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Abstract 

 

Endocytic trafficking dynamically regulates neuronal plasma membrane protein 

presentation and activity, and plays a central role in excitability and plasticity.  Over 

the course of my dissertation research I investigated endocytic mechanisms 

regulating two neuronal membrane proteins:  the anesthetic-activated potassium 

leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine 

transporter (DAT).  My results indicate that KCNK3 internalizes in response to 

Protein Kinase C (PKC) activation, using a novel pathway that requires the 

phosphoserine binding protein, 14-3-3β, and demonstrates for the first time 

regulated KCNK3 channel trafficking in neurons.  Additionally, PKC-mediated 

KCNK3 trafficking requires a non-canonical endocytic motif, which is shared 

exclusively between KCNK3 and sodium-dependent neurotransmitter 

transporters, such as DAT.  DAT trafficking studies in intact ex vivo adult striatal 

slices indicate that DAT endocytic trafficking has both dynamin-dependent and –

independent components.  Moreover, DAT segregates into two populations at the 

neuronal plasma membrane: trafficking-competent and -incompetent.  Taken 

together, these results demonstrate that novel, non-classical endocytic 

mechanisms dynamically control the plasma membrane presentation of these two 

important neuronal proteins. 

  



vii 
 

Table of Contents 

SIGNATURE PAGE…………………………………………………………………….iii 

DEDICATION……………………………………………………………………………iv 

ACKNOWLEDGMENTS………………………………………………………………..v 

ABSTRACT……………………………………………………………………………...vi 

LIST OF FIGURES…………………………………………………………..………....ix 

LIST OF ABBREVIATIONS…………………………………………………………...xiii 

PREFACE………….…………………………………………………………………...xv 

CHAPTER I: INTRODUCTION……………….………………………………………..1 

 Neurotransmission and neuronal endocytic trafficking…...………………….1 

 Mechanisms governing endocytic trafficking………………………….………4 

 K+ Leak Channels and neuronal excitability…………………………………..8 

The dopamine transporter……………..……………………………………...13 

Dopaminergic neurotransmission…………………………………………….17 

Dopamine transporter trafficking.…………………………………………….18 

CHAPTER II: MATERIALS AND METHODS………………………………………..26 

CHAPTER III: TRAFFICKING OF THE PH-SENSITIVE POTASSIUM LEAK 

CHANNEL KCNK3………………...…………………………………………………..40 

 Introduction……………………………………………………………………..40 

 Results......................................................................................................42 

 Discussion.................................................................................................72 



viii 
 

CHAPTER IV: DOPAMINE TRANSPORTER ENDOCYTIC TRAFFICKING: 

DIFFERENTIAL DEPENDENCE ON DYNAMIN AND THE ACTIN 

CYTOSKELETON................................................................................................79 

 Introduction...............................................................................................79 

Results......................................................................................................81 

 Discussion...............................................................................................105 

CHAPTER V: DISCUSSION………………………………………………………...112 

TRAFFICKING OF THE PH-SENSITIVE POTASSIUM LEAK CHANNEL 

KCNK3....................................................................................................112 

DOPAMINE TRANSPORTER ENDOCYTIC TRAFFICKING: 

DIFFERENTIAL DEPENDENCE ON DYNAMIN AND THE ACTIN 

CYTOSKELETON...................................................................................119 

BIBLIOGRAPHY……………………………………………………………………...125 

  



ix 
 

List of Figures 

FIGURE 3.1: KCNK3 Currents are Specifically Downregulated by PKC Activation 

in HEK 293T Cells…………………………………………………………..………....43 

 

FIGURE 3.2: KCNK3 Currents are Specifically Downregulated by PKC Activation 

in Cerebellar Granule Neurons……………………………………………………….45 

 

FIGURE 3.3: KCNK3 Requires a Specific Solubilization Protocol………………..47 

 

FIGURE 3.4: PKC Activation Reduces KCNK3 Surface Levels in HEK 293T Cells 

…………………………………………………………………………………………...50 

 

FIGURE 3.5: Production and Purification of an Antibody that Specifically 

Recognizes KCNK3……………………………………………………………………52 

 

FIGURE 3.6: PKC Activation Reduces KCNK3 Surface Levels in Cerebellar 

Granule Neurons……………………………………………………………………….54 

 

FIGURE 3.7: KCNK3 Internalization Specifically Requires PKC Activation and 

Traffics to Transferrin-positive Endosomes………………………………………….56 

 

FIGURE 3.8: KCNK3 is Not Degraded Following PKC-Mediated Internalization..58 



x 
 

 

FIGURE 3.9: KCNK3 Currents Are Specifically Downregulated by mGluR1/5 

Agonists in Cerebellar Granule Neurons…………………………………………….60 

 

FIGURE 3.10: KCNK3 Internalizes in Response to mGluR1/5 Agonists via a PKC-

specific Mechanism……………………………………………………………………62 

 

FIGURE 3.11: The KCNK3 Carboxy Terminus Contains an Endocytic Signal….64 

 

FIGURE 3.12: Residues 335-337 in the KCNK3 Carboxy Terminus are Required 

for PKC-mediated Functional and Surface Losses………………………………….66 

 

FIGURE 3.13: The Phosphoserine Binding Protein 14-3-3β is a Saturable Factor 

Required for PKC-mediated KCNK3 Internalization………………………………..68 

 

FIGURE 3.14:  The Phosphoserine Binding Protein 14-3-3β is Required for PKC-

mediated KCNK3 Functional and Surface Losses………………………………….70 

 

FIGURE 4.1: Dynamin Inhibition Reduces DAT Activity but Does Not Block PKC-

Mediated DAT Downregulation in PC12 Cells……………………………………….82 

 



xi 
 

FIGURE 4.2: PKC-mediated DAT Internalization is Dynamin Independent in DAT-

PC12 Cells……………………………………………………………………………...84 

 

FIGURE 4.3: Dynole Treatment Blocks Transferrin Receptor Internalization……85 

 

FIGURE 4.4: Dynamin Inhibition Reduces DAT Surface Levels in DAT SK-N-MC 

Cells.…………………………………………………………………………………….87 

 

FIGURE 4.5: Dynamin Inhibition Reduces DAT Surface Levels and Blocks PKC-

Stimulated DAT Internalization in Acute Mouse Striatal Slice…………………….90 

 

FIGURE 4.6: Monensin Treatment Blocks DAT Recycling………………………...93 

 

FIGURE 4.7: Monensin Treatment Blocks Transferrin Receptor Recycling……..95 

 

FIGURE 4.8: Recycling Blockade with Monensin Prevents PKC-Mediated DAT 

Internalization in Acute Mouse Striatal Slices……………………………………….96 

 

FIGURE 4.9: Recycling Blockade by 18°C Incubation Prevents PKC-mediated 

DAT Internalization in DAT-SK-N-MC Cells…………………………………………98 

 



xii 
 

FIGURE 4.10: PMA Decreases DAT Surface Expression at 18°C in DAT-PC12 

cells..…………………………………………………………………………………….99 

 

FIGURE 4.11: Dynamin is Required for PKC-mediated DAT Internalization but Not 

Constitutive Endocytosis…………………………………………………………….101 

 

FIGURE 4.12: DAT Plasma Membrane Recycling Requires Dynamin via an Actin-

Dependent Mechanism………………………………………………………………103 

 

FIGURE 4.13: DAT is Segregated Between Trafficking-Competent and –

Incompetent Pools at the Surface…………………………………………………..106 

  



xiii 
 

List of Abbreviations 

14-3-3β  Phosphoserine binding protein 

ACSF    Artificial cerebrospinal fluid 

AMPA   2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid 

AMPH   Amphetamine  

BCA   Bicinchonoic acid assay 

BIM   Bis-(indole)maleimide 

CCD   Charge-coupled device 

CGN   Cerebellar granule neurons 

CV   Column volume 

CytoD   Cytochalasin D 

DA   Dopamine 

DAPI   4',6-diamidino-2-phenylindole 

DAT   Dopamine transporter 

DHPG   (S)-3,5-dihydroxyphenylglycine  

DMEM  Dulbecco’s Modification of Eagle’s Medium 

EGFR   Epidermal growth factor receptor 

ENaC   Epithelial sodium channel 

GABA   γ-Aminobutyric acid 

GFP   Green flourescent protein  

GLUT4  Glucose transporter type 4 

KCNK3  Potassium channel subfamily K member 3 

KCNK9   Potassium channel subfamily K member 9 

mGluR   Metabotropic glutamate receptor 

NMDA   N-methyl-D-aspartate 

NHS   N-hydroxy-succinimide 



xiv 
 

PKA   Protein Kinase A 

PKC   Protein Kinase C  

PMA   Phorbol 12-myristate 13-acetate 

RIPA   Radio-Immunoprecipitation Assay 

TBS-T   Tris-buffered saline, pH 7.4 and 0.1% Tween-20 

TCEP   Tris (2-carboxyethyl)phosphine 

TEA   Tetraethylammonium 

TfR   Transferrin receptor  

TH   Tyrosine hydroxylase 

TMB   3,3’,5,5’-tetramethylbenzidine  

Tris   2-Amino-2-hydroxymethyl-propane-1,3-diol 

TTX   Tetrodotoxin   



xv 
 

Preface 

Parts of this dissertation have appeared in the following: 

Gabriel, L., Lvov, A., Orthodoxou, D., Rittenhouse, A. R., Kobertz, W. R., & 
Melikian, H. E. (2012). The Acid-sensitive, Anesthetic-activated Potassium Leak 
Channel, KCNK3, Is Regulated by 14-3-3β-dependent, Protein Kinase C (PKC)-
mediated Endocytic Trafficking. Journal of Biological Chemistry, 287(39), 32354-
32366. 
 
Gabriel, L., Stevens, Z., & Melikian, H. (2009). Measuring plasma membrane 
protein endocytic rates by reversible biotinylation. Journal of visualized 
experiments: JoVE, (34) 
 



1 
 

 
CHAPTER I 

INTRODUCTION 

 

Neurotransmission and neuronal endocytic trafficking 

The brain is the center of the nervous system and the most complex biological 

structure known.  This complexity enables the simple ability to process visual 

stimuli to the more complicated and subtle social cue interpretation required in 

modern human society.  The human brain consists of more than 100 billion 

neurons, which process and transmit information in the form of electrical action 

potentials that are converted to chemical signals, in the form of small molecule 

neurotransmitters at the terminal bouton (Albright, Jessell, Kandel, & Posner, 

2000).  Dysfunctional neuronal communication is the underlying cause of many 

psychiatric and neurological diseases, such as schizophrenia (Lisman, 2012), 

Parkinson’s disease (Michel, Toulorge, Guerreiro, & Hirsch, 2013), and autism 

(Roussignol et al., 2005). 

 

Intrinsic neuronal activity is regulated by the ion flow across the plasma membrane, 

which establishes an electrochemical gradient that provides the thermodynamic 

energy source for numerous cellular processes, such as action potential 

propagation and small molecule transport.  Under resting conditions, the 

membrane potential is hyperpolarized to -70mV.  When the membrane is 

depolarized to a threshold value, -40mV, voltage-gated sodium channels activate 
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and allow sodium ions to flow inward, activating an action potential.  The action 

potential propagates from the cell soma down the axon to the axon terminal. 

Following their activation, sodium channels rapidly inactivate and voltage-gated 

potassium channels open and repolarize the membrane back to the negatively 

polarized membrane resting potential.  Once the action potential arrives at and 

depolarizes the axon terminal, it drives voltage-gated calcium channel activation, 

which initiates synaptic vesicle fusion and, consequently, neurotransmitter release.  

The synaptic vesicle contents (neurotransmitters) then act at pre- and post-

synaptic receptors to activate or inhibit ion channels, or activate receptors that 

initiate signal cascades on the pre- or post-synaptic neuron.  The neurotransmitter 

signal is then terminated either by presynaptic reuptake that is facilitated by 

neurotransmitter transporters, or by enzymatic degradation.  

 

This multi-step process enables neurons to regulate their excitability and action 

potential frequency.  The importance of ion channels in normal neuronal activity is 

best illustrated by instances where channels dysfunction.  For example, a mutation 

in the sodium channel SCN1A causes increased action potential frequency leading 

to epileptic seizure (Escayg et al., 2000; Lossin, Wang, Rhodes, Vanoye, & 

George, 2002).  Action potential termination is equally important as a mutation in 

the voltage-gated potassium channel Kv1.1 causes a longer polarization 

rectification step and leads to episodic ataxia (Browne et al., 1994; D'Adamo, Liu, 

Adelman, Maylie, & Pessia, 1998).  In addition to the action potential’s importance, 
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dysfunctional neurosecretion can also have a profound effect on homeostasis.  For 

example, mutations in the vesicle biogenesis protein dysbindin cause decreased 

neurotransmitter levels in synaptic vesicles, leading to decreased neurotransmitter 

release and is correlated with schizophrenia susceptibility (Murotani et al., 2007; 

Straub et al., 2002).  Furthermore, mutations in dopamine β-hydroxylase (DBH) 

prevents norepinephrine (NE) synthesis and, accordingly, noradrenergic 

neurotransmission and results in profound orthostatic hypotension (Robertson et 

al., 1991).  Consequently, mechanisms that control both neuronal excitability and 

chemical transmission have important impact on behavior. 

 

Regulated membrane trafficking (endo– and exocytosis) specifically alters protein 

surface expression in response to cellular cues and plays a pivotal role in neuronal 

function.  For example, the ionotropic glutamate receptor GluR2 in CA1 

hippocampal post-synaptic termini, upon phosphorylation by src family kinases, 

internalizes into endosomal compartments consequently muting neuronal 

response to excitatory glutamate signaling ultimately leading to long-term 

depression (Scholz et al., 2010).  Conversely, the ionotropic glutamate receptor 

GluR1 in CA1 hippocampal post-synaptic termini, upon phosphorylation by protein 

kinase A (PKA), re-inserts into the plasma membrane, leading to long-term 

potentiation (Ehlers, 2000). Additionally, the GABAA receptor inserts into the 

plasma membrane from intracellular compartments following insulin signaling and 

thereby enhances inhibitory GABA neurotransmission (Wan et al., 1997).   



4 
 

Moreover, mutations in the GABAA receptor intracellular loop result in decreased 

endocytosis and leads to deficits in spatial memory because of elevated inhibitory 

neurotransmission in CA3 hippocampal neurons (Kittler et al., 2008).  This acute 

redistribution phenomenon is not restricted to ligand-gated channels as the 

voltage–gated Kv1.2 channel internalizes following M1 muscarinic receptor 

activation and subsequent phosphorylation in the channel’s C-terminus, which 

leads to dissociation from the actin-binding protein, cortactin, and increased 

neuronal excitability (Hattan, Nesti, Cachero, & Morielli, 2002).  Consequently, 

understanding the mechanisms that regulate neuronal membrane trafficking is 

likely to significantly enhance our understanding of the mechanisms that impact 

neuronal excitability and neurotransmission.  This thesis will examine how 

endocytosis regulates two neuronal proteins that significantly influence excitability 

and neurotransmission: the acid-sensitive potassium leak channel KCNK3 and the 

amphetamine- and cocaine-sensitive dopamine transporter (DAT). 

 

Mechanisms governing endocytic trafficking 

Cells rely upon multiple trafficking mechanisms to regulate surface protein 

expression.  These mechanisms are defined by the constituent proteins necessary 

to mediate trafficking and can be divided into clathrin-dependent and –independent 

mechanisms.  Clathrin-mediated endocytosis (CME) is the major means by which 

the majority of plasma membrane proteins internalize. Membrane cargo proteins, 

such as the low-density lipoprotein receptor (LDLR; (Mello, Brown, Goldstein, & 



5 
 

Anderson, 1980)) and the transferrin receptor (TfR; (Draper, Goda, Brodsky, & 

Pfeffer, 1990)).  These cargo proteins are sequestered to clathrin-coated pits 

(CCPs) via interactions between intrinsic endocytic signals encoded on the cargo 

and the clathrin adaptor protein, AP-2 (Keyel et al., 2006).  After cargo is targeted 

to CCPs, the membrane invaginates and pinches off from the plasma membrane, 

giving rise to clathrin-coated vesicles.  This process requires the GTPase dynamin 

for the ultimate scission step, by which the endocytic vesicle is ‘pinched’ off the 

plasma membrane citation.  The clathrin coat subsequently dissociates from the 

vesicle, and the vesicle progresses to endosomal compartments. 

 

Two endocytic signals for clathrin-mediated endocytosis have been extensively 

characterized: the dileucine and tyrosine–containing motifs (Bonifacino & Traub, 

2003).  The dileucine motif, in the degenerate form [DE]XXXL[LI] uses the clathrin 

adaptor protein AP–2 to sort into vesicles for endoyctosis.  [DE]XXXL[LI] and is 

encoded by a variety of divergent proteins, such as the vesicular monoamine 

transporter VMAT2 (Tan, Waites, Liu, Krantz, & Edwards, 1998), the glucose 

transporter GLUT4 (Verhey, Yeh, & Birnbaum, 1995), and tyrosinase, (Honing, 

Sandoval, & von Figura, 1998), and is recognized both at the plasma membrane 

and in internal membranes.  In these cases, the signal serves to targets and 

sequesters these proteins to endosomal compartments specific to their respective 

functions, For example, tyrosinase is targeted to the melanosome by its dileucine 

endocytic signal.  The tyrosine-containing motif consists of the amino acid 
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sequences NPXY or YXXØ.  The NPXY signal is found on Type I membrane 

proteins, such as the LDL receptor, and is involved in rapid internalization.  The 

YXXØ signal is found on a wide variety of proteins, like the transferrin receptor 

(Jing, Spencer, Miller, Hopkins, & Trowbridge, 1990) and furin, (Schafer et al., 

1995) and is responsible for rapid internalization from the plasma membrane as 

well as playing a role in membrane protein steady–state distribution.  The 

discovery and characterization of signals that are responsible for endocytic sorting 

and cellular distribution is ongoing in the field of membrane trafficking. 

 

As work progresses in understanding membrane trafficking determinants, so–

called “non–canonical” signals are being discovered.  The neuron-specific 

potassium-chloride cotransporter 2 (KCC2) contains a non-canonical di-leucine 

motif (LLXXEE) that regulates its rapid internalization through CME (Zhao et al., 

2008).  Another example is the purinoreceptor P2X4, which contains a non-

canonical tyrosine-based motif (YXXGΦ) that also internalizes through CME 

(Royle, Bobanovic, & Murrell-Lagnado, 2002).  Whether all non-canonical 

endocytic signals use clathrin is an area of ongoing study.  The further discovery 

and study of these non-canonical endocytic signals can further expand on the 

understanding on the molecules involved in protein surface expression regulation. 

 

In addition to CME there are many clathrin-independent mechanisms that mediate 

endocytosis. Lipid-rich domains, termed rafts, are the site of other mechanisms 
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beyond CME that are used to internalize surface proteins. These can be further 

subdivided in to dynamin-dependent and –independent mechanisms.  Caveolin, a 

membrane-associated protein, is required for a form of clathrin-independent, 

dynamin-dependent trafficking that occurs at these rafts.  Caveolin has been 

shown to be mediate internalization for the SV40 virion, GM1 ganglioside, and GPI-

linked proteins (Balasubramanian, Scott, Castle, Casanova, & Schwartz, 2007; 

Kirkham et al., 2005; Tagawa et al., 2005).  Moreover, caveolin is required to 

sequester GPCRs to lipid-rich domains whereupon they undergo internalization 

(Burgueno et al., 2003; Veyrat-Durebex, Pomerleau, Langlois, & Gaudreau, 2005).  

There is no clearly defined endocytic signal that targets cargo proteins to caveolae, 

nor are the molecules required, beyond caveolin, for caveolae formation known. 

However, experimentally disrupting the plasma membrane lipid composition has 

been demonstrated to block caveolin-dependent endocytosis. 

  

Lipid raft-mediated internalization that is independent of clathrin, dynamin and 

caveolin has also been reported for many membrane proteins.  Flotillins appear to 

play a role in many of these cases.  Flotillins are caveolin-related membrane-

associated proteins that are enriched in membrane raft microdomains and have 

been shown to mediate internalization for proteoglycans and the GPI-linked CD59 

molecule (Ait-Slimane, Galmes, Trugnan, & Maurice, 2009; Payne, Jones, Chen, 

& Zhuang, 2007).  Flotillin-mediated endocytosis is mediated by an actin-

dependent mechanism (Langhorst, Solis, Hannbeck, Plattner, & Stuermer, 2007).  
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Furthermore, flotillin also regulates endosomal sorting following endocytosis, as 

shRNA-mediated flotillin depletion targeted Shiga toxin to lysosomes instead of the 

trans-Golgi network (Pust, Dyve, Torgersen, van Deurs, & Sandvig, 2010).  Flotillin 

also can act as an activator of CME.  For example, flotillin can divert Nieman-Pick 

C1-like 1 protein (NPC1L1) to target to lipid rafts, which are then internalized via 

CME (Zhang et al., 2011). The identification of adaptor molecules, endocytic 

signals, and cargoes in flotillin-dependent trafficking is an emerging field. 

