
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2012-01-27 

Role of Glia in Sculpting Synaptic Connections at the Drosophila Role of Glia in Sculpting Synaptic Connections at the Drosophila 

Neuromuscular Junction: A Dissertation Neuromuscular Junction: A Dissertation 

Yuly F. Fuentes Medel 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Amino Acids, Peptides, and Proteins Commons, Animal Experimentation and Research 

Commons, Cells Commons, Nervous System Commons, and the Neuroscience and Neurobiology 

Commons 

Repository Citation Repository Citation 
Fuentes Medel YF. (2012). Role of Glia in Sculpting Synaptic Connections at the Drosophila 
Neuromuscular Junction: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/ezjw-
jx65. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/580 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and 
Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1390?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1390?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/940?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/949?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/ezjw-jx65
https://doi.org/10.13028/ezjw-jx65
https://escholarship.umassmed.edu/gsbs_diss/580?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


ROLE OF GLIA IN SCULPTING SYNAPTIC CONNECTIONS AT THE 
DROSOPHILA NEUROMUSCULAR JUNCTION 

 
 

A Dissertation Presented 
 
 

By 
 
 

Yuly Fuentes 
 
 
 

Submitted to the Faculty of the 
 

University of Massachusetts Graduate School of Biological Sciences, Worcester 
 

in partial fulfillment of the requirements for the degree of 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 
 

January 27th 2012 
 
 
 
 
 

Program in Neuroscience 

 

 

 

 

 

 

 



 

 

ii 

 

ROLE OF GLIA IN SCULPTING SYNAPTIC CONNECTIONS AT THE 
DROSOPHILA NEUROMUSCULAR JUNCTION 

A Dissertation Presented
By

Yuly Fuentes

The signatures of the Dissertation Defense Committee signify
completion and approval as to style and content of the Dissertation.

_________________________________________
Vivian Budnik, Ph.D. Thesis Advisor

_________________________________________
Marc Freeman, Ph.D. Thesis Advisor

_________________________________________
Eric Baehrecke, Ph.D. Member of Committee

_________________________________________
Patrick Emery, Ph.D. Member of Committee

_________________________________________
Hong-‐Sheng Li, Ph.D. Member of Committee

_________________________________________
Rob Jackson, Ph.D. Member of Committee

The signature of the Chair of the Committee signifies that the written dissertation meets
the requirements of the dissertation committee.

_________________________________________
Michael Francis, Ph.D. Chair of Committee

The signature of the Dean of the Graduate School of Biomedical Sciences signifies
that the student has met all graduation requirements of the school.

_________________________________________
Anthony Carruthers, Ph.D.

Dean of the Graduate School of Biomedical Sciences

Program in Neuroscience
January, 27th 2012



 

 

iii 

 

ACKNOWLEDGMENTS 
 

I would like to offer my sincerest gratitude to both of my thesis advisors, 

Dr. Vivian Budnik and Dr. Marc Freeman, for letting me work the project of my 

dreams. Thank you for your honesty, support and friendship. Thank you for 

giving me the freedom to make science happen.  

I would like to thank the members of my Dissertation Defense Committee, 

Dr. Michael Francis, Dr. Eric Baehrecke, Dr. Hong-Sheng Li, Dr. Patrick Emery 

and Dr. Rob Jackson for a fun discussion, encouragement and attention to detail. 

 I would like to give thanks to the faculty of the Neurobiology Department at 

UMass Medical School for supporting my scientific initiatives outside the United 

States. In particular, I would like to thank Dr. Scott Waddell for making me 

believe I could do things I did not know I was able to do.  I would also like to 

thank Dr. Steven Reppert for his caring feedback and support on my career 

development. I would also like to thank all the members of the Budnik and the 

Freeman laboratories, both past and present, for their contributions to my thesis 

research and my development as a scientist.  They have been my family during 

these years and I owe gratitude to each of them in many different ways. 

On a personal level, I would like to thank my husband Ricardo, for 

supporting each step of this endeavor, also to my family, my mother and father, 

Teresa and Luis, for letting me be. Lastly, I would also like to thank all my friends 

who have made my graduate studies a fun experience. 

 



 

 

iv 

 

ABSTRACT 
 

Emerging evidence in both vertebrates and invertebrates is redefining glia 

as active players in the development and integrity of the nervous system. The 

formation of functional neuronal circuits requires the precise addition of new 

synapses. Mounting evidence implicates glial function in synapse remodeling and 

formation. However, the precise molecular mechanisms governing these 

functions are poorly understood. My thesis work begins to define the molecular 

mechanisms by which glia communicate with neurons at the Drosophila 

neuromuscular junction (NMJ).  

During development glia play a critical role in remodeling neuronal circuits 

in the CNS. In order to understand how glia remodel synapses, I manipulated a 

key component of the glial engulfment machinery, Draper. I found that during 

normal NMJ growth presynaptic boutons constantly shed membranes or debris. 

However, a loss of Draper resulted in an accumulation of debris and ghost 

boutons, which inhibited synaptic growth. I found that glia use the Draper 

pathway to engulf these excess membranes to sculpt synapses.  Surprisingly, I 

found that muscle cells function as phagocytic cells as well by eliminating 

immature synaptic ghost boutons. This demonstrates that the combined efforts of 

glia and muscle are required for the addition of synapses and proper growth. 

My work establishes that glia play a crucial role in synapse development 

at the NMJ and suggests that there are other glial-derived molecules that 

regulate synapse function. I identified one glial derived molecule critical for the 
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development of the NMJ, a TGF-β ligand called Maverick. Presynaptically, 

Maverick regulates the activation of BMP pathway confirmed by reducing the 

transcription of the known target gene Trio. Postsynaptically, it regulates the 

transcription of Glass bottom boat (Gbb) in the muscle suggesting that glia 

modulate the function of Gbb and consequently the activation of the BMP 

retrograde pathway at NMJ. Surprisingly, I also found that glial Maverick 

regulates the transcription of Shaker potassium channel, suggesting that glia 

potentially could regulate muscle excitability and consequently modulate synaptic 

transmission. Future work will elucidate such hypothesis. 

My work has demonstrated two novel roles for glia at the NMJ. First is that 

glia engulfing activity is important for proper synaptic growth. Second is that the 

secretion of glial-derived molecules are required to orchestrate synaptic 

development. This further supports that glia are critical active players in 

maintaining a functional nervous system.   
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Basic aspects of neural circuit assembly 

The nervous system is the most complex tissue in mammals and is comprised of 

millions of neurons and glia.  Groups of neurons are assembled into circuits that, 

with the help of glial modulation, dynamically govern brain function and behavior.  

The basic unit of neuronàneuron communication is a specialized cell-cell 

junction termed the synapse.  The presynaptic cell, when stimulated, releases 

chemical neurotransmitters at the synapse onto the postsynaptic cell.  This 

process, termed synaptic transmission, results in the activation of specific 

receptors on the postsynaptic cell and ultimately postsynaptic cell firing.  This 

process occurs in a timescale of milliseconds, allows for the sequential activation 

of a circuit of cells, and its molecular basis and regulation has been a focus of 

study for many years.  

The assembly of neural circuits during development occurs in three 

discrete steps.  First, axons and dendrites sprout from newly born neurons and 

extend to their appropriate target fields.  Second, upon finding the appropriate 

pre- or postsynaptic target cell, neurons initiate the process of synapse formation 

(synaptogenesis).  This process is often exuberant, and leads to the production 

of an excessive number of synapses.  Finally, through activity-dependent 

mechanisms neural circuits are refined—excess axons, dendrites, and synapses 

are pruned, and functional connections are maintained.   

Each of the above steps in neural circuit formation involves an amazing 

synchronization of cellular and molecular events.  During the period of axon 
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pathfinding, the cell is investing an incredible amount of energy to extend the 

length of the axon, while the growth cone is carefully following chemical cues to 

reach the appropriate target (Bashaw and Klein, 2010; Evans and Bashaw, 

2010).  At the initiation of synaptogenesis, a number of cell adhesion molecules 

such as Fas II, are responsible solidifying connections, while at the same time 

scaffolding proteins such as DLG, the homologous protein of mammalian PSD-

95, bring the appropriate receptors and ion channels to the membrane (Guan et 

al., 1996).  The coordination of this event in particular has been a major focus of 

study and excellent progress has been made toward understanding the 

molecular basis of synapse assembly.  Interestingly, neural activity itself is a key 

regulator of circuit refinement, which allows experience or changing 

environmental conditions to shape circuit development of plasticity.  As an 

example, the role of activity in regulating growth of the neuromuscular junction is 

discussed in detail below. 

The molecular pathways that modulate neural circuit refinement in the 

context of synaptic and neurite pruning remain poorly defined.  How are specific 

synapses, axons, or dendrites selected for elimination?  Once chosen, how do 

they undergo programmed self-destruction?  After degradation, how is neuronal 

debris removed from the nervous system?  What would be the consequence of 

failure of debris clearance?  Our lack of knowledge on these topics is quite 

remarkable since refinement mechanisms are thought to play critical roles in the 
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functional maturation of neural circuits and complex brain functions such as 

behavior or learning and memory. 

 

Mammalian glial cells in synapse formation 

For years, glial cells were thought to provide simple physical and trophic support 

for neurons.  However, recent studies support the notion that glial cells are 

critical regulators of nervous system development and function, particularly with 

respect to synapse development and plasticity.   

In the mammalian central nervous system (CNS) there are four major glial 

subtypes, microglia, oligodendrocytes, NG2+ glia, and astrocytes.  Microglia are 

the major immune cell type in the CNS, responding to trauma, engulfing dead 

cells or degenerating axons, and generally overseeing brain health (Saijo and 

Glass, 2011).  Oligodendrocytes are the major wrapping glial subtype in the 

CNS, known to ensheath the nerves, and in many cases form myelin sheaths 

that dramatically enhance nerve conduction velocity (Fancy et al., 2011).  NG2+ 

cells remain a mysterious pool of glia found throughout brain, whose function is 

not well understood, but appear to act as precursors for oligodendrocytes in the 

mature CNS (Richardson et al., 2011).  Finally, astrocytes are intimately 

associated with synapses in the brain and appear to play critical roles in synaptic 

signaling in the recently described tripartite synapse (Halassa and Haydon, 2010; 

Zhang and Barres, 2010). 
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In the mammalian peripheral nervous system there is one primary glial 

subtype termed Schwann cells.  Schwann cells ensheath axon bundles, in many 

cases myelinate axons, and support the survival of long axons.  At the 

neuromuscular junction (NMJ) Schwann cells are tightly associated with the 

presynaptic motor neuron endplate, covering it entirely (Brill et al., 2011). 

The most-distal Schwann cell which is associated with the NMJ, termed the 

perisynaptic (or terminal) Schwann cell, is thought to be a specialized Schwann 

cell that modulates NMJ growth and synaptic physiology(Griffin and Thompson, 

2008; Todd et al., 2010). 

Astrocytes appear to be critically important for the formation of synaptic 

contacts during neural circuit assembly (Eroglu and Barres, 2010). For example, 

when retinal ganglion cells (RGCs) are cultured in vitro on their own they form 

very few synapses.  However, when RGCs are grown beneath an astrocyte 

feeding layer, the amount of mature synapses increases dramatically.  Since in 

these cultures astrocytes and neurons had no physical contact, and it was found 

that astrocyte-conditioned medium was sufficient to promote synapse formation, 

these studies argued that soluble glial-derived factors promote formation of 

mature synapses (Pfrieger and Barres, 1997; Nagler et al., 2001; Ullian et al., 

2001).  Fractionation of astrocyte conditioned medium ultimately revealed 

thrombospondins (TSPs) as key glial derived synaptogenic factors 

(Christopherson et al., 2005). Interestingly, while TSPs were found to induce 

morphologically normal synapses, TSP-induced synapses were post-synaptically 
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silent, lacking their normal AMPA receptor-mediated response (Christopherson et 

al., 2005).  Subsequent studies of astrocyte-expressed matricellular proteins led 

to the identification of Hevin and SPARC, which regulate the formation of 

synapses in vivo.  Hevin promotes the formation of morphologically and 

functionally mature synapses, while SPARC acts as a negative regulator of Hevin 

function (Kucukdereli et al., 2011).  Together, these studies provided direct 

evidence supporting the notion that astrocyte-secreted molecules can promote 

synapse formation.  However, key questions regarding how these or other 

molecules modulate synapse formation and plasticity in vivo await clarification.  

 

Neurite pruning in neural circuit refinement 

Axonal pruning has been used as an excellent model to study the cellular and 

molecular biology of neural circuit refinement.  Axon pruning can occur through 

either retraction, where short axonal projections are simply resorbed by the 

parent arbor, or through wholesale degeneration (degenerative pruning), where a 

portion of the axon degenerates and is cleared from the nervous system (Luo 

and O'Leary, 2005). A well studied example of axonal pruning during mammalian 

nervous system development is the elimination of subsets of axons in layer 5 of 

the neocortex (O'Leary and Koester, 1993; Portera-Cailliau et al., 2005).  

Similarly, Drosophila mushroom body gamma neuron axons undergo pruning at 

metamorphosis (Watts et al., 2003; Freeman, 2006). In this latter case, 

elimination of the larval-specific axonal arbors and growth of new adult-specific 
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projection axons are thought to be essential for proper circuit connectivity to be 

achieved in the mature adult brain.  Pruning events are not limited to entire 

axons.  Pruning can also occur at the level of individual synapses in mammals by 

morphological and molecular criteria, thereby leading to the elimination of very 

specific synaptic connections (Eroglu and Barres, 2010; Chung and Barres, 

2011). 

 

Roles for glia in axonal and synaptic pruning 

The majority of neurons in the mammalian nervous system initially generate 

excessive axonal and dendritic projections, and synapses, and subsequently 

eliminate exuberant neural connections through developmental pruning (Luo and 

O'Leary, 2005).  Pruning of circuits through resorption of excessive neural 

projections is not thought to require glial cells, but this has not been thoroughly 

investigated.  On the other hand, glial cells are important cellular players in 

degenerative pruning, which entails two steps.  First, axons or dendrites 

degenerate, producing neural debris.  Next, glial cells engulf neural debris to 

clear it from the CNS.  Such clearance is thought to be critical to suppress 

inflammatory responses in the nervous system, and auto-immunity (Barres, 

2008). A clear cellular role for glial cells in engulfing pruned axons and dendrites 

was first shown in Drosophila (Watts et al., 2003; Freeman, 2006). Surprisingly, 

which CNS cells engulf pruned neural material in the mammalian brain has 

remained a mystery.  However recent work has shown that microglial cells likely 
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engulf pruned synaptic material in the CNS (Paolicelli et al., 2011), and it is likely 

they are also responsible for engulfing degenerating axons and dendrites.  

Whether engulfment plays an active role in promoting axonal, dendritic, or 

synaptic degeneration/pruning (i.e. telling which parts of the neuron to die) 

remains unclear.  However, engulfing microglia appear to actively promote the 

apoptotic death of a large number of Purkinje neurons during development 

(Marin-Teva et al., 2004), raising the possibility that glia might be instructive in 

sculpting connectivity through directed elimination of specific neural connections. 

The perisynpatic Schwann cell appears to play a critical role in the 

elimination of exuberant motorneuron inputs during NMJ development.  Briefly, 

early in development muscle fibers are poly-innervated by multiple motorneurons 

(MNs).  During refinement of muscle fields a single MN maintains an input, and 

additional MN axons undergo a distal-to-proximal retraction.  During this 

retraction MN axons shed membrane-enclosed “axosomes” at the distal ends, 

which are pinched off and engulfed by surrounding Schwann cells (Bishop et al., 

2004).  These observations form the basis for the suggestion that Schwann cells 

may in fact cause axosome shedding and are the driving force behind “loser” MN 

process retraction, rather than the MN itself. 
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The role of Schwann cells in forming, maintaining, and repairing motor 

neuron terminals 

The study of vertebrate perisynaptic Schwann cells (PSCs) has contributed in 

important ways to understand the key physiological functions of glial cells on 

synaptic growth/modification.  Anatomically, PSCs cover the entire MN terminal 

and PSC membrane extensions appear to lead MN outgrowth during normal 

development (Reddy et al., 2003).  While initial formation of synapses does not 

appear to require PSCs (Kullberg et al., 1977; Riethmacher et al., 1997; Morris et 

al., 1999; Woldeyesus et al., 1999), acute ablation of PSCs in frog strongly 

suppressed MN outgrowth at the NMJ and resulted in the retraction of MN 

processes approximately one week after PSC ablation (Feng et al., 2005).  

After denervation of a single NMJ, local MNs in the area will sprout 

processes and re-innervate the vacant motor endplate (Lu and Lichtman, 2007). 

However, PSCs appear essential for this event, and in fact prefigure all MN 

process growth—it appears the MNs will only grow toward vacant endplates 

when PSCs provide a so-called “bridge” (Love and Thompson, 1999). 

Interestingly, PSC outgrowth to form the bridge after denervation appears to be 

an activity-dependent process, requiring both pre- and postsynaptic signaling 

(Love and Thompson, 1999; Love et al., 2003).  Together these data suggest 

that Schwann cell processes are essential for MN outgrowth and stabilization.  

However the molecular pathways involved in these events remain to be 

identified.   
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The Drosophila NMJ as a new model to study neuron-glia signaling   

The Drosophila NMJ has been used as model to study synaptic function since 

the mid 1970’s, when investigators from USA and later from Russia started 

describing its basic physiological and pharmacological properties (Jan and Jan, 

1976; Magazanik and Vyskocil, 1979). A major advantage of this preparation is 

its experimental accessibility with respect to the synaptic function: the Drosophila 

NMJ can be easily analyzed morphologically and electrophysiologically. Work 

over the last twenty years has shown that the molecular constituents of the 

mammalian glutamatergic central synapse and Drosophila NMJ are well 

conserved (Koh et al., 2000), although NMJ synapses of course represent 

connections between a presynaptic motorneuron and a muscle cell rather than 

two neurons. The Drosophila NMJ has the important advantage of being a 

powerful genetic system to investigate glutamatergic synapse function and has 

thus been an avenue for the discovery of new molecules involved in the 

development, physiology, and plasticity of synapses. 

 

Anatomy of the Drosophila NMJ 

In 1982 Jan and Jan reported that antibodies against Horse Radish Peroxidase 

(HRP) recognize neuronal tissue in Drosophila.  HRP stains have been a great 

tool for the analysis of NMJ morphology since it is specific for the presynaptic 

compartment (See Figure 1-1,B).  Additional presynaptic markers include a 

number of synaptic vesicle associated proteins such as cysteine string protein 
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(CSP) (Dawson-Scully et al., 2007) (See Figure 1-1,E) or synaptotagmin 

(Yoshihara and Littleton, 2002). The presynaptic side of boutons contains the 

sites for neurotransmitter release (active zones) and these are arranged along 

the NMJ. Active zones can be detected with the monoclonal antibody nc82 (See 

Figure 1-1,D) that it is believed to recognize the protein Bruchpilot (Wagh et al., 

2006).  

Postsynaptic marker proteins are clustered to specific locations within the 

subsynaptic reticulum (SSR), and include DLG (Guan et al., 1996), Fas II 

(Thomas et al., 1997), and the Shaker potassium channels (Tejedor et al., 1997).   

While DLG is found both at the pre- and postsynaptic membranes, it appears to 

be most abundant postsynaptically (Lahey et al., 1994) (See Figure 1-1,B). 

Glutamate Receptors (GluRs) are organized into clusters directly apposed to 

Brp+ active zones (See Figure 1-1,D) presumably to ensure an efficient synaptic 

release (Qin et al., 2005). 

In contrast to vertebrate NMJs, at the glutamatergic larval NMJ, terminal 

glial cells do not appear to cap the entire synaptic arbor. Instead, NMJ arbors are 

buried within the muscle surface, which wraps around the boutons (Banerjee et 

al., 2006; Parker and Auld, 2006).  Glial cells were previously reported to be 

absent from the NMJ, terminating at the point at which the MN enters the muscle.  

