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ABSTRACT 

 

 

 The study of DNA templated events is not complete without considering the chromatin 

environment.  Histone modifications help to regulate gene expression, chromatin compaction and 

DNA replication.  Because DNA damage repair must occur within the context of chromatin, 

many remodeling enzymes and histone modifications work in concert to enable access to the 

DNA and aid in restoration of chromatin after repair is complete.  CK2 has recently been 

identified as a histone modifying enzyme.  In this study we identify CK2 as a histone H3 tail 

kinase in vitro, identify the phospho-acceptor site in vitro, and characterize the modification in 

vivo in S. cerevisiae.  We also characterize the DNA damage phenotype of a strain lacking a 

single catalytic subunit of CK2.  We further characterize the CK2- dependent phosphorylation of 

serine 1 of histone H4 in vivo.  We find that it is recruited directly to the site of a DSB and this 

recruitment requires the SIN3/RPD3 histone deacetylase complex.  We also characterize the 

contribution of H4 serine 1 phosphorylation in chromatin compaction by using reconstituted 

nucleosomal arrays to study folding in the analytical ultracentrifuge. 
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CHAPTER I 

INTRODUCTION 

 

As all DNA-templated events in eukaryotic organisms must occur within the context of 

chromatin, it is no wonder that the study of chromatin comprises such a vast field of research.  

The cell has a truly elegant way of organizing its DNA, such that transcription, replication and 

repair can occur within this compact structure.  This introductory chapter will outline the 

complexity of chromatin structure as well as the mechanisms the cell employs to deal with this 

complexity, especially within the context of repairing a DNA double strand break. 

Chromatin Organization 

All eukaryotes maintain their genome as a nucleoprotein complex, which consists of 

DNA wrapped around four histone proteins.  The basic repeating unit of chromatin is the 

nucleosome.  The central core of the nucleosome consists of two copies each of four histone 

proteins.  Two copies of H3 and H4 join to form a histone tetramer. In addition to the tetramer 

are two histone H2A/ H2B dimers which form the histone octamer.  Around the octamer, 147 

base pairs of DNA wraps approximately 1.7 times in a left-handed superhelix to form the 

nucleosome (Luger at al., 1997a).  

 The crystal structure of the nucleosome has provided much insight into the organization 

of chromatin.  Each of the four histones contain a globular histone-fold domain, which is a 

structural domain involved in dimer-tetramer interfaces within the nucleosome.  Each histone 

also contains an N- terminal domain, called the histone “tail” which extrudes from the 

nucleosome surface.  The histone tails do not contribute to the structure of the individual 
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nucleosomes but help contribute to the structure of chromatin as a whole.  Histones H2A and 

H2B contain C-terminal domains which also extrude from the surface of the nucleosome. 

 Nucleosomes, which are separated from each other by linker DNA, form a nucleosomal 

array, also considered to be the primary structure of chromatin.  This array has a 10nm diameter 

as visualized with EM, and assumes the shape of the canonical “beads-on-a-string” nucleosome 

fiber in vitro (Thoma et al., 1979).  The nucleosomal array then undergoes further levels of 

compaction, with linker histones and non-histone proteins to form secondary and tertiary 

structures (Lu et al., 2006). 

 Histones H3, H4, H2A and H2B are the four main “replicative” histones.  They are 

expressed during S-phase for incorporation into the newly synthesized DNA directly at the 

replication fork.  There are also variants of the histones, which are expressed throughout the cell 

cycle and appear to have specific functions outside the role of the canonical histones.  Histone 

H2A has the most variants of the four histones, including H2A.X, H2A.Z, macroH2A and 

H2ABbd.  Histone H2A in S. cerevisiae and S. pombe resembles mammalian H2A.X.  H2A.X 

has an extended C-terminus which has an important serine residue which is phosphorylated in 

response to DNA double strand breaks (Reviewed in Ismail and Hendzel, 2008). 

 Histone H3 also has variants which are independent of replication.  Histone H3.3 is 

expressed throughout the cell cycle.  H3 in S. cerevisiae most resembles mammalian H3.3.  The 

centromere- specific H3 variant is CENP-A in mammals, or Cse4p in S. cerevisiae.  There is also 

a testis-specific H3t in mammals. (Reviewed in Loyola and Almouzni, 2007) 

In order for the cell to be able to contend with nucleosomal DNA, two types of chromatin 

specific enzymes are employed: ATP-dependent chromatin remodeling enzymes and histone 

modifying enzymes.  The ATP-dependent remodeling enzymes use the energy from ATP 
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hydrolysis to disrupt histone-DNA contacts.  They can do so by creating helical torsion of the 

DNA, mobilizing nucleosomes (i.e. sliding), and aiding histone dimer exchange (Smith and 

Peterson 2005, van Vugt et al., 2007).  ATP-dependent remodeling enzymes are essential for all 

DNA-templated events such as transcription (Sudarsanam et al., 2000), sister chromatid cohesion 

(Huang and Laurent, 2004), DNA replication (Papamichos-Chronakis and Peterson, 2008), and 

DNA repair (Bao and Shen, 2007).    

 The histone modifying enzymes, on the other hand, add post-translational modifications, 

such as phosphorylation, acetylation or methylation to the histone proteins.  Many of the histone 

modifications characterized thus far occur on the tails which extrude form the nucleosome 

surface, although the importance of modifications within the nucleosome core is also being 

elucidated. 

 

The Role of Histone Modifications in DNA-Templated Events:  A Brief Primer 

  

The role of histone modifications in every DNA-templated event has been studied.  

Histone modifications have been implicated in replication, transcription, heterochromatin 

formation, chromatin compaction and DNA damage repair (Peterson and Laniel, 2004).  These 

modifications are believed to recruit effector proteins to chromatin, alter chromatin structure, and 

alter histone-DNA contacts. 

 

Modifications of Newly Synthesized Histones 

 The replicative histones, which are synthesized during S-phase of the cell cycle, have 

characteristic modifications upon synthesis.  Histone H4 is acetylated on lysines 5 and 12 (Sobel 
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at al., 1995).  After H4 has been shuttled into the nucleus with the help of the histone chaperones, 

it is incorporated into chromatin during DNA replication.  It is within chromatin that the 

acetylation marks are removed (Jackson et al., 1976).  Acetylation of lysine residues that are 

native to newly synthesized H3 differ amongst organisms.  In budding yeast lysines 9, 14, 23 and 

27 are all acetylated, but the removal of these acetyl groups upon incorporation into chromatin is 

unknown (Kuo et al., 1996).  Recently, acetylation of K56 of H3 has been shown to be a 

modification of newly synthesized histones (Masumoto et al., 2005; Recht et al., 2006). 

 

Histone Modifications and Heterochromatin Formation 

 The study of Position Effect Variegation (PEV) has provided an elegant model to 

elucidate the contribution of histone modifications to heterochromatin formation and show the 

complexity of the downstream events regulated by histone modifications.  PEV is the 

inactivation of a gene in a subset of cells due to its proximity to heterochromatin.  Genetic 

screens for suppressors and enhancers of PEV have helped to elucidate the players involved.  

Such studies identified the histone methyltransferase (HMTase) Su(var)3-9 which methylates 

histone H3 at lysine 9 (H3K9me) (Tschiersch et al., 1994;  Rea et al., 2000), and HP1 (James et 

al., 1989).  HP1 contains a chromodomain, which specifically recognizes H3K9me (Lachner et 

al, 2001).  H3K9me and HP1, with the help of the RNAi machinery, work in concert to promote 

the formation and spreading of heterochromatin. 

 A study from the Martienssen and Grewal labs helped to define how the HMTase is 

directed to methylate histones that will establish heterochromatin.  They found in S. pombe 

RNAi mutants (ago1
-
, dcr1

-
, and rdp1

-
) that H3K9me levels were greatly reduced within the 

centromeric repeats compared with wild type (WT) (Volpe et al., 2002).  In fact, a known marker 
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for euchromatin, H3K4me, was increased within the centromere.  Their observations led to the 

hypothesis that antisense transcripts within heterochromatic regions recruit the H3K9 HMTase.  

Once this region is methylated, HP1 is recruited via its chromodomain.  HP1 is then able to self-

associate with adjacent HP1 molecules and stimulate the spreading of heterochromatin.  HP1 

spreading enriches the HMTase, which leads to further histone methylation, and further HP1 

recruitment (reviewed in Shilatifard 2006). A similar phenomenon occurs in budding yeast.  The 

HDAC, Sir2p, is necessary for chromatin silencing by deacetylating chromatin regions, which 

then creates a binding region for Sir4p, another member of the silencing complex (Moazed, 

2001).  In both cases, a histone modifying enzyme helps to create a local chromatin environment 

to recruit downstream silencing proteins. 

 Studies in S. cerevisiae have shown the importance of a modification within the histone 

fold domain in silencing, H3 Lysine 79 methylation (H3K79me).  The responsible HMTase is 

Dot1p (Ng et al., 2002) which has been implicated as a high copy disruptor of telomeric 

silencing (Singer et al., 1998).  Deletion of Dot1p also disrupts telomeric silencing (Singer et al., 

1998).  Mutation of K79 of H3 causes loss of silencing at telomeres, showing that the effect of 

Dot1p on silencing is through H3K79 methylation.  In H3K79 mutants, levels of the silencing 

proteins Sir2p and Sir3p are greatly reduced (Ng et al., 2002).  Therefore, methylation of H3K79 

by Dot1p helps to recruit silencing proteins and maintain the heterochromatin at the telomeric 

regions in S. cerevisiae. 

 The acetylation status of lysine residues in the H3 and H4 tail domains is also important 

for heterochromatin formation.  In S. cerevisiae there are three regions of silenced 

heterochromatin: the mating donor loci HML and HMR, rDNA and the telomeres.  The URA3 

gene can be integrated at these loci, and by virtue of its location will not be expressed, due to its 
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establishment in heterochromatin.  A read out of URA3 expression is the ability to grow on plates 

containing 5-FOA, which will kill cells expressing the URA3 gene.  Wild type cells with a URA3 

gene integrated at the subtelomeric loci are able to grow fine on 5-FOA.  Cells in which H4K16 

has been mutated to either arginine or glutamate de-silence the URA3 gene and the cells die in 

the presence of 5-FOA (Aparicio et al., 1991).  Mutations of three or four of the following H3 

lysines (9, 14, 18 or 23) will also result in a loss of telomeric silencing.  (Thompson et al., 1994).  

 A gradient of H4K16 acetylation from the telomere to 20kb from the telomere ends has 

been established as an important regulator of the heterochromatin state of the sub-telomeric 

regions.   Acetylation of K16 depends on the histone acetyltransferase (HAT) Sas2p (Suka et al., 

2002;  Kimura et al., 2002).  A gradient of K16 acetylation is formed by the opposing action of 

Sas2p and the histone deacetylase (HDAC) Sir2p.  H4K16 acetylation status regulates the 

silenced state of genes within the telomeric regions.  H4K16 is hypoacetylated in the region 1kb 

from the telomere.  A sharp gradient of increasing acetylation is seen from 1-5kb from the 

telomere, and from 5-30kb away the chromatin is hyperacetylated (Kimura et al., 2002).  If 

H4K16 is mutated to arginine the other three acetylatable lysines on the H4 tail become 

hypoacetylated compared with WT (Suka et al., 2002).  Regulation of H4K16 acetylation levels 

around the telomere is important in the control of Sir3p spreading into the subtelomeric regions.  

In a sas2 strain, where there is a loss of H4K16Ac, Sir3p levels are decreased at the telomeres 

and increased in the subtelomeric regions, which causes repression of genes located in the 

subtelomeric regions (Suka et al., 2002; Kimura et al., 2002).   

 

Histone Modifications and Transcription 
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 A belief that a correlation between histone acetylation and methylation is essential for 

proper gene regulation has long existed.  Many studies which focus on changes within the 

promoter regions of inducible genes have established that many modifications work in concert to 

ensure both efficient expression and repression of genes. 

 S. cerevisiae provides a very useful model to study histone modifications within the 

context of gene expression: the inducible PHO5 gene.  Four stably positioned nucleosomes in the 

promoter region have been precisely mapped under both repressive and inducing conditions 

(Barbaric et al., 2001).  The PHO5 gene is silent in phosphate rich medium, and is expressed in 

the absence of phosphate.    

A study from the Horz lab followed the acetylation status of the nucleosomes in the 

promoter of the PHO5 gene.  It had been previously established that Gcn5p, the catalytic subunit 

of the SAGA histone acetyltransferase complex, and the chromatin remodeling complex 

SWI/SNF are necessary for full activation of the PHO5 gene (Barbaric et al., 2001). They 

showed that during transcriptional activation of PHO5 there is a transient increase in acetylation 

of histone H3 K9 and K18, followed by complete eviction of the nucleosomes in the PHO5 

promoter (Reinke et al., 2003).  A study of the same promoter showed that although there is no 

transient increase in H4 tail acetylation, the NuA4 HAT complex is essential for PHO5 

activation, and is recruited directly to the promoter region.  In its absence, the PHO5 gene 

remains in the repressed state (Nourani et al., 2004). 

Acetylation isn’t the only modification important for PHO5 maintenance. Set1p, a 

histone methyltransferase required for the methylation of H3K4 (H3K4me), is also important for 

proper PHO5 gene expression.  Although Set1p dependent H3K4me is traditionally required for 

gene activation, a study showed that deletion of SET1 led to derepression of the PHO5 gene in 



8 
 

rich media (Carvin et al., 2004).  A non-methylatable H3K4R mutant also showed PHO5 

derepression, leading the proposal that Set1p regulates PHO5 expression both positively and 

negatively. 

Histone H2B ubiquitylation (H2Bub) has also been implicated in expression of the PHO5 

gene.  H2B is ubiquitylated on K123 dependent on Rad6p and Bre1p in S. cerevisiae (Robzyk et 

al., 2000).  Reports have shown that this modification is important for transcriptional activation 

of inducible genes in yeast.  Upon induction of SUC2, (Henry et al., 2003) GAL1 (Henry et al., 

2003; Kao et al., 2004) or PHO5, H2B is transiently ubiquitylated at the promoter region, 

peaking at around 30-60 minutes, and then decreasing (Kao et al., 2004).  This ubiquitylation is 

necessary for H3K4me to be enriched at these promoters of the induced genes.  Rad6p, an 

ubiquitin conjugating enzyme, is recruited to the promoter (Kao et al., 2004) during transcription 

initiation and decreases with the same kinetics as the ubiquitin modification.  It has been shown 

that Rad6p associates with the elongating form of RNA PolymeraseII, and this association is 

necessary for H2Bub, and H3K4me to be enriched at the promoters of active genes (Xiao et al., 

2005).  H2Bub is excluded from the silent areas of the genome including telomeres (Kao et al., 

2004). 

 

Histone Modifications and Chromatin Compaction 

It has long been known that histone acetylation plays a role in transcriptional activation 

and euchromatin formation, but its effect on chromatin structure has remained elusive.  A study 

using acetylated histones demonstrated that arrays reconstituted with highly acetylated octamers 

are not able to achieve highly compacted structures (Tse et al., 1998).  Octamers were extracted 

from HeLa cells which had been treated with varying amounts of an HDAC inhibitor and had 8, 
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23 or 46% of all available lysines acetylated.  These octamers were used to reconstitute an in 

vitro chromatin array using the highly characterized 5S rDNA gene segment which contains a 

known nucleosome positioning sequence.   The sedimentation coefficient (S) of these arrays was 

measured in the analytical ultracentrifuge (AUC).  The sedimentation coefficient gives an 

indirect readout of the shape of a species. In low salt buffer (TE) these arrays are known to 

sediment as a 29S species (Hansen and Turgeon, 1999)  With increasing amounts of Mg
+2

, WT 

arrays compact and the S value increases to a maximum of 55S.  The arrays reconstituted with 

the hyperacetylated octamers could only achieve a 35S species.  In a test of chromatin self-

association, which is thought to mimic long range fiber-fiber interactions in vivo, the acetylated 

arrays required more Mg
+2

 to associate than their less acetylated counterparts.   

Another study demonstrated that a single acetylated lysine residue can disrupt the 

formation of higher order chromatin structure (Shogren-Knaak et al. 2006).  Using a native 

chemical ligation strategy, a homogenous nucleosomal array was reconstituted in which every 

H4 was acetylated at K16 (H4K16Ac).  The findings showed that an array containing H4K16Ac 

was not able to compact to the maximally folded state of 55S, and only reached a maximum 

compaction of 44S.  These results were comparable to an array containing “tailless” H4, which 

had been characterized as being defective in compaction (Dorigo et al., 2003).  The H4K16Ac 

array also needed more Mg
+2

 to self-associate than a WT array.  An in vivo characterization of 

H4K16Ac complimented the in vitro data as K16Ac was found preferentially enriched in 

euchromatin and excluded from the heterochromatic regions in HeLa cells.  This study showed 

that two acetyl groups/ octamer are able to disrupt higher order folding. 

Other modifications have been implicated in chromatin compaction.  Histone H3 is 

phosphorylated in a cell cycle regulated manner (Gurley et al., 1978).  Phosphorylation of serine 
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10 of H3 peaks during mitosis and diminishes as cells enter telophase.  Based on the timing of 

this modification, specifically when the chromatin is at its most compact within the cell cycle, it 

has been hypothesized that this modification may aid in chromatin compaction.  Yet, there is a 

lack of evidence to support this hypothesis.  A study from the Mancini lab showed that in 

Chinese Hamster Ovaries, treatment with a phosphatase inhibitor (okadaic acid), which 

maintains H3S10phos throughout the cell cycle, does not cause aberrant chromatin compaction 

outside of mitosis (Van Hooser et al., 1998). They also found that H3S10phos was not necessary 

to maintain chromosome condensation.  Therefore it can be concluded that phosphorylation is 

not sufficient to cause compaction, nor necessary for maintenance of compaction. 