 

Other trafficking mechanisms at lipid rafts require the GTPases Arf6 or RhoA, 

which traffic MHCI and interleukin 2 receptor (IL2-R), respectively (Lamaze et al., 

2001; Naslavsky, Weigert, & Donaldson, 2003).  These endocytic mechanisms do 

not require clathrin, caveolin, or dynamin and represent wholly different cellular 

processes that can also act to regulate cell surface protein expression.  Given the 

myriad of mechanisms regulating cellular surface protein trafficking, this process 

offers dynamic regulation at the plasma membrane for any number of critical 

molecules. 

 

 

K+ Leak Channels and neuronal excitability 

The electrochemical gradient is constantly in flux by tonic ion flow through 

membrane-bound K+ ‘leak’ channels.  Unlike voltage gated K+ channels, which rely 

on membrane potential to open, leak channels are constitutively open and allow 
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potassium to flow down its concentration gradient (Talley, Sirois, Lei, & Bayliss, 

2003).  Although described in the literature for decades and their activity subtracted 

as background (Hodgkin & Huxley, 1952), the proteins responsible for leak current 

were largely unknown until the cloning and characterization of the Drosophila 

melanogaster K+ channel KCNKØ (Goldstein, Price, Rosenthal, & Pausch, 1996).  

Subsequently, the cloning and initial characterization found 15 genes encoding 

KCNK channels in humans (Goldstein, Bockenhauer, O'Kelly, & Zilberberg, 2001).  

Most potassium channels contain a single pore per channel monomer and require 

4 pore-forming domains (tetrameric) to assemble a functional channel.  KCNK 

channels are marked by containing two potassium-conducting pore helices per 

monomeric subunit, and consequently are named the tandem pore family, KCNK 

or K2P.  Thus, only two channel monomers are required to form a dimeric multimer 

with four pore-forming domains. 

 

There is a wide diversity to the general stimuli that K+ leak channels respond to for 

their activation. These are mainly voltage-independent with some having weak 

voltage dependence (TWIK-1; (Lesage et al., 1996)) whereas others respond to 

small molecules (TRESK-1 inhibition in response to arachidonic acid; (Sano et al., 

2003)).  Ultimately, the membrane localization and overall activity of leak K+ 

channels is the steady-state determinant of both excitable and non-excitable 

resting membrane potential in cells.  The total current elicited by a particular 

channel is determined, in large part, by its cellular distribution, specifically its 
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presence on the plasma membrane. Despite their critical importance in setting the 

resting membrane potential, studies focused on the mechanisms underlying their 

regulation are still in their infancy. 

 

The two–pore K+ leak channel KCNK3 (TASK–1 or K2P3.1) channel is expressed 

in a wide variety of tissues including the liver, heart, kidney, and brain (Duprat et 

al., 1997; Lopes, Gallagher, Buck, Butler, & Goldstein, 2000).  KCNK3 is the target 

for volatile anesthetics, such as isofluorane and halothane (Lopes, Zilberberg, & 

Goldstein, 2001).  These agents increase channel activity and are believed to be 

responsible for the respiratory depression found in patients under general 

anesthesia, as well as playing a role in somnolence.  Conversely, channel activity 

is decreased by treatment with local anesthetics, like (Kindler, Yost, & Gray, 1999). 

This channel’s alternate name (TASK: TWIK-related acid sensitive K+ channel) 

indicates its sensitivity to extracellular pH. as, At physiological pH, the channel is 

active with an open probability of p=0.5, whereas at acidic pH the channel does 

not open (p<0.001) (Y. Kim, Bang, & Kim, 1999).  The channel functions as a 

homo-dimer but, interestingly, can hetero-oligomerize with a closely related two-

pore channel, KCNK9.  This KCNK3-KCNK9 heterodimer exhibits an increase in 

pH sensitivity as compared to KCNK3 and is expressed at high levels in 

hypoglossal motor neurons (Berg, Talley, Manger, & Bayliss, 2004).  Whether the 

KCNK3-KCNK9 heterodimer and the KCNK3 homodimer undergo the same small 

molecule regulation has not been fully explored.   
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KCNK3 has a prominent role in a variety of physiological functions, both in the 

CNS and periphery.  Extracellular hypoxia in the brain results in KCNK3 

inactivation (Buckler, Williams, & Honore, 2000), which is believed contribute to 

excitotoxicity during oxygen deprivation. In cultured cerebellar granule neurons, 

hypoxia inhibits channel activity and depolarizes the neurons, which ultimately 

facilitates neuronal death (Plant, Kemp, Peers, Henderson, & Pearson, 2002).  

KCNK3 also plays a central role in carotid body control of respiration in response 

to changes in blood oxygen levels.  This is best illustrated in KCNK3(-/-) mice, which 

do not exhibit enhanced respiration rates in response to low blood oxygen (Trapp, 

Aller, Wisden, & Gourine, 2008). Additionally, KCNK3 -/- mice display malformed 

adrenal cortex and primary hypoaldosteronism, suggesting that KCNK3 plays a 

critical role in adrenal gland development (Davies et al., 2008). 

 

KCNK3 has also been implicated in multiple sclerosis and HIV progression.  

Pharmacological channel inhibition slows multiple sclerosis progression by 

deactivating T-cells responsible for the autoimmune response mediating myelin 

destruction (Bittner et al., 2012).  Additionally, KCNK3 activity is correlated with 

Type I HIV particle budding (Hsu, Seharaseyon, Dong, Bour, & Marban, 2004).  

Mechanistically, the HIV protein Vpu associates with the channel and leads to 

decreased current.  This KCNK3-associated current downregulation is a 

requirement for viral maturation and cellular egress.  KCNK3 is also as KCNK3 is 
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the molecular target for the Szechuan spicy peppercorn agent, specifically the 

sanshool compound, and mediates the numbed tongue sensation induced by 

eating this seasoning through direct channel inhibition and subsequent 

hypoglossal sensory neuron activation (Bautista et al., 2008).  Surface expression 

regulation could, in part, be responsible for these functional effects. 

 

At the cellular level, there are several signaling pathways that have been shown to 

regulate KCNK3 activity.  Specifically, both protein kinase C (PKC) and adenylate 

cyclase activity decrease KCNK3-associated currents (Lopes et al., 2000)..  

Furthermore, upstream of PKC, phospholipase C activation also decreases 

KCNK3 activity (X. Chen et al., 2006; Schiekel et al., 2013).  The endothelin-1 

receptor, which signals via Gq activation of PKC, also decreases KCNK3-

associated currents (Tang et al., 2009).  PKC regulation of KCNK3 activity is likely 

to have profound physiological impact, as PKC-mediated KCNK3 downregulation 

was recently reported to cause arrythmia following heart surgery (Harleton et al., 

2013). Protein kinase G-mediated phosphorylation also modulates KCNK3 

intrinsic channel by decreasing proton sensitivity and thus causing overall greater 

activity at physiological pH (Toyoda et al., 2010).  To date, it is unclear whether 

membrane trafficking is involved in KCNK3 regulation. 

 

Although KCNK3 plasma membrane trafficking has not been studied, molecules 

required for biosynthetic KCNK3 trafficking have been reported.  The channel is 
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held in the endoplasmic reticulum by COPI and p11 binding (Girard et al., 2002).  

Following PKA phosphorylation at the KCNK3 carboxy terminus, the 

phosphoprotein binding protein 14-3-3β displaces these binding partners and is 

required for efficient endoplasmic reticulum exit (Mant, Elliott, Eyers, & O'Kelly, 

2011; O'Kelly, Butler, Zilberberg, & Goldstein, 2002).  Due to its wide distribution 

of expression and its high activity at physiological pH, KCNK3 is an important, yet 

poorly understood, molecule that contributes to maintaining the potassium 

gradient.  Whether the regulation previously observed depends on plasma 

membrane channel trafficking is still an open question. 

 

The dopamine transporter 

Work done by Julius Axelrod and colleagues in the early 1960s demonstrated that 

radiolabeled norepinephrine, when introduced systemically, would accumulate in 

tissue heavily innervated by sympathetic nerves (Whitby, Axelrod, & Weil-

Malherbe, 1961).  Further work in dennervated rodents, discovered that 

presynaptic boutons are the uptake site (Birmingham & Iversen, 1969).  This 

observation was the basis for the hypothesis that there is a process that 

transported monoamines across the plasma membrane into these tissues. In the 

central nervous system, it was discovered that brain regions did not transport 

norepinephrine equally, with areas innervated by dopaminergic neurons (i.e. 

dorsal striatum) transporting both D- and L-stereoisomers with equal affinity, 

whereas noradrenergic areas (i.e. locus coeruleus) showing specificity for the L-
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isomer (Snyder & Coyle, 1969).  Consequently dopamine, thought to only be a 

precursor in the norepinephrine synthesis pathway, was observed to preferentially 

accumulate in the striatum, leading to the hypothesis that dopamine (DA) was a 

neurotransmitter and that a specific reuptake mechanism existed to limited its 

extracellular half-life. 

 

Following this discovery, requirements for DA transport were further characterized.  

Transport was found to be both sodium- and chloride- dependent in synaptosomes 

(Bogdanski, Blaszkowski, & Tissari, 1970; Iversen, 1974; Kuhar & Zarbin, 1978).  

DA transport in synaptosomes was potently inhibited by amphetamine (AMPH) and 

cocaine treatment (Horn, Coyle, & Snyder, 1971).  Later, the DA transporter was 

identified as being the ‘cocaine receptor’ described as the site for cocaine’s 

reinforcing effects (Calligaro & Eldefrawi, 1987).  The anti-Parkinson drug 

benztropine blocked DA uptake, indicating the importance for DA in movement 

(Coyle & Snyder, 1969).  Consequently, the DA transporter is an important protein 

to discover fully its identity and function. 

 

The DA transporter (DAT) belongs to the SLC6 gene family of solute carriers, 

whose members include the GABA transporter and norepinephrine and serotonin 

transporters.  The identification of specific gene products in the SLC6 family was 

first shown in 1988 when brain-derived RNA pools were expressed in Xenopus 

oocytes, which conferred neurotransmitter uptake intracellular neurotransmitter 



15 
 

accumulation (Blakely, Robinson, & Amara, 1988).  This was followed by the 

independent expression cloning of the GABA (Guastella et al., 1990) and NE 

(Pacholczyk, Blakely, & Amara, 1991) transporters.  Sequence comparison of 

these two neurotransmitter transporters revealed ~50% homology, suggesting that 

they were members of a larger transporter gene family.  Based on sequence 

similarities, homology cloning strategies successfully identified cDNA clones for 

the serotonin and DA transported were found (Blakely et al., 1991; Kilty, Lorang, 

& Amara, 1991).  The ability to specifically express these proteins opened new 

methods to study the transporters. 

 

While DAT primarily clears DA from the synapse via a sodium- and chloride-

dependent mechanism, other functions have also been attributed to DAT.  DAT 

mediates a transport-independent chloride current, whose cellular importance is 

still being investigated (Ingram, Prasad, & Amara, 2002).  Interestingly, DAT can 

also operate in a voltage- and calcium-dependent “reverse transport” mode that 

effluxes DA through DAT (Khoshbouei, Wang, Lechleiter, Javitch, & Galli, 2003; 

Raiteri, Cerrito, Cervoni, & Levi, 1979).  However, free cytosolic DA levels are low, 

due to efficient packaging dopamine into vesicles, whether this activity is important 

has yet to be attributed to any particular neuronal function. 

 

DAT’s importance in movement and as a psychostimulant target is demonstrated 

in DAT(-/-) mice, which are hyperlocomotive and do not exhibit psychostimulant-



16 
 

induced hyperlocomotion (Giros, Jaber, Jones, Wightman, & Caron, 1996).  

Furthermore, there is a DA dearth in dopaminergic terminals and the DA clearance 

from synapses is slowed, demonstrating the critical importance of DAT not only for 

re-uptake, but also for maintaining synaptic DA levels.  Cocaine has been shown 

to competitively bind the transporter although the reinforcing effects of the drug still 

occur in DAT(-/-) mice (Giros et al., 1996).  Due to confounding developmental 

expression alterations in other cocaine-binding transporters, such as the 

norepinephrine transporter, an elegant experiment was performed to specifically 

assay DAT’s importance in mediating cocaine reinforcement.  A DAT knock-in 

mouse expressing a cocaine-insensitive DAT point mutant lacks cocaine-mediated 

conditioned place preference (R. Chen et al., 2006) and does not self administer 

cocaine demonstrating that DAT is required for cocaine reinforcement in a 

minimally perturbed neurological system (Thomsen, Han, Gu, & Caine, 2009). 

 

In addition to being the primary target for cocaine, DAT is also the main locus for 

AMPH’s reinforcing properties.  In contrast with cocaine, which is a competititve 

DAT antagonist, AMPH is a competitive DAT substrate that is transported into the 

cytoplasm. Following transport into the cytoplasm, AMPH increases intracellular 

DA levels by reversing VMAT2 transport and initiates a kinase cascade to begin 

the transporter to run in reverse, leading to efflux of this newly released free 

intracellular DA (Kahlig et al., 2006).  Methylphenidate, a pharmaceutical 

prescribed for attention deficit hyperactivity disorder (ADHD) patients, also targets 
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the transporter (Schweri et al., 1985).  As a target for addictive and therapeutic 

psychostimulants, DAT is a critically important neurological molecule and 

understanding its regulation has wide physiological importance. 

 

Dopaminergic Neurotransmission 

Dopaminergic neurotransmission is critical for movement initiation, motivation and 

reward pathways, as well as mood stabilization.  Dopaminergic signaling arises 

from a finite subset of brain nuclei: the substantia nigra and the ventral tegmental 

area (VTA).  Furthermore, dopaminergic neurons have two firing patterns: tonic 

and phasic (Floresco, West, Ash, Moore, & Grace, 2003; Grace & Bunney, 1983).  

Tonic firing is constant low frequency DA release whereas a short, high frequency 

burst of DA release, marks phasic firing.  These two firing patterns emit significantly 

different synaptic DA levels and post-synaptic effects.  Both firing forms are 

required for dopaminergic neurotransmission.  For example, tonic dopaminergic 

transmission in the nigrostriatal pathway is required in the striatum to inhibit spastic 

movement (Hauber, 1998).  Alteration in the nigrostriatal tonic dopaminergic firing 

leads to disinhibition and allows for movement initiation. Phasic firing in the 

mesolimbic pathway is induced during behavioral reinforcement (Schultz, 2013).  

Furthermore, switching from tonic to phasic firing in mesocorticolimbic 

dopaminergic neurotransmission has been shown to be required for depression 

resistance, as mice unable to switch their firing patterns are more susceptible to 

socially-induced depression (Chaudhury et al., 2013).  As dopaminergic signaling 
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is critical for these behaviors, signal latency must be regulated.  The plasma 

membrane dopamine transporter (DAT) is primarily responsible for synaptic DA 

clearance and controlling dopaminergic signal latency and consequently regulation 

for this important protein would be important for these physiological activities. 

 

DAT has been implicated in neurological disease.  Aberrant dopaminergic 

signaling is observed in schizophrenic patients and although DAT levels are not 

measurably different in these patients, altered protein-protein interactions have 

been reported in the transporter, specifically a reduced association with the D2 

receptor (Brunelin, Fecteau, & Suaud-Chagny, 2013).  Depressed patients have 

greater DAT expression and transporter levels are decreased when chronically 

treated with bupropion, a dopamine and norepinephrine transporter inhibitor 

(Argyelan et al., 2005).  Moreover, dopaminergic signaling is perturbed in mouse 

socially-induced depression models (Chaudhury et al., 2013).  Recent work has 

shown that DAT mutations correlate with attention deficit hyperactivity disorder 

(ADHD) and that the ADHD-correlated R615C DAT mutant has an increased 

endocytic rate (Sakrikar et al., 2012).  Consequently, DAT function and regulation 

are important to maintaining neurological function and communication. 

 

Dopamine Transporter Trafficking 

Regulated trafficking from the surface is an important aspect to functional control.  

In electron micrographs of the mouse striatum, DAT was reported to be localized 
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both at the cell surface in perisynaptic sites as well as in internal membrane-bound 

compartments (Nirenberg et al., 1997).  Work by Melikian and Buckley 

demonstrated, that under basal conditions there is a significant endosomal DAT 

pool in PC12 cells.  Further, PKC activation drives DAT from the plasma 

membrane to recycling endosomes, demonstrating for the first time that DAT 

surface expression is acutely regulated by membrane trafficking.  Consequently, 

DAT internalization and recycling has since been a target for extensive studies for 

DAT. 

 

Internalized DAT colocalizes with the small GTPases Rab-5 (early endosome 

marker) and -11 (recycling endosome marker) demonstrating that DAT internalizes 

into recycling endosomes (Melikian & Buckley, 1999; Sorkina, Doolen, Galperin, 

Zahniser, & Sorkin, 2003). Rab11 has been shown to be required for constitutive 

DAT recycling (Furman, Lo, Stokes, Esteban, & Gnegy, 2009). Constitutively 

active Rab11 mutant co-expression with DAT resulted in increased surface DAT 

expression, whereas the dominant-negative Rab11 mutant led to reduced surface 

DAT expression.  These results are consistent with DAT following an endocytic-

recycling pathway akin to that seen for the transferrin receptor (Ren et al., 1998). 

 

At the cell surface, DAT is in both lipid-raft and non-lipid-raft membrane domains, 

suggesting that DAT surface trafficking may be facilitated by at least two distinct 

endocytic mechanisms (Foster, Adkins, Lever, & Vaughan, 2008).  DAT undergoes 
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constitutive internalization and recycling to the surface, with a surface half-life of 

approximately 13 min when measured in heterologous systems. DAT constitutively 

internalized into vesicular structures and partially co-localized with transferrin 

(Loder & Melikian, 2003).  Clathrin mediated endocytosis has been implicated for 

constitutive DAT endocytosis in heterologous cell systems using either 

overexpression of a dominant-negative dynamin I mutant (K44A) or knockdown of 

clathrin heavy chain, which block internalization (Sorkina, Hoover, Zahniser, & 

Sorkin, 2005). 

 

DAT trafficking is acutely regulated by PKC activation, resulting in a rapid loss of 

surface DAT.  PKC activation by phorbol 12-myristate 13-acetate (PMA) in rat 

pheochromacytoma PC-12 cells stably expressing hDAT increases the DAT 

endocytic rate and decreases the transporter recycling rate, thus reducing DAT 

surface levels (Loder & Melikian, 2003). Among all PKC isoforms, PKCβ is 

potentially important in constitutive maintenance of the surface DAT. Compared 

with wild-type mice, PKCβ(-/-) mice have a reduced surface DAT expression level 

and reduced DA uptake with no difference in the total DAT expression in the 

striatum (Chen et al., 2009). Recently, work in the Gnegy lab showed that PKCβ 

promotes DAT recycling to the plasma membrane in response to D2 receptor 

activation (Chen et al., 2013). 
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PKC-dependent regulation of DAT trafficking is readily apparent in various 

heterologous cell types, as well as in striatal dopaminergic nerve endings. In 

addition to PKC, basal DAT surface expression is also modulated by Akt, a protein 

kinase in the insulin pathway immediately downstream of PI3K.  Akt activity 

correlates with increased DAT surface levels and overexpression of a dominant-

negative mutant of Akt (K179R) or treatment with Akt inhibitors reduces DAT 

surface DAT expression (Garcia et al., 2005). PKC-dependent DAT internalization 

is also dependent upon ubiquitylation of three lysine groups in the N-terminus of 

DAT; mutation of these lysines resulted in a diminished internalization of DAT to 

PKC activation (Miranda, Wu, Sorkina, Korstjens, & Sorkin, 2005). The NEDD4–2 

(neural precursor cell expressed, developmentally downregulated 4–2) protein 

was demonstrated to be a requisite component of PKC-dependent DAT 

ubiquitination and internalization (Vina-Vilaseca & Sorkin, 2010). 

 

In addition to PKC-stimulated DAT trafficking, DAT surface expression is regulated 

by carboxy terminal palmitoylation at residue C580.  DAT palmitoylation is required 

to maintain basal DAT surface levels and a DAT C580A mutant lacks 

palmitoylation and exhibits cell decreased surface expression  (Foster & Vaughan, 

2011).  The physiological purpose for DAT’s palmitoylation is still being studied, as 

the transporter is an integral membrane protein that would not require the 

modification to target to the membrane.  Whether this plays a role in microdomain 
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targeting at the plasma membrane, or as a locus to recruit DAT binding partners 

remains to be seen. 

