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ABSTRACT 
 

The cells and molecules that comprise the immune system are essential 

for mounting an effective response against microbes.  A successful immune 

response limits pathology within the host while simultaneously eliminating the 

pathogen.  The key to this delicate balance is the correct recognition of the 

pathogen and the appropriate response of immune cells.  Cellular activation 

originates through receptors that relay information about the state of the 

microenvironment to different compartments within the cell.  The rapid relay of 

information is called signal transduction and employs a network of signaling 

mediators such as kinases, phosphatases, adaptor molecules, and transcription 

factors.  IL-2 inducible T cell kinase (Itk) is a non-receptor tyrosine kinase that is 

an integral component of signal transduction downstream of many 

immunoreceptors.  This dissertation describes two distinct pathways that utilize 

Itk in both phases of the immune response. 

T cells use the TCR to sense a multitude of peptide-based ligands and to 

transmit signals inside the cell to activate cellular function.  In this regard, the 

diversity of ligands the T cells encounter can be portrayed as analog inputs.  

Once a critical threshold is met, signaling events transpire in close proximity to 

the plasma membrane to activate major downstream pathways in the cell.  The 

majority of these pathways are digital in nature resulting in the on or off activation 

of T cells.  We find, however, that altering the TCR signal strength that a T cell 

receives can result in an analog-based response.  Here, the graded expression 

of a transcription factor, IRF4, is modulated through the activity of Itk.  We link 
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this graded response to an NFAT-mediated pathway in which the digital vs. 

analog nature has been previously uncharacterized.  Finally, we demonstrate 

that the repercussions of an analog signaling pathway is the altered expression 

of a second transcription factor, Eomes, which is important in the differentiation 

and function of T cells.  These results suggest that Itk is crucial in the modulation 

of TCR signal strength. 

 Mast cells primarily rely on the IgE-bound FcεR1 for pathogen recognition.  

Crosslinking this receptor activates mast cells and results in degranulation and 

cytokine production via an expansive signaling cascade.  Upon stimulation, Itk is 

recruited to the plasma membrane and phosphorylated.  Little else is known 

about how Itk operates inside of mast cells.  We find that mast cells lacking Itk 

are hyperresponsive to FcεR1-mediated activation.  This is most apparent in the 

amount of IL-4 and IL-13 produced in comparison to wild-type mast cells.  

Increased cytokine production was accompanied by elevated and sustained 

signaling downstream of the FcεR1.  Finally, biochemical evidence demonstrates 

that Itk is part of an inhibitory complex containing the phosphatase SHIP-1.  

These results indicate a novel function for Itk as a negative regulator in FcεR1-

mediated mast cell activation. 
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Opening remarks 

 

One of nature’s crowning achievements, the human body is an intricate 

combination of complex organ systems working in concert to sustain and foster 

life.  It is because of this biological accomplishment we continue to thrive and 

flourish in our environment.  However, we do not subsist alone, nor could we.  

There are millions and millions of different organisms we must co-exist with in 

order to survive.  The vast majority of these co-inhabitants are microorganisms.  

Of the known microbes, most are innocuous to humans, even beneficial, 

providing a source of energy and nutrition.  A small fraction of microbes, 

however, are potentially infectious and may cause disease in humans; we call 

these microbes - pathogens.  Fortunately, evolution has imparted us with an 

immune system to prevent and circumvent the adverse effects of an infection. 

Once a pathogen has breached primary barriers (e.g. skin, saliva, etc.) 

and established an infection by colonizing a niche within a host, the immune 

system is charged with recognition and elimination of the microbe.  The collection 

of tissues, cells, and molecules that constitute the immune system is essential to 

mounting a successful response against foreign invaders.  Typically, activation of 

the immune system by a pathogen results in a two-phased attack initiated by 

innate immune cells and subsequently followed by an adaptive immune 

response.  The goal of this tandem effort is life-long, sterilizing immunity for the 

host against that particular pathogen.  Occasionally, however, the modus 

operandi breaks down and the host is left vulnerable and potential life-
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threatening ailments ensue.  Frequently, these ailments result from such 

disorders as immunodeficiency, autoimmunity, and hypersensitivity (allergy).  In 

order to prevent these conditions or to treat existing immunological diseases, it is 

imperative to understand the mechanisms at play in regulating a proper immune 

response.  This dissertation explores the mechanisms that are involved in the 

proper activation of two specific cell types, T cells and mast cells, which are 

important in an immune response.  The remainder of this chapter is divided into 

three major sections: T cells, Tec kinases, and mast cells.  Following a review of 

the literature, the goals for this dissertation are stated systematically. 

 

Hematopoiesis, T cell development, and the concept of signal strength 

 

 T lymphocytes develop in the thymus where they undergo a step-wise 

maturation into functionally competent naïve cells.  The cells residing in the 

thymus cannot self-renew and therefore require the constant replenishment of 

progenitor cells from the bone marrow.  In the bone marrow, hematopoietic stem 

cells (HSCs) are that constant source of self-renewal that feed the immune 

system’s cellular component.  The derivation of a multipotent progenitor (MPP) 

from HSCs begins the necessary commitment steps for cells seeding the thymus.  