Ubiquitylation of histones has also been a modification proposed to disrupt higher order 

structure.  Histone H2B is ubiquitinated on K123 in yeast, and K120 in mammals and this is 

expected to be within the histone fold region of the nucleosome (Jason et al., 2002).  Because 

levels of histone ubiquitylation vary within the cell cycle, disappearing as cells enter mitosis (Wu 

et al., 1981) it makes sense to hypothesize that such a bulky adduct would inhibit chromatin 

compaction and higher order chromatin structure.  Again, there has been no evidence to support 

this hypothesis.  Nucleosomes can be reconstituted with two molecules of ubiquitinated H2A or 

H2B (Davies et al., 1994).  Arrays reconstituted with ubiquitinated histones do not have an 

altered Mg-dependent folding in vitro (Jason et al., 2001).  A role of histone ubiquitylation in 

chromatin structure, if there is one, has yet to be discovered. 

A recent paper from Shelley Berger’s lab has proposed that the phosphorylation of 

histone H4 serine 1 (H4S1phos) aids chromatin compaction in vivo (Krishnamoorthy et al., 

2006).  They noticed that in yeast undergoing meiosis that H4S1phos increases at the end of 

meiosis during sporulation and persists until the cell cycle resumes.  This modification was also 
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seen during fly and mouse spermatogenesis.   In an S. cerevisiae strain in which the serine cannot 

be phosphorylated (H4S1A), these cells are deficient in sporulation, with an efficiency only 30% 

that of wild type.  They also see an increase in the nuclear volume of cells with both the HS1A 

mutation or are cells that lack the responsible meiosis-specific kinase Sps1p.  In an effort to 

study this hypothesis in vitro, we tested the contribution of H4 serine 1 phosphorylation on 

chromatin folding in the analytical ultracentrifuge.  The results of this study are presented in 

Chapter IV.   

 

DNA Double Strand Break Repair: The Chromatin Connection 

 The process of DNA double strand break (DSB) repair in the eukaryotic cell must 

contend with the repressive structure of chromatin.  The role of histone modifications in DNA 

damage repair, the two main pathways of DSB repair, DNA damage checkpoint signaling, and 

chromatin remodeling at the DSB will be discussed to give an overview of how the cell repairs 

the deleterious break. 

 

Chromatin Modifications and DNA Damage 

One of the most highly characterized modifications in response to DNA damage is the 

phosphorylation of a serine residue in the C-terminal domain of histone H2AX, traditionally 

referred to as -H2AX.  Serine 129 of the S. cerevisiae H2A, or serine 139 of H2AX in higher 

eukaryotes is phosphorylated in response to DNA double strand breaks.  The phosphorylation 

depends on the DNA damage checkpoint kinases ATM, ATR and DNA-PK in higher eukaryotes 

and Mec1p and Tel1p in yeast (reviewed in Altaf et al., 2007).  -H2AX is seen within minutes 

of DSB induction, and by chromatin immunoprecipitation (ChIP) is shown to peak at 3-5kb from 
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the break and spread up to 50kb on both sides of the break in S. cerevisiae (Shroff et al., 2004) 

and cover megabases on both sides of the break in mammals  (Rogakou et al., 1998). 

The contribution of H2AX phosphorylation to cell survival in S. cerevisiae was studied in 

the presence of DNA damaging agents.  Cells lacking a phosphorylatable serine in the C terminal 

domain of H2A showed a slight phenotype in the presence of 0.02% MMS, a DNA alkylating 

agent, or with increasing amounts of phleomycin, a DSB-inducing agent (Downs et al., 2000).  

These same cells were not sensitive to UV exposure, indicating that the sensitivity may be DSB 

specific.  In fact, these cells were partially deficient in the DSB repair pathway of non-

homologous end joining (NHEJ) but were not deficient in homologous recombination (HR).  An 

S. cerevisiae strain with the H2AS129A mutation is also sensitive to camptothecin (CPT), which 

creates DSBs during the S-phase of the cell cycle but does not activate the intra-S phase cell 

cycle checkpoint. This indicates that the modification is not important for checkpoint response 

but is for DSB repair (Redon et al., 2003).  Although this modification is robustly increased in 

response to DSBs, the phenotypes in response to DSB-inducing agents are very subtle. 

The contribution of -H2AX in mammals has also been studied.  Mice lacking both 

copies of histone H2AX were generated to test the importance of H2AX phosphorylation 

(Celeste et al., 2002).  The H2AX
-/- 

mice were radiation sensitive, growth retarded, and immune 

deficient.  The mouse embryonic fibroblasts (MEFs) generated from these mice showed poor 

proliferation.  Metaphase spreads of these MEFs showed an increase in chromosome breaks and 

dicentric chromosomes as compared with WT cells.  Immunostaining of the checkpoint factors 

NBS1, 53BP1 and BRCA1 showed that their recruitment to the site of damage (i.e. focus 

formation) was impaired in H2AX
-/-

 MEFs, but RAD51 was recruited normally compared with 
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WT.  These results show that the histone variant H2A.X is important for DNA damage 

resistance, but does not directly address the contribution of Serine 139 phosphorylation. 

The order of recruitment as measured via focus formation in mammalian cells has been 

well characterized, and -H2AX appears to be a key organizer of the DNA damage focus.  After 

phosphorylation of histone H2AX, the scaffold protein MDC1 is recruited to the site of a break 

(Lukas et al., 2004).  A direct interaction between the two tandem BRCT domains and 

phosphorylated H2AX is thought to recruit and retain MDC1 directly at the site of a DNA DSB.  

An X-ray structure of the tandem BRCT domains interacting specifically with a phospho-peptide 

of the C-terminal domain of H2AX helped to advance the hypothesis that MDC1 directly 

interacts with -H2AX at the site of DNA damage (Stucki et al., 2005).  Disruption of the MDC1 

protein results in a loss of focus formation by the DNA damage proteins NBS1, 53BP1 and 

BRCA1 (Lou et al., 2006).  Conflicting studies have shown that NBS1, BRCA1 and 53BP1 do 

not need -H2AX (Celeste et al., 2003) and that 53BP1 can be recruited to the site of DNA 

damage through the interaction of its Tudor domains with methylated H3 (Huyen et al., 2004).   

Recent studies have pointed to interplay between-H2AX and H2A ubiquitylation at the 

site of DNA damage.   The RING and FHA domain containing protein RNF8 is recruited to a 

DSB dependent upon both -H2AX and MDC1 localization, and is necessary for the downstream 

recruitment of BRCA1, NBS1 and 53BP1 (Mailan et al., 2007; Huen et al., 2007; Kolas et al., 

2007).  The FHA domain is a phospho-peptide binding motif and the RING domain is a protein-

protein interacting motif implicated in ubiquitylation.  

RNF8 is found to bind phosphorylated MDC1 via its FHA domain and colocalize at DNA 

damage foci within a minute of irradiation (Mailand et al, 2007).  RNF8 contains a RING 

domain which implies it is an E3-ubiquitin ligase capable of transferring ubiquitin from an E2 
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conjugating enzyme to a specific substrate.   Indeed, with the depletion of the E2 conjugating 

protein Ubc13 from HeLa cells, formation of 53BP1 foci was diminished (Kolas et al., 2007).  

Therefore, the downstream recruitment of many players of the damage response requires protein 

ubiquitylation to be recruited to sites of DNA damage.   It was found that RNF8 is responsible 

for ubiquitylation of -H2AX.  This ubiquitylation is responsible for the downstream recruitment 

of RAP80, a ubiquitin interacting motif (UIM) containing protein, as well as 53BP1 and BRCA1 

(Huen et al., 2007; Mailand et al., 2007).  In summary, an initial phosphorylation of H2AX leads 

to recruitment of proteins that are necessary to ubiquitinate -H2AX, which in turn further 

recruits later players in DNA damage response. 

Another established role of -H2AX is recruitment of the cohesion complex directly to 

the site of a DNA DSB.  The GAL::HO system in S. cerevisiae, which will be explained in detail 

later in the introduction, has been helpful in studying the dynamics of a single break.  Cohesin is 

loaded onto chromatin during S-phase to maintain sister chromatid cohesion until the cells are 

ready to divide during M phase (Nasmyth, 2002).  The different subunits of the cohesion 

complex are also loaded onto chromatin surrounding a DNA DSB in a manner dependent upon -

H2AX formation (Strom et al., 2004; Unal et al., 2004).  The cohesin subunits are enriched 7-10 

fold 8kb from a DSB, and yet are excluded from the region 1-2kb directly surrounding a DSB 

(Unal et al., 2004).  This enrichment is specific for S and G2 phases of the cell cycle but is not 

found during G1.  The spreading of cohesin stretches as far as 50kb from both sides of the break, 

correlating with that of -H2AX.  Importantly, cohesin recruitment is necessary for DSB repair 

via the homologous recombination pathway using the sister chromatid.     

Although many studies have shown H2A.X phosphorylation to be important for 

recruiting and retaining many downstream proteins, such as chromatin remodeling enzymes, 
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cohesion, and members of the checkpoint cascade, the fact remains that loss of phosphorylation 

does not show a dramatic phenotype.  Phosphorylation covers up to 50 kb on both sides of a 

DSB in yeast, but cohesion, and the chromatin remodeling complexes are only recruited within 

8kb of a DSB.  Therefore, there is not a clear explanation as to the role phosphorylation is 

playing in the DSB response.  

Once the DSB has been repaired, the chromatin needs to be restored to its original status, 

and the DNA damage checkpoint, a signaling cascade which inhibits cell cycle progression in the 

presence of DNA damage, needs to be turned off.  De-phosphorylation of -H2AX is an 

important part of checkpoint recovery.  In mammalian cells, the responsible phosphatase is PP2A 

(Chowdhury et al., 2005).  In WT cells that are treated with CPT for 1Hr, -H2AX foci are 

reduced to 20% by 12 hours, but in cells in which PP2A is inhibited the foci persist.  PP2A was 

also found to dephosphorylate nucleosomal -H2AX in vitro.  In irradiated HeLa cells, PP2A is 

recruited to damage foci dependent on H2AX phosphorylation. 

In S. cerevisiae the responsible phosphatase is Pph3p, which exists as a complex of three 

subunits termed the HTP-C (histone H2A phosphatase complex) (Keogh et al., 2006).  In a strain 

in which pph3 has been deleted, -H2AX persists longer than in WT as seen by western blot but 

levels at the break are comparable to WT as seen by ChIP.  Similar results are seen in cells that 

have been irradiated.  Both WT and pph3 cells have lost their foci with 6 hours, but by western 

blot -H2AX is elevated in the pph3 mutant.  It is therefore hypothesized that H2AX is not 

dephosphorylated until it is removed from chromatin.  It is also interesting to note that 

persistence of -H2AX in the cell affects checkpoint recovery, as pph3 cells take longer to turn 

off the checkpoint even after repair has been completed, and this is dependent upon -H2AX.   
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Although -H2AX has been the most characterized histone modification studied in 

response to DNA DSBs, it is certainly not alone.  The importance of S122 of H2A in S. 

cerevisiae was reported to be necessary for survival in the presence of many DNA damaging 

agents including MMS, phleomycin, CPT, HU and UV (Harvey et al., 2005). This residue was 

found to be phosphorylated in the presence of DNA damage, the most robust of which was in the 

presence of menadione, an oxidative DNA damaging agent (Moore et al., 2007). Phosphorylation 

of S14 of histone H2B is also reported in the presence of DNA damaging agents.  Antibodies 

against the modified residue show that it colocalizes with -H2AX foci in response to DNA 

DSBs and that this modification needs -H2AX. Similar to -H2AX it is also seen during 

programmed rearrangements in B cells (Fernandez-Capetillo et al., 2004). 

Phosphorylation of histone H4 serine 1 in response to DNA DSBs has also been 

examined (Cheung et al., 2005)  We have found that Serine 1 is phosphorylated specifically in 

response to DNA DSBs within 30 minutes of treatment with a DNA damaging agent.  The 

modification is stable; in the presence of chronic damage the modification does not disappear.  

Serine 1 of H4 is phosphorylated on both sides of the DNA DSB as seen by ChIP, as far as 10kb 

from the site of the break, but its timing follows -H2AX localization by two hours.  The 

modification does not need activation of the checkpoint kinases Mec1p or Tel1p, which are 

responsible for both -H2AX and activation of the DNA damage checkpoint response.  The 

responsible kinase is CK2 (formerly known as Casein Kinase II) which we also show 

phosphorylates histone H4 in vitro.  We further characterize the role of H4S1phos in DNA 

damage in Chapter II.  We show in Chapter III that this modification requires an intact histone 

deacetylase complex, SIN3/RPD3, to be recruited to the site of a DSB. 
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Two Pathways of DSB Repair: Homologous Recombination and Non-homologous End-

Joining 

 

 The cell has two major DSB repair pathways: homologous recombination (HR) and non-

homologous end-joining (NHEJ).  These two repair pathways have to contend with the restrictive 

nature of chromatin to make sure the genome is faithfully restored. 

 Although in the model system S. cerevisiae the main repair pathway for DSBs is HR, it 

has proven useful to discover factors that are responsible for NHEJ.  The yeast proteins Yku70p 

and Yku80p are essential for NHEJ and are conserved throughout all eukaryotes.  Cells lacking 

either Yku70/80p are sensitive to bleomycin and MMS, and are sensitive to IR if the HR repair 

pathway is compromised (Mages et al., 1996; Feldman et al., 1996; Siede et al., 1996) The Ku 

proteins bind DNA ends as a heterodimer and are of the first proteins recruited to a DSB.  The 

Mre11/Rad50/Xrs2 complex (MRX) has also been implicated in NHEJ repair in S. cerevisiae, 

but its homolog in higher eukaryotes, the MRN complex, has not been established in NHEJ in 

mammals.  Using an HO nuclease inducible DSB in S. cerevisiae, the MRX complex has been 

shown to be necessary for WT levels of NHEJ in yeast (Moore et el., 1996). 

The ligase responsible for NHEJ in yeast is the Dnl4/Lif1 complex, which are the 

counterparts of the DNA ligase IV/ XRCC4 complex in mammals.  Deletion of either gene yields 

a strong phenotype in a plasmid based repair assay which can screen for mutants that are unable 

to repair a break via NHEJ (Teo et al., 1997; Wilson et al., 1997).  In this assay, a plasmid 

linearized with a restriction endonuclease is transformed into WT and mutant yeast cells.  The 

cells are plated on a selective media on which only cells which have repaired the plasmid via 

NHEJ will be able to grow.  The transformation efficiency of the cells is a read-out of their 
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ability to perform NHEJ compared with the WT cells.  Another gene has been revealed from 

such a screen is Nej1p (Valencia et al., 2001; Ooi et al., 2001).  Although there is no biochemical 

function known for Nej1p, it is known that it is encoded by a haploid specific gene.   

                    

   

Figure 1. The basic steps of NHEJ in S. cerevisiae.  

NHEJ is enhanced in haploid cells, because there is no homologous donor chromosome to be 

used as a template for HR.  

 

 S. cerevisiae has also proven to be a very useful model system for studying the steps of 

homologous recombination in vivo.  Epistatic analysis of mutants which share the inability to 

repair a DNA DSB by HR has led to the establishment of the RAD52 epistasis group, which are 

proteins that are essential to the HR process in vivo.  (See Figure 2 for a basic schematic of HR) 
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The proteins that contribute to each step have also been highly characterized both in vivo 

and in vitro.  A brief review of HR would not be complete without discussing the roles of the 

members of the RAD52 epistasis group and their contribution to recombinational repair.   

 A major player in this pathway is Rad51p, a recombinase protein which shares homology 

to the bacterial RecA protein (reviewed in San Filipo et al., 2008).  Rad51p is required for 

formation of a protein filament which searches for homology and engages the broken 3’ end of 

DNA with the homologous template.  An early essential step in the HR pathway is the 

exonucleolytic processing of the break ends, creating long stretches of ssDNA.  RPA, which has 

a strong affinity for ssDNA, is recruited to these single strands on both sides of the break.  It is 

hypothesized that RPA enhances Rad51p binding by removing secondary structure of the ssDNA 

(Sugiyama et al., 1997).  RPA also inhibits Rad51 filament formation by coating the ssDNA and 

excluding Rad51p from binding.  In order for Rad51p to be able to bind ssDNA, mediator 

proteins are needed to overcome the inhibition by RPA. 

Rad52p is a Rad51p interacting protein and is thought to help recruit Rad51p to the site 

of a DSB (San Filippo et al., 2008).  In S. cerevisiae strains lacking Rad52p, Rad51p binding to a 

break is impaired (Wolner et al., 2003; Sugawara et al., 2003).  Rad51p also needs Rad55p, 

Rad57p, and Rad54p for proper recruitment to the break (Gaisor et al., 2001; Wolner et al., 

2003). The Peterson and Haber labs also studied the timing of recruitment of members of the 

RAD52 epistasis group to a DSB.  Rad51p, Rad52p , Rad55p and Rad57p are all recruited at 

early stages to a DSB, most likely to aid in formation of the pre-synaptic filament and the 

homology search.  Rad54p, a member of the SWI/SNF family of ATPases, is recruited later and 

is required for extension of the broken end following strand invasion of the homologous donor 

template.   
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The phenomenon of mating-type switching in S. cerevisiae has been essential in studying 

the steps involved in DSB repair.  The details of mating-type switiching have been fairly well 

dissected and have provided a model in which to track the fate of a single, controlled DSB.  

Located within Chromosome III is a region called the MAT locus.  Contained within this locus is 

the mating-type information of the haploid cell.  The cell can be one of two mating types, a or , 

depending on what genes are located at the MAT locus.  Haploid cells are able to mate with 

another cell of the opposite mating type to become a single diploid cell.  These haploid cells are 

also able to switch mating type which allows them to mate with the recently budded daughter 

cell from a previous round of cell division of the opposite mating type (reviewed in Haber 1998).    
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Figure 2. The eight steps of homologous recombination.  Adapted from San Fillipo et al. 

