 1 \\
\hline CG14804 & TAGCTATGCTCTCCAGTTCGC & sense & 3 & CG18854 & AGGCGCATGTGCTTTAGTCGC & sense & 1 \\
\hline CG14815 & TGAGGTCTGGCAGTTGCTGGG & sense & 4 & CG18854 & ATCCTCTACAACGATTTTTTC & sense & 1 \\
\hline CG14882 & AATAGGTTGCTCATTCGTGGG & antisense & 3 & CG18854 & ATTGGTGGTCAATATGTCGGC & sense & 1 \\
\hline CG14956 & CTGCTAACCGTTCCACCGCGG & sense & 3 & CG18854 & GATGATTCCCGGGATTCAAGC & sense & 1 \\
\hline CG14956 & GCAGTAGCAGCAGTGGAGCGG & sense & 1 & CG18854 & GATTCTTGCTTGGCTCTCAGG & sense & 1 \\
\hline CG14966 & TAAGCAGAACGGAATCACAGG & sense & 6 & CG18854 & TATGTTGCCTCCAAGTAGGGC & sense & 1 \\
\hline CG14967 & TACGGATCGAGCGATGCGTGC & antisense & 7 & CG18854 & TTCGGATGATAATGCTAATGA & sense & 1 \\
\hline CG15011 & CGTTGTGGTCTGCACGAAAAG & sense & 2 & CG18854 & TTTCTTGGTGCCGGCGGTCGG & sense & 1 \\
\hline CG15067 & TTTAAACTTATGTGGTGGAGG & sense & 2 & CG1902 & TTCCTGATCCTTCTCACTGGC & antisense & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CG1972 & GCAGCACATTCAGTATGTAGG & antisense & 7 & CG33969 & AGCTGGTGACCACGGTTTGTG & antisense & 3 \\
\hline CG2006 & TCTGGATGTCCAACATTTTGT & sense & 2 & CG33969 & TTCGAACGACCATACTTCCAC & sense & 2 \\
\hline CG2006 & TCGTGCATATGCGCATCGCGG & sense & 1 & CG33969 & ATTGACCTGTCCACGAATTGG & sense & 1 \\
\hline CG2034 & ATCAAGGCCCTGCCCACCGGC & sense & 2 & CG33969 & ATTGCGTTTCTATTGTCAAGT & sense & 1 \\
\hline CG2137 & AGTTCCCGTATATTGAGGCGG & sense & 1 & CG33969 & CTCGTGTCTAGTTTATTACGG & sense & 1 \\
\hline CG2225 & AAAGACAATGGAGCCTCGGGG & sense & 2 & CG33969 & TTGATCGGGCCAAAATTCGTT & sense & 1 \\
\hline CG2247 & GTGTTCTTCGCACTTGTCCAG & sense & 1 & CG33978 & TTACTTATAATCACCAAGCGG & sense & 1 \\
\hline CG2614 & CGGGAACGTCATTGCTGTCGC & antisense & 6 & CG33995 & TGAAGGGACTCGCTTGGTCGC & antisense & 8 \\
\hline CG2698 & TTATTTACACCGTAGGAGAGT & sense & 1 & CG3402 & TAGCTCACGGCCTTTTTGTGG & antisense & 10 \\
\hline CG2811 & TCAACGCATGGGTATTATTCG & sense & 2 & CG3402 & ATAAGTGGTGCTCGGAGCAGG & sense & 3 \\
\hline CG2926 & AGGGATCACGTTGCCGCGAGA & antisense & 8 & CG3402 & TCCACATAAGTGGTGCTCGGA & sense & 1 \\
\hline CG2991 & CGTGGTGGCCTATCAGCGGGC & sense & 2 & CG34125 & CATGTGTAACCTAAAAAAAGG & antisense & 2 \\
\hline CG3032 & CATTCGAGAGGTGCATGCCCC & sense & 2 & CG34125 & TTTTTATAACATCAAAGGAGT & antisense & 1 \\
\hline CG30373 & GGAGGAAGATGGCCAGGCTGG & antisense & 9 & CG34126 & TGAGAACGTCATGGTTTGGGG & antisense & 6 \\
\hline CG30410 & TGGGCCATGTTCACGAACAGG & antisense & 4 & CG34179 & GGGCTCGGTGTCACGTCGGGC & sense & 6 \\
\hline CG31082 & CGGAATCAGTGTCTGCATAGG & antisense & 6 & CG34268 & CGTGGTGAAATCTGTTCCGGT & sense & 3 \\
\hline CG31121 & TAACGAAGCCCGACTGTACGG & sense & 5 & CG34335 & GGCGGTCGAGTGCCTCACAGT & sense & 3 \\
\hline CG31121 & ATGATGATGATGATGATGATG & sense & 1 & CG34376 & ATGGAGGTGGCCATTTGGGTC & sense & 4 \\
\hline CG31158 & TTCTAGCTACATGGACATGTC & antisense & 1 & CG34398 & ATGATGATGATGATGATGATG & antisense & 1 \\
\hline CG3164 & AGAAAGCTTGCGAAATGCGCT & antisense & 1 & CG34415 & GGAACTGAACTGCACGCCTGG & sense & 5 \\
\hline CG3164 & TGATTGAGGTGTCCTGCGGGG & sense & 1 & CG34429 & CTCCTGCAGGATATCTGGATC & antisense & 1 \\
\hline CG31643 & TGAGTTTTAAAGTTGTTTGAG & sense & 1 & CG34429 & TGATCCAGATATCCTGCAGGA & sense & 1 \\
\hline CG3165 & TAAAATGAAGTTCATGCTGGA & antisense & 3 & CG34430 & TCGGTCCTAAAGCATTCACGG & antisense & 1 \\
\hline CG31678 & TCAAAATATAAACCCAACAGG & antisense & 2 & CG3542 & TCTCAGGAGTCGGTAATCGGG & antisense & 2 \\
\hline CG31678 & TCTTAAGCGCCAGGAATCCGC & sense & 1 & CG3542 & AGAGCGGGTCTACACCCCTGG & sense & 1 \\
\hline CG31729 & TACGAACAAAGACCGATCCGC & antisense & 4 & CG3605 & GTTGGCCGAACATGTGGCGCG & sense & 3 \\
\hline CG3173 & ACGAGCTGTTCGAACGACTGC & sense & 2 & CG3683 & CAAACAGGCTCGCGGGTCATC & antisense & 3 \\
\hline CG31771 & ATGATGATGATGATGATGATG & sense & 1 & CG3703 & CGATGGAGCGCAGTGAGTCGC & antisense & 4 \\
\hline CG31793 & TAGCTGTGATTGGACCCGTGG & sense & 5 & CG3703 & ATAGGTTGAAACACGGCGAGG & sense & 1 \\
\hline CG31812 & GAAGGGTGTTCAACGCGTGGC & sense & 2 & CG3703 & CAGTGAGTCGCGGAATCCGGT & antisense & 1 \\
\hline CG31849 & CAGGTGGGCTTCATCGGCTGC & sense & 4 & CG3711 & TTTGATTAGGAACCACTTTGG & sense & 1 \\
\hline CG31918 & ATGAACGCTTTCCTTTGTGGT & sense & 1 & CG3740 & TAGCCATCGTAGCGGACGAGC & sense & 6 \\
\hline CG31919 & TGAAGGGACTCGCTTGGTCGC & antisense & 8 & CG3760 & TCAACGCATGGGTATTATTCG & antisense & 2 \\
\hline CG31922 & GCTCTTTGCAATTGCGTGTGC & antisense & 3 & CG3764 & CGGATGTTTGTCGACAGATGC & antisense & 5 \\
\hline CG31975 & AGCAGTGGCTACGTCTCCGGC & sense & 4 & CG3792 & GAATAACCGAATTGGCAAAGG & antisense & 3 \\
\hline CG32164 & CTGTCTGGTGAAGGATTGCCC & sense & 1 & CG3814 & TAACTTAAGCAATGATAAAGC & antisense & 2 \\
\hline CG32164 & GTAGAGGACGTCAAGCATGCG & antisense & 1 & CG3831 & GATTGGTGTACCTATTTAAGG & sense & 1 \\
\hline CG32164 & TAATGCGCACCGACGACCAGG & sense & 1 & CG3967 & CGATTCTTCATGCCCGTGTGC & antisense & 1 \\
\hline CG32165 & CTGTCTGGTGAAGGATTGCCC & sense & 1 & CG3973 & TGGATCCTTCGAGCGCAATGG & sense & 2 \\
\hline CG32165 & GTAGAGGACGTCAAGCATGCG & antisense & 1 & CG3973 & GAGAGCGTGGAATCTTGCTGA & antisense & 1 \\
\hline CG32165 & TAATGCGCACCGACGACCAGG & sense & 1 & CG3980 & AACCTGAACTGCCAGGATCGG & sense & 1 \\
\hline CG3223 & ATATTTATTCTGCTGCTGAGG & sense & 2 & CG40084 & TATTGAAAACTGTATTGCTAG & sense & 1 \\
\hline CG32250 & TGGAAGAAGCCGGCGATGTGC & sense & 2 & CG40228 & TGTTCACCCATGTTGCCACGC & sense & 1 \\
\hline CG32409 & GAAGTTCGCCAAGGAGAAGGG & sense & 1 & CG4025 & CGATTTAGTAATGCTAATGTG & antisense & 2 \\
\hline CG32412 & AGGGTGCGGTTGAAATGGACC & antisense & 1 & CG4025 & TAGCATTACTAAATCGGTAGA & sense & 1 \\
\hline CG32425 & CTATGTTATGCCATCCGCTGG & antisense & 8 & CG40351 & GTGTCCTCCAAAGCCGCCTGC & antisense & 2 \\
\hline CG32495 & TTGCCGCCTCCCTCGCGCTGC & antisense & 2 & CG40351 & TAAACCATTTTGAACAGCACC & antisense & 2 \\
\hline CG32694 & ATGATGATGATGATGATGATG & sense & 1 & CG40351 & TGTTAGCCAAATGACGAGGAC & sense & 2 \\
\hline CG32702 & CCAAATGCACTCGGAATGGGG & antisense & 5 & CG4061 & CGACGGCTCCTACTTGGAGGG & sense & 3 \\
\hline CG32702 & CTTGCATGGATGCTGATCGCA & antisense & 1 & CG4061 & ATTAAGCATTCACGCCAGAAG & sense & 1 \\
\hline CG3271 & TTTCGCAGGGTTCGACAGTCC & antisense & 2 & CG4068 & TTGACTCCAACAAGTTCGCTC & sense & 33 \\
\hline CG3279 & GACCTTCTTGTTAATCGATGG & sense & 5 & CG4068 & TGGCGCTTCACAGGCGCTGGA & sense & 27 \\
\hline CG3279 & GAAGAAAGCTGCAGATTACGC & sense & 3 & CG4068 & GTCCAACTACAGGATACTGGG & sense & 15 \\
\hline CG3279 & GGAGAAGGTGGTCTTGTATGG & sense & 2 & CG4068 & TGACTCCAACAAGTTCGCTCC & sense & 9 \\
\hline CG32809 & TGCGGCAGCCTGGTTTGGTGG & antisense & 5 & CG4068 & CGGTAGCCTGTAGTTTGACTC & sense & 5 \\
\hline CG32939 & GGGTACGCCTCACTGGAGTGC & sense & 8 & CG4068 & CTTCCGCTGGCTTTGATTTTC & sense & 4 \\
\hline CG3308 & GCGTCCGGTTCGGAGAAGTCC & antisense & 3 & CG4068 & TTTGACTCCAACAAGTTCGCT & sense & 2 \\
\hline CG3308 & TTACGGGTTTAAAGCTGCTGG & antisense & 2 & CG40798 & AAATGCGAAACTACATTAGAG & sense & 2 \\
\hline CG3308 & AATCCGCTTTGTGCCCATTGT & sense & 1 & CG4119 & TGGCGCTGCCGTACAAATCGG & antisense & 1 \\
\hline CG3308 & TTGCACAGGTAGCCCGTCAGG & antisense & 1 & CG41322 & ATAATACAGGCAAGCGTAAGG & sense & 2 \\
\hline CG33107 & TTCTACCATGGCGGGAATCGC & antisense & 1 & CG41421 & CGAGAGGAACCGCAGGTACGG & sense & 8 \\
\hline CG33111 & CGGGGGATTGGTGGCAGCTGG & sense & 1 & CG41484 & CAGGAATCCTGTTGGAATCGG & sense & 7 \\
\hline CG33249 & CGGCAGCCAGCGGCAAGCAGG & sense & 4 & CG41484 & CAAGGAAAGTGGATTACTCGG & sense & 5 \\
\hline CG33469 & TTGTGAACCATTTTAAGTTGG & antisense & 1 & CG41484 & GGGTACTGTCGGCGGCTCGAC & sense & 3 \\
\hline CG33470 & CCAATGGAGCTAAGAGCGTGG & sense & 14 & CG41484 & ATCCGATTGGTACTCCGCAGC & sense & 2 \\
\hline CG33509 & GCAGAACCTTTCGGATTTGGG & sense & 5 & CG41484 & ACTTTGAGGCTGCTGTATATC & antisense & 1 \\
\hline CG33509 & TGTGGATGTCATGGAAATGGC & sense & 5 & CG41484 & TACATAGCGGTGTATTCGCCG & antisense & 1 \\
\hline CG33509 & CATAGGTGTGACCTATATTGG & antisense & 4 & CG41533 & TGCATATCATTCACGCCACGC & antisense & 2 \\
\hline CG33509 & TTCCAAAAGGAATCCTGGCTC & sense & 1 & CG41584 & TATTGAAAACTGTATTGCTAG & sense & 1 \\
\hline CG33510 & TTGTTCATCGTGATGCATGGA & sense & 2 & CG41587 & AAATGCGAAACTACATTAGAG & sense & 2 \\
\hline CG33510 & TTAAGGATGAACGACCGGAGG & sense & 1 & CG41589 & TATTGAAAACTGTATTGCTAG & sense & 1 \\
\hline CG33523 & GACGATTGCCTCTGCCTGAGT & antisense & 2 & CG4199 & ACATCGGGCATTACCAGCTGG & sense & 11 \\
\hline CG3356 & TTACTTGAAGGACTACTCGGG & sense & 2 & CG4199 & AGTACGATATCGAACTGTGGC & sense & 1 \\
\hline CG3363 & ATCGTGATGCCTCCAGGAGGG & antisense & 3 & CG4199 & ATTGGGTGTTGAGCTTGGAGC & antisense & 1 \\
\hline CG33649 & GTGACCGAAGGCGATTGCCGG & sense & 1 & CG4213 & ATGCTCAGTTGGCTTTGCAGC & sense & 2 \\
\hline CG33932 & CTGGCGGAAGGTTATGTCCTC & antisense & 3 & CG4334 & CTTCTTGATGACACAGTCTGG & sense & 2 \\
\hline CG33967 & GAAGTTGCTGATGAAGACCGC & sense & 3 & CG4582 & TTCAATGGTCCTGTCTGGCGG & antisense & 2 \\
\hline CG33969 & TATGGTGGCGATTACAACCGC & antisense & 6 & CG4619 & AATAGCACTAAACATAATGGT & sense & 1 \\
\hline CG33969 & CATCAAAGGCATTCTCTTCGC & antisense & 4 & CG4643 & ACACGAGCCCAGCAGCGGAGC & sense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CG4643 & TGTGGCTCTGCTCGGCTCCGA & sense & 1 & CG7224 & ATTTGCATTGCACTTATTGGG & sense & 2 \\
\hline CG4670 & AAGGACGCCGTGCTGGGCTTC & sense & 3 & CG7224 & TTTGCATTGCACTTATTGGGC & sense & 2 \\
\hline CG4670 & AGAGTGTCCACAGGGAGCAAC & antisense & 2 & CG7289 & ACTCAAAACCAGTGGCGGAGG & sense & 1 \\
\hline CG4699 & GAGCTTGGCGTGCCTGTCCGC & antisense & 2 & CG7324 & GTTCGCTGCCCGAGCATCCGG & sense & 2 \\
\hline CG4752 & CGATGGCGCCTTAATGGTTGC & sense & 4 & CG7324 & CAATTGTCTTAACTTAATGGT & antisense & 1 \\
\hline CG4822 & AGCCAATGGTAGAAGCCGTGG & sense & 6 & CG7338 & CTCCCTTTTGTTTTTCCTGAG & antisense & 3 \\
\hline CG4822 & CGGTTTGACCTCGGTGCTAGA & sense & 4 & CG7338 & CAATTGTCTTAACTTAATGGT & sense & 1 \\
\hline CG4901 & TTTAGAGCCAAATGCAAGTGC & antisense & 2 & CG7376 & TGTTTGGCCACAGCAGCAAGG & antisense & 3 \\
\hline CG4963 & CGCCGTGGTGCTGGGTGCTGG & sense & 5 & CG7376 & TGCTCGTGGCACTTTAAATGC & antisense & 2 \\
\hline CG5044 & AAGGATCAGAAGCCCCAGTGG & sense & 6 & CG7379 & ACGGCAAGCTGCGCCAGCTGG & sense & 3 \\
\hline CG5062 & TGTGTCTGTGTGTGTGTGTGT & antisense & 6 & CG7504 & AATCACAGAGGGGCCGCGTGT & antisense & 1 \\
\hline CG5104 & GAATATAAGCGTGAGTCCCGC & antisense & 1 & CG7518 & TGAAACACCGGAAGGAGGAGT & sense & 1 \\
\hline CG5126 & TTGGTCCGAGTGCTTCGCTGG & sense & 1 & CG7519 & CAACTTGTTAAACTTCTCGGC & antisense & 3 \\
\hline CG5130 & CAGCGCAAGACTTGGATTTGG & antisense & 11 & CG7632 & ATTTTGAAGGGCTTTGTGGGC & antisense & 1 \\
\hline CG5191 & TGATAAATGCCATCGTCCAGG & sense & 4 & CG7650 & CGTAATGGTGAGCTTCTTGGC & antisense & 4 \\
\hline CG5362 & TCTGAACGGTTTCCACGAAGG & antisense & 5 & CG7650 & TCATCGGTAAGCCGCACAAAG & antisense & 2 \\
\hline CG5458 & TGGGAACTACAGGAAGGGTCG & sense & 7 & CG7650 & GATTTGTGTCGATGGTCAGAC & antisense & 1 \\
\hline CG5458 & TCCACTCGGGTACAGGTTATC & antisense & 4 & CG7739 & GTTGGAAAGCTTATAATGGAG & antisense & 7 \\
\hline CG5458 & TGTCGGCGCCCGAGGAAAGAGG & sense & 2 & CG7739 & TGGCGGACCATCTCAAGGCGG & sense & 7 \\
\hline CG5508 & CTATATGCGGCCTCTGTGCGG & sense & 2 & CG7739 & TTAAAAGCCGCCTTGAGATGG & antisense & 7 \\
\hline CG5508 & TTGTTTTCGGTTGTCCTGCCG & antisense & 1 & CG7739 & CTAAAGCGCACTTTCGAGGTA & sense & 5 \\
\hline CG5510 & AACTATAGGAAAATTGAGACC & sense & 1 & CG7739 & TGGAATCAATAGAGATGCTCC & sense & 3 \\
\hline CG5537 & GGCATTCACTACGGTCCGAGC & antisense & 1 & CG7739 & TGTCCTAAAATGCCACAAACA & sense & 3 \\
\hline CG5543 & ATGAAGCTTTGGGATCTGCGG & sense & 2 & CG7739 & TTGGAAAGCTTATAATGGAGT & antisense & 3 \\
\hline CG5567 & CAGCGGGAGCTTCGTGCGGGC & sense & 3 & CG7739 & CTCCATTATAAGCTTTCCAAC & sense & 1 \\
\hline CG5644 & TTCGCATGAAGGATCGTCTGG & sense & 2 & CG7739 & TTAATATTCCTAAAAGAAAGG & sense & 1 \\
\hline CG5734 & TGGCGCGCCTTTTCCTTTTCG & antisense & 6 & CG7789 & ATGGGTCGCACCATTTGGGGC & sense & 5 \\
\hline CG5734 & CTATGGCATCCGGAACGAGTC & sense & 2 & CG7816 & TGAATTTGTTGTACTTTATGG & sense & 2 \\
\hline CG5734 & TCTGCAGGCTGTTCAGTTGGC & antisense & 2 & CG7816 & TCTAAGATTGTCATTGGCAGT & sense & 1 \\
\hline CG5734 & CGAGGCGCTGGCAGTGGAAAG & sense & 1 & CG7830 & TGATCACATTGGTGGCCCTGG & sense & 2 \\
\hline CG5734 & TAGAGATGCCAAGCTAACTGG & sense & 1 & CG7912 & CTCGGCTGCTGCACACTTGTG & sense & 3 \\
\hline CG5840 & CGATAGGCCAGATCCCTGGGC & antisense & 1 & CG7988 & CTGGTTTCTGGGCGTCATGGT & antisense & 1 \\
\hline CG5853 & AATAGCACTAAACATAATGGT & antisense & 1 & CG8112 & CTTCCGCGGATGGGCCTTGGT & sense & 3 \\
\hline CG5857 & ACGAGGTCCTGCAGCTGGCGC & antisense & 2 & CG8112 & TTCAACCTGCCCTTTGTGAGT & sense & 1 \\
\hline CG5857 & TCTTTAGTTGTTTGTCTGCGG & sense & 1 & CG8155 & TGTGAATCCTCAGAAAGGCGG & antisense & 2 \\
\hline CG5871 & GAACTGCTCGCGACGCTGGTG & antisense & 4 & CG8199 & AGTGGGTCACTTTGTATGTGC & antisense & 5 \\
\hline CG5871 & TCTAAAGACCCACGGCTCCTG & antisense & 4 & CG8289 & TAAGGAGCTGCGCGAATCGCC & sense & 4 \\
\hline CG5871 & CGGTCTGCCGGCGGCGGAGGC & sense & 3 & CG8297 & TATGATGAAGTGCCTGCAGCG & sense & 4 \\
\hline CG5871 & TATTTCGACGCAACCTGGAGC & sense & 3 & CG8315 & TCATCGCTGGCTGGACTCTGG & sense & 4 \\
\hline CG5899 & TTCTGTTGACTGCTCATGGGC & antisense & 1 & CG8319 & GAACAAAACCTCAAGGCGCAC & sense & 1 \\
\hline CG5919 & CACGCCGTCGCCCGTGTCTGC & antisense & 9 & CG8320 & TGCTGGCAAAGGAAGCGTGGG & sense & 5 \\
\hline CG5919 & AATCCGCTTTGTGCCCATTGT & antisense & 1 & CG8336 & GATAAGTCACATCAGCCAAGG & sense & 2 \\
\hline CG5938 & TGAAACCACAAAATACTTAGG & antisense & 2 & CG8336 & GATCGTTTATGGCCTCCTCGT & antisense & 2 \\
\hline CG5986 & TAAATATATAATTTCTTGTGG & sense & 1 & CG8336 & AAATGGTGACTGGCTGCCAGC & antisense & 1 \\
\hline CG6038 & TAAACCACACGATCAAGGAGC & sense & 7 & CG8443 & TCGAAGTAGCTACATTGGACT & antisense & 2 \\
\hline CG6171 & TATATAAAGCCTATTATTCGG & antisense & 1 & CG8451 & TCATAGGTTCCTGTACTTCGG & antisense & 5 \\
\hline CG6181 & CAATGAAGTGTCTTGTTTGCT & antisense & 3 & CG8478 & GTTGTGAACAGATCGCCGGGC & sense & 2 \\
\hline CG6181 & ATGATTCGCCTACTAAATTGC & sense & 2 & CG8478 & CTCAGAGACTTCGTTCACTAC & antisense & 1 \\
\hline CG6218 & CGTGGCTTCTTTTCATGTATG & sense & 7 & CG8481 & CTACGATTTTACTGCGCGCCC & antisense & 1 \\
\hline CG6424 & CGAACGATCTATGCGTGGAGG & sense & 6 & CG8516 & GGCGGATGTACTGGCGGTCGG & antisense & 5 \\
\hline CG6424 & AGCTGAAGCGTCTGGTGTCGC & sense & 3 & CG8526 & CGCCAATCGACTACGCCAAGG & sense & 10 \\
\hline CG6424 & AGTACGAGTCGCTGTTCGAGG & sense & 2 & CG8538 & CTCGACTGCACCCGTGTCTGG & sense & 5 \\
\hline CG6424 & CTCTCCACATTATTCGCACGG & sense & 2 & CG8545 & ATGATGATGATGATGATGATG & sense & 1 \\
\hline CG6424 & GTGGTCTCTGTGCTGTTGTTC & antisense & 1 & CG8594 & ATGGAGGCCACTAAGGTGCGC & antisense & 6 \\
\hline CG6424 & TCTAGGTCTGTATTTGTTTGG & antisense & 1 & CG8594 & CGTTATAATGCCAGCAATGCG & antisense & 1 \\
\hline CG6448 & GTAACCACAGTGGGCCTAGTC & antisense & 2 & CG8594 & TGTCTGAATTGAAGTTTCTGG & antisense & 1 \\
\hline CG6448 & ATCGGTGACGCCTTCGGTTCG & antisense & 1 & CG8602 & CGGTGGCTCGTGCTCGAGGGC & antisense & 4 \\
\hline CG6454 & TGCCACTTTTCGAGGGACTGG & antisense & 1 & CG8602 & AATGGTGGTCAGTGTCGCTGT & antisense & 2 \\
\hline CG6509 & TCCGGATTGTACTGAACGAGC & antisense & 2 & CG8668 & TGGGGAATTTTTTCTTTCTGG & antisense & 2 \\
\hline CG6654 & AAGTAAGGATCCGTCTTGGGT & antisense & 2 & CG8798 & TATAAAACCTATCAACACCCG & antisense & 4 \\
\hline CG6689 & CCAAAGACCAAAGAAGAGAGG & sense & 5 & CG8798 & AGATGTCATGAAGGAGTCGGC & sense & 3 \\
\hline CG6805 & CAGAAGGAACAAGAGAAACGA & sense & 1 & CG8798 & GTTAACCTGCCGGTTTGGAAG & antisense & 3 \\
\hline CG6833 & CTTGGCATCCTGGTTTTCACT & antisense & 2 & CG8862 & CTGTTCAAATACACTAAAACG & antisense & 2 \\
\hline CG6876 & CAGCAATTCGTGGCGAAGTGG & sense & 3 & CG8862 & TGAACAGGGATAGCCCCTTGT & sense & 2 \\
\hline CG6891 & GAAAGGAGCAGTTTGGTAAGC & antisense & 2 & CG8862 & TCGTTTTAGTGTATTTGAACA & sense & 1 \\
\hline CG6900 & GAAAGGAGCAGTTTGGTAAGC & antisense & 2 & CG8878 & TCGTTTCACCCACATTTCATG & sense & 2 \\
\hline CG6903 & TCACTGATGTACTACTTCATC & sense & 3 & CG8878 & AGAATCTGCGTTCCAAGTCGA & sense & 1 \\
\hline CG6907 & CAACTTGAAGGCCAAGTCCGG & antisense & 7 & CG8950 & AGGCTGTCCAGGCATTGGAGC & sense & 3 \\
\hline CG6907 & ATCTGCCGCTGGTGAATTCGG & sense & 2 & CG8950 & GTAAGCACTGCCTCCATTTGC & antisense & 3 \\
\hline CG6907 & TTTGCTCCATCGATTCCTGGT & antisense & 1 & CG9007 & CTTTAGGCATGCTTGTGTTTG & antisense & 5 \\
\hline CG6912 & GTGGGCTCTGCCGTTGTTGTT & antisense & 1 & CG9143 & CGTAAAGTTCCCAGAGGCGAC & antisense & 1 \\
\hline CG6950 & ATGGCCGGTGGAGTGCCCCGC & sense & 2 & CG9246 & TTCTAAAAGCCATGTACCTGG & sense & 1 \\
\hline CG6961 & CCACCAACAGCCTTTCTCCGG & antisense & 6 & CG9320 & CAACAAGGTGGATCTAGTCGA & sense & 4 \\
\hline CG6961 & TGAACAAGCCTTTTTTCAAGC & sense & 1 & CG9339 & CGCGGCAGTGGTCCTCGCTGG & sense & 3 \\
\hline CG7011 & CAGCAATTCGTGGCGAAGTGG & antisense & 3 & CG9346 & TCTCAAAAAGGACTCGGGTCC & sense & 2 \\
\hline CG7139 & CCACGTTGCTCGGAGACTCGC & antisense & 8 & CG9372 & GTTAACCTGCCGGTTTGGAAG & sense & 3 \\
\hline CG7139 & ACAGTGAACTCAGTAGACACA & sense & 2 & CG9389 & CGTTAACCCCAATGAGTACGG & sense & 3 \\
\hline CG7144 & AACCGTTGTGCTTATTCTTGG & antisense & 1 & CG9578 & CGGCCGAGTCCTTGGGACAGC & antisense & 3 \\
\hline CG7177 & AAAGGTTGCTGATGTTGGACC & antisense & 1 & CG9629 & TTTGAGGATGTACACAATTGG & antisense & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CG9674 & ATGATGATGATGATGATGATG & sense & 1 & fbl & TTGATCGGGCCAAAATTCGTT & antisense & 1 \\
\hline CG9776 & CTCGATTCATGTGTTCCTCGG & antisense & 1 & Fem-1 & GAAGGTTGTTTAGCTGGGAGA & antisense & 6 \\
\hline CG9779 & TCGATATTTACTGTGGCATGT & sense & 1 & Fit1 & TCTCGCCAGATGTTTGCACGG & antisense & 1 \\
\hline CG9780 & ATTATCGGAAACCTACGCCGG & sense & 2 & FKBP59 & AGATTCCACCAAATGCCACAG & sense & 1 \\
\hline CG9780 & TAATTGGTGGCAGTCTGCATC & antisense & 1 & fog & TTGTGAAACAGTTGTCGTTGT & sense & 1 \\
\hline CG9795 & ACGCCCAATTGTCTTCTTCAT & sense & 2 & foi & CTATAGCTTTTGCCGATGCGG & antisense & 1 \\
\hline CG9799 & TAATAGTGCCATCCCCGTGTC & antisense & 4 & for & CTATGTGGCCTCTCTACTGTC & sense & 3 \\
\hline CG9804 & AGGCCGATTCCATGCGTGGTG & antisense & 1 & form3 & CCATCAGGTCATCCTCCTCGG & antisense & 2 \\
\hline CG9804 & TTGTGCCCTGCGGAATCGAAG & sense & 1 & frc & CTGTTTATGTTTCTGCCTGCC & sense & 1 \\
\hline CG9922 & TTCCACGAGCACCTCAATTGC & antisense & 5 & frtz & CAGCTGGGCGCTCTGATCTGG & antisense & 7 \\
\hline CG9934 & CCAGTGCTTAGCATCGTTGCC & sense & 4 & fry & ACCAACAAAGCCTGCACCTGG & antisense & 6 \\
\hline CG9941 & ATGATGATGATGATGATGATG & sense & 1 & fry & CTCATCGGGATGGATCAGCGG & antisense & 1 \\
\hline CG9945 & TTGGTAAGCTTCATGGTTTAC & antisense & 1 & Fur2 & ATGATGATGATGATGATGATG & antisense & 1 \\
\hline cher & GCAACGTGACCGAGGATGCGG & sense & 4 & fzr2 & CGCCGACGCACATAACCCGCT & sense & 5 \\
\hline cher & CAGGCCGGGTCCGTAGGCAGT & antisense & 2 & fzy & GGAAAGCTTGTGCTCACGTGC & antisense & 5 \\
\hline chinmo & ACATGTTGAACGTATGGAACG & sense & 3 & gammaSnap & ATACTGGTCAAACTAAGGAGG & sense & 3 \\
\hline chinmo & ATACTATTTTATTGTTGCAGG & antisense & 1 & gatA & AAGTCTGGAGCACACAGTGGC & antisense & 1 \\
\hline chinmo & CTGCTGCTGCTGCTCGTAGGT & antisense & 1 & GcklII & TGGCCGAACGTTCCAGTCCGG & sense & 5 \\
\hline chinmo & GGCCTCGGCCTGGATATCCGG & antisense & 1 & Gclc & TTTGCCGCCAAATTCTCCGTC & antisense & 1 \\
\hline CHKov1 & TCTCAAATCGAATGTGGACGG & sense & 3 & Gclm & TCTGGTACTTCTTCGTTATGG & antisense & 2 \\
\hline Chro & CGATACCTGCGACGACGCCGG & antisense & 2 & Gcn2 & GAATGCCTTTCTAGTGGAAGC & sense & 2 \\
\hline Chro & AAACATGCATTTATCGGGGTC & sense & 1 & Gdh & TTAATGTTACGGCAACGGAGC & antisense & 3 \\
\hline Chro & AACAATAATGCTGCGCCGGGG & sense & 1 & Gdh & GCAATTGCTTCACTTTGACGC & antisense & 1 \\
\hline Cht3 & TCTAAAAAGCCGGAGACGACT & sense & 1 & gft & AAAGTCGCGTTTCTTGCCCTC & sense & 1 \\
\hline cnc & CAACATGGCAGCGTGATGCGG & antisense & 3 & Gmd & CCATGCCACAAGTGCGGATGG & antisense & 1 \\
\hline Cog3 & CTTGATCTGCGGCGTGCCCTC & antisense & 1 & Gp93 & CAGGAGACTTCGCAGTTCGCC & sense & 3 \\
\hline colt & CTAGTGTTGCTGTTTTCTGGC & antisense & 5 & gry & TATCCGCTGCAAGTGGGCTGG & sense & 6 \\
\hline Coq2 & CGCTGCAGGAACTCGTGTCGG & sense & 4 & gry & CGTGAAAATGCCCATGGCTTT & sense & 1 \\
\hline Cp190 & GACCTTGTCCACGCTGGCTGC & antisense & 2 & gry & CTCAACCGCGTTTCGTCCAGG & antisense & 1 \\
\hline Cp190 & GCAAGCTCTGCGGTAGCGGGC & antisense & 2 & gry & GTGCAGTTTTTGGCGTCCCGG & antisense & 1 \\
\hline CPTI & TAAATCTTAAAACCAGCCAAG & antisense & 1 & GS & TTGCCGCCTCCCTCGCGCTGC & antisense & 2 \\
\hline crb & GTTCGCATCGCAGTCGCAGTC & antisense & 4 & gwl & CAGAGCCCACCAGTCGACGGC & antisense & 2 \\
\hline crq & CAATTTAGCCCAGCAAACTGC & sense & 6 & Gycalpha99B & CCAAGGAGCGGAAGAAGAACG & sense & 2 \\
\hline Csk & CAACCACGACGACCGGCCAGG & sense & 11 & hdc & CGCCACAAAATGCTGCAACAC & sense & 8 \\
\hline CstF-64 & CCCGAGCTCGTGCCCAGATGC & sense & 10 & hdc & TGTGGGCGGCCCAAAGTTCGC & sense & 4 \\
\hline cue & CTGGTTGCACATTGCTGTGGC & antisense & 3 & hdc & GATCGGTGAAGATGTCGTGGC & antisense & 3 \\
\hline cue & GTGTCCAGCCAAGTTTGGAGG & sense & 1 & hdc & AGCCCTCGTTGAGTCCGACGG & sense & 2 \\
\hline CycG & TCCACTTGGCCATCAAGCAGC & sense & 4 & hdc & ATTCTGCAAGGAGCCGTGGGA & sense & 1 \\
\hline Cyp28d1 & TGTTCGAAGACGCGCTTGGTC & antisense & 4 & hdc & CTGATGCTGCTGGGCATGCGG & antisense & 1 \\
\hline da & ATGCGTTCAGTGGTGCCGGGG & sense & 1 & hdc & GTCAGCACTTTTCAGAGGGGC & sense & 1 \\
\hline Dcr-1 & TGCGTGGAACTGCACAGGATC & sense & 4 & Hexo2 & AGAAACGATGCGGTTCAGCGG & sense & 1 \\
\hline Dcr-1 & CTGTCGGTGGTTGTTTACTGA & antisense & 1 & His1:CG33801 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline Ddx1 & TTAAACTTCTCGATCTGGTTG & antisense & 2 & His1:CG33804 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline Dg & CCAATAATCCAGGTACTCGGA & sense & 2 & His1:CG33807 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline Dgp-1 & ATTGAGCTGCTACAAAAGAGG & sense & 1 & His1:CG33834 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline Dif & TTGGGTGGGTTCATCTGCTGG & antisense & 1 & His1:CG33837 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline DNApol- & TTGCCGG & sense & 1 & His1:CG33840 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline gamma35 & IIGccGg & sense & 1 & His1:CG33843 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline DNApol-iota & TGGTGACCACCGCTGTCGTGG & antisense & 1 & His1:CG33846 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline Doa & TGGAGTCTCCTTGTTCTGGGC & antisense & 7 & His1:CG33849 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline Dph5 & AAGGGGTCGCCCACCACGAGC & antisense & 1 & His1:CG33852 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline drosha & TGTCTTCAAAATCTTCGCTGG & sense & 2 & His1:CG33864 & TTATTCAAACTAAGGGAAAGG & sense & 1 \\
\hline Drp1 & TGATCGGACTCGTTGAGCAGG & antisense & 7 & His2A:CG31618 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 \\
\hline Dyrk3 & ATGCTTTGGGAGAATACTCGG & sense & 1 & His2A:CG31618 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 \\
\hline Dyrk3 & ATTAATTCAAATCAGTGCAAT & sense & 1 & His2A:CG31618 & CAAGAAGACCGAGAAGAAGGC & sense & 2 \\
\hline e(y) 1 & CTTCTTGCGCGCATGGTTGGC & antisense & 1 & His2A:CG31618 & GTTAAACAAGCTGCTCTCCGG & sense & 1 \\
\hline E2f & GTCAGTGTCGGAACCAGCTGG & antisense & 3 & His2A:CG33808 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 \\
\hline Eap & ACAAAGGACGACCTGGAGCTG & sense & 6 & His2A:CG33808 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 \\
\hline ed & CGGGTGAGTGTTCAAGATGCC & sense & 3 & His2A:CG33808 & CAAGAAGACCGAGAAGAAGGC & sense & 2 \\
\hline Edem2 & CGAGCTGTTTACGACATGGGC & sense & 7 & His2A:CG33808 & GTTAAACAAGCTGCTCTCCGG & sense & 1 \\
\hline edl & ATGGCGGATGATGCACTGATC & antisense & 1 & His2A:CG33814 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 \\
\hline EDTP & CGATCCCAACCGCTGATGCAG & antisense & 3 & His2A:CG33814 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 \\
\hline eff & CAACGTGTTGCAGGCTGCCGG & antisense & 1 & His2A:CG33814 & CAAGAAGACCGAGAAGAAGGC & sense & 2 \\
\hline egh & AGTGGTCACGGACAAGGCGGT & sense & 1 & His2A:CG33814 & GTTAAACAAGCTGCTCTCCGG & sense & 1 \\
\hline elF2B-epsilon & ACTAGTGGCCATAAACGCAGC & sense & 5 & His2A:CG33817 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 \\
\hline elF3-S10 & GATGACAAGTGGCGGCGTGGC & sense & 6 & His2A:CG33817 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 \\
\hline elF4G & GTTTAGGTCACTTTTAGTTGG & antisense & 2 & His2A:CG33817 & CAAGAAGACCGAGAAGAAGGC & sense & 2 \\
\hline elF-5A & TCGCTGTAAATTTCTGTTGCA & sense & 1 & His2A:CG33817 & GTTAAACAAGCTGCTCTCCGG & sense & 1 \\
\hline elF5B & TAATGAACTCTGTTATAATGG & sense & 1 & His2A:CG33820 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 \\
\hline Elongin-B & TTAAATATTCACTCTGCTCAC & antisense & 2 & His2A:CG33820 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 \\
\hline ETH & TGTCTGTTTCGCTCTTGGTGG & sense & 3 & His2A:CG33820 & CAAGAAGACCGAGAAGAAGGC & sense & 2 \\
\hline ex & GTGGTGGCACCTGAAGGTTGC & antisense & 1 & His2A:CG33820 & GTTAAACAAGCTGCTCTCCGG & sense & 1 \\
\hline Fak56D & TGAGCCTGATGATCATTGAGC & antisense & 4 & His2A:CG33823 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 \\
\hline fbl & TATGGTGGCGATTACAACCGC & sense & 6 & His2A:CG33823 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 \\
\hline fbl & CATCAAAGGCATTCTCTTCGC & sense & 4 & His2A:CG33823 & CAAGAAGACCGAGAAGAAGGC & sense & 2 \\
\hline fbl & AGCTGGTGACCACGGTTTGTG & sense & 3 & His2A:CG33823 & GTTAAACAAGCTGCTCTCCGG & sense & 1 \\
\hline fbl & ATTGACCTGTCCACGAATTGG & antisense & 1 & His2A:CG33826 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 \\
\hline fbl & ATTGCGTTTCTATTGTCAAGT & antisense & 1 & His2A:CG33826 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 \\
\hline fbl & CTCGTGTCTAGTTTATTACGG & antisense & 1 & His2A:CG33826 & CAAGAAGACCGAGAAGAAGGC & sense & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline His2A:CG33826 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33882 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33829 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33882 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33829 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33884 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33829 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33884 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33829 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33884 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33832 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33886 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33832 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33886 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33832 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33886 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33832 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33888 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33835 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33888 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33835 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33888 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33835 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33890 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33835 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33890 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33838 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33890 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33838 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33892 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33838 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33892 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33838 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33892 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33841 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33894 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33841 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33894 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33841 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33894 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33841 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33896 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33844 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33896 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33844 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33896 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33844 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33898 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33844 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33898 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33847 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33898 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33847 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33900 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33847 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33900 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33847 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33900 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33850 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33902 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33850 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33902 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33850 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33902 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33850 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33904 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33853 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33904 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33853 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33904 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33853 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33906 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33853 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33906 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33856 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33906 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33856 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33908 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33856 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33908 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33856 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG33908 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33859 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG33910 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33859 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His2B:CG33910 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 \\
\hline His2A:CG33859 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His2B:CG33910 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33859 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His2B:CG40461 & TCGCCTTCGACGAAATTCCGG & antisense & 3 \\
\hline His2A:CG33862 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His2B:CG40461 & GACGAAATTCCGGTGTCAGGA & antisense & 1 \\
\hline His2A:CG33862 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His3:CG31613 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 \\
\hline His2A:CG33862 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His3:CG31613 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 \\
\hline His2A:CG33862 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His3:CG31613 & CTTTAGTGAAACCCAAATCGG & sense & 1 \\
\hline His2A:CG33865 & GCGTAGTTTCCCTTCCGGAGC & antisense & 4 & His3:CG31613 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 \\
\hline His2A:CG33865 & TCGTTGCGGATGGCCAGTTGC & antisense & 3 & His3:CG31613 & TGGTAGCGACGAATTTCACGC & antisense & 1 \\
\hline His2A:CG33865 & CAAGAAGACCGAGAAGAAGGC & sense & 2 & His3:CG33803 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 \\
\hline His2A:CG33865 & GTTAAACAAGCTGCTCTCCGG & sense & 1 & His3:CG33803 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 \\
\hline His2Av & TGTATGTGAGTGTTGGGGAGA & antisense & 1 & His3:CG33803 & CTTTAGTGAAACCCAAATCGG & sense & 1 \\
\hline His2B:CG17949 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33803 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 \\
\hline His2B:CG17949 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 & His3:CG33803 & TGGTAGCGACGAATTTCACGC & antisense & 1 \\
\hline His2B:CG17949 & GACGAAATTCCGGTGTCAGGA & antisense & 1 & His3:CG33806 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 \\
\hline His2B:CG33868 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33806 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 \\
\hline His2B:CG33868 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 & His3:CG33806 & CTTTAGTGAAACCCAAATCGG & sense & 1 \\
\hline His2B:CG33868 & GACGAAATTCCGGTGTCAGGA & antisense & 1 & His3:CG33806 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 \\
\hline His2B:CG33870 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33806 & TGGTAGCGACGAATTTCACGC & antisense & 1 \\
\hline His2B:CG33870 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 & His3:CG33809 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 \\
\hline His2B:CG33870 & GACGAAATTCCGGTGTCAGGA & antisense & 1 & His3:CG33809 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 \\
\hline His2B:CG33872 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33809 & CTTTAGTGAAACCCAAATCGG & sense & 1 \\
\hline His2B:CG33872 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 & His3:CG33809 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 \\
\hline His2B:CG33872 & GACGAAATTCCGGTGTCAGGA & antisense & 1 & His3:CG33809 & TGGTAGCGACGAATTTCACGC & antisense & 1 \\
\hline His2B:CG33874 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33812 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 \\
\hline His2B:CG33874 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 & His3:CG33812 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 \\
\hline His2B:CG33874 & GACGAAATTCCGGTGTCAGGA & antisense & 1 & His3:CG33812 & CTTTAGTGAAACCCAAATCGG & sense & 1 \\
\hline His2B:CG33876 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33812 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 \\
\hline His2B:CG33876 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 & His3:CG33812 & TGGTAGCGACGAATTTCACGC & antisense & 1 \\
\hline His2B:CG33876 & GACGAAATTCCGGTGTCAGGA & antisense & 1 & His3:CG33815 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 \\
\hline His2B:CG33878 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33815 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 \\
\hline His2B:CG33878 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 & His3:CG33815 & CTTTAGTGAAACCCAAATCGG & sense & 1 \\
\hline His2B:CG33878 & GACGAAATTCCGGTGTCAGGA & antisense & 1 & His3:CG33815 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 \\
\hline His2B:CG33880 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33815 & TGGTAGCGACGAATTTCACGC & antisense & 1 \\
\hline His2B:CG33880 & CTTGGTGATGTTCTTCTGAGC & antisense & 1 & His3:CG33818 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 \\
\hline His2B:CG33880 & GACGAAATTCCGGTGTCAGGA & antisense & 1 & His3:CG33818 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 \\
\hline His2B:CG33882 & TCGCCTTCGACGAAATTCCGG & antisense & 3 & His3:CG33818 & CTTTAGTGAAACCCAAATCGG & sense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline His3:CG33818 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & His3:CG33866 & CTTTAGTGAAACCCAAATCGG & sense & 1 \\
\hline His3:CG33818 & TGGTAGCGACGAATTTCACGC & antisense & 1 & His3:CG33866 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 \\
\hline His3:CG33821 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & His3:CG33866 & TGGTAGCGACGAATTTCACGC & antisense & 1 \\
\hline His3:CG33821 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & Hmgcr & AATGGATAAATGTCTTTTGTC & sense & 1 \\
\hline His3:CG33821 & CTTTAGTGAAACCCAAATCGG & sense & 1 & hoip & AGTTTCCCGGCCAATAGTCGC & sense & 2 \\
\hline His3:CG33821 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & Hr4 & ATGATGATGATGATGATGATG & antisense & 1 \\
\hline His3:CG33821 & TGGTAGCGACGAATTTCACGC & antisense & 1 & Hr96 & AAACTGCGACATCACTGTGGT & sense & 1 \\
\hline His3:CG33824 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & Hs3st-A & ATGATGATGATGATGATGATG & sense & 1 \\
\hline His3:CG33824 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & Hsp70Aa & ATACTCCGGCGCTCTTTTCGC & antisense & 7 \\
\hline His3:CG33824 & CTTTAGTGAAACCCAAATCGG & sense & 1 & Hsp70Aa & TACTCCGGCGCTCTTTTCGCG & antisense & 3 \\
\hline His3:CG33824 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & Hsp70Aa & TCTTTTCGCGAACATTCGAGG & antisense & 3 \\
\hline His3:CG33824 & TGGTAGCGACGAATTTCACGC & antisense & 1 & Hsp70Aa & AGATTGTTTAGCTTGTTCAGC & antisense & 2 \\
\hline His3:CG33827 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & Hsp70Aa & GAGCGCGCCTCGAATGTTCGC & sense & 1 \\
\hline His3:CG33827 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & Hsp70Aa & TCTATTTATACTCCGGCGCTC & antisense & 1 \\
\hline His3:CG33827 & CTTTAGTGAAACCCAAATCGG & sense & 1 & Hsp70Ab & AGATTGTTTAGCTTGTTCAGC & antisense & 2 \\
\hline His3:CG33827 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & Hsp70Ba & AGATTGTTTAGCTTGTTCAGC & antisense & 2 \\
\hline His3:CG33827 & TGGTAGCGACGAATTTCACGC & antisense & 1 & Hsp70Ba & CTTTAACTTGCACTTTACTGC & antisense & 1 \\
\hline His3:CG33830 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & Hsp70Bb & AGATTGTTTAGCTTGTTCAGC & antisense & 2 \\
\hline His3:CG33830 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & Hsp70Bb & CTTTAACTTGCACTTTACTGC & antisense & 1 \\
\hline His3:CG33830 & CTTTAGTGAAACCCAAATCGG & sense & 1 & Hsp70Bbb & AGATTGTTTAGCTTGTTCAGC & antisense & 2 \\
\hline His3:CG33830 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & Hsp70Bbb & CTTTAACTTGCACTTTACTGC & antisense & 1 \\
\hline His3:CG33830 & TGGTAGCGACGAATTTCACGC & antisense & 1 & Hsp70Bc & AGATTGTTTAGCTTGTTCAGC & antisense & 2 \\
\hline His3:CG33833 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & Hsp70Bc & CTTTAACTTGCACTTTACTGC & antisense & 1 \\
\hline His3:CG33833 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & htt & ATGATGATGATGATGATGATG & sense & 1 \\
\hline His3:CG33833 & CTTTAGTGAAACCCAAATCGG & sense & 1 & hyd & TGTTTGTAGCCATTGGCTGGC & antisense & 1 \\
\hline His3:CG33833 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & lap2 & AACTCAAGAGCTTGCGCTGGA & antisense & 3 \\
\hline His3:CG33833 & TGGTAGCGACGAATTTCACGC & antisense & 1 & Ice & CAGGGTATCTGCTTCTGCTGG & antisense & 6 \\
\hline His3:CG33836 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & ic/n & GTCCTCATCGTGCTCATCGCT & antisense & 2 \\
\hline His3:CG33836 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & icln & GCATCTACTTCATGCTGGACC & sense & 1 \\
\hline His3:CG33836 & CTTTAGTGAAACCCAAATCGG & sense & 1 & igl & TATGAATTAGAAACCAAAGGA & sense & 1 \\
\hline His3:CG33836 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & IIp6 & AGTCCTGGCCACCTTGTTCGC & sense & 3 \\
\hline His3:CG33836 & TGGTAGCGACGAATTTCACGC & antisense & 1 & IM10 & CCAATGGAGCTAAGAGCGTGG & sense & 14 \\
\hline His3:CG33839 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & IP3K1 & GAGGTCCGGTCTGAGCGTGGC & antisense & 4 \\
\hline His3:CG33839 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & IP3K1 & TAATATAGGGTGGAGCTCAGC & antisense & 4 \\
\hline His3:CG33839 & CTTTAGTGAAACCCAAATCGG & sense & 1 & IP3K1 & CTTGGTGATCGCTCGTGCCTC & antisense & 3 \\
\hline His3:CG33839 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & IP3K1 & GGATTCAGCTCGGTTAGAAAG & sense & 2 \\
\hline His3:CG33839 & TGGTAGCGACGAATTTCACGC & antisense & 1 & IP3K1 & AACGGATCTCAGGACTGGAGG & sense & 1 \\
\hline His3:CG33842 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & IP3K1 & AGGCGCATGTGCTTTAGTCGC & antisense & 1 \\
\hline His3:CG33842 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & Irbp & TAACTGCGCAGTGTTCTTGCC & sense & 6 \\
\hline His3:CG33842 & CTTTAGTGAAACCCAAATCGG & sense & 1 & itp & GAATTAAGTAGCTGCTCGTGC & antisense & 1 \\
\hline His3:CG33842 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & Itp-r83A & CTATCTTGCGGTTCCTTCAGC & sense & 3 \\
\hline His3:CG33842 & TGGTAGCGACGAATTTCACGC & antisense & 1 & Itp-r83A & CGTAGAGGTGGCCTGCAAGGC & sense & 1 \\
\hline His3:CG33845 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & jet & CCGCACAACGCTTTGTGGAGG & sense & 7 \\
\hline His3:CG33845 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & jet & TGCACATGCTGCCGCCTCCGG & antisense & 5 \\
\hline His3:CG33845 & CTTTAGTGAAACCCAAATCGG & sense & 1 & Jon99Fi & GCAAGGTTCCCTACATCGTGG & sense & 5 \\
\hline His3:CG33845 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & Khc & GAAGGTTTCCAAGACTGGAGC & sense & 2 \\
\hline His3:CG33845 & TGGTAGCGACGAATTTCACGC & antisense & 1 & kis & CTTCATTGCGGGGACAGCTGG & antisense & 3 \\
\hline His3:CG33848 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & kis & GTGGCTCCTCTGGTCGTGGTC & sense & 1 \\
\hline His3:CG33848 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & Klp3A & CGTGTAGAGCTATTGTCGGGC & sense & 7 \\
\hline His3:CG33848 & CTTTAGTGAAACCCAAATCGG & sense & 1 & Klp3A & TGGCGTGACTCATGGCCCTGG & antisense & 2 \\
\hline His3:CG33848 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & ksr & TTTAGCCGCATCTTCGCCAGC & antisense & 4 \\
\hline His3:CG33848 & TGGTAGCGACGAATTTCACGC & antisense & 1 & kuz & GTTGTTGGGCGCCCGCGTGGT & antisense & 2 \\
\hline His3:CG33851 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & I(1)G0004 & TGGTGGAGCACATGAAGCTGC & sense & 4 \\
\hline His3:CG33851 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & I(1)G0004 & CGGATCTGCAGCTTCATGTGC & antisense & 1 \\
\hline His3:CG33851 & CTTTAGTGAAACCCAAATCGG & sense & 1 & I(2) 37 Cb & CAGGAGGCTCAAGTGGTCGCC & antisense & 4 \\
\hline His3:CG33851 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & \(1(2) \mathrm{NC136}\) & CCTTTTGAAGTGGTGTTGGCC & antisense & 1 \\
\hline His3:CG33851 & TGGTAGCGACGAATTTCACGC & antisense & 1 & I(2)tid & GAAAGCCTACTACCAGCTGGC & sense & 1 \\
\hline His3:CG33854 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & I(3)01239 & AATTGGTGGTGTGCTGTGCGA & sense & 3 \\
\hline His3:CG33854 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & l(3)s1921 & AAGGAACGCCCACTGAAAGAG & sense & 2 \\
\hline His3:CG33854 & CTTTAGTGAAACCCAAATCGG & sense & 1 & l(3)s1921 & TTGGTGAGGATGTCTAACGCC & antisense & 2 \\
\hline His3:CG33854 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & l(3)s1921 & GTGAAGAGGGCTCGAAAGCGC & antisense & 1 \\
\hline His3:CG33854 & TGGTAGCGACGAATTTCACGC & antisense & 1 & I(3)s1921 & TGTTCTCGTACTCGCACATGT & antisense & 1 \\
\hline His3:CG33857 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & Lac & ATATCCTTGATCTGCTCCTGC & antisense & 1 \\
\hline His3:CG33857 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & lack & AGCTGGTACGTCTCGTAGGGC & antisense & 4 \\
\hline His3:CG33857 & CTTTAGTGAAACCCAAATCGG & sense & 1 & lack & TGTAGAGCGGGTTGGCCCAGC & antisense & 4 \\
\hline His3:CG33857 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & larp & CGAAGATACCGTTACCGCTGG & antisense & 7 \\
\hline His3:CG33857 & TGGTAGCGACGAATTTCACGC & antisense & 1 & IdICp & AAGGATCAGAAGCCCCAGTGG & antisense & 6 \\
\hline His3:CG33860 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & IdICp & CCAAGCTGGGACTCGTTCTGC & antisense & 3 \\
\hline His3:CG33860 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & IdICp & CAAATCGGTCATATGCAGCGA & antisense & 2 \\
\hline His3:CG33860 & CTTTAGTGAAACCCAAATCGG & sense & 1 & \(1 \mathrm{~d} / \mathrm{Cp}\) & CTTAAGTCCCGACCATCAAGG & sense & 2 \\
\hline His3:CG33860 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & lid & TTGCTCGCAGAACCCGTTGCC & antisense & 5 \\
\hline His3:CG33860 & TGGTAGCGACGAATTTCACGC & antisense & 1 & lig & CTTGCCAGCAGACTTCGACTG & antisense & 2 \\
\hline His3:CG33863 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & lkb1 & ACATTGCATAAACCTCCGCGG & antisense & 1 \\
\hline His3:CG33863 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & lok & CACATTTGGTAAAAGTAAAGC & antisense & 2 \\
\hline His3:CG33863 & CTTTAGTGAAACCCAAATCGG & sense & 1 & lok & TGGTTTGCTGAAGAGTCATTC & antisense & 2 \\
\hline His3:CG33863 & GTAGCCAGTTGTTTGCGTGGC & antisense & 1 & lok & GAGGTGTGCCACAGAGCGTGC & antisense & 1 \\
\hline His3:CG33863 & TGGTAGCGACGAATTTCACGC & antisense & 1 & Lsd-1 & TTGTTAAGCGTGAAGTTAGGC & antisense & 2 \\
\hline His3:CG33866 & GAAGCTCGGTGCTCTTTTGGT & antisense & 5 & Lsd-1 & AATATAAGCCTAACTTCACGC & sense & 1 \\
\hline His3:CG33866 & AGTAGCCAGTTGTTTGCGTGG & antisense & 2 & Lsd-1 & ATTGTTAAGCGTGAAGTTAGG & antisense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M(2)21AB & AAGGCCGGTCTCTGCAAGCGC & sense & 6 & Pdk & CGACTTCGAGGGCTGCGGCGC & antisense & 4 \\
\hline M (2)21AB & CAACACACGTCCTATCTTAGC & antisense & 6 & Pect & CTGGATCAGGAAGTAGCTGCT & sense & 4 \\
\hline M (2)21AB & CGGCACCGATCTCTTCCTCGG & antisense & 5 & Pect & TACAAGGCTTTTCAATTCGGC & antisense & 4 \\
\hline M (2)21AB & TACTTGTGTTTTGGAATCGGG & antisense & 1 & Pect & AGTTTGTCTTGTTTAGTATGT & sense & 2 \\
\hline mam & TCGTCTGGCTAATGGAACTGG & antisense & 6 & Pect & TCTTAGACTTAAATACATGGC & sense & 1 \\
\hline Map60 & CGGTGGTGTCTGGTTGTCCTC & antisense & 5 & Pen & GAGGACCAGATGTTCAAGCGG & sense & 2 \\
\hline mask & TTGGTTGCAGGCAGTGCTGGG & antisense & 2 & pie & CTCAAAGATGCCGCGGTCCTC & antisense & 2 \\
\hline MBD-like & CCACGGCCCTGCATATGCTCA & sense & 12 & PIP82 & ATGATGATGATGATGATGATG & antisense & 1 \\
\hline Mcm2 & CATAGCCGCACTTAACGCAGT & antisense & 1 & pita & ATATTGCATGCGAAAAGTGCA & sense & 1 \\
\hline MCPH1 & TGCGGTGGCTCTTGTTCATGG & antisense & 5 & pita & TAAAAGGCCTTCGGTTAAAGG & antisense & 1 \\
\hline MCPH1 & CCAGTCGTTTCCATTCTGTGG & sense & 1 & Pits/re & ACATGTTCTTCACGGCTGGGA & antisense & 2 \\
\hline Med & CAATCAGCAAATGGGCGGCGG & sense & 2 & Pka & TCAAGCAGGGAGCAGCTGGCG & sense & 8 \\
\hline MED15 & CACACTCACACTTACGGGCGG & antisense & 5 & Pms2 & CAATGACGTATACTTAGTGGC & antisense & 1 \\
\hline MED21 & TAAACCATTTTGAACAGCACC & sense & 2 & pnt & ATGATGATGATGATGATGATG & antisense & 1 \\
\hline MED24 & CACCGCATTCCACCAGCAGCG & antisense & 11 & Pof & TCGTTTTCGTTTTTGTTCAGT & sense & 2 \\
\hline Mes-4 & ATCGATGCGGGACCGAAGGGC & sense & 1 & Pof & TATTTCAGCGTACATTTATGG & sense & 1 \\
\hline Mi-2 & TTGTACAAGGAGGGCCATTGC & sense & 5 & por & ATGAAGCTTATCTCGCTGGGC & sense & 1 \\
\hline mib1 & AAGGCTGTGCAGACTGTGCGC & antisense & 1 & por & TCATTTACTTTGTTTTTCCGC & sense & 1 \\
\hline milt & ATCATCATGCGGCTAATGCGG & antisense & 3 & Pp1-87B & TGTTTGCGTGCGAAAGTGTGG & antisense & 4 \\
\hline mip130 & CTAATCTGCAGCGAAAACCGC & sense & 3 & Pp2C1 & GTTGTTTCTTTGGATTTAAAG & antisense & 1 \\
\hline mit(1)15 & CGAGAGCCTTAAAGATGCGTC & antisense & 5 & ppk13 & AGACCCTTTCGACCACGGAGC & antisense & 3 \\
\hline Mitf & TAGATGTGCCACCCCAAGTGC & sense & 6 & ppk13 & AAGCTTTAATAAGCAACCAGG & antisense & 2 \\
\hline Mitf & ACTTTTTAAACTTCTGCAGGG & sense & 1 & ppk13 & CGAGATTGCCTTCTTCCGCGG & sense & 2 \\
\hline Mitf & TGATGAAAGCCTTTTTAGAGG & sense & 1 & ppk13 & ATCGCATGGAGACTGAGCTGG & sense & 1 \\
\hline Mmp1 & CGGCACATGGGAAAGGAGCTC & sense & 10 & ppk13 & CAGTTACCTCCTCGCCACTGC & antisense & 1 \\
\hline Mmp1 & TTTAACGAGCCATATGCAAGG & sense & 4 & ppk13 & TCGATTCGCAGACTATTATGG & antisense & 1 \\
\hline Mmp1 & AAATTGTAGCACAGCTGGAGG & antisense & 2 & ppk13 & TGCTCCAGTCACCTGTCCCCG & sense & 1 \\
\hline Mmp1 & TCGTTTTCGTTTTTGTTCAGT & antisense & 2 & Ptp99A & AACAAGAGCGACTATGTGAGC & sense & 6 \\
\hline Mmp1 & TATTTCAGCGTACATTTATGG & antisense & 1 & Ptp99A & TAGCTTTGCAGAGTGTGAAGG & antisense & 3 \\
\hline mod(mdg4) & ACGTCTCGCTGGCCGCCGAGG & sense & 2 & Ptp99A & ACACGCACCCGCAACAACATC & sense & 1 \\
\hline mod(mdg4) & TTAACTGCTGGTCCTCCGGAG & antisense & 2 & Pvf2 & TGGAGCTGCGTCTGTGGGAGC & sense & 3 \\
\hline \(\bmod (\mathrm{mdg} 4)\) & CTTCCTGTGCCGATCGCTGCC & antisense & 1 & Pvf2 & CTCGACCCTTTTTTTGAGCTC & antisense & 1 \\
\hline MP1 & CTCAAACTACTACATTGCTGG & sense & 3 & pyd & AAGGCAAGCAGAGGCAGCTGC & sense & 1 \\
\hline MP1 & TCGATATTTACTGTGGCATGT & antisense & 1 & pyd & ATATTGTCTGTTAATTGTGCC & sense & 1 \\
\hline mRpL18 & CTTTTTTCGGGTTTCCATCGC & sense & 1 & qkr58E-1 & ATCGTCCATCACATATCGAGC & antisense & 1 \\
\hline mRpL44 & ACTGCGTGTAAAGATTTGGCC & antisense & 1 & Rab11 & TTTGTTGTTGTTCTGCTCGCG & antisense & 1 \\
\hline mRpL48 & CGACCTGAAGGACGAGCTGGA & sense & 5 & Rab6 & TGGGCCAGCGGTTTTCGGGGC & antisense & 11 \\
\hline mRpL48 & TTGTTCAGCTGCAGGTTGCGC & antisense & 1 & RabX6 & GACCTTCTTGTTAATCGATGG & antisense & 5 \\
\hline mRpS2 & ATACAAATGCCAATGGCCGTC & sense & 3 & RabX6 & GAAGAAAGCTGCAGATTACGC & antisense & 3 \\
\hline mrt & TGAAACCACAAAATACTTAGG & sense & 2 & Rack1 & TTTGTCGGTTGCCTTCTCGGC & sense & 1 \\
\hline msl-1 & TTAGGGCTCTACAATGGTGGC & antisense & 4 & Rbf & CGAGATCGTGGTGCGGCACGG & sense & 1 \\
\hline Mst89B & TGGCGGTGTCCTTCGTTTGGC & antisense & 6 & Rbm13 & ATGATGATGATGATGATGATG & sense & 1 \\
\hline mt:Col & TGGGAATGCTATATCAGGAGC & antisense & 2 & \(r e f(2) P\) & TTGAGCAGTCTGGGTGTTGGC & antisense & 3 \\
\hline mt:Col & ATTTTGACTACTACCTCCTGC & sense & 1 & Rfabg & ATGGAGTCAAAAATGTGCAAG & sense & 2 \\
\hline MTF-1 & GGGGTGACTGTGGTGCTGCAG & sense & 4 & RfC38 & CAAAGGTTGCGTAGGTTCTCC & antisense & 1 \\
\hline mtTFB1 & GTATGGTGAACTTCATGACGG & antisense & 2 & RhoGAP16F & CAGGAACGCGACAGGGAGAGG & sense & 8 \\
\hline mus205 & TTCGGCCACTGAAGTTAGCGG & antisense & 2 & RhoGAP16F & GAGCAGAGCCAGCTTGTTGGG & antisense & 8 \\
\hline mus205 & TTTAGGTTTATCGTGTTATGA & sense & 2 & RhoGAP16F & CAGCACCGCACTGTGCCGCGC & sense & 7 \\
\hline mus308 & AAGTGGCATTGCTGGTCTTTC & antisense & 2 & RhoGAP16F & TTGCTCTGCGTCTTGTGTTCC & antisense & 3 \\
\hline mus309 & TGTTTTCTTGGACTTCCAGCC & antisense & 1 & RhoGAP16F & TTGTTGGGTCTGGTTTTCAGC & antisense & 2 \\
\hline mus81 & CGATGGAGCGCAGTGAGTCGC & sense & 4 & RhoGAP68F & CAGTACGATTTTTGAGTTCGC & antisense & 4 \\
\hline mus81 & TGCTCACGCATTCCGACCTGG & sense & 2 & RhoGAP68F & TGAAGAGTTTCCTGCGCGATC & sense & 1 \\
\hline mus81 & CAGTGAGTCGCGGAATCCGGT & sense & 1 & Ric & CGAAAACGAATCAAATGCGGG & sense & 2 \\
\hline Mys45A & AACCGTACAAAGTCTATATGA & antisense & 3 & \(r-1\) & CCGCCTGCTTCGGGCTGCTGG & antisense & 6 \\
\hline nAcRbeta-21C & TAATGATGAGACCTCGTATGG & sense & 6 & \(r-1\) & CGGACTTCTGCAACTGACGCC & sense & 5 \\
\hline ncd & TTCGAACCGTTCATTTTGTGG & antisense & 1 & \(r-1\) & TAAGGATTTCCTCGTTGGATC & antisense & 5 \\
\hline NitFhit & GCAAGATGGTGCACAGGCGGG & sense & 2 & \(r-1\) & GACCCAGCTTTGCCGTTGAGT & sense & 3 \\
\hline NitFhit & CGGCGGTGCTGCTCAGGAAGC & sense & 1 & \(r-1\) & TTTTGCGGAAGATTCATAGCC & antisense & 1 \\
\hline nito & CAAACAACTTCTGGAGCCACT & antisense & 1 & Rlip & GTTCGGTCGCCAAGCTAACGG & antisense & 2 \\
\hline Nle & AGCGGGCCTTATTTATACATC & sense & 1 & RpL21 & TACGAATTCATTGCCTAAAGG & sense & 2 \\
\hline Nup154 & TTGCCAAACCAACTGGACTCG & antisense & 1 & RpL28 & AAGTACTGCATACTTTGGGGC & sense & 2 \\
\hline Nup44A & TGTGTGTATGGGCGAGAGAGC & antisense & 2 & RpLP2 & TAATAAAAATCAGCAGTGTTT & sense & 1 \\
\hline Nup98 & ACGATGAACTGGTGGACCTGG & sense & 7 & RpLP2 & TCCTCCTTCTTGGCCTCCTTC & antisense & 1 \\
\hline Obp99c & CAACTTCGCCGCGATCGTGCA & sense & 3 & Rpn2 & CGGTCCGCGTGTCTATCTGCC & sense & 4 \\
\hline O-fut1 & TGAGGTAGCCATTGGGATCGC & antisense & 4 & Rpp20 & CTGGCGGAAGGTTATGTCCTC & antisense & 3 \\
\hline O-fut1 & TTGAAGTGGAGCCCCTGAAGG & sense & 1 & RpS14a & CAATCTTCATGGACGAACGGG & antisense & 4 \\
\hline omd & TGATGGTCATCCGCCGCTGGG & antisense & 4 & RpS14b & CAATCTTCATGGACGAACGGG & antisense & 4 \\
\hline opa1-like & TTAGTTAAGCATACTTTGTGC & sense & 2 & RpS7 & CAGATCCTCAAGGATGGCGTC & antisense & 6 \\
\hline Orc1 & TCCAAGCTGGGCGCCGAGCGA & sense & 1 & Rpt4 & AAGCCGTCCATCTGGTTGAGC & antisense & 2 \\
\hline osa & AGATTTCTGGCGGTACTTGGT & sense & 3 & Rrp4 & TGTGGAAGTGCATCTTGCGGC & antisense & 2 \\
\hline osa & CGCATCTTCCGCCAGCAGAGC & antisense & 3 & Rrp42 & CGCCGAAGGATCCACCAGGAC & antisense & 6 \\
\hline osa & TTCGGCCTGCTCGATGAAGGC & antisense & 2 & Sas10 & GCAAATACCGAAAGGCGCTCA & sense & 9 \\
\hline osa & GAATAGGATGCCCGGCATGCC & sense & 1 & sas-6 & TGCGCTGCTCGTTTATTTTGG & antisense & 5 \\
\hline P58IPK & TCTTTAATTGCTTGTTCTCGC & antisense & 1 & sav & GAAGGTCTGCCGGTGGGCTGG & sense & 3 \\
\hline pAbp & TTCGCTTTGTCGTGCGTTGCG & antisense & 1 & sav & TAGATGGGCGACTCCGATCGC & antisense & 1 \\
\hline par-1 & ACAATGCTGCAGGATCAGCGG & sense & 2 & sax & CAGAGCGATGACCAGAAAAGG & antisense & 2 \\
\hline par-1 & TTGGACACGCTATCCGCTGGC & antisense & 1 & sbb & TGGATGCACTCCATCACGCGG & sense & 2 \\
\hline Pc & ATTGGCTAGTTTTAGTTACGG & sense & 1 & ScpX & ATGCTCAGTTGGCTTTGCAGC & sense & 2 \\
\hline Pcaf & TGGTTACGCTTTCTCTGCTGG & antisense & 2 & scra & AATTCAACGCACCACATGGAC & sense & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline scra & CGGTTCGGTGGATTGGGGAGG & antisense & 3 \\
\hline scra & ACTCGTCGCAGGTCTCAGCGG & sense & 1 \\
\hline scu & CCTGCTTGGCCAGGCGCTCGG & antisense & 1 \\
\hline \(\sec 15\) & CGGGAGTACTTCGAGAAGGAC & sense & 7 \\
\hline \(\sec 15\) & TTATTTGGAGGATCTGTGGTC & sense & 1 \\
\hline \(\sec 23\) & ATAGAATGTGGTCTCGTCGGG & antisense & 1 \\
\hline \(\sec 31\) & CTACACCCAGCCACAGGCAGC & sense & 5 \\
\hline \(\sec 63\) & CACCAATGTGGTGACCGCCGG & sense & 3 \\
\hline \(\sec 71\) & CGTGGCCTTGTCAAACAACGG & sense & 2 \\
\hline \(\operatorname{sens}\) & ATGATGATGATGATGATGATG & sense & 1 \\
\hline \(\operatorname{Sin} 3 A\) & TCCACCACCAATACCAATGCG & sense & 10 \\
\hline \(\operatorname{Sin} 3 A\) & TGGGCTTGCCTGGGACTCGTG & antisense & 4 \\
\hline \(\operatorname{Sin} 3 A\) & ATTAAAGGCGTATTGCTCGGC & antisense & 3 \\
\hline \(\operatorname{Sin} 3 A\) & CACTATTTATTTCAATGCAGG & antisense & 2 \\
\hline \(\operatorname{Sin} 3 A\) & TCCAAAAGTCTGCTTGCTGGC & sense & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline skd & TGTGTGTTTGCCCAGCTTGCA & antisense & 6 \\
\hline sle & TCCATTGAAAGTTTCTCGAGC & antisense & 2 \\
\hline slik & CGCGTTCCTTCTCTTCGTGGT & antisense & 1 \\
\hline slmo & GGGCTCGGTGTCACGTCGGGC & sense & 6 \\
\hline Snoo & CAGGCGAATTGGAATAGTAGG & sense & 5 \\
\hline Snoo & ATACACGTGGAAGCTGAGGGC & antisense & 2 \\
\hline Snoo & ATTGGATGCTTCTCCGTGGGC & sense & 2 \\
\hline Snoo & CGAGGACACCGGCGGTGGTGA & antisense & 2 \\
\hline Snoo & AACTTTTTTATCTTTGCGCTG & antisense & 1 \\
\hline Snoo & ATAGTCACCAATGGCAGGAGC & sense & 1 \\
\hline
\end{tabular}