Differentiation of cells into MPPs results in the loss of an ability to self-renew but 

allows for the classic bifurcation of hematopoiesis that is depicted in Figure 1.1  

(1-5).  This is demarcated by the generation of the common  
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Figure 1.1 
 
 

 
 

 
 
 
Figure 1.1 T cell development 

Derived from the hematopoietic stem cell (HSC), the thymic seeding progenitor 

(TSP) migrates from the bone marrow to seed the thymus.  Notch signals 

promote the differentiation to the early thymic progenitor (ETP).  The 

rearrangement of TCRβ, γ , and δ begins at the double negative 2 (DN2) stage.  

DN3 cells undergo β-selection, become γδ T cells, or die.  Rapid proliferation into 

DN4 occurs and TCRα rearrangement occurs at the double positive (DP) stage.  

Positive and negative selection regulates TCR specificity at the DP and single 

positive (SP) stages, respectively.  Carefully scrutinized SP thymocytes mature 

and emigrate from the thymus into the periphery as naïve T cells. 
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myeloid progenitor (CMP) and common lymphoid progenitor (CLP) from the 

MPPa.  In 1997, it was discovered that the CLP was a committed progenitor that 

could give rise to natural killer (NK) cells, B lymphocytes, and T lymphocytes (6, 

7).  It is thought that the CLP seeds the thymus for T cell development, however, 

variations in experimental settings have challenged this notion (8, 9).  

Irrespective of which cell actually seeds the thymus, interaction with the thymic 

stroma results in the differentiation of the most immature T cell progenitors.  

These cells are called early thymic progenitors (ETPs) and are phenotypically 

identified by the expression of c-Kit (CD117) and the IL-7 receptor (CD127), the 

lack of expression of lineage markers (CD8, CD3, TCRβ, TCRγδ, NK1.1, CD11c, 

Mac1, Gr1, B220, CD19, Ter119), and are CD25 negative (10, 11). 

 At this point the ETP remains uncommitted to the T cell lineage, though 

the ability to form other lymphoid populations, like B cells, is greatly diminished.  

A key determinant in T cell commitment is the expression of Notch ligands on 

thymic epithelial cells and Notch receptors on the ETP.  The lack of the receptor, 

Notch1, results in the complete loss of T cells (12, 13).  Once, Notch signaling 

has occurred the ETP can proceed into the textbook differentiation program of T 

cell development.  The cells that enter this developmental phase are said to be 

double negative (DN) for CD4 and CD8 expression yet can be phenotypically 

marked by the expression pattern of CD44 and CD25 (14-16).  Progression from 

the DN1 stage (CD44hi CD25-), where ETPs reside, into the DN2 stage (CD44hi 

CD25+) is highlighted by the accessibility of genes that will form the TCR and the 

a The multipotent progenitor is also thought to give rise to a mast cell precursor.  This will be 
discussed later in this chapter. 
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initial expression of recombination activating genes (RAG) (17, 18).  Because 

developing thymocytes are not synchronous, monitoring the DN2 to DN3 stage 

(CD44lo CD25+) is more like looking at a continuum rather than the stop and go of 

single defined events.  This is not meant to imply that the process is not tightly 

controlled.  In fact, it’s just the opposite.  The proceeding paragraphs will explain 

the regulatory steps in becoming a T cell. 

 The continuous expression of RAG1 and RAG2 during the DN2 to DN3 

transitional phase provides the thymocyte with the ability to rearrange the TCRγ, 

TCRδ, and TCRβ loci (19-21).  In addition to gene rearrangement, this period is 

also a critical point in the commitment of thymocytes to become αβ or γδ T cells.  

A central factor in determining this is the IL-7 receptor.  Signaling through the IL-

7 receptor is thought to be important for opening the TCRγ locus (22-24).  

Furthermore, thymocytes with the highest amount of IL-7 receptor preferentially 

become γδ T cells, whereas those with the lowest amount become αβ T cells 

(10, 25).  The ultimate fate determination between these two T cells is the 

productive rearrangement of TCR genes in conjunction with functions of Id3 (γδ T 

cells) and Notch signaling (αβ T cells) (26-31).  The full commitment to become 

an αβ T cell throughout the DN3 stage begins during β-selection.  This process 

gives the cell several chances to successfully rearrange the genes that will 

comprise the TCR.  The first attempt comes from the TCRβ gene that becomes 

expressed along with a surrogate α -chain (pre-TCRα) and the CD3 signaling 

chains (32-34).  If the TCRβ gene does not undergo successful rearrangement, 

an attempt on the second allele will occur.  A functional TCR complex prompts 
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the cell to cease rearrangement on the TCRβ gene, a process known as allelic 

exclusion.  The DN3 cells that survive β-selection differentiate to the DN4 stage 

(CD44lo CD25-).  During the DN3 to DN4 transition, RAG proteins are down 

regulated and a period of rapid proliferation ensues that will feed the double 

positive (DP) compartment.  DP (CD4+CD8+) cells acquire the surface expression 

of CD4 and CD8 and re-express the RAG proteins to begin working on the TCRα 

gene until a functional protein is generated (11, 35, 36).  It is up to the thymus to 

scrutinize the reactivity and specificity of the productive T cell receptor; and thus 

begins the concept of TCR signal strength. 