However, I show in Chapter 2 of this thesis that this is incorrect and that 

Drosophila glial cells dynamically associate with the NMJ.   
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Figure 1-1: Third instar larval NMJs synaptic markers. Wild type preparations 

labeled with (A) anti-DLG (red), (B) co-label anti-HRP (green) with DLG (green),  

(C) an entire muscle 6 and 7 wild type branch stained with HPR (green) (D) anti-

HRP (blue), anti-GluRIII (red), and nc82 (green) and (E) Cysteine string protein 

(CSP) (green) co-label with HRP (red). (F) cartoon of body wall muscle 6/7 (red) 

anatomy with relation to central nervous system (green) below a representation 

of synaptic outgrowth shown in C 
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Development of the Drosophila NMJ 

During embryonic development motorneurons begin to extend their axons to a 

precise target muscle cell.  By late embryonic development, synapses have 

formed.  During the larval stage they begin to differentiate into characteristic 

presynaptic structures (synaptic boutons), which increase in size and number in 

relation to muscle growth (Budnik, 1996).  During larval stages the NMJ (MN and 

postsynaptic muscle cell) undergoes a remarkable amount of growth.  In only 

~3.5 days it increases in volume ~100-fold.  Such dramatic expansion of the NMJ 

requires rapid and efficient growth, and has made the Drosophila NMJ a very 

appealing model for developmental synaptic plasticity (Griffith and Budnik, 2006; 

Ruiz-Canada and Budnik, 2006). 

Glial cells that wrap the peripheral nerves derive largely from CNS 

precursors.  In addition to the axons navigating out of the CNS, a group of glial 

cells migrate along with the axons and wrap the axon bundles (See Figure 1-2,B) 

(Sepp et al., 2001; Edenfeld et al., 2007). Glial cells do not appear to contact the 

NMJs before the first larvae stage, and ablation of peripheral glia does not inhibit 

MNs from finding the appropriate target cells (Sepp et al., 2000), indicating that 

the MN growth cone can find its postsynaptic target in the absence of glia. 
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The role of neural activity in Drosophila NMJ growth 

Previous studies using intact third instars larvae have demonstrated that as the 

larva develops in size, new synaptic boutons are added through the process of 

budding (Zito et al., 1999). Many of the new synaptic boutons are added at the 

end of a NMJ branch, where a bud forms, is stabilized, and matures into a new 

bouton (Torroja et al., 1999; Zito et al., 1999). In postsynpatic muscle cells, the 

subsynaptic reticulum (SSR) increases in size and complexity to accommodate 

these increases in bouton number and size (Guan et al., 1996).  

The Budnik laboratory has used the Drosophila NMJ extensively to 

explore the molecular mechanisms of synaptic growth.  In particular, we have 

focused on live-imaging of growing NMJs while manipulating various aspects of 

synaptic activity.   For example, using an open fillet preparation we can directly 

image synapses in live preparations while exposing the NMJ to treatments such 

as potassium pulses (for massive depolarization), or directly voltage clamping 

and stimulating nerves electrophysiologically.  Conveniently, the very same 

preparation can be fixed and stained for synaptic molecular markers to correlate 

molecular changes with changes in cellular morphology or physiology (Ataman et 

al., 2008).  In chapter one, I will describe a genetic approach to stimulate 

synaptic activity by expressing the light activated channel Channel Rhodopsin 2 

(Zhang and Oertner, 2007), and explore both how activation of the MN affects 

axon stability and how glial control NMJ morphogenesis (Fuentes-Medel et al., 

2009). 
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Subtypes of Drosophila glia in the peripheral nerve 

Drosophila peripheral glia form a multi-layered sheath around the peripheral 

nerves consisting of three glial subtypes: wrapping glia, which are directly 

associated with axonal tracks; subperineurial glia, which form the blood brain 

barrier around the entire peripheral nerve; perineural glia, which lay at the 

surface of the nerve and are believed to secrete the neural lamella, a protective 

carbohydrate sheath that encapsulates the peripheral nerve (see Figure 1-2) 

(Stork et al., 2008). 
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Figure 1-2 
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Figure 1-2: Glial cells in the larval nervous system of Drosophila.  

(A) Time-lapse imaging of glial extensions in a preparation expressing mCD8-

GFP in glial cells over the course of 6 min. 0,1,2,3 represent time points. bp= 

NMJ branch point. White arrowheads: lamellipodia like extensions. Red 

arrowheads: gliopods. (B) close magnification of a third instar larvae peripheral 

nerve and synatic boutons stained with HRP (red), Glial-GFP ( green) and Repo 

(blue). (C) Electron micrograph of a third larval instar peripheral nerve, (nl) neural 

lamella, (pn) perineurial glial (highlighted by light blue shading),  (spg) 

subperineurial glia, arrows, the cell is labeled in blue (D) Third instar larval 

nerves were stained for HRP (blue), Repo expression (red), and Dlg:GFP 

expression (green) under the control of the SPG:Gal4 driver. Scale bar, 1 um. (E) 

orthogonal view of nerve from (Stork et al., 2008) 

 

Third party copyrighted material has been granted at no cost for Figure 1-2 C, D. 

E from the Journal of Neuroscience, article titled 'Organization and function of the 

blood-brain barrier in Drosophila' Stork, T., Engelen, D., Krudewig, A., Silies, M., 

Bainton, R. J. and Klambt, C. (2008) J Neurosci 28(3): 587-97. 
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Drosophila glia sculpt the nervous system 

During Drosophila nervous system remodeling glial cells play a critical role in the 

reorganization of neural circuits.  The Drosophila mushroom body gamma 

neurons have been used as an excellent model to explore neuron-glia 

interactions during pruning events.  During axonal pruning at metamorphosis glial 

cells have been shown to invade the dorsal and medial lobes of the mushroom 

body, axons subsequently fragment, and then axonal debris is rapidly cleared 

from the CNS through glial engulfment activity (Awasaki and Ito, 2004). Axonal 

fragments within invading glial cell types have been identified in electron 

microscopic studies that employ genetically encoded markers for axons or glia 

(Watts et al., 2003), and genetically inhibiting glial endocytosis during 

metamorphosis has been shown to block the clearance of the dorsal and medial 

branches of the mushroom body (Awasaki and Ito, 2004).  It has been proposed 

that engulfing glia may play an active role in axonal destruction based on this 

latter observation, however this idea remains controversial and has not been 

rigorously tested.  Consistent with a pro-degenerative role for glia in Drosophila, 

a recent study by Keller et al. revealed in a model for progressive synaptic 

retraction that peripheral glia actively release the TNFα-like molecule Eiger, 

which activates MN-expressed Wengen to initiate caspase-dependent 

degradation of MN terminals (Keller et al., 2011). 

A direct role for mammalian astrocytes or microglia in developmental axon 

pruning has not been demonstrated, but appears highly likely based on the fact 
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that these cell types clear axonal debris from the mammalian CNS in many other 

contexts (Aldskogius and Kozlova, 1998; Davalos et al., 2005).  For example, at 

later developmental stages glia selectively eliminate subpopulations of neurons 

through their phagocytic activity (Marin-Teva et al., 2004).  Very recently 

microglia have also been shown to engulf synapses that are eliminated through 

developmental pruning in the mouse CA1 striatum radiatum.  Interestingly, 

suppressing microglial engulfing activity leads to an accumulation of PSD95+ 

puncta, and a delay in the maturation of neural circuits, suggesting that glial 

pruning of synaptic material is essential for final maturation of circuit function 

(Paolicelli et al., 2011).  

 

The Draper signaling pathway mediates glial engulfment of neuronal debris 

Draper, the Drosophila orthologs of the engulfment receptor C. elegans CED-1, 

has been shown to be a central component of the glial engulfment machinery 

(Freeman et al., 2003a).  In C. elegans CED-1 is required in engulfing cells for 

the phagocytosis of cell corpses and it is thought to act as a recognition receptor 

for cues presented by cells undergoing apoptotic death (Hamon et al., 2006).  

CED-1 engagement with an unidentified ligand on the engulfment target is 

thought to initiate downstream signaling through the PTB domain coiled-coil 

protein Ced-6 (Reddien and Horvitz, 2004) and subsequent corpse engulfment.   

 Drosophila glial cells have long been known to be the primary engulfing 

cell type in the nervous system by EM studies (Sonnenfeld and Jacobs, 1995) .  
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Previous work from the Freeman laboratory demonstrated that nearly all glia 

express Draper, and that neuronal cell corpses accumulate in draper mutant 

embryos (Freeman et al., 2003a).  More recently, Draper has been shown to be 

required for the clearance of severed axons undergoing Wallerian degeneration 

(MacDonald et al., 2006), and the timely removal of developmentally pruned 

mushroom body axons by glia (Awasaki et al., 2006; Hoopfer et al., 2006).  

Draper, like CED-1, appears to signal through dCed-6 to activate engulfment 

(Doherty et al., 2009). 

 The Draper/CED-1 signaling pathway appears to be well-conserved in 

mammals.  The mammalian genome contains two potential Draper orthologs, 

MEGF10 and Jedi. The mammalian receptor MEGF10 has been shown to 

partially rescue Ced-1 phenotype in C. elegans (Hamon et al., 2006).  Moreover, 

MEGF10 and Jedi are highly expressed in satellite glial cells in dorsal root 

ganglia as they are engulfing neuronal cell corpses, and knockdown of MEGF10 

or Jedi inhibits engulfment of cell corpses in mammalian cell culture (Wu et al., 

2009). 

  

TGF-β signaling pathways regulate NMJ growth 

The coordinated growth of both pre- and post-synaptic compartments at the NMJ 

is critical for maintenance of synaptic signaling.  Balancing the growth of these 

two compartments is accomplished by both anterograde (neuronàmuscle) and 

retrograde (muscleàneuron) signaling pathways.  A key regulator of retrograde 
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signaling in Drosophila is the Bone Morphogenetic Protein (BMP) family of 

signaling molecules and their receptors (Aberle et al., 2002; Marques et al., 

2002; McCabe et al., 2003; Rawson et al., 2003). 

Expansion of presynaptic terminals is regulated by the release of the 

Drosophila BMP ligand Glass Bottom Boat (Gbb) from the growing muscle cells. 

Gbb binds to the type I BMP receptors Thick veins (Tkv) or Saxophone (Sax) and 

type II BMP receptor, Wishful thinking (Wit), at presynaptic terminals (Aberle et 

al., 2002; Marques et al., 2002; McCabe et al., 2003; Rawson et al., 2003).  

Ligand-dependent activation of type I and type II BMP receptors leads to 

phosphorylation of the intracellular transcription factor Receptor Activated Smad 

(R-Smad), which in Drosophila is called Mothers Against Dpp (Mad).  

Phosphorylated-R-Smad then binds to a co-Smad termed Medea, thereby 

forming a transcriptionally active complex (Mad/Medea).  The Mad/Medea 

complex is imported into the nucleus where it regulates the transcription of BMP 

target genes including trio (Moustakas and Heldin, 2009).  Consistent with this 

model, mutations in tkv, sax, wit and gbb result in NMJs with reduced numbers of 

synaptic boutons, a decrease in the size of evoked responses after 

electrophysiological stimulation of MNs, and decreased signals in embryonic 

motorneuron nuclei when they are stained with antibodies that cross-react with 

phosphorylated-MAD (P-Mad) (Marques et al., 2002; McCabe et al., 2003; 

Rawson et al., 2003).  Retrograde signaling to the nucleus also requires 

retrograde axonal transport in MNs, since genetic blockade of retrograde axonal 
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transport also reduces P-Mad signals in MNs. The mechanism by which the 

translocation of P-Mad into the nucleus is translated into changes in synaptic 

growth and function remains unclear despite intense research in this area.  

However, Ball and colleagues have recently demonstrated that TRIO 

transcription is controlled by the retrograde BMP pathway, and together with Rac, 

is involved in presynaptic growth and regulation of neurotransmitter release (Ball 

et al., 2010).  

Although BMPs have been best studied for their role as retrograde 

regulators, several BMP receptors and P-Mad are also found in Drosophila larval 

muscles (Dudu et al., 2006), suggesting that BMP regulation is more complex, 

and likely to control a variety of synaptic mechanisms beyond retrograde control. 

Indeed, recent studies have uncovered a role for the type I Activin-type BMP 

receptor, Baboon (Babo), in larval muscles in controlling the transcription of Gbb 

(Ellis et al., 2010a).  Although the exact source of the BMP ligand in this case, 

Dawdle, is not clear, these experiments suggest that BMP signaling in the 

muscles themselves might regulate the retrograde activity of BMPs. 

 

Significance of the work in this thesis 

Despite the widespread observation that glial cells are closely associated with 

synapses in both the CNS and PNS, we know very little about the cellular and 

molecular roles for glial cells in synaptic growth and function.  A central question 

regarding glial function is whether or not glial cells actively regulate synaptic 
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growth and circuit formation, or if they simply support neuronal growth and allow 

circuits to form.  (The correct answer is probably both.)  

In the second chapter of this thesis, I have explored how glial engulfment 

activity modulates the growth of synaptic fields.  Briefly, I show that growing NMJ 

synaptic fields shed an amazing amount of presynaptic debris.  Glial cells invade 

the NMJ, and engulf this debris (in collaboration with muscles) using the Draper 

signaling pathway.  By maintaining the NMJ in this way, glial clear out 

presynaptic debris which, if left in the synaptic field, severely retards new 

synapse addition.  My work therefore shows that maintenance of the NMJ is a 

critical function for glia, and is essential for normal synaptic growth.    

In the third chapter of this thesis, I have addressed the question of 

whether or not Drosophila glial cells secrete factors that actively modulate 

synaptic growth.  I show that peripheral glia secrete the TGF-β molecule 

Maverick, which acts on muscles to stimulate presynaptic changes in gene 

expression, and the addition of new boutons.  In addition, I identified new targets 

of postsynaptic TGF-β signaling downstream of glial Maverick including Gbb and 

the TGF-β inhibitor molecule DAD. Remarkably, in the absence of glial Maverick I 

observe reduced transcription of Shaker. Thus, glial-derived signaling molecules 

are indeed critical is for the coordinated growth of the postsynaptic muscle and 

the motorneuron at the NMJ. 
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ABSTRACT 

Synapse remodeling is an extremely dynamic process, often regulated by neural 

activity.  Here we show during activity-dependent synaptic growth at the 

Drosophila NMJ many immature synaptic boutons fail to form stable post-

synaptic contacts, are selectively shed from the parent arbor, and degenerate or 

disappear from the NMJ.  Surprisingly, we also observe the widespread 

appearance of presynaptically-derived “debris” during normal synaptic growth.  

The shedding of both immature boutons and presynaptic debris is enhanced by 

high-frequency stimulation of motorneurons, indicating that their formation is 

modulated by neural activity.  Interestingly, we find that glia dynamically invade 

the NMJ and, working together with muscles cells, phagocytose shed presynaptic 

material.  Suppressing engulfment activity in glia or muscle by disrupting the 

Draper/Ced-6 pathway results in a dramatic accumulation of presynaptic debris, 

and synaptic growth in turn is severely compromised.  Thus actively growing NMJ 

arbors appear to constitutively generate an excessive number of immature 

boutons, eliminate those that are not stabilized through a shedding process, and 

normal synaptic expansion requires the continuous clearance of this material by 

both glia and muscle cells.  
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INTRODUCTION 

The wiring of the nervous system, from initial axon sprouting to the 

formation of specific synaptic connections, represents one of the most dramatic 

and precise examples of directed cellular outgrowth.  Developing axons navigate 

sometimes tortuous routes as they seek out the appropriate target cells.  Once in 

their target area, interactions between axons and their potential targets are 

extremely dynamic, attempts are made to identify appropriate postsynaptic 

partners, and initial synaptic contacts are established (Walsh and Lichtman, 

2003; Lohmann and Bonhoeffer, 2008)(reviewed in (Lu et al., 2009)).  A next 

critical step in the formation of functional neural circuits is the remodeling of initial 

patterns of connectivity.  To facilitate the elaboration and refinement of 

developing neural circuits synaptic partners often remain highly responsive to 

their environment and add or eliminate synaptic connections (Luo and O'Leary, 

2005; Alvarez and Sabatini, 2007), frequently in an activity-dependent fashion, 

presumably to fine-tune connectivity to specific activity patterns. 

After the axons have found their partners, two distinct mechanisms can 

drive the developmental reorganization of synaptic connectivity: intercellular 

competition between cells for common targets (reviewed in (Luo and O'Leary, 

2005; Alvarez and Sabatini, 2007)), and the addition/elimination of synapses 

within a single arbor in response to the physiological demands of the signaling 

unit (Balice-Gordon et al., 1990; Gorczyca et al., 1993; Schuster et al., 1996).  

The former mechanism dictates the circuit "wiring diagram" by defining precisely 
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which subsets of cells will communicate through synaptic contacts; while the 

latter, in contrast, modulates the strength of connectivity between specific pre- 

and post-synaptic cells after circuits are assembled. 

Early in nervous system development an excessive number of axonal 

projections and synaptic connections are initially established. What then ensues 

is cell-cell competition between neurons innervating the same target for limiting 

target-derived cues or sites of innervation during synaptogenesis.  Appropriate 

synaptic contacts are then strengthened and exuberant processes are 

destabilized and eliminated through activity-dependent mechanisms (Luo and 

O'Leary, 2005; O'Leary and McLaughlin, 2005).  For example, at the mammalian 

neuromuscular junction (NMJ) muscles are initially innervated by more than one 

motor input.  However, through a process of intercellular competition for motor 

endplates, all but one motor input are eliminated, with the "losers" retracting 

wholesale from the motor endplate (Walsh and Lichtman, 2003).  Likewise, at the 

retinotectal projection in frogs, retinal axons initially establish a rough topographic 

map with substantial overlap between branches. However, these local synaptic 

terminals ultimately compete for target space and through activity-dependent 

modulation of synapse stabilization the spatial map of synaptic inputs is 

ultimately refined to a highly selective subset of inputs (Cline, 1991).   

In the intercellular competition model the elimination of exuberant inputs 

(the "losers") can entail large-scale elimination of axon branches, and perhaps 

smaller scale pruning of individual synaptic contacts.  During axon and synaptic 
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pruning in mammals and Drosophila entire axon branches are destabilized, 

degenerate, and are then cleared from the CNS by engulfing cell types (reviewed 

in (Luo and O'Leary, 2005)).  Similarly, recent work has shown that excessive 

motorneuron inputs at the mammalian NMJ also become destabilized, detach 

from the motor endplate, and undergo axosome shedding. In this process local 

Schwann cells processively engulf motorneuron terminals in a distal to proximal 

direction and constitute the force that drives retraction bulbs toward the parent 

arbor during input elimination (Bishop et al., 2004).  Ultimately, this mechanism 

results in a reduction of the total number of cells supplying synaptic input to the 

target cell. 

In the second and mechanistically distinct mode of synapse remodeling, 

individual synaptic contacts are added or removed from a single arbor to 

strengthen or weaken synaptic input to the target cell.  Such changes are 

generally elicited by changes in the target size or neural activity.  For example, 

Drosophila motorneurons have established synaptic contacts with specific 

embryonic muscle cells by the end of embryogenesis (Johansen et al., 1989).  At 

subsequent larval stages individual arbors, along with the target muscle itself, 

grow in size ~100-fold (Gorczyca et al., 1993; Schuster et al., 1996).  This 

coordinate increase in muscle size and synaptic contacts at motorneuron 

terminals serves to increase synaptic input from the motorneuron as needed to 

drive activation of the expanding muscle fiber.  Similar mechanisms appear in 

place to modulate the balance of neural input versus target cell size in mammals:  
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at the mammalian adult bulbocavernous muscle, testosterone manipulation lead 

to increases or decreases in muscle size, and these changes were accompanied 

by respective expansion or shrinkage of the postsynaptic region of the NMJ, 

respectively (Balice-Gordon et al., 1990).  