2008.  
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  On opposite arms of Chromosome III are the silent donor loci, which contain the 

genes of the two mating types, called HML and HMRa.   

 

 

Figure 3. A simple overview of Chromosome III. 

 

Both HML and HMRa are silenced due to packaging in heterochromatin.  Although the 

genes for both mating types are found on Chromosome III, only the genes at the MAT locus are 

expressed.  In the example presented in Figure 3, the cell with this chromosome would be an a 

cell, due to the presence of Ya at the MAT locus.  

The process of mating type switching starts with expression of a site-specific 

endonuclease called HO.  In WT yeast cells the expression of this endonuclease is tightly 

regulated.  It is only expressed during the G1 phase of the cell cycle, and only in a cell that has 

undergone at least one round of cell division.  A newly budded “daughter” cell is not able to 

switch mating type, but the “mother” cells can (Nasmyth, 1983).  The HO endonuclease 

recognizes a site at the MAT locus at the Y/Z interface.  Although there are also HO recognition 

sites at the Y/Z interface in both HML and HMR, the heterochromatic state inhibits HO from 

recognizing the restriction site within the donor loci. 

After the MAT locus has been cleaved, the Z side of the break is involved in the 

homology search.  In this unique system, the homology can be found on both sides of 

chromosome III, as both HML and HMR contain the Z region of homology.  Since the cell is 

programmed to switch mating type, a phenomenon called “donor preference” will influence the a 
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cell to find homology at HML rather than HMRa in about 85-90% of switches (reviewed in 

Haber, 1998). 

Another unique aspect of mating type switching is that it is a directional process.  As 

stated previously, only the MAT locus is cleaved by HO endonuclease.  After the donor locus is 

found via the homology search, the information is copied and replaced at the MAT locus, but the 

silent donor locus remains unchanged, in a process called gene conversion.   Members of the 

RAD52 epistasis group are essential for this process (reviewed in Haber, 1998).   

HO cleavage and MAT switching have been used to study the dynamics at a DSB, using 

strains which have the HO endonuclease under regulation of the GAL1-10 promoter (GAL::HO) 

(Jensen and Herskowitz, 1984).  In these strains, HO is expressed upon addition of galactose to 

the media, creating a controlled site-specific DSB in a population of cells.  Furthermore, strains 

have been used in which both donor loci have been deleted to create a strain in which repair via 

HR is not possible (Moore and Haber, 1996).  Using ChIP in these strains it is possible to follow 

the recruitment of repair proteins, histone modifications, and chromatin remodeling enzymes to 

the break site.      

 

The G2/M DNA Damage Checkpoint and DSB Repair 

The G2/M DNA damage checkpoint was first described by Weinert and Hartwell in 

1988.  They recognized that the cell had a way to delay transition from G2 into M phase in the 

presence of unrepaired DNA DSBs in G2, allowing time to repair the DNA before cell division.  

The MRN complex is an important player in the initial recognition of DSBs, checkpoint 

activation, and signal amplification.  The MRN (MRX in S. cerevisiae) complex is composed of 
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Mre11, Rad50, and Nbs1 (Xrs2p in S. cerevisiae) in mammals.  One of its well characterized 

roles is to bridge the two broken ends of DNA (reviewed in Williams et al., 2007).   

Importantly, the MRN complex is also involved in the checkpoint response.  MRN is 

necessary for activation of ATM (Ataxia- Telengiectasia Mutated) in vivo, which is one of the 

key initial checkpoint cascade kinases (Uziel et al., 2003).  MRN can also activate ATM in vitro 

(Lee et al., 2004b).   MRN and ATM activity are necessary to recruit and activate another 

checkpoint kinase ATR (ATM- related).  MRN and ATM are recruited to DSBs, which in turn 

activates ATR, which then phosphorylates the Chk1 kinase to proliferate the damage signal 

(Jazayeri et al., 2006).     

MRN has also been implicated in DNA resection which is important for HR repair and 

amplification of the checkpoint signal (D’Amours and Jackson 2002).  An MRN interacting 

partner, CtIP, is recruited to -H2AX foci and is involved in DNA resection and RPA 

recruitment in U2OS cells (Sartori et al., 2007).  MRN and CtIP work in concert to facilitate 

DSB repair.    

The resection of dsDNA to form stretches of ssDNA stimulates recruitment of the ssDNA 

binding protein RPA.  RPA binding to ssDNA is a key signal in the checkpoint cascade.  RPA 

association at the break is necessary for recruitment of ATR and ATRIP (ATR interacting 

partner) to the break (Zou and Elledge, 2003a.).  In S. cerevisiae, RPA recruitment to DSBs is 

important to recruit Ddc2p, the ATRIP homolog. 

The RPA coated ssDNA is also a substrate for loading of the DNA damage specific RFC-

like clamp loader and the PCNA-like “9-1-1” complex (Zou et al., 2003b).  During replication, 

the RFC complex is necessary to load the PCNA sliding clamp at the primer/ template junction 

to facilitate DNA replication.  A similar scenario occurs at the DNA DSB.  The clamp-loader in 
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this case consists of the members or the RFC complex (RFC2-5) with RFC1 replaced by Rad17 

in vertebrates and Rad24p in S. cerevisiae.  This damage “clamp-loading” complex needs RPA 

coated ssDNA to load at the break.  Subsequently, the DNA damage “sliding clamp” or “9-1-1” 

complex needs the RFC-like clamp-loader to localize at the break.  The “9-1-1” complex consists 

of Rad9, Hus1 and Mec1 in mammals and Ddc1p, Rad17p and Mec3p in budding yeast.  

Loading of the RFC and 9-1-1 complexes are necessary for full activation of the ATM/ATR 

damage checkpoint.   

Full activation of the Mec1p/Tel1p or ATM/ATR leads to activation of the effector 

proteins Rad53p (yeast) and Chk2 (mammals), as well as Chk1. Activation of these effector 

proteins require the adaptor proteins Rad9p (yeast) or 53BP1 and Brca1 (mammals) which help 

to increase local concentration of the checkpoint kinases which stimulates activation through 

autophosphorylation (reviewed in Heideker et al., 2007).  Once these effector proteins are 

activated they can inhibit progression through anaphase by inhibition of cohesion degradation, 

and sister chromatid separation.  

Figure 4. An overview of the mammalian checkpoint signaling pathway.  
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The Chromatin Modifying Enzymes and DNA DSB Repair 

  Both chromatin remodeling and histone modifying enzymes have been implicated in 

many aspects of DNA DSB repair.  As discussed previously, phosphorylation of H2AX (H2A in 

yeast) is essential for recruitment of DNA damage sensing proteins, repair proteins and 

chromatin modifying enzymes.   

Histone acetyltransferase complexes are important for DSB repair.  The TIP60 complex 

has both HAT and ATP-dependent chromatin remodeling activities.  Human cells which express 

a TIP60 protein with a mutation in the catalytic HAT domain are unable to repair DNA DSBs 

(Ikura et al., 2000).  A role for DSB repair of the TIP60 complex in Drosophila has been 

characterized.  The H2AX variant in Drosophila is H2Av, and is phosphorylated in response to 

DSBs in a manner similar to H2AX.  Members of the Workman lab found that both the HAT and 

ATPase activities of the Drosophila TIP60 complex are necessary to acetylate phosphorylated 

H2Av, and subsequently exchange the newly acetylated and phosphorylated H2Av for an 

unmodified version (Kusch et al., 2004).  In vivo, disruption of TIP60 leads to an increase in the 

persistence of phosphorylated H2Av.  It is possible that TIP60 is being recruited via 

phosphorylated H2Av and this catalyzes the exchange of the histone variant. 

TIP60 has also been shown to be directly recruited to a DSB in human ES cells and to 

acetylate the chromatin at the break.  The HAT cofactor TRRAP is known to recruit HAT 

complexes to transcription factors, but has also been implicated in recruiting TIP60 to sites of 

DNA DSBs (Murr et al., 2006).  Using the site specific endonuclease I-SceI, it was shown that 

cells depleted for TRAAP were deficient in DSB repair.  The I-SceI break was also used to 

monitor the recruitment, by ChIP, of acetylated H4 surrounding the DSB.  It was found that a 

transient acetylation of H4 was found 0.5-2.0kb from the break, and this acetylation depends 
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upon TIP60.  In fact, in the absence of this acetylation, RAD51, BRCA1, and 53BP1 focus 

formation was reduced.  

The study of HAT recruitment and histone acetylation around a break has also been 

extensively studied in S. cerevisiae.  Strains in which all four acetylatable lysines in the H4 N-

terminal tail have been mutated to glutamine are very sensitive to both CPT and MMS.  By 

restoring a single lysine at any position, the sensitivity is rescued (Bird et al., 2002).  Mutation of 

the essential HAT ESA1 showed similar CPT and MMS sensitivity as the lysine mutants.  The 

ESA1 mutant, as well as the H4KtoQ strain, were defective for NHEJ.   

A study using the GAL::HO inducible break in S. cerevisiae followed the status of the 9 

acetylatable lysine residues in the H4 (K5, 8, 12 and 16) and H3 (K9, 14, 18, 23 and 27) tails 

during break repair.  Acetylation of all 9 lysines increase 0.6kb from the site of a DNA DSB, and 

decreases once HO is repressed (Tamburini et al., 2005).  Various HATs and HDACs were tested 

for their sensitivity to HO expression and gcn5 and rpd3 strains were sensitive to the DSB 

produced by HO.  In fact an rpd3 strain was as sensitive to HO expression as loss of rad52.  

The Tyler group also showed the recruitment of the HATs Gcn5p, and Esa1p, as well as the 

HDACs Rpd3p, Hst1p and Sir2p to the site of a DSB.  

Proof that chromatin modifying enzymes directly bind -H2AX was shown by a study in 

which whole cell extracts were fractionated and screened for proteins that specifically bound -

H2AX peptides and did not bind the unmodified peptide.  Subunits from the NuA4 complex, a 

HAT which contains the catalytic subunit Esa1p, were found to directly bind the phosphorylated 

peptide.  Both Arp4p, a subunit common to a variety of chromatin modifying complexes, as well 

as Eaf3p, a subunit specific to NuA4, were found in the fraction that binds the phosphorylated 

peptide (Downs et al., 2004).  It was also shown that subunits of the SWR1 and INO80 
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complexes also bound the phosphorylated H2AX peptide.  Using an antibody specific to Esa1p, 

the catalytic subunit of the NuA4 complex, it has been shown that NuA4 is recruited to the site 

of a DSB.   

The INO80 complex, an ATP-dependent chromatin remodeling complex of the SWI/SNF 

family, is recruited to the DSB, and has been reported to aid in ssDNA formation, NHEJ, and 

nucleosome eviction at the break.  The catalytic subunit Ino80p, as well as Arp5p and Arp8p are 

recruited to the site of a break within an hour of break induction, and reach 3-4 fold enrichment 

between 2-4 hours (Van Attikum et al., 2004; Morrison et al., 2004).  The INO80 complex 

specifically associates with -H2AX through its Nhp10p subunit, and its recruitment to the break 

is diminished in the lack of phosphorylated H2AX.  ssDNA formation is impaired in a strain 

lacking the Arp8p subunit of the INO80 complex (van Attikum et al., 2004). 

The INO80 complex has also been shown to disrupt chromatin structure during DSB 

processing.  Nucleosomes are evicted within an hour after DSB induction, as seen by ChIP of 

both H2B and H4 (Tsukuda et al., 2005).  Chromatin structure is also disrupted surrounding a 

break over time as seen by MNase mapping.  This nucleosome loss depends on the INO80 

complex.    

    The INO80 complex is needed for checkpoint adaptation in response to a single DSB.  

Traditionally, a cell will arrest in the presence of DNA damage, due to the damage checkpoint 

response.  The cell cycle will not continue until the damage is repaired and the checkpoint is 

turned off.  In S. cerevisiae the phenomenon of checkpoint adaptation has been characterized.  

Adaptation occurs when the cell has not repaired a single DSB and yet turns off the checkpoint 

and resumes the cell cycle (Toczyski et al., 1997).  WT cells resume the cell cycle within 16 

hours of break induction, but ino80 cells die in the presence of a single break (Papamichos-
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Chronakis et. al., 2006).  The ino80 mutant strains also have a decreased amount of 

phosphorylated H2AX as seen by western blot and ChIP, and a concomitant increase in Htz1p 

incorporation at the break. 

The SWR1 complex is another ATP-dependent remodeling enzyme that is recruited to 

the break (Van Attikum at al., 2007).  Recruitment increases over 4 hours and spreads 

approximately 10kb from the break.  In the absence of -H2AX, recruitment of Swr1p is reduced 

by 75-80%.  Loss of either ino80 or swr1 results in decreased recruitment of Yku80p to the 

break. 

Studies in S. cerevisiae show that members of the SWI/SNF complex, Snf5p and Snf2p 

are necessary for bleomycin and HU resistance (Chai et al., 2005).  They are both recruited to the 

break 40 minutes post break induction and continue to increase over 4 hours.  Interestingly, both 

are required for synapsis with the homologous donor loci, and strains lacking either subunit 

cannot undergo the strand invasion/ extension reaction necessary for completion of HR. 

In mammalian cells, SWI/SNF has been shown to be necessary for survival after IR and 

DSB repair (Park et al., 2006).  In cells with a dominant negative Brg1, -H2AX foci after IR is 

impaired and there is reduced levels of -H2AX as seen by western blot, although ATM and 

ATR recruitment is not affected. 

Finally, the RSC chromatin remodeling complex has also been characterized for its role 

in DNA DSB repair.  S. cerevisiae strains lacking the Rsc1p or Rsc2p subunits are sensitive to 

MMS, bleomycin and HU (Chai et al., 2005).  The catalytic subunit, Sth1p, is recruited to the 

break within 10 minutes of induction and peaks at 40 minutes.  The rsc mutants are defective in 

the post-synapsis step of HR.  Many studies have implicated RSC in remodeling nucleosomes at 

the site of a break (Shim et al., 2007; Liang et al., 2007; Kent et al., 2007).  Cells lacking RSC 
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subunits did not restructure the nucleosomes at the DSB as compared to WT.  Also, cells lacking 

RSC subunits were defective for -H2AX induction.  Studies of RSC mutants showed reduced 

recruitment of Mec1p, Tel1p, cohesion, and RPA (Liang et al., 2007),  reduced Ku and Mre11p 

binding at the break (Shim et al., 2007), and decreased ssDNA formation at the site of the break 

(Liang et al., 2007; Shim et al., 2007; Kent et al., 2007).   

In summary, many chromatin remodeling complexes are recruited to a break.  INO80, 

RSC and SWI/SNF are involved in regulating -H2AX formation.  INO80 and RSC have been 

implicated in ssDNA formation at the site of a break as well as remodeling the nucleosomes in 

the break region.  SWR1 and INO80 are involved in adaptation to the DNA damage checkpoint.  

All are necessary for proper recruitment of repair and checkpoint proteins.  Although chromatin 

is a repressive structure for DSB repair, the cell has many overlapping remodeling enzymes to 

ensure efficient repair. 

ATP-dependent remodeling enzymes are necessary at each step of the break repair 

process.  Each stage of the damage repair process must occur within chromatin.  Nucleosomes 

need to be mobilized to allow the repair proteins to access the broken DNA ends.  They are 

involved in the DNA damage checkpoint signal (Papamichos-Chronakis et al., 2005).  They are 

recruited to the region of homology to aid in the repair process.  Finally, nucleosomes need to be 

restored to their original density and position, and ATP-dependent remodelers are involved in 

chromatin restoration.    

The literature shows that chromatin surrounding a DSB is extremely dynamic.  The 

contribution of the various modifying enzymes and modifications are being elucidated.  In the 

second and third chapters I will address the histone modifying enzyme, CK2, and the 

phosphorylation of serine 1 of histone H4 within the dynamics of a DNA DSB.   
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CHAPTER II 

 

CHARACTERIZATION OF CK2-DEPENDENT HISTONE MODIFICATIONS 

 

Summary 

 CK2 was identified in a biochemical screen for histone tail kinases.  CK2 is an essential 

enzyme which has two catalytic subunits, one of which is essential for survival.  We found that it 

phosphorylates the H3 and H4 histone tails in vitro.  Using yeast genetics, we show the in vivo 

characterization of an in vitro CK2-dependent histone H3 tail modification, S31 phosphorylation.  

We performed a phenotypic analysis of the deletion of a single catalytic subunit of CK2, cka1.  

We also show the in vivo characterization of a CK2-dependent modification, the phosphorylation 

of serine 1 of histone H4 in response to DSBs.   

 The in vitro characterization of the H3 tail modification was begun by a former post-doc 

in the lab, Mike Samuels.  He performed a biochemical screen of whole cell lysates from yeast to 

search for H3 tail kinases.  The in vivo characterization of H4 Serine 1 phosphorylation was done 

in collaboration with members of the C. David Allis and Shelley Berger laboratories.  

 Figure 8 was used for publication in Current Biology, Volume 15, no. 7 (2005). 
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Introduction 

 CK2 is a ubiquitous serine/threonine kinase, essential in all eukaryotes.  It has many 

known substrates, and has been implicated in cancer progression (Laramas et al., 2007), cell 

cycle regulation (Poole et al., 2005), and circadian rhythm maintenance (Smith et al., 2008). The 

necessity of the CK2 catalytic subunits has been well defined in S. cerevisiae.  Yeast genetics has 

allowed the characterization of this essential kinase for each stage of the cell cycle. At least one 

of the two catalytic subunits (Cka1p and Cka2p) are necessary to enter S phase and complete 

mitosis (Hanna et al., 1995).  The regulatory subunits (Ckb1p and Ckb2p) have been implicated 

in CK2 substrate specificity but they are not essential for cell survival or CK2 activity.  