 

In addition to their actions as competitive DAT inhibitors, both AMPH and cocaine 

acutely impact DAT trafficking.  AMPH has a biphasic effect on DAT trafficking in 

heterologous expression systems and ex vivo striatal synaptosomes where the 

psychostimulant increases DAT surface expression over seconds of exposure, 

and then decreases DAT surface levels over minutes (Johnson, Furman, Zhang, 

Guptaroy, & Gnegy, 2005). It has been shown that AMPH treatment results in DAT 

internalization or reduced DA uptake in cultured cell lines stably expressing DAT 

or in striatal synaptosomes.  Studies using the K44A dynamin mutant 

demonstrated that AMPH-induced DAT internalization is dynamin-dependent and 

is blocked by DAT inhibitors, such as cocaine and mazindol, indicating that AMPH 

must bind to the transporter to elicit internalization (Saunders et al., 2000). Other 

DAT substrates, such as DA and methamphetamine, also significantly reduce 

surface DAT expression or DA uptake (Chi & Reith, 2003).  Cocaine will increase 

DAT surface expression in heterologous cells and anesthetized rats (Daws et al., 

2002). Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been implicated 

in AMPH-induced DAT internalization (Fog et al., 2006). AMPH increases 

intracellular Ca2+ and activates CaMKII activity in striatal synaptosomes and in 

heterologous cells.  The AMPH-induced internalization mechanism requires Akt 

inhibition via activation of CaMKII. However, the role of CaMKII in constitutive DAT 
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internalization is unclear as CaMKII inhibitors blocked AMPH-induced DAT 

internalization, but CaMKII inhibitors on do not alter basal DAT levels. 

 

Our lab has uncovered a non–canonical endocytic signal in the dopamine 

transporter’s carboxy terminus and is comprised of ten amino acids 

(FREKLAYAIA) that regulate both constitutive endocytosis as well as endocytosis 

elicited by PKC activation (Holton, Loder, & Melikian, 2005; Navaroli et al., 2011).  

In those studies, a gain-of-funcition assay in which the DAT C-terminus was fused 

to the non-internalizing membrane protein Tac demonstrated that DAT contains an 

endocytic signal.  Using alanine–scanning mutagenesis, we determined that the 

hydrophobic residues L, Y, and I are responsible for the constitutive endocytosis, 

whereas the charged residues R, E, and K are the amino acids that confer 

sensitivity to PKC activation.  Further mutagenesis studies revealed that mutations 

in the F, R, and E residues increase the constitutive DAT endocytic rate 

(Boudanova, Navaroli, Stevens, & Melikian, 2008b),  N-terminal DAT truncations 

also result in an increased constitutive endocytic rate (Sorkina, Richards, Rao, 

Zahniser, & Sorkin, 2009).  These results support the hypothesis that DAT surface 

expression may be regulated by an endocytic braking mechanism mediated by N- 

and C-terminal domains. 

 

The endocytic sorting machinery that FREKLAYAIA requires is currently unknown.  

However, a yeast two-hybrid screen using FREKLAYAIA as bait revealed that the 
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small neuronal GTPase Rin, interacts with the DAT carboxy terminus and is 

required for PKC-stimulated DAT internalization.  Rin cellular role is not well 

understood but it has been shown to interact with the PAR6/Cdc42/aPKC complex, 

which is involved in cell polarization via actin remodeling.  Interestingly, a genomic 

screen in Caenorhabditis elegans has recently implicated the PAR6 complex in 

endocytosis and membrane recycling (Balklava, Pant, Fares, & Grant, 2007; 

Georgiou, Marinari, Burden, & Baum, 2008).  FREKLAYAIA’s discovery and initial 

characterization has elicited a search for other proteins that could potentially use 

this signal to regulate its surface presentation. 

 

Many of the studies characterizing factors affecting constitutive or substrate-

induced trafficking of DAT have relied heavily on the use of heterologous cells, and 

caution should be used in interpretation of the data. Our lab has found that PKC-

stimulated DAT internalization was sensitive to DAT expression levels, suggesting 

that studies in overexpression systems may not accurately reflect relevant DAT 

trafficking mechanisms. of DAT was insensitive to PKC in cells expressing high 

basal levels of DAT. In addition to the effect of expression levels, the use of cell 

types that do not contain the normal contingent of proteins available in the DA 

terminal could also affect trafficking results. Therefore, findings from heterologous 

cells should be replicated in animal models.  Moreover, previous studies describing 

molecular requirements for DAT trafficking relied on chronic depletion of trafficking 

molecules or shRNA-mediated depletion of trafficking proteins.  Molecules such as 
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clathrin and dynamin are required during multiple membrane trafficking steps and 

their chronic perturbation may disrupt cellular trafficking globally, overstating their 

direct role in DAT trafficking. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Materials: Anti-HA antibody (3F10) was from Roche Applied Science.  Mouse anti-

transferrin receptor antibody (H68.4) and fluorophore-conjugated secondary 

antibodies were from Invitrogen (Grand Island, NY).  Mouse anti-actin antibodies 

and HRP-conjugated secondary antibodies were from Santa Cruz Biotechnology 

(Santa Cruz, CA).  Rabbit anti-turboGFP antibodies were from Evrogen (Moscow, 

Russia).  Rat anti-DAT (MAB369) and mouse anti-tyrosine hyrdroxylase antibodies 

were from Millipore (Billerica, MA).  Dynasore, dynole, and phorbol 12-myristate 

13-acetate (PMA) for KCNK3 experiments were from Tocris (Minneapolis, MN).  

PMA for DAT experiments was from Calbiochem.  Sulfo-NHS-SS-biotin, 

streptavidin agarose, AminoLink Coupling Kit, and 3,3’,5,5’-tetramethylbenzidine 

(TMB) substrate were from Pierce Biotechnology (Rockford, Il). 

Dihydroxyphenylethylamine, 3, 4-[Ring-2, 5, 6-3H]- (Dopamine) was from Perkin-

Elmer (Waltham, MA).  Monensin and reagents used for ACSF were from 

SigmaAldrich (St. Louis, MO).  All other reagents were from Fisher Scientific 

(Waltham, MA) or Sigma Aldrich and were of highest quality possible. 

 

cDNA constructs:  Rat HA3-KCNK3 pcDNA3.1(+) cDNA was the generous gift of 

Dr. Doug Bayliss (Mass. General Hospital, Boston, MA).  Human 14-3-3-GFP-C1 
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cDNA was the gift of Dr. Mitsuo Ikebe (UMass Medical School, Worcester, MA).  

KCNK3 point mutants were generated using the QuikChange Mutagenesis kit 

(Stratagene), and mutant cDNA regions were subcloned back into the wild type 

KCNK3 plasmids at XcmI/XbaI sites.  All mutations were confirmed by 

dideoxynucleotide cycle sequencing (GeneWiz, New Jersey).  shRNA constructs 

were purchased from Origene (Rockville, MD). 

 

Cell culture and Transfections: 

HEK 293T cells were cultured at 37°C, 5% CO2 in Dulbecco’s Modification of 

Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM L–

glutamine, and penicillin/streptomycin.  For transfections, HEK cells were seeded 

in 6 well cultureware 24 hours prior to transfection, were transiently transfected 

with Lipofectamine 2000 according to the manufacturer’s instructions (Invitrogen), 

and were assayed 48 hours post-transfection.  For wide-field microscopy, cells 

were replated onto poly-D-lysine coated glass coverslips 24 hours post 

transfection. For knockdown experiments, KCNK3 cDNA and shRNA plasmids 

were co-transfected into HEK cells and assayed 48 or 72 hours post-transfection. 

 

The human neuroblastoma cell line SK-N-MC stably expressing hDAT (DAT-SK-

N-MC) was maintained in MEM supplemented with 10% fetal bovine serum, 2 mM 

L-glutamine and 100 Units/mL penicillin/streptomycin at 37°C in 5% CO2.  DAT-

SK-N-MC cells were plated on 6-well cultureware (1.6 x 106 cells/well) or on #1.5 
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glass coverslips (2.0 x 105 cells/well) in 24-well cultureware and assayed 24 hours 

later for biochemistry and microscopy, respectively.   
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PC12 cells stably expressing hDAT (Loder & Melikian, 2003; Melikian & Buckley, 

1999) were cultured at 37°C, 10% CO2 in DMEM supplemented with 5% calf 

serum, 5% horse serum, 2 mM L-glutamine, 100 Units/mL penicillin/streptomycin, 

0.2 mg/ml geneticin.  For biochemical assays, DAT PC12 cells were plated on 6-

well cultureware (1.5 x 106 cells/well) and assayed 24 hours later. 

 

Cerebellar granule neuron preparation:  Cerebellar granule neurons were isolated 

from P6 Sprague-Dawley rat pups.  Animals were sacrificed and their cerebelli 

were surgically removed, minced and incubated in 0.05% Trypsin for 10 minutes 

under C02-balanced O2 at 37°C.  Following trypsinization, tissue was washed three 

times in CTPM (α-MEM supplemented with B27, 10% horse serum, 2 mM L-

glutamine, 10 Units/mL penicillin/streptomycin, 100 kunitz/mL DNAse I, 25 mM 

KCl, 6 mg/mL glucose) and was dissociated by triturating progressively through 

21G-26G needle holes in flame-sealed P1000 pipette tips.  Cells were collected by 

centrifugation (1000xg, 5 min), re-suspended in CTPM and plated on poly-D-lysine 

coated glass coverslips (4 x 104 cells/well) or in 12 well cultureware (7.5 x 105 

cells/well) for electrophysiological and biochemical assays, respectively.  Cells 

were grown at 37°C, 5% CO2 for 5 hours and the media was changed to 

Neurobasal media [Invitrogen] supplemented with B27, 10 Units/mL 

penicillin/streptomycin, 2 mM L-glutamine, and 25 mM KCl.  Neurons were 

assayed at 4-13 DIV. 
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Striatal Slice Preparation: P30-38 male C57/B6 mice were sacrificed by cervical 

dislocation and decapitated. The brains were immediately chilled in sucrose-

supplemented artificial cerebrospinal fluid (SACSF [2.5 mM KCl, 1.2 mM 

NaH2PO4, 1.2 mM MgCl2, 2.4 mM CaCl2, 26 mM NaHCO3, 11 mM glucose, and 

250 mM sucrose]) with 95% O2/ 5% CO2. Brains were mounted on a Vibratome 

1500 sectioning system and 300 µm coronal sections were made. Sections 

corresponding to the striatum were kept. Following sectioning, striatal slices were 

incubated in ACSF (125 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 1.2 mM MgCl2, 

2.4 mM CaCl2, 26 mM NaHCO3, and 11 mM glucose) at 31°C for 40 min with 95% 

O2/ 5% CO2, then immediately used for trafficking studies. 

 

Electrophysiological recordings: HEK Cells:  Cells were transiently transfected with 

recombinant cDNA clones of the KCNK3 or KCNK9 channel (0.2 μg), green 

fluorescent protein (pEGFP-C1; 0.25 μg), and empty plasmid (pcDNA3.1(-), 0.55 

μg) using 4 μl of Lipofectamine and 6 μl of PLUSTM reagent (Invitrogen). For 

shRNA experiments, 2 μg of DNA (1 μg of shRNA, 0.2 μg of channel, 0.8 μg of 

pcDNA3.1) and 4 μl of Lipofectamine were used. After terminating the transfections 

(4 h), cells were reseeded onto 8-mm round coverglasses (Warner Instruments) 

and incubated for an additional 24–48 h. K+ currents were recorded at room 

temperature (24 ± 2°C) from voltage-clamped cells. The recording chamber was 

continuously perfused with extracellular (bath) solution that contained 160 mM 
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NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 8 mM glucose, and 10 mM HEPES 

(pH 7.5 with NaOH). Patch electrode tip resistance was 1–3 megaohms when filled 

with intracellular (electrode) solution that contained 126 mM KCl, 20 mM NaCl, 0.5 

mM MgCl2, 0.1 mM EGTA, 0.5 mM ATP-Na2, 0.3 mM GTP-Na3, 10 mM HEPES 

(pH 7.5 with KOH). Transfected (pEGFP-expressing) cells were identified using a 

GFP filter set of the Axiovert 40 CFL inverted light microscope (Zeiss). Currents 

were assayed for native-like function using a “family” of traces protocol, in which a 

cell held at −80 mV was stepped for 50 ms every 15 s to potentials between −120 

and +45 mV in 15-mV increments, followed by a 20-ms command to −120 mV. The 

effect of PKC activation on the current was studied using phorbol 12-myristate 13-

acetate, which was dissolved in ethanol and diluted in bath solution to 1 μM 

(0.006% final ethanol concentration). Current amplitude versus time was 

monitored by holding cells at −80 mV and recording the current during a 50-ms 

test depolarization (40 mV) every 30 s. 

 

CGNs:  Leak current from 5–14-day in vitro CGNs was recorded at room 

temperature (22–24°C) using the whole-cell configuration of an Axopatch 200B 

patch clamp amplifier (Axon Instruments, Foster City, CA). Electrodes were pulled 

from borosilicate glass capillaries (Drummond Scientific Co., Broomall, PA) and 

fire-polished to a tip diameter of ∼1 μm. The total pipette access resistance ranged 

from 2.0 to 2.5 megaohms. Cells were held at −20 mV to inactive voltage-activated 

Ca2+, Na+, and K+ channels. Currents were elicited every 10 s by stepping from 
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−20 mV to various test potentials for 50 ms using the CED Signal software suite, 

version 2.15 (Cambridge Electronic Design, Cambridge, UK). Currents were 

filtered at 5 kHz using the amplifier's four-pole, low pass Bessel filter, digitized at 

20 kHz with a micro1401 interface (CED), and stored on a personal computer. 

Electrodes were filled with internal solution containing 140 mM KCl, 4 mM NaCl, 

10 mM HEPES, 10 mM EGTA, 5 mM MgCl2, 4 mM ATP, 0.4 mM GTP, pH 7.5. 

Cells were patched in calcium Tyrode's solution containing 145 mM NaCl, 5.4 mM 

KCl, 5 mM CaCl2, 10 mM HEPES with the pH adjusted to 7.5. After rupturing the 

cell membrane, the bath solution was exchanged by a gravity-fed perfusion 

system. The external solution contained 140 mM NaCl, 3 mM KCl, 10 mM HEPES, 

10 mM glucose, 2 mM MgCl2, 2 mM CaCl2, 10 mM TEA, 0.0005 mM tetrodotoxin 

(TTX), pH 7.5. TEA and TTX were included in the bath solution to inhibit KCa current 

and any residual Nav current, respectively. To activate PKC, PMA (1 μM) or (S)-

3,5-dihydroxyphenylglycine (DHPG) (1 μM) was added to the bath after 2 min of 

measuring stable currents. 

 

KCNK3 Antibody Preparation and Purification:  An antigenic peptide 

corresponding to residues 311-327 in the KCNK3 C-terminus was synthesized and 

HPLC purified.  Antigen was linked to a proprietary immune carrier used to 

immunize New Zealand rabbits according to standard 90-day protocols for antisera 

production (21st Century Biochemicals; Marlboro, MA). Antigen was cross-linked 

to agarose beads with the AminoLink Immobilization Kit according to the 
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manufacturer’s instructions.  Antigen (1 mg) was diluted in an equal volume of 100 

mM sodium phosphate, pH 7.0 and incubated in activated agarose resin for 20 

minutes at room temperature.  The cross-linking reaction was quenched in 1 M 

Tris-HCl, pH 7.4 for 20 min at room temperature.  Antigen-beads were poured into 

a 2 mL column and washed in 10 column volumes (CV) of 1 M NaCl.  Column was 

equlibrated in PBS and chilled to 4°C.  Antiserum (bleed 3) was applied to the 

antigen column, washed in PBS (10 CV), and eluted in 100 mM glycine, pH 2.5.  

Protein content was measured by A280 absorbance. 

 

Enzyme-linked Immunosorbent Assay:  Peptides corresponding to residues 311-

327 in the KCNK3 C-terminus were cross-linked to 96 well plates with 1 M Na2CO3, 

pH 9.0 at room temperature for 60 minutes.  Wells were washed three times in 

Tris-buffered saline, pH 7.4 and 0.1% Tween-20 (TBS-T) at room temperature.  

Antisera (bleed 3) and purified antibody were diluted at 1:16000 to 1:250 and 

incubated in antigen-coated wells for 2 h at room temperature.  Wells were washed 

three times in TBS-T at room temperature.  Anti-rabbit secondary antibodies linked 

to alkaline phosphatase (1:5000) were incubated in all wells for 60 minutes at room 

temperature.  Wells were washed three times in TBS-T at room temperature.  

Antibody binding was visualized by TMB addition.  The colorimetric reaction was 

quenched by equal volume addition of 2 M H2SO4.  Antibody reactivity was 

measured by A450 absorbance. 
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Cell surface biotinylation for adherent cells:  Cells were treated as described and 

chilled to 4°C in an ice bath.  Cells were washed three times in ice-cold PBS++.  

Surface proteins were covalently labeled with 1.0 mg/mL sulfo-NHS-SS-biotin in 

ice-cold PBS++ twice for 15 min at 4°C.  Following biotinylation, cells were washed 

three times in PBS++ with 100 mM glycine (Quench) and incubated in Quench twice 

for 15 min at 4°C.  Cells were washed three times in ice-cold PBS++, then lysed as 

described for each protein and protein concentrations were determined using the 

BCA protein assay (Pierce).  Biotinylated proteins were isolated by batch 

streptavidin chromatography (overnight, 4°C) and bound proteins were eluted in 

SDS-PAGE sample buffer.  Samples were resolved by SDS-PAGE as described 

below. 

 

Striatal slice biotinylation: Striatal slices were prepared as described.  Surface 

proteins were covalently labeled with 1.0 mg/mL sulfo-NHS-SS-biotin in ice-cold 

ACSF for 45 min at 4°C, with bubbling 95% O2/ 5% CO2.  Following biotinylation, 

slices were washed twice in ice-cold ACSF followed by 3 washes in ice-cold ACSF 

supplemented with 100 mM glycine.  Slices were incubated twice in ice-cold ACSF 

supplemented with glycine for 20 min at 4°C, with bubbling 95% O2/ 5% CO2.  

Slices were washed four times with ice-cold ACSF and lysed as described below.  

Protein concentrations were determined using the BCA protein assay (Pierce).  

Biotinylated proteins were isolated by batch chromatography (overnight, 4°C) and 
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bound proteins were eluted in SDS-PAGE sample buffer.  Samples were resolved 

by SDS-PAGE as described below. 

 

SDS-PAGE and Immunoblotting: KCNK3:  HEK293T cells transfected with HA3-

KCNK3 or rat cerebellar granule neurons were surface biotinylated and lysed in 

3.2 mM dodecyl maltoside, 50 mM Tris, pH 7.4, 150 mM NaCl, 2 mM EDTA, 1 

µg/mL leupeptin, 1 µg/mL pepstatin, 1 µg/mL aprotinin, and 1 mM phenylmethyl 

sulfonyl fluoride for 20 min at 4°C.  Biotinylated protein and ¼ total cellular lysate 

were resolved on 10% SDS-PAGE, transferred to nitrocellulose and KCNK3 was 

detected by immunoblotting using rat anti-HA antibody (Roche).  Immunoreactive 

bands were detected using a VersaDoc CCD-camera system and non-saturating 

bands were quantified using Quantity One software (Biorad). 

 

SDS-PAGE and Immunoblotting: DAT:  DAT-PC12, DAT-SK-N-MC and mouse 

striatal slices were lysed in RIPA (50 mM Tris pH 7.4, 150 mM NaCl, 2 mM EDTA, 

1% Triton X-100, 1% sodium deoxycholate, and 0.1% sodium dodecyl sulfate) with 

1 µg/mL leupeptin, 1 µg/mL pepstatin, 1 µg/mL aprotinin, and 1 mM phenylmethyl 

sulfonyl fluoride for 20 min at 4°C.  For SK-N-MC experiments, surface proteins 

and ¼ total cellular lysate were resolved on 10% SDS-PAGE, transferred to 

nitrocellulose and DAT was detected by immunoblotting using rat anti-DAT 

antibody (Millipore).  For striatal slice experiments, surface proteins and 100% 

cellular lysate were resolved on 18% SDS-PAGE, transferred to nitrocellulose and 



36 
 

DAT was detected by immunoblotting using rat anti-DAT antibody (Millipore).  

Immunoreactive bands were detected using a VersaDoc CCD-camera system and 

non-saturating bands were quantified using Quantity One software (Biorad). 

 

Immunocytochemistry and Wide-field microscopy: Cells were transfected in 6-well 

dishes and 24 h post-transfection were trypsinized and re-plated on poly-D-lysine-

coated plates.  48 hours post-transfection, cells were treated as indicated, rinsed 

in PBS and fixed in 4% paraformaldehyde prepared in PBS for 10 min at room 

temperature.  For transferrin (Tf) co-localization experiments, cells were loaded 

with 20 ng/µL Alexa594-Tf during drug treatments.  Cells were blocked and 

permeabilized in blocking solution (PBS, 1% IgG/Protease-free BSA, 5% goat 

serum, 0.2% Triton X-100) for 30 min at room temperature, followed by incubation 

with the indicated primary antibodies for 45 min at room temperature.  Cells were 

washed with PBS and incubated with Alexa594- or Alexa488-conjugated secondary 

antibodies (Invitrogen) for 45 minutes at room temperature.  Cells were washed 

with PBS, dried and mounted on glass slides with ProLong Gold Mounting Medium 

with DAPI (Invitrogen).  Immunoreactive cells were visualized with a Zeiss Axiovert 

200M microscope using a 63X, 1.4 N.A. oil immersion objective and 0.4 µm optical 

sections were captured through the z-axis with a Retiga-1300R cooled CCD 

camera (Qimaging) using Slidebook 5.0 software (Intelligent Imaging Innovations).  