Here we explore the in vivo dynamics of synaptic expansion in 

motorneuron arbors at the Drosophila NMJ.  We show in live preparations that 

the addition of new synapses during normal synaptic growth entails a large 

amount of shedding of presynaptic membranes in the form of small debris and a 

subpopulation of undifferentiated synaptic boutons (ghost boutons) which failed 

to mature. This process is distinct from intercellular competition, as none of the 

motorneuron terminals are eliminated. Rather, this mechanism appears to 

regulate the final size of the terminal arbor. We find that the formation of 

presynaptic debris (this report) and ghost boutons (Ataman et al., 2008) are 

modulated by neural activity, as acute stimulation of motor inputs leads to 

increased appearance of these structures. Intriguingly, presynaptic debris and 

the subpopulation of ghost boutons that become detached from the parent arbor 

appear to be actively cleared from the NMJ as they disappear over 

developmental time.  We show that glia dynamically invade the NMJ and 

phagocytose presynaptically shed debris, and that ghost boutons are engulfed or 

degraded primarily by muscle cells.  Loss of phagocytic function in glia or muscle 

cells through manipulating the Draper signaling pathway (a key engulfment 

signaling pathway) results in an accumulation of presynaptic debris or ghost 
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boutons at the NMJ and a severe reduction in NMJ expansion, indicating that 

continuous clearance of shed presynaptic debris and/or ghost boutons is 

essential for normal synaptic growth.  Thus glia and muscles work together to 

sculpt connectivity at developing NMJ arbors, clearing multiple types of shed 

presynaptic structures that are inhibitory to the formation of new synaptic 

boutons.  
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RESULTS 

The larval NMJ sheds presynaptic membranes 

 In insects, α-HRP antibodies cross-react with neuron-specific membrane 

antigens (Jan and Jan, 1982) likely by binding to carbohydrate moieties present 

in a number of neuronal membrane proteins, including the cell adhesion 

molecules Fasciclin (Fas) I and II  (Snow et al., 1987). Consistently, at the 

Drosophila larval NMJ α−HRP antibodies labeled the entire presynaptic arbor 

(Fig. 2-1A1). However, we also noticed the presence of HRP-immunoreactive 

puncta at the postsynaptic junctional region, beyond the presynaptic membrane 

(Fig. 2-1A1, 2 arrows). These puncta also labeled with antibodies to FasII and did 

not appear to be connected to the presynaptic arbor (Fig. 2-1A3, 4). We 

wondered whether the HRP and FasII-positive postsynaptic staining might 

correspond to postsynaptic muscle structures, or whether the puncta might be 

derived from the presynaptic arbor. To distinguish between these possibilities, we 

expressed a membrane tethered GFP (UAS-mCD8-GFP) in motorneurons using 

the motoneuron-specific Gal4 driver OK6-Gal4 (Aberle et al., 2002). We found 

that the postsynaptic HRP puncta were exactly colocalized with the 

presynaptically derived GFP signal (Fig. 2-1D, arrow), suggesting that the HRP 

puncta are likely membrane fragments derived from presynaptic boutons. The 

presynaptically derived mCD8-GFP puncta were also observed by imaging 

through the cuticle of intact (undissected) larvae using a spinning disk confocal 
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microscope, indicating that they are naturally occurring and not an artifact of the 

dissection or sample preparation (Fig. 2-1E, arrows).  

The nature of the presynaptically derived puncta was examined using a 

number of synaptic markers. Cysteine string protein (CSP) and Synapsin (Syn) 

are presynaptic vesicle proteins that associate with the readily releasable and the 

reserve pool of synaptic vesicles respectively (Ranjan et al., 1998; Akbergenova 

and Bykhovskaia, 2007). We found that the postsynaptic HRP puncta colocalized 

with CSP (Fig. 2-1B, arrows and inset), but not with Syn immunoreactivity (Fig. 2-

1C). The presence of CSP in the HRP puncta further validates the idea that 

these puncta are presynaptic in origin. Labeling with antibodies against the active 

zone marker Bruchpilot (Brp) did not reveal immunoreactivity at the postsynaptic 

HRP-positive puncta (not shown). Together these results suggest that during 

NMJ development the motorneuron sheds membrane fragments (here referred to 

as presynaptic debris). Based on the presence of CSP but not Syn, the absence 

of Brp and the presence of FasII, we propose that presynaptic debris might arise 

from the perisynaptic bouton region. 

 Studies in many systems have suggested that the state of a mature 

synapse is the result of a dynamic equilibrium between growth and retraction 

(Wilson and Deschenes, 2005). Therefore, to determine what conditions lead to 

the shedding of presynaptic debris, we attempted to perturb this equilibrium by 

inducing activity-dependent synaptic growth (Ataman et al., 2008). Previous 

studies at the larval NMJ show that an acute increase in activity induces a de 
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novo formation of new synaptic boutons. In particular, spaced cycles of 

stimulation, consisting of either K+-induced depolarization, high frequency nerve 

stimulation, or light gating of neuronally expressed channelrhodopsin-2 (ChR2), 

induces rapid structural changes at the NMJ. These changes include an increase 

in the number and length of dynamic presynaptic filopodia (synaptopods) and the 

number of undifferentiated boutons (ghost boutons) containing synaptic vesicles 

but lacking active zones and postsynaptic proteins (Ataman et al., 2008). Imaging 

of intact larvae also showed that synaptopods and ghost boutons were naturally 

occurring structures observed even in unstimulated preparations albeit at low 

frequency (Ataman et al., 2008).  

In our experiments we expressed ChR2 in motorneurons using OK6-Gal4 

and stimulated the motorneurons of intact larvae with 5 cycles of spaced light 

stimulation as previously described (Ataman et al., 2008). Body wall muscles 

were then dissected either 30 min or 18 hrs after the stimulation was complete 

and labeled with anti-HRP. As a control, we used unstimulated larvae expressing 

ChR2 in motorneurons but not subjected to the light pulses. Notably, we found 

that the total area occupied by particles of presynaptic debris around the NMJ 

was significantly increased 30 min after the end of spaced stimulation (Fig. 2-1I), 

indicating that acute stimulation of neural activity resulted in an increase in 

presynaptic debris at the NMJ.  Allowing NMJs to recover for 18 hr after 

stimulation resulted in debris returning to wild type levels (Fig. 2-1I), suggesting 

the presence of an active mechanism to eliminate presynaptic debris from the 
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NMJ. We conclude that presynaptic debris are normally present at the NMJ and 

conditions that lead to synaptic growth result in a transient increase in the 

amount of presynaptic debris, thus shedding of debris is associated with NMJ 

growth. 

We also conducted time-lapse imaging of identified NMJs from live intact 

larvae expressing ChR2 in motorneurons using C380-Gal4 (Budnik et al., 1996). 

These larvae also contained fluorescent markers that allowed us to 

simultaneously image the pre- and the postsynaptic compartment. In particular, 

these larvae expressed UAS-mRFP in motorneurons to visualize the presynaptic 

NMJ arbor and mCD8-GFP::Sh in muscles using the myosin heavy chain (MHC) 

promoter (Zito et al., 1999) to visualize the postsynaptic NMJ region. In the MHC-

mCD8-GFP::Sh transgene, the GFP is fused to the last ~150 C-terminal amino 

acids of the Shaker K+ channel isoform containing a Discs-Large (DLG) PDZ 

binding site, and thus it is targeted to the postsynaptic region allowing its 

visualization in vivo (Zito et al., 1999). These larvae were subjected to spaced 

stimulation with light as above, and the same NMJ imaged for 5-15 min at 

different intervals. Between imaging intervals larvae were returned to the food. 

As previously reported (Ataman et al., 2008), we found that ghost boutons were 

present and some of these became stabilized and recruited postsynaptic label. 

However, we also observed that many of these ghost boutons did not recruit 

postsynaptic label and disappeared over time (Fig. 2-2A arrow and inset in right 

panel).  
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The presence of presynaptic debris in normal animals, the enhancement 

of presynaptic debris deposition upon spaced stimulation, and the elimination of 

some of the newly generated ghost boutons after spaced stimulation suggest that 

NMJ development involves the continuous shedding of certain presynaptic 

membrane compartments. Furthermore, the lack of accumulation of these 

components over developmental time, suggest that they may be actively 

removed from the NMJ. 

To determine if presynaptic debris might originate from the breakdown of 

ghost boutons that failed to become stabilized and disappeared, we followed the 

fate of ghost boutons that became detached from the presynaptic arbor and 

presynaptic debris. In these experiments, identified NMJs from larvae expressing 

ChR2 and mCD8-GFP in motorneurons were repeatedly imaged through the 

cuticle as above following spaced stimulation. We found that on several 

occasions, as ghost boutons detached, debris appeared in the position of the 

ghost bouton stalk and around the ghost bouton, suggesting that ghost boutons 

can degenerate directly into presynaptic debris (e.g., Fig. 2-2B, C; ghost boutons 

are marked by white arrows and debris by black arrowheads). In some samples 

we were able to directly image the disintegration of ghost boutons into smaller 

fragments (Suppl. Movie 1).  However, in other cases, stalks simply disappeared 

without leaving debris, and detached ghost boutons became smaller and 

vanished from the NMJ without leaving any obvious debris (Fig. 2-2D, E white 

arrows).  Interestingly, not all presynaptic debris appeared to derive from ghost 
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boutons and their stalks — we also observed the appearance and disappearance 

of presynaptic debris at NMJ regions devoid of ghost boutons (Fig. 2-2E black 

and red arrowheads), suggesting that presynaptic debris can be generated 

independently from ghost boutons. In summary, presynaptic debris can 

apparently arise directly from the breakdown of ghost boutons, or, alternatively 

may be derived directly from the presynaptic arbor without participation of ghost 

boutons. 

 

Local engulfing cells clear shed presynaptic material from the NMJ 

 The very low levels of presynaptic debris and ghost boutons observed 

here in unstimulated larvae and the removal of the extra debris formed upon 

stimulation, suggested that as NMJs develop, presynaptic membrane debris and 

disconnected ghost boutons are actively cleared from the NMJ. Signal 

transduction mechanisms mediating the engulfment of neuronal debris are 

beginning to be elucidated (Logan and Freeman, 2007). Most prominent, the 

engulfment receptor Draper (Drpr; Ced-1 in C-elegans) is involved in the 

engulfment of neuronal cell corpses during programmed cell death, the pruning 

of mushroom body neuron arbors during fly metamorphosis, and in the 

phagocytosis of injured axons in the fly olfactory system (Freeman et al., 2003b; 

Awasaki et al., 2006; Hoopfer et al., 2006; MacDonald et al., 2006).  We 

therefore used draper mutants as a tool to block the activity of local engulfing cell 

types and assayed the effects of loss of Draper function on clearance of shed 
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presynaptic debris and disconnected ghost boutons from the larval NMJ.  

Strikingly, we found that draper mutant NMJs were highly abnormal, with the 

presence of unusually large and irregularly shaped boutons and with a marked 

reduction in the number of glutamatergic type Ib boutons (Fig. 2-3A, B, F). Close 

examination of the NMJs in these mutants revealed that there was also a 

dramatic increase in the amount of presynaptic debris (Fig. 2-3C-E arrows, H) 

and number of ghost boutons (Fig. 2-3E arrowheads, G).  Interestingly, we also 

found that third instar draper mutant larvae had reduced larval motility in 

behavioral assays (Supplementary Figure 2-1), suggesting that the accumulation 

of presynaptically shed material may adversely affect neuromuscular function.  

Thus, in the absence of Draper function NMJs develop abnormally and 

presynaptic debris and ghost boutons accumulate at high levels.  These 

observations suggest that an engulfing cell type might invade, or be a resident 

component of, the NMJ, and phagocytose shed presynaptic material.   

 

Draper is expressed in muscle and glia and glial cells establish transient 

interactions with the NMJ 

 In the fly nervous system Draper is expressed in glia where it has crucial 

roles in engulfment activity (Freeman et al., 2003b; Awasaki et al., 2006; Hoopfer 

et al., 2006; MacDonald et al., 2006). To determine if Draper was also present in 

glial cells at the NMJ, we used α−Draper antibodies (Freeman et al., 2003b). 

Surprisingly, in addition to its localization in peripheral glia that wrap around 
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motor nerves (Fig. 2-4A), we found that Draper immunoreactivity was present at 

the postsynaptic region of every synaptic bouton in colocalization with the 

Drosophila PSD-95 homolog Discs-Large (DLG) (Fig. 2-4C). This 

immunoreactivity was specific to Draper, as it was virtually eliminated in draper 

null mutants (Fig. 2-4B, D). 

The above observation was surprising, since in contrast to vertebrate 

NMJs, where terminal Schwann cells completely cover the NMJ (Feng et al., 

2005), at the glutamatergic Drosophila larval NMJ terminal glia have not been 

reported to cap the synaptic arbor (Sepp et al., 2000; Banerjee et al., 2006). 

Instead, NMJ arbors are buried within the muscle surface, which wraps around 

the boutons forming a layered system of membranes, the subsynaptic reticulum 

(SSR) (Jia et al., 1993; Guan et al., 1996). Previous studies have suggested that 

at the larval NMJ peripheral glia ensheath the segmental nerve, but for the most 

part, their membranes terminate at the axon branch point or at the first synaptic 

bouton closest to the branch point (Sepp et al., 2000). The presence of Draper 

surrounding the entire NMJ led us to re-examine the organization of glial cell 

membranes at the NMJ and their relationship to synaptic boutons. For these 

experiments we expressed a membrane tethered GFP (mCD8-GFP) in 

peripheral glia, using Gliotactin-Gal4 (Gli-Gal4), and HRP-labeled NMJs from 

abdominal segments 3 and 4 were systematically examined in fixed preparations. 

We found that in the majority of cases glial membranes deeply invaded the NMJ 

(Fig. 2-5), presumably invading the space between the presynaptic motorneuron 



 

 

39 

 

terminal and the SSR.  Some NMJs (2-40% on average depending on the 

specific NMJ), particularly those innervating dorsal muscles, appeared 

completely covered by glial membranes (Fig. 2-5A, E; covered NMJs). A majority 

(80-100%) of NMJs were associated with lamellipodia-like glial extensions that 

contacted several boutons (Fig. 2-5A-C, E). Glia also extended thin filopodia-like 

processes that contacted synaptic boutons at the same NMJ branch or that 

exited the branch and interacted with synaptic boutons from a different NMJ 

branch (Fig. 2-5A5, B5). Glial membrane processes were also observed in 

association with muscle regions around the NMJ that were completely devoid of 

synaptic boutons (Fig. 2-5A4, C4-5).  A small percentage (~7%) of glial 

extensions had an elliptical appearance and terminated in bulbous structures of 

variable size (Fig. 2-5D4-5, E). These bulbous structures sometimes surrounded 

a synaptic bouton (Fig. 2-5D5 arrowhead). In some NMJs (11-33%) glial 

membranes did not invade the NMJ and muscle, and terminated at the nerve 

branch-point before synaptic boutons (Fig. 2-5B1-3; blunt ended).  

Interestingly, the pattern of glial extensions was not stereotypic and 

showed a high degree of variability among segments and identified muscles from 

different individuals. This observation suggests that the glial processes are likely 

to extend and retract in a dynamic fashion. This possibility was examined by live 

imaging preparations expressing mCD8-GFP in peripheral glia with Gliotactin-

Gal4.  We found that glial processes were indeed at the NMJ, and extended or 

retracted within a period of minutes (Suppl. Movie 2). These observations 
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indicate that glial cells at the larval NMJ have previously unappreciated 

dynamics, and that they establish multiple transient associations with the NMJ. 

However, our studies of Draper localization at the NMJ demonstrated that Draper 

is present at every NMJ and surrounding each synaptic bouton (Fig. 2-4C). Thus, 

the extension of glial membranes is unlikely to account for Draper localization at 

the entire NMJ raising the possibility that muscles might also contribute to NMJ 

Draper localization. 

In draper mutants, there were some changes in the distribution and 

frequency of glial extensions. Glial extensions that covered the entire NMJ 

(covered NMJs) were absent or drastically reduced in frequency, and there were 

also changes in the distribution and frequency of gliobulbs (Supplementary 

Figure 2). In contrast, there was a strong increase in the frequency of blunted 

projections (i.e. those that end close to the nerve branch point and do not interact 

with synaptic boutons), and a normal level of lamellipodia-like extensions). These 

observations suggest that in the absence of Draper function some glial 

membranes do not extend properly into the NMJ.  Thus positive signaling 

through Draper, perhaps in response to cues released by presynaptic debris, 

may directly regulate a subset of glial membrane movements at the NMJ. 
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Both glia and muscle cells act as phagocytes and clear presynaptic debris from 

the NMJ 

To address the possibility that Draper might function both in glia and 

muscle to sculpt the NMJ we selectively expressed a Draper-RNAi designed to 

knockdown all Draper isoforms (e.g. Fig. 2-8A) in glia or muscles using cell-

specific Gal4 strains. RNAi knockdown of Draper in either muscle or glia resulted 

in a reduction in the number of synaptic boutons which was not significantly 

different from the draper null mutant (Fig. 2-6E). This indicates that the removal 

of Draper from either cell type is sufficient to interfere with NMJ growth. 

Remarkably, however, downregulating Draper in muscle versus glia had a 

different consequence for the deposition of presynaptic debris and the 

appearance of detached ghost boutons. RNAi knockdown of Draper in glia 

resulted in an increase in presynaptic debris to an extent similar to the draper null 

mutant (Fig. 2-6C, G). However, no significant increase in the number of 

detached ghost boutons was observed (Fig. 2-6F).  If glial extensions are 

primarily involved in engulfing presynaptic debris, we predicted that we should 

find HRP positive debris within the glial extensions. We found that this was 

indeed the case. We found several instances in which glial terminals formed 

bulb-like structures that contained anti-HRP immunoreactive puncta within (Fig. 

2-6D, arrowheads).  

In contrast, downregulating Draper in muscle resulted in an increase in the 

number of ghost boutons (Fig. 2-6B, F), but the level of presynaptic debris was 
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similar to wild type (Fig. 2-6B, G). Expressing Draper RNAi in motorneurons did 

not affect the number of boutons, ghost boutons, or the levels of presynaptic 

debris (2- 6E-G).  These results support the idea that Draper functions both in 

muscle and glia, and that the function of Draper in each cell has some degree of 

specialization. While glial Draper appears to function in removing presynaptic 

debris, muscle Draper appears to remove ghost boutons fated for elimination. 

Importantly, these observations also provide the first evidence that muscle cells 

fulfill a phagocytic function at the NMJ. 

 

Downregulation of Ced-6 mimics cell-specific Draper phenotypes at the NMJ 

 Previous studies have shown that the PTB-domain protein dCed-6 

functions downstream of Draper (Awasaki et al., 2006). Therefore, we used RNAi 

knockdown of dCed-6 in muscle or glia acts as a second approach to blocking 

glial and muscle engulfment activity.  As in draper mutants, downregulating 

dCed-6 in either muscle or peripheral glia resulted in significant decrease in the 

number of synaptic boutons (Fig. 2-7D). In contrast, no effect was observed 

when dCed-6-RNAi was expressed in motorneurons (Fig. 2-7D). Similar to 

Draper RNAi knockdown, expressing dCed-6-RNAi in muscles or glia had 

differential consequences for the appearance of presynaptic debris versus ghost 

boutons. Decreased levels of dCed-6 in muscles led to an increase in the 

number of ghost boutons, but had no influence in the deposition of presynaptic 

debris (Fig. 2-7B, E, F). Downregulating dCed-6 in glia, on the other hand, led to 
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a significant increase in presynaptic debris deposition, but the number of ghost 

boutons remained unaltered (Fig. 2-7C, E, F). These results are consistent with 

the notion that dCed-6 functions downstream of Draper during the development 

of the NMJ. Further, they support the model that both muscle and glia contribute 

differentially to the clearance of debris versus ghost boutons at the NMJ.  

