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ABSTRACT 

  In most metazoans, early embryogenesis is controlled by the translational 

regulation of maternally supplied mRNA. Sequence-specific RNA-binding proteins play an 

important role in regulating early embryogenesis, yet their specificities and regulatory targets 

are largely unknown. To understand how these RNA-binding proteins select their targets, my 

research focused on the C. elegans CCCH-type tandem zinc finger protein POS-1. Embryos 

lacking maternally supplied POS-1 die prior to gastrulation, and exhibit defects in the 

specification of pharyngeal, intestinal, and germline precursor cells. To identify the 

regulatory targets that contribute to the POS-1 mutant phenotype, we set out to determine the 

sequence specificity of POS-1 in vitro, and then use this information to identify regulatory 

targets in vivo.  

 Using a candidate-based search, we identified a twelve-nucleotide fragment of the 

mex-3 3' untranslated region (3' UTR) to which POS-1 binds with high affinity. Using 

quantitative fluorescent electrophoretic mobility shift assays, I determined the affinity of the 

RNA-binding domain of POS-1 for a panel of single nucleotide mutations of this sequence, 

and then defined a consensus binding element based on this dataset. POS-1 recognizes the 

degenerate element UAU2-3RDN1-3G, where R is any purine (adenosine or guanine), and D is 

any base except cytosine.  A bioinformatics analysis revealed the presence of this element in 

approximately 40% of C. elegans 3' UTRs, suggesting that POS-1 is capable of binding to 

and perhaps regulating many transcripts in vivo. POS-1 binding sites alone are not sufficient 

to pattern the expression of a reporter, suggesting that other factors may contribute to POS-1 

specificity. 
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 To address the mechanism of POS-1-mediated translational regulation, I investigated 

the translational regulation of the C. elegans Notch homolog glp-1. Previous work 

demonstrated that glp-1 translation is repressed in the early embryo in a POS-1-dependent 

fashion, though it was not clear if this regulation was direct. The glp-1 3' UTR contains two 

POS-1 binding sites within five nucleotides of each other, and these sites are within a thirty-

nucleotide region of the 3' UTR required for proper spatiotemporal translation of glp-1. The 

POS-1 sites overlap with a negative regulatory element that is recognized by GLD-1, and a 

positive regulatory element recognized by an unknown factor. Both POS-1 and GLD-1 bind 

to an RNA containing these sites in vitro, and POS-1 competes with GLD-1 for binding.  

Both proteins are required for translational repression of a glp-1 3′ UTR reporter in embryos. 

Furthermore, only one of the two POS-1 binding sites is required for repression, and the 

required site is wholly contained within a previously characterized positive regulatory 

element. Based on this, we propose that POS-1 does not regulate its targets by recruiting 

regulatory machinery, but instead by competing with factors that do. Thus, sites of POS-1 

regulation are highly context dependent, which may contribute to POS-1 specificity.  
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Chapter I 

Sequence specific RNA-binding proteins in 

C. elegans development 
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 Prior to fertilization, oocytes remain arrested in meiosis, sometimes for a period 

of many years.  Once fertilization takes place, the oocyte becomes active and a cascade of 

rapid events occurs.  The maternal pronucleus completes meiosis and fuses with the 

paternal pronucleus, which triggers a series of cell divisions that dramatically increase the 

number of cells present in the embryo without increasing its volume.  While these 

divisions are taking place, the rough body plan of the developing organism is established.  

Body axes are specified, the germline and soma are differentiated from one another, and 

the identities of the future endoderm, mesoderm, and ectoderm are established.  What is 

remarkable about this process is that it occurs largely without the benefit of zygotic 

transcription. In sea urchins (S. purpuratus), nematodes (C. elegans), fruit flies (D. 

melanogaster), zebrafish (D. rerio), and african clawed frogs (X. laevis), zygotic 

transcription is completely inhibited for at least the first 1-2 cycles of division, and 

embryos can reach the hundred cell stage even when transcription is inhibited (reviewed 

in Tadros and Lipshitz 2009).  Transcription is reduced or inhibited in the final stages of 

mouse oocyte development (Moore and Lintern-Moore 1978), and it reinitiates at 

roughly the first embryonic division (Moore 1975). Embryogenesis occurs at a slower 

pace in mice versus other metazoans, so transcription is inhibited for twenty hours or 

more after fertilization. Thus, the earliest events in the development of most multicellular 

organisms is driven by translational regulation of maternally supplied mRNAs (reviewed 

in Farley and Ryder 2008).  

The transcription of mRNAs encoding proteins required to carry out the 

developmental programs of early embryogenesis occurs during oogenesis, but the 
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activities of these proteins are not required until after fertilization.  Thus, transcripts 

encoding such proteins must be translationally repressed within the developing oocyte, as 

well as stored for later use in the embryo.  This phenomenon is particularly noticeable in 

the specification of germ cell fates in flies, worms, frogs, and zebrafish.  During 

oogenesis, each of these species generates granular structures containing mRNAs and 

RNA-binding proteins called germ plasm. After fertilization, germ plasm localizes to a 

specific region of the embryo, and eventually segregates to only a few cells by a variety 

of mechanisms. The subset of cells that inherit germ plasm are fated to produce the entire 

germ line in the adult organism. This illustrates the role that the localization of maternally 

supplied factors plays in the specification of cell fates in the early embryo. 

 Outside of germ line specification, many maternally supplied transcripts exhbit 

localized expression patterns during embryogenesis. For example, during Drosophila 

embryogenesis, mRNAs transcribed from approximately 20% of fly genes exhibit 

restricted expression patterns.  Lecuyer and colleagues examined the localization patterns 

of approximately 3400 transcripts (about 25% of the genome) in the syncytial Drosophila 

melanogaster embryo by high resolution fluorescent in situ hybridization.  Of these, 

approximately 2300 were expressed in the embryo, and of the expressed transcripts, 71% 

(approximately 1600) exhibit a restricted localization pattern (Lécuyer et al. 2007).  The 

patterns observed can be grouped into at least thirty-five distinct localization categories, 

with slight differences between members of each category.  Extrapolating the proportion 

of localized transcripts observed in this study to the entire genome, it is expected that 

nearly 7000 transcripts have a distinct expression pattern in the embryo (Lécuyer et al. 
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2007).  Both the diversity in localization patterns observed, and the number of localized 

transcripts point to a broad network of transcript-specific localization that is active in the 

Drosophila embryo, and likely other species as well. 

 Throughout the entire process of oogenesis and early embryogenesis, specific 

mRNAs must be selected for participation in the appropriate regulatory pathways. Only a 

subset of the mRNAs actively transcribed within developing germ cells are localized to 

cytoplasmic granules or are otherwise translationally inhibited. After fertilization, the 

timing and localization of translation of maternally supplied mRNAs is precisely 

controlled, and a diverse ensemble of translational outcomes is essential. How are 

mRNAs targeted to the appropriate regulatory machinery within developing oocytes and 

early embryos?  

 mRNAs are sorted into the appropriate regulatory pathways by virtue of elements 

contained within their primary sequence.  Short motifs or structural elements that appear 

only in a subset of mRNAs are sufficient for segregating those mRNAs into different 

regulatory pathways. These elements are often, but not always, found upstream of the 

start codon and downstream of the stop codon in regions named the 5′ and 3′ untranslated 

regions (UTRs). Modular RNA-binding proteins recognize these elements through one or 

more RNA-binding domains. These proteins also typically contain one or more catalytic 

or regulatory domains. Thus, the RNA-binding protein serves to connect specific 

transcripts with the appropriate regulatory machinery (reviewed in Lunde et al. 2007).  

Two distinct strategies for recognizing specific RNA sequences have evolved.  

One strategy involves RNA-binding proteins that associate with a small RNA, such as a 
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microRNA (miRNA) or a small interfering RNA (siRNA) (reviewed in Ghildiyal and 

Zamore 2009).  These short RNAs base pair with the target sequence, and thus direct the 

RNA-binding protein to the target.  As these proteins rely on base pairing between their 

associated small RNA and the target sequence, the sequence specificities of small-RNA 

associated proteins are at least partially understood (reviewed in Pasquinelli 2012). The 

other strategy employed for recognizing specific sequence elements involves RNA-

binding proteins that make direct contact with the sequence element.  There are many 

different types of RNA-binding domains, each with a different sequence specificity 

(reviewed in Glisovic et al. 2008). As these proteins do not derive their specificity from 

an associated small RNA, it is much more challenging to predict the specificity of any 

member of this class of proteins. Thus, our understanding of the sequence specificity of 

RNA-binding domains that directly contact their target RNAs is far from complete. 

 RNA-binding proteins are common in the genomes of eukaryotes.  Bioinformatic 

predictions based on homology to previously identified RNA-binding domains estimate 

that somewhere between 2% and 3% of all proteins encoded by the genomes of D. 

melanogaster and C. elegans are capable of recognizing RNA (Lasko 2000; Lee and 

Schedl 2006).  As these estimates only consider genes with sequences that are 

homologous to known RNA-binding domains, it is possible that it is an underestimate.  A 

recent study performed by the Hentze lab identified the ensemble of proteins that interact 

with polyadenylated mRNA within HeLa cells (Castello et al. 2012). Many of the 

proteins identified have never been experimentally shown to interact with RNA, and 315 

proteins that have no RNA-related functional annotation reproducibly associate with 
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poly(A) mRNA (Castello et al. 2012). Thus, there is a large network of transcripts that are 

regulated post-transcriptionally, and a large number of potential specificity factors that 

regulate those targets.  One of the main challenges in the field of post-transcriptional 

regulation is mapping the specificity factors to their regulatory targets. This is especially 

challenging for sequence specific RNA-binding proteins, as they usually recognize a 

specificity element that is between 4 and 12 nucleotides long (Keene 2007) and is likely 

to be quite common in the transcriptome.  

 Multiple techniques have been developed to assess which sequences an RNA-

binding protein recognizes in vivo. RIP-Chip (Keene et al. 2006), CLIP (Licatalosi et al. 

2008), and PAR-CLIP (Hafner et al. 2010) all rely on specific immunoprecipitation of 

RNA-binding protein-mRNA complexes from tissues. Each of these techniques allows 

for a genome-scale identification of bound mRNAs in a model-unbiased manner. The 

antibodies can be raised against the endogenous protein, or an epitope-tagged version can 

be expressed as a transgene in the organism of interest.  RIP-Chip is typically performed 

without chemical or ultraviolet crosslinking (Keene et al. 2006), which allows RNA-

binding proteins to repartition in extract and potentially associate with mRNAs they 

never bind to in a biologically relevant context (Riley et al. 2012).  To prevent 

repartitioning, two immunprecipitation techniques that crosslink RBPs prior to tissue 

homogenization have been developed. Crosslinking and immunoprecipitation (CLIP) 

uses short wavelength UV radiation to crosslink RBPs to the mRNAs they interact with 

in vivo (Licatalosi et al. 2008). This permits the use of harsh pulldown and washing 

conditions, which allows for a significant reduction of non-specifically bound material 
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relative to RIP-Chip. However, crosslinking with short wavelength UV radiation is not 

very efficient, and CLIP suffers from low recovery efficiencies (Hafner et al. 2010).  To 

address this issue, the Tuschl lab developed a technique called Photoactivatable-

Ribonucleoside Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP). This 

method incorporates a photoactivatable crosslinker (usually 4-thiouracil) into the mRNA 

of the tissue to be used in the pulldown.  This modification crosslinks efficiently using 

long wavelength UV radiation.  In addition, after the crosslinks have been reversed, a 

predictable base conversion occurs, which permits the identification of locations within 

the recovered mRNA that the RBP was interacting with directly (Hafner et al. 2010).  

Modified ribonucleosides can be introduced into living organisms, such as C. elegans, 

which allows for crosslinking from living tissue (Jungkamp et al. 2011). All three of these 

techniques produce a wealth of information regarding what an RNA-binding protein 

binds to in vivo. However, binding of an RNA-binding protein to an mRNA may not 

always result in a regulatory event, so the set of all mRNAs associated with a given RBP 

may include some mRNAs that are not regulated by that RBP.  

To study the problem of RNA-binding protein functional target specificity, a 

combination of in vitro and in vivo experimentation is essential. The gametogenesis and 

embryogenesis of the roundworm Caenorhabditis elegans provides an attractive model 

system in which to address these questions.  The vast majority of animals are self-fertile 

hermaphrodites (reviewed in Riddle et al. 1997), with a well-defined switch from 

spermatocyte to oocyte production (Riddle et al. 1997).  Gametogenesis occurs 

sequentially within the germline, allowing for all steps of gametogenesis to be observed 
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within one animal (Riddle et al. 1997).  The generaton time of C. elegans is short (at 20 

ºC, an entire life cycle is complete in approximately 3 days) (Riddle et al. 1997), 

permitting for rapid proliferation of worms and rapid progress through gametogenesis 

and development.  Animals are transparent, permitting developmental events to be 

readily observed in intact animals.  The expression of genes within the animal can be 

robustly knocked down via RNA interference (RNAi), allowing for the biological 

function of genes of interest to be conveniently studied (Fire et al. 1998).  Transgenes can 

be introduced into the worm by a variety of methods (Stinchcomb et al. 1985; Mello et al. 

1991; Kelly et al. 1997; Praitis et al. 2001; Frøkjaer-Jensen et al. 2008), which provides 

an opportunity to investigate post-transcriptional regulatory events via reporters.  As 

described in more detail below, RNA-binding proteins play a central role in many of the 

events of development, ranging from the initial entry of mitotically dividing germ cell 

precursors into meiosis (reviewed in Kimble and Crittenden 2007) to cell fate 

specification events in the developing embryo (reviewed in Maduro 2010).  

  

C. elegans hermaphrodite germline physiology and embryogenesis 

 Each hermaphrodite animal contains two complete gonad arms that each begin 

with a small population of mitotically dividing germline stem cells and terminate at a 

shared uterus in the middle of the animal (Figure 1.1).  The distal end contains the 

mitotically dividing cells (Hirsh et al. 1976), while the proximal end joins with the uterus. 
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Figure 1.1. The C. elegans gonad and early embryo. Differential interference contrast 

(DIC) micrographs of the C. elegans gonad and early embryo with significant 

developmental events labeled.  Labels on embryonic cells denote the identity of the cell. 
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The gonad arm is almost as long as the worm (Hirsh et al. 1976), and it folds over on 

itself to fit within the body of the worm. As germ cells develop into gametes, they travel 

towards the proximal end of the germline (Hirsh et al. 1976). A somatic cell with 

multiple long processes that run along the basement membrane of the gonad caps each 

gonad arm (Kimble and White 1981). This cell is called the distal tip cell which expresses 

the membrane-bound Delta ligand LAG-2 (Henderson et al. 1994) that instructs the cells 

it contacts to remain in mitosis.  As germ cells migrate away from the distal tip cell, they 

transition into meiosis, migrate to the periphery of the gonad arm, and lose a portion of 

their membranes (Hirsh et al. 1976).  This generates a cylindrical syncytium (Hirsh et al. 

1976), where hundreds of nuclei all share the same cytoplasm.  It is within the syncytial 

region of the gonad that synthesis of mRNAs and proteins required for early 

embryogenesis takes place; concordant with this, transcriptional activity increases 

significantly in this region (Gibert et al. 1984).  Large ribonucleoprotein granules called 

P-granules arise in the syncytial region as well (Strome and Wood 1982; Jungkamp et al. 

2011).  These granules contain many RNA-binding proteins and mRNAs that are 

required for early embryogenesis, and are first located around the periphery of the germ 

cell nuclei (Licatalosi et al. 2008; Schisa et al. 2001; Bezares-Calderón et al. 2010).  The 

cytoplasm of the syncytial region also contains RNP granules similar to P-bodies that 

contain a different complement of mRNAs and proteins relative to P granules (Hafner et 

al. 2010; Noble et al. 2008; Jungkamp et al. 2011).  The nuclei in the syncytial  
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region arrest in prophase of meiosis I, and do not progress further in meiosis until just 

prior to fertilization (Henderson et al. 1994; McCarter et al. 1999; McNally and McNally 

2005).   

 As the germ nuclei round the bend of the gonad arm and enter the proximal 

region, transcription is silenced and a small fraction of the nuclei recellularize and 

become oocytes.  The germ cell nuclei that do not become oocytes are degraded via 

apoptosis (Gumienny et al. 1999). Cytoplasmic streaming from the syncytium deposits 

factors required for embryogenesis into the developing oocytes (Wolke et al. 2007; 

Nadarajan et al. 2009). The immature oocytes approach the spermatheca, an organ that 

contains the spermatocytes generated during the final larval stage of the worm (Ward et 

al. 1981).  The spermatheca secretes a protein called Major Sperm Protein (MSP), which 

causes the resumption of meiosis (Miller et al. 2001).  As the oocyte enters the 

spermatheca, meiosis I and II are completed, and the oocyte is fertilized (Ward and Carrel 

1979). 

 Fertilization triggers a cascade of events that specify the anterior-posterior axis of 

the developing embryo.  The sperm entry point determines the posterior pole of the 

embryo by disrupting an actin-myosin network, which causes the cortex of the fertilized 

embryo to be pulled towards the anterior (Munro et al. 2004). This allows for a number 

of proteins to associate with the posterior cortex, thus polarizing the embryo along the 

anterior-posterior axis (Etemad-Moghadam et al. 1995; Boyd et al. 1996). During 

polarization, the male and female pronuclei meet in the center of the embryo, fuse and the 
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single nucleus migrates towards the posterior of the embryo along with the P granules 

(Strome and Wood 1982; 1983). The first mitotic division takes place along the anterior-

posterior axis approximately 45 minutes after fertilization, resulting in two unequally 

sized daughter cells.  The larger cell is located in the anterior, and is the first of six 

founder cells that will be generated over the course of early embryogenesis (Sulston and 

Horvitz 1977; Kimble and Hirsh 1979; Sulston et al. 1983).  Each of these cells is fated to 

produce only a limited subset of the tissue types present in the adult worm, and their fates 

are specified shortly after they are born (Sulston et al. 1983).  The anterior cell is called 

AB and will produce pharyngeal and hypodermal tissues (Figure 1.2; (Sulston et al. 

1983).  The smaller posterior cell is termed P1, and contains all of the P-granules 

deposited in the one cell embryo (Sulston et al. 1983).  This cell will divide 

asymmetrically three more times, each time producing another founder cell and a P-

lineage cell that inherits the P-granules.  The first asymmetric division of P1 generates the 

proto-founder cell EMS, the second gives rise to C, and the third produces D (Sulston et 

al. 1983). EMS divides again to make the founder cells E and MS (Sulston et al. 1983), 

which are fated to produce intestine and mesoderm, respectively (Sulston et al. 1983).  

Both C and D make muscle (Sulston et al. 1983).  The last P-lineage cell, P4 divides one 

final time during the 100-cell stage of the embryo, producing Z2 and Z3 (Sulston et al. 

1983), which populate the entire germline during larval development.  

 Many RNA-binding proteins play regulatory roles during each of the major events 

during gametogenesis and early embryogenesis.  During the switch from mitosis to 
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Figure 1.2. The cell lineage of the early C. elegans embryo.  Each founder cell is labeled 

with the tissue type it is fated to produce. 
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meiosis in the distal end of the germline, the PUF (Pumilio and FBF) proteins FBF-1 and 

FBF-2 (reviewed in Tadros and Lipshitz 2009; Crittenden et al. 2002), the Nanos 

homolog NOS-2 (reviewed in Farley and Ryder 2008; Subramaniam and Seydoux 1999) 

and the CPEB-related protein FOG-1 promote mitosis (Lécuyer et al. 2007; Barton and 

Kimble 1990), while the atypical cytoplasmic poly(A) polymerase GLD-2 in complex 

with the KH-domain containing GLD-3 (Lécuyer et al. 2007; Wang et al. 2002), and the 

STAR-domain protein GLD-1 promote meiosis (Keene 2007; Francis et al. 1995a) 

(Figure 1.3).  In addition to GLD-1, oogenesis requires the CPEB homolog CPB-3 and its 

interacting partner DAZ-1 (Licatalosi et al. 2008; Hasegawa et al. 2006; Hafner et al. 

2010; Jungkamp et al. 2011), the PUF proteins PUF-5, PUF-6, and PUF-7 (Licatalosi et 

al. 2008; Lublin and Evans 2007), and the KH-domain containing protein MEX-3 (Hafner 

et al. 2010; Pagano et al. 2009; Jungkamp et al. 2011).  Apoptosis of germ cell nuclei is 

regulated by the RNA-binding proteins CAR-1, CGH-1 and GLA-3 (Henderson et al. 