Z-stacks were deconvolved with a constrained iterative algorithm using measured 
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point spread functions for each fluorescent channel.  All images shown are single 

0.4 µm planes through the center of each cell. 

 

[3H]Dopamine Uptake Assay: Stably transfected DAT SK-N-MC cells were seeded 

onto 24-well plates, and [3H]DA uptake was measured 24 h after transfection. Cells 

were rinsed and incubated in KRH buffer (120mM NaCl, 4.7 mM KCl, 2.2 mM 

CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4, 0.18% glucose, and 10 mM HEPES, pH 

7.4) at 37°C for indicated times with the indicated drugs. Uptake was initiated by 

adding [3H]DA with indicated concentrations containing the monoamine oxidase 

inhibitor pargyline and ascorbic acid. Assays proceeded for 10 min (37°C) and 

were terminated by rapidly washing cells with ice-cold KRH buffer. Cells were 

solubilized in scintillation fluid, and accumulated radioactivity was determined by 

liquid scintillation counting in a Wallac Microbeta scintillation plate counter. 

Nonspecific uptake was defined in the presence of 10 μM GBR12909 and all 

samples included 100 nM desipramine to block uptake contribution by 

endogenously expressed norepinephrine transporters. 

 

Internalization Assay: DAT SK-N-MC cells were seeded onto 6-well plates and 

internalization rates were measured 24 hours later. Cells were incubated in 10 µM 

dynole (an inhibitor for dynamin I and II) for 20 min at 37°C. Cells were rapidly 

chilled and biotinylated twice for 15 min at 4°C with 2.0 mg/mL sulfo-NHS-SS-biotin 

in PBS++ and were quenched twice for 15 min at 4°C in Quench. Cells were rapidly 
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warmed to 37°C, and incubated in 1 μM PMA for 10 min at 37°C, followed by 

rapidly cooling to 4°C to stop internalization. Residual surface biotin was stripped 

by reducing twice with 50 mM TCEP in Buffer NT (20 mM Tris, pH 8.6, 150 mM 

NaCl, 1 mM EDTA, and 0.2% BSA) for 15 min at 4°C. Cells were lysed in RIPA 

with protease inhibitors (1 μM leupeptin, 1 μM pepstatin, 1 μM aprotinin, and 1 μM 

phenylmethyl sulfonyl fluoride) and protein concentrations were determined using 

the BCA protein assay (Pierce).  Equal protein masses were incubated with 

streptavidin beads (overnight, 4°C) to separate internalized biotinylated protein 

and bound proteins were eluted in 35 µL 2X SDS-PAGE sample buffer for 15 min 

at room temperature. Internalized protein was resolved with 10% SDS-PAGE and 

immunoblotted for DAT, as described previously. 

 

Transferrin Uptake Assay:  DAT-PC12 and DAT-SK-N-MC cells were treated as 

described followed by incubation in 1 µg/mL transferrin-Alexa594 (Tf594) for 5 min at 

37°C.  For monensin experiments (an inhibitor of endosomal recycling), cells were 

incubated in 50 µg/mL transferrin for 10 min at 37°C.  Cells were immediately 

chilled by washing three times in ice-cold PBS++ followed by incubation in stripping 

solution (500 mM NaCl and 500 mM acetic acid) for 15 min at 4°C.  Cells were 

washed three times in room temperature PBS followed by incubation in 4% 

paraformaldehyde for 10 minutes while shaking at room temperature.  Cells were 

washed three times with PBS followed by complete aspiration.  Plates were 
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inverted and dried for 30 min at 37°C.  Coverslips were mounted in ProLong Gold 

Mounting Medium with DAPI (Invitrogen) and imaged with wide-field microscopy.  
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CHAPTER III 

 

TRAFFICKING OF THE pH-SENSITIVE K+ LEAK CHANNEL KCNK3 

 

INTRODUCTION 

Potassium (K+) leak channels are major determinants of neuronal membrane 

potential and excitability ((Dodson & Forsythe, 2004; Johnston, Forsythe, & Kopp-

Scheinpflug, 2010). “2P” K+channels are composed of two monomers, each with 

two pore-forming domains (Bayliss, Sirois, & Talley, 2003; Buckingham, Kidd, Law, 

Franks, & Sattelle, 2005; Enyedi & Czirjak, 2010; Goldstein, Wang, Ilan, & Pausch, 

1998; Mathie, Al-Moubarak, & Veale, 2010), as opposed to tetrameric K+channels, 

with each monomer contributing two pores (Ahern & Kobertz, 2009; Gouaux & 

Mackinnon, 2005). KCNK3 (TASK-1) channels are widely expressed, with 

enriched expression reported in motor neurons (Talley, Solorzano, Lei, Kim, & 

Bayliss, 2001), cerebellar granule neurons (Millar et al., 2000), and the carotid 

body (Bayliss, Talley, Sirois, & Lei, 2001). KCNK3 assembles as a functional 

homo- or heterodimer with its homolog KCNK9. Both KCNK3 homo- and 

heterodimers are acid-sensitive (Czirjak & Enyedi, 2002) and are activated by 

volatile anesthetics (Gruss et al., 2004), which decrease spontaneous neuronal 

firing rates (Putzke et al., 2007; Talley & Bayliss, 2002). KCNK3 is also inhibited 

by sanshool (Bautista et al., 2008), the Szechuan peppercorn component that 

induces a numbing sensation. Studies with KCNK3(−/−) mice demonstrated that 
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KCNK3 is critical for neuroprotection during stroke (Meuth et al., 2009); for 

chemosensory control of breathing (Trapp et al., 2008); and for adrenal cortex 

development, aldosterone production, and response to increased dietary sodium 

intake (Davies et al., 2008).  Taken together, KCNK3 plays a major role in a 

number of physiological functions throughout the CNS and periphery, and 

mechanisms that alter KCNK3 function and availability are likely to have a 

significant systemic impact. 

 

Multiple regulatory proteins control KCNK3 maturation and surface expression. In 

vitro studies demonstrate C-terminal KNCK3 phosphorylation by PKA correlated 

to enhanced KCNK3 surface expression, presumably by increased forward 

trafficking from the ER (Mant et al., 2011). In contrast, βCOP binds to the KCNK3 

N terminus and prevents egress from the ER and Golgi to the plasma membrane 

(O'Kelly et al., 2002). The KCNK3/βCOP protein-protein interaction can be 

mitigated by p11 and 14-3-3β, both of which bind to the KCNK3 C terminus and 

increase KCNK3 forward trafficking (Girard et al., 2002; Renigunta et al., 2006). 

 

Mounting evidence demonstrates that KCNK3 activity is acutely regulated, via 

either protein kinase C (PKC) (Lopes et al., 2000) or Gq-coupled receptor activation 

(X. Chen et al., 2006; Mathie, 2007; Veale et al., 2007). However, the mechanisms 

mediating KCNK3 regulation are completely unknown. In the current study, we 

show that PKC-regulated endocytic trafficking acutely modulates KCNK3. KCNK3 
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C-terminal residues are critical for KCNK3 endocytosis and define a novel 

K+ channel endocytic signal. Moreover, we demonstrate that 14-3-3β is absolutely 

required for KCNK3 internalization, a role heretofore not described for a 14-3-3 

protein. These results demonstrate that KCNK3 is not static in the plasma 

membrane but is dynamically trafficked, enabling potassium leak channels to 

acutely modulate neuronal excitability and potentially contribute to synaptic 

plasticity. 

 

RESULTS 

KCNK3 currents are downregulated by PKC activation 

Previous studies reported PKC-dependent losses in KCNK3 currents in 

heterologous expression systems (Lopes et al., 2000) and cardiac myocytes 

(Besana et al., 2004). Given that the KCNK3 C terminus encodes SREKLQYSIP, 

a sequence homologous to the dopamine transporter (DAT) PKC-regulated 

endocytic signal, FREKLAYAIA, we hypothesized that KCNK3 may undergo PKC-

mediated endocytic trafficking as a means to acutely regulate KCNK3 function. To 

test this possibility, we first asked whether PKC-mediated KCNK3 down-regulation 

occurred in neurons, by measuring whole cell leak current in CGNs, in which 

KCNK3 is endogenously expressed. Upon blocking Nav currents with TTX and Kca 

currents with TEA, we detected acid-sensitive (Fig. 3.1), indicating native KCNK3 

and KCNK9 expression as observed previously in CGNs (Kang, Han, Talley, 

Bayliss, & Kim, 2004). The individual traces shown in Fig. 3.1 illustrate the 
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FIGURE 3.1: KCNK3 Currents are Specifically Downregulated by PKC 
Activation in HEK 293T Cells:  Whole-cell K+ leak currents from cells expressing 
either KCNK3 (A) or KCNK9 (B) channels were induced using depolarizing voltage 
steps from −80 to +40 mV every 30 s. For the each channel, representative traces 
taken before (black) and at the end of 15 min treatment (red) with either vehicle 
(ethanol) or 1 μM PMA are shown on the left. Average normalized time courses of 
currents recorded during this treatment are shown in the middle. Mean ± S.E.M. 
(error bars) of normalized current inhibition (after a 15-min exposure to PMA) from 
several identical experiments is shown on the right. *, p < 0.001; Student's t test; 
n = 3–5  
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decrease in leak current amplitude of CGNs following 15 min of treatment with 1 

μM PMA. The average decrease in current amplitude over time can be observed 

and contrasted with currents recorded in the presence of vehicle, which remained 

stable over 15 min (Fig. 3.1). Consequently, after 15 min of PMA, 63 ± 10% (Fig 

3.1) of the leak current remained, and this decrease in amplitude was significantly 

different from that in vehicle-treated cells (99 ± 13%) as shown in the summary 

“bar graph” in Fig. 3.1 (p < 0.05; two-way Student's t test for two means; n = 8–

9/group). 

 

Because CGNs express both KCNK3 and KCNK9 subunits, we next determined 

whether the PKC-mediated inhibition of the acid-sensitive leak current in neurons 

was specific for one of the KCNK subunits. Native acid-sensitive leak currents are 

generated by homo- and heterodimers composed of KCNK3 and its homolog, 

KCNK9. KCNK9 is 82% identical to KCNK3; however, their C termini are highly 

divergent, and KCNK9 does not encode a SREKLQYSIP endocytic motif.  

Treatment with 1 μM PMA decreased KCNK3 currents to 64.1 ± 3.4% of base-line 

levels by 15 min (Fig. 3.2), which was significantly lower than currents measured 

in vehicle-treated cells (101.6 ± 5.2% base line; p < 0.001; Student's t test; n = 3–

5). In contrast, PMA had no effect on KCNK9 currents (vehicle = 84.8 ± 7.8% base 

line; PMA = 82.9 ± 3.6% base line; p = 0.89; Student's t test; n = 3) (Fig 3.2). These 

results suggested that the PMA-induced losses in acid-sensitive leak current in 

CGNs were specific for channels containing the KCNK3 subunit.  



46 
 

 

 
FIGURE 3.2: KCNK3 Currents are Specifically Downregulated by PKC 
Activation in Cerebellar Granule Neurons:  Shown are whole-cell recordings of 
K+ leak current in the presence of 0.5 μM TTX and 10 mM TEA. (A) average 
decrease in current amplitude following bath solution exchange from pH 7.5 to 6.5 
(n = 7). (B) zinc sensitivity following introduction of 100 μM zinc (Zn2+) (n = 5). (C) 
representative traces of leak current at time 0 min (black line) and 15 min following 
1 μM PMA (red line). (D) average percentage of current remaining after 15 min 
with 1 μM PMA is significantly different from that with an equal volume of vehicle 
(Veh) added to the bath solution. *, p < 0.05; Student's t test; n = 8–9/group. (E) 
average normalized time courses of leak current following introduction of either 
vehicle (○) or 1 μM PMA (●) into the bath at time 0. Currents were sampled every 
10 s (n = 8–9/group). Error bars, S.E.M.  
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KCNK3 requires a special solubilization protocol 

Due to their high hydrophobic content, membrane proteins are often resistant to 

solubilization or prone to aggregation when dissolved in detergents.   

Consequently, detergent selection and optimization is required to maintain 

membrane proteins in solution in order to perform biochemical studies.  KCNK3 

contains 4 transmembrane domains and 2 hydrophobic potassium-conducting 

pore helices, which comprise 43% of the protein’s amino acid sequence.  Initial 

expression and characterization of epitope-tagged HA-KCNK3 in PC12 used the 

classical radioimmunoprecipitation assay (RIPA) buffer for lysis, which contains 

the detergents 1% Triton X-100, 1% sodium deoxycholate, and 0.1% sodium 

dodecyl sulfate.  Following immunoblotting, the anti-HA immunoreactivity exhibited 

minimal electrophorectic mobility and was concentrated primarily in the stacking 

gel, consistent with protein aggregation (Fig 3.3).  To circumvent this obstacle, we 

optimized the solubilization conditions for KCNK3, testing previous approaches in 

which potassium channels were expressed and solubilized.  The bacterial 

potassium channel KcsA was cloned and purified, ultimately leading to its 

crystallization and structural determination, using the amphiphile detergent decyl 

maltoside.  We tested whether a related detergent, dodecyl maltoside, could more 

efficiently solubilize KCNK3 transiently expressed in HEK 293T cells.  This 

detergent contains a two methyl addition to the aliphatic chain as well as a lower 

critical micelle concentration.  Using this detergent, we observed show the   



48 
 

 

 
FIGURE 3.3: KCNK3 Requires a Specific Solubilization Protocol: Mature 
KCNK3 is insoluble in RIPA lysis buffer and present following solubilization in 
dodecyl maltoside.  Left: Immunoblot of HA-KCNK3 lysed in either RIPA (Lane 1) 
or DDM (Lane 2).  Right: HEK293T cells were transfected with HA-KCNK3, and 
cell lysates were analyzed 48 h post-transfection. Lysates were treated with 1 unit 
of endoglycosidase H (EndoH) or peptide:N-glycosidase F (PNGaseF) for 3 h at 
30°C and resolved by SDS-PAGE, and immunoblots were probed using anti-HA 
antibody. Note detection of both KCNK3 mature (endoglycosidase H-insensitive) 
and immature (endoglycosidase H-sensitive) species. 
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presence of two anti-HA reactive bands, at ~50 and ~100 kD, whereas no 

immunoreactivity was detected in non-transfected cells (Fig 3.3). 

 

The presence of two immunoreactive KCNK3 bands could be due to proteolysis, 

a mixture of KCNK3 biosynthetic intermediates, or the presence of monomeric and 

dimeric (i.e. non-dissociated) KCNK3 subunits.  To distinguish between these 

possibilities, we differentially deglycosylated HEK lysates with endoglycosidase H 

(EndoH) or peptide-N-glycosidase F (PNGaseF) to inspect the core protein and 

the channel’s glycosylation state.  EndoH selectively cleaves high mannose N-

linked glycans before they receive post-ER processing in the Golgi.  Sensitivity to 

this enzyme indicates an immature channel and resistance shows post-ER 

trafficking.  PNGase F cleaves all N-linked glycans and reveals the mobility of the 

non-glycosylated (core) protein.  As can be seen in Figure 3.3, PNGase treatment 

reduced the 50 and 100 kDa bands to 45 and 90 kDa, respectively, demonstrating 

the presence of N-linked glycosylation.  In contrast, neither the 50 nor 100 kDa 

bands were sensitive to Endo H treatment.  These data suggest that both 50 and 

100kDa KCNK3 species are biosynthetically mature (post-ER/Golgi) protein, and 

that they represent KCNK3 monomer and non-dissociated dimmers. KCNK3 is 

present in both mature and immature states at its monomeric size.  Future 

experiments will only use the mature, higher monomeric and dimeric bands for 

surface protein quantification. 
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KCNK3 internalizes in response to PKC activation 

PKC-mediated losses in KCNK3 activity could be due to changes in channel 

conductance, open probability or surface number due to acute endocytic 

trafficking.  However, the timecourse of KCNK3 downregulation in response to 

PKC activation suggested a membrane trafficking event.  To test whether PKC-

mediated KCNK3 functional losses were due to surface losses, we first employed 

cell-surface biotinylation to measure KCNK3 surface levels in response to PKC 

activation in transfected HEK cells.  The results are shown in Figure 3.4.  Under 

vehicle-treated conditions, 65.0±6.9% total KCNK3 was at the cell surface.  

Treatment with 1 µM PMA, 30 min, 37°C significantly decreased KCNK3 surface 

levels to 47.4 ± 5.7% total KCNK3 (p<0.04, Student’s t test, n = 9).  Of note, both 

mature and immature KCNK3 species are detectable in total cell lysates, whereas 

only mature protein is detected in surface fractions.  

 

We next asked whether PKC-induced losses in KCNK3 activity in CGNs were also 

due to rapid endocytosis.  To detect native KCNK3, we first attempted to use a 

commercially available anti-KCNK3 antibody.  While this reagent specifically 

detected KCNK3 via immunocytochemistry, it failed to detect a KCNK3-specific 

band by immunoblot in transfected HEK293 cells and was deemed unsuitable for 

use in biochemical studies.  Thus, in order to perform biochemical studies in 

primary CGNs, we raised rabbit antisera directed against the KCNK3 carboxy 

terminus and, using affinity chromatography, purified the antisera using the  



51 
 

  

 

 

FIGURE 3.4: PKC Activation Reduces KCNK3 Surface Levels in HEK 293T 
Cells:  HEK cells transfected with HA-KCNK3 were treated or not treated with 1 
μM PMA for 30 min at 37 °C, and KCNK3 surface levels were measured by surface 
biotinylation as described in Methods. Top: representative immunoblot showing 
total and surface KCNK3 protein detected with anti-HA antibody. Bottom: average 
data expressed as KCNK3 surface levels ± S.E.M. (error bars). *p < 0.04, 
significantly different from vehicle control; Student's t test; n = 9. 
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antigenic peptide (Fig. 3.5).  This reagent specifically detects KCNK3 monomers 

in transfected HEK cells and CGNs (Fig 3.5).  We used this reagent to ask whether 

PKC-induced losses in KCNK3 activity in CGNs were due to KCNK3 

internalization.  CGNs were treated ±1 µM PMA for 20 minutes at 37°C, followed 

by cell-surface biotinylation.  Following vehicle treatment, we observed 5.0 ± 0.4 

% of total KCNK3 on the cell surface (Fig. 3.6). Treatment with 1µM PMA, 30 min, 

37°C significantly decreased KCNK3 surface levels to 3.74 ± 0.2% of total KCNK3 

(p<0.04, Student’s t test, n = 7) (Fig. 3.6).  This translates to a 25.2% loss in surface 

KCNK3 protein, which is consistent with PMA-induced reduction of KCNK3 

currents in HEK cells and acid-sensitive leak currents in CGNs. 

 

We next used cellular imaging to examine KCNK3 cellular distribution in HEK cells.  

Under basal conditions, KCNK3 expressed prominently at the cell perimeter and 

co-localized with the IL2 receptor (Tac), co-expressed as a plasma membrane 

marker, (Fig. 3.7).  Following treatment with 1µM PMA for 30 minutes at 37°C, we 

observed a marked loss of KCNK3 from the cell surface, and redistribution into 

intracellular puncta (Fig. 3.7), whereas Tac remained on the cell surface.  PMA-

induced losses from the cell surface were completely blocked by pre-treating cells 

with 1 µM BIM (Fig. 3.7), demonstrating that PMA-induced losses were PKC-

mediated.  In order to test whether KCNK3 traffics via the endocytic pathway we 

next labeled endosomes with Alexa594-transferrin (Tf) during PMA-induced KCNK3 
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FIGURE 3.5: Production and Purification of an Antibody that Specifically 
Recognizes KCNK3: A C-terminal-directed rabbit anti-KCNK3 antibody 
specifically recognizes KCNK3 in cultured cerebellar granule neurons and 
transfected HEK cells. (A) Antigen purification and immunoreactivity graph.  (●; 
dotted line) A280 absorbance from antibody affinity purification. (○) A450 
absorbance from ELISA measuring immunoreactivity.  Fractions: Flowthrough (1-
4), column washes (5-15), and competitive antigen elution (16-24).  (B) Antibody 
immunoreactivity following antigen affinity chromatography.  Sera EC50 = 1.01; 
Purified antibody EC50 = 0.99.  (C) The indicated tissues were harvested from P6 
rat pups, lysed, and resolved by SDS-PAGE.  Immunoblots were probed with anti-
KCNK3 sera or affinity purified anti-KCNK3 antibody. The arrow indicates KCNK3 
monomer.  (D) HEK cells were transfected with either vector (−) or HA-KCNK3 (+), 
cell lysates were resolved by SDS-PAGE, and immunoblots were probed with anti-
HA and rabbit anti-KCNK3 antibodies, in parallel. 
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FIGURE 3.6: PKC Activation Reduces KCNK3 Surface Levels in Cerebellar 
Granule Neurons: Immunoblots with rabbit anti-KCNK3 antibody reveal specific 
KCNK3.  Cell surface biotinylation. CGNs were treated or not treated with 1 μM 
PMA for 30 min at 37 °C, and KCNK3 surface levels were measured by 
biotinylation as described in Methods.  Top: representative immunoblot showing 
total and surface KCNK3 protein. Bottom: average KCNK3 surface levels 
expressed as a percentage of total KCNK3 ± S.E.M. *p < 0.04, significantly 
different from vehicle control; Student's t test; n = 7. 
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internalization.  As seen in Figure 3.7, KCNK3 internalized into a subset of Tf-

positive endosomes, suggesting that KCNK3 traffics via the endosomal pathway 

and, specifically, through Tf-positive endosomes.  Following internalization, 

proteins can divert to either degradative or recycling endocytic pathways.  To test 

whether KCNK3 is subject to degradation following internalization, we monitored 

KCNK3 stability over time ± 1 µM PMA, following pretreatment with the 

translational inhibitor cyclohexamide.  KCNK3 was highly stable over a 60 minute 

period, and PMA treatment had no effect on total KCNK3 protein levels (Fig. 3.8), 

suggesting that following internalization KCNK3 traffics through a non-degradative 

pathway.  Taken together, these data indicate that KCNK3 undergoes PKC-

stimulated, non-degradative endocytosis. 