Table II-S1B. Summary of mRNA-matching, 21-nt reads from pyrosequencing of a
small RNA library enriched for \(3^{\prime}\) terminally modified small RNA.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Total S2 reads} & \multicolumn{2}{|l|}{number of unique 21mers} \\
\hline Gene & \[
\begin{array}{|c|}
\hline \text { sense + } \\
\text { antisense }
\end{array}
\] & antisense & sense & antisense & sense \\
\hline 5Ptasel & 2 & 0 & 2 & 0 & 1 \\
\hline Aats-gln & 1 & 1 & 0 & 1 & 0 \\
\hline Ac3 & 3 & 3 & 0 & 1 & 0 \\
\hline Acer & 1 & 0 & 1 & 0 & 1 \\
\hline Ack & 1 & 1 & 0 & 1 & 0 \\
\hline Act42A & 21 & 8 & 13 & 2 & 2 \\
\hline Ada2b & 6 & 6 & 0 & 3 & 0 \\
\hline ade2 & 1 & 1 & 0 & 1 & 0 \\
\hline ago (archipeligo) & 14 & 14 & 0 & 1 & 0 \\
\hline AGO2 & 40 & 23 & 17 & 6 & 3 \\
\hline AnnIX & 9 & 3 & 6 & 1 & 2 \\
\hline AnnX & 3 & 3 & 0 & 1 & 0 \\
\hline Aos1 & 3 & 0 & 3 & 0 & 1 \\
\hline Apc2 & 1 & 1 & 0 & 1 & 1 \\
\hline Arf79F & 3 & 3 & 0 & 2 & 0 \\
\hline argos & 2 & 0 & 2 & 0 & 1 \\
\hline Arp5 & 2 & 0 & 2 & 0 & 1 \\
\hline Art1 & 3 & 0 & 3 & 0 & 1 \\
\hline Art4 & 6 & 1 & 5 & 1 & 1 \\
\hline ATPCL & 13 & 13 & 0 & 3 & 0 \\
\hline aux & 16 & 7 & 9 & 1 & 4 \\
\hline Bap170 & 3 & 3 & 0 & 1 & 0 \\
\hline betaggt-I & 1 & 1 & 0 & 1 & 0 \\
\hline bigmax & 3 & 0 & 3 & 0 & 1 \\
\hline bin3 & 16 & 16 & 0 & 5 & 0 \\
\hline Bj1 & 2 & 2 & 0 & 1 & 0 \\
\hline blue & 7 & 7 & 0 & 1 & 0 \\
\hline bocksbeutel & 1 & 0 & 1 & 0 & 1 \\
\hline botv & 2 & 0 & 2 & 0 & 1 \\
\hline brat & 5 & 0 & 5 & 0 & 1 \\
\hline Bruce & 3 & 1 & 2 & 1 & 1 \\
\hline BRWD3 & 2 & 2 & 0 & 1 & 0 \\
\hline BtbVII & 5 & 0 & 5 & 0 & 1 \\
\hline \(b\) tn & 2 & 0 & 2 & 0 & 1 \\
\hline Bzd & 2 & 0 & 2 & 0 & 1 \\
\hline cact & 1 & 0 & 1 & 1 & 0 \\
\hline Cap-D3 & 1 & 0 & 1 & 0 & 1 \\
\hline Cap-H2 & 2 & 2 & 0 & 1 & 0 \\
\hline cbt & 18 & 11 & 7 & 2 & 1 \\
\hline Ccn & 1 & 0 & 1 & 0 & 1 \\
\hline Cct1 & 4 & 4 & 1 & 1 & 0 \\
\hline Cct5 & 6 & 3 & 3 & 2 & 2 \\
\hline cg & 2 & 2 & 0 & 1 & 0 \\
\hline CG10011 & 1 & 1 & 0 & 1 & 0 \\
\hline CG10151 & 4 & 0 & 4 & 0 & 1 \\
\hline CG10214 & 2 & 0 & 3 & 1 & 2 \\
\hline CG10225 & 1 & 1 & 9 & 1 & 0 \\
\hline CG10249 & 4 & 4 & 0 & 4 & 0 \\
\hline CG10274 & 6 & 6 & 0 & 4 & 0 \\
\hline CG10341 & 4 & 4 & 0 & 1 & 0 \\
\hline CG10365 & 6 & 6 & 0 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Total S2 reads} & \multicolumn{2}{|l|}{number of unique 21mers} \\
\hline Gene & \[
\begin{array}{|c|}
\hline \text { sense }+ \\
\text { antisense } \\
\hline
\end{array}
\] & antisense & sense & antisense & sense \\
\hline CG10376 & 6 & 5 & 1 & 2 & 1 \\
\hline CG10435 & 4 & 2 & 2 & 1 & 1 \\
\hline CG10445 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10462 & 4 & 0 & 4 & 0 & 1 \\
\hline CG10516 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10576 & 2 & 2 & 1 & 1 & 0 \\
\hline CG10669 & 2 & 0 & 2 & 0 & 1 \\
\hline CG10889 & 3 & 0 & 3 & 0 & 1 \\
\hline CG10903 & 3 & 0 & 3 & 0 & 1 \\
\hline CG10971 & 5 & 1 & 4 & 1 & 1 \\
\hline CG1104 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11063 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11109 & 13 & 1 & 12 & 1 & 4 \\
\hline CG11180 & 1 & 0 & 1 & 0 & 1 \\
\hline CG11198 & 3 & 1 & 2 & 1 & 1 \\
\hline CG11242 & 9 & 9 & 0 & 1 & 0 \\
\hline CG11306 & 14 & 0 & 14 & 0 & 2 \\
\hline CG11377 & 3 & 0 & 3 & 0 & 1 \\
\hline CG11388 & 5 & 3 & 2 & 1 & 1 \\
\hline CG11448 & 2 & 2 & 0 & 1 & 0 \\
\hline CG11455 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11526 & 11 & 0 & 11 & 0 & 2 \\
\hline CG11620 & 6 & 6 & 0 & 1 & 0 \\
\hline CG11777 & 1 & 0 & 1 & 0 & 1 \\
\hline CG11790 & 6 & 6 & 0 & 1 & 0 \\
\hline CG11814 & 4 & 4 & 0 & 1 & 0 \\
\hline CG11866 & 3 & 3 & 0 & 1 & 0 \\
\hline CG11872 & 2 & 2 & 0 & 1 & 0 \\
\hline CG11880 & 3 & 3 & 0 & 2 & 0 \\
\hline CG11927 & 3 & 3 & 0 & 1 & 0 \\
\hline CG11929 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11943 & 2 & 0 & 2 & 0 & 1 \\
\hline CG12016 & 13 & 9 & 4 & 1 & 1 \\
\hline CG12030 & 17 & 0 & 17 & 0 & 2 \\
\hline CG12082 & 1 & 1 & 0 & 1 & 0 \\
\hline CG12106 & 13 & 11 & 2 & 2 & 1 \\
\hline CG12118 & 13 & 11 & 2 & 1 & 2 \\
\hline CG12170 & 3 & 0 & 3 & 0 & 1 \\
\hline CG12182 & 13 & 6 & 7 & 1 & 2 \\
\hline CG12262 & 7 & 4 & 3 & 1 & 1 \\
\hline CG12299 & 3 & 0 & 3 & 0 & 1 \\
\hline CG12341 & 1 & 1 & 0 & 1 & 0 \\
\hline CG12343 & 2 & 0 & 2 & 0 & 1 \\
\hline CG12393 & 6 & 6 & 0 & 1 & 0 \\
\hline CG12576 & 1 & 0 & 1 & 0 & 1 \\
\hline CG12785 & 5 & 5 & 0 & 1 & 0 \\
\hline CG12936 & 1 & 0 & 1 & 0 & 1 \\
\hline CG1311 & 3 & 3 & 0 & 1 & 0 \\
\hline CG13189 & 2 & 0 & 2 & 0 & 1 \\
\hline CG13220 & 8 & 0 & 8 & 0 & 1 \\
\hline CG13349 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CG13384 & 3 & 1 & 2 & 1 & 1 & CG30410 & 4 & 4 & 0 & 1 & 0 \\
\hline CG13484 & 3 & 3 & 0 & 2 & 0 & CG31082 & 6 & 6 & 0 & 1 & 0 \\
\hline CG1358 & 20 & 6 & 14 & 2 & 3 & CG31121 & 6 & 0 & 6 & 0 & 2 \\
\hline CG13601 & 1 & 1 & 0 & 1 & 0 & CG31158 & 1 & 1 & 0 & 1 & 0 \\
\hline CG13762 & 4 & 4 & 0 & 1 & 0 & CG3164 & 2 & 1 & 1 & 1 & 1 \\
\hline CG13893 & 1 & 0 & 1 & 0 & 1 & CG31643 & 1 & 0 & 1 & 0 & 1 \\
\hline CG13900 & 22 & 7 & 15 & 1 & 3 & CG3165 & 3 & 3 & 0 & 1 & 0 \\
\hline CG13902 & 4 & 2 & 2 & 1 & 1 & CG31678 & 3 & 2 & 1 & 1 & 1 \\
\hline CG13924 & 2 & 2 & 0 & 1 & 0 & CG31729 & 4 & 4 & 0 & 1 & 0 \\
\hline CG14102 & 1 & 0 & 1 & 0 & 1 & CG3173 & 2 & 0 & 2 & 0 & 1 \\
\hline CG14211 & 6 & 0 & 6 & 0 & 1 & CG31771 & 1 & 0 & 1 & 0 & 1 \\
\hline CG14215 & 2 & 2 & 0 & 1 & 0 & CG31793 & 5 & 0 & 5 & 0 & 1 \\
\hline CG14230 & 4 & 4 & 0 & 1 & 0 & CG31812 & 2 & 0 & 2 & 0 & 1 \\
\hline CG1434 & 1 & 0 & 1 & 0 & 1 & CG31849 & 4 & 0 & 4 & 0 & 1 \\
\hline CG14435 & 1 & 0 & 1 & 0 & 1 & CG31918 & 1 & 0 & 1 & 0 & 1 \\
\hline CG14476 & 1 & 0 & 1 & 0 & 1 & CG31919 & 8 & 8 & 0 & 1 & 0 \\
\hline CG14670 & 3 & 3 & 0 & 1 & 0 & CG31922 & 3 & 3 & 0 & 1 & 0 \\
\hline CG14782 & 11 & 0 & 11 & 0 & 2 & CG31975 & 4 & 0 & 4 & 0 & 1 \\
\hline CG14786 & 6 & 0 & 6 & 0 & 1 & CG32164 & 3 & 1 & 2 & 1 & 2 \\
\hline CG14799 & 1 & 1 & 0 & 1 & 0 & CG32165 & 3 & 1 & 2 & 1 & 2 \\
\hline CG14804 & 3 & 0 & 3 & 0 & 1 & CG3223 & 2 & 0 & 2 & 0 & 1 \\
\hline CG14815 & 4 & 0 & 4 & 0 & 1 & CG32250 & 2 & 0 & 2 & 0 & 1 \\
\hline CG14882 & 3 & 3 & 0 & 1 & 0 & CG32409 & 1 & 0 & 1 & 0 & 1 \\
\hline CG14956 & 4 & 0 & 4 & 0 & 2 & CG32412 & 1 & 1 & 0 & 1 & 0 \\
\hline CG14966 & 6 & 0 & 6 & 0 & 1 & CG32425 & 8 & 8 & 0 & 1 & 0 \\
\hline CG14967 & 7 & 7 & 0 & 1 & 0 & CG32495 & 2 & 2 & 0 & 1 & 0 \\
\hline CG15011 & 2 & 0 & 2 & 0 & 1 & CG32694 & 1 & 0 & 1 & 0 & 1 \\
\hline CG15067 & 2 & 0 & 2 & 0 & 1 & CG32702 & 6 & 6 & 0 & 2 & 0 \\
\hline CG15097 & 1 & 0 & 1 & 0 & 1 & CG3271 & 2 & 2 & 0 & 1 & 0 \\
\hline CG15099 & 1 & 1 & 0 & 1 & 0 & CG3279 & 10 & 0 & 10 & 0 & 3 \\
\hline CG1516 & 5 & 0 & 5 & 0 & 1 & CG32809 & 5 & 5 & 0 & 1 & 0 \\
\hline CG15209 & 5 & 5 & 0 & 1 & 0 & CG32939 & 8 & 0 & 8 & 0 & 1 \\
\hline CG15216 & 2 & 0 & 2 & 0 & 1 & CG3308 & 7 & 6 & 1 & 3 & 1 \\
\hline CG1531 & 4 & 4 & 0 & 1 & 0 & CG33107 & 1 & 1 & 0 & 1 & 0 \\
\hline CG15370 & 1 & 1 & 0 & 1 & 0 & CG33111 & 1 & 0 & 1 & 0 & 1 \\
\hline CG1542 & 3 & 0 & 3 & 0 & 1 & CG33249 & 4 & 0 & 4 & 0 & 1 \\
\hline CG15438 & 2 & 0 & 2 & 0 & 1 & CG33469 & 1 & 1 & 0 & 1 & 0 \\
\hline CG15482 & 1 & 1 & 0 & 1 & 0 & CG33470 & 14 & 0 & 14 & 0 & 1 \\
\hline CG1553 & 5 & 5 & 0 & 2 & 0 & CG33509 & 15 & 4 & 11 & 1 & 3 \\
\hline CG15609 & 21 & 13 & 8 & 5 & 2 & CG33510 & 3 & 0 & 3 & 0 & 2 \\
\hline CG15891 & 1 & 1 & 0 & 1 & 0 & CG33523 & 2 & 2 & 0 & 1 & 0 \\
\hline CG15892 & 1 & 1 & 0 & 1 & 0 & CG3356 & 2 & 0 & 2 & 0 & 1 \\
\hline CG15896 & 7 & 7 & 0 & 2 & 0 & CG3363 & 3 & 3 & 0 & 1 & 0 \\
\hline CG15930 & 1 & 0 & 1 & 0 & 1 & CG33649 & 1 & 0 & 1 & 0 & 1 \\
\hline CG1600 & 3 & 0 & 3 & 0 & 1 & CG33932 & 3 & 3 & 0 & 1 & 0 \\
\hline CG1621 & 4 & 0 & 4 & 0 & 1 & CG33967 & 3 & 0 & 3 & 0 & 1 \\
\hline CG16742 & 1 & 0 & 1 & 0 & 1 & CG33969 & 19 & 13 & 6 & 3 & 5 \\
\hline CG16903 & 3 & 1 & 2 & 1 & 1 & CG33978 & 1 & 0 & 1 & 0 & 1 \\
\hline CG16972 & 6 & 6 & 0 & 1 & 0 & CG33995 & 8 & 8 & 0 & 1 & 0 \\
\hline CG16989 & 2 & 0 & 2 & 0 & 1 & CG3402 & 14 & 10 & 4 & 1 & 2 \\
\hline CG17264 & 13 & 13 & 0 & 1 & 0 & CG34125 & 3 & 3 & 0 & 2 & 0 \\
\hline CG17660 & 6 & 0 & 6 & 0 & 2 & CG34126 & 6 & 6 & 0 & 1 & 0 \\
\hline CG17715 & 1 & 0 & 1 & 0 & 1 & CG34179 & 6 & 0 & 6 & 0 & 1 \\
\hline CG17746 & 6 & 1 & 5 & 1 & 3 & CG34268 & 3 & 0 & 3 & 0 & 1 \\
\hline CG18107 & 2 & 0 & 2 & 0 & 1 & CG34335 & 3 & 0 & 3 & 0 & 1 \\
\hline CG1812 & 2 & 0 & 2 & 0 & 1 & CG34376 & 4 & 0 & 4 & 0 & 1 \\
\hline CG1814 & 4 & 0 & 4 & 0 & 1 & CG34398 & 1 & 1 & 0 & 1 & 0 \\
\hline CG18166 & 1 & 1 & 0 & 1 & 0 & CG34415 & 5 & 0 & 5 & 0 & 1 \\
\hline CG18259 & 9 & 6 & 3 & 1 & 2 & CG34429 & 2 & 1 & 1 & 1 & 1 \\
\hline CG18262 & 2 & 2 & 0 & 1 & 0 & CG34430 & 1 & 0 & 1 & 1 & 0 \\
\hline CG18273 & 1 & 1 & 0 & 1 & 0 & CG3542 & 3 & 2 & 1 & 1 & 1 \\
\hline CG18432 & 7 & 0 & 7 & 0 & 1 & CG3605 & 3 & 0 & 3 & 0 & 1 \\
\hline CG18542 & 8 & 0 & 8 & 0 & 1 & CG3683 & 3 & 3 & 0 & 1 & 0 \\
\hline CG18809 & 7 & 0 & 7 & 0 & 1 & CG3703 & 6 & 5 & 1 & 2 & 1 \\
\hline CG18854 & 83 & 3 & 80 & 2 & 25 & CG3711 & 1 & 0 & 1 & 0 & 1 \\
\hline CG1902 & 2 & 2 & 0 & 1 & 0 & CG3740 & 6 & 0 & 6 & 0 & 1 \\
\hline CG1972 & 7 & 7 & 0 & 1 & 0 & CG3760 & 2 & 2 & 0 & 1 & 0 \\
\hline CG2006 & 3 & 0 & 3 & 0 & 2 & CG3764 & 5 & 5 & 0 & 1 & 0 \\
\hline CG2034 & 2 & 0 & 2 & 0 & 1 & CG3792 & 3 & 3 & 0 & 1 & 0 \\
\hline CG2137 & 1 & 0 & 1 & 0 & 1 & CG3814 & 2 & 2 & 0 & 1 & 0 \\
\hline CG2225 & 2 & 0 & 2 & 0 & 1 & CG3831 & 1 & 0 & 1 & 0 & 1 \\
\hline CG2247 & 1 & 0 & 1 & 0 & 1 & CG3967 & 1 & 1 & 0 & 1 & 0 \\
\hline CG2614 & 6 & 6 & 0 & 1 & 0 & CG3973 & 3 & 1 & 2 & 1 & 1 \\
\hline CG2698 & 1 & 0 & 1 & 0 & 1 & CG3980 & 1 & 0 & 1 & 0 & 1 \\
\hline CG2811 & 2 & 0 & 2 & 0 & 1 & CG40084 & 1 & 0 & 1 & 0 & 1 \\
\hline CG2926 & 8 & 8 & 0 & 1 & 0 & CG40228 & 1 & 0 & 1 & 0 & 1 \\
\hline CG2991 & 2 & 0 & 2 & 0 & 1 & CG4025 & 2 & 2 & 0 & 1 & 1 \\
\hline CG3032 & 2 & 0 & 2 & 0 & 1 & CG40351 & 6 & 4 & 2 & 2 & 1 \\
\hline CG30373 & 9 & 9 & 0 & 1 & 0 & CG4061 & 4 & 0 & 4 & 0 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CG4068 & 95 & 0 & 95 & 0 & 7 & CG7650 & 7 & 7 & 0 & 3 & 0 \\
\hline CG40798 & 2 & 0 & 2 & 0 & 1 & CG7739 & 37 & 17 & 20 & 3 & 6 \\
\hline CG4119 & 1 & 1 & 0 & 1 & 0 & CG7789 & 5 & 0 & 5 & 0 & 1 \\
\hline CG41322 & 2 & 0 & 2 & 0 & 1 & CG7816 & 3 & 0 & 3 & 0 & 2 \\
\hline CG41421 & 8 & 0 & 8 & 0 & 1 & CG7830 & 2 & 0 & 2 & 0 & 1 \\
\hline CG41484 & 19 & 2 & 17 & 2 & 3 & CG7912 & 3 & 0 & 3 & 0 & 1 \\
\hline CG41533 & 2 & 2 & 0 & 1 & 0 & CG7988 & 1 & 1 & 0 & 1 & 0 \\
\hline CG41584 & 1 & 0 & 1 & 0 & 1 & CG8112 & 4 & 0 & 4 & 0 & 2 \\
\hline CG41587 & 2 & 0 & 2 & 0 & 1 & CG8155 & 2 & 2 & 0 & 1 & 0 \\
\hline CG41589 & 1 & 0 & 1 & 0 & 1 & CG8199 & 5 & 5 & 0 & 1 & 0 \\
\hline CG4199 & 13 & 12 & 1 & 1 & 2 & CG8289 & 4 & 0 & 4 & 0 & 1 \\
\hline CG4213 & 2 & 0 & 2 & 0 & 1 & CG8297 & 4 & 0 & 4 & 0 & 1 \\
\hline CG4334 & 2 & 0 & 2 & 0 & 1 & CG8315 & 4 & 0 & 4 & 0 & 1 \\
\hline CG4582 & 2 & 2 & 0 & 1 & 0 & CG8319 & 1 & 0 & 1 & 0 & 1 \\
\hline CG4619 & 1 & 0 & 1 & 0 & 1 & CG8320 & 5 & 0 & 5 & 0 & 1 \\
\hline CG4643 & 2 & 0 & 2 & 0 & 2 & CG8336 & 5 & 3 & 2 & 2 & 1 \\
\hline CG4670 & 5 & 2 & 3 & 1 & 1 & CG8443 & 2 & 2 & 0 & 1 & 0 \\
\hline CG4699 & 2 & 2 & 0 & 1 & 0 & CG8451 & 5 & 5 & 0 & 1 & 0 \\
\hline CG4752 & 4 & 0 & 4 & 0 & 1 & CG8478 & 3 & 1 & 2 & 1 & 1 \\
\hline CG4822 & 10 & 0 & 10 & 0 & 2 & CG8481 & 1 & 1 & 0 & 1 & 0 \\
\hline CG4901 & 2 & 2 & 0 & 1 & 0 & CG8516 & 5 & 5 & 0 & 1 & 0 \\
\hline CG4963 & 5 & 0 & 5 & 0 & 1 & CG8526 & 10 & 0 & 10 & 0 & 1 \\
\hline CG5044 & 6 & 0 & 6 & 0 & 1 & CG8538 & 5 & 0 & 5 & 0 & 1 \\
\hline CG5062 & 6 & 6 & 0 & 1 & 0 & CG8545 & 1 & 0 & 1 & 0 & 1 \\
\hline CG5104 & 1 & 1 & 0 & 1 & 0 & CG8594 & 8 & 8 & 0 & 3 & 0 \\
\hline CG5126 & 1 & 0 & 1 & 0 & 1 & CG8602 & 6 & 6 & 0 & 2 & 0 \\
\hline CG5130 & 11 & 11 & 0 & 1 & 0 & CG8668 & 2 & 2 & 0 & 1 & 0 \\
\hline CG5191 & 4 & 0 & 4 & 0 & 1 & CG8798 & 10 & 7 & 3 & 2 & 1 \\
\hline CG5362 & 5 & 5 & 0 & 1 & 0 & CG8862 & 5 & 2 & 3 & 1 & 2 \\
\hline CG5458 & 13 & 4 & 9 & 1 & 2 & CG8878 & 3 & 0 & 3 & 0 & 2 \\
\hline CG5508 & 3 & 1 & 2 & 1 & 1 & CG8950 & 6 & 3 & 3 & 1 & 1 \\
\hline CG5510 & 1 & 0 & 1 & 0 & 1 & CG9007 & 5 & 5 & 0 & 1 & 0 \\
\hline CG5537 & 1 & 1 & 0 & 1 & 0 & CG9143 & 1 & 1 & 0 & 1 & 0 \\
\hline CG5543 & 2 & 0 & 2 & 0 & 1 & CG9246 & 1 & 0 & 1 & 0 & 1 \\
\hline CG5567 & 3 & 0 & 3 & 0 & 1 & CG9320 & 4 & 0 & 4 & 0 & 1 \\
\hline CG5644 & 2 & 0 & 2 & 0 & 1 & CG9339 & 3 & 0 & 3 & 0 & 1 \\
\hline CG5734 & 12 & 8 & 4 & 2 & 2 & CG9346 & 2 & 0 & 2 & 0 & 1 \\
\hline CG5840 & 1 & 1 & 0 & 1 & 0 & CG9372 & 3 & 0 & 3 & 0 & 1 \\
\hline CG5853 & 1 & 1 & 0 & 1 & 0 & CG9389 & 3 & 0 & 3 & 0 & 1 \\
\hline CG5857 & 3 & 2 & 1 & 1 & 1 & CG9578 & 3 & 3 & 0 & 1 & 0 \\
\hline CG5871 & 14 & 8 & 6 & 2 & 2 & CG9629 & 3 & 3 & 0 & 1 & 0 \\
\hline CG5899 & 1 & 1 & 0 & 1 & 0 & CG9674 & 1 & 0 & 1 & 0 & 1 \\
\hline CG5919 & 10 & 10 & 1 & 2 & 0 & CG9776 & 1 & 1 & 0 & 1 & 0 \\
\hline CG5938 & 2 & 2 & 0 & 1 & 0 & CG9779 & 1 & 0 & 1 & 0 & 1 \\
\hline CG5986 & 1 & 0 & 1 & 0 & 1 & CG9780 & 3 & 1 & 2 & 1 & 1 \\
\hline CG6038 & 7 & 0 & 7 & 0 & 1 & CG9795 & 2 & 0 & 2 & 0 & 1 \\
\hline CG6171 & 1 & 1 & 0 & 1 & 0 & CG9799 & 4 & 4 & 0 & 1 & 0 \\
\hline CG6181 & 5 & 3 & 2 & 1 & 1 & CG9804 & 2 & 1 & 1 & 1 & 1 \\
\hline CG6218 & 7 & 0 & 7 & 0 & 1 & CG9922 & 5 & 5 & 0 & 1 & 0 \\
\hline CG6424 & 15 & 2 & 13 & 2 & 4 & CG9934 & 4 & 0 & 4 & 0 & 1 \\
\hline CG6448 & 3 & 3 & 0 & 2 & 0 & CG9941 & 1 & 0 & 1 & 0 & 1 \\
\hline CG6454 & 1 & 1 & 0 & 1 & 0 & CG9945 & 1 & 1 & 0 & 1 & 0 \\
\hline CG6509 & 2 & 2 & 0 & 1 & 0 & cher & 6 & 2 & 4 & 1 & 1 \\
\hline CG6654 & 2 & 2 & 0 & 1 & 0 & chinmo & 6 & 3 & 3 & 3 & 1 \\
\hline CG6689 & 5 & 0 & 5 & 0 & 1 & CHKov1 & 3 & 0 & 3 & 0 & 1 \\
\hline CG6805 & 1 & 0 & 1 & 0 & 1 & Chro & 4 & 2 & 2 & 1 & 2 \\
\hline CG6833 & 2 & 2 & 0 & 1 & 0 & Cht3 & 1 & 0 & 1 & 0 & 1 \\
\hline CG6876 & 3 & 0 & 3 & 0 & 1 & cnc & 3 & 3 & 0 & 1 & 0 \\
\hline CG6891 & 2 & 2 & 0 & 1 & 0 & Cog3 & 1 & 1 & 0 & 1 & 0 \\
\hline CG6900 & 2 & 2 & 0 & 1 & 0 & colt & 5 & 5 & 0 & 1 & 0 \\
\hline CG6903 & 3 & 0 & 2 & 0 & 1 & Coq2 & 4 & 0 & 4 & 0 & 1 \\
\hline CG6907 & 10 & 8 & 2 & 2 & 1 & Cp190 & 4 & 4 & 0 & 2 & 0 \\
\hline CG6912 & 1 & 1 & 0 & 1 & 0 & CPTI & 1 & 1 & 0 & 1 & 0 \\
\hline CG6950 & 2 & 0 & 2 & 0 & 1 & crb & 4 & 4 & 0 & 1 & 0 \\
\hline CG6961 & 7 & 6 & 1 & 1 & 1 & cra & 6 & 0 & 6 & 0 & 1 \\
\hline CG7011 & 3 & 3 & 0 & 1 & 0 & Csk & 11 & 0 & 11 & 0 & 1 \\
\hline CG7139 & 10 & 8 & 2 & 1 & 1 & CstF-64 & 10 & 0 & 10 & 0 & 1 \\
\hline CG7144 & 1 & 1 & 0 & 1 & 0 & cue & 4 & 3 & 1 & 1 & 1 \\
\hline CG7177 & 1 & 1 & 0 & 1 & 0 & CycG & 4 & 0 & 4 & 0 & 1 \\
\hline CG7224 & 4 & 0 & 4 & 0 & 2 & Cyp28d1 & 4 & 4 & 0 & 1 & 0 \\
\hline CG7289 & 1 & 0 & 1 & 0 & 1 & da & 1 & 0 & 1 & 0 & 1 \\
\hline CG7324 & 3 & 1 & 2 & 1 & 1 & Dcr-1 & 5 & 1 & 4 & 1 & 1 \\
\hline CG7338 & 4 & 3 & 1 & 1 & 1 & Ddx1 & 2 & 2 & 0 & 1 & 0 \\
\hline CG7376 & 5 & 5 & 0 & 2 & 0 & Dg & 2 & 0 & 2 & 0 & 1 \\
\hline CG7379 & 3 & 0 & 3 & 0 & 1 & Dgp-1 & 1 & 0 & 1 & 0 & 1 \\
\hline CG7504 & 2 & 1 & 0 & 1 & 0 & Dif & 1 & 1 & 0 & 1 & 0 \\
\hline CG7518 & 1 & 0 & 1 & 0 & 1 & DNApol- & 1 & 0 & 1 & 0 & 1 \\
\hline CG7519 & 3 & 3 & 0 & 1 & 0 & gamma35 & 1 & 0 & 1 & 0 & 1 \\
\hline CG7632 & 1 & 1 & 0 & 1 & 0 & DNApol-iota & 1 & 0 & 1 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Doa & 7 & 7 & 0 & 1 & 0 \\
\hline Dph5 & 1 & 1 & 0 & 1 & 0 \\
\hline drosha & 2 & 0 & 2 & 0 & 1 \\
\hline Drp1 & 7 & 7 & 0 & 1 & 0 \\
\hline Dyrk3 & 2 & 0 & 2 & 0 & 2 \\
\hline e(y) 1 & 1 & 1 & 0 & 1 & 0 \\
\hline E2f & 3 & 3 & 0 & 1 & 0 \\
\hline Eap & 6 & 0 & 6 & 0 & 1 \\
\hline ed & 3 & 0 & 3 & 0 & 1 \\
\hline Edem2 & 7 & 0 & 7 & 0 & 1 \\
\hline edl & 1 & 1 & 0 & 1 & 0 \\
\hline EDTP & 3 & 3 & 0 & 1 & 0 \\
\hline eff & 1 & 1 & 0 & 1 & 0 \\
\hline egh & 1 & 0 & 1 & 0 & 1 \\
\hline elF2B-epsilon & 5 & 0 & 5 & 0 & 1 \\
\hline elF3-S10 & 6 & 0 & 6 & 0 & 1 \\
\hline elF4G & 2 & 2 & 0 & 1 & 0 \\
\hline elF-5A & 1 & 0 & 1 & 0 & 1 \\
\hline elF5B & 1 & 0 & 1 & 0 & 1 \\
\hline Elongin-B & 2 & 2 & 0 & 1 & 0 \\
\hline ETH & 3 & 0 & 3 & 0 & 1 \\
\hline ex & 1 & 1 & 0 & 1 & 0 \\
\hline Fak56D & 4 & 4 & 0 & 1 & 0 \\
\hline fbl & 17 & 4 & 13 & 4 & 3 \\
\hline Fem-1 & 6 & 6 & 0 & 1 & 0 \\
\hline Fit1 & 1 & 1 & 0 & 1 & 0 \\
\hline FKBP59 & 1 & 0 & 1 & 0 & 1 \\
\hline fog & 1 & 0 & 1 & 0 & 1 \\
\hline foi & 1 & & 0 & 1 & 0 \\
\hline for & 3 & 0 & 3 & 0 & 1 \\
\hline form3 & 2 & 2 & 0 & 1 & 0 \\
\hline frc & 1 & 1 & & 0 & 1 \\
\hline frtz & 7 & 7 & 0 & 1 & 0 \\
\hline fry & 7 & 7 & 0 & 2 & 0 \\
\hline Fur2 & 1 & 1 & 0 & 1 & 0 \\
\hline fzr2 & 5 & 0 & 5 & 0 & 1 \\
\hline fzy & 5 & 5 & 0 & 1 & 0 \\
\hline gammaSnap & 3 & 0 & 3 & 0 & 1 \\
\hline gatA & 1 & 1 & 0 & 1 & 0 \\
\hline Gckll & 5 & 0 & 5 & 0 & 1 \\
\hline Gclc & 1 & 1 & 0 & 1 & 0 \\
\hline Gclm & 2 & 2 & 0 & 1 & 0 \\
\hline Gcn2 & 2 & 0 & 2 & 0 & 1 \\
\hline Gdh & 4 & 4 & 0 & 2 & 0 \\
\hline gft & 1 & 0 & 1 & 0 & 1 \\
\hline Gmd & 1 & 1 & 0 & 1 & 0 \\
\hline Gp93 & 3 & 0 & 3 & 0 & 1 \\
\hline gry & 9 & 2 & 7 & 2 & 2 \\
\hline GS & 2 & 2 & 0 & 1 & 0 \\
\hline gwl & 2 & 2 & 0 & 1 & 0 \\
\hline Gycalpha99B & 2 & 0 & 2 & 0 & 1 \\
\hline hdc & 20 & 4 & 16 & 2 & 5 \\
\hline Hexo2 & 1 & 0 & 1 & 0 & 1 \\
\hline His1 (11 loci) & 1 & 0 & 1 & 0 & 1 \\
\hline His2A (19 loci) & 10 & 7 & 3 & 2 & 2 \\
\hline His2A:CG31618 & 10 & 7 & 3 & 2 & 2 \\
\hline His2Av & 1 & 1 & 0 & 1 & 0 \\
\hline His2B (22 loci) & 5 & 5 & 0 & 3 & 0 \\
\hline His2B:CG17949 & 5 & 5 & 0 & 3 & 0 \\
\hline His2B:CG40461 & 4 & 4 & 0 & 2 & 0 \\
\hline His3 (23 loci) & 10 & 9 & 1 & 4 & 1 \\
\hline Hmgcr & 1 & 0 & 1 & 0 & 1 \\
\hline hoip & 2 & 0 & 2 & 0 & 1 \\
\hline Hr4 & 1 & 1 & 0 & 1 & 0 \\
\hline Hr96 & 1 & 0 & 1 & 0 & 1 \\
\hline Hs3st-A & 1 & 0 & 1 & 0 & 1 \\
\hline Hsp70Aa & 17 & 16 & 1 & 5 & 1 \\
\hline Hsp70Ab & 2 & 2 & 0 & 1 & 0 \\
\hline Hsp70Ba & 3 & 3 & 0 & 2 & 0 \\
\hline Hsp70Bb & 3 & 3 & 0 & 2 & 0 \\
\hline Hsp70Bbb & 3 & 3 & 0 & 2 & 0 \\
\hline Hsp70Bc & 3 & 3 & 0 & 2 & 0 \\
\hline htt & 1 & 0 & 1 & 0 & 1 \\
\hline hyd & 1 & 1 & 0 & 1 & 0 \\
\hline lap2 & 3 & 3 & 0 & 1 & 0 \\
\hline Ice & 6 & 6 & 0 & 1 & 0 \\
\hline icln & 3 & 2 & 1 & 1 & 1 \\
\hline igl & 1 & 0 & 1 & 0 & 1 \\
\hline \(11 p 6\) & 3 & 0 & 3 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline IM10 & 14 & 0 & 14 & 0 & 1 \\
\hline IP3K1 & 15 & 12 & 3 & 4 & 2 \\
\hline Irbp & 6 & 0 & 6 & 0 & 1 \\
\hline itp & 1 & 1 & 0 & 1 & 0 \\
\hline Itp-r83A & 4 & 0 & 4 & 0 & \\
\hline jet & 12 & 5 & 7 & 1 & 1 \\
\hline Jon99Fi & 5 & 0 & 5 & 0 & 1 \\
\hline Khc & 2 & 0 & 2 & 0 & 1 \\
\hline kis & 4 & 3 & 1 & 1 & 1 \\
\hline Klp3A & 9 & 2 & 7 & 1 & 1 \\
\hline ksr & 4 & 4 & 0 & 1 & 0 \\
\hline kuz & 2 & 2 & 0 & 1 & 0 \\
\hline 1(1)G0004 & 5 & 1 & 4 & 1 & 1 \\
\hline \(1(2) 37 C b\) & 4 & 4 & 0 & 1 & 0 \\
\hline I(2)NC136 & 1 & 1 & 0 & 1 & 0 \\
\hline I(2)tid & 1 & 0 & 1 & 0 & 1 \\
\hline I(3)01239 & 3 & 0 & 3 & 0 & 1 \\
\hline l(3)s1921 & 6 & 4 & 2 & 3 & 1 \\
\hline Lac & 1 & & 0 & 1 & 0 \\
\hline lack & 8 & 8 & 0 & 2 & 0 \\
\hline larp & 7 & 7 & 0 & 1 & 0 \\
\hline IdICp & 13 & 11 & 2 & 3 & 1 \\
\hline lid & 5 & 5 & 0 & 1 & 0 \\
\hline lig & 2 & 2 & 0 & 1 & 0 \\
\hline lkb1 & 1 & 1 & 0 & 1 & 0 \\
\hline lok & 5 & 5 & 0 & 3 & 0 \\
\hline Lsd-1 & 4 & 3 & 1 & 2 & 1 \\
\hline M(2)21AB & 18 & 12 & 6 & 3 & 1 \\
\hline mam & 6 & 6 & 0 & 1 & 0 \\
\hline Map60 & 5 & 5 & 0 & 1 & 0 \\
\hline mask & 2 & 2 & 0 & 1 & 0 \\
\hline MBD-like & 12 & 0 & 12 & 0 & 1 \\
\hline Mcm2 & 1 & 1 & 0 & 1 & 0 \\
\hline MCPH1 & 6 & 5 & 1 & 1 & 1 \\
\hline Med & 2 & 0 & 1 & 0 & 1 \\
\hline MED15 & 5 & 5 & 0 & 1 & 0 \\
\hline MED21 & 2 & 0 & 2 & 0 & 1 \\
\hline MED24 & 11 & 11 & 2 & 1 & 0 \\
\hline Mes-4 & 1 & 0 & 1 & 0 & 1 \\
\hline Mi-2 & 5 & 0 & 5 & 0 & 1 \\
\hline mib1 & 1 & 1 & 0 & 1 & 0 \\
\hline milt & 3 & 3 & 0 & 1 & 0 \\
\hline mip130 & 3 & 0 & 3 & 0 & 1 \\
\hline mit(1)15 & 5 & 5 & 0 & 1 & 0 \\
\hline Mitf & 8 & 0 & 8 & 0 & 3 \\
\hline Mmp1 & 19 & 5 & 14 & 3 & 2 \\
\hline \(\bmod (\mathrm{mdg} 4)\) & 5 & 3 & 2 & 2 & 1 \\
\hline MP1 & 4 & 1 & 3 & 1 & 1 \\
\hline mRpL18 & 1 & 0 & 1 & 0 & 1 \\
\hline mRpL44 & 1 & 1 & 0 & 1 & 0 \\
\hline mRpL48 & 6 & 1 & 5 & 1 & 1 \\
\hline mRpS2 & 3 & 0 & 3 & 0 & 1 \\
\hline mrt & 2 & 0 & 2 & 0 & 1 \\
\hline msl-1 & 4 & 4 & 0 & 1 & 0 \\
\hline Mst89B & 6 & 6 & 0 & 1 & 0 \\
\hline mt:Col & 3 & 2 & 1 & 1 & 1 \\
\hline MTF-1 & 4 & 0 & 4 & 0 & 1 \\
\hline mtTFB1 & 2 & 2 & 0 & 1 & 0 \\
\hline mus205 & 4 & 2 & 2 & 1 & 1 \\
\hline mus308 & 2 & 2 & 0 & 1 & 0 \\
\hline mus309 & 1 & 1 & 0 & 1 & 0 \\
\hline mus81 & 7 & 0 & 7 & 0 & 3 \\
\hline Mys 45A & 3 & 3 & 0 & 1 & 0 \\
\hline nAcRbeta-21C & 6 & 0 & 6 & 0 & 1 \\
\hline ncd & 1 & 1 & 0 & 1 & 0 \\
\hline NitFhit & 3 & 0 & 3 & 0 & 2 \\
\hline nito & 1 & 1 & 0 & 1 & 0 \\
\hline Nle & 1 & 0 & 1 & 0 & 1 \\
\hline Nup154 & 1 & 1 & 0 & 1 & 0 \\
\hline Nup44A & 2 & 2 & 0 & 1 & 0 \\
\hline Nup98 & 7 & 0 & 7 & 0 & 1 \\
\hline Obp99c & 3 & 0 & 3 & 0 & 1 \\
\hline O-fut1 & 5 & 4 & 1 & 1 & 1 \\
\hline omd & 4 & 4 & 0 & 1 & 0 \\
\hline opa1-like & 2 & 0 & 2 & 0 & 1 \\
\hline Orc1 & 1 & 0 & 1 & 0 & 1 \\
\hline osa & 9 & 5 & 4 & 2 & 2 \\
\hline P58IPK & 1 & 1 & 0 & 1 & 0 \\
\hline pAbp & 1 & 1 & 0 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline par-1 & 4 & 1 & 2 & 1 & 1 \\
\hline Pc & 1 & 0 & 1 & 0 & 1 \\
\hline Pcaf & 2 & 2 & 0 & 1 & 0 \\
\hline Pdk & 4 & 4 & 0 & 1 & 0 \\
\hline Pect & 11 & 4 & 7 & 1 & 3 \\
\hline Pen & 2 & 0 & 2 & 0 & 1 \\
\hline pie & 2 & 2 & 0 & 1 & 0 \\
\hline PIP82 & 1 & 1 & 0 & 1 & 0 \\
\hline pita & 2 & 1 & 1 & 1 & 1 \\
\hline Pits/re & 2 & 2 & 0 & 1 & 0 \\
\hline Pka & 8 & 0 & 8 & 0 & 1 \\
\hline Pms2 & 1 & 1 & 0 & 1 & 0 \\
\hline pnt & 1 & 1 & 0 & 1 & 0 \\
\hline Pof & 3 & 0 & 3 & 0 & 2 \\
\hline por & 2 & 0 & 2 & 0 & 2 \\
\hline Pp1-87B & 4 & 4 & 0 & 1 & 0 \\
\hline Pp2C1 & 1 & 1 & 0 & 1 & 0 \\
\hline ppk13 & 11 & 7 & 4 & 4 & 3 \\
\hline Ptp99A & 10 & 3 & 7 & 1 & 2 \\
\hline Pvf2 & 4 & 1 & 3 & 1 & 1 \\
\hline pyd & 2 & 0 & 2 & 0 & 2 \\
\hline qkr58E-1 & 1 & 1 & 0 & 1 & 0 \\
\hline Rab11 & 1 & 1 & 0 & 1 & 0 \\
\hline Rab6 & 11 & 11 & 0 & 1 & 0 \\
\hline RabX6 & 8 & 8 & 0 & 2 & 0 \\
\hline Rack1 & 1 & 0 & 1 & 0 & 1 \\
\hline Rbf & 1 & 0 & 1 & 0 & 1 \\
\hline Rbm13 & 1 & 0 & 1 & 0 & 1 \\
\hline ref(2)P & 3 & 3 & 0 & 1 & 0 \\
\hline Rfabg & 2 & 0 & 2 & 0 & 1 \\
\hline RfC38 & 1 & 1 & 0 & 1 & 0 \\
\hline RhoGAP16F & 28 & 13 & 15 & 3 & 2 \\
\hline RhoGAP68F & 5 & 4 & 1 & 1 & 1 \\
\hline Ric & 2 & 0 & 2 & 0 & 1 \\
\hline \(r-1\) & 20 & 12 & 8 & 3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rlip & 2 & 2 & 0 & 1 & 0 \\
\hline RpL21 & 2 & 0 & 2 & 0 & 1 \\
\hline RpL28 & 2 & 0 & 2 & 0 & 1 \\
\hline RpLP2 & 2 & 1 & 1 & 1 & 1 \\
\hline Rpn2 & 4 & 0 & 4 & 0 & 1 \\
\hline Rpp20 & 3 & 3 & 0 & 1 & 0 \\
\hline RpS14a & 4 & 4 & 0 & 1 & 0 \\
\hline RpS14b & 4 & 4 & 0 & 1 & 0 \\
\hline RpS7 & 6 & 6 & 0 & 1 & 0 \\
\hline Rpt4 & 2 & 2 & 0 & 1 & 0 \\
\hline Rrp4 & 2 & 2 & 0 & 1 & 0 \\
\hline Rrp42 & 6 & 6 & 0 & 1 & 0 \\
\hline Sas10 & 9 & 0 & 9 & 0 & 1 \\
\hline sas-6 & 5 & 5 & 0 & 1 & 0 \\
\hline sav & 4 & 1 & 3 & 1 & 1 \\
\hline sax & 2 & 2 & 0 & 1 & 0 \\
\hline sbb & 2 & 0 & 2 & 0 & 1 \\
\hline ScpX & 2 & 0 & 2 & 0 & 1 \\
\hline scra & 7 & 2 & 4 & 1 & 2 \\
\hline scu & 1 & 1 & 0 & 1 & 0 \\
\hline sec15 & 8 & 0 & 8 & 0 & 2 \\
\hline sec23 & 1 & 1 & 0 & 1 & 0 \\
\hline sec31 & 5 & 0 & 5 & 0 & 1 \\
\hline sec63 & 3 & 0 & 3 & 0 & 1 \\
\hline sec71 & 2 & 0 & 2 & 0 & 1 \\
\hline sens & 1 & 0 & 1 & 0 & 1 \\
\hline Sin3A & 21 & 9 & 12 & 3 & 2 \\
\hline skd & 6 & 6 & 0 & 1 & 0 \\
\hline sle & 2 & 2 & 0 & 1 & 0 \\
\hline slik & 1 & 1 & 0 & 1 & 0 \\
\hline slmo & 6 & 0 & 6 & 0 & 1 \\
\hline Snoo & 13 & 5 & 8 & 3 & 3 \\
\hline
\end{tabular}