 CK2 has also been implicated in different aspects of DNA DSB repair.  A recent 

publication from the Lukas lab shows that CK2-dependent phosphorylation of MDC1 is 

necessary for NBS1 retention at a DSB (Melander et al., 2008).  They do not, however, see any 

subunit of CK2 localizing at the break (personal communication).  The  subunits of CK2 were 

found in a screen for mutants defective for adaptation to the G2/M checkpoint (Toczyski et al., 

1997).  A more recent study has followed up on the role of CK2 in checkpoint adaptation.  CK2 

phosphorylates the phosphatase, Ptc2p, which is necessary for a Ptc2p-Rad53p interaction 

(Guillemain et al., 2007).  A strain with a mutant ptc2 allele cannot adapt to the checkpoint and 

Rad53p remains active.  Recently it has been reported that inhibition of CK2 diminishes -H2AX 

phosphorylation in MEFs (Ayoub et al., 2008).  We have published that CK2 is responsible for 

phosphorylation of H4 serine 1 in S. cerevisiae (Cheung et al., 2005).   

In this study we show that CK2 is a histone H3 and H4 kinase.  We found CK2 in a 

screen for H3 tail kinases using biochemical fractionation of whole cell lysates from S. 

cerevisiae.   We were interested in determining the relevant serine(s) or threonine(s) 
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phosphorylated by CK2 in vitro.  We were also interested to see if this CK2-dependent 

modification is relevant in vivo, and redundant with H4S1phos.  This study shows an in vivo 

characterization of H3S31phos, and a phenotypic analysis of a double mutant strain 

(H3S31A/H4S1A) to see if H3S31phos is indeed a redundant modification.    

 In this biochemical screen for histone tail kinases we also determined that CK2 is an H4 

tail kinase.  We found that CK2 is responsible for phosphorylation of serine 1 of histone H4 in 

vivo and in vitro (Cheung et al., 2005).  In vivo the modification occurs in response to DNA 

DSBs.  Phosphorylation is enriched around the break within two hours of break induction.  

Substitution of serine 1 with alanine in S. cerevisiae does not yield a phenotype.  In this study we 

further characterized this modification in vivo.  Histones, which are highly basic proteins, do not 

have the canonical consensus sequence for CK2.  Because CK2 is a constitutively active kinase, 

we were interested in determining how CK2 recognizes H4 as a substrate.  We tested whether 

phosphorylation needs the regulatory subunits of CK2, various members of the DNA damage 

checkpoint cascade, and histone chaperones for substrate recognition.   

CK2 has two catalytic subunits, Cka1p and Cka2p in S. cerevisiae.  At least one is 

essential for cell cycle progression.  Because Cka1p is also necessary for full levels of histone 

H4 phosphorylation we studied the effect of deletion of cka1 on DNA DSB resistance and repair. 
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Results 

CK2 phosphorylates Serine 31 of histone H3 in vitro 

 In a screen for histone tail kinases we found that CK2 is an H3 kinase in vitro.  In brief, 

GST-H3 tails were used as a substrate for radioactive in vitro kinase assays of chromatographic 

fractions of yeast whole cell lysate in the presence of [-
32

P] ATP.  Two “peaks” from a Mono Q 

column contained H3 kinases.  Following further purification, two different kinases were 

identified.  The kinase responsible for the first peak of activity from the column was determined 

via mass spec to be Ksp1p.  The second chromatographic peak contained the catalytic subunits of 

CK2 (Figure 5).   

                              

Figure 5. Two new histone tail kinases: Ksp1p and CK2.  Fractionation of S. cerevisiae whole 

cell lysates in the presence of -[
32

P]ATP and GST-H3 substrate yields two distinct kinase pools.  

The peak which elutes between 410-440mM NaCl is CK2-dependent as determined by mass 

spectrometry. (Courtesy of Mike Samuels) 

 

  

The specificity of CK2 on GST fusions of the four histone tails showed that CK2 

phosphorylates both the H3 and H4 tails.  The only serine/ threonine within the H4 tail is serine 

1, but the specificity of the H3 CK2 phospho-acceptor site needed to be determined.  To do so, 

three different GST-H3 tail fusions were used as substrates in an in vitro kinase assay: one with 

amino acids 1-45, another with amino acids 1-25, and a third with amino acids 23-45.  These 
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GST fusion proteins were subjected to in vitro kinase assays using TAP-purified CK2 from S. 

cerevisiae in the presence of radiolabeled [-
32

P] ATP.  Our results show that only the full length 

GST fusion is phosphorylated, while the other two were not recognized as substrates (Figure 6a).   

                 

                

Figure 6. CK2 phosphorylates serine 31 of histone H3.  a. An in vitro kinase assay using 

different GST-H3 tails shows that CK2 phosphorylates the full-length H3 tail but not the 

truncated versions. b. Results of an in vitro kinase assay show that substitution of serine 31 with 

alanine eliminates the CK2-dependent phosphorylation. c. Western blot with an antibody specific 

for H3S31phos confirms that CK2 phosphorylates S31 in vitro. 

  

The first 45 amino acids of H3 contain 9 serine or threonine residues.  In order to map the 

relevant residue(s) we focused on the following amino acids: S22, S28, S31 and T32.  These 

residues are located close to the area of overlap between the two truncated versions of the GST 
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fusions.  Each individual serine or threonine was mutated to an alanine.  Then each mutated GST 

fusion protein was subjected to an in vitro kinase assay to see which mutated residue would 

result in loss or diminished phosphorylation by CK2.  Mutation of serine 31 to alanine resulted in 

a loss of CK2-dependent phosphorylation (Figure 6b).  To confirm that H3S31 is phosphorylated 

by CK2, western blots using an antibody specific for H3S31-phsophorylation was performed on 

an in vitro kinase assay using WT and H3S31A GST-fusions as substrates.  In the presence of 

CK2, S31 was phosphorylated, while the S31A mutation was not recognized by the antibody 

(Figure 6c). 

 After determining the substrate of CK2 in vitro we wanted to test if this modification was 

generated by CK2 in vivo.  H3S31phosphorylation has been previously characterized by the Allis 

lab (Hake et al., 2005).  They showed that H3S31 phosphorylation is enriched during mitosis.  

Using the antibody to H3S31phos we probed cells with and without treatment with MMS, to see 

if S31phos is induced in response to DSBs similar to H4S1phos.  H3S31 phosphorylation 

appears to be a constitutive modification in an asynchronous population (Figure 7a).  H3S31 

phosphorylation also does not appear to need CK2 as levels are similar in a strain in which a 

single subunit is deleted, and the second contains a temperature sensitive mutation (Figure 7b).      

                                                            

 

Figure 7. H3S31phos is neither damage inducible nor CK2-dependent.  a. Western blot of 

treated and untreated asynchronous WT cells do not show a change in levels of H3S31 
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phosphorylation. b. Western blot using H3S31phos specific antibody shows that at the restrictive 

temperature, which disrupts CK2 activity, H3S31 is still phosphorylated. 

CK2 phosphorylates H4S1 in vitro and in vivo 

Work done in collaboration with Shelley Berger’s and C. David Allis’ laboratories also 

showed that H4S1 is phosphorylated by CK2 in vivo and in vitro.  The discovery of CK2 as a 

histone kinase is an interesting phenomenon.  The minimal consensus sequence of CK2 (Ser-

Xaa-Xaa- Acidic, where the acidic residue may be Glu, Asp, pSer or pTyr) (Litchfield, 2003) 

consists of at least one, and traditionally more than one acidic residues, and the basic histones are 

an unusual substrate for this kinase.   

 H4S1 phosphorylation is induced in response to DNA DSBs.  The modification is 

distributed around a DSB, as seen by ChIP at the MAT locus in the GAL::HO donorless strain, 

peaking two hours after break induction.    A strain in which the sole copy of histone H4 has 

serine 1 mutated to alanine does not show any sensitivity to DSB inducing agents.   

 H4S1phos requires CK2 in vivo.  In a strain in which cka1 is deleted and cka2 contains a 

temperature sensitive mutant, H4S1 phosphorylation is abolished at the restrictive temperature.  

Deletion of even the single subunit cka1 greatly reduces H4S1phos levels.  CK2 also 

phosphorylates H4S1 in vitro.  Using TAP purified CK2 and recombinant yeast histone H4, we 

showed by western blot, with an antibody specific for H4S1phos, that CK2 could generate the 

epitope in an in vitro kinase assay (Figure 8).  It was also shown that recombinant CK2 could 

phosphorylate chicken H4 when the histone octamer was used as the substrate.  CK2 can not 

recognize a nucleosomal array as a substrate in an in vitro kinase assay. 
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Figure 8. CK2 phosphorylates H4S1 of recombinant yeast H4.  Western blot of an in vitro 

kinase assay using an antibody to H4S1phos shows that CK2 phosphorylates serine 1 of 

recombinant yeast histone H4. 

 

The DNA damage checkpoint is dispensable for H4S1phos 

The in vivo data showing that CK2 is responsible for the damage inducible modification 

of H4 begs the question as to how CK2, a constitutively active enzyme, recognizes H4 as a 

substrate, only within the context of DSBs.  Phosphorylation of H2AX at the DSB requires the 

checkpoint kinases Mec1p and Tel1p in yeast.  An intact DNA damage checkpoint is required for 

full induction of-H2AX.  This is not the case for H4 serine 1 phosphorylation.  Both mec1 and 

tel1 can be deleted without a loss of H4S1phos (Cheung et al., 2005).  The same is true for 

downstream members of the checkpoint cascade.  H4S1 is induced in both rad9 and rad17 

deletion strains (Figure 9).  Work from Jacques Cote’s lab also showed that H4S1 

phosphorylation does not need Dun1p, Chk1p, or Rad53p  (Utley et al., 2005).   
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Figure 9.  RAD9 and RAD17 are not necessary for H4S1phos.  Western blot of whole cell 

extracts from strains lacking either Rad9p or Rad17p before and after treatment with MMS 

shows that disruption of the DNA damage checkpoint does not diminish H4S1phos. 

 

The regulatory () subunits of CK2 are dispensable for H4S1phos in vivo 

 The CK2 holoenzyme complex consists of two catalytic () subunits and two regulatory 

() subunits.  The catalytic subunits are constitutively active.  The regulatory subunits have roles 

in both inhibiting CK2 activity towards select substrates while enhancing phosphorylation of 

others (reviewed in Bibby and Litchfield, 2005).  In S. cerevisiae the regulatory subunits are 

Ckb1p and Ckb2p.  Neither is necessary for cell survival.  We were interested to see if these 

regulatory subunits would aid recognition of H4S1 in the presence of DNA DSBs.  In a strain in 

which both ckb1 and ckb2 have been deleted, H4S1 is still phosphorylated in the presence of 

MMS, signifying that the regulatory subunits are dispensable for substrate recognition (Figure 

10). 
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Figure 10. The regulatory  subunits of CK2 are dispensable for H4S1phos.  Western blot of 

whole cell extracts from WT and ckb1ckb2strains before and after MMS treatment show that 

in a ckb1ckb2 strain H4S1phos is still induced in response to DNA DSBs.   

 

H4S1phos is not a modification of newly synthesized histones 

 The first report of H4S1 phosphorylation was in a paper by the Allfrey group in 1975 

(Ruiz-Carrillo et al., 1975).  They reported that H4S1phos is a modification of newly synthesized 

histones in avian erythrocytes.  H4 is phosphorylated in the cytoplasm, shuttled into the nucleus, 

and is dephosphorylated after incorporation into chromatin.  We wanted to elucidate if H4S1phos 

was a modification of newly synthesized histones in S. cerevisiae as well.   

 In cells that have been arrested in G1 using -factor and released into the cell cycle, no 

cell cycle dependent increase of H4S1phos is seen (Cheung et al., 2003).  Cells arrested in 

different stages of the cell cycle do not show an increase in H4S1phos unless treated with zeocin, 

a DSB inducing agent, except for those arrested in S phase using 200mM HU (Figure 11a). 

Treatment with 200mM HU has been speculated to induce DNA DSBs (Lundin et al., 

2002), so this HU-dependent increase of H4S1phos may not be due to an accumulation of newly-

synthesized histones during an S-phase arrest but to DSBs.  To address this we looked at the 

contribution of histone chaperones on the accumulation of phosphorylation.  Histone chaperones 

bind histones in the cytoplasm after synthesis and are responsible to shuttle them into the nucleus 

and allow for proper incorporation into chromatin.   
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Figure 11. H4S1phos is not a modification of newly synthesized histones. a. Cells arrested in 

G1 with -factor, or G2 with nocodozole do not show an increase in H4S1phos unless treated 

with zeocin, as seen by western blot of whole cell lysates. Cells arrested in S-phase with HU 

show an increase in H4S1phos, most likely due to DSBs created by high HU treatment. b. 

Western blot of cells lacking Cac1p and Hir1p or Asf1p show that H4S1phos does not need these 

histone chaperone complex subunits.   

 

 

 In brief, S. cerevisiae has three main histone chaperone complexes.  CAF-1, which is 

composed of Cac1p, Cac2p, and Cac3p, interacts with the PCNA during replication to ensure 

proper coordination between DNA replication and nucleosome formation as well as epigenetic 

inheritance (Zhang et al., 2000).  The HIR complex is a chaperone complex which consists of 

Hir1p, Hir2p, Hir3p and Hpc2p.  The HIR complex is responsible for histone replacement 

outside of S phase (reviewed in Loyola and Almouzni, 2004).  RCAF is a complex of the histone 

chaperone Asf1p and histones H3 and H4 (Tyler et al., 1999).  Asf1p interacts with both CAF-1 

and the HIR complex to coordinate proper histone deposition throughout the cell cycle.   
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Asf1p was also shown to interact with Rad53p during an unperturbed cell cycle, but is 

released during DNA damage checkpoint activation (Emili et al., 2001).  It is through this 

interaction that the histone chaperones have also been implicated as part of the checkpoint 

response.   

Strains in which one of the three histone chaperone complexes have been inactivated are 

still viable.  Therefore we were able to see if the histone chaperone complexes contributed to 

H4S1phos.  In a cac1hir1 strain, H4S1phos was not compromised when treated with zeocin 

(Figure 11b).  There was no increase in H4S1phos without treatment in this strain.  Therefore, 

we conclude that unlike in higher eukaryotes, H4S1phos is not a modification of newly 

synthesized histones and the chaperones are dispensable for phosphorylation. 

 

The H4S1A containing strain does not have a defect in checkpoint downregulation 

 It had been previously reported that the  subunits of CK2 are necessary for adaptation to 

the DNA damage checkpoint.  We wanted to test the hypothesis that it could be affecting the 

downregulation of the checkpoint through phosphorylation of H4S1. To test this hypothesis, we 

monitored the phosphorylation status of Rad53p after induction of DSBs using an in situ kinase 

assay (Pellicioli et al., 1999).  Cells were treated with a low dose of zeocin for an hour at 30°C, 

washed, and returned to rich media.  Phosphorylation of Rad53p was monitored for 18 hours.  If 

cells fail to turn off the checkpoint, Rad53p remains phosphorylated indefinitely until the cell 

dies.  As seen in Figure 12, both WT and H4S1A are able to turn off the checkpoint within 18 

hours of zeocin treatment.    
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Figure 12. The H4S1A mutant can turn off the DNA damage checkpoint.  An in situ kinase 

assay of Rad53p kinase activity shows that both WT and an H4S1A strain turn off the DNA 

damage checkpoint by 18 hours post treatment. 

 

The double H3S31A/H4S1A mutant does not have a DNA damage phenotype 

Because H3S31phos and H4S1phos are CK2-dependent modifications in vitro, we were 

interested in determining whether these were redundant modifications in vivo.  Alone, mutation 

of H4S1A does not yield a phenotype in response to DSBs.  We wanted to create a strain for 

phenotypic analysis in which both serines have been substituted with alanine. 

There are two chromosomal loci for each of the four replicative histones in S. cerevisiae.  

We used a strain in which both copies of H3 and H4 have been deleted and replaced by plasmid-

borne copies of H3 and H4.  On this plasmid both the H4S1A and H3S31A mutations can be 

made and “shuffled” back into the strain containing the WT copy.  Using auxotrophic selection 

markers, a colony can be selected in which the plasmid containing the WT histones have been 

lost and the sole source of H3 and H4 for the cell is the mutant versions.  

Testing the double H3/H4 mutant on various DNA damaging and stress agents did not 

yield a phenotype.  Cells were grown on zeocin, HU, MMS, hydrogen peroxide, and at high 

temperature (37°).  No growth defects were seen for any treatment (Figure 13). 

 



45 
 

 

Figure 13. The double histone mutant does not show a DNA damage phenotype. Ten- fold 

serial dilutions of WT and the double mutant H3S31A/H4S1A strain in the presence of various 

DNA damaging agents show that the mutant strain grows as well as WT.  

 

Deletion of a single catalytic subunit of CK2 has a mild DNA damage phenotype 

 The bulk of the H4S1phos can be depleted when a single CK2 subunit, Cka1p, is deleted.  

To test if a redundant CK2-dependent modification may have been overlooked, we deleted cka1 

to test for a DNA damage phenotype.  The only observable phenotype was a mild sensitivity to 

zeocin, which specifically induces DNA DSBs.  There was no sensitivity to HU or MMS.

  

Figure 14. A cka1 strain has a subtle DNA damage phenotype.  Ten-fold serial dilutions of 

WT and cka1 strains in the presence of various DNA damaging agents shows that the cka1 

strain can grow similarly to the WT strain, except in the presence of zeocin.   
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 We also looked at the kinetics of DSB repair using a GAL::HO containing strain in which 

the donor loci are still intact.  When the Z region of the DSB invades the homologous donor, 

DNA synthesis, which is primed from the invading 3’ strand, occurs in the process of gene 

conversion.  This strand invasion/ extension (SIE) step can be captured by PCR using a primer 

which hybridizes at the donor region and one just outside of the MAT locus (Figure 15a).  The 

kinetics of switching can be monitored by adding galactose to induce the break and monitoring 

the formation of the SIE product by PCR.  The single subunit deletion of CK2 did not have a 

delay in the SIE reaction compared with WT CK2 (Figure 15b). 