 

Group I mGluR activation induces KCNK3 downregulation and 

internalization 

To investigate physiologically relevant stimuli that may regulate KCNK3 trafficking, 

we tested whether activating Group I mGluRs would alter KCNK3 function in 

CGNs.  Group I mGluRs couple to Gq activation, which ultimately activates PKC, 

and are abundantly expressed in CGNs (Prezeau et al., 1994).  Moreover, Group 

I mGluR activation has been shown to decrease acid-sensitive currents in motor 

neurons (Talley, Lei, Sirois, & Bayliss, 2000).  CGNs were treated with the Group 

I mGluR agonist dihydroxy-phenyl-glycine (DHPG, 1 µM) during whole cell 

recording.  We observed a rapid and significant reduction in KCNK3-associated  
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FIGURE 3.7: KCNK3 Internalization Specifically Requires PKC Activation and 
Traffics to Transferrin-positive Endosomes:  HEK cells were co-transfected 
with KCNK3 and the cell surface marker IL2αR (Tac) and were pretreated with or 
without 1 μM BIM, followed by treatment with or without 1 μM PMA for 30 min at 
37°C. Surface Tac was labeled on non-permeabilized cells with αTac antibody 
(green). Cells were then permeabilized and stained for KCNK3 (red). Images were 
captured and analyzed as described under Methods. Scale bars, 10 μm. (A) 
representative images; (B) image quantification. Data are expressed as 
percentage of vehicle surface levels ± S.E.M. (error bars). *p<0.05, significantly 
different from vehicle, BIM, and BIM/PMA; one-way analysis of variance with 
Tukey's multiple comparison test; n = 12. (C) Cells were treated or not treated with 
1 μM PMA for 30 min at 37°C in the presence of Alexa594-Tf (green), fixed, 
permeabilized, and stained for KCNK3 (red). Scale bars, 10 μm. Enlarged view, 
scale bar, 1 μm. 
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FIGURE 3.8: KCNK3 is Not Degraded Following PKC-Mediated 
Internalization:  HEK cells transfected with HA-KCNK3 were treated or not treated 
10 μM cycloheximide for the indicated times at 37°C, and KCNK3 surface levels 
were measured by surface biotinylation as described in Methods. Top: 
representative immunoblot showing total and surface KCNK3 protein detected with 
anti-HA antibody. Bottom: average data expressed as KCNK3 surface levels 
normalized to t=0 ± S.E.M. (error bars). 
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current in response to DHPG treatment, which was comparable in magnitude to 

that observed following PMA treatment (56 ± 10% current remaining; n = 8; p<0.01) 

(Fig 3.9).  To determine whether DHPG-mediated losses in current were PKC-

dependent, CGNs were pretreated with 1µM BIM prior to DHPG application.  BIM 

alone had no effect on acid-sensitive currents (Fig. 3.9), but completely blocked 

DHPG-mediated loss in KCNK3 currents.  These results indicate that KCNK3 

undergoes PKC-mediated functional downregulation in response to Group I 

mGluR activation. 

 

We next asked whether Group I mGluR activation stimulates KCNK3 

internalization and, if so, whether PKC activation was required.  HEK cells were 

co-transfected with KCNK3 and either GFP alone or with mGluR5 in a bicistronic 

expression vector.  Treatment with 1 µM DHPG for 20 min at 37°C, had no effect 

on KCNK3 surface levels in cells expressing KCNK3 and GFP (p= 0.89; Student’s 

t test; n=6) (Fig. 3.10).  In contrast, when KCNK3 was co-expressed with mGluR5, 

1µM DHPG treatment decreased KCNK3 surface levels to 70.7 ± 5.0% of KCNK3 

levels in vehicle-treated cells. (Fig. 3.10).  mGluR5-mediated KCNK3 

internalization required PKC activation, as pretreatment with 1µM BIM completely 

blocked mGluR5-mediated KCNK3 surface losses (Fig. 3.10). Taken together, our 

results indicate that KCNK3 is subject to acute internalization in response to PKC 

activation, and that Group I mGluR activation can trigger KCNK3 endocytosis. 
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FIGURE 3.9: KCNK3 Currents Are Specifically Downregulated by mGluR1/5 
Agonists in Cerebellar Granule Neurons:  Whole-cell recordings of K+ leak 
current in the presence of 0.5 μM TTX and 10 mM TEA (7–14 days in vitro) were 
tested for sensitivity to the group I mGluR agonist DHPG. (A) selected sweeps at 
time 0 min (black line) and 15 min (red line). Left: representative traces (CON) 
show leak current amplitude with no additions. Right: representative traces with 
and without 1 μM DHPG. (B) average percentage of current remaining after 15 min 
of no additions (CON) or DHPG (n = 6–8/group). Cells exposed to DHPG exhibited 
significant inhibition of leak current compared with no addition (**, p < 0.02; two-
way Student's t test for two means). (C) Left: cells were preincubated for at least 8 
min in 0.005% DMSO (Veh) while recording whole-cell leak currents. 
Representative current traces versus time exhibit substantial decreases in 
amplitude after 15 min of 1 μM DHPG compared with time 0 min (Veh). Right: 
representative traces document that preincubating cells with 1 μM BIM for at least 
8 min while in the whole-cell configuration minimized leak current inhibition by 
DHPG. (D) average percentage of current remaining after 15 min of DHPG 
following preincubation with either 1 μM BIM (n = 3) or DMSO (Veh; n = 4). *p < 
0.05, compared with the presence of BIM using a two-way Student's t test for two 
means). (E) time course of the average decrease in normalized leak currents over 
15 min. DHPG was applied at time 0 min (n = 3–4/data point) in the presence of 
DMSO (○) or BIM (●). Error bars, S.E.M. 
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FIGURE 3.10: KCNK3 Internalizes in Response to mGluR1/5 Agonists via a 
PKC-specific Mechanism:  (A) Cell surface biotinylation. Cells were treated or 
not treated with 1 μM DHPG for 20 min at 37°C, and KCNK3 surface levels were 
measured as described under Methods. Top: representative immunoblot showing 
total and surface KCNK3 protein. Bottom: average KCNK3 surface levels 
expressed as percentage of vehicle ± S.E.M. (error bars). *p < 0.03, significantly 
different from vehicle control; Student's t test; n = 6. (B) cells were treated or not 
treated with 1 μM BIM for 20 min at 37 °C followed by treatment with or without 1 
μM DHPG for 20 min at 37°C, and KCNK3 surface levels were measured as 
described under Methods.  Top: representative immunoblot showing KCNK3 total 
and surface protein. Bottom: average KCNK3 surface levels expressed as 
percentage of vehicle ± S.E.M. *p < 0.03, significantly different from vehicle control; 
Student's t test; n = 6. 
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KCNK3 carboxy terminal residues are both necessary and sufficient for PKC-

regulated KCNK3 internalization 

We next sought to identify the molecular determinants of PKC-mediated KCNK3 

internalization. We previously reported that the dopamine transporter (DAT) 

encodes a novel carboxy terminal endocytic signal, FREKLAYAIA, that regulates 

both constitutive internalization, as well as trafficking in response to PKC activation 

(Boudanova et al., 2008b; Holton et al., 2005).  In particular, the REK residues 

have been shown by our laboratory to be sensitive to PKC activation.  The tandem 

pore potassium channel KCNK3 (TASK-1) encodes a homologous sequence, 

SREKLQYSIP, in carboxy terminal residues 334-343, which is absent in the 

KCNK3 homolog, KCNK9 (Fig. 3.11).  We used a gain-of-function assay to ask 

whether the KCNK3 carboxy terminus was sufficient to drive internalization of an 

endocytic-defective reporter protein, Tac.  As seen in Figure 3.10, Tac is highly 

expressed at the cell surface under trafficking restrictive conditions (4°C), and 

remains at the surface in trafficking permissive conditions (37°C).  In contrast, a 

Tac fusion protein expressing the KCNK3 carboxy terminus robustly internalized 

at 37°C.  Internalization was specific to the KCNK3 carboxy terminus, as a Tac-

KCNK9 fusion protein failed to internalize (Fig. 3.11).  These results indicate that 

the KCNK3 carboxy terminus encodes residues sufficient to drive endocytosis. 

 

Given the homology between the DAT endocytic signal with the SREKLQYSIP 

motif in KCNK3, we next tested whether residues involved in PKC-regulated DAT   
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FIGURE 3.11: The KCNK3 Carboxy Terminus Contains an Endocytic Signal:  
PC12 were transfected with the indicated constructs and assayed 24–48 h post-
transfection. (A) Sequence alignment between DAT and the potassium channel 
KCNK3 and KCNK9 C-terminal subregions. (B) Immunocytochemistry. Intact cells 
were incubated in anti-Tac antibody at 4°C, shifted to 37°C for 30 min, and then 
fixed and imaged as described under Methods. 
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internalization were also necessary for KCNK3 downregulation and internalization.  

To test this possibility, we mutated KCNK3 residues 335-337 (REK) to alanines 

and tested the capacity of this mutant to undergo PKC-mediated downregulation 

and internalization.  The KCNK3 335-337(3A) mutant expressed and exhibited 

whole cell currents comparable to those measured for wildtype channel (Fig. 3.12).  

As observed previously, treatment with 1µM PMA resulted in a significant, time-

dependent decrease in wildtype KCNK3 currents (Fig. 3.12).  In contrast, KCNK3 

335-337(3A) was completely insensitive to PMA treatment, and no current loss 

was observed (Fig. 3.12).  We next investigated whether abolished PKC-mediated 

KCNK3 335-337(3A) current losses were due to perturbation of KCNK3 

internalization.  Cellular imaging revealed that KCNK3 335-337(3A) expressed at 

the cell surface, but failed to internalize following PKC activation (Fig. 3.12).  We 

next used surface biotinylation to compare wildtype and KCNK3 335-337(3A) 

surface levels ±PKC activation.  As shown in Figure 3.12, we confirmed that 

mutating KCNK3 residues 335–337 significantly blocked PKC-mediated KCNK3 

surface losses (wild type: 63.7 ± 7.5% of vehicle levels; REK/AAA: 114.4 ± 12.4% 

of vehicle levels, p<0.02, Student's t test, n = 4), demonstrating that these three 

residues are key determinants of PKC-mediated KCNK3 functional down-

regulation and internalization. 

  



67 
 

 
 
FIGURE 3.12: Residues 335-337 in the KCNK3 Carboxy Terminus are 
Required for PKC-mediated Functional and Surface Losses: HEK cells were 
transfected with the indicated constructs and assayed 24–48 h post-transfection.  
The REK/AAA mutation prevents PMA-induced inhibition of KCNK3 current. (A) 
Left: representative traces of KCNK3 current recorded from HEK293T cells 
expressing either WT or REK/AAA mutant channels recorded before (black) and 
after (red) 1 μM PMA treatment (40-mV test pulse).  Middle: average normalized 
time course of WT (open circles; n= 3) or REK/AAA (filled circles; n= 5) currents 
recorded during a 15-min exposure to 1 μM PMA.  Right: mean ± S.E.M. of current 
remaining after a 15-min exposure to PMA (p= 0.007).  (B) Immunocytochemistry. 
Cells were treated or not treated with 1 μM PMA for 30 min at 37°C, fixed, stained 
for KCNK3, and imaged as described under Methods.  Scale bars, 10 μm.  (D) cell 
surface biotinylation. Cells were treated or not treated with 1 μM PMA for 15 min 
at 37°C, and KCNK3 surface levels were measured as described under Methods.  
Average KCNK3 surface levels following PMA treatment are expressed as 
percentage of vehicle ± S.E.M. (error bars). *p< 0.02, significantly different from 
WT; Student's t-test; n= 4. 
  



68 
 

PKC-mediated KCNK3 endocytosis requires 14-3-3 

Previous work from our laboratory demonstrated that PKC-induced DAT trafficking 

relies on a saturable factor (Loder & Melikian, 2003).  In that study, increased DAT 

expression levels correlated with losses in PKC-induced transporter 

internalization.  To test whether PKC-stimulated KCNK3 internalization also relied 

upon a saturable factor, we performed overexpression experiments in transiently 

transfected HEK cells in which 5-fold more KCNK3 cDNA was used for 

transfections, which translated into a 10-fold increase in KCNK3 protein expression 

(Fig 3.13).  Under vehicle conditions, KCNK3 was readily apparent at the cell 

surface (Fig. 3.13).  However, overexpression completely abolished PKC-

mediated KCNK3 internalization (Fig 3.13).  We next tested whether co-expression 

of a co-factor could rescue KCNK3 in an overexpression system.  The 

phosphoserine binding protein 14-3-3 is reported to facilitate KCNK3 exit from the 

ER and to interact with the KCNK3 distal carboxy terminus.  Importantly, KCNK3 

encodes a canonical (R/K)XX(Y/F)pSXP 14-3-3 binding site in the SREKLQYSIP 

region (SREKLQYSIP), prompting us to ask whether 14-3-3 may also play a role 

in PKC-mediated KCNK3 endocytosis.  We tested this possibility by co-

overexpressing KCNK3 and 14-3-3 and assessing whether PKC-mediated 

KCNK3 internalization could be rescued by 14-3-3. Co-expression of 14-3-3 

completely rescued the ability of KCNK3 to internalize in response to PKC 

activation in the overexpression system (Fig. 3.13).  This suggests that 14-3-3  
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FIGURE 3.13: The Phosphoserine Binding Protein 14-3-3β is a Saturable 
Factor Required for PKC-mediated KCNK3 Internalization:  HEK cells were 
transfected with 5X the normal HA-KCNK3 with or without 14-3-3β-GFP and 
assayed for trafficking 48 h post-transfection.  Channel overexpression blocked 
PKC-mediated KCNK3 trafficking and 14-3-3 β co-expression rescued the 
trafficking blockade.  Immunocytochemistry: Cells were treated or not treated with 
1 μM PMA for 30 min at 37°C, fixed, stained for KCNK3 (red), and imaged as 
described under Methods.  GFP expression indicates co-transfection (green). 
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may play a role in regulated endocytic trafficking in addition to its known role as an 

ER chaperone.   

 

Using a knockdown approach to limit 14-3-3 availability, we further tested the 

whether 14-3-3 was required for PKC-mediated KCNK3 surface losses.  Three 

shRNAs targeting human 14-3-3 were tested for their ability to decrease 14-3-3 

expression levels.  As seen in Figure 3.14, 14-3-3 shRNAs 6, 7, and 8 significantly 

decreased 14-3-3 levels 72 hours post-transfection, as compared to vector-

transfected controls, whereas a scrambled shRNA had no significant effect on 14-

3-3 levels.  Significant 14-3-3 knockdowns were also achieved 48 hours post 

transfection (Fig. 3.14).  HEK cells were co-transfected with KCNK3 with each of 

these shRNAs, and their ability to undergo PKC-stimulated internalization was 

assessed by cellular imaging following treatment with 1 µM PMA for 30 minutes at 

37°C.  Under basal conditions, KCNK3 prominently localized to the cell surface, 

both in the presence of control or 14-3-3-directed shRNAs.  PKC activation 

resulted in robust KCNK3 redistribution to intracellular puncta in cells co-

expressing either GFP alone or GFP and scrambled shRNA (Fig. 3.14).  In 

contrast, KCNK3 failed to redistribute to intracellular puncta in cells co-expressing 

any of the three 14-3-3-directed shRNAs (Fig. 3.14).  We additionally tested 

whether 14-3-3 was required for PKC-mediated functional downregulation of 

KCNK3.  Cells were co-transfected with either GFP, scrambled shRNA or 14-3-3 

shRNA#7 and whole cell currents were recorded.  Application of 1 µM PMA   
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FIGURE 3.14: The Phosphoserine Binding Protein 14-3-3β is Required for 
PKC-mediated KCNK3 Functional and Surface Losses:  HEK cells were 
transfected with the indicated constructs and assayed 48 h (A) or 72 h (B and C) 
post-transfection. (A) shRNA-mediated 14-3-3β knockdown. Average 14-3-3β 
protein levels are expressed as percentage of control levels ± S.E.M. *p < 0.004, 
significantly different from GFP-transfected controls; one-way analysis of variance 
with Dunnett's post hoc analysis; n=4. Inset, representative immunoblot probed for 
14-3-3β and actin (loading control). (B) Immunocytochemistry. Cells were treated 
or not treated with 1 μM PMA for 30 min at 37 °C, fixed, and stained for KCNK3 
(red). GFP expression indicates shRNA co-transfection (green). Images were 
captured and analyzed as described under Methods.  Scale bars, 10 μm. (C) PKC-
mediated inhibition of KCNK3 current requires 14-3-3β. Top: representative whole-
cell current traces from HEK293T cells co-expressing KCNK3 with either GFP, 
shRNA 7, or scrambled shRNA recorded before (black) and after (red) 1 μM PMA 
treatment (40-mV test pulse). Average normalized time course (middle) and mean 
± S.E.M. (error bars) of current remaining (bottom) after 15 min of PMA treatment 
are shown; n=9 for GFP control; n=4 for scrambled and #7 shRNAs. *p < .02, 
significantly different from wildtype, , one-way ANOVA with Bonferroni's multiple 
comparison test. 
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resulted in a time-dependent decrease in KCNK3 currents in cells co-expressing 

either GFP or scrambled shRNA (Fig. 3.14).  However, 14-3-3-directed shRNA#7 

completely blocked the PMA-induced downregulation of KCNK3 (Fig. 3.14).  Taken 

together, these results indicate that 14-3-3 plays a requisite role in PKC-mediated 

KCNK3 internalization, and implicates 14-3-3 in regulated endocytosis, in addition 

to its previously defined role in ER export. 

 

DISCUSSION 

Membrane protein trafficking is a central mechanism controlling neuronal 

excitability and plasticity in the brain. Regulated internalization of ligand-gated ion 

channels, such as AMPA (Bredt & Nicoll, 2003), NMDA (Perez-Otano & Ehlers, 

2005) and GABAA receptors (Kittler, McAinsh, & Moss, 2002), is a key factor in 

synaptic plasticity. Recent studies indicate that endocytic trafficking acutely 

regulates several different types of K+ channels, including KATP (Manna et al., 

2010) and KCa.2.1 (Correa, Muller, Collingridge, & Marrion, 2009), suggesting that 

regulated membrane trafficking is a means to rapidly control K+ channel density. 

Indeed, a recent study demonstrated that TWIK1 undergoes regulated 

internalization via a classic dileucine endocytic signal (Feliciangeli et al., 2010). In 

the current study, our data reveal that dynamic endocytic trafficking regulates acid-

sensitive K+ leak channel surface expression. This finding suggests a role for 

KCNK3 to uniquely contribute to synaptic plasticity. KCNK3 internalization would 

be predicted to depolarize the membrane potential, which would inactivate Nav 
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channels, causing the membrane to reach threshold more slowly, fail in firing, 

and/or spike at a slower frequency of bursting. Alternatively, membrane 

depolarization mediated by regulated KCNK3 trafficking could relieve Mg2+ block 

of NMDA receptors, increasing the probability of NMDA receptor firing and 

downstream plasticity events in response to an excitatory postsynaptic potential. 

Thus, in combination with established ligand-gated ion channel trafficking, acutely 

regulating KCNK3 surface levels would give rise to a multimodal, context-

dependent plasticity of membrane excitability that could last for many minutes. 