Table II-S1C. mRNA-matching endo-siRNAs in wild-type fly heads. Data comprise pyrosequencing and sequencing-by-synthesis of small RNA libraries enriched for \(3^{\prime}\)
terminally modified RNA.
\begin{tabular}{|c|c|c|c|}
\hline GENE & siRNA & orientation of small RNA & wild-type reads \\
\hline 5-HT1B & TTGCTGGTGCTGAACTCGGTC & antisense & 1 \\
\hline Ack & TCGAATGAAGACCTCGGTTCG & sense & 1 \\
\hline Act5C & TGCTTGGAGATCCACATCTGC & antisense & 1 \\
\hline Act79B & TGCTTGGAGATCCACATCTGC & antisense & 1 \\
\hline Act87E & TGCTTGGAGATCCACATCTGC & antisense & 1 \\
\hline ade3 & AACATTCAGCGATAATTTGAC & sense & 1 \\
\hline ade3 & CCAGAAAGGCGACCGGCTCGG & antisense & 1 \\
\hline AGO2 & TGGAAAGCTTATAATGGAGTT & sense & 2 \\
\hline AGO2 & AATCAATAGAGATGCTCCTTT & antisense & 1 \\
\hline AGO2 & CCGCCTGGACAACAACAAGGT & sense & 1 \\
\hline AGO2 & TAAAATCATAGCTCATCATGG & antisense & 1 \\
\hline AGO2 & TCTATTAACTCCATTATAAGC & antisense & 1 \\
\hline AGO2 & TTAAAAGCCGCCTTGAGATGG & sense & 1 \\
\hline AGO2 & TTGGAAAGCTTATAATGGAGT & sense & 1 \\
\hline alc & GTTGTATTTTTATTAGTTATA & sense & 1 \\
\hline Ald & AGGACGGTTGCGACTTCGCCA & sense & 1 \\
\hline alpha4GT1 & TTTCAATAAATGTCTATGTGA & antisense & 1 \\
\hline alphaTry & TACTGGAGCTCTGGTGGCGTC & sense & 1 \\
\hline alphaTub84B & ACCGGTCTGCAGGGCTTCCTC & sense & 1 \\
\hline alphaTub84D & ACCGGTCTGCAGGGCTTCCTC & sense & 1 \\
\hline Amy-d & ATCTGATTGATCTCGGCGTGG & sense & 1 \\
\hline Amy-d & CACCGCTGGCGCCAGATCTAC & sense & 1 \\
\hline Amy-p & ATCTGATTGATCTCGGCGTGG & sense & 1 \\
\hline Amy-p & CACCGCTGGCGCCAGATCTAC & sense & 1 \\
\hline Ank & CAAGTGTTACTGGAAAATGGT & sense & 1 \\
\hline Ank & GTAATATCATAGACGCAGGAC & sense & 1 \\
\hline AnnIX & TAAGGATTTCCTCGTTGGATC & sense & 1 \\
\hline Apc & GCGGGCTCCAAGGTTGTGGGC & antisense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GENE & siRNA & orientation of small RNA & wild-type reads \\
\hline Apc & TCCTCGACTACGACGCAGTGC & sense & 1 \\
\hline Apc & TGATGATGGTGATGATGATGA & antisense & 1 \\
\hline Apc2 & ATGCCGCTCAGAATGCACTGC & antisense & 1 \\
\hline apt & TGATGACGATGATGATGATGA & sense & 2 \\
\hline apt & TGATGATGATGACGATGATGA & sense & 1 \\
\hline arm & TGCAATAGAACTCGTACATTT & sense & 1 \\
\hline Asator & GAAAATTCTGATGATAACGGC & sense & 1 \\
\hline asrij & CTTGGAGCCGTCTAAGCCGGG & sense & 1 \\
\hline ATPsyn-beta & TGGCTACCGACATGGGTTCTA & sense & 1 \\
\hline aux & AGTAGAATGTCCTCGGGCGTT & antisense & 1 \\
\hline aux & CCGCAGACTCTGCCCTCGACA & sense & 1 \\
\hline aux & TCGACATCGTCTATCAGGACG & sense & 1 \\
\hline bel & CGAACGCACCCGACTGGTGGG & sense & 1 \\
\hline bel & TGCTGCTGCTGCTGCTGGCCC & antisense & 1 \\
\hline betaTry & TACTGGAGCTCTGGTGGCGTC & sense & 1 \\
\hline bigmax & CATTTAATGTTTGTACGCAGT & antisense & 1 \\
\hline bin3 & AATCCTGCTCGCCGGCCGTGT & antisense & 1 \\
\hline bin3 & TCCTTCACCGCGATATTCGCT & antisense & 1 \\
\hline bin3 & TGATGATGATGGTGATGATGA & antisense & 1 \\
\hline b/w & ACTCCGGATGCGCCATGGGAG & sense & 1 \\
\hline b/w & TAACGTCGGTCTGTCCGTGTC & sense & 1 \\
\hline Bruce & CAAACGTATCGAACTGGCGCT & antisense & 1 \\
\hline BRWD3 & ATCAGTCCTACATTCTATGTG & sense & 1 \\
\hline c11.1 & TCCAAGTGTGATCCCTTTGCC & sense & 1 \\
\hline cal1 & GTGTGTCGAAGTTGTGCTTTA & sense & 1 \\
\hline CalpB & CGACGATTTCCTGATGTGTGC & sense & 1 \\
\hline CalpB & CGATATTGCCAAGTGGCGGGC & sense & 1 \\
\hline CalpB & TTCAAGTACCGAGCATCGGTG & sense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ca-P60A & TTATGGTCTAGTACATTGCCA & sense & 1 & CG11963 & TGGCTCCCATCGCCGTCCAGC & sense & 1 \\
\hline Cap-H2 & TTTACCAGAGTGCAAGCTAGT & sense & 1 & CG11967 & TTTTTCGTATTTATAAGTGTG & sense & 1 \\
\hline Cas & ATCCTGCTGGTTGGGCTGGGC & antisense & 1 & CG11968 & TTTTTCGTATTTATAAGTGTG & antisense & 1 \\
\hline cathD & ATCGTGTGGGCTTCGCCGATG & sense & 1 & CG12016 & AGTCTTTATTTCGTATTAAGA & sense & 1 \\
\hline Cbl & CACAGCGACTTGTTCTGAGGG & antisense & 1 & CG12016 & ATTTCACAATCTGGTTACAAG & antisense & 1 \\
\hline Ccn & ATCATCATCATCATCATCATC & antisense & 55 & CG12016 & CACACCAAATGCCTCGTTGGG & antisense & 1 \\
\hline Ccn & TGATGATGATGATGATGATGG & sense & 49 & CG12016 & CGTATGTGTGTTTTGTTTCGC & antisense & 1 \\
\hline Ccn & ATGATGATGATGATGATGATG & sense & 28 & CG12016 & CTGGTTACAAGAGCATTCTCC & antisense & 1 \\
\hline Ccn & CATCATCATCATCATCATCAT & antisense & 6 & CG12016 & GTGAAATGAAGAAACTCGGTT & sense & 1 \\
\hline Ccn & TCATCATCATCATCATCATCT & antisense & 4 & CG12016 & TGCTCTTGTAACCAGATTGTG & sense & 1 \\
\hline Ccn & CCATCATCATCATCATCATCA & antisense & 2 & CG12016 & TTATTCGTATGTGTGTTTTGT & antisense & 1 \\
\hline Ccn & GATGATGATGATGATGATGAT & sense & 1 & CG12017 & TCCTCCTCCTCATCATCCTCC & antisense & 1 \\
\hline Ccn & GATGATGATGATGATGATGGG & sense & 1 & CG12024 & AGAAGGTGACCACGGCCAAGC & sense & 1 \\
\hline Ccn & TCATCATCATCATCATCTTCA & antisense & 1 & CG12091 & TGCCGCCGCCGGGACATGGGC & sense & 1 \\
\hline Ccn & TGATGATGATGATGATGGGGA & sense & 1 & CG12224 & TCAACTATGCTCGTTACACCC & sense & 1 \\
\hline Сср84Aa & CTCCACCTGTCCCTTGTTGTC & antisense & 1 & CG12340 & ATCCTGCACCACTGCCCACGT & sense & 1 \\
\hline Ccp84Ab & CTCCACCTGTCCCTTGTTGTC & antisense & 1 & CG12367 & TCATGAGAAACTTAACCAGCG & sense & 1 \\
\hline Cct5 & TATTTGAACAGGGATAGCCCC & antisense & 1 & CG12393 & AACAACTCCACGCTCAGCGAA & antisense & 1 \\
\hline Cdep & CTCTGGCAGTTAATCGAATGC & antisense & 1 & CG1244 & TCATCATCATCCTCATCATCC & antisense & 2 \\
\hline ced-6 & CGGAAATGGCGATGGTAGTGC & sense & 1 & CG1244 & TCATCATCATCATCCTCATCA & antisense & 1 \\
\hline ced-6 & CTCGTTCTTGCCGATTGTCCC & sense & 1 & CG12581 & GTTTATGAATAAAGTGTGTGC & sense & 1 \\
\hline Cf2 & TTGCCACGCTGGACGGCGGTC & sense & 1 & CG12581 & TTATGAATAAAGTGTGTGCGC & sense & 1 \\
\hline CG10011 & TATGTATGTATATGCTTCGTT & antisense & 1 & CG12773 & CAGGTTCACCTGTATGCGGGC & sense & 1 \\
\hline CG10055 & TCCTCATCCTCATCCTCATCC & antisense & 1 & CG13124 & GCTCCGGGGCACCGGCCGAGG & sense & 1 \\
\hline CG10077 & ACTTGCCCAAGATCGTTTGGT & sense & 1 & CG13130 & TCATCATCATCATCATCCTCA & antisense & 10 \\
\hline CG10147 & TCTCGAAACTCGTCGGCGCAC & antisense & 1 & CG13130 & ATCATCATCATCATCATCCTC & antisense & 5 \\
\hline CG1021 & CCAGGGTCTGCGCAACGTGGG & sense & 1 & CG13130 & GATGATGATGATGATGATGGG & sense & 1 \\
\hline CG10214 & TCATATTGCCAATAAAGCATT & antisense & 1 & CG13130 & TGAGGATGATGATGATGATGA & sense & 1 \\
\hline CG10237 & TGGGTCGTCGCATTTTGGTCC & sense & 1 & CG13130 & TGATGATGATGATGATGGGGA & sense & 1 \\
\hline CG10249 & AGATGAACCTTTTGATTTGAT & antisense & 1 & CG13253 & TGATGATGATGCTGCTGCTGA & antisense & 1 \\
\hline CG10274 & AATAGATGAATTGATTGTGGC & sense & 1 & CG1332 & GATGTGGCCGATCGACAATTC & sense & 1 \\
\hline CG10375 & TACAAGCACGCCATCTACGTT & sense & 1 & CG13445 & TCATCATCATCATCATCCTCC & antisense & 3 \\
\hline CG10433 & TGCGTCATGGTCGGAGGACTG & sense & 1 & CG1358 & TGATGATGATGATGATGATGA & antisense & 552 \\
\hline CG10444 & TACACTACAGTGAGCACCGCC & sense & 2 & CG1358 & TCATCATCATCATCATCATCA & sense & 197 \\
\hline CG10479 & TTTCACCTATCGTTCCCTTTG & antisense & 1 & CG1358 & ATCATCATCATCATCATCATC & sense & 55 \\
\hline CG10631 & TTCGTGTCGTCGTGGTTCAGC & antisense & 1 & CG1358 & ATGATGATGATGATGATGATG & antisense & 28 \\
\hline CG10641 & CTGGAACTGCTGACGCCGCTG & antisense & 1 & CG1358 & CATCATCATCATCATCATCAT & sense & 6 \\
\hline CG10646 & TTTAATATTTGTATAACCTGC & antisense & 2 & CG1358 & TCATCATCATCATCATCATCG & sense & 6 \\
\hline CG10673 & GAGAAGCCTGCCTGATCAAGG & sense & 1 & CG1358 & ATCATCATCATCATCATCGTC & sense & 1 \\
\hline CG10681 & TTTAATATTTGTATAACCTGC & sense & 2 & CG1358 & GATGATGATGATGATGATGAT & antisense & 1 \\
\hline CG10713 & CTGCTGCTGATGCTGCTGATG & antisense & 1 & CG13585 & CCTGCGACCAGACGCACTCGC & antisense & 1 \\
\hline CG10874 & TCGATGCCAAACGCCAGTGCC & sense & 1 & CG13670 & TCCTCCTCCTCATCATCCTCC & antisense & 1 \\
\hline CG10918 & GGTGGAGCTGGAGGAGCTGCT & antisense & 1 & CG13907 & TCAGGAGTCTACCTCAGCGCC & sense & 1 \\
\hline CG10971 & GTATTCCGTGTCGATCGCTTT & sense & 1 & CG14033 & CAAAAACATCGTCAATAATGG & antisense & 1 \\
\hline CG11006 & GATGATGATGATGATGATGGA & antisense & 2 & CG14235 & TATCGCCAGGCTCGTGAGATT & sense & 1 \\
\hline CG11050 & TGCTAACCTTTCTGCTCGACG & sense & 1 & CG14342 & TGATGATGATGATGATGTTGA & antisense & 7 \\
\hline CG11077 & TGGAACTGCTACCTCTCCATG & sense & 1 & CG14478 & TTGCTTCCTCTGCTCGCTTGG & antisense & 1 \\
\hline CG11122 & TCACCTGCTTCGGGATCGGGC & sense & 1 & CG14480 & TCAACTTTTTATTTGGATTCT & sense & 1 \\
\hline CG11122 & TCCTCCTCCTCCTCATCCTCC & antisense & 1 & CG14561 & CATCGATGGCAGTCTGAGCGA & antisense & 1 \\
\hline CG11146 & ATGATGATGATGATGATGGTG & antisense & 1 & CG14567 & CAGTGGCCCCCGTTTTCAACC & sense & 1 \\
\hline CG11146 & TGATGATGATGATGGTGATGG & antisense & 1 & CG14567 & GCCACTGATGTTGCGGGTCTT & antisense & 1 \\
\hline CG1115 & CACACATCTCTGCCTGCACTA & sense & 1 & CG14646 & CTGCATAGGAAACCTGTAGTG & sense & 1 \\
\hline CG1115 & TACTTTCACATATACATATAT & antisense & 1 & CG14799 & TGATGATGATGATGATGATGG & antisense & 49 \\
\hline CG1115 & TATATCATAGTTTAGTGCAGG & antisense & 1 & CG14799 & ATGATGATGATGATGATGATG & antisense & 28 \\
\hline CG11151 & ACAACAACAACCATGTCTCTG & sense & 2 & CG14799 & CATCATCATCATCATCATCAT & sense & 6 \\
\hline CG11180 & CTAACTAATTAAACTGAACTA & sense & 1 & CG14799 & CCATCATCATCATCATCATCA & sense & 2 \\
\hline CG11188 & TCATCATCCTCCTCCTCATCA & antisense & 1 & CG14799 & TCATCATCATCATCATCATTG & sense & 2 \\
\hline CG11198 & ATCCTGCACGACTTCTTCTAC & sense & 1 & CG14799 & ATGATGATGATGATGATGGTG & antisense & 1 \\
\hline CG11198 & CCACCACCTCCTTCCGAGGCC & antisense & 1 & CG1486 & CATGTGGCCTTCCAGACGTGC & sense & 1 \\
\hline CG11198 & CGTTCGATACGATCGTTGGGC & antisense & 1 & CG14880 & AGCACCACCATCGCGCCCGGC & sense & 1 \\
\hline CG11198 & GGGGTACCACACCTGACCTGC & antisense & 1 & CG14906 & TGGGTGAGATCCGACTGCGGG & antisense & 1 \\
\hline CG11198 & TCATGCACGCCTTGCGATATC & antisense & 1 & CG14907 & TGGGTGAGATCCGACTGCGGG & antisense & 1 \\
\hline CG11242 & AGTACGAACAGCGAACAGATT & sense & 1 & CG14956 & ATCCGCACCACATCTCACTGC & sense & 1 \\
\hline CG11284 & AAACTGAATTTATTAAACATC & sense & 1 & CG14967 & CTGACCAGGACTTAGCACTGC & sense & 1 \\
\hline CG11490 & CTCTGGCCGCAGGCTCTGCAC & antisense & 1 & CG14982 & CACCCACACCAGCATCACCCG & sense & 1 \\
\hline CG11498 & CTTTTATCAGATCCGATCGCC & antisense & 1 & CG15019 & TTAATATGCAATAATAACTCG & antisense & 1 \\
\hline CG11498 & TCTCGGCGGTCTCGAAGAGGT & antisense & 1 & CG15067 & AGATTGTTTAAACTTATGTGG & sense & 1 \\
\hline CG11501 & CGGAATGCTGCACCTCCCGGG & sense & 1 & CG15067 & GATAATTTCTTAGTGTTTCAA & antisense & 1 \\
\hline CG11526 & CACACCAAATGCCTCGTTGGG & sense & 1 & CG15099 & ACTGACTGGTGTACTTCATGT & antisense & 1 \\
\hline CG11526 & CGTATGTGTGTTTTGTTTCGC & sense & 1 & CG15099 & CATGAAGTACACCAGTCAGTC & sense & 1 \\
\hline CG11526 & TTATTCGTATGTGTGTTTTGT & sense & 1 & CG15105 & CCACCCAGTTCCGCCAGCAGG & sense & 1 \\
\hline CG11534 & GATGATGATGATGATGATGGA & sense & 2 & CG15118 & ACACTCTACCCCCACCCTCCT & sense & 1 \\
\hline CG11534 & ATCATCATCATCATCATCGTC & antisense & 1 & CG15134 & CGCAACATCCGGTGGCCCTAC & sense & 1 \\
\hline CG11710 & CTGTACGCCAGCGATGGTCGC & sense & 1 & CG1516 & TTGTCGTAGGGCTTTTCCCGC & sense & 1 \\
\hline CG11771 & TACGATGTGTTCGATGCTGAT & sense & 1 & CG15203 & CCCTGCTCTTCTCGATGCTCT & sense & 1 \\
\hline CG11848 & TCACAGTCACCTTCATAGCGT & sense & 1 & CG15209 & CCGTGGAGCGTACTACTAGCC & antisense & 2 \\
\hline CG11943 & CTGCTGCTGTGCATTGTGGAG & sense & 1 & CG15209 & ATGTCGACGAGCCATTGGGTC & sense & 1 \\
\hline CG11943 & TTACAATCGCGCGTACAAGGT & sense & 1 & CG15240 & TGCTGATGATGATGATGATGA & antisense & 2 \\
\hline CG11963 & GTAGGAAACGTGTTCCTGGAC & antisense & 1 & CG15240 & ATCATCATCATCATCATCAGC & sense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CG15240 & TGATGATGATGATGATGATTC & antisense & 1 & CG18854 & AGGGTGGCCAAGATATGTGGT & sense & 2 \\
\hline CG15322 & CTGCTGCTGATGCTGCTGATG & antisense & 1 & CG18854 & ATCATCCTTTGGCCCATAGTT & sense & 2 \\
\hline CG15370 & TGATGATGATGATGATGATGA & antisense & 552 & CG18854 & CTTGCTTGGCTCTCAGGAATC & sense & 2 \\
\hline CG15370 & TCATCATCATCATCATCATCA & sense & 197 & CG18854 & TATCATCATCATCCGAATCCT & sense & 2 \\
\hline CG15370 & ATCATCATCATCATCATCATC & sense & 55 & CG18854 & TTATTGGTGGTCAATATGTCG & sense & 2 \\
\hline CG15370 & ATGATGATGATGATGATGATG & antisense & 28 & CG18854 & TTCCATCTGATCTTGAACATT & sense & 2 \\
\hline CG15370 & CATCATCATCATCATCATCAT & sense & 6 & CG18854 & ATAAGATTCTTGAAGCCAGGA & sense & 1 \\
\hline CG15370 & CTGATGATGATGATGATGATG & antisense & 4 & CG18854 & ATCTGATCTTGAACATTTCGC & sense & 1 \\
\hline CG15370 & GATGATGATGATGATGATGAT & antisense & 1 & CG18854 & ATGATTCCCGGGATTCAAGCA & sense & 1 \\
\hline CG15370 & TGATGATGATGATGATGATTT & antisense & 1 & CG18854 & ATGCTAATGACTCCGATGTGG & sense & 1 \\
\hline CG15418 & CTGAAGTCGCTTTTAACGATG & sense & 1 & CG18854 & ATGCTGCTGAAATGGATTCGG & sense & 1 \\
\hline CG15465 & TGATGATGATGATGATGATGC & antisense & 35 & CG18854 & ATTGAATAAGATTCTTGAAGC & sense & 1 \\
\hline CG15465 & TCATCATCATCATCATCACCA & sense & 10 & CG18854 & CAAGATATGTGGTCGACCGAC & sense & 1 \\
\hline CG15465 & GTGATGATGATGATGATGATG & antisense & 4 & CG18854 & CCACATCGACTGGAATAGTGC & antisense & 1 \\
\hline CG15465 & ATGGTGATGATGATGATGATG & antisense & 1 & CG18854 & CGGCTGCCCATCTTGATGTCC & sense & 1 \\
\hline CG15465 & TGGTGATGATGATGATGATGA & antisense & 1 & CG18854 & CTAATGACTCCGATGTGGACC & sense & 1 \\
\hline CG15482 & TATCGGCGCACTGGCCTTAAT & sense & 1 & CG18854 & CTATCATCATCATCCGAATCC & sense & 1 \\
\hline CG15529 & CTTTTATCAGATCCGATCGCC & sense & 1 & CG18854 & GAAACTATGGATCAAATGATG & sense & 1 \\
\hline CG15609 & ACAAAATGGTCACCTCAACGC & sense & 1 & CG18854 & GATCTTGAACATTTCGCCCTC & sense & 1 \\
\hline CG15675 & TCAAACAATCCGCAAAGCAGA & antisense & 1 & CG18854 & GCCTTGACGATCTTAGTCAAT & sense & 1 \\
\hline CG15706 & TTCCCTGGCAACCAAATCCTT & sense & 1 & CG18854 & GGACCATCGAAGTGCTTGGGC & antisense & 1 \\
\hline CG15725 & TGATGATGATGATGATGCTGC & antisense & 9 & CG18854 & TAATCAAAAAATAACTCAGCA & sense & 1 \\
\hline CG15725 & TGATGATGATGATGCTGCTGA & antisense & 4 & CG18854 & TAGTGCATCGCAAGCCAGATT & sense & 1 \\
\hline CG15725 & ATGATGATGATGATGCTGCTG & antisense & 2 & CG18854 & TCATCATCCGAATCCTCTACA & sense & 1 \\
\hline CG15725 & CTGATGATGATGATGATGCTG & antisense & 1 & CG18854 & TCATCCGAATCCTCTACAACG & sense & 1 \\
\hline CG15725 & TGATGATGATGCTGCTGATGA & antisense & 1 & CG18854 & TCGATTAGTGCATCGCAAGCC & sense & 1 \\
\hline CG15725 & TGATGCTGCTGATGATGATGA & antisense & 1 & CG18854 & TCTACAACGATTTTTTCCCCA & sense & 1 \\
\hline CG15771 & TGATGATGATGATGATGATGC & antisense & 35 & CG18854 & TCTGATCTTGAACATTTCGCC & sense & 1 \\
\hline CG15771 & TGATGATGATGATGATGCTGC & antisense & 9 & CG18854 & TTAATCAAAAAATAACTCAGC & sense & 1 \\
\hline CG15771 & ATGATGATGATGATGATGCTG & antisense & 5 & CG18854 & TTAGTCAATTCGCGCAGCTCC & sense & 1 \\
\hline CG15771 & CTGATGATGATGATGATGATG & antisense & 4 & CG18854 & TTGAACATTTCGCCCTCCTTG & sense & 1 \\
\hline CG15771 & ATGATGATGATGATGCTGCTG & antisense & 2 & CG18854 & TTTCCATCTGATCTTGAACAT & sense & 1 \\
\hline CG15771 & TGATGATGATGATGCTGCTGC & antisense & 1 & CG18854 & TTTGGCCCATAGTTTTCCATC & sense & 1 \\
\hline CG1578 & TGATGATGATAATGATGATGA & sense & 1 & CG18870 & TTGGCTTAAGACCTACTGACC & antisense & 1 \\
\hline CG15828 & AGGTATCCAGTTTTACTGCTG & sense & 1 & CG1893 & CAAAATGCCTTGAAAGCTGGC & antisense & 1 \\
\hline CG15828 & CATCAGATTTCCATCGTAGTG & antisense & 1 & CG1998 & ATCATCATCATCCTCCTCCTC & sense & 2 \\
\hline CG15930 & TGATGATGATGATGATGATGA & sense & 552 & CG1998 & TCATCATCATCATCCTCCTCC & sense & 2 \\
\hline CG15930 & TCATCATCATCATCATCATCA & antisense & 197 & CG1998 & TCATCATCATCCTCCTCCTCC & sense & 2 \\
\hline CG15930 & ATCATCATCATCATCATCATC & antisense & 55 & CG1998 & TCCTCATCATCATCATCCTCC & sense & 2 \\
\hline CG15930 & ATGATGATGATGATGATGATG & sense & 28 & CG2061 & TGGAGCCCGTATCCGATCTCT & sense & 1 \\
\hline CG15930 & ATCATCATCATCATCATCATA & antisense & 7 & CG2083 & TCCACCAGCCCTGGGAACCGC & sense & 1 \\
\hline CG15930 & TCATCATCATCATCATCATAA & antisense & 7 & CG2093 & CAGAAATACCCTGTCGGTGTT & sense & 1 \\
\hline CG15930 & CATCATCATCATCATCATCAT & antisense & 6 & CG2124 & AGCACAGCGTCTTGCTCCCGG & sense & 1 \\
\hline CG15930 & TTATGATGATGATGATGATGA & sense & 2 & CG2165 & GTGGCCGTACCTGAGGGGCTT & sense & 1 \\
\hline CG15930 & GATGATGATGATGATGATGAT & sense & 1 & CG2182 & TGGGAACGCTCTAGAATCGGC & antisense & 1 \\
\hline CG15930 & TGATGATGATGATGATGATTT & sense & 1 & CG2186 & TGATGATGATGATGATGCTGC & antisense & 9 \\
\hline CG1599 & ATATAAAACTCTACAGTACTC & sense & 1 & CG2186 & CTGATGATGATGATGATGCTG & antisense & 1 \\
\hline CG1628 & AGCACAGCGTCTTGCTCCCGG & antisense & 1 & CG2186 & TGATGCTGCTGATGATGATGA & antisense & 1 \\
\hline CG1637 & CAATCGGGCCAGGGATTGGGC & antisense & 1 & CG2186 & TGCTGATGATGATGATGATGC & antisense & 1 \\
\hline CG1638 & ACGGAGCCGAAGTCCAGGGAG & sense & 1 & CG2211 & TCTTTGCTCGGTCGTAGTATC & antisense & 1 \\
\hline CG1662 & GGCTCCTCCAGTCGCGCTGCT & antisense & 1 & CG2233 & AAATTACCAGACCATTGACCT & sense & 1 \\
\hline CG1665 & ATATAAAACTCTACAGTACTC & antisense & 1 & CG2233 & CATCGGTTCTCCGGCTCCGGT & sense & 1 \\
\hline CG16972 & CTACTTCAGTCGATAGTAGCA & antisense & 1 & CG2519 & TGGAGTGACTATGCTAGTGGC & antisense & 1 \\
\hline CG17065 & CACGCACTCGTCCATCGGGGC & antisense & 1 & Cg25C & TTCGAGACCCGGCCCTATGGG & sense & 1 \\
\hline CG17108 & CAGGGCCGTCACCGATTCCTC & antisense & 1 & CG2604 & GCCAGTGGCTGGCTTAAGAGC & sense & 1 \\
\hline CG17264 & TTTCAATAAATGTCTATGTGA & sense & 1 & CG2807 & TACTGGAGTTGCTCAAGGCCC & sense & 1 \\
\hline CG17528 & CTCTTCACTTCAAGCATCCCC & sense & 1 & CG2989 & TCATCATCATCATCATCTTCA & antisense & 1 \\
\hline CG1753 & TCCGCGGGCCTCTCGTATGGC & antisense & 1 & CG30035 & CTGTAAGTGTATCTATATGTA & sense & 1 \\
\hline CG17838 & TGATGATGATGACGATGATGA & antisense & 1 & CG3011 & ATCTGGCTGTCTACACGGGCG & sense & 1 \\
\hline CG18107 & ACATTTTTATTATGATGCTAA & antisense & 1 & CG3011 & ATCTTCTTCGAGAGCATGCCG & sense & 1 \\
\hline CG18107 & CAATCGTCACTGTCTTTGTGC & sense & 1 & CG31116 & TCGCACCGACTTCGGCTTTTG & antisense & 1 \\
\hline CG18107 & CTTTGTGCTTGGTCTTCTGGC & sense & 1 & CG31121 & TGATGATGATGATGATGATGA & sense & 552 \\
\hline CG18107 & GTGCTTGGTCTTCTGGCTTTG & sense & 1 & CG31121 & TCATCATCATCATCATCATCA & antisense & 197 \\
\hline CG1812 & TGCAATAAATTAGGCAGTGTC & antisense & 1 & CG31121 & ATCATCATCATCATCATCATC & antisense & 55 \\
\hline CG18135 & TCCACCTGCCGATTAAGTCGG & sense & 1 & CG31121 & ATGATGATGATGATGATGATG & sense & 28 \\
\hline CG18208 & CTTGTGTGTGCTACGCGTTCT & antisense & 1 & CG31121 & CATCATCATCATCATCATCAT & antisense & 6 \\
\hline CG18262 & TССТССТTСТССТССТССТСС & antisense & 1 & CG31121 & TCATCATCATCATCATCATCG & antisense & 6 \\
\hline CG18787 & CACTAGCGTATAATGTATATA & sense & 1 & CG31121 & ATCATCATCATCATCATCGTC & antisense & 1 \\
\hline CG18809 & TATCGCCAGGCTCGTGAGATT & sense & 1 & CG31121 & ATGACGATGATGATGATGATG & sense & 1 \\
\hline CG1882 & ATAGTTGGTGAGCTGGATGTC & antisense & 1 & CG31121 & GATGATGATGATGATGATGAT & sense & 1 \\
\hline CG1882 & CGACCGAATCCGAGGATGTCC & antisense & 1 & CG31150 & AGTTGTAGTTGCATAAATATA & sense & 1 \\
\hline CG18854 & CGGGAAACTATGGATCAAATG & sense & 37 & CG31163 & TCATCATCATCATCATCAACA & sense & 1 \\
\hline CG18854 & ATCACTATCATCATCATCCGA & sense & 29 & CG31284 & TCTTCTGCTTCAGCTTCGTGC & sense & 2 \\
\hline CG18854 & GGTCGACCACGTACCTTGGCC & sense & 10 & CG31461 & TCATCATCATCATCATCATCG & antisense & 6 \\
\hline CG18854 & TGGCAAAAAATCCTTGTAGTG & sense & 10 & CG31461 & ATCATCATCATCATCATCGTC & antisense & 1 \\
\hline CG18854 & CATCGCAAGCCAGATTCTTGC & sense & 8 & CG31461 & ATGACGATGATGATGATGATG & sense & 1 \\
\hline CG18854 & AATCATCCTTTGGCCCATAGT & sense & 3 & CG31461 & ATGATGATGATGATGATGACG & sense & 1 \\
\hline CG18854 & GATGATTCCCGGGATTCAAGC & sense & 3 & CG31461 & TCGTCATCATCATCATCATCA & antisense & 1 \\
\hline CG18854 & ACTATCATCATCATCCGAATC & sense & 2 & CG31549 & TGGAGTGGCCAGCATGGTTAG & antisense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CG31771 & ATCATCATCATCATCATCATC & antisense & 55 & CG3523 & TGTACTTCCACGGGCTTTGTG & antisense & 1 \\
\hline CG31771 & TGATGATGATGATGATGATGG & sense & 49 & CG3529 & CCATCAATGTGTAGACGTGGC & antisense & 1 \\
\hline CG31771 & TCATCATCATCATCATCATCC & antisense & 32 & CG3585 & CGAAAATGGGAACACCTGTCC & sense & 1 \\
\hline CG31771 & ATGATGATGATGATGATGATG & sense & 28 & CG3585 & CGCAAGATTCGGCTGCAACTG & sense & 1 \\
\hline CG31771 & CATCATCATCATCATCATCAT & antisense & 6 & CG3585 & GAGCGCAGGTACTTCTTGTGC & antisense & 1 \\
\hline CG31771 & CCATCATCATCATCATCATCA & antisense & 2 & CG3597 & ACGCTACGACTCCAGATGTGC & antisense & 1 \\
\hline CG31771 & GATGATGATGATGATGATGGA & sense & 2 & CG3597 & CGGGTGTGCAACCGATCTCTG & sense & 1 \\
\hline CG31771 & GATGATGATGATGATGATGAT & sense & 1 & CG3829 & CTAGCGTGGATTCGGTCCAGC & sense & 1 \\
\hline CG31790 & TGATGATGATGATGATGATGA & antisense & 552 & CG4000 & AGGACCCGCTGGACTCGGCGC & antisense & 1 \\
\hline CG31790 & TCATCATCATCATCATCATCA & sense & 197 & CG4000 & CAGGAGGTGCCGGACAAGCGG & sense & 1 \\
\hline CG31790 & TCATCATCATCATCATCACAG & sense & 6 & CG4000 & GGTGGAGCTGGAGGAGCTGCT & sense & 1 \\
\hline CG31790 & TGTGATGATGATGATGATGAT & antisense & 5 & CG40084 & ATACTACCTTCGACATCTTTT & antisense & 1 \\
\hline CG31790 & ATCATCATCATCATCATCACA & sense & 4 & CG40084 & TCAGACAGCTTATTTCGTAGG & antisense & 1 \\
\hline CG31790 & GTGATGATGATGATGATGATG & antisense & 4 & CG40084 & TCCTACTGCCTCGCCTCTTTC & antisense & 1 \\
\hline CG31790 & CTGTGATGATGATGATGATGA & antisense & 2 & CG40182 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline CG31865 & CACTAGCGTATAATGTATATA & antisense & 1 & CG40271 & TCCTACTGCCTCGCCTCTTTC & antisense & 1 \\
\hline CG31866 & CACTAGCGTATAATGTATATA & antisense & 1 & CG40339 & TACAAGTCTGCTTGATGTTGC & antisense & 1 \\
\hline CG32017 & ACAAAACATGTACGTGCTTGT & sense & 1 & CG40351 & TGTTCATAAAATCCAAAGTGG & sense & 1 \\
\hline CG32048 & ATTCCTTTGCCGGGAGTTCGT & sense & 1 & CG40351 & TTAAAACTATAATTAATTATT & sense & 1 \\
\hline CG32075 & TAAAAACTAGTACTAGATCCA & sense & 1 & CG40351 & TTTACAGATCAAATGGGTTTT & antisense & 1 \\
\hline CG32164 & TAGTGCAAAATAGGAGTTCTG & antisense & 1 & CG40451 & TTATCGAAGGTGTTGGAATAC & sense & 1 \\
\hline CG32165 & TAGTGCAAAATAGGAGTTCTG & antisense & 1 & CG4068 & TTGACTCCAACAAGTTCGCTC & sense & 27 \\
\hline CG32170 & TACGAATTGTTCGGACTGATG & antisense & 1 & CG4068 & TGGTAGCCTGTAGTTTGACTC & sense & 9 \\
\hline CG32306 & AAGACAGACTCGCCGTCCAAG & sense & 1 & CG4068 & CGGTAGCCTGTAGTTTGACTC & sense & 8 \\
\hline CG32442 & GACATCACCTCTGCTCCCTGG & sense & 1 & CG4068 & GTCCAACTACAGGATACTGGG & sense & 3 \\
\hline CG32521 & GTGACGGCAAGGATTGCGGCA & sense & 1 & CG4068 & TTTGACTCCAACAAGTTCGCT & sense & 3 \\
\hline CG32667 & CATCGCCTCCTTGAAGCCCTG & sense & 1 & CG4068 & AAATCTTAACCGCCGGAAGTC & sense & 2 \\
\hline CG32667 & CGCCGGAAGGTCGCTGCCTGC & sense & 1 & CG4068 & CTTCCGCTGGCTTTGATTTTC & sense & 2 \\
\hline CG32676 & TGATGGTGATGATGATGATGT & antisense & 1 & CG4068 & TAACCGCCGGAAGTCACTTCC & sense & 2 \\
\hline CG32685 & ATATTCACCATTTCCCTGGAC & sense & 1 & CG4068 & TCCAACTACAGGATACTGGGG & sense & 2 \\
\hline CG32694 & TGATGATGATGATGATGATGA & sense & 552 & CG4068 & TGGCGCTTCACAGGCGCTGGA & sense & 2 \\
\hline CG32694 & TCATCATCATCATCATCATCA & antisense & 197 & CG4068 & AATCTTAACCGCCGGAAGTCA & sense & 1 \\
\hline CG32694 & ATGATGATGATGATGATGATG & sense & 28 & CG4068 & AGGGACTTGTTTGAGTCCAAC & sense & 1 \\
\hline CG32694 & CATCATCATCATCATCATCAT & antisense & 6 & CG4068 & AGTCCAACTACAGGATACTGG & sense & 1 \\
\hline CG32694 & TAATGATGATGATGATGATGA & sense & 2 & CG4068 & CTGGAAAATCTTAACCGCCGG & sense & 1 \\
\hline CG32694 & TCATCATCATCATCATCATTA & antisense & 1 & CG4068 & TGACTCCAACAAGTTCGCTCC & sense & 1 \\
\hline CG32694 & TCATCATCATCATCATTATCT & antisense & 1 & CG40793 & CTAAGAGACGCCTCTGTTGCT & sense & 1 \\
\hline CG32694 & TGATGATGATGATGATGAAGA & sense & 1 & CG40798 & TTTCTGTTAGCGGTTAACTGC & antisense & 1 \\
\hline CG3270 & TTCGCACTCCGGCTCCTCGTC & antisense & 1 & CG41053 & TCCTACTGCCTCGCCTCTTTC & antisense & 1 \\
\hline CG32758 & ACTGGCCCACGGCTGCACCGA & sense & 1 & CG41126 & ATACTACCTTCGACATCTTTT & antisense & 1 \\
\hline CG3279 & CTTTCTTCCACAGAATATCTC & antisense & 1 & CG41126 & TCAGACAGCTTATTTCGTAGG & antisense & 1 \\
\hline CG3308 & AGTGTGTGTCTGTGTGCGGAC & antisense & 1 & CG41332 & TCCTACTGCCTCGCCTCTTTC & antisense & 1 \\
\hline CG3308 & ATAGTGTGTGTCTGTGTGCGG & antisense & 1 & CG41484 & TCGCCGCACCGTTACCGTTAC & antisense & 1 \\
\hline CG3308 & TCCACAAATACGACCCCCATT & sense & 1 & CG41484 & TGAGTGGAACTAGTGGGCAAC & sense & 1 \\
\hline CG33080 & ATACATAAGATGCCTTATCGC & sense & 2 & CG41557 & TCAGACAGCTTATTTCGTAGG & antisense & 1 \\
\hline CG33080 & TACTTAACTAACTATACGCAC & antisense & 1 & CG41560 & ATACTACCTTCGACATCTTTT & antisense & 1 \\
\hline CG33080 & TGTTTTTGTGCGTGCGTATAG & sense & 1 & CG41560 & TCAGACAGCTTATTTCGTAGG & antisense & 1 \\
\hline CG33097 & AGTACATCGTGGAGGTGCGGC & sense & 1 & CG41573 & CTGTTCCCGTTGATTCCCGTT & antisense & 1 \\
\hline CG33138 & CGCTGTGGGACAGTCGTCTCT & sense & 1 & CG41573 & GCTGGTTGACTGTTCCCGTTG & antisense & 1 \\
\hline CG33144 & ATAATTGTATATGTGTTAACT & sense & 1 & CG41574 & TCCTACTGCCTCGCCTCTTTC & antisense & 1 \\
\hline CG3332 & TGATGATGATGATGCTGATGC & antisense & 4 & CG41579 & TCAGACAGCTTATTTCGTAGG & antisense & 1 \\
\hline CG3332 & ATGATGATGATGATGCTGATG & antisense & 2 & CG41584 & ATACTACCTTCGACATCTTTT & antisense & 1 \\
\hline CG3337 & ACGGTGTTTACTCCGTCCTCT & antisense & 2 & CG41587 & TTTCTGTTAGCGGTTAACTGC & antisense & 1 \\
\hline CG33470 & CAGGGTGAGAACTTTGTGGCC & sense & 1 & CG41592 & TCCTACTGCCTCGCCTCTTTC & antisense & 1 \\
\hline CG33472 & CTGCTTTTCTATTGATTTGGC & antisense & 1 & CG4169 & AACTCCACGGTCTTGCCAATG & antisense & 1 \\
\hline CG33523 & TGGTGATGGCTATGGTCGCGC & sense & 1 & CG4186 & TCCTTTCGGTTTTTACTTTGT & antisense & 1 \\
\hline CG3368 & CATTTAATGTTTGTACGCAGT & sense & 1 & CG4278 & ATAGCCAGTCGTTGACGCCAC & antisense & 1 \\
\hline CG33969 & AGAGAGAAGGCTATTACCGTC & sense & 1 & CG4500 & TGGCCATCTGCTGGGCGTCGT & antisense & 1 \\
\hline CG33969 & CAATGGCAATGACTTTGGTCC & antisense & 1 & CG4607 & GCACCATCGGCTCCACCGACC & sense & 1 \\
\hline CG33981 & TGATCTGGCGTTGGGCTCGCT & sense & 1 & CG4629 & TGCTTCTGCAACCGATTGACC & antisense & 1 \\
\hline CG34136 & TAAAGTTTACGGAAATAAAGG & sense & 1 & CG4655 & TGATGATGATGATGATGATGC & antisense & 35 \\
\hline CG34179 & AACAACTCCACGCTCAGCGAA & sense & 1 & CG4655 & TGATGATGATGATGATGCTGA & antisense & 24 \\
\hline CG34260 & TGATGATGATGCTGCTGCTGA & sense & 1 & CG4655 & ATGATGATGATGATGATGCTG & antisense & 5 \\
\hline CG34268 & CACCGGAACATGCTGCACCAC & antisense & 1 & CG4655 & TCATCATCATCATCATCAACA & sense & 1 \\
\hline CG34335 & GGCGGTCGAGTGCCTCACAGT & sense & 1 & CG4658 & TCAACCTGATGCACTCCAACT & sense & 1 \\
\hline CG34360 & CTGCTGATGATGCTGCTGTTG & antisense & 1 & CG4662 & ATTTAATCGTGCAATTTGTGT & antisense & 1 \\
\hline CG34360 & GTGCAATTGCTGGCAGCAAGA & antisense & 1 & CG4662 & CGAAGAAGTGCAGCTGCAGTG & antisense & 1 \\
\hline CG34398 & ATCATCATCATCATCATCATC & sense & 55 & CG4673 & GCTATGCGGTTTCGGCTCAGT & sense & 1 \\
\hline CG34398 & TGATGATGATGATGATGATGG & antisense & 49 & CG4688 & CCACGGTGATCTGGTGCTGAC & sense & 1 \\
\hline CG34398 & ATGATGATGATGATGATGATG & antisense & 28 & CG4699 & GTCGACGAAGATCTTTCGGAT & sense & 1 \\
\hline CG34398 & CATCATCATCATCATCATCAT & sense & 6 & CG4756 & CTTTTAACGCTGGCCAACTGC & sense & 1 \\
\hline CG34398 & TCATCATCATCATCATCATCT & sense & 4 & CG4756 & GTAGCGATAATTGGTATTGGC & antisense & 1 \\
\hline CG34398 & CCATCATCATCATCATCATCA & sense & 2 & CG4769 & TCACCGGCGGAGTGGGCGCCC & sense & 1 \\
\hline CG34398 & GATGATGATGATGATGATGAT & antisense & 1 & CG4825 & TCGAGTGCTGGTGGGATGCCC & sense & 1 \\
\hline CG34398 & GATGATGATGATGATGATGGC & antisense & 1 & CG4825 & TCGGGCGACGCGCTACTGGAC & sense & 1 \\
\hline CG34417 & CACCACTACCCAAGATCAGGC & sense & 1 & CG4927 & CACAAGATCGATGTGCGCACC & sense & 1 \\
\hline CG34422 & ATCCGCCTTCGCTGCCCGTGG & sense & 1 & CG5044 & TAAAGAATATTGCAAAACGGC & antisense & 1 \\
\hline CG3448 & CCATCAATGTGTAGACGTGGC & sense & 1 & CG5270 & TGCAAATGGATGCCAGGGCTC & sense & 1 \\
\hline CG3523 & CACATCCAAGGCGTGCAGGCG & antisense & 1 & CG5273 & TTGTCTCCACTCGTCTAAGGG & sense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CG5315 & TAGCATGTCCTTCGGCGTCCA & antisense & 1 & CG8545 & TCATCATCATCATCATCATCA & antisense & 197 \\
\hline CG5455 & CTGGTGTCAATGATATTTTGG & sense & 1 & CG8545 & ATCATCATCATCATCATCATC & antisense & 55 \\
\hline CG5508 & TATATGCGGCCTCTGTGCGGC & sense & 1 & CG8545 & ATGATGATGATGATGATGATG & sense & 28 \\
\hline CG5621 & CTGTTTTGGGATCGATTCCAC & antisense & 1 & CG8545 & CATCATCATCATCATCATCAT & antisense & 6 \\
\hline CG5644 & GAATCCTCTTCCTTCGCCTTC & sense & 1 & CG8545 & TCATCATCATCATCATCATCG & antisense & 6 \\
\hline CG5691 & TCGCGGGACATGGCCACTCCC & sense & 1 & CG8545 & ATCATCATCATCATCATCGTC & antisense & 1 \\
\hline CG5728 & ATCAGTCCTACATTCTATGTG & antisense & 1 & CG8545 & GATGATGATGATGATGATGAT & sense & 1 \\
\hline CG5734 & CACCGAGCAGTTGACCAGGAT & antisense & 1 & CG8549 & TCAAATCGCTTGCCACCTTTT & antisense & 1 \\
\hline CG5734 & TGCCTGCAGTTCGATGAGGCG & sense & 1 & CG8745 & TAATCCCCGATATTGTGTGTG & sense & 1 \\
\hline CG5794 & GTGGGACGCCGCCGAGTACTG & sense & 1 & CG8798 & ATAAAACCTATCAACACCCGC & antisense & 1 \\
\hline CG5815 & CGGATTAGCCCACGTCGAGAT & antisense & 1 & CG8862 & TATTTGAACAGGGATAGCCCC & sense & 1 \\
\hline CG5871 & GCGGAACAGGTCCTTGCGCTG & antisense & 1 & CG9005 & ACAACGAATCCCTATGGTTCC & sense & 2 \\
\hline CG5885 & CTTGTCTTTCTTGTAGAAAGC & sense & 1 & CG9062 & CCAACTTGTAAAGAGCTCTAT & sense & 1 \\
\hline CG5919 & AGTGTGTGTCTGTGTGCGGAC & sense & 1 & CG9062 & TACAGATTCTCCTTGAATGTG & antisense & 1 \\
\hline CG5919 & ATAGTGTGTGTCTGTGTGCGG & sense & 1 & CG9062 & TTGAATGTGTTTGTGTTTGTC & antisense & 1 \\
\hline CG5938 & CGTCTATGCCCCAAAGTGCTG & antisense & 1 & CG9132 & CTCTCCCTCACTCTCTCTCTC & sense & 1 \\
\hline CG5991 & TCAGCCAGACTATTGTAGTGC & antisense & 1 & CG9170 & TCATCATCATCCTCATCATCA & antisense & 3 \\
\hline CG6028 & ATCTATTGAAAACTACAAAAT & antisense & 1 & CG9170 & TCCTCATCATCATCCTCATCA & antisense & 1 \\
\hline CG6055 & ATCGGGCCTGTCGCAGCCAGC & antisense & 1 & CG9216 & AATCTAAGCGTATATATTAAT & sense & 1 \\
\hline CG6129 & CTACCTCCGCCTTCATGGCCG & antisense & 1 & CG9281 & TTTATTTTACCTTTGTCAAGC & antisense & 1 \\
\hline CG6201 & TGCAGGACTCTTTAAGGACTC & sense & 1 & CG9311 & CCACTCCTGCGCCTCCTTCGA & sense & 1 \\
\hline CG6218 & AAATACTCTATTCTAAGCTCC & antisense & 1 & CG9318 & ATTCAGTTCGGCAACAGTGGA & sense & 1 \\
\hline CG6218 & CTGTCGTGGCTTCTTTTCATG & sense & 1 & CG9339 & ATACATATATATTTATATAAT & antisense & 1 \\
\hline CG6299 & CACGGGTGTGAATAGTTTGCC & antisense & 1 & CG9393 & TCGGAGTCTAGGAACTTGCGC & antisense & 1 \\
\hline CG6321 & TAAATATGACTTAAAAGGATG & sense & 1 & CG9425 & CACACTGCTGCAGTTCGAGAG & antisense & 1 \\
\hline CG6404 & AAGTTTTGGTAGATGTAATCG & sense & 1 & CG9485 & CGTCCAGCAGGAAGGGGGGGGC & antisense & 1 \\
\hline CG6459 & AGTTTTTATTAGTTGTGTTTT & sense & 1 & CG9485 & GCACATGGTGGACCAGGGCTT & sense & 1 \\
\hline CG6459 & ATTGGCAACCGTTTCTATAGT & antisense & 1 & CG9512 & CCACCTCGATTGAGGGACCCA & sense & 1 \\
\hline CG6459 & TTTCTATTGTCTGCTGTCGCA & sense & 1 & CG9526 & TGGCCACATGTAGTTGGTTGC & antisense & 2 \\
\hline CG6498 & TACTCGGGTGTGCCGTACACC & antisense & 1 & CG9619 & TAACGTAACGTATCAACACAA & sense & 1 \\
\hline CG6503 & CTGTTCACGGCTCCTGTCCAC & sense & 1 & CG9629 & GCGTCGATGTTGTACCGGAGT & sense & 1 \\
\hline CG6503 & GTTTTGCTGCTGTCCGTAATG & sense & 1 & CG9666 & GCGTCGATGTTGTACCGGAGT & antisense & 1 \\
\hline CG6503 & TATATCCCGCAGGACATCCGC & antisense & 1 & CG9674 & TGATGATGATGATGATGATGA & sense & 552 \\
\hline CG6503 & TTTGCTGCTGTCCGTAATGGC & sense & 1 & CG9674 & TCATCATCATCATCATCATCA & antisense & 197 \\
\hline CG6654 & CGCATTTGAGTTGGGTCGTTC & antisense & 1 & CG9674 & ATCATCATCATCATCATCATC & antisense & 55 \\
\hline CG6749 & CTCAGTCCTGCTCACTTTGTG & sense & 1 & CG9674 & TGATGATGATGATGATGATGC & sense & 35 \\
\hline CG6762 & CACGGCGTTGAAACTTGTTTG & antisense & 1 & CG9674 & ATGATGATGATGATGATGATG & sense & 28 \\
\hline CG6770 & TTAGCGCCGCATGAAAAGCCA & antisense & 1 & CG9674 & ATCATCATCATCATCATCATA & antisense & 7 \\
\hline CG6808 & AGCATGTGCCGCACTTGCCGC & sense & 1 & CG9674 & CATCATCATCATCATCATCAT & antisense & 6 \\
\hline CG6879 & CCGTTGAATGTTGATGGCAGC & antisense & 1 & CG9674 & GATGATGATGATGATGATGAT & sense & 1 \\
\hline CG7156 & TTACAAATTTTATTACTTACT & antisense & 1 & CG9674 & TAATTGGATCTGCACTGCGTT & antisense & 1 \\
\hline CG7326 & TTAAACTATTACTCTACTCTC & antisense & 1 & CG9779 & AAGAAGTGTTGAACTCTGCGC & sense & 1 \\
\hline CG7376 & AATAGATGAATTGATTGTGGC & antisense & 1 & CG9779 & TAAAAATCGATATTTACTGTG & sense & 1 \\
\hline CG7414 & TCCATACGAATTCGGTGGCTG & antisense & 1 & CG9780 & ATCTCCATTCAGCGTAGTGTG & antisense & 1 \\
\hline CG7518 & AGCCACCATATGCCCGTTGAC & antisense & 1 & CG9780 & ATTGGACGCGGCATACCACTC & sense & 1 \\
\hline CG7739 & TGGAAAGCTTATAATGGAGTT & antisense & 2 & CG9780 & ATTTTTAACACCACCGGTGGC & antisense & 1 \\
\hline CG7739 & AATCAATAGAGATGCTCCTTT & sense & 1 & CG9780 & CAGCGCACGCGACGTTTGGCC & sense & 1 \\
\hline CG7739 & TAAAATCATAGCTCATCATGG & sense & 1 & CG9780 & CAGTAAATGCGTTCCTAGGGC & sense & 1 \\
\hline CG7739 & TCTATTAACTCCATTATAAGC & sense & 1 & CG9780 & CATCTTCCAACAGTGCGTAGG & sense & 1 \\
\hline CG7739 & TTAAAAGCCGCCTTGAGATGG & antisense & 1 & CG9780 & CATGAAACTGTGCAAATTGTG & antisense & 1 \\
\hline CG7739 & TTGGAAAGCTTATAATGGAGT & antisense & 1 & CG9780 & CGGCGTGCTCAGATTGTGCTG & antisense & 1 \\
\hline CG7766 & CTAGCGGCCGCGAGGGTGTTCC & sense & 1 & CG9780 & TACTGGAGCGAACATTTGGGC & antisense & 1 \\
\hline CG7781 & AATCTCCTCTTAAATGCAATA & sense & 1 & CG9865 & TCAAACAATCCGCAAAGCAGA & sense & 1 \\
\hline CG7839 & TCATCATCATCATCATCATCG & antisense & 6 & CG9894 & TGTGATGATGATGATGATGAT & sense & 5 \\
\hline CG7839 & ATCATCATCATCATCATCGTC & antisense & 1 & CG9894 & ATCATCATCATCATCATCACA & antisense & 4 \\
\hline CG7839 & ATGATGATGATGATGATGACG & sense & 1 & CG9894 & TGATGATGATGATGATAATGA & sense & 2 \\
\hline CG7839 & TCGTCATCATCATCATCATCA & antisense & 1 & CG9894 & GTGATGATGATGATGATGATA & sense & 1 \\
\hline CG7839 & TGATGATGATGATGACGATGA & sense & 1 & CG9906 & TCCTCCTTCTCCTCCTCCTC & antisense & 1 \\
\hline CG7884 & TGCTGCTGCTGCTGCTGGCCC & antisense & 1 & CG9914 & CTCTCCAGCTCCACCAGCACT & sense & 1 \\
\hline CG7888 & TAAATATGACTTAAAAGGATG & antisense & 1 & CG9915 & CACAGAGAGCTCTGACGATGA & sense & 1 \\
\hline CG7920 & CAGGGTGGCGCCGTCCTTGAC & antisense & 1 & CG9934 & ATCATCATCCTCCTCCTCCTC & antisense & 2 \\
\hline CG7998 & AGGTGACCGTTTGCGGTGCCG & sense & 1 & CG9934 & TCATCATCCTCCTCCTCCTCC & antisense & 2 \\
\hline CG8008 & CTTCATTCATCATTTTAATTT & sense & 1 & CG9935 & ATATCCTTCAAGATTTGCTTT & antisense & 1 \\
\hline CG8008 & TCGTAGTAGTGTAAAAGGGTA & sense & 1 & CG9935 & TACCCCAACATCCGCAGTGTC & antisense & 1 \\
\hline CG8058 & GTTGTATTTTTATTAGTTATA & antisense & 1 & CG9935 & TTCGGTGTACGTTTTCGCGAT & sense & 1 \\
\hline CG8112 & TAAACTGTCTGTACACAGGGC & sense & 1 & CG9941 & TGATGATGATGATGATGATGA & sense & 552 \\
\hline CG8112 & TCGATTTGTATTTTAGGTAAA & sense & 1 & CG9941 & TCATCATCATCATCATCATCA & antisense & 197 \\
\hline CG8199 & AGTGGGTCACTTTGTATGTGC & antisense & 1 & CG9941 & ATCATCATCATCATCATCATC & antisense & 55 \\
\hline CG8199 & CAAAGTGACCCACTCTGGTGC & sense & 1 & CG9941 & ATGATGATGATGATGATGATG & sense & 28 \\
\hline CG8289 & TACAGAAATGATGCCTTACAT & antisense & 1 & CG9941 & CATCATCATCATCATCATCAT & antisense & 6 \\
\hline CG8311 & CGTAGGAGACACTGCAGCCAG & sense & 1 & CG9941 & ATGATGATGATGATGATGATA & sense & 4 \\
\hline CG8312 & TTATCTGAACGGTGTGTGTGC & sense & 1 & CG9941 & TAATGATGATGATGATGATGA & sense & 2 \\
\hline CG8451 & AATTTATCACAGACATTATGC & antisense & 1 & CG9941 & TGATGATGATGATGATAATGA & sense & 2 \\
\hline CG8451 & CAAACTACCAACAAATTCTGC & antisense & 1 & CG9941 & GATGATGATGATGATGATGAT & sense & 1 \\
\hline CG8455 & AATTTATCACAGACATTATGC & sense & 1 & CG9941 & TCATCATCATCATCATCATTA & antisense & 1 \\
\hline CG8500 & ATTATAATTCGTATGCAACTA & antisense & 1 & CG9945 & CTAACTAATTAAACTGAACTA & antisense & 1 \\
\hline CG8500 & TGGTCCGCCGTCCAGCAGTGC & sense & 1 & CG9945 & TGGCATCGCCGCACAGCGCAT & sense & 1 \\
\hline CG8500 & TTTGGCTGCTGGTCCGCCGTC & sense & 1 & CG9986 & TATGTATGTATATGCTTCGTT & sense & 1 \\
\hline CG8545 & TGATGATGATGATGATGATGA & sense & 552 & Chc & CACAGCTGCTTCTTGCCCTGC & antisense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Chc & TTATATTTGAATAAAGAGTGC & antisense & 1 & Fs & TGATGCTGATGCTGATGCTGC & antisense & 1 \\
\hline cher & AGGGAGCCAGCGCCGGTGGCC & sense & 1 & Fs & TGCTGATGCTGATGCTGCTGC & antisense & 1 \\
\hline cher & GTGTGTCGAAGTTGTGCTTTA & antisense & 1 & fs(2)/toPP43 & TCATCATCATCATCATCCTCA & antisense & 10 \\
\hline CHES-1-like & TGATGCTGATGCTGATGCTGC & antisense & 1 & fs(2)ltoPP43 & ATCATCATCATCATCCTCATC & antisense & 3 \\
\hline cic & AAGCCGGAGGACGCTGGCTCC & sense & 1 & fs(2)ItoPP43 & TCATCATCATCATCCTCATCC & antisense & 3 \\
\hline Cks30A & TGATGATGATGATGATGTTGT & antisense & 4 & fs(2)/toPP43 & ATCATCATCATCCTCATCCTC & antisense & 2 \\
\hline Cks85A & TCGATTTGTATTTTAGGTAAA & antisense & 1 & fs(2)ltoPP43 & TGAGGATGATGATGATGATGA & sense & 1 \\
\hline Cp1 & ACAAGCACAAGATTGCCAAGC & sense & 1 & Fur2 & TGATGATGATGATGATGATGA & antisense & 552 \\
\hline cpo & GATGGCTCTGGCCCCGTTGGG & sense & 1 & Fur2 & TCATCATCATCATCATCATCA & sense & 197 \\
\hline CRMP & GGAGTGGTCTTACCTGGTGGG & antisense & 2 & Fur2 & ATCATCATCATCATCATCATC & sense & 55 \\
\hline crq & AACTTGCAGTTTGCTGGGCTA & antisense & 1 & Fur2 & TGATGATGATGATGATGATGG & antisense & 49 \\
\hline Csk & CTACTACCTTTAACTACCTAC & sense & 1 & Fur2 & ATGATGATGATGATGATGATG & antisense & 28 \\
\hline CSN8 & GGAAGCACCGCCAGCTCGTGG & sense & 1 & Fur2 & CATCATCATCATCATCATCAT & sense & 6 \\
\hline Cyp1 & GTTTGATCTTTTGATGTTGGC & sense & 1 & Fur2 & TCATCATCATCATCATCATCG & sense & 6 \\
\hline Cyp28d1 & CCGAAGTGATTTCCGATTGTG & sense & 1 & Fur2 & CCATCATCATCATCATCATCA & sense & 2 \\
\hline Сур6d5 & ACGGGAACACCTGATTTGGGC & antisense & 1 & Fur2 & GATGATGATGATGATGATGAT & antisense & 1 \\
\hline Cyp6g1 & TGGAGCACGAAACCCTTGGGA & antisense & 1 & Fur2 & GATGATGATGATGATGATGGG & antisense & 1 \\
\hline Cyp6w1 & TGCCCAGGCAGCTGTTTTTCA & sense & 1 & G9a & CCCTTGGGAGATGTTAAGAGA & sense & 1 \\
\hline Cys & GCTGAGTCCAGATCTTCACGG & antisense & 1 & gammaCop & CCACGTCCTGGTCCGTGCTGC & antisense & 1 \\
\hline Cyt-b5-r & CAAAAGGCTGTTGTATTTGGC & antisense & 2 & Gfr & TTGTTGATGGATTGTTTGTGC & antisense & 1 \\
\hline Cyt-b5-r & CACCGTCCAGCAGAGGGCCAC & antisense & 1 & Ggamma1 & TCCAAAAACGTGTGATTCTTG & antisense & 1 \\
\hline Cyt-b5-r & CATGATGAACTTTGCCGCCTG & sense & 1 & Glycogenin & AGAAGACCCTGAAGGACGCCG & sense & 1 \\
\hline Cyt-b5-r & CCAGTAGAGGATGTTGGTGTG & antisense & 1 & GlyP & CCACCATGTTGTCCTTGACGG & antisense & 1 \\
\hline Cyt-b5-r & CGTGTGTCCCATGCTCTGTCC & sense & 1 & gro & CTCTATCTCTTGCTTATTACA & antisense & 1 \\
\hline Cyt-b5-r & CTCTGCTGGACGGTGATCGTG & sense & 1 & gry & CCTACTCCCTCTTTATTGCTA & sense & 1 \\
\hline Cyt-b5-r & TCGGATCGGTAAAGTTTGTGC & sense & 1 & gry & CTGACCAGGACTTAGCACTGC & antisense & 1 \\
\hline D2R & CAACAGCTTTGTGAACCCGGT & sense & 1 & Gs2 & TTAATCCTAAACTACATACAT & sense & 1 \\
\hline Dcr-1 & AACGCGCACCCGTCGCCCATC & antisense & 1 & Gug & TCATCATCATCATCATCCTCA & sense & 10 \\
\hline Dcr-1 & ACTCACTACTGGTCGTGCTGC & sense & 1 & Gug & TGAGGATGATGATGATGATGA & antisense & 1 \\
\hline Dcr-1 & AGATGGAGCATGGTTCCGTGC & antisense & 1 & HDAC6 & CAAGGAGCACTACGAGTGTCC & sense & 2 \\
\hline Dcr-1 & CCGCGTGTTTTGCTCTTCGGG & antisense & 1 & HDAC6 & ACGGACGTTGCAGATGCCGCT & antisense & 1 \\
\hline Dcr-1 & CCTTGTGGCGAACTGCCGTGT & sense & 1 & He & CAAATATTTTAAGATTCGTGC & antisense & 3 \\
\hline Deaf1 & TGATGATGATGATGGTGATGG & antisense & 1 & HERC2 & CGAGGGAGAGCTGGACCCGGC & sense & 1 \\
\hline Df31 & TTACAGCAATACTCTGAAATG & sense & 1 & HERC2 & TTGGGGACTGCCCAACGCATC & sense & 1 \\
\hline Dhc64C & CTTTCAATGCTCAGCATCCAG & sense & 1 & Hexo1 & CACACTGGACAACCGCTTCTG & sense & 1 \\
\hline Dhc64C & GACAGCCGGTTCCACCTGGGC & antisense & 1 & His2A:CG31618 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline dik & AGAACAGCCCCTTGGTCGTGC & sense & 1 & His2A:CG33808 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline DNApol-iota & CTTGAGGAGTTTATCCTGGGC & antisense & 1 & His2A:CG33814 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline dnc & TCGCAGCGGCAGCGGGCGCTG & sense & 1 & His2A:CG33817 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline dome & TATTTTGTATTCTTTGCGATG & sense & 1 & His2A:CG33820 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline Dot & CTGAAGTCGCTTTTAACGATG & antisense & 1 & His2A:CG33823 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline dp & AACTGCCTGATCGTTAACCTC & antisense & 1 & His2A:CG33826 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline dp & CCTGCCAACCCTCCCCCTGTG & sense & 1 & His2A:CG33829 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline dp & TCGGTGGACAGTCCTCGTTGT & antisense & 1 & His2A:CG33832 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline Dpit47 & CGGGATTGCCTGGCGACGCTG & sense & 1 & His2A:CG33835 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline drosha & CTGTATTGTGAACAGTTTTGC & sense & 1 & His2A:CG33838 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline \(E(P \mathrm{P})\) & TTTTTCACACTCTTTGCCGGG & antisense & 1 & His2A:CG33841 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline \(e(y) 3\) & ACGACGTGGAGCTAACTCGCT & antisense & 1 & His2A:CG33844 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline ect & TCATCATCATCATCATCTTCT & antisense & 2 & His2A:CG33847 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline ect & ATGACGATGATGATGATGATG & sense & 1 & His2A:CG33850 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline Edem1 & ACTAAACCGCTGTAGATCCAG & antisense & 1 & His2A:CG33853 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline Edem2 & CTACTTCAGTCGATAGTAGCA & sense & 1 & His2A:CG33856 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline Ef1alpha48D & CTACGTGACCATCATTGATGC & sense & 1 & His2A:CG33859 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline Ef1alpha48D & GTATGGTGGCTCGGAGGAGTC & antisense & 1 & His2A:CG33862 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline Ef2b & ATCGAGGATGTGCCCTCTGGC & sense & 1 & His2A:CG33865 & CGAGCAGCATTGCCAGCCAAC & antisense & 1 \\
\hline Ef2b & TGTGTCCAGACCGAAACCGTG & sense & 1 & His2B:CG17949 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline EfTuM & CAACTGCAGATGTTCTCCCGC & sense & 1 & His2B:CG33868 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline egh & CAATAGACAACGTCTTGGAGC & sense & 1 & His2B:CG33870 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline elF-4a & CATCACCCAGTCGGTAATCTT & sense & 1 & His2B:CG33872 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline Eip55E & TTCGCCGCCTTGGATAATGCC & sense & 1 & His2B:CG33874 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline epsilonTry & CTTCCGCTCCAGCATTCGCGA & sense & 1 & His2B:CG33876 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline Ets97D & TATTATCCATTTCGTATTCGC & sense & 1 & His2B:CG33878 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline exba & CCACCTATATAAAACTCAAAA & sense & 1 & His2B:CG33880 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline exo70 & TCGAGCACCAATATTGTGGGC & sense & 1 & His2B:CG33882 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline exo84 & CTCTATCTCTTGCTTATTACA & sense & 1 & His2B:CG33884 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline fab1 & TGATCTGGCGTTGGGCTCGCT & sense & 1 & His2B:CG33886 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline faf & CAAGGCGAACTAGATCGGCAG & sense & 1 & His2B:CG33888 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline faf & GCGGTAGTGCAACTGGCCTGG & sense & 1 & His2B:CG33890 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline fal & TAAATATAAGATGCATTTGTC & sense & 1 & His2B:CG33892 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline fat-spondin & GTCAAGTGATAACGCGGGAAA & sense & 1 & His2B:CG33894 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline fbl & AGAGAGAAGGCTATTACCGTC & antisense & 1 & His2B:CG33896 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline fbl & CAATGGCAATGACTTTGGTCC & sense & 1 & His2B:CG33898 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline \(f h\) & CCGACCAACGATCGAACGGAC & antisense & 1 & His2B:CG33900 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline Fit1 & TGGGCGAAAATACGTGGAACC & sense & 1 & His2B:CG33902 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline Flo-2 & ACTACTTATACAGATCTCTAC & antisense & 1 & His2B:CG33904 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline Flo-2 & ATGCTATATATACTATATACA & sense & 1 & His2B:CG33906 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline for & AACAGAGCTCTGAAACAGAGT & antisense & 1 & His2B:CG33908 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline form3 & TCAAATATATTTAAGAGTTGG & antisense & 1 & His2B:CG33910 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline Fps85D & AGTGATTCATAATTTGTATAT & sense & 1 & His2B:CG40461 & TCGCCTTCGACGAAATTCCGG & antisense & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline His3.3B & TATATGCATATACGTAAGTGT & antisense & 1 & kuk & CTCCGGCTCGCACTTTCGCCC & sense & 1 \\
\hline His3:CG31613 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & I(1)G0469 & GTCACCGGTGTCGGCTGCTGC & antisense & 1 \\
\hline His3:CG33803 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & I(2)01810 & ATCATGGGCTTCTTGGCCATC & sense & 1 \\
\hline His3:CG33806 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & \(l(2) \mathrm{gl}\) & ACACGATGCGGTGGACTCCCG & antisense & 1 \\
\hline His3:CG33809 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & \(l(2) g l\) & ACTTTATACCCTTTACCCGTA & sense & 1 \\
\hline His3:CG33812 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & \(l(2) g \mid\) & CAACACAGACTCTTCATTTTC & antisense & 1 \\
\hline His3:CG33815 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & \(l(2) g l\) & GATAACCCAGAACCGCCGTCG & sense & 1 \\
\hline His3:CG33818 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & \(l(2) g \mid\) & TAATATCGCCAATAGAGCTGC & antisense & 1 \\
\hline His3:CG33821 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & \(l(2) g \mid\) & TGATCAGGCGGGTAGCCCTGT & sense & 1 \\
\hline His3:CG33824 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & \(l(2) \mathrm{gl}\) & TTCCTCATAAGCCTTCGGCTC & sense & 1 \\
\hline His3:CG33827 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & \(1(2) g l\) & TTCTTCCAACACAGACTCTTC & antisense & 1 \\
\hline His3:CG33830 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & I(3)02640 & TCTTTGCTCGGTCGTAGTATC & sense & 1 \\
\hline His3:CG33833 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & I(3)04053 & CACTGGAACTCCTCCTGTTGC & antisense & 1 \\
\hline His3:CG33836 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & I(3)73Ah & TACATTCGTGTGTTTTGTACA & antisense & 1 \\
\hline His3:CG33839 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & I(3)j2D3 & TCATCATCCTCCTCCTCCTCC & antisense & 2 \\
\hline His3:CG33842 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & Lam & TGTTGCTGTTCTTATTGTTGC & antisense & 1 \\
\hline His3:CG33845 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & IdICp & CTGAAGCTCTGGCAGATGCGC & antisense & 1 \\
\hline His3:CG33848 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & IdICp & TAAAGAATATTGCAAAACGGC & sense & 1 \\
\hline His3:CG33851 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & Lmpt & TGATGATGATAATGATGATGA & sense & 1 \\
\hline His3:CG33854 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & Iolal & GAAACTTATATGTACGCAAGA & sense & 1 \\
\hline His3:CG33857 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & Lsd-1 & ACGACAACAGAGGTTGCCCAC & sense & 2 \\
\hline His3:CG33860 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & Lsm11 & CAAGCAGTGGAACCTCCTACT & sense & 1 \\
\hline His3:CG33863 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & Iva & TCAATAGCCATGTGGAGCGAG & sense & 1 \\
\hline His3:CG33866 & CCGAGCTTCTAATCCGCAAGC & sense & 1 & LysS & GACAAGTGGACCTGCATTGCC & sense & 1 \\
\hline hoe2 & GAGCTCACCGAGCACGTTATC & sense & 1 & mask & ATCATCATCATCCTCCTCCTC & antisense & 2 \\
\hline Hr4 & TGATGATGATGATGATGATGA & antisense & 552 & mask & TCATCATCATCATCCTCCTCC & antisense & 2 \\
\hline Hr4 & TCATCATCATCATCATCATCA & sense & 197 & mbl & GTAAAACAAAAAACTATCTCT & sense & 1 \\
\hline Hr4 & ATCATCATCATCATCATCATC & sense & 55 & MED21 & TGTTCATAAAATCCAAAGTGG & antisense & 1 \\
\hline Hr4 & ATGATGATGATGATGATGATG & antisense & 28 & MED21 & TTAAAACTATAATTAATTATT & antisense & 1 \\
\hline Hr4 & CATCATCATCATCATCATCAT & sense & 6 & MED21 & TTTACAGATCAAATGGGTTTT & sense & 1 \\
\hline Hr4 & TAATGATGATGATGATGATGA & antisense & 2 & Mekk1 & CAGGAGAGCAATCCACTGGGC & sense & 1 \\
\hline Hr4 & GATGATGATGATGATGATGAT & antisense & 1 & Mes-4 & CGGCAAACTCAAGGATGATGC & sense & 1 \\
\hline Hr4 & TCATCATCATCATCATCATTA & sense & 1 & milt & TTCACGATCTGCTCATGTTGC & antisense & 1 \\
\hline Hr4 & TCATCATCATCATTATCATCA & sense & 1 & Mio & GGTCACTCAGCAAATGCAGCA & sense & 1 \\
\hline Hr4 & TGATGATGATAATGATGATGA & antisense & 1 & Mitf & TGTCTATGTAGTTCTTGGAAG & antisense & 1 \\
\hline Hr4 & TGATGATGATGATGATGAAGA & antisense & 1 & Mkp3 & CTCGGTGGTGCTGGTCCACTG & sense & 1 \\
\hline Hs3st-A & ATCATCATCATCATCATCATC & antisense & 55 & mld & TTTGTTTAGGCTATTCAACTG & antisense & 1 \\
\hline Hs3st-A & ATGATGATGATGATGATGATG & sense & 28 & Mmp1 & TTAAGACAGTCCATTAAACGA & sense & 1 \\
\hline Hs3st-A & TGATGATGATGATGATGATGT & sense & 16 & \(m \mathrm{mb}\) & GTACAGACGACTGTGGCGTGT & antisense & 1 \\
\hline Hs3st-A & CATCATCATCATCATCATCAT & antisense & 6 & mnb & TGAGTGAGTTTTCGTGTGTTT & antisense & 1 \\
\hline Hs3st-A & TCATCATCATCATCATCATCG & antisense & 6 & Mnt & TCATCCTCCTCATCATCATCA & sense & 1 \\
\hline Hs3st-A & ATGATGATGATGATGATGTTA & sense & 1 & MP1 & AAGAAGTGTTGAACTCTGCGC & antisense & 1 \\
\hline Hs3st-A & GATGATGATGATGATGATGAT & sense & 1 & MP1 & CACTGAGGTTGCTGGTTTCGC & antisense & 1 \\
\hline Hsp70Aa & GTGCAAGTTAAAGTGAATCAA & sense & 1 & MP1 & TAAAAATCGATATTTACTGTG & antisense & 1 \\
\hline Hsp70Ab & GTGCAAGTTAAAGTGAATCAA & sense & 1 & mRpL1 & TTGTTGATGGATTGTTTGTGC & sense & 1 \\
\hline Hsp70Ba & GTGCAAGTTAAAGTGAATCAA & sense & 1 & mRpL35 & ATCTATTGAAAACTACAAAAT & sense & 1 \\
\hline Hsp70Bb & GTGCAAGTTAAAGTGAATCAA & sense & 1 & mrt & CGTCTATGCCCCAAAGTGCTG & sense & 1 \\
\hline Hsp70Bbb & GTGCAAGTTAAAGTGAATCAA & sense & 1 & msl-3 & ATTACGATTAAAGCTTATGCT & sense & 1 \\
\hline Hsp70Bc & GTGCAAGTTAAAGTGAATCAA & sense & 1 & msl-3 & TCAAATATATTTAAGAGTTGG & sense & 1 \\
\hline Hsp83 & TGCTGCAGCAGAACAAGGTCC & sense & 1 & Msp-300 & AACCAGTCGGCGCACTGCTTA & antisense & 1 \\
\hline Hsp83 & TGGGTGATCGGGGTTGATCTC & antisense & 1 & Msp-300 & TTGATAGCACTTTCATGCGCG & sense & 1 \\
\hline Hsp83 & TTCGAGAGCCTGTGCAAGCTG & sense & 1 & mt:ATPase6 & TGTGTTTGCTGTATTAAGAAC & sense & 1 \\
\hline htt & TGATGATGATGATGATGATGA & sense & 552 & mt:Col & ATCCTGGAGCATTAATTGGAG & sense & 1 \\
\hline htt & TCATCATCATCATCATCATCA & antisense & 197 & \(m \mathrm{~m}: \mathrm{Col}\) & ATTATAATTGGTGGATTTGGA & sense & 1 \\
\hline htt & ATCATCATCATCATCATCATC & antisense & 55 & mt:Col & CGAGCTGAATTAGGACATCCT & sense & 1 \\
\hline htt & TCATCATCATCATCATCATCC & antisense & 32 & mt:Col & GATTAAAAAGTCATTTCATTA & sense & 1 \\
\hline htt & ATGATGATGATGATGATGATG & sense & 28 & mt:Col & GGATTTGTTTTTTTATTTACA & sense & 1 \\
\hline htt & CATCATCATCATCATCATCAT & antisense & 6 & mt:Col & TTTTATTTACAGTAGGAGGAT & sense & 1 \\
\hline htt & ATCATCATCATCATCATCCTC & antisense & 5 & mt:Coll & AATGAATTAATAACTGATGGA & sense & 1 \\
\hline htt & TCATCATCATCATCATCCTCC & antisense & 3 & mt:Colll & ACTATTGCAGACTCAATTTAT & sense & 1 \\
\hline htt & ATGATGATGATGATGATGACG & sense & 1 & mt:Colll & AGAAGGAACATACCAAGGATT & sense & 1 \\
\hline htt & GATGATGATGATGATGATGAT & sense & 1 & mt:CoIlI & AGGAGTTACTGTAACTTGAGC & sense & 1 \\
\hline htt & TCGTCATCATCATCATCATCA & antisense & 1 & mt:Colll & TTACTATTTTAACTGTATATC & sense & 1 \\
\hline htt & TGCTGATGCTGATGCTGCTGC & antisense & 1 & \(m t: C y t-b\) & AAGATATTGTAGGATTTATTG & sense & 1 \\
\hline IM10 & CAGGGTGAGAACTTTGTGGCC & sense & 1 & \(m \mathrm{t}\) :Cyt-b & ATAGTGTTAATCATATTTGTC & sense & 1 \\
\hline InR & CTGCTGATGATGCTGCTGATG & antisense & 1 & mt:ND1 & AATTTTTATAGCTGAATATGC & sense & 1 \\
\hline InR & TGATGATGATGCTGCTGCTGA & antisense & 1 & mt:ND3 & ATTTTTGATGTAGAGATTGCA & sense & 1 \\
\hline IP3K1 & CCACATCGACTGGAATAGTGC & sense & 1 & mt:ND5 & CGGGTTTAACTGTTAGTTATT & sense & 1 \\
\hline IP3K1 & CGGCTGCCCATCTTGATGTCC & antisense & 1 & mt:ND5 & TCTTATAATGCTGGTATATTA & sense & 1 \\
\hline IP3K1 & GGACCATCGAAGTGCTTGGGC & sense & 1 & \(m t s\) & AAGAACTACAACTACTTAGCT & sense & 1 \\
\hline Irp-1B & TTTTGGGGAGTTCCAGTGGGA & sense & 1 & mus309 & CTGCCGCCTTGGCTTCCTTGG & antisense & 1 \\
\hline JTBR & AGAGTGTATGTACTTAAACTA & antisense & 1 & Nc73EF & ATGAACAATCCTCCTCCACCA & sense & 1 \\
\hline Kap-alpha3 & TTTCAAAAAGAATGTAGACCT & sense & 1 & nct & TTTATACCTTCTGCATCTATT & sense & 1 \\
\hline katanin-60 & AAAATTTCAGAATCCTCTCTT & antisense & 2 & nej & ACTACATCTTTCACTGCCATC & sense & 1 \\
\hline katanin-60 & CACACATCTCTGCCTGCACTA & antisense & 1 & \(N g p\) & TCAACTTTTTATTTGGATTCT & antisense & 1 \\
\hline katanin-60 & TACTTTCACATATACATATAT & sense & 1 & ninaB & CAACTGCTCGTCGGATGTGTG & sense & 1 \\
\hline katanin-60 & TATATCATAGTTTAGTGCAGG & sense & 1 & ninaC & TCGTAATACGACTACCAATAA & sense & 1 \\
\hline KrT95D & TTAGGAACCTGCAGGTGTGGC & sense & 1 & ninaE & ACAGCAACAACAACAACAAGA & sense & 2 \\
\hline kst & TCGAGTCCTGGCTAGGTGAGC & sense & 1 & Nipped-A & CATCATACTGTTTATCTGGGT & antisense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Nrx-1 & AGCCGGATCCGGATGTCGCGG & sense & 1 & rad & TTAGCGTTAACGTTATCTAGG & sense & 1 \\
\hline Nrx-1 & GCCGCCATTCGAATCGGGTAG & sense & 1 & Rad23 & TATGCAAATAACACCGGAAGC & sense & 1 \\
\hline Ntl & AGAGGCAGGACTCTGGGCCAA & sense & 2 & raps & AATTGTAACTATGAGTATTGC & sense & 1 \\
\hline Ntl & GATGCGAGCAGAGGCAGGACT & sense & 2 & Rbm13 & TGATGATGATGATGATGATGA & sense & 552 \\
\hline Ntl & GAGGCTTGGTGATGCGAGCAG & sense & 1 & Rbm13 & TCATCATCATCATCATCATCA & antisense & 197 \\
\hline Ntl & GCAGAGGCAGGACTCTGGGCC & sense & 1 & Rbm13 & ATCATCATCATCATCATCATC & antisense & 55 \\
\hline NtI & GGCAGGACTCTGGGCCAAACA & sense & 1 & Rbm13 & TCATCATCATCATCATCATCC & antisense & 32 \\
\hline OstStt3 & CTAATCACCTTCGCCATCCTG & sense & 1 & Rbm13 & ATGATGATGATGATGATGATG & sense & 28 \\
\hline ovo & TGATGATGATGATGATGATTA & antisense & 9 & Rbm13 & CATCATCATCATCATCATCAT & antisense & 6 \\
\hline ovo & TCATCATCATCATCATCAACA & sense & 1 & Rbm13 & ATCATCATCATCATCATCCTC & antisense & 5 \\
\hline p47 & ACCAAATTGGCCACGGGACTG & antisense & 1 & Rbm13 & TCATCATCATCATCATCCTCC & antisense & 3 \\
\hline Patj & AGAGTGTATGTACTTAAACTA & sense & 1 & Rbm13 & ATCATCATCATCCTCCTCCTC & antisense & 2 \\
\hline pbl & ATCATCATCATCATCATCGTC & sense & 1 & Rbm13 & TCATCATCATCATCCTCCTCC & antisense & 2 \\
\hline pbl & ATGACGATGATGATGATGATG & antisense & 1 & Rbm13 & ATCATCATCATCATCCTCCTC & antisense & 1 \\
\hline pbl & ATGATGATGATGATGATGGTG & antisense & 1 & Rbm13 & ATGATGATGATGATGATGACG & sense & 1 \\
\hline Pc & TCGGTTTCGCATGGAGTTTTC & antisense & 1 & Rbm13 & GATGATGATGATGATGATGAT & sense & 1 \\
\hline PC & TCTCTTAGCAGTCATTCAAGA & sense & 1 & Rbm13 & TCATCATCATCCTCCTCCTCA & antisense & 1 \\
\hline PebllI & CTGGTGGACAACGGAAAGTGC & sense & 1 & Rbm13 & TCGTCATCATCATCATCATCA & antisense & 1 \\
\hline Pect & AAACATAAAACTTGAACTCGC & antisense & 1 & Rbp2 & TCATCATCATCATCATCCTCC & antisense & 3 \\
\hline Pect & GCATCCTACTTCCGTTGCTGA & antisense & 1 & Rbp2 & ATCATCATCATCCTCCTCCTC & antisense & 2 \\
\hline Pect & TATATATTCAGCAACGGAAGT & sense & 1 & Rbp2 & ATCATCATCCTCCTCCTCCTC & antisense & 2 \\
\hline Pepck & AGGAGATGGGAATGCCACGGA & antisense & 1 & Rbp2 & TCATCATCATCATCCTCCTCC & antisense & 2 \\
\hline Pgant35A & CCAGCACGGTCTTAATCGAGC & antisense & 1 & Rbp2 & TCATCATCATCCTCCTCCTCC & antisense & 2 \\
\hline pgant6 & CTATCCGCCGGTGGATCCGCC & sense & 1 & Rbp2 & TCATCATCCTCCTCCTCCTCC & antisense & 2 \\
\hline Pgi & CCGCCAAGACCTGGCTCCTGG & sense & 1 & Rbp2 & ATCATCATCATCATCCTCCTC & antisense & 1 \\
\hline Pgk & CATCTCGTTGACCTTGTCCAG & antisense & 2 & Rbp2 & TGATGATGATGATGACGATGA & sense & 1 \\
\hline Pgm & TAGCTGAAGTTGTCGGCCTCC & antisense & 1 & \(r e f(2) P\) & CAGCCATCGCATTCAACGGCG & antisense & 1 \\
\hline Pi3K59F & CTCGGGCCTGTACTCCGAGGA & sense & 1 & regucalcin & TCGAGGGCGAAACCTTGGCCG & sense & 1 \\
\hline pip & TAAATATAAGATGCATTTGTC & antisense & 1 & repo & TTACAAATTTTATTACTTACT & sense & 1 \\
\hline PIP82 & TGATGATGATGATGATGATGA & antisense & 552 & Rfabg & ACTTAACGCACAGTACGGAGC & sense & 1 \\
\hline PIP82 & TCATCATCATCATCATCATCA & sense & 197 & Rfabg & GGCAACTACTATGACTATTCC & sense & 1 \\
\hline PIP82 & ATCATCATCATCATCATCATC & sense & 55 & Rfabg & GTTTGAATTAAAGTCTCAAAA & sense & 1 \\
\hline PIP82 & ATGATGATGATGATGATGATG & antisense & 28 & Rho1 & TCGAATTCGTGCTGAGTGTTG & sense & 2 \\
\hline PIP82 & TGATGATGATGATGATGATGT & antisense & 16 & RhoGAP71E & GCGAAATGCGATAGGCGAGCG & sense & 1 \\
\hline PIP82 & TGATGATGATGATGATGTTGA & antisense & 7 & rin & CCACACTCTCAATCGACACAG & sense & 1 \\
\hline PIP82 & CATCATCATCATCATCATCAT & sense & 6 & rin & TACTCTCTACCACCCACCACC & sense & 1 \\
\hline PIP82 & TGTGATGATGATGATGATGAT & antisense & 5 & \(r-1\) & TAAGGATTTCCTCGTTGGATC & antisense & 1 \\
\hline PIP82 & ATCATCATCATCATCATCACA & sense & 4 & rols & GTAGACAGTGCCGCCGCCCGG & antisense & 1 \\
\hline PIP82 & GTGATGATGATGATGATGATG & antisense & 4 & RpL19 & GATCCCAATGAAATCAACGAG & sense & 1 \\
\hline PIP82 & ATGATGATGATGTTGATGATG & antisense & 1 & RpL28 & TGATCGTGTTGATAAACTTAT & sense & 4 \\
\hline PIP82 & GATGATGATGATGATGATGAT & antisense & 1 & RpL31 & CCACTCCATTCCGCATTCGCG & sense & 1 \\
\hline Pits/re & TACCGCCGGCGCCCAGCTATG & sense & 1 & RpL35A & AACACTTTAAATTTAATTAAA & sense & 1 \\
\hline ple & GATTGTTGTATCTATATCATT & antisense & 1 & RpL38 & ATATTTCTACTGCTAAGGAAT & sense & 1 \\
\hline plexA & ACGCCATGCTTGCGGAAGAGT & sense & 1 & RpL4 & GCAGCGTGCGCCGCCTGAACC & sense & 1 \\
\hline plx & CAACTGAAGAGTCCCATGATG & sense & 1 & RpS18 & TGGACTCGAAGCTGCGTGACG & sense & 1 \\
\hline pnt & TGATGATGATGATGATGATGA & antisense & 552 & RpS19a & ACACCGTTGCGCTTGCGTCCG & antisense & 1 \\
\hline pnt & TCATCATCATCATCATCATCA & sense & 197 & RpS19a & CGCCCGTTTGGTCGAGAAGCA & sense & 1 \\
\hline pnt & ATCATCATCATCATCATCATC & sense & 55 & RpS26 & CGCCGTAACGGAGGACGCAAC & sense & 1 \\
\hline pnt & TGATGATGATGATGATGATGC & antisense & 35 & RpS6 & TCCACGAGAGGAGAAATAAAA & sense & 1 \\
\hline pnt & ATGATGATGATGATGATGATG & antisense & 28 & RpS8 & TCCGCAAGAAGCGCAAGTTCG & sense & 1 \\
\hline pnt & TGATGATGATGATGATGCTGA & antisense & 24 & Rpt4 & CGGACTTTGTGTGACAGGCCC & antisense & 1 \\
\hline pnt & TCATCATCATCATCATCACCA & sense & 10 & rut & TGCTGATGCTGATGCTGCTGC & antisense & 1 \\
\hline pnt & CATCATCATCATCATCATCAT & sense & 6 & Rya-r44F & AGTGGATCGCATCGTGGCGAT & sense & 1 \\
\hline pnt & ATGATGATGATGATGATGCTG & antisense & 5 & sano & ATCATCATCATCATCATCATC & antisense & 55 \\
\hline pnt & GTGATGATGATGATGATGATG & antisense & 4 & sano & TCATCATCATCATCATCATCG & antisense & 6 \\
\hline pnt & GATGATGATGATGATGATGAT & antisense & 1 & sano & GATGATGATGATGATGATGAT & sense & 1 \\
\hline pnt & TCATCATCATCATCACCACAG & sense & 1 & sano & TGATGATGATGATGATGATTC & sense & 1 \\
\hline pnt & TGGTGATGATGATGATGATGA & antisense & 1 & Sap-r & AACCTGCTTTCCCGCCTGATG & sense & 1 \\
\hline poe & GATTGTGCACTGCATTTGTTG & sense & 1 & Sara & GACACTAGCTCTACATTGGGC & sense & 1 \\
\hline Pof & TTAAGACAGTCCATTAAACGA & antisense & 1 & sdt & TGCTGATGCTGATGCTGCTGC & antisense & 1 \\
\hline POSH & TTGGCATGCAACTGGGATTGC & antisense & 1 & SelR & CGACGCACGCTTGTTTTCGCC & sense & 1 \\
\hline Pp2B-14D & TCACTCTGTTTCAGTATTTGC & antisense & 1 & sens & TGATGATGATGATGATGATGA & sense & 552 \\
\hline Ppt1 & AAACTGAATTTATTAAACATC & antisense & 1 & sens & TCATCATCATCATCATCATCA & antisense & 197 \\
\hline Prm & ACCTCATCCTGCTGCAGGACG & sense & 1 & sens & ATCATCATCATCATCATCATC & antisense & 55 \\
\hline Psf3 & AATAAGCCAAAGCGATGTTGC & sense & 1 & sens & ATGATGATGATGATGATGATG & sense & 28 \\
\hline Ptp99A & AACAGATACTAGGACGGACTG & antisense & 1 & sens & CATCATCATCATCATCATCAT & antisense & 6 \\
\hline Ptp99A & AACTATAAGTGTAAATCGGCA & sense & 1 & sens & TCATCATCATCATCATCATCT & antisense & 4 \\
\hline Ptp99A & CTAGGTTCGCTTAAGTTTGTC & antisense & 1 & sens & GATGATGATGATGATGATGAT & sense & 1 \\
\hline Ptp99A & CTAGTATCTGTTATTCTTTTC & sense & 1 & SerT & ATGGTGATGATGATGATGATG & antisense & 1 \\
\hline Ptp99A & CTCTACACCACCCACACCACA & sense & 1 & SerT & GTGATGATGATGATGATGCTG & antisense & 1 \\
\hline Ptp99A & TACTTTAACTTACACACCCAC & sense & 1 & SerT & TGATGATGATGATGATGCTGT & antisense & 1 \\
\hline Pu & CACGCGTTCAGAGCCCCAATC & sense & 1 & ses B & CAGTGTTATCGATCGGATGCA & sense & 1 \\
\hline pyd & ATCGCTACGATTTATAAATGG & antisense & 1 & sev & TATAAGTTTTATTTGCACCGC & sense & 1 \\
\hline PyK & AATGGTGAAGAAGCCACGTCC & sense & 1 & sev & TGTCCACTGCCTATTCCTGGC & sense & 1 \\
\hline r2d2 & AAATCCAACTGCTGCCCGGCA & sense & 1 & shot & TGATGATGATGATGATGTTGG & antisense & 1 \\
\hline r2d2 & ATGTTAACTTTGTACACGATT & sense & 1 & sif & CTTTGTGGAGGCTGTTAGCCC & antisense & 1 \\
\hline r2d2 & CATCTATGTTAACTTTGTACA & sense & 1 & Sk2 & TCCATATCGGAGAGCATCTAC & sense & 1 \\
\hline Rab6 & TAACTGGAACTGTGGATGGCA & sense & 1 & slik & GGAAAAGAACGTTTGCTGAGG & sense & 1 \\
\hline RabX6 & CTTTCTTCCACAGAATATCTC & sense & 1 & s/s & CACCTACGATTTTGGCTTCGT & sense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline smg & TGATGCTGATGCTGATGCTGC & antisense & 1 \\
\hline smg & TTGCAAAACAAATTGGCCGGT & sense & 1 \\
\hline Smg5 & CACGCCTTTCTGGTTGCTGCC & sense & 1 \\
\hline Smr & TGATGATGATGATGATGATGT & antisense & 16 \\
\hline Smr & TGATGATGATGATGATGTTGA & antisense & 7 \\
\hline Smr & CTGATGATGATGATGATGATG & antisense & 4 \\
\hline Smr & TGATGATGCTGATGATGATGA & antisense & 2 \\
\hline Smr & TGCTGATGATGATGATGATGA & antisense & 2 \\
\hline Smr & ATCATCATCATCATCATCAGC & sense & 1 \\
\hline Smr & ATGATGATGATGTTGATGATG & antisense & 1 \\
\hline Smr & ATGATGCTGATGATGATGATG & antisense & 1 \\
\hline Smr & CAGAAGCAAGGAACCACCGCC & sense & 1 \\
\hline Smr & CTGGAGCCATCGGTGAGATTC & antisense & 1 \\
\hline Smr & TGATGCTGATGATGATGATGA & antisense & 1 \\
\hline Smr & TGCTGATGATGCTGATGATGA & antisense & 1 \\
\hline Sox14 & ACTTAAATATCTCTCACATTT & antisense & 1 \\
\hline Spase18-21 & CATGAAGATCGTGATGATGCC & antisense & 1 \\
\hline spen & ATCTCGATCTCGTGCATCTTC & sense & 1 \\
\hline spen & CAGCTTCAGCGTCTGCATCCA & sense & 1 \\
\hline Sra-1 & AAATACTCTATTCTAAGCTCC & sense & 1 \\
\hline Sra-1 & CTGTCGTGGCTTCTTTTCATG & antisense & 1 \\
\hline sta & GGGCAAGACCTGGGAGAAGCT & sense & 1 \\
\hline StIP & AGACTACTTTAATGCATATGG & antisense & 1 \\
\hline Strn-Mlck & ATGCTGGAGGAGGCGCACGGT & sense & 1 \\
\hline sty & TTTGCCACTGTTTTTGTTGTC & antisense & 1 \\
\hline svr & AAAGTACGCGAACGCAGCAGC & antisense & 1 \\
\hline Syx17 & TTAATATGCAATAATAACTCG & sense & 1 \\
\hline Syx18 & TTTGTTTAGGCTATTCAACTG & sense & 1 \\
\hline T48 & TATTATCCATTTCGTATTCGC & antisense & 1 \\
\hline tafazzin & TACTAATAATGCACACTGATT & antisense & 1 \\
\hline tafazzin & TTTGCTTTTGAGCTTGTTGCA & sense & 1 \\
\hline Tango7 & ATGTGTACTACCACCTGGTCC & sense & 1 \\
\hline tara & CGGCGCTGCGAGGTCCACGTC & sense & 1 \\
\hline Tcp-1eta & CATCCGCAAGGCCCTGCAGCT & sense & 1 \\
\hline TfIIFbeta & TTTACCAGAGTGCAAGCTAGT & antisense & 1 \\
\hline th & AGGAGAGCTCTTCGATTGGAG & sense & 1 \\
\hline th & CGCAACAGTGGACAGTTGGGC & antisense & 1 \\
\hline \(t h\) & GATGAGAGTGATGTCTGCTGC & antisense & 1 \\
\hline th & GTCATGTGGTGGCCTGCGCCA & sense & 1 \\
\hline Thiolase & TTTTATACACCTTACAACTAC & sense & 1 \\
\hline Thor & AGGAAGGTTGTCATCTCGGAT & sense & 2 \\
\hline Tis11 & AGGATGCTGCTCGCCCACGGC & sense & 1 \\
\hline Tis11 & GAATTGATATCAAGGATCGGT & antisense & 1 \\
\hline tkv & GTATCTTTATCTGTAACCGTT & sense & 1 \\
\hline tkv & TTGTGGTCTGCGAGCAGTAAT & antisense & 1 \\
\hline tnc & TTTTCCTCTTCCTCCTCCTCA & antisense & 1 \\
\hline tra & TACATTCGTGTGTTTTGTACA & sense & 1 \\
\hline trbl & TGGCTCAGAATGCCAATGGGC & sense & 1 \\
\hline trk & CTACATGAGCATCGATCCGCC & sense & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Trxr-1 & TGCAGTCCGTACAGAACCACA & sense & 1 \\
\hline Tsf1 & CGCAACTGGCTACGCGGATGC & sense & 1 \\
\hline Tsf1 & CGGACCCGCCTGCTCCTGGGC & sense & 1 \\
\hline Tsf1 & GACAAGTTTGGTGCCCGCGGC & sense & 1 \\
\hline Tsf1 & TCCTGCTCCACGCTGGTGGTG & antisense & 1 \\
\hline Tsp42Er & CCTAAGATTGTTGGCTGGATG & sense & 1 \\
\hline Tsp5D & ATAAGCATATCCAGGTCCAAG & antisense & 2 \\
\hline tst & TACAAGCACGCCATCTACGTT & antisense & 1 \\
\hline TwdIT & TGATGATGATGATGATGATTT & sense & 1 \\
\hline UbcD2 & AACTATAAACTATTCAACTGC & sense & 1 \\
\hline Ubc-E2H & CAAACCAATCAAATCAAAAGC & sense & 1 \\
\hline Ubp64E & TAATCTCACCGGTGGACGATG & sense & 1 \\
\hline Unc-89 & CAGGTAGGTGTAGGTCTTTGG & antisense & 1 \\
\hline up & AATCCACACTCTGGGCCCGCC & sense & 1 \\
\hline up & TCCTCCTCCTCCTCATCCTCC & antisense & 1 \\
\hline Usp36 & GCAGTGACAGTAAAGATGTGG & sense & 1 \\
\hline Vap-33-1 & CATTGAACCAGAACATGAGTT & sense & 1 \\
\hline vav & ATTTTTAAATCTATTGTTGCT & antisense & 1 \\
\hline Vha100-1 & CTCCTGTTTATTAACTATACT & sense & 1 \\
\hline Vha26 & CATTTCGGTGCTTCGCTGAGC & antisense & 1 \\
\hline Vha68-2 & ACTTCCCCGAGCTGTCCGTGG & sense & 1 \\
\hline Vhl & CCAACTTGTAAAGAGCTCTAT & antisense & 1 \\
\hline Vhl & TACAGATTCTCCTTGAATGTG & sense & 1 \\
\hline Vhl & TTGAATGTGTTTGTGTTTGTC & sense & 1 \\
\hline vir-1 & ACCATCACGCCCTCAGCCCGA & sense & 1 \\
\hline \(v n\) & ATGATGATGATGATGATGGTG & antisense & 1 \\
\hline wmd & CGGCGAGCTGATGGAATTGCC & antisense & 1 \\
\hline wuho & CGGACTTTGTGTGACAGGCCC & sense & 1 \\
\hline Xbp1 & ACAGGTGGACACACAGTCGTC & sense & 1 \\
\hline yip7 & AAAGACCGCTGTTGCCTCCGG & sense & 1 \\
\hline Yippee & AAAAGATGGGCTGCTACTCAG & sense & 1 \\
\hline yl & GAGCAGAACGGTCACTTTCAC & sense & 1 \\
\hline Yp1 & AAGTGGATCGTCCAGATGGTC & sense & 1 \\
\hline Yp1 & AGCTGCGCCGTGTCACCGGTC & sense & 1 \\
\hline Yp1 & ATCCACACCTCGGTCTACGGC & sense & 1 \\
\hline Yp1 & GCCGTCGCAGTGGCTCTCCGG & sense & 1 \\
\hline Yp1 & TGACCGGTCTGGCTCGCGGTG & sense & 1 \\
\hline Yp2 & ACAATAAAAAACGTTTGCATT & sense & 1 \\
\hline Yp2 & ACCGATTTCGATCTGCAGGGC & sense & 1 \\
\hline Yp2 & GCTTCCTGCGCTGCGTTTGCT & antisense & 1 \\
\hline Yp3 & TGATCGGCCAGGGAATCAGCG & sense & 1 \\
\hline Yp3 & TGTGGAGACGGCCAAGGCACA & sense & 1 \\
\hline zf30C & CTGCGGAACACTTGGTTTTGC & antisense & 1 \\
\hline zfh2 & CGAAGTCGTTTCTGAAGATGC & sense & 1 \\
\hline
\end{tabular}