 

Figure 15. Deletion of a single CK2 subunit does not lead to a delay in SIE. a. Schemata of 

primers used to capture strand-invasion kinetics adapted from Papamichos-Chronakis et al., 

2006. b. The results of the strand-invasion/ extension assay show that in both WT and cka1 

strains SIE occurs at around 40 minutes and peaks at 240 minutes.  
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We also looked to see if there is a defect in NHEJ in the absence of Cka1p.  Using the 

GAL::HO strain in which the donors are deleted, the only way for the cell to survive in the 

presence of a DSB at the MAT locus is for the two ends of the break to repair via the NHEJ 

pathway.  To test the efficiency of NHEJ, cells were grown in galactose for one hour to induce a 

break and were then spotted on glucose containing plates, shutting off HO expression. Only cells 

which are proficient for NHEJ will be able to grow on glucose containing plates.  cka1 mutants 

did not show a defect in this assay (Figure 16a).          

We also looked to see if the cka1 cells were more likely to repair the break via an error-

prone NHEJ pathway.  The GAL::HO donorless strains are spotted on plates containing 

galactose as the sole carbon source.  Therefore, HO will be expressed constitutively.  The only 

way the cells can survive on these plates is to repair the break via mutagenic end joining, causing 

the cell to lose the HO recognition site.  We found that there was no phenotype for mutagenic 
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end joining (Figure 16b). 

 

Figure 16. cka1 cells do not have a defect in NHEJ. a. Ten-fold serial dilutions of WT and 

cka1 strains on glucose containing plates after DSB induction show that cka1 cells are able to 

repair a single DSB with similar efficiency as WT. b. cka1 cells do not have a phenotype for 

mutagenic end joining. 

Discussion 

 

 CK2 phosphorylates both the H3 and H4 N-terminal tails.  We have determined the 

phospho-acceptor site of both tails in vitro.  CK2 phosphorylates S31 of histone H3, and S1 of 

histone H4.   
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The replicative histone H3 in S. cerevisiae resembles the H3.3 variant of higher 

eukaryotes.  H3.3 in mammals differs from H3.1 (the main replicative H3 variant) by five amino 

acids, one of which is Serine 31 (alanine in H3.1).  In mammalian cells, H3.3 and H3.1 are 

deposited by different histone chaperones (Tagami et al., 2004), and H3.3 is synthesized 

throughout the cell cycle and deposited into chromatin around regions of active transcription 

(Ahmad and Henikoff, 2002).  In HeLa cells, H3.3 Serine 31 is phosphorylated in mitosis and is 

localized to the outside of the centromeres (Hake et al., 2005).   

In S. cerevisiae, H3S31 is phosphorylated in asynchronous cells as seen by western blot.  

The H3 in S. cerevisiae differs from the replication-independent H3.3 variant of mammals in that 

it is expressed only during the S phase of the cell cycle.  In asynchronous cells H3S31phos is 

present even without treatment with a DNA damaging agent.  We also see that this modification 

is not CK2-dependent in vivo.  The kinase responsible for this modification in HeLa cells was 

not reported.  

  It is surprising that loss of a single CK2 catalytic subunit does not have a more dramatic 

phenotype in the presence of DNA damaging agents.  We found that deletion of cka1 showed a 

very slight phenotype in the presence of zeocin but not with MMS or HU.  Deletion of a single 

subunit also did not show any defect on SIE or NHEJ.  Furthermore, the double H3/H4 serine 

mutant does not have a DNA damage phenotype.   

 The specificity of CK2-dependent phosphorylation of H4 provides an interesting 

question.  In vitro, CK2 phosphorylates recombinant yeast H4, a yeast GST-H4 tail, and 

recombinant yeast octamer.  It does not, however, recognize a chromatin array reconstituted with 

Xenopus histone octamer.  This evidence would lead to the hypothesis that CK2 phosphorylates 

H4 before it is incorporated into chromatin which agrees with the report from the Allfrey lab that 
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H4S1phos is a modification of newly synthesized histones.  Surprisingly, cells arrested in G1 

with -factor and released to proceed through the cell cycle synchronously do not show a cell 

cycle dependent increase in phosphorylation.  Cells arrested in S phase with 0.2M HU show an 

increase, but it is possible that the HU treatment itself caused the increase in phosphorylation, 

possibly by causing DSBs at stalled replication forks.  

 Another hypothesis as to how CK2 could recognize H4 after synthesis is the association 

of new histones with histone chaperones.  There is very little, if any, free histone protein within a 

cell.  It is either incorporated into chromatin or is sequestered from binding DNA non-

specifically by one of various histone chaperones.  Possibly CK2 recognizes the histone 

chaperone/ H4 complex as a substrate.  Our data show that this is not the case.  In strains in 

which three major histone chaperone complexes have been deleted, H4S1phos is still induced in 

response to DSBs.   
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Materials and Methods 

 Strains and plasmids.  CY1067 was a gift from the Allis lab (Cheung et al., 2005) JHY86 

[MAT ura3-52 leu2-3,112 trp1-289 his3Δ1 Δ(hht1 hhf1) Δ(hht2 hhf2) pJH18 (CEN ARS TRP1 

HHT2 HHF2)] This strain has both copies of H3 and H4 deleted and rescued with WT copies of 

each on a plasmid.  To test the phenotype of the double H3S31A/H4S1A this strain was used and 

shuffled with pTK54 (hhf2 S1A-hht2 S31A CEN-ARS1 LEU).  CY915, the donorless GAL::HO 

strain, was a gift from J. Haber, and described in Moore and Haber 1996 (JKM179 Δho 

Δhml::ADE1 MAT Δhmr::ADE1 ade1-110 leu2,3-112 lys5 trp1::hisG ura3-52 

ade3::GAL10:HO).  The “switching” strain, CY924, is isogenic to JKM179 except that it is 

MATa with HML and HMR.  cka1 was deleted in CY924 using the E. coli kan
r
 gene as 

described in Longtine et al., 1998.  The strain containing the double CK2 catalytic subunit 

deletions (ckb1ckb2) was a gift from C. Glover and was described in Bidwai et al., 1995 (MATa 

ade2-101, his3-200, leu2-801, ura3-52, trp1-63, ckb1::HIS3, ckb2::LEU2).  The rad9 

and rad17 strains were purchased from Open Biosystems (BY4741 MATa his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0).  The mutant histone chaperone strains were a gift from P. Kaufman (PKY971 

MATa, leu2-3; ura3-1; his3-11,15; trp1-1; ade2-1; can1-100; (either cacl::LEU2; hirl::HIS3; 

or asf1::TRP1).  The plasmids used for expression of GST-H3 and GST-H4 N-terminal tails (a 

gift from M. Grunstein) are derivatives of pGEX2T, and were described in Hecht et al., 1995.  

CK2 purification. CKA1 was C-terminally tagged, in frame, at the endogenous locus with the 

“tandem affinity purification” TAP tag.  Six liters of the TAP-CKA1 strain are grown in YEPD to 

an OD600 of approximately 1.0.  Cells are harvested and lysed using a mortar and pestle, keeping 

cells frozen with liquid nitrogen.  Pulverized yeast extracts were resuspended in E Buffer at 4°C 
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(20mM HEPES pH 7.4, 350mM NaCl, 10% glycerol (v/v), 0.1% Tween (v/v) and protease 

inhibitors).  Lysates were clarified by a high speed spin, 40,000 RPM at 4°C for 1 hour.  Cleared 

lysates were incubated with IgG agarose beads for 2 hours at 4°C with shaking.  The bound 

protein was incubated with TEV protease overnight to cleave off the IgG resin.  The eluted 

protein was incubated with Calmodulin Resin in E Buffer containing 2mM CaCl2.  Purified CK2 

was eluted from the calmodulin resin with E Buffer containing 10mM EGTA.  The complex was 

concentrated and aliquoted for storage at -80°C.   

Expression of GST-H3.  The pGEX2T plasmid containing the GST-H3 tail was transformed 

into BL21(DE3) E. coli.  A single colony of the plasmid-containing E. coli was used to inoculate 

a 50 mL LB-AMP culture and grown overnight at 37°C.  The entire 50mL culture was used to 

inoculate 500mL LB-AMP for 1 hour and expression was induced by adding 0.2mM IPTG for 5 

hours.  Cells were harvested and resuspended in NETN Buffer (20mM Tris-HCL pH8.0, 100mM 

NaCl, 1mM EDTA, 0.5% NP-40 (v/v)) and sonicated at 4°C.  The lysate was cleared with a 

13,000 RPM spin at 4°C.  Glutathione-sepharose beads were added to the cleared lysate and 

rocked overnight at 4°C.  Beads were pelleted by centrifugation, washed with NETN, and protein 

was eluted with 10mM glutathione.  Glycerol was added to 20% and aliquots were stored at -

80°C. 

 

GST-H3 mutagenesis.  Various GST-H3 mutants (either S22, S28, S31 or T32 to A) were 

created using the QuickChange Mutagenesis (Stratagene) protocol.  In brief, complementary 

primers are designed which contain the site-specific mutation.  PCR using the complementary 

primers is performed using a high-fidelity polymerase.  The completed reaction is incubated with 



53 
 

DpnI to digest the methylated parent template plasmid.  Then the reaction is used to transform 

ultracompeent E. coli.  Single colonies are selected.  Plasmids are purified and sequenced to 

confirm correct mutagenesis. 

 

In vitro kinase assays. Kinase assays were performed at 30°C for 30 minutes.  CK2 purified via 

Tandem Affinity Purification was added to the 25L reaction containing kinase buffer (25mM 

HEPES pH7.4, 10mM MgCl2, 1mM ATP, 1mM DTT, and 10Cu [-
32

P] ATP (New England 

Nuclear)) and 5g GST-H3 substrate.  Samples were boiled in 2x SDS sample loading buffer 

and run on 18% SDS PAGE.  The gels were dried and exposed using a phosphoimaging screen.  

The kinase reactions with recombinant H4 were done similarly using 5 or 10 g recombinant 

protein.   

 

Western Blots.  For the western blots of H3S31phos:  kinase reactions of GST-H3 were 

performed as described without 10Cu [-
32

P] ATP.  After SDS-PAGE, the gel was transferred 

to PVDF membrane.  The membrane was blocked using TBST-5% milk.  The membrane was 

washed and incubated overnight in 1:5000 dilution of H3S31phos antibody (Upstate).  The 

membrane was again washed, incubated in 1:5000 anti-rabbit IgG for 1 hour and exposed using 

chemiluminescence.  For the H4S1phos or H3S31phos western blots of treated cells: Cells at an 

OD600 of approximately 0.5 were treated with 0.1% MMS for two hours.  An equal amount of 

cells, before and after treatment, were harvested, and resuspended in 100L of water and 100L 

of 0.2N NaOH and incubated at room temperature for 5 minutes.  The samples were spun at high 

speed in a table top centrifuge for five minutes.  The supernatant is aspirated and the pellet 
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resuspended in 1xSDS sample buffer and boiled for three minutes.  The sample is spun at top 

speed in a table top centrifuge.  The supernatant is saved and the pellet is discarded.  Ten 

microliters per sample were loaded onto 18% SDS-PAGE.  The western proceeds as described, 

using a 1:5000 dilution of the appropriate primary antibody.  For loading controls with the 

H4S1phos antibody a non-specific band was used to show equal loading. 

 

Spotting assays.  Cells were grown overnight in YEPD to stationary phase and equal amounts of 

cells were collected.  Ten fold dilutions were made in sterile water.  Five microliters of each was 

spotted onto YEPD plates supplemented with 0.05% MMS, 1g/mL zeocin, or 100mM HU.  

Cells were grown for two days at 30°C. 

 

Cell cycle arrest: All cells were grown to an OD600 of approximately 0.5 in YEPD. For cells 

arrested in G1, -factor was added to a final concentration of 100M for two hours.  Cells 

arrested in S phase were treated with 0.2M HU for two hours.  Cells arrested in G2 were treated 

with 2.5g/mL nocodozole for two hours. 

 

Strand Invasion Extension Assay.  Cells were grown overnight in YEP 2% raffinose to an 

OD600 of approximately 0.5.  Galactose was added to a final concentration of 2%.  The same 

amount of cells was collected at each time point, and genomic DNA was extracted and used for 

PCR.  PHO5 was used as a loading control. 

 

NHEJ assays.  To test for mutagenic end joining, cells were grown overnight in YEP-2% 

raffinose and spotted onto YEP-2% galactose plates.  To test for NHEJ, cells were grown 
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overnight in YEP-2% raffinose, galactose was added for 1 hour to induce a DSB, and cells were 

spotted onto YEPD plates.   

 

In situ kinase assay.  100mL culture was grown overnight to an OD600 of approximately 0.5.  

5g/mL zeocin was added to the culture for 1hr.  Cells were spun down and washed with YEPD 

at 30°C.  Cells were spun down and resuspended in 100mL YEPD and incubated at 30°C.  

Samples were taken at specific time points over 18 hours.  Protein was extracted with 

trichloroacetic acid and resuspended in 1xSDS sample buffer.  Samples were run on 10% SDS-

PAGE and transferred to PVDF.  Membranes were denatured for 1hr at room temperature in 

Denaturing Buffer (7M guanidine, 50mM DTT, 2mM EDTA, 50mM Tris pH 8.0) followed by 

two five minute washes in TBS.  Membranes were renatured at 4°C for 12-18 hours with at least 

4 buffer changes in Renaturing Buffer (2mM DTT, 2mM EDTA, 0.04% Tween, 10mM Tris pH 

7.5, 140mM NaCl, 1% bovine serum albumin).  The membrane was washed in 30mM Tris pH 

7.5 for one hour at room temperature.  The membrane was equilibrated in Kinase Buffer (1mM 

DTT, 0.1mM EGTA, 20mM MgCl2, 40mM HEPES pH 8.0, 100M sodium orthovanadate) for 

30 minutes at room temperature.  The membrane was then incubated in Kinase Buffer 

supplemented with 10Ci/mL [P
32

]-ATP for one hour at room temperature. The membrane was 

subjected to high stringency washes to reduce background, air dried, and exposed overnight on 

film. 
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CHAPTER III 

PHOSPHORYLATION OF SERINE 1 OF H4 AT THE SITE OF A DNA DSB 

REQUIRES THE SIN3/RPD3 HISTONE DEACETYLASE COMPLEX 

Summary 

 After further in vivo characterization of the phenotype of H4S1phos, we were interested 

in determining how H4S1phos was recruited to the site of a break.  We focused on the timing of 

the modification and the interaction of CK2 with a histone modifying complex recruited to the 

break with similar timing.  We use ChIP, yeast genetics, and in vitro biochemistry to narrow 

down two possible models of H4S1phos localization and to determine the necessity of the 

SIN3/RPD3 complex for the localization of H4S1phos to a break. 
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Introduction 

 After further characterization of H4S1phos in vivo we were still left with a major 

unanswered question: How does H4S1phos get to the site of a DNA DSB?  We came up with 

two possible models:      

1. Based on the previous report that H4S1phos is a cytoplasmic modification  (Ruiz-Carillo 

et al., 1975), we hypothesized H4 is phosphorylated in the cytoplasm and incorporated into 

chromatin at the site of a break.  

2. In a more straightforward model, we hypothesized that CK2, or a CK2-containing 

complex, is recruited to the site of the break and directly phosphorylates H4 within a 

chromatin context. 

 To address these two models we needed to consider the characteristics of the responsible 

kinase.  CK2 is located both in the nucleus and the cytoplasm.  It has been reported to interact 

with many different chromatin-related proteins.  Through genome-wide affinity-capture studies, 

CK2 was shown to interact with histones H3 and H2A (Krogan et al., 2006).  CK2 was also 

found to interact with members of FACT, a complex reported to stimulate RNAPII transcription 

through a chromatin template (Krogan et al., 2002).  Another genome-wide affinity-capture 

screen reports that CKA1 interacts with the HDAC complex SIN3/RPD3 (Gavin et al., 2002).  

We needed to tease out how CK2 recognizes H4 at the DSB when it is known to be 

constitutively active and to interact with so many different proteins. 

 Also, the timing of the increase in phosphorylation at the break must be taken into 

consideration.  Both H2AX phosphorylation and H4 acetylation are reported to increase within 

minutes surrounding a DSB (Downs, et al., 2004).  Members of the NuA4 complex are shown to 
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be recruited to the break at the initial stages of DSB recognition.  However, in a report of 

acetylation status at the site of a break, acetylation decreases concomitantly with recruitment of 

various HDAC complexes, which also correlate with the timing of H4S1phos localization 

(Tamburini et al., 2005).   

 In this chapter I will focus on a model of H4S1phos localization to a DSB.  We believe 

that CK2 is recruited to a break due to its interaction with the SIN3/RPD3 complex.  We believe 

that CK2 directly phosphorylates H4 within chromatin.  We propose a model in which 

acetylation and phosphorylation at the site of the break are opposing modifications which allow 

for restoration of chromatin after break repair. 
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Results 

H4S1phos is not a cytoplasmic modification 

 If CK2 is recruited to the site of a break, the catalytic subunits should localize to the 

break concomitant with the timing of increased phosphorylation.  Histone modifying enzymes 

have been shown to be recruited to the site of a break, including NuA4 (Downs et al., 2004).  To 

test this straightforward model we myc-tagged each of the two catalytic subunits of CK2 (CKA1 

and CKA2) separately in the GAL::HO donorless strain.  We took time points to check for 

recruitment of CK2 using ChIP for up to 4 hours following galactose induction.  Neither subunit 

was enriched above background.  We therefore needed to consider the possibility that H4S1phos 

is a cytoplasmic modification. 