 

Accumulation of presynaptic debris, ghost boutons, and defects in NMJ growth 

map to the draper gene 

 The draper gene gives rise to three different Draper isoforms, each with a 

unique combination of intracellular and extracellular domains (Fig. 2-8A). Draper-

I bears 15 extracellular EGF repeats, whereas Draper-II and -III only contain 5 

(Freeman et al., 2003b).  In their intracellular domains, all isoforms contain a 

potential dCed-6 binding site (NPXY), but the Shark binding site is only present in 

Draper-I and -II. To determine which of the isoforms might be involved in NMJ 

development, we first carried out RT-PCR of body wall muscles. Interestingly, we 

found that Draper-I and III, but not Draper-II were expressed at the 

neuromuscular system (Fig. 2-8B). Therefore, we carried out rescue experiments 

by expressing Draper-I or -III in muscles or glia in a draper null mutant 

background. 

 None of the Draper isoforms completely rescued the decrease in bouton 

number observed in the drpr null (Fig. 2-8C). This is consistent with the 

observations with cell-specific Draper-RNAi expression, showing that Draper 
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functions both in muscle and glia, and that downregulating Draper in either cell is 

sufficient to decrease bouton number to an extent similar to the draper null 

mutant alone. In the case of ghost boutons, expressing Draper-I in glia or Draper-

III in muscle completely rescued the mutant phenotype (Fig. 2-8D). However, 

expressing Draper III in glia or Draper I in muscle also resulted in substantial but 

incomplete rescue. For the deposition of presynaptic debris, only expressing 

Drpr-I in glia completely rescued the phenotype, but partial rescue was also 

observed when Drpr-III was expressed in muscle (Fig. 2-8E). These data provide 

conclusive evidence that the phenotypes we observe in draper null mutant NMJs 

indeed map to the draper gene, and that the phenotypes we observe in draper 

mutants can be significantly rescued by resupplying Draper in glia or muscle cells 

(Fig. 2-8F).  The incomplete rescue of some of the phenotypes by specific 

isoforms might represent redundant functions by these isoforms, a requirement 

for multiple isoforms for complete rescue, or simply result from increased Draper 

expression in transgenic animals.  

  



 

 

45 

 

DISCUSSION 

Here we have studied the in vivo dynamics of synaptic connectivity 

between single motor inputs and their target muscle cells.  We describe a novel 

event that occurs during the remodeling of single synaptic arbors during 

development or activity-induced plasticity: the shedding of presynaptic debris and 

aborted synaptic boutons that failed to stabilize.  This process differs from 

developmental pruning or intercellular competition during synapse elimination, as 

in those cases entire nerve terminals are eliminated, thereby changing the wiring 

diagram of a circuit.  Rather, we show that the expansion of an already 

established synaptic input involves significant production of presynaptic 

membrane debris and the detachment of undifferentiated synaptic boutons 

destined for elimination from the main arbor.  Both glial and muscle cells act in 

concert to clear the developing NMJ of this shed presynaptic material, and the 

suppression of engulfing activity in glial or muscle cells leads to highly disrupted 

NMJ growth.  We propose that this novel mechanism might serve to rapidly adapt 

the size of a growing synaptic terminal to the changing demands of the target cell 

by shifting the equilibrium between synapse stabilization and synapse 

destabilization. 
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Expanding presynaptic arbors shed membrane debris in an activity-dependent 

manner  

During larval development, the NMJ is continuously increasing the size 

and number of synaptic boutons. This expansion serves as a compensatory 

mechanism to preserve synaptic strength, despite the massive growth of muscle 

cells (Griffith and Budnik, 2006).  Our studies provide evidence that normal NMJ 

growth includes the constitutive shedding of presynaptic membranes.  The 

presynaptic origin of HRP-positive debris was demonstrated by labeling 

motorneuron membranes with genetically encoded mCD8-GFP, which 

consistently labeled the debris, by the observation that in some cases ghost 

boutons that detached from the main arbor disintegrated into debris, and by the 

finding that the debris also contained presynaptic proteins, such as CSP. Thus, 

synaptic debris might contain synaptic vesicles or vesicle membrane remnants 

that failed to be recycled.  Interestingly, Brp, an active zone marker (Kittel et al., 

2006), was absent from the debris. This might reflect its degradation, or 

alternatively, the derivation of presynaptic debris from periactive regions of the 

NMJ. Indeed, FasII, which is localized at periactive zones (Sone et al., 2000) was 

also present in presynaptic debris. 

Acute spaced stimulation of the larval NMJ leads to the formation of 

dynamically extending and retracting synaptopods, and to the appearance of 

ghost boutons (Ataman et al., 2008).  While some ghost boutons differentiate by 

acquiring active zones and postsynaptic proteins (Ataman et al., 2008), here we 
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found that others lost their connection with the presynaptic arbor and were 

specifically removed.  What happens to ghost boutons that detach from the main 

arbor?  In most cases we found that detached ghost boutons rapidly disappeared 

from the NMJ.  Based on our finding that suppressing engulfing action in muscle 

leads to the accumulation of ghost boutons, we propose that these are engulfed 

directly by muscle cells (Fig. 2-8F).  

In other cases we found that ghost boutons, along with the stalk by which 

they were initially attached to the main arbor, would degenerate into smaller 

fragments resembling presynaptic debris.  Thus at some level, ghost boutons 

also appear to be able to disintegrate into presynaptic debris.  That presynaptic 

debris and ghost boutons are unique cellular remnants is also argued by the fact 

that they are differentially engulfed by glia and muscle cells, respectively (Fig. 2-

8F).  Nevertheless, the detachment and elimination of ghost boutons we describe 

represents a simple and newly defined mechanism for the removal of excessive 

synapses formed by individual innervating motorneuron. This process might also 

serve as a mechanism for rapid stabilization of new synaptic boutons during, for 

example, periods of increased synaptic or locomotor activity (Budnik et al., 1990; 

Steinert et al., 2006; Ataman et al., 2008) (see below). 

The functional significance of shedding presynaptic debris remains 

unclear.  Manipulations that promote rapid synaptic growth, such as acute 

spaced stimulation, lead to an increase in presynaptic debris suggesting that its 

production is associated with synaptic growth.  While some presynaptic debris 
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appears to be derived from the breakdown of disconnected ghost boutons, we 

also observed the de novo formation of presynaptic debris in the absence of any 

ghost boutons.  Thus, presynaptic debris is likely directly shed by motorneuron 

endings.  Presynaptically shed debris might derive from dynamically extending 

synaptopods, whose formation is dramatically enhanced by increasing neural 

activity (Ataman et al., 2008).  However, in live preparations demonstrating 

robust synaptopod growth we have yet to directly observe the formation of debris 

following synaptopod expansion or retraction (Gorczyca M, Ashley J, Fuentes-

Medel, unpublished).   

The presence of presynaptic debris might highlight the extremely dynamic 

nature of synapse addition in vivo. Two important mechanisms appear to operate 

during NMJ expansion.  First, the NMJ is shaped by a homeostatic mechanism 

that maintains synaptic efficacy despite larval muscle growth (Griffith and Budnik, 

2006). Second, the NMJ has the ability to respond to acute changes in activity 

and sensory experience with rapid modifications in synaptic structure and 

function.  Well-fed larvae placed in a substrate devoid of food show an increase 

in synaptic strength within 30 min (Steinert et al., 2006), and spaced stimulation 

induces robust synaptic growth within 2 hours (Ataman et al., 2008). It is 

tempting to speculate that presynaptic shedding is the byproduct of a mechanism 

designed to ensure rapid and efficient changes in synaptic performance. For 

example, the initiation of synaptic bouton formation might be a continuous 

process. This pool of synaptic boutons might reach an immature stage and if not 
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subsequently stabilized by activity or other signals they might be shed and 

removed.  Such a mechanism would provide a continuous supply of immature 

boutons ready to stabilize if rapid growth becomes essential. 

 

Synaptic debris and ghost boutons are engulfed by glial and muscle cells  

 Glial cells have a key role in the removal of axonal debris and neuronal 

cell corpses from the CNS (Aldskogius and Kozlova, 1998; Logan and Freeman, 

2007), but mounting evidence also implicates glial cells in the elimination of 

synaptic inputs.  In mammals microglia rapidly spread along neurites of injured 

motorneurons and displace synaptic inputs through synaptic stripping (Blinzinger 

and Kreutzberg, 1968).  At the mammalian NMJ, terminal Schwann cells are also 

active participants in the activity-dependent elimination of exuberant motorneuron 

inputs by apparently pinching off fragments of retracting terminals (Bishop et al., 

2004).   

Here we describe a novel mechanism by which glia, through their 

phagocytic clearance of shed synaptic debris, can sculpt synaptic connectivity 

within a single arbor and ultimately modulate the growth of nerve terminals.  The 

formation of shed presynaptic material appears to be autonomous and not 

require the engulfing action of glial cells since presynaptic debris and ghost 

boutons accumulate at high levels in draper mutants. Notably, muscle cells 

collaborated with glia in the removal of shed presynaptic membranes and thus 

also helped to sculpt the growing NMJ.  These observations provide a new view 
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on the role of muscle cells in regulating synaptic growth:  muscle cells are not 

simply postsynaptic target cells that give and receive synaptogenic signals; they 

are also phagocytes at the NMJ and through engulfing shed presynaptic material 

can help shape synaptic connectivity. 

Why has such presynaptic material not been previously described at the 

well-studied Drosophila NMJ?  This is likely due to the fact that we have assayed 

NMJ morphology for the first time in engulfment mutants.  Even in wild type a 

very low level of presynaptic debris (this report) and a small number of ghost 

boutons (Ataman et al., 2008) is observed.  However in draper mutants or 

knockdown animals we observe their dramatic accumulation, which is 

reminiscent of the process of cell corpse engulfment after apoptotic cell death.  

Cell corpses are rapidly engulfed during development and thus very few are 

observed in wild type animals.  In contrast, they accumulate at significant levels 

in animals with reduced cell corpse engulfment activity, such as C. elegans ced-1 

or ced-6 mutants (Reddien and Horvitz, 2004). 

We found that glial cells extended membrane processes that deeply 

invaded the NMJ. These cellular interactions were highly dynamic, as 

demonstrated by our time-lapse imaging, and by the high variability in the extent 

and type of glial membrane projections we found at the NMJ.  Some projections 

were in the form of thin gliopods that associated with boutons within a branch or 

that extended across branches.  Others resembled flat lamellipodia that 

associated with synaptic boutons or with the muscle.  Given the requirement for 
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glial Draper in the removal of synaptic debris, it is tempting to speculate that glial 

membranes are continuously and dynamically surveying the NMJ for the 

presence of synaptic debris, which is then engulfed.  Consistent with this notion, 

we found several examples of glial membranes extending away from the arbor 

and overlapping with presynaptic debris.  We also found that in some cases, 

HRP positive fragments were found associated bulbous structures formed by the 

glial projections, suggesting that glia can engulf presynaptic debris. We also 

observed glial membrane projections that had the form of boutons, sometimes 

draping over an entire bouton, or extending well beyond the terminal bouton.  

While the function of these structures remains unclear we envisage at least two 

potential roles.  First, these might represent glial extensions actively engulfing 

ghost boutons, although this would be predicted to be a rare event since our cell-

type specific analyses argue that muscle cells are primarily responsible for 

clearance of ghost boutons.  Second, these extensions, along with the additional 

types described above that extend beyond axonal arbors into the muscle, could 

be physically opening up space in the muscle cell for new bouton formation or 

process extension.    

 

Recognition and clearance of shed presynaptic debris and ghost boutons 

requires the Draper signaling pathway 

Interestingly, we found that in draper mutants both disconnected ghost boutons 

and presynaptic debris accumulated, and this accumulation had a negative effect 
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on NMJ expansion and bouton morphology.  Moreover, synaptic growth 

appeared to be highly sensitive to both types of shed presynaptic material since 

the accumulation of either ghost boutons or presynaptic debris (when engulfment 

activity was blocked in muscles or glia, respectively) led to reductions in bouton 

growth similar to that seen in draper null mutants. As mentioned above, shed 

material might contain important signaling factors that potently stimulate or inhibit 

new synapse formation.  If, for example, presynaptic debris contains molecules 

that inhibit synaptogenesis, the accumulation of such material would be expected 

to negatively regulate synaptic growth.  Perhaps a similar type of inappropriate 

modulation of synaptogenesis by the membrane fragments of pruned terminals 

also accounts for their rapid clearance from the CNS after degeneration.   

Drosophila glial cells also engulf neuronal cell corpses and pruned or 

degenerating axons.  Each of these targets is generated by a unique 

degenerative molecular cascade: cell corpses are produced by canonical 

apoptotic cell death pathways (Rogulja-Ortmann et al., 2007), pruned axons 

undergo degeneration through a ubiquitin proteasome-dependent mechanism 

(Watts et al., 2003), and severed axons undergo Wallerian degeneration via 

Wlds-modulated mechanisms (MacDonald et al., 2006).  Despite their unique 

pathways of production, each is engulfed by glia through Draper-dependent 

mechanisms, implying that these engulfment targets autonomously tag 

themselves with molecularly similar “eat me” cues.  Our observations that 

mutations in draper led to accumulation of presynaptic debris and detached 
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ghost boutons suggests that these new glial/muscle engulfment targets also 

produce similar cues for phagocytic cells to promote their destruction.  If so, 

these data argue that all the necessary machinery essential for tagging 

membrane fragments for engulfment are present in a ghost bouton or fragment of 

presynaptic membrane.  Importantly, while a lack of glial-mediated clearance of 

several targets has been observed in vivo—cell corpses, pruned axons or 

dendrites, and axons undergoing Wallerian degeneration—almost nothing is 

known about phenotypic consequences of a lack of glial engulfment function in 

the nervous system.  Here we demonstrate that failure of glia and muscle to clear 

presynaptically-derived material negatively regulates synaptic growth.   

In conclusion our studies demonstrate that the process of synaptic growth 

includes a significant degree of membrane/synaptic instability, and that growing 

terminals are constantly sloughing off undifferentiated boutons and fragments of 

membrane.  Our observations demonstrate that growing NMJs generate an 

excess number of undifferentiated synaptic boutons and that only a fraction 

becomes stabilized and drive the assembly of the postsynaptic apparatus.  

Exuberant synapses that have failed to form successful postsynaptic contacts 

are shed, and cleared from the NMJ by glia and muscle cells.  The presence of 

such a pool ensures a continuous supply of nascent synapses available for use 

to rapidly increase input into the muscle if dictated by dynamic changes in 

signaling at the NMJ.     
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MATERIALS AND METHODS 

Drosophila strains and behavioral assays 

The following fly strains were used for this study: draperΔ5 and UAS-

Draper-RNAi (MacDonald et al., 2006), UAS-dCed-6-RNAi (Awasaki et al., 

2006); Repo-Gal4 (a gift from B. Jones), Gli-Gal4 (Sepp and Auld, 1999), OK6-

Gal4 (Aberle et al., 2002), C57-Gal4 and C380-Gal4 (Budnik et al., 1996), UAS-

mCD8-GFP (Lee and Luo, 1999) UAS-myrRFP (Bloomington Stock Center), 

MHC-mCD8GFP-Sh (Zito et al., 1999), and UAS-ChR2 (Schroll et al., 2006).  

UAS-Draper-I and UAS-Draper-III were generated by M.A. Logan and will be 

described in detail elsewhere (M.A.L. and M.R.F., in preparation).  For larval 

motility assays, larvae were cultured at 25°C, wandering 3rd instar larvae were 

collected, briefly washed in distilled water, transferred to the center of a square 

agar plate, and covered with a transparent lid.  After 30 seconds, total larval 

movement was followed for 1 minute under red light conditions, 60% humidity, at 

25°C degrees.   

 

Immunolabeling, Live-imaging, and Confocal Microscopy 

Third instar Drosophila larvae were dissected in calcium free saline (Jan 

and Jan, 1976) and fixed for 10 minutes with non-alcoholic Bouin’s solution 

unless otherwise noted.  Primary antibodies were used at the following dilutions: 

α-Draper, 1:5000 (Freeman et al., 2003b); rabbit α-Discs-Large, 1:20,000 (Koh et 

al., 1999); mouse  α-Discs-Large, 1:500 (clone 4F3, Developmental Studies 
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Hybridoma Bank, DSHB); α-CSP, 1:100 (Zinsmaier et al., 1994); α−Synapsin, 

1:10 (a gift from E. Buchner; (Klagges et al., 1996); α-Fas II, 1:3000 (Koh et al., 

1999); α−GFP, 1:200 (Molecular Probes);  nc82 (α-Brp), 1:100 (DSHB); FITC or 

Texas red-conjugated α-HRP 1:200 (Jackson Immunoresearch).  Secondary 

antibodies conjugated to FITC, Texas Red, or Cy5 (Jackson Immunoresearch) 

were used at a concentration of 1:200. Samples were imaged using a Zeiss 

Pascal confocal microscope and analyzed using the Zeiss LSM software package 

and ImageJ. 

 To study the organization of glial membranes at the NMJ we fixed larval 

body wall muscle preparations of controls and draper mutants expressing mCD8-

GFP in glia using the Gli-Gal4 strain for 15 minutes in 4% paraformaldehyde fix, 

and double stained the preparations with Texas Red conjugated α-HRP 1:200 

(Jackson Immunoresearch) and α−GFP (Molecular Probes).  Glial membrane 

extensions at identified body wall muscle NMJs from abdominal segments A3 

and A4 were scored individually as  “blunt ended” (glial membranes terminated at 

the branch point), “covered” (glial membranes completely ensheathed the NMJ), 

“gliobulbs” (glial extensions terminated in a bulbous structure), “gliopods” (small 

finger-like glial membrane projections), and lamellipodia (glial membranes 

formed flat extensions that partially covered the NMJ). The percentage of NMJs 

containing the above types of glial membranes projections was calculated from 

20 hemisegments for controls, and 15 hemisegments for draperΔ
5 mutants. 
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Presynaptic debris was scored from type Ib boutons at muscles 6 and 7, 

abdominal segment A3.  This quantification was performed using images of α-

HRP labeled NMJs that were acquired with identical confocal settings, and the 

amount of debris scored blindly according to a subjective scale of 0-3. Number of 

NMJs analyzed are 10-12 per sample (from 6 animals).  To score presynaptic 

debris after spaced stimulation, intact larvae expressing channelrhodopsin-2 in 

motorneurons were subjected to spaced light stimulation as in (Ataman et al., 

2008), fixed at 2 hr (1.5 hours stimulation, 30 minutes rest) (N=18 for stimulated 

samples, N=12 for unstimulated controls), and 18 hr after stimulation (N=6 for 

stimulated samples, N=6 for unstimulated controls), and stained with α-HRP 

antibodies. Confocal images of NMJs at muscles 6 and 7 (A2 and A3) were 

acquired with identical settings, and two 8µm diameter circles at the postsynaptic 

region of each NMJ branch were selected for analysis using NIH Image software.  

The number of synaptic boutons and ghost boutons were quantified at muscles 6 

and 7 (A3) from preparations double stained with α-HRP and α-DLG (N≥10 

NMJs per genotype). Data was represented in histograms as the 

average±S.E.M. Statistical significance of the data was obtained in pair-wise 

comparisons using the Student t-test.   