Table II-S1D. Summary of mRNA-matching, 21-nt reads from pyrosequencing and

\section*{sequencing-by-synthesis of a small RNA libraries enriched for \(3^{\prime}\) terminally}
modified small RNA from wild-type heads.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ Total S2 reads } & \begin{tabular}{c} 
number of unique \\
21-mers
\end{tabular} \\
\hline Gene & \begin{tabular}{c} 
sense + \\
antisense
\end{tabular} & antisense & sense & antisense & sense \\
\hline \(5-H T 1 B\) & 1 & 1 & 0 & 1 & 0 \\
\hline Ack & 1 & 0 & 1 & 0 & 1 \\
\hline Act5C & 1 & 1 & 0 & 1 & 0 \\
\hline Act79B & 1 & 1 & 0 & 1 & 0 \\
\hline Act87E & 1 & 1 & 0 & 1 & 0 \\
\hline ade3 & 1 & 0 & 1 & 0 & 1 \\
\hline ade3 & 1 & 1 & 0 & 1 & 0 \\
\hline AGO2 & 8 & 3 & 5 & 3 & 4 \\
\hline alc & 1 & 0 & 1 & 0 & 1 \\
\hline Ald & 1 & 0 & 1 & 0 & 1 \\
\hline alpha4GT1 & 1 & 1 & 0 & 1 & 0 \\
\hline alphaTry & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ Total S2 reads } & \multicolumn{2}{c|}{\begin{tabular}{c} 
number of unique \\
21-mers
\end{tabular}} \\
\hline Gene & \begin{tabular}{c} 
sense + \\
antisense
\end{tabular} & antisense & sense & antisense & sense \\
\hline alphaTub84B & 1 & 0 & 1 & 0 & 1 \\
\hline alphaTub84D & 1 & 0 & 1 & 0 & 1 \\
\hline Amy-d & 4 & 0 & 4 & 0 & 4 \\
\hline Ank & 2 & 0 & 2 & 0 & 2 \\
\hline AnnIX & 1 & 0 & 1 & 0 & 1 \\
\hline Apc & 3 & 2 & 1 & 2 & 1 \\
\hline Apc2 & 1 & 1 & 0 & 1 & 0 \\
\hline apt & 3 & 0 & 3 & 0 & 2 \\
\hline arm & 1 & 0 & 1 & 0 & 1 \\
\hline Asator & 1 & 0 & 1 & 0 & 1 \\
\hline asrij & 1 & 0 & 1 & 0 & 1 \\
\hline ATPsyn-beta & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline aux & 3 & 1 & 2 & 1 & 2 & CG12581 & 1 & 0 & 1 & 0 & 1 \\
\hline bel & 2 & 1 & 1 & 1 & 1 & CG12773 & 1 & 0 & 1 & 0 & 1 \\
\hline betaTry & 1 & 0 & 1 & 0 & 1 & CG13124 & 1 & 0 & 1 & 0 & 1 \\
\hline bigmax & 1 & 1 & 0 & 1 & 0 & CG13130 & 18 & 15 & 3 & 2 & 3 \\
\hline bin3 & 3 & 3 & 0 & 3 & 0 & CG13253 & 1 & 1 & 0 & 1 & 0 \\
\hline b/w & 2 & 0 & 2 & 0 & 2 & CG1332 & & 0 & 1 & 0 & 1 \\
\hline Bruce & 1 & 1 & 0 & 1 & 0 & CG13445 & 3 & 3 & 0 & 1 & 0 \\
\hline BRWD3 & 1 & 0 & 1 & 0 & 1 & CG1358 & 846 & 581 & 265 & 3 & 5 \\
\hline c11.1 & 1 & 0 & 1 & 0 & 1 & CG13585 & 1 & 1 & 0 & 1 & 0 \\
\hline cal1 & 1 & 0 & 1 & 0 & 1 & CG13670 & 1 & 1 & 0 & 1 & 0 \\
\hline CalpB & 3 & 0 & 3 & 0 & 3 & CG13907 & 1 & 0 & 1 & 0 & 1 \\
\hline Ca-P60A & 1 & 0 & 1 & 0 & 1 & CG14033 & 1 & 1 & 0 & 1 & 0 \\
\hline Cap-H2 & 1 & 0 & 1 & 0 & 1 & CG14235 & 1 & 0 & 1 & 0 & 1 \\
\hline Cas & 1 & 1 & 0 & 1 & 0 & CG14342 & 7 & 7 & 0 & 1 & 0 \\
\hline cathD & 1 & 0 & 1 & 0 & 1 & CG14478 & 1 & 1 & 0 & 1 & 0 \\
\hline Cbl & 1 & 1 & 0 & 1 & 0 & CG14480 & 1 & 0 & 1 & 0 & 1 \\
\hline Con & 148 & 68 & 80 & 6 & 5 & CG14561 & 1 & 1 & 0 & 1 & 0 \\
\hline Ccp84Aa & 1 & 1 & 0 & 1 & 0 & CG14567 & 2 & 1 & 1 & 1 & 1 \\
\hline Ccp84Ab & 1 & 1 & 0 & 1 & 0 & CG14646 & 1 & 0 & 1 & 0 & 1 \\
\hline Cct5 & 1 & 1 & 0 & 1 & 0 & CG14799 & 88 & 78 & 10 & 3 & 3 \\
\hline Cdep & 1 & 1 & 0 & 1 & 0 & CG1486 & 1 & 0 & 1 & 0 & 1 \\
\hline ced-6 & 2 & 0 & 2 & 0 & 2 & CG14880 & 1 & 0 & 1 & 0 & 1 \\
\hline Cf2 & 1 & 0 & 1 & 0 & 1 & CG14906 & 1 & 1 & 0 & 1 & 0 \\
\hline CG10011 & 1 & 1 & 0 & 1 & 0 & CG14907 & 1 & 1 & 0 & 1 & 0 \\
\hline CG10055 & 1 & 1 & 0 & 1 & 0 & CG14956 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10077 & 1 & 0 & 1 & 0 & 1 & CG14967 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10147 & 1 & 1 & 0 & 1 & 0 & CG14982 & 1 & 0 & 1 & 0 & 1 \\
\hline CG1021 & 1 & 0 & 1 & 0 & 1 & CG15019 & 1 & 1 & 0 & 1 & 0 \\
\hline CG10214 & 1 & 1 & 0 & 1 & 0 & CG15067 & 2 & 1 & 1 & 1 & 1 \\
\hline CG10237 & 1 & 0 & 1 & 0 & 1 & CG15099 & 2 & 1 & 1 & 1 & 1 \\
\hline CG10249 & 1 & 1 & 0 & 1 & 0 & CG15105 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10274 & 1 & 0 & 1 & 0 & 1 & CG15118 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10375 & 1 & 0 & 1 & 0 & 1 & CG15134 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10433 & 1 & 0 & 1 & 0 & 1 & CG1516 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10444 & 1 & 0 & 1 & 0 & 1 & CG15203 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10479 & 1 & 1 & 0 & 1 & 0 & CG15209 & 3 & 2 & 1 & 1 & 1 \\
\hline CG10631 & 1 & 1 & 0 & 1 & 0 & CG15240 & 4 & 2 & 2 & 1 & 2 \\
\hline CG10641 & 1 & 1 & 0 & 1 & 0 & CG15370 & 844 & 586 & 258 & 5 & 3 \\
\hline CG10646 & 2 & 2 & 0 & 1 & 0 & CG15418 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10673 & 1 & 0 & 1 & 0 & 1 & CG15465 & 51 & 41 & 10 & 4 & 1 \\
\hline CG10681 & 2 & 0 & 2 & 0 & 1 & CG15482 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10713 & 1 & 1 & 0 & 1 & 0 & CG15529 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10874 & 1 & 0 & 1 & 0 & 1 & CG15609 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10918 & 1 & 1 & 0 & 1 & 0 & CG15706 & 1 & 0 & 1 & 0 & 1 \\
\hline CG10971 & 1 & 0 & 1 & 0 & 1 & CG15725 & 18 & 18 & 0 & 6 & 0 \\
\hline CG11006 & 2 & 2 & 0 & 1 & 0 & CG15771 & 56 & 56 & 0 & 6 & 0 \\
\hline CG11050 & 1 & 0 & 1 & 0 & 1 & CG1578 & 1 & 0 & 1 & 0 & 1 \\
\hline CG11077 & 1 & 0 & 1 & 0 & 1 & CG15828 & 2 & 1 & 1 & 1 & 1 \\
\hline CG11122 & 2 & 1 & 1 & 1 & 1 & CG15930 & 856 & 272 & 584 & 5 & 5 \\
\hline CG11146 & 2 & 2 & 0 & 2 & 0 & CG1599 & 1 & 0 & 1 & 0 & 1 \\
\hline CG1115 & 3 & 2 & 1 & 2 & 1 & CG1628 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11151 & 2 & 0 & 2 & 0 & 1 & CG1637 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11180 & 1 & 0 & 1 & 0 & 1 & CG1638 & 1 & 0 & 1 & 0 & 1 \\
\hline CG11188 & 1 & 1 & 0 & 1 & 0 & CG1662 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11198 & 5 & 4 & 1 & 4 & 1 & CG1665 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11242 & 1 & 0 & 1 & 0 & 1 & CG16972 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11284 & 1 & 0 & 1 & 0 & 1 & CG17065 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11490 & 1 & 1 & 0 & 1 & 0 & CG17108 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11498 & 2 & 2 & 0 & 2 & 0 & CG17264 & 1 & 0 & 1 & 0 & 1 \\
\hline CG11501 & 1 & 0 & 1 & 0 & 1 & CG17528 & 1 & 0 & 1 & 0 & 1 \\
\hline CG11526 & 3 & 0 & 3 & 0 & 3 & CG1753 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11534 & 1 & 1 & 0 & 1 & 0 & CG17838 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11710 & 1 & 0 & 1 & 0 & 1 & CG18107 & 4 & 1 & 3 & 1 & 3 \\
\hline CG11771 & 1 & 0 & 1 & 0 & 1 & CG1812 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11848 & 1 & 0 & 1 & 0 & 1 & CG18135 & 1 & 0 & 1 & 0 & 1 \\
\hline CG11943 & 2 & 0 & 2 & 0 & 2 & CG18208 & & 1 & 0 & 1 & 0 \\
\hline CG11963 & 2 & 1 & 1 & 1 & 1 & CG18262 & 1 & 1 & 0 & 1 & 0 \\
\hline CG11967 & 1 & 0 & 1 & 0 & 1 & CG18787 & 1 & 0 & 1 & 0 & 1 \\
\hline CG11968 & 1 & 1 & 0 & 1 & 0 & CG18809 & 1 & 0 & 1 & 0 & 1 \\
\hline CG12016 & 8 & 5 & 3 & 5 & 3 & CG1882 & 2 & 2 & 0 & 2 & 0 \\
\hline CG12017 & 1 & 1 & 0 & 1 & 0 & CG18854 & 141 & 139 & 2 & 2 & 39 \\
\hline CG12024 & 1 & 0 & 1 & 0 & 1 & CG18870 & 1 & 1 & 0 & 1 & 0 \\
\hline CG12091 & 1 & 0 & 1 & 0 & 1 & CG1893 & 1 & 1 & 0 & 1 & 0 \\
\hline CG12224 & 1 & 0 & 1 & 0 & 1 & CG1998 & 8 & 0 & 8 & 0 & 4 \\
\hline CG12340 & 1 & 0 & 1 & 0 & 1 & CG2061 & 1 & 0 & 1 & 0 & 1 \\
\hline CG12367 & 1 & 0 & 1 & 0 & 1 & CG2083 & 1 & 0 & 1 & 0 & 1 \\
\hline CG12393 & 1 & 1 & 0 & 1 & 0 & CG2093 & 1 & 0 & 1 & 0 & 1 \\
\hline CG1244 & 3 & 3 & 0 & 2 & 0 & CG2124 & 1 & 0 & 1 & 0 & 1 \\
\hline CG12581 & 1 & 0 & 1 & 0 & 1 & CG2165 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CG2182 & 1 & 1 & 0 & 1 & 0 & CG41573 & 2 & 2 & 0 & 2 & 0 \\
\hline CG2186 & 12 & 12 & 0 & 4 & 0 & CG41574 & 1 & 1 & 0 & 1 & 0 \\
\hline CG2233 & 2 & 0 & 2 & 0 & 2 & CG41579 & 1 & 1 & 0 & 1 & 0 \\
\hline CG2519 & 1 & 1 & 0 & 1 & 0 & CG41584 & 1 & 1 & 0 & 1 & 0 \\
\hline Cg 25 C & 1 & 0 & 1 & 0 & 1 & CG41587 & 1 & 1 & 0 & 1 & 0 \\
\hline CG2604 & 1 & 0 & 1 & 0 & 1 & CG41592 & 1 & 1 & 0 & 1 & 0 \\
\hline CG2807 & 1 & 0 & 1 & 0 & 1 & CG4169 & 1 & 1 & 0 & 1 & 0 \\
\hline CG2989 & 1 & 1 & 0 & 1 & 0 & CG4186 & 1 & 1 & 0 & 1 & 0 \\
\hline CG30035 & 1 & 0 & 1 & 0 & 1 & CG4278 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3011 & 2 & 0 & 2 & 0 & 2 & CG4500 & 1 & 1 & 0 & 1 & 0 \\
\hline CG31116 & 1 & 1 & 0 & 1 & 0 & CG4607 & 1 & 0 & 1 & 0 & 1 \\
\hline CG31121 & 847 & 265 & 582 & 5 & 4 & CG4629 & 1 & 1 & 0 & 1 & 0 \\
\hline CG31150 & 1 & 1 & 0 & 1 & 0 & CG4655 & 65 & 64 & 1 & 3 & 1 \\
\hline CG31163 & 1 & 1 & 0 & 1 & 0 & CG4658 & 1 & 0 & 1 & 0 & 1 \\
\hline CG31284 & 1 & 1 & 0 & 1 & 0 & CG4662 & 2 & 2 & 0 & 2 & 0 \\
\hline CG31461 & 10 & 8 & 2 & 3 & 2 & CG4673 & 1 & 0 & 1 & 0 & 1 \\
\hline CG31549 & 1 & 1 & 0 & 1 & 0 & CG4688 & 1 & 0 & 1 & 0 & 1 \\
\hline CG31771 & 175 & 95 & 80 & 4 & 4 & CG4699 & 1 & 0 & 1 & 0 & 1 \\
\hline CG31790 & 770 & 563 & 207 & 4 & 3 & CG4756 & 2 & 1 & 1 & 1 & 1 \\
\hline CG31865 & 2 & 2 & 0 & 2 & 0 & CG4756 & 1 & 1 & 0 & 1 & 0 \\
\hline CG32017 & 1 & 0 & 1 & 0 & 1 & CG4769 & 1 & 0 & 1 & 0 & 1 \\
\hline CG32048 & 1 & 0 & 1 & 0 & 1 & CG4825 & 2 & 1 & 1 & 1 & 1 \\
\hline CG32075 & 1 & 0 & 1 & 0 & 1 & CG4927 & 1 & 0 & 1 & 0 & 1 \\
\hline CG32164 & 1 & 1 & 0 & 1 & 0 & CG5044 & 1 & 1 & 0 & 1 & 0 \\
\hline CG32165 & 1 & 1 & 0 & 1 & 0 & CG5270 & 1 & 0 & 1 & 0 & 1 \\
\hline CG32170 & 1 & 1 & 0 & 1 & 0 & CG5273 & 1 & 0 & 1 & 0 & 1 \\
\hline CG32306 & 1 & 0 & 1 & 0 & 1 & CG5315 & 1 & 1 & 0 & 1 & 0 \\
\hline CG32442 & 1 & 0 & 1 & 0 & 1 & CG5455 & 1 & 0 & 1 & 0 & 1 \\
\hline CG32521 & 1 & 0 & 1 & 0 & 1 & CG5508 & 1 & 0 & 1 & 0 & 1 \\
\hline CG32667 & 2 & 0 & 2 & 0 & 2 & CG5621 & 1 & 1 & 0 & 1 & 0 \\
\hline CG32676 & 1 & 1 & 0 & 1 & 0 & CG5644 & 1 & 0 & 1 & 0 & 1 \\
\hline CG32685 & 1 & 0 & 1 & 0 & 1 & CG5691 & 1 & 0 & 1 & 0 & 1 \\
\hline CG32694 & 788 & 205 & 583 & 4 & 4 & CG5728 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3270 & 1 & 1 & 0 & 1 & 0 & CG5734 & 2 & 1 & 1 & 1 & 1 \\
\hline CG32758 & 1 & 0 & 1 & 0 & 1 & CG5794 & 1 & 0 & 1 & 0 & 1 \\
\hline CG3279 & 1 & 1 & 0 & 1 & 0 & CG5815 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3308 & 3 & 2 & 1 & 2 & 1 & CG5871 & 1 & 1 & 0 & 1 & 0 \\
\hline CG33080 & 4 & 1 & 3 & 1 & 2 & CG5885 & 1 & 0 & 1 & 0 & 1 \\
\hline CG33080 & 1 & 0 & 1 & 0 & 1 & CG5919 & 2 & 0 & 2 & 0 & 2 \\
\hline CG33097 & 1 & 0 & 1 & 0 & 1 & CG5938 & 1 & 1 & 0 & 1 & 0 \\
\hline CG33138 & 1 & 0 & 1 & 0 & 1 & CG5991 & 1 & 1 & 0 & 1 & 0 \\
\hline CG33144 & 1 & 0 & 1 & 0 & 1 & CG6028 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3332 & 8 & 8 & 0 & 3 & 0 & CG6055 & 1 & 1 & 0 & 1 & 0 \\
\hline CG33470 & 1 & 0 & 1 & 0 & 1 & CG6129 & 1 & 1 & 0 & 1 & 0 \\
\hline CG33472 & 1 & 1 & 0 & 1 & 0 & CG6201 & 1 & 0 & 1 & 0 & 1 \\
\hline CG33523 & 1 & 0 & 1 & 0 & 1 & CG6218 & 2 & 1 & 1 & 1 & 1 \\
\hline CG3368 & 1 & 0 & 1 & 0 & 1 & CG6299 & 1 & 1 & 0 & 1 & 0 \\
\hline CG33969 & 2 & 1 & 1 & 1 & 1 & CG6321 & 1 & 0 & 1 & 0 & 1 \\
\hline CG33981 & 1 & 0 & 1 & 0 & 1 & CG6404 & 1 & 0 & 1 & 0 & 1 \\
\hline CG34136 & 1 & 0 & 1 & 0 & 1 & CG6459 & 3 & 1 & 2 & 1 & 2 \\
\hline CG34179 & 1 & 0 & 1 & 0 & 1 & CG6498 & 1 & 1 & 0 & 1 & 0 \\
\hline CG34260 & 1 & 0 & 1 & 0 & 1 & CG6503 & 4 & 1 & 3 & 1 & 3 \\
\hline CG34268 & 1 & 1 & 0 & 1 & 0 & CG6654 & 1 & 1 & 0 & 1 & 0 \\
\hline CG34335 & 1 & 0 & 1 & 0 & 1 & CG6749 & 1 & 0 & 1 & 0 & 1 \\
\hline CG34360 & 2 & 2 & 0 & 2 & 0 & CG6762 & 1 & 1 & 0 & 1 & 0 \\
\hline CG34398 & 146 & 79 & 67 & 4 & 4 & CG6770 & 1 & 1 & 0 & 1 & 0 \\
\hline CG34417 & 1 & 0 & 1 & 0 & 1 & CG6808 & 1 & 0 & 1 & 0 & 1 \\
\hline CG34422 & 1 & 0 & 1 & 0 & 1 & CG6879 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3448 & 1 & 0 & 1 & 0 & 1 & CG7156 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3523 & 2 & 2 & 0 & 2 & 0 & CG7326 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3529 & 1 & 1 & 0 & 1 & 0 & CG7376 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3585 & 3 & 1 & 2 & 1 & 2 & CG7414 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3597 & 2 & 1 & 1 & 1 & 1 & CG7518 & 1 & 1 & 0 & 1 & 0 \\
\hline CG3829 & 1 & 0 & 1 & 0 & 1 & CG7739 & 7 & 4 & 3 & 3 & 3 \\
\hline CG4000 & 3 & 1 & 2 & 1 & 2 & CG7766 & 1 & 0 & 1 & 0 & 1 \\
\hline CG40084 & 3 & 3 & 0 & 3 & 0 & CG7781 & 1 & 0 & 1 & 0 & 1 \\
\hline CG40182 & 1 & 1 & 0 & 1 & 0 & CG7839 & 10 & 8 & 2 & 3 & 2 \\
\hline CG40271 & 1 & 1 & 0 & 1 & 0 & CG7884 & 1 & 1 & 0 & 1 & 0 \\
\hline CG40339 & 1 & 1 & 0 & 1 & 0 & CG7888 & 1 & 1 & 0 & 1 & 0 \\
\hline CG40351 & 4 & 1 & 3 & 1 & 3 & CG7920 & 1 & 1 & 0 & 1 & 0 \\
\hline CG4068 & 65 & 0 & 65 & 0 & 15 & CG7998 & 1 & 0 & 1 & 0 & 1 \\
\hline CG40793 & 1 & 0 & 1 & 0 & 1 & CG8008 & 2 & 0 & 2 & 0 & 2 \\
\hline CG40798 & 1 & 1 & 0 & 1 & 0 & CG8058 & 1 & 1 & 0 & 1 & 0 \\
\hline CG41053 & 1 & 1 & 0 & 1 & 0 & CG8112 & 2 & 0 & 2 & 0 & 2 \\
\hline CG41126 & 2 & 2 & 0 & 2 & 0 & CG8199 & 2 & 1 & 1 & 1 & 1 \\
\hline CG41332 & 1 & 1 & 0 & 1 & 0 & CG8289 & 1 & 0 & 1 & 0 & 1 \\
\hline CG41484 & 2 & 1 & 1 & 1 & 1 & CG8311 & 1 & 0 & 1 & 0 & 1 \\
\hline CG41557 & 1 & 1 & 0 & 1 & 0 & CG8312 & 1 & 0 & 1 & 0 & 1 \\
\hline CG41560 & 2 & 2 & 0 & 2 & 0 & CG8451 & 2 & 1 & 1 & 2 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CG8455 & 1 & 0 & 1 & 0 & 1 & EfTuM & 1 & 0 & 1 & 0 & 1 \\
\hline CG8500 & 3 & 1 & 2 & 1 & 2 & egh & 1 & 0 & 1 & 0 & 1 \\
\hline CG8545 & 846 & 265 & 582 & 5 & 3 & elF-4a & 1 & 0 & 1 & 0 & 1 \\
\hline CG8549 & 1 & 1 & 0 & 1 & 0 & Eip55E & 1 & 0 & 1 & 0 & 1 \\
\hline CG8745 & 1 & 0 & 1 & 0 & 1 & epsilonTry & & 0 & 1 & 0 & 1 \\
\hline CG8798 & 1 & 1 & 0 & 1 & 0 & Ets97D & & 0 & 1 & 0 & 1 \\
\hline CG8862 & 1 & 0 & 1 & 0 & 1 & exba & & 0 & 1 & 0 & 1 \\
\hline CG9005 & 2 & 2 & 0 & 1 & 0 & exo70 & 1 & 0 & 1 & 0 & 1 \\
\hline CG9062 & 1 & 0 & 1 & 0 & & exo84 & & 0 & 1 & 0 & 1 \\
\hline CG9062 & 2 & 2 & 0 & 2 & 0 & fab1 & 1 & 0 & 1 & 0 & 1 \\
\hline CG9132 & 1 & 0 & 1 & 0 & 1 & faf & 3 & 0 & 3 & 0 & 3 \\
\hline CG9170 & 4 & 4 & 0 & 2 & 0 & fat-spondin & 1 & 0 & 1 & 0 & 1 \\
\hline CG9216 & 1 & 0 & 1 & 0 & 1 & fbl & 2 & 1 & 1 & 1 & 1 \\
\hline CG9281 & 1 & 1 & 0 & 1 & 0 & fh & 1 & 1 & 0 & 1 & 0 \\
\hline CG9311 & 1 & 0 & 1 & 0 & 1 & Fit1 & 1 & 0 & 1 & 0 & 1 \\
\hline CG9318 & 1 & 0 & 1 & 0 & 1 & Flo-2 & 2 & 1 & 1 & 1 & 1 \\
\hline CG9339 & 1 & 1 & 0 & 1 & 0 & for & 1 & 1 & 0 & 1 & 0 \\
\hline CG9393 & 1 & 1 & 0 & 1 & 0 & form3 & & 1 & 0 & 1 & 0 \\
\hline CG9425 & 1 & 1 & 0 & 1 & 0 & Fps85D & 1 & 0 & 1 & 0 & 1 \\
\hline CG9485 & 1 & 1 & 0 & 1 & 0 & Fs & 2 & 2 & 0 & 2 & 0 \\
\hline CG9485 & 1 & 0 & 1 & 0 & 1 & fs(2)/toPP43 & 19 & 18 & 1 & 4 & 1 \\
\hline CG9512 & 1 & 0 & 1 & 0 & 1 & Fur2 & 897 & 631 & 266 & 5 & 5 \\
\hline CG9526 & 2 & 2 & 0 & 1 & 0 & G9a & 1 & 0 & 1 & 0 & 1 \\
\hline CG9619 & 1 & 0 & 1 & 0 & 1 & gammaCop & 1 & 1 & 0 & 1 & 0 \\
\hline CG9629 & 1 & 0 & 1 & 0 & 1 & Gfr & 1 & 1 & 0 & 1 & 0 \\
\hline CG9666 & 1 & 1 & 0 & 1 & 0 & Ggamma1 & 1 & 1 & 0 & 1 & 0 \\
\hline CG9674 & 882 & 266 & 616 & 5 & 4 & Glycogenin & 1 & 0 & 1 & 0 & 1 \\
\hline CG9779 & 2 & 0 & 2 & 0 & 2 & GlyP & 1 & 1 & 0 & 1 & 0 \\
\hline CG9780 & 9 & 5 & 4 & 5 & 4 & gro & 1 & 1 & 0 & 1 & 0 \\
\hline CG9865 & 1 & 0 & 1 & 0 & 1 & gry & 2 & 1 & 1 & 1 & 1 \\
\hline CG9894 & 12 & 4 & 8 & 1 & 3 & Gs2 & 1 & 0 & 1 & 0 & 1 \\
\hline CG9906 & 1 & 1 & 0 & 1 & 0 & Gug & 11 & 1 & 10 & 1 & 1 \\
\hline CG9914 & 1 & 0 & 1 & 0 & 1 & HDAC6 & 3 & 2 & 1 & 1 & 1 \\
\hline CG9915 & 1 & 0 & 1 & 0 & 1 & He & 3 & 3 & 0 & 1 & 0 \\
\hline CG9934 & 4 & 4 & 0 & 2 & 0 & HERC2 & 2 & 0 & 2 & 0 & 2 \\
\hline CG9935 & 2 & 2 & 0 & 2 & 0 & Hexo1 & 1 & 0 & 1 & 0 & 1 \\
\hline CG9935 & 1 & 0 & 1 & 0 & 1 & His2A (19 loci) & 1 & 1 & 0 & 1 & 0 \\
\hline CG9941 & 848 & 259 & 589 & 4 & 6 & His2B:CG17949 & 2 & 2 & 0 & 1 & 0 \\
\hline CG9945 & 2 & 1 & 1 & 1 & 1 & His3 (24 loci) & 1 & 1 & 0 & 1 & 0 \\
\hline CG9986 & 1 & 0 & 1 & 0 & 1 & His3 (23 loci) & 1 & 0 & 1 & 0 & 1 \\
\hline Chc & 2 & 2 & 0 & 2 & 0 & hoe2 & 1 & 0 & 1 & 0 & 1 \\
\hline cher & 2 & 1 & 1 & 1 & 1 & Hr4 & 845 & 585 & 260 & 6 & 5 \\
\hline CHES-1-like & 1 & 1 & 0 & 1 & 0 & Hs3st-A & 113 & 67 & 46 & 3 & 4 \\
\hline cic & 1 & 0 & 1 & 0 & 1 & Hsp70Aa & 1 & 0 & & 0 & 1 \\
\hline Cks30A & 1 & 1 & 0 & 1 & 0 & Hsp70Ab & 1 & 0 & 1 & 0 & 1 \\
\hline Cks85A & 1 & 1 & 0 & 1 & 0 & Hsp70Ba & 1 & 0 & 1 & 0 & 1 \\
\hline Cp1 & 1 & 0 & 1 & 0 & 1 & Hsp70Bb & 1 & 0 & 1 & 0 & 1 \\
\hline cpo & 1 & 0 & 1 & 0 & 1 & Hsp70Bbb & 1 & 0 & 1 & 0 & 1 \\
\hline CRMP & 2 & 2 & 0 & 1 & 0 & Hsp70Bc & 1 & 0 & 1 & 0 & 1 \\
\hline cra & 1 & 1 & 0 & 1 & 0 & Hsp83 & 3 & 1 & 2 & 1 & 2 \\
\hline Csk & 1 & 0 & 1 & 0 & 1 & htt & 882 & 300 & 582 & 8 & 4 \\
\hline CSN8 & 1 & 0 & 1 & 0 & 1 & IM10 & 1 & 0 & 1 & 0 & 1 \\
\hline Cyp1 & 1 & 0 & 1 & 0 & 1 & InR & 2 & 2 & 0 & 2 & 0 \\
\hline Cyp28d1 & 1 & 0 & 1 & 0 & 1 & IP3K1 & 3 & 1 & 2 & 1 & 2 \\
\hline Суp6d5 & 1 & 1 & 0 & 1 & 0 & Irp-1B & 1 & 0 & 1 & 0 & 1 \\
\hline Cyp6g1 & 1 & 1 & 0 & 1 & 0 & JTBR & 1 & 1 & 0 & 1 & 0 \\
\hline Cyp6w1 & 1 & 0 & 1 & 0 & 1 & Kap-alpha3 & 1 & 0 & 1 & 0 & 1 \\
\hline Cys & 1 & 1 & 0 & 1 & 0 & katanin-60 & 5 & 3 & 2 & 2 & 2 \\
\hline Cyt-b5-r & 8 & 4 & 4 & 3 & 4 & KrT95D & 1 & 0 & 1 & 0 & 1 \\
\hline D2R & 1 & 0 & 1 & 0 & 1 & kst & 1 & 0 & 1 & 0 & 1 \\
\hline Dcr-1 & 5 & 3 & 2 & 3 & 2 & kuk & 1 & 0 & 1 & 0 & 1 \\
\hline Deaf1 & 1 & 1 & 0 & 1 & 0 & I(1)G0469 & 1 & 1 & 0 & 1 & 0 \\
\hline Df31 & 1 & 0 & 1 & 0 & 1 & ( \((2) 01810\) & 1 & 0 & 1 & 0 & 1 \\
\hline Dhc64C & 2 & 1 & 1 & 1 & 1 & l(2)gl & 8 & 4 & 4 & 4 & 4 \\
\hline dik & 1 & 0 & 1 & 0 & 1 & I(3)02640 & 1 & 0 & 1 & 0 & 1 \\
\hline DNApol-iota & 1 & 1 & 0 & 1 & 0 & I(3)04053 & 1 & 1 & 0 & 1 & 0 \\
\hline dnc & 1 & 0 & 1 & 0 & 1 & \(1(3) 73 A h\) & & 1 & 0 & 1 & 0 \\
\hline dome & 1 & 0 & 1 & 0 & 1 & I(3) 22 D 3 & 2 & 2 & 0 & 1 & 0 \\
\hline Dot & 1 & 1 & 0 & 1 & 0 & Lam & 1 & 1 & 0 & 1 & 0 \\
\hline dp & 3 & 2 & 1 & 2 & 1 & IdICp & 2 & 1 & 1 & 1 & 1 \\
\hline Dpit47 & 1 & 0 & 1 & 0 & 1 & Lmpt & 1 & 0 & 1 & 0 & 1 \\
\hline drosha & 1 & 0 & 1 & 0 & 1 & Iolal & 1 & 0 & 1 & 0 & 1 \\
\hline \(E(P C)\) & 1 & 1 & 0 & 1 & 0 & Lsd-1 & 2 & 0 & 2 & 0 & 2 \\
\hline e(y)3 & 1 & 1 & 0 & 1 & 0 & Lsm11 & 1 & 0 & 1 & 0 & 1 \\
\hline ect & 3 & 2 & 1 & 2 & 1 & Iva & 1 & 0 & 1 & 0 & 1 \\
\hline Edem1 & 1 & 1 & 0 & 1 & 1 & LysS & 1 & 0 & 1 & 0 & 1 \\
\hline Edem2 & 1 & 1 & 0 & 1 & 1 & mask & 4 & 4 & 0 & 2 & 0 \\
\hline Eftalpha48D & 2 & 1 & 1 & 1 & 1 & mbl & 1 & 0 & 1 & 0 & 1 \\
\hline Ef2b & 2 & 0 & 2 & 0 & 2 & MED21 & 3 & 2 & 1 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mekk1 & 1 & 0 & 1 & 0 & 1 & regucalcin & 1 & 0 & 1 & 0 & 1 \\
\hline Mes-4 & 1 & 0 & 1 & 0 & 1 & repo & 1 & 0 & 1 & 0 & 1 \\
\hline milt & 1 & 1 & 0 & 1 & 0 & Rfabg & 3 & 0 & 3 & 0 & 3 \\
\hline Mio & 1 & 0 & 1 & 0 & 1 & Rho 1 & 2 & 0 & 2 & 0 & 1 \\
\hline Mitf & 1 & 1 & 0 & 1 & 0 & RhoGAP71E & 1 & 0 & 1 & 0 & 1 \\
\hline Mkp3 & 1 & 0 & 1 & 0 & 1 & rin & 2 & 0 & 2 & 0 & 2 \\
\hline mld & 1 & 1 & 0 & 1 & 0 & \(r-1\) & 1 & 1 & 0 & 1 & 0 \\
\hline Mmp1 & 1 & 0 & 1 & 0 & & rols & 1 & 1 & 0 & 1 & 0 \\
\hline mnb & 2 & 2 & 0 & 2 & 0 & RpL19 & 1 & 0 & 1 & 0 & 1 \\
\hline Mnt & 1 & 0 & 1 & 0 & 1 & RpL28 & 4 & 0 & 4 & 0 & 1 \\
\hline MP1 & 3 & 3 & 0 & 3 & 0 & RpL31 & 1 & 0 & 1 & 0 & 1 \\
\hline mRpL1 & 1 & 0 & 1 & 0 & 1 & RpL35A & 1 & 0 & 1 & 0 & 1 \\
\hline mRpL35 & 1 & 0 & 1 & 0 & 1 & RpL38 & 1 & 0 & 1 & 0 & 1 \\
\hline mrt & 1 & 0 & 1 & 0 & & RpL4 & 1 & 0 & 1 & 0 & 1 \\
\hline msl-3 & 2 & 0 & 2 & 0 & 2 & RpS18 & 1 & 0 & 1 & 0 & 1 \\
\hline Msp-300 & 2 & 1 & 1 & 1 & 1 & RpS19a & 2 & 1 & 1 & 1 & 1 \\
\hline mt:ATPase6 & 1 & 0 & 1 & 0 & & RpS26 & 1 & 0 & 1 & 0 & 1 \\
\hline \(m \mathrm{~m}: \mathrm{Col}\) & 6 & 0 & 6 & 0 & 6 & RpS6 & 1 & 0 & 1 & 0 & 1 \\
\hline mt:Coll & 1 & 0 & 1 & 0 & 1 & RpS8 & 1 & 0 & 1 & 0 & 1 \\
\hline mt:Colll & 4 & 0 & 4 & 0 & 4 & Rpt4 & 1 & 1 & 0 & 1 & 0 \\
\hline mt:Cyt-b & 2 & 0 & 2 & 0 & 2 & rut & 1 & 1 & 0 & 1 & 0 \\
\hline mt:ND1 & 1 & 0 & 1 & 0 & 1 & Rya-r44F & 1 & 0 & 1 & 0 & 1 \\
\hline mt:ND3 & 1 & 0 & 1 & 0 & & sano & 63 & 61 & 2 & 2 & 2 \\
\hline mt:ND5 & 1 & 0 & 1 & 0 & 1 & Sap-r & 1 & 0 & 1 & 0 & 1 \\
\hline mt:ND5 & 1 & 0 & 1 & 0 & 1 & Sara & 1 & 0 & 1 & 0 & 1 \\
\hline mts & 1 & 0 & 1 & 0 & 1 & sdt & 1 & 1 & 0 & 1 & 0 \\
\hline mus309 & 1 & 1 & 0 & 1 & 0 & SelR & 1 & 0 & 1 & 0 & 1 \\
\hline Nc73EF & 1 & 0 & 1 & 0 & 1 & sens & 843 & 262 & 581 & 4 & 3 \\
\hline nct & 1 & 0 & 1 & 0 & 1 & SerT & 3 & 3 & 0 & 3 & 0 \\
\hline nej & 1 & 0 & 1 & 0 & 1 & ses B & 1 & 0 & 1 & 0 & 1 \\
\hline Ngp & 1 & 1 & 0 & 1 & 0 & sev & 2 & 0 & 2 & 0 & 2 \\
\hline ninaB & 1 & 0 & 1 & 0 & 1 & shot & 1 & 1 & 0 & 1 & 0 \\
\hline ninaC & 1 & 0 & 1 & 0 & 1 & sif & 1 & 1 & 0 & 1 & 0 \\
\hline ninaE & 2 & 0 & 2 & 0 & 1 & Sk2 & 1 & 0 & 1 & 0 & 1 \\
\hline Nipped-A & 1 & 1 & 0 & 1 & 0 & slik & 1 & 0 & 1 & 0 & 1 \\
\hline Nrx-1 & 2 & 0 & 2 & 0 & 2 & s/s & 1 & 0 & 1 & 0 & 1 \\
\hline NtI & 7 & 0 & 7 & 0 & 5 & smg & 2 & 1 & 1 & 1 & 1 \\
\hline OstStt3 & 1 & 0 & 1 & 0 & 1 & Smr & 38 & 36 & 2 & 10 & 2 \\
\hline ovo & 10 & 9 & 1 & 1 & 1 & Sox14 & 1 & 1 & 0 & 1 & 0 \\
\hline p47 & 1 & 1 & 0 & 1 & 0 & Spase18-21 & 1 & 1 & 0 & 1 & 0 \\
\hline Patj & 1 & 0 & 1 & 0 & 1 & spen & 2 & 0 & 2 & 0 & 2 \\
\hline pbl & 3 & 2 & 1 & 2 & 1 & Sra-1 & 2 & 1 & 1 & 1 & 1 \\
\hline Pc & 2 & 1 & 1 & 1 & 1 & sta & 1 & 0 & 1 & 0 & 1 \\
\hline PebllI & 1 & 0 & 1 & 0 & 1 & StIP & 1 & 1 & 0 & 1 & 0 \\
\hline Pect & 3 & 2 & 1 & 2 & 1 & Strn-MIck & 1 & 0 & 1 & 0 & 1 \\
\hline Pepck & 1 & 1 & 0 & 1 & 0 & sty & 1 & 1 & 0 & 1 & 0 \\
\hline Pgant35A & 1 & 1 & 0 & 1 & 0 & svr & 1 & 1 & 0 & 1 & 0 \\
\hline pgant6 & 1 & 0 & 1 & 0 & 1 & Syx17 & 1 & 0 & 1 & 0 & 1 \\
\hline Pgi & 1 & 0 & 1 & 0 & 1 & Syx 18 & 1 & 0 & 1 & 0 & 1 \\
\hline Pgk & 2 & 2 & 0 & 1 & 0 & T48 & 1 & 1 & 0 & 1 & 0 \\
\hline Pgm & 1 & 1 & 0 & 1 & 0 & tafazzin & 2 & 1 & 1 & 1 & 1 \\
\hline Pi3K59F & 1 & 0 & 1 & 0 & 1 & Tango7 & 1 & 0 & 1 & 0 & 1 \\
\hline pip & 1 & 1 & 0 & 1 & 0 & tara & 1 & 0 & 1 & 0 & 1 \\
\hline PIP82 & 876 & 614 & 262 & 8 & 4 & Tcp-1eta & 1 & 0 & 1 & 0 & 1 \\
\hline Pits/re & 1 & 0 & 1 & 0 & 1 & TfllFbeta & 1 & 1 & 0 & 1 & 0 \\
\hline ple & 1 & 1 & 0 & 1 & 0 & th & 4 & 2 & 2 & 2 & 2 \\
\hline plexA & 1 & 0 & 1 & 0 & 1 & Thiolase & 1 & 0 & 1 & 0 & 1 \\
\hline \(p / x\) & 1 & 0 & 1 & 0 & 1 & Thor & 2 & 0 & 2 & 0 & 1 \\
\hline pnt & 919 & 650 & 269 & 8 & 5 & Tis11 & 2 & 1 & 1 & 1 & 1 \\
\hline Pof & 1 & 1 & 0 & 1 & 0 & tkv & 2 & 1 & 1 & 1 & 1 \\
\hline POSH & 1 & 1 & 0 & 1 & 0 & tnc & 1 & 1 & 0 & 1 & 0 \\
\hline Pp2B-14D & 1 & 1 & 0 & 1 & 0 & tra & 1 & 0 & 1 & 0 & 1 \\
\hline Ppt1 & 1 & 1 & 0 & 1 & 0 & trbl & 1 & 0 & 1 & 0 & 1 \\
\hline Prm & 1 & 0 & 1 & 0 & 1 & trk & 1 & 0 & 1 & 0 & 1 \\
\hline Psf3 & 1 & 0 & 1 & 0 & 1 & Trxr-1 & 1 & 0 & 1 & 0 & 1 \\
\hline Ptp99A & 6 & 2 & 4 & 2 & 4 & Tsf1 & 4 & 1 & 3 & 1 & 3 \\
\hline Pu & 1 & 0 & 1 & 0 & 1 & Tsp42Er & 1 & 0 & 1 & 0 & 1 \\
\hline pyd & 1 & 1 & 0 & 1 & 0 & Tsp5D & 2 & 2 & 0 & 1 & 0 \\
\hline PyK & 1 & 0 & 1 & 0 & 1 & tst & 1 & 1 & 0 & 1 & 0 \\
\hline r2d2 & 3 & 0 & 3 & 0 & 3 & TwdIT & 1 & 0 & 1 & 0 & 1 \\
\hline Rab6 & 1 & 0 & 1 & 0 & 1 & UbcD2 & 1 & 0 & 1 & 0 & 1 \\
\hline RabX6 & 1 & 0 & 1 & 0 & 1 & Ubc-E2H & 1 & 0 & 1 & 0 & 1 \\
\hline rad & 1 & 0 & 1 & 0 & 1 & Ubp64E & 1 & 0 & 1 & 0 & 1 \\
\hline Rad23 & 1 & 0 & 1 & 0 & 1 & Unc-89 & 1 & 1 & 0 & 1 & 0 \\
\hline raps & 1 & 0 & 1 & 0 & 1 & up & 2 & 1 & 1 & 1 & 1 \\
\hline Rbm13 & 887 & 303 & 582 & 9 & 4 & Usp36 & 1 & 0 & 1 & 0 & 1 \\
\hline Rbp2 & 15 & 14 & 1 & 7 & 1 & Vap-33-1 & 1 & 0 & & 0 & 1 \\
\hline Rbp2 & 1 & 0 & & 0 & 1 & vav & 1 & 1 & 0 & 1 & 0 \\
\hline \(r e f(2) P\) & 1 & 1 & 0 & 1 & 0 & Vha100-1 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Vha26 & 1 & 1 & 0 & 1 & 0 \\
\hline Vha68-2 & 1 & 0 & 1 & 0 & 1 \\
\hline Vhl & 3 & 1 & 2 & 1 & 2 \\
\hline vir-1 & 1 & 0 & 1 & 0 & 1 \\
\hline vn & 1 & 1 & 0 & 1 & 0 \\
\hline whd & 1 & 1 & 0 & 1 & 0 \\
\hline wuho & 1 & 0 & 1 & 0 & 1 \\
\hline Xbp1 & 1 & 0 & 1 & 0 & 1 \\
\hline yip7 & 1 & 0 & 1 & 0 & 1 \\
\hline Yippee & 1 & 0 & 1 & 0 & 1 \\
\hline\(y l\) & 1 & 0 & 1 & 0 & 1 \\
\hline Yp1 & 5 & 0 & 5 & 0 & 5 \\
\hline Yp2 & 3 & 1 & 2 & 1 & 2 \\
\hline Yp3 & 2 & 0 & 2 & 0 & 2 \\
\hline zf30C & 1 & 1 & 0 & 1 & 0 \\
\hline zfh2 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}

Table II-S2. Endogenous siRNAs map to transposons. Percentages total more than 100, because some siRNAs map to more than one transposon. Red, LTR retrotransposons; green, non-LTR retrotransposons, blue, DNA transposons.

Table II-S2.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{S2 cells (36,958 reads excluding pre-miRNA matching)} \\
\hline \multirow[b]{2}{*}{Transposon} & \multicolumn{2}{|l|}{Sense siRNAs} & \multicolumn{2}{|l|}{Antisense siRNAs} & \multirow[t]{2}{*}{Total number of siRNAs} \\
\hline & Number of siRNAs & \% of total siRNAs & Number of siRNAs & \% of total siRNAs & \\
\hline 297 & 10,918 & 29.54 & 10,833 & 29.31 & 21,751 \\
\hline 1731 & 7,887 & 21.34 & 6,490 & 17.56 & 14,377 \\
\hline mdg1 & 4,565 & 12.35 & 5,156 & 13.95 & 7,968 \\
\hline roo & 3,101 & 8.39 & 4,023 & 10.89 & 6,745 \\
\hline Doc & 1,794 & 4.85 & 1,999 & 5.41 & 3,793 \\
\hline blood & 1,810 & 4.90 & 1,952 & 5.28 & 3,762 \\
\hline INE-1 & 1,194 & 3.23 & 1,306 & 3.53 & 2,476 \\
\hline diver & 1,037 & 2.81 & 1,126 & 3.05 & 2,163 \\
\hline mdg3 & 569 & 1.54 & 914 & 2.47 & 1,483 \\
\hline Cr1a & 804 & 2.18 & 402 & 1.09 & 1,183 \\
\hline jockey & 593 & 1.60 & 565 & 1.53 & 1,158 \\
\hline S & 490 & 1.33 & 518 & 1.40 & 999 \\
\hline Juan & 508 & 1.37 & 480 & 1.30 & 988 \\
\hline copia & 615 & 1.66 & 246 & 0.67 & 861 \\
\hline Tirant & 308 & 0.83 & 380 & 1.03 & 688 \\
\hline 17.6 & 237 & 0.64 & 400 & 1.08 & 637 \\
\hline Quasimodo & 383 & 1.04 & 236 & 0.64 & 597 \\
\hline 3518 & 264 & 0.71 & 245 & 0.66 & 509 \\
\hline transib1 & 242 & 0.65 & 256 & 0.69 & 498 \\
\hline \(F\) & 202 & 0.55 & 283 & 0.77 & 403 \\
\hline Stalker2 & 293 & 0.79 & 313 & 0.85 & 332 \\
\hline gypsy12 & 200 & 0.54 & 125 & 0.34 & 325 \\
\hline micropia & 161 & 0.44 & 163 & 0.44 & 324 \\
\hline HB & 144 & 0.39 & 167 & 0.45 & 311 \\
\hline Dm88 & 142 & 0.38 & 142 & 0.38 & 284 \\
\hline Stalker4 & 29 & 0.08 & 151 & 0.41 & 180 \\
\hline Rt1b & 90 & 0.24 & 84 & 0.23 & 171 \\
\hline flea & 63 & 0.17 & 59 & 0.16 & 122 \\
\hline Transpac & 59 & 0.16 & 48 & 0.13 & 107 \\
\hline Ivk & 72 & 0.19 & 34 & 0.09 & 102 \\
\hline transib3 & 26 & 0.07 & 66 & 0.18 & 92 \\
\hline diver2 & 70 & 0.19 & 14 & 0.04 & 84 \\
\hline Burdock & 45 & 0.12 & 35 & 0.09 & 80 \\
\hline rooA & 24 & 0.06 & 50 & 0.14 & 74 \\
\hline gypsy2 & 48 & 0.13 & 25 & 0.07 & 73 \\
\hline invader1 & 73 & 0.20 & 73 & 0.20 & 73 \\
\hline Stalker & 17 & 0.05 & 52 & 0.14 & 69 \\
\hline McClintock & 1 & 0.00 & 62 & 0.17 & 63 \\
\hline NOF & 14 & 0.04 & 48 & 0.13 & 62 \\
\hline gypsy8 & 44 & 0.12 & 13 & 0.04 & 57 \\
\hline 1360 & 42 & 0.11 & 34 & 0.09 & 46 \\
\hline 412 & 8 & 0.02 & 32 & 0.09 & 40 \\
\hline ninja-Dsim-like & 19 & 0.05 & 21 & 0.06 & 40 \\
\hline jockey2 & 25 & 0.07 & 9 & 0.02 & 32 \\
\hline HMS-Beagle & 24 & 0.06 & 5 & 0.01 & 29 \\
\hline Fw2 & 24 & 0.06 & 3 & 0.01 & 27 \\
\hline gypsy10 & 23 & 0.06 & 4 & 0.01 & 27 \\
\hline gypsy4 & 11 & 0.03 & 16 & 0.04 & 27 \\
\hline gypsy6 & 14 & 0.04 & 13 & 0.04 & 27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline HeT-A & 16 & 0.04 & 25 & 0.07 & 27 \\
\hline FB & 23 & 0.06 & 10 & 0.03 & 23 \\
\hline gypsy & 11 & 0.03 & 10 & 0.03 & 21 \\
\hline opus & 21 & 0.06 & 17 & 0.05 & 21 \\
\hline & 18 & 0.05 & 2 & 0.01 & 20 \\
\hline G3 & 7 & 0.02 & 9 & 0.02 & 16 \\
\hline Rt1c & 7 & 0.02 & 9 & 0.02 & 16 \\
\hline R1-element & 2 & 0.01 & 12 & 0.03 & 14 \\
\hline Tabor & 4 & 0.01 & 9 & 0.02 & 13 \\
\hline gypsy11 & 0 & 0.00 & 12 & 0.03 & 12 \\
\hline FW3 & 9 & 0.02 & 7 & 0.02 & 11 \\
\hline Idefix & 7 & 0.02 & 4 & 0.01 & 11 \\
\hline G4 & 4 & 0.01 & 6 & 0.02 & 10 \\
\hline Max & 6 & 0.02 & 8 & 0.02 & 10 \\
\hline GATE & 2 & 0.01 & 7 & 0.02 & 9 \\
\hline TART & 7 & 0.02 & 1 & 0.00 & 8 \\
\hline baggins & 7 & 0.02 & 0 & 0.00 & 7 \\
\hline G5A & 2 & 0.01 & 4 & 0.01 & 6 \\
\hline S2 & 5 & 0.01 & 0 & 0.00 & 5 \\
\hline looper1 & 4 & 0.01 & 2 & 0.01 & 4 \\
\hline gypsy3 & 2 & 0.01 & 1 & 0.00 & 3 \\
\hline invader3 & 2 & 0.01 & 1 & 0.00 & 3 \\
\hline invader4 & 2 & 0.01 & 1 & 0.00 & 3 \\
\hline rover & 0 & 0.00 & 3 & 0.01 & 3 \\
\hline springer & 2 & 0.01 & 1 & 0.00 & 3 \\
\hline frogger & 0 & 0.00 & 2 & 0.01 & 2 \\
\hline accord & 1 & 0.00 & 0 & 0.00 & 1 \\
\hline & 0 & 0.00 & 1 & 0.00 & 1 \\
\hline invader2 & 0 & 0.00 & 1 & 0.00 & 1 \\
\hline pogo & 1 & 0.00 & 0 & 0.00 & 1 \\
\hline intergenic & 1,606 & 4.35 & 1,406 & 3.80 & 2,817 \\
\hline unannotated & N/A & N/A & N/A & N/A & 1,715 \\
\hline mRNA not transposon & N/A & N/A & N/A & N/A & 1,261 \\
\hline mRNA \& transposon & 3,247 & 8.79 & 3,021 & 8.17 & 4,597 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Fly Heads (5,600 reads excluding pre-miRNA matching)} \\
\hline \multirow{2}{*}{Transposon} & \multicolumn{2}{|l|}{Sense siRNAs} & \multicolumn{2}{|l|}{Antisense siRNAs} & \multirow[t]{2}{*}{Total number of siRNAs} \\
\hline & Number of siRNAs & \% of total siRNAs & Number of siRNAs & \% of total siRNAs & \\
\hline mdg1 & 533 & 10.13 & 540 & 10.26 & 720 \\
\hline roo & 350 & 6.65 & 338 & 6.42 & 571 \\
\hline 297 & 185 & 3.52 & 189 & 3.59 & 374 \\
\hline jockey & 72 & 1.37 & 112 & 2.13 & 184 \\
\hline F & 92 & 1.75 & 89 & 1.69 & 137 \\
\hline Cr1a & 64 & 1.22 & 58 & 1.10 & 119 \\
\hline INE-1 & 73 & 1.39 & 40 & 0.76 & 110 \\
\hline Stalker2 & 65 & 1.24 & 61 & 1.16 & 100 \\
\hline gypsy12 & 47 & 0.89 & 53 & 1.01 & 99 \\
\hline Doc & 49 & 0.93 & 37 & 0.70 & 86 \\
\hline HB & 41 & 0.78 & 44 & 0.84 & 85 \\
\hline Ivk & 39 & 0.74 & 61 & 1.16 & 81 \\
\hline Rt1b & 34 & 0.65 & 45 & 0.86 & 78 \\
\hline Stalker4 & 40 & 0.76 & 31 & 0.59 & 71 \\
\hline opus & 59 & 1.12 & 61 & 1.16 & 65 \\
\hline diver2 & 25 & 0.48 & 35 & 0.67 & 60 \\
\hline transib3 & 37 & 0.70 & 16 & 0.30 & 53 \\
\hline gypsy2 & 26 & 0.49 & 20 & 0.38 & 45 \\
\hline blood & 17 & 0.32 & 26 & 0.49 & 43 \\
\hline invader1 & 41 & 0.78 & 41 & 0.78 & 43 \\
\hline gypsy6 & 21 & 0.40 & 16 & 0.30 & 37 \\
\hline gypsy & 19 & 0.36 & 16 & 0.30 & 35 \\
\hline rooA & 9 & 0.17 & 23 & 0.44 & 32 \\
\hline FB & 30 & 0.57 & 29 & 0.55 & 30 \\
\hline accord2 & 17 & 0.32 & 12 & 0.23 & 29 \\
\hline jockey2 & 20 & 0.38 & 10 & 0.19 & 26 \\
\hline Stalker & 5 & 0.10 & 19 & 0.36 & 24 \\
\hline NOF & 5 & 0.10 & 18 & 0.34 & 23 \\
\hline gypsy8 & 14 & 0.27 & 4 & 0.08 & 18 \\
\hline 1360 (hoppel) & 7 & 0.13 & 13 & 0.25 & 16 \\
\hline Max & 7 & 0.13 & 10 & 0.19 & 16 \\
\hline \[
412
\] & 3 & 0.06 & 11 & 0.21 & 14 \\
\hline GATE & 7 & 0.13 & 7 & 0.13 & 14 \\
\hline gypsy3 & 6 & 0.11 & 8 & 0.15 & 14 \\
\hline springer & 6 & 0.11 & 8 & 0.15 & 14 \\
\hline Burdock & 5 & 0.10 & 7 & 0.13 & 12 \\
\hline invader3 & 6 & 0.11 & 6 & 0.11 & 12 \\
\hline gypsy 4 & 3 & 0.06 & 8 & 0.15 & 11 \\
\hline Quasimodo & 6 & 0.11 & 5 & 0.10 & 10 \\
\hline R1 & 5 & 0.10 & 5 & 0.10 & 10 \\
\hline 17.6 & 6 & 0.11 & 3 & 0.06 & 9 \\
\hline gypsy 10 & 2 & 0.04 & 6 & 0.11 & 8 \\
\hline R1-element & 3 & 0.06 & 5 & 0.10 & 8 \\
\hline HMS-Beagle & 3 & 0.06 & 4 & 0.08 & 7 \\
\hline & 7 & 0.13 & 5 & 0.10 & 7 \\
\hline HeT-A & 5 & 0.10 & 2 & 0.04 & 5 \\
\hline \[
\text { mdg } 3
\] & 2 & 0.04 & 3 & 0.06 & 5 \\
\hline \[
s
\] & 1 & 0.02 & 5 & 0.10 & 5 \\
\hline copia & 3 & 0.06 & 1 & 0.02 & 4 \\
\hline Tabor & 3 & 0.06 & 1 & 0.02 & 4 \\
\hline Dm88 & 1 & 0.02 & 2 & 0.04 & 3 \\
\hline HMS-Beagle2 & 1 & 0.02 & 2 & 0.04 & 3 \\
\hline
\end{tabular}


Table II-S3A. Enodogenous siRNAs from S 2 cells were clustered as described by
Brennecke et al. (2007), using Drosophila melanogaster genome release R5.5 (http://flybase.bio.indiana.edu/).

Table II-S3A.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{S2 cells} \\
\hline Cluster ID & Chromosome & Start & End & Cluster length (kb) & Number of reads mapping uniquely to cluster & Number of reads mapping to cluster & \begin{tabular}{l}
piRNA cluster I.D. \\
(Brennecke et al., 2007)
\end{tabular} & Cytogenetic location \\
\hline 1 & 2L & 9,782,623 & 9,795,136 & 13 & 517 & 517 & & 30C9-30D1 \\
\hline 2 & 3RHet & 782,889 & 796,491 & 14 & 159 & 897 & & \\
\hline 3 & 2L & 2,898,870 & 2,913,985 & 15 & 128 & 128 & & 23C2 \\
\hline 4 & 2L & 22,752,903 & 22,780,367 & 27 & 65 & 619 & & \\
\hline 5 & 2L & 1,655,404 & 1,717,432 & 62 & 50 & 4845 & & 22A6-22B1 \\
\hline 6 & 2L & 21,079,751 & 21,094,168 & 14 & 50 & 50 & & 39A1 \\
\hline 7 & 3L & 15,547,096 & 15,559,889 & 13 & 45 & 53 & & 71E1 \\
\hline 8 & U & 5,762,659 & 5,775,688 & 13 & 42 & 106 & cluster \#10 & \\
\hline 9 & 2L & 13,178,621 & 13,215,680 & 37 & 41 & 41 & & 34A8-34A10 \\
\hline 10 & 3L & 645,955 & 657,148 & 11 & 40 & 40 & & 61C8 \\
\hline 11 & 2L & 7,967,622 & 7,988,787 & 21 & 39 & 4930 & & 28D3 \\
\hline 12 & 2R & 8,459,176 & 8,469,174 & 10 & 37 & 37 & & 49B5-49B6 \\
\hline 13 & 2L & 7,073,818 & 7,084,359 & 11 & 36 & 36 & & 27E1 \\
\hline 14 & 2L & 103,176 & 123,592 & 20 & 35 & 35 & & 21B2 \\
\hline 16 & 3L & 3,192,342 & 3,242,225 & 50 & 35 & 35 & & 63B11-63C1 \\
\hline 15 & 2R & 7,478,837 & 7,491,292 & 12 & 35 & 35 & & 48A3 \\
\hline 17 & X & 17,983,251 & 17,995,197 & 12 & 32 & 32 & & 16F6 \\
\hline 18 & 2L & 447,944 & 482,135 & 34 & 31 & 31 & & 21C2-21D1 \\
\hline 19 & 2L & 1,153,981 & 1,164,214 & 10 & 31 & 31 & & 21F1 \\
\hline 20 & 3R & 26,182,009 & 26,195,088 & 13 & 30 & 30 & & 99F1-99F2 \\
\hline 21 & U & 9,199,049 & 9,230,523 & 31 & 29 & 2917 & & \\
\hline 22 & 3L & 824,291 & 870,587 & 46 & 28 & 958 & & 61D2 \\
\hline 23 & 2R & 2,229,785 & 2,243,731 & 14 & 27 & 15206 & cluster \#1 & 42A15-42A16 \\
\hline 24 & 3R & 19,551,888 & 19,606,927 & 55 & 26 & 26 & & 95B1-95B5 \\
\hline 25 & 3R & 16,891,416 & 16,901,947 & 11 & 24 & 24 & & 93B9-93B10 \\
\hline 26 & 2L & 8,195,702 & 8,225,201 & 30 & 23 & 23 & & 28F1-28F4 \\
\hline 27 & 2R & 12,892,015 & 12,902,518 & 11 & 23 & 23 & & 53E4 \\
\hline 28 & 2R & 1,897,692 & 1,907,690 & 10 & 22 & 22 & & 42A7-42A8 \\
\hline 29 & 3R & 5,591,241 & 5,634,025 & 43 & 22 & 22 & & 85E8-85E10 \\
\hline 31 & X & 1,346,902 & 1,378,364 & 31 & 21 & 21 & & 2A3-2B1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 30 & 3R & 11,159,014 & 11,191,374 & 32 & 21 & 21 & & 88F1 \\
\hline 33 & X & 1,956,119 & 1,972,769 & 17 & 20 & 20 & & 2C8-2C10 \\
\hline 32 & 3L & 22,860,546 & 22,871,373 & 11 & 20 & 20 & & 80B1-80B2 \\
\hline 34 & 2L & 3,014,084 & 3,028,983 & 15 & 19 & 19 & & 23C4 \\
\hline 39 & 3R & 12,063,559 & 12,099,214 & 36 & 19 & 19 & & 89B9 \\
\hline 35 & 2L & 18,675,544 & 18,705,832 & 30 & 19 & 19 & & 36F10-37A1 \\
\hline 37 & 3L & 20,378,235 & 20,389,706 & 11 & 19 & 19 & & 77B9-77C1 \\
\hline 38 & 3L & 20,473,055 & 20,511,399 & 38 & 19 & 20 & & 77C4-77C6 \\
\hline 36 & 2R & 20,554,111 & 20,563,855 & 10 & 19 & 19 & & 60D13 \\
\hline 40 & 3L & 14,008,142 & 14,049,713 & 42 & 18 & 18 & & 70C12-70D1 \\
\hline 44 & U & 4,011,232 & 4,031,670 & 20 & 17 & 96 & cluster \#7 & \\
\hline 43 & 3R & 5,378,423 & 5,391,934 & 14 & 17 & 17 & & 85D24-85D25 \\
\hline 41 & 2R & 7,162,904 & 7,177,380 & 14 & 17 & 17 & & 47E5-47F1 \\
\hline 42 & 2R & 11,876,244 & 11,887,693 & 11 & 17 & 17 & & 52D9-52D11 \\
\hline 46 & 3R & 27,620 & 57,331 & 30 & 16 & 621 & & 81F6-82A1 \\
\hline 48 & X & 2,491,408 & 2,503,866 & 12 & 16 & 16 & & 3A6-3A7 \\
\hline 45 & 2R & 17,026,606 & 17,037,555 & 11 & 16 & 16 & & 57C3-57C4 \\
\hline 47 & 3R & 17,091,519 & 17,102,609 & 11 & 16 & 16 & & 93D2 \\
\hline 49 & 3L & 3,317,306 & 3,327,304 & 10 & 15 & 15 & & 63D1 \\
\hline 54 & U & 1,130,212 & 1,149,062 & 19 & 14 & 11543 & & \\
\hline 50 & 3L & 4,246,406 & 4,256,404 & 10 & 14 & 14 & & 64A11-64A12 \\
\hline 51 & 3L & 5,798,359 & 5,808,357 & 10 & 14 & 14 & & 64E11-64E13 \\
\hline 53 & 3R & 17,042,277 & 17,052,592 & 10 & 14 & 14 & & 93C6-93C7 \\
\hline 52 & 3L & 21,615,234 & 21,625,232 & 10 & 14 & 14 & & 78E1 \\
\hline 56 & 3L & 2,592,932 & 2,603,319 & 10 & 13 & 13 & & 62 E 7 \\
\hline 55 & 2L & 4,914,510 & 4,954,666 & 40 & 13 & 671 & & 25B3-25B4 \\
\hline 59 & X & 6,179,215 & 6,191,365 & 12 & 13 & 13 & & 5E5-5E6 \\
\hline 60 & X & 9,084,020 & 9,094,018 & 10 & 13 & 13 & & 8C17-8D1 \\
\hline 57 & 3R & 9,500,740 & 9,510,738 & 10 & 13 & 13 & & 87F7-87F10 \\
\hline 58 & 3R & 25,568,106 & 25,586,472 & 18 & 13 & 14 & & 99B9-99B10 \\
\hline 63 & 3L & 1,502,401 & 1,521,931 & 20 & 12 & 690 & & 62A3 \\
\hline 67 & X & 1,558,009 & 1,575,576 & 18 & 12 & 12 & & 2B5-2B6 \\
\hline 64 & 3L & 9,619,817 & 9,631,371 & 12 & 12 & 12 & & 67C2-67C3 \\
\hline 66 & U & 9,763,582 & 9,778,881 & 15 & 12 & 4825 & & \\
\hline 61 & 2L & 10,200,298 & 10,210,296 & 10 & 12 & 12 & & 31B1 \\
\hline 62 & 2L & 22,127,508 & 22,137,506 & 10 & 12 & 16 & & 40E4-40E5 \\
\hline 65 & 3R & 25,621,570 & 25,634,567 & 13 & 12 & 12 & & 99C1-99C2 \\
\hline 72 & 3L Het & 780,345 & 791,575 & 11 & 11 & 3535 & & \\
\hline 68 & 2L & 5,520,595 & 5,530,593 & 10 & 11 & 11 & & 25E5 \\
\hline 70 & 3L & 6,164,197 & 6,176,924 & 13 & 11 & 11 & & 65A7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 73 & 3R & 7,458,172 & 7,468,170 & 10 & 11 & 11 & & 86E13 \\
\hline 71 & 3L & 8,184,373 & 8,194,371 & 10 & 11 & 11 & & 66B11-66B12 \\
\hline 69 & 2L & 12,103,912 & 12,113,910 & 10 & 11 & 11 & & 33C4 \\
\hline 74 & 3R & 12,908,322 & 12,924,213 & 16 & 11 & 11 & & 89E12-89E13 \\
\hline 75 & 3L & 686,750 & 696,889 & 10 & 10 & 10 & & 61C8 \\
\hline 78 & 3R & 1,293,230 & 1,303,419 & 10 & 10 & 10 & & 83A4-83A5 \\
\hline 79 & 3R & 14,481,371 & 14,491,369 & 10 & 10 & 10 & & 91B8 \\
\hline 81 & X & 19,512,463 & 19,522,461 & 10 & 10 & 10 & & 18D7-18D8 \\
\hline 76 & 3L & 19,596,487 & 19,606,485 & 10 & 10 & 10 & & 76B9 \\
\hline 77 & 3L & 22,056,871 & 22,066,869 & 10 & 10 & 10 & & 79B2 \\
\hline 82 & X & 22,345,871 & 22,392,860 & 47 & 10 & 1258 & & 20F2-20F3 \\
\hline 80 & 3R & 25,303,931 & 25,313,929 & 10 & 10 & 10 & & 99B1 \\
\hline 83 & 2L & 192,335 & 202,333 & 10 & 9 & 9 & & 21B4 \\
\hline 96 & 3L Het & 248,455 & 258,453 & 10 & 9 & 249 & cluster \#15 & \\
\hline 84 & 2L & 1,975,628 & 1,985,626 & 10 & 9 & 9 & & 22B8 \\
\hline 91 & 3L & 3,147,736 & 3,157,734 & 10 & 9 & 9 & & 63B6-63B7 \\
\hline 87 & 2R & 4,046,783 & 4,056,781 & 10 & 9 & 9 & & 44B5-44B8 \\
\hline 98 & X & 5,207,694 & 5,217,692 & 10 & 9 & 12 & & 4F4-4F5 \\
\hline 92 & 3L & 5,748,568 & 5,758,566 & 10 & 9 & 9 & & 64E5-64E6 \\
\hline 93 & 3L & 11,698,935 & 11,708,933 & 10 & 9 & 9 & & 68D2-68D3 \\
\hline 88 & 2R & 11,817,707 & 11,827,705 & 10 & 9 & 9 & & 52D2-52D3 \\
\hline 89 & 2R & 13,120,411 & 13,131,234 & 11 & 9 & 1004 & & 54B1 \\
\hline 90 & 2R & 15,369,295 & 15,379,293 & 10 & 9 & 9 & & 56D11-56D13 \\
\hline 94 & 3L & 15,598,077 & 15,608,075 & 10 & 9 & 9 & & 71E2-71E3 \\
\hline 85 & 2L & 20,059,341 & 20,069,339 & 10 & 9 & 9 & & 38B1-38B2 \\
\hline 86 & 2L & 20,652,091 & 20,662,089 & 10 & 9 & 9 & & 38D2-38D3 \\
\hline 95 & 3L & 22,933,272 & 22,943,270 & 10 & 9 & 9 & & 80C1 \\
\hline 97 & 3R & 26,028,924 & 26,038,922 & 10 & 9 & 9 & & 99E2 \\
\hline 109 & X & 831,709 & 841,707 & 10 & 8 & 8 & & 1D2-1D3 \\
\hline 108 & 4 & 1,218,726 & 1,228,724 & 10 & 8 & 8 & & 102F8 \\
\hline 103 & 3R & 1,403,421 & 1,413,419 & 10 & 8 & 8 & & 83B2-83B3 \\
\hline 110 & X & 1,809,962 & 1,819,960 & 10 & 8 & 8 & & 2B15-2B16 \\
\hline 100 & 2R & 3,685,613 & 3,693,468 & 8 & 8 & 8 & & 43E17-43E18 \\
\hline 111 & X & 4,810,933 & 4,826,291 & 15 & 8 & 7978 & & 4D5-4D7 \\
\hline 99 & 2L & 5,041,556 & 5,051,554 & 10 & 8 & 8 & & 25C1-25C3 \\
\hline 104 & 3R & 5,508,105 & 5,524,570 & 16 & 8 & 22 & & 85E4 \\
\hline 101 & 2R & 7,780,030 & 7,790,028 & 10 & 8 & 8 & & 48C5 \\
\hline 105 & 3R & 12,008,921 & 12,018,919 & 10 & 8 & 8 & & 89B7 \\
\hline 106 & 3R & 16,927,742 & 16,937,740 & 10 & 8 & 8 & & 93B12-93B13 \\
\hline 102 & 3L & 20,821,682 & 20,831,680 & 10 & 8 & 8 & & 77F1 \\
\hline & & & & & & & & \\
\hline 107 & 3R & 21,149,905 & 21,159,903 & 10 & 8 & 98 & & 96D1 \\
\hline 112 & 2L & 146,778 & 156,776 & 10 & 7 & 7 & & 21B3 \\
\hline 113 & 2L & 2,560,743 & 2,586,937 & 26 & 7 & 4649 & & 22F4-23A1 \\
\hline 116 & 3R & 4,058,120 & 4,068,025 & 10 & 7 & 7 & & 84F4-84F5 \\
\hline 115 & 3L & 7,708,825 & 7,718,481 & 10 & 7 & 7 & & 66A10 \\
\hline 120 & X & 7,838,431 & 7,844,562 & 6 & 7 & 7 & & 7C9-7D1 \\
\hline 117 & 3R & 10,142,716 & 10,152,714 & 10 & 7 & 13 & & 88B3-88B4 \\
\hline 114 & 2R & 13,424,091 & 13,434,089 & 10 & 7 & 7 & & 54C3 \\
\hline 121 & X & 19,632,553 & 19,642,551 & 10 & 7 & 10 & & 18E5-18F1 \\
\hline 118 & 3R & 24,141,329 & 24,151,327 & 10 & 7 & 7 & & 98C3 \\
\hline 119 & 3R & 24,710,511 & 24,720,509 & 10 & 7 & 7 & & 98F1-98F2 \\
\hline 135 & 3R & 229,824 & 261,348 & 32 & 6 & 983 & & 82A6-82B1 \\
\hline 122 & 2L & 542,059 & 552,057 & 10 & 6 & 6 & & 21E2 \\
\hline 134 & 3L Het & 563,098 & 600,561 & 37 & 6 & 879 & & \\
\hline 127 & 2R & 666,812 & 675,630 & 9 & 6 & 6 & & 41C2 \\
\hline 136 & 3R & 1,459,740 & 1,467,999 & 8 & 6 & 6 & & 83B7 \\
\hline 123 & 2L & 4,986,739 & 4,996,737 & 10 & 6 & 6 & & 25B9-25B10 \\
\hline 137 & 3R & 5,805,160 & 5,815,158 & 10 & 6 & 6 & & 85F4 \\
\hline 124 & 2L & 6,043,300 & 6,053,298 & 10 & 6 & 6 & & 26B3 \\
\hline 138 & 3R & 7,231,157 & 7,241,155 & 10 & 6 & 6 & & 86E4 \\
\hline 130 & 3L & 7,316,278 & 7,325,381 & 9 & 6 & 6 & & 65F4 \\
\hline 131 & 3L & 9,078,428 & 9,086,564 & 8 & 6 & 6 & & 66F5 \\
\hline 125 & 2L & 10,389,264 & 10,399,262 & 10 & 6 & 6 & & 31D11-31E1 \\
\hline 139 & 3R & 11,092,595 & 11,099,452 & 7 & 6 & 6 & & 88E9-88E10 \\
\hline 126 & 2L & 16,307,231 & 16,317,229 & 10 & 6 & 6 & & 35F1 \\
\hline 132 & 3L & 16,450,201 & 16,460,199 & 10 & 6 & 6 & & 73A1 \\
\hline 128 & 2R & 16,549,517 & 16,559,515 & 10 & 6 & 6 & & 57A9-57A10 \\
\hline 140 & 3R & 19,016,516 & 19,022,739 & 6 & 6 & 6 & & 94E5-94E6 \\
\hline 145 & X & 20,061,920 & 20,069,591 & 8 & 6 & 6 & & 19C1 \\
\hline 129 & 2R & 20,663,857 & 20,673,855 & 10 & 6 & 6 & & 60E1 \\
\hline 141 & 3R & 20,869,191 & 20,879,189 & 10 & 6 & 6 & & 96B17-96B19 \\
\hline 133 & 3L & 20,986,085 & 21,020,979 & 35 & 6 & 969 & & 78A2 \\
\hline 142 & 3R & 22,405,317 & 22,415,315 & 10 & 6 & 6 & & 97C1 \\
\hline 143 & 3R & 22,687,952 & 22,697,947 & 10 & 6 & 6 & & 97D3 \\
\hline 144 & 3R & 27,568,150 & 27,577,970 & 10 & 6 & 6 & & 100D2 \\
\hline 173 & 3R Het & 31,087 & 74,992 & 44 & 5 & 10922 & & \\
\hline 174 & 4 & 551,915 & 561,913 & 10 & 5 & 5 & & 102C4 \\
\hline 146 & 2L & 2,132,930 & 2,142,928 & 10 & 5 & 5 & & 22D1 \\
\hline 161 & 3R & 2,479,803 & 2,486,260 & 6 & 5 & 5 & & 84A1 \\
\hline 147 & 2L & 2,764,639 & 2,783,911 & 19 & 5 & 4784 & & 23A5-23A6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 154 & 2R & 4,779,425 & 4,789,423 & 10 & 5 & 5 & 44F3 \\
\hline 148 & 2L & 5,986,382 & 5,996,380 & 10 & 5 & 5 & 26B2 \\
\hline 162 & 3R & 7,039,531 & 7,049,529 & 10 & 5 & 5 & 86D8 \\
\hline 163 & 3R & 8,839,679 & 8,847,105 & 7 & 5 & 5 & 87D8-87D9 \\
\hline 175 & X & 9,452,424 & 9,462,422 & 10 & 5 & 5 & 8E7-8E10 \\
\hline 164 & 3R & 9,855,890 & 9,865,888 & 10 & 5 & 5 & 88A4 \\
\hline 155 & 2R & 10,145,197 & 10,155,195 & 10 & 5 & 5 & \(5.00 \mathrm{E}+07\) \\
\hline 176 & X & 10,731,645 & 10,741,643 & 10 & 5 & 5 & 9F4-9F5 \\
\hline 149 & 2L & 11,092,188 & 11,100,393 & 8 & 5 & 5 & 32D2-32D3 \\
\hline 157 & 3L & 12,131,399 & 12,140,545 & 9 & 5 & 5 & 68F5-68F6 \\
\hline 158 & 3L & 12,759,827 & 12,768,208 & 8 & 5 & 5 & 69E2 \\
\hline 165 & 3R & 13,512,031 & 13,521,424 & 9 & 5 & 9 & 90C1 \\
\hline 150 & 2L & 16,249,303 & 16,259,301 & 10 & 5 & 5 & 35F1 \\
\hline 159 & 3L & 16,984,985 & 16,994,983 & 10 & 5 & 5 & 73E1-73E3 \\
\hline 166 & 3R & 18,407,620 & 18,413,515 & 6 & 5 & 5 & 94B5 \\
\hline 167 & 3R & 18,559,695 & 18,569,011 & 9 & 5 & 5 & 94C4 \\
\hline 151 & 2L & 19,000,410 & 19,010,408 & 10 & 5 & 5 & 37B9 \\
\hline 152 & 2 L & 19,142,575 & 19,174,358 & 32 & 5 & 4890 & 37C1-37C6 \\
\hline 156 & 2R & 19,833,985 & 19,843,983 & 10 & 5 & 5 & 60A13 \\
\hline 160 & 3L & 19,874,250 & 19,884,248 & 10 & 5 & 5 & 76D3 \\
\hline 177 & X & 20,257,850 & 20,267,821 & 10 & 5 & 5 & 19C5-19C6 \\
\hline 168 & 3R & 20,704,520 & 20,714,518 & 10 & 5 & 5 & 96B2-96B3 \\
\hline 153 & 2L & 21,660,567 & 21,669,076 & 9 & 5 & 5 & 39E3-39E6 \\
\hline 169 & 3R & 23,765,906 & 23,775,904 & 10 & 5 & 5 & 98B6 \\
\hline 170 & 3R & 25,507,490 & 25,515,528 & 8 & 5 & 5 & 99B7 \\
\hline 171 & 3R & 25,816,869 & 25,826,867 & 10 & 5 & 5 & 99D1 \\
\hline 172 & 3R & 26,303,191 & 26,319,848 & 17 & 5 & 128 & 99F6 \\
\hline
\end{tabular}

Table II-S3B. siRNAs from fly heads were clustered as described by Brennecke et
al. (2007), using Drosophila melanogaster genome release R5.5.