1994; Boag et al. 2005), and oocyte maturation requires the CCCH-type tandem zinc 

finger proteins OMA-1 and OMA-2 (Detwiler et al. 2001; Shimada et al. 2006).  

 Once fertilization occurs, a cascade of RNA-binding protein localization and 

translation occurs. The CCCH-type tandem zinc finger proteins MEX-5 and MEX-6 

(Schubert et al. 2000), as well as the RNA Recognition Motif (RRM) containing protein 

SPN-4 (Gomes et al. 2001) and the KH-domain containing protein MEX-3 promote 

anterior fates in the early embryo (Draper et al. 1996), while the CCCH-type tandem zinc 

finger proteins POS-1 and PIE-1 (Mello et al. 1996; Tabara et al. 1999), and the STAR-
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Figure 1.3. RNA-binding proteins involved in C. elegans gametogenesis and 

embryogenesis.  The RNA-binding proteins that participate in the listed developmental 

events are located in the approximate region of the gonad or embryo in which they are 

expressed. 
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domain containing protein GLD-1  promote posterior fates (Jones et al. 1996) (Figure 

1.3). Very little is known about the suite of targets that each of these proteins interacts 

with, and the mechanism of target regulation remains largely unknown for most of the 

RNA-binding proteins required for C. elegans development. 

 In general, these RNA-binding proteins are thought to regulate their specific 

regulatory targets through binding to specific regulatory sequences within their 3′ UTRs.  

Indeed, post-transcriptional regulation is the primary method of gene regulation within 

the germline and early embryo.  In a study performed by the Seydoux lab, the expression 

patterns of fluorescent transgenic reporters bearing a gene's promoter and a 3′ UTR that 

does not confer patterned regulation were compared with the expression patterns of 

reporters that have a pan-germline promoter and that gene's specific 3′ UTR (Merritt et 

al. 2008). For all genes tested whose encoded proteins are expressed in the germline, in 

oocytes, or in the early embryo, the 3′ UTR reporter construct mostly recapitulated the 

endogenous protein's expression pattern. On the other hand, reporters driven by the gene's 

promoter typically exhibited unpatterned expression throughout the germline and 

embryo, indicating that post-transcriptional regulation through the 3′ UTR drives gene 

expression during oogenesis and embryogenesis. The 3′ UTR reporters for sperm-

expressed genes did not faithfully recreate the corresponding endogenous protein's 

expression pattern, suggesting that gene expression in spermatocytes is regulated by 

alternative mechanisms (Merritt et al. 2008). While a general model has been proposed 
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for how RNA-binding proteins recognize their specific targets, the details for most 

individual proteins are still unknown.  

 Given the large number of RNA-binding proteins expressed in the germline, as 

well as their distinct expression patterns, it is likely that an mRNA transcribed in the 

syncytial region destined for embryonic translation is part of a dynamic mRNP complex 

whose composition changes as a function of position within the germline.  To understand 

the complete makeup of such an mRNP complex would require a detailed understanding 

of each of the RNA-binding proteins involved, their specific binding sites within the 

mRNA, and any co-factors required to elicit regulatory responses.  Our knowledge of 

RNA-binding protein mediated regulation is not yet sufficient to understand the complete 

makeup and dynamics of such an mRNP complex, but a comprehensive picture is 

beginning to emerge for a handful of regulatory targets in the C. elegans germline.  One 

such target is the Notch homolog glp-1, which is required for multiple signaling events in 

the germline and early embryo.   

 

Function and regulation of glp-1 

 GLP-1 is a member of the Notch family of transmembrane receptors, which are 

type I transmembrane proteins.  The extracellular portion of the protein contains multiple 

epidermal growth factor (EGF) motifs, followed by three repetitions of the LIN-12/Notch 

repeat sequence (Yochem and Greenwald 1989). A membrane-spanning spacer sequence 

that contains two conserved cysteines lies immiediately after the LNR sequences.  When 

GLP-1 associates with one of its ligands, this spacer sequence is cleaved at the conserved 
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cysteines, which liberates the intracellular domain of GLP-1 (Crittenden et al. 1994).  

This domain contains repeated CDC-10/Ankyrin motifs, as well as a PEST-

destabilization domain (Yochem and Greenwald 1989).  After cleavage, the intracellular 

domain of GLP-1 enters the nucleus and associates with LAG-1.  The GLP-1/LAG-1 

complex is a transcriptional activator (Neves et al. 2007) that promotes expression of 

genes downstream of the GLP-1 receptor.  

 GLP-1 protein is required for two classes of inductive events during 

gametogenesis and embryogenesis.  It is expressed on the surface of mitotically dividing 

cells in the distal arm of the gonad (Crittenden et al. 1994), where it receives a signal 

from the processes of the distal tip cell (Kimble and White 1981).  This signal is the 

membrane-associated ligand LAG-2 (Henderson et al. 1994), which instructs GLP-1 

expressing cells to remain in mitosis, and thus controls proliferation of germline 

precursor cells.  The other class of inductive events takes place in the early embryo.  glp-

1 mRNA is maternally supplied, and GLP-1 is initially expressed in two cell embryos on 

the surface of the anterior blastomere, AB (Evans et al. 1994).  After division of AB, 

GLP-1 continues to be expressed on the surface of both daughter cells, ABa and ABp 

(Evans et al. 1994).  The embryonic ligand for GLP-1 is APX-1, which is expressed on 

the surface of P2. As P2 only makes contact with ABp, GLP-1 signaling polarizes the 

descendants of AB (Mello et al. 1994; Mango et al. 1994; Evans et al. 1994).  In ABp, 

this inductive signaling mechanism causes the expression of the ref-1 family of 

transcription factors, which prevents pharyngeal fate specfication and promotes 
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hypodermal fates (Neves et al. 2007).  GLP-1 participates in three more inductive 

signaling events in the embryo which contribute to pharyngeal development, left-right 

body axis specification, and excretory cell fate specification (Priess 2005).   

 glp-1 is essential for both of these processes.  Loss of function mutations of glp-1 

were identified in two separate genetic screens; one screened specifically for sterile 

phenotypes, while the other screened for maternal effect embryonic lethal mutations.  

Hermaphrodite worms that have no zygotic glp-1 contribution are sterile, and produce 

gonad arms that contain approximately 10 germ cells (Austin and Kimble 1987), 

indicating that glp-1 is required for mitotic proliferation within the germ line.  Embryos 

lacking maternally supplied glp-1 fail to produce pharyngeal tissue, and die during 

embryogenesis (Priess et al. 1987).  A dominant gain-of-function mutation (oz112) of 

glp-1 was identified in a subsequent screen (Berry et al. 1997).  This mutation causes 

constitutively activated GLP-1 signaling, and consequently produces a tumorous germ 

line full of cells that do not exit from mitosis (Berry et al. 1997).  Thus, GLP-1 signaling 

is both necessary and sufficient for mitotic proliferation of the germline, and tight 

regulation of GLP-1 activity is essential for viable gametogenesis.  

 GLP-1 protein is expressed at the distal end of the gonad, as well as the anterior 

of the four-cell stage embryo, but glp-1 mRNA is expressed throughout the entire germ 

line as well as all cells of the early embryo (Evans et al. 1994) (Figure 1.4).  Thus, glp-1 

mRNA is translationally repressed in four distinct developmental environments: the 

syncytial region of  the gonad, recelluarizing oocytes, mature oocytes, and the early 

embryo.  Translational repression is mediated through the 369 nucleotide long 3′ UTR, as 
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Figure 1.4. Translational repression of glp-1.  The expression pattern of glp-1 mRNA is 

highlighted in tan, while the expression of GLP-1 protein is shown in green.  RNA-

binding proteins involved in regulating glp-1 are labeled in the approximate regions in 

which they participate.  



 25 

demonstrated through the use of in vitro transcribed capped, polyadenylated reporter 

mRNAs encoding E. coli beta-galactosidase (Evans et al. 1994).  When a version of this 

mRNA that does not contain the glp-1 3′ UTR is injected into the syncytial region of 

adult hermaphrodites, beta-galactosidase expression is observed throughout the syncytial 

region, in oocytes, and in all cells of embryos (Evans et al. 1994).  When this reporter is 

fused to the glp-1 3′ UTR and similarly injected, beta-galactosidase expression is 

restricted to the anterior cells of embryos, which recapitulates the expression pattern of 

endogenous GLP-1 protein (Evans et al. 1994).  Thus, the glp-1 3′ UTR is sufficient for 

translational repression in the hermaphrodite germ line.   

 The glp-1 3′ UTR contains two regulatory elements that confer spatio-temporal 

control of glp-1 translation: the Temporal Control Region (TCR) and the Spatial Control 

Region (SCR; Figure 1.5). Removal of the TCR in the context of an injected mRNA 

reporter results in reporter expression throughout the embryo, but otherwise normal 

expression in the germ line, while removal of the SCR results in both ectopic embryonic 

expression and expression throughout the germline (Evans et al. 1994).  A 34-nucleotide 

portion of the SCR is sufficient to confer patterned regulation on an unpatterned 3′ UTR, 

suggesting that a subset of the SCR is sufficient to give rise to the appropriate pattern of 

translation of glp-1 (Marin and Evans 2003). This fragment of the SCR can be further 

subdivided into two regulatory sub-elements: the Glp-1 Repression Element (GRE) and 

the Glp-1 De-repression Element (GDE) (Marin and Evans 2003).  Mutations within the 

GRE result in expression of a reporter throughout the gonad and all cells of the early 

embryo, while mutations within the GDE result in no reporter expression at all within the
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Figure 1.5. Regulatory elements in the glp-1 3′ UTR.  Top, schematic of regulatory 

elements identified in Evans, et al 1994 and Marin and Evans, 2003. Bottom, fine 

mutagenesis performed in the context of a reporter reveals two subelements within the 

SCR. The mutations listed result in the reporter expression pattern described to the right.
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germline or embryo (Marin and Evans 2003).  The GDE mutations do not appreciably 

reduce the level of reporter mRNA present in the germline or embryo, suggesting that the 

GDE is required solely for activation of translation (Marin and Evans 2003). 

 Seven different sequence-specific RNA-binding proteins contribute to the 

expression pattern of endogenous GLP-1 in the germline and embryo (Figure 1.4).  Once 

the mitotically dividing germ cell precursors enter meiosis, translation of glp-1 is 

repressed by GLD-1, which continues to repress translation throughout the syncytial 

region of the gonad (Francis et al. 1995b; 1995a; Marin and Evans 2003). Null mutants of 

gld-1 exhibit a germline tumor similar to the glp-1 gain-of-function mutation, supporting 

the hypothesis that GLD-1 is a translational repressor of glp-1 (Francis et al. 1995a).  

Furthermore, the GRE contains a GLD-1 binding site, suggesting that this translational 

repression is direct.  As the germ nuclei destined to become oocytes begin to 

recellularize, the expression level of GLD-1 is reduced (Jones et al. 1996), and the PUF 

proteins PUF-5, PUF-6, and PUF-7 are responsible for translationally repressing glp-1 

(Lublin and Evans 2007).  Knockdown of all three genes simultaneously results in 

expression of GLP-1 in oocytes, and these oocytes fail to mature (Lublin and Evans 

2007).  PUF-5, PUF-6, and PUF-7 are no longer expressed in maturing oocytes, and it is 

thought that MEX-3 represses translation of glp-1 in maturing oocytes (Pagano et al. 

2009).  Knockdown of mex-3 in a strain harboring a fluorescent reporter bearing the glp-1 

3′ UTR results in ectopic reporter expression in all cells of the early embryo (Pagano et al. 

2009), suggesting that MEX-3 is required for glp-1 translational repression. 



 29 

 After fertilization, five proteins are required to regulate the translation of glp-1 

mRNA.  MEX-5, MEX-6, and SPN-4 are all expressed in the anterior of the one-cell 

embryo (Schubert et al. 2000; Gomes et al. 2001; Ogura et al. 2003).  Knockdown of 

MEX-5 and MEX-6 results in no apparent expression of GLP-1 protein (Schubert et al. 

2000), while mutations in SPN-4 result in a similar expression pattern (Ogura et al. 2003).  

POS-1 and GLD-1 are required to translationally repress glp-1 in the posterior of the 

embryo; POS-1 is expressed in the posterior of the one-cell embryo shortly after 

fertilization (Tabara et al. 1999), while GLD-1 is expressed in the posterior starting from 

the four-cell stage (Jones et al. 1996).  Knockdown of either POS-1 or GLD-1 results in 

expression of GLP-1 throughout the embryo (Ogura et al. 2003; Marin and Evans 2003).  

Thus, the regulation of glp-1 translation requires a carefully coordinated suite of RNA-

binding proteins that each contribute to the translation of glp-1 at precise developmental 

phases of C. elegans oogenesis and embryogenesis.  The composition of the glp-1 mRNP 

is likely to be dynamic as it makes its way through the gonad and embryo, as RNA-

binding proteins and perhaps other regulatory factors required to translationally repress or 

activate glp-1 mRNA have limited domains of expression throughout the gonad.  No 

single group of factors has yet been identified that translationally represses glp-1 mRNA 

throughout the entire process of oogenesis and embryogenesis, and given the factors 

already identified which play a role in the regulation of glp-1, this is not likely to be the 

case.  

 To investigate the translational regulation of glp-1, or any other transcript, 

throughout development, a detailed understanding of which factors are binding to which 
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regions of the mRNA during which stages of development is required.  For glp-1, we 

have a limited amount of insight as to the binding sites for each of the factors known to 

participate in translational regulation.  The specificity of GLD-1 has been determined 

(Ryder et al. 2004), and a GLD-1 binding site is located within the GRE (Marin and 

Evans 2003). Mutations that overlap with the GLD-1 binding site result in increased 

reporter translation (Marin and Evans 2003).  Thus, it is likely that GLD-1 directly 

regulates glp-1 translation through this site.  By yeast three-hybrid assay, POS-1 and 

SPN-4 have been shown to associate with the SCR and TCR of the glp-1 3′ UTR, 

respectively (Ogura et al. 2003).  This narrows down the potential region that each protein 

recognizes to approximately 100 nucleotides, but it provides no information about the 

specific binding sites either protein recognize, the affinities of either protein for the glp-1 

3′ UTR, or the sequence specificities of either protein.  There are two matches to the 

MEX-3 consensus sequence in the glp-1 3′ UTR (Pagano et al. 2009). One is located 

within the SCR, and the other lies upstream in a region of the 3′ UTR that is dispensable 

for patterned regulation (Marin and Evans 2003; Pagano et al. 2009).  The ability of 

MEX-3 to bind to either of these sites has not been determined, nor is it known if either 

plays a role in vivo.  There is no information regarding PUF-5, PUF-6 or PUF-7 directly 

binding to the glp-1 3′ UTR, so it is not known if regulation by these factors is direct.  

Thus, our understanding of how glp-1 is regulated through time is incomplete, as is our 

understanding of most mRNAs throughout the germline.  With a better understanding of 

how sequence-specific RNA binding proteins select their targets, we could begin to map 

the mRNPs that are required for translational regulation throughout the germline. 
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Sequence specific RNA-binding proteins in C. elegans development 

 As discussed previously, many proteins containing RNA-binding domains are 

required to perform a variety of regulatory roles in oogenesis and embryogenesis.  

However, the sequence specificities of only a few are known, and the complete set of 

regulatory targets for any RBP is still unknown.  To highlight the diversity of RNA-

binding protein mediated translational regulation in C. elegans, I will discuss the RNA-

binding proteins FBF, GLD-1, MEX-3, and POS-1 as examples. 

 

FBF 

FBF (fem-3 binding factor) is the collective term for two nearly identical proteins 

encoded by fbf-1 and fbf-2.  FBF is required to make the switch from spermatocyte 

production to oocyte production in larval worms (Zhang et al. 1997; Kraemer et al. 1999), 

and it is also necessary to maintain a population of mitotically dividing germ cell 

precursors in the distal arm of the gonad (Crittenden et al. 2002).  Single mutations of 

either gene result in germ line development that is essentially wild-type, while double 

mutations result in an adult germline filled with spermatocytes and lacking a pool of 

mitotic cells (Zhang et al. 1997).  At least three regulatory targets of FBF have been 

identified: fem-3, which encodes a novel protein that promotes spermatogenesis and 

represses oogenesis (Zhang et al. 1997), gld-1, which encodes a RNA-binding protein that 

inhibits mitosis (Crittenden et al. 2002), and gld-3, which encodes a specificity factor for 
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the cytoplasmic poly(A) polymerase GLD-2 (Eckmann et al. 2004).  Together, GLD-2 

and GLD-3 are positive regulators of transcripts that promote meiosis, such as gld-1 (Suh 

et al. 2006).  FBF has been shown to directly associate with each of these transcripts both 

in vitro and in vivo, and a single nucleotide mutation that disrupts the FBF binding site in 

the fem-3 3′ UTR results in a germline that produces exclusively spermatocytes 

(Crittenden et al. 2002), supporting the hypothesis that FBF generally acts as a direct 

repressor of translation.  

   FBF is a founding member of the PUF (Pumilio and FBF) family of RNA-

binding proteins.  PUF proteins are typified by an RNA-binding domain that contains 

eight repeats of a motif comprised of three alpha helices (Zamore et al. 1997; 1999; 

reviewed in Wickens et al. 2002).  These repeats are packed together in a curved structure 

with each repeat having a similar orientation.  This generates an RNA-binding surface on 

the concave face of the RNA-binding domain.  Most PUF proteins recognize an eight 

nucleotide sequence that begins with the trinucleotide UGU and ends with the 

dinucleotide UA.  In canonical PUF domains, each one of the PUF repeats makes direct 

contact with one of the eight bases in the recognition element (Wang et al. 2001).  

However, the optimal binding sequence for FBF contains nine nucleotides 

(UGURNNAUA, where R is a purine and N is any base) (Opperman et al. 2005; 

Bernstein et al. 2005).  A series of crystal structures of the PUF domain of FBF in 

association with a variety of target sequences reveals the structural basis of flexible RNA 

recognition by FBF (Wang et al. 2009).  Each of the bases contained within the UGU and 
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AUA trinucleotides is involved in stacking interactions with amino acids of FBF, and the 

permitted identities of these nucleotides are thus significantly restricted. Bases at 

positions 4, 5, and 6, on the other hand, do not form stacking interactions with amino 

acids of the RNA-binding domain, permitting their identities to be more flexible.  The 

bases at positions 5 and 6 are flipped away from the RNA-binding domain and stacked 

directly with base 4, which allows FBF to accommodate an additional nucleotide relative 

to other PUF proteins (Wang et al. 2009; Koh et al. 2011). Depending on the identities of 

the bases at positions 4 through 6, these bases can adopt a variety of conformations.  

Thus, flexibility within an RNA recognized by an RNA-binding protein can allow that 

RNA-binding protein to recognize a variety of sequences. 

 As a result of FBF's degenerate specificity in vitro, it is capable of associating 

with many transcripts in vivo.  A genome-wide analysis of FBF-associated transcripts 

identified 1350 transcripts that are reproducibly immunoprecipitated with FBF from 

adult, hermaphrodite C. elegans extracts (Kershner and Kimble 2010).  67% of these 

transcripts contain at least one consensus FBE, compared with approximately 30% of all 

transcripts in C. elegans, demonstrating that this strategy enriches for FBF-associated 

transcripts (Kershner and Kimble 2010). However, even among the most enriched 

transcripts, only 85% contained FBEs, suggesting that FBF may be capable of 

recognizing sequences outside of its defined consensus.   