 

Prior studies using phorbol esters (Lopes et al., 2000), Group I mGluR agonists 

(Talley et al., 2000), and M1/M3 muscarinic agonists (Meuth et al., 2003) 

demonstrated a PKC-mediated functional down-regulation of KCNK3 and/or acid-

sensitive currents, respectively. However, the mechanisms underlying this down-

regulation have not been well defined. We observed significant loss of KCNK3 

activity in response to PMA treatment over a 15-min time course in both CGNs and 

HEK cells, which is consistent with the time course for endocytosis. We used 

surface biotinylation and cellular imaging to directly test whether PKC-stimulated 

KCNK3 current losses were due to internalization. We observed significant PKC-

dependent losses in surface KCNK3 following PMA treatment both in HEK cells 

and CGNs, which were completely blocked by the PKC inhibitor BIM. The 

magnitude of KCNK3 surface losses paralleled PKC-mediated KCNK3 currents 

losses, consistent with endocytosis as the primary mechanism responsible for 
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PKC-mediated KCNK3 inhibition. Moreover, we observed losses in acid-sensitive 

leak currents and KCNK3 internalization via activation of endogenously expressed 

Group I mGluRs, consistent with previous reports demonstrating Group I mGluR-

mediated KCNK3 down-regulation Previous studies reported rapid KCNK3 activity 

losses in response to direct Gq activation (X. Chen et al., 2006) or via glutamatergic 

signaling (Chemin et al., 2003) in heterologous expression systems and CGNs, 

whereas we observed a slower time course of KCNK3 inhibition. These differences 

may be due to direct Gq activation in a heterologous expression system versus 

indirect via Gq coupling in our experiments. This difference may also reflect the 

much higher DHPG concentrations used in previous studies, compared with those 

used in our studies (10 and 100 μM versus 1 μM in our study). Indeed, decreased 

cAMP production in response to high DHPG concentrations has been reported, 

which is likely mediated by Group III mGluR activation. It is not known whether 

PKC activation results in KCNK3 phosphorylation, either directly or indirectly. A 

recent report demonstrated that endothelin-1 down-regulates KCNK3 and leads to 

PKC-dependent KCNK3 phosphorylation in pulmonary artery smooth muscle cells 

(Tang et al., 2009). However, it should be noted that these phosphorylation studies 

relied upon the commercially available anti-KCNK3 antibody that, in our hands, 

does not recognize a KNCK3-specific band. It is interesting to note that under basal 

conditions, KNCK3 surface expression in primary CGN cultures was <6% total 

KCNK3 protein, which differed markedly from observed surface levels in 

transfected HEK cells. Nevertheless, these values are consistent with those 
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reported for other channels in both primary cultured neurons (Gross, Yao, Pong, 

Jeromin, & Bassell, 2011) and acute brain slices (D. Y. Kim, Gersbacher, 

Inquimbert, & Kovacs, 2011). Low channel surface density (as a fraction of the 

total available channel) may reflect large intracellular endocytic pools tightly 

regulated by neuron-specific mechanisms. Alternatively, they may reflect a high 

degree of turnover in neuronal systems, with large, forward trafficking protein pools 

to maintain steady state channel levels in the membrane. 

 

Following internalization from the cell surface, proteins can diverge to either 

recycling or degradative endocytic pathways (Bonifacino & Traub, 2003). For 

example, EGFR (Huang, Kirkpatrick, Jiang, Gygi, & Sorkin, 2006) and δ-opioid 

receptors (von Zastrow, 2010) enter late endosomes and are degraded upon 

internalization, whereas the TfR is primarily recycled. We observed KCNK3 co-

localization in an early endosome/TfR-positive vesicle population following 

internalization and detected no losses in total KCNK3 protein following PKC 

stimulation. These results suggest that internalized KCNK3 is likely to enter a 

recycling, rather than a degradative, pathway. 

 

Previous studies from our laboratory investigating mechanisms responsible for 

PKC-stimulated DAT trafficking revealed a novel endocytic regulatory domain 

(FREKLAYAIA) encoded in the DAT C-terminus that is highly conserved across 

the SLC6 transporter gene family and is the locus for an endocytic braking 
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mechanism (Boudanova et al., 2008b). Sequence comparison across the 

mammalian genome revealed that KCNK3 is the only membrane protein outside 

of the SLC6 transporter gene family to encode a homologous endocytic signal. 

Gain-of-function assays revealed that the KCNK3 C terminus is sufficient for 

endocytosis, and that the REK residues are absolutely required for PKC-mediated 

KCNK3 down-regulation and internalization. These results offer further insight into 

the previous results of Talley and Bayliss (Talley & Bayliss, 2002), in which KCNK3 

C-terminal deletions that encompassed the 335–344 region abolished TRH 

receptor-mediated KCNK3 inhibition, which also occurs via Gq activation. It is 

currently not clear how these charged residues function to target either DAT or 

KCNK3 to the endocytic machinery. Answers to this question await future studies. 

 

PKC-stimulated KCNK3 endocytosis absolutely required the phosphoserine-

binding protein 14-3-3β. 14-3-3β belongs to the family of 14-3-3 phosphoserine-

binding proteins, which are widely expressed in the brain and periphery and exist 

as homo- or heterodimers (Obsilova, Silhan, Boura, Teisinger, & Obsil, 2008). 14-

3-3 binds target proteins primarily at either RSXpSXP or (R/K)XφX(pS/pT)XP 

motifs (Yaffe et al., 1997), and several proteins encode multiple 14-3-3 binding 

sites (Tzivion, Luo, & Avruch, 2000). 14-3-3 binding can 1) induce conformation 

changes that facilitate catalytic activity or protein-protein interactions, 2) mask 

domains to prevent protein-protein interactions, or 3) facilitate protein co-

localization. Previous work demonstrated that 14-3-3β binds to a non-canonical 
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14-3-3 binding motif in the distal KCNK3 C terminus and is required for KCNK3 

egress from the ER (Zuzarte et al., 2009). In addition, other 14-3-3 isoforms can 

interact with the KCNK3 C-terminus and promote increased KCNK3 surface 

density (Rajan et al., 2002); however, it is not clear whether the increased KCNK3 

surface expression is due to ER egress or endocytic trafficking. Our results indicate 

that 14-3-3β is also necessary for PKC-mediated KNCK3 internalization. We noted 

that a ∼50% 14-3-3β knockdown did not markedly disrupt KCNK3 surface 

targeting, whereas PKC-mediated endocytosis was abolished. This may suggest 

that forward trafficking from the ER is less sensitive to 14-3-3β levels than KCNK3 

surface populations. Alternatively, other accessory proteins working in consort with 

14-3-3β at the cell surface may be expressed in limited quantities and are thereby 

more sensitive to losses in 14-3-3β. Interestingly, the epithelial sodium channel, 

ENaC, constitutively internalizes in a 14-3-3- and Nedd4-2-dependent manner, 

and aldosterone increases ENaC surface expression via blocking 14-3-3-

dependent ENaC internalization and degradation (Ichimura et al., 2005). The 

mechanism by which 14-3-3β promotes KCNK3 internalization is not known; nor 

is it clear whether a mechanism distinct from 14-3-3β-dependent ER exit is at play. 

It is interesting to note that the SREKLQYSIP region is similar to the mode II 14-3-

3β binding motif (R/K)XφX(pS/pT)XP. Although we do not currently know whether 

14-3-3β controls KCNK3 internalization directly or indirectly, this site is a candidate 

locus for potential 14-3-3β/KCNK3 endocytic interactions, distinct from the 

identified sequence controlling KCNK3 egress from the ER. Future studies 
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exploring the possibility of this sequence as a bona fide 14-3-3β binding site should 

be illuminating. 
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CHAPTER IV 

 

Dopamine Transporter Endocytic Trafficking: Differential Dependence on 

Dynamin and the Actin Cytoskeleton 

 

INTRODUCTION 

The plasma membrane dopamine transporter (DAT) is expressed exclusively in 

dopaminergic neurons in the central nervous system and functions to transport 

extracellular dopamine (DA) back into these neurons, thus providing temporal and 

spatial regulation of DA neurotransmission. Mutations in DAT have been reported 

in neurological diseases, such as attention deficit hyperactivity disorder (ADHD), 

Parkinson’s disease and schizophrenia.  The psychostimulants amphetamine 

(AMPH) (Horn et al., 1971), cocaine (Calligaro & Eldefrawi, 1987), and 

methylphenidate (Schweri et al., 1985) all competitively inhibit DAT, and DAT 

binding to cocaine is requisite for the rewarding properties of this drug (R. Chen et 

al., 2006; Thomsen et al., 2009).  DAT surface expression determines the DA 

clearance efficiency and is acutely regulated by endocytic trafficking (Buckley, 

Melikian, Provoda, & Waring, 2000).  DAT undergoes constitutive endocytosis and 

recycling (Melikian & Buckley, 1999; Sorkina et al., 2005).  Importantly, DAT 

endocytic trafficking is acutely modulated by PKC activation and exposure to 

AMPH (Saunders et al., 2000), as well as trafficking regulated by cell signaling 



81 
 

pathways, as well as by DAT substrates (AMPH) and inhibitors (cocaine) (Daws et 

al., 2002). 

 

The molecular mechanism regulating DAT endocytosis and recycling is still under 

investigation, and previous studies have reported conflicting results. Previous work 

has shown that constitutive and PKC-mediated DAT endocytosis require the 

classical clathrin-mediated endocytic molecules clathrin and dynamin (Daniels & 

Amara, 1999; Eriksen et al., 2009; Saunders et al., 2000). Conversely, it has been 

shown that the lipid-raft associated protein flotillin-1 is required for PKC-mediated 

DAT internalization, in a clathrin-independent process (Cremona et al., 2011).  

These studies relied upon chronic shRNA-mediated depletion of endocytic 

molecules or co-expression of dominant negative mutant molecules and were 

primarily carried out in heterologous expression systems.  Chronic trafficking 

protein depletion over several days may act to perturb all membrane trafficking, 

which could mask or overstate the necessity for DAT trafficking.  Moreover, DAT 

is expressed in a small subset of neurons and heterologous expression systems 

may not contain the full complement of proteins required for physiological DAT 

regulation.  Here, we test DAT’s trafficking dependence on dynamin in acute 

mouse striatal slices using pharmacological dynamin inhibitors in order to assess 

trafficking requirements in a physiologically relevant and minimally perturbed 

milieu.  Our results demonstrate a differential dependence on dynamin for 

constitutive and PKC-regulated DAT endocytic trafficking. 
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RESULTS 

DAT is functionally downregulated by dynamin inhibition 

Previous studies reported dynamin-dependent DAT trafficking in heterologous 

expression systems and cultured dopaminergic neurons (Daniels & Amara, 1999; 

Eriksen et al., 2009).  These studies depended on shRNA-mediated depletion or 

co-expression of dominant negative mutant trafficking proteins, which block 

cellular membrane trafficking for several days.  We took advantage of a newly 

developed dynamin inhibitor, dynasore, to acutely perturb dynamin activity and test 

whether DAT trafficking is dynamin-dependent. 

 

We first tested whether dynamin inhibition altered dopamine transporter activity 

and ability to undergo PKC-mediated downregulation. DAT-PC12 cells were 

pretreated with either ±80 µM dynasore, 30 min, 37°C, followed by treatment ±1 

µM PMA, 30 min, 37°C to activate PKC, and [3H]DA uptake was assessed.  

Dynamin inhibition significantly decreased DAT activity to 62.9 ± 7.7% of control 

levels (Fig. 4.1).  Losses in DAT activity were not due to disruption of the 

transmembrane sodium gradient, as Na+-dependent alanine transport was 

unaffected by dynasore treatment (Fig. 4.1).  PMA treatment alone significantly 

decreased DAT activity (33.2% compared to Veh) and dynasore pre-treatment did 

not block PKC-stimulated DAT downregulation (33.2% PMA vs 23.1% Dyn/PMA) 

(Fig. 4.1).  
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FIGURE 4.1: Dynamin Inhibition Reduces DAT Activity but Does Not Block 
PKC-Mediated DAT Downregulation in PC12 Cells: Uptake assays following 
dynasore treatment in DAT-PC12 cells. DAT-PC12 cells were treated ± 80 μM 
dynasore (Dyn), 30 min, 37°C followed by ± 1 μM PMA, 30 min, 37°C and DAT 
function and surface levels were measured by [3H]dopamine uptake assay as 
described in Methods. (A) Data are expressed as % of vehicle specific DA uptake 
±S.E.M. *p<0.002, (one way ANOVA with Bonferroni’s post-hoc test, n=9 (Veh and 
Dynasore) or n=6 (PMA and Dynasore/PMA). (B) Data are expressed as % of 
vehicle specific alanine uptake ±S.E.M, p=0.45 (Student’s t test, n=3). 
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Dynamin inhibition decreases DAT surface levels 

To test whether dynasore-mediated losses in DAT function were due to losses in 

DAT surface protein, we treated DAT-PC12 cells ±80 µM dynasore, 30 min, 37°C 

and measured DAT surface levels using surface biotinylation.  As can be seen in 

Figure 4.2, at steady state, there was 25.5 ± 1.0% of DAT on the surface.  

Dynasore treatment significantly reduced DAT surface levels to 14.5 ± 2.9% (Fig 

4.2).  To test for dynasore-mediated off-target effects we used dynole 34-2, which 

has a higher affinity (10 µM vs 80 µM) and acts allosterically to inhibit dynamin, 

whereas dynasore is a competitive inhibitor at dynamin’s GTP binding site.  As 

dynole 34-2 has not been extensively characterized, we tested if this inhibitor 

effectively blocked transferrin receptor (TfR) internalization, a dynamin-dependent 

endocytic event.  We treated PC12 cells with 10 µM dynole for 30 min at 37°C and 

measured fluorescent transferrin internalization (a marker for TfR endocytosis).  In 

vehicle-treated cells, transferrin was internalized and found in internal puncta, 

which is indicative of normal endocytosis.  However, in dynole treated cells there 

was no visible puncta, consistent with a TfR endocytic blockade (Fig. 4.3).  To 

measure DAT surface levels, we performed surface biotinylation on DAT-PC12 

cells. Following 10 μM dynole treatment, DAT surface levels significantly 

decreased to 15.8 ± 0.9%.  Additionally, we determined if PKC-mediated surface 

losses were dynamin dependent.  Following 1 µM PMA treatment for 30 minutes 

at 37°C, DAT surface levels were significantly decreased from Veh (10.3 ± 1.3% 

compared to 25.5 ± 1.0%), as has been shown previously (Fig. 4.2).  Moreover,   
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FIGURE 4.2: PKC-mediated DAT Internalization is Dynamin Independent in 
DAT-PC12 Cells: Surface biotinylations following dynasore treatment in DAT 
PC12 cells.  DAT-PC12 cells were treated ± 80 μM dynasore or 10 μM dynole for 
30 min at 37°C followed by ± 1 μM PMA for 30 minutes at 37°C and DAT and 
surface levels were measured by and surface biotinylation, as described in 
Methods. Left: Surface biotinylation - representative immunoblot. Right: Averaged 
data. Data are expressed as %vehicle surface DAT levels ± S.E.M. *p<0.001, (one 
way ANOVA with Bonferonni’s post-hoc test, n=3-4). 
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FIGURE 4.3: Dynole treatment blocks transferrin receptor internalization: 
DAT-PC12 and DAT-SK-N-MC were treated with 10 μM dynole for 30 minutes at 
37°C (top and middle rows) or treated with 10 μM dynole for 20 minutes at 37°C 
(bottom row) followed by incubation at 4°C for 60 minutes and transferrin receptor 
internalization was measured and visualized as described in Methods. 
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both dynasore and dynole treatment did not block the PKC-mediated DAT 

internalization (Dynole: 15.8 ± 0.8% compared to 5.0 ± 1.0%; Dynasore: 14.5 ± 

2.9% compared 4.5 ± 0.5%) (Fig 4.2).  These data suggest that, in PC12 cells, 

PKC-mediated DAT internalization is dynamin–independent. 

 

To test whether DAT surface losses in response to dynamin inhibition were 

dependent on cellular context, we also tested the effect of dynasore in the 

dopaminergic neuroblastoma cell line SK-N-MC, stably transfected with DAT 

(DAT-SK-N-MC).  Similar to results observed in DAT-PC12 cells, 80 µM dynasore 

treatment, 30 min, 37°C significantly decreased surface DAT to 77.0 ± 5.6% control 

levels (Fig. 4.4). To assure that effects on DAT surface levels were not due to 

possible off-target dynasore effects, we also tested dynole 34-2, and its inactive 

analog dynole 31-2.  Similar to our results with dynasore, 10 µM dynole treatment, 

30 min, 37°C significantly decreased DAT surface levels to 68.0 ± 6.8% of vehicle-

treated cells, whereas dynole 31-2 had no significant effect on DAT surface levels 

(97.6 ± 8.4% of control; (Fig 4.4).  To test if PKC-mediated surface losses were 

dynamin dependent, DAT-SK-N-MC cells were pretreated ± 10 µM dynole, 30 min, 

37°C followed by PKC activation with 1µM PMA, 30 min, 37°C.  PKC activation 

induced a significant decrease in DAT surface levels following vehicle pretreatment 

to 78.6 ± 6.0% of control levels. In contrast, dynole pretreatment completely 

blocked any additional PKC-mediate DAT surface losses (68.0 ± 6.8% versus 69.8 

± 3.8%; Fig. 4.4).  In order to assess cell permeability to the biotinylation reagent,   
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FIGURE 4.4: Dynamin Inhibition Reduces DAT Surface Levels in DAT SK-N-
MC Cells: Surface biotinylation studies: (A-D) DAT-SK-N-MC cells were treated ± 
10 μM dynole for 30 minutes at 37°C followed by treatment ± 1 μM PMA for 30 
minutes at 37°C or were treated 10 μM dynole 31-2 or 80 μM dynasore for 30 
minutes at 37°C and DAT surface levels were measured by surface biotinylation, 
as described in Methods. (A) 10 μM dynole, representative blot. (B) 10 μM dynole, 
averaged data: DAT surface levels: Data are expressed as %vehicle surface DAT 
levels ±S.E.M.  *Significantly different than vehicle, one-way ANOVA with 
Bonferonni’s post hoc test, p<0.002, n=8.  (C) Total DAT protein: Data are 
expressed as %vehicle total DAT levels ±S.E.M. p=0.51, (one way ANOVA with 
Bonferonni’s post-hoc test, n=5). (D) Biotinylated actin levels: Data are expressed 
as %biotinylated actin of total actin ±S.E.M p=0.62, (one way ANOVA with 
Bonferonni’s post-hoc test, n=5). (E) 80 μM dynasore and 10 μM dynole 31-2, 
representative immunoblot. (F) 80 μM dynasore and 10 μM dynole 31-2, averaged 
data: DAT surface levels: Data are expressed as %vehicle surface DAT levels 
±S.E.M.  *Significantly different than vehicle, one-way ANOVA with Bonferonni’s 
post hoc test, p<0.05, n=8. 
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we measured the biotinylated actin population.  We saw low levels of biotinylated 

actin (~1.0%) across all experimental conditions indicating that the SK-N-MC cells 

were intact and that trafficking could occur normally (Fig. 4.4).  Previous reports 

have indicated that internalized DAT is targeted for degradation (Miranda et al., 

2005).  To test if this was occurring in SK-N-MC cells, we compared the total DAT 

levels across experimental conditions.  Total DAT protein was not significantly 

different following either dynole (119.6 ± 7.9% vehicle levels) or PMA (115.4 ± 

13.6% vehicle levels) treatments over the experimental time-course (Fig. 4.4).  The 

conflicting results between PC12 and SK-N-MC cells prompted us to ask whether 

dynamin was required for basal and PKC-stimulated DAT trafficking in a native 

preparation. 

 

The incongruity in the results regarding dynamin’s role in DAT trafficking between 

these two cell lines prompted us to develop a new tool to ask these questions about 

dynamin’s role in DAT trafficking.  Consequently, we performed surface 

biotinylation on acute mouse striatal slices, a highly enriched dopaminergic 

terminal region.  As can be seen in Figure 4.5, we detected robust DAT surface 

expression in the striatum (43.7 ± 3.8% total DAT on the surface) under vehicle-

treated conditions.  PKC activation with 1 µM PMA, 30 min, 37°C significantly 

decreased DAT surface levels to 77.3 ± 3.6% compared to Veh). In slices treated 

with 10µM dynole, 30 min, 37°C, we observed a significant reduction in DAT 

surface levels (80.7 ± 4.6% compared to Veh).  Dynole pretreatment completely   
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FIGURE 4.5: Dynamin Inhibition Reduces DAT Surface Levels and Blocks 
PKC-Stimulated DAT Internalization in Acute Mouse Striatal Slice: Surface 
biotinylation following dynole treatment in mouse striatal slices. Slices were treated 
± 10 μM dynole for 30 minutes at 37°C followed by treatment ± 1 μM PMA for 30 
mintues at 37°C and DAT surface levels were measured by surface biotinylation, 
as described in Methods. (A) Surface biotinylation – Representative immunoblot. 
(B) Averaged data: DAT surface levels: Data are expressed as %vehicle surface 
DAT levels ±S.E.M.  *Significantly different than vehicle, one-way ANOVA with 
Tukey’s post hoc analysis, p<0.001, n=12.  (C) Total DAT protein: Data are 
expressed as %vehicle total DAT levels ±S.E.M. p=0.87, (one way ANOVA with 
Bonferonni’s post-hoc test, n=12). (D) Biotinylated TH levels: Data are expressed 
as %biotinylated TH of total TH ±S.E.M p=0.13, (one way ANOVA with 
Bonferonni’s post-hoc test, n=12). 
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abolished further PMA stimulated losses (80.7 ± 4.6% vs 71.4 ± 4.3%).  To test the 

slice integrity and assure that the biotinylation reagent did not gain access to 

intraceullar proteins in dopaminergic neurons, we immunoblotted for tyrosine 

hydroxylase (TH) in parallel.  Biotinylated TH levels averaged ~0.4% (Fig. 4.5), 

consistent with the striatal slices being intact and the assay reflecting accurate 

DAT surface measurements.  To test whether dynyamin inhibition or PKC 

activation target DAT for degradation in the striatal slices, we compared the total 

DAT levels across experimental conditions.  Total DAT protein was not significantly 

different following either dynole (104 ± 5.3% vehicle levels) or PMA (100.4 ± 4.3% 

vehicle levels) treatments over the experimental time-course (Fig. 4.5).  Thus, we 

conclude that 1) DAT traffics in SK-N-MC cells similarly to that observed in mouse 

striatum and 2) the surface loss seen during PKC activation and dynamin inhibition 

was the same magnitude.  