Table II-S3B.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{WT Heads} \\
\hline Cluster ID & Chromosome & Start & End & Cluster length (kb) & Number of reads map uniquely to cluster & Number of reads mapping to cluster & \begin{tabular}{l}
piRNA cluster I.D. \\
(Brennecke et al., 2007)
\end{tabular} & Cytogenetic location \\
\hline 1 & 2L & 9783876 & 9795136 & 113 & 478 & 478 & & 30C9-30D1 \\
\hline 173 & 3L & 886,261 & 896,260 & 10.0 & 14 & 14 & & 61D3-61D4 \\
\hline 174 & 2L & 6,855 & 17067 & 10.2 & 11 & 11 & & 21A5 \\
\hline 175 & X & 9,940,973 & 9,953,050 & 12.1 & 10 & 11 & & 9A5-9B1 \\
\hline 176 & 3R & 113,708 & 123,706 & 10.0 & 9 & 9 & & 82A1 \\
\hline 49 & 3L & 3,317,197 & 3,327,189 & 10.0 & 8 & 8 & & 63D1 \\
\hline 111 & X & 4,811,216 & 4,826,291 & 15.1 & 8 & 1,771 & & 4D5-4D7 \\
\hline 177 & 2 L & 7,706,540 & 7,716,536 & 10.0 & 8 & 8 & & 28C1 \\
\hline 7 & 3L & 15,549,041 & 15,558,952 & 9.9 & 8 & 13 & & 71E1 \\
\hline 178 & 2L & 16,784,804 & 16,794,788 & 10.0 & 8 & 8 & & 36B1 \\
\hline 179 & 3R & 6,665 & 15,118 & 8.5 & 7 & 8 & & 81F6 \\
\hline 180 & 2R & 14,267,508 & 14,277,167 & 9.7 & 6 & 6 & & 55C4 \\
\hline 181 & X & 21,604,591 & 21,614,589 & 10.0 & 6 & 72 & cluster \#8 & 20B1 \\
\hline 80 & 3R & 25,305,992 & 25,315,848 & 9.9 & 6 & 6 & & 99B1 \\
\hline 182 & 3R & 1,048,181 & 1,058,035 & 9.9 & 5 & 5 & & 82F6 \\
\hline 183 & 2L & 9,817,453 & 9,827,451 & 10.0 & 5 & 156 & & 30D1 \\
\hline 184 & 3L & 10,687,581 & 10,697,585 & 10.0 & 5 & 926 & & 67E7 \\
\hline
\end{tabular}

Table II-S3C. piRNA data from Brennecke et al. (2007) were clustered according using Drosophila melanogaster genome.

Table II-S3C.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{piRNAs (from Brennecke et al., 2007)} \\
\hline Chromosome & Start & End & Cluster length (kb) & Number of reads mapping uniquely to cluster & Number of reads mapping to cluster & Cytogenetic location \\
\hline 2R & 2,140,512 & 2,389,335 & 249 & 1,460 & 19,441 & 42A14-42B1 \\
\hline X & 21,388,081 & 21,432,231 & 44 & 994 & 7,351 & 20A1-20A3 \\
\hline 2L & 20,143,634 & 20,232,517 & 89 & 445 & 2,540 & 38C2-38C3 \\
\hline 3L & 23,269,813 & 23,313,601 & 44 & 224 & 1,169 & 80E3-80F1 \\
\hline 4 & 1,255,371 & 1,351,506 & 96 & 202 & 5,079 & 102F8 \\
\hline U & 4,010,984 & 4,077,966 & 67 & 162 & 822 & \\
\hline X & 21,501,319 & 21,548,357 & 47 & 122 & 2,827 & 20A5-20B1 \\
\hline U & 5,743,150 & 5,797,646 & 54 & 115 & 3,694 & \\
\hline 2R & 12,713,990 & 12,723,988 & 10 & 109 & 109 & 53D11-53D12 \\
\hline X & 15,398,513 & 15,408,511 & 10 & 80 & 80 & 13C5-13C7 \\
\hline 3LHet & 2,008,276 & 2,212,278 & 204 & 70 & 15,385 & \\
\hline 3RHet & 2,070,375 & 2,106,781 & 36 & 67 & 1,066 & \\
\hline 3LHet & 237,482 & 330,926 & 93 & 61 & 3,703 & \\
\hline U & 7,497,140 & 7,584,470 & 87 & 61 & 8,578 & \\
\hline 3R & 6,228,871 & 6,238,915 & 10 & 46 & 46 & 86B4 \\
\hline X & 21,756,108 & 21,841,785 & 86 & 43 & 3,377 & 20B3-20C1 \\
\hline 4 & 807,233 & 867,379 & 60 & 41 & 464 & 102E1-102E3 \\
\hline 2L & 20,100,366 & 20,123,183 & 23 & 40 & 261 & 38C1-38C2 \\
\hline 2L & 22,342,790 & 22,421,219 & 78 & 35 & 3,508 & 40F7 \\
\hline 2L & 1 & 11,667 & 12 & 33 & 20,448 & 21A5 \\
\hline 3LHet & 148,660 & 204,731 & 56 & 33 & 1,701 & \\
\hline 3L & 24,088,523 & 24,134,591 & 46 & 33 & 2,113 & \\
\hline 3RHet & 2,309,480 & 2,373,211 & 64 & 32 & 2,425 & \\
\hline X & 2,061 & 26,029 & 24 & 31 & 387 & 1A1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline X & 11,076,431 & 11,099,456 & 23 & 31 & 215 & 10A10-10B1 \\
\hline X & 21,580,417 & 21,687,831 & 107 & 31 & 2,671 & 20B1 \\
\hline 3L & 23,449,678 & 23,478,214 & 29 & 30 & 601 & 80F6-80F7 \\
\hline 3LHet & 493,948 & 685,925 & 192 & 29 & 10,795 & \\
\hline 3R & 21,467,283 & 21,482,178 & 15 & 29 & 29 & 96E6-96E7 \\
\hline 2LHet & 121,252 & 266,568 & 145 & 27 & 6,692 & \\
\hline 3LHet & 285 & 32,970 & 33 & 26 & 1,164 & \\
\hline 2R & 742,942 & 782,203 & 39 & 26 & 2,423 & 41C4-41C5 \\
\hline U & 2,433,298 & 2,478,920 & 46 & 26 & 1,155 & \\
\hline 2L & 22,945,885 & 22,989,803 & 44 & 26 & 1,179 & \\
\hline 3L & 23,940,894 & 24,045,838 & 105 & 26 & 6,737 & \\
\hline 3R & 1,279 & 23,416 & 22 & 25 & 58 & 81F6 \\
\hline 3RHet & 1,607,736 & 1,674,464 & 67 & 25 & 2,263 & \\
\hline 2RHet & 1,857,936 & 1,913,095 & 55 & 24 & 966 & \\
\hline 3L & 19,845,140 & 19,864,685 & 20 & 23 & 1,530 & 76D1-76D3 \\
\hline 3RHet & 104,786 & 191,198 & 86 & 21 & 2,505 & \\
\hline 3LHet & 1,402,112 & 1,458,965 & 57 & 21 & 1,332 & \\
\hline 2L & 22,486,772 & 22,547,558 & 61 & 21 & 3,167 & 40F7 \\
\hline 3L & 24,465,528 & 24,543,475 & 78 & 21 & 1,399 & \\
\hline 3RHet & 617,618 & 656,530 & 39 & 20 & 1,197 & \\
\hline 2RHet & 1,412,742 & 1,489,780 & 77 & 20 & 824 & \\
\hline 3RHet & 1,746,563 & 1,797,611 & 51 & 20 & 3,429 & \\
\hline 3RHet & 532,053 & 575,335 & 43 & 19 & 1,169 & \\
\hline 3RHet & 849,568 & 921,355 & 72 & 19 & 1,662 & \\
\hline U & 2,056,878 & 2,098,213 & 41 & 19 & 2,277 & \\
\hline U & 889,267 & 1,061,441 & 172 & 18 & 6,217 & \\
\hline 3RHet & 1,111,034 & 1,223,916 & 113 & 18 & 3,403 & \\
\hline 2R & 1,253,143 & 1,284,240 & 31 & 18 & 1,040 & 41E5-41E6 \\
\hline 2L & 19,564,519 & 19,574,923 & 10 & 17 & 32 & 37F1-37F2 \\
\hline 2L & 22,254,319 & 22,281,479 & 27 & 17 & 701 & 40F7 \\
\hline 3L & 23,612,866 & 23,636,896 & 24 & 17 & 752 & 80F9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline X & 8,368,544 & 8,381,781 & 13 & 16 & 16 & 7F1 \\
\hline 3LHet & 770,628 & 819,852 & 49 & 15 & 2,636 & \\
\hline 2R & 16,466,415 & 16,476,583 & 10 & 15 & 15 & 57A6 \\
\hline 3LHet & 840,924 & 895,679 & 55 & 14 & 2,243 & \\
\hline 3RHet & 1,383,668 & 1,470,543 & 87 & 14 & 2,624 & \\
\hline 3LHet & 1,479,139 & 1,528,684 & 50 & 14 & 4,505 & \\
\hline 2R & 7,777,083 & 7,787,544 & 10 & 14 & 14 & 48C5 \\
\hline 2L & 8,450,213 & 8,490,832 & 41 & 14 & 2,178 & 29C5-29D1 \\
\hline 2L & 16,693,456 & 16,703,757 & 10 & 14 & 14 & 36A10-36A11 \\
\hline X & 22,369,187 & 22,403,875 & 35 & 14 & 1,688 & 20F3 \\
\hline 2R & 109,239 & 149,540 & 40 & 13 & 884 & \\
\hline U & 141,712 & 210,336 & 69 & 13 & 2,023 & \\
\hline 3LHet & 362,237 & 394,074 & 32 & 13 & 326 & \\
\hline 2R & 1,216,294 & 1,227,635 & 11 & 13 & 39 & 41E5 \\
\hline 3LHet & 1,844,970 & 1,901,261 & 56 & 13 & 2,843 & \\
\hline 3L & 24,350,206 & 24,375,909 & 26 & 13 & 819 & \\
\hline 3R & 27,892,332 & 27,909,797 & 17 & 13 & 11,215 & 10E4 \\
\hline U & 40,427 & 117,442 & 77 & 12 & 4,287 & \\
\hline 4 & 1,015,921 & 1,026,279 & 10 & 12 & 55 & 102F5 \\
\hline 2RHet & 2,204,696 & 2,287,166 & 82 & 12 & 1,695 & \\
\hline 2RHet & 2,788,079 & 2,857,172 & 69 & 12 & 2,226 & \\
\hline U & 5,625,604 & 5,649,537 & 24 & 12 & 476 & \\
\hline 2L & 5,954,935 & 5,984,574 & 30 & 12 & 12 & 26A3-26B2 \\
\hline 2R & 3,316,801 & 3,331,740 & 15 & 11 & 96 & 43C1 \\
\hline U & 3,519,704 & 3,551,702 & 32 & 11 & 768 & \\
\hline 3R & 5,921,675 & 5,931,673 & 10 & 11 & 11 & 85F10-85F11 \\
\hline U & 9,170,572 & 9,298,799 & 128 & 11 & 7,794 & \\
\hline 2RHet & 1,679,952 & 1,715,467 & 36 & 10 & 730 & \\
\hline 2R & 9,211,947 & 9,221,945 & 10 & 10 & 10 & 50A1-50A3 \\
\hline X & 10,164,447 & 10,174,445 & 10 & 10 & 1,391 & 9B5-9B6 \\
\hline 2R & 185,439 & 225,778 & 40 & 9 & 1,909 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2R & 845,724 & 885,372 & 40 & 9 & 1,552 & 41C6 \\
\hline 2RHet & 867,578 & 909,826 & 42 & 9 & 3,623 & \\
\hline U & 5,446,117 & 5,477,034 & 31 & 9 & 2,751 & \\
\hline 2L & 7,420,980 & 7,430,978 & 10 & 9 & 9 & 27F3-27F4 \\
\hline 2R & 21,136,534 & 21,151,342 & 15 & 9 & 1,898 & 60F5 \\
\hline 2L & 21,891,204 & 21,901,202 & 10 & 9 & 9 & 40B3 \\
\hline 3L & 24,309,487 & 24,328,647 & 19 & 9 & 415 & \\
\hline 3RHet & 9,020 & 19,018 & 10 & 8 & 71 & \\
\hline 3LHet & 2,376,347 & 2,446,273 & 70 & 8 & 2,166 & \\
\hline 2RHet & 2,878,674 & 2,939,749 & 61 & 8 & 2,021 & \\
\hline 2RHet & 2,988,025 & 3,049,062 & 61 & 8 & 1,036 & \\
\hline U & 3,876,652 & 3,943,760 & 67 & 8 & 1,823 & \\
\hline 2L & 20,631,611 & 20,640,251 & 9 & 8 & 18 & 38D1 \\
\hline XHet & 169,257 & 192,176 & 23 & 7 & 919 & \\
\hline 2LHet & 302,772 & 369,442 & 67 & 7 & 3,621 & \\
\hline U & 339,589 & 384,771 & 45 & 7 & 1,130 & \\
\hline 3LHet & 714,299 & 741,348 & 27 & 7 & 702 & \\
\hline X & 1,371,374 & 1,381,268 & 10 & 7 & 7 & 2B1 \\
\hline X & 4,017,313 & 4,027,311 & 10 & 7 & 12 & 4B1 \\
\hline X & 5,201,679 & 5,211,408 & 10 & 7 & 7 & 4F4-4F5 \\
\hline U & 6,643,127 & 6,660,684 & 18 & 7 & 1,684 & \\
\hline 3R & 7,044,221 & 7,053,379 & 9 & 7 & 7 & 86D8 \\
\hline 3L & 8,716,961 & 8,726,803 & 10 & 7 & 7 & 66D12 \\
\hline 2L & 9,891,561 & 9,901,336 & 10 & 7 & 7 & 30E1 \\
\hline X & 12,660,975 & 12,670,600 & 10 & 7 & 116 & 11B16-11C1 \\
\hline X & 22,096,745 & 22,116,991 & 20 & 7 & 129 & 20D2 \\
\hline 3R & 27,415,958 & 27,425,954 & 10 & 7 & 7 & 100C7 \\
\hline 2R & 410,424 & 423,625 & 13 & 6 & 536 & 41A2 \\
\hline X & 652,829 & 662,184 & 9 & 6 & 6 & 1C4 \\
\hline 4 & 985,305 & 995,476 & 10 & 6 & 37 & 102F4 \\
\hline 3LHet & 989,120 & 1,049,237 & 60 & 6 & 4,049 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3RHet & 1,252,983 & 1,338,766 & 86 & 6 & 2,064 & \\
\hline U & 1,379,079 & 1,450,515 & 71 & 6 & 3,660 & \\
\hline 2RHet & 1,597,675 & 1,641,429 & 44 & 6 & 2,648 & \\
\hline U & 1,962,353 & 1,972,720 & 10 & 6 & 90 & \\
\hline U & 3,109,090 & 3,139,633 & 31 & 6 & 1,015 & \\
\hline U & 5,852,441 & 6,059,636 & 207 & 6 & 14,423 & \\
\hline U & 7,836,590 & 7,882,892 & 46 & 6 & 6,453 & \\
\hline 2L & 17,968,726 & 17,978,719 & 10 & 6 & 6 & 36E3 \\
\hline 3L & 23,187,909 & 23,220,679 & 33 & 6 & 562 & 80D5-80E1 \\
\hline 2RHet & 483,216 & 517,466 & 34 & 5 & 258 & \\
\hline 2R & 514,257 & 524,320 & 10 & 5 & 202 & 41B2 \\
\hline 4 & 609,263 & 619,456 & 10 & 5 & 1,194 & 102C6-102D1 \\
\hline 3L & 825,510 & 833,058 & 8 & 5 & 5 & 61D2 \\
\hline 2RHet & 1,087,648 & 1,133,687 & 46 & 5 & 1,120 & \\
\hline 2RHet & 1,339,078 & 1,389,974 & 51 & 5 & 3,038 & \\
\hline 3RHet & 2,482,651 & 2,492,649 & 10 & 5 & 62 & \\
\hline 3R & 2,909,142 & 2,918,466 & 9 & 5 & 6 & 84B2-84B6 \\
\hline X & 3,435,144 & 3,445,036 & 10 & 5 & 7 & 3D5 \\
\hline U & 6,191,840 & 6,261,703 & 70 & 5 & 6,969 & \\
\hline U & 7,020,670 & 7,055,172 & 35 & 5 & 4,662 & \\
\hline 2L & 7,825,754 & 7,830,915 & 5 & 5 & 5 & 28D1-28D2 \\
\hline 3L & 10,353,382 & 10,363,380 & 10 & 5 & 5 & 67E1-67E2 \\
\hline X & 11,787,892 & 11,794,120 & 6 & 5 & 5 & 10F4 \\
\hline 2L & 13,405,034 & 13,416,223 & 11 & 5 & 646 & 34B10-34B11 \\
\hline X & 19,487,663 & 19,497,511 & 10 & 5 & 5 & 18D3 \\
\hline X & 21,183,210 & 21,188,753 & 6 & 5 & 12 & 19F3-19F4 \\
\hline 3L & 24,169,238 & 24,179,236 & 10 & 5 & 95 & \\
\hline 3L & 24,220,571 & 24,229,777 & 9 & 5 & 17 & \\
\hline
\end{tabular}

Table II-S4. Endogenous siRNAs matching transposons are depleted in dcr-2 null mutant fly heads. Percentages total more than 100, because some siRNAs map to more than one transposon. Red, LTR retrotransposons; green, non-LTR retrotransposons, blue, DNA transposons. "Fold decrease" was calculated by normalizing the total number of siRNAs matching the transposon in each genotype to the total number of 18-29 nt RNA reads, excluding pre-miRNA-matching reads, a measure of the small RNA sequencing depth. Some siRNAs match more than one transposon, so the sum of the total number of siRNAs for each transposon is greater than the actual number so 21 nt small RNA reads: 2,524 for \(d c r-2 / \mathrm{CyO}\) and 263 for \(d c r-2\) homozygotes. \(p\)-value was calculated using Fisher's exact test.

Table II-S4.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Transposon} & \multicolumn{5}{|l|}{\begin{tabular}{l}
\[
d c r-2^{\text {Ls1lfsX }} / \mathrm{CyO}
\] \\
(25,822 reads, excluding pre-miRNA-matching reads)
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Sense siRNAs} & \multicolumn{2}{|l|}{Antisense siRNAs} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Total } \\
\text { number } \\
\text { of } \\
\text { siRNAs }
\end{gathered}
\]} \\
\hline & \[
\begin{aligned}
& \text { Number } \\
& \text { of } \\
& \text { siRNAs }
\end{aligned}
\] &  & Number of siRNAs &  & \\
\hline roo & 802 & 71\% & 897 & 80\% & 1,126 \\
\hline jockey & 351 & 47\% & 400 & 53\% & 751 \\
\hline \(m d g 1\) & 297 & 43\% & 396 & 58\% & 687 \\
\hline 297 & 288 & 45\% & 354 & 55\% & 642 \\
\hline Crla & 295 & 60\% & 202 & 41\% & 490 \\
\hline blood & 202 & 42\% & 281 & 58\% & 483 \\
\hline HB & 180 & 40\% & 270 & 60\% & 450 \\
\hline springer & 189 & 42\% & 256 & 58\% & 445 \\
\hline gypsy 3 & 162 & 42\% & 221 & 58\% & 383 \\
\hline invader3 & 162 & 42\% & 221 & 58\% & 383 \\
\hline Stalker4 & 118 & 32\% & 246 & 68\% & 364 \\
\hline Stalker2 & 228 & 68\% & 265 & 79\% & 337 \\
\hline \(F\) & 115 & 43\% & 181 & 68\% & 268 \\
\hline Doc & 85 & 33\% & 170 & 66\% & 258 \\
\hline gypsy12 & 156 & 62\% & 97 & 38\% & 253 \\
\hline Ivk & 186 & 74\% & 118 & 47\% & 251 \\
\hline INE-1 & 78 & 38\% & 133 & 65\% & 204 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[b]{2}{*}{(16,917 reads, excluding pre-miRNA-matching reads)}} & & \\
\hline & & & & & & & \\
\hline \multirow[b]{2}{*}{Transposon} & \multicolumn{2}{|l|}{Sense siRNAs} & \multicolumn{2}{|l|}{Antisense siRNAs} & \multirow[t]{2}{*}{Total number of siRNAs} & \multirow[b]{2}{*}{fold decrease} & \multirow[b]{2}{*}{\[
\begin{gathered}
p- \\
\text { value }
\end{gathered}
\]} \\
\hline & \[
\begin{gathered}
\text { Number } \\
\text { of } \\
\text { siRNAs } \\
\hline
\end{gathered}
\] &  & \[
\begin{gathered}
\text { Number } \\
\text { of } \\
\text { siRNAs } \\
\hline
\end{gathered}
\] &  & & & \\
\hline roo & 56 & 64\% & 64 & 74\% & 87 & 8.5 & 0.000 \\
\hline jockey & 30 & 63\% & 18 & 38\% & 48 & 10.3 & 0.000 \\
\hline \(m d g 1\) & 35 & 60\% & 27 & 47\% & 58 & 7.8 & 0.000 \\
\hline 297 & 43 & 55\% & 35 & 45\% & 78 & 5.4 & 0.000 \\
\hline Crla & 26 & 58\% & 19 & 42\% & 45 & 7.1 & 0.000 \\
\hline blood & 20 & 54\% & 17 & 46\% & 37 & 8.6 & 0.000 \\
\hline HB & 11 & 44\% & 14 & 56\% & 25 & 11.8 & 0.000 \\
\hline springer & 16 & 64\% & 9 & 36\% & 25 & 11.7 & 0.000 \\
\hline gypsy 3 & 14 & 64\% & 8 & 36\% & 22 & 11.4 & 0.000 \\
\hline invader 3 & 14 & 64\% & 8 & 36\% & 22 & 11.4 & 0.000 \\
\hline Stalker4 & 11 & 37\% & 19 & 63\% & 30 & 7.9 & 0.000 \\
\hline Stalker2 & 7 & 58\% & 11 & 92\% & 12 & 18.4 & 0.000 \\
\hline F & 7 & 41\% & 13 & 76\% & 17 & 10.3 & 0.000 \\
\hline Doc & 6 & 21\% & 21 & 75\% & 28 & 6.0 & 0.000 \\
\hline gypsy12 & 8 & 73\% & 3 & 27\% & 11 & 15.1 & 0.000 \\
\hline Ivk & 14 & 88\% & 3 & 19\% & 16 & 10.3 & 0.000 \\
\hline INE-1 & 5 & 25\% & 16 & 80\% & 20 & 6.7 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stalker & 61 & 32\% & 128 & 68\% & 189 \\
\hline transib3 & 57 & \(31 \%\) & 125 & 69\% & 182 \\
\hline rooA & 59 & 33\% & 122 & 67\% & 181 \\
\hline NOF & 58 & 33\% & 116 & 66\% & 176 \\
\hline Rtlb & 56 & 42\% & 77 & 58\% & 133 \\
\hline \(F B\) & 105 & 81\% & 112 & 87\% & 129 \\
\hline 412 & 39 & 37\% & 66 & 63\% & 105 \\
\hline jockey2 & 69 & 68\% & 36 & 35\% & 102 \\
\hline gypsy8 & 44 & 67\% & 22 & 33\% & 66 \\
\hline opus & 39 & 89\% & 39 & 89\% & 44 \\
\hline diver 2 & 24 & 57\% & 18 & 43\% & 42 \\
\hline invader1 & 31 & 82\% & 32 & 84\% & 38 \\
\hline Burdock & 13 & 37\% & 22 & 63\% & 35 \\
\hline 1360 & 25 & 76\% & 17 & 52\% & 33 \\
\hline Quasimodo & 20 & 61\% & 17 & 52\% & 33 \\
\hline gypsy & 13 & 42\% & 18 & 58\% & 31 \\
\hline HMS-Beagle & 7 & 24\% & 22 & 76\% & 29 \\
\hline gypsy2 & 16 & 67\% & 8 & 33\% & 24 \\
\hline gypsy6 & 11 & 46\% & 13 & 54\% & 24 \\
\hline Transpac & 12 & 55\% & 10 & 45\% & 22 \\
\hline gypsy 4 & 7 & 33\% & 14 & 67\% & 21 \\
\hline 17.6 & 4 & 20\% & 16 & 80\% & 20 \\
\hline GATE & 8 & 47\% & 12 & 71\% & 17 \\
\hline gypsy10 & 5 & 29\% & 12 & 71\% & 17 \\
\hline \(m d g 3\) & 5 & 29\% & 12 & 71\% & 17 \\
\hline Dm88 & 5 & 31\% & 11 & 69\% & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stalker & 3 & 43\% & 4 & 57\% & 7 & 17.7 & 0.000 \\
\hline transib3 & 2 & 13\% & 13 & 87\% & 15 & 7.9 & 0.000 \\
\hline rooA & 2 & 25\% & 6 & 75\% & 8 & 14.8 & 0.000 \\
\hline NOF & 2 & \(33 \%\) & 4 & 67\% & 6 & 19.2 & 0.000 \\
\hline Rt1b & 4 & \(31 \%\) & 9 & 69\% & 13 & 6.7 & 0.000 \\
\hline \(F B\) & 2 & 50\% & 3 & 75\% & 4 & 21.1 & 0.000 \\
\hline 412 & 0 & 0\% & 1 & 100\% & 1 & 68.8 & 0.000 \\
\hline jockey2 & 2 & 67\% & 0 & 0\% & 3 & 22.3 & 0.000 \\
\hline gypsy8 & 0 & 0\% & 1 & 100\% & 1 & 43.2 & 0.000 \\
\hline opus & 4 & 57\% & 7 & 100\% & 7 & 4.1 & 0.000 \\
\hline diver 2 & 3 & 33\% & 6 & 67\% & 9 & 3.1 & 0.001 \\
\hline invader1 & 2 & 100\% & 2 & 100\% & 2 & 12.4 & 0.000 \\
\hline Burdock & 5 & 100\% & 0 & 0\% & 5 & 4.6 & 0.000 \\
\hline 1360 & 7 & 70\% & 4 & 40\% & 10 & 2.2 & 0.029 \\
\hline Quasimodo & 5 & 50\% & 5 & 50\% & 10 & 2.2 & 0.029 \\
\hline gypsy & 2 & 50\% & 2 & 50\% & 4 & 5.1 & 0.000 \\
\hline \begin{tabular}{l}
HMS- \\
Beagle
\end{tabular} & 3 & 43\% & 4 & 57\% & 7 & 2.7 & 0.016 \\
\hline gypsy2 & 1 & 33\% & 2 & 67\% & 3 & 5.2 & 0.002 \\
\hline gypsy6 & 0 & 0\% & 2 & 100\% & 2 & 7.9 & 0.000 \\
\hline Transpac & 5 & 100\% & 0 & 0\% & 5 & 2.9 & 0.029 \\
\hline 17.6 & 1 & 25\% & 3 & 75\% & 4 & 3.3 & 0.022 \\
\hline GATE & 2 & 50\% & 2 & 50\% & 4 & 2.8 & 0.072 \\
\hline gypsy10 & 2 & 50\% & 2 & 50\% & 4 & 2.8 & 0.072 \\
\hline \(m d g 3\) & 1 & 8\% & 12 & 92\% & 13 & 0.9 & 0.711 \\
\hline Dm88 & 1 & 25\% & 3 & 75\% & 4 & 2.6 & 0.107 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(S\) & 7 & 50\% & 11 & 79\% & 14 & \(S\) & 4 & 57\% & 3 & 43\% & 7 & 1.3 & 0.659 \\
\hline copia & 9 & 69\% & 4 & 31\% & 13 & copia & 10 & 83\% & 2 & 17\% & 12 & 0.7 & 0.417 \\
\hline Max & 8 & 62\% & 8 & 62\% & 13 & & & & & & & & \\
\hline accord2 & 3 & 30\% & 7 & 70\% & 10 & accord2 & 0 & 0\% & 1 & 100\% & 1 & 6.6 & 0.059 \\
\hline rover & 4 & 40\% & 6 & 60\% & 10 & & & & & & & & \\
\hline flea & 6 & 67\% & 3 & 33\% & 9 & flea & 3 & 100\% & 0 & 0\% & 3 & 2.0 & 0.385 \\
\hline I & 5 & 63\% & 3 & 38\% & 8 & & & & & & & & \\
\hline Нет-A & 4 & 67\% & 5 & 83\% & 6 & HeT-A & 2 & 40\% & 3 & 60\% & 5 & 0.8 & 0.762 \\
\hline R1-element & 4 & 67\% & 2 & 33\% & 6 & R1-element & 3 & 50\% & 3 & 50\% & 6 & 0.7 & 0.558 \\
\hline \(X\) & 5 & 83\% & 6 & 100\% & 6 & \(X\) & 1 & 100\% & 1 & 100\% & 1 & 3.9 & 0.256 \\
\hline baggins & 1 & 20\% & 4 & 80\% & 5 & baggins & 0 & 0\% & 2 & 100\% & 2 & 1.6 & 0.711 \\
\hline G & 2 & 40\% & 3 & 60\% & 5 & G & 1 & 17\% & 5 & 83\% & 6 & 0.5 & 0.362 \\
\hline ninja-Dsim-
\(\qquad\) & 2 & 40\% & 3 & 60\% & 5 & & & & & & & & \\
\hline 1731 & 1 & 25\% & 3 & 75\% & 4 & 1731 & 9 & 56\% & 7 & 44\% & 16 & 0.2 & 0.000 \\
\hline Idefix & 1 & 25\% & 3 & 75\% & 4 & Idefix & 0 & 0\% & 1 & 100\% & 1 & 2.6 & 0.654 \\
\hline Rt1a & 0 & 0\% & 4 & 100\% & 4 & Rt1a & 0 & 0\% & 1 & 100\% & 1 & 2.6 & 0.654 \\
\hline Tabor & 3 & 75\% & 1 & 25\% & 4 & Tirant & 3 & 75\% & 1 & 25\% & 4 & 0.7 & 0.720 \\
\hline frogger & 1 & 33\% & 2 & 67\% & 3 & & & & & & & & \\
\hline Juan & 2 & 67\% & 1 & 33\% & 3 & Juan & 0 & 0\% & 4 & 100\% & 4 & 0.5 & 0.446 \\
\hline 3S18 & 1 & 50\% & 1 & 50\% & 2 & & & & & & & & \\
\hline Circe & 1 & 50\% & 1 & 50\% & 2 & & & & & & & & \\
\hline diver & 1 & 50\% & 1 & 50\% & 2 & diver & 2 & 67\% & 1 & 33\% & 3 & 0.4 & 0.391 \\
\hline Fw2 & 2 & 100\% & 0 & 0\% & 2 & & & & & & & & \\
\hline Fw3 & 1 & 50\% & 1 & 50\% & 2 & & & & & & & & \\
\hline G3 & 1 & 50\% & 1 & 50\% & 2 & & & & & & & & \\
\hline gypsy9 & 0 & 0\% & 2 & 100\% & 2 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline hopper 2 & 0 & 0\% & 2 & 100\% & 2 & hopper 2 & 0 & 0\% & 3 & 100\% & 3 & 0.4 & 0.391 \\
\hline invader 4 & 1 & 50\% & 1 & 50\% & 2 & invader 4 & 0 & 0\% & 3 & 100\% & 3 & 0.4 & 0.391 \\
\hline micropia & 0 & 0\% & 2 & 100\% & 2 & micropia & 0 & 0\% & 1 & 100\% & 1 & 1.3 & 1.000 \\
\hline Rt1c & 1 & 50\% & 1 & 50\% & 2 & & & & & & & & \\
\hline transib1 & 0 & 0\% & 2 & 100\% & 2 & transib1 & 0 & 0\% & 2 & 100\% & 2 & 0.7 & 0.651 \\
\hline accord & 0 & 0\% & 1 & 100\% & 1 & & & & & & & & \\
\hline BS3 & 1 & 100\% & 0 & 0\% & 1 & & & & & & & & \\
\hline G2 & 0 & 0\% & 1 & 100\% & 1 & G2 & 0 & 0\% & 3 & 100\% & 3 & 0.2 & 0.308 \\
\hline G4 & 1 & 100\% & 0 & 0\% & 1 & & & & & & & & \\
\hline G5 & 1 & 100\% & 0 & 0\% & 1 & & & & & & & & \\
\hline G6 & 0 & 0\% & 1 & 100\% & 1 & & & & & & & & \\
\hline \begin{tabular}{l}
HMS- \\
Beagle2
\end{tabular} & 0 & 0\% & 1 & 100\% & 1 & & & & & & & & \\
\hline invader2 & 0 & 0\% & 1 & 100\% & 1 & invader 2 & 1 & 50\% & 1 & 50\% & 2 & 0.3 & 0.567 \\
\hline invader6 & 0 & 0\% & 1 & 100\% & 1 & invader 6 & 0 & 0\% & 2 & 100\% & 2 & 0.3 & 0.567 \\
\hline McClintock & 0 & 0\% & 1 & 100\% & 1 & & & & & & & & \\
\hline transib4 & 0 & 0\% & 1 & 100\% & 1 & transib4 & 0 & 0\% & 2 & 100\% & 2 & 0.3 & 0.567 \\
\hline & & & & & & pogo & 1 & 100\% & 0 & 0\% & 1 & & \\
\hline & & & & & & S2 & 0 & 0\% & 1 & 100\% & 1 & & \\
\hline
\end{tabular}

Table II-S5. The abundance of miRNA-matching reads was unchanged in dcr\(2^{\text {L811fs } X}\) heads, compared to their heterozygous siblings. Fold change was calculated by normalizing the total number of miRNAs in each genotype to small RNA sequencing depth, i.e., the total number of 18-29 nt RNA reads ( 688,323 for \(d c r-2\) homozygotes; 859,436 for heterozygotes).

Table II-S5.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{miRNA} & \multicolumn{2}{|l|}{Total number of reads} & \multirow{2}{*}{Fold change (homozygotes vs heterozygotes)} & \multirow{2}{*}{\(p\)-value} \\
\hline & dcr2 \(2^{\text {L811fs } X} / \mathrm{CyO}\) & dcr \(2^{\text {L811fs } X}\) & & \\
\hline miR-14 & 172,360 & 101,066 & 0.73 & 0.000 \\
\hline miR-276a & 141,107 & 99,817 & 0.88 & 0.000 \\
\hline miR-8 & 84,901 & 56,233 & 0.83 & 0.000 \\
\hline miR-317 & 47,027 & 41,865 & 1.11 & 0.000 \\
\hline miR-277 & 40,372 & 36,318 & 1.12 & 0.000 \\
\hline miR-34 & 34,350 & 59,032 & 2.15 & 0.000 \\
\hline miR-276b & 21,520 & 13,092 & 0.76 & 0.000 \\
\hline Bantam & 17,977 & 13,336 & 0.93 & 0.000 \\
\hline miR-274 & 16,754 & 20,625 & 1.54 & 0.169 \\
\hline miR-210 & 16,142 & 18,754 & 1.45 & \(1.2 \mathrm{E}-11\) \\
\hline miR-1 & 14,885 & 13,926 & 1.17 & 8.9E-135 \\
\hline miR-133 & 12,532 & 9,555 & 0.95 & 1.6E-296 \\
\hline miR-999 & 12,065 & 8,549 & 0.88 & 0.000 \\
\hline miR-7 & 11,707 & 7,085 & 0.76 & 0.000 \\
\hline miR-184 & 11,679 & 15,992 & 1.71 & \(1.8 \mathrm{E}-14\) \\
\hline let-7 & 11,192 & 14,617 & 1.63 & \(3.0 \mathrm{E}-04\) \\
\hline miR-33 & 10,529 & 6,842 & 0.81 & 0.000 \\
\hline miR-9a & 10,101 & 6,985 & 0.86 & 0.000 \\
\hline miR-125 & 9,397 & 8,268 & 1.10 & \(8.1 \mathrm{E}-121\) \\
\hline miR-278 & 6,942 & 7,849 & 1.41 & \(1.5 \mathrm{E}-09\) \\
\hline miR-11 & 6,562 & 4,849 & 0.92 & \(1.5 \mathrm{E}-172\) \\
\hline miR-284 & 5,486 & 4,089 & 0.93 & \(2.2 \mathrm{E}-140\) \\
\hline miR-252 & 5,188 & 3,911 & 0.94 & 8.9E-128 \\
\hline miR-124 & 4,181 & 7,615 & 2.27 & \(6.2 \mathrm{E}-89\) \\
\hline miR-305 & 3,398 & 5,428 & 1.99 & \(5.4 \mathrm{E}-30\) \\
\hline miR-279 & 3,395 & 3,441 & 1.27 & \(6.1 \mathrm{E}-18\) \\
\hline miR-285 & 3,198 & 1,781 & 0.70 & \(3.5 \mathrm{E}-173\) \\
\hline miR-13a & 3,111 & 1,596 & 0.64 & \(3.0 \mathrm{E}-196\) \\
\hline miR-996 & 3,012 & 1,766 & 0.73 & 8.3E-147 \\
\hline miR-987 & 2,915 & 2,148 & 0.92 & \(4.5 \mathrm{E}-78\) \\
\hline miR-981 & 2,682 & 2,759 & 1.28 & 9.4E-13 \\
\hline miR-932 & 2,593 & 1,514 & 0.73 & 1.0E-127 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline miR-307 & 2,496 & 2,426 & 1.21 & 1.5E-18 \\
\hline miR-12 & 2,386 & 1,410 & 0.74 & \(1.1 \mathrm{E}-114\) \\
\hline miR-927 & 2,365 & 1,563 & 0.83 & \(3.4 \mathrm{E}-87\) \\
\hline miR-306 & 2,299 & 2,341 & 1.27 & \(3.8 \mathrm{E}-12\) \\
\hline miR-282 & 2,167 & 2,426 & 1.40 & 0.0002 \\
\hline miR-957 & 1,775 & 1,998 & 1.41 & \(1.5 \mathrm{E}-03\) \\
\hline miR-965 & 1,775 & 685 & 0.48 & \(4.2 \mathrm{E}-170\) \\
\hline miR-275 & 1,647 & 2,493 & 1.89 & \(1.1 \mathrm{E}-09\) \\
\hline miR-1000 & 1,493 & 1,841 & 1.54 & 0.727 \\
\hline miR-79 & 1,421 & 1,082 & 0.95 & \(5.6 \mathrm{E}-35\) \\
\hline miR-304 & 1,382 & 770 & 0.70 & \(1.1 \mathrm{E}-75\) \\
\hline miR-1010 & 1,300 & 899 & 0.86 & \(3.6 \mathrm{E}-43\) \\
\hline miR-263b & 1,298 & 761 & 0.73 & \(2.9 \mathrm{E}-64\) \\
\hline miR-31a & 1,227 & 1,303 & 1.33 & \(4.8 \mathrm{E}-05\) \\
\hline miR-970 & 1,188 & 1,338 & 1.41 & 0.0097 \\
\hline miR-219 & 980 & 946 & 1.21 & \(1.8 \mathrm{E}-08\) \\
\hline miR-1003 & 917 & 513 & 0.70 & \(2.5 \mathrm{E}-50\) \\
\hline miR-315 & 861 & 591 & 0.86 & \(1.2 \mathrm{E}-29\) \\
\hline miR-137 & 851 & 729 & 1.07 & 8.2E-14 \\
\hline miR-9b & 844 & 473 & 0.70 & \(2.1 \mathrm{E}-46\) \\
\hline miR-1006 & 813 & 533 & 0.82 & \(1.2 \mathrm{E}-31\) \\
\hline miR-986 & 714 & 1,053 & 1.84 & 0.0006 \\
\hline miR-316 & 589 & 657 & 1.39 & 0.049 \\
\hline miR-995 & 570 & 690 & 1.51 & 0.590 \\
\hline miR-263a & 562 & 872 & 1.94 & \(5.9 \mathrm{E}-05\) \\
\hline miR-1012 & 543 & 377 & 0.87 & \(1.1 \mathrm{E}-18\) \\
\hline miR-1001 & 531 & 392 & 0.92 & \(2.2 \mathrm{E}-15\) \\
\hline miR-998 & 526 & 513 & 1.22 & 7.2E-05 \\
\hline miR-1017 & 497 & 304 & 0.76 & \(2.4 \mathrm{E}-23\) \\
\hline miR-9c & 478 & 588 & 1.54 & 0.829 \\
\hline miR-993 & 449 & 395 & 1.10 & \(4.0 \mathrm{E}-07\) \\
\hline miR-1009 & 414 & 234 & 0.71 & \(3.2 \mathrm{E}-23\) \\
\hline miR-980 & 336 & 276 & 1.03 & \(2.7 \mathrm{E}-07\) \\
\hline miR-929 & 335 & 287 & 1.07 & \(2.7 \mathrm{E}-06\) \\
\hline miR-190 & 319 & 518 & 2.03 & 0.0002 \\
\hline miR-2a-2 & 316 & 348 & 1.38 & 0.109 \\
\hline miR-87 & 266 & 139 & 0.65 & \(1.0 \mathrm{E}-17\) \\
\hline miR-1008 & 248 & 200 & 1.01 & \(4.6 \mathrm{E}-06\) \\
\hline miR-375 & 243 & 199 & 1.02 & \(1.0 \mathrm{E}-05\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline miR-100 & 241 & 224 & 1.16 & 0.0015 \\
\hline miR-988 & 223 & 150 & 0.84 & 3.1E-09 \\
\hline miR-1004 & 182 & 135 & 0.93 & 4.2E-06 \\
\hline miR-308 & 166 & 281 & 2.11 & 0.0019 \\
\hline miR-193 & 116 & 126 & 1.36 & 0.301 \\
\hline miR-2b-2 & 87 & 102 & 1.46 & 0.714 \\
\hline miR-2b-1 & 86 & 90 & 1.31 & 0.255 \\
\hline miR-283 & 85 & 92 & 1.35 & 0.364 \\
\hline miR-2c & 81 & 117 & 1.80 & 0.318 \\
\hline miR-1005 & 62 & 40 & 0.81 & 0.0013 \\
\hline miR-1007 & 62 & 51 & 1.03 & 0.029 \\
\hline miR-2a-1 & 60 & 63 & 1.31 & 0.365 \\
\hline miR-958 & 58 & 112 & 2.41 & 0.0068 \\
\hline miR-10 & 53 & 61 & 1.44 & 0.706 \\
\hline miR-971 & 48 & 56 & 1.46 & 0.768 \\
\hline miR-956 & 34 & 78 & 2.86 & 0.0030 \\
\hline miR-969 & 34 & 36 & 1.32 & 0.548 \\
\hline miR-311 & 30 & 11 & 0.46 & 0.0002 \\
\hline miR-314 & 21 & 38 & 2.26 & 0.191 \\
\hline miR-3 & 17 & 15 & 1.10 & 0.375 \\
\hline miR-954 & 17 & 27 & 1.98 & 0.453 \\
\hline miR-310 & 16 & 8 & 0.62 & 0.038 \\
\hline miR-312 & 16 & 13 & 1.01 & 0.266 \\
\hline miR-31b & 13 & 17 & 1.63 & 1.000 \\
\hline miR-1016 & 11 & 16 & 1.82 & 0.847 \\
\hline miR-286 & 10 & 1 & 0.12 & 0.0035 \\
\hline miR-990 & 10 & 24 & 3.00 & 0.086 \\
\hline miR-318 & 7 & 6 & 1.07 & 0.582 \\
\hline miR-92b & 7 & 19 & 3.39 & 0.078 \\
\hline miR-960 & 7 & 2 & 0.36 & 0.088 \\
\hline miR-982 & 7 & 5 & 0.89 & 0.391 \\
\hline miR-966 & 6 & 4 & 0.83 & 0.356 \\
\hline miR-991 & 6 & 2 & 0.42 & 0.151 \\
\hline miR-1013 & 5 & 6 & 1.50 & 1.000 \\
\hline miR-92a & 5 & 5 & 1.25 & 0.759 \\
\hline miR-1011 & 4 & 4 & 1.25 & 1.000 \\
\hline miR-984 & 4 & 5 & 1.56 & 1.000 \\
\hline miR-309 & 3 & 3 & 1.25 & 1.000 \\
\hline miR-313 & 2 & 1 & 0.62 & 0.589 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|l|l|}
\hline miR-976 & 2 & 4 & 2.50 & 0.699 \\
\hline miR-977 & 2 & 2 & 1.25 & 1.000 \\
\hline miR-303 & 1 & 6 & 7.49 & 0.141 \\
\hline miR-4 & 1 & 2 & 2.50 & 1.000 \\
\hline miR-959 & 1 & 1 & 1.25 & 1.000 \\
\hline miR-961 & 1 & 3 & 3.75 & 0.634 \\
\hline miR-964 & 1 & 2 & 2.50 & 1.000 \\
\hline miR-973 & 1 & 2 & 1.25 & 1.000 \\
\hline miR-989 & 1 & 4 & 2.50 & 1.000 \\
\hline miR-iab4as & & & 4.99 & 0.390 \\
\hline
\end{tabular}

Table II-S6. Primers for quantitative RT-PCR.

Table II-S6.
\begin{tabular}{|c|c|}
\hline Detects & Forward primer, reverse primer \\
\hline Gypsy & CCAGGTCGGGCTGTTATAGG, GAACCGGTGTACTCAAGAGC \\
\hline 297 & AAAGGGCGCTCATACAAATG, TGTGCACATAAAATGGTTCG \\
\hline roo & CGTCTGCAATGTACTGGCTCT, CGGCACTCCACTAACTTCTCC \\
\hline I-element & TGAAATACGGCATACTGCCCCCA, GCTGATAGGGAGTCGGAGCAGATA \\
\hline mdg1 & CACATGTTCTCATTCCCAACC, TTCGCTTTTTATATTTGCGCTAC \\
\hline jockey & TGCAGTTGTTTCCCCTAACC, AGTTGGGCAAATGCTAGTGG \\
\hline INE-1 & GGCCATGTCCGTCTGTCC, AGCTAGTGTGAATGCGAACG \\
\hline blood & TGCCACAGTACCTGATTTCG, GATTCGCCTTTTACGTTTGC \\
\hline S-element & TGAAAAGCGTCATTCATTCG, TGTTTCTAGCGCACTCAACG \\
\hline Doc & GGGTGACTATAACGCCAAGC, GCAAAATCGATCAGGTCTGG \\
\hline 1731 & AGCAAACGTCTGTTGGAAGG, CGACAGCAAAACAACACTGC \\
\hline F-element & GCTGGTAGATACCGCTGAGG, GTAGTCGTCCTCCGTTTTCG \\
\hline 412 & CACCGGTTTGGTCGAAAG, GGACATGCCTGGTATTTTGG \\
\hline NOF & AGTTGGACCTGGAATTGTGG, AATGCACACGGAAGAGGAAC \\
\hline Idefix & AACAAAATCGTGGCAGGAAG, TCCATTTTTCGCGTTTACTG \\
\hline Het-A & CGCGCGGAACCCATCTTCAGA, CGCCGCAGTCGTtTGGTGAGT \\
\hline dcr-1 & GCTAACGATGGCATCAATCTG, GCTTGGAGCGCAGGTGACTTA \\
\hline dcr-2 & GAGCTGCTCCATCAGTTTCA, TCCCAGTCAAAGCATTTCTGT \\
\hline ago2 & CAAGAAAGGAGGACAGGATAGC, TTGTTGCTGATGCGGTTG \\
\hline
\end{tabular}

Table II-S7. Sequencing statistics. "Small RNA reads" correspond to genome matching reads after excluding annotated non-coding RNAs. 454, pyrosequencing;

Solexa/Illumina, sequencing-by-synthesis. An asterisk indicates data that was pooled as described in the legend to Figure 2. Ambiguous: the reads map to the indicated category and another category or in both orientations within a single category.

\section*{Table II-S7.}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Genotype & Enriched for modified \(3^{-}\) ends? & Sequencing method & Genomematching reads & annotated ncRNAs & Total Small RNA reads & All pre-miRNA matching reads & Annotated miRNAs only \\
\hline S2 cells & no & 454 & 81,226 & 16,921 & 64,207 & 56,463 & 47,599 \\
\hline & yes & 454 & 72,012 & 5,875 & 66,056 & 11,014 & 7,476 \\
\hline IR-wild-type heads* & no & 454 & 94,772 & 23,206 & 71,268 & 68,596 & 61,688 \\
\hline & yes & 454 & 30,250 & 1,526 & 22,690 & 11,089 & 8,740 \\
\hline & no & Illumina & 1,245,354 & 33,429 & 1,187,572 & 1,152,293 & 949,190 \\
\hline & yes & Illumina & 33,558 & 2,219 & 28,344 & 10,792 & 8,849 \\
\hline wild-type male heads* & no & Illumina & 387,855 & 15,671 & 357,300 & 347,089 & 304,740 \\
\hline & yes & Illumina & 4,928 & 422 & 4,208 & 3,261 & 2,856 \\
\hline wild-type female heads* & no & Illumina & 916,026 & 43,081 & 790,126 & 754,602 & 673,105 \\
\hline & yes & Illumina & 61,748 & 2,214 & 54,495 & 47,231 & 41,598 \\
\hline \(d c r-2^{2811 t s x} / \mathrm{CyO}\) heads & no & Illumina & 908,508 & 2,683 & 859,436 & 833,614 & 638,085 \\
\hline dcr-2 \({ }^{\text {L811fs } X}\) heads & no & Illumina & 734,343 & 7,105 & 688,323 & 671,408 & 549,508 \\
\hline untreated ago2 heads & no & Illumina & 749,674 & 27,908 & 684,388 & 649,398 & 1,094,293 \\
\hline oxidized ago2 heads & yes & Illumina & 228,112 & 871 & 183,572 & 73,518 & 17,327 \\
\hline
\end{tabular}

Table II-S7, continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{matching coding genes (unambiguous)} & \multicolumn{2}{|l|}{matching coding genes (ambiguous)} & \multicolumn{2}{|l|}{matching transposons (unambiguous)} & \multicolumn{2}{|l|}{matching transposons (ambiguous)} & & & & \\
\hline sense & antisense & sense & antisense & sense & antisense & sense & antisense & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{matching only white IR trigger}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{matching white IR trigger and others}} \\
\hline 1,394 & 670 & 21,742 & 20,290 & 4 & 15 & 2,821 & 2,950 & & & & \\
\hline 6,586 & 4,995 & 44,670 & 42,945 & 23 & 61 & 24,442 & 24,148 & sense & antisense & sense & antisense \\
\hline 1,163 & 927 & 23,752 & 22,362 & 1 & 12 & 171 & 224 & 708 & 834 & 0 & 12 \\
\hline 4,068 & 5,503 & 9,197 & 8,841 & 9 & 8 & 703 & 792 & 3,102 & 5,283 & 0 & 19 \\
\hline 14,518 & 8,326 & 64,396 & 34,109 & 26 & 59 & 2,873 & 3,411 & 7,149 & 7,229 & 0 & 5 \\
\hline 1,556 & 1,522 & 11,506 & 9,860 & 4 & 4 & 306 & 294 & 904 & 1,165 & 0 & 0 \\
\hline 5,078 & 215 & 33,053 & 12,706 & 2 & 2 & 438 & 753 & & & & \\
\hline 114 & 13 & 1,150 & 686 & 0 & 0 & 18 & 22 & & & & \\
\hline 16,312 & 851 & 132,279 & 59,124 & 20 & 85 & 1,751 & 2,874 & & & & \\
\hline 1,258 & 279 & 10,398 & 5,969 & 5 & 17 & 550 & 664 & & & & \\
\hline 5,066 & 1,458 & 56,057 & 32,819 & 40 & 107 & 3,430 & 4,164 & & & & \\
\hline 3,476 & 876 & 49,723 & 33,036 & 20 & 52 & 1,510 & 1,686 & & & & \\
\hline 7,188 & 1,146 & 71,620 & 39,516 & 103 & 136 & 13,106 & 13,179 & & & & \\
\hline 323 & 93 & 5,532 & 4,228 & 4 & 12 & 336 & 440 & & & & \\
\hline
\end{tabular}

\section*{CHAPTER III}

\section*{Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway}

The following chapter was a collaborative effort. The author conceived the experimental design, performed all experiments and initial small-scale bioinformatic analyses. Jia Xu , Hervé Seitz and Zhiping Weng performed bioinformatic analyses. The author and Phillip Zamore wrote the paper. This chapter appeared in RNA. 2010 Jan;16(1):43-56.

\section*{Summary}

In flies, small silencing RNAs are sorted between Argonaute1 (Ago1), the central protein component of the microRNA (miRNA) pathway, and Argonaute2 (Ago2), which mediates RNA interference. Extensive double-stranded character-as is found in small interfering RNAs (siRNAs)—directs duplexes into Ago2, whereas central mismatches, like those found in miRNA/miRNA* duplexes, direct duplexes into Ago1. Central to this sorting decision is the affinity of the small RNA duplex for the Dcr-2/R2D2 heterodimer, which loads small RNAs into Ago2. Here, we show that while most Drosophila miRNAs are bound to Ago1, miRNA* strands accumulate bound to Ago2. Like siRNA loading, efficient loading of miRNA* strands in Ago2 favors duplexes with a paired central region and requires both Dcr-2 and R2D2. Those miRNA and miRNA* sequences bound to Ago2, like siRNAs diced in vivo from long double-stranded RNA, typically begin with
cytidine, whereas Ago1-bound miRNA and miRNA* disproportionately begin with uridine. Consequently, some pre-miRNA generate two or more isoforms from the same side of the stem that differentially partition between Ago1 and Ago2. Our findings provide the first genome-wide test for the idea that Drosophila small RNAs are sorted between Ago1 and Ago2 according to their duplex structure and the identity of their first nucleotide.

\section*{Introduction}

In animals, microRNAs (miRNAs) regulate the stability and rate of translation of mRNAs, whereas small interfering RNAs (siRNAs) silence transposons, defend against viral pathogens, and regulate mRNA expression \({ }^{254}\). Both miRNAs and siRNAs derive from longer double-stranded RNA (dsRNA) precursors, which are cleaved by RNase III dsRNA-specific endonucleases. miRNA production begins in the nucleus, where long primary miRNAs, transcribed by RNA polymerase II, are converted into \(\sim 65\) nucleotides (nt) pre-miRNA hairpins by the RNase III ribonuclease, Drosha, aided by a doublestranded RNA-binding domain (dsRBD) partner protein \({ }^{124-127,255,256}\). A minority of pre-miRNAs-mirtrons-correspond to entire introns and are excised from their primary transcripts by the pre-mRNA splicing pathway \({ }^{138,139}\). Pre-miRNAs are then exported to the cytoplasm \({ }^{129-131}\), where they are processed by a second RNase III enzyme, Dicer, together with its dsRBD partner protein, into \(\sim 22\) nt long miRNA/miRNA* duplexes \({ }^{62-}\)
siRNA production also requires Dicer, which excises 21-nt siRNA duplexes, comprising a guide and passenger strand, from long dsRNA formed by the base pairing of complementary sense and antisense transcripts, convergently transcribed mRNAs, or by the intra-molecular base pairing of long, self-complementary RNAs. Such endogenous dsRNAs yield endo-siRNAs. Similarly, exogenous dsRNA, introduced experimentally or by viral infection, are converted by Dicer to exo-siRNAs.

In Drosophila melanogaster, Dicer-1 (Dcr-1) converts pre-miRNAs into miRNA/miRNA* duplexes; Dicer-2 (Dcr-2) converts long dsRNA into 21-nt siRNA duplexes \({ }^{22,59,66}\). The use of different Dicer proteins to generate miRNAs and siRNAs may minimize competition between the two pathways, so that an RNAi defense to viral infection does not perturb miRNA production.

All small silencing RNAs function bound to Argonaute proteins. Argonaute proteins display nucleotides 2 to 8 of the small RNA guide in a pre-helical geometry that confers on this region special importance in target recognition: the majority of the binding energy for target binding is contributed by this "seed" sequence \({ }^{159,160,164,165,259-267}\). In flies, miRNAs are loaded from miRNA/miRNA* duplexes into Argonaute1 (Ago1), whereas siRNAs are loaded from guide/passenger duplexes into Argonaute2 (Ago2) \({ }^{58,78-}\) \({ }^{82,241,268}\). Two binary choices accompany loading of small RNAs into Argonaute proteins in Drosophila: the choice of Ago1 versus Ago2 and the selection of one of the two strands of the duplex as a miRNA or guide strand \({ }^{73,74}\).

Although fly miRNAs are overwhelmingly associated with Agol and siRNAs with Ago2, small RNA production and Argonaute loading are uncoupled \({ }^{202,203}\). Instead,
miRNA and siRNA duplexes are actively partitioned between Ago1 and Ago2 according to their structure. Extensive double-stranded character directs duplexes, such as siRNAs, into Ago2, which mediates RNAi, whereas bulges and mismatches, like those found in miRNA/miRNA* duplexes, are sorted into Ago1 \({ }^{269}\). Central to this sorting decision is the affinity of the small RNA duplex for the Dcr-2/R2D2 heterodimer, which loads small RNAs into Ago2 \({ }^{76,77,202,270}\). Central mismatches reduce binding of small RNA duplexes by the Dcr-2/R2D2 heterodimer, antagonizing Ago2 loading and promoting loading into Ago1 \({ }^{202,203,269}\). The function of the Dcr-2/R2D2 heterodimer in Ago2 loading is separate and distinct from its role in dicing siRNAs from long dsRNA: Dcr-2 bearing a glycine to arginine substitution (G31R) in its helicase domain cannot dice, but can still load siRNA into Ago2 \({ }^{66}\).

Increasingly, this simple picture of small RNA strand choice is at odds with the intracellular abundance, processing accuracy, and evolutionary conservation of miRNA* strands. First, some evolutionarily conserved miRNAs are less abundant than their miRNA* strands, which appear to be evolving regulatory functions \({ }^{188}\). Second, miRNA* \(5^{\prime}\) ends are far more precisely defined than their \(3^{\prime}\) ends, suggesting selective pressure to generate an accurate seed region-implying that they have regulatory targets \({ }^{188,244,271}\). Third, there is mounting evidence that some miRNA*s may have regulatory potential \({ }^{271-}\) \({ }^{273}\), and fly miRNA* strands are evolutionarily conserved, albeit not to the same extent as miRNAs \({ }^{271}\). Thus, miRNA* strands may regulate gene expression, rather than serve merely as carriers for loading the miRNA strand. Such a mechanism would make small RNA biogenesis more efficient, with each pre-miRNA producing two different regulatory
small RNAs. Nonetheless, miRNAs are typically far more abundant than their miRNA* counterparts, and regulation by low abundance Ago1-small RNA complexes has not been reported in flies.

Here, we show that while most Drosophila miRNAs are bound to Ago1 in vivo, most miRNA* strands accumulate bound to Ago2. Partitioning of miRNAs into Ago1 and Ago2 provide a wide-scale in vivo test for the previously proposed principles for small RNA sorting in flies: miRNAs and miRNA* strands are sorted between the two Argonaute proteins according to the structure of their small RNA duplex, a process that requires both Dcr-2 and R2D2. Like the exo-siRNAs that direct RNAi, miRNA* strands bound to Ago2 typically begin with cytidine, whereas Ago1-bound miRNAs usually begin with uridine. Thus, the identity of the first nucleotide of a small RNA plays a role in its sorting in flies, as previously reported for plants. Finally, miRNA* bound to Ago2 are more abundant than siRNAs that direct RNAi, suggesting that they function to silence target RNAs.

\section*{Results}

\section*{miRNAs and miRNA*s partition differentially between Ago1 and Ago2}

We used high throughput sequencing of 18-29 nt RNA from fly heads to determine the small RNA profile and distribution of small RNAs between Ago1 and Ago2 in this complex somatic structure (Table S1). Unlike other fly tissues, heads express little if any Piwi-interacting RNA, allowing us to focus on small RNAs bound to Ago1 or Ago2 \(2^{26}\). Of the \(\sim 1.6\) million genome-matching small RNAs sequenced (excluding annotated non-
coding RNAs such as 2 S ribosomal RNA), \(90.2 \%\) were derived from pre-miRNAs (Fig. 1A). In parallel, we used an Ago1 monoclonal antibody \({ }^{81}\) to immunoprecipitate Ago1associated small RNAs from fly head extracts. Nearly \(97 \%\) of the \(>5.03\) million small RNA sequences associated with Ago1 were miRNAs; only \(2.2 \%\) were miRNA* strands (Fig. 1A).

Ago2-loaded guide strands acquire a \(3^{\prime}\) terminal \(2^{\prime}-O\)-methyl modification after their corresponding passenger strand is discarded \({ }^{83,182}\). To enrich for Ago2-loaded small RNAs, we oxidized the 18-29 nt RNAs prior to library preparation, a treatment that excludes from the library most Ago1-loaded small RNAs, which bear \(2^{\prime}, 3^{\prime}\) hydroxyl termini, but allows sequencing of Ago2-loaded small RNAs, because their 2'-O-methyl modification protects them from reaction with \(\mathrm{NaIO}_{4}{ }^{26,244}\). In general, the pre-miRNAderived small RNAs associated with Ago1 correlated well with the total small RNA profile ( \(r=0.91\) for miRNAs; \(r=0.70\) for miRNA* strands), supporting the view that the majority of small RNAs in fly heads accumulate because they are bound to Ago1. However, a global fit of the sum of the miRNA and miRNA* species detected in the Ago1 immunoprecipitation and the miRNA and miRNA* species detected in the library prepared from oxidized RNA more closely recapitulated the total small RNA profile ( \(r=\) 0.91 for miRNAs; \(r=0.85\) for miRNA* strands), suggesting that Ago2-bound miRNA and/or miRNA* species are a significant component of the total pre-miRNA-derived small RNA population.
siRNAs were previously identified as the major class of Ago2-associated endogenous small RNAs in flies \({ }^{26-29,112,113}\). Yet, the population of Ago2-associated small

RNAs contained more miRNA plus miRNA* combined (53.2\%) than endo-siRNAs (33.2\%) (Fig. 1A). Thus, the identity of the Dicer paralog that generates a small RNA does not determine the Argonaute protein into which it is loaded. Compared to the total small RNA population-where miRNAs represented \(\sim 87.5 \%\) of all small RNAs, but miRNA* reads were just \(2.6 \%-m i R N A s\) were underrepresented (39.4\%) and miRNA* (13.8\%) were over-represented among the Ago2-associated small RNA sequences. The abundance of pre-miRNA-derived small RNAs associated with Ago2 calls into question the prevailing view that Ago2 is restricted to the RNAi pathway.

In general, Ago2 was significantly depleted of miRNAs and enriched for miRNA* sequences \(\left(P \leq 2.2 \times 10^{-16}\right)\). Conversely, Ago1 was significantly depleted of miRNA* sequences and enriched for miRNAs \(\left(P \leq 2.2 \times 10^{-16}\right)\). For some of theseespecially miRNAs—more of a particular small RNA was present in Ago1 than in Ago2, but more of that small RNA was associated with Ago2 than would be expected by chance. In all, 26 miRNAs and 49 miRNA* were significantly ( \(P \leq 0.01\) ) enriched in Ago2, whereas 71 miRNAs and 9 miRNA* were significantly ( \(P \leq 0.01\) ) enriched in Ago1 (Fig. 1B). Of the 49 miRNA* enriched in Ago2, 32 had their corresponding miRNA enriched in Ago1, while 15 had their miRNA enriched in Ago2. Among the examples illustrated in Figure 2, the miRNAs bantam and miR-308 were enriched in Ago1, whereas bantam* and miR-308* were enriched in Ago2. Table S2 reports the enrichment or depletion of individual miRNAs and miRNA* species between the two Drosophila Argonaute proteins.

Although generally less abundant than miRNAs bound to Ago1, miRNA* isoforms (i.e., all of the species derived from the same side of the stem of a single premiRNA and sharing a common seed) bound to Ago2 were equally or more abundant than other small RNAs that exert their regulatory functions through Ago2, including the well studied exo-siRNAs derived from an inverted repeat transgene that fully silences the white gene via the RNAi pathway \({ }^{243}\). The median abundance for miRNA* isoforms enriched in Ago2 was more than twice that of the median abundance for white exosiRNAs bound to Ago2, and 18 miRNA* were more abundant than the single most abundant white exo-siRNA detected in the same fly heads. (These 18 miRNA* are outliers whose abundance was too large to display on the box plot in Fig. 1C.) In fact, the abundance of a single miR- \(8^{*}\) isoform alone ( 2,748 parts per million [ppm]), was nearly two-thirds of the aggregate abundance of all antisense white exo-siRNAs (4,273 ppm), whose concentration in heads is sufficient to phenocopy a strong loss-of-function white mutation. Summing the isoforms of each miRNA*, 25 miRNA* were more abundant than all antisense white exo-siRNAs combined.

Figure III-1. miRNA* are loaded in Ago2. (A) Relative abundance of miRNA, miRNA*, and endo-siRNAs among total fly head small RNA, Ago1-bound small RNAs—inferred from co-immunoprecipitation with Ago1, and Ago2-bound small RNAs-inferred from their presence in an oxidized small RNA library. (B) Box plots illustrating the enrichment scores for all miRNA and miRNA associated with Ago1 (i.e., in the Ago1 immunoprecipitate) or Ago2 (i.e., in the oxidized library) and for miRNA and miRNA* that were significantly \((P \leq 0.01)\) associated with Ago1 or Ago2. For miRNA* enriched in Ago2, six outliers with enrichment scores greater than 150 are not show: miR-92a* \((\) score \(=1206), \operatorname{miR}-308^{*}(\) score \(=649)\), miR- \(99^{*}(\) score \(=598)\), miR\(315^{*}(\) score \(=514), \operatorname{miR}-2 \mathrm{a}-2^{*}(\) score \(=309)\), and miR-33* \((\) score \(=304) .(\mathrm{C})\) Box plots illustrating the abundance of Ago2-enriched miRNA* and white exo-siRNAs in the total RNA library. For miRNA* enriched in Ago2, 18 outliers with abundance greater than 250 ppm are not shown, including miR-8* (2,748 ppm) and miR-34* (1,747 ppm).

\section*{Figure III-1.}


Figure III-2. Exemplary miRNA and miRNA* duplexes. Typical miRNA/miRNA* duplexes load their miRNA strands into Ago1 and their miRNA* strands into Ago2. The examples here correspond to duplexes whose miRNA strand was significantly ( \(P \leq 0.01\) ) enriched in Agol and whose miRNA* strand was enriched in Ago2. These duplexes present different structures to the Ago1 and Ago2 sorting machinery, as the prospective guide strand occupies a unique position during Argonaute loading. When viewed with miRNA strand as the guide and miRNA* strand as the passenger, the duplex presents a duplex with central bulges, mismatches and G:U wobbles, but when miRNA* strand will become the guide and miRNA strand serves as the passenger, the duplexes present more stably paired central regions. The duplexes are drawn using the guide isoform that was most abundant for the specific Argonaute protein paired to the most abundant passenger sequence detected in the total small RNA library. Red text, seed sequence; shaded bars highlight positions that are significantly different between Ago1- and Ago2-loaded guides (see Fig. 4).

\section*{Figure III-2.}
\begin{tabular}{|c|c|}
\hline & Ago1 \\
\hline \(5^{\prime}\) U, unpaired P9-10 &  \\
\hline \[
\begin{array}{r}
\text { 5' U, P7-P9 G:U, } \\
\text { unpaired P10 }
\end{array}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline
\end{tabular}

 unpaired P11 \(3^{\prime}\) GUUU \(_{U}\) GUGUUUU \(_{U^{\text {AUAUGACGC }}} 5^{\circ} \mathrm{miR}-308^{\star}\)
\(5^{\prime}\) C, unpaired P8-9, \(\quad 5^{\circ}\) CUCCCUUAC \({ }^{A} G A G U C A G^{A} U G G\) 3iR-929

\(5^{\prime} \mathrm{U}, \mathrm{P9}\) bulge, \(\quad 5^{\prime}\) UG-ACUAGAUUUCAUGCUCGUCu \(3^{\prime}\) miR-996



\(\operatorname{miR}-282^{*} \quad 5^{\prime}{ }^{A C A} U_{A G C C U A}^{U A} A_{A G A G G U A G G} 3^{\prime} \quad 5^{\prime}\) A, paired P8-10,






Ago2





\section*{The siRNA-loading machinery sorts miRNA* strands into Ago2}

Apart from its function in producing siRNAs, Dcr-2 acts with its double-stranded RNAbinding domain protein partner, R2D2, to both load small RNA duplexes into Ago2 and determine the identity of guide and passenger strands. Thus, both Dcr-2 and R2D2 are required to load Ago2 with siRNAs derived from exogenous dsRNA (exo-siRNAs), such as those derived from a long inverted repeat transcript designed to silence white mRNA expression \({ }^{66,134}\). At least one Drosophila miRNA, miR-277, which associates equally with Ago1 and Ago2 in cultured S2 cells, requires Dcr-2 and R2D2 to load it into Ago2, even though miR-277 requires Dcr-1 to liberate it from pre-miR- \(277^{203}\).

Likewise, those miRNA and miRNA* sequences that were enriched in Ago2 required Dcr-2 and R2D2 for their loading (Fig. 3A). The median extent of Ago2 loading of these miRNAs declined 2.7 -fold in \(d c r-2^{L 81 I f s X}\) and 3.3-fold in \(r 2 d 2^{l}\) heads, compared to wild-type; loading of miRNA* into Ago2 declined 2.1-fold in \(d c r-2^{L 81 l f s}\) and 3.1-fold in \(r 2 d 2^{1}\). In contrast, the overall abundance of the miRNA or miRNA* sequences that were enriched in Ago1 was unaltered in \(d c r-2\) or \(r 2 d 2\) mutant heads.

R2D2 is stabilized by its association with Dcr-2 \(2^{76,203}\). Consequently, \(d c r-2^{\text {L811fsX }}\) flies are also deficient in R2D2. For miRNA and miRNA* that were preferentially loaded into Ago2, the effect of the absence of Dcr-2 and R2D2 on Ago2 loading were well correlated ( \(r=0.828\) ) (Fig. 3B,C). As expected, the abundance of miRNA and miRNA* that were preferentially loaded into Ago1 were largely unchanged in these two mutants.

The median abundance of Ago2-enriched miRNA* sequences in the total RNA library declined \(\sim 2.1\)-fold in the absence of Ago2 (Fig. 3D). In contrast, the median
abundance of miRNA-enriched in Ago1 was unaltered in ago2 \({ }^{414}\) mutants heads, compared to wild-type (median fold change \(=1.0\) ), a significant difference from the Ago2-enriched miRNA* \(\left(P \leq 3.1 \times 10^{-8}\right)\). These data suggest that in the ago2 mutant, those miRNA* species that normally are loaded into Ago2 become less stable when that Argonaute protein is not available. We envision that these miRNA*/miRNA duplexes, while good substrates for the Ago2-loading machinery, are poor loading substrates for the Ago1-loading machinery. In the absence of Ago2, miRNA*/miRNA duplexes from which the Ago2-enriched miRNA* are normally loaded into Ago2 can no longer be used for this purpose. Instead, they are now used as miRNA/miRNA* duplexes-whose structure typically favors Ago1 loading-to load their miRNA strand into Ago1. The observation that abundance of Ago2-enriched miRNA* sequences declines in ago2 \(2^{414}\) heads supports the earlier proposal that the duplex features that promote Ago2-loading are anti-determinants for Ago1 loading \({ }^{202,269}\).

\section*{Figure III-3. Association of miRNA* with Ago2 relies on the Ago2-loading} machinery. (A) Efficient loading into Ago2 of miRNA and miRNA* strands-measured by their abundance in an oxidized small RNA library—was diminished in heads from \(d c r-2^{2811 f_{s} X}\) and \(r 2 d 2^{1}\) mutants for miRNA and miRNA* normally enriched in Ago2, but the abundance of Ago1-enriched miRNAs was unaltered, as measured in the total small RNA library. Box plots illustrate the fold-change between mutant and wild-type. (B,C) The requirement for Dcr-2 and R2D2 for Ago2 loading was well correlated for miRNA and miRNA* strands preferentially loaded into Ago2. (D) The overall abundance of Ago2-enriched miRNA and miRNA*-measured in the total small RNA library—decline in ago2 mutant heads. Box plots illustrate the fold-change between mutant and wild-type in total small RNA libraries.