 One way to test whether H4 is phosphorylated outside of chromatin is to perform a 

chromatin fractionation assay and look to see if H4S1phos is enriched in the cytoplasmic 

fraction.  In this assay, cells are lysed and the cytoplasm is separated from the chromatin with a 

high speed spin.  The chromatin and cytoplasmic fractions are run on SDS-PAGE and western 

blot is used to detect where the modification is enriched.   

 In this assay, cells were separated into two groups, untreated and treated with 0.1% 

MMS.  In the untreated cells there was no increase in H4S1phos in the whole cell extract (WCE), 

the cytoplasmic fraction (sup), or the chromatin fraction (pellet).  The cytoplasmic fraction was 

immunoprecipitated with H4S1phos antibody to enrich for the modification.  In cells which have 

been treated for two hours with MMS, H4S1phos is enriched in both the WCE and the chromatin 
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pellet, but there is no trace in the cytoplasmic fraction (Figure 17).  

 

Figure 17: H4S1phos does not appear to be a cytoplasmic modification.  Western blot of a 

chromatin fractionation assay shows that H4S1phos is found in WCE and chromatin after MMS 

treatment, but is not found in the cytoplasmic fraction (Sup (IP)).  

  

These results were a preliminary reason to believe that this was mainly a nuclear 

modification, and that CK2 phosphorylates H4 within the chromatin, though negative results in 

this assay are not uncommon.  Free histones are detrimental to a cell and there are many 

pathways to regulate their levels, so it is difficult to see histones in the cytoplasmic fraction.  

H4S1phos does not need DNA resection to be recruited to a break 

 One of the first steps of HR is the processing of the DSB, creating long stretches of 

ssDNA so that the 3’ end can engage in the homology search.  This processing does not occur in 

the G1 phase of the cell cycle, when most cells repair via NHEJ (Ira et al., 2004).  It has also 

been reported that nucleosomes are lost during DNA resection (Tsukuda et al., 2005).  Therefore, 

during repair, new nucleosomes would be delivered to the site of the break to restore the 

chromatin to its original nucleosome density.  We wanted to see if H4S1phos localization needs 

chromatin remodeling during DNA resection at the break.  To address this, we performed ChIP 

on asynchronous cells, and cells arrested in G1 with -factor.  The cells arrested in G1 will not 

undergo resection.  We found, two hours post-break induction, that H4S1phos was recruited to 
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the site of a DSB with the same intensity in the G1 arrested cells as in the asynchronous 

population (Figure 18).  Therefore we conclude that resection is not necessary for H4S1phos 

localization.   

                  

Figure 18. H4S1phos localization to a break does not need DNA resection.  ChIP for 

H4S1phos at a region 2.5kb from the break shows that it is recruited with the same intensity in 

both G1-arrested and asynchronous populations. 

H4S1phos localization to a break requires RPD3p  

 Considering the results from the chromatin fractionation assay, as well as the fact that 

resection is unnecessary, we focused on H4S1phos as a nuclear modification.  We therefore 

questioned how CK2 was being recruited to a break.  CK2 interacts with many chromatin- 

related proteins, but two pieces of evidence led us to focus on its interaction with the SIN3/RPD3 

complex.   Both SIN3 and RPD3 have been implicated in the DNA DSB repair pathway (Jazayeri 

et al., 2004, Tamburini and Tyler, 2005).  Deletion of either subunit leads to sensitivity to DSBs.  

Also, a report from the Cote lab showed that phosphorylation by CK2 is inhibitory to NuA4 

HAT activity (Utley et al., 2005).  We also know the timing of H4S1phos localization coincides 
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with chromatin deacetylation and the recruitment of Rpd3p to the site of the break (Tamburini 

and Tyler, 2005).  Both catalytic subunits of CK2, Cka1p and Cka2p, physically interact with 

Sin3p (Gavin et al 2006), and Cka1p interacts with Rpd3p (Gavin et al., 2006) 

 To test for the necessity of the SIN3/RPD3 complex for H4S1phos localization, we 

deleted each subunit individually in the donorless GAL::HO strain. We then looked at the 

localization kinetics of H4S1phos at the break. In the sin3 strain, localization is not 

compromised compared with that in the WT 2.5kb from the break (Figure19). 

                                      

.    

Figure 19. SIN3 is unnecessary for full H4S1phos localization to a break. ChIP for 

H4S1phos at a region 2.5kb from the break shows that deletion of SIN3 does not disrupt 

H4S1phos localization. 

 

 Deletion of the catalytic subunit of the HDAC complex, RPD3, shows a dramatic 

decrease in phosphorylation surrounding the break (Figure 20). 
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Figure 20. RPD3 is necessary for localization of H4S1phos to the DSB. ChIP for H4S1phos at 

various regions surrounding the DSB shows that localization is lost in an RPD3 delete strain. 

 

 From these results we conclude that Rpd3p but not Sin3p is necessary for H4S1phos 

localization to the DSB. 

Mock acetylation inhibits CK2 activity on GST-H4 tails 

 We concluded from the ChIP data that H4S1phos needs the Rpd3p to be recruited to the 

site of a break.  We were not sure, however, whether the subunit itself was necessary to 

physically bring CK2 to the break, or if its HDAC activity is necessary to deacetylate the 

chromatin surrounding the break before CK2 can recognize the H4 substrate.  To test if the 

HDAC activity might be necessary for substrate recognition, we used various GST-H4 tails in 

which different combinations of the 4 acetylatable lysines have been mutated to gluamine, to 

mimic acetylated lysine.  We found that the various lysine to glutamine mutations inhibit CK2 

activity (Figure 21a).             
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 To see which specific lysines contributed to this inhibition, we made individual muations 

of the four acetylatable lysines to glutamate.  Of the four lysines, mutation of 5, 12 and 16 

showed inhibition of CK2, while K8Q was not inhibitory to CK2 activity (Figure 21b). 

 To test if it is specifically the mock acetylation that blocks substrate recognition, or 

simply that CK2 needs a lysine in these positions to phosphorylae serine 1, we also mutated 

lysines 5 and 12 to arginine.  We found that the lysine to arginine substitutions did not block 

CK2 substrate recognition (Figure 21c)  We therefore conclude that acetylation of the tail blocks 

CK2 activity. 

Based on the results from the in vitro kinase assay, we wanted to see if acetylation blocks 

H4S1phos in vivo.  Specifically, we wanted to determine if the HDAC activity of Rpd3p is 

necessary for H4S1phos localization to the break.  To test this, we used a strain in which RPD3 

was deleted, and carried a plasmid containing a “catalytic-dead” mutant (rpd3-H150,151A) 

(Kadosh and Struhl, 1998).  This mutant has been characterized in vitro and in vivo.  We found 

that only the complete deletion of RPD3 affected H4S1phos localization.  In the strain with the 

rpd3-H150,151A allele, H4S1phos is recruited to the break with levels seen in WT (Figure 22). 
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Figure 21. Lysine mock- acetylation of the H4 tail inhibits CK2 activity.  a. Substitution of 

various lysines with glutamine, which mimics lysine acetylation, inhibits CK2 activity in an in 

vitro kinase assay.  b. Mock acetylation of lysine 5, 12 and 16 inhibit CK2 activity. c. 

Substitution of lysines with arginine does not inhibit CK2 activity.  Activity is specifically 

inhibited by lysine to glutamine substitutions. 
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Figure 22.  The HDAC activity of Rpd3p is dispensible for H4S1phos localization to a DSB. 

ChIP of H4S1phos in a strain which contains an allele of RPD3 which lacks HDAC activity 

(rpd3-H150, 151A) shows the modification is still recruited to the break.  
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Discussion 

 The ubiquitious and constitutive nature of CK2 has led to a plethora of questions 

regarding how it is able to recognize H4 as a substrate in response to DNA DSBs.  We have 

previously ruled out simple explanations for this modification.  It does not require the regulatory 

subunits of CK2.  It is not a modification of newly synthesized histones.  It does not require the 

histone chaperones, or the DNA damage checkpoint.    

 It does, however, require Rpd3p for localization to the site of the break.  In strains in 

which it has been deleted, H4S1phos localization to the break is compromised.  We find in a 

strain in which the HDAC activity of Rpd3p is compromised, that H4S1phos is still localized at 

the break.  It would be easy to conclude that CK2 is directed to the site of the break by a physical 

interaction with the HDAC complex, and that deacetylation of the chromatin is not necessary for 

phosphorylation. 

 That would, however, contradict the in vitro kinase assay where the lysine to glutamine 

mutants inhibit CK2.  We find that glutamine, which mimics acetylation, inhibits CK2 activity.  

To reconcile the opposing data one must take into consideration that there are various HDACs 

recruited to the break (Tamburini and Tyler, 2005).  It is possible that these are redundant, and 

the chromatin surrounding the break is deacetylated even in the absence of the HDAC activity of 

Rpd3p.  ChIP of H4 acetylation in the rpd3and rpd3-H150,151A strains would need to be done 

to determine the H4 acetylation level.   

These findings are also interesting in light of the finding by the Cote lab, that H4S1phos 

inhibits the HAT activity of the NuA4 complex. The “Access, Repair, Restore” model proposes 

that immediately following a break, the chromatin is phosphorylated (H2AX) and acetylated, 
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which allows access to repair proteins and remodeling enzymes for DNA repair.  After repair the 

chromatin must be restored as well.   During break repair, acetylation blocks H4S1phos.  During 

chromatin restoration, chromatin is deacetylated.  This allows for H4 phosphorylation, which 

then blocks further rounds of acetylation by NuA4.  The opposing nature of acetylation and 

phosphorylation allows the chromatin to remain accessible until repair has been completed and 

then be restored to its original modification status (Figure 23). 

 

Figure 23: Model of opposing modifications.  Phosphorylation by CK2 inhibits NuA4- 

dependent acetylation of the H4 tail.  Acetylation of the H4 tail inhibits CK2 activity.  An HDAC 

complex, such as SIN3/RPD3 must deacetylate the chromatin before CK2 is able to 

phosphorylate H4. 
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Materials and Methods 

 Strains and plasmids. The strain for the ChIPs of H4S1phos was JKM179 (CY915), the 

GAL::HO donorless strain.   This strain was used to tag both CKA1 and CKA2 with the myc 

epitope tag (Longtine et al., 1998)  SIN3 and RPD3 were deleted using the kan
r
 gene as described 

in Chapter II.  The pGEX2T plasmid, containing GST-H4, was a gift from M. Grunstein. The 

lysine to gluatmine or arginine mutants were made using the Stratagene Quickchange 

Mutagenesis kit.  The YEplac112 WT and mutant rpd3-H150,151A plasmids were a gift from K. 

Struhl and were described in Kadosh and Struhl, 1998.  

 

In vitro kinase assays.  As previously described in chapter II with the exception that GST-H4 

was used as the substrate for the reactions.   

 

ChIP for H4S1phos.  To test the localization of H4S1phos, cells were grown overnight in 

YEPR.  Galacose was added to induce a break at an OD600 of approximately 0.5.  Samples were 

taken at specific time points, 50mL of culture was harvested and crosslinked with 1% 

formaldehyde for 30 minutes.  Crosslinking was quenched by the addition of 125mM glycine to 

the sample and incubated for five minutes at room temperature.  Cells were spun at 4°C and 

washed twice in TBS.  Pellets were frozen at -80°C.  Pellets were resuspended in FA-Lysis 

buffer and lysed by vortexing with glass beads.  The chromatin was sheared by sonication. 3x10
7
 

cells were used per IP.  Ten percent of each sample was taken as input control.  One microliter of 

antibody (anti-H4S1phos or anti--H2AX as a control) was added to each IP sample.  IP sampled 

were nutated overnight at 4°C.  Chromatin bound by antibody was precipitated with Protein A 
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Sepharose, washed with high stringency buffers, and eluted by overnight incubation with 

Proteinase K at 37°C.  Crosslinks were reversed by incubation at 65°C for five hours.  DNA was 

purified by phenol::chloroform extraction and ethanol precipitation and resuspended in twenty 

microliters of TE.  One microliter if IP DNA, and 1 microliter of a 1:10 dilution of input DNA 

was used for semi-quantitative radioactive PCR using primers designed at various regions around 

the DSB.  For the experiments using the plasmid-borne copies of WT RPD3 or rpd3-H150,151A, 

cells were grown in selective SD media to maintain the plasmid.  For the cells arrested in G1, 

100M -factor was added to YEPR for five hours before addition of galactose.   

 

Chromatin fractionation.  Cultures were grown overnight in YEPD at 30°C to an OD600 of 

approximately 0.5.  Cultures were split in half:  one was left untreated, while one was treated for 

two hours with 0.1% MMS at 30°C.  5x10
8 
cells were harvested, washed with 5mLs of water, 

and resuspended in 3mL Pre-Spheroplast Buffer (100mM PIPES, pH 9.4, 10mM DTT) and 

incubated at 30°C for 30 minutes.  Cells were harvested and resuspended in 2mL Spheroplast 

Buffer (50mM KPO4, pH 7.5, 0.6M Sorbitol, 10mM DTT) and 20mg of 20T zymolyase was 

added to each sample. Samples were incubated at 30°C for approximately 15 minutes and 

monitored with the light microscope.  Cells were spun and washed with Lysis Buffer (20mM 

PIPES pH 6.8, 0.4M Sorbitol, 150mM KOAc, 3mM MgOAc, 0.5mM PMSF) at 4°C.  Cells were 

spun and resuspended in 500L Lysis Buffer and TritonX was added to 1%.  Half of the sample 

was collected for the WCE fraction and 2xSDS sample buffer was added.  The other half was 

spun at 4°C at 12000rpm for 15 minutes.  The supernatant was saved for IP, and the pellet was 

resuspended in 1xSDS sample buffer.  To the supernatant 1L antibody was added and nutated 

at 4°C overnight.  Phosphorylated histone H4 was pulled down with Protein A Sepharose beads, 
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and protein was eluted by boiling in 1xSDS sample buffer.     Samples were run on 18% SDS-

PAGE, transferred to PVDF, blocked in 5% milk (TBST) and incubated overnight at 4°C in 

1:5000 H4S1phos antibody.  Blots were washed and incubated in 1:5000 anti-rabbit antibody, 

washed and visualized using chemiluminescence.  
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CHAPTER IV 

THE INVOLVEMENT OF H4 SERINE 1 PHOSPHORYLATION IN CHROMATIN 

COMPACTION 

Summary 

 A report from the Berger lab showed compelling evidence that H4S1phos is necessary for 

chromatin compaction in vivo (Krishnamoorthy et al., 2006).  This modification is specific to 

meiosis and is not dependent on CK2.  We were interested in studying this phenomenon in vitro.  

Specifically, we wanted to look at the contribution of this phosphorylation on the folding of a 

chromatin array.  Using recombinant Xenopus histone H4 with serine 1 substituted with glutamic 

acid to mimic phosphorylation, we found a folding phenotype in vitro.  At 1mM Mg
+2

 we found 

that a fraction of the H4S1E array would self-associate.  Further analysis of this mutant revealed 

that the N-terminal methionine was not cleaved off during expression of the histone.  A mutant 

with a glutamic acid inserted at the second position, keeping the N-terminal serine intact, 

allowed for removal of the methionine, but did not show a folding phenotype in vitro.   

 The data presented in this chapter was part of an on-going collaboration with the Berger 

lab.  Much help and support for the data analysis was given by Borries Demeler at the University 

of Texas Health Science Center at San Antonio. 
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Introduction 

 A recent paper from the Berger lab presented a few lines of evidence that H4S1phos is 

involved in chromatin compaction in vivo (Krishnamoorthy et al., 2006).  They showed that 

H4S1phos increases during meiosis in yeast and remains until the cells begin proliferation.  

During yeast meiosis, the chromatin is very compact, and the nuclear volume decreases. The 

modification is not dependent on the kinase CK2, but instead on the meiosis specific Sps1p, 

whose expression increases during meiosis, concomitant with the onset of H4S1phos. 

ChIP with the H4S1phos antibody during meiosis shows that the modification is genome-

wide.  In a strain which lacks serine 1 phosphorylation, sporulation efficiency falls to 30% that of 

WT.  Also, the nuclear volume is increased, leading to the hypothesis that lack of H4S1phos 

leads to lack of chromatin compaction.  MNase digestion of the WT and sps1 chromatin during 

the sporulation program shows a resistant MNase band in the WT cells which is lacking in the 

sps1 mutants.  The MNase resistant band seen in the WT could be due to inaccessibility of the 

enzyme, due to enhanced compaction which does not exist in the sps1 strain.  

One way to tease out if chromatin compaction is a direct or indirect effect of H4S1phos is 

to study its contribution to chromatin folding in the analytical ultracentrifuge.  The AUC is able 

to measure the sedimentation coefficient (S) of a species in solution.  The sedimentation 

coefficient is a measure of a species’ shape and molecular weight.  A change in shape will 

change the rate of sedimentation towards the bottom of the cell in the centrifuge.   

Creating arrays in vitro from purified components is a well-defined process.  

Recombinant histones are expressed in bacteria and purified via chromatography. Purified 

histones are combined at equimolar ratios to make the histone octamer.  Octamers are added to 
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the DNA template at specific molar ratios and dialyzed from high to low salt to create a defined 

array with twelve octamers/ template.  This array is then analyzed in the AUC to measure the 

change in S with different salt conditions.    

The DNA template used for these studies (601-177-12) has been characterized in Dorigo 

et al., 2003.  It consists of 12 tandem arrays of 177bps of the 601 nucleosome positioning 

sequence.  The “solubility boundary” of an array made with this template has been reported.  In 

TE buffer, the chromatin is in an extended beads-on-a-string conformation, or the 10nm fiber.  

With the addition of up to 2mM Mg
+2

, the chromatin begins to compact, taking on the shape of 

the 30nm fiber.  Adding between 2mM-80 Mg
+2

 will cause the array to self-associate and 

precipitate out of solution.  Adding over 80mM Mg
+2

 allows the array to resolubilize. 