 

The concept of signal strength 

 

 When the functionality of a T cell receptor has been verified, the specificity 

of the T cell must next be controlled (37, 38).  This is where the original model of 

TCR signal strength originates (Figure 1.2).  DP cells that demonstrate 

intermediate levels of specificity for host MHC alleles receive signals through the 

TCR to promote their survival and further differentiation.  This is known 

operationally as positive selection.  It is clear that a critical threshold for strength 

of TCR signaling exists because T cells that bind MHC proteins too weakly will 

not receive the necessary anti-apoptotic cues and die by neglect.  Furthermore, 

signals from the TCR also direct the fate of cells that will become CD4 single 

positive (SP) or CD8 SP.  This is accomplished through the actions of a complex  
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Figure 1.2 
 
 

 
 

 
 
 
Figure 1.2  TCR signal strength in the thymus 

The classic model of TCR signal strength in the thymus adapted from Nature 

Reviews Immunology, 2009, vol. 9, pp. 833-844.  Positive selection ensures that 

intermediate amounts of TCR affinity towards self-pMHC will recognize antigen 

presented in the periphery.  Thymocytes with very little TCR affinity generate low 

TCR signal strength and die by neglect.  Thymocytes receiving strong TCR 

signal strength recognize self-pMHC too well and undergo negative selection. 
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transcription factor network, including proteins like Th-POK, Runx, and GATA-3 

(11, 39, 40).  TCR signal strength is thought to be important in this process as 

well.  For example, the differential expression of GATA-3 links TCR signal 

strength to the lineage commitment of CD4 SP or CD8 SP (41, 42).  Strong TCR 

signals result in high levels of GATA-3 expression, which promotes the 

development of CD4 SP cells, whereas weak TCR signals generate less GATA-3 

and drive the lineage toward CD8 SP cells.   

Once DP thymocytes become single positive cells, they are ready to 

undergo a second round of scrutiny, called negative selection.  In this process, 

the presentation of self-peptide embedded within MHC molecules determines 

whether a T cell recognizes that antigen or not.  This is where TCR signal 

strength takes center stage again and dictates that a cell receiving too strong of a 

stimulus will die by apoptosis; whereas a cell that receives an intermediate level 

of stimulation will survive through positive selection.  Another critical threshold 

point for strength of TCR signaling delineates the very fine transition between 

positive and negative selection.  For example, it was elegantly demonstrated that 

small incremental changes (analog) in ligand potency result in dramatic changes 

(digital) in the sensitivity of TCR signal transduction, as shown in the Ras – 

MAPK pathway (43, 44).  High affinity ligands that promoted negative selection 

showed a cellular redistribution of signaling proteins at the plasma membrane.  

On the other hand, cells stimulated with a ligand 1.5 times less potent displayed 

a more sparse distribution pattern of signaling proteins and survived via positive 

selection.  Importantly, this was not due to a lack of signal transduction because 
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all cells expressed CD69.  These experiments demonstrated that small changes 

in ligand quality result in the yes/no event that determines survival or death.   

The collective actions of positive and negative selection, as mediated by 

TCR signal strength, provide the primary means of preventing autoimmunity in 

peripheral tissues.  This is referred to as central tolerance.  Survival of these 

regulatory processes in the thymus renders a mature CD4 or CD8 single positive 

cell functionally competent to serve in the immune system.  It also prompts CD4 

and CD8 T cells to emigrate from the thymus and populate the rest of the body 

as naïve T cells, where they are free to engage peptide-MHC complexes. 

 

T cell activation 

 

The identification of a receptor 

 

 Prior to the 1980’s it was unknown exactly how T cells were activated.  

Many years of research, mostly on allogeneic rejection, helped solidify the notion 

that the lymphoid compartment of the blood was responsible for cytoxicity and 

could provide help to antibody secreting B cells.  Around the turn of 1960’s, a 

series of in vitro studies elegantly demonstrated that the cytotoxicity of T cells 

was specific and likely due to clonal receptors on the cell surface (45-48).  This 

was shown by the incubation of lymphoid cells, obtained from an immunized 

animal, on top of a monolayer of cells containing the immunogen.  Several hours 

following incubation, the monolayer began dying.  Cells that were gently washed 
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off the monolayer, and therefore non-adsorbed, could not replicate the cytoxicity 

when placed on a fresh monolayer.  The adsorbed cells, however, when eluted 

and incubated on a fresh monolayer, were cytotoxic.  It would take another 

decade to actually discover the determinant of this specificity – the T cell 

receptor. 

If the flurry of activity in the literature during the 1980’s showcased 

anything, it was that this decade was a pioneering time for the T cell.  The 

discovery that MHC molecules presented peptides to T cells, the structure of the 

TCR, and the identity of components for the entire T cell antigen receptor 

complex were but a few of the highlights.  As expected then, many groups 

partook in the identification of the T cell receptor, which was spearheaded by the 

use of monoclonal antibodies on a number of human and murine T cell tumor 

lines (37, 49-53).  These studies opened the door to the biochemical, structural, 

and genetic nature of the TCR.  Two groups led, by Tak Mak and Mark Davis, 

independently cloned the TCRβ locus from human and mouse T cells (54-57).  