Figure III-3.


\section*{miRNA/miRNA* duplex structure determines Argonaute loading}

The Dcr-2/R2D2 heterodimer interprets the structure of a small RNA duplex, sorting centrally paired duplexes into Ago2 and leaving duplexes with an unpaired region centered on guide nucleotide 9 to enter the Ago1 loading pathway \({ }^{202,203}\). Each small RNA duplex presents two distinct duplexes to the fly sorting machinery. For example, bantam/bantam* displays mismatches at guide positions 9 and 10 when viewed from the \(5^{\prime}\) end of the miRNA, but these positions are paired when viewed from the \(5^{\prime}\) end of the miRNA* strand (Fig. 2). That is, the bantam/bantam* and bantam*/bantam duplexes are not equivalent.

To evaluate if miRNA/miRNA* duplexes and miRNA*/miRNA duplexes generally present distinct structures to the Drosophila Argonaute loading machineries, we calculated the pairing probability for each nucleotide in each miRNA/miRNA* duplex that loads an Ago1- or Ago2-enriched miRNA or miRNA*/miRNA duplex that loads an Ago1- or Ago2-enriched miRNA* (Fig. 4A). Viewed in this way, two significant ( \(P<\) \(0.01)\) structural differences emerge that distinguish duplexes that load Ago1 from those that load Ago2 (Fig. 4B,C): from the perspective of the loaded strand, Ago1-loading duplexes are more likely to have an unpaired \(5^{\prime}\) end and a central unpaired region that spans nucleotide positions 8-11. Conversely, Ago2-loading duplexes more likely have a paired \(5^{\prime}\) end and a central region with greater double-stranded character. Ago2-loading duplexes are also more likely to have an unpaired guide \(3^{\prime}\) end (Fig. 4D). Remarkably, these differences reflect the "rules" for sorting small RNA duplexes between Ago1 and Ago2 that were inferred previously from biochemical studies \({ }^{202,269}\). Thus, they provide in
vivo validation of the hypothesis that Drosophila small RNA duplex structure determines its partitioning between Ago1 and Ago2.

Figure III-4. Pairing profiles of Ago1- and Ago2-loaded small RNA guides. (A) Box plots illustrate the predicted double-stranded character of each nucleotide position, 1-19, for all Ago1- or Ago2-enriched miRNA or miRNA* strands. (B) The Wilcoxon test \(P\) value for each comparison was used to identify nucleotide positions that were significantly different between Ago1-enriched miRNA plus miRNA* compared with Ago2-enriched miRNA plus miRNA*. The red line indicates \(P=0.01\). Grey circles, nonsignificant; black circles, significant. (C) Box plots illustrate the differences in doublestranded character for each position that was significantly different in double-stranded character between Ago1-loaded and Ago2-loaded miRNA plus miRNA* in (B). (D) The data in (A-C) suggest that miRNA duplexes with less stable \(5^{\prime}\) ends and central mismatches act as guides for Ago1 and miRNA duplexes with less stable \(3^{\prime}\) ends act as guides for Ago2.

Figure III-4.


\section*{The 5' terminal nucleotide of a small RNA reflects its partitioning between Ago1 and} Ago2

Arabidopsis thaliana produces ten distinct AGO proteins, and small RNAs are sorted among them according to their first nucleotide. Of the 187 annotated miRNAs in Arabidopsis, \(\sim 76 \%\) begin with uridine, consistent with the idea that a \(5^{\prime} \mathrm{U}\) steers a small RNA into plant Ago1 \({ }^{108,204}\). Arabidopsis Ago2 and Ago4 preferentially load small RNAs that begin with an adenosine, whereas Ago5 favors small RNAs that begin with cytidine 108,204. Small RNAs in flies partition between Ago1 and Ago2 according to the structure of the duplex from which they are loaded, yet, as in plants, Drosophila miRNAs overwhelmingly begin with \(U\), whereas \(U\) is not over-represented as the first nucleotide of siRNAs \({ }^{26}\).

We analyzed the sequence composition of Ago1- and Ago2-loaded miRNA and miRNA* strands present in our small RNA libraries from fly heads. To prevent differential rates of transcription or miRNA precursor processing from skewing our analysis, for each set of small RNAs derived from a common precursor, we weighted the sequence bias of each miRNA or miRNA* isoform by its relative abundance, then averaged the sequence bias among all miRNAs or miRNA* strands, weighting each locus equally (Fig. 5).

Our analysis suggests that the first nucleotide of a fly small RNA reflects its sorting between Ago1 and Ago2. miRNAs expressed in fly heads generally began with U (72\%) rather than \(\mathrm{A}(15.2 \%), \mathrm{C}(7.6 \%)\), or \(\mathrm{G}(5.2 \%)\); for miRNAs bound to Ago1, as judged by their co-purification with immunoprecipitated Ago1, \(73.5 \%\) began with \(U\),
whereas \(7.1 \%\) began with C. Among the miRNA and miRNA* species that were significantly \((P \leq 0.01)\) enriched in Ago1 relative to the total small RNA pool of fly heads, \(83.9 \%\) began with U ; just \(3.4 \%\) began with C . In contrast, \(49 \%\) of miRNAs that were enriched in Ago2 began with U; 21.6\% began with C and \(21.8 \%\) began with A , indicating a selection against a \(5^{\prime} \mathrm{U}\).
miRNA* strands showed a distinctly different \(5^{\prime}\) sequence bias. The miRNA* detected in fly heads typically began with A (28.2\%), C (32.1\%), or G (22.1\%), rather than \(\mathrm{U}(17.6 \%)\). In contrast to this overall \(5^{\prime}\) sequence bias, those miRNA* that were significantly enriched in Ago1 began either with A (56.3\%) or U (29.2\%); the population of miRNA* loaded into Ago1 was depleted of miRNA* isoforms that begin with C.

Ago2-loaded miRNA* strands showed the opposite bias: they typically began with C. Nearly \(58 \%\) of miRNA* strands enriched in Ago2 and detected in the oxidized library began with \(\mathrm{C}, 15.2 \%\) began with A , and just \(7.7 \%\) began with U , a sequence bias significantly different from the composition of nucleotides 2-18 of the same small RNAs ( \(P \leq 6.7 \times 10^{-10}\), Fisher's exact test) and from the first nucleotide bias of miRNA* overall ( \(P \leq 6.6 \times 10^{-7}\) ) and of those miRNA* loaded into Ago1 ( \(P \leq 0.017\) ). Overall, \(40 \%\) of the Ago1-enriched miRNA or miRNA* species began with U, whereas 23\% of the Ago2enriched miRNA or miRNA* species began with C.

Essentially identical sequence biases for both miRNA and miRNA* were present in independent small RNA libraries from male and female heads, in libraries prepared from three distinct genetic backgrounds (Oregon R, dcr-2 \(2^{L 811 / f x} / \mathrm{CyO}\), or \(r 2 d 2^{l} / \mathrm{CyO}\) ), in libraries of Ago2-associated small RNAs that were prepared using either oxidation or
oxidation followed by \(\beta\)-elimination, and in libraries processed and sequenced using two different high throughput technologies: pyrosequencing ("454") or sequencing-bysynthesis (Illumina Genome Analyzer). Together, these data suggest that, in flies, a 5' terminal U promotes Ago1 loading but discourages association with Ago2, whereas a 5' terminal C directs a small RNA away from Ago1 and towards Ago2.

To further test this hypothesis, we analyzed the \(5^{\prime}\) nucleotide composition of exosiRNAs derived from a P-element transgene expressing a long inverted repeat corresponding to exon 3 of the white mRNA. We compared the overall population of white exo-siRNAs with those white exo-siRNAs bound to Ago2, as inferred from their presence in an oxidized small RNA library. Because the white exo-siRNA species are transcribed and diced from a common transcript, differences in their steady-state abundance likely reflect, at least in part, their different propensities to load into an Argonaute protein. Supporting this view, white exo-siRNAs levels decline \(>10\)-fold in vivo in a \(d c r-2^{L 811 f_{s} X}, r 2 d 2^{1}\), or \(a g o 2^{414}\) mutant (T. Du and PDZ, unpublished data). We therefore weighted each first nucleotide according to the abundance of the corresponding white exo-siRNA species.

Like Ago2-enriched miRNA*, exo-siRNAs isolated from fly heads typically began with \(\mathrm{C}(39.8 \%)\), rather than \(\mathrm{A}(17.3 \%), \mathrm{G}(20.5 \%)\), or \(\mathrm{U}(22.4 \%)\), a sequence bias significantly different from that of the corresponding strand of the dsRNA from which they are derived \(\left(P \leq 1.8 \times 10^{-9}\right)\). Among the white exo-siRNAs in the library prepared from oxidized small RNA—i.e., small RNAs bound to Ago2—47\% began with C.

Supporting the view that the strong C-bias of exo-siRNAs reflects their association with

Ago2, the \(5^{\prime} \mathrm{C}\) bias was not observed among the 17 -fold lower amount of exo-siRNAs that remained in an \(r 2 d 2^{1}\) mutant. \(r 2 d 2^{1}\) mutant flies are defective in loading exo-siRNAs into Ago2 and do not silence white expression \({ }^{134}\).

\section*{Figure III-5. miRNAs and miRNA* show an Argonaute-specific first nucleotide}
bias. miRNAs and miRNA* associated with Ago1 or Ago2 differ in the bias of their first nucleotide. miRNAs generally begin with uridine; this bias increased for the subset of miRNA that were Ago1-bound (measured in the Ago1 immunoprecipitate library), and increased further for the subset of Ago1-enriched miRNAs (measured in the total small RNA library). In contrast, Ago2-enrcihed miRNAs were depleted of \(5^{\prime}\) uridine in the oxidized small RNA library. miRNA* strands generally began with adenosine or cytidine. All miRNA* strands detected in the oxidized library (i.e., loaded in Ago2) or those enriched in Ago2, were significantly more likely to begin with cytidine, whereas those miRNA* enriched in Ago1 were depleted of a 5 \({ }^{\prime}\) cytidine. A 5 \({ }^{\prime}\) cytidine bias was also observed for white exo-siRNAs and was diminished in \(r 2 d 2^{1}\), a mutant defective in Ago2-loading.

Figure III-5.


To further test the idea that the first nucleotide of a small RNA duplex influences its sorting between Ago1 and Ago2 in flies, we examined the loading of small RNA duplexes in vitro, using a previously described UV cross-linking assay \({ }^{202}\). We synthesized two miRNA duplexes, one corresponding to the authentic Drosophila let-7 miRNA/miRNA* duplex, which begins with a \(5^{\prime} \mathrm{U}\), and a second in which the initial U of let-7 was changed to a \(5^{\prime} \mathrm{C}\) (Fig. 6A). In parallel, we also synthesized two siRNA duplexes in which the guide strand was either authentic let-7 (paired to its reverse complement) or let-7 bearing a \(5^{\prime} \mathrm{C}\) instead of a U (Fig. 6A). Each miRNA or guide strand was \(5{ }^{\prime 32} \mathrm{P}\)-radiolabeled, so that cross-linking identified the proteins, including Ago1 and Ago2, to which it bound when incubated in Drosophila embryo lysate.

The miRNA/miRNA* duplex containing authentic let-7 strand-i.e., let-7 that began with a \(5^{\prime} \mathrm{U}\)-cross-linked to Ago1 more efficiently than the let-7 variant that began with a \(5^{\prime} \mathrm{C}\) (Fig. 6A,B); neither duplex detectably loaded its miRNA strand into Ago2. Moreover, when we performed cross-linking in Ago1 immunodepleted lysate, not only was Ago1 cross-linking absent, but no Ago2 cross-link appeared. We conclude that the structure of a miRNA duplex not only favors Ago1 loading, but actively prevents loading of the miRNA into Ago2. Moreover, the interplay between the structure of the miRNA duplex and its \(5^{\prime}\) nucleotide determines its distribution between Ago1 and Ago2.

In contrast to the miRNA/miRNA* duplexes, the siRNA duplexes cross-linked mainly to Ago2, although some Ago1 cross-linking was clearly detected. For the siRNA duplexes, the influence of first nucleotide identity on the efficiency of Ago2 loading was opposite of that observed for the miRNAs: the siRNA duplex whose guide strand began
with a \(5^{\prime} \mathrm{C}\) loaded more efficiently into Ago2 than the siRNA duplex whose guide began with U (Fig. 6A,C). Together, these in vitro data provide strong support for the hypothesis that the enrichment for a \(5^{\prime} \mathrm{U}\) among Ago1-loaded miRNAs and for a \(5^{\prime} \mathrm{C}\) among Ago2-loaded miRNA, miRNA*, and siRNAs reflects a direct role for \(5^{\prime}\) nucleotide identity in small RNA sorting between Ago1 and Ago2 in Drosophila.

Figure III-6. Ago1 prefers to load miRNAs that begin with a \(5^{\prime}\) uridine, while Ago2 prefers siRNAs that begin with a \(5^{\prime}\) cytidine. (A) Four small-RNA duplexes were incubated with embryo lysate and then cross-linked with shortwave UV to identify small RNA-bound proteins. Representative data is shown. (B) Kinetic analysis of miRNA association with Ago1, monitored by UV cross-linking. (C) Kinetic analysis of siRNA association with Ago2, monitored by UV cross-linking. (D) Kinetic analysis of siRNA association with Ago1, monitored by UV cross-linking. In B and C, each data point represents the average \(\pm\) standard deviation for three trials.

Figure III-6.



C


D


\section*{For some miRNA and miRNA*, distinct isoforms load into Ago1 and Ago2}

At least nine Drosophila pre-miRNA produce from one side of their stem two small RNAs that partition differentially between Ago1 and Ago2. Such differentially partitioning miRNA or miRNA* isoforms differ at their \(5^{\prime}\) ends and therefore present subtly different duplexes to the Argonaute-loading machinery. Moreover, the differentially sorting isoforms have different seed sequences, which would allow them to regulate distinct repertoires of target mRNAs. Figure 7 presents these "seed switching" miRNA and miRNA* isoforms in the context of the duplexes from which they are presumed to be loaded into Ago1 or Ago2. Pre-miR-193 provides a particularly stunning example of such isoform-specific Argonaute loading. This pre-miRNA generates two miR-193 isoforms: one begins with a \(U\) and loads into Ago1, whereas a miR-193 isoform that begins at the next nucleotide, an A, loads into Ago2. Pre-miR-193 also generates two miR-193* isoforms. Again, the one that begins with a U loads into Ago1, whereas a less abundant isoform that begins at the G that lies immediately \(5^{\prime}\) to the U loads into Ago2. This small collection of seed switching miRNA and miRNA* gives the impression that the sorting of imperfectly paired small RNA duplexes between Ago1 and Ago2 reflects a complex interplay between structural determinants or anti-determinants and first nucleotide preferences and dislikes.

\section*{Figure III-7. miRNA and miRNA* can switch seeds between Ago1 and Ago2.}

Depicted are miRNA/miRNA* duplexes that load distinct isoforms of their miRNA or miRNA* between Ago1 and Ago2, resulting in seed switching between Argonautes. The duplexes are drawn pairing the most abundant guide isoform associated with the particular Argonaute to the most abundant passenger strand isoform in total head small RNA library. Reads in parts per million represent the sum of all isoforms that share the same seed. Ratio reports the relative number of reads for the isoform in Ago1: the number of reads for the isoform in Ago2 as detected within either the library prepared from Ago1 immunoprecipitated small RNAs (Ago1 ratio) or oxidized small RNA (Ago2 ratio). Red text, seed sequence; shaded bars, determinative positions for small RNA sorting between Ago1 and Ago2; N.D., detected in wild-type but not detected in the ago \(2^{414}\) mutant.

\section*{Figure III-7.}


\section*{Discussion}

Historically, miRNA were defined as the more abundant of the small RNAs derived from the two sides of a pre-miRNA stem \({ }^{3-5}\). The miRNA* strand has been proposed to be destroyed during Argonaute loading, explaining its considerably lower abundance \({ }^{73,74}\). Yet, high depth sequencing has revealed that many miRNA* species are more abundant than some miRNA species, and miRNA/miRNA* ratios may vary dramatically among developmental stages \({ }^{271,272}\).

In fly heads and ovaries, several miRNA* strands are more abundant than their annotated miRNA counterparts (Table 1). In our data sets, miR-92a was more abundant than miR-92a* in ovaries ( \(3,240 \mathrm{ppm}\) miRNA vs. 15 ppm miRNA*), while its miR-92a* was more abundant than miR-92a in heads ( 24 ppm miRNA vs. 106 ppm miRNA*). Likewise, miR-988 (260 ppm miRNA vs. 300 ppm miRNA* in heads, but 124 ppm miRNA vs. 49 ppm miRNA* in ovaries) and miR-284 (4,993 ppm miRNA vs. 915 ppm miRNA* in heads, 49 ppm miRNA vs. 72 ppm miRNA* in ovaries) showed distinctly different miRNA/miRNA* ratios in ovaries and heads. Such altered ratios may reflect different concentrations of Ago1 and Ago2 or of components of their respective Argonaute-loading machineries in the two organs.

Table III-1. Pre-miRNAs whose miRNA* strands were more abundant than their miRNAs among small RNAs isolated from fly heads and fly ovaries.
\begin{tabular}{|c|c|c|}
\hline Pre-miRNA & miRNA reads (ppm) & miRNA* reads (ppm) \\
\hline \multicolumn{2}{|c|}{ Fly heads } & 771 \\
\hline miR-10 & 219 & 1861 \\
\hline miR-1012 & 211 & 269 \\
\hline miR-193 & 239 & 1,771 \\
\hline miR-281-2 & 15 & 390 \\
\hline miR-5 & 24 & 17 \\
\hline miR-92a & 260 & 106 \\
\hline miR-988 & 29 & 300 \\
\hline Fly ovaries & 19 & 83 \\
\hline miR-10 & 17 & 24 \\
\hline miR-1012 & 240 & 45 \\
\hline miR-276b & 49 & 252 \\
\hline miR-281-2 & & 72 \\
\hline miR-284 & & \\
\hline
\end{tabular}

Our analyses show that nearly all miRNA and miRNA* strands sequenced in a total small RNA library correspond to species loaded into Ago1 or Ago2. Ago1 and Ago2 initially bind duplex small RNAs that subsequently separate, leading to one small RNA being retained as a guide and the other being discarded and destroyed. The identity of the destroyed strand, i.e., the passenger strand, can only be loosely inferred from small RNA sequencing data, because the accumulation of both miRNA and miRNA* strands in total libraries reflects their loading as guide RNAs, not their accumulation as discarded passenger strands. We attempted to infer the identity of these passenger strands by searching published high throughput Drosophila small RNA libraries—our own and
those of others-for the loop fragments that result from Dicer-1 cleavage of pre-miRNA. Such loop fragments have the potential to reveal the site of Dicer cleavage and therefore might better define the pre-miRNA-derived small RNA that is initially paired to an Argonaute-loaded miRNA or miRNA* strand.

We analyzed 70 independent small RNA libraries comprising > 66 million nonncRNA, genome-mapping small RNA reads. We detected loop reads for 80 pre-miRNAs. For most of these small RNAs, the loop-based strategy predicted the same base-pairing profile produced by annealing the most abundant miRNA isoform with the most abundant miRNA* isoform present in our total wild-type small RNA library. We conclude that pairing the most abundant passenger strand isoform to the corresponding miRNA or miRNA* is a good approximation of the miRNA/miRNA* or miRNA*/miRNA duplex used as the substrate for Argonaute loading.

\section*{Sorting combines structure and sequence information}

In general, miRNAs associate with Ago1 and miRNA* strands associate with Ago2 in Drosophila. It is important to note that our data argues strongly against a model in which miRNA* strands bind Ago2 as a consequence of the corresponding miRNA binding Ago1. First, we can identify six miRNAs in which both the miRNA and the miRNA* strand are enriched in Ago1 complexes in fly heads. Second, we find 15 miRNAs for which both the miRNA and the miRNA* strands are enriched in Ago2 complexes. Our data suggest that each miRNA/miRNA* duplex presents two distinct structures to the sorting machinery: One in which the miRNA is the presumptive guide and one in which
the miRNA* assumes that position. Evolution appears to have selected for miRNA/miRNA* duplexes that present sequence and structural features appropriate for loading Ago1 while simultaneously favoring Ago2 loading when the same duplex is viewed from the perspective of the miRNA*. Consequently, miRNA generally load into Ago1, whereas miRNA* load into Ago2, an Argonaute protein previously thought to act only in the RNAi pathway. miRNA* are therefore the first class of Drosophila small silencing RNAs produced by Dicer-1, but preferentially loaded into Ago2 (Fig. 8).

Figure III-8. A model for small RNA sorting. Sorting of small RNA into an Argonaute is governed by structure and first nucleotide identity. Consequently, a single miRNA/miRNA* duplex derived from a single pre-miRNA can present two distinct structures to the Argonaute-loading machinery. From one end, the duplex can act as a favorable substrate for loading Ago1, while from the other end, its structure and sequence can favor entry into the RNAi-i.e., the Ago2-pathway.

\section*{Figure III-8.}

miRNA/miRNA* duplexes that preferentially load Ago1 are typically less stably paired at their \(5^{\prime}\) ends and contain central mismatches, bulges, or \(\mathrm{G}: \mathrm{U}\) wobble pairs, whereas miRNA*/miRNA duplex that preferentially load Ago2 possess more stably paired \(5^{\prime}\) ends and center, but have less stably paired \(3^{\prime}\) ends. In addition to structure, sequence also plays a role in small RNA sorting in flies. Ago1-bound miRNAs begin overwhelmingly with uridine, whereas Ago2-bound miRNA, miRNA*, and siRNA tend to begin with cytidine. Moreover, our in vitro cross-linking experiments show that a \(5^{\prime} \mathrm{U}\) increased the efficiency of miRNA loading into Ago1, relative to a \(5^{\prime} \mathrm{C}\), whereas a \(5^{\prime}\) C-in the context of an siRNA duplex-increased the efficiency of Ago2 loading, relative to a \(5^{\prime} \mathrm{U}\).

The 5' terminal nucleotide of a small RNA is anchored in the phosphate-binding pocket of Argonaute proteins and unavailable for base pairing with its RNA target \({ }^{274,275}\). We speculate that the structures of the Ago1 and Ago2 discriminate between \(U\) and \(C\) by making specific hydrogen-bonding contacts with the edges of the first base of a small RNA guide.

The fate of a miRNA/miRNA* duplex, therefore depends on multiple factors; structure of its duplex, thermodynamic stability of the ends of the duplex and the identity of its \(5^{\prime}\) terminal nucleotide. We do not yet know to what extent each factor weighs in the sorting decision.
miRNA loci appear to generate an extraordinary diversity of functional small RNAs. Some miRNA genes are transcribed from both DNA strands, producing two different hairpins from a single genomic locus \({ }^{276,277}\). A few miRNA have been annotated
as producing functional small RNAs-miRNA-5p and miRNA-3p-from a single premiRNA, a phenomenon that we suggest may be the rule rather than the exception. Our data argue that the two small RNAs, typically annotated as miRNA and miRNA*, from a single pre-miRNA partition into distinct effector proteins, with the miRNA loading into Ago1 and the miRNA* loading into Ago2. These Ago2-loaded miRNA*s are present at levels comparable to exo-siRNAs. Moreover, Ago2-loaded small RNAs can guide either target cleavage or translational repression \({ }^{278}\), suggesting that Ago2-loaded miRNA* function to regulate as yet to be identified target RNAs. Finally, we find that a single arm of a single pre-miRNA hairpin can give rise to several functional RNA isoforms that possess different seed sequence and that associate with different Argonaute proteins that have distinct biological activities. These three layers of functional diversificationmultiple small RNAs that partition differently from the two sides of the stem of a single pre-miRNA, different seed isoforms from a single side of a pre-miRNA stem, and distinct partitioning of these RNA seed isoforms-allows a single, compact genomic locus, the miRNA gene, to produce multiple riboregulators, each with a distinct biological activity and target repertoire.

\section*{Materials and Methods}

\section*{General methods}

Fly strains were wild-type Oregon R, \(d c r-2^{L 811 f s X}, r 2 d 2^{1}\), and \(a g o 2^{414}\). Fly heads were isolated by vigorous shaking of liquid nitrogen-frozen flies in nested, pre-chilled sieves (U.S.A. standard sieve, Humboldt MFG, Chicago, IL), allowing the heads to pass through
the top sieve (No. 25), and collecting them on the bottom sieve (No. 40).

\section*{Small RNA sequencing}

Total RNA was extracted with the mirVana kit (Ambion, Austin, TX, USA)), then 18-to30 nt long RNA was gel purified. 2 S rRNA was depleted as described \({ }^{244}\). A part of the sample was then oxidized using sodium periodate \({ }^{83}\) without \(\beta\)-elimination step. Sizeselected RNA derived from at least \(68 \mu\) g total RNA for oxidation; and size-selected RNA derived from at least \(7 \mu \mathrm{~g}\) total RNA for untreated. Library preparation was as described previously \({ }^{26}\). High throughput sequencing was by Genome Analyzer II (Illumina, San Diego, CA, USA).

\section*{Preparation of fly head extract}

Isolated fly heads were transferred to 1.5 ml micro centrifuge tubes, pre-chilled in liquidnitrogen, and homogenized using a plastic "pellet pestle" (Kontes, Vineland, NJ, USA) in 1 ml ice-cold Lysis Buffer ( 100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4 , 2 mM magnesium acetate) containing 5 mM DTT and \(1 \mathrm{mg} / \mathrm{ml}\) complete "mini" EDTAfree protease inhibitor tablets (Roche Applied Science, Indianapolis, IN, USA ) per gram of heads. Lysate was clarified by centrifugation at \(14,000 \times \mathrm{g}\) for 30 min at \(4^{\circ} \mathrm{C}\). The supernatant was dispensed into pre-chilled micro centrifuge tubes, flash frozen in liquid nitrogen, and stored at \(-80^{\circ} \mathrm{C}\). Total protein concentration was determined by Bradford assay.

\section*{Immunoprecipitation}

For small RNA cloning, immunoprecipitation of Ago1 protein was essentially as described \({ }^{81}\). Briefly, \(40 \mu\) GammaBind beads (GE Healthcare : \#17-0885-01) were washed four times with 1 ml of Lysis Buffer with DTT and protease inhibitors and containing \(0.5 \% \mathrm{v} / \mathrm{v}\) NP-40, then incubated with \(40 \mu \mathrm{l}\) monoclonal anti-Ago1 antibody \({ }^{81}\) in 1 ml Lysis Buffer at \(4^{\circ} \mathrm{C}\) for 3 h . After washing 5 times with 1 ml of Lysis-IP buffer, the antibody-bound beads were incubated with \(910 \mu \mathrm{fly}\) head lysate ( \(\sim 4.55 \mathrm{mg}\) total protein) at \(4^{\circ} \mathrm{C}\) for 16 h , and then the supernatant collected and the beads washed 5 times with 1 ml of RIPA buffer ( 50 mM Tris ( pH 8.0 ), \(1.0 \% \mathrm{v} / \mathrm{v}\) NP-40, \(150 \mathrm{mM} \mathrm{NaCl}, 0.5 \%\) v/v DOC, \(0.1 \% \mathrm{v} / \mathrm{v}\) SDS, 1 x Complete-EDTA-free protease inhibitor cocktail tablet). Immunoprecipitation efficiency was confirmed by Western blotting.

\section*{UV cross-linking}

UV cross-linking was performed in embryo lysates prepared as described \({ }^{279}\). Embryo lysates were immuno-depleted for Ago1 as described above. UV cross-linking was as previously described \({ }^{202}\), except that the samples were \(\sim 0.5 \mathrm{~cm}\) from the UV lamp.

\section*{Computational analyses}

For each sequence read, the first occurrence of the 6-mer perfectly matching the \(5^{\prime}\) end of the \(3^{\prime}\) linker was identified. Sequences without a linker match were discarded. The extracted inserts for sequences that contained the \(3^{\prime}\) linker were then mapped to the female Drosophila melanogaster genome (Release R5.5). Inserts that matched perfectly
and completely to the genome were collected using either Bowtie \({ }^{280}\) or in-house suffix tree-based software, and the corresponding genomic coordinates were determined for downstream functional analysis. Sequences corresponding to pre-miRNA hairpins (miRBase, 13.0) or non-coding RNAs (ncRNAs; Table S3) were identified using the same suffix tree-based software. Gene were retrieved from FlyBase (R5.5). We manually curated mature miRNA*. Mature miRNA annotations were obtained from miRBase (13.0). We allowed sequence reads to differ in \(5^{\prime}\) and \(3^{\prime}\) ends from mature miRNA or miRNA* for up to 9 nt . Endogenous siRNA (endo-siRNA) were defined as genome mapping 21-mers detected in the oxidized library and that did not map to ncRNA or miRNA hairpins. Exogenous siRNA (exo-siRNA) were 21-mers detected in the oxidized library and that mapped perfectly to the white inverted repeat. Except for Fisher's exact test, which requires raw sequence reads, all sequence reads are reported in parts per million (ppm) reads of sequencing depth, with the sequencing depth defined as total number of linker containing, genome-matching reads excluding ncRNAs.

Fisher's exact test was applied to each miRNA or miRNA* to identify those that are enriched in Ago1 or Ago2. Take miR-1 as an example, the \(2 \times 2\) contingency table includes the following cells: number of reads of miR-1 in detected in the library prepared from the Ago1 immunoprecipitate, number of reads of all other miRNA or miRNA* in this library, number of reads of miR-1 in the library prepared from oxidized small RNA, number of reads of all other miRNA or miRNA* in the oxidized library. \(p\)-values \(\leq 0.01\) were deemed significant. Furthermore, we required a miRNA or miRNA* enriched in an Argonaute protein to be at least 10 ppm in that Ago. Enrichment score (Fig. 1C) was
defined as the number of reads of a particular miRNA or miRNA* in one Argonaute versus the other. A pseudo count (or an informed prior in Bayesian statistics) of 10 ppm was used to control noise arising from extremely low abundance. For example, for miR-1 the enrichment score was [(Number of miR-1 reads in Ago1 + 10) / (total number of all miRNA reads in Ago1)]/ [(Number of miR-1 in Ago2 + 10) / (total number of all miRNA reads in Ago2)]. Similarly, the fold change in a mutant compared with the wild-type, again using miR-1 as an example, was defined as (Number of miR-1 reads in the mutant \(+10) /(\) total number of miR-1 reads in the wild-type), where 10 ppm was the pseudo count.

Pairing probabilities were calculated using RNAcofold (ViennaRNA-1.8.3, http://www.tbi.univie.ac.at/RNA/). For each Argonaute-enriched miRNA or miRNA*, the most abundant isoform for that miRNA or miRNA* was chosen to be the guide strand and the corresponding passenger was taken to be the most abundant isoform of the miRNA* or miRNA from the wild-type untreated experiment (see Supplemental Discussion for empirical support for this approach). Both the guide and passenger were required to pass the aforementioned 10ppm threshold. The probability per position was the sum of the pairing probabilities for that position. Pairing probability for each position was smoothed by the values of the two neighboring nucleotides. For each position, we tested the significance of the difference between all Ago1-enriched miRNA and miRNA* together and all Ago2-enriched miRNA and miRNA* together using the two-sided Wilcoxon ranked-sum test with 0.01 as the threshold for significance.

To compute first nucleotide bias, we used an egalitarian weighting scheme to account for the difference in transcriptional and processing efficiency for different miRNA and miRNA*. The isoforms for a particular miRNA or miRNA* were weighted by their abundance in a data set, then all miRNA and miRNA* were weighted equally. Because white exo-siRNAs are produced from the same transcript, we weighted all exosiRNA sequences by their abundance.

\section*{Supplemental Materials}

\section*{Supplemental Tables}

Table III-S1A. Sequencing statistics: reads. Ago2-loaded miRNAs or miRNA* strands were detected by oxidation of small RNAs prior to library construction. Ago1-loaded small RNAs were enriched by immunoprecipitation (I.P.) using a monoclonal antibody specific for Ago1protein. "Total small RNA reads" correspond to genome-matching reads after excluding annotated non-coding RNAs (ncRNAs), such as rRNA, snRNA, snoRNA, or tRNA. Supplemental Table 3 lists the ncRNAs whose sequences were excluded from small RNA reads.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Genotype & Library preparation & Total Reads & Reads perfectly matching genome & Reads matching annotated ncRNAs & Small RNA reads (excluding ncRNAs) & Pre-miRNAmatching reads & Reads excluding ncRNAs \& pre-miRNA matching \\
\hline Oregon R & untreated & 7,307,082 & 2,072,453 & 474,124 & 1,598,329 & 1,442,072 & 156,257 \\
\hline Oregon R & oxidized & 1,400,012 & 566,747 & 6,271 & 560,476 & 298,462 & 262,014 \\
\hline Oregon R & Agol I.P. & 6,609,187 & 5,159,876 & 124,419 & 5,035,457 & 4,975,624 & 59,833 \\
\hline w; ;ago2 \({ }^{414}\) & untreated & 1,945,285 & 530,532 & 35,802 & 494,730 & 474,892 & 19,838 \\
\hline yw; dcr-2 \(2^{\text {LSIIfs } \mathrm{S}} / \mathrm{CyO}\) & untreated & 4,315,808 & 2,425,592 & 824,657 & 1,600,935 & 1,232,982 & 367,953 \\
\hline \(y w ; d c r-2^{\text {LIIIFs }} / \mathrm{CyO}\) & oxidized & 1,901,642 & 540,789 & 34,956 & 505,833 & 222,032 & 283,801 \\
\hline \(y w ; d c r-{ }^{\text {LSITIs } X}\) & untreated & 2,229,996 & 1,453,332 & 157,038 & 1,296,294 & 1,251,929 & 44,365 \\
\hline \(y w ; d c r-2^{\text {LSIIIfs }}\) & oxidized & 1,208,997 & 280,052 & 44,207 & 235,845 & 84,412 & 151,433 \\
\hline \(r 2 d 2^{1} / \mathrm{CyO}\); white-IR & untreated & 6,537,590 & 1,621,311 & 239,930 & 1,381,381 & 1,251,294 & 130,087 \\
\hline \(r 2 d 2^{\prime} / \mathrm{CyO}\); white-IR & oxidized & 6,816,758 & 735,527 & 6,112 & 729,415 & 266,347 & 463,068 \\
\hline \(r 2 d 2^{1}\); white-IR & untreated & 7,812,088 & 3,024,255 & 635,420 & 2,388,835 & 2,165,030 & 223,805 \\
\hline r2d2 \({ }^{\text {; }}\); white-IR & oxidized & 5,557,111 & 922,828 & 88,442 & 834,386 & 292,038 & 542,348 \\
\hline
\end{tabular}

Table III-S1B. Sequencing statistics: species. Ago2-loaded miRNAs or miRNA* strands were detected by oxidation of small
RNAs prior to library construction. Ago1-loaded small RNAs were enriched by immunoprecipitation (I.P.) using a monoclonal antibody specific for Ago1protein. "Total small RNA species" correspond to genome-matching species after excluding annotated non-coding RNAs (ncRNAs), such as rRNA, snRNA, snoRNA, or tRNA.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Genotype & Library preparation & Total Species & Species perfectly matching genome & Species matching annotated ncRNAs & Small RNA Species (excluding ncRNAs) & \[
\begin{aligned}
& \text { Pre-miRNA- } \\
& \text { matching } \\
& \text { Species }
\end{aligned}
\] & Species excluding ncRNAs \& pre-miRNAmatching \\
\hline Oregon R & untreated & 2,456,441 & 136,561 & 46,167 & 90,394 & 2,512 & 87,882 \\
\hline Oregon R & oxidized & 259,814 & 113,249 & 2,389 & 110,860 & 1,641 & 109,219 \\
\hline Oregon R & Agol I.P. & 457,656 & 48,035 & 22,566 & 25,469 & 2,626 & 22,843 \\
\hline w; ; ago \({ }^{414}\) & untreated & 647,247 & 29,375 & 12,933 & 16,442 & 1,384 & 15,058 \\
\hline \(y w ; d c r-2^{L 8 I I f s x} / \mathrm{CyO}\) & untreated & 1,194,213 & 317,577 & 55,615 & 261,962 & 2,795 & 259,167 \\
\hline \(y w ; d c r-2^{\text {LIIIIs } X} / \mathrm{CyO}\) & oxidized & 576,310 & 196,391 & 10,654 & 185,737 & 1,739 & 183,998 \\
\hline \(y w ; d c r-2^{\text {LSIIfs }}\) ( & untreated & 304,636 & 60,345 & 29,135 & 31,210 & 2,509 & 28,701 \\
\hline \(y w ; d c r-2^{\text {LSIIIfs }}\) & oxidized & 363,108 & 117,042 & 8,604 & 108,438 & 1,504 & 106,934 \\
\hline \(r 2 d 2^{\prime} / \mathrm{CyO}\); white-IR & untreated & 2,212,159 & 89,505 & 33,376 & 56,129 & 2,019 & 54,110 \\
\hline r2d2 \({ }^{1} / \mathrm{CyO}\); white-IR & oxidized & 3,114,299 & 134,995 & 2,090 & 132,905 & 1,282 & 131,623 \\
\hline \(r 2 d 2^{1}\); white-IR & untreated & 2,272,831 & 130,214 & 44,171 & 86,043 & 2,233 & 83,810 \\
\hline \(r 2 d 2^{\text {; }}\); white-IR & oxidized & 858,049 & 167,166 & 11,329 & 155,837 & 1,551 & 154,286 \\
\hline
\end{tabular}

\section*{Table III-S2. miRNA and miRNA* significantly enriched or depleted in Ago1 or}

Ago2 using Fisher's exact test. Odds ratio was defined as [(the number of reads in Ago1 for an individual miRNA or miRNA*)(the number of reads for every other miRNA or miRNA* in Ago2)]/(the number of reads in Ago2 for that individual miRNA or miRNA*)(the number of reads in Ago1 for every other miRNA or miRNA*]. Enrichment was defined as [(the number of reads in Ago1 for an individual miRNA or miRNA* + 10)(the number of reads for all miRNA or miRNA* in Ago2 +10 )]/(the number of reads in Ago2 for that individual miRNA or miRNA* +10)(the number of reads in Agol for all miRNA or miRNA* +10 )].

\section*{miRNAs enriched in Agol}
\begin{tabular}{|l|c|c|c|}
\hline name & \(\boldsymbol{p}\)-value & \begin{tabular}{c} 
odds \\
ratio
\end{tabular} & \begin{tabular}{c} 
enrich- \\
ment
\end{tabular} \\
\hline bantam & \(5.8 \mathrm{E}-65\) & 10.7 & 10.3 \\
\hline let-7 & \(4.0 \mathrm{E}-226\) & 1.7 & 1.6 \\
\hline miR-1 & 0 & 2.2 & 2.2 \\
\hline miR-2a-1 & 0 & 11.1 & 10.6 \\
\hline miR-2a-2 & 0 & 9.7 & 9.3 \\
\hline miR-2b-1 & 0 & 9.4 & 8.9 \\
\hline miR-2b-2 & \(4.0 \mathrm{E}-31\) & 9.6 & 9.0 \\
\hline miR-2c & 0 & 6.6 & 4.3 \\
\hline miR-7 & \(1.2 \mathrm{E}-321\) & 7.3 & 7.1 \\
\hline miR-9a & \(8.2 \mathrm{E}-106\) & 5.4 & 5.2 \\
\hline miR-9b & \(4.8 \mathrm{E}-10\) & 12.4 & 9.1 \\
\hline miR-12 & \(3.8 \mathrm{E}-88\) & 1.7 & 1.6 \\
\hline miR-13a & 0 & 3.6 & 3.4 \\
\hline miR-13b-1 & 0 & 8.4 & 8.0 \\
\hline miR-13b-2 & 0 & 8.4 & 8.0 \\
\hline miR-14 & \(2.8 \mathrm{E}-132\) & 30.9 & 27.0 \\
\hline miR-31a & 0 & 10.6 & 8.6 \\
\hline miR-34 & 0 & 22.3 & 19.9 \\
\hline miR-124 & \(9.6 \mathrm{E}-41\) & 7.9 & 7.5 \\
\hline miR-125 & 0 & 1.3 & 1.3 \\
\hline miR-133 & \(1.5 \mathrm{E}-12\) & 15.4 & 14.5 \\
\hline miR-137 & 0 & 2.8 & 2.2 \\
\hline miR-184 & \(5.7 \mathrm{E}-44\) & 3.1 & 3.0 \\
\hline miR-190 & \(2.3 \mathrm{E}-09\) & 1.6 & 1.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline miR-219 & 0 & 1.5 & 1.4 \\
\hline miR-274 & \(4.8 \mathrm{E}-159\) & 23.1 & 21.9 \\
\hline miR-275 & 0 & 4.7 & 4.4 \\
\hline miR-276a & 0 & 6.8 & 6.3 \\
\hline miR-276b & 0 & 7.0 & 6.7 \\
\hline miR-278 & \(2.9 \mathrm{E}-252\) & 9.9 & 9.5 \\
\hline miR-279 & \(2.5 \mathrm{E}-32\) & 3.3 & 3.3 \\
\hline miR-281-1 & \(1.7 \mathrm{E}-32\) & 14.1 & 5.9 \\
\hline miR-281-2 & \(1.7 \mathrm{E}-186\) & 14.2 & 5.9 \\
\hline miR-282 & \(2.4 \mathrm{E}-04\) & 8.1 & 7.3 \\
\hline miR-286 & \(1.8 \mathrm{E}-43\) & 11.1 & 1.1 \\
\hline miR-304 & \(4.0 \mathrm{E}-82\) & 3.3 & 3.0 \\
\hline miR-305 & \(1.2 \mathrm{E}-77\) & 1.3 & 1.3 \\
\hline miR-306 & 0 & 4.0 & 3.7 \\
\hline miR-307 & 0 & 32.1 & 26.3 \\
\hline miR-308 & \(3.7 \mathrm{E}-03\) & 43.1 & 35.2 \\
\hline miR-311 & \(7.5 \mathrm{E}-14\) & 8.0 & 0.8 \\
\hline miR-314 & \(1.2 \mathrm{E}-50\) & 34.7 & 3.2 \\
\hline miR-316 & 0 & 6.0 & 4.7 \\
\hline miR-317 & \(1.4 \mathrm{E}-16\) & 24.9 & 23.0 \\
\hline miR-318 & \(3.9 \mathrm{E}-19\) & Inf & 3.8 \\
\hline miR-929 & \(1.8 \mathrm{E}-57\) & 2.8 & 2.4 \\
\hline miR-932 & \(6.9 \mathrm{E}-12\) & 4.0 & 3.6 \\
\hline miR-956 & \(6.4 \mathrm{E}-242\) & 29.9 & 2.8 \\
\hline miR-957 & \(1.4 \mathrm{E}-07\) & 11.9 & 10.4 \\
\hline miR-958 & \(8.3 \mathrm{E}-07\) & Inf & 1.7 \\
\hline miR-965 & \(1.1 \mathrm{E}-04\) & 1.7 & 1.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline miR-969 & \(1.9 \mathrm{E}-09\) & Inf & 1.0 \\
\hline miR-971 & \(5.8 \mathrm{E}-14\) & 7.9 & 2.3 \\
\hline miR-980 & 0 & 1.9 & 1.8 \\
\hline miR-981 & \(9.5 \mathrm{E}-179\) & 15.0 & 13.6 \\
\hline miR-987 & \(6.5 \mathrm{E}-04\) & 4.6 & 4.4 \\
\hline miR-989 & \(6.1 \mathrm{E}-21\) & Inf & 0.8 \\
\hline miR-990 & \(2.2 \mathrm{E}-57\) & 52.0 & 4.8 \\
\hline miR-993 & 0 & 10.3 & 6.8 \\
\hline miR-996 & \(1.3 \mathrm{E}-68\) & 10.3 & 9.7 \\
\hline miR-999 & \(5.7 \mathrm{E}-20\) & 1.8 & 1.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline miR-1001 & \(1.5 \mathrm{E}-30\) & 7.4 & 3.7 \\
\hline miR-1003 & \(2.2 \mathrm{E}-18\) & 3.6 & 3.0 \\
\hline miR-1004 & \(1.0 \mathrm{E}-03\) & Inf & 4.2 \\
\hline miR-1005 & \(4.8 \mathrm{E}-07\) & 3.8 & 1.1 \\
\hline miR-1006 & \(1.1 \mathrm{E}-05\) & 2.2 & 1.7 \\
\hline miR-1007 & \(6.3 \mathrm{E}-04\) & 8.5 & 1.5 \\
\hline miR-1009 & \(2.7 \mathrm{E}-181\) & 2.0 & 1.3 \\
\hline miR-1010 & \(7.3 \mathrm{E}-04\) & 13.3 & 10.8 \\
\hline \(\mathrm{miR}-1013\) & \(8.5 \mathrm{E}-41\) & 5.9 & 1.0 \\
\hline \(\mathrm{miR}-1017\) & \(5.8 \mathrm{E}-65\) & 19.6 & 7.4 \\
\hline
\end{tabular}
miRNA*s enriched in Agol
\begin{tabular}{|c|c|c|c|}
\hline name & \(\boldsymbol{p}\)-value & \begin{tabular}{c} 
odds \\
ratio
\end{tabular} & \begin{tabular}{c} 
enrich- \\
ment
\end{tabular} \\
\hline \(\mathrm{miR}^{*}-\mathrm{c}^{*}\) & \(1.5 \mathrm{E}-03\) & 4.3 & 1.0 \\
\hline \(\mathrm{miR}^{*} 34^{*}\) & 0 & 24.8 & 21.4 \\
\hline \(\mathrm{miR}-133\) & \(2.3 \mathrm{E}-22\) & 55.4 & 5.1 \\
\hline \(\mathrm{miR}^{*}-125^{*}\) & \(1.1 \mathrm{E}-03\) & 2.8 & 1.2 \\
\hline \(\mathrm{miR}-193^{*}\) & \(1.0 \mathrm{E}-10\) & 1.7 & 1.6 \\
\hline \(\mathrm{miR}-210^{*}\) & \(5.6 \mathrm{E}-95\) & 6.6 & 5.7 \\
\hline \(\mathrm{miR}-281-2^{*}\) & \(8.3 \mathrm{E}-47\) & 10.0 & 6.2 \\
\hline \(\mathrm{miR}-307\) & \(1.1 \mathrm{E}-58\) & 2.8 & 2.7 \\
\hline \(\mathrm{miR}-954\) & \(1.3 \mathrm{E}-05\) & Inf & 1.2 \\
\hline
\end{tabular}

\section*{miRNAs enriched in Ago2}
\begin{tabular}{|c|r|c|c|}
\hline name & \(\boldsymbol{p}\)-value & \begin{tabular}{c} 
odds \\
ratio
\end{tabular} & \begin{tabular}{c} 
enrich- \\
ment
\end{tabular} \\
\hline miR-8 & 0 & 1.7 & 1.7 \\
\hline miR-9c & \(2.6 \mathrm{E}-211\) & 4.2 & 3.6 \\
\hline miR-11 & 0 & 4.0 & 3.4 \\
\hline miR-33 & 0 & 8.8 & 6.2 \\
\hline miR-79 & 0 & 6.0 & 4.7 \\
\hline miR-92a & \(1.1 \mathrm{E}-108\) & 23.6 & 10.6 \\
\hline miR-92b & \(1.3 \mathrm{E}-66\) & 7.4 & 5.7 \\
\hline miR-100 & \(1.4 \mathrm{E}-41\) & 1.6 & 1.5 \\
\hline \(\mathrm{miR}-193\) & 0 & 12.0 & 7.5 \\
\hline \(\mathrm{miR}-210\) & 0 & 1.4 & 1.4 \\
\hline \(\mathrm{miR}-252\) & 0 & 9.2 & 6.4 \\
\hline \(\mathrm{miR}-263 \mathrm{a}\) & 0 & 6.8 & 5.2 \\
\hline \(\mathrm{miR}-263 \mathrm{~b}\) & \(2.0 \mathrm{E}-13\) & 1.5 & 1.5 \\
\hline \(\mathrm{miR}-277\) & 0 & 1.5 & 1.5 \\
\hline \(\mathrm{miR}-283\) & \(1.2 \mathrm{E}-106\) & 3.4 & 3.0 \\
\hline \(\mathrm{miR}-284\) & \(1.8 \mathrm{E}-104\) & 2.4 & 2.3 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\hline miR-8 & 0 & 1.7 & 1.7 \\
\hline miR-9c & \(2.6 \mathrm{E}-211\) & 4.2 & 3.6 \\
\hline miR-11 & 0 & 4.0 & 3.4 \\
\hline miR-33 & 0 & 8.8 & 6.2 \\
\hline miR-79 & 0 & 6.0 & 4.7 \\
\hline miR-92a & \(1.1 \mathrm{E}-108\) & 23.6 & 10.6 \\
\hline miR-92b & \(1.3 \mathrm{E}-66\) & 7.4 & 5.7 \\
\hline miR-100 & \(1.4 \mathrm{E}-41\) & 1.6 & 1.5 \\
\hline miR-193 & 0 & 12.0 & 7.5 \\
\hline miR-210 & 0 & 1.4 & 1.4 \\
\hline miR-252 & 0 & 9.2 & 6.4 \\
\hline \(\mathrm{miR}-263 \mathrm{a}\) & 0 & 6.8 & 5.2 \\
\hline \(\mathrm{miR}-263 \mathrm{~b}\) & \(2.0 \mathrm{E}-13\) & 1.5 & 1.5 \\
\hline \(\mathrm{miR}-277\) & 0 & 1.5 & 1.5 \\
\hline \(\mathrm{miR}-283\) & \(1.2 \mathrm{E}-106\) & 3.4 & 3.0 \\
\hline \(\mathrm{miR}-284\) & \(1.8 \mathrm{E}-104\) & 2.4 & 2.3 \\
\hline
\end{tabular}

\section*{miRNA*s enriched in Ago2}
\begin{tabular}{|c|c|c|c|}
\hline name & \(p\)-value & odds ratio & enrichment \\
\hline bantam* & 0 & 28.7 & 11.3 \\
\hline let-7* & 0 & 46.5 & 13.1 \\
\hline miR-1* & \(1.3 \mathrm{E}-23\) & 19.1 & 10.7 \\
\hline miR-2a-1* & \(5.0 \mathrm{E}-155\) & 75.0 & 14.6 \\
\hline miR-2a-2* & 0 & 326.1 & 17.4 \\
\hline miR-2b-2* & 0 & 28.5 & 11.2 \\
\hline miR-7* & \(2.6 \mathrm{E}-36\) & 12.3 & 8.2 \\
\hline miR-8* & 0 & 7.2 & 5.4 \\
\hline miR-9a* & 0 & 9.6 & 6.5 \\
\hline miR-10* & \(7.7 \mathrm{E}-03\) & 1.2 & 1.2 \\
\hline miR-11* & 8.4E-04 & 2.2 & 2.7 \\
\hline miR-13a* & \(2.7 \mathrm{E}-148\) & 55.8 & 13.8 \\
\hline miR-13b-1* & \(1.6 \mathrm{E}-17\) & 23.3 & 11.9 \\
\hline miR-13b-2* & 8.8E-79 & 46.7 & 13.4 \\
\hline miR-14* & 0 & 17.4 & 9.1 \\
\hline miR-31a* & \(1.2 \mathrm{E}-17\) & 3.7 & 3.6 \\
\hline miR-33* & 0 & 325.0 & 17.0 \\
\hline miR-92a* & 0 & 4193.2 & 17.7 \\
\hline miR-100* & 0 & 183.1 & 16.2 \\
\hline miR-124* & \(3.9 \mathrm{E}-198\) & 64.5 & 14.2 \\
\hline miR-184* & \(5.3 \mathrm{E}-96\) & 10.1 & 6.9 \\
\hline miR-190* & \(3.0 \mathrm{E}-50\) & 6.6 & 5.3 \\
\hline miR-252* & 8.9E-03 & 1.2 & 1.2 \\
\hline miR-263a* & \(1.4 \mathrm{E}-04\) & 4.1 & 5.5 \\
\hline miR-274* & \(3.6 \mathrm{E}-52\) & 16.7 & 9.4 \\
\hline miR-275* & 8.7E-197 & 18.9 & 9.6 \\
\hline miR-276a* & 0 & 50.5 & 13.5 \\
\hline miR-276b* & 0 & 50.5 & 13.5 \\
\hline miR-277* & \(6.7 \mathrm{E}-05\) & 1.4 & 1.4 \\
\hline miR-278* & 4.6E-39 & 4.4 & 3.9 \\
\hline miR-282* & 0 & 78.0 & 14.8 \\
\hline miR-284* & 0 & 85.4 & 14.9 \\
\hline miR-285* & 8.4E-128 & 11.7 & 7.5 \\
\hline miR-304* & \(4.1 \mathrm{E}-10\) & 5.2 & 5.3 \\
\hline miR-305* & 8.2E-44 & 2.7 & 2.5 \\
\hline miR-306* & \(5.2 \mathrm{E}-46\) & 4.5 & 3.9 \\
\hline miR-308* & 0 & 699.6 & 17.7 \\
\hline miR-315* & 0 & 793.0 & 17.4 \\
\hline miR-927* & 4.2E-04 & 2.2 & 2.8 \\
\hline miR-929* & 0 & 10.3 & 6.8 \\
\hline miR-932* & \(6.4 \mathrm{E}-30\) & 3.7 & 3.4 \\
\hline miR-965* & \(1.8 \mathrm{E}-20\) & 5.3 & 4.8 \\
\hline miR-981* & \(1.1 \mathrm{E}-21\) & 7.9 & 6.5 \\
\hline miR-988* & 0 & 502.4 & 17.2 \\
\hline miR-995* & \(3.4 \mathrm{E}-23\) & 10.4 & 7.7 \\
\hline miR-996* & 0 & 112.4 & 15.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline miR-998* & 0 & 1182.8 & 17.5 \\
\hline \(\mathrm{miR}^{*}-1012^{*}\) & 0 & 16.6 & 8.9 \\
\hline \(\mathrm{miR}-1010^{*}\) & \(9.8 \mathrm{E}-129\) & 450.2 & 17.1 \\
\hline
\end{tabular}

Table III-S3. Non-coding RNAs (ncRNAs) excluded prior to small RNA analyses.

Unannotated rRNAs
\begin{tabular}{|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Sequence } \\
\hline 2S rRNA variant & \(5^{\prime}\)-UGCUUGGACUACACAUGGUUGAGGGUUGUA-3' \\
\hline 2S rRNA variant & \(5^{\prime}\)-UGCUUGGACUACAUAUGGUUGAGGGUUGGA-3' \\
\hline 2S rRNA variant & \(5^{\prime}\)-UGCUUGGACUACAUAUGGUUGAGGGUUGUA-3' \\
\hline 5' extended 5.8S & \(5^{\prime}\)-AAACUCUAAGCGGUGGAU-3' \\
\hline 5' extended 5.8S & \(5^{\prime}\)-AAAACUCUAAGCGGUGGAU-3' \\
\hline 5' extended 5.8S & \(5^{\prime}\)-UAAAACUCUAAGCGGUGGAU-3' \\
\hline 5' extended 5.8S & \(5^{\prime}\) 'UAUAAAACUCUAAGCGGUGGAU-3' \\
\hline 5' extended 5.8S & \(5^{\prime}\)-UUAUAAAACUCUAAGGGGUGGAU-3' \\
\hline
\end{tabular}

\section*{GenBank annotated RNAs}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & GenBank I.D. & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Locus } \\
\hline 5.8S rRNA & M21017.1 & \begin{tabular}{l} 
D. melanogaster 18S, 5.8S 2S and 28S \\
rRNA genes, complete, and 18S rRNA \\
gene, 5' end, clone pDm238
\end{tabular} & \begin{tabular}{l} 
DRORGAB: \\
\(2722-2844\)
\end{tabular} \\
\hline 18S rRNA & M21017.1 & \begin{tabular}{l} 
D. melanogaster \(18 \mathrm{~S}, 5.8 \mathrm{~S}\) 2S and 28S \\
rRNA genes, complete, and 18S rRNA \\
gene, 5' end, clone pDm238
\end{tabular} & \begin{tabular}{l} 
DRORGAB: \\
\(1-1973\)
\end{tabular} \\
\hline
\end{tabular}