 FBF is proposed to have two distinct methods of regulating the transcripts with 

which it associates: recruitment of the CCF-1/Pop2p deadenylase, and recruitment of the 

atypical cytoplasmic poly(A) polymerase GLD-2.  FBF is a negative regulator of gld-1 
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translation in the germline of adult hermaphrodites, and translational repression is 

achieved through a high-affinity FBF binding site within the gld-1 3′ UTR.  Using an in 

vitro system based on the gld-1 3′ UTR bearing a short poly(A) tail, Suh and colleagues 

demonstrated that deadenylation can take place in the presence of purified recombinant 

FBF and CCF-1, and that this activity is dependent on the presence of a high affinity FBF 

binding site (Suh et al. 2009).  FBF associates directly with CCF-1 by yeast two-hybrid 

assay, suggesting that FBF directly recruits CCF-1 to 3′ UTRs to which it binds, and thus 

represses translation by shortening the poly(A) tail (Suh et al. 2009).  Outside of the 

germline, FBF is capable of activating translation in neurons by recruiting GLD-2. One 

target of FBF is egl-4, which encodes a kinase required to mediate odor adaptation in C. 

elegans.  The egl-4 3′ UTR contains an FBF binding site, and mutants that disrupt this 

binding site have decreased levels of EGL-4 protein expression, but no change in the 

expression level of egl-4 mRNA (Kaye et al. 2009).  These mutants also fail to adapt to 

noxious odors.  Decreased EGL-4 expression is also observed in a gld-2 mutant, 

suggesting that cytoplasmic polyadenylation is required for EGL-4 translation (Kaye et 

al. 2009).  Given that FBF associates directly with GLD-2 by yeast two-hybrid assay (Suh 

et al. 2009), it is possible that FBF is directly recruiting GLD-2 to the egl-4 3′ UTR and 

thus stimulating its translation by extending its poly(A) tail.  The basis of the apparently 

opposite regulatory activities of FBF is not well understood, but it is likely to depend on 

the cytoplasmic content of the cell where regulation is taking place, the sequence context 

of the FBF binding site, or some combination of both.  
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GLD-1 

 GLD-1 is essential for oogenesis, hermaphrodite spermatogenesis and 

embryogenesis.  The germline progenitor cells of gld-1(null) mutant worms enter meiosis 

but exit at the pachytene stage and return to mitosis; thus, the gonad is transformed into a 

mitotically dividing germline tumor and no viable oocytes or embryos are generated 

(Francis et al. 1995a).  Less severe mutant alleles of gld-1 result in defects in 

spermatogenesis and oogenesis without the formation of a germline tumor (Francis et al. 

1995b).  Adult hermaphrodite worms treated with gld-1(RNAi) produce a limited number 

of fertilized embryos prior to germline tumor formation, and these embryos arrest prior to 

gastrulation (Marin and Evans 2003).  GLD-1 is expressed in the syncytial region of the 

gonad, as well as the posterior of embryos beginning at the four-cell stage (Jones et al. 

1996).  GLD-1 has been shown to repress translation of numerous mRNAs including glp-

1, tra-2, and rme-2 (Marin and Evans 2003; Lee and Schedl 2001).  glp-1 encodes a Notch 

receptor required for mitosis as well as inductive signaling events in the early embryo.  

Tra-2 encodes a membrane protein of unknown function that is required to initiate the 

switch to oogenesis in late larval worms (Doniach 1986; Kuwabara et al. 1992), while 

rme-2 encodes a yolk receptor that is translated in recellularizing oocytes and is required 

for yolk uptake (Grant and Hirsh 1999).  GLD-1 is thus capable of repressing the 

translation of factors required for germline development events that occur both prior to 

and after the expression of GLD-1. 
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 Within the syncytial region of the germline, as well as in the posterior cells of 

early embryos, GLD-1 localizes to cytoplasmic granules. General cytoplasmic staining of 

GLD-1 is also observed in both cases (Jones et al. 1996; Noble et al. 2008).  In both 

embryos and the germline, these granules are distinct from P-granules, as GLD-1 

immunofluorescence does not colocalize with that of the P-granule component PGL-1 

(Noble et al. 2008).  Extensive analysis of the composition of the embryonic granules has 

not been performed, but the germline granules contain the RNA-binding proteins CGH-1 

and CAR-1, and do not contain the 5′ decapping enzyme DCAP-2 (Noble et al. 2008).  

CAR-1 and CGH-1, but not PGL-1, also immunoprecipitate with GLD-1 from worm 

extracts, further supporting GLD-1 being a component of these granules (Noble et al. 

2008).  Given the absence of machinery required for turnover of mRNAs, these germline 

granules may be required for the storage of translationally inactive mRNA destined for 

use in developing oocytes or post-fertilization.  Consistent with this hypothesis, 

cytoplasmic germline granules also contain mRNAs for genes required later in oogenesis 

or embryogenesis such as rme-2, pos-1, and glp-1 (Noble et al. 2008; Scheckel et al. 

2012).  An injected in vitro transcribed reporter containing the glp-1 3′ UTR localizes to 

these granules.  Reporter constructs lacking the glp-1 SCR fail to localize in the syncytial 

region and are translated, suggesting that the SCR mediates repression in the distal arm of 

the gonad, and also that granular localization is necessary for translational repression of 

glp-1 (Noble et al. 2008).  
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 GLD-1 contains a STAR RNA-binding domain.  STAR domains comprise a 

maxi-KH domain flanked by two conserved domains termed Qua1 and Qua2 (Ryder et 

al. 2004).  GLD-1 is an obligate dimer, and dimerization is mediated through the Qua1 

domain (Ryder et al. 2004).  Truncations of the protein that lack this domain not only fail 

to dimerize, but also bind RNA with a ten fold weaker affinity, indicating that 

dimerization is essential for high-affinity RNA-binding (Ryder et al. 2004).  A recent 

crystal structure of the GLD-1 Qua1 domain shows that each protomer of the dimer is 

oriented perpendicularly, which would suggest that the two RNA-binding surfaces of the 

GLD-1 dimer are distant from one another, and a substantial amount of RNA looping is 

required for binding (Beuck et al. 2010).  Consistent with this model, GLD-1 has a 

footprint of approximately 20 nucleotides on a high affinity fragment of the tra-2 3′ UTR 

(Ryder et al. 2004). GLD-1 also requires two distinct elements for the highest affinity 

binding: a core hexameric sequence of UACU(A/C)A, and an upstream UA dinucleotide 

(Ryder et al. 2004). Thus, when bound to RNA, GLD-1 is likely to occupy much more 

sequence than just its consensus binding site. 

 In addition to the storage granules described above, GLD-1 also associates with 

the F-box containing protein FOG-2 (Clifford et al. 2000).  F-box domains typically 

recruit ubiquitination machinery, which usually results in targeting of the ubiquitinylated 

protein for degradation by the proteasome.  The association between GLD-1 and FOG-2 

is required for spermatogenesis, and as each protein is essential, it is unlikely that GLD-1 

is being degraded as a result of FOG-2 association (Clifford et al. 2000).  The FOG-
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2/GLD-1 complex may target other proteins required for translation that are associated 

with the same transcript, and thus repress translation by targeting translational machinery 

for degradation (Clifford et al. 2000).  Because GLD-1 dimerizes (Ryder et al. 2004) and 

recruits multi-subunit regulatory complexes (Clifford et al. 2000), GLD-1 likely has a 

large footprint on the RNAs with which it associates. 

 

MEX-3 

 MEX-3 contains a dual-KH domain, and is expressed at both the distal end of the 

germline as well as the anterior of early embryos (Draper et al. 1996).  In the absence of 

MEX-3, AB (the anterior blastomere of the two cell embryo) produces muscle instead of 

hypodermal and pharyngeal tissues (Draper et al. 1996). This defect is thought to be the 

result of mis-regulation of the transcription factor PAL-1, which specifies muscle and 

whose activity is normally restricted to the posterior C and D blastomeres (Draper et al. 

1996). In embryos lacking MEX-3, PAL-1 is expressed in the anterior of the embryo, 

which suggests that MEX-3 plays a role in translationally repressing pal-1 in the anterior 

(Draper et al. 1996).  MEX-3 also translationally represses the nanos homolog NOS-2 in 

embryos (Subramaniam and Seydoux 1999), which may indicate that MEX-3 regulates 

many transcripts.  

Single mutations of mex-3 do not result in any apparent germline defects, but two 

double mutations have been discovered that result in substantially transformed germlines.  

Mutation of mex-3 simultaneously with puf-8, a PUF family RNA-binding protein, results 
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in a ten-fold reduction of the number of cells within the germline (Ariz et al. 2009). 

Mutation of either gene alone results in only a two-fold decrease in the number of 

mitotically proliferating cells, demonstrating redundant control of mitosis by these 

proteins (Ariz et al. 2009). If glp-1 is also mutated at the same time, these cells can exit 

mitosis and differentiate into both spermatocytes and oocytes, suggesting that MEX-3 

and PUF-8 redundantly promote mitotic proliferation only (Ariz et al. 2009).  A double 

mutation of mex-3 and gld-1 results in a germline containing cells that have 

transdifferentiated into a variety of somatic types, including neurons and muscle (Ciosk 

et al. 2006).  Thus, it is possible that MEX-3 regulates multiple transcripts required for 

preserving germ-cell fate in concert with other RNA-binding proteins.  

The specificity of the MEX-3 RNA-binding domain has been determined, and it 

recognizes the highly degenerate sequence DKAGN0-8UHUA, where D is A, G, or U, K 

is G or U, N is any base, and H is A, C, or U (Pagano et al. 2009).  This binding site is 

present in the 3′ UTRs of approximately 30% of C. elegans genes, including the known 

regulatory targets pal-1 and nos-2 (Pagano et al. 2009).  Given the high number of 

candidate MEX-3 binding sites, as well as the apparently redundant nature of MEX-3 

regulation in the germline, MEX-3 may require other, unknown factors for specific 

regulation of its targets.  In addition, the mechanism of MEX-3 mediated translational 

repression is also unknown.  
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POS-1 

POS-1 is one of 17 CCCH-type tandem zinc finger RNA-binding proteins (Tabara 

et al. 1999), in C. elegans (reviewed in Kaymak et al. 2010).  POS-1 is expressed in the 

posterior of embryos starting after fertilization, and is restricted to the posterior 

blastomeres until the four cell stage. After this point, POS-1 expression is only detectable 

in the P-lineage, where it remains until at least the hundred-cell stage.  Throughout early 

embryogenesis, POS-1 expression is predominantly cytoplasmic (Tabara et al. 1999). 

Embryos lacking POS-1 arrest prior to gastrulation with defects in three tissue types: AB-

derived pharynx, E-derived intestine, and P-lineage-derived germ cell precursors (Tabara 

et al. 1999).  The first divisions of the P-lineage are also abnormal.  In wild-type 

embryos, the pace of division of the P-lineage is slow relative to the other blastomeres, 

but in POS-1 mutant embryos, the P-lineage cell divides at a similar rate to the somatic 

blastomeres (Tabara et al. 1999).  The pleiotropic nature of the pos-1 mutant phenotype 

suggests it regulates multiple critical targets during embryogenesis.  To understand the 

biological role that POS-1-mediated translational regulation plays in the early embryo, 

we set out to determine its in vitro specificity, and then use that information to predict 

and identify critical regulatory targets.  Chapter II describes the in vitro biochemical 

characterization of the RNA-binding domain of POS-1, including a comprehensive 

determination of its sequence specificity.  Chapter III describes the POS-1-mediated 

regulation of glp-1 in concert with the RNA-binding protein GLD-1. 
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Chapter II 

RNA target specificity of embryonic cell 

fate determinant POS-1 
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ABSTRACT  

Specification of Caenorhabditis elegans body axes and cell fates occurs prior to 

the activation of zygotic transcription.  Several CCCH-type tandem zinc finger (TZF) 

proteins coordinate local activation of quiescent maternal mRNAs after fertilization, 

leading to asymmetric expression of factors required for patterning.  The primary 

determinant of posterior fate is the TZF protein POS-1.  Mutants of pos-1 are maternal 

effect lethal with a terminal phenotype that includes excess pharyngeal tissue and no 

endoderm or germline.  Here, we delineate the consensus POS-1 recognition element 

(PRE) required for specific recognition of its target mRNAs.  The PRE is necessary but 

not sufficient to pattern the expression of a reporter.  The PRE is distinct from sequences 

recognized by related proteins from both mammals and nematodes, demonstrating that 

variants of this protein family can recognize divergent RNA sequences.  The PRE is 

found within the 3′ untranslated region of 227 maternal transcripts required for early 

development, including genes involved in endoderm and germline specification.  The 

results enable prediction of novel targets that explain the pleiotropy of the pos-1 

phenotype. 
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INTRODUCTION 

 During the first few rounds of cell division in the development of a metazoan, 

body axes are formed, cell fates are specified, and a rough body plan is established.  In 

many species, these events occur without the benefit of zygotic transcription, relying 

instead on the asymmetric localization and translation of specific maternally-supplied 

mRNAs (reviewed in Farley and Ryder 2008).  A network of cis-acting regulatory 

elements and cognate trans-acting specificity factors, including RNA-binding proteins 

and microRNAs, is required to ensure that mRNAs are appropriately regulated.  

Frequently, the cis-acting regulatory elements are found in the 3′ untranslated region (3′ 

UTR) of mRNAs, as this region is not actively translated and is therefore readily 

accessible to the trans-acting regulatory factors (reviewed in Kuersten and Goodwin 

2003).  

 Early embryogenesis in the nematode Caenorhabditis elegans requires the 

regulation of an extensive network of maternally supplied mRNAs, as the onset of 

zygotic transcription is delayed.  Prior to the initiation of zygotic transcription, the fates 

of all of the founder cells that produce the tissues and organs present in the adult worm 

are established (Sulston et al. 1983) (Figure 2.1).  This process begins soon after 

fertilization, when the zygote divides asymmetrically across the anterior-posterior axis.  

The larger anterior daughter is the first founder cell, while the smaller posterior daughter 

is the progenitor of the germline.  The germline progenitor repeats this pattern of 

asymmetric cell division three more times, eventually giving rise to six total founder cells 
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Figure 2.1.  POS-1 is required for the specification of multiple cell fates in the early C. 

elegans embryo.  A. The early C. elegans cell lineage is shown, with each founder cell 

labeled with the tissue types it produces.  The expression of POS-1 protein is shown in 

grey, and each founder cell specified incorrectly in pos-1 mutant embryos is grayed out.  

B.  Schematic of POS-1 expression in early embryos.  POS-1 expression is shown in 

grey, and each founder cell is labeled. 
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that together are the progenitors of all the tissue types present in the adult worm (Sulston 

et al. 1983).  Most cells of the zygote do not begin transcription until the four cell stage, 

and transcription does not begin in the germline lineage until just prior to gastrulation.  

(Mello et al. 1996; Seydoux et al. 1996; Seydoux and Dunn 1997).  Thus, post-

transcriptional regulation of maternal transcripts by maternal RNA-binding proteins is the 

primary mechanism that drives cell fate specification in the early embryo. 

 POS-1 is a critical trans-acting factor required for C. elegans early embryogenesis 

(Tabara et al. 1999).  POS-1 accumulates in the posterior of the fertilized zygote and is 

inherited asymmetrically at each division (Figure 2.1).  Embryos lacking POS-1 fail to 

hatch; the terminally differentiated embryos lack intestine and germ cell precursors, and 

have excess pharyngeal tissue.  Each of these tissue types is derived from a different 

founder cell, indicating that POS-1 is required for multiple cell fate specification events. 

Three genes have been identified whose expression is perturbed in pos-1 mutants:  

glp-1, apx-1 (Ogura et al. 2003), and nos-2 (D'Agostino et al. 2006).  nos-2 encodes a 

protein similar to Drosophila Nanos that is required for germ cell development and 

migration during gastrulation (Subramaniam and Seydoux 1999).  glp-1 encodes a cell 

surface receptor homologous to Drosophila Notch, and apx-1 encodes a ligand 

homologous to Drosophila Delta that is recognized by GLP-1 (Fehon et al. 1990; 

reviewed in Artavanis-Tsakonas et al. 1999). APX-1 and GLP-1 are required to pattern 

anterior development; their interaction at the two-cell stage polarizes the anterior 

blastomere as it divides, causing its posterior daughter (ABp) to adopt a hypodermal fate 

(Mello et al. 1994).  In pos-1 mutants, GLP-1 is aberrantly expressed in all cells of the 
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early embryo, while APX-1 expression is undetectable (Ogura et al. 2003).  This prevents 

polarization of the two-cell stage anterior blastomere, causing the formation of excess 

pharyngeal tissue at the expense of hypodermis.  

 The mRNA encoding glp-1 is present in every cell of the embryo until the eight-

cell stage, but GLP-1 protein is expressed only in the anterior of the embryo (Ogura et al. 

2003). The glp-1 3′ UTR is both necessary and sufficient to direct this expression pattern, 

as microinjected mRNA encoding a lacZ reporter under control of the glp-1 3′ UTR is 

expressed in a pattern identical to endogenous glp-1 (Evans et al. 1994).  This suggests 

that glp-1 mRNA is translationally repressed through its 3′ UTR in the posterior of the 

embryo.  Two seventy-nucleotide elements within the 3′ UTR, termed the spatial control 

region (SCR) and the temporal control region (TCR), are required for both spatial and 

temporal patterning.  Within the SCR are two regulatory sub-elements required for 

translational repression (glp-1 repression element, or GRE) and translational activation 

(glp-1 de-repression element, or GDE). By yeast-three hybrid, POS-1 associates with 

both the SCR and TCR, suggesting that it represses translation of glp-1 through direct 

association (Ogura et al. 2003).  However, given the complex pleiotropic phenotype of 

pos-1 mutant embryos (Tabara et al. 1999), it is unlikely that derepression of glp-1 

translation drives all of the observed patterning defects. 

 POS-1 is one of several nematode CCCH-type tandem zinc finger proteins 

(hereafter TZF) required for oocyte maturation and early development (Mello et al. 1996; 

Schubert et al. 2000; Shimada et al. 2006; Shirayama et al. 2006).  These proteins are 

related to tristetraprolin (TTP), a mammalian factor that promotes the deadenylation and 
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subsequent rapid turnover of tumor necrosis factor alpha (TNFα) mRNA by direct 

association with its 3′ UTR (Carballo et al. 1998; Lai et al. 1999; 2005).  TTP binds to the 

sequence UUAUUUAUU, present in multiple copies within the AU-rich element (ARE) 

of the TNFα 3′ UTR, with high affinity and specificity (Worthington et al. 2002; 

Blackshear et al. 2003; Brewer et al. 2004).  In contrast, the nematode TZF protein MEX-

5, required for anterior development, binds with high affinity but relaxed specificity to 

uridine-rich sequences (Schubert et al. 2000; Pagano et al. 2007).  Little is known about 

the binding specificity of the other members of the nematode TZF protein family, 

including POS-1.  To probe the basis for specific mRNA recognition by POS-1, and to 

facilitate prediction of novel POS-1 regulatory targets, we set out to delineate the RNA-

binding specificity of this protein. 

 

RESULTS 

POS-1 binds weakly to TTP and MEX-5 binding sites 

 We first asked whether POS-1 binds to RNA with the same specificity as TTP or 

MEX-5.  Recombinant POS-1 TZF domain (amino acids 80–180) was expressed as a C-

terminal fusion to maltose binding protein (MBP) in Escherichia coli and purified to near 

homogeneity.  The recombinant protein was used in quantitative electrophoretic mobility 

shift assays (EMSA) with fluorescein end-labeled RNAs encoding high affinity binding 

sequences recognized by TTP or MEX-5:  ARE13 and poly(U)-13, respectively (Brewer 

et al. 2004; Pagano et al. 2007) (Figure 2.2).  Varying concentrations of POS-1 were 

equilibrated with trace labeled RNA, and the bound RNA was resolved from the free 
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Figure 2.2.  POS-1 is a specific RNA-binding protein with a different specificity than 

either TTP or MEX-5.  A. POS-1 binding to ARE13 was measured by electrophoretic 

mobility shift assay.  A representative gel is shown, with a plot of POS-1 concentration 

versus fraction bound below.  The reported Kd, app is the average ± one standard deviation 

of three independent replicates.  B.  POS-1 binding to U13 was measured as in A.  C.  

Schematic of tiled fragments of the glp-1 SCR and TCR.  D.  POS-1 binding to fragments 

one and four of the glp-1 SCR was measured as in A.  
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RNA by gel electrophoresis.  The fraction of bound RNA at each concentration of POS-1 

was determined using a FUJI FLA-5000 fluorimager and the apparent equilibrium 

dissociation constant (Kd, app) was determined by a fit of the data to the Hill equation.  

POS-1 binds to ARE13 with modest affinity (Kd, app =  200 ± 6 nM), approximately 50 

times weaker than the previously published affinity of TTP for ARE13 (Brewer et al. 

2004).  Likewise, POS-1 binds to poly(U)-13 RNA (Kd, app = 500 ± 130 nM), but the 

affinity is reduced compared to MEX-5′s affinity for the same sequence (Pagano et al. 

2007).  Together, the results demonstrate that though POS-1 binds directly to RNA 

recognized by TTP and MEX-5, it does so with significantly reduced affinity. 