Another in vitro assay to study chromatin folding is the in vitro self-association assay.  

As stated previously, increasing the Mg
+2

 concentrations close to 2mM causes the arrays to self-

associate and precipitate out of solution.  A modification which enhances chromatin folding may 

be expected to need less Mg
+2

 to self-associate than WT.  It is known that acetylation of H4K16 

shows a phenotype in this assay.  H4K16ac inhibits chromatin folding as measured by the AUC.  

It also requires more Mg
+2

 in the self-association assay before it precipitates out of solution. 

   We studied the effect of substituting the first serine of histone H4 with glutamic acid, 

which mimics phosphorylation.  This array showed a compaction phenotype in the AUC, but did 

not have a phenotype in the self-association assay.  Unfortunately, we later discovered that the 

N-terminal methionine was not cleaved off during expression in E. coli.  To circumvent this 

problem we inserted a glutamic acid reside at the second position in the protein, leaving the N-

terminal serine intact (the “SE” mutant).  As a control, we created a “WT” version in which a 
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serine was inserted at the second position, the “SS” version. We found that the “SE” mutant did 

not have an in vitro folding phenotype compared with the “SS” control. 
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Results 

Studying Chromatin Folding In Vitro 

 It is well established that chromatin undergoes various levels of compaction to fit within 

the confines of a nucleus.  The most basic level of chromatin organization is an array of 

nucleosomes separated from each other by linker DNA.  This is the canonical “beads-on-a-

string” chromatin fiber, seen as the 10nm fiber by EM.  This is, however, an in vitro artifact, as 

the salt conditions to achieve this structure are not physiologically relevant.  With increasing 

amounts of monovalent and divalent cations, the beads-on-a-string array will compact into a 

moderately folded and maximally folded chromatin array (Hansen 2002). 

 It is possible to study the compaction of a chromatin array in vitro using the analytical 

ultracentrifuge, which measures the sedimentation velocity of a sample.  Sedimentation velocity 

measurement is a hydrodynamic technique which will yield the sedimentation coefficient (S), a 

measure of the mass and shape of a multi-component system within solution.  The AUC is 

equipped with an optical detection system which can measure the concentration of a sample 

within a centrifuge cell in real time (Cole and Hansen, 1999).  At the beginning of the 

experiment, the concentration of the sample is uniform throughout the cell.  As a centrifugal 

force is applied, the molecules closest to the meniscus begin to move towards the bottom of the 

cell.  This depletes the area closest to the meniscus of sample and forms a moving “boundary,” 

which is a region of increased concentration of sample.  The concentration of the sample near the 

bottom of the cell does not change until the encountered by the boundary.   

The rate at which this boundary moves towards the bottom of the cell is used to calculate 

the sedimentation coefficient of a sample.  The sedimentation coefficient is defined by the 

Svedberg equation, where S depends on velocity and mass of the molecule, strength of the 
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centrifugal field, frictional coefficient of the molecule, and viscosity of the solute (Cole and 

Hansen, 1999).  The frictional coefficient (f) is a measure of a molecule’s shape and size in 

solution.  A sphere has a frictional coefficient of 1.  If this sphere takes on a more elongated form 

the frictional coefficient increases.   

What can confound the measure of the S of a sample is the fact that the molecules in the 

cell are not only subject to transport by the centrifugal field applied, but by diffusion away from 

the moving boundary with time.  This diffusion broadens these moving boundaries and obscures 

the different components of the sample.  The contribution of diffusion must be removed from the 

boundary measurements before a valid S value can be reported.  The data from the analytical 

ultracentrifuge is a measurement of the boundary movement over time.  The centrifuge will scan 

the absorbance of the cell throughout the experiment, and each scan is recorded.   

The data from the AUC is then analyzed to determine the distribution of sedimentation 

coefficients within the sample.  The data is a series of absorbance scans taken over time as the 

sample proceeds to sediment towards the bottom of the cell (Figure 24). 

This set of scans is taken from a sample with one component, a chromatin array.  As 

stated above, as a molecule travels towards the bottom of the centrifuge cell it is subject to 

transport by both sedimentation and diffusion.  Over time it is possible that the contribution from 

diffusion may distort the boundary in such a way that it spreads, masking the potential of a 

heterogeneous species within the cell.  K. Van Holde and W. Weischet developed a method of 

analyzing this data that removes the contribution of diffusion from the sedimenting species (van 

Holde and Weischet, 1978).  They realized that because diffusion proceeds with a velocity 

proportional to the square root of time, and sedimentation proceeds proportional to the first 
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power of time, the contribution of each can be separated.  Therefore, a “diffusion-corrected” 

sedimentation coefficient can be calculated using the “van Holde- Weischet” method.  

 

 

Figure 24. Raw AUC data before analysis.  With time, the concentration of sample is moving 

towards the bottom of the cell, as demonstrated by the moving boundaries.  

 

The first step of this method is to divide each of the scans into evenly spaced boundary 

fractions from the baseline absorbance to the absorbance plateau.  Traditionally 50 fractions are 

used for each analysis but for simplicity only 4 fractions are shown in Figure 25. 
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Figure 25. Ten scans from the AUC.  Each scan is divided into four fractions for simplicity.  

Fifty fractions are traditionally used for a van Holde-Weischet analysis. 

 

 

The following is an example where the first ten scans from an AUC run are being used to 

determine the sedimentation coefficient.  For each scan, an apparent sedimentation coefficient 

can be determined at each fraction using the Svedberg equation, which takes into account the 

radial position of the sample at each given time.  The apparent sedimentation coefficient can then 

be plotted with respect to time for each fraction for each scan.  Each fraction can then be 

extrapolated out to infinite time to correct for diffusion, to form the van Holde-Weischet fan plot 

(Figure 26).   The point where each line (the best fit for each boundary fraction) crosses the Y-

axis is the diffusion-corrected sedimentation coefficient.   
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Figure 26. A van Holde-Weischet fan plot.  The apparent S from each fraction of each scan is 

plotted and then extrapolated out to infinite time.  The diffusion corrected S value for each 

fraction can be determined where the extrapolation crosses the Y-axis  

 

From this van Holde-Weischet “fan plot,” a distribution chart of the sedimentation 

coefficients can be plotted as a percentage of the boundary fraction that sedimented at each S 

value (Figure 27). 

 

As mentioned previously, this method is able to distinguish between heterogeneity within 

a sample population.   The amount of each species within the sample can be approximated based 

on the % of the boundary fraction it occupies.  The distribution plot in Figure 28 shows two 

distinct species. 
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Figure 27. A sedimentation coefficient distribution plot.  A distribution plot is created by 

plotting the diffusion- corrected S value for each boundary fraction. In this distribution plot the 

species sediments between 29S and 34S.  

 

 

Figure 28. A distribution plot with two distinct species. In this plot a small portion of the 

sample, approximately 15%, sediments at 7-10S.  The rest of the population sediments at 32-40S.   
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Homogenous chromatin arrays can be reconstituted in vitro from purified histone octamer 

and a DNA template.  An octamer can be reconstituted in vitro by mixing the four histone 

proteins in equi-molar ratios under denaturing conditions and dialyzing into 2M NaCl.  The 

octamer is then purified via gel filtration chromatography (Luger at el., 1999a,b).  The DNA 

template is a tandem array of 12 copies of the 177 base pair (bp) “601” nucleosome positioning 

sequence (602-177-12) (Lowary and Widom, 1998; Dorigo et al., 2003).  The DNA template and 

octamer are added together in 2M NaCl in a ratio such that there is one octamer per each 177 bp 

positioning sequence.  During the step-wise dialysis to 2.5mM NaCl, the DNA wraps around the 

octamer to form a homogenous array.  The folding properties of the array can then be studied 

using different salt conditions using the AUC.  

The folding properties of chromatin in the presence of mono- and divalent cations are 

well characterized.  Chromatin arrays will reach maximal compaction (53-55S) in the presence 

of Mg
+2

 but not Na
+1

.  With increasing amounts of Mg
+2

, up to approximately 2mM, the arrays 

will sediment with higher S values.  Increasing the Mg
+2

 concentration past 2mM causes the 

array to “self-associate,” which sediments at S values greater than 200S, up to 10,000S.  Self-

association is reversible.  Lowering the Mg
+2

 concentration to 1mM will yield arrays that 

sediment at 55S.  Self-association is thought to mimic long range fiber-fiber interactions in vivo 

(Schwarz et al., 1996).  

 

The H4S1E mutant shows enhanced folding properties in 1mM Mg
+2

 

 If the Berger lab’s hypothesis is correct, and H4S1phos aids in chromatin compaction, we 

expect to see the H4S1E mutant reach the compact 30nm fiber with less Mg
+2

 than in the WT.  

Testing folding phenotypes in the AUC requires a fully saturated array, meaning the DNA 
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template contains one octamer per nucleosome positioning sequence.  An under saturated array is 

unable to reach maximal compaction whereas an oversaturated array will have histone octamer 

non-specifically bound in between nucleosomal positioning sequences and the array will not be 

homogenous.   

To achieve the correct saturation level, the ratio of octamer to DNA template added to the 

reconstitution (recon) is crucial.  This is also known as the “R” value of the recon.  The DNA 

template has 12 tandem repeats of the “601” positioning sequence.  This sequence has a high 

affinity for the octamer, and only one translational position.  To avoid oversaturation, a DNA 

“sink” is added to the recon to bind excess octamer, preventing non-specific binding to the 

chromatin array.  The sink DNA is a nucleosome positioning sequence with a lower affinity for 

the octamer than the 601.  We used the MMTV nucleosome positioning sequence reported in 

Flaus et al., 2004.   

To reconstitute an array, DNA template, histone octamer, and sink DNA are combined in 

the presence of 2M NaCl and dialyzed over time to 2.5mM NaCl.  To obtain a purified array 

absent of sink DNA and the mononucleosomes that formed from the sink DNA, the self-

association property of the arrays is exploited.  The arrays are incubated in 4mM Mg
+2

 to induce 

self-association and spun at high speed in a table top centrifuge.  The arrays will precipitate out 

of solution while the sink DNA and mononucleosomes will remain in solution.  The pelleted 

array is resuspended in TE and is ready for analysis. 

To test the saturation levels, a restriction digest of the reconstituted array is performed.  

Between each nucleosome positioning sequence within the DNA template is a ScaI site.  

Complete digestion of the naked DNA template yields a single band of 177bps.  If an octamer 
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occupies the positioning sequence, the band will shift.  A properly saturated array will have 

approximately 5% unoccupied fragment.  If the array is oversaturated, an octamer will occupy 

the ScaI site and a larger shifted band will appear (Figure 29).   

                                                     

      

Figure 29. ScaI digest of a saturated array.  Very little free DNA is seen in this ScaI digest, 

showing that most of the nucleosome positioning sequences are occupied. 

To test the folding of the array in the AUC, a run is performed in TE to further confirm 

that the array is saturated.  A saturated array will have a sedimentation coefficient of 

approximately 33S.  Over or under saturation changes the S accordingly (Figure 30).    
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Figure 30. Example of distribution plot of arrays in TE.  The blue triangles represent an 

undersaturated array which sediments lower than 30S. The green squares represent a saturated 

array and sediments between 30-35S.  The red circles represent an oversaturated array which 

sediments between 40-60S. 

We first characterized a WT array to make sure it folds as previously described.  We used 

TE buffer and 1mM Mg
+2

 throughout experimentation because maximum compaction of the 601 

array was reported to occur at 1mM Mg
+2

 (Dorigo et al., 2004).  We found that the WT array 

behaved as described (Figure 31). 
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Figure 31. The WT array achieves the 53S species in 1mM MgCl2. In TE the array sediments 

at 30S (red circles).  This same array in the presence of 1M MgCl2 sediments between 50-60S, 

showing maximal compaction (green squares). 

 

 We next sought to test the sedimentation properties of the H4S1E mutant.  With 1mM 

Mg
+2

, half of the sample reached maximum compaction while half sedimented between 100-

250S, a phenotype of self-associated chromatin (Figure 32).   

The ability of a chromatin array to self-associate with increasing amounts of Mg
+2

 is 

thought to mimic long range fiber-fiber interactions in vivo.  Self-association is a reversible 

process.  Saturation levels of the chromatin array do not affect its ability to self-associate.  To 

test the self-association characteristic of the array differing concentrations of Mg
+2

 are used, 

from 0-4mM.  The arrays are incubated in Mg
+2

 for 15 minutes and subjected to a high speed 

spin in a table top centrifuge.  The amount of DNA remaining in the supernatant in measured.  

Although this array was able to sediment with less Mg
+2

 than WT, we found that the H4S1E and 

WT arrays needed similar amounts of Mg
+2

 for self-association (Figure 33). 
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Figure 32. At 1 mM Mg
+2

 the H4S1E array begins to self-associate. In the presence of 1mM 

MgCl2 the saturated array sediments between 53-250S (red diamonds), a property of self-

associated chromatin. 
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Figure 33. The self-association pattern of H4S1E and WT are the same. In the presence of 

increasing amounts of MgCl2, both the WT and mutant array self-associate between 1.75-2mM 

MgCl2. 

 

It has been published that there are specific amino acid residues necessary for proper 

cleavage of the N-terminal initiator methionine in E.coli recombinant protein expression (Flinta 

et al., 1986).  There are also specific amino acids which protect the initiator methionine from 

being cleaved off.  Seven amino acids (glycine, alanine, serine, threonine, proline, valine, and 

cysteine) will direct methionine cleavage (Walker and Bradshaw, 1999), while others protect the 

methionine.  Therefore it is important to check a recombinant protein by mass spec when 

mutating the penultimate residue. 

 The results of the mass spec analysis revealed the molecular weight (MW) of the H4S1E 

histone to be 11409Da.  The expected MW was 11278Da. We concluded that the initiator 

methionine was not cleaved off of this mutant H4.  Therefore, we could not conclude that the 

change in folding was due necessarily to the S1E mutation, the retention of the methionine, or a 

combination of both. 
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The “SE” nucleosomal array does not enhance chromatin compaction 

 To address the issue of the retention of the initiator methionine, we designed constructs 

which would retain the serine in the first position.   A glutamic acid was introduced at the second 

position, and the rest of the amino acids were maintained (“SE”).  As a control, a serine was 

inserted at the second position (“SS”).  In these constructs a serine would be maintained adjacent 

to the initiator methionine and cleavage would not be affected. 

 Unfortunately, this new SE construct did not mimic the phenotype we found previously 

with the H4S1E construct.  We found that the SS and SE arrays sedimented with the same 

sedimentation coefficient at 1mM Mg
+2

 (Figure 34).  We therefore conclude that H4S1phos does 

not, by itself, contribute to chromatin folding in vitro.  This could indicate that the folding 

phenotype in vivo is due to downstream effects such as the recruitment of non-chromatin 

proteins. 
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Figure 34. The SS and SE mutant show similar folding properties in the AUC.  In the 

presence of 1mM MgCl2 both the SS and SE arrays sediment at 53S.   
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  Discussion 

In a study of the contribution of each of the histone N-terminal tails to chromatin folding, 

the H4 N-terminal tail was found to be unique in its necessity for compaction (Dorigo et al. 

2003).  Testing compaction of arrays in which each tail was individually deleted, only the H4 N-

terminal deletion could not reach WT levels of compaction, sedimenting at a maximum of 44S.  

Analysis of the important residues within the H4 tail determined that residues 14-19 contribute to 

chromatin compaction. 

The crystal structure of the nucleosome has shown that residues within the histone H4 N-

terminal tail interact with an “acidic patch” found within the H2A/H2B dimer (Luger et al., 

1997a+b).  The H4 tail interacts with the acidic patch if a neighboring nucleosome.  A report 

from the Richmond lab has also shown evidence for the “two-start model” of the chromatin fiber, 

in which the chromatin fiber has two stacks of nucleosomes and a nucleosome at position “1” 

within a chromatin fiber interacts with a nucleosome at position “3” to achieve the 30nm fiber 

(Dorigo et al., 2004).  These lines of evidence explain the necessity of a fully saturated array to 

achieve maximal compaction of the chromatin array.     

The analytical ultracentrifuge is a straightforward way to measure the folding properties 

of a defined chromatin array.  The Berger lab hypothesized that H4S1phos enhances chromatin 

compaction in vivo based on their data studying its phenotype in meiosis.  We were able to use 

the AUC and arrays reconstituted with glutamic acid to mimic constitutive acetylation to test 

whether the folding phenotype is a direct or secondary effect of phosphorylation.  We show that 

the in vivo chromatin compaction defect is most likely due to a secondary effect because the 

serine 1 substitution with glutamic acid does not directly affect the compaction of a chromatin 

array in the AUC.  It is true that glutamic acid is not a perfect phospho-mimetic.  An ideal 
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measure of the contribution of H4S1 phosphorylation would be to use native chemical ligation to 

create an array with each H4 phosphorylated on serine 1 to study in the AUC. 
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Materials and Methods 

Plasmids. The Xenopus expression plasmids used were previously described in Luger et al., 

1999a+b.  The H4S1E plasmid was made using the Stratagene Quickchange Mutagenesis kit.  

The “SE” and “SS” plasmids were a gift from the Berger lab.  The plasmid containing the 601-

177-12 template was a gift from T. Richmond.  The sink plasmid was a gift from T. Owen-

Huges. 