\section*{FlyBase annotated RNAs}
\begin{tabular}{|l|l|l|r|}
\hline FlyBase I.D. & \multicolumn{1}{|c|}{ Type } & & Length (nt) \\
\hline FBtr0111041 & snoRNA & snoRNA:Me28S-C3420a-RA & 91 \\
\hline FBtr0111042 & snoRNA & snoRNA:Me28S-C3420b-RA & 91 \\
\hline FBtr0111039 & snRNA & snRNA:U11-RA & 275 \\
\hline FBtr0077222 & snoRNA & snoRNA:Z30-RA & 91 \\
\hline FBtr0070292 & snoRNA & snoRNA:M-RA & 99 \\
\hline FBtr0078834 & snRNA & snRNA:U4atac:82E-RA & 121 \\
\hline FBtr0084651 & snRNA & snRNA:U6:96Ab-RA & 107 \\
\hline FBtr0086856 & snoRNA & snoRNA:U27:54Eb-RA & 72 \\
\hline FBtr0076634 & snoRNA & snoRNA:U49:66Da-RA & 80 \\
\hline FBtr0074208 & snRNA & snRNA:U2:14B-RA & 192 \\
\hline FBtr0079659 & snRNA & snRNA:U6atac:29B-RA & 97 \\
\hline FBtr0084528 & snRNA & snRNA:U1:95Ca-RA & 164 \\
\hline FBtr0084652 & snRNA & snRNA:U6:96Ac-RA & 107 \\
\hline FBtr0078028 & snRNA & snRNA:U1:21D-RA & 172 \\
\hline FBtr0080486 & snRNA & snRNA:U2:34ABa-RA & 192 \\
\hline FBtr0086347 & rRNA & 5SrRNA:CR33355-RA & 135 \\
\hline FBtr0086362 & rRNA & 5SrRNA:CR33370-RA & 135 \\
\hline FBtr0086372 & rRNA & 5SrRNA:CR33380-RA & 135 \\
\hline FBtr0086373 & rRNA & 5SrRNA:CR33381-RA & 135 \\
\hline FBtr0086374 & rRNA & 5SrRNA:CR33382-RA & 135 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0086375 & rRNA & 5SrRNA:CR33383-RA & 135 \\
\hline FBtr0086380 & rRNA & 5SrRNA:CR33388-RA & 135 \\
\hline FBtr0086381 & rRNA & 5SrRNA:CR33389-RA & 135 \\
\hline FBtr0086390 & rRNA & 5SrRNA:CR33398-RA & 135 \\
\hline FBtr0086391 & rRNA & 5SrRNA:CR33399-RA & 135 \\
\hline FBtr0086393 & rRNA & 5SrRNA:CR33401-RA & 135 \\
\hline FBtr0086441 & rRNA & 5SrRNA:CR33449-RA & 135 \\
\hline FBtr0100848 & snRNA & snRNA:U7-RA & 71 \\
\hline FBtr0091605 & snoRNA & snoRNA:U3:54Ab-RA & 173 \\
\hline FBtr0091629 & snoRNA & snoRNA:14-RA & 108 \\
\hline FBtr0091635 & snoRNA & snoRNA:3-RA & 16 \\
\hline FBtr0091740 & snRNA & snmRNA:430:CR33742-RA & 36 \\
\hline FBtr0091741 & snRNA & snmRNA:430:CR33743-RA & 36 \\
\hline FBtr0091742 & snRNA & snmRNA:430:CR33744-RA & 36 \\
\hline FBtr0091743 & snRNA & snmRNA:430:CR33745-RA & 36 \\
\hline FBtr0091744 & snRNA & snmRNA:430:CR33746-RA & 36 \\
\hline FBtr0091788 & snoRNA & snoRNA:644-RA & 81 \\
\hline FBtr0091697 & snoRNA & snoRNA:165-RA & 53 \\
\hline FBtr0091739 & snRNA & snmRNA:430:CR33741-RA & 36 \\
\hline FBtr0091766 & snoRNA & snoRNA:66-RA & 137 \\
\hline FBtr0079910 & snoRNA & snoRNA:U14:30Eb-RA & 81 \\
\hline FBtr0091922 & snoRNA & snoRNA:734-RA & 133 \\
\hline FBtr0078851 & snRNA & snRNA:U1:82Eb-RA & 255 \\
\hline FBtr0086421 & rRNA & 5SrRNA:CR33429-RA & 135 \\
\hline FBtr0091798 & snoRNA & snoRNA:684-RA & 78 \\
\hline FBtr0091781 & snoRNA & snoRNA:660-RA & 96 \\
\hline FBtr0091789 & snRNA & snRNA:U2:34ABc-RA & 192 \\
\hline FBtr0091752 & snoRNA & snoRNA:708-RA & 53 \\
\hline FBtr0091751 & snoRNA & snoRNA:328-RA & 68 \\
\hline FBtr0091755 & snoRNA & snoRNA:50-RA & 160 \\
\hline FBtr0091754 & snoRNA & snoRNA:586-RA & 80 \\
\hline FBtr0091708 & snoRNA & snoRNA:755-RA & 111 \\
\hline FBtr0091677 & snoRNA & snoRNA:72-RA & 86 \\
\hline FBtr0086392 & rRNA & 5SrRNA:CR33400-RA & 135 \\
\hline FBtr0091664 & snoRNA & snoRNA:229-RA & 140 \\
\hline FBtr0086394 & rRNA & 5SrRNA:CR33402-RA & 135 \\
\hline FBtr0086397 & rRNA & 5SrRNA:CR33405-RA & 134 \\
\hline FBtr0086401 & rRNA & 5SrRNA:CR33409-RA & 135 \\
\hline FBtr0086402 & rRNA & 5SrRNA:CR33410-RA & 135 \\
\hline FBtr0086403 & rRNA & 5SrRNA:CR33411-RA & 135 \\
\hline FBtr0086404 & rRNA & 5SrRNA:CR33412-RA & 135 \\
\hline FBtr0086406 & rRNA & 5SrRNA:CR33414-RA & 135 \\
\hline FBtr0086410 & rRNA & 5SrRNA:CR33418-RA & 135 \\
\hline FBtr0086411 & rRNA & 5SrRNA:CR33419-RA & 135 \\
\hline FBtr0086413 & rRNA & 5SrRNA:CR33421-RA & 135 \\
\hline FBtr0086414 & rRNA & 5SrRNA:CR33422-RA & 135 \\
\hline FBtr0091623 & snoRNA & snoRNA:825-RA & 34 \\
\hline FBtr0091610 & snoRNA & snoRNA:203-RA & 53 \\
\hline FBtr0086415 & rRNA & 5SrRNA:CR33423-RA & 135 \\
\hline FBtr0086416 & rRNA & 5SrRNA:CR33424-RA & 135 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0086417 & rRNA & 5SrRNA:CR33425-RA & 135 \\
\hline FBtr0086418 & rRNA & 5SrRNA:CR33426-RA & 135 \\
\hline FBtr0091613 & snoRNA & snoRNA:461-RA & 102 \\
\hline FBtr0091602 & snoRNA & snoRNA:783-RA & 54 \\
\hline FBtr0086345 & rRNA & 5SrRNA:CR33353-RA & 135 \\
\hline FBtr0086346 & rRNA & 5SrRNA:CR33354-RA & 135 \\
\hline FBtr0086349 & rRNA & 5SrRNA:CR33357-RA & 135 \\
\hline FBtr0086350 & rRNA & 5SrRNA:CR33358-RA & 135 \\
\hline FBtr0086353 & rRNA & 5SrRNA:CR33361-RA & 135 \\
\hline FBtr0086364 & rRNA & 5SrRNA:CR33372-RA & 135 \\
\hline FBtr0086367 & rRNA & 5SrRNA:CR33375-RA & 135 \\
\hline FBtr0086368 & rRNA & 5SrRNA:CR33376-RA & 135 \\
\hline FBtr0086369 & rRNA & 5SrRNA:CR33377-RA & 135 \\
\hline FBtr0086378 & rRNA & 5SrRNA:CR33386-RA & 135 \\
\hline FBtr0086382 & rRNA & 5SrRNA:CR33390-RA & 135 \\
\hline FBtr0086386 & rRNA & 5SrRNA:CR33394-RA & 135 \\
\hline FBtr0086387 & rRNA & 5SrRNA:CR33395-RA & 135 \\
\hline FBtr0086388 & rRNA & 5SrRNA:CR33396-RA & 135 \\
\hline FBtr0086389 & rRNA & 5SrRNA:CR33397-RA & 135 \\
\hline FBtr0080451 & snRNA & snRNA:U5:34A-RA & 127 \\
\hline FBtr0084650 & snRNA & snRNA:U6:96Aa-RA & 107 \\
\hline FBtr0075315 & snRNA & snRNA:U12:73B-RA & 238 \\
\hline FBtr0081489 & snRNA & snRNA:U4:39B-RA & 143 \\
\hline FBtr0100888 & rRNA & mt:lrRNA-RA & 1325 \\
\hline FBtr0100890 & rRNA & mt :srRNA-RA & 786 \\
\hline FBtr0078791 & snRNA & snRNA:U4atac:83A-RA & 122 \\
\hline FBtr0081560 & snoRNA & snoRNA:U85-RA & 316 \\
\hline FBtr0084488 & snRNA & snRNA:U1:95Cb-RA & 164 \\
\hline FBtr0079908 & snoRNA & snoRNA:U25:30E-RA & 68 \\
\hline FBtr0079909 & snoRNA & snoRNA:U14:30Ea-RA & 81 \\
\hline FBtr0080770 & snRNA & snRNA:U5:35D-RA & 126 \\
\hline FBtr0081293 & snRNA & snRNA:U2:38ABb-RA & 191 \\
\hline FBtr0081292 & snRNA & snRNA:U4:38AB-RA & 142 \\
\hline FBtr0081294 & snRNA & snRNA:U5:38ABb-RA & 127 \\
\hline FBtr0081315 & snRNA & snRNA:U5:38ABa-RA & 127 \\
\hline FBtr0081313 & snRNA & snRNA:U2:38ABa-RA & 192 \\
\hline FBtr0072259 & snoRNA & snoRNA:H1-RA & 140 \\
\hline FBtr0086843 & snoRNA & snoRNA:U31:54Ea-RA & 69 \\
\hline FBtr0086844 & snoRNA & snoRNA:U29:54Ea-RA & 87 \\
\hline FBtr0086845 & snoRNA & snoRNA:U76:54Ea-RA & 73 \\
\hline FBtr0086846 & snoRNA & snoRNA:U29:54Eb-RA & 86 \\
\hline FBtr0086848 & snoRNA & snoRNA:U76:54Eb-RA & 73 \\
\hline FBtr0086850 & snoRNA & snoRNA:U27:54Ea-RA & 69 \\
\hline FBtr0086851 & snoRNA & snoRNA:snR38:54Ea-RA & 77 \\
\hline FBtr0086847 & snoRNA & snoRNA:U29:54Ec-RA & 88 \\
\hline FBtr0086849 & snoRNA & snoRNA:U29:54Ed-RA & 87 \\
\hline FBtr0086852 & snoRNA & snoRNA:snR38:54Eb-RA & 76 \\
\hline FBtr0086853 & snoRNA & snoRNA:U31:54Eb-RA & 67 \\
\hline FBtr0086854 & snoRNA & snoRNA:U31:54Ec-RA & 67 \\
\hline FBtr0086855 & snoRNA & snoRNA:U31:54Ed-RA & 67 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0086857 & snoRNA & snoRNA:snR38:54Ec-RA & 77 \\
\hline FBtr0086858 & snoRNA & snoRNA:U27:54Ec-RA & 67 \\
\hline FBtr0088037 & snoRNA & snoRNA:Z1-RA & 73 \\
\hline FBtr0078576 & snoRNA & snoRNA:U21-RA & 78 \\
\hline FBtr0073017 & snRNA & snRNA:U5:63BC-RA & 123 \\
\hline FBtr0076635 & snoRNA & snoRNA:U49:66Db-RA & 84 \\
\hline FBtr0074249 & snRNA & snRNA:U5:14B-RA & 110 \\
\hline FBtr0079108 & snRNA & snRNA:U4:25F-RA & 148 \\
\hline FBtr0077658 & snRNA & snRNA:U5:23D-RA & 131 \\
\hline FBtr0084487 & snRNA & snRNA:U1:95Cc-RA & 164 \\
\hline FBtr0080443 & snRNA & snRNA:U2:34ABb-RA & 192 \\
\hline FBtr0079907 & snoRNA & snoRNA:Z5-RA & 113 \\
\hline FBtr0086351 & rRNA & 5SrRNA:CR33359-RA & 135 \\
\hline FBtr0086352 & rRNA & 5SrRNA:CR33360-RA & 135 \\
\hline FBtr0086354 & rRNA & 5SrRNA:CR33362-RA & 135 \\
\hline FBtr0086356 & rRNA & 5SrRNA:CR33364-RA & 135 \\
\hline FBtr0086357 & rRNA & 5SrRNA:CR33365-RA & 135 \\
\hline FBtr0086358 & rRNA & 5SrRNA:CR33366-RA & 135 \\
\hline FBtr0086359 & rRNA & 5SrRNA:CR33367-RA & 135 \\
\hline FBtr0086360 & rRNA & 5SrRNA:CR33368-RA & 135 \\
\hline FBtr0086361 & rRNA & 5SrRNA:CR33369-RA & 135 \\
\hline FBtr0086365 & rRNA & 5SrRNA:CR33373-RA & 135 \\
\hline FBtr0086366 & rRNA & 5SrRNA:CR33374-RA & 135 \\
\hline FBtr0086370 & rRNA & 5SrRNA:CR33378-RA & 135 \\
\hline FBtr0086371 & rRNA & 5SrRNA:CR33379-RA & 135 \\
\hline FBtr0086376 & rRNA & 5SrRNA:CR33384-RA & 135 \\
\hline FBtr0086377 & rRNA & 5SrRNA:CR33385-RA & 135 \\
\hline FBtr0077928 & snRNA & snRNA:U3:22A-RA & 211 \\
\hline FBtr0086379 & rRNA & 5SrRNA:CR33387-RA & 135 \\
\hline FBtr0086383 & rRNA & 5SrRNA:CR33391-RA & 134 \\
\hline FBtr0086384 & rRNA & 5SrRNA:CR33392-RA & 135 \\
\hline FBtr0086385 & rRNA & 5SrRNA:CR33393-RA & 135 \\
\hline FBtr0086395 & rRNA & 5SrRNA:CR33403-RA & 135 \\
\hline FBtr0086396 & rRNA & 5SrRNA:CR33404-RA & 135 \\
\hline FBtr0086398 & rRNA & 5SrRNA:CR33406-RA & 135 \\
\hline FBtr0086399 & rRNA & 5SrRNA:CR33407-RA & 135 \\
\hline FBtr0086400 & rRNA & 5SrRNA:CR33408-RA & 135 \\
\hline FBtr0086405 & rRNA & 5SrRNA:CR33413-RA & 135 \\
\hline FBtr0086407 & rRNA & 5SrRNA:CR33415-RA & 135 \\
\hline FBtr0086409 & rRNA & 5SrRNA:CR33417-RA & 135 \\
\hline FBtr0086412 & rRNA & 5SrRNA:CR33420-RA & 135 \\
\hline FBtr0086419 & rRNA & 5SrRNA:CR33427-RA & 135 \\
\hline FBtr0086420 & rRNA & 5SrRNA:CR33428-RA & 135 \\
\hline FBtr0086431 & rRNA & 5SrRNA:CR33439-RA & 135 \\
\hline FBtr0086422 & rRNA & 5SrRNA:CR33430-RA & 135 \\
\hline FBtr0086423 & rRNA & 5SrRNA:CR33431-RA & 135 \\
\hline FBtr0086424 & rRNA & 5SrRNA:CR33432-RA & 135 \\
\hline FBtr0086425 & rRNA & 5SrRNA:CR33433-RA & 135 \\
\hline FBtr0086426 & rRNA & 5SrRNA:CR33434-RA & 135 \\
\hline FBtr0086427 & rRNA & 5SrRNA:CR33435-RA & 135 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0086428 & rRNA & 5SrRNA:CR33436-RA & 135 \\
\hline FBtr0086429 & rRNA & 5SrRNA:CR33437-RA & 135 \\
\hline FBtr0086430 & rRNA & 5SrRNA:CR33438-RA & 135 \\
\hline FBtr0086432 & rRNA & 5SrRNA:CR33440-RA & 135 \\
\hline FBtr0086433 & rRNA & 5SrRNA:CR33441-RA & 135 \\
\hline FBtr0086434 & rRNA & 5SrRNA:CR33442-RA & 135 \\
\hline FBtr0086435 & rRNA & 5SrRNA:CR33443-RA & 135 \\
\hline FBtr0086436 & rRNA & 5SrRNA:CR33444-RA & 135 \\
\hline FBtr0086437 & rRNA & 5SrRNA:CR33445-RA & 135 \\
\hline FBtr0086438 & rRNA & 5SrRNA:CR33446-RA & 135 \\
\hline FBtr0086439 & rRNA & 5SrRNA:CR33447-RA & 135 \\
\hline FBtr0086440 & rRNA & 5SrRNA:CR33448-RA & 135 \\
\hline FBtr0086442 & rRNA & 5SrRNA:CR33450-RA & 135 \\
\hline FBtr0086443 & rRNA & 5SrRNA:CR33451-RA & 135 \\
\hline FBtr0086444 & rRNA & 5SrRNA:CR33452-RA & 135 \\
\hline FBtr0091611 & snoRNA & snoRNA:122-RA & 68 \\
\hline FBtr0091614 & snoRNA & snoRNA:227-RA & 29 \\
\hline FBtr0091615 & snoRNA & snoRNA:291-RA & 74 \\
\hline FBtr0091640 & snoRNA & snoRNA:535-RA & 43 \\
\hline FBtr0091641 & snoRNA & snoRNA:U3:9B-RA & 168 \\
\hline FBtr0091642 & snoRNA & snoRNA:284-RA & 67 \\
\hline FBtr0091653 & snoRNA & snoRNA:737-RA & 72 \\
\hline FBtr0091666 & snoRNA & snoRNA:269-RA & 183 \\
\hline FBtr0091724 & snoRNA & snoRNA:700-RA & 49 \\
\hline FBtr0091725 & snRNA & snmRNA:430:CR33727-RA & 36 \\
\hline FBtr0091727 & snRNA & snmRNA:430:CR33729-RA & 36 \\
\hline FBtr0091729 & snRNA & snmRNA:430:CR33731-RA & 36 \\
\hline FBtr0091730 & snRNA & snmRNA:430:CR33732-RA & 36 \\
\hline FBtr0091731 & snRNA & snmRNA:430:CR33733-RA & 36 \\
\hline FBtr0091732 & snRNA & snmRNA:430:CR33734-RA & 36 \\
\hline FBtr0091735 & snRNA & snmRNA:430:CR33737-RA & 36 \\
\hline FBtr0091736 & snRNA & snmRNA:430:CR33738-RA & 36 \\
\hline FBtr0091737 & snRNA & snmRNA:430:CR33739-RA & 36 \\
\hline FBtr0091738 & snRNA & snmRNA:430:CR33740-RA & 36 \\
\hline FBtr0091777 & snoRNA & snoRNA:143-RA & 123 \\
\hline FBtr0091779 & snoRNA & snoRNA:442-RA & 46 \\
\hline FBtr0091803 & snoRNA & snoRNA:75-RA & 38 \\
\hline FBtr0091917 & snoRNA & snoRNA:314-RA & 64 \\
\hline FBtr0091925 & snoRNA & snoRNA:U3:54Aa-RA & 173 \\
\hline FBtr0091934 & snoRNA & snoRNA:185-RA & 55 \\
\hline FBtr0089298 & tRNA & tRNA:Y1:22Fa-RA & 73 \\
\hline FBtr0071737 & tRNA & CR30407-RA & 72 \\
\hline FBtr0087665 & tRNA & CR30509-RA & 74 \\
\hline FBtr0086448 & tRNA & tRNA:E4:56Fc-RA & 72 \\
\hline FBtr0086449 & tRNA & CR30452-RA & 72 \\
\hline FBtr0100841 & tRNA & CR30505-RA & 71 \\
\hline FBtr0087688 & tRNA & tRNA:K2:50C-RA & 73 \\
\hline FBtr0089302 & tRNA & tRNA:L3:49Fb-RA & 83 \\
\hline FBtr0086016 & tRNA & tRNA:N5:42Ah-RA & 74 \\
\hline FBtr0087659 & tRNA & tRNA:I:49Fc-RA & 74 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0075456 & tRNA & CR32153-RA & 73 \\
\hline FBtr0073018 & tRNA & CR32288-RA & 72 \\
\hline FBtr0073019 & tRNA & CR32289-RA & 72 \\
\hline FBtr0076739 & tRNA & CR32363-RA & 83 \\
\hline FBtr0074600 & tRNA & CR32546-RA & 72 \\
\hline FBtr0070911 & tRNA & CR32748-RA & 73 \\
\hline FBtr0086017 & tRNA & tRNA:K2:42Ae-RA & 73 \\
\hline FBtr0084597 & tRNA & CR31130-RA & 84 \\
\hline FBtr0083799 & tRNA & tRNA:V3b:92Ba-RA & 73 \\
\hline FBtr0083793 & tRNA & CR31215-RA & 73 \\
\hline FBtr0083544 & tRNA & CR31242-RA & 72 \\
\hline FBtr0082836 & tRNA & CR31331-RA & 73 \\
\hline FBtr0083977 & tRNA & CR31333-RA & 72 \\
\hline FBtr0084714 & tRNA & CR31382-RA & 72 \\
\hline FBtr0085637 & tRNA & CR31383-RA & 80 \\
\hline FBtr0084721 & tRNA & CR31416-RA & 72 \\
\hline FBtr0083792 & tRNA & tRNA:V3b:92Bb-RA & 73 \\
\hline FBtr0081885 & tRNA & tRNA:Y1:85Ab-RA & 73 \\
\hline FBtr0083794 & tRNA & CR31471-RA & 74 \\
\hline FBtr0082919 & tRNA & tRNA:S2b:88A-RA & 82 \\
\hline FBtr0083975 & tRNA & CR31480-RA & 72 \\
\hline FBtr0081894 & tRNA & tRNA:Y1:85Ad-RA & 73 \\
\hline FBtr0081810 & tRNA & tRNA:R2:84Fb-RA & 73 \\
\hline FBtr0083501 & tRNA & tRNA:P:90Ca-RA & 72 \\
\hline FBtr0083494 & tRNA & CR31569-RA & 73 \\
\hline FBtr0081811 & tRNA & tRNA:R2:84Fc-RA & 73 \\
\hline FBtr0081814 & tRNA & tRNA:N5:84F-RA & 74 \\
\hline FBtr0081812 & tRNA & tRNA:R2:84Fd-RA & 73 \\
\hline FBtr0079690 & tRNA & CR31603-RA & 72 \\
\hline FBtr0077872 & tRNA & tRNA:G3:22BCa-RA & 71 \\
\hline FBtr0077860 & tRNA & CR31669-RA & 72 \\
\hline FBtr0079694 & tRNA & CR31604-RA & 72 \\
\hline FBtr0079692 & tRNA & CR31895-RA & 73 \\
\hline FBtr0079677 & tRNA & CR31896-RA & 72 \\
\hline FBtr0077819 & tRNA & CR31944-RA & 72 \\
\hline FBtr0077812 & tRNA & CR31942-RA & 73 \\
\hline FBtr0077458 & tRNA & CR31963-RA & 72 \\
\hline FBtr0089613 & tRNA & tRNA:G3:35Ba-RA & 71 \\
\hline FBtr0080663 & tRNA & tRNA:G3:35Be-RA & 71 \\
\hline FBtr0100845 & tRNA & CR33536-RA & 84 \\
\hline FBtr0072445 & tRNA & CR30198-RA & 72 \\
\hline FBtr0072447 & tRNA & CR30200-RA & 72 \\
\hline FBtr0071983 & tRNA & CR30201-RA & 82 \\
\hline FBtr0071581 & tRNA & tRNA:G3:57BCb-RA & 71 \\
\hline FBtr0086247 & tRNA & CR30211-RA & 72 \\
\hline FBtr0086659 & tRNA & tRNA:G3:55E-RA & 71 \\
\hline FBtr0088703 & tRNA & tRNA:L2:44EF-RA & 83 \\
\hline FBtr0088787 & tRNA & CR30297-RA & 74 \\
\hline FBtr0089059 & tRNA & CR30298-RA & 74 \\
\hline FBtr0086898 & tRNA & CR30333-RA & 73 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0088086 & tRNA & tRNA:M2:48Bb-RA & 73 \\
\hline FBtr0077862 & tRNA & CR31939-RA & 72 \\
\hline FBtr0077861 & tRNA & CR31940-RA & 72 \\
\hline FBtr0077818 & tRNA & CR31943-RA & 72 \\
\hline FBtr0077834 & tRNA & CR31946-RA & 73 \\
\hline FBtr0086332 & tRNA & CR30220-RA & 72 \\
\hline FBtr0086333 & tRNA & CR30449-RA & 72 \\
\hline FBtr0100842 & tRNA & CR33534-RA & 73 \\
\hline FBtr0091521 & tRNA & tRNA:R:85Cb-RA & 73 \\
\hline FBtr0077821 & tRNA & tRNA:G3:22BCb-RA & 71 \\
\hline FBtr0100843 & tRNA & CR33535-RA & 72 \\
\hline FBtr0077613 & tRNA & tRNA:S7:23Ea-RA & 82 \\
\hline FBtr0083693 & tRNA & CR31228-RA & 72 \\
\hline FBtr0083285 & tRNA & CR31282-RA & 74 \\
\hline FBtr0073885 & tRNA & tRNA:S7:12Ed-RA & 82 \\
\hline FBtr0073872 & tRNA & tRNA:S4:12Ee-RA & 82 \\
\hline FBtr0073870 & tRNA & tRNA:S7:12Eg-RA & 82 \\
\hline FBtr0073871 & tRNA & tRNA:R:12Ef-RA & 73 \\
\hline FBtr0073886 & tRNA & tRNA:S774:12Ec-RA & 82 \\
\hline FBtr0073865 & tRNA & tRNA:S474:12Eh-RA & 82 \\
\hline FBtr0073863 & tRNA & tRNA:R:12Ed-RA & 73 \\
\hline FBtr0073862 & tRNA & tRNA:R:12Ec-RA & 73 \\
\hline FBtr0073861 & tRNA & tRNA:R:12Eb-RA & 73 \\
\hline FBtr0073858 & tRNA & tRNA:S4:12Ea-RA & 82 \\
\hline FBtr0073860 & tRNA & tRNA:R:12Ea-RA & 73 \\
\hline FBtr0073857 & tRNA & tRNA:R:12Ee-RA & 73 \\
\hline FBtr0079528 & tRNA & tRNA:G3:28D-RA & 71 \\
\hline FBtr0077184 & tRNA & tRNA:R:19F-RA & 73 \\
\hline FBtr0080717 & tRNA & tRNA:L:35C-RA & 84 \\
\hline FBtr0080609 & tRNA & tRNA:Q:34E-RA & 72 \\
\hline FBtr0077142 & tRNA & tRNA:S7:64D-RA & 82 \\
\hline FBtr0077577 & tRNA & tRNA:S7:23Eb-RA & 82 \\
\hline FBtr0079702 & tRNA & CR31892-RA & 72 \\
\hline FBtr0079596 & tRNA & tRNA:K5:29A-RA & 73 \\
\hline FBtr0081809 & tRNA & tRNA:R2:84Fa-RA & 73 \\
\hline FBtr0081813 & tRNA & tRNA:R2:84Fe-RA & 73 \\
\hline FBtr0083267 & tRNA & tRNA:F2:89BC-RA & 73 \\
\hline FBtr0083268 & tRNA & tRNA:V4:89BC-RA & 73 \\
\hline FBtr0083495 & tRNA & tRNA:V4:90C-RA & 73 \\
\hline FBtr0084232 & tRNA & CR31167-RA & 82 \\
\hline FBtr0084482 & tRNA & CR31143-RA & 83 \\
\hline FBtr0071736 & tRNA & CR30406-RA & 72 \\
\hline FBtr0089301 & tRNA & CR32520-RA & 73 \\
\hline FBtr0089300 & tRNA & CR32525-RA & 73 \\
\hline FBtr0075713 & tRNA & tRNA:M3:70Fa-RA & 72 \\
\hline FBtr0088145 & tRNA & CR30506-RA & 72 \\
\hline FBtr0075681 & tRNA & tRNA:M3:70Fb-RA & 72 \\
\hline FBtr0086334 & tRNA & tRNA:K2:56EF-RA & 73 \\
\hline FBtr0081923 & tRNA & tRNA:R:85Ca-RA & 73 \\
\hline FBtr0081660 & tRNA & tRNA:K5:84ABa-RA & 73 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0081661 & tRNA & tRNA:K5:84ABc-RA & 73 \\
\hline FBtr0081622 & tRNA & tRNA:K5:84ABd-RA & 73 \\
\hline FBtr0076083 & tRNA & CR32093-RA & 72 \\
\hline FBtr0082558 & tRNA & CR31356-RA & 72 \\
\hline FBtr0081561 & tRNA & tRNA:V3b:84Dc-RA & 73 \\
\hline FBtr0075831 & tRNA & CR32127-RA & 83 \\
\hline FBtr0075830 & tRNA & CR32126-RA & 72 \\
\hline FBtr0075244 & tRNA & CR32173-RA & 72 \\
\hline FBtr0082616 & tRNA & CR31432-RA & 72 \\
\hline FBtr0083317 & tRNA & CR31497-RA & 74 \\
\hline FBtr0081565 & tRNA & CR31494-RA & 72 \\
\hline FBtr0081610 & tRNA & CR31491-RA & 72 \\
\hline FBtr0081895 & tRNA & tRNA:Y1:85Ae-RA & 73 \\
\hline FBtr0075107 & tRNA & CR32200-RA & 72 \\
\hline FBtr0083545 & tRNA & CR31518-RA & 72 \\
\hline FBtr0083943 & tRNA & CR31506-RA & 84 \\
\hline FBtr0083466 & tRNA & tRNA:V3b:90BC-RA & 73 \\
\hline FBtr0083474 & tRNA & CR31579-RA & 73 \\
\hline FBtr0083473 & tRNA & CR31578-RA & 72 \\
\hline FBtr0083475 & tRNA & CR31577-RA & 73 \\
\hline FBtr0083472 & tRNA & CR31573-RA & 72 \\
\hline FBtr0083493 & tRNA & CR31568-RA & 73 \\
\hline FBtr0073020 & tRNA & CR32287-RA & 72 \\
\hline FBtr0073022 & tRNA & CR32286-RA & 72 \\
\hline FBtr0073021 & tRNA & CR32285-RA & 73 \\
\hline FBtr0073121 & tRNA & CR32273-RA & 73 \\
\hline FBtr0073125 & tRNA & CR32272-RA & 73 \\
\hline FBtr0084649 & tRNA & tRNA:D:96A-RA & 72 \\
\hline FBtr0070533 & tRNA & CR32493-RA & 72 \\
\hline FBtr0078790 & tRNA & tRNA:R:83AB-RA & 73 \\
\hline FBtr0083496 & tRNA & tRNA:T:90Cb-RA & 74 \\
\hline FBtr0083497 & tRNA & tRNA:T:90Ca-RA & 74 \\
\hline FBtr0083492 & tRNA & CR31580-RA & 73 \\
\hline FBtr0078490 & tRNA & CR32449-RA & 72 \\
\hline FBtr0078580 & tRNA & CR32460-RA & 72 \\
\hline FBtr0079693 & tRNA & CR31602-RA & 72 \\
\hline FBtr0072686 & tRNA & tRNA:E4:62Ab-RA & 72 \\
\hline FBtr0072687 & tRNA & tRNA:E4:62Ac-RA & 72 \\
\hline FBtr0072683 & tRNA & CR32328-RA & 72 \\
\hline FBtr0072688 & tRNA & CR32324-RA & 72 \\
\hline FBtr0076740 & tRNA & CR32362-RA & 83 \\
\hline FBtr0079338 & tRNA & CR31631-RA & 73 \\
\hline FBtr0075380 & tRNA & CR32357-RA & 73 \\
\hline FBtr0100015 & tRNA & tRNA:N5:42Ag-RA & 74 \\
\hline FBtr0100881 & tRNA & mt:tRNA:T-RA & 66 \\
\hline FBtr0100882 & tRNA & mt:tRNA:P-RA & 61 \\
\hline FBtr0100872 & tRNA & mt:tRNA:R-RA & 64 \\
\hline FBtr0100873 & tRNA & mt:tRNA:N-RA & 65 \\
\hline FBtr0100874 & tRNA & mt:tRNA:S:AGY-RA & 68 \\
\hline FBtr0100875 & tRNA & mt:tRNA:E-RA & 67 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0100876 & tRNA & mt:tRNA:F-RA & 65 \\
\hline FBtr0100854 & tRNA & mt:tRNA:I-RA & 65 \\
\hline FBtr0100855 & tRNA & mt:tRNA:Q-RA & 69 \\
\hline FBtr0100856 & tRNA & mt:tRNA:M-RA & 69 \\
\hline FBtr0100887 & tRNA & mt:tRNA:L:CUN-RA & 65 \\
\hline FBtr0100889 & tRNA & mt:tRNA:V-RA & 73 \\
\hline FBtr0100878 & tRNA & mt:tRNA:H-RA & 66 \\
\hline FBtr0100885 & tRNA & mt:tRNA:S:UCN-RA & 66 \\
\hline FBtr0100869 & tRNA & mt:tRNA:G-RA & 65 \\
\hline FBtr0100871 & tRNA & mt:tRNA:A-RA & 65 \\
\hline FBtr0100862 & tRNA & mt:tRNA:L:UUR-RA & 66 \\
\hline FBtr0100864 & tRNA & mt:tRNA:K-RA & 71 \\
\hline FBtr0100865 & tRNA & mt:tRNA:D-RA & 67 \\
\hline FBtr0100858 & tRNA & mt:tRNA:W-RA & 66 \\
\hline FBtr0100859 & tRNA & mt:tRNA:C-RA & 62 \\
\hline FBtr0100860 & tRNA & mt:tRNA:Y-RA & 66 \\
\hline FBtr0081536 & tRNA & tRNA:V3b:84Da-RA & 73 \\
\hline FBtr0086446 & tRNA & tRNA:E4:56Fa-RA & 72 \\
\hline FBtr0086445 & tRNA & CR30454-RA & 72 \\
\hline FBtr0086447 & tRNA & tRNA:E4:56Fb-RA & 72 \\
\hline FBtr0085982 & tRNA & tRNA:N5:42Aa-RA & 74 \\
\hline FBtr0085981 & tRNA & tRNA:N5:42Ab-RA & 74 \\
\hline FBtr0085980 & tRNA & tRNA:R2:42Ac-RA & 73 \\
\hline FBtr0086006 & tRNA & tRNA:R2:42Aa-RA & 73 \\
\hline FBtr0086007 & tRNA & tRNA:K2:42Ad-RA & 73 \\
\hline FBtr0086013 & tRNA & tRNA:K2:42Ab-RA & 73 \\
\hline FBtr0086014 & tRNA & tRNA:K2:42Ac-RA & 73 \\
\hline FBtr0086015 & tRNA & tRNA:N5:42Ac-RA & 74 \\
\hline FBtr0086004 & tRNA & tRNA:N5:42Ae-RA & 74 \\
\hline FBtr0076505 & tRNA & CR32034-RA & 74 \\
\hline FBtr0075856 & tRNA & tRNA:V4:70BCa-RA & 73 \\
\hline FBtr0075847 & tRNA & tRNA:V4:70BCb-RA & 73 \\
\hline FBtr0075834 & tRNA & tRNA:D2:69F-RA & 72 \\
\hline FBtr0075829 & tRNA & CR32128-RA & 72 \\
\hline FBtr0075828 & tRNA & CR32129-RA & 72 \\
\hline FBtr0072882 & tRNA & CR32303-RA & 72 \\
\hline FBtr0072840 & tRNA & CR32312-RA & 72 \\
\hline FBtr0072691 & tRNA & tRNA:E4:62Ae-RA & 72 \\
\hline FBtr0072690 & tRNA & tRNA:E4:62Ad-RA & 72 \\
\hline FBtr0072685 & tRNA & tRNA:E4:62Aa-RA & 72 \\
\hline FBtr0072684 & tRNA & CR32329-RA & 72 \\
\hline FBtr0072682 & tRNA & CR32330-RA & 72 \\
\hline FBtr0076744 & tRNA & CR32358-RA & 83 \\
\hline FBtr0076743 & tRNA & CR32359-RA & 83 \\
\hline FBtr0076741 & tRNA & CR32361-RA & 83 \\
\hline FBtr0076742 & tRNA & CR32360-RA & 83 \\
\hline FBtr0076762 & tRNA & CR32370-RA & 73 \\
\hline FBtr0077143 & tRNA & CR32420-RA & 73 \\
\hline FBtr0077158 & tRNA & CR32421-RA & 73 \\
\hline FBtr0078547 & tRNA & CR32456-RA & 83 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0072579 & tRNA & CR32480-RA & 74 \\
\hline FBtr0072580 & tRNA & CR32481-RA & 74 \\
\hline FBtr0072600 & tRNA & tRNA:M-i:61D-RA & 72 \\
\hline FBtr0073859 & tRNA & tRNA:S4:12Eb-RA & 82 \\
\hline FBtr0073866 & tRNA & tRNA:S774:12Ef-RA & 82 \\
\hline FBtr0070979 & tRNA & CR32740-RA & 73 \\
\hline FBtr0070603 & tRNA & CR32785-RA & 72 \\
\hline FBtr0070604 & tRNA & tRNA:P:3E-RA & 72 \\
\hline FBtr0070001 & tRNA & CR32826-RA & 72 \\
\hline FBtr0089303 & tRNA & tRNA:L3:49Fa-RA & 83 \\
\hline FBtr0087713 & tRNA & tRNA:I:49Fa-RA & 74 \\
\hline FBtr0085636 & tRNA & CR31023-RA & 80 \\
\hline FBtr0085086 & tRNA & CR31070-RA & 72 \\
\hline FBtr0085087 & tRNA & CR31071-RA & 72 \\
\hline FBtr0084233 & tRNA & CR31162-RA & 82 \\
\hline FBtr0084222 & tRNA & CR31165-RA & 82 \\
\hline FBtr0084223 & tRNA & CR31166-RA & 82 \\
\hline FBtr0082544 & tRNA & tRNA:K5:87BC-RA & 72 \\
\hline FBtr0081706 & tRNA & tRNA:M2:83F-RA & 73 \\
\hline FBtr0083976 & tRNA & CR31334-RA & 72 \\
\hline FBtr0082241 & tRNA & tRNA:S2b:86A-RA & 82 \\
\hline FBtr0081886 & tRNA & tRNA:Y1:85Ac-RA & 73 \\
\hline FBtr0081884 & tRNA & tRNA:Y1:85Aa-RA & 73 \\
\hline FBtr0081623 & tRNA & tRNA:K5:84ABb-RA & 73 \\
\hline FBtr0081558 & tRNA & tRNA:V3b:84Dd-RA & 73 \\
\hline FBtr0081535 & tRNA & tRNA:V3b:84Db-RA & 73 \\
\hline FBtr0083468 & tRNA & CR31570-RA & 73 \\
\hline FBtr0083469 & tRNA & tRNA:P:90Cb-RA & 72 \\
\hline FBtr0083499 & tRNA & tRNA:A:90C-RA & 73 \\
\hline FBtr0083491 & tRNA & CR31575-RA & 73 \\
\hline FBtr0083477 & tRNA & CR31576-RA & 73 \\
\hline FBtr0082834 & tRNA & CR31588-RA & 73 \\
\hline FBtr0079820 & tRNA & CR31885-RA & 74 \\
\hline FBtr0079752 & tRNA & CR31888-RA & 72 \\
\hline FBtr0079728 & tRNA & CR31889-RA & 72 \\
\hline FBtr0079729 & tRNA & CR31890-RA & 72 \\
\hline FBtr0089297 & tRNA & tRNA:Y1:28C-RA & 73 \\
\hline FBtr0079090 & tRNA & CR31914-RA & 72 \\
\hline FBtr0079064 & tRNA & CR31971-RA & 72 \\
\hline FBtr0080666 & tRNA & tRNA:G3:35Bb-RA & 71 \\
\hline FBtr0080660 & tRNA & tRNA:P:35Bb-RA & 72 \\
\hline FBtr0080664 & tRNA & tRNA:G3:35Bd-RA & 71 \\
\hline FBtr0080665 & tRNA & tRNA:G3:35Bc-RA & 71 \\
\hline FBtr0080646 & tRNA & tRNA:P:35Ba-RA & 72 \\
\hline FBtr0080647 & tRNA & tRNA:P:35Bc-RA & 72 \\
\hline FBtr0080644 & tRNA & tRNA:P:35Bd-RA & 72 \\
\hline FBtr0089299 & tRNA & tRNA:Y1:22Fb-RA & 73 \\
\hline FBtr0100849 & tRNA & tRNA:N5:60C-RA & 74 \\
\hline FBtr0100846 & tRNA & CR33538-RA & 73 \\
\hline FBtr0100847 & tRNA & CR33539-RA & 72 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FBtr0100016 & tRNA & tRNA:N5:42Af-RA & 74 \\
\hline FBtr0088465 & tRNA & tRNA:M3:46A-RA & 72 \\
\hline FBtr0088156 & tRNA & tRNA:SeC-RA & 87 \\
\hline FBtr0086314 & tRNA & tRNA:G3:56EFb-RA & 71 \\
\hline FBtr0086234 & tRNA & CR30155-RA & 72 \\
\hline FBtr0072446 & tRNA & CR30199-RA & 72 \\
\hline FBtr0071962 & tRNA & CR30202-RA & 82 \\
\hline FBtr0071631 & tRNA & CR30206-RA & 72 \\
\hline FBtr0071630 & tRNA & tRNA:G3:57BCa-RA & 71 \\
\hline FBtr0071574 & tRNA & CR30208-RA & 72 \\
\hline FBtr0071626 & tRNA & CR30209-RA & 72 \\
\hline FBtr0086326 & tRNA & CR30212-RA & 73 \\
\hline FBtr0086312 & tRNA & tRNA:G3:56EFa-RA & 71 \\
\hline FBtr0086330 & tRNA & CR30215-RA & 74 \\
\hline FBtr0086331 & tRNA & CR30218-RA & 72 \\
\hline FBtr0086498 & tRNA & CR30223-RA & 72 \\
\hline FBtr0086526 & tRNA & tRNA:S4:56D-RA & 82 \\
\hline FBtr0086527 & tRNA & CR30225-RA & 73 \\
\hline FBtr0086603 & tRNA & CR30227-RA & 72 \\
\hline FBtr0086611 & tRNA & CR30229-RA & 82 \\
\hline FBtr0086835 & tRNA & CR30231-RA & 73 \\
\hline FBtr0086965 & tRNA & CR30232-RA & 72 \\
\hline FBtr0086908 & tRNA & tRNA:H:56E-RA & 72 \\
\hline FBtr0087001 & tRNA & CR30234-RA & 82 \\
\hline FBtr0086988 & tRNA & CR30235-RA & 82 \\
\hline FBtr0087055 & tRNA & tRNA:G3:53E-RA & 71 \\
\hline FBtr0087198 & tRNA & CR30237-RA & 72 \\
\hline FBtr0087197 & tRNA & CR30238-RA & 72 \\
\hline FBtr0087128 & tRNA & CR30239-RA & 72 \\
\hline FBtr0087129 & tRNA & CR30240-RA & 72 \\
\hline FBtr0087425 & tRNA & CR30241-RA & 82 \\
\hline FBtr0087658 & tRNA & tRNA:I:49Fb-RA & 74 \\
\hline FBtr0087660 & tRNA & tRNA:I:49Fd-RA & 74 \\
\hline FBtr0087661 & tRNA & tRNA:I:49Fe-RA & 74 \\
\hline FBtr0087963 & tRNA & CR30249-RA & 72 \\
\hline FBtr0087962 & tRNA & CR30250-RA & 72 \\
\hline FBtr0087961 & tRNA & CR30251-RA & 72 \\
\hline FBtr0087900 & tRNA & tRNA:H:48F-RA & 72 \\
\hline FBtr0088087 & tRNA & CR30254-RA & 73 \\
\hline FBtr0088071 & tRNA & tRNA:M2:48Ba-RA & 73 \\
\hline FBtr0088131 & tRNA & CR30257-RA & 72 \\
\hline FBtr0100840 & tRNA & CR30260-RA & 71 \\
\hline FBtr0089058 & tRNA & CR30299-RA & 74 \\
\hline FBtr0086190 & tRNA & tRNA:K2:42Ea-RA & 73 \\
\hline FBtr0086189 & tRNA & tRNA:K2:42Eb-RA & 73 \\
\hline FBtr0086188 & tRNA & tRNA:K2:42Ec-RA & 73 \\
\hline FBtr0086187 & tRNA & tRNA:K2:42Ed-RA & 73 \\
\hline FBtr0085979 & tRNA & tRNA:R2:42Ad-RA & 73 \\
\hline FBtr0085983 & tRNA & tRNA:K2:42Aa-RA & 73 \\
\hline FBtr0085984 & tRNA & tRNA:I:42A-RA & 74 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|r|}
\hline FBtr0085985 & tRNA & tRNA:R2:42Ab-RA & 73 \\
\hline FBtr0085986 & tRNA & CR30316-RA & 73 \\
\hline FBtr0085989 & tRNA & tRNA:N5:42Ad-RA & 74 \\
\hline FBtr0086528 & tRNA & CR30326-RA & 73 \\
\hline
\end{tabular}

\section*{CHAPTER IV}

\section*{Argonaute loading contributes to the precision of the \(5^{\prime}\) ends of both microRNAs and their miRNA* strands in flies}

The following chapter was a collaborative effort. The author and Hervé Seitz performed experiments and analyses, respectively, demonstrating the \(5^{\prime}\) homogeneity of both miRNAs and miRNA* stands in flies. We also proposed a role for Ago2 loading in purifying 5'ends of miRNA and miRNA* sequences. The author, Hervé Seitz and Phillip Zamore wrote the paper. This chapter appeared in Curr Biol. 2008 Jan 22;18(2):147-51.

\section*{Introduction}

MicroRNAs (miRNAs) are short regulatory RNAs that direct repression of their mRNA targets. The miRNA "seed"-nucleotides 2-7—establishes miRNA target specificity by mediating target binding \({ }^{159,160,165,261,281}\). Accurate processing of the miRNA \(5^{\prime}\) end is thought to be under strong selective pressure \({ }^{44,282}\) because a shift by just one nucleotide in the \(5^{\prime}\) end of a miRNA would alter its seed sequence, redefining its repertoire of targets (Fig. 1). Animal miRNAs are produced by the sequential cleavage of partially doublestranded precursor RNAs by the RNase III endonucleases Drosha and Dicer, thereby generating a transitory double-stranded intermediate comprising the miRNA paired to its partially complementary miRNA* strand \({ }^{283,284}\). Here, we report that in flies, the \(5^{\prime}\) ends of miRNAs and miRNA* strands are typically more precisely defined than the \(3^{\prime}\) ends of
either the miRNA or its miRNA*. Surprisingly, the precision of the \(5^{\prime}\) ends of both miRNA and miRNA* sequences increases after Argonaute2 (Ago2) loading. Our data imply that either many miRNA* sequences are under evolutionary pressure to maintain their seed sequences-that is, they have targets-or that secondary constraints such as the sequence requirements for loading small RNAs into functional Argonaute complexes, narrow the range of miRNA and miRNA* \(5^{\prime}\) ends that accumulate in flies.

\section*{Figure IV-1. Inaccurate processing of the \(5^{\prime}\) end of a miRNA alters its seed} sequence. miRNA precursors are cleaved by two RNase III enzymes, Drosha and Dicer, liberating a short duplex: in this duplex, the mature miRNA (red) is paired to a partially complementary small RNA, the miRNA* (blue), derived from the opposite arm of the pre-miRNA stem. Inaccurate cleavage of the miRNA 5' end changes its seed sequence (underlined).

\section*{Figure IV-1.}


\section*{Results}

\section*{Inaccurate cleavages and non-templated additions cause miRNA heterogeneity}

We used high throughput pyrosequencing of 18-30 nt RNAs to identify miRNAs expressed in Drosophila melanogaster heads and in cultured Drosophila S2 cells. Among the 120,896 miRNA reads ( 66,377 from fly heads; 54,519 from S 2 cells), we observed two sources of heterogeneity for the ends of fly miRNAs: the addition of nucleotides not present in the gene from which the miRNA is transcribed (non-templated nucleotides) and inaccurate or alternative cleavage by Drosha or Dicer. Approximately 5\% of the reads for a typical miRNA contained non-templated nucleotides on at least one end (Fig. 2A and Fig. 3), most frequently the addition of single uridines or adenosine to the \(3^{\prime}\) end, but longer extensions were also observed, both on the \(5^{\prime}\) and \(3^{\prime}\) ends (Table S1). Interestingly, longer extensions were also U - and A-rich at the \(3^{\prime}\) end, whereas at the \(5^{\prime}\) end, the \(3^{\prime}\)-most non-templated nucleotide was frequently a cytidine, and other added nucleotides were typically uridines. This observation could prove to be useful for the identification of the \(5^{\prime}\)-elongating enzymatic activity. The non-templated addition of nucleotides, especially uridines, to the \(3^{\prime}\) ends of miRNAs has been reported previously in wild-type Caenorhabditis elegans \({ }^{44}\) and hen1 mutant Arabidopsis thaliana \({ }^{87}\). Overall, the addition of non-templated nucleotides to the \(5^{\prime}\) end of miRNAs was rarer ( \(\sim 1 \%\) ) (Fig. 2A and Table S1).

We also observed a second, more frequent type of heterogeneity: variability in the position of the miRNA \(5^{\prime}\) and \(3^{\prime}\) ends within the sequence of the miRNA precursors (Fig. 2B). Non-templated nucleotides fortuitously matching the templated sequence are
predicted to occur much less often than the heterogeneity we observe (Table S2). Similar terminal heterogeneity has been noted for the \(3^{\prime}\) ends of C. elegans \({ }^{44}\) and the \(5^{\prime}\) and \(3^{\prime}\) ends of mouse \({ }^{285}\) miRNAs. The aberrant miRNA termini we observe likely reflect imprecision in precursor cleavage by Drosha and Dicer. They are unlikely to correspond to degradation products because we recorded nearly as many miRNA reads that were longer than the dominant species as were shorter (Fig. 4) and because 93\% (S2 cells) and \(99 \%\) (fly heads) of sequences of the fly-specific 30 nt 2 S ribosomal RNA (rRNA)whose termini are expected to be single-stranded—were full-length (Discussion). 3' degradation was slightly more common than \(5^{\prime}\) degradation. We detected \(3^{\prime}\) degradation for 1,010 reads versus \(5^{\prime}\) degradation for 201 reads among the 33,505 total 2 S rRNA reads from S2 cells and fly heads combined; 5 reads corresponded to 2 S rRNA trimmed from both ends.

\section*{Figure IV-2. Cleavage inaccuracies are more frequent than non-templated} additions. (A) The percentage of reads with non-templated 5' or 3' extensions was evaluated for each miRNA whose sequence was read at least 100 times. (B) The most abundant \(5^{\prime}\) and \(3^{\prime}\) ends were identified for each miRNA and all other ends corresponding to the sequence of the primary miRNA transcript were flagged as "alternative". The percentage of reads with alternative ends was then determined for each miRNA read at least 100 times. Note the difference in the \(y\)-axis scales in (A) and (B). Box plots follow Tukey's standard conventions: a rectangle encloses all data from the first to the third quartiles, a bold horizontal line reports the median, whiskers connected to the rectangle indicate the largest and smallest non-outlier data, and outliers (values distant from the box by more than 1.5 times the interquartile range) are displayed as open circles.

Figure IV-2.


Figure IV-3. The abundance of miRNAs with non-templated nucleotides is proportional to the abundance of the miRNA itself.

\section*{Figure IV-3.}

5 untemplated nucleotides
3 untemplated nucleotides





Figure IV-4. Mean heterogeneity for shorter and longer reads, compared to the most abundant variant for each miRNA. Positive values (red) indicate the reads were longer; negative values (blue) indicate that they were shorter than the most abundant variant for the corresponding miRNA. The bar graphs are essentially symmetrical; the various isoforms do not tend to be shorter than the most abundant one, suggesting that heterogeneity in miRNA ends reflects imprecise processing, rather than degradation. Error bars show standard deviation.

Figure IV-4.


\section*{miRNA and miRNA* have more defined 5' ends than 3' ends}

The \(5^{\prime}\) ends of miRNAs were more precisely defined than their \(3^{\prime}\) ends, irrespective of whether the miRNA originated from the \(5^{\prime}\) or \(3^{\prime}\) arm of the pre-miRNA (Fig. 5A). Thus, the difference in cleavage accuracy between the \(5^{\prime}\) and \(3^{\prime}\) ends cannot be attributed to an intrinsic difference in fidelity between Drosha and Dcr-1. We expected that the \(3^{\prime}\) ends of miRNA* strands would be precisely defined, because they are created by the pair of cuts that generates the \(5^{\prime}\) ends of miRNA, and that the \(5^{\prime}\) ends of miRNA* strands would be imprecisely determined, because they are created by the pair of cleavages that generates the highly heterogeneous \(3^{\prime}\) ends of miRNA. Instead, we found that the \(5^{\prime}\) end of a strand (for example, the miRNA) was more accurate than the \(3^{\prime}\) end of the adjacent strand (in this example, the miRNA*; Fig. 5B); these two extremities are produced by a pair of cuts catalyzed by the same enzyme.

Figure IV-5. miRNA and miRNA* \(5^{\prime}\) ends are more precisely defined than their \(3^{\prime}\) ends. (A) miRNAs originating from the \(5^{\prime}\) (left panels) or \(3^{\prime}\) (right panels) arms of their pre-miRNAs were analyzed separately. For each miRNA, the heterogeneity of its termini was calculated as the mean of the absolute values of the distance between the \(5^{\prime}\) or \(3^{\prime}\) extremity of an individual templated read and the most abundant \(5^{\prime}\) or \(3^{\prime}\) ends for that miRNA. Sequences read from RNA isolated from fly heads and cultured S 2 cells were analyzed separately. (B) Box-plots show the distribution of mean heterogeneity for the \(5^{\prime}\) and \(3^{\prime}\) ends of miRNA and miRNA* sequences.

Figure IV-5.


\section*{Ago2 loading refines 5' ends of miRNA and miRNA* strands}

Current dogma holds that the local sequence or structure of miRNA precursors is under strong selective pressure to generate accurate \(5^{\prime}\) ends, because a precise miRNA \(5^{\prime}\) end directly establishes the seed sequence and hence the targets of the miRNA. Since we observe that, in flies, the \(5^{\prime}\) ends of both the miRNA and the miRNA* are more precisely determined than the \(3^{\prime}\) ends of either strand, this explanation implies that miRNA* sequences are under selective pressure to establish a unique seed sequence, implying that they, too, have regulatory targets.

It is also possible that both Drosha and Dcr-1—whose active sites are homologous-may also be intrinsically more precise in \(5^{\prime}\) cleavage than in \(3^{\prime}\) cutting. Another alternative is that \(5^{\prime}\) and \(3^{\prime}\) ends might be generated with similar, imperfect accuracy, but subsequent constraints in RISC loading select for those small RNAs that begin with a particular nucleotide or sequence. The subsequent destruction of miRNAs without these \(5^{\prime}\) features would increase the apparent accuracy of miRNA 5' ends while retaining miRNA \(3^{\prime}\) heterogeneity. To test this idea, we separately sequenced small RNAs containing modified \(3^{\prime}\) termini (Table S3). In flies, the \(3^{\prime}\) termini of small RNAs that are loaded into \(\mathrm{Ago}^{84}\), but not those bound to Argonaute \(1^{182}\), are \(2^{\prime}\) - \(O\)-methylated by Drosophila Hen1 as the last step in Ago2-RISC maturation \({ }^{83}\). To sequence small RNAs bearing \(2^{\prime}-O\)-methylated \(3^{\prime}\) ends, we treated the total small RNA with \(\mathrm{NaIO}_{4}\) followed by \(\beta\)-elimination; this method blocks ligation of adapters to small RNAs bearing \(2^{\prime}, 3^{\prime}\) hydroxy termini, preventing them from being sequenced.

To determine whether the greater accuracy of miRNA and miRNA* \(5^{\prime}\) versus \(3^{\prime}\)
ends reflects the constraints of RISC assembly or stability, rather than more accurate \(5^{\prime}\) versus 3' cleavage by Drosha and Dicer, we compared the terminal heterogeneity of miRNA and miRNA* reads from the \(3^{\prime}\) modified population to the heterogeneity of the total miRNA and miRNA* population. As a control, we compared the \(3^{\prime}\) heterogeneity between the two populations. For both analyses, we only considered miRNA or miRNA* strands displaying some heterogeneity in the total population. For both fly heads and S2 cells, we observed a dramatic increase in the precision of the \(5^{\prime}\)-but not the \(3^{\prime}\)-ends of miRNAs and miRNA* strands upon loading into Ago2 (Fig. 6). We also performed the analysis for those small RNAs that both had heterogeneous termini and were specifically enriched in the \(\beta\)-eliminated sequences relative to the non- \(\beta\)-eliminated set. For the 13 small RNAs ( 4 miRNAs and 9 miRNA*s) meeting these criteria, the \(5^{\prime}\) ends in the subpopulation of miRNA and miRNA* sequences loaded into Ago2-i.e., those that were \(2^{\prime}-O\)-methylated-were again more precisely defined than the \(5^{\prime}\) ends of the same small RNA sequences in the total small RNA population (Fig. 7). We conclude that loading miRNAs into Ago2, and, perhaps into Argonaute proteins in general, imposes a purifying selection on their 5' ends.

Figure IV-6. Ago2-loading, as evidenced by \(3^{\prime}\) terminal \(2^{\prime}-O\)-methylation, refines miRNA and miRNA* \(5^{\prime}\) ends. On average, the \(5^{\prime}\) ends of the miRNAs and miRNA* strands in the \(2^{\prime}-O\)-methylated populations from both fly heads and S 2 cells were more precisely defined than in the total population. We observed no statistically significant increase in the precision of the \(3^{\prime}\) ends of the \(3^{\prime}\) modified miRNAs and miRNA* strands.

Figure IV-6.


\section*{fly heads}


\(p\)-value \(\leq 0.058\)

\(p\)-value \(\leq 0.15\)

Figure IV-7. Ago2 loading, as evidenced by \(3^{\prime}\) terminal \(\mathbf{2}^{\prime}\)-O-methylation, refines miRNA and miRNA* \(\mathbf{5}^{\prime}\) ends. Four miRNAs and nine miRNA* species were identified that were both heterogeneous at their \(5^{\prime}\) ends (i.e., a mean heterogeneity \(>0\), Table S3) and were enriched among RNAs modified at their \(3^{\prime}\) termini. On average, the \(5^{\prime}\) ends of these small RNAs were more precisely defined in the \(2^{\prime}\)-O-methylated population than in the total population.

Figure IV-7.


\section*{Discussion}

\section*{Terminal heterogeneity is not a ligation or degradation artifact}

A potential explanation for the addition of non-templated nucleotides is that the ligase used to add adapters to each end of the small RNA joined fragments of abundant RNAs or pieces of RNA adapters to the endogenous small RNA. This seems unlikely: the most abundant non-templated trinucleotides are \(5^{\prime}-U A G-3^{\prime}\) added to the \(5^{\prime}\) end and \(5^{\prime}\)-UUU- \(3^{\prime}\) added to the \(3^{\prime}\) end. The only occurence of \(5^{\prime}\)-UAG- \(3^{\prime}\) in the adapters we used is in the core of the \(5^{\prime}\) adapter (AUC GUA GGC ACC UGA AA); a degradation product of this adapter would likely bear 5' hydroxyl and 3' phosphate groups, making it a poor substrate for ligation. \(5^{\prime}\)-UUU- \(3^{\prime}\) is indeed the \(5^{\prime}\)-terminal trinucleotide of the \(3^{\prime}\) adapter (UUU AAC CGC GAA UUC CAG) we used for the S 2 cells RNAs, but this trinucleotide is absent from the \(3^{\prime}\) adapter we used for the RNAs isolated from fly heads (CAC UCG GGC ACC AAG GA), where UUU corresponds to the most common non-templated \(3^{\prime}\) trinucleotide. Finally, \(5^{\prime}\)-UAG-3' is not the \(3^{\prime}\) terminal trinucleotide of any abundant Drosophila non-coding RNA (ribosomal RNAs, tRNAs, snoRNAs and snRNAs), making it unlikely to be abundant in a \(3^{\prime}\)-OH form in our RNA samples. We note that the abundance of small RNA reads containing non-templated nucleotide extensions is proportional to the number of times it was read in the total population, a measure of its relative cellular abundance (Fig. 3).

Moreover, the heterogeneity of templated nucleotides is unlikely to reflect heterogeneous degradation of miRNA and miRNA* extremities by exonucleases, as exemplified by the integrity of detected 2 S rRNA sequences. Of 19,811 2 S rRNA-
matching reads from fly heads, \(19,670(99 \%)\) corresponded to full-length, 30 nt 2 S rRNA; of 13,694 2 S rRNA-matching reads from the S 2 cells, 12,706 ( \(93 \%\) ) were fulllength. Additionally, we did not notice any tendency for these heterogeneous reads to be shorter than the most abundant read: shorter and longer reads were detected with similar frequencies (Fig. 4).

\section*{Potential 5' nucleotide purifying mechanisms}

Various isoforms of miRNAs and miRNA* sequences, differing in their \(5^{\prime}\) or \(3^{\prime}\) ends, have been observed to arise from pre-miRNAs \({ }^{188,244,271,285,286}\). The variations result largely from imprecise processing by Drosha or Dicer. Consistent with the need to specify the miRNA seed precisely, the \(5^{\prime}\) end of the miRNA strands are more homogenous than their \(3^{\prime}\) ends: a change in the \(5^{\prime}\) end will alter the identity of the seed region and hence redefine its repertoire of targets. One might reasonably presume the \(3^{\prime}\) end of the miRNA* to be more precisely defined than its \(5^{\prime}\) end, as it is made by the same pair of cuts that defines the \(5^{\prime}\) end of the miRNA. However, the \(5^{\prime}\) ends of the miRNA* strands are also more precisely determined than their 3' ends, regardless of whether they are defined by Drosha or Dicer. Perhaps the miRNA* seed is under selective pressure because miRNA* strands have their own target RNAs. Alternatively, the Drosha and Dicer active sites that cleave the \(5^{\prime}\) side of double-stranded RNA may simply be more precise than their \(3^{\prime}\) counterparts. Finally, precision in \(5^{\prime}\) ends may reflect sequence or structural requirements for loading RISC. Supporting this idea, we show that the \(5^{\prime}\) ends
of Drosophila miRNA and miRNA* loaded in Ago2 are, on average, more precise than those in the total population.

The mechanism responsible for the homogenization of 5' ends following Ago2 loading remains to be determined. We can imagine that the efficiency of Argonaute loading is affected by the nature of the \(5^{\prime}\) end of a small RNA, much as the stability of its pairing to the other strand influences this process \({ }^{73}\). The \(5^{\prime}\) sequence itself may also play a role in RISC assembly, with some miRNA variants loaded more efficiently than others, according to the identity of their 5' nucleotide(s). Alternatively, some Argonaute complexes might be selectively stabilized after their assembly, for example, by the presence of a target RNA whose binding stabilizes those RISCs containing miRNA isoforms with a complementary seed sequence.

\section*{Materials and Methods}

\section*{General methods}

Fly heads were isolated by vigorously shaking liquid nitrogen-frozen flies expressing a long double-stranded hairpin RNA corresponding to white \({ }^{66,243}\) in nested, pre-chilled sieves (U.S.A. standard sieve, Humboldt MFG Co., Chicago, IL, USA), allowing the heads to pass through the top sieve (No. 25) and collecting them on the bottom sieve (No. 40). S2 cell RNA was prepared from a clonal line containing the stably-integrated GFP transgene (pKF63) and transiently transfected with a double-stranded RNA against GFP \({ }^{134}\).

\section*{\(R N A\) preparation}
\(400 \mu \mathrm{~g}\) total RNA was extracted using the mirVana kit (Ambion), then 18- to 30 nt -long RNAs gel purified. 2 S rRNA was depleted by hybridization to immobilized DNA oligonucleotide ( \(5^{\prime}\)-biotin-TCA ATG TCG ATA CAA CCC TCA ACC ATA TGT AGT CCA AGC A-3'). 1.6 nmol of the biotinylated oligonucleotide was bound to 32 mg M270 Streptabeads (Dynal, Norway) in 3.2 ml 0.5 x SSC for 30 min on ice, then the beads were washed with ice-cold 0.5 xSSC , resuspended in 8 ml 0.5 x SSC , and incubated 5 min at \(65^{\circ} \mathrm{C}\). Gel-purified RNAs were diluted with 7 volumes 0.5 x SSC to a final volume of 160 \(\mu \mathrm{l}\) and denatured at \(80^{\circ} \mathrm{C}\) for 5 min , then added to the bead suspension and incubated 1 h at \(50^{\circ} \mathrm{C}\). Beads were magnetically captured for 1 min at room temperature, then the 2 S rRNA-depleted supernatant collected and precipitated with absolute ethanol. More than \(99 \%\) of the 2 S rRNA was routinely removed without measurably altering miRNA concentration; without the depletion step, nearly all the small RNA reads would correspond to 2 S rRNA. Half the sample was then \(\beta\)-eliminated as described \({ }^{180}\) and half was subject to the same treatment, except that sodium periodate was omitted.

\section*{Amplification and pyrosequencing}

Adapters were ligated to the small RNA sample, and the resulting library amplified by PCR as described \({ }^{4}\), except that a truncation mutant of RNA ligase \(2^{\text {Rnl2(1-249); 287 }}\) was used for the \(3^{\prime}\) ligation step; T4 RNA ligase (Ambion) was used for 5' ligation. The 5' adapter was 5'-dAdTdC dGdTrA rGrGrC rArCrC rUrGrA rArA-3' (Dharmacon, Lafayette, CO, USA); 3' 'preadenylated' adapters were 5'-rAppdCdA dCdTdC dGdGdG dCdAdC
dCdAdA dGdGdA ddC-3' for fly head and \(5^{\prime}\)-rAppdTdT dTdAdA dCdCdG dCdGdA dAdTdT dCdCdA dGddC-3’ for S 2 cell RNA (IDT DNA, Coralville, IA, USA). After adapter addition, the RNA was amplified by PCR using DNA primers corresponding to the adapters. This PCR pool was gel purified (4\% Metaphor Agarose, Cambrex, East Rutherford, NJ, USA) with Qiaex II (Qiagen, Valencia, CA, USA), then re-amplified by PCR (common 5' primer, \(5^{\prime}\)-GCC TCC CTC GCG CCA TCA GAT CGT AGG CAC CTG AAA-3'; \(3^{\prime}\) primer for fly heads, \(5^{\prime}\)-GCC TTG CCA GCC CGC TCA GTC CTT GGT GCC CGA GTG-3’; \(3^{\prime}\)-primer for S 2 cells, \(5^{\prime}\)-GCC TTG CCA GCC CGC TCA GCT GGA ATT CGC GGT TAA A-3'). The PCR-amplified libraries were pyrosequenced by Roche Applied Science (Branford, CT, USA). Sequence and abundance data are available via the NCBI gene expression omnibus web site (http://www.ncbi.nlm.nih.gob/geo/) using accession number GSE9389.

\section*{Computational analyses}

Eighteen- to \(30-\mathrm{nt}\) long reads were mapped to the Drosophila melanogaster genome (FlyBase assemblyR5.1; http://flybase.org/) and to the D. melanogaster "stem-loops" (which include the pre-miRNA sequences, usually extended by a few nucleotides) listed in miRBase (http://microrna.sanger.ac.uk/sequences/; version 10.0, August 2007). To identify non-templated microRNA additions, non-genome matching sequences were iteratively trimmed by 1 to 3 nucleotides on either the \(5^{\prime}\) or the \(3^{\prime}\) end and mapped to stem-loops.

Among stem-loop-matching reads, miRNA-matching and miRNA*-matching
reads were identified, using either the experimentally detected miRNA* sequence (when it was available in the miRBase records) or the product of conceptual dicing of the hairpin \({ }^{73}\). To include reads that showed extremities different from those annotated in miRBase, a distance of as many as 9 nucleotides \(5^{\prime}\) or \(3^{\prime}\) from the annotated miRNA or miRNA* sequence was tolerated. Statistical calculations were made using the \(\mathbf{R}\) statistical package. \(p\)-values were calculated using the Wilcoxon test.

\section*{Supplemental Materials}

\section*{Supplemental Tables}

Table IV-S1. Addition of non-templated nucleotides to miRNAs in fly heads and in cultured S2 cells. Among pre-miRNA matching reads, some correspond to genomic sequence only if terminal nucleotides are removed. Once trimmed of these non-templated nucleotides, most of these sequences map perfectly to miRNAs; the remaining few percent typically map to miRNA* strands. For each set of pre-miRNA matching reads, the percentage matching the mature miRNA is reported in parentheses. The number of reads matching the pre-miRNA exactly (i.e., miRNA or miRNA*) is in red.

Table IV-S1.
\begin{tabular}{|c|c|c|c|c|}
\hline RNA source & End & position of nontemplated nucleotides & number of reads matching pre-miRNA (percent matching mature miRNA) & frequency of non-templated nucleotide at position \\
\hline \multirow{8}{*}{fly heads} & \multirow{4}{*}{5'} & 0 & 65,636 (95\%) & NA \\
\hline & & 1 & 500 (88\%) & \[
\begin{aligned}
& 28 \% \mathrm{~A} ; 62 \% \mathrm{C} ; \\
& 2 \% \mathrm{G} ; 8 \% \mathrm{U}
\end{aligned}
\] \\
\hline & & 2 & 523 (97\%) & \[
\begin{aligned}
& 14 \% \mathrm{~A} ; 30 \% \mathrm{C} \\
& 2 \% \mathrm{G} ; 55 \% \mathrm{U}
\end{aligned}
\] \\
\hline & & 3 & 212 (96\%) & \[
\begin{aligned}
& 12 \% \mathrm{~A} ; 25 \% \mathrm{C} ; \\
& 1 \% \mathrm{G} ; 62 \% \mathrm{U}
\end{aligned}
\] \\
\hline & \multirow{4}{*}{3'} & 0 & 65,636 (95\%) & NA \\
\hline & & 1 & 2,312 (97\%) & \[
\begin{aligned}
& 32 \% \mathrm{~A} ; 24 \% \mathrm{C} \\
& 4 \% \mathrm{G} ; 40 \% \mathrm{U}
\end{aligned}
\] \\
\hline & & 2 & 400 (97\%) & \[
\begin{aligned}
& 30 \% \mathrm{~A} ; 25 \% \mathrm{C} \\
& 5 \% \mathrm{G} ; 40 \% \mathrm{U}
\end{aligned}
\] \\
\hline & & 3 & 181 (90\%) & \[
\begin{aligned}
& 29 \% \mathrm{~A} ; 26 \% \mathrm{C} \\
& 6 \% \mathrm{G} ; 39 \% \mathrm{U}
\end{aligned}
\] \\
\hline \multirow{8}{*}{\[
\begin{gathered}
\mathrm{S} 2 \\
\text { cells }
\end{gathered}
\]} & \multirow{4}{*}{5'} & 0 & 53,683 (94\%) & NA \\
\hline & & 1 & 348 (91\%) & \[
\begin{aligned}
& 33 \% \mathrm{~A} ; 54 \% \mathrm{C} \\
& 4 \% \mathrm{G} ; 10 \% \mathrm{U}
\end{aligned}
\] \\
\hline & & 2 & 284 (96\%) & \[
\begin{aligned}
& 20 \% \mathrm{~A} ; 31 \% \mathrm{C} \\
& 2 \% \mathrm{G} ; 47 \% \mathrm{U}
\end{aligned}
\] \\
\hline & & 3 & 188 (94\%) & \[
\begin{aligned}
& 16 \% \mathrm{~A} ; 24 \% \mathrm{C} \\
& 2 \% \mathrm{G} ; 58 \% \mathrm{U}
\end{aligned}
\] \\
\hline & \multirow{4}{*}{3'} & 0 & 53,683 (94\%) & NA \\
\hline & & 1 & 2,629 (97\%) & \[
\begin{aligned}
& 36 \% \mathrm{~A} ; 12 \% \mathrm{C} \text {; } \\
& 3 \% \mathrm{G} ; 49 \% \mathrm{U}
\end{aligned}
\] \\
\hline & & 2 & 411 (98\%) & \[
\begin{aligned}
& 36 \% \mathrm{~A} ; 12 \% \mathrm{C} \\
& 5 \% \mathrm{G} ; 47 \% \mathrm{U}
\end{aligned}
\] \\
\hline & & 3 & 219 (93\%) & \[
\begin{aligned}
& 35 \% \mathrm{~A} ; 12 \% \mathrm{C} \\
& 6 \% \mathrm{G} ; 47 \% \mathrm{U}
\end{aligned}
\] \\
\hline
\end{tabular}

Table IV-S2. Templated heterogeneity is unlikely to result from the addition of nontemplated nucleotides fortuitously identical to the templated sequence. For each miRNA with at least 10 reads showing heterogeneity to the templated sequence, the observed nucleotide additions at the \(5^{\prime}\) and the \(3^{\prime}\) ends were compared to the expected distributions of non-templated extensions (assuming the observed nucleotide biases reported Table S1); significance was assessed by the chi-square test. For simplicity, only the first non-templated nucleotide on each end was considered, and we assumed that every non-templated addition followed the average observed nucleotide preferences in Table S1. These simplifications over-estimate the \(p\)-values and make the test more conservative.

Table IV-S2.
\begin{tabular}{|l|r|l|r|}
\hline \multicolumn{2}{|c|}{ fly heads } & \multicolumn{2}{c|}{ S2 cells } \\
\hline \multicolumn{1}{|c|}{ miRNA } & \multicolumn{1}{l|}{\(\boldsymbol{p}\)-value } & \multicolumn{1}{l|}{ miRNA } & \multicolumn{1}{c|}{\(\boldsymbol{p}\)-value } \\
\hline bantam & \(2.70 \mathrm{E}-134\) & bantam & 0 \\
\hline let-7 & \(4.80 \mathrm{E}-243\) & let-7 & \(7.40 \mathrm{E}-60\) \\
\hline mir-100 & \(2.00 \mathrm{E}-161\) & mir-100 & \(1.30 \mathrm{E}-161\) \\
\hline mir-10 & \(3.30 \mathrm{E}-07\) & mir-11 & \(8.30 \mathrm{E}-232\) \\
\hline mir-11 & 0 & mir-124 & 0 \\
\hline mir-124 & 0 & mir-125 & \(3.80 \mathrm{E}-197\) \\
\hline mir-125 & 0 & mir-12 & \(1.40 \mathrm{E}-18\) \\
\hline mir-12 & \(6.30 \mathrm{E}-54\) & mir-133 & \(1.9 \mathrm{e}-318\) \\
\hline mir-133 & \(2.40 \mathrm{E}-276\) & mir-13a & \(3.50 \mathrm{E}-58\) \\
\hline mir-13a & \(6.50 \mathrm{E}-76\) & mir-13b-1 & 0 \\
\hline mir-13b-1 & 0 & mir-13b-2 & 0 \\
\hline mir-13b-2 & 0 & mir-14 & 0 \\
\hline mir-14 & 0 & mir-184 & 0 \\
\hline mir-184 & 0 & mir-1 & \(4.00 \mathrm{E}-115\) \\
\hline mir-1 & 0 & mir-210 & 0 \\
\hline mir-210 & \(6.20 \mathrm{E}-213\) & mir-263a & \(7.00 \mathrm{E}-134\) \\
\hline mir-263a & \(1.30 \mathrm{E}-74\) & mir-263b & \(1.10 \mathrm{E}-29\) \\
\hline mir-274 & 0 & mir-274 & 0 \\
\hline mir-276a & 0 & mir-275 & \(2.30 \mathrm{E}-183\) \\
\hline mir-276b & 0 & mir-276a & 0 \\
\hline mir-277 & 0 & mir-276b & \(1.90 \mathrm{E}-88\) \\
\hline mir-278 & 0 & mir-277 & 0 \\
\hline mir-279 & \(1.70 \mathrm{E}-66\) & mir-278 & 0 \\
\hline mir-281-1 & \(1.10 \mathrm{E}-12\) & mir-279 & 0 \\
\hline mir-281-2 & \(1.10 \mathrm{E}-12\) & mir-282 & 0 \\
\hline mir-282 & \(1.10 \mathrm{E}-27\) & mir-285 & \(8.70 \mathrm{E}-83\) \\
\hline mir-285 & 0 & mir-2a-1 & 0 \\
\hline mir-2a-1 & 0 & mir-2a-2 & 0 \\
\hline mir-2a-2 & 0 & mir-2b-1 & 0 \\
\hline mir-2b-1 & 0 & mir-2b-2 & 0 \\
\hline mir-2b-2 & 0 & mir-2c & \(1.10 \mathrm{E}-156\) \\
\hline mir-2c & 0 & mir-304 & \(2.90 \mathrm{E}-67\) \\
\hline mir-305 & \(8.30 \mathrm{E}-114\) & mir-305 & \(1.30 \mathrm{E}-88\) \\
\hline mir-306 & \(2.80 \mathrm{E}-07\) & mir-306 & \(3.00 \mathrm{E}-12\) \\
\hline mir-307 & \(1.80 \mathrm{E}-295\) & mir-307 & \(1.30 \mathrm{E}-98\) \\
\hline mir-317 & 0 & mir-316 & \(8.80 \mathrm{E}-45\) \\
\hline mir-31a & \(2.50 \mathrm{E}-107\) & mir-317 & 0 \\
\hline mir-34 & 0 & mir-31a & \(1.00 \mathrm{E}-29\) \\
\hline mir-79 & \(1.90 \mathrm{E}-06\) & mir-33 & 0 \\
\hline & & & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|l|r|}
\hline mir-7 & 0 & mir-34 & 0 \\
\hline mir-8 & 0 & mir-7 & \(3.00 \mathrm{E}-56\) \\
\hline mir-9a & \(8.80 \mathrm{E}-100\) & mir-8 & 0 \\
\hline mir-9b & \(5.90 \mathrm{E}-11\) & mir-9a & \(8.70 \mathrm{E}-100\) \\
\hline \multirow{3}{*}{} & & mir-9b & \(9.00 \mathrm{E}-35\) \\
\cline { 3 - 4 } & mir-9c & \(4.30 \mathrm{E}-25\) \\
\hline
\end{tabular}

Table IV-S3. \(5^{\prime}\) end heterogeneity of miRNA and miRNA* sequences bearing a modified 3' terminus. miRNAs and miRNA* sequences that were enriched among reads from 3' terminally modified small RNAs and which were read at least 10 times in that sample were flagged as \(2^{\prime}-O\)-methylated. Mean heterogeneity was calculated as described in the legend to Figure 3. miRNA and miRNA* species used for the analysis in Fig. 7 are highlighted.

Table IV-S1.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ fly heads (mean heterogeneity) } \\
\hline small RNA & total population & \(3^{\prime}\) terminally modified RNAs \\
\hline mir-100 & 0.198 & 0.046 \\
\hline mir-33 & 0.000 & 0.083 \\
\hline mir-100* & 0.000 & 0.000 \\
\hline mir-278* & 0.000 & 0.000 \\
\hline mir-282* & 0.032 & 0.041 \\
\hline mir-284* & 0.043 & 0.000 \\
\hline mir-2a-2* & 0.041 & 0.025 \\
\hline mir-306* & 0.000 & 0.059 \\
\hline mir-308* & 0.000 & 0.000 \\
\hline mir-33* & 0.200 & 0.048 \\
\hline mir-92a* & 0.000 & 0.077 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{3}{|c|}{ S2 cells (mean heterogeneity) } \\
\hline small RNA & total population & \(3^{\prime}\) terminally modified RNAs \\
\hline mir-283 & 0.000 & 0.174 \\
\hline mir-33 & 0.000 & 0.003 \\
\hline mir-6 & 0.000 & 0.000 \\
\hline mir-9c & 0.027 & 0.000 \\
\hline bantam* & 0.049 & 0.006 \\
\hline mir-100* \(^{\text {mir-13b-2* }}\) & 0.000 & 0.000 \\
\hline mir-14* & 0.167 & 0.000 \\
\hline mir-184* & 0.250 & 0.412 \\
\hline mir-275* & 0.022 & 0.000 \\
\hline mir-282* & 0.000 & 0.000 \\
\hline mir-284* & 0.098 & 0.071 \\
\hline mir-2a-2* & 0.000 & 0.000 \\
\hline mir-308* & 0.125 & 0.088 \\
\hline mir-33* & 0.000 & 0.000 \\
\hline
\end{tabular}

\section*{CHAPTER V}

\section*{Conclusions and Discussion}
R.J. Britten's 1969 proposal that nucleic acid guides could selectively control gene expression by base-pairing with target genes \({ }^{288}\), seemed, until the discovery of small silencing RNAs, to be just another elegant strategy ignored by eukaryotes. Then and now, the idea that antisense nucleic acids are uniquely suited to specify regulatory targets is appealing because it is simple. Yet, like nearly all biological mechanisms, small RNAdirected pathways are at once elegantly simple-small RNA guides use sequence complementarity to identify their targets—and shockingly complex, with myriad proteins required to excise small RNA guides from much longer precursors and still more required to carry out small RNA-directed functions. Despite this complexity, the defining features of small silencing RNAs are their short length and their association with members of the Argonaute family of proteins.

Small RNAs predominantly exercise their regulation by base pairing with their target mRNAs, whose expression they repress transcriptionally or posttranscriptionally. It is not known if small RNAs can pair with DNA directly, an appealing model for those small RNAs that direct transcriptional silencing. Three types of small silencing RNAs are common between flies and mammals: microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). In the preceding chapters, I have revealed a new class of small RNAs in flies and also attempted to
understand the cross talk and the network of interactions that fine-tune the small RNA pathways, as it will provide vital insight into their regulatory potential.

\section*{The new small RNAs: endo-siRNAs}

In flies, exogenous sources of dsRNA were considered the sole trigger of a siRNA response and viral defense as its solitary function. Endogenous siRNAs were known to exist only in organisms expressing an RNA-dependent RNA polymerase (RdRP), such as Arabidopsis, Neurospora crassa, Schizosaccharomyces pombe and C. elegans \({ }^{254}\). RdRPs transcribe single stranded RNA from an RNA template, producing dsRNA. The genomes of flies and mammals encode no readily recognizable RdRP proteins. Nevertheless, evidence suggested involvement of the siRNA machinery in silencing selfish genetic elements in the fly soma \({ }^{235-240}\). In chapter II, we sequenced small RNAs (18-30 nt) from fly heads and S 2 cells, in an attempt to identify potential endo-siRNA candidates. We identified a 21 nt small RNA population which was \(2^{\prime}-O\)-methylated at their \(3^{\prime}\) ends, similar to siRNAs derived from exogenous sources. The 21-mers did not exhibit a bias toward beginning with uracil, a characteristic of miRNAs and piRNAs, and were present in both sense and antisense orientations, in contrast to piRNAs. Moreover, the normal accumulation of the 21-mers was dependent on Dcr-2 and Ago2, establishing them as bona fide somatic endo-siRNAs.

Endo-siRNAs have also been cloned from fly gonads \({ }^{27}\). It will be interesting to determine, if these gonadal endo-siRNAs were derived from the germline, or were
present in the somatic cells of the gonads. Alternatively, are endo-siRNAs confined to the soma, similar to piRNAs restrictment to the germline?

\section*{Making endo-siRNAs without RdRP}

Endo-siRNAs originate from transposons, heterochromatic sequences, intergenic regions and mRNAs; and disruption of the siRNA generating machinery results in enhanced expression of several transposons in the soma. We also observed that endo-siRNAs arise frequently from genomic regions likely to produce convergent transcripts \({ }^{26}\). This provided a strong evidence for the intermolecular production of dsRNA in vivo in metazoans, excluding the use of an RdRP.

Three other groups identified endo-siRNAs in Drosophila \({ }^{27-29,112,113}\). All these studies combined, recommend several genomic sources which can act as precursors for endo-siRNAs. These genomic loci-like bidirectionally transcribed loci, complementary overlapping transcripts, and structured loci-can inter- or intra-molecularly base-pair to form dsRNA precursors for endo-siRNA generation. However, the usage of these loci as precursors for endo-siRNAs and the precise dimensions of these precursors, still awaits validation.

\section*{Function and biogenesis of endo-siRNAs}

Since the discovery of endo-siRNAs, there is much speculation regarding their functions and constant attempts made to ascertain these functions (see Discussion in Chapter II and section on 'Target prediction for Ago2 bound small RNAs' below). However, another
interesting question concerns their biogenesis. Are endo-siRNAs constitutively present in the cell, or is their production triggered under certain biotic or abiotic conditions. For example, production of natsiRNAs in plants is triggered in response to stress. NatsiRNAs are generated from a pair of convergently transcribed RNAs: typically, one transcript is expressed constitutively, whereas the complementary RNA is transcribed only when the plant is subject to environmental stress. Futhermore, is endo-siRNA production affected in the event of a viral attack on a fly? Viral infection will overwhelm the siRNA machinery with generation of viral siRNAs, in order to launch a robust RNAi defense. Are the functions mediated by endo-siRNAs dispensable in such a situation?

\section*{Possible cross-talk}

Intriguingly, we also discovered 24-28nt small RNAs in mutant fly genotypes deficient in endo-siRNAs \({ }^{26} .24-28 n t\) small RNAs share many features with germline piRNAs and originate from similar transposon clusters as endo-siRNAs, alluding to the possibility of a locus to act as precursor for both endo-siRNA and piRNA-like small RNA biogenesis \({ }^{26}\). Endo-siRNAs are derived from dsRNA precursors and piRNAs from single-stranded precursors, and it's fascinating to imagine how the same transcript will be directed into different small RNA pathways. May be different isoforms of Polymerse II or an accessory component of the transcription machinery, might channelize the transcripts into either the siRNA or piRNA pathway. Moreover, why are 24-28 nt small RNAs observed in ago2 mutants? Perhaps, in the absence of endo-siRNAs, piRNAs are produced to resume somatic transposon surveillance. Such a model implies existence of interaction
between the piRNA and endo-siRNA-generating machineries, and is the focus of my ongoing study. Interstingly, the reverse has been shown; overexpression of Aubergine in somatic tissues interferes with proper functioning of RNAi \({ }^{289}\). Are these pathways mutually excusive and do they cross-regulate each other? Hopefully, further research in this field will bring answers to these questions.

\section*{The blurring of distinctions (the diminishing line)}

A small-scale biochemical approach led to the discovery of small RNA sorting phenomenon in flies. The biogenesis of a small RNA by Dicer and its Argonaute loading are uncoupled events \({ }^{202,203}\). miRNA duplexes produced by Dcr-1 are loaded into Ago2 by the Dcr-2/R2D2 heterodimer (RLC). Our study described in Chapter III, provides the first global in vivo test for small RNA sorting in flies. We performed extensive analyses to validate and expand our knowledge of the factors involved in sorting of small RNAs into distinct Argonaute complexes ensuing their biogenesis. We observed that a miRNA duplex presents distinct structures to the sorting machinery, viewing from either ends. Along with the central region, the edges of the miRNA duplex can determine it's sorting. Ago1 loaded guides were found to be less stably paired at their \(5^{\prime}\) ends and bore central mismatches or bulges, whereas Ago2 loaded guides had less stably paired 3' ends. In addition to structure, we observed a \(5^{\prime}\) terminal nucleotide predilection by the different Argonautes, a phenomenon only observed in plants. Ago1 hugely preferred small RNAs that begin with uracil, whereas Ago2 was biased for small RNAs with a 5' terminal cytosine. This selective advantage bestowed by a \(5^{\prime}\) terminal nucleotide is consistent with
previous studies that show the \(5^{\prime}\) end of a small RNA anchored in the PIWI domain of A.fulgidus Piwi protein \({ }^{274,275}\). Henceforth, the \(5^{\prime}\) nucleotide will have to be compatible with the conformation acquired by the Argonaute upon RNA binding. Moreover, the choice of a pyrimidine in each case might reflect the necessity for a less bulky base at the 5' phosphate binding pocket of the Argonaute, along with the thermodynamically suitable nucleotide at the end of the small RNA duplex.

The fate of a miRNA/miRNA* duplex, therefore depends on multiple factors; structure of its duplex, thermodynamic stability of the ends of the duplex and the \(5^{\prime}\) terminal nucleotide. It is intriguing to imagine how these factors cooperate or conflict with each other while making the fateful decision in the event of small RNA duplex sorting. Furthermore, it also implies, though complex, the sorting process must be extremely efficient as it resolves the competition between the two small RNA pathways and maintains them working at their optimum.

\section*{Revisiting the definition of miRNA and miRNA* strands}

The present definition of miRNA and miRNA* is based on the relative abundance of the two strands, as measured by the number of times it has been sequenced. The strand that is more abundant is referred as the miRNA strand and the other strand as miRNA**. It is also assumed that the miRNA strand is the one with functional relevance and the miRNA* strand will be destroyed following Argonaute loading, hence sequenced less. However, with the advent of high depth sequencing, miRNA* strands are more frequently cloned and sequenced. Many miRNA* species are in fact present much more
abundantly compared to several lowly expressed miRNA loci \({ }^{271}\). Also the ratio of a miRNA: miRNA* can vary dramatically across development, with stages having comparable detectable expression from both strands \({ }^{271}\).

We observed that many miRNA* strands are more abundant than their annotated miRNA counterpart \({ }^{272,290}\). Strikingly, we also observed miRNA duplexes that have the annotated miRNA relatively more expressed in one tissue and the miRNA* as the abundant species in a different tissue.

The abundance of a miRNA and miRNA* is also a measure of its association with Ago1, because the total small RNA profile in flies recapitulates the Ago1-bound small RNA library. This might reflect either higher cellular concentration of Agol compared to Ago2, or Ago1 is more frequently occupied by a small RNA and only a small fraction of Ago2 associates with a small RNA. However, an assessment of the abundance of a miRNA and miRNA* loaded into Ago2, will vary from the traditional annotation of a miRNA and miRNA* strand. An example is bantam, whereas Agol preferentially associates with the miRNA strand, Ago2 preferentially binds bantam*. Therefore, the definition of a miRNA and miRNA* strand may vary across development stages and tissues; and differ across the Argonautes. Moreover, with increasing evidence of evolutionary conservation and target regulation for miRNA* strands, it is more valid to annotate the pre-miRNA derived small RNAs as 3p- miRNA or 5p-miRNA, based on the which arm of the pre-miRNA it is derived form \({ }^{271-273}\).

\section*{The non-functional star strand?}

In chapter IV, we observed stringent 5' processing for miRNA* strands, which is further refined after Ago2 loading, similar to miRNA strands \({ }^{244}\). Accurate processing of a small RNA 5' end is vital, as it defines the spectrum of its target RNAs \({ }^{291}\). Also, conservation of miRNA* strands across the 12 Drosophilid species, correlated with their abundance in flies \({ }^{271}\). Mounting evidence for precise processing, evolutionary conservation, intracellular abundance, in addition to Argonaute loading of the miRNA* strands, challenges its definition as a carrier strand and alludes to its role as a regulatory molecule \({ }^{188,244,271-273}\). We showed that the miRNA* strands enriched in Ago2 are present at levels comparable to endo-siRNAs and white exo-siRNAs, which phenocopies a loss-of-function white mutation. In flies both Ago2 and Ago1 retain endonucleolytic activity, but Ago2 is a far better endonuclease than Ago1 and can catalyze multiple rounds of target cleavage, unlike Ago1 \({ }^{203}\). Therefore, we predict even a small amount of miRNA* strands in Ago2 can efficiently regulate their targets. Interestingly, recent evidence indicates that Ago2 can also repress translation of targets, bearing central bulges when paired with the small RNA \({ }^{278}\). Therefore, it is probable for Ago2 loaded miRNA* strands to mediate target regulation, by either translational repression, or cleavage, or both.