The presence of variable and constant regions revealed remarkable similarity to 

the BCR and served as the basis for TCR diversity.  Shortly thereafter, Don 

Wiley’s group resolved the crystal structure of MHC Class I and proposed that it 

presented peptides to T cells via a deep, electron dense pocket (58-60).  These 

initial studies laid the groundwork for the molecular mechanism by which T cells 

recognize antigen.  There is, however, one missing component linking this with 

the molecular circuitry inside the cell. 
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 Significant pieces of information pointed towards CD3 as that missing link 

(61, 62).  Monoclonal antibodies directed towards CD3 promoted T cell 

activation.  The presence of long intracellular domains suggested that CD3 was 

an integral part of TCR signal transduction.  A key study using Jurkat mutant T 

cells demonstrated the requirement of CD3 to be co-expressed with the TCR on 

the cell surface of a T cell (63, 64).  Thus all the necessary components for 

examining TCR signaling have been assembled (Figure 1.3). 

 

Proximal TCR signaling 

 

 At present, we understand many of the molecular details involved in TCR 

signal transduction.  As described above, the T cell antigen receptor complex 

consists of two disulfide-linked chains (e.g. α and β), associated in the 

membrane with CD3 signaling chains (i.e. γ , δ, ε, ζ).  These signaling chains 

contain immunoreceptor tyrosine based activation motifs (ITAMs) in the cytosol.  

Crosslinking or ligating the T cell receptor results in the induction of a membrane 

proximal kinase cascade involving three distinct families of non-receptor protein 

tyrosine kinases (PTKs): the Src family, the Syk family, and the Tec family (65, 

66). The initialization of this cascade is mediated by the recruitment of Src family 

kinases, such as Lck and Fyn, to the intracellular portion the TCR complex.  For 

example, Lck is associated with the intracellular domains of the co-receptors 

CD4 and CD8.  CD8 and CD4 bind conserved regions on MHC Class I or MHC 

Class II, respectively, and therefore usher Lck in close proximity to the ITAMs. 
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Figure 1.3 
 

 
 
Figure 1.3 T cell receptor signal transduction 

The schematic above highlights the important players and pathways in TCR 

signaling.  A more detailed description is in the text.  Briefly, ligation of the TCR 

by pMHC recruits PTKs from three families (Src, Syk, Tec).  Activation of these 

PTKs promotes the assembly of a membrane proximal signaling complex.  This 

complex regulates the generation of secondary messengers, IP3 and DAG, which 

activate major downstream pathways: Ca2+ mobilization, NF-κB, and MAPK 

cascade.  The culmination is transcription factor activation and gene expression. 
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The dephosphorylation of Src family kinases by the phosphatase, CD45, 

facilitates their activation.  ITAMs in the intracellular domains of the TCR complex 

are then phosphorylated by Src family kinases.  The phosphotyrosines in the 

ITAMs provide a docking site for the Syk family kinase, ZAP-70, which in turn, 

gets phosphorylated by Lck.   

The recruitment and activation of Zap-70 is a crucial signaling event that 

determines whether a T cell will be switched on or remain off; there is no 

intermediary at this point.  Once activated, ZAP-70 potentiates the nucleation of a 

large macromolecular complex by phosphorylating the adaptor proteins, LAT and 

SLP-76 (37, 67, 68).  These two adaptor proteins form the scaffold that will 

provide functional access for a number of signaling molecules, including 

enzymes (e.g. PLCγ1, Tec kinases, and PI3K) and adaptors (e.g. Grb2, Gads, 

Nck and Vav) (69, 70).  The activity of PI3K promotes the membrane 

accumulation of PIP3. This increases the probability that PH domain-containing 

proteins, like Itk and PLCγ1, will join the complex.  Multiple interaction sites 

amongst the proteins within this complex act as a molecular glue to maintain 

stability and propagate the signal.  In doing so, Tec family kinases, such as Itk, 

phosphorylate PLCγ1, which in turn cleaves PIP2 into DAG and IP3 (71, 72).  The 

generation of the second messengers, DAG and IP3, mediates the induction of 

three pathways required for the expression of effector genes in T cells.  DAG is 

responsible for evoking two pathways, NF-κB and MAPK, whereas IP3 regulates 

Ca2+ mobilization. 
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The major downstream pathways  

 

 DAG is the membrane bound remnant of PIP2 hydrolysis from PLCγ1 

activity.  The cleavage of PIP2 reveals a docking site for the PKC family member, 

PKCθ, which associates with DAG via a lipid-binding domain (73, 74).  At the 

membrane, PKCθ can phosphorylate CARMA1 to promote the assembly of a 

complex containing Bcl10 and MALT1 (75, 76).  MALT1 is then thought to 

activate the E3 ligase, TRAF6, which polyubiquitinates the regulatory subunits of 

IKK.  Once the regulatory subunits of IKK have been degraded, the catalytic 

portion of IKK then phosphorylates IκB promoting its degradation and the 

subsequent release of NF-κB. NF-κB can then translocate to the nucleus to 

promote the expression of target genes important for T cell function.  

 The DAG – PKCθ tandem is also important in the activation of the guanine 

nucleotide-binding protein (G-protein), Ras.  Ras activation occurs when GTP is 

loaded by guanine nucleotide exchange factors (GEFs), such as son of 

sevenless (SOS) and Ras guanyl nucleotide-releasing protein (RasGRP).  SOS 

is in the same complex as LAT but RasGRP is recruited to the membrane via 

DAG where it becomes phosphorylated by PKCθ.  Both of these GEFs promote 

Ras activation.  However, RasGRP-dependent GTP production catalyzes SOS 

activity thereby promoting a positive feedback loop for Ras activation (69, 77, 

78).  Active Ras is required for the initiation of the first serine/threonine kinase in 

the MAPK cascade, Raf-1 (79, 80).  The MAPK cascade culminates with the 

activation and formation of transcriptional activators, such as AP-1, that induce 
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target gene expression. 