 

POS-1 binds to the 3′ UTR of multiple genes required for embryogenesis 

We hypothesized that POS-1 binds with higher affinity to a sequence determinant 

that is different from TTP or MEX-5.  In an attempt to identify a high affinity POS-1 

interacting sequence, we constructed a library of tiled fragments of the glp-1 SCR and 

TCR.  These elements were previously demonstrated to associate with POS-1 by yeast 

three hybrid analysis (Ogura et al. 2003).   Each fragment is approximately thirty 

nucleotides long and overlaps the previous fragment by fifteen nucleotides (Figure 2.2).  

The association of POS-1 with these fragments was assayed by EMSA (Figure 2.2, Table 

2.1).  POS-1 binds to three of the four SCR fragments, and to all four TCR fragments.  

The affinity of POS-1 is highest for the fragments near the 5′ end of the SCR (Kd, app = 76 

± 6), which contain the GRE and GDE.  The data indicate that one or more high affinity 

POS-1 binding sites are present in both the SCR and the TCR.  However, a comparison of  
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Table 2.1: Electrophoretic mobility shift assay with  glp-1  3' UTR fragments
Name Sequencea Kd, app (nM) n
SCR frag 1 UUAUUCUAGACUAAUAUUGUAAGCUAUAAG 76 ± 6 3
SCR frag 2 AUUGUAAGCUAUAAGUUGUAGAAUAAUUAU 97 ± 6 3
SCR frag 3 UUGUAGAAUAAUUAUUGAUCCAAAUCAGAU 120 ± 20 3
SCR frag 4 UGAUCCAAAUCAGAUUAAGAGUAUAA 500 ± 100 3
TCR frag 1 UUGUUUUUUCUCCUUUUCUUUAUAACUUGU 150 ± 20 3
TCR frag 2 UUUCUUUAUAACUUGUUACAAUUUUUGAAA 120 ± 20 3
TCR frag 3 UUACAAUUUUUGAAAUUCCCUUUUUUGACA 310 ± 30 3
TCR frag 4 UUCCCUUUUUUGACAGGCUUUUAUUACACUGUAA 189 ± 7 3  
a Boldface denotes PRE 

Each reported Kd,app is the mean ± one standard deviation of the number of replicates 

listed to the right. 
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the sequences of each fragment does not easily reveal the determinants of the high 

affinity interactions. 

 In a second approach to identify sequences that POS-1 binds with high affinity, 

we constructed a library of sequences from maternal mRNA 3′ UTRs that contain at least 

two UAUU elements (TTP half sites) with no more than two intervening nucleotides.  

We rationalized that POS-1 may bind to similar determinants as TTP, but with altered 

spacing between those determinants due to an increase in the number of amino acids that 

link the individual zinc fingers (17 in POS-1 compared to 12 in TTP).  The library was 

biased to include only UTR fragments from genes that are post-transcriptionally 

regulated during early development (Bowerman et al. 1993; Mello et al. 1994; Draper et al. 

1996; Hunter and Kenyon 1996; Gomes et al. 2001).  The affinity of POS-1 for each 

sequence in the library was assayed by EMSA (Table 2.2).  In total, six UTR fragments 

from five genes (apx-1, mex-3, pal-1, skn-1, and spn-4) were tested.  POS-1 binds to two 

of these sequences with high affinity.  These include a short fragment of the pal-1 3′-

UTR (Kd, app = 84 ± 3 nM), and a longer fragment of the mex-3 3′-UTR that contains 

multiple UAUU sequences (mex-3 fragment: 

AACUAUUAUUAUUUGUUAUUCAUAUUUU, Kd, app = 47 ± 7 nM) (Figure 2.3).   

 MEX-3 is a KH domain RNA-binding protein required for specifying the fates of 

anterior blastomeres during early embryogenesis (Draper et al., 1996).  MEX-3 acts by 

inhibiting the developmental program that specifies body wall muscle.  In wild-type 

embryos, this tissue type is produced exclusively by one of the posterior founder cells, 

while in mex-3 mutant embryos, it is produced ectopically by descendants of the two-cell  
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Table 2.2: Electrophoretic mobility shift assay with maternal mRNA fragments
Name Sequencea,b Kd, app (nM) n
apx-1  frag GUUUAUUUUUAUUAU 120 ± 10 3
pal-1  frag 1 AUUUAUUAUAUUUU 167 ± 6 3
pal-1  frag 2 CUUUAUUUAUUGU 84 ± 3 3
skn-1 frag AGUUAUUUCUAUUAU 130 ± 30 3
spn-4 frag ACGUAUUGUAUUUU 250 ± 20 3
mex-3  frag AACUAUUAUUAUUUGUUAUUCAUAUUUU 47 ± 7 3
poly(C)-15 CCCCCCCCCCCCCCC >1000 1

 

a Underline denotes TTP half site 

b Boldface denotes PRE 

Each reported Kd,app is the mean ± one standard deviation of the number of replicates 

listed to the right. 
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Figure 2.3.  POS-1 binds to the mex-3 UTR fragment with apparent 1:1 stoichiometry.  

A.  POS-1 binding to the mex-3 UTR fragment was measured as in figure 1A.  B. 

Stoichiometric binding assay between POS-1 and mex-3 RNA.  The total RNA 

concentration for the experiment is indicated.  N was determined from a quadratic fit 

(Rambo & Doudna, 2004).  C. Gel filtration chromatogram of recombinant POS-1.  Gel 

filtration standards are displayed in white.  Molecular weights of each standard peak are 

indicated.  POS-1 elution profile is displayed in grey, and the protein concentration and 

apparent molecular weight are indicated.  D. Equilibrium analytical ultracentrifugation 

traces of recombinant POS-1.  The rate of rotation, as well as the protein concentration 

for each trace is indicated.  Grey lines represent the fit to a monomer-Nmer equilibrium.  
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stage anterior daughter (Draper et al., 1996).  This suggests that MEX-3 functions during  

the same stage of embryogenesis as POS-1, and also that MEX-3 activity must be 

restricted to the anterior of the embryo.  Consistent with this, both MEX-3 protein and 

mex-3 mRNA are asymmetrically distributed in the anterior of the embryo at the two and 

four cell stages in a pattern that is anti-correlated with POS-1 (Draper et al., 1996).  POS-

1 may regulate the expression of mex-3 by repressing its translation, promoting the 

turnover of mex-3 mRNA, or both.  To further explore the potential regulatory 

relationship between POS-1 and mex-3, we decided to further characterize the interaction 

between mex-3 mRNA and POS-1.  

 

POS-1 forms an equimolar complex with the mex-3 fragment 

 POS-1 binds to the mex-3 3′ UTR fragment with the highest affinity of all tested 

sequences.  This could be due to the presence of multiple binding sites, or it might be due 

to the presence of a single site that binds to POS-1 with higher affinity.  To distinguish 

between these possibilities, the stoichiometry of the complex between POS-1 and this 

RNA fragment was determined by EMSA (Figure 2.3).  Varying concentrations of POS-1 

were equilibrated with a fixed, elevated concentration of unlabeled mex-3 RNA 

supplemented with a trace amount of fluorescently labeled mex-3 RNA.  After 

equilibration, the bound RNA was resolved from the free RNA by gel electrophoresis and 

the fraction of bound RNA was determined by fluorimetry. The data were fit to a 

quadratic model of saturable binding (Rambo and Doudna 2004).  The apparent 

stoichiometry of the POS-1:mex-3 complex is one to one (saturation point = 1.0 ± 0.1), 
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consistent with the hypothesis that the mex-3 RNA contains a single, high affinity binding 

site. 

To ensure that POS-1 binds as a monomer, the oligomerization state of 

recombinant POS-1 was determined by size exclusion chromatography and by 

equilibrium sedimentation ultracentrifugation (Figure 2.3).  Both methods reveal that 

POS-1 is predominantly monomeric, even at a concentration near 20 µM, orders of 

magnitude higher than the apparent dissociation constant for the mex-3 RNA.  We 

conclude that monomeric POS-1 binds to the mex-3 3′ UTR fragment with high affinity 

as a one to one molar stoichiometric complex. 

  

POS-1 recognizes a twelve nucleotide fragment within the mex-3 UTR 

 To identify the minimal POS-1 binding site within the mex-3 3′-UTR fragment, 

three overlapping 15-nucleotide sub-fragments of this RNA were synthesized. The 

affinity of each for POS-1 was determined by EMSA (Figure 2.4).  POS-1 binds to the 

fragment #1 and #2 slightly weaker than the intact sequence (mex-3 fragment #1 Kd, app = 

110 ± 40 nM; mex-3 fragment #2 Kd, app = 89 ± 5 nM).  In contrast, POS-1 binds to 

fragment #3 with drastically reduced affinity (mex-3 framgent #3 Kd, app = 800 ± 200 nM).  

This suggests that a high affinity POS-1 binding site is located in the overlap between the 

first and second mex-3 fragments.  To test this hypothesis, a twelve nucleotide fragment 

that corresponds to this overlap (hereafter, mex-3 min) was synthesized.  This sequence 

binds with identical affinity, within error, to the original mex-3 RNA (mex-3 min Kd, app = 

39 ± 6 nM, mex-3 RNA Kd, app = 47 ± 9 nM, Figure 2.4).   
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 Figure 2.4.  POS-1 specifically recognizes a twelve nucleotide fragment of the mex-3 3′ 

UTR.  A. Table of association measurements for POS-1 and mex-3 fragments.  Kd, app was 

measured by electrophoretic mobility shift assay, and the reported values are the average 

± standard deviation for three independent replicates.  The mex-3 min sequence is 

highlighted in grey.  B. Representative electrophoretic mobility shift assay for mex-3 min.  

The fit and reported Kd, app are as in figure 1A.  C.  Representative fluorescence 

polarization assay for mex-3 min.  Each data point is the average ± standard deviation of 

five reads of an independent replicate.  The data were fit to the Hill equation, and the 

reported Kd, app is the average ± standard deviation of three independent replicates.  D.  

Representative kinetic fluorescence polarization assays for POS-1 and the indicated 

RNAs.  koff, app was determined by monitoring the change in fluorescence polarization 

after the addition of a hundred-fold excess of unlabeled competitor RNA, and fitting to a 

single exponential.  Empty circles, unlabeled mex-3 min competitor.  Filled circles, 

unlabeled C15 competitor.  Filled diamonds, no competitor.  Solid black line represents 

the single exponential fit.  
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To confirm the equilibrium dissociation constant for mex-3 min, and to develop a 

convenient assay for kinetic analysis, we assessed the ability of POS-1 to change the 

polarization of fluorescein end-labeled mex-3 min RNA in solution.  Varying 

concentrations of protein were equilibrated with limiting labeled mex-3 min RNA, and 

the polarization value determined using a fluorescence plate reader.  The association of 

POS-1 with the fluorescently labeled mex-3 min RNA significantly increases the 

polarization of the fluorophore, thus providing a parameter to monitor POS-1 binding in 

real time.  The apparent equilibrium dissociation constant was determined by plotting  

polarization as a function of protein concentration and fitting the data to the Hill equation  

(Figure 2.4).  The Kd, app of POS-1 for mex-3 RNA is 53 ± 4 nM, similar to the Kd, app 

determined by EMSA.  Next, the polarization assay was used to determine the 

dissociation kinetics of the complex.  An excess of unlabeled mex-3 min RNA, poly(C)-

15 RNA, or a buffer control was added to a pre-formed complex of POS-1 and labeled 

mex-3 min RNA (Figure 2.4).  Unlabeled mex-3 min serves as a trap to prevent 

reassociation with the labeled RNA over the time course of the experiment.  Unlabeled 

poly(C)-15 RNA does not bind to POS-1 (Table 2), and serves as a non-specific binding 

control.  To control for dissociation due to dilution, an experiment was performed with 

buffer in place of the unlabeled RNA.  The apparent dissociation rate constant (koff, app) 

was determined by fitting the observed change in polarization as a function of time to an 

exponential decay.  The koff, app is 2.94 ± 0.08 X 10-3 s-1 when unlabeled mex-3 min is used 

as a competitor.  In contrast, little dissociation is observed when poly(C)-15 or buffer 



 62 

alone is added.  Based on these measurements, and the determination of the Kd, app above, 

the association rate constant can be calculated (kon, calc = 6.0 ± 0.4 X 104 M-1 s-1).  These 

results provide a kinetic and thermodynamic framework for detailed analysis of the 

interaction between POS-1 and the minimal mex-3 fragment.  

 

 

 

Determination of the POS-1 consensus sequence 

 Next, we set out to determine the sequence determinants within mex-3 min that 

contribute to binding.  To do this, the change in the standard free energy change (ΔΔGº) 

was measured for every single point mutation of mex-3 min RNA using EMSA.  In total, 

thirty-six individual mutations were tested, representing every possible single nucleotide 

substitution at each position of the mex-3 min sequence (Figure 2.5).  Mutation of seven 

positions causes a significant decrease in affinity (position 2–7, 10: ΔΔG > 0.5 kcal/mol), 

while five positions can tolerate any base substitution (position 1, 8, 9, 11, and 12: ΔΔG < 

0.5 kcal/mol).  Based on this data, the POS-1 recognition element (PRE) is 

UAUURDNNG, where R is any purine, D is A, G, or U, and N is any base.  Compared to 

the TTP binding site, the PRE contains an extra purine and displays a greater degree of 

degeneracy (Brewer et al. 2004).  In contrast with the MEX-5 binding sequence, the PRE 

exhibits strict requirements at several positions, while MEX-5 binds to any uridine-rich 

sequence (Pagano et al. 2007).  The disparity in specificity between POS-1, TTP, and 



 63 

MEX-5 suggests that the POS-1-RNA interface is significantly different from those of the 

other proteins. 

 To investigate the spacing requirements between each of the purines in the PRE, 

the relative position of each purine nucleotide was varied within a polyuridine 

background, and the ΔΔGº for each mutant sequence was determined by EMSA (Figure 

2.5).  POS-1 is tolerant of an additional nucleotide between A3 and A6, and one 

additional or one fewer nucleotide between A6 and G10.  Taking the flexibility of the 

spacing between purines into account, we expand the PRE to 5′-UA(U2-3)RD(N1-3)G-3′.  

This consensus is present in all tested sequences that bind to POS-1 with high affinity, 

including fragments from the pal-1 and glp-1 3′ UTRs (pal-1 fragment #2, Kd, app = 84 ± 3 

nM and glp-1 SCR fragment #1, Kd, app = 76 ± 6 nM). 
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Figure 2.5.  POS-1 recognizes the sequence UA(U2-3)RD(N1-3)G.  A. Systematic 

mutagenesis of mex-3 min.  The Kd, app for each mutation of mex-3 min was measured by 

electrophoretic mobility shift assay and compared to the previously measured Kd, app for 

mex-3 min to determine the change in standard change of free energy (∆∆G°).  Each bar 

represents the ∆∆G° caused by the base substitution indicated on the x-axis.  

Substitutions that cause a greater than 0.4 kcal/mol (dotted line, approximately two-fold 

difference in Kd, app) change in standard free energy are shown in dark grey.  Error bars are 

the propagation of error derived from the standard deviations of three replicates each of 

mex-3 min and the indicated base substitution.  B.  Spacing mutagenesis of mex-3 min.  

The Kd, app for a series of double mutations that switch the position of the indicated purine 

with either an upstream or downstream uracil was measured as in A.  Each bar represents 

the ∆∆G° caused by one double mutation, determined as in A.  Double mutations that 

cause a greater than 0.4 kcal/mol change in standard free energy are shown in dark grey. 
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The PRE is necessary but not sufficient to pattern the expression of a reporter 

 Published work from Marin and Evans identified a 34-nucletoide fragment of the 

glp-1 SCR that is sufficient to confer patterned embryonic expression on a reporter gene.  

Contained within this fragment are two sub-elements, the GRE and GDE, which are 

required for translational repression and de-repression of glp-1 mRNA in early embryos, 

respectively (Marin and Evans 2003).  GLD-1, a STAR-domain RNA-binding protein 

(Lee and Schedl 2001; Ryder et al. 2004) was shown to bind directly to the GRE, while it 

was unclear what trans-acting factor mediated regulation of glp-1 through the GDE 

(Marin and Evans 2003).  Surprisingly, the PRE is coincident with the GDE.  

Furthermore, a five-nucleotide substitution within the PRE prevents expression of the 

reporter protein without changing the expression of the reporter mRNA (Marin and Evans 

2003)(Figure 2.6).  This indicates that the PRE is necessary for the post-transcriptional 

regulation of glp-1 mRNA during early embryogenesis, and suggests that it may play a 

functional role in the regulation of other genes during the same period.  

To test if the PRE is sufficient to confer patterned expression to a reporter, we generated 

a strain that expresses GFP from the pie-1 promoter where six tandem copies of the mex-

3 min sequence were inserted into the pie-1 3′ UTR (Figure 2.6).  This UTR does not 

cause asymmetric expression of reporter transcripts in embryos (Reese et al. 2000), and as 

such provides a neutral background to test the role of exogenous cis-acting elements.  If 

the PRE is sufficient to cause POS-1 mediated negative regulation, we expect to see a 

GFP expression pattern that anti-correlates with POS-1.  Instead, the transgenic worms 

express GFP throughout the syncytial germline, in oocytes, and all 
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Figure 2.6. The PRE is necessary but not sufficient for patterned regulation of a reporter.  

A. 6XPRE GFP reporter strain.  Above is a schematic of the reporter construct, below is a 

widefield epifluorescence image of an adult hermaphrodite.  The oocyte region is boxed 

with a dashed line, and embryos are marked with arrows.  GFP expression is uniform 

throughout early embryos.  B. Previously published mutational analysis of the glp-1 SCR 

revealed two regulatory elements corresponding to predicted POS-1 and GLD-1 binding 

sites.  Above, schematic representation of POS-1 and GLD-1 binding sites within the glp-

1 SCR.  Below, mutations previously made within these binding sites and their 

corresponding effect on the expression of a reporter, from (Marin & Evans, 2003).  
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cells of the early embryo.  This finding suggests that the PRE alone, and thus POS-1 

binding alone, is not sufficient to drive UTR dependent regulation, and may require 

additional factors for post-transcriptional regulation of specific targets.  One likely 

accessory factor is GLD-1.  In addition to the close proximity of the PRE and GLD-1 

consensus binding sites in the glp-1 SCR, GLD-1 is co-expressed in the posterior of the 

early embryo with POS-1 (Marin and Evans 2003), and embryos depleted of GLD-1 

express GLP-1 ectopically in all cells of the early embryo (Marin and Evans 2003), in a 

pattern identical to that found in pos-1 mutant embryos (Ogura et al. 2003). Mutations 

that span both the PRE and GLD-1 consensus binding site in the SCR also cause 

ubiquitous expression of a reporter throughout the embryo (Marin and Evans 2003), 

strongly suggesting that POS-1 and GLD-1 coordinate the regulation of glp-1 in early 

embryos.  

 

Prevalence of the PRE in C. elegans 3′ UTRs 

 In order to establish a list of candidate POS-1 regulatory targets, we used the 

pattern matching tool PATSCAN to locate the PRE consensus within all annotated 3′ 

UTRs retrieved from Wormbase release WS180 (Dsouza et al. 1997).  Of the 10,201 3′ 

UTRs retrieved, 2,902 (28.4%) contain at least one POS-1 binding site.  Because POS-1 

is expressed only in early embryos, and pos-1 mutant embryos have a maternal effect 

lethal phenotype (Tabara et al. 1999), it is expected that critical POS-1 regulatory targets 

will be (1) expressed in early embryos and (2) required for early embryogenesis.  Of the 

2,902 genes that contain a predicted POS-1 binding site, 227 are expressed in one to eight 
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cell embryos (Baugh et al. 2003) and result in embryos that fail to hatch when silenced by 

RNAi (Sönnichsen et al. 2005) (Figure 2.7).  GLD-1 binding sites are present in 67 of the 

227 candidate POS-1 targets, suggesting that interplay between these factors might be a 

general requirement for POS-1 mediated regulation.  We propose that these represent the 

most likely candidate POS-1 targets relevant to its roles in embryonic patterning. 

In addition to glp-1, mex-3, and pal-1, a number of genes required for establishing 

and maintaining the anterior-posterior axis (par-1, par-3 and par-5) (Cuenca et al. 2003)  

and specifying intestinal fate (mom-2, mom-5, and skn-1) (Rocheleau et al. 1997; Thorpe 

et al. 1997; Maduro and Pilgrim 1995) contain at least one PRE within their 3′ UTR.  