 

Histone Expression and Purification.  Histone expression was done as previously described in 

Luger et al., 1999.  Five individual colonies of transformed BL21(DE3) pLysS were used to start 

5- 1mL cultures in 2xYT broth at 37°C.  After three hours, all five cultures are used to inoculate 

a 50mL culture of 2xYT at 37°C.  After three hours this is used to inoculate 6x500mL 2xYT to 

an OD600 of 0.005 at 37°C.  Once the OD600 reaches 0.4, IPTG is added to 0.2mM and cells are 

harvested after 4 hours.  The pellet from one liter of cell culture is resuspended in 30mL Histone 

Wash Buffer (50mM Tris pH 8.0, 100mM NaCl, 1mM EDTA, 1mM DTT, 1mM benzamidine) 

and stored at -80°C.  Cells are thawed and lysed by sonication.  Histones are isolated as inclusion 

bodies and stored at -80°C.  Histones are resolubilized in Unfolding Buffer (7M guanidine, 

20mM Tris pH 7.5, 10mM DTT) and dialyzed overnight into Urea Dialysis Buffer (7M urea, 

10mM Tris pH 8.0, 1mM EDTA, 1mM DTT).  Histones are purified using tandem Q Sepharose 

and SP Sepharose columns.  Fractions containing purified histones are dialyzed into water 

containing 1mM DTT, lyophilized, and stored at -80°C. 
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Octamer reconstitution and purification. Lyophilized histones are resuspended in Unfolding 

Buffer at room temperature.  Equimolar amounts of histone were combined in Unfolding Buffer 

to a concentration of 1mg/mL. Histones are dialyzed against three changes of Refolding Buffer 

(2M NaCl, 10mM Tris pH 7.5, 1mM EDTA) at 4°C overnight.  Octamers were purified from 

tetramers and monomers using a Superdex-200 column.  Fractions which contained octamers are 

combined and concentrated using Vivaspin Centrifugal Concentrators and stored on ice at 4°C.   

 

601-177-12 template purification. The 2.1kb DNA template is flanked by EcoRV sites so it can 

be cut from the plasmid backbone.  Purified plasmid was digested with EcoRV for 3 hours and 

phenol::chloroform extracted, ethanol precipitated, and resuspended in TE.  The template was 

purified from the backbone by precipitation using 6% PEG in 0.5M NaCl.  The pelleted template 

was dialyzed against TE to remove the residual PEG.   

 

Sink DNA purification.  The MMTV sink template was PCR amplified in bulk.  To purify it 

away from the primers and unincorporated nucleotides we purified the fragment on an agarose 

gel and extracted the DNA using the Qiagen Gel Extraction kit. 

 

Array reconstitution.   Varying ratios of octamer to DNA template were mixed together in 

dialysis buffer containing 2M NaCl in a total volume of 1mL.  A constant amount of sink DNA 

was added each time (ratio of octamer: sink DNA was 1:0.3) Step-wise salt dialysis was 

performed, switching buffers every three hours.  The final salt concentration was 2.5mM NaCl.  
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The array was precipitated by incubation in 4mM Mg
+2

 for 20 minutes at room temperature 

followed by a 20 minute high speed spin in the table top centrifuge.  The pellet was resuspended 

in TE and stored on ice at 4°C.  A fraction of the array (5g) was digested by ScaI for 30 

minutes at 37°C and run on an agarose gel to check the saturation level. 

 

AUC runs.  The array was brought to a volume of 400L and an OD260 of 0.5 for the AUC runs.  

For the TE runs the arrays was simply diluted into TE.  For the 1mM Mg
+2

 runs the array was 

diluted to 200L 10mM Tris pH 8.0, and 200L of 2mM MgCl2 was added to make a final 

concentration of 1mM Mg
+2

.  The samples were run at 20,000rpm at 4°C and at least 50 scans 

were taken for each sample. 

 

Self-association assay.  For each Mg
+2

 concentration a final volume of 100L with an OD260 of 

0.4 was used.  The array was aliquoted into eppendorf tubes at a volume of 50L.  To each 

sample, 50L of varying concentrations of Mg
+2

 was added, and the samples were incubated for 

20 minutes at room temperature, followed by a 20 minute high speed spin in the table top 

centrifuge.  The OD260 of the supernatant was measured using a nanospec.  The amount of array 

remaining in the supernatant was divided by the amount remaining in the 0mM Mg
+2

 fraction 

and plotted as fraction remaining in the supernatant vs. Mg
+2

 concentration.         
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CHAPTER V 

Perspectives 

  

Histone modifications have been shown to contribute to a plethora of DNA templated 

events.  Their signature in transcription, replication, heterochromatin formation, and DNA 

damage have led to the hypothesis of a “histone code ” (Strahl and Allis, 2000).  It is now known 

that histone modifications cannot be read as a straightforward “code” leading to specific 

downstream events, but instead they work in combination to coordinate cellular processes.   

CK2 is a ubiquitous, essential, serine/threonine kinase that is conserved from yeast to 

man.  It has been extensively studied in vivo as well as in biochemical assays.  The casein kinase 

family is amongst the first kinases discovered (Morales and Carpenter, 2004).  CK2 purified 

from mammalian cells appears to be constitutively active.  The preferred consensus sequence for 

CK2 has been loosely defined as acidic amino acid residues surrounding the serine or threonine 

phospho-acceptor.   

CK2 has been implicated in apoptosis, transcription and the cellular stress response 

(Morales and Carpenter, 2004).  It was only within the past decade that it has emerged as a 

player in the DNA damage response.  CK2 is essential for efficient single strand break repair 

(SSBR) in human cells.  It was reported that CK2 phosphorylates XRCC1, a scaffold protein 

important in SSBR (Loizou et al., 2004).  Inhibition of CK2 decreases XRCC1 interactions with 

polynucleotide kinase (PNK) and eliminates repair of the break.  CK2 is also known to 

phosphorylate XRCC4, a member of the ligase complex necessary to complete NHEJ.  

Phosphorylation by CK2 promotes an interaction between XRCC4 and PNK, and loss of this 

interaction increases radiosensitivity in these cells (Koch et al., 2004). 
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CK2 is also emerging as an important player in repair of DSBs.  In mammalian cells it 

has been reported that CK2 is necessary for retention of the MRN complex at DNA damage foci 

in living cells (Melander et al., 2008; Spycher et al., 2008).  CK2 phosphorylates the MDC1 

scaffold protein which directly binds -H2AX.  Without this phosphorylation, the FHA domain 

of NBS1 cannot interact with MDC1, and the MRN complex cannot be retained at the DSB.   

Work in our lab has shown that CK2 phosphorylates the H3 and H4 histone N-terminal 

tails, and the globular domain of both H2A and H2B in vitro.  In an in vitro kinase assay, CK2 

recognizes serine 31 within the histone H3 N-terminal tail.  However, characterization of H3S31 

phosphorylation in vivo did not reveal it to be a CK2-dependent modification.   

 

H4S1phos and DNA DSBs 

Work from our lab, in collaboration the Berger and Allis labs, showed that H4S1 is the 

substrate of CK2 in vivo and in vitro.  The modification is enriched after assault with DNA DSB-

inducing agents.  It was first published as a modification of newly synthesized histones in avian 

erythrocytes (Ruiz-Carillo et al., 1979), but this does not appear to be the case in S. cerevisiae.  

The modification is enriched at sites surrounding a DSB within two hours of break induction.   

Further characterization of H4S1phos reveals that it is specific for DNA DSBs but does 

not appear to need a functioning DNA damage checkpoint.  -H2AX, which is also enriched at a 

DSB, depends on the damage checkpoint kinases Mec1p and Tel1p.  However, H4S1phos is 

enriched in a strain which lacks both.  In fact, the responsible kinase, CK2, is constitutively 

active.  The two regulatory “” subunits of CK2 have been shown to enhance its kinase activity 

for certain substrates, but they too are dispensable for H4S1 recognition.  
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Using a strain in which serine 1 of H4 has been substituted with alanine, we show that 

loss of H4S1phos does not yield a phenotype upon treatment with DNA damage inducing agents.  

Because H3S31phos is a CK2- dependent modification in vitro, we tested if this was a redundant 

modification to H4S1phos in vivo.  Using a strain in which the H3 and H4 serines have been 

substituted with alanine, we found that this too did not yield a phenotype in response to DNA 

DSBs. 

So far, none of the assays conducted using the H4S1A strain have yielded a discernable 

phenotype.  It is possible that an as yet unknown modification acts in concert with H4S1phos.  It 

would also be interesting to see if it is responsible for recruiting other proteins to the break, 

similar to -H2AX.  Whole cell extract can be incubated with a peptide consisting of the H4 tail 

amino acids phosphorylated at serine 1, or an unphosphorylated control.  Using mass 

spectrometry, it is possible to identify proteins which bind specifically to phosphorylated H4.  

After identifying interacting proteins, it is possible to use ChIP to see if they localize with 

H4S1phos at the break and if lack of phosphorylation abolishes recruitment.  

It would also be interesting to discover the phosphatase responsible for downregulation of 

H4S1phos.  The phosphatase responsible for reduction of -H2AX was discovered in S. 

cerevisiae as Pph3p, part of a three subunit complex (Keogh et al., 2006).  They found that 

H2AX was only dephosphorylated after removal of the histone from the chromatin. Because 

there are only 9 nuclear phosphatases in S. cerevisiae, it would be possible to test the 

contribution of each individually to removal of H4S1phos.  Western blots can be performed in 

each of the phosphatase delete strains to see which is responsible for reduction of H4S1phos 

after DNA damage. 
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CK2 has been implicated in the DNA damage response in S. cerevisiae.  It was shown 

that a strain in which either of the regulatory subunits (CKB1 or CKB2) of CK2 have been 

deleted cannot adapt to a single, unrepairable DSB (Toczyski et al., 1997).  During the process of 

adaptation, a cell retains the DSB and yet the DNA damage signal that causes cell cycle arrest is 

eliminated in the presence of damage, allowing the cell to continue through mitosis.  It is thought 

that cells that are defective for adaptation are defective for turning off the DNA damage 

checkpoint.  One way to test how long the checkpoint is active is to check the levels of Rad53p 

phosphorylation.  We found in a strain containing H4S1A that loss of H4S1phos does not inhibit 

the ability of the cell to turn off the checkpoint, as Rad53p phosphorylation is decreased to pre-

damage levels by 18 hours in both WT and H4S1A cells. 

In an effort to determine how H4S1phos is enriched at the break we looked at the 

recruitment of the catalytic subunits to a DSB.  We were not able to see any enrichment above 

background.  We tested the hypothesis that H4S1 was phosphorylated in the cytoplasm and 

recruited to the site of the break.  In the chromatin fractionation assay we did not see an 

enrichment of H4S1phos in the cytoplasm, even after arresting the cells with HU to enrich the 

cytoplasmic pool of histones, immunoprecipitation of the cytoplasmic fraction to enrich for the 

modification, or concentrating the cytoplasmic fraction.  Also, the Allis lab showed that after 

release from -factor into the cell cycle, here is no S-phase specific increase in H4S1phos that 

would show that this is a modification of newly synthesized histones.  We also tested whether 

the histone chaperones were necessary to enrich for H4Sphos.  We tested different combinations 

of chaperone delete strains and fond that members of the CAF-1, RCAF, and HIR complexes are 

dispensable for enrichment of phosphorylation. 
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We therefore focused on this being a nuclear modification, and wanted to learn how CK2 

was recruited to the site of the break.  Although CK2 itself has not been localized to the break in 

higher eukaryotes, it is known to be necessary for localization and retention of NBS1 to the 

break (Melander et al., 2008).  CK2 is also known to associate with many chromatin-related 

proteins including transcription factors and the histone proteins.   

We chose to focus on the interaction between CK2 and the SIN3/RPD3 complex.  

Deletion of either sin3 or rpd3 yields a phenotype in response to DNA DSBs.  In a model of 

chromatin restoration at the site of a break, “Access, Repair, Restore,” from the Cote lab, it is 

postulated that H4S1phos inhibits NuA4 HAT action.  Acetylation, an early modification 

enriched at the break, amongst other histone modifications and chromatin remodeling enzymes, 

allows access to the DNA for the repair process.  H4S1phos is a later modification, which 

prevents further rounds of acetylation by NuA4, helping to restore chromatin to its original 

status. 

We found that acetylation inhibits CK2 activity in vitro.  Using GST H4 tails, in which 

the lysine residues were mutated to glutamine to mimic acetylation, we found that acetylation 

inhibited CK2 activity.  We also found that the SIN3/RPD3 complex is necessary for enrichment 

of H4S1phos at the site of a break. Testing a strain in which the catalytic subunit of RPD3 has 

been rendered inactive, we found that the HDAC activity of RPD3 is unnecessary for H4S1phos 

enrichment.  It is possible, however, that the chromatin around the break is deacetylated in the 

absence of the SIN3/RPD3 complex.  Other HDACs are recruited to the break which could be 

redundant with the SIN3/RPD3 complex.  It would be interesting to test the acetylation status in 

the different HDAC mutants to see if the levels decrease over time as they do in WT.   
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We find that phosphorylation at the break requires RPD3 and not SIN3. Although most 

work thus far on the HDAC activity of RPD3 focuses on the necessity of SIN3 for its role in 

transcriptional regulation, recent evidence shows that not all RPD3 in the cell is in a complex 

with SIN3 (J. Worman, unpublished results, personal communication).  Little work has been 

done on the role of RPD3 in the DNA DSB response.  It is possible that in the presence of DSBs, 

the RPD3 catalytic subunit forms a DNA –damage specific complex, which lacks SIN3, but 

includes CK2.  This complex can be directed to the site of a break.  Purification of a TAP-RPD3 

complex from cells which have been treated with zeocin, followed by mass spectrometry, would 

be a simple way to test this hypothesis. 

With this new data we can add to the “Access, Repair, Restore” model.  Acetylation 

which immediately follows the DSB inhibits CK2 action at the break.  Acetylation allows for 

access of the repair machinery.  Following break repair, chromatin must be restored to its 

original state.  Recruitment of various HDAC complexes allows for deacetylation of the 

chromatin and phosphorylation of H4S1.  This phosphorylation prevents further rounds of 

acetylation and allows the chromatin to be restored.  

   

H4S1phos and chromatin compaction 

 H4S1phos also appears to have a role outside of the context of a DNA DSB.   A report 

from the Berger lab reported that this is a modification enriched during meiosis throughout 

eukaryotes.  They hypothesized that it aids chromatin compaction based on phenotypes found in 

yeast.  In a strain lacking H4S1phos, sporulation efficiency is decreased and nuclear volume is 

increased during meiosis.  The modification is enriched throughout the genome and remains until 

the cell resumes the cell cycle.  MNase digestion of chromatin undergoing the sporulation 
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program yields a resistant band in the WT cells but not in the cells which lack H4S1phos, 

possibly due to lack of enzyme accessibility in the WT due to chromatin compaction.   

 The AUC is an ideal instrument to study the contribution of a single modification to 

chromatin folding.  Chromatin arrays can be reconstituted from purified components. Array 

folding in the AUC in the presence of a divalent cation has been well characterized, but the study 

of the contribution of single histone modifications to chromatin folding has just begun. 

 The effect of H4K16ac has been shown to influence chromatin folding as seen in the 

AUC.  In vivo, K16ac is enriched in active euchromatin.  In the AUC, arrays reconstituted with 

H4 acetylated at K16 do not reach maximum compaction levels.  Acetylation of K16 shows a 

folding defect similar to an array reconstituted with a tailless H4. 

 The study of HS1phos on chromatin compaction was not as fruitful.  In an original 

reconstitution where serine 1 was substituted with glutamic acid, we did see a folding phenotype.  

We found that with 1mM Mg
+2

, half of the sample self-associated.  We later discovered that 

these arrays were reconstituted using a histone H4 in which the initiator methionine was not 

cleaved off during recombinant expression in E. coli.   

 To aid the loss of the initiator methionine we studied an array in which the initial serine 

was maintained and a glutamic acid was inserted at the second position.  Mass spectrometry 

revealed that the initiator methionine was cleaved off of this species. Using this H4 in the 

chromatin reconstitution showed that H4S1phos, by itself, does not contribute to chromatin 

folding. 

 This does not mean, however, that it does not contribute to compaction in vivo.  It could 

recruit downstream proteins which aid compaction.  It could also have a redundant modification 
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which helps enhance compaction.  The phenotype of the H4S1A mutant needs to be further 

dissected to determine how serine 1 phosphorylation enhances compaction during sporulation.          
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APPENDIX 

Yeast Strains Used for Thesis Research 

CY915 Δho Δhml::ADE1 MATa Δhmr::ADE1 ade1-110 leu2,3-112 lys5 trp1::hisG ura3-

52 ade3::GAL10:HO 

CY924  isogenic to CY915 but MATa, with HML and HMR 

CY1019 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

CY1033 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rad9kan
r 

CY1034 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rad17kan
r 

CY1350 CY915 cka2::kan
r
 

CY1351 CY915 rpd3::kan
r
 

CY1352 CY915 sin3::kan
r
 

CY1159 MATa ade2-101, his3-200, leu2-801, ura3-52, trp1-63 

CY1160 MATa ade2-101, his3-200, leu2-801, ura3-52, trp1-63, ckb1::HIS3, 

ckb2::LEU2 

CY1067 MAT ura3-52 leu2-3,112 trp1-289 his3Δ1 Δ(hht1 hhf1) Δ(hht2 hhf2) pJH18 

(CEN ARS TRP1 HHT2 HHF2) 

CY1068 MATura3-52 leu2-3,112 trp1-289 his3Δ1 Δ(hht1 hhf1) Δ(hht2 hhf2) pTK (CEN 

ARS LEU HHT2:hhf2 S1A)] 

CY1194 MATa, leu2-3; ura3-1; his3-11,15; trp1-1; ade2-1; can1-100 

CY1199 MATa, leu2-3; ura3-1; his3-11,15; trp1-1; ade2-1; can1-100; cacl::LEU2; 

asf1::TRP1 

CY1375 CY915 cka2-myc::kan
r 

CY1418 CY1351 with CP1126 (Yeplac112, RPD3, 2, TRP1, Amp, Ori) 

CY1419 CY1351 with CP1127 (Yeplac112, rpd3-H150,151A, 2, TRP1, Amp, Ori) 
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