Live imagining of larvae was performed on either intact or dissected preps 

as Ataman et al 2008.  Briefly intact larvae were anesthetized using Sevoflurane 

(Baxter) and the dorsal muscles were then imaged through the cuticle using a 

40X 1.2 NA objective on an Improvision spinning disk confocal microscope.  
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Larvae were examined live by expression of UAS-mCD8GFP in motor neurons 

(pre-Gal4) or glia (gli-Gal4).  Increased activity was induced in these larvae by 

expression of UAS-Channelrhodopsin2, and exposure to a pulsed 491nm LED 

paradigm described in Ataman et al 2008 and Figure 1H.  Larvae were examined 

every hour, every four hours, or at 18 hour intervals depending on the 

experiment.  In order to visualize the debris, samples were converted to rainbow 

gradient color, and then contrast enhanced until the main arbor was saturated, as 

the debris is much dimmer than the presynaptic membrane. 

Live imaging of glia was also performed in dissected preps, as Ataman et 

al 2008.  Briefly, larvae were dissected in low calcium Drosophila saline (Stewart 

et al 1994), and imaged on a Zeiss Pascal Confocal (Carl Zeiss) using either 25X 

or 40X water immersion objectives. 

 

RT-PCR 

Total RNA was isolated from third instar body wall muscle preparations 

with Trizol (Invitrogen) and purified using the RNeasy Mini Kit (QIAGEN).  First 

strand cDNA was synthesized using Superscript II (Invitrogen) enzyme and oligo 

(dT) 12-18 primer (Invitrogen).  PCR was performed using the following Draper  

isoform specific primers to detect expression of Draper-I, Draper-II, or Draper-III:  

DrprIuECDF  (5’-GGGTCCCCTATGTGATATGC-3’) and DrprIuECDR (5’-

TTGTAGCACTCGCAGCTCTC–3’);  DrprIIuF (5’-

GAAAATATATAGCAAGATTTTGTTTCC–3’) and DrprIIuR (5’-
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TTCGTGTTGTCGAAGCACTC–3’); DrprIIIuF (5’-GTCATTAGACTTTTACACAGG 

c–3’) and DrprIIIuR (5’-CTAGCGTATAGAATCAGAC–3’).  Plasmids containing 

the Draper isoforms (pUAST-DraperI, pUAST-DraperII, and pUAST-DraperIII) 

were used as controls for PCR amplification.  PCR program was as follows:  

denature at 95° for 1 minute, anneal at 56° for 30 seconds, extension at 72° for 

30 seconds (30 cycles total).  PCR products were run on a 0.8% agarose gel and 

visualized by ethidium bromide stain. 
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FIGURES 
 

 
 
Figure 2-1.  Motor axons at the NMJ constitutively shed presynaptic debris 

in an activity-dependent manner.     

 

(A-D) Third instar Drosophila larvae were fixed and stained with various markers 

to visualize the morphology of glutamatergic NMJ branches at muscles 6 and 7.  

All motor neurons labeled with α-HRP (red) and small HRP+ puncta were 

observed adjacent to many NMJ arbors (arrows in A1-D3).  These puncta 

colocalized with the motor neuron marker FasII (green A1-6) and the synaptic 
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vesicle marker CSP (green in B1-3). Presynaptically-derived HRP+ debris does 

not stain for Syn (green in C1-3), a marker for reserve pools of synaptic vesicles.  

 (D,E) UAS-mCD8-GFP was driven in motor neurons with the OK6-Gal4 driver. 

All HRP+ puncta were also GFP+ in fixed samples (arrows D1-3), indicating that 

the HRP+ puncta are presynaptically derived.  Presynaptically-derived GFP+ 

debris was also observed in live, intact animals by imaging through the cuticle. 

(F-I) Unstimulated NMJs display very little or no HRP+ debris surrounding NMJ 

arbors (F).  Spaced light stimulation of larvae expressing presynaptic 

channelrhodopsin-2 (H) led to a dramatic increase in the formation of HRP+ 

presynaptic debris surrounding the NMJ 2 hours after stimulation ended (G).  (I) 

Quantification of normalized total area of HRP+ debris.  

Calibration scale is 5 µm for (A,C,D,E), and 2.5 µm for (B).  n=18,12, 6, 6, 

respectively for I. 
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Figure 2-2.  NMJs shed ghost boutons that stabilize or disappear. 

 (A)  Example of live imaging of an NMJ through the cuticle of an intact larvae 

expressing channelrhodopsin-2 and mRFP (red) in motoneurons, and a 

synaptically targeted mCD8-Shaker-GFP protein (green) in postsynaptic 

muscles. Motor neurons were stimulated with a spaced blue light paradigm (as in 

Fig. 2-1) and NMJs were imaged at indicated times.  Stimulation led to the 

formation of a ghost bouton (arrow) that lacked postsynaptic mCD8-Shaker-GFP. 

Eighteen hours later, the ghost bouton was eliminated. 

(B) Live, intact larvae expressing channelrhodopsin-2 and mCD8-GFP in   
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motor neurons where imaged immediately and 4 hours after spaced light 

stimulation. White arrows point to ghost boutons observed before and after 

stimulation.  Black arrowheads point to presynaptic debris that formed after 

stimulation.  

(C-E) Live, intact larvae expressing channelrhodopsin-2 and mCD8-GFP in   

motor neurons where imaged immediately and at 1 hour intervals after spaced 

light stimulation. In some instances, detached ghost boutons simply became 

smaller and disappeared leaving debris (arrows in C and D), while detached 

ghost boutons sometimes simply became smaller and disappeared without 

leaving any obvious debris (white arrows in E.)  Presynaptic debris at NMJ 

regions devoid of ghost boutons would also appear and then disappear following 

stimulation (black and pink arrowheads in E).  

Calibration scale is 17 µm for (A, C-E), 12 µm for (B), and 9 µm for (A inset). 

Times correspond to hours from beginning of experiment when preparations 

were first imaged. 
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Figure 2-3.  draper mutant NMJs exhibit reduced synaptic growth and 

accumulate pruned ghost boutons and presynaptic debris.  

 (A)  A wild type third instar NMJ at muscles 6/7 visualized with α-HRP (red) and 

the postsynaptic marker DLG (green).   (B) draperΔ
5 mutants have disrupted NMJ 

morphology and a significant reduction in the number of type Ib boutons 

compared to wild type. (C) The NMJ in wild type animals normally has very little 

presynaptic debris and ghost boutons are only rarely observed. (D, E) The NMJ 

in draperΔ
5 mutants accumulates large amounts of shed presynaptic debris 

(arrows) and many ghost boutons (arrowheads). (F-H)  Quantification of the 

number of (F) type Ib boutons, (G) ghost boutons, and (H) presynaptic debris at 

muscles 6/7.   *** p<0.001, ** p≤0.01, * p≤0.05.  Calibration scale is 25 µm for 

(A,B), 8 µm for (C,D,E).  (n=9 for both wild type and draperΔ
5) 
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Figure  2-4.  Draper is expressed in peripheral glia and in the postsynaptic 

region of the NMJ. 

Wild type and draperΔ5 null mutant third instar larvae were stained with α-Draper 

(red), α-HRP (blue), and α-DLG antibodies (green). (A1-3) Draper was readily 

detectable in peripheral glia, which surround the HRP+ axons.  (B1-3) Draper 

immunoreactivity is absent from peripheral nerves in draperΔ5 null animals, 

demonstrating the specificity of α-Draper sera for Draper in the segmental 

nerves.  (C1-3) Draper is present postsynaptically at the NMJ surrounding HRP+ 

presynaptic boutons (C2), and colocalizes with the primarily postsynaptic  

marker DLG (C3). (D1-3) Draper immunoreactivity is absent from the NMJ in 

draperΔ
5 null animals. Calibration scale is 9.0 µm.  
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Figure 2-5.  Glial cells dynamically invade the larval NMJ and their 

membrane extensions exhibit diverse morphologies. 

Glial processes at the NMJ were observed by expressing mCD8-GFP in glia 

(with the Gli-Gal4 driver) and staining with α-HRP (red) and α-GFP (green) 

antibodies. Low magnification views of specific NMJs (identity indicated by the 
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numbers in the panels) are presented in columns (1-3).  Higher magnification 

views of the boxed regions in column (3) are shown in columns (4) and (5).  

(A1-5) In some cases, glial cell processes appear to cover the entire NMJ arbor 

(covered; arrow in A2).  Glial cells could also be found extending lamellipodia-like 

extensions away from the parent arbor (lamellipodium; arrow in A4), or smaller 

filopodia-like projections (gliopods; arrow in A5). 

(B1-5)  In many cases glial cell processes terminated at the branch point where 

the motor axon entered the muscle field (blunt; arrow in B2).  When glial 

processes invaded the NMJ, gliopods could be found extending from one NMJ 

branch across to another (arrow in B5). 

(C1-5) An example of a gliopod extending into an area devoid of synaptic 

boutons (arrow in C4), and the extension of a lamellipodium contacting several 

synaptic boutons as well as a muscle region devoid of boutons (C5). 

(D1-5) Glial cellular extensions can take on a spherical shape similar to boutons 

(gliogbulb; arrow in D4), which sometimes surrounds a synaptic bouton 

(arrowhead in D5) or are devoid of synaptic boutons. 

(E) Quantification of glial projections at the third instar larval NMJ.  The identity of 

muscles scored is indicated on the X-axis. “m3 area” (C1, E) corresponds to 

NMJs at muscles 3, 19, 20, and 11. n=20 hemisegments assayed. 

Calibration scale is 18 µm for (columns 1-3), 9 µm for (4), and 4 µm for (5). n=10 

animals. 
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Figure  2-6.  Draper function is essential in both glia and muscle cells for 

clearance of ghost boutons and shed presynaptic debris and for normal 

synaptic growth. 

Draper function was knocked-down by expressing UAS-Draper-RNAi in either 

muscle (C57-Gal4), glia (repo-Gal4), or motor neurons (OK6-Gal4), and ghost 

boutons and presynaptic debris were quantified by staining for HRP (red), and 

the postsynapse was visualized with DLG (green). 
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(A1-2)  Wild type NMJs have very little presynaptic debris and few or no ghost  

boutons. 

(B1-2)  Muscle-specific Draper knockdown leads to the accumulation of ghost 

boutons (arrows), but not of presynaptic debris. 

(C1-2)  Glial-specific Draper knockdown leads to the accumulation of presynaptic 

debris (arrows), but not of ghost boutons. 

(D)  mCD8-GFP (green) was expressed in glia with repo-Gal4 and motor neurons 

were visualized by staining for HRP (red). Representative images of weak HRP 

signal detected within glial extensions (arrowheads).  

(E)  Quantification of number of type Ib synaptic boutons at muscle 6/7 showing 

that Draper knockdown in glia or muscle cells reduces bouton number to those in 

draperΔ
5 null mutants, while Draper knockdown in motor neurons has no effect. 

(F)  Quantification of ghost bouton number.  Knockdown of Draper in muscle 

cells, but not glia or motor neurons, leads to the accumulation of ghost boutons 

at levels equivalent to those found in draperΔ
5 null mutants. 

(G)  Quantification of shed presynaptic debris.  Draper knockdown in glial cells, 

but not muscles or motorneurons, leads to the accumulation of presynaptic 

debris at levels similar to draperΔ
5 null mutants.   

*** p<0.001, ** p≤0.01, * p≤0.05. error bars represent SEM. 

Calibration scale is 12 µm for (A,B), and 3 µm for (D).  (n≥10 for each genotype)  
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Figure 2-7.  dCed-6, a key component of the Draper signaling pathway, is 

required for clearance of ghost boutons and presynaptic debris for and 

normal synaptic growth. 

dCed-6 function at the NMJ was assayed by expressing UAS-dCed-6-RNAi in 

glia, motor neurons, and muscles. Preparations were labeled with the 

presynaptic marker α-HRP (red) and the postsynaptic marker α-DLG (green). 

(A1-2) Wild type NMJs exhibit little or no presynaptic debris and ghost boutons. 

(B1-2) Muscle-specific dCed-6 knockdown leads to the accumulation of ghost 

boutons (arrowheads) but very little presynaptic debris. 

(C1-2) Glial-specific dCed-6 knockdown leads to the accumulation of presynaptic 

debris (arrows) but not ghost boutons. 

(D-F)  Quantification of the number of (D) type Ib boutons, (E) ghost boutons, 

and (F) presynaptic debris in control and dCed-6 knockdown backgrounds.  

dCed-6 function is required in both muscles and glia for (D) normal synaptic 

growth, in (E) muscles for the clearance of ghost boutons, and (F) in glia for 

clearance of presynaptic debris.   

*** p<0.001, ** p≤0.01, * p≤0.05.  error bars represent SEM. For D-F, n=12 for 

wild type, 9 for drprΔ
5, and 13 for dCed-6RNAi. Calibration scale is 12 µm.  
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Figure 2-8.  Cell type-specific rescue of draper mutant phenotypes with 

alternative Draper receptor isoforms. 

(A)  Three isoforms of the Draper receptor have been identified in Drosophila 

(Freeman et al., 2003b).  We designed isoform-specific primers (arrows) to 

determine the presence of each unique isoform in larvae.  Ovals represent EGF-

like repeats in the extracellular domain. 
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(B)  RT-PCR shows that Draper-I and Draper-III are expressed in body wall 

muscles.  cDNAs for each isoform were used as positive controls, along with a 

minus RT reaction.  

(C-E) To assay for the cell-specific function of Draper-I or Draper-III, each 

isoform was expressed in either glia (with Gli-Gal4) or muscle cells (with C57-

Gal4) in draperΔ
5 null mutant backgrounds to determine which isoform rescued 

mutant phenotypes, including (C) decreased bouton number, (D) accumulation of 

ghost boutons, and (E) accumulation of presynaptic debris.  draperΔ
5 mutant 

phenotypes are shown in red bars. 

(C)  Expression of Draper-III in glia provides a partial rescue of the decrease in 

type Ib bouton number observed in draperΔ
5 mutants.   

(D)  Expression of Draper-I in glia or Draper-III in muscle or glia provides 

complete rescue of the accumulation of ghost boutons observed in draperΔ
5 

mutants.  Expression of Draper-III in glia or Draper-I in muscle also provides a 

partial rescue of ghost bouton number. 

(E)  Expression of Draper-I in glia fully rescues the accumulation of presynaptic 

debris observed in draperΔ
5 mutants.  Expression of Draper-III in muscle also 

provides weak but significant rescue.  

(F)  Model for Draper receptor function at the NMJ.  i) A motorneuron with an 

increase in activity or other developmental cues produces ii) more ghost boutons, 

and an increase in debris which is engulfed by glial extensions.  The newly 

formed ghost boutons will either iii) stabilize or detach from the main arbor.  
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Detached boutons will either iv) degrade into debris or be engulfed by the 

muscle.  

For C-E, *** p<0.001, ** p≤0.01, * p≤0.05.  error bars represent SEM. Red 

asterisk, compared to draperΔ
5 mutants; black asterisk, compared to wild type.  

For C-E, n=9, 9, 8, 8, 8, 8, for genotype as listed leftàright, respectively. 

 

 
 
Supplementary Figure 2-1.  draper mutants exhibit reduced larval motility.

Wild type controls (CS and w1118) were compared to draperΔ
5 mutant larvae in 

larval crawling assays (see methods).  draper mutants show reduced rates of 

locomotion (p<0.001). error bars represent SEM. 
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Supplementary Figure 2-2.  Changes in glial membrane extensions in 

draper mutants.  

Glial membrane extensions in draperΔ
5 mutants were compared to controls by 

labeling membranes with mCD8-GFP (see Figure 5 and methods).  A3 and A4 

correspond to abdominal segments. The identity of muscles scored is indicated 

on the X-axis. “m3 area” corresponds to NMJs at muscles 3, 19, 20, and 11. 

n=15 hemisegments. draperΔ
5 mutants showed a dramatic decrease in the 

number of covered NMJs, a change in the distribution of gliobulbs, and an 

increase in the number of blunt ended glial projections.  
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Supplementary Movie  2-1:  Active disintegration of ghost boutons into 

smaller structures and disappearance from the NMJ.   Motorneurons were 

labeled with mCD8-GFP (using C380-Gal4), and imaged every 10 seconds for a 

5 minute interval.  Note that one ghost bouton (center of field of view) splits into 

two smaller GFP+ structures, one lingers at the NMJ, while the other shifts its 

position dramatically and then disappears from the plane of focus.  Full analysis 

of the Z-stack revealed that this particle had moved to a position deep within the 

muscle cell (not shown), apparently having been engulfed.  A 3-dimensional 

rendering of the Z stack revealed that the presynaptic debris particles imaged 

remained fully within the Z-series and the changes observed were not the result 

of specimen drift. 

Found at: doi:10.1371/journal.pbio.1000184.s003 

 

Supplemental Movie 2:  Glial cells rapidly invade the NMJ in vivo 

Peripheral glia were labeled with mCD8-GFP (using the Gli-Gal4 driver), and glial 

dynamics at the NMJ were assayed in living third instar larvae.  Total movie 

length is 6 minutes.  Note the extension of gliopods at the distal tip, and 

spreading of glial membranes at the branch point. 

Found at: doi:10.1371/journal.pbio.1000184.s004 
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ABSTRACT 

 
The transforming growth factor beta (TGF-β) pathway is critical for the 

development of the nervous system. Furthermore, glassbottom boat (Gbb) is the 

retrograde signal at the Drosophila neuromuscular junction (NMJ). Glia are 

known to regulate synapse development and modulate synaptic efficacy. 

However, the molecular pathways involved are poorly understood.  

We found that Drosophila glia express three TGF-β ligands (Dawdle, 

Myoglianin and Maverick) and these molecules are important for NMJ 

development. We used the phosphorylation of MAD as a read out of bone 

morphogenic protein (BMP) pathway activation. Surprisingly, we found that glial-

expressed Maverick regulates the BMP pathway both pre- and post-synaptically, 

and this ligand regulates the transcription of glassbottom boat (gbb) in the body 

wall muscle. This suggests a regulatory loop in which glia affect Gbb in the 

muscle and as a consequence the activation of the retrograde pathway. Finally 

loss of glial Maverick decreased the transcription of the shaker potassium 

channel, suggesting the exciting possibility that glia can directly regulate muscle 

membrane excitability that ultimately will regulate synaptic transmission 

properties. These data propose a model where glia orchestrate the regulation of 

retrograde signaling and functional synaptic activation. 
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INTRODUCTION 

Bone Morphogenetic Proteins (BMPs), function in postmitotic neurons to 

regulate synapse development and plasticity, as well as patterning formation 

during development (Keshishian and Kim, 2004; Marques, 2005; Krieglstein et 

al., 2011). For example, in the vertebrate CNS, removal of the BMP inhibitor 

cordin, enhances paired pulse facilitation and long-term potentiation (LTP), which 

results in alterations in spatial learning (Sun et al., 2007). At the Drosophila larval 

neuromuscular junction (NMJ) the BMP Glass bottom boat (Gbb) functions as a 

retrograde signaling mechanism to regulate presynaptic growth (Aberle et al., 

2002; Marques et al., 2002; McCabe et al., 2003; Rawson et al., 2003; Goold and 

Davis, 2007). In this process, Gbb is released by muscles and binds to the type I 

BMP receptors, Saxophone (Sax) or Thickveins (Tkv) and to the type II BMP 

receptor Wishful thinking (Wit) present in presynaptic motorneurons. According to 

canonical BMP signaling, this leads to phosphorylation of the receptor Smad, 

Mothers against Dpp (Mad), which becomes competent for binding to the co-

Smad Medea (Miyazono et al., 2010). The complex then translocates to the 

motorneuron nucleus where it activates the transcription of genes involved in 

synapse development, including the actin regulatory protein TRIO (Ball et al., 

2010; Fuentes-Medel and Budnik, 2010). This signaling pathway is required to 

signal the proliferation of new synaptic boutons in direct correlation with muscle 

size as the animal grows during the larval period. 
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While the above pathway was initially documented as a retrograde signaling 

pathway at the NMJ, recent studies provide evidence for BMP function in 

postsynaptic muscles (Dudu et al., 2006). Activated Mad (Phospho-Mad; P-Mad) 

is also observed in muscle, and Tkv receptor has been shown to colocalize with 

postsynaptic DLG at the NMJ (Dudu et al., 2006; Higashi-Kovtun et al., 2010).  In 

addition, studies suggest that activation of the activin-type type II receptor 

Baboon (Babo) in muscles regulates the transcription of Gbb (Ellis et al., 2010b).  