Intriguingly, the pos-1 3′ UTR also has a PRE, suggesting that POS-1 may play a role in 

regulating its own expression.  Neither apx-1 or nos-2, two genes whose expression 

patterns are perturbed in pos-1 mutants, contain a predicted POS-1 binding site in their 3′ 

UTRs, suggesting that the role of POS-1 in regulating these genes may be indirect.   

To determine if the POS-1 consensus sequence is statistically under-represented, we 

generated one hundred randomized artificial 3′ UTR libraries and determined the 

frequency of the PRE in each.  The artificial libraries were generated using a Markov 

chain based on the dinucleotide frequencies observed in embryonic 3′ UTRs (Figure 2.7).  

Dinucleotides were used instead of mononucleotides because a number of dinucleotides 

occurred more or less frequently than would be expected on the basis of the 

mononucleotide frequencies alone.  The average and standard deviation of the PRE 

frequency in the 100 artificial libraries establishes the expected number and variance of 

the PRE associated with random chance.  The ratio of the number of actual occurrences 
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Figure 2.7.  The PRE is abundant in C. elegans 3′ UTRs.  A. Bioinformatics analysis of 

genes containing a PRE in their 3′ UTR.  B.  Schematic of the Markov chain used to 

generate random libraries of 3′ UTRs based on the transit probabilities measured from 

embryonic 3′ UTRs.   Each shape denotes a state, with the script B and E denoting the 

begin and end states used to model the beginning and the end of random 3′ UTRs, 

respectively.  Arrows represent the transit probabilities from the state the arrow emerges 

from to the state to which the arrow points.  Below are the measured dinucleotide transit 

probabilities of early embryonic 3′ UTRs.  Each entry represents the frequency that the 

state on the left is followed by the state above.  Values with a black background are at 

least five percent above their corresponding mononucleotide frequencies, while values 

with a grey background are at least five percent below their corresponding 

mononucleotide frequencies. 
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to the number of expected occurrences defines the extent to which the PRE is over or 

under represented. 

There are 2,314 occurrences of the PRE in the 3′ UTRs of early embryonic 

transcripts.  In contrast, there are 1530 ± 40 PRE occurrences in the set of 100 artificial 3′ 

UTRs.  Thus, the PRE is 1.51 ± 0.04 fold over-represented in real embryonic 3′-UTR 

sequences.  This finding is consistent with the hypothesis that POS-1 requires additional 

specificity factors, such as GLD-1, in order to choose appropriate targets for regulation, 

or, alternatively, that the network of targets regulated by POS-1 is much larger than 

previously anticipated. 

 

DISCUSSION 

 Using in vitro biochemical techniques, we have determined that the C. elegans 

TZF protein POS-1 is a sequence specific RNA-binding protein that binds to RNA with 

novel specificity.  POS-1 binds with highest affinity the sequence UA(U2-3)RD(N1-3)G, 

and with moderate affinity to other sequences containing ARE-like elements.  Compared 

to the related TZF proteins TTP and MEX-5, POS-1 binds to RNA with different 

specificity, demonstrating that this RNA-binding protein family is capable of binding to 

diverse sequence determinants.  TTP recognizes the sequence UUAUUUAUU (Brewer et 

al. 2004), while MEX-5 recognizes any sequence with six to eight uridines within an 

eight nucleotide window (Pagano et al. 2007).  The difference of a single amino acid in 

each zinc finger, required for specific recognition of each of the two adenosines in the 

TTP recognition element (Hudson et al. 2004), is sufficient to account for the differences 
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between TTP and MEX-5 specificity (Pagano et al. 2007).  Accordingly, the identity of 

these residues is different in POS-1 compared to either MEX-5 or TTP, suggesting that 

these amino acids also contribute to the difference in POS-1 specificity.  However, POS-

1 recognizes three purines compared to two in the TTP binding site, indicating that it 

must have a third purine recognition site.  More work, including structural studies, will be 

required to understand the molecular basis of differential RNA recognition by POS-1. 

The PRE lies within a 34-nucleotide region of the glp-1 3′ UTR that is required 

for translational regulation in early embryos (Marin and Evans 2003), and mutations that 

directly target the PRE abolish expression of a reporter gene, demonstrating  that the PRE 

is a functional cis-acting regulatory element required to pattern glp-1 expression.  

However, the PRE is not sufficient to confer POS-1 dependent regulation to an 

orthogonal 3′ UTR, indicating that additional cis-acting elements and trans-acting factors 

are required.  One likely candidate is GLD-1 (Lee and Schedl 2001; Ryder et al. 2004).  

The POS-1 binding site in the glp-1 3′ UTR is immediately adjacent to a binding site for 

GLD-1.  Mutations of either pos-1 or gld-1 result in ectopic GLP-1 expression in all cells 

of the early embryo, and mutations that disrupt the binding site for either protein lead to 

aberrant patterning of a reporter (Fig. 6A) (Marin and Evans 2003).  It is possible that 

POS-1 and GLD-1 may function as an RNA-binding complex that binds with enhanced 

specificity to only a small number of mRNAs.  If so, then maternal transcripts that 

contain binding sites for both proteins are excellent candidate targets that may contribute 

to aspects of POS-1 mediated development.   
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 The PRE occurs in the 3′ UTR of 227 genes expressed in early embryos and 

required for embryogenesis.  These include mom-2, mom-5, and skn-1, all of which are 

required for the specification of endoderm at the four-cell stage.  mom-2 and mom-5 

encode Wnt and Frizzled homologs, respectively, cell signaling factors that are required 

to induce endoderm differentiation (Thorpe et al. 1997).  skn-1 encodes a transcription 

factor that is required to activate the zygotic transcription of genes that promote 

endoderm fate (Bowerman et al. 1993; Maduro et al. 2001).  pos-1 mutants lack 

endoderm, suggesting that deregulation of some or all of these mRNAs leads to the 

failure in endoderm specification.  The PRE is also found in the 3′ UTR of par-1, par-3, 

and par-5, genes essential for the establishment of the anterior-posterior axis in the early 

embryo.  POS-1 is not translated until after the anterior-posterior axis has been 

established, which argues that it cannot play a primary role in establishing this axis.  

However, the axis must be maintained following establishment, and POS-1 could play a 

role in this pathway.  Maintenance of the anterior-posterior axis requires MEX-5 (Cuenca 

et al. 2003), which restricts the expression of POS-1 to the posterior of the early embryo.  

If POS-1 regulates par gene expression, then MEX-5 could maintain axis polarization 

through its molecular function of spatially restricting POS-1. 

The data presented here demonstrate that POS-1 binds to RNA with novel 

specificity compared to homologous TZF domain proteins, indicating that this fold can 

evolve to recognize diverse RNA sequences.  The relative simplicity of the binding 

consensus suggests a dichotomy between RNA-binding specificity and selection of 

specific mRNA targets for regulation.  The POS-1 recognition element is necessary but 
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not sufficient to confer patterned expression to a reporter, indicating that additional 

factors are involved in mRNA target selection.  The requirement for recognition by 

multiple RNA-binding proteins, each with limited sequence specificity, could explain this 

dichotomy.  Our work provides a framework for dissection of the network of maternal 

transcripts regulated by POS-1 during development, and suggests several interesting 

candidate targets that can explain the phenotypes observed in pos-1 mutants. 

 

SUPPLEMENTAL DISCUSSION 

 The highest affinity sequence identified for POS-1 in this work comes from the 

mex-3 3′ UTR to which POS-1 binds with an apparent dissociation constant of 39 nM. If 

a simple two state model correctly describes the in vivo association of POS-1 with its 

binding sites, POS-1 is uniformly distributed throughout the cytoplasm of the embryo, 

and POS-1 is present in substantial excess over its binding sites, the intracellular 

concentration of POS-1 must be at least 400 nM to achieve 90% occupancy of POS-1 

binding sites.  A C. elegans embryo can be approximated by a prolate ellipsoid with a 

minor axis of 30 µm and a major axis of 60 µM (Hillier et al. 2009), so the approximate 

volume of an embryo is 750 pL. Thus, to achieve this concentration of POS-1, at least 

200 million molecules of POS-1 protein must be present in the one-cell embryo. The total 

number of mRNA molecules within the embryo is unknown, but estimates for the 

average number of polyadenylated transcripts within each cell of the 556 cell pre-

gastrulation embryo place the number between 12,500 and 25,000 (Hillier et al. 2009). If 

mRNA turnover does not occur between fertilization and this stage, and all of these 
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transcripts are maternally supplied, the number of molecules of mRNA present within the 

one-cell embryo would be between approximately 7 million and 14 million. If pos-1 

mRNA makes up 1% of all mRNAs within the one-cell embryo – making it one of the 

most abundant mRNAs – there would be a maximum of 140,000 molecules of pos-1 

mRNA present at fertilization. Producing enough POS-1 to reach a concentration of 400 

nM would require the translation of 1500 molecules of POS-1 per mRNA molecule 

within the time it takes to complete one cell division. Based on the assumptions made 

here, this represents the minimum level of POS-1 translation required to reach this 

concentration.   

This is a very high rate of translation, so some aspect of the POS-1 localization or 

binding model is likely incorrect. POS-1 may recognize other sequences with an affinity 

much higher than that observed for the fragment from the mex-3 3′ UTR, and these 

sequences may represent the actual regulatory elements through which POS-1 functions. 

Another possibility is that the RNA-binding domain of POS-1 can have its affinity 

enhanced by other factors or post-translational modifications, which would reduce the 

amount of protein required within the embryo. A third possibility is that POS-1 is 

enriched in specific locations within the embryo, increasing the local concentration of 

POS-1 in these locations. Another RNA-binding protein with higher affinity or 

abundance may bind to mRNAs and direct them to these subcellular locations.  Thus, 

POS-1 mediated regulation of specific mRNAs may require additional upstream factors.  

In addition to its relatively low affinity for mRNA, the RNA-binding domain of 

POS-1 also exhibits an in vitro calculated association rate constant that is approximately 
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four orders of magnitude larger than the diffusion rate constant. This implies that binding 

of the RBD of POS-1 to its mRNA targets could be a slow process. As POS-1 protein is 

first translated in the one-cell embryo, the slow association of POS-1 with its targets 

could mean that binding does not occur until the two cell stage or beyond, and that other 

proteins are required to translationally repress POS-1 targets in the early embryo. 

Alternatively, the in vitro experiments described in this chapter may not fully recapitulate 

the RNA-binding properties of POS-1. Regardless, the data presented here suggest that 

there is still much to understand about POS-1 RNA-binding and the role it plays in 

regulating early embryogenesis.  

 

  

MATERIALS AND METHODS 

Cloning and of purification of POS-1 80-180 pHMTc 

 The sequence encoding amino acids 80-180 of POS-1 was amplified from the 

corresponding ORFeome (Open Biosystems) clone via PCR and cloned in frame into the 

multiple cloning site of pHMTc, a derivative of pMal-c2x (New England Biolabs) that 

includes an N-terminal 6-his tag and a TEV protease site after MBP (Ryder et al. 2004).  

This construct was transformed into and expressed in E. coli strain BL21 (DE3) Gold 

(Stratagene).  Protein expression was induced with 1 mM IPTG and 100 µM Zn(OAc)2.  

Cells were lysed and purified using an amylose column (New England Biolabs), followed 

by HiTrap SP and HiTrap Q (GE Healthcare) columns.  Purified POS-1 was dialyzed into 

storage buffer (25 mM Tris-Cl pH 8.0, 25 mM NaCl, 100 µM Zn(OAc)2, 2 mM DTT), 
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concentrated to approximately 100 µM using a 30,000 MWCO spin concentrator 

(Vivascience Group), and stored at 4 °C for up to two months. 

 

Preparation of fluorescein-5-thiosemicarbazide labeled RNA 

 All RNA oligonucleotides used in this study were chemically synthesized by 

Integrated DNA Technologies.  Oligos were fluorescently labeled at the 3′ end by 

periodate oxidation followed by reaction with fluorescein-5-thiosemicarbazide as 

described (Pagano et al. 2007). Labeled RNA was purified away from unreacted label 

using a Sephadex G-25 spin column (GE Healthcare).  Recovered RNA was assayed by 

agarose gel electrophoresis and UV-Vis spectrophotometry to determine purity and 

labeling efficiency, respectively.  Labeling efficiencies were typically around 70%.  

 

Fluorescent electrophoretic mobility shift assay 

 Varying concentrations of purified POS-1 were incubated with 3 nM fluorescently 

labeled RNA in equilibration buffer for 3 hours at room temperature.  Equilibration 

buffer contained 50 mM Tris pH 8.0, 100 mM NaCl, 0.01 mg/mL tRNA, 0.01% (v/v) 

IGEPAL, and 100 µM ZnOAc2.  After three hours, 10 µL of 0.005% (w/v) bromocresol 

green in 30% glycerol was added to 100 µL of each sample and mixed thoroughly.  50 

µL of each mixture was loaded onto a 1% agarose, 1X TB gel and run at room 

temperature for thirty-five minutes at 120 volts to resolve bound from free RNA.  Gels 

were imaged using a Fuji FLA-5000 laser imager to detect the fluorescently labeled 

RNA. The fraction of bound RNA was determined by taking the ratio of bound signal to 



 80 

total signal.  This was plotted against the total protein concentration and fit to the Hill 

equation to determine the apparent dissociation constant: 

 

" =
( P[ ]t )

n

( P[ ]t )
n + (Kd ,app )n  

where θ is the measured fraction RNA bound, [P]t is the total protein concentration, Kd, app 

is the apparent dissociation constant, and n is the Hill coefficient.  Stoichiometric binding 

assays were conducted in a similar fashion, except unlabeled RNA was added to a final 

RNA concentration of 4 µM, and the data were fit to the following equation (Rambo and 

Doudna 2004): 
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where θ and Kd, app are as above, r is the molar ratio of protein to RNA, and n is the molar 

equivalence point.  The ∆∆G˚ at 20 ˚C for each of the mutants of mex-3 min was 

determined using the following equation: 
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where R is the gas constant and T is the temperature. 

 

Gel filtration chromatography 

 The apparent molecular weight of POS-1 80-180 pHMTc relative to standards 

was determined using a Superdex 200 10/300 GL gel filtration column (GE Healthcare).  

Approximately 50 µL of 20 µM POS-1 was loaded on a column equilibrated with 50 mM 
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Tris pH 8.0, 300 mM NaCl, and the absorbance at 280 nm was monitored.  The apparent 

molecular weight of POS-1 was determined by comparing the elution volume to the 

elution volume for molecular weight standards.  

 

Equilibrium analytical ultracentrifugation 

 Three concentrations of POS-1 (8 µM, 12 µM, and 16 µM) were centrifuged at 

9,000, 12,000, and 16,000 rpm, and absorbance across the cell at 280 nm was monitored 

using a Beckman Optima XL-I analytical ultracentrifuge.  Samples were centrifuged until 

equilibrium had been reached.  The resulting traces were fit to the following equation 

describing a monomer/n-mer transition:  
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where A is the measured absorbance, a is a scaling factor, f is the fraction of protein in 

the monomeric state, ω is the angular velocity, R is the gas constant, T is the temperature, 

M is the molecular mass of the protein, n is the apparent stoichiometry of the complex, ν 

is the viscosity of solution, ρ is the density of solution, r is the cuvette radius, and r0 is a 

reference distance. 

 

Fluorescence Anisotropy Assay 

 Varying concentrations of POS-1 and 4 nM fluorescently labeled RNA were 

equilibrated as described in the electrophoretic mobility shift assay section.  Following 

equilibration, each sample was excited with linearly polarized light, and the parallel and 

perpendicular fluorescence intensities were measured five times each using a Victor3 
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1420 Multilabel Counter (Perkin-Elmer) and the apparent polarization determined.  

Polarization was plotted against total protein concentration, and fit to the Hill equation as 

above.   

 

Dissociation rate kinetics 

 Binding reactions containing 100 nM POS-1 and 4 nM fluorescently labeled mex-

3 min were equilibrated in conditions described above for thirty minutes.  Following 

equilibration, samples were transferred to a 96-well FluoTrak plate (Grenier) containing 

unlabeled competitor RNA and rapidly mixed.  Immediately following addition to 

competitor RNA, the fluorescence polarization of the sample was measured every twenty 

seconds as described above.  Fluorescence polarization measurements were plotted 

against time and fit to the following single exponential decay to determine the apparent 

dissociation rate constant:  

 

P = P0 + A " e(#koff ,app " t )  

where P is the measured fluorescence polarization, P0 is the baseline fluorescence 

polarization, A is the polarization at t=0, koff, app is the apparent dissociation rate constant, 

and t is elapsed time. 

 

Bioinformatics 

 3′ UTR sequences were retrieved from release WS180 of Wormbase 

(www.wormbase.org) using WormMart.  To avoid redundancy in the pool of sequences, 

only the longest 3′ UTR for each gene with multiple gene models was used.  The pattern 
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matching tool PATSCAN (Dsouza et al. 1997) was used to identify UTRs that contain 

POS-1 and/or GLD-1 binding sites. Mononucleotide and dinucleotide frequencies were 

determined using Perl scripts and standard UNIX text processing tools.  Random 3′ UTR 

libraries were constructed via a Markov chain; transit probabilities for each state were 

determined from the observed dinucleotide distribution and the following equation:  

(Newport and Kirschner 1982; Batchelder et al. 1999; Tadros and Lipshitz 2009) 

where pi->j is the transit probability from nucleotide i to nucleotide j, dij is the observed 

frequency of dinucleotide ij, and Di is the observed frequency of dinucleotides beginning 

with i.  

 

Error Analysis 

For electrophoretic mobility shift and fluorescence polarization assays, the 

reported value is the average of at least three independent replicates, and the error is ± 

one standard deviation.  For equilibrium sedimentation experiments, the fit error was 

determined by plotting the residuals to compare the error distribution of each fitted 

model. 

 

Reporter Strain Construction 

The reporter construct was generated by digesting plasmid pJH 4.52 (a generous 

gift of Dr. Geraldine Seydoux) with Spe1, and inserting a synthetic DNA duplex 

containing 3X copies of the mex-3 min sequence flanked by Spe1 sites.  The construct 

used for all experiments contained two copies of the insert in tandem.  The reporter strain 
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was generated by ballistic transformation using unc-119 rescue (Praitis et al. 2001).  An 

equal mixture of the reporter plasmid and pDEST-DD03, which harbors the unc-119 

rescuing fragment (a gift of Dr. Marian Walhout), was used to coat the gold particles.  

Rescued worms were analyzed for GFP expression pattern by fluorescence microscopy 

with a Zeiss Axioskop microscope. 
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Chapter III 

POS-1 represses translation of glp-1 by 

antagonizing multiple RNA-binding proteins 
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ABSTRACT 

 RNA-binding proteins (RBPs) coordinate cell fate specification and 

differentiation in variety of systems.  RNA regulation is critical during oocyte 

development and early embryogenesis, where RBPs control expression from maternal 

mRNAs encoding key cell fate determinants.  The Caenorhabditis elegans Notch 

homolog glp-1 coordinates germline progenitor cell proliferation and anterior fate 

specification in embryos.  A network of sequence-specific RBPs is required to pattern 

GLP-1 translation. Here, we map the cis-regulatory elements that guide glp-1 regulation 

by POS-1 and GLD-1.  Our results demonstrate that both proteins recognize the glp-1 3′ 

untranslated region (UTR) through adjacent, overlapping binding sites, and that POS-1 

binding excludes GLD-1 binding.  Both factors are required to repress glp-1 translation in 

the embryo, suggesting they function in parallel regulatory pathways.  Intriguingly, two 

equivalent POS-1 binding sites are present in the glp-1 3′ UTR, but only one, which 

overlaps with a translational de-repression element, is functional in vivo.  We propose 

that POS-1 regulates its targets by blocking access of other RBPs to key regulatory 

sequences, and suggest that antagonism may be a general mechanism that distinguishes 

functional from non-functional binding sites. 
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INTRODUCTION 

The physiology of a cell is governed by the identity and extent of genes that it 

expresses.  Gene expression is regulated at the transcriptional, post-transcriptional, and 

post-translational levels.  Each aspect is important and necessary to ensure appropriate 

expression for a given cell type.  The relative importance of each varies depending on cell 

lineage and activity.  For example, control of gene expression after transcription is of 

primary importance during early embryogenesis, when transcription is repressed due to 

continuous DNA replication (Newport and Kirschner 1982; Batchelder et al. 1999; 

Tadros and Lipshitz 2009), and in cells where physiology is partially decoupled from the 

nucleus due to size or morphology, such as neurons (Swanger and Bassell 2011).  In such 

situations, RNA-binding proteins and small RNA-protein complexes function as critical 

regulatory factors that control mRNA stability, subcellular localization, and translation 

efficiency to guide cell function. 