 

Recycling blockade reveals DAT is in two surface pools 

The observed DAT surface losses in SK-N-MC cells and striatal slices in response 

to dynamin inhibition suggest that dynamin is not required for basal DAT 

internalization, but may be required for PKC-stimulated DAT surface losses.  

Another possible interpretation is that there is a finite pool of endocytic-competent 

DAT in SK-N-MC cells and adult dopaminergic neurons that was depleted during 

the dynole treatment, and that the remaining DAT surface pool is endocytic-

incompetent and therefore unable to internalize following PKC activation.  To 
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distinguish between these possibilities, we used two independent approaches to 

deplete surface DAT by blocking endocytic recycling in DAT-SK-N-MC cells:  

Monensin treatment, which blocks the vacuolar H+ ATPase, and 18°C temperature 

blockade, which we previously demonstrated blocks DAT endocytic recycling 

(Loder & Melikian, 2003).  To test whether the DAT pool that was resistant to basal 

internalization had the capacity to internalize in response to PKC activation, we 

initially depleted surface DAT in striatal slices by blocking endosomal recycling by 

treatment with the ionophore, monensin.  Monensin is a Na+/H+ antiporter inhibitor 

whose action has been shown to block DAT recycling back to the plasma 

membrane (Sorkina et al., 2005).  We reasoned that if all surface DAT is endocytic 

competent, we would expect continual surface DAT losses over time, whereas if 

there is an endocytic-incompetent pool we would expect initial surface losses that 

plateau over time.  Treatment with 25 µM monensin, 37°C resulted in an initial 

surface DAT loss that plateaued by 60 min (Fig 4.6).  To test whether monensin 

was effectively blocking endocytic recycling in our hands, we used a pulse-chase 

approach to measure TfR recycling in SK-N-MC cells.  Cells were treated with 25 

µM monensin for 60 minutes at 37°C to block endocytic recycling.  A 5 min Tf-

Alexa594 pulse, followed by a 20 min unlabeled Tf chase, was applied to the cells 

to monitor endocytic recycling, which would be detectable as an intracellular 

fluorescence loss following the Tf chase.  In vehicle-treated cells, we observed 

robust Tf loading after 5 min that was completely chased from the cells.  In contrast, 

monensin treatment markedly blocked recycling, indicated by the retention of   
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FIGURE 4.6: Monensin Treatment Blocks DAT Recycling:  DAT-SK-N-MC 
were treated with 25 μM monensin for the indicated duration at 37°C.  Surface DAT 
was measured by biotinylation as described in Methods. Top: Representative 
immunoblot.  Bottom: Averaged data:  DAT surface levels: data are expressed as 
%T=0 surface DAT ± S.E.M. 
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fluorescent transferrin (Fig. 4.7). Using these recycling block conditions, we 

depleted the trafficking-competent DAT surface pool and tested whether the 

remaining DAT surface population was capable of PKC-stimulated internalization.  

Mouse striatal slices were pretreated with either vehicle or 25 µM Monensin, 60 

min, 37°C, followed by treatment with either vehicle or 1 µM PMA, 30 min, 37°C 

and surface biotinylation to measure DAT surface expression.  Monensin treatment 

significantly reduced DAT surface levels to 73.1 ± 5.0% as compared to vehicle-

treated slices, consistent with DAT surface depletion due to recycling blockade 

(Fig. 4.8).  PKC activation significantly decreased DAT surface levels, and 

monensin pretreatment completely blocked further PKC-stimulated DAT surface 

losses (73.1 ± 5.0% compared to 63.2 ± 4.6%).  These data support the hypothesis 

that surface DAT is segregated between trafficking-competent and –incompetent 

pools.  Recycling blockade also did not target DAT to a degradative fate, as total 

DAT protein levels were unchanged over the course of the experiment for either 

monensin (92.3 ± 7.7% vehicle levels) or PMA (98.5 ± 5.5% vehicle levels) (Fig. 

4.8).  It should be noted that monensin treatment also increased neuronal 

permeability to the biotinylation reagent, as biotinylated TH levels were higher than 

those seen in the vehicle-treated slices (vehicle: 1.7 ± 0.3% vs. monensin: 8.5 ± 

0.9%; Fig. 4.8). 

 

To further test whether DAT was segregated between trafficking -competent and -

incompetent surface pools, we performed 18°C recycling blockade in DAT-SK-N-  
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FIGURE 4.7: Monensin Treatment Blocks Transferrin Receptor Recycling:  
DAT-SK-N-MC were treated with 25 μM monensin for 60 minutes at 37°C and 
transferrin receptor (red) recycling was measured and visualized as described in 
Methods. 
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FIGURE 4.8: Recycling Blockade with Monensin Prevents PKC-Mediated 
DAT Internalization in acute mouse striatal slices.  Surface biotinylations 
following recycling blockade with monensin treatment in mouse striatal slices.  
Slices were treated ± 25 μM monensin for 60 mintues at 37°C followed by 
treatment ± 1 μM PMA for 30 minutes at 37°C.  DAT surface levels were measured 
by surface biotinylation, as described in Methods.  (A) Surface biotinylation – 
mouse striatal slice - representative immunoblot. (B) Averaged data. Data are 
expressed as %vehicle surface DAT levels ±S.E.M, *p<0.0001. (one-way ANOVA 
with Bonferroni post hoc analysis, n=21).  (C) Total DAT protein: Data are 
expressed as %vehicle DAT total levels ±S.E.M., p=0.46 (one-way ANOVA with 
Bonferroni post hoc analysis, n=21).  (D) Biotinylated tyrosine hydroxylase levels: 
Data are expressed as %biotinylated TH of total TH ±S.E.M *p<0.001 (one-way 
ANOVA with Bonferroni post hoc analysis, n=21). 
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MC cells.  DAT-SK-N-MC cells were incubated at 18°C for 45 minutes followed by 

treatment with 1 µM PMA for 45 minutes to activate PKC.  As can be seen in Figure 

4.9, DAT surface depletion using an 18°C recycling blockade also blocked PKC-

regulated DAT surface loss (98.3 ± 9.4% vehicle levels), consistent with the 

existence of a trafficking-incompetent DAT surface pool.  It is possible that a lack 

of PMA effect at 18°C was due to inability of PMA to activate PKC at 18°C.  To 

control for this possibility we tested whether PMA could drive DAT internalization 

at 18°C in DAT-PC12 cells, which did not exhibit a trafficking incompetent DAT 

pool (see Fig. 4.2).  As can be seen in Figure 4.10, PKC activation at 18°C 

decreased DAT surface levels (47.1 ± 9.4% vehicle levels) in DAT-PC12 cells, 

demonstrating PMA activity at 18°C and that lack of PMA-induced DAT 

internalization following 18°C recycling blockade was not due to lack of PKC 

activation. 

 

DAT internalization does not require dynamin 

Since trafficking-competent DAT was fully depleted during the course of our dynole 

treatment, we were not able to address whether PKC-mediated DAT internalization 

is dynamin-dependent.  In order to test whether PKC-mediated DAT internalization 

is dynamin dependent, we used reversible biotinylation to directly measure basal 

and PKC-stimulated DAT internalization rates during dynole treatment in DAT-SK-

N-MC cells.  In order to assure that dynole incubations were sufficiently long to 

impact dynamin-dependent endocytosis, but not so long as to deplete the   
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FIGURE 4.9: Recycling Blockade by 18°C Incubation Prevents PKC-mediated 
DAT Internalization in DAT-SK-N-MC Cells: Surface biotinylations following 
recycling blockade with 18°C incubation of neuroblastoma SK-N-MC cells. DAT-
SK-N-MC cells were incubated at 18°C or 37°C for 45 minutes followed by 
treatment ± 1 μM PMA for 45 minutes at 18°C.  DAT surface levels were measured 
by surface biotinylation, as described in Methods.  Left: representative immunoblot.  
Right: Averaged data. Data are expressed as %vehicle surface DAT levels 
±S.E.M.  *Significantly different than vehicle, *p<.03, (Student’s t test, n=12 (37°C) 
and n=15 (18°C)). 
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FIGURE 4.10: PMA Decreases DAT Surface Expression at 18°C in DAT-PC12 

cells: DAT-PC12 cells were treated with 1 μM PMA for 45 minutes at 18°C.  DAT 

surface levels were measured by surface biotinylation as described in Methods.  

Left: Representative immunoblot.  Right: Averaged Data: Data are expressed as 

%vehicle surface DAT levels ±S.E.M. p=0.14, (Student’s t test, n=4). 
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trafficking competent DAT pool, we developed an altered internalization protocol 

in which cells were treated with dynole for 20 min, 37°C prior to biotinylating.  This 

short dynole pre-incubation was sufficient to block dynamin-dependent TfR 

internalization (Fig. 4.3).  Using the reversible biotinylation protocol, we directly 

measured DAT internalization rates in DAT-SK-N-MC cells following this short 

dynole pre-incubation.  Under control conditions, dynole had no significant effect 

on DAT internalization (68.8 ± 9.3% of Veh; Fig 4.11), consistent with the 

hypothesis that constitutive DAT trafficking is dynamin independent.  PKC 

activation with 1 µM PMA increased DAT internalization rates to 179.1 ± 20.5% of 

Veh), but did not increase DAT internalization in dynole-treated cells (68.8 ± 9.3% 

compared 71.4 ± 11.6% if Veh).  These results demonstrate that constitutive DAT 

internalization is dynamin-independent, but that dynamin is required for PKC-

stimulation of DAT internalization rates.  These results further suggest that 

dynamin is required for DAT endocytic recycling back to the plasma membrane, 

and that dynole treatment depleted DAT surface levels by imposing a recycling 

blockade.  

 

Dynamin regulates DAT trafficking via an actin-dependent mechanism 

Given that DAT recycling appeared dynamin-dependent, we next aimed to test 

what mechanisms were facilitating dynamin-dependent DAT recycling.  The 

cytoskeletal protein actin is known to regulate protein trafficking (Swiatecka-Urban 

et al., 2002) and dynamin has been shown to be required for small actin stress   
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FIGURE 4.11: Dynamin is Required for PKC-mediated DAT Internalization but 
Not Constitutive Endocytosis:  Internalization assay following dynole-treated 
DAT-SK-N-MC cells. Cells were treated ± 10 μM dynole, 20 min, 37°C, then 
biotinylated at 4°C, followed by ± 1 μM PMA, ± 10 μM dynole for 10 min at 37°C.  
Left: Internalization assay – representative immunoblot of internalized DAT.  Right: 
Averaged data. Data are expressed as %vehicle surface DAT levels ±S.E.M. * 
p<0.001 (one-way ANOVA with Bonferroni post hoc analysis, n=4) 
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fibre polymerization (Cao, Deacon, Reczek, Bretscher, & von Zastrow, 1999; 

Mooren, Kotova, Moore, & Schafer, 2009), making this protein a likely candidate 

in the DAT trafficking mechanism.  To test a putative role for actin in dynamin-

dependent DAT endocytic recycling, we disrupted the actin cytoskeleton with 

cytochalasin D in mouse striatal slices and tested whether DAT surface levels were 

sensitive to dynole.  Slices were pretreated with either vehicle or 0.2 µg/mL 

cytochalasin D (CytoD), 30 min, 37°C, followed by treatment with either vehicle or 

10 µM dynole, 30 min, 37°C.  CytoD treatment alone significantly reduced DAT 

surface levels (69.9 ± 5.1% compared to Veh; Fig. 4.12), consistent with a role for 

actin in DAT endocytic trafficking.  As previously described (Fig. 4.5), dynole 

treatment significantly reduce DAT surface levels to 67.2 ± 5.0% vehicle levels, 

and pretreatment with CytoD completely blocked further dynole-mediated DAT 

surface losses (67.2 ± 5.0% compared to 66.6 ± 7.0% of Veh; Fig. 4.12).  CytoD 

treatment had no effect on slice permeability to the biotinylation reagent, as seen 

in immunoblots probed for TH in parallel (Fig. 4.12).  CytoD treatment also did not 

target DAT to a degradative fate, as total DAT protein levels were unchanged over 

the course of the experiment for CytoD (91.7 ± 10.1% vehicle levels) (Fig. 4.12).  

To test whether CytoD treatment globally effected endocytic trafficking, we 

measured TfR surface levels in the mouse striatal slices.  Using surface 

biotinylation, we observed no detectable differences in surface TfR levels (118 ± 

12.6% compare to Veh; Fig. 4.12) demonstrating that CytoD treatment did not 

globally reduce surface protein levels.  
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FIGURE 4.12: DAT Plasma Membrane Recycling Requires Dynamin via an 
Actin-Dependent Mechanism:  Surface biotinylations following cytochalasin D 
(Cyto D) treatment mouse striatal slices. (A-D) Slices were treated ± 0.2 ug/mL 
cytochalasin D for 30 minutes at 37°C followed by treatment ± 10 μM dynole for 
30 minutes at 37°C and DAT surface levels were measured by surface 
biotinylation, as described in Methods. (E-F) Slices were treated ± 0.2 ug/mL 
cytochalasin D for 30 minutes at 37°C and TfR and DAT surface levels were 
measured by surface biotinylation.  (A) Surface biotinylation – Representative 
immunoblot. (B) Averaged data. Data are expressed as %vehicle surface DAT 
levels ±S.E.M. *p<0.004 (one-way ANOVA with Bonferroni’s post hoc analysis, 
p<0.004, n=7).  (C) Total DAT protein: Data are expressed as %vehicle total DAT 
levels ±S.E.M. p=0.35, (one way ANOVA with Bonferonni’s post-hoc test, n=7). (D) 
Biotinylated TH levels: Data are expressed as %biotinylated TH of total TH ±S.E.M 
p=0.18, (one way ANOVA with Bonferonni’s post-hoc test, n=7).  (E) Surface 
biotinylation – Representative immunoblot. (F) Averaged data. Data are expressed 
as %vehicle surface DAT or %vehicle surface TfR levels ±S.E.M. DAT: *p<0.02 
(Student’s t test, n=6) and TfR: p=0.34 (Student’s t test, n=6). 
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DISCUSSION 

Dopamine transporter activity is the major mechanism mediating synaptic 

dopamine clearance and signal latency (Giros et al., 1996).  Membrane trafficking 

constitutes an important role in regulating transporter function.  Recent studies 

indicate that DAT trafficking requires the classical endocytic molecules clathrin and 

dynamin (Eriksen et al., 2009; Sorkina et al., 2005).  These studies depended on 

chronic trafficking perturbation through shRNA-mediated knockdown or co-

expression of dominant negative mutant proteins, as well as heterologous cell 

expression or cultured dopaminergic neurons.  We took advantage of newly 

developed pharmacological dynamin inhibitors acutely to block dynamin function 

and test whether DAT trafficking is dynamin-dependent in mouse striatal slices.  

Our results clearly demonstrate a differential dependence on dynamin for 

endocytic recycling and PKC-mediated DAT internalization, but not for constitutive 

DAT endocytosis (Fig. 4.5). 

 

Using the pharmacological dynamin inhibitor, we teased out dynamin’s role in DAT 

trafficking at presynaptic termini, which is the site for DAT regulation in 

neurotransmitter clearance.  We show that dynamin is not required for constitutive 

DAT internalization (Fig. 4.11), as dynole treatment did not alter basal DAT 

internalization rates.  In contrast, PKC-mediated DAT internalization is strictly 

dynamin-dependent.  There have been other reports demonstrating that DAT 

endocytosis may not require dynamin.  The membrane raft associated protein   
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FIGURE 4.13: DAT is Segregated Between Trafficking-Competent and –
Incompetent Pools at the Surface:  DAT Trafficking model.  Surface DAT is 
segregated between two surface pools: trafficking-competent and -incompetent.  
Basal DAT internalization occurs via a dynamin-independent mechanism whereas 
PKC mediated DAT trafficking occurs via a dynamin-dependent mechanism.  DAT 
recycling back to the plasma membrane is dynamin and actin dependent. 
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flotillin-1 has been shown to be required for PKC-mediated DAT trafficking 

(Cremona et al., 2011).  The role for dynamin in that process was not specifically 

explored, but trafficking from lipid rafts has been shown to be both dynamin 

dependent and independent.  Furthermore, DAT internalization is regulated by 

presynaptic D2 receptors, where receptor activation ultimately elicits decreased 

DAT surface levels, as well as D2 trafficking (Lee et al., 2007).  D2 receptor 

trafficking has been shown to be insensitive to dynamin inhibition (Kotowski, Hopf, 

Seif, Bonci, & von Zastrow, 2011; Vickery & von Zastrow, 1999). Since DAT and 

D2 interact, this raises the possibility that they are co-trafficking via a dynamin-

independent mechanism into endosomal compartments. 

 

Interestingly, we see that surface resident DAT is not present in a uniform pool, 

but rather two pools: one of which undergoes constitutive and PKC-mediated 

trafficking and one which does not respond to either of these two regulatory events 

(Fig. 4.8).  A previous study from Foster and associates reported that DAT is 

segregated between lipid raft and non-raft domains at the cell surface (Foster et 

al., 2008), raising the possibility that either raft or non-raft microdomains may 

facilitate trafficking competent and incompetent DAT populations.  Additionally, a 

DAT trafficking mutant, R615C, found in an ADHD patient, has been shown to 

constitutively internalize at a higher rate and is found in a different distribution 

compared to wild-type between raft and non-raft membrane domains at the surface 

(Sakrikar et al., 2012).  Future work measuring DAT trafficking specifically from 
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these two membrane domains will be informative regarding if this is the 

segregation is used to delineate trafficking requirements. 

 

Conflicting results have been reported regarding DAT’s endocytic fate during basal 

and PKC-stimulated internalization, both in neurons and heterologous expression 

systems.  Previous reports show that DAT ubiquitylation is required for PKC-

mediated DAT trafficking (Miranda et al., 2005).  This post-translational 

modification is then required for DAT degradation, as mutations in N-terminal 

lysines prevent ubiquitylation and slow DAT turnover (Vina-Vilaseca & Sorkin, 

2010).  These studies were done in heterologous cells treated with PMA for 1-2 

hours, potentially masking DAT fate as this does not likely reflect physiologically 

relevant stimuli.  Additionally, work done in the Gether lab in cultured dopaminergic 

neurons reports that internalized DAT preferentially sorts to Rab7-positive 

endosomes, indicating a predominantly degradative fate (Eriksen et al., 2009).  

This study tracked a fluorescent cocaine analog bound to DAT to test 

internalization and endosomal sorting.  Persistent ligand binding has been reported 

to alter DAT endocytic fate, tempering the interpretation for this result (Daws et al., 

2002).  Moreover, DAT trafficking was PMA-insensitive and no DAT recycling was 

observed, inconsistent with our results in the striatal slice as well as DAT trafficking 

studies in heterologous cells.  We observe DAT surface losses in dynole-treated 

slices, consistent with a role for dynamin in constitutive DAT recycling, and DAT 

was not significantly degraded over the experimental time-course (Fig. 4.5). 
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DAT has been described to constitutively recycle to the plasma membrane and co-

localize in Rab11 endosomal compartments in heterologous cells (Furman, Lo, et 

al., 2009).  We show for the first time that DAT recycles in striatal presynaptic 

termini (Fig. 4.8).  Recent work has shown that D2 activation will cause a rapidly 

observed increase in DAT surface levels in striatal synaptosomes followed by the 

aforementioned DAT surface reduction (Chen et al., 2013).  This rapid release to 

increase surface expression is reminiscent of the regulated recycling seen in the 

glucose transporter GLUT4.  There, insulin signaling will elicit an Akt-mediated 

cascade releasing GLUT4-positive endosomes to fuse at the cell surface, rapidly 

increasing glucose uptake in response food intake (Foley, Boguslavsky, & Klip, 

2011).  Insulin treatment also acutely increases DAT activity and increases 

transporter suface expression through PI3K signaling (Carvelli et al., 2002).  AMPH 

will also cause a rapidly observed increase in DAT surface levels followed by a 

slower occurring reduction in surface DAT (Chen et al., 2009).  Moreover, AMPH-

induced DAT trafficking is correlated with decreased Akt activity via a CaMKII-

dependent pathway and can be inhibited by insulin treatment (Garcia et al., 2005).  

Rapid DAT recycling was also observed following dopamine uptake, with maximal 

DAT surface levels observed after 80 seconds (Furman, Chen, et al., 2009).  This 

could provide a mechanism for neurons to mute consequent neurotransmittory 

events by providing greater uptake following dopamine release.  Whether the 
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molecules required for the DAT surface reduction are also mediating the increase 

in DAT surface levels remain to be seen. 