However, the source of the ligand remains unclear.  

P-Mad has also been observed at sites of neurotransmitter release or 

apposed postsynaptic glutamate receptor (GluR) clusters at the larval NMJ, 

although the pre- or postsynaptic nature of this signal has remained controversial 

(Dudu et al., 2006; O'Connor-Giles et al., 2008). Here we demonstrate that 

peripheral glia are a source of a TGF-β superfamily ligand, Maverick (Mav) that 

regulates synaptic development. We find that Mav is secreted from peripheral 

glia and that interfering with Mav function in peripheral glia prevents proper 

development of the NMJ. Further, we show that Mav is required for activation of 

BMP signaling in both neurons and muscles. Our results are consistent with a 

model whereby glia-derived Mav regulates the expression of Gbb in muscles, 

thus modulating the function of the retrograde signal from muscles to neurons to 

regulate presynaptic growth. In addition, we show that in postsynaptic muscles, 

glial Mav negatively regulates the expression of Shaker (Sh) K+ channel. Sh 

mediated IA potassium currents, this result suggest that IA currents could be 
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affected in the absence of glial maverick, but further investigation will be 

necessary to support a model where glia molecules to modulate muscle 

membrane excitability. 

 

RESULTS 

A BMP signaling pathway is activated by peripheral glia during synapse 

development 

Glial cells establish transient interactions with synaptic boutons and muscles 

at the NMJ and the function of glia is crucial for normal NMJ expansion (Fuentes-

Medel et al., 2009). However, the signals provided by glia to regulate synaptic 

growth are unknown. At the Drosophila larval NMJ, BMP signaling pathways are 

activated both in motorneurons and muscles to regulate synaptic development 

(Keshishian and Kim, 2004; Dudu et al., 2006). We therefore asked whether glia 

had any role in the regulation of BMP signaling. In vitro experiments have 

suggested that cultured Xenopus Schwann cells promote synaptogenesis by 

releasing TGF-β1, although the mechanisms underlying this process are not well 

understood (Feng and Ko, 2008). As a first approach to examine if glia regulates 

TGF-β signaling, we determined if TGF-β ligands were expressed in peripheral 

glia at the larval stage. To isolate transcripts encoding for TGF-β ligands 

specifically in peripheral glia, we extracted mRNA from the peripheral nerves of 

3rd instar larvae, as cell bodies from peripheral glia are the only cell bodies found 

within these nerves. Real-time PCR (qPCR) analysis revealed the presence of 
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several BMP ligands, including Myoglianin (MYO), Dawdle (Daw) and Maverick 

(Mav) (Fig. 3-1A). In contrast, Activinß (Actß) transcripts were not detected in 

these preparations (Fig. 3-1A).  

To determine if any of the above ligands found in glia could be involved in 

NMJ development, we expressed Daw-RNAi, Mav-RNAi and MYO-RNAi in 

peripheral glia using the peripheral glia Gal4 driver rl82-Gal4 (Auld et al., 1995; 

Fuentes-Medel et al., 2009) and examined the morphology of larval NMJs. 

Downregulating any of the above genes in peripheral glia resulted in a 

substantial decrease in NMJ size, as determined by counting the number of 

synaptic boutons at the 3rd instar larval stage (Fig. 3-1B-F). However, this defect 

was more pronounced when Daw or Mav was downregulated in peripheral glia 

(Fig. 3-1B). 

 

Glia-derived Maverick is required for normal activation of the BMP pathway in 

motorneurons. 

A classical read-out of BMP pathway activation is the presence of 

phosphorylated Mad (P-Mad) (Ross et al., 2001). At the Drosophila larval NMJ, 

BMP activation through P-Mad detection has been documented both in the nuclei 

of motorneurons (McCabe et al., 2003), as well as at synaptic boutons of the 

NMJ (Dudu et al., 2006). Thus, we determined if downregulating Daw or Mav in 

glia resulted in altered P-Mad levels at these sites. Expression of Mad-RNAi in 

motorneurons led to a drastic decrease in P-Mad immunoreactivity at 
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motorneuron nuclei, demonstrating that P-Mad immunoreactivity at this site is 

specific (Fig. 3-2A, B, D). Similarly, P-Mad immunoreactivity levels were 

significantly decreased in the nuclei of larval motorneurons when Mav-RNAi, but 

not MYO-RNAi or Daw-RNAi, was expressed in peripheral glia (Fig. 3-2A, C, D). 

However, this reduction was not as severe as that observed by downregulating 

Mad in neurons (Fig. 3-2D). This is not surprising as BMP signaling in 

motorneurons is also known to be activated through the binding of muscle-

derived Gbb to the BMP receptors Wit and Sax/Tkv present in motorneurons 

(Marques et al., 2002; McCabe et al., 2003). These results suggest that glia-

derived Mav is at least partially required to activate BMP signaling in 

motorneurons.  

To further test the model that glia-derived Mav is required for P-Mad levels in 

motorneurons, we also examined the levels of a BMP target gene, Trio (Ball et 

al., 2010). Trio is a Rac activating protein that contributes to cytoskeletal 

remodeling during synaptic growth. Previous studies demonstrate that upon 

activation of motorneuron BMP signaling by muscle Gbb, trio transcription is 

upregulated. (Ball et al., 2010; Fuentes-Medel and Budnik, 2010). Real-time PCR 

revealed that Trio transcript levels were significantly reduced in total RNA 

isolated from larval brains when Mav-RNAi was expressed in peripheral glia (Fig. 

3-2E).  In contrast, the levels of Cyclophilin transcript were unchanged by this 

manipulation (Fig. 3-2E). Thus, like muscle Gbb, glial Mav is required for normal 
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NMJ growth, for activating BMP signaling in motorneurons, and for the 

transcription of a BMP target gene in motorneurons.  

 

Glia-derived Mav is also required for BMP signaling at synaptic boutons 

As noted above, activation of BMP signaling is also observed in the form of 

changes in P-Mad immunoreactivity at the NMJ (Dudu et al., 2006). This 

immunoreactivity is observed as discrete puncta at synaptic boutons (Dudu et al., 

2006) (Fig. 3-3A). Thus, we next determined whether BMP activation at synaptic 

boutons was also regulated by glia-derived Mav. Notably, downregulating Mav in 

peripheral glia with two different Mav-RNAi constructs, virtually eliminated P-Mad 

immunoreactivity at synaptic sites (Fig. 3-3B, J). Quantification of the percentage 

of boutons containing P-Mad immunoreactivity revealed that just over 5% of the 

boutons in larvae expressing Mav-RNAi-1 in glia displayed P-Mad labeling at the 

NMJ. In contrast, downregulating MYO was without effect (Fig. 3-3C, J). A 

decrease in P-Mad was also observed by downregulation of Daw in glia (Fig. 3-

3D), although this effect was much weaker than that observed upon 

downregulating Mav. Indeed, over 65% of the boutons displayed P-Mad 

immunoreactivity when Daw was downregulated in glia compared with 5-7% 

when Mav was downregulated in glia (Fig. 3-3J). To determine if Mav was 

exclusively required in glia for activation of the BMP pathway at synaptic sites, 

we also expressed Mav-RNAi in either muscles or motorneurons and examined 

levels of P-Mad immunoreactivity at the NMJ. No significant change in P-Mad 
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immunoreactivity was observed by downregulating Mav in either of these cells 

(Fig. 3-3E, F, J), suggesting that Mav is exclusively required in glia for BMP 

activation at synaptic sites. Further support for these observations was obtained 

by examining the effect of overexpressing Mav in glia on P-Mad immunoreactivity 

levels. This manipulation resulted in an increase in the intensity of the P-Mad 

puncta at the NMJ (Fig. 3-3G-I, K). Thus, glia derived Mav is required for BMP 

activation both at motorneuron nuclei and at synaptic boutons, and this signal is 

required for normal synaptic development. 

 To determine if Mav function was exclusively required in glia for normal NMJ 

development, we downregulated Mav in motorneurons or muscles and examined 

the number of synaptic boutons at the third instar larval stage. In contrast to Mav 

downregulation in glia, which significantly reduced the number of synaptic 

boutons, no change in bouton number was observed when Mav was 

downregulated in motorneurons or muscles (Fig. 3-3L). Thus, Mav appears to be 

required exclusively in glia for normal NMJ development. 

 

Mav is present in peripheral glia and peripheral glia can release Mav 

 The requirement of peripheral glia-derived Mav for normal activation of the 

BMP pathway in motorneuron and synaptic boutons, as well as for proper NMJ 

development, suggested that Mav is released by peripheral glia. To determine if 

Mav was present in glia we generated a peptide antibody against Mav. 

Immunocytochemistry revealed the presence of small immunoreactive puncta 
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within the segmental nerve sheath, corresponding to glial cell bodies surrounding 

the axons in this nerve (Fig. 3-4A). This immunoreactivity was specific as it was 

severely decreased upon downregulating Mav in peripheral glia by RNAi (Fig. 3-

4B).To further test the hypothesis that peripheral glia could release Mav, we also 

generated transgenic flies expressing a GFP-tagged Mav transgene that could 

be driven in glia by the rl82-Gal4 driver. Expressing Mav-GFP in glia resulted in 

punctate GFP staining within glial membranes in the peripheral nerves, similar to 

that observed with endogenous Mav (Fig. 3-4A). This punctate GFP label was 

most prominent at glial extensions observed at the NMJ (Fig. 3-4D, arrowhead), 

showing that Mav-GFP is efficiently transported to these glial extensions when 

expressed in peripheral glia. Notably, bright GFP-positive punctae were observed 

beyond the glial extensions (Fig. 3-4D), suggesting that Mav-GFP can be 

released by peripheral glia. Close observation of the Mav-GFP puncta outside 

the glial membrane extensions, revealed their localization both in close 

association with synaptic boutons, as wells as with the postsynaptic junctional 

region of the muscle (Fig. 3-4E, arrows). In contrast, expressing Mav-GFP in 

neurons, resulted in punctate and diffuse GFP staining within synaptic boutons, 

but no GFP signal was observed at the postsynaptic region (Fig. 3-4F) showing 

that Mav-GFP cannot be released by synaptic boutons. Similarly, expressing 

Mav-GFP in muscles resulted in very dim GFP signal in muscles, but this signal 

did not localize to the NMJ (Fig. 3-4G).  Thus, Mav is present in peripheral glia 

and peripheral glia are capable of releasing Mav to the NMJ. 
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Synaptic bouton P-Mad signal is pre- and postsynaptic 

 The finding that glia can release Mav, and that glia derived Mav is 

required for BMP signaling at the NMJ, raised the question as to which cells 

(neurons or muscle) respond to this Mav signal. Reports in the literature appear 

to be divergent in this regard. In one study, it was found that NMJ P-Mad partially 

colocalized with the presynaptic active zone marker BRP, while it did not 

colocalize with DLG, suggesting that the P-Mad signal was presynaptic 

(O'Connor-Giles et al., 2008). However, DLG is localized at the perisynaptic 

region (Sone et al., 2000), and therefore it is not expected to colocalize with the 

postsynaptic density. In another study it was found that in wit mutants the P-Mad 

signal at the NMJ was eliminated (Higashi-Kovtun et al., 2010), which, given the 

role of Wit in presynaptic motorneurons, led to the conclusion that the P-Mad 

signal at the NMJ was presynaptic. However, whether Wit is also expressed in 

muscles is not known.  In a third report, NMJ P-Mad immunoreactivity was 

compared to the localization of a GluR tagged transgene and found to be 

completely colocalized, which suggested a postsynaptic P-Mad localization 

(Dudu et al., 2006). However, a comparison with endogenous GluRs was not 

done in these studies. To address this issue more directly, we first used a strong 

hypomorphic mad mutant, mad12, over a mad deficiency chromosome and 

examined P-Mad labeling at the NMJ. P-Mad immunoreactivity was eliminated in 

this mutant (Fig. 3-5A, B), providing further evidence for the specificity of the P-
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Mad signal at the NMJ. We then downregulated Mad in either motorneurons or 

muscles by expressing Mad-RNAi and examined the intensity of the P-Mad 

signal. We found that downregulating Mad either in neurons or muscles resulted 

in significant decrease in P-Mad signal intensity (Fig. 3-5C, E-G), suggesting that 

the synaptic P-Mad signal is both pre- and postsynaptic. Furthermore, the 

number of synaptic boutons was significantly reduced by either downregulating 

Mad in neurons or muscles (Fig. 3-5D), again suggesting the requirement of Mad 

function in both cell types. 

 We also examined the localization of P-Mad signal in comparison with the 

endogenous localization of GluRIIA and BRP. Confirming previous reports with 

the GluRIIA transgene, we found that the synaptic P-Mad signal was always 

present within the boundaries of GluRIIA clusters (Fig. 3-5H, I, M). In contrast, 

there was only partial colocalization between BRP and P-Mad, and the signals 

appeared juxtaposed (Fig. 3-5J-L). These results suggest that at least some of 

the P-Mad signal is both pre- and postsynaptic. However, given that active zones 

and postsynaptic GluR clusters are apposed to each other in close proximity, 

light microscopy alone cannot resolve this issue. Nevertheless, the above results 

showing that downregulating Mad either in muscles or neurons leads to a 

reduction in the P-Mad signal, are a strong indication that the signal is localized 

in both cells.  
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Glia-derived Mav activates Gbb, DAD and Shaker expression in muscles 

The above observations suggest that glia derived Mav activates both 

neuron and muscle BMP signaling. Given the well characterized role of Gbb 

release by muscle in activating a neuronal BMP cascade involving Wit and Tkv or 

Sax, a potential model to explain the role of Mav in neurons and muscles is that it 

regulates the expression of Gbb in muscles. Consistent with this model, 

quantitative analysis of Gbb transcript in muscle revealed that Gbb mRNA was 

decreased upon downregulating Mav in glia (Fig. 3-6A). Thus, by regulating Gbb 

expression in muscle, glia derived Mav may regulate the potency of the 

retrograde Gbb signal. Moreover, the transcript leveles of the known TGF-β 

inhibitor Smad, DAD, were also decreased at the BWM, supporting a post-

synaptic role for glial Maverick (Fig. 3-6A). 

Previous studies have also suggested that TGF-β signaling pathway 

regulates the expression of K+ channels (Cameron et al., 1998; Cameron et al., 

1999; Zhuang et al., 2012). In Drosophila, the Sh locus encodes for several Sh 

isoforms. To determine if Mav could also regulate the expression of Sh in 

muscles, we carried out real time PCR using primers that recognize all of the 

multiple Sh transcripts (Ingleby et al., 2009). Mav downregulation in peripheral 

glia resulted in approximately 60% reduction in Sh transcripts (Fig. 3-6A).  
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DISCUSSION 

Here we have unraveled a TGF-ß signaling pathway that is initiated by glia 

through the release of Mav, a TGF-ß ligand. This finding is particularly significant, 

since despite the knowledge that glial cells are required for normal synaptic 

development, the signals provided by glia during this process are largely 

unknown. Equally important is the finding that glia-derived Mav regulates BMP 

signaling both in muscles and motorneurons. Thus, glia might serve as a 

regulatory hub for coordinating the development of pre-and postsynaptic cells.  

 

The observation that three TGF-β superfamily ligands are expressed in 

peripheral glia brings new complexity to our understanding of BMP signaling at 

the NMJ. Indeed, knockdown of each ligand prevented the normal expansion of 

the NMJ. Although at present we do not know the cellular targets for MYO, Mav 

or Daw, the release of multiple BMPs may serve as a mechanism to regulate the 

release of tissue specific signals that impinge on synaptic development. For 

example, our studies reveal that Mav regulates the production of Gbb by muscle, 

thus influencing NMJ development by modulating retrograde signaling from 

muscles to motorneurons. Similarly, it is possible that peripheral glia release 

multiple BMPs to regulate other (non-synaptic) aspects of development, such as 

positive regulation of nutrient storage and energy homeostasis (Ballard et al., 

2010), modulate immune responses (Clark et al., 2011), or even the transition to 

metamorphosis (Gibbens et al., 2011). In this regard, the exposure of all organs 
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to the hemolymph in this animal with open circulatory system, may allow a 

response by cells that are quite distant from the glia. Furthermore, it is also 

possible that there could be molecular pathways activated by the TGF-β ligands 

that function independent of P-Mad (Moustakas and Heldin, 2009) or a different 

R-Smad. For example, genetic interactions have linked Daw with the activation of 

the R-smad, Smox (Jensen et al., 2009; Ellis et al., 2010b). Furthermore, Smox 

transcripts have been found to be expressed in BWM and Smox mutant has 

decreased growth of NMJs (Ellis et al., 2010b) This pathway could potentially 

regulate completely different sets of downstream target genes. It has also been 

reported that dawdle mutants have undergrown NMJs. However, rescue 

experiments suggested that Daw is released from many cellular sources (Ellis et 

al., 2010b). This is consistent with our finding that Daw is expressed in glia and 

that downregulation of Daw in glia resulted in underdeveloped NMJs. 

Previous studies provided evidence that MYO mRNA was expressed both 

in glia and muscle (Lo and Frasch, 1999). However, its role in these cells has 

remained unclear. We found that MYO did not affect either nuclear or synaptic P-

Mad signal, indicating that there are alternative target tissues or MYO activates 

an unknown signaling pathway independent of Mad phosphorylation. In contrast, 

we identified a substantial role for glial Maverick in regulating MAD activation at 

synaptic boutons. Our results suggest that Maverick secretion from glia, not 

neurons or muscle, is critical for the normal growth of the NMJ. Finally, the 
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mechanisms of how these three molecules coordinately regulate NMJ growth 

remain to be investigated. 

 Our results suggest that glia-derived Mav regulates the expression of Gbb. 

Therefore the most simple explanation for our finding that glia derived Mav is 

required for normal BMP signaling at motorneuron nuclei is that by releasing 

Mav, glia controls the magnitude of the retrograde signal by Gbb. However, an 

additional possibility is that besides regulating Gbb expression in muscle, glia-

derived Mav regulates the function of Gbb by forming a heterodimer. Such 

heterodimeric interactions have been observed, for example, in the case of Dpp 

(Decapentaplegic) and Gbb. The formation of a Gbb-Dpp heterodimer serves to 

create a gradient of the ligand activity in the wing tissue (Bangi and Wharton, 

2006)  

Our results make it highly likely that Mav is locally secreted by peripheral 

glia at the NMJ. First, endogenous Mav was found within peripheral glia at the 

segmental nerves, and this distribution pattern was mimicked by expressing a 

Mav-GFP transgene. Notably, expression of Mav-GFP in glia resulted in GFP 

signal not only within glial membranes, but beyond these membranes, in 

association with synaptic boutons and in the muscle region close to synaptic 

boutons. Previous studies demonstrated that peripheral glial membrane 

extensions are dynamic, extending and retracting processes that became 

associated with synaptic boutons and muscles (Fuentes-Medel et al., 

2009).Thus, it is possible that either glia-derived Mav is released at the NMJ 
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branchpoint, where most glial membranes terminate, and Mav then diffuses to 

synaptic boutons and muscles. Alternatively, glial membrane extensions might 

directly deposit Mav as they interact with boutons or muscles. 