In order to coordinate gene expression, RNA-regulatory factors must select 

specific target transcripts from the set of all transcripts present in the cell.  A variety of 

high-throughput methods, including cross-linked immunoprecipitation with deep 

sequencing (HITS-CLIP, PAR-CLIP) (Licatalosi et al. 2008; Hafner et al. 2010) and RNA 

immuniprecipitation coupled with array- or deep sequencing-based detection (RIP-CHIP, 

RIP-SEQ) (Kershner and Kimble 2010; Wright et al. 2011), reveal that some RNA 

regulatory factors interact with hundreds or thousands of mRNA targets.  Though the 

number is large, it is in many cases less than one might expect based solely upon 

predictions from corresponding in vitro binding studies (Ryder et al. 2004; Bernstein et 
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al. 2005; Wright et al. 2011).  In contrast, functional assays routinely show that only a few 

RNA targets contribute to the phenotype observed upon loss of the RNA regulatory 

factor (Lee and Schedl 2001; Hansen et al. 2004; Kalchhauser et al. 2011), suggesting that 

most binding events do not directly contribute to the major phenotypes associated with 

loss of the RNA-binding protein.  The apparent disparity between in vitro binding, in vivo 

binding, and functional data reveals that the basis for specific target selection is not well 

understood. 

Post-transcriptional regulation of mRNA is primarily mediated through cis-

regulatory elements present in the untranslated regions (UTRs) of the transcript.  These 

regions are not subject to the evolutionary constraint of the genetic code and thus can 

primarily serve a regulatory role.  A survey of germline expressed genes in the nematode 

Caenorhabditis elegans demonstrates that 3′ UTRs are sufficient to drive patterned gene 

expression in the germline (Merritt et al. 2008).  Transgenic worms carrying a fluorescent 

reporter that only included the 3′ UTR of the gene being investigated recapitulated the 

expression pattern of the endogenous protein in 24 of 30 cases (Merritt et al. 2008).  In 

addition, most transcripts do not contain a unique 5′ UTR as 5′ end formation in 

nematodes is mediated primarily by trans-splicing of one of two leader sequences (Allen 

et al. 2011).  Thus, the C. elegans germline provides an ideal model system in which the 

selection of biologically relevant mRNA targets by sequence specific RNA-binding 

proteins can be examined.  

 Studies of translationally regulated transcripts in C. elegans development reveal 

that multiple RNA-binding proteins contribute to the regulation of a single mRNA 



 89 

(Jadhav et al. 2008; Pagano et al. 2009).  One example of this is the transcript encoding 

the C. elegans Notch receptor homolog glp-1.  GLP-1 is a critical regulator of at least two 

distinct developmental pathways.  It is the central regulator of the mitosis to meiosis 

switch in the distal arm of the gonad (Austin and Kimble 1987), and it is required for 

specifying endodermal cell fates in the anterior of the four-cell embryo (Mickey et al. 

1996). GLP-1 protein is restricted to these locations in the germline and embryo (Figure 

3.1); however,  glp-1 mRNA is present throughout the entire gonad and all cells of the 

early embryo (Evans et al. 1994). glp-1 translational repression requires at least five 

different RNA-binding proteins, each repressing translation at different times during 

development:  the STAR-domain protein GLD-1 acts in germ cells entering meiosis 

(Marin and Evans 2003), the PUF family members PUF-5/6 and PUF-7 act during 

oogenesis (Lublin and Evans 2007), the KH-domain protein MEX-3 acts after fertilization 

(Pagano et al. 2009), and both GLD-1 and the CCCH-type tandem zinc finger protein 

POS-1 are required in the posterior of early embryos (Ogura et al. 2003; Marin and Evans 

2003) (Figure 3.1).  In addition, the RRM-domain protein SPN-4 is required for 

translational activation of glp-1 in the early embryo (Ogura et al. 2003).  

 Mutational analysis of the glp-1 3′ UTR has identified a 34-nucleotide region that 

is sufficient to spatially pattern a reporter (Marin and Evans 2003).  This region can be 

further subdivided into two regulatory elements: the glp-1 repression element (GRE) and 

the glp-1 de-repression element (GDE) (Marin and Evans 2003).  Mutations within the 

GRE result in an expanded reporter expression pattern in the gonad and excess reporter 

expression in the posterior of early embryos.  On the other hand, mutations of the GDE 

result in either decreased or no reporter expression in either the gonad or embryos   
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Figure 3.1.  POS-1 and GLD-1 expression is anti-correlated with GLP-1 expression.  A.  

Schematic of GLD-1 and GLP-1 expression in the germline.  GLP-1 expression (green) is 

restricted to germ cells in mitosis, while GLD-1 (red) is expressed in the meiotic 

syncytium.  GLD-1 is expressed diffusely in the cytoplasm as well as in P-body-like 

granules.  B.  Schematic of GLP-1, POS-1 and GLD-1 expression in embryos.  Embryos 

are oriented with the anterior to the left.  glp-1 mRNA (light green) is expressed in all 

cells of the early embryo, while GLP-1 protein (dark green) is not expressed until the four 

cell stage, and is restricted to the surface of the two anterior blastomeres (ABa and ABp).  

POS-1 (blue) is expressed in the posterior cytoplasm of early embryos from the one-cell 

stage.  POS-1 localizes to perinuclear P-granules in the germline P-lineage of embryos.  

GLD-1 (red) expression begins at the four-cell stage, and it is present in the two posterior 

blastomeres. GLD-1 is found in the cytoplasm, in perinuclear P-granules in the P-lineage, 

and in granules distributed throughout both cells of the four-cell stage. 
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(Marin and Evans 2003).  GLD-1 directly associates with the GRE in a sequence specific 

manner, suggesting that GLD-1 translationally represses glp-1 through the GRE (Marin 

and Evans 2003).  Given the proximity of the GDE and the GRE, it has been 

hypothesized that another RNA-binding protein inhibits GLD-1 association with the GRE 

by binding to the GDE (Marin and Evans 2003) (Figure 3.2). We previously mapped a 

binding site for POS-1 (PRE; POS-1 recognition element) (Farley et al. 2008) within the 

GDE that partially overlaps with the GLD-1 binding motif (GBM) (Wright et al. 2011) in 

the GRE, suggesting that POS-1 could function as the glp-1 activator through 

competition with GLD-1 (Figure 3.2).  In contrast, mutational studies suggest that POS-1 

acts to repress glp-1 translation, possibly in complex with GLD-1, and a different factor 

functions as the activator (Marin and Evans 2003).  Importantly, none of the mutations 

that have been made across the GRE and GDE are predicted to exclusively perturb POS-1 

binding (Figure 3.2), so it remains unclear what role POS-1 plays in regulating glp-1, or 

if regulation is direct. 

POS-1 and GLD-1 exhibit different expression patterns in the early embryo.  POS-1 is 

first observed in the posterior of the one-cell embryo, and is expressed in the posterior 

blastomeres of the embryo through the four-cell stage.  POS-1 is present throughout the 

cytoplasm of the cells in which it is expressed, as well as perinuclear granules called P-

granules in the germline precursor blastomeres (Tabara et al. 1999). In contrast, GLD-1 is 

first expressed in the posterior blastomeres of the four-cell stage, and it localizes to 

cytoplasmic granules in the cells in which it is expressed. In addition to the cytoplasmic 

granules, GLD-1 also localizes to P-granules (Jones et al. 1996) (Figure 3.1). 
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Figure 3.2.  POS-1 and GLD-1 binding sites lie within regulatory elements of the glp-1 

3′ UTR.  The glp-1 repression element (GRE) is adjacent to the glp-1 de-repression 

element (GDE, top), and both overlap with predicted POS-1 recognition elements (PRE, 

blue) and a GLD-1 binding motif (GBM, red).  Mutations across this region in the 

context of a reporter (left, above the line) result in various expression patterns, listed to 

the right.  Below the line, the mutations used in this study are listed. 
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Thus, POS-1 and GLD-1 may associate with glp-1 mRNA in different subcellular 

locations. 

To determine the individual roles of both POS-1 and GLD-1 in regulating glp-1, 

we identify separation of function mutations that individually perturb the POS-1 or GLD-

1 binding sites in vitro, and use them to generate fluorescent reporters to measure their 

relative contribution to the regulation of glp-1 expression in vivo.  The results reveal that 

POS-1 is indeed a repressor of glp-1 translation, but it acts independently of GLD-1, and 

its activity is highly context dependent. 

 

RESULTS 

Identification of a second PRE in the glp-1 3′ UTR 

 In Chapter II, we used quantitative in vitro binding studies to define the POS-1 

consensus recognition element and used the pattern matching tool PatScan (Dsouza et al. 

1997) to identify putative PREs in annotated C. elegans 3′ UTRs based upon this 

sequence (Farley et al. 2008).  This analysis revealed a single PRE in the glp-1 3′ UTR.  

However, we noticed that the search pattern does not accurately reflect the 

thermodynamic measurements in a special case where a single nucleotide deletion 

compensates for an otherwise deleterious mutation.  Specifically, mutation of the 

adenosine at position six of the PRE to a cytosine reduces binding by 0.6 kcal/mol, while 

reducing the number of intervening nucleotides between positions six and ten improves 

binding by the same amount.  When we apply the revised pattern to the glp-1 3′ UTR, we 

observe a second putative PRE that lies immediately upstream from the GBM, such that 
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the last nucleotide of the PRE corresponds to the first nucleotide of the GBM.  As such, 

the GBM is flanked by two PREs, each overlapping the GBM by one nucleotide (Figure 

3.2). 

 

POS-1 and GLD-1 recognize the glp-1 3′ UTR in a sequence-specific manner 

 To determine if POS-1 and GLD-1 recognize their predicted binding sites in the 

glp-1 3′ UTR, we performed quantitative fluorescent electrophoretic mobility shift (F-

EMSA) experiments using purified recombinant POS-1 or GLD-1 RNA binding 

domains, and a thirty four nucleotide RNA fragment of the glp-1 3′ UTR that contains 

both PREs, the GBM, and flanking sequences (Table 3.1, Figure 3.3). The fraction of 

bound RNA was plotted as a function of total protein concentration and fit to the Hill 

equation to determine the apparent dissociation constant (Kd,app) and Hill coefficient (n).  

By this method, both POS-1 and GLD-1 bind to this fragment with high affinity (POS-1:  

Kd,app = 19 ± 2 nM, n = 1.3 ± 0.2; GLD-1:  Kd,app = 70 ± 10 nM, n = 1.0 ± 0.2) (Table 3.1, 

Figure 3.3).  

 To determine if binding of each protein is dependent on its respective binding 

sites, we designed RNA oligonucleotides containing mutations in either the PREs or the 

GBM (Table 3.1, Figure 3.3).  Based on previous studies, the mutations were predicted to 

reduce the affinity of each protein for this sequence by more than 10-fold.  Mutation of 

both PREs results in an 15-fold reduction in affinity for POS-1 (Kd,app = 310 ± 20 nM), 

while mutation of the GBM results in almost complete abrogation of binding (Kd,app > 

2000 nM). Thus, both POS-1 and GLD-1 recognize the glp-1 3′ UTR in a  
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Table 3.1.  Dissociation constants of POS-1 and GLD-1 for variants of the glp-1 

fragment. 

Identifier Sequence POS-1 Kd, app 

(nM) 

GLD-1 Kd, app 

(nM) 

glp-1 WT UUUUUCUUAUUCUAGACUAAUAUUGUAAGCU 19 ± 2 70 ± 10 

∆SBE UUUUUCUUAUUCUAGACCAAUAUUGUAAGCU 21 ± 1 > 2000 

∆5' PRE UUUUUCUCCCUCUAGACUAAUAUUGUAAGCU 55 ± 4 33 ± 7 

∆3' PRE UUUUUCUUAUUCUAGACUAACCCUGUAAGCU 53 ± 1 25 ± 3 

∆5' 3' 

PRE 

UUUUUCUCCCUCUAGACUAACCCUGUAAGCU 310 ± 20 20 ± 3 

Reported Kd,app values are the mean ± one standard deviation of three independent 
replicates. 
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Figure 3.3.  POS-1 and GLD-1 recognize the glp-1 3′ UTR in a sequence-specific 

manner.  A. Schematic of mutations in the glp-1 3′ UTR.  PREs are in blue, the GBM is 

in red, and mutated sites are denoted with an X.  B.  Fluorescent electrophoretic mobility 

shift assays with recombinant POS-1 (left) and GLD-1 (right) and fluorescently labeled 

fragments of the glp-1 3′ UTR.  Top, gel shift images. Bottom,  quantifications and fits.  

POS-1 binds to the wild-type glp-1 fragment with a Kd,app = 19 ± 2 nM, mutation of 

either PRE individually reduces binding approximately 2.5-fold (∆5' PRE: Kd,app = 54 ± 

4 nM, ∆3′ PRE: Kd,app = 52 ± 1 nM), while mutation of both reduces binding 

approximately 15-fold (∆5' 3′ PRE: Kd,app = 310 ± 20 nM).  GLD-1 binds to the wild-

type glp-1 fragment with a Kd,app = 70 ± 10 nM, and mutation of the GBM almost 

completely abrogates binding (∆GBM: Kd,app > 2000 nM).  Reported Kd,app values are 

the mean ± standard deviation of three independent replicates.  
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binding site dependent manner (Figure 3B). 

 

The PREs are equivalent and independent 

 Given that only one of the PREs in the glp-1 fragment perfectly matches the 

previously published consensus, we wanted to establish if POS-1 recognized each 

binding site.  To test the contribution of each site individually, we designed 

oligonucleotides bearing mutations in only one of the PREs and performed EMSA 

experiments with recombinant POS-1.  Mutation of either PRE resulted in a 2.5-fold 

reduction in binding compared to the wild-type sequence (Kd,app WT = 19 ± 2 nM, Kd,app ∆5′ 

PRE  = 54 ± 4 nM, Kd, app ∆3′ PRE = 52 ± 1 nM), demonstrating that each site is recognized by 

POS-1 with equivalent affinity (Figure 3.3).  

 To determine if the two equivalent PREs in the glp-1 3′ UTR are independent, we 

analyzed the relationship between the macroscopic and microscopic dissociation 

constants.  An RNA with two equivalent, independent binding sites for a protein where 

only one site is occupied at any given time should have a macroscopic dissociation 

constant that is two-fold tighter than the microscopic dissociation constants observed for 

either in isolation due to statistical effects.  We observe a 2.5-fold decrease in affinity 

between the glp-1 fragments with one intact PRE versus the wild-type sequence, 

suggesting that the two PREs are both equivalent and independent.  This hypothesis is 

further supported by the unchanged Hill coefficients of the individual site mutants versus 

the wild-type sequence (nWT = 1.3 ± 0.2, n∆5′ PRE = 1.7 ± 0.5, n∆3′ PRE = 1.5 ± 0.3), as 

cooperative binding to the wild-type sequence is expected to increase the Hill coefficient.   
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POS-1 antagonizes GLD-1 binding to the glp-1 3′ UTR 

 Given that there are two independent POS-1 binding sites that each overlap with 

the GBM, we hypothesized that POS-1 binding may inhibit GLD-1 binding to the glp-1 

3′ UTR.  To test this hypothesis, we performed in vitro competition gel shift experiments 

with POS-1 and GLD-1.  In these experiments, a range of concentrations of the 

competitor protein was titrated into a fixed, trace concentration of fluorescently labeled 

RNA, and a fixed subsaturating concentration of the other protein.  The differently bound 

species of RNA were resolved from one another by electrophoresis on a native 

polyacrylamide gel.  

 When POS-1 was titrated into samples containing 400 nM GLD-1 and labeled 

RNA, we observed a decrease in the amount of GLD-1-RNA complex and corresponding 

formation of faster mobility POS-1-RNA complex (Figure 3.4).  At high POS-1 

concentration (>300 nM), non-specific POS-1 binding obscured visibility of residual 

GLD-1 complex (Figure 4A and B).  In contrast, when GLD-1 is titrated into samples 

containing 100 nM POS-1, no GLD-1 complex is observed, even when GLD-1 is present 

at a concentration that is 10-fold greater than POS-1 (Figure 3.4).  No evidence of a 

slower mobility species is apparent, suggesting that efficient ternary complex formation 

does not happen.  Because the RNA contains two POS-1 binding sites that overlap with 

the single GLD-1 binding site, and because the apparent affinity of POS-1 is 3.5-fold 

tighter than the apparent affinity of GLD-1, this is the expected result if the proteins 

compete for binding to the RNA fragment.  Similar results were obtained when the 
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Figure 3.4.  POS-1 antagonizes GLD-1 to the glp-1 fragment.  A. Gels of competition 

experiments with POS-1 and GLD-1.  Top, POS-1 is titrated into a fixed concentration of 

GLD-1.  Bottom, GLD-1 is titrated into a fixed concentration of POS-1. The mobilities of 

POS-1-bound RNA, GLD-1-bound RNA, and free RNA are labeled to the left of the gels.  

B.  Quantifications of POS-1 1-206 competition experiments.  Left, POS-1 is titrated into 

a fixed concentration of GLD-1.  Right, GLD-1 is titrated into a fixed concentration of 

POS-1.  In both plots, fraction of total RNA bound by each protein is plotted against the 

concentration of the titrated protein. Filled circles, POS-1 bound RNA. Empty circles, 

GLD-1 bound RNA.  C-D.  Competition experiments with POS-1-RBD and GLD-1.  The 

gels in C are labeled as in A, and the plots in D are labeled as in B. 
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experiment was repeated with a shorter variant of POS-1 containing only the RNA-

binding domain (POS-1-RBD, Figure 3.4).  This construct binds to the glp-1 fragment 

with similar affinity as the longer construct (Kd,app, POS-1-RBD = 30 ± 17 nM, Figure 3.5), but 

provides greater resolution of the POS-1 and GLD-1 bound complexes.  POS-1 

efficiently competed with GLD-1 for binding to the glp-1 fragment, while GLD-1 

complex formation was strongly inhibited by POS-1.  Together, the data show that POS-1 

and GLD-1 do not simultaneously bind the glp-1 3′ UTR fragment, and suggest that POS-

1 could inhibit GLD-1 binding to the glp-1 3′ UTR in vivo.  

 

Mutations in the glp-1 3′ UTR are specific for either POS-1 or GLD-1 

 To individually determine the regulatory contribution of direct binding of POS-1 

or GLD-1 to the glp-1 3′ UTR, we designed mutants that would exclusively affect either 

POS-1 or GLD-1 binding.  To determine if the mutations designed to inhibit binding of 

either POS-1 or GLD-1 to the glp-1 3′ UTR do not interfere with the binding of the other 

protein, we used quantitative EMSA to measure the affinity of POS-1 for the ∆GBM 

version of the glp-1 fragment, and the affinity of GLD-1 for ∆5′, 3′ PRE sequence.  

Mutation of the GBM does not change the apparent affinity of POS-1 (Kd,app WT = 19 ± 2 

nM, Kd,app ∆GBM = 21 ± 1 nM), indicating that single-nucleotide GBM mutation does not 

affect POS-1 binding.  Mutation of both PREs results in a 3-fold increase in GLD-1 

affinity (Kd,app WT = 70 ± 10 nM; Kd,app ∆PRES = 20 ± 4 nM) (Figure 3.6), which is 

statistically significant (p = 0.008), suggesting that mutations in the POS-1 binding sites 

weakly increase the affinity of GLD-1 for the glp-1 3′ UTR. 
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Figure 3.5.  POS-1-RBD binds the glp-1 fragment with a similar affinity to that of POS-1 

1-206.  Top, gel shift image labeled with the POS-1 concentrations (top) in each lane, and 

the RNA sequence beneath.  The reported Kd,app is the mean ± the standard deviation of 

six separate replicates.  Bottom, representative fit of gel shift data to the Hill Equation.  
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Figure 3.6.  POS-1 or GLD-1 specific mutations in the glp-1 3′ UTR.  Left,  

representative EMSA fits for POS-1 binding to glp-1 WT RNA (filled circles, Kd,app = 

19 ± 2 nM) and ∆GBM RNA (filled triangles, Kd,app = 21 ± 1 nM). Right, representative 

EMSA fits for GLD-1 binding to glp-1 WT RNA (filled circles, Kd,app = 70 ± 10 nM) 

and ∆5' 3′ PRE RNA (open squares, Kd,app = 20 ± 4 nM). Reported Kd,app values are 

averages ± one standard deviation of three independent replicates. 