   In contrast to DAG, the cleavage of PIP2 by PLCγ1 releases IP3 from the 

membrane into the cytosol, where it can liberate intracellular Ca2+ stores from the 

endoplasmic reticulum (ER).  Sensors in the ER membrane detect the depletion 

of intracellular Ca2+, via domains called EF hands, and promote the opening of 

Ca2+ release-activated Ca2+ (CRAC) channels in the plasma membrane, a 

process known as store-operated Ca2+ entry (SOCE) (81-84).  SOCE results in 

the activation of a number of Ca2+ sensitive signaling molecules, including 

calmodulin (CaM).  CaM is another protein that is able to detect high 

concentrations of intracellular Ca2+, via EF hands.  The conformational change 

that occurs in CaM allows it to interact with and promote the enzymatic activity of 

the phosphatase calcineurin.  Calcineurin is then able to dephosphorylate the 

transcription factor NFAT.  Dephosphorylated NFAT is then free to translocate to 

the nucleus and regulate the expression of TCR-dependent genes.  

 

Other pathways 

 

 In addition to the major signaling pathways downstream of the TCR, there 

are several other pathways that are known to be important in the activation of T 

cells.  Stimulation through the TCR promotes cytoskeletal reorganization that 

aids in the polarization of signaling molecules towards the TCR complex (85, 86).  

The most well studied mediators of this pathway are the GEF Vav1 and its 

GTPase effectors Rac1 and Cdc42.  Phosphorylation of Vav1 promotes the 
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activity of Rac1 and Cdc42, which in turn induce F-actin polymerization via 

WASp and WAVE2.  The rearrangement of cytoskeletal actin is important for the 

adhesion of T cells to target cells and migration throughout the body. 

 Another critical moderator of T cell activation is costimulation.  The 

costimulatory molecule, CD28, is a staple in proper T cell activation.  Ligated by 

B7 molecules on APCs, costimulation of T cells via CD28 is the epitomized 

second signal required for T cell activation.  PI3K is one of the major players 

downstream of CD28 signaling.  As mentioned elsewhere, PI3K promotes the 

accumulation of PIP3 in the plasma membrane.  In the context of costimulation, 

however, the activation of PI3K promotes the activity of phosphoinositide-

dependent kinase 1 (PDK1), which phosphorylates its target Akt (62).  Akt is a 

major regulator of T cell activation and is involved in such processes as 

differentiation and survival. 

 

TCR signal strength as a function of activation 

 

 The initial concept of TCR signal strength has been introduced 

superficially as a way to convey the physiological importance (i.e. T cell 

development) of this phenomenon.  A few more words are in order to describe 

some of the parameters that are important in understanding the role of TCR 

signal strength in T cell activation. 

Qualitative and quantitative differences in TCR – pMHC interactions 

influence the T cell response.  Collectively these interactions are referred to as 
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TCR signal strength.  There are a number of ways in which TCR signal strength 

can be modulated experimentally and physiologically.  Many studies utilize 

monoclonal antibodies against CD3 as a surrogate means to activate T cells.  

Even prior to the TCR being cloned and arduously analyzed, experiments using 

anti-CD3 revealed much about the nature of T cell activation.  Crosslinking the 

TCR via increasing amounts of anti-CD3 caused corresponding increases in the 

uptake of tritiated thymidine (87).  More recent studies using anti-CD3 have 

confirmed the idea that T cell activation is either on or off, which is commonly 

referred to as digital signaling.  This was shown by examination of multiple 

aspects of the NF-κB pathway, which revealed that it acts in a digital manner in 

response to TCR ligation (88).  Experimentally, cells analyzed for the activation 

of NF-κB showed that only the proportion of cells responding to TCR stimulation 

changed in response to altered signal strength.  The magnitude of NF-κB 

activation, however, did not vary, indicating the presence of a robust ‘all-or-none’ 

response.  Interestingly, these observations were also made when numerous 

components upstream of NF-κB were examined.  This included PKCΘ 

membrane localization, formation of the BMC complex, and activation of IκK.  

However, the strength at which anti-CD3 elicits its action on the TCR is orders of 

magnitude greater than what a T cell sees under physiological circumstances 

(89).   

Another approach to investigating TCR signal strength is by using pMHC 

complexes known to induce T cell responses in vivo.  In using these TCR 

ligands, the binding parameters of TCR – pMHC can be analyzed in the context 
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of signal transduction.  For example, measurement of TCR – pMHC interaction 

kinetics determined that ligands with slower off-rates induced more extensive 

phosphorylation of the CD3ζ chains (90).  In similar studies, it has been revealed 

that measuring early activation events can sometimes not construe the entire 

story.  In response to weak TCR ligands, the amount of Ca2+ inside the cell takes 

considerably longer to elevate to levels equivalent to strong ligands (91).  The 

limitations of these types of assays aside, they have quantitatively provided us 

with the ability to distinguish the boundaries of T cell activation.   