Understanding the cellular origin of the synaptic P-Mad was critical to 

distinguish between models whereby Mav could be activating BMP signaling in 

muscle, at the pre-synaptic bouton membrane, or both.  While the activation of 

retrograde BMP signaling at the NMJ through Gbb release has been well 

characterized (McCabe et al., 2003), the finding that BMP pathway components, 

including receptors, also exist within muscle cells suggest that BMPs might be 

used bidirectionally.  In support of this notion, knocking down MAD in either 

muscles or motorneurons decreased the levels of P-Mad signal at the NMJ and 

decreased normal synaptic growth. The finding that glia locally releases Mav to 

regulate both pre- and postsynaptic BMP signaling strongly suggest that glia 

serves to integrate and to coordinate pre- and postsynaptic development.  

Similarly, vertebrate perisynaptic Schwann cells secrete TGF-β1, this ligand 

regulates the levels of agrin in the presynaptic neuron and increase the 

acetylcholine receptor clustering in vitro (Feng and Ko, 2008). However, none 

direct postsynaptic response has been reported. 

 Bidirectional signaling at the NMJ has also been observed for other 

secreted factors, such as the Wingless (Wg) pathway. Interestingly, In the case 

of Wg, different transduction pathways are activated in each cell, and each 

different pathway has its own specific outcome, which has alternative 
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implications for synapse development. Furthermore, one future line of 

investigation will be to understand the regulation of Wg and TGF-β pathways in 

the muscle cell. Interestingly, the state of phosphorylation of MAD itself has been 

shown to control the competition between Wg and BMP signaling (Eivers et al., 

2011), however none of this is known at the NMJ in Drosophila. Moreover, none 

of the downstream muscle target genes has been described so far. We focused 

our attention on transcripts that were affected by glial Maverick. Intriguingly we 

found that glial Maverick regulates the transcription of Shaker channels, raising 

the possibility that a glial ligand can affect the synaptic potassium currents, and 

this could have different implications, such as delaying repolarization of the 

synaptic current, which would lead to different spread of electronic signals in this 

isopotential muscle.  

The results above are a strong indication that glia cells can actively 

regulate the normal growth of synapses and perhaps orchestrate the 

communication between presynaptic and postsynaptic cells. In addition this data 

provides compelling evidence that BMP signaling is more complex than 

previously anticipated. 

 

MATERIALS AND METHODS 

Drosophila strains  

The following fly strains were used for this study: Gli-Gal4 (rl82) (Sepp and Auld, 

1999), Tubulin Gal4 (Lee and Luo, 1999), C57-Gal4 and C380-Gal4 (Budnik et 
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al., 1996), UAS-mCD8-GFP (Lee and Luo, 1999), UAS-mCD8Cherry (gift from 

Mary Logan) UAS-mad-RNAi Transformant ID: 12635 , UAS-myo- RNAi 

Transformant ID: 33132, UAS-dawdle-RNAi Transformant ID: 105309 (Vienna 

Drosophila RNAi Center), UAS-maverick RNAi-1,(called R34 and made by 

Tzumin Lee) UAS-maverick RNAi-2, Stock ID 1901R-4 (Fly Stock of National 

Institute of Genetics, Japan) , we also generated a UAS-maverick and a UAS-

maverick:GFP. To generate UAS-maverick and UAS-maverick:GFP  transgenic 

flies, wild–type maverick-A cDNAs were obtained, subcloned into a pUAST 

vector, and injected to w1118 flies. 

Real Time PCR 

Total RNA was isolated from dissected third instar peripheral nerves and 

extracted with Trizol (Invitrogen) and purified using the RNeasy Micro Kit 

(QIAGEN) for nerves. First strand cDNA was synthesized using Sensiscript RT 

(QIAGEN) enzyme with oligo (dT) 12-18 primer (Invitrogen). Real time PCR for 

nerves was performed using the following Taqman primers to effectively detect 

expression of Repo  (Assay ID Dm02134815_g1), Myoglianin (Assay ID 

Dm01820708_g1) , Dawdle (Assay ID Dm01814209_g1) Maverick (Assay ID 

Dm01825561_g1), Activin B (Assay ID Dm01831511_m1 ) and Gapdh (Assay ID 

Dm01841185_m1) from Applied biosystems. This procedure was necessary to 

enhance the specificity and sensitivity of the assay, due to the limited amount of 

mRNA from peripheral nerves. The real time curves were monitored comparing 

the –RT controls as negative controls (data not shown). cDNA from wild type 
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embryos was used as a positive control for the primers. The PCR products were 

run on a 0.8% agarose gel and visualized by ethidium bromide stain. Data was 

analyzed via the delta-delta Ct method. 

Total RNA was isolated from dissected third instar brains or body wall muscle 

and extracted with Trizol (Invitrogen) and purified using the RNeasy Mini Kit 

(QIAGEN). First strand cDNA was synthesized using Supescript III (Invitrogen) 

enzyme with oligo (dT) 12-18 primer (Invitrogen). The real time PCR for brains 

was performed using the following primers: Trio (Assay ID Dm01795013_m1), 

Cyclophilin 1 (Assay ID Dm01813702_m1) and RpL32 (Assay ID 

Dm02151827_g1) as house keeping control from Applied biosystems. PCR for 

the body wall muscles was performed using the following primers to detect 

expression of Dad (Assay ID Dm02134937_m1), Shaker (Assay ID 

Dm01799618_g1), Gbb (Assay ID Dm01843010_s1), Cyclophilin 1 (Assay ID 

Dm01813702_m1) and RpL32 (Assay ID Dm02151827_g1) as house keeping 

control from Applied biosystems. The PCR protocol was 95 °C for 10 min 

followed by 40 cycles of 95°C for 15 sec and 60 °C for 1 min. Data was analyzed 

via the delta-delta Ct method. 

 

Immunolabelling and Confocal Microscopy 

 

Third instar Drosophila larvae were dissected in calcium free saline (Jan and Jan, 

1976) and fixed for 10 minutes with non-alcoholic Bouin’s fixative unless 
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otherwise noted. Brain samples were fixed with 4% paraformaldehyde in 

phosphate buffer pH 7.4 for 1 hour. Primary antibodies were used at the following 

dilutions: rabbit α-pMad (1:100) (cell signaling), rat α-Elav ( DSHB), mouse α-

GluR IIA ( 1:3) , rabbit α-Discs-Large, 1:20,000 (Koh et al., 1999);  mouse 

α−GFP, 1:200 (Molecular Probes); mouse nc82 (α-Brp), 1:100 (DSHB); FITC or 

Texas red-conjugated α-HRP 1:200 (Jackson Immunoresearch). Secondary 

antibodies conjugated to DyLight  488, 594, or 649 (Jackson Immunoresearch) 

were used at a concentration of 1:200. Samples were imaged using a 3i spinning 

disc confocal system  and analyzed using the  Image J software. 

 

Fluorescent intensity quantifications 

 

The intensity of p-Mad nuclei was quantified by selecting the middle section of 

Elav positive staining and collect single confocal section of both Elav and p-Mad 

in the ventral nerve cord. The nuclei of motorneurons were selected by positive 

staining of Elav and anatomically location, then intensities of p-Mad were 

measured by using Image J software. Intensities of nuclear p-Mad were 

normalized to wild type controls. 

In Maverick overexpression, the intensity of synaptic p-Mad punta was quantified 

by manually selecting the area of p-Mad positive puncta. 10 NMJs were blindly 

selected from each wild type control and glial Maverick overexpression animals. 

The data is shown as p-Mad fluorescent intensity.  
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The number of positive p-Mad boutons was quantified on 1b type boutons. 

This quantification was performed using images of α-HRP labeled NMJs that 

were acquired with identical confocal settings, and we quantified the boutons with 

presence of p-Mad signal.  Number of NMJs analyzed were 10-12 per sample. 

Data was represented in histograms as the percentage of positive p-Mad 

boutons ±S.E.M. Statistical significance of the data was obtained in pair-wise 

comparisons using the Student t-test. 

To analyze the p-Mad derivation, we used samples where we knocked down 

Mad in muscle of motorneurons. We used volocity software to detect positive 

puncta and calculated p-Mad intensities normalized to HRP volume and 

subsequently normalized to wild type. Statistical significance of the data was 

obtained in pair-wise comparisons using the Student t-test.   

Generation of Maverick antibody.  

Maverick antibody was generated against amino acids 371 to 389 of Maverick-

PA, which is the following peptide sequence: C-PLTNAQDANFHHDKIDEA-N-

amide. The antibody was produced and purified by 21st Century Biochemicals, 

Inc. using chicken as the host. We fixed larvae with Bouin’s fixative for 10 

minutes and used the peptide-purified Maverick antibody at a concentration of 

1:50.  
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FIGURES 
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Figure 3-1.  Could glia be the source of TGF-β ligands? 

(A) mRNA analysis of transcripts in the peripheral nerves of Drosophila larvae.  

* indicates an unspecific product in the negative control. Embryos were used as 

positive controls for the primers. (B) Quantification of the number of total number 

of boutons at muscles 6/7. (C, D, E, F) third instar NMJs at muscles 6/7 

visualized with α-HRP (green) *** p<0.001, ** p≤0.01, * p≤0.05.  Calibration scale 

is 25 µm for (C, D, E, F). 
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Figure 3-2. Do glia ligands affect the p-Mad presynaptic activation of TGF-β 

pathway? 

(A1, B1, C1) Ventral nerve cord of third instar larvae brain Elav (red) P-Mad 

(green) (A2, B2, C2) zoom of motorneuron nuclei stained with a α-p-Mad 

antibody. Presynaptic mad-RNAi was used as a control for p-Mad levels.  (D) 

Quantification of nuclear normalized p-Mad intensity in motorneuron nuclei ,*** 

p<0.001, ** p≤0.01(E) Trio mRNA levels and cyclophilin mRNA levels in third 

instar larval brains. Calibration scale is 10 µm for (A2,B2,C2) and 25 µm for  (A1, 

B1, C1) 
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Figure 3-3. Glial Maverick regulates activation of synaptic p-Mad   

(A) Wild type NMJs stained with α-HRP ( red) and α-P-Mad ( green) . We 

knocked down TGF- β ligands in glia: (B) Maverick ( Mav) (C) Myoglianin (MYO) 

(D) Dawdle (Daw). Only glial Maverick knockdown reduced synaptic p-Mad while 

knock down of Mav in (E) motoneurons or (F) muscles did not affect p-Mad 

activation. Overexpression of Maverick in glia (G) increases the intensity of p-

Mad puncta (I) (J) Quantification of % of p-Mad positive synaptic boutons.  (K) 

Quantification of p-Mad mean intensity. (L) Quantification of the number of total 

number of boutons at muscles 6/7. *** p<0.001, ** p≤0.01, * p≤0.05.   
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Figure 3-4. Maverick is expressed in peripheral glia cells and is secreted to 

synapses. 

(A) Maverick staining at wild type peripheral nerves and (B) glial mav-RNAi. (C) 

When mav-GFP (green) is expressed in peripheral glia (red). (D) Maverick is able 

to reach the synaptic boutons stained with HRP (blue) and (E) further 

postsynaptic space when expressed in peripheral glia. In contrast, when 

Maverick is expressed in motorneurons (F) or muscle (G) it d is not able to leave 

the terminal, or reach the boutons respectively.  
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Figure 3-5. Synaptic p-Mad functions pre- and post- synaptically. 

(A) The p-Mad staining is specific since  (B) in Mad12 mutants in trans to a 

deficiency the staining is virtually absent. (C) Normalized p-Mad intensities were 

calculated by knocking down Mad either in the (F) pre or in the (G) post- synaptic 

cell. (D) Quantification of the total number of boutons at muscles 6/7. *** 

p<0.001, ** p≤0.01, * p≤0.05.  (H1,2,3) p-Mad (green) colocalizes with glutamate 

receptors IIA (red)  ( J 1,2, 3) P-Mad (green) is localized juxtapositional to 

Bruchpilot (red) , (L) Profile of p-Mad and Brp  (M) profile of pMad and GluR. 

Calibration scale is 25 µm for  A and B, 3 µm for E, F and G , 7 µm for H and J. 
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Fig 3-6. What is the function of maverick? 

 (A) Gbb and DAD transcript are significally reduced at the BWM when maverick 

is knocked down from glia. Interestingly, the Shaker transcript isoforms are 

significally reduced while cyclophilin did not changed upon lack of glial Maverick. 

N=3 independent RNA isolations. (B) Glia Maverick orchestrates synapses, Our 

model suggest that glial maverick activates the presynaptic BMP pathway and 

post-synaptic TGF-β pathway that controls the expression of Gbb and that 

translate in activation of presynaptic retrograde pathway and Shaker potassium 

channels.  
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CHAPTER IV 
 

General Discussion 
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In this thesis I have explored the role of glial cells in the formation and 

maintenance of synaptic fields.  Using the Drosophila NMJ I have made several 

novel discoveries.  First, in contrast to what has been previously reported (Sepp 

et al., 2000), I showed that Drosophila glia dynamically invade the NMJ and 

associate closely with both the presynaptic motorneuron and postsynaptic 

muscle cell.  Second, I have shown that invading glial cells help maintain the 

NMJ synaptic field by engulfing shed presynaptic debris through the Draper 

engulfment signaling pathway.  Unexpectedly, I found that clearance involved a 

coordination between glia and a novel engulfing cell type in Drosophila, the 

postsynaptic muscle.  That growing presynaptic arbors shed such a significant 

amount of debris in an activity dependent way was also surprising, and suggests 

that the integrity of membranes of axon and synapses may not be as stable as 

expected.  Finally, I showed that invading glial cells actively secrete the TGF-β 

molecule Maverick to promote NMJ growth.  Loss of glial Maverick dramatically 

reduced p-Mad levels at the synapse, led to decreases in muscle cell expression 

of muscle retrograde ligand Gbb, suggesting that glia modulates retrograde 

muscleàmotorneuron signaling. Together this work provides exciting new 

insights into how glial cells, using two very different methods of control—the 

engulfment of debris versus the secretion of growth factors—can modulate both 

synaptic growth and signaling. 
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Importance of glial cells in the brain 

The brain is capable of processing an enormous amount of information that 

ultimately controls everything from eye blinking to the cognitive interpretation of 

our world.  Brain anatomy and general functional territories are quite well-

described: we know which brain region control the processing of specific 

sensory, motor, or cognitive information.  In many cases our insights have come 

from identifying neuronal functional loci that are modified in patients with specific 

cognitive or motor defects.  

 Despite the fact that the majority of human cells in the brain are glia, most 

of the studies of brain function have focused on the properties of neurons. In fact, 

if you search in PubMed for “glia” versus “neuron”, there is approximated 6.7 

times more publications which exclude the word glia and include neuron, than 

those that include glia.  Moreover, many of those including “glia” often mention it 

only in passing.  If we really want to understand how our brain works, we have to 

give greater attention to the mysterious glial cells.  It is critical that we aim to 

understand specific molecular pathways that govern glial development and 

function, and how those pathways respond to changes on the neuronal circuits 

integrity or activity. We need to understand how much control glia exert over 

neurons and circuits, and which pathways mediate these events.  In recent 

research it has become increasingly clear that glial cell populations (e.g. 

astrocytes) are highly connected through gap junctions, and through these 

connections can maintain a global level of communication across the brain 



 

 

112 

 

space.  These findings raise the interesting possibility of glial coordination of 

broad responses across the brain, the potential existence of glial circuits, and 

understanding the functional implication in the future should be a major focus of 

the field.   

 

Rethinking the stability of the neurons—are neurites always fragmenting 

and glia always eating? 

Across the animal kingdom there are numerous examples of developmental 

pruning of neuronal circuits, and such pruning is a key mechanism allowing for 

neuronal plasticity during circuit development.  Surprisingly few molecules 

directly involved in the programmed destruction of axons, dendrites, or synapses 

have been identified (see Introduction).  As such we know very little about the 

molecular program that promotes neurite or synapse destruction.  My 

observation that growing motorneurons at the NMJ are constantly shedding 

presynaptic debris in an activity-dependent manner raises a number of 

interesting questions regarding this shedding process and classical pruning 

events.  For example, do signaling pathways that promote the pruning of specific 

dendritic arbors such as the cytoskeleton-binding protein Mical (Kirilly et al., 

2009) also promote the shedding of presynaptic debris?  Is the shedding of 

presynaptic debris more similar to Wallerian degeneration, which is mediated by 

the neuroprotective Wlds protein (Avery et al., 2009; Coleman and Freeman, 

2010) and dSarm (Freeman lab unpublished)?  Alternatively, is the shedding of 
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presynaptic debris governed by a synaptic specific and completely novel genetic 

program? 

 It would seem unlikely that the shedding of presynaptic debris is 

mechanistically related to axosome shedding in mammals (Bishop et al., 2004). 

During axosome shedding the “loser” motorneurons that ultimately retract from 

the NMJ shed axosomes, which in some ways may be similar to shed 

presynaptic debris at the Drosophila NMJ.  However axosomes are believed to 

be pinched off by the surrounding Schwann cell as the Schwann cell engulfs the 

loser (Bishop et al., 2004). Based on my observations it seems unlikely that 

Drosophila glial cells might be functioning in a similar way.  First, Drosophila glia 

are only transiently associated with the NMJ, whereas one might expect a more 

robust association with the NMJ if they were driving the process.  Second, the 

shedding of presynaptic debris appears to be neuron-autonomous and not 

require glial engulfment of motorneuron terminals since mutations affecting glial 

engulfing activity (i.e. draper, or dced-6), rather than leading to less debris 

instead lead to dramatic increases in axonal debris.  In the future these questions 

could be answered directly by assaying the shedding of presynaptic debris in 

newly-identified neurite degeneration and pruning mutants. 

 That motorneurons at the NMJ are apparently so unstable raises the 

interesting question of whether or not mature neurons in the brain are similarly 

unstable and potentially fragmenting at all times.  Indeed components of the 

Draper signaling pathway are robustly expressed by a number of subtypes of 
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glial cells in the adult brain (MacDonald et al., 2006; Doherty et al., 2009), and 

these glia are capable of engulfing axonal debris (MacDonald et al., 2006). It is 

noteworthy that when single axons are examined in draper mutant backgrounds, 

one does not find an accumulation of GFP+ debris along axons (MAL and MRF, 

unpublished).  This observation might suggest that mature axons are more 

stable, however to date the status of adult synapses in draper mutant 

backgrounds has not been examined.  It would be exciting if it were found that 

synapses specifically—the site of plasticity in mature neurons—were specifically 

affected. 

 If it were true that axons, dendrites, or synapses were continuously 

fragmenting in the mature brain, this would have profound implications for how 

we think about normal neuronal stability, and in turn neurodegenerative disease.  

If mature axons were constantly shedding debris, this would lead to the 

production of a huge amount of debris that would need to be constantly cleared 

from the brain.  Perhaps this is why Draper and other engulfment genes are 

robustly expressed by glia under normal conditions (Awasaki et al., 2006; 

Ziegenfuss et al., 2008). In turn one could envision how defects in glial 

engulfment activity could lead to the dramatic accumulation of shed neuronal 

debris, which I have shown has severe negative consequences on new synaptic 

growth (Fuentes-Medel et al., 2009).  Perhaps it might also negatively affect the 

maintenance of neuronal integrity.  Such an explanation for neurodegenerative 

phenotypes has not been proposed previously, is an exciting new potential defect 
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in patients which needs to be considered, and would identify glial engulfment 

signaling as a novel therapeutic target for intervention in neurodegenerative 

disease. 