 109 

Both POS-1 and GLD-1 binding are required for repression of glp-1 translation in 

embryos 

 To determine if direct binding of POS-1 to the glp-1 3′ UTR antagonizes GLD-1 

and thus de-represses translation glp-1 translation in early embryos, we generated green 

fluorescent protein (GFP) reporters carrying the wild-type glp-1 3′ UTR or the mutant 

variations characterized in vitro (Table 3.2).  To ensure that we were observing only the 

post-transcriptional regulation of glp-1, our reporters used the mex-5 promoter, a 

germline promoter with a similar expression pattern to the glp-1 promoter.  The open 

reading frame of each reporter encodes a protein fusion of GFP and C. elegans histone 

2B (H2B), which concentrates the fluorescent signal in the nucleus and facilitates cell 

identification.  As the half-life of both GFP and H2B is long relative to oogenesis (Frand 

et al. 2005), the open reading frame also contains the mouse ornithine decarboxylase 

PEST domain, which destabilizes the protein.  To enable direct comparison of the 

reporter expression patterns resulting from different transgenic constructs, the transgenes 

were integrated site-specifically into chromosome II using Mos1-mediated single copy 

insertion of transgenes, or MosSCI (Frøkjaer-Jensen et al. 2008) (Figure 3.7). 

 To determine the effects on reporter translation in embryos of disrupting POS-1 or 

GLD-1 binding to the glp-1 3′ UTR, we dissected adult worms and observed live four-

cell stage embryos.  Endogenous GLP-1 is expressed only in the two anterior blastomeres 

at the four-cell stage (Evans et al. 1994).  If direct binding of GLD-1 is required for 

translational repression, mutating the GBM should result in reporter expression in the 

posterior as well as the anterior of the four-cell stage embryo.  If POS-1 antagonizes 
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Figure 3.7.  POS-1 and GLD-1 binding are independently required to repress a glp-1 3′ 

UTR reporter in embryos.  A. Schematic of reporter constructs used in this study.  B.  

Representative images of four-cell embryos with the listed reporter or experimental 

condition.  C.  Table of results.  No GFP indicates the percentage of embryos with no 

detectable GFP, anterior denotes the percentage of embryos expressing GFP in the two 

anterior blastomeres, posterior denotes the percentage of embryos expressing GFP in the 

two posterior blastomeres, and n is the number of embryos observed. 
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Table 3.2.  Transgenic worm strains used in this study. 
glp-1 3' UTR 

variant 

Strain identifier Genotype 

WT WRM5 sprSi5[Pmex-5::MODC PEST:GFP:H2B::glp-1 

3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

∆GBM WRM6 sprSi6[Pmex-5::MODC PEST:GFP:H2B::glp-1 

3'UTR(∆GBM) cb-unc-119(+)] II, unc-119(ed3) 

III 

∆5' PRE WRM7 sprSi7[Pmex-5::MODC PEST:GFP:H2B::glp-1 

3'UTR(∆5' PRE) cb-unc-119(+)] II, unc-119(ed3) 

III 

∆3' PRE WRM8 sprSi8[Pmex-5::MODC PEST:GFP:H2B::glp-1 

3'UTR(∆3' PRE) cb-unc-119(+)] II, unc-119(ed3) 

III 

∆5' 3' PRE WRM9 sprSi9[Pmex-5::MODC PEST:GFP:H2B::glp-1 

3'UTR(∆5' 3' PRE) cb-unc-119(+)] II, unc-

119(ed3) III 
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GLD-1 binding and thus leads to de-repression, neither anterior nor posterior expression 

of the reporter should be observed when the PREs are mutated. Expression of GFP in the 

anterior blastomeres of the four-cell stage is observed in 33% of embryos carrying the 

WT reporter, while 67% express no detectable GFP (n = 15) at this stage (Figure 3.7). 

The substantial fraction of transgene-bearing 4-cell stage embryos that lack detectable 

GFP fluorescence is likely due to the time required for maturation of the GFP 

chromophore (Reid and Flynn 1997), which is long relative to the duration of the four-

cell stage.  The anterior expression pattern matches that of endogenous GLP-1 protein, 

indicating that the glp-1 3′ UTR is sufficient for appropriate patterning and the reporter 

mimics the expression pattern of endogenous GLP-1, as previously reported (Evans et al. 

1994).  Upon treatment with pos-1(RNAi), 100% of embryos express GFP in all cells of 

the four-cell stage embryo (n = 8, Figure 3.7), suggesting that POS-1 protein plays an 

inhibitory role in the translational regulation of glp-1.  POS-1 may have indirect effects 

on the translation of glp-1, so to investigate the requirement for POS-1 binding, we 

examined a reporter with both PREs mutated. Mutation of both PREs results in a similar 

expression pattern to embryos carrying the wild-type reporter treated with pos-1(RNAi) 

(94% express in posterior, n = 16, Figure 3.7), suggesting that the PREs are required for 

translational repression rather than de-repression of glp-1, and that POS-1 directly 

regulates glp-1.  As the two PREs are equivalent and independent, we hypothesized that 

the two binding sites are redundant. To test this hypothesis and determine the individual 

contribution of each PRE, we generated transgenic strains bearing mutations in either the 

5′ or 3′ PRE.  Mutating the 5′ PRE results in embryos exhibiting wild-type GFP 
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expression (anterior  = 43%, no expression = 57%, n = 21, Figure 3.7), while mutating 

the 3′ PRE results in ubiquitously expressed GFP at the four cell stage (82% express in 

posterior, n = 27, Figure 3.7).  This suggests that despite the thermodynamic equivalence 

of the PREs in vitro, only the 3′ PRE is required for POS-1 mediated translational 

repression of glp-1.   

 Given that POS-1 binding is essential for translational repression of glp-1, and 

that GLD-1 does not bind to the glp-1 3′ UTR in the presence of POS-1 in vitro, we 

wanted to revisit the role of the GBM in embryos compared to the germline, where GLD-

1 is present but POS-1 is not.  To test this hypothesis, we generated a transgenic line 

carrying a mutation in the GBM and observed four-cell stage embryos.  Embryos 

carrying this transgene express GFP in all cells of the early embryo (87% express in 

posterior, n = 30, Figure 3.7) suggesting that the GBM is also required for translational 

repression of glp-1 in the embryo.  This matches the previously published results for both 

the endogenous GLP-1 expression pattern in gld-1(RNAi) embryos (Marin and Evans 

2003), as well as for reporters carrying mutations in the GRE (Marin and Evans 2003), 

confirming that GLD-1 acts through the GRE to repress glp-1 translation in the embryo.  

 

The 3′ PRE mutations disrupt the GDE in the germline 

 The 3′ PRE mutation lies entirely within the GDE, which is required for 

translational activation of glp-1, but results in delocalized expression in the embryo.  We 

wanted to determine the effect of the PRE mutations on germline expression of the glp-1 

reporter.  The gonads of live worms were observed by widefield fluorescence microscopy 
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(Figure 3.8). Worms carrying the wild-type reporter have strong GFP expression in the 

distal end of the germline, with diminishing expression in the syncytial region (95% 

strong distal expression, 85% weak syncytial expression, n = 20, Figure 3.8).  This 

closely matches the expression of endogenous GLP-1 in the germline.  Mutation of the 5′ 

PRE has no effect on expression of GFP, consistent with the effects observed in embryos 

(86% strong distal expression, 89% weak syncytial expression, n = 28, Figures 6B, 6C).  

Mutation of both the 5′ PRE and 3′ PRE, or just the 3′ PRE alone results in decreased 

reporter expression in the germline relative to the wild type reporter (∆5′PRE 3′PRE: 

70% weak distal, 100% no syncytial, n = 27; ∆3′PRE: 96% weak distal, 80% no 

syncytial, n = 25, Figure 3.8).  This apparent decrease is not dependent on POS-1, as pos-

1(RNAi) has no apparent effect on expression of the wild-type reporter in the germline 

(100% strong distal, 100% weak syncytial, n = 9, Figure 3.8).  Taken together, this 

suggests that the 3′ PRE mutation also disrupts the association of a factor required for 

activation of glp-1 translation in the germline.  The GBM is required for translational 

repression of glp-1 in the syncytial region, as a reporter carrying a mutation in the GBM 

displays increased expression of GFP in the syncytial region of the germline (85% strong 

distal, 65% strong syncytial, n = 25, Figure 3.8).   

 

SPN-4 does not directly activate glp-1 translation in the germline 

 The RRM-containing protein SPN-4 is a potential candidate for the activating 

factor that operates through the GDE in early embryos.  SPN-4 is expressed throughout 

all cells of  the embryo during the four cell-stage (Ogura et al. 2003), and GLP-1 
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Figure 3.8.  Mutation of the 3′ PRE decreases glp-1 reporter expression independently of 

POS-1.  A.  Schematic of the C. elegans gonad.  Distal and syncytial regions are labeled. 

B. Representative differential interference contrast (DIC, left) and widefield fluorescence 

(GFP, right) images of the listed reporter strains or experimental condition.  White 

asterisks mark the distal end of the gonad, white arrows mark decreased reporter 

expression in the distal region of ∆5' 3′ PRE and ∆3′ PRE reporter strains, white 

arrowheads mark increased reporter expression in the embryos of ∆5' 3′ PRE and pos-

1(RNAi) treated WT reporter strains, and the black arrowhead marks increased reporter 

expression in the syncytium of the ∆GBM reporter strain.  C. Table of results.  Distal and 

syncytial refer to their respective regions of the gonad, and black percentages represent 

the most common observation for each strain in both the distal and syncytial regions of 

the gonad. 
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expression is undetectable in embryos lacking SPN-4 (Ogura et al. 2003). Also, SPN-4 

and POS-1 compete for binding to the nos-2 3′ UTR in vitro (Jadhav et al. 2008). To 

determine if SPN-4 activates expression of the glp-1 3′-UTR reporter, we observed the 

pattern of GFP expression in four cell embryos as a function of SPN-4 knockdown.  

Anterior expression of GFP is observed in 48% of untreated 4-cell embryos carrying the 

glp-1 WT  reporter (n = 28, Figure 3.9), while only 11% of spn-4(RNAi) 4-cell embryos 

had detectable GFP in the anterior cells (n = 38).  This suggests that SPN-4 is indeed 

required to activate expression from the glp-1 3′UTR reporter in the early embryo.  

However, this activation is not mediated through the GDE, as SPN-4 knockdown has no 

effect on GFP expression in 4-cell embryos carrying a reporter bearing the ∆3′ PRE 

mutation (∆3′ PRE: 100% of embryos have anterior and posterior GFP expression, n = 

30; ∆3′ PRE spn-4(RNAi): 93% of embryos have anterior GFP expression and 97% have 

posterior GFP expression, n = 30, Figure 3.9).  Furthermore, purified SPN-4-RBD does 

not bind to either the glp-1 fragment (Figure 3.9) or a longer RNA containing the entire 

glp-1 GDE (data not shown) in vitro.  Thus, SPN-4 is not likely to compete with POS-1 

for binding to the GDE.  Consistent with this interpretation, SPN-4 was previously 

observed to interact with a distant element of the glp-1 3′-UTR by yeast 3-hybrid. (Ogura 

et al. 2003). 

 Taken together, consistent with previous work, we conclude that translational 

control of glp-1 requires both repressive and activating elements.  GLD-1 binds to the 

GRE and is required for repression.  POS-1 also binds to the GRE in vitro, but binding to 

the GRE has no effect on glp-1 expression in worms.  In contrast, POS-1 binds with 
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Figure 3.9.  SPN-4 activates glp-1 translation indirectly.  A.  Representative images of 

four-cell embryos carrying the listed reporter construct (left), and treated as described 

(top).  Bottom, table of results.  Anterior and posterior denote the percentage of 4-cell 

embryos with detectable GFP fluorescence in either the anterior or posterior cells, 

respective.  None denotes the percentage of embryos with no detectable GFP 

fluorescence.  B.  Representative gel shift data for SPN-4-RBD.  The protein 

concentration used in each lane is labeled above the gel.  
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equivalent affinity to the GDE in vitro, but binding is required for repression, not 

activation.  We suggest that POS-1 represses translation by competing with an 

unidentified factor that binds to the GDE to promote translation.  This would explain why 

two thermodynamically equivalent POS-1 binding sites, separated by only five 

nucleotides, contribute disparately to glp-1 regulation, and why the PRE is necessary but 

not sufficient to confer regulation in worms. 

 

DISCUSSION 

 Our data show that POS-1 and GLD-1 directly and independently repress glp-1 

translation in the early embryo.  Independent regulation of glp-1 may be a consequence 

of the differing spatial, temporal, and subcellular localization patterns of each protein. As 

POS-1 is expressed earlier than GLD-1 (Tabara et al. 1999; Jones et al. 1996), glp-1 is 

likely regulated only by POS-1 during the one- and two-cell stages.  Once GLD-1 

translation begins, it may become the primary negative regulator of glp-1. As POS-1 

antagonizes binding of GLD-1 to the glp-1 3′ UTR, the handoff to GLD-1 mediated 

repression would likely require inactivation or turnover of POS-1. Alternatively, the 

differences in subcellular localization between POS-1 and GLD-1 may be indicative of 

different mechanisms of glp-1 repression.  In the germline, GLD-1 is present in P-body 

like granules (Noble et al. 2008), but it is unknown if the GLD-1 granules in the embryo 

are also P-bodies. As P-bodies are sites of mRNA decapping and turnover, GLD-1 may 

promote turnover of glp-1 mRNA in the embryo.  Thus, binding to either POS-1 or GLD-
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1 may lead to different regulatory outcomes, and competition between these two proteins 

may be essential for controlling the rate of glp-1 mRNA turnover.  

Our data suggests that a third factor that promotes glp-1 translation competes with 

both POS-1 and GLD-1 for binding to the GRE and GDE.  One candidate is the atypical 

cytoplasmic poly(A) polymerase GLD-2, which is expressed throughout the germline and 

embryo and is required for development (Wang et al. 2002).  GLD-2 lacks an RNA-

binding domain, and requires the association of an RNA-binding protein to target the 

polymerase to specific transcripts and extend the poly(A) tail, activating translation.  At 

least two such accessory factors (GLD-3 and RNP-8) are expressed throughout early 

embryos (Suh et al. 2006; Kim et al. 2010).  When GLD-1 or POS-1 levels are low, for 

example in the anterior blastomeres ABa and ABp, GLD-2 may stimulate 

polyadenylation of glp-1 transcripts, leading to translation activation. It is also possible 

that translational activation of glp-1 could be mediated by sequence-specific factors that 

recognize the GDE but do not recruit GLD-2.  More work is needed to identify the 

activating protein and dissect the mechanism of activation. 

During early embryogenesis, numerous maternally supplied mRNAs encoding 

cell-fate specification factors are translationally regulated.  Mis-expression of these 

factors can lead to mis-specification of cell fates, and ultimately embryonic lethality.  

Several RNA-binding proteins are present in different amounts in each blastomere of the 

early embryo.  Competition between positive and negative regulatory factors would 

couple the amount of protein produced to the relative ratio of RNA-binding proteins in 
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each cell, providing a mechanism to drive cell specific expression of cell fate 

determinants.    

Clusters of overlapping binding sites are a required component of this competition 

model. To identify clusters of binding sites, a detailed understanding of RNA-binding 

factor motifs is required.  Intriguingly, the motifs recognized by POS-1, GLD-1, and a 

third embryonic RNA-binding protein, MEX-3, include partially overlapping elements 

(Farley et al. 2008; Wright et al. 2011; Pagano et al. 2009).    Thus, clustering of binding 

sites is a natural outcome of their evolved specificity.   

 Another feature of the competition model is that RNA-binding proteins exist that 

do not recruit regulatory machinery, but instead antagonize other factors that do.  We 

propose that POS-1 acts by this mechanism.  Our model is supported by the inability of 

PREs to pattern a reporter (Farley et al. 2008), as well as the context dependence of the 

PRE required for glp-1 regulation in vivo.  PREs are present in over 40% of annotated 3′ 

UTRs (Farley et al. 2008), but  we predict many putative binding events serve no 

biological function.  Thus, the apparent dichotomy between biologically relevant 

specificity and thermodynamic discrimination by RNA-regulatory factors could possibly 

be explained by antagonistic relationships between multiple proteins.   
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MATERIALS AND METHODS 

Cloning and purification of POS-1, GLD-1 and SPN-4 

 DNA encoding amino acids 1-206 of POS-1 cloned into the protein expression 

vector pMAL-c2x (New England Biolabs) was graciously provided by Dr. Tom Evans 

(U. of Colorado Anshutz Medical Campus, Aurora, CO).  The plasmid was transformed 

into E. coli strain BL21 (DE3).  Protein expression was induced with 1 mM IPTG and 

100 µM Zn(OAc)2.  The cells were lysed using a microfluidizer, and the lysate was 

purified using an amylose column (New England Biolabs), followed by a Source Q 

column (GE Healthcare Life Sciences) and a HiPrep 16/60 Sephacryl S-200 column (GE 

Healthcare Life Sciences). After the final column, the protein was dialyzed into 25 mM 

Tris pH 8.0, 25 mM NaCl, 2 mM DTT, 100 µM Zn(OAc)2, concentrated to 

approximately 30 µM, and used for experiments. 

  DNA encoding amino acids 50-135 of SPN-4 was cloned into the protein 

expression vector pHMTc (Ryder et al. 2004) and transformed into E. coli strain BL21 

(DE3), and induced as POS-1 1-206 above, omitting the zinc acetate.  Cells were lysed 

using a microfluidizer, and the lysate purified using an amylose column (New England 

Biolabs), followed by a HiTrap SP HP column (GE Healthcare Life Sciences) and a 

SourceQ column (GE Healthcare Life Sciences). Following the last column, the protein 

was dialyzed into 25 mM Tris pH 8.0, 25 mM NaCl, 2 mM DTT, concentrated to 

approximately 20 µM, and used for experiments.  
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POS-1-RBD was expressed and purified from pHMTc-POS-1(80-180) as 

described in (Farley et al. 2008).  GLD-1 was expressed and purified from pHMTc-

GLD1(135-336) as described in (Ryder et al. 2004). 

 

Fluorescent labeling of RNAs 

 RNA oligonucleotides were synthesized by Integrated DNA Technologies and 

fluorescently labeled on their 3′ ends via periodate oxidation followed by reaction with 

fluorescein-5-thiosemicarbazide (Sigma).  Unreacted label was purified away via G-25 

spin column. A detailed protocol is available in (Pagano et al. 2011). 

 

Fluorescent electrophoretic mobility shift assays 

 Fluorescent electrophoretic mobility shift assays were essentially performed and 

analyzed as described in (Pagano et al. 2011).  Briefly, 2 nM fluorescently labeled RNA 

in equilibration buffer (50 mM Tris pH 8.0, 100 mM NaCl, 5 µM Zn(OAc)2, 0.01% 

IGEPAL CA-630, 0.01 mg/mL tRNA) was mixed with varying concentrations of either 

POS-1 or GLD-1 and equilibrated at room temperature for three hours.  The protein-

bound and free RNA was then resolved on a 1X TB native 5% polyacrylamide slab gel 

run at 120 volts for approximately one hour at 4 ºC.   

Competition assays were performed in essentially the same fashion, except a fixed 

concentration of POS-1 or GLD-1 was added to the labeled RNA in equilibration buffer 

to achieve approximately 70% bound RNA in the absence of competitor protein.  Then, 

varying amounts of competitor protein were added to each reaction and incubated for at 
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least three hours.  The reactions were then loaded onto a 1X TB native 5% 

polyacrylamide slab gel run at 120 volts for three hours at 4ºC to resolve POS-1 and 

GLD-1 bound complexes.  Gels were quantified using Image Gauge (Fuji), and the 

fraction of protein bound RNA was determined by quantifying the ratio of the 

background corrected pixel intensity of the protein-bound RNA relative to the sum of the 

background corrected pixel intensities of each RNA species.  Two independent replicates 

of each competition experiment involving POS-1 were performed, and five independent 

replicates were performed with POS-1-RBD.  