In addition to studying the potency of TCR – pMHC interactions, a number 

of other factors influence TCR signal strength.  This includes, but is not limited to, 

the density of pMHC presented to a T cell, duration of TCR – pMHC interaction, 

biophysical constraints imposed on the T cell - APC conjugate, and the binding of 

co-receptors and adhesion molecules (92).  Moreover, a T cell’s ability to 

distinguish between different pMHC ligands likely involves the regulatory 

activities of signaling molecules like kinases, which can further modify TCR 

signal strength. 

Numerous examples of T cells utilizing signal strength can be found in the 

literature.  The foremost example, thymic development, has already been 

described.  The strength of TCR signaling also has an important role in regulating 

the in vivo response of CD4 T cells as well as directing the lineage fate of helper 

T cells.  Analysis of tetramer binding approximates the average affinity of TCR – 

pMHC in an antigen-specific CD4 T cell population responding to primary and 

secondary immunizations, and therefore the entire T cell repertoire can be 
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examined against a given immunogen (93).  Here, it was observed that T cells 

responding to a secondary challenge displayed a greater intensity of tetramer 

binding than T cells from the primary challenge.  This narrowing of the repertoire 

indicates that T cells with a greater affinity towards antigen displayed a selective 

advantage over T cells with a lower affinity. 

One of the central themes in T cell biology is the differentiation of CD4 

helper T cells into effector cells such as TH1, TH2, and TH17 cells.  Differentiation 

of CD4 T cells into these effector subsets is controlled by many factors, most 

notably the cytokine microenvironment (94).  CD4 T cell differentiation occurs in 

the context of TCR stimulation and it is here that TCR signal strength has an 

influence on which lineage the cell will become.  In vitro studies of CD4 T cell 

differentiation suggest that weaker TCR-pMHC interactions preferentially 

promote the generation of IL-4-producing T cells, and thus the generation of TH2 

cells (95).  Conversely, CD4 T cells exposed to strong TCR stimulation become 

TH1 cells producing an abundance of IFN-γ (96).  More recently, T follicular 

helper cells (TFH) appear to also be influenced by TCR signal strength.  In a 

polyclonal population of CD4 T cells, differentiation into the TFH subset is more 

efficient when the cells have a higher affinity towards cognate tetramer than non-

TFH cells (97).  Therefore, a precedent is set whereby the strength of TCR 

stimulation can drastically alter the differentiation fate of CD4 T cells.   
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Consequences of TCR signaling 

 

Controlling CD8 T cell activation and differentiation  

 

The overall goal of TCR signaling is the functional activation of T cells.  T 

cell function manifests as proliferation, differentiation, cytokine secretion, 

cytoxicity, migration, etc.  In order to bridge the gap between the environmental 

input and the functional output of T cells, TCR signaling must initiate a number of 

intracellular processes.  These processes include such modifications as 

cytoskeletal rearrangements, induction of cell cycle, and the mobilization of 

transcription factors that act on specific genes.  Several transcription factors have 

been described above (e.g. NFAT, NF-kB, AP-1, etc.) and these represent the 

initial group of cellular activators responsible for gene expression.  Some of the 

genes that are regulated by this initial group include a second wave of 

transcription factors that are important in facilitating the effector phase of T cell 

activation.   

The T-box transcription factors, T-bet and Eomesodermin (Eomes), are 

two of the most well-characterized regulators from this second tier of transcription 

factors.  They have roles in both CD4 and CD8 T cell activation and 

differentiation.  For example, T-bet is highly expressed in effector CD8 T cells 

that are activated in the context of a pro-inflammatory environment. This was 

demonstrated in Tbx21-deficient mice that fail to develop short-lived effector cells 

(SLECs), defined by reduced IL-7 receptor (CD127) expression and increased 
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levels of surface KLRG1, in response to an LCMV infection (98).  SLECs are the 

predominant effector cell generated during the acute phase of a CD8 T cell 

response to infection.  The other major effector cells generated are the memory 

precursor effector cells (MPECs).  It is thought that this cell type populates the 

pool of memory CD8 T cells that forms upon infection resolution.  As opposed to 

T-bet and SLECs, Eomes is typically associated with CD8 T cells that become 

MPECs (99).  Two important lines of evidence support this notion.  First, Eomes 

was found to preferentially segregate in daughter cells that form MPECs (100, 

101).  Secondly, Eomes expression is suppressed in response to high levels of 

the pro-inflammatory cytokine IL-12, which can induce high levels of T-bet (102).  

Like, T-bet, Eomes expression is controlled by a complex signaling pathway that 

is initiated by the TCR and utilizes inputs from a variety of other pathways (e.g. 

cytokine signaling and costimulation).   

More recently, additional transcription factors, that are regulated at various 

time points following TCR signaling, seem to be important in mediating the 

differentiation of CD8 T cells (103).  Examples include Blimp-1, Bcl6, and TCF-1.  