Another perplexing observation is the evolutionary conservation profile of all miRNA genes. The miRNA genes exhibit the highest conservation score in the area corresponding to the miRNA strand followed by the miRNA* strand \({ }^{188,271}\). The hairpin loop of the pre-miRNA is not conserved. MiRNAs are known to bind and regulate their targets utilizing the seed sequences present in the first half of the miRNA strand. So why
is the latter half of the miRNA strand conserved? A possible explanation could be the pairing of the latter half of a miRNA strand with the \(5^{\prime}\) half of the miRNA* strand which embodies the seed sequence of the miRNA* strand, especially if only the seed is essential for target binding and repression.

\section*{Target prediction for Ago2 bound small RNAs}

Target prediction algorithms utilize evolutionary conservation of the miRNA target sites, and pairing of the miRNA seed sequence to its target, usually supplemented by beneficial 3'pairing \({ }^{291}\). Genome wide analyses with these target recognition tools led to the identification of many miRNA targets. siRNAs, on the other hand, were considered to guide Ago2 to cleave targets with extensively complementary sequence, in addition to a base-paired seed region. But with emerging knowledge, about the ability of Ago2 to translationally repress targets, complicates target prediction. In order to conduct a genome wide search for potential targets for endo-siRNAs and miRNA/miRNA* strands loaded in Ago2, we will have to specify the constraints of base-pairing required between the guide small RNA and the target mRNA, to elicit target cleavage or translational repression by Ago2. The requisite extent of base-pairing between the small RNA and its target, and the varied requirement for base-pairing at each position across the small RNAtarget RNA duplex, for Ago2 to mediate either of the two methods of target regulation, are unspecified. It will be a challenge in the future to lay out the prerequisites to define targets regulated by Ago2, and how they are regulated.

\section*{Conclusions}

This study not only enforces the functionality of both the strands of a miRNA duplex but also highlights the complex interplay between the small RNA pathways. The miRNA and siRNA pathways are no more distinct end points but form a continuum. This research brings to consensus long-standing conflicts between small RNA biogenesis and evolutionary conservation. It assigns a role beyond viral defense to the siRNA machinery and established miRNA* as a functional entity, elucidating maximal utilization of a Dicer processing event. Interestingly, evolution seems to have selected for miRNA duplexes that present two distinct structures to the sorting machineries. From one end of the duplex, the miRNA strand is favored as guide in Ago1 with an unpaired central region, whereas Ago2 loading is preferred from the perspective of the miRNA* strand.

The highlight of this thesis, however, is unveiling the underlying complexity that interconnects small RNA pathways. Malfunction of small RNAs bear consequences like cancer, infertility, and neurodegeneration. Therefore, cross talk between small RNA pathways creates a dynamic flux leading to a vigilant small RNA-mediated supervision of a multitude of biological processes.

\section*{Future Prospects}

Despite our growing understanding of the mechanism and function of small RNAs, their evolutionary origins remain obscure. siRNAs are present in all three eukaryotic kingdoms—plants, animals, and fungi—and provide anti-viral defense in at least plants and animals. Thus, the siRNA machinery was present in the last common ancestor of
plants, animals and fungi. In contrast, miRNAs have only been found in land plants, the unicellular green alga, Chlamydomonas reinhardtii, and metazoan animals, but not in unicellular choanoflagellates or fungi \({ }^{1,2,292}\). Deep sequencing experiments have found no miRNAs shared by plants and animals, suggesting that miRNA genes, unlike the miRNA protein machinery, arose independently at least twice in evolution. Finally, piRNAs appear to be the youngest major small RNA family, having been found only in metazoan animals \({ }^{292}\). While Dicer proteins have been identified only in eukaryotes, Argonaute proteins can also be found in eubacteria and archea, raising the prospect that small nucleic-acids may have served as guides for proteins at the very dawn of cellular life, and though the machinery might be ancient, the small RNA guides diversified over time to acquire specialized roles.

The history of small silencing RNAs makes predicting the future particularly daunting, as new discoveries have come at a breakneck pace, with each new small RNA mechanism or function forcing a re-evaluation of cherished models and "facts." Several longstanding but unanswered questions, however, are worth highlighting. First, does RNAi-in the sense of an siRNA-guided defense against external nucleic acid threats such as viruses-exist in mammals? Second, how do miRNAs repress gene expression? Do several parallel mechanisms co-exist in vivo, or will the current, apparently contradictory, models for miRNA-directed translational repression and mRNA decay ultimately be unified in a larger mechanistic scheme? Third, can miRNA regulated genes ever be identified by computation alone, or will computational predictions ultimately give way to high throughput experimental methods for associating individual miRNA species
with their regulatory targets? Will network analysis uncover themes in miRNA-target relationships that reveal why miRNA-regulation is so widespread in animals? Fourth, how are piRNAs made? The feed-forward amplification "ping-pong" model is appealing, but likely underestimates the complexity of piRNA biogenesis mechanisms? We do not yet know how piRNA 3' ends are generated. Nor do we have a coherent model for how long, antisense transcripts from piRNA clusters are fragmented into piRNAs. Finally, will the increasing number of examples of small RNAs carrying epigenetic information across generations \({ }^{57,293}\) ultimately force us to reexamine our Mendelian view of inheritance?

\section*{APPENDIX I}

\section*{Targeted deletion of loquacious}

The work presented was a collaborative effort. The author generated loqs loss of function flies by Flippase mediated targeted recombination of FRT sites leading to deletion of loqs. These flies were used in a study led by Tingting Du, to examine the role of Loqs in the siRNA pathway. Tingting Du performed the experiment, demonstrating requirement for Loqs for maximal silencing triggered by a long inverted repeat. The author, Tingting Du and Phillip Zamore, wrote the following text.

\section*{Introduction}

In most eukaryotes, long double-stranded RNA (dsRNA) triggers the destruction of messenger RNAs with complementary sequences, a phenomenon termed RNA interference (RNAi) \({ }^{55,294-296}\). In Drosophila, 'foreign' long dsRNAs, such as those introduced experimentally or produced by viral infection, enter the RNAi pathway when they are processed into \(\sim 22\) nucleotide, double-stranded small interfering RNAs (siRNAs) by the RNase III endonuclease Dicer-2 (Dcr-2) \({ }^{21,22,24,59}\). (Flies encode two dicer proteins \({ }^{66,297}\) ). These siRNAs are subsequently loaded into an effector complex-RISC (RNA-induced silencing complex)—containing Argonaute2 (Ago2) by the RISC-loading complex (RLC) \({ }^{298}\). Dcr-2 and its dsRNA-binding protein partner, R2D2, are core components of the RLC \({ }^{76,270}\). They form a stable heterodimer that identifies the siRNA
guide and passenger strands: R2D2 binds to the more stably paired end of the siRNA duplex, thereby positioning Dcr-2 at the less stable end, designating this RNA strand as the future guide \({ }^{77}\). After binding the siRNA, the Dcr-2/R2D2 heterodimer, perhaps together with other RLC components, recruits Ago2 to the double-stranded siRNA \({ }^{299-301}\). The geometry of the siRNA within the Dcr-2/R2D2 heterodimer is preserved when it is passed to Ago2: the 5' end of the guide siRNA binds the Ago2 5' phosphate-binding pocket, and the passenger strand assumes the position of a target mRNA.

Ago2 is an RNA-guided, \(\mathrm{Mg}^{2+}\)-dependent endonuclease \({ }^{150,268,302-305}\). This nuclease activity acts not only in siRNA-guided mRNA cleavage, but also in the maturation of Ago2 to its active form, RISC. Because in immature RISC (pre-RISC) the passenger strand occupies the position of a target RNA, a critical step in RISC assembly is cleavage of the passenger strand by Ago2, a step that facilitates separation of the two siRNA strands \({ }^{78-82}\). Dissociation of the passenger strand leaves Ago2 loaded a single-stranded siRNA guide. Such mature RISC can then find its mRNA targets by nucleobase complementarity to the siRNA guide and destroy them by Ago2-catalyzed endonucleolytic cleavage.

Plants and animals also produce a second class of small regulatory RNAs, microRNAs (miRNAs) \({ }^{3-5,116,144,283,306-308}\). miRNAs are typically transcribed by RNA polymerase II as if they were mRNAs, but are then processed sequentially to generate a \(\sim 22\) nt small RNA from the initial \(>1,000\) nt transcript, the primary miRNA (pri-miRNA) \({ }^{120}\). In animals, the RNase III enzyme Drosha acts with a dsRNA-binding domain (dsRBD) protein partner, named Pasha in flies, to excise from the pri-miRNA a \(\sim 70\) nt stem-loop RNA, the pre-miRNA \({ }^{124-127,309}\). Cleavage of the pri-miRNA by Drosha defines either the \(5^{\prime}\) end or \(3^{\prime}\)
end of the mature miRNA, which can reside on either arm of the stem of the pre-miRNA. (A few miRNAs are transcribed directly into pre-miRNAs by RNA polymerase III, at least in human cells \({ }^{310}\) ).

Pre-miRNAs are converted to miRNAs by Dicer \({ }^{62-64}\). In flies it is Dicer-1 (Dcr-1), together with its dsRBD protein partner, Loquacious, (Loqs), that cleaves premiRNA \({ }^{66,134,135,137}\). Dcr-1 cleavage of a pre-miRNA liberates an siRNA-like duplex in which the miRNA is partially paired to a \(\sim 22 \mathrm{nt}\) small RNA derived from the other arm of the premiRNA stem. This small RNA is the miRNA \({ }^{* 308}\). The miRNA strand preferentially assembles into mature RISC, whereas the miRNA* strand is degraded.

It has been proposed that the RNAi and miRNA pathways are separate and parallel, with each using a unique set of proteins to produce small RNAs, to assemble functional RNA-guided enzyme complexes, and to regulate target mRNAs \({ }^{241}\). Such a simple picture likely underestimates the in vivo complexity of these two RNA silencing pathways. First, both dcr-1 and loqs mutants, which are defective in miRNA production, are also impaired in siRNA-directed RNAi \({ }^{66,134}\). Second, Ago2, the Argonaute protein that mediates RNAi in flies, binds at least one endogenous miRNA \({ }^{203}\). Finally, agol and ago2 interact genetically in embryonic patterning and morphogenesis, suggesting that they function in a common pathway \({ }^{311}\).

\section*{Results}

\section*{Generation of a loqs deficient allele by Flp-FRT mediated targeted deletion}

Tingting Du, in our lab, was interested in examining the molecular function of Dcr-1/Loqs in RNAi pathway. The only loqs allele available then was loqs \({ }^{f 00791}\), generated by a piggyBac insertion within the first exon and 221 nucleotides upstream of the translational start codon of the loqs gene \({ }^{135,312}\). This allele exhibited the strongest phenotype in ovaries; a 40 fold reduction in loqs mRNA levels, compared to 5 fold reduction in female somatic tissues \({ }^{134}\). Therefore, consistent with the mutation, the mutant flies were viable but female sterile \({ }^{134}\). As loqs mutants were impaired in siRNA mediated silencing, we wanted to determine if the modest effect on silencing was only due to the hypomorphic nature of loqs \({ }^{f 00791}\) allele.

Therefore to facilitate analyses of molecular function of Loqs, I created a new allele loqs \({ }^{D I}\), by FLP recombinase-induced mitotic recombination of two, tandem, FRT-bearing piggyBac transposons flanking loqs (Fig. 1). This new allele, loqs \({ }^{D 1}\), completely deletes loqs, as well as an adjacent gene; loqs \({ }^{D 1}\) is homozygous lethal.

Figure AI-1. Construction of a loqs deletion allele. (A) Strategy for making and identifying a 4.8 kbp deletion that removes the loqs gene. The deletion was constructed by FLP recombinase-mediated recombination between the FRT site in PBac\{WH\}loqs[f00791] and the FRT site in PBac\{WH\}CG9293[f03884]. (B) PCR analysis using the four color-coded primer pairs, indicated as arrows in (A), demonstrated that two independent deletion alleles, loqs \(\Delta 1\) and \(\operatorname{loq} s \Delta 2\), were recovered.

Figure AI-1.


\section*{Loqs is required in vivo for maximal silencing triggered by a long inverted repeat}

In flies and other eukaryotes, long inverted repeat (IR) RNAs trigger silencing of complementary mRNAs because they are almost entirely double-stranded. The Drosophila white gene, which encodes a protein required for the production and distribution of red eye pigment, can be silenced by a transgene (GMR-whiteIR, henceforth, white-IR) that expresses in developing eye tissue a 621 nt dsRNA hairpin corresponding to the third exon of white \({ }^{313}\). IR-induced silencing of white has been proposed to function through the RNAi pathway, because two key components of the pathway, Dcr-2 and R2D2, are required for the process in vivo \({ }^{66,134}\).

Because Drosophila Ago2 is the core of the RISC that mediates RNAi \({ }^{314}\), we asked whether Ago2 is required for IR triggered silencing in vivo. In otherwise wild-type flies, two copies of the white-IR completely silence white, yielding a colorless eye indistinguishable from that of a complete loss-of-function white mutant. In contrast, two copies of the white-IR failed to silence white expression in an \(a g o 2^{414}\) mutant (Fig. 1A); these flies had red-i.e., wild-type-eyes. Thus, all three key components of the somatic RNAi pathway, \(d c r-2, r 2 d 2\), and ago2, are required in vivo in flies for silencing triggered by the white-IR.
loqs mutants are partially defective in IR- induced white silencing \({ }^{134}\). This defect is reflected by the orange, rather than red, color of the eyes of loqs mutant homozygotes expressing two copies of the white-IR (Fig. 2A) and can be quantified by measuring the amount of red pigment extracted from fly heads (Fig. 2B). For flies carrying two copies of the white-IR, the loqs \({ }^{f 00791}\) mutation restored eye pigment to \(8 \pm 0.6 \%\) (average \(\pm\) standard deviation, \(n=5\) ) of the concentration in wild-type Oregon \(R\) heads. In contrast, strong loss of
function mutations in \(r 2 d 2\left(r 2 d 2^{1}: 73 \pm 15 \% ; \mathrm{n}=5\right), d c r-2\left(d c r-2^{L 81 / f s X}: 92 \pm 18 \% ; \mathrm{n}=4\right)\) and ago-2 (ago- \(\left.2^{414}: 89 \pm 6 \%, n=4\right)\), essentially eliminated silencing (Fig. 2B). Because loqs \({ }^{\text {f00791 }}\) is a partial loss-of-function allele in the soma, we analyzed the silencing phenotype of transheterozygous flies bearing one copy of loqs \({ }^{f 00791}\) and one copy of a loqs \({ }^{\text {DI }}\). The loss of white silencing was essentially the same in the loqs \({ }^{f 00791}\) homozygotes and in the loqs \(s^{f 00791} / l o q s^{D 1}\) trans-heterozygotes (Fig. 2A and B), demonstrating that loqs, rather than a second gene fortuitously mutated in the original loqs \({ }^{f 00791}\) stock, plays a role in robust RNAi in vivo.

Figure AI-2. Loqs facilitates RNAi in vivo. (A) The eye color of heterozygotes was compared to that of homozygotes for the mutant alleles \(d c r-2^{L 811 f s X}, r 2 d 2^{1}\), and \(\operatorname{ago} 2^{414}\) for age-matched males bearing two copies of the white-inverted repeat transgene ([IR]). For loqs, flies heterozygous for loqs \({ }^{f 00791}\) were compared to loqs \({ }^{f 00791} / l o q s^{D 1}\) transheterozygotes. (B) The eye pigment of heterozygotes (+/-) and homozygotes (-/-) for the indicated genotypes, each bearing two copies of white-IR transgene, was extracted and its absorbance measured at 480 nm . The graph shows the mean \(\pm\) standard deviation, relative to wild-type flies lacking the white-IR transgene, for four independent measurements. Statistical significance was estimated using a two-sample Student's \(t\)-test assuming equal variance.

Figure AI-2.


B


\section*{Discussion}

In Drosophila, the two best understood RNA silencing pathways are the siRNA-mediated RNAi pathway and the microRNA pathway. These two pathways were originally proposed to be parallel and separate. Increasingly, however, the two pathways appear to be interconnected, with some proteins shared between them. For example Dcr-1 and Loqs, which function together to process pre-miRNA into mature miRNA, are required in vivo for robust RNAi. Loqs is also required for accumulation of endo-siRNAs derived form structured loci \({ }^{27,28}\). Moreover, a recent report suggests that all classes of siRNAs require a sequential action of both Loqs and R2D2; Loqs partners with Dcr-2 in processing these endo-siRNAs, and R2D2 in collaboration with Dcr-2 loads the siRNAs into Ago2- effector complexes \({ }^{315}\).

In light of the various speculated roles, assigned to Loqs, the loqs deficiency allele provides a useful tool to better dissect the role of Loqs in the various pathways. Additionally, the loqs deletion allele, aided in the study lead by Tingting Du ( Du et al, unpublished manuscript). We showed that the Dcr-1/Loqs complex plays a direct role in the production of Ago2-RISC, the siRNA-programmed RNAi enzyme complex that directs cleavage of target RNAs in response to a dsRNA trigger. Our results suggest that the earliest detectable step in Ago2-RISC assembly is binding of the Dcr-1/Loqs complex to siRNA. Dcr-1/Loqs then transfers the still double-stranded siRNA to the RLC, which contains the Dcr-2/R2D2 heterodimer. Consistent with a role of Dcr-1/Loqs in siRNA loading, accumulation of dsRNA-derived siRNAs in vivo is impaired in loqs mutants. Together, our data suggest
considerable functional and genetic overlap between the miRNA and siRNA pathways, with the two sharing components previously thought to be restricted to just a single pathway.

\section*{Materials and methods}

Fly stocks
The following fly stocks were used: Oregon \(\mathrm{R}, \mathrm{P}[w-\mathrm{IR}] / \mathrm{P}[w-\mathrm{IR}]\) (on chromosome 2), \(\mathrm{P}[w-\mathrm{IR}] / \mathrm{P}[w-\mathrm{IR}]\) (on chromosome 3), FRT42D \(d c r-2^{L 811 / f X} / \mathrm{CyO} ; \mathrm{P}[w-\mathrm{IR}] / \mathrm{TM} 6 \mathrm{~B}\), \(r 2 d 2^{l} / \mathrm{CyO} ; \mathrm{P}[w-\mathrm{IR}] / \mathrm{TM} 6 \mathrm{~B}, \mathrm{P}[w-\mathrm{IR}] / \mathrm{CyO} ;\) ago \(^{414} / \mathrm{TM} 6 \mathrm{~B}\), loqs \(s^{f 00791} / \mathrm{CyO} ; \mathrm{P}[w-\mathrm{IR}] / \mathrm{TM} 6 \mathrm{~B}\), cg \(92933^{f 03884} / \mathrm{CyO}\), loqs \({ }^{\text {f00791 }} / \mathrm{CyO}\), loqs \({ }^{\text {excision }} / \mathrm{CyO}, \mathrm{P}[w-\mathrm{IR}] ;\) loqs \(^{f 00791} / \mathrm{CyO} ;\) FRT82B dcr\(1^{\text {Q1147X }} / \mathrm{TM} 6 \mathrm{~B}\).

\section*{Quantifying eye color}

Red pigment was measured as described \({ }^{201}\). For each genotype, heads were manually dissected from 8 males 3-4 days after eclosion. For each individual measurement, two heads were homogenized in 0.1 ml of 0.01 M HCl dissolved in ethanol. The homogenates were incubated at \(4^{\circ} \mathrm{C}\) overnight, warmed to \(50^{\circ} \mathrm{C}\) for 5 min , and then clarified by centrifugation. The optical density of the supernatant was measured at 480 nm and normalized to that recorded for heads from wild-type Oregon \(R\).

\section*{Preparation of lysate from heads}

Wild-type or mutant flies were flash frozen in liquid nitrogen. Heads were separated from bodies by vigorous shaking in nested, pre-chilled sieves (U.S.A. standard sieve,

Humboldt MFG Co., Chicago, IL, USA), allowing the heads to pass through the top sieve (No. 25) and collecting them on the bottom sieve (No. 40). Heads were transferred to 0.5 ml microcentrifuge tubes, pre-chilled in liquid-nitrogen, and then homogenized using a plastic "pellet pestle" (Kontes, Vineland, NJ, USA) in 1 ml ice-cold lysis buffer ( 100 mM potassium acetate, 30 mM HEPES-KOH at \(\mathrm{pH} 7.4,2 \mathrm{mM}\) magnesium acetate) containing 5 mM DTT and \(1 \mathrm{mg} / \mathrm{ml}\) complete "mini" EDTA-free protease inhibitor tablets (Roche) per gram of heads. Lysate was clarified by centrifugation at \(14,000 \times \mathrm{g}\) for 30 min at \(4^{\circ} \mathrm{C}\). The supernatant was aliquoted into pre-chilled microcentrifuge tubes, flash frozen in liquid nitrogen, and stored at \(-80^{\circ} \mathrm{C}\). For each experiment, siRNA-protein complexes were assembled using equal amounts of total protein for all genotypes.

\section*{APPENDIX II}

\section*{Target-directed destruction of small silencing RNAs}

The work presented was a collaborative effort. Stefan Ameres and Michael Horwich demonstrated that extensive complementarity between a target RNA and an Argonaute1bound miRNA triggers miRNA tailing and destruction. However, Argonaute2-bound small RNAs were immune to this phenomenon. In flies, Argonaute2-bound small RNAs—but not those bound to Argonaute1-bear a 2'-O-methyl group at their 3' ends, added by the methytransferase Hen1. Therefore, we speculated that this modification blocks target-directed degradation for Argonaute2-bound small RNAs. To validate our hypothesis, I performed high-depth sequencing from henl heterozygous and homozygous mutant heads, and found that in flies lacking Hen1, Argonaute2-associated siRNAs are tailed and degraded. Stefan Ameres performed the experiment, demonstrating methylation protected small RNAs from tailing and degradation. Jui-Hung, Jia Xu and Zhiping Weng performed Bioinformatic Analyses. The author, Stefan Ameres and Phillip Zamore, wrote the following text.

\section*{Introduction}

Small silencing RNAs regulate gene expression, defend against viral infection, and protect the genome from transposons in nearly all eukaryotes \({ }^{254}\). In Drosophila melanogaster, conceptually similar but mechanistically different pathways produce
siRNAs and miRNAs. Fly siRNAs guide Argonaute2 (Ago2) to cleave target RNAs with extensive complementarity to the siRNA guide, a process termed RNA interference (RNAi), whereas miRNAs typically act through Argonaute1 (Ago1) to decrease the translation and stability of partially complementary mRNAs \({ }^{158,241,278,314}\). The difference in target complementarity between animal siRNAs and miRNAs stands in contrast to plants, where both siRNAs and miRNAs bind target mRNAs through extensive base pairing across the entire small RNA guide \({ }^{157}\).

In flies, a key step in the production of a functional siRNA-Ago2 complex, but not a miRNA-Ago1 complex, is the addition of a \(2^{\prime}-O\)-methyl group to the \(3^{\prime}\) end of the small RNA by Hen 18 83,84,182 , an \(S\)-adenosylmethionine-dependent methyltransferase first discovered in plants \({ }^{85}\). Plant Hen 1 protects siRNAs and miRNAs alike from 3'-terminal uridylation and degradation \({ }^{85,87,143}\). In contrast, terminal \(2^{\prime}-O\)-methylation in flies is a hallmark of small RNAs bound to the RNAi protein Ago2 and is not found on small RNAs-typically miRNAs-bound to Ago1. Here, we report that extensive complementarity between a target RNA and an Argonaute1-bound miRNA triggers miRNA tailing and destruction in vivo and in cell lysates in vitro. The presence of a \(3^{\prime}\) terminal \(2^{\prime}-O\)-methyl group blocks such target-dependent small RNA tailing and destruction. We propose that \(3^{\prime}\) terminal \(2^{\prime}-O\)-methylation differentiates small RNA guides that extensively base pair to the RNAs they regulate from those small RNAs that bind their targets through only limited complementarity.

\section*{Results}

A complementary target RNA directs degradation of Ago1-, but not Ago2-bound miR277

Drosophila siRNAs and miRNAs partition between Ago1 and Ago2 according to their duplex structure \({ }^{202,290,316,317}\). Consequently, some miRNAs, including miR-277, partition into both Ago1 and \(\mathrm{Ago}^{203}\). Expression of egfp bearing two sites fully complementary to miR-277 caused a surprisingly small but significant reduction in the abundance of that miRNA \((p<0.05)\) (Fig. 1A and B). We used oxidation with \(\mathrm{NaIO}_{4}\) followed by \(\beta\) elimination to distinguish between Ago1- and Ago2-loaded miR-277 \({ }^{83}\). Ago2-loaded miRNAs bear \(2^{\prime}-O\)-methyl modified \(3^{\prime}\) termini, making them refractory to oxidation; Ago1-loaded miRNAs bear \(2^{\prime}, 3^{\prime}\) hydroxy \(3^{\prime}\) termini, and oxidation followed by \(\beta\) elimination removes their final nucleotide, making them one-nucleotide shorter. Relative to a control reporter, the miR-277-complementary reporter had no effect on Ago2associated miR-277 (Fig. 1A and B). We conclude that the fully complementary target RNAs decreased the Ago1- but not the Ago2-bound miR-277, consistent with earlier observations that Ago2 but not Ago1 silences an egfp reporter with target sites perfectly complementary to miR- \(277^{203}\).

Figure AII- 1. Methylation protects small RNAs from tailing and degradation. (A) Northern blot analysis of total RNA from clonal S2 cells stably expressing a control egfp mRNA ( \(e g f p\) ) or an egfp mRNA bearing two target sites perfectly complementary to miR-277 [(miR-277) \()_{2}\). (B) Mean \(\pm\) standard deviation for at least three biologically independent measurements of miR-277 abundance. "Modified" indicates the population of miR-277 resistant to oxidation and \(\beta\)-elimination.

Figure AII- 1.


B


\section*{The methyltransferase, Hen1, is required to stabilize Ago2-bound small RNAs}

We sequenced 18 to 29 nt small RNAs from heterozygous or homozygous mutant heni \({ }^{f 00810}\) heads (Tables S1 and S2). Consistent with the idea that Hen1 does not act on Ago1-associated small RNAs, the absence of Hen1 in the mutant flies altered neither the abundance nor the length of most miRNAs (Fig. 2A). The most abundant class of Ago2bound small RNAs are endogenous siRNAs (endo-siRNAs), and they are fully or extensively complementary to cellular or transposon-derived mRNAs \({ }^{26-28,112}\). The length and abundance of perfectly genome-matching endo-siRNA reads derived from transposon sequences was decreased in hen \(f^{f 00810}\) mutant heads, compared to the heads of heterozygous siblings (Fig. 2B, upper panel). In contrast, prefix-matching endo-siRNA reads increased in the henl mutant heads (Fig. 2B lower panel). The sequences of prefixmatching reads correspond to the reference fly genome for their first 15 or more nucleotides, then contain a short tail of \(3^{\prime}\) nucleotides not found in genomic sequence. The majority of prefix reads contained a single \(3^{\prime}\) uridine tail; the second most abundant nucleotide added was adenine. Longer tails comprising more than one non-genome matching addition were rare, but nearly always corresponded to homopolymeric stretches of uridines (Fig. 2B, lower panel). Such uridine tails are found on small RNAs in plants lacking Hen1 and are believed to tag siRNAs and miRNAs for destruction \({ }^{87}\).

Endogenous siRNAs derived from structured loci (esiRNAs) differ from the classical features of siRNAs in their length (22 instead of 21 nt ), their duplex structure (they contain bulges and mismatches instead of perfect pairing throughout the duplex), their biogenesis (they require Loquacious rather than R2D2), and their \(5^{\prime}\) nucleotide bias
(they begin with U instead of C ) \({ }^{27-29}\). In fact, the known determinants for assembling small RNAs into Drosophila Argonaute complexes would predict that some of esiRNAs should preferentially associate with Ago1 rather than Ago2 \(2^{202,290}\). Supporting this view, in UV cross-linking experiments in embryo lysate, the most abundant esiRNA, esi-2.1 \({ }^{27}\), loads predominantly into Ago1. Although in vivo, endo-siRNAs from structured loci associate to a larger extent with Ago1 than siRNAs derived from transposons or natural antisense transcripts, they accumulate mainly in Ago2 \({ }^{27-29}\).

In the absence of Hen1, esiRNAs generally become shorter (Fig. 2B). Moreover, analysis of published high throughput sequencing of small RNAs in S 2 cells \({ }^{27}\), which express both esi-2.1 and its highly complementary mRNA target, mus308 (Fig. 2C), suggests that Ago1-associated esi-2.1 is subject to ongoing tailing and degradation: Ago1-bound esi-2.1 is shorter (its modal length is 20 rather than 22 nt ), more heterogeneous in length, and contains a higher fraction of non-genome matching \(3^{\prime}\) nucleotide additions (typically a single uridine) than Ago2-bound esi2.1. esi-2.1 is similarly less abundant, tailed, and degraded in both hen \(1^{f 00810}\) and \(\operatorname{ago}^{414}\) whole mutant flies, compared to wild-type (Fig. 2C).

Figure AII-2. Small RNA tailing and degradation in vivo. (A) Length distribution of miRNAs from heterozygous (black bars) or homozygous (red bars) hen \(1^{f 00810}\) fly heads. For each individual annotated pre-miRNA, reads were normalized to sequencing depth; reads for each distinct pre-miRNA were weighted equally to eliminate the influence of differences in transcriptional rates. (B) Length distribution of sequence reads perfectly matching the fly reference (top panel) or reads matching only within a \(5^{\prime}\) prefix (bottom panel) from heterozygous (black bars) or homozygous (red bars) henl \({ }^{f 00810}\) heads. The three classes of endogenous siRNAs are analyzed separately: siRNAs derived from natural antisense transcripts (cis-NATs), from transposons, or from structured loci. The most frequent non-genome matching nucleotide additions are indicated in the gray boxes as a percent of all non-genome matching additions for specific prefix lengths. Reads are reported in parts per million. (C) The sequence of the esi-2.1 duplex and its cellular mRNA target, mus308. Northern blot analysis was used to detect esi-2.1 in total RNA from whole Oregon R (wild-type) or hen1 \(f^{f 00810}\) or ago2 \({ }^{414}\) mutant flies and the observed signal intensities ( \(I, \log _{10}\) scale) determined for each lane. Tailing and degradation products are marked with red arrowheads.

Figure AII-2.


Two other abundant esiRNAs, esi-1.1 and esi-1.2, derive from more siRNA-like duplexes (Fig. 3). Like esi-2.1, esi-1.1 begins with uridine and loads in vitro into both Ago1 and Ago2 (Fig. 3G). In contrast, esi-1.2 starts with cytidine and loads efficiently into Ago2 (Fig. 3L); a 5' cytidine has been proposed to favor Ago2 loading \({ }^{26,290}\). esi-1.1 and esi1.2 differ in the extent to which they were tailed and degraded in vivo in hen \(1^{f 00810}\) (Fig. 3H and M) and \(\operatorname{ago2}^{414}\) (Fig. 3I and N) mutant fly heads: degradation of esi-1.2, which favors loading into Ago2, was greater in these RNAi pathway mutants than for esi1.1 (Fig. 4). We speculate that loss of Hen1 and Ago2 produce fundamentally distinct consequences: In a henl mutant, Ago2-bound esiRNAs become tailed and degraded, because they no longer possess their protective, \(3^{\prime}\) terminal, \(2^{\prime}-O\)-methyl modification. Thus, for small RNAs such as esi-1.1 and esi-2.1, tailed and shortened species comprise both Ago1- and Ago2-loaded RNAs. In contrast, in an ago2 mutant, the normally Ago2bound molecules no longer exist, so the only remaining tailed and shortened species must derive from Ago1-bound molecules.
esi-2.1 is the only structured locus-derived endo-siRNA for which a highly complementary target, mus308, has been described. Using quantitative RT-PCR, we were unable to detect mus 308 expression in heads. However, fly heads express mRNAs with sufficient complementarity to esi-1.1, esi-1.2, and esi-2.1 (Fig. 3E, J and O)—based on our in vitro results-to direct tailing and degradation \({ }^{318}\).

Figure AII-3. Assembly, genetic requirements and potential destabilizing targets of three abundant structured loci endo-siRNAs. The duplex structures of esi-2.1, esi-1.1 and esi-1.2, three abundant, small RNAs derived from structured loci, predict they will partition differently between Ago1 and Ago2 (A, F and K). When the esi-2.1, esi-1.1 and esi-1.2 duplexes (guide strands were \(5^{\prime 32} \mathrm{P}\)-radiolabeled) were incubated in Drosophila embryo lysate and loading was monitored by UV cross-linking (B, G and L), esi-2.1 and esi-1.1 loaded predominantly Ago1, whereas esi-1.2 loaded Ago2. Analysis of the length distributions of genome-matching (top panel) or prefix only (bottom panel) sequence reads for esi-2.1, esi-1.1 and esi-1.2 from heads of heterozygous or homozygous hen \(1^{f 00810}\) flies (C, H and M) and of wild-type (Oregon R) or homozygous mutant ago2 \(2^{414}\) fly heads ( \(\mathrm{D}, \mathrm{I}\) and N ) revealed tailing and degradation in the mutants. The most frequent non-genome-matching, \(3^{\prime}\) nucleotide additions are reported in the gray boxes as a percent of all non-genome-matching additions for each prefix length. Target RNAs that would be predicted from our in vitro results to possess sufficient complementarity to the respective esiRNA (red) to direct small RNA tailing and degradation ( \(\mathrm{E}, \mathrm{J}\) and O ) are expressed in fly heads according to publicly available data \({ }^{318}\).

Figure AII-3.

B
UV
Time \(\varnothing 25101560 \mathrm{~min}\)


C



D



E


G


Time \(\varnothing 25101560\) min


H



I



J



K
esi-1.2 5 -CGGGAAACUAUGAA UCAAAUG-3
3 -CUACCUUUGGAUACC \(11111111 .{ }_{C}{ }^{\text {GGUUU-5}}\)
L uv - \(\qquad\)
Time \(\varnothing 25101560\) min

M


N


0

 Cyck 3 -clectovoldacidedocectuad-5

Figure AII-4. Fold-change of esi-2.1, esi-1.1 and esi-1.2 in hen1 \({ }^{f 00810}\) and ago2 \({ }^{414}\) mutant fly heads. Fold change of esi-2.1, esi-1.1 and esi-1.2 perfect genome matching reads of indicated length in henl \({ }^{f 00810}\) fly heads compared to heterozygous siblings (left panel) and ago2 \({ }^{414}\) fly heads compared to Oregon R (right panel). Bars representing the full length sequence are depicted in red.

Figure AII-4.


\section*{A model for small RNA degradation in Drosophila}

Our data suggest a model for the influence of target RNA complementarity on small RNA abundance in Drosophila (Fig. 5). miRNAs typically direct Ago1 to bind target RNAs and repress their translation and decrease their stability \({ }^{319}\). Such binding is nearly always mediated by complementarity between the miRNA seed sequence and the target, with few additional base pairs tethering the two RNAs together. The presence of transcripts with extensive complementarity to Ago1-bound small RNAs results in small RNA degradation, which our data suggest involves a terminal nucleotide transferase and a 3'-to-5' exonuclease. In contrast, Ago2-associated small RNAs are 2'-O-methyl modified by Hen1 as a final step of Ago2 loading. The methyl group blocks tailing and degradation; in henl mutants, the unmethylated but Ago2-bound small RNAs are subject to target-directed degradation. Our model predicts that differential accumulation of small RNA species between Ago1 and Ago2 reflects not only small RNA sorting, but also the differential stability of Ago1- and Ago2-bound small RNAs in the face of a highly complementary target RNA. Thus, a subgroup of esiRNAs likely load into both Agol and Ago2 but accumulate mainly in Ago2 because Ago1-bound esiRNAs are subject to target-directed small RNA degradation.

Figure AII-5. A model for the influence of target RNA complementarity on small RNA stability in Drosophila.

\section*{Figure AII-5.}


\section*{Discussion}

Our data establish that in flies the stability of small RNAs is determined by both the degree of complementarity between the small RNA and its target RNA and the identity of the Argonaute protein to which it is bound: highly complementary targets trigger tailing and degradation of Ago1-associated small RNAs. In contrast, such targets do not induce degradation of Ago2-associated small RNAs. The resistance of Ago2-associated small RNAs to target-directed degradation is thought to reflect the ability of Ago2, but not Ago1, to recruit Hen1 to add a methoxy group to the terminal 2' carbon of the small RNA guide. Hence, Hen1 and the methoxy group it deposits on the guide RNA lies at the heart of the specialization of the two somatic RNA silencing pathways in flies: RNA methylation by Hen1 enables Ago2 to bind and cleave highly complementary target RNAs; the exclusion of Hen1 from the Ago1-loading pathway restricts Ago1-bound small RNAs to regulate only partially complementary targets. The fact that Agolassociated small RNAs are sensitive to target-directed tailing and destruction has likely shaped the evolution of miRNA target sites in Drosophila and perhaps other animals: most predicted miRNA binding sites in animal 3' UTRs lack substantial pairing to the small RNA 3' \({ }^{\prime}{ }^{\prime}{ }^{158,291}\).

Even in hen \(1^{f 00810}\) flies, small RNAs bound to Agol are more prone to target RNA-dependent degradation than those bound to Ago2 (Fig. 3). Ago1 is an inefficient ribonuclease whose catalytic rate is limited by the dissociation of its reaction products \({ }^{203}\), whereas Ago2 is an efficient multiple-turnover enzyme \({ }^{165}\). The ability of Ago2 to rapidly cleave its RNA targets may limit its susceptibility to target-directed small RNA
degradation. In contrast, Ago1 likely resides on its target RNAs for much more time than Ago2, making Ago1-bound small RNAs good substrates for target-directed tailing and degradation.

Our data also link target RNA-directed small RNA degradation to \(3^{\prime}\) uridylation. Uridylation of mRNA and non-coding RNAs has been described in fission yeast and metazoans where it was implicated in general or specific RNA turnover \({ }^{320,321}\). The apparent discrepancy between target RNA-dependent nucleotidyl transfer on small RNAs in vitro, where almost exclusively adenines were added and in vivo, where the most common nucleotide added was uracil, followed by adenine, might be explained by the fact that 3' nucleotidyl transferases, e.g. terminal uridylyl transferases (TUTases), can use either ATP or UTP in tailing assays \({ }^{322}\). Alternatively distinct enzymes might add U and A to the \(3^{\prime}\) end of small RNAs. Also, adenylation of nuclear RNAs is a signal for degradation \({ }^{323}\); the presence of nuclear components in embryo lysate might explain the predominance of A tailing in the lysate.

Uridylation of small RNAs as well as Ago2-cleaved, 5' target RNA fragments has been linked to RNA turnover \({ }^{87,324-326}\). The molecular basis for the tailing and destruction of Argonaute-bound small RNAs is unknown. The ends of small RNAs are anchored to Argonaute proteins through binding of the \(5^{\prime}\) small RNA phosphate to a pocket composed mainly of residues from the Mid domain and binding of the \(3^{\prime}\) end of the small RNA to the PAZ domain \({ }^{274,275,304,327-332}\). Access to the \(3^{\prime}\) end of the small RNA likely requires dislodging it from the PAZ domain. Recent crystal structures of a eubacterial Argonaute protein confirms earlier suggestions that extensive pairing of the \(3^{\prime}\) half of an
siRNA with its target releases its \(3^{\prime}\) end from the PAZ domain \({ }^{298,333}\). Our data are consistent with the idea that extensive pairing to a target RNA exposes a small RNA to nucleotidyl transferases and \(3^{\prime}\)-to- \(5^{\prime}\) exonuclease enzymes.

\section*{Materials and Methods}

\section*{General Methods}

Total RNA from flies, S2 cells or HeLa cells was purified using the MirVana kit (Ambion) or Trizol (Invitrogen). Northern blot analysis \({ }^{134}, \beta\)-elimination \({ }^{83}\) have been described previously. Stable cultured S2 cell lines were generated as described \({ }^{134}\) and transfected using Cellfectin (Invitrogen) according to the manufacturer's instructions; and total RNA was isolated 48 h later. UV cross-linking experiments were performed essentially as described with the sample \(\sim 3 \mathrm{~cm}\) below the light bulbs \({ }^{290}\).

\section*{Small RNA library construction and deep sequencing}

Library construction and deep sequencing was performed as described \({ }^{26,244}\). Published libraries used in this study were 18-29 nt total RNA libraries from Oregon R and ago2 \({ }^{414}\) fly heads \({ }^{26,244,290}\) and libraries generated from small RNAs immunoprecipitated with Ago1 as well as Ago2 from S2 cell lysates \({ }^{27}\).

\section*{Supplemental Materials}

\section*{Supplemental Tables}

Table AII-S1. Sequencing statistics: Analysis of genome matching reads. Somatic tissue was prepared by mechanical separation of fly heads from bodies. "Small RNA reads (excluding ncRNAs)" correspond to genome-matching reads after excluding annotated non-coding RNAs (ncRNAs), such as rRNA, snRNA, snoRNA, or tRNA. "Transposon-matching reads" correspond to small RNAs mapped to Drosophila melanogaster transposons. "Cis NAT-matching reads" correspond to reads matching to mRNAs \({ }^{26,27,112}\). "Structured loci-matching reads" correspond to reads that map to two distinct loci in the Drosophila melanogaster genome (CG18824 and a locus overlapping with CG4068), the transcripts of which fold into long hairpin structures and produce the majority of small RNAs of this class \({ }^{27,28}\). Where reads were normalized to genome matching reads (excluding ncRNAs), they are reported in parts per million (ppm). N.A., not applicable.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Head genotype & Total reads & Reads perfectly matching genome & Reads matching annotated ncRNAs & Small RNA reads (excluding ncRNAs) & Pre-miRNAmatching reads (ppm) & Reads excluding ncRNA and pre-miRNAmatching (ppm) & Transposon -matching reads (ppm) & cis-NATmatching reads (ppm) & Structured locimatching reads (ppm) \\
\hline hent \(1^{\text {foos10 }} / \mathrm{CyO}\) & 6,413,029 & 2,310,112 & 408,102 & 1,902,013 & 888,203 & 111,497 & 22,139 & 1,486 & 6,877 \\
\hline hent \(t^{\text {foos10 }}\) & 7,221,663 & 2,932,242 & 389,272 & 2,242,670 & 871,819 & 128,181 & 24,964 & 2,639 & 8,049 \\
\hline
\end{tabular}

Table AII-S2. Sequencing statistics: Analysis of 5' prefix-matching reads. Analysis was as described in Table S1 except that only reads not matching the reference genome across their entire length were considered in order to detect small RNAs bearing 3' terminal, non-genome matching additions. The analysis employed previously published datasets prepared from Oregon R fly heads \({ }^{26,244,290}\), ago2 \({ }^{414}\) mutant fly heads \({ }^{26}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Head genotype / Sample & Total reads & Prefixes matching genome & Prefixes excluding internal mm & Prefixes matching annotated ncRNAs & Prefixes (excluding ncRNAs) & \begin{tabular}{l}
Pre-miRNA- \\
matching prefixes
\end{tabular} & Transposonmatching prefixes & \begin{tabular}{l}
cis-NAT- \\
matching \\
prefixes
\end{tabular} & Structured locimatching prefixes \\
\hline hen1 \({ }^{\text {f00810 }} / \mathrm{CyO}\) & 6,413,029 & 1,124,892 & 937,420 & 96,733 & 840,717 & 108,049 & 22,860 & 1,407 & 477 \\
\hline hen1 \({ }^{\text {f00810 }}\) & 7,221,663 & 1,396,479 & 1,198,890 & 106,802 & 1,092,082 & 143,823 & 32,087 & 2,121 & 4,374 \\
\hline Oregon R & 7,307,082 & 1,393,383 & 1,209,692 & 127,284 & 1,082,411 & 84,342 & 27,820 & 2,090 & 344 \\
\hline ago2 \({ }^{414}\) & 1,942,282 & 379,709 & 309,220 & 16,639 & 292,911 & 42,122 & 9,762 & 228 & 82 \\
\hline
\end{tabular}

\section*{Bibliography}
1. Zhao, T. et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21, 1190-1203 (2007).
2. Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C. \& Baulcombe, D. C. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126-1129 (2007).
3. Lee, R. C. \& Ambros, V. An Extensive Class of Small RNAs in Caenorhabditis elegans. Science 294, 862-864 (2001).
4. Lau, N. C., Lim, L. P., Weinstein, E. G. \& Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858862 (2001).
5. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. \& Tuschl, T. Identification of Novel Genes Coding for Small Expressed RNAs. Science 294, 853-858 (2001).
6. Jones-Rhoades, M. W. \& Bartel, D. P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787799 (2004).
7. Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science 303, 1336 (2004).
8. Tran, R. K. et al. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol 15, 154-159 (2005).
9. Zilberman, D., Cao, X. \& Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716-719 (2003).
10. Hamilton, A., Voinnet, O., Chappell, L. \& Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J 21, 4671-4679 (2002).
11. Llave, C., Kasschau, K. D., Rector, M. A. \& Carrington, J. C. Endogenous and Silencing-Associated Small RNAs in Plants. Plant Cell 14, 1605-1619 (2002).
12. Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. \& Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double- stranded RNA. EMBO J 19, 5194-201. (2000).
13. Xie, Z. et al. Genetic and Functional Diversification of Small RNA Pathways in Plants. PLoS Biol 2, E104 (2004).
14. Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16, 69-79 (2004).
15. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L. \& Poethig, R. S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18, 2368-2379 (2004).
16. Yoshikawa, M., Peragine, A., Park, M. Y. \& Poethig, R. S. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19, 2164-2175 (2005).
17. Williams, L., Carles, C. C., Osmont, K. S. \& Fletcher, J. C. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the

Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci U S A 102, 97039708 (2005).
18. Allen, E., Xie, Z., Gustafson, A. M. \& Carrington, J. C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207-221 (2005).
19. Katiyar-Agarwal, S. et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103, 18002-18007 (2006).
20. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R. \& Zhu, J. K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123, 1279-1291 (2005).
21. Hamilton, A. J. \& Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952 (1999).
22. Zamore, P. D., Tuschl, T., Sharp, P. A. \& Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33 (2000).
23. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498 (2001).
24. Elbashir, S. M., Lendeckel, W. \& Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188-200 (2001).
25. Yang, N. \& Kazazian, H. H. J. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13, 763-771 (2006).
26. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077-1081 (2008).
27. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. Nature 453, 798-802 (2008).
28. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803-806 (2008).
29. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453, 793-797 (2008).
30. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123-132 (1999).
31. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. \& Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133-141 (1999).
32. Sijen, T. \& Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310-314 (2003).
33. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature (2008).
34. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539-543 (2008).
35. Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11, 1017-1027 (2001).
36. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69-82 (2007).
37. Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207 (2006).
38. Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363-367 (2006).
39. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. \& Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744-747 (2007).
40. Girard, A., Sachidanandam, R., Hannon, G. J. \& Carmell, M. A. A germlinespecific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199-202 (2006).
41. Grivna, S. T., Beyret, E., Wang, Z. \& Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20, 1709-1714 (2006).
42. Grivna, S. T., Pyhtila, B. \& Lin, H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci U S A 103, 13415-13420 (2006).
43. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103 (2007).
44. Ruby, J. G. et al. Large-scale sequencing reveals 21 U -RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193-1207 (2006).
45. Batista, P. J. et al. PRG-1 and 21U-RNAs Interact to Form the piRNA Complex Required for Fertility in C. elegans. Mol Cell (2008).
46. Das, P. P. et al. Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline. Mol Cell 31, 79-90 (2008).
47. Wang, G. \& Reinke, V. A C. elegans Piwi, PRG-1, Regulates 21U-RNAs during Spermatogenesis. Curr Biol 18, 861-867 (2008).
48. Napoli, C., Lemieux, C. \& Jorgensen, R. A. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279-289 (1990).
49. van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N. M. \& Stuitji, A. R. Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2, 291-299. (1990).
50. Baulcombe, D. C. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol Biol 32, 79-88 (1996).
51. Lindbo, J. A. \& Dougherty, W. G. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189, 725-733 (1992).
52. Lindbo, J. A. \& Dougherty, W. G. Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant Microbe Interact 5, 144153 (1992).
53. Voinnet, O. \& Baulcombe, D. C. Systemic signalling in gene silencing. Nature 389, 553 (1997).
54. Guo, S. \& Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611-20. (1995).
55. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 (1998).
56. Voinnet, O. Non-cell autonomous RNA silencing. FEBS Lett 579, 5858-5871 (2005).
57. Grishok, A., Tabara, H. \& Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494-2497 (2000).
58. Hammond, S. M., Bernstein, E., Beach, D. \& Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293296 (2000).
59. Bernstein, E., Caudy, A. A., Hammond, S. M. \& Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366 (2001).
60. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. \& Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20, 6877-6888 (2001).
61. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7, 1161-1166 (2005).
62. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838 (2001).
63. Grishok, A. et al. Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell 106, 23-34 (2001).
64. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15, 2654-2659 (2001).
65. Knight, S. W. \& Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269-2271 (2001).
66. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-81 (2004).
67. Obbard, D. J., Jiggins, F. M., Halligan, D. L. \& Little, T. J. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol 16, 580-585 (2006).
68. Tabara, H., Yigit, E., Siomi, H. \& Mello, C. C. The dsRNA Binding Protein RDE-4 Interacts with RDE-1, DCR-1, and a DexH-Box Helicase to Direct RNAi in C. elegans. Cell 109, 861-871 (2002).
69. Shaham, S. Worming into the cell: viral reproduction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 103, 3955-3956 (2006).
70. Williams, B. R. PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112-6120 (1999).
71. Kunzi, M. S. \& Pitha, P. M. Interferon research: a brief history. Methods Mol Med 116, 25-35 (2005).
72. Vilcek, J. Fifty years of interferon research: aiming at a moving target. Immunity 25, 343-348 (2006).
73. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208 (2003).
74. Khvorova, A., Reynolds, A. \& Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-216 (2003).
75. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 12, 627-637 (2003).
76. Liu, Q. et al. R2D2, a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway. Science 301, 1921-1925 (2003).
77. Tomari, Y., Matranga, C., Haley, B., Martinez, N. \& Zamore, P. D. A protein sensor for siRNA asymmetry. Science 306, 1377-1380 (2004).
78. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. \& Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607-620 (2005).
79. Kim, K., Lee, Y. S. \& Carthew, R. W. Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13, 22-29 (2006).
80. Leuschner, P. J., Ameres, S. L., Kueng, S. \& Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7, 314-320 (2006).
81. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. \& Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19, 2837-2848 (2005).
82. Rand, T. A., Petersen, S., Du, F. \& Wang, X. Argonaute 2 Cleaves the Anti-Guide Strand of siRNA during RISC Activation. Cell 123, 621-629 (2005).
83. Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17, 1265-1272 (2007).
84. Pelisson, A., Sarot, E., Payen-Groschene, G. \& Bucheton, A. A novel repeatassociated small interfering RNA-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary. \(J\) Virol 81, 1951-1960 (2007).
85. Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932-935 (2005).
86. Ramachandran, V. \& Chen, X. Small RNA metabolism in Arabidopsis. Trends Plant Sci 13, 368-374 (2008).
87. Li, J., Yang, Z., Yu, B., Liu, J. \& Chen, X. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol 15, 1501-1507 (2005).
88. Tolia, N. H. \& Joshua-Tor, L. Slicer and the Argonautes. Nat Chem Biol 3, 36-43 (2007).
89. Tang, G., Reinhart, B. J., Bartel, D. P. \& Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev 17, 49-63 (2003).
90. Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A. \& Voinnet, O. Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat Genet 39, 848-856 (2007).
91. Bouche, N., Lauressergues, D., Gasciolli, V. \& Vaucheret, H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25, 3347-3356 (2006).
92. Deleris, A. et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313, 68-71 (2006).
93. Gasciolli, V., Mallory, A. C., Bartel, D. P. \& Vaucheret, H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15, 1494-1500 (2005).
94. Chan, S. W. Inputs and outputs for chromatin-targeted RNAi. Trends Plant Sci 13, 383-389 (2008).
95. Qu, F. et al. RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana. J Virol 79, 15209-15217 (2005).
96. Voinnet, O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13, 317-328 (2008).
97. Gazzani, S., Lawrenson, T., Woodward, C., Headon, D. \& Sablowski, R. A link between mRNA turnover and RNA interference in Arabidopsis. Science 306, 1046-1048 (2004).
98. Gy, I. et al. Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19, 3451-3461 (2007).
99. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T. \& Jewell, D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13, 807-818 (2003).
100. Zheng, X., Zhu, J., Kapoor, A. \& Zhu, J. K. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26, 1691-1701 (2007).
101. Boutet, S. et al. Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol 13, 843-848 (2003).
102. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev 21, 2539-2544 (2007).
103. Herr, A. J., Jensen, M. B., Dalmay, T. \& Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118-120 (2005).
104. Kanoh, J., Sadaie, M., Urano, T. \& Ishikawa, F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15, 1808-1819 (2005).
105. Lee, S. K. et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 106, 818-826 (2005).
106. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613-622 (2005).
107. Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19, 2030-2040 (2005).
108. Montgomery, T. A. et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128-141 (2008).
109. Axtell, M. J., Jan, C., Rajagopalan, R. \& Bartel, D. P. A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565-577 (2006).
110. Zhang, D. \& Trudeau, V. L. The XS domain of a plant specific SGS3 protein adopts a unique RNA recognition motif (RRM) fold. Cell Cycle 7, 2268-2270 (2008).
111. Katiyar-Agarwal, S., Gao, S., Vivian-Smith, A. \& Jin, H. A novel class of bacteriainduced small RNAs in Arabidopsis. Genes Dev 21, 3123-3134 (2007).
112. Okamura, K., Balla, S., Martin, R., Liu, N. \& Lai, E. C. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol 15, 581-590 (2008).
113. Chung, W. J., Okamura, K., Martin, R. \& Lai, E. C. Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18, 795-802 (2008).
114. Sasidharan, R. \& Gerstein, M. Genomics: protein fossils live on as RNA. Nature 453, 729-731 (2008).
115. Neilson, J. R. \& Sharp, P. A. Small RNA regulators of gene expression. Cell 134, 899-902 (2008).
116. Lee, R. C., Feinbaum, R. L. \& Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-54. (1993).
117. Wightman, B., Burglin, T. R., Gatto, J., Arasu, P. \& Ruvkun, G. Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 5, 1813-124. (1991).
118. Wightman, B., Ha, I. \& Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin- 4 mediates temporal pattern formation in C. elegans. Cell 75, 855-62. (1993).
119. Griffiths-Jones, S., Saini, H. K., van Dongen, S. \& Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res 36, D154-8 (2008).
120. Lee, Y., Jeon, K., Lee, J. T., Kim, S. \& Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670 (2002).
121. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060 (2004).
122. Cai, X., Hagedorn, C. H. \& Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-1966 (2004).
123. Birney, E. et al. Identification and analysis of functional elements in \(1 \%\) of the human genome by the ENCODE pilot project. Nature 447, 799-816 (2007).
124. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419 (2003).
125. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. \& Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235 (2004).
126. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240 (2004).
127. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016-3027 (2004).
128. Landthaler, M., Yalcin, A. \& Tuschl, T. The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis. Curr Biol 14, 2162-2167 (2004).
129. Yi, R., Qin, Y., Macara, I. G. \& Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016 (2003).
130. Bohnsack, M. T., Czaplinski, K. \& Gorlich, D. Exportin 5 is a Ran GTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185191 (2004).
131. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. \& Kutay, U. Nuclear export of microRNA precursors. Science 303, 95-98 (2004).
132. Zeng, Y. \& Cullen, B. R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32, 4776-4785 (2004).
133. Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744 (2005).
134. Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3, e236 (2005).
135. Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev 19, 1674-1679 (2005).
136. Lee, Y. et al. The role of PACT in the RNA silencing pathway. EMBO J 25, 522532 (2006).
137. Saito, K., Ishizuka, A., Siomi, H. \& Siomi, M. C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 3, e235 (2005).
138. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. \& Lai, E. C. The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila. Cell 130, 89-100 (2007).
139. Ruby, J. G., Jan, C. H. \& Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83-86 (2007).
140. Glazov, E. A. et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res 18, 957-964 (2008).
141. Berezikov, E., Chung, W. J., Willis, J., Cuppen, E. \& Lai, E. C. Mammalian mirtron genes. Mol Cell 28, 328-336 (2007).
142. Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P. \& Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22, 2773-2785 (2008).
143. Park, W., Li, J., Song, R., Messing, J. \& Chen, X. CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana. Current Biology 12, 1484-1495 (2002).
144. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. \& Bartel, D. P. MicroRNAs in plants. Genes Dev 16, 1616-1626 (2002).
145. Papp, I. et al. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132, 1382-1390 (2003).
146. Vazquez, F., Gasciolli, V., Crete, P. \& Vaucheret, H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14, 346-351 (2004).
147. Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H. \& Poethig, R. S. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102, 3691-3696 (2005).
148. Yang, Z., Ebright, Y. W., Yu, B. \& Chen, X. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the \(2^{\prime} \mathrm{OH}\) of the \(3^{\prime}\) terminal nucleotide. Nucleic Acids Res 34, 667-675 (2006).
149. Hutvagner, G. \& Zamore, P. D. A microRNA in a Multiple-Turnover RNAi Enzyme Complex. Science 297, 2056-2060 (2002).
150. Meister, G. et al. Human Argonaute 2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185-197 (2004).
151. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441 (2004).
152. Mansfield, J. H. et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36, 1079-1083 (2004).
153. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734-736 (2004).
154. Yekta, S., Shih, I. H. \& Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596 (2004).
155. Davis, E. et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg 11 locus. Curr Biol 15, 743-749 (2005).
156. Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M. \& Ganem, D. SV40encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682-686 (2005).
157. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513-520 (2002).
158. Brennecke, J., Stark, A., Russell, R. B. \& Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol 3, e85 (2005).
159. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. \& Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787-798 (2003).
160. Lewis, B. P., Burge, C. B. \& Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20 (2005).
161. Stark, A., Brennecke, J., Bushati, N., Russell, R. B. \& Cohen, S. M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123, 1133-1146 (2005).
162. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and \(3^{\prime}\) UTRs by comparison of several mammals. Nature 434, 338-345 (2005).
163. Lai, E. C. Predicting and validating microRNA targets. Genome Biol 5, 115 (2004).
164. Ameres, S. L., Martinez, J. \& Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101-112 (2007).
165. Haley, B. \& Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11, 599-606 (2004).
166. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64-71 (2008).
167. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63 (2008).
168. Kong, Y. W. et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci U S A 105, 8866-8871 (2008).
169. Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185-1190 (2008).
170. Stefani, G. \& Slack, F. J. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9, 219-230 (2008).
171. Yekta, S., Tabin, C. J. \& Bartel, D. P. MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet 9, 789-796 (2008).
172. Bartel, D. P. \& Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5, 396-400 (2004).
173. Bernstein, E. et al. Dicer is essential for mouse development. Nat Genet 35, 215-217 (2003).
174. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310-311 (2005).
175. Giraldez, A. J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833-838 (2005).
176. Hatfield, S. D. et al. Stem cell division is regulated by the microRNA pathway. Nature 435, 974-978 (2005).
177. Mudhasani, R. et al. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 181, 1055-1063 (2008).
178. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414 (2007).
179. Wienholds, E. \& Plasterk, R. H. MicroRNA function in animal development. FEBS Lett 579, 5911-5922 (2005).
180. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320-324 (2006).
181. Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20, 2214-2222 (2006).
182. Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. Genes Dev 21, 1603-1608 (2007).
183. Kirino, Y. \& Mourelatos, Z. Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini. Nat Struct Mol Biol 14, 347-348 (2007).
184. Ohara, T. et al. The 3 ' termini of mouse Piwi-interacting RNAs are 2'-O-methylated. Nat Struct Mol Biol 14, 349-350 (2007).
185. Kato, Y. et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16, 2272-2280 (2007).
186. Lees-Murdock, D. J., De Felici, M. \& Walsh, C. P. Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 82, 230-237 (2003).
187. Aravin, A. A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31, 785-799 (2008).
188. Ruby, J. G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17, 1850-1864 (2007).
189. Nishida, K. M. et al. Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA 13, 1911-1922 (2007).
190. Prud'homme, N., Gans, M., Masson, M., Terzian, C. \& Bucheton, A. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139, 697-711 (1995).
191. Pelisson, A. et al. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J 13, 4401-4411 (1994).
192. Desset, S., Buchon, N., Meignin, C., Coiffet, M. \& Vaury, C. In Drosophila melanogaster the COM Locus Directs the Somatic Silencing of Two Retrotransposons through both Piwi-Dependent and -Independent Pathways. PLoS ONE 3, e1526 (2008).
193. Desset, S., Meignin, C., Dastugue, B. \& Vaury, C. COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. Genetics 164, 501-509 (2003).
194. Mevel-Ninio, M. T., Pelisson, A., Kinder, J., Campos, A. R. \& Bucheton, A. The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis. Genetics (2007).
195. Gunawardane, L. S. et al. A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila. Science 315, 1587-1590 (2007).
196. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes \& Development 12, 3715-3727 (1998).
197. Cox, D. N., Chao, A. \& Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127, 503-514 (2000).
198. Aravin, A. A. et al. Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Mol Cell Biol 24, 6742-6750 (2004).
199. Schupbach, T. \& Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119-1136 (1991).
200. Klattenhoff, C. et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev Cell 12, 45-55 (2007).
201. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669-672 (2004).
202. Tomari, Y., Du, T. \& Zamore, P. D. Sorting of Drosophila small silencing RNAs. Cell 130, 299-308 (2007).
203. Forstemann, K., Horwich, M. D., Wee, L.-M., Tomari, Y. \& Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct Argonaute protein complexes after their production by Dicer-1. Cell 130, 287-297 (2007).
204. Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell 133, 116-127 (2008).
205. Vaucheret, H. Plant ARGONAUTES. Trends Plant Sci 13, 350-358 (2008).
206. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. \& Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis (2008).
207. Forman, J. J., Legesse-Miller, A. \& Coller, H. A. A search for conserved sequences in coding regions reveals that the let- 7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105, 14879-14884 (2008).
208. Xie, Z., Kasschau, K. D. \& Carrington, J. C. Negative Feedback Regulation of DicerLike1 in Arabidopsis by microRNA-Guided mRNA Degradation. Curr Biol 13, 784-789 (2003).
209. Vaucheret, H., Vazquez, F., Crete, P. \& Bartel, D. P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18, 1187-1197 (2004).
210. Vaucheret, H., Mallory, A. C. \& Bartel, D. P. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22, 129-136 (2006).
211. Sijen, T. et al. On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing. Cell 107, 465-476 (2001).
212. Voinnet, O., Vain, P., Angell, S. \& Baulcombe, D. C. Systemic spread of sequencespecific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177-187 (1998).
213. Vaistij, F. E., Jones, L. \& Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857-867 (2002).
214. Fusaro, A. F. et al. RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7, 1168-1175 (2006).
215. Moissiard, G., Parizotto, E. A., Himber, C. \& Voinnet, O. Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. RNA 13, 1268-1278 (2007).
216. Sijen, T., Steiner, F. A., Thijssen, K. L. \& Plasterk, R. H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244-247 (2007).
217. Pak, J. \& Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241-244 (2007).
218. Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Current Biology 10, 169178 (2000).
219. Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K. \& Tabara, H. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J (2007).
220. Makeyev, E. V. \& Bamford, D. H. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol Cell 10, 1417-1427 (2002).
221. Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T. \& Plasterk, R. H. RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science 295, 694-697 (2002).
222. Caplen, N. J. et al. Rescue of polyglutamine-mediated cytotoxicity by doublestranded RNA-mediated RNA interference. Hum Mol Genet 11, 175-184 (2002).
223. Xia, H., Mao, Q., Paulson, H. L. \& Davidson, B. L. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20, 1006-1010 (2002).
224. Ding, H. et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2, 209-217 (2003).
225. Miller, V. M. et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci U S A 100, 7195-7200 (2003).
226. Martinez, L. A. et al. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci U S A 99, 14849-14854 (2002).
227. Schwarz, D. S., Hutvagner, G., Haley, B. \& Zamore, P. D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 10, 537-548 (2002).
228. Nykanen, A., Haley, B. \& Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309-321 (2001).
229. Martinez, J., Patkaniowska, A., H, H. U., Lührmann, R. \& Tuschl, T. Single stranded antisense siRNA guide target RNA cleavage in RNAi. Cell 110, 563-574 (2002).
230. Roignant, J. Y. et al. Absence of transitive and systemic pathways allows cellspecific and isoform-specific RNAi in Drosophila. RNA 9, 299-308 (2003).
231. Rusk, N. \& Kiermer, V. Primer: Sequencing--the next generation. Nat Methods 5, 15 (2008).
232. Johnston, R. J. \& Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845-849 (2003).
233. Yin, H. \& Lin, H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450, 304-308 (2007).
234. Sunkar, R., Girke, T. \& Zhu, J. K. Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res 33, 4443-4454 (2005).
235. Ishizuka, A., Siomi, M. C. \& Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16, 2497-2508 (2002).
236. Csink, A. K., Linsk, R. \& Birchler, J. A. The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. Genetics 138, 153-163 (1994).
237. Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol Cell Biol 26, 2965-2975 (2006).
238. Haynes, K. A., Caudy, A. A., Collins, L. \& Elgin, S. C. Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter. Curr Biol 16, 2222-2227 (2006).
239. Pal-Bhadra, M., Bhadra, U. \& Birchler, J. A. RNAi Related Mechanisms Affect Both Transcriptional and Posttranscriptional Transgene Silencing in Drosophila. Mol Cell 9, 315-327 (2002).
240. Tchurikov, N. A. \& Kretova, O. V. Suffix-specific RNAi leads to silencing of F element in Drosophila melanogaster. PLoS ONE 2, e476 (2007).
241. Okamura, K., Ishizuka, A., Siomi, H. \& Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18, 1655-1666 (2004).
242. http://flyrnai.org/cgi-bin/RNAi_FAQ_lines.pl.
243. Lee, Y. S. \& Carthew, R. W. Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30, 322-329 (2003).
244. Seitz, H., Ghildiyal, M. \& Zamore, P. D. Argonaute Loading Improves the 5' Precision of Both MicroRNAs and Their miRNA(*) Strands in Flies. Curr Biol 18, 147-151 (2008).
245. Takaesu, N. T. et al. dSno facilitates baboon signaling in the Drosophila brain by switching the affinity of Medea away from Mad and toward dSmad2. Genetics 174, 1299-1313 (2006).
246. Potter, S. S., Brorein, W. J. J., Dunsmuir, P. \& Rubin, G. M. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415-427 (1979).
247. Maisonhaute, C., Ogereau, D., Hua-Van, A. \& Capy, P. Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome. Gene 393, 116-126 (2007).
248. Zhou, R. et al. Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol Cell 32, 592-599 (2008).
249. Lucchetta, E. M., Carthew, R. W. \& Ismagilov, R. F. The endo-siRNA pathway is essential for robust development of the Drosophila embryo. PLoS One 4, e7576 (2009).
250. Deshpande, G., Calhoun, G. \& Schedl, P. Drosophila argonaute- 2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear
division, nuclear migration, and germ-cell formation. Genes Dev 19, 1680-1685 (2005).
251. Li, X., Cassidy, J. J., Reinke, C. A., Fischboeck, S. \& Carthew, R. W. A microRNA imparts robustness against environmental fluctuation during development. Cell 137, 273-282 (2009).
252. Livak, K. J. \& Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 40248. (2001).
253. Peirson, S. N., Butler, J. N. \& Foster, R. G. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31, e73 (2003).
254. Ghildiyal, M. \& Zamore, P. D. Small silencing RNAs: an expanding universe. Nat Rev Genet 10, 94-108 (2009).
255. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901 (2006).
256. Zeng, Y., Yi, R. \& Cullen, B. R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24, 38-48 (2005).
257. Melo, S. A. et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41, 365-370 (2009).
258. Maniataki, E. \& Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19, 2979-2990 (2005).
259. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27, 91-105 (2007).
260. Grun, D., Wang, Y. L., Langenberger, D., Gunsalus, K. C. \& Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1, e13 (2005).
261. Krek, A. et al. Combinatorial microRNA target predictions. Nat Genet 37, 495-500 (2005).
262. Rajewsky, N. \& Socci, N. D. Computational identification of microRNA targets. Dev Biol 267, 529-535 (2004).
263. Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921-926 (2008).
264. Parker, J. S., Parizotto, E. A., Wang, M., Roe, S. M. \& Barford, D. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol Cell 33, 204-214 (2009).
265. Jackson, A. L. et al. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179-1187 (2006).
266. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773 (2005).
267. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21, 635-637 (2003).
268. Rand, T. A., Ginalski, K., Grishin, N. V. \& Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 101, 14385-14389 (2004).
269. Kawamata, T., Seitz, H. \& Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 16, 953-960 (2009).
270. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831-841 (2004).
271. Okamura, K. et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat Struct Mol Biol 15, 354-363 (2008).
272. Ro, S., Park, C., Young, D., Sanders, K. M. \& Yan, W. Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35, 5944-5953 (2007).
273. Lin, E. A., Kong, L., Bai, X. H., Luan, Y. \& Liu, C. J. miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem 284, 11326-11335 (2009).
274. Ma, J. B. et al. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666-670 (2005).
275. Parker, J. S., Roe, S. M. \& Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434, 663-666 (2005).
276. Stark, A. et al. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev 22, 8-13 (2008).
277. Tyler, D. M. et al. Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes Dev 22, 26-36 (2008).
278. Iwasaki, S., Kawamata, T. \& Tomari, Y. Drosophila argonaute 1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34, 58-67 (2009).
279. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. \& Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13, 3191-3197 (1999).
280. Langmead, B., Trapnell, C., Pop, M. \& Salzberg, S. L. Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25 (2009).
281. Lai, E. C. Micro RNAs are complementary to 3 ' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30, 363-364 (2002).
282. Farh, K. K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817-1821 (2005).
283. Du, T. \& Zamore, P. D. microPrimer: the biogenesis and function of microRNA. Development 132, 4645-4652 (2005).
284. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-385 (2005).
285. Wu, H. et al. miRNA Profiling of Naive, Effector and Memory CD8 T Cells. PLoS ONE 2, e1020 (2007).
286. Azuma-Mukai, A. et al. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci U S A 105, 7964-7969 (2008).
287. Ho, C. K., Wang, L. K., Lima, C. D. \& Shuman, S. Structure and mechanism of RNA ligase. Structure 12, 327-339 (2004).
288. Britten, R. J. \& Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349-357 (1969).
289. Specchia, V. et al. aubergine Gene Overexpression in Somatic Tissues of auberginesting Mutants Interferes With the RNAi Pathway of a yellow Hairpin dsRNA in Drosophila melanogaster. Genetics 178, 1271-1282 (2008).
290. Ghildiyal, M., Xu, J., Seitz, H., Weng, Z. \& Zamore, P. D. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16, 43-56 (2010).
291. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
292. Grimson, A. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 1193-1197 (2008).
293. Brennecke, J. et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322, 1387-1392 (2008).
294. Kennerdell, J. R. \& Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 10171026 (1998).
295. Ngo, H., Tschudi, C., Gull, K. \& Ullu, E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95, 14687-14692 (1998).
296. Waterhouse, P. M., Graham, M. W. \& Wang, M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95, 13959-13964 (1998).
297. Hoa, N. T., Keene, K. M., Olson, K. E. \& Zheng, L. Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem Mol Biol 33, 949957 (2003).
298. Tomari, Y. \& Zamore, P. D. Perspective: machines for RNAi. Genes Dev 19, 517-529 (2005).
299. Pham, J. W., Pellino, J. L., Lee, Y. S., Carthew, R. W. \& Sontheimer, E. J. A Dicer-2dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83-94 (2004).
300. Pham, J. W. \& Sontheimer, E. J. Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway. J Biol Chem 280, 39278-39283 (2005).
301. Preall, J. B., He, Z., Gorra, J. M. \& Sontheimer, E. J. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila. Curr Biol 16, 530-535 (2006).
302. Schwarz, D. S., Tomari, Y. \& Zamore, P. D. The RNA-Induced Silencing Complex Is a \(\mathrm{Mg}(2+)\)-Dependent Endonuclease. Curr Biol 14, 787-791 (2004).
303. Martinez, J. \& Tuschl, T. RISC is a 5' phosphomonoester-producing RNA endonuclease. Genes Dev 18, 975-980 (2004).
304. Song, J. J., Smith, S. K., Hannon, G. J. \& Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437 (2004).
305. Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12, 340-349 (2005).
306. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let7 heterochronic regulatory RNA. Nature 408, 86-89 (2000).
307. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-96. (2000).
308. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004).
309. Yeom, K. H., Lee, Y., Han, J., Suh, M. R. \& Kim, V. N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 34, 4622-4629 (2006).
310. Borchert, G. M., Lanier, W. \& Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13, 1097-1101 (2006).
311. Meyer, W. J. et al. Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos. PLoS Genet 2, e134 (2006).
312. Thibault, S. T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36, 283-287 (2004).
313. Kennerdell, J. R. \& Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18, 896-898 (2000).
314. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. \& Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146-1150 (2001).
315. Marques, J. T. et al. Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat Struct Mol Biol (2009).
316. Czech, B. et al. Hierarchical rules for Argonaute loading in Drosophila. Mol Cell 36, 445-456 (2009).
317. Okamura, K., Liu, N. \& Lai, E. C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 36, 431-444 (2009).
318. Chintapalli, V. R., Wang, J. \& Dow, J. A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39, 715-720 (2007).
319. Brodersen, P. \& Voinnet, O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10, 141-148 (2009).
320. Wickens, M. \& Kwak, J. E. Molecular biology. A tail tale for U. Science 319, 13441345 (2008).
321. Rissland, O. S. \& Norbury, C. J. Decapping is preceded by 3 ' uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 16, 616-623 (2009).
322. Rissland, O. S., Mikulasova, A. \& Norbury, C. J. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol Cell Biol 27, 3612-3624 (2007).
323. Houseley, J. \& Tollervey, D. The many pathways of RNA degradation. Cell 136, 763-776 (2009).
324. Shen, B. \& Goodman, H. M. Uridine addition after microRNA-directed cleavage. Science 306, 997 (2004).
325. Mullen, T. E. \& Marzluff, W. F. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes Dev 22, 50-65 (2008).
326. van Wolfswinkel, J. C. et al. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell 139, 135-148 (2009).
327. Song, J. J. et al. The crystal structure of the Argonaute 2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10, 1026-1032 (2003).
328. Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature 426, 468-474 (2003).
329. Lingel, A., Simon, B., Izaurralde, E. \& Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465-469 (2003).
330. Ma, J. B., Ye, K. \& Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318-322 (2004).
331. Lingel, A., Simon, B., Izaurralde, E. \& Sattler, M. Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11, 576-577 (2004).
332. Parker, J. S., Roe, S. M. \& Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 23, 4727-4737 (2004).
333. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754-761 (2009).```