 

Potential roles for presynaptic debris shedding in synapse growth and 

plasticity 

The presence of the shed presynaptic debris at the NMJ in draper mutants likely 

causes the inhibition of new synaptic growth during NMJ development.  The 

presynaptic arbor secretes a number of factors such as Wg that signal to the 

postsynaptic muscle cell to modulate growth.  The presence of excess Wg could 

have a negative effect on Wg signaling, for example over-activation of the dFz2 

Wg receptor causes a dominant-negative phenotype at the NMJ (Mathew et al., 

2005; Ataman et al., 2006). In addition, shed presynaptic debris could contain 

inhibitory factors that are normally cleared efficiently by glia and muscle at the 

NMJ, and if not cleared can suppress synapse addition.  Interestingly, work from 

the Budnik laboratory has found that debris also contains exosome proteins such 

as evi that are critical for the communication between the pre and postsynaptic 

cells.  A major future goal will be to identify the signaling factors present on shed 

presynaptic debris that negatively regulate NMJ growth, and definitively 

demonstrate that shed presynaptic debris in fact causes the reduced NMJ growth 

observed in draper mutants. 
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 How shed presynaptic debris is autonomously tagged for engulfment 

remains a mystery.  That it can be recognized and phagocytosed by Draper-

dependent mechanisms argues that presynaptic debris shares some similarities 

with cell corpses (Manaka et al., 2004), pruned axons (Awasaki et al., 2006), and 

axonal debris generated through Wallerian degeneration (MacDonald et al., 

2006). Phosphatidylserine (PS) has been proposed as a potential “eat me” cue 

recognized by CED-1 in C. elegans, however this remains primarily speculative.  

A number of potential ligands for the Draper receptor have also been identified 

(Hashimoto et al., 2009; Kuraishi et al., 2009), but whether these are involved in 

the clearance of shed presynaptic debris has not been explored.  An equally 

interesting questions pertains to the mechanism by which neural activity 

increases the amount of shed presynaptic debris.  It is possible that this simply 

reflects an increase in the turnover rate of ghost boutons or other structures at 

the NMJ, which in turn results in more debris.  Alternatively, activity itself might 

destabilize neuronal membranes.  For example, an excessive level of synaptic 

vesicle release might lead to loss of membrane from the synaptic terminal, which 

by our criteria would appear as shed presynaptic debris.  Finally, it remains 

possible that the NMJ is unique in the amount of mechanical stress that it imparts 

on the motorneuron terminal’s synaptic field—NMJ synapses are embedded in 

the muscle and are violently pulled as the muscle cycles through contractions 

and relaxations.  It is possible that this mechanical stress somehow physically 

tears debris off the NMJ terminals. 
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Why would it be beneficial for synapses to be so highly unstable, or shed 

by the presynaptic motorneurons in such a profligate way?  A common theme in 

the development of neural circuits is the overproduction of axons, dendrites, and 

synapses, followed by the subsequent elimination of exuberant connections (see 

Introduction).  In this way the circuit has maximized its initial potential for 

connectivity, has the opportunity to selectively maintain the most productive 

connections, and can therefore respond rapidly to changes in activity during 

development.  I would anticipate that the shedding of presynaptic debris serves a 

similar purpose at the NMJ.  In a number of cases the NMJ has to respond 

rapidly—for example in the case of starvation—to generate new synapses for 

enhanced synaptic growth.  Having a reserve pool of synapses that are normally 

shed would provide a continuous pool of nascent synapses that at any moment 

could be stabilized to increase synaptic connectivity.  Presumably this would be 

much more efficient that signaling to the nucleus to enhance the production of 

new synaptic material.  In general it seems the nervous system has made the 

decision that it is easier to overproduce and eliminate, rather than make things 

fresh.  

 

Glial dynamics at the Drosophila NMJ – not really a tripartite synapse?  

 

My work has demonstrated that while glia is indeed found at the Drosophila NMJ 

and regulate its development, this may not be an ideal system in which to study 
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the properties of the tripartite synapse as it relates to synaptic physiology.  In 

mammalian CNS synapses glia have been proposed to form a close relationship 

with synapses, with glia acting as a third cell type that can modulate   signaling, 

thereby forming the “tripartite synapse” (Stevens, 2008; Halassa and Haydon, 

2010). Our hope was that the Drosophila NMJ would be an ideal tissue in which 

to explore this close relationship, however my work indicates that glial cells are 

primarily absent from the NMJ, and only enter a small percentage of the time.  It 

is reasonable to assume that if these glia were performing a critical signaling role 

that we might observe a more close association.  That said, serial EM studies in 

which a 1 mm2 cube of neural tissue was reconstructed revealed that the vast 

majority of CNS synapses (at least in this brain region) were not closely 

associated with astrocytes.   Rather, astrocyte membranes were found at some 

distance. It is therefore possible that a very close physical association of 

astrocytes with the synapse is not essential for the synapse to be modulated by 

glia; or perhaps in some brain regions astrocytes are less involved in signaling 

than was anticipated?   

The molecular mechanisms by which glia are attracted to synapses at the 

NMJ remain poorly defined.  One possibility is that they are able to sense the 

amount of glutamate, and when levels are high the enter the NMJ and buffer 

glutamate levels.  Certainly peripheral glia are known to express channels 

capable of transporting glutamate like EAATs (Stacey et al., 2010). Alternatively, 

there could be very interesting differences in membrane composition at synaptic 
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boutons compared to the axonal tracks.  Perhaps peripheral glia prefer to reside 

primarily on axons, and only enter the NMJ under conditions of physiological 

stress?  Understanding this neuron-muscle-glia dialog, and the signaling 

pathways that regulate it, will be essential as we further explore the physiological 

roles for glia at the NMJ. 

 

Newly identified glial growth factors that modulate synaptic growth 

 

Glia are critical for the survival of neurons, they secrete molecules that enhance 

the formation of neuronal circuits and regulate the development of synaptic 

connections (Eroglu and Barres, 2010; Kucukdereli et al., 2011).  However, the 

precise molecular mechanisms for these functions are still poorly understood. 

The transforming growth factor beta (TGF-β) signaling pathway has a variety of 

functions in the development of the organism such as pattering formation during 

embryonic development (Eldar et al., 2002; O'Connor et al., 2006). In Drosophila, 

a total of seven TGF-β family ligands have been identified so far. They can be 

divided in two categories: the BMP subfamily (Dpp, Gbb and Scw) and the TGF-

β-related ligand subfamily (dActivin, Myoglianin, Dawdle and Maverick) (Gesualdi 

and Haerry, 2007; Moustakas and Heldin, 2009). This classification is a result of 

their ability to activate BMP type receptors or Activin-like receptors and the 

phylogenetic similarities with their vertebrate homologous (Raftery and 

Sutherland, 1999). It has been shown that Gbb loss-of-function mutants have 
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impaired synaptic growth, and Gbb has been identified as a retrograde signal to 

activate the presynaptic BMP pathway to promote synaptic growth (McCabe et 

al., 2003). Interestingly, I found that TGF-β-related ligands are expressed in 

peripheral glia and knocking them down only in these cells results in detrimental 

effects for NMJ growth. These results open the possibility that the glial TGF-β 

ligands could have a direct role in modulating the growth of synapses and the 

function of the retrograde pathway in the NMJ. Supporting a conserved role of 

these ligands and their functions, vertebrate peripheral Schwann cells have been 

shown in vitro to secrete TGF-β-1, promoting synaptogenesis in cell culture 

(Feng and Ko, 2008). However, the downstream molecular mechanism is 

unknown and this has not been demonstrated in vivo. The fact that glia could 

potentially regulate synapses through TGF-β ligands opens a new avenue of 

investigation, not only for the TGF-β pathway at the NMJ but also the exciting 

possibility that glia control the growth of synapses with a non-BMP type of ligand. 

 

Glial regulation of BMP retrograde signaling at the NMJ 

 

The TGF-β signaling cascade has several levels of regulation that ultimately lead 

to the transcription of specific target genes (Weiss et al., 2010). In general, the 

identity of the ligand, the combination of receptors, and the downstream 

transcription factors modulate the functional outcome of this pathway (Marquez 

et al., 2001; Gesualdi and Haerry, 2007). However, independent of what 
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molecule is participating in a particular tissue, one common event is the 

phosphorylation of an R-Smad molecule by the tyrosine kinase TGF-β receptor. 

The MH2 domain of R-smads contains an SSXS motif that is phosphorylated by 

the type I receptor kinase (Chen et al., 1996; Haerry, 2010). This phosphorylation 

has been broadly used as a measurement of activation of the TGF-β pathway.  

At the Drosophila NMJ levels of nuclear p-MAD, the R-Smad protein described in 

this tissue, serve as a read out of retrograde pathway activation. Furthermore, 

gbb, wit and sax mutants have been shown to have almost no motorneuron 

nuclear p-Mad signal (Marques et al., 2003) indicating that Gbb is the key 

regulator for the presynaptic BMP pathway. Interestingly, I found that among the 

three TGF-β ligands expressed in glia, only Maverick decreased the levels of p-

MAD in the motorneuron nuclei. Moreover, BMP and Activin ligands are known to 

trigger different effects in a concentration- dependent manner, rather than 

functioning as an on-off switch (Haerry, 2010). Why do glia express more than 

one ligand? How does the combination of many ligands regulate the activation of 

the same receptors? And why is there such a complex environment? One 

possibility could be that Maverick regulates the effectiveness of Gbb at the NMJ 

by forming a heterodimer with Gbb. Similarly, in the wing tissue, Gbb forms 

heterodimers with DPP, and that interaction regulates the function of DPP (Bangi 

and Wharton, 2006). However, my data suggest that the regulation of BMP 

signaling could be more complex than predicted before. For instance, the lack of 

motorneuron nuclear MAD activation by Myoglianin or Dawdle ligands suggests 
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that these ligands might activate different combinations of receptors or interact 

with other tissues in the larvae. Supporting evidence for this model comes from 

results from dawdle mutants (Ellis et al., 2010b).  These animals have defective 

NMJs, but the rescue experiments indicated a more ubiquitious source of this 

ligand, instead of a specific source at the NMJ (Ellis et al., 2010b). In addition, I 

found no changes of nuclear p-Mad when Myoglianin was knocked down in 

peripheral glia, suggesting that glial Myoglianin could be activating a different 

combination of receptors and R-Smad. For example, in central larval brain, 

Myoglianin was found to activate the TGF-β Babo receptor and Myo has been 

suggested to activate Smox, a different R-Smad, instead of MAD, downstream of 

the same receptor (Awasaki et al., 2011) Intriguingly, Myoglianin mutants have 

been recently generated, but NMJ characterization reminds unknown (Awasaki et 

al., 2011). 

 

Glia Regulation of postsynaptic signaling at the NMJ 

 

Although, TGF-β receptor expression in Drosophila larval muscle has 

been controversial (Dudu et al., 2006; Ball et al., 2010; Higashi-Kovtun et al., 

2010), it is possible that glial ligands could be activating a post-synaptic pathway. 

Intriguingly, p-MAD colocalizes with muscle overexpressed glutamate receptors 

(GluR) at synaptic boutons. However, there is still controversy surrounding the 

origin of this signal since presynaptic receptors are localized at the synaptic 
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boutons, and this signal could belong to presynaptic MAD activation (O'Connor-

Giles et al., 2008). In contrast, there is evidence supporting an active TGF-β 

pathway in the muscle cell.  First, the molecular components of this pathway 

have been shown to be expressed in the body wall muscle, and secondly, 

specific muscle overexpression of either DAD, an inhibitory downstream target of 

TGF-β, or a constitutively active Tkv receptor results in a decrease and increase 

of synaptic p-Mad levels respectively (Dudu et al., 2006). Moreover, babo 

mutants have decreased number of boutons and decreased levels of 

transcription of gbb (Ellis et al., 2010b) suggesting a functional role of a TGF-β 

activin-like pathway in the muscle cell. I found that knock down of maverick by 

RNAi only in glia strongly suppresses the activation of MAD at synaptic boutons.  

Additionally I found that synaptic p-Mad signal is partially reduced if you either 

knock down MAD in the motorneuron or in the muscle respectively. These results 

support a model where Maverick is regulating both pre- and post-synaptic TGF-

β signaling pathways.  

Remarkably, supporting a postsynaptic role of glial Maverick, I found that 

both gbb and dad muscle mRNA levels decreased when I knocked down 

Maverick only in peripheral glia. Whether this is a direct or indirect effect, remains 

to be tested. Translocation of p-Mad to the nucleus depends on binding to the co-

Smad, Medea. I found Medea to be expressed in muscle (data not shown), 

suggesting that it could be a key regulator in the activation of particular genes. 

However, its function in the muscle remains unknown. Furthermore, is the 
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downstream MAD-Medea protein complex binding to Gbb or DAD promoters? 

Looking at physical interactions of this complex with the corresponding promoters 

or examining Gbb or DAD reporter genes in the muscle while expressing 

Maverick RNAi in peripheral glia, would separate a direct or indirect role of glial 

Maverick ligand in the muscle. Moreover, in contrast with previous publications 

(Dudu et al., 2006; Higashi-Kovtun et al., 2010) I did not find p-Mad signal at 

muscle nuclei (data not shown). One explanation for my result is that the muscle 

p-Mad uses different phosphorylation sites to translocate into nucleus, and thus 

the antibody does not recognize this p-Mad, or the p-Mad antibody is unable to 

detect p-Mad in the muscle nuclear environment. This could be due to the fact 

that muscles are multi-nucleated cells and the P-Mad signal is therefore diluted 

to levels below the detection limit of the antibody. Nevertheless, my result of 

muscle specific MAD RNAi demonstrates both decreases in the number of 

synaptic boutons and p-Mad signal. Finally, to dissect apart the roles of pre and 

postsynaptic TGF-β pathways, new tools will be needed such as an specific 

antibody for immuno-electron microscopy for p-MAD to resolve the resolution 

limitations or a conditional dominant negative MAD overexpression construct  to 

appreciate the significance of having both for the NMJ development. 
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Neuronal activity and synaptic TGF-β glial regulation 

 

Synaptic growth, presynaptic efficacy and muscle excitability are tightly regulated 

processes. We know many of the molecular pathways that coordinate each of 

these processes (Budnik et al., 1990; Zhong et al., 1992), however the 

synchronization mechanisms needed to ensure proper function of the NMJ are 

poorly understood. Moreover, the ultimate goal of these synaptic connections is 

to ensure a sufficient strength of neurotransmission between motorneuron and 

muscle cell that will allow for coordinated locomotion of the larvae. One critical 

element affecting synaptic growth is neuronal activity.  In general, increase of 

neuronal activity results in overgrowth of synaptic boutons at the NMJ (Budnik et 

al., 1990). Moreover, the growth of the NMJ is regulated by anterograde and 

retrograde pathways (Keshishian and Kim, 2004; Fuentes-Medel and Budnik, 

2010). This communication is essential for the coordination between neuronal 

activity and muscle growth. The Wingless pathway was the first to be  described 

as an anterograde pathway of synapses (MN to Muscle) (Packard et al., 2002). 

Wingless was shown to be secreted by the motorneuron and coordinate the 

development of postsynaptic specializations at the Drosophila NMJ. Secreted Wg 

interacts with DFz2 receptors in the muscle (Ataman et al., 2006). However, 

recent work has shown that Wg also acts in an autocrine manner to directly 

regulate the microtubule-associated protein Futsch in MN (Miech et al., 2008). 

Interestingly, the TGF-β retrograde (Muscle to MN) pathway was found to 
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regulate the GEF Trio (Ball et al., 2010) that also locally regulates the remodeling 

of microtubules in the synaptic terminal, suggesting a presynaptic synergistic 

model between Wg and BMP signaling, where both collaborate to increase 

synaptic growth. Together these data support the possibility that the regulation of 

Wg and TGF-β pathways at the synapse is more complicated and requires more 

precise molecular machinery than previously thought. Despite the fact that a 

TGF-β neuronal ligand has not yet been identified, similar to the NMJ’s Wg 

pathway, my data and other groups’ data support the idea that the TGF−β 

signaling pathway works in both MN and muscle. In the future we will need to 

understand how muscle manages and regulates both the Wg activated pathway 

and a TGF-β modulated pathway. One interesting hypothesis is a competitive co-

regulation, where MAD competes between the two pathways. This regulation has 

been observed in other tissues such as the wing (Eivers et al., 2011). However, it 

has not been explored if similar mechanisms are in place at the NMJ to regulate 

growth.  

It is unclear how glia could coordinate the anterograde and retrograde 

pathways. One interesting mechanism, since glia appear closely involved in 

regulation of synapse growth, would be that Wg and retrograde BMP pathways 

might directly feed back onto glia to inform them of the status of synaptic growth. 

None of these ideas have been tested at the NMJ. This model would required 

both that glia also express TGF-β and DFZ receptors and they are able to use 

their ligands as signals for growth. Assuming that the secretion of Maverick 
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responds to growth, looking at the levels of secreted Maverick in gbb mutant or 

Wg mutant backgrounds would test the idea if it is possible that these ligands are 

triggers for Maverick secretion. Alternatively, one could overexpress Gbb in the 

muscle and examine the secretion of Maverick from glia using the Mav:GFP 

transgenic fly that I generated in my work. Conversely, Wg could be 

overexpressed from the motorneuron and one could quantify the levels of 

Maverick GFP signal at the synaptic boutons.   

 

While Wg secretion has been shown to be enhanced upon synaptic 

activity (Ataman et al., 2008),it is unclear how postsynaptic TGF-β pathways 

respond to neuronal activity or if Maverick-activated TGF-β signaling is 

modulated by neuronal activity. My results have shown that glial Maverick is 

secreted into the synapse, but it remains to be investigated if glial Maverick 

secretion is regulated by neuronal activity. One possibility is that Maverick 

secretion is enhanced upon neuronal firing and glia have an upstream molecular 

pathway able to sense the changes in synaptic strength. Another possibility is 

that the secretion of Maverick is independent of neuronal activity, and glia 

modulate the synapses in response to other molecules present in the 

hemolymph.  Such molecules could reflect the nutrient levels around the larva, so 

if the environment is nutrient-poor the animal can change locomotion speed to 

save energy. Furthermore, we can use a channel-rhodopsin light-activated 
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channel (see chapter 2 of this thesis) to induce neuronal activity only in 

motoneurons and test if this directly induces the secretion of Maverick from glia.  

 

Interestingly, It is highly possible that glia might constantly monitor the 

levels of neuronal activity. How could glia recognize neuronal activity? One 

possibility is that glia express glutamate transporters that enable them to sense 

the levels of glutamate at the synaptic cleft (Stacey et al., 2010) and by doing so, 

this reuptake could activate an internal glia “sensor” of neuronal activity. 

Alternatively, glia could sense the lack of neuronal activity. For example, when 

action potentials are blocked by treating neurons with tetrodotoxin (TTX), 

mammalian glia secrete TNF alpha (Stellwagen and Malenka, 2006). These data 

suggest that in fact, glia are able to respond to neuronal activity, but there are no 

data of the molecular pathways that glia might use to sense neuronal activity.  

Finally, why place the control of sculpting neuronal circuits in the hands of 

glia?  Glia are better placed than neurons for a global response. They predict 

where and how neurotransmission occurs, they communicate across long 

distances in the brain and they have the molecular machinery to maintain highly 

metabolic activity. These three characteristics makes them an ideal candidate to 

orchestrate the plasticity of neuronal circuits, where have the sensors, the 

communication system and the energy to tune the response of the nervous 

system.  In the future we need to gain insights into questions such as: How do 

synapses get eliminated or stabilized? What are the molecular components of 
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synaptic debris? What are the molecular components that glia use to sense 

neuronal activity? What are the molecular pathways that glia use to regulate 

synaptic plasticity?  Up to today we know that they regulate complex 

mechanisms such as circadian rhythms, courtship behavior, synaptic plasticity 

and longevity (Ewer et al., 1992; Buchanan and Benzer, 1993; Jackson, 2011; 

Kazama et al., 2011; Ng et al., 2011; Seugnet et al., 2011). However, the 

molecular identification of key molecular components in these processes will not 

only lead to change the strategic view of how do we think about our brains, but 

also will open new avenues to design the applications of improvement of human 

health to a new level. Understanding the logic of these pathways could provide 

many potential novel targets for drug development for the nervous system. 
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