Similar to T-bet and Eomes, Bcl6 and Blimp-1 share a reciprocal role in the 

differentiation of CD8 T cells.  Blimp-1, like T-bet, appears to control the 

generation of SLECs in numerous models of infection (104-106).  Direct 

regulatory control over Blimp-1 can occur with binding of Bcl6 to the Prdm1 

(Blimp-1) promoter, and vice versa (107).  As such, Bcl6 mediates the expansion 

of memory CD8 T cells.  In models of infection, mice that lack Bcl6 activity exhibit 

a reduction in memory CD8 T cells; whereas transgenic mice that overexpress 
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Bcl6 have elevated numbers of memory CD8 T cells (108).   Similarly, TCF-1 

appears to regulate the formation of MPECs over SLECs.  Mice that are deficient 

in TCF-1 show increases in the SLEC population with concomitant decreases in 

MPECs suggesting that the lack of TCF-1 prohibits the production of MPECs 

(109).  It is believed that TCF-1 acts upstream of Eomes to promote the 

formation of MPECs following infection.  Several experiments support this 

conclusion.  First, the loss of TCF-1 prevents severely diminishes the expression 

of Eomes.  Second, TCF-1 is capable of direct regulation of Eomes by binding 

upstream regulatory elements within the Eomes promoter.  Finally, the lack of 

MPEC formation that occurs in TCF-1 deficiency can be rescued by retroviral 

transduction of Eomes, which restores memory CD8 T cell differentiation.  It is 

currently unclear exactly how these transcription factors control CD8 T cell 

differentiation.  For example, despite the overwhelming amount of evidence to 

suggest that Eomes is responsible for the formation of memory CD8T cells, it 

was recently shown that Eomes deficient T cells could still form a functional 

memory population even after a pathogen had been cleared (110).  Intriguingly, 

however, these cells were not able to efficiently compete with WT T cells in 

mixed bone marrow chimera experiments when challenged with a pathogen.   

 

Tec kinases 

 

 In the late 1940’s, a young boy was admitted to the Walter Reed Army 

Hospital in Washington, D.C. with shaking chills, high fever, arthritic-like pain, 
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and nausea.  He was given a thorough physical examination that yielded few 

additional symptoms.  Blood work showed white blood cell counts that were 

within normal range and a 10-day culture that turned up negative.  Treatment 

with penicillin alleviated the existing symptoms and he was consequently 

discharged.  A couple of weeks later, the boy was readmitted with similar 

symptoms.  Again, he was treated with penicillin and released.  This course of 

hospitalization and release would continue for many months until an attending 

physician, Col. Ogden Bruton, analyzed the serum content by protein 

electrophoresis.  It was discovered that the boy lacked circulating IgG antibodies; 

he was then diagnosed with agammaglobulinemia, a rare x-linked genetic 

disorder b  (112).  Many years later, the genetic basis for x-linked 

agammaglobulinemia (XLA) was identified as Btk, a member of the Tec kinase 

family (113-115). 

 The Tec family is one of the most prominent protein tyrosine kinase (PTK) 

families known and the second largest of the non-receptor variety.  As listed in 

Table 1.1, Tec family kinases are predominantly expressed in hematopoietic 

cells.  Cellular expression is usually overlapping with two or more Tec kinases in 

a given cell (Figure 1.4).  In mice, the five members include: Tec, Btk, Itk, Rlk, 

and Bmx.  They are primarily involved in the signal transduction of several 

receptors in the immune system, most notably the multi-chain immune 

recognition receptor family, or immunoreceptors.  Tec kinases have roles in 

cellular development and activation of immune responses.  This is supported by  

b The boy was eventually treated with adoptive immunotherapy via introduction of exogenous 
IgG, and his clinical manifestations improved (111). 
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Table 1.1 
 

 
 

 
 
Table 1.1 Tec family kinases  

The table above lists the 5 Tec family kinases found in mice.  Several Tec family 

kinases are also known by other names (e.g. Itk was also called Tsk and Emt in 

the early 1990’s).  The full name commonly used in the literature is listed in the 

second column.  The known cellular expression of each family member is listed 

in the third column. 
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Figure 1.4 
 

 
 
Figure 1.4 A representative expression pattern of Tec kinases in the 

immune system 

The expression pattern of Tec family kinases frequently overlaps in many cells of 

the immune system.  The relative amount of expression of each Tec family 

member is represented by the font size.  For example, Itk is the dominant Tec 

family member in T cells, which contain less Rlk and even less Tec.  Mast cells 

express four out of five members with Btk and Itk being co-dominant. 
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in vitro and in vivo experimentation using mouse models (72).  Humans with 

genetic deficiencies in Tec kinases are highly susceptible to recurrent infections 

and increased mortality (116, 117). 

 

Structure of Tec kinases  

 

Close to 20 years ago, molecular cloning identified a multitude of new 

intracellular proteins from immune cells.  These proteins were characterized by a 

catalytic tyrosine kinase region as well as molecular interaction domains like the 

Src-homology (SH) domain and the Pleckstrin-homology (PH) domain (118).  It 

was unclear as to whether or not these proteins constituted a discrete PTK family 

(119).  The cause for such confusion was apparent from the organizational 

structure of modular domains and the high degree of sequence homology with 

Src family kinases (120).  For example, Tec kinases (as shown in Figure 1.5) 

have a catalytic kinase domain and SH domains (i.e. SH2 and SH3) that reside in 

the carboxy-terminus (C-terminus).  Closer inspection of the amino-terminal (N-

terminal) portion determined that these proteins comprise their own family of non-

receptor tyrosine kinases (120, 121).  In the N-terminal region, Tec kinases are 

distinguished from other PTK families by the presence of a PH domain and a Tec 

homology (TH) domain.  The TH domain contains a Zn2+- binding Btk homology 

motif and proline-rich regions (PRR).  Noticeably absent from Tec kinases are 

the N-terminal myristoylation sites and C-terminal regulatory tyrosine residues 

found in Src family kinases (122).  
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Figure 1.5 
 