 

Cloning of reporter constructs 

 The glp-1 3′ UTR was amplified via PCR using Elongase (Invitrogen) from worm 

genomic DNA using primers that added the attB2R and attB3 sites to the 5′ and 3′ ends of 

the product, respectively. The PCR product was then cloned into pDONRP2RP3 using 

BP Clonase II (Invitrogen). Site-specific mutations in the glp-1 3′ UTR were introduced 

via Quickchange mutagenesis using Pfu Turbo.  Each of the resulting variants of the glp-

1 3′ UTR was then used in a multi-site gateway reaction with plasmids bearing the mex-5 

promoter (pCM1.111) and MODC PEST::GFP::H2B ORF (pBMF2.7) to generate 

constructs for integration. The gateway reaction was catalyzed with LR Clonase II Plus 

(Invitrogen), and the promoter::ORF::3′ UTR fusions were cloned into the MosSCI 

integration vector pCFJ151.  

 

Generation and verification of transgenic strains 
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 Single copy integrated transgenic worms strains were generated by MosSCI 

(Frøkjaer-Jensen et al. 2008).  Plasmids bearing the transgene to be integrated were 

microinjected into the gonads of young adult worms of strain EG4322 along with 

pharyngeal- and body wall-expressed mCherry markers and a constiutive germline-

expressed Mos1 transposase.  Prior to injection, worms were maintained at 15 ºC on 

NGM agar plates seeded with Comamonas (DA1877).  Worms were propagated for two 

generations, and screened for successful integration by checking for wild-type movement 

without expression of the mCherry extra-chromosomal array markers.  Putative integrants 

were confirmed by PCR using a transgene specific primer and a worm genome specific 

primer. These PCR products were then sequenced to validate the mutations in the 

reporter's 3′ UTR.  

 

Imaging of fluorescent reporter strains 

 Prior to imaging, worms were maintained at 25 ºC for at least 24 hours to promote 

GFP folding.  Embryos were obtained by dissecting adult worms and then mounted on 

2% agarose pads, and whole worms were paralyzed with 0.4 mM levamisole and 

mounted on 2% agarose pads.  Both DIC and GFP images were collected using a Zeiss 

Axioskop microscope.  

  

RNAi knockdown 

 Embryos were harvested from adult worms by treatment with 0.5 N NaOH and 

2% Clorox bleach, washed twice with water, and then transferred to NGM plates seeded 
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with bacteria expressing dsRNA targeting either POS-1 or SPN-4.  Worms were 

maintained at 25 ºC and imaged as described above.  
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Chapter IV 

The ramifications of promiscuous RNA 

binding specificity 
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 The goal of the research presented within this dissertation is to identify the direct 

mRNA regulatory targets of the C. elegans CCCH-type tandem zinc finger protein POS-1 

by determining its in vitro RNA-binding specificity and using this information to predict 

in vivo regulatory targets.  Embryos lacking POS-1 fail to complete gastrulation, and the 

arrested embryos exhibit severe defects in three spatially distinct tissue types: pharynx, 

intestine, and germline precursors.  Identifying the regulatory targets of POS-1 could 

provide insight on the biological pathways that guide cell fate specification events during 

embryogenesis as well as the mechanism of maintaining the distinction between germline 

and somatic identities during embryogenesis.  

 Based on the results presented here, POS-1 recognizes a degenerate sequence that 

is present in the 3′ UTRs of approximately 40% of all genes in the C. elegans genome.  

Two POS-1 binding sites are located within 5 nucleotides of each other within the 3′ 

UTR of glp-1, a known regulatory target of POS-1.  These binding sites overlap with two 

previously characterized regulatory elements within the glp-1 3′ UTR: the glp-1 

repression element (GRE) and glp-1 de-repression element (GDE).  POS-1 recognizes 

each of these sites with equivalent affinity in vitro, but only the 3′ POS-1 binding site is 

required for translational repression in embryos.  Mutation of both sites or just the 3′ 

POS-1 binding site results in decreased reporter expression in the germline that is 

independent of POS-1, suggesting that a factor required to activate translation binds to 

the glp-1 3′ UTR through this site.  It is therefore possible that POS-1 regulates its targets 

not by recruiting regulatory machinery, but instead by interfering with the association of 

other RNA-binding proteins that do.  
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 In addition to sites for POS-1, this region of the glp-1 3′ UTR contains a binding 

site for GLD-1, which is required to repress translation of glp-1 in the distal germline as 

well as the posterior of the early embryo.  GLD-1 acts through the GRE, and mutation of 

this site within the context of a reporter results in expanded reporter expression in the 

gonad as well as reporter expression within the posterior of the early embryo.  This, 

together with the requirement for POS-1 and the unidentified activating factor, indicates 

that multiple RNA-binding proteins each require this fragment of the glp-1 3′ UTR for 

different regulatory pathways.  

 

POS-1 specificity 

 One potential model for how POS-1 regulates a limited subset of targets involves 

competition with other RNA-binding proteins. POS-1 itself may not recruit translational 

repression machinery, but instead interfere with the association of translation-activating 

factors. This model is supported by the two POS-1 binding sites within the glp-1 3′ UTR.  

POS-1 binds to each of these sites with an equivalent affinity in vitro, but only the 3′ 

POS-1 site is required for translational repression of a reporter in vivo.  The 3′ POS-1 site 

is coincident with the GDE, mutations of which result in either less or no expression of a 

reporter relative to a wild-type sequence.  Another RNA-binding protein required for 

translational activation of glp-1 may act through the GDE, which overlaps with the 3′ 

POS-1 binding site, but not the 5′ POS-1 binding site.  If this is the case, binding of POS-

1 to the 3′ site would prevent the association of the activating factor and serve to repress 

translation of glp-1.  In this scenario, POS-1 would not need to recruit any negative 
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regulatory machinery to the glp-1 3′ UTR to elicit translational repression. Instead, 

binding to a site required by another regulatory factor and inhibiting its association would 

suffice.   

 As a result of this model, the functionality of POS-1 binding sites would depend 

on which, if any, factors associated nearby.  Many of the predicted POS-1 binding sites 

throughout C. elegans 3′ UTRs may be non-functional because binding of POS-1 to these 

sites would not interfere with another regulatory factor.  The requirement that POS-1 

binding competes with another RNA-binding protein for regulation would greatly 

increase the target specificity of POS-1, as only a limited subset of POS-1 sites would 

overlap with or be in close proximity to those of another protein.  Understanding which 

POS-1 binding sites are functional regulatory elements requires the identification of 

which factors POS-1 competes with for binding to specific sites across C. elegans 3′ 

UTRs.  

 There are two possible groups of RNA-binding proteins that POS-1 may compete 

with to regulate its targets: the atypical cytoplasmic poly(A) polymerases, and the other 

CCCH-type tandem zinc finger proteins that are present in C. elegans.  Poly(A) tails are 

generally required for translation, as poly(A) binding protein (PABP) recruits the 

translation initiation factor EIF4G, which binds to the 5′ cap binding protein EIF4E and 

permits the assembly of the 80S ribosome at the 5′ end of the transcript.  Removal or 

shortening of the poly(A) tail prevents PABP binding, which in turn prevents the 

formation of the translation initiation complex and results in translational repression.  

mRNAs transcribed in the germline that are destined for translation in the embryo are 
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frequently translationally repressed by this mechanism. Shortened poly(A) tails can be 

extended in the cytoplasm by cytoplasmic poly(A) polymerases, which permits 

translation.  Two cytoplasmic poly(A) polymerases have been identified in C. elegans: 

GLD-2 and GLD-4 (Wang et al. 2002; Schmid et al. 2009).  Both of these proteins are 

expressed in the germline and in developing oocytes, and each is required for meiotic 

progression in the distal end of the germline.  Unlike most poly(A) polymerases, GLD-2 

and GLD-4 contain only a catalytic domain and require the association of an RNA-

binding protein to be targeted to mRNA.  GLD-2 associates with either the KH-domain 

protein GLD-3 or the RNA-recognition motif containing protein RNP-8 (Wang et al. 

2002; Kim et al. 2010), while GLD-4 associates with either GLD-3 or the novel P-granule 

component GLS-1 (Rybarska et al. 2009).  The mRNAs that either poly(A) polymerase 

are targeted to changes based upon the associated specificity factor.  Any of these 

poly(A) polymerases or specificity factors may be required to activate the translation of 

glp-1 or other potential POS-1 targets in the germline or early embryo.  As the RNA-

binding specificities of GLD-3, GLS-1, and RNP-8 are unknown, it is difficult to 

determine if any of these factors have potentially overlapping specificities with POS-1.  

 Another group of candidate factors that may have positive regulatory roles and 

compete with POS-1 for binding to mRNA targets are the other members of the C. 

elegans CCCH-type tandem zinc finger family of RNA-binding proteins.  The C. elegans 

genome contains 16 CCCH-type TZF proteins (reviewed by Kaymak et al. 2010). 8 of 

these proteins are required for oogenesis or embryogenesis, while the functions of the 

other 8 are largely unknown.  Members of the CCCH-type TZF family display a range of 
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distinct but related sequence specificities: the mammalian homologs TTP and Tis11d 

recognize the sequence UAUUUAUU with high affinity and specificity (Hudson et al. 

2004; Brewer et al. 2004), POS-1 recognizes the sequence UAU2-3RDN1-3G with high 

affinity, and MEX-5 is capable of binding to U-rich sequences (Pagano et al. 2007). It is 

possible that one of the other C. elegans CCCH-type TZF proteins recognizes a similar, 

but not identical sequence to that of POS-1.  Given this similarity in specificity, there 

would be a significant number of sites that could be recognized by both proteins.  If one 

of the other CCCH-type tandem zinc finger proteins recruits positive regulatory 

machinery, it could serve as a competitive activator of POS-1 bound mRNAs.  One 

potential TZF protein is DCT-13, which partially suppresses the gld-1(-) phenotype of a 

mitotically proliferating germline tumor (Pinkston-Gosse and Kenyon 2007).  As mitotic 

proliferation of germ cell precursors depends upon GLP-1 activity, tumor suppression 

may be mediated by a decrease in the levels of GLP-1.  The level of GLP-1 expression in 

either a dct-13(-) or gld-1(-);dct-13(-) background has not been investigated, and could 

prove to implicate DCT-13 in glp-1 translational activation.  

 It is also possible that neither of these groups of factors acts to activate the 

translation of glp-1 or other mRNAs that are also bound by POS-1.  The 3′ half of the 

POS-1 recognition sequence is only weakly specific (UAU2-3R versus DN1-3G), which 

may facilitate overlapping binding sites with a variety of RNA-binding proteins with 

differing specificities. The glp-1 3′ UTR presents a system in which these competing 

factors – if any – can be identified.  Using the reporter strains already generated over the 

course of this dissertation research, nucleotide capture experiments can be performed that 
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specifically recover reporter mRNAs (by designing capturing oligos that are 

complimentary to the coding sequence of GFP).  If the samples are crosslinked via UV or 

formaldehyde treatment prior to recovery, the suite of proteins associated with the 

reporter mRNA can be recovered with it, and these can be identified via proteomic 

methods.  Comparing the ensemble of proteins associated with the reporter bearing the 

wild-type glp-1 3′ UTR or a version carrying a mutation in the 3′ PRE would permit the 

identification of proteins that differentially associate with the glp-1 3′ UTR as a function 

of the 3′ PRE. Once identified, in vitro biochemical analysis could be performed to verify 

that the putative RNA-binding proteins associate with the glp-1 3′ UTR in a POS-1 

binding site dependent manner.  This approach would permit the identification of new 

glp-1 3′ UTR associated factors in a model independent manner, and could offer new 

insights on the mechanism of POS-1 mediated translational repression. 

 

Translational regulation of glp-1 

 The data presented in this dissertation support the hypothesis that glp-1 is 

translationally repressed via two separate pathways during C. elegans embryogenesis. 

One pathway requires POS-1 and is mediated through the 3′ PRE in the glp-1 3′ UTR, 

while the other pathway requires GLD-1 and is mediated through the SBE. Mutations in 

either binding site result in reporter expression in the posterior of the four-cell embryo, 

demonstrating that each protein is required for translational repression in the posterior 

cells.  In vitro competition experiments suggest that POS-1 competes with GLD-1 for 

binding to the glp-1 3′ UTR. Furthermore, the footprint of GLD-1 when bound to RNA is 
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more than 20 nucleotides, making it extremely unlikely that both proteins can bind 

simultaneously in vitro or in vivo. A co-regulatory complex of POS-1 and GLD-1 

requires that both proteins bind together, and is thus not probable.  On, the other hand, if 

POS-1 and GLD-1 are redundant translational repressors of glp-1, mutation of either the 

SBE or 3′ PRE should not be sufficient to cause de-repression of a reporter as the non-

mutated site could still mediate repression. Neither of these models is correct, as both 

POS-1 mediated repression and GLD-1 mediated repression are required in the embryo.  

 One possibility for the requirement of both proteins is that each is required in a 

separate sub-cellular location within the embryo.  The reporter constructs used in these 

experiments contains histone 2B, which directs GFP to the nucleus regardless of where in 

the cell translation takes place.  Immunofluorescence of either POS-1 or GLD-1 reveals 

that the two proteins have different expression patterns within the cells in which they are 

expressed. POS-1 is distributed throughout the cytoplasm of the cells in which it is 

expressed (Tabara et al. 1999), while GLD-1 is predominantly localized to cytoplasmic 

granules (Jones et al. 1996). This localization is observed in both embryos and the 

syncytial region of the germline, where GLD-1 is also expressed and serves to 

translationally repress multiple targets.  These cytoplasmic granules contain numerous 

mRNAs as well as other RNA-binding proteins. Two proteins in particular are required 

for the stability of the cytoplasmic granules in the germline: CGH-1 and CAR-1 (Noble et 

al. 2008).  Mutation of the gene encoding either one of these proteins results in the 

disappearance of cytoplasmic granules in the syncytium of the germline, as well as a 

significant decrease in the expression level of mRNAs that are normally contained within 
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the granules (Noble et al. 2008; Scheckel et al. 2012).  mRNAs targeted to these granules 

are translationally repressed but also stabilized, suggesting that these granules are for the 

storage of mRNAs required in embryogenesis.  GLD-1 may serve to translationally 

repress mRNAs that are localized to these storage bodies. glp-1 mRNA is contained 

within the granules in the germline, and the glp-1 3′ UTR is sufficient for localization 

(Noble et al. 2008).  A similar mechanism may be taking place in the embryo, generating 

two distinct pools of glp-1 mRNA: one within the cytoplasm, and one within cytoplasmic 

granules.  POS-1 may be the primary factor required for translational repression within 

the cytoplasm, while GLD-1 may be the primary repressor in granules, which would 

make each protein necessary for translational repression within embryos.  

 POS-1 and GLD-1 are just two of the RNA-binding proteins required to 

translationally repress glp-1 in the germline and early embryo.  PUF-5, PUF-6, and PUF-

7 are required in the region of the gonad where oocytes recellularize (Lublin and Evans 

2007), OMA-1/2 may be required in maturing oocytes, and MEX-3 is required in one-cell 

embryos (Pagano et al. 2009).  The specificity of MEX-3 is known, and most members of 

the PUF family of proteins recognize a sequence that contains a UGU trinucleotide with 

an UA dinucleotide close downstream.  Investigating the glp-1 3′ UTR for these 

sequences reveals an approximately 100 nucleotide fragment that contains two MEX-3 

sites, three candidate PUF-protein sites, and the POS-1 and GLD-1 sites previously 

described (Figure 4.1). In addition, this fragment is well conserved across closely related 

nematode species, suggesting that it may be a functional regulatory element.  The RNA-

binding specificity of OMA-1/2 is unknown, but preliminary experiments suggest that it 
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Figure 4.1.  A cluster of binding sites is present in the glp-1 3′ UTR.  An image from the 

UCSC genome browser with predicted binding sites for POS-1, GLD-1, MEX-3, and 

PUF-like consensus sequences annotated.  Top, binding site predictions. Middle, glp-1 3′ 

UTR annotation. Bottom, nucleotide conservation as determined by the PhastCons 

algorithm. Higher bars within the histogram indicate greater conservation. 
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too is a direct translational repressior of glp-1 and that it acts through an unidentified 

sequence within this cluster of binding sites (E. Kaymak, unpublished data).  Clusters of 

sites for multiple RNA-binding proteins may be indicative of a functional regulatory 

element, especially in light of the proposed mechanism of POS-1-mediated translational 

repression.  Identifying clusters of binding sites requires an understanding of the RNA-

binding specificity of multiple RNA-binding proteins, as well as a method for identifying 

individual binding sites within the transcriptome.  

 

Genome-wide identification of functional regulatory elements 

 The method currently used for identifying binding sites for a given RNA-binding 

protein relies on an experimentally determined consensus sequence. Two methods are 

frequently used to generate this consensus: identifying motifs in common among a 

population of sequences known to bind to the RNA-binding protein in question (using 

computational tools such as MEME or Cosmo), or measuring the affinities of a series of 

point mutations of a short, high-affinity binding sequence, followed by setting a threshold 

for significant mutations.  In the second approach, the consensus sequence is defined as 

the set of all mutations that weaken binding less than the chosen threshold.  Each of these 

approaches identifies the most common or highest affinity binding sites, but RNA-

binding proteins can also interact with weak or cryptic sites. For, example, the POS-1 

consensus failed to identify one of the two high-affinity sites within the glp-1 3′ UTR 

because of the presence of two changes relative to the consensus: a C in place of a purine, 

and a single nucleotide reduction in the length of the binding site. Based on the affinity 
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measurements described in Chaper II, the C substitution decreases affinity, while the 

reduction in length increases affinity by a comparable amount.  A simple consensus 

search will miss variations in binding sites such as this.  

 In at least one case, multiple weak binding sites for an RNA-binding protein in 

close proximity can elicit a similar regulatory response to a single strong binding site for 

that same protein.  FBF is a direct translational repressor of cki-2, which represses the C. 

elegans cyclin E homolog cye-1 and thus promotes mitosis in the distal end of the 

germline (Kalchhauser et al. 2011).  The cki-2 3′ UTR contains four FBF binding sites 

within 100 nucleotides.  Three of these sites have an affinity that is 10-fold weaker than 

that observed for FBF in complex with a functional regulatory element from the gld-1 3′ 

UTR, while the fourth has an equivalent affinity to that observed for the gld-1 binding 

site.  Mutation of only the highest affinity FBF site within the context of a reporter results 

in no detectable change relative to the wild-type sequence, while mutation of all four 

results in de-repression of the reporter in the distal end of the germline.  This implies that 

all four sites are required for translational repression, not just the highest affinity site.  

Thus, weak sites must also be taken into consideration when attempting to identify 

regulatory elements within the 3′ UTRs of translationally regulated mRNAs.  

 To identify both weak and strong sites, I have developed an algorithm based on 

the pairwise alignment algorithm that uses the quantitative in vitro measurements made 

for panels of point mutations for POS-1, GLD-1, and MEX-3.  By determining which 

nucleotides do not match the optimal nucleotide at each position and summing the 

measured ∆∆Gº for each mismatch, an estimate of the affinity for any arbitrary sequence 
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can be made.  This permits the identification of both weak and strong sites throughout the 

transcriptome. This method assumes that the effects of individual mutations are 

independent, and that the effect of multiple mutations is equivalent to the sum of the 

effects of the individual mutations. This assumption is valid for GLD-1 (Wright et al. 

2011). The affinities of 46 different seven-nucleotide sequences were measured.  These 

sequences were the most enriched motifs among a population of sequences recovered by 

RIP-CHIP from worm extract against GLD-1.  This population of motifs was sufficiently 

diverse to provide multiple opportunities to measure the effect of a point mutation within 

different sequence contexts. For nearly all point mutations measured, the relative effect of 

the mutation remained constant regardless of the sequence background it was found in.  

Mutations may not be independent for other RNA-binding proteins, but this is at least a 

reasonable hypothesis with regards to GLD-1.  

 Using this method, clusters of binding sites for POS-1, GLD-1, and MEX-3 can 

be identified throughout the entire C. elegans transcriptome and subsequently tested for 

regulatory activity via the generation of transgenic reporter strains. Clusters of binding 

sites may be more informative than individual binding sites alone, thus enabling the 

identification of regulatory regions of translationally regulated transcripts.  This will 

enable a greater understanding of the mechanism and function of POS-1 and other RNA-

binding protein mediated translational regulation in C. elegans, and this strategy could 

conceivably be extended to other species as well.  
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