 

The precise mechanism for this recycling is not fully known, but we show that that 

the cytoskeletal protein actin is required for this trafficking destination.  Actin 

filaments have been shown to mediate recycling endosome transport to the cell.  

The cystic fibrosis conductance regulator requires actin association for recycling 

back to the plasma membrane via the channel’s C-terminal PDZ domain 

(Swiatecka-Urban et al., 2002).  Furthermore, actin is involved in tubular 

endosome formation that recycle β2-adrenergic receptor back to the cell surface in 

a dynamin-dependent process (Cao et al., 1999).  This is consistent with our 

results in which dynamin and actin work in concert to regulate DAT surface levels 

in the striatum (Fig. 4.12).  Nevertheless, the full complement of molecular 

components necessary for the DAT recycling pathway are still under study. 

 

We found that the dopamine transporter constitutively internalizes via a dynamin-

independent mechanism, whereas PKC-mediated DAT internalization is dynamin-

dependent, as has been previously described (Fig. 4.13).  We show that 

constitutively internalized DAT does not result in DAT degradation, and that DAT 

recycling back to the plasma membrane occurs via a dynamin-dependent, actin-

mediated mechanism.  Futhermore, we show that not all DAT surface molecules 
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are able to constitutively internalize and that constitutive and PKC-mediated DAT 

trafficking draw from the same trafficking-competent surface pool.  
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CHAPTER V 

 
Discussion 

 

KCNK3 Undergoes PKC-mediated Trafficking via a 14-3-3β-Dependent 

Mechanism 

Endocytic trafficking is a mechanism to regulate the plasma membrane function of 

membrane proteins.  Recent studies indicate that endocytic trafficking acutely 

regulates several different types of K+ channels, including KATP (Manna et al., 2010) 

and KCa.2.1 (Correa et al., 2009), suggesting that regulated membrane trafficking is 

a means to rapidly control K+ channel surface density. In the current studies, our 

data revealed that dynamic endocytic trafficking regulates acid-sensitive K+ leak 

channel surface expression. This finding suggests a role for KCNK3 trafficking 

could potentially contribute to neuronal excitability. KCNK3 internalization would 

be predicted to depolarize the membrane potential, and prohibit Nav channel 

activation, resulting in a slower frequency of action potential initiation.  

Alternatively, membrane depolarization mediated by regulated KCNK3 trafficking 

could potentially be sufficient to relieve Mg2+ block of NMDA receptors, increasing 

the probability of NMDA receptor firing and downstream plasticity events in 

response to an excitatory postsynaptic potential. Thus, in combination with 

established ligand-gated ion channel trafficking, acutely regulating KCNK3 surface 

levels could give rise to a context-dependent plasticity of membrane. 
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Prior studies using phorbol esters (Lopes et al., 2000), Group I mGluR agonists 

(Talley et al., 2000), and M1/M3 muscarinic agonists (Meuth et al., 2003) 

demonstrated a PKC-mediated functional down-regulation of KCNK3 and/or acid-

sensitive currents, respectively.  However, the mechanisms underlying this down-

regulation have not been well defined. We observed significant loss of KCNK3 

activity in response to PMA treatment over a 15-min time course in both CGNs and 

HEK cells, which is consistent with the time course for endocytosis. We used 

surface biotinylation and cellular imaging to directly test whether PKC-stimulated 

KCNK3 current losses were due to internalization. We observed significant PKC-

dependent losses in surface KCNK3 following PMA treatment both in HEK cells 

and CGNs, which were completely blocked by the PKC inhibitor BIM. The 

magnitude of KCNK3 surface losses paralleled PKC-mediated KCNK3 currents 

losses, consistent with endocytosis as the primary mechanism responsible for 

PKC-mediated KCNK3 inhibition. Moreover, we observed losses in acid-sensitive 

leak currents and KCNK3 internalization via activation of endogenously expressed 

Group I mGluRs, consistent with previous reports demonstrating Group I mGluR-

mediated KCNK3 down-regulation (Talley et al., 2000). Previous studies reported 

rapid KCNK3 activity losses in response to direct Gq activation (X. Chen et al., 

2006) or via glutamatergic signaling (Chemin et al., 2003; Talley et al., 2000) in 

heterologous expression systems and CGNs, whereas we observed a slower time 

course of KCNK3 inhibition.  This difference may also reflect the much higher 

DHPG concentrations used in previous studies, compared with those used in our 
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studies (10 and 100 μM versus 1 μM in our study). Decreased cAMP production in 

response to high DHPG concentrations has been reported, which is likely mediated 

by Group III mGluR activation (Sekiyama et al., 1996). It is not known whether PKC 

activation results in KCNK3 phosphorylation, either directly or indirectly. A recent 

report demonstrated that endothelin-1 down-regulates KCNK3 and leads to PKC-

dependent KCNK3 phosphorylation in pulmonary artery smooth muscle cells 

(Tang et al., 2009). However, it should be noted that these phosphorylation studies 

relied upon the commercially available anti-KCNK3 antibody that, in our hands, 

does not recognize a KNCK3-specific band. It is interesting to note that under basal 

conditions, KNCK3 surface expression in primary CGN cultures was <6% total 

KCNK3 protein, which differed markedly from observed surface levels in 

transfected HEK cells. Nevertheless, these values are consistent with those 

reported for other channels in both primary cultured neurons and acute brain slices 

(Gross et al., 2011; D. Y. Kim et al., 2011). Low channel surface density (as a 

fraction of the total available channel) may reflect large intracellular endocytic 

pools tightly regulated by neuron-specific mechanisms. Alternatively, they may 

reflect a high degree of turnover in neuronal systems, with large, forward trafficking 

protein pools to maintain steady state channel levels in the membrane. 

 

The large intracellular pool may also reflect a mechanism by which neurons can 

initiate KCNK3 trafficking to the membrane leading to neuronal quiescence or in 

response to extracellular cues.  Indeed, KCNK3 activity is required for mediating 
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neurodegeneration induced by stroke-induced ischemia (Hawkins & Butt, 2013).  

The mechanistic understanding for this apoptosis-supporting function could open 

new avenues to acutely treat stroke and diminish damage during the 

cerebrovascular incident.  Additionally, acute regulation of KCNK3 surface 

expression has implications in nociception and pharmacological pain 

management.  KCNK3 is expressed in nociceptive dorsal root ganglia (Cooper, 

Johnson, & Rau, 2004).  As we observed a large intracellular KCNK3 pool (Fig 

3.6), channel recycling to the surface would act to inhibit these neurons.  Although 

recycling determinants for the channel have not been described, KCNK3 shares a 

trafficking motif with DAT (Fig. 3.11) and may share trafficking mechanisms 

between the two proteins.  Acute release from intracellular pools for KCNK3, and 

DAT, is an interesting area of study and should be illuminating regarding its effect 

on neuronal function. 

 

KCNK3 activity has been shown to be required for multiple sclerosis progression.  

CD4+ T-lymphocytes that target myelin and cause its degradation are activated in 

a KCNK3-dependent process (Bittner et al., 2012).  A newly developed 

pharmacological KCNK3 inhibitor, A293, is able to inhibit T-cell activation, prevent 

myelin loss, and extend longevity in a multiple sclerosis mouse model.  Although 

this is mediated through direct channel inactivation, pharmacological KCNK3 

trafficking induction could also be a mechanism to slow disease progression and 

have broader application in auto-immune disease treatment. 



117 
 

 

KCNK3 and a closely related leak channel KCNK9 have been show to form 

heterodimers in neurons (Berg et al., 2004).  Whether PKC-mediated KCNK3 

trafficking will occur in the heterodimer is not known, but it offers a possibility that 

KCNK9’s insensitivity to PKC will act dominantly and prevent potential 

KCNK3/KCNK9 trafficking.  Conversely, KCNK3 may act dominantly and induce 

KCNK9 surface losses following PKC activation.  Differential targeting in response 

to hetero-oligomerization and competing endocytic signals has been reported in 

the asialoglycoprotein receptor and alters the receptor’s polarized distribution from 

apical to basolateral (Fuhrer, Geffen, Huggel, & Spiess, 1994).  Whether 

KCNK3/KCNK9 dimers display differential regulation is an area of ongoing study. 

  

Following internalization from the cell surface, proteins can diverge to either 

recycling or degradative endocytic pathways. For example, EGFR (Huang et al., 

2006) and δ-opioid receptors (von Zastrow, 2010) enter late endosomes and are 

degraded upon internalization, whereas the TfR and µ opioid receptors (Jennifer 

Whistler lab) are primarily recycled. We observed KCNK3 co-localization in an 

early endosome/TfR-positive vesicle population following internalization and 

detected no losses in total KCNK3 protein following PKC stimulation. These results 

suggest that internalized KCNK3 is likely to enter a recycling, rather than a 

degradative, pathway. 
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Previous studies from our laboratory investigating mechanisms responsible for 

PKC-stimulated DAT trafficking revealed a novel endocytic regulatory domain 

(FREKLAYAIA) encoded in the DAT C-terminus (Holton et al., 2005) that is highly 

conserved across the SLC6 transporter gene family and is the locus for an 

endocytic braking mechanism (Boudanova, Navaroli, Stevens, & Melikian, 2008a). 

These results offer further insight into the previous results of Talley and Bayliss 

(Talley & Bayliss, 2002), in which KCNK3 C-terminal deletions that encompassed 

the 335–344 region abolished TRH receptor-mediated KCNK3 inhibition, which 

also occurs via Gq activation. It is currently not clear how these charged residues 

function to target either DAT or KCNK3 to the endocytic machinery.  Also, 

FREKLAYAIA mediates constitutive DAT internalization and the question remains 

if KCNK3 constitituvely internalizes and was not directly addressed in this study.  

An interesting area to further characterize the similarity between these 

homologous sequences would be to exchange the endocytic signals and test for 

sufficiency for the more completely described DAT FREKLAYAIA to drive KCNK3 

trafficking in response to physiological cues known to mediate DAT trafficking, 

such as insulin stimulation.  Previous reports observed that KCNK3 activity is 

modulated by metabolic cues, since glucose treatment in orexinergic neurons will 

decrease channel activity (Burdakov et al., 2006).  Whether DAT and KCNK3 

share a cell signaling response to metabolic cues could be addressed, such as Akt 

signaling for DAT and insulin, is an interesting area of study. 
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PKC-stimulated KCNK3 endocytosis absolutely required the phosphoserine-

binding protein 14-3-3β.  14-3-3 binds target proteins primarily at either RSXpSXP 

or (R/K)XφX(pS/pT)XP motifs, and several proteins encode multiple 14-3-3 binding 

sites (Tzivion et al., 2000; Yaffe et al., 1997). 14-3-3 binding can induce 

conformation changes that facilitate catalytic activity or protein-protein interactions, 

mask domains to prevent protein-protein interactions, or facilitate protein co-

localization. Previous work demonstrated that 14-3-3β binds to a non-canonical 

14-3-3 binding motif in the distal KCNK3 C terminus and is required for KCNK3 

egress from the ER (O'Kelly et al., 2002).  Our results indicate that 14-3-3β is also 

necessary for PKC-mediated KNCK3 internalization. We noted that a ∼50% 14-3-

3β knockdown did not markedly disrupt KCNK3 surface targeting, whereas PKC-

mediated endocytosis was abolished. This may suggest that forward trafficking 

from the ER is less sensitive to 14-3-3β levels than KCNK3 surface populations. 

Alternatively, other accessory proteins working in consort with 14-3-3β at the cell 

surface may be expressed in limited quantities and are thereby more sensitive to 

losses in 14-3-3β. Interestingly, the epithelial sodium channel, ENaC, constitutively 

internalizes in a 14-3-3- and Nedd4-2-dependent manner, and aldosterone 

increases ENaC surface expression via blocking 14-3-3-dependent ENaC 

internalization and degradation (Ichimura et al., 2005).  Furthermore, 14-3-3 

interaction with the α2 adrenergic receptor supports receptor surface expression 

and dephosphorylation followed by subsequent 14-3-3 dissociation initiates 

endocytosis, consistent with a role for 14-3-3 as an endocytic brake (Wang & 
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Limbird, 2007). . Although we do not currently know whether 14-3-3β controls 

KCNK3 internalization directly or indirectly, this site is a candidate locus for 

potential 14-3-3β/KCNK3 endocytic interactions, distinct from the identified 

sequence controlling KCNK3 egress from the ER. Future studies exploring the 

possibility of this sequence as a bona fide 14-3-3β binding site and/or endocytic 

braking mechanism should be informative. 

 

DOPAMINE TRANSPORTER ENDOCYTIC TRAFFICKING: DIFFERENTIAL 

DEPENDENCE ON DYNAMIN AND THE ACTIN CYTOSKELETON  

Dopamine transporter activity is the major mechanism mediating synaptic 

dopamine clearance and signal latency.  Membrane trafficking constitutes an 

important role in regulating transporter function.  Recent studies indicate that DAT 

trafficking requires the classical endocytic molecules clathrin and dynamin 

(Eriksen et al., 2009; Sorkina et al., 2005).  These studies depended on chronic 

trafficking perturbation through shRNA-mediated knockdown or co-expression of 

dominant negative mutant proteins, as well as heterologous cell expression or 

cultured dopaminergic neurons.  We took advantage of newly developed 

pharmacological dynamin inhibitors acutely to block dynamin function and test 

whether DAT trafficking is dynamin-dependent in mouse striatal slices.  Our results 

clearly demonstrate a differential dependence on dynamin for endocytic recycling 

and PKC-mediated DAT internalization, but not for constitutive DAT endocytosis. 
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Using the pharmacological dynamin inhibitor, we teased out dynamin’s role in DAT 

trafficking at presynaptic termini, which is the site for DAT regulation in 

neurotransmitter clearance.  We show that dynamin is not required for constitutive 

DAT internalization, as dynole treatment did not alter basal DAT internalization 

rates.  In contrast, PKC-mediated DAT internalization is strictly dynamin-

dependent.  There have been other reports demonstrating that DAT endocytosis 

may not require dynamin.  The membrane raft associated protein flotillin-1 has 

been shown to be required for PKC-mediated DAT trafficking (Cremona et al., 

2011).  The role for dynamin in that process was not specifically explored, but 

trafficking from lipid rafts has been shown to be both dynamin-dependent and -

independent.  Furthermore, DAT internalization is regulated by presynaptic D2 

receptors, where receptor activation ultimately elicits decreased DAT surface 

levels, as well as D2 trafficking (Lee et al., 2007).  D2 receptor trafficking has been 

shown to be insensitive to dynamin inhibition (Kotowski et al., 2011; Vickery & von 

Zastrow, 1999). Since DAT and D2 interact, this raises the possibility that they are 

co-trafficking via a dynamin-independent mechanism into endosomal 

compartments. 

 

Interestingly, we see that surface resident DAT is not present in a uniform pool, 

but rather two pools: one of which undergoes constitutive and PKC-mediated 

trafficking and one which does not respond to either of these two regulatory events.  

A previous study from Foster and associates reported that DAT is segregated 
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between lipid raft and non-raft domains at the cell surface (Foster et al., 2008), 

raising the possibility that either raft or non-raft microdomains may facilitate 

trafficking competent and incompetent DAT populations.  Additionally, a DAT 

trafficking mutant, R615C, found in an ADHD patient, has been shown to 

constitutively internalize at a higher rate and is found in a different distribution 

compared to wild-type between raft and non-raft membrane domains at the surface 

(Sakrikar et al., 2012).  Future work measuring DAT trafficking specifically from 

these two membrane domains will be informative regarding if this is the 

segregation is used to delineate trafficking requirements. 

 

The functional implications for segregated DAT populations at the cell surface are 

not known.  This could provide a mechanism by which dopaminergic neurons can 

mute responses to cell signaling pathways, preventing profound DAT surface loss.  

As DAT(-/-) mice display behavioural deficits (Giros et al., 1996) and dopaminergic 

signal latency has been implicated in mood (Chaudhury et al., 2013) and cognitive 

disorders (Brunelin et al., 2013), potential ‘over-trafficking’ would have deleterious 

effects.  Finite surface pools have been described for the potassium channel 

K(V)10.1, where constitutively internalizing channel will plateau after 45 minutes, 

consistent with the DAT model ((Kohl, Lorinczi, Pardo, & Stuhmer, 2011).  

Moreover, this channel was observed to internalize via two different mechanisms 

(clathrin-deoendent and clathrin-independent fluid phase uptake), also consistent 

with our observed dynamin-dependent and –independent DAT trafficking 
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pathways.  Furthermore, whether related neurotransmitter transporter, like NET or 

SERT, are also segregated between trafficking-competent and –incompetent 

pools is an interesting question.  NET and SERT have been shown to localize to 

raft and non-raft membrane domains (Matthies et al., 2009; Muller, Wiborg, & 

Haase, 2006).  Studies testing whether they contain a finite trafficking-competent 

surface pool could have broader implications for the SLC6 protein family. 

 

Conflicting results have been reported regarding DAT’s endocytic fate during basal 

and PKC-stimulated internalization, both in neurons and heterologous expression 

systems.  Previous reports show that DAT ubiquitylation is required for PKC-

mediated DAT trafficking (Miranda et al., 2005).  This post-translational 

modification is then required for DAT degradation, as mutations in N-terminal 

lysines prevent ubiquitylation and slow DAT turnover (Vina-Vilaseca & Sorkin, 

2010).  These studies were performed in a non-neuronal heterologous expression 

system and imposed 1-2 hour PMA treatments, resulting in an extensive PKC 

activation that may not reflect a physiologically relevant stimulus.  This approach 

could have artifactually targeted DAT to a degradative fate.  Additionally, work from 

Eriksen and associates in cultured dopaminergic neurons demonstrated that 

internalized DAT preferentially sorts to Rab7-positive endosomes, indicating a 

predominantly degradative fate (Eriksen et al., 2009).  This study tracked a 

fluorescent cocaine analog bound to DAT to test internalization and endosomal 

sorting.  Persistent ligand binding has been reported to alter DAT endocytic fate, 
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tempering the interpretation for this result (Daws et al., 2002).  Moreover, DAT 

trafficking was PMA-insensitive and no DAT recycling was observed, inconsistent 

with our results in the striatal slice as well as DAT trafficking studies in 

heterologous cells.  We observe DAT surface losses in dynole-treated slices, 

consistent with a role for dynamin in constitutive DAT recycling, and DAT was not 

significantly degraded over the experimental time-course.  However, one caveat 

to our findings is that we, as yet, do not know the dynamin-dependent endocytic 

compartment in which DAT accumulates.  If this is an early endosomal 

compartment, we may be blocking PKC-stimulated DAT degradation by arresting 

progression to degradative endocytic vesicles.  Future studies tracking DAT 

endocytic trafficking should be illuminating in this regard. 

 

DAT has been described to constitutively recycle to the plasma membrane and co-

localize in Rab11 endosomal compartments in heterologous cells (Furman, Lo, et 

al., 2009).  Our results suggest that DAT recycles in striatal presynaptic termini.  

Recent work has shown that D2 activation will cause a rapidly observed increase 

in DAT surface levels in striatal synaptosomes followed by the aforementioned 

DAT surface reduction (Chen et al., 2013).  This rapid release to increase surface 

expression is reminiscent of the regulated recycling seen in the glucose transporter 

GLUT4.  There, insulin signaling will elicit an Akt-mediated cascade releasing 

GLUT4-positive endosomes to fuse at the cell surface, rapidly increasing glucose 

uptake in response food intake (Foley et al., 2011).  Insulin treatment also acutely 
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increases DAT activity and increases transporter surface expression through PI3K 

signaling (Carvelli et al., 2002).  AMPH will also cause a rapidly (seconds) 

observed increase in DAT surface levels followed by a slower (minutes) occurring 

reduction in surface DAT (Chen et al., 2009).  Moreover, AMPH-induced DAT 

trafficking is correlated with decreased Akt activity via a CaMKII-dependent 

pathway and can be inhibited by insulin treatment (Garcia et al., 2005).  Rapid DAT 

recycling was also observed following dopamine uptake, with maximal DAT 

surface levels observed after 80 seconds (Furman, Chen, et al., 2009).  This could 

provide a mechanism for neurons to mute dopaminergic neurotransmission by 

providing greater uptake following dopamine release.  Whether the molecules 

required for the DAT surface reduction are also mediating the increase in DAT 

surface levels remain to be seen. 

 

The precise mechanism for DAT recycling is not fully known, but we show that that 

the cytoskeletal protein actin is required at the dynamin-dependent step in the 

recycling process.  Actin filaments have been shown to mediate recycling 

endosome transport to the cell.  The cystic fibrosis conductance regulator requires 

actin association for recycling back to the plasma membrane via the channel’s C-

terminal PDZ domain (Swiatecka-Urban et al., 2002).  Furthermore, actin is 

involved in tubular endosome formation that recycle β2-adrenergic receptor back 

to the cell surface in a dynamin-dependent process (Cao et al., 1999).  This is 

consistent with our results in which dynamin and actin work in concert to regulate 
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DAT surface levels in the striatum.  Nevertheless, the full complement of molecular 

components necessary for the DAT recycling pathway are still under study. 
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