 

 
 

 
 
 
Figure 1.5 Structural domains of Tec family kinases 

Adapted from Current Opinions in Immunology, 2002, vol. 14, pp. 331-340.  Five 

mammalian kinases of the Tec family are compared with Src kinase, of the Src 

family.  The C-terminal portion of the Tec family contains a high degree of 

homology (kinase, SH2, and SH3 domains) with the Src family.  The N-terminal 

portion of the Tec family houses the Tec homology domains, which contains a 

Btk homology motif and proline-rich regions.  Four of the five members are 

capped with a Pleckstrin homology domain.  Rlk/Txk contains a cysteine string 

that is post-translationally modified.  In comparison, Src, has an N-terminal 

membrane localization motif and a C-terminal regulatory tail. 
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Described above is the general structure of Tec family kinases.  Some 

members have slight variations in the number or position of these regions.  The 

exception to this organizational structure is Rlk/Txk.  Rlk/Txk is a unique member 

that typically contains a cysteine-string motif, which allows for post- translational 

palmitoylation, in place of the PH domain.  Overall, the structural features of the 

N-terminal region appear to be limited to the Tec family tyrosine kinases and, 

therefore, provide a unique mode of regulation in PTKs. 

  

Regulation of Tec kinases 

 

The intramolecular structure of Tec kinases places restrictions on their 

regulation and function.  Well characterized regulatory mechanisms occur 

through components of the N-terminal portion of Tec family kinases (72).  For 

instance, the PH domain plays a critical role in the subcellular localization of the 

Tec kinase Itk.   Here, the PH domain of Itk allows it to become tethered to the 

plasma membrane upon generation of phosphatidylinositol (3,4,5) trisphosphate 

(PIP3) (123, 124).  This means that in a cellular resting state, when the levels of 

PIP3 are low, PH domain-containing Itk is largely cytosolic.  Conversely, when 

levels of PIP3 are high, Itk aggregates at the membrane where kinase activity can 

ensue.  Regulation of these events can be controlled by a number of proteins.  

Upon immunoreceptor ligation (e.g. TCR), phospoinositide 3-kinase (PI3K) 

becomes active and generates PIP3 from the phosphorylation of 

phosphatidylinositol (4,5) bisphosphate (PIP2).  In contrast, phosphatase and 
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tensin homolog (PTEN) can directly counteract PI3K activity by 

dephosphorylating PIP3 under inhibitory or homeostatic conditions (125).  This 

action is instrumental in regulating Itk because PTEN-deficient T cells 

constitutively localize Itk at the plasma membrane.   

This is not the sole means of Tec family kinase regulation via the PH 

domain.  The association of the Tec PH domain with PIP3 at the plasma 

membrane can be influenced by the activity of SH2-containing inositol-5-

phosphatase (SHIP), which also diminishes the amount of PIP3 in the membrane 

(126).  Moreover, this mechanism appears to be mediated through a direct 

interaction between the SH3 domain of Tec and SHIP proteins.   

Another mechanism for the regulation of Tec family kinases through PH 

domains includes a positive feedback loop promoted by Btk in B cells (127).  The 

association of Btk with PI5K, upon BCR activation, promotes co-localization and 

recruitment to the membrane.  Once there, PI5K can generate PIP2 by 

phosphorylating phosphatidylinositol 4-phosphate (PIP).  PI3K can then convert 

this product into PIP3, which in turn promotes the recruitment of more PH 

domain-containing proteins to the membrane.  This feedback loop is negatively 

regulated by SHIP, as ablation of SHIP promotes Btk-mediated BCR activation 

(128, 129).  

Recruitment of Rlk/Txk to the plasma membrane is regulated in a 

completely different manner.  The lack of a PH domain suggests a different mode 

of membrane localization.  The existence of a cysteine-string motif permits the 

constitutive association of Rlk/Txk to the plasma membrane upon post-
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translational palmitoylation.  It has been further shown that association with the 

plasma membrane localizes Rlk/Txk to lipid raft microstructures, which cluster 

together upon immunoreceptor crosslinking (130). 

In addition to the regulation that occurs at the plasma membrane, Tec 

kinases use their other domains to form protein-protein interactions.  Ligation of 

immunoreceptors causes a recruitment of Tec family kinases to the receptor-

signaling complex so that they may relay signals to the rest of the cell.  This type 

of recruitment involves the nucleation of a large macromolecular complex.  In T 

cells, this complex is scaffolded by the adaptor proteins linker for activation of T 

cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP-76).  

These two molecules are critically important for Itk to impose its function.  The 

regulation of this event occurs through the specific phosphorylation of tyrosine 

residues on LAT and SLP-76 by the Syk family kinase zeta-chain-associated 

protein kinase 70 (ZAP-70).  The molecular recognition of Itk by SLP-76 and LAT 

is regulated both directly and indirectly.  Indirectly, Itk can associate with LAT 

through the adaptor protein growth factor receptor-bound protein 2 (Grb-2) via 

proline-rich regions in the TH domain (124).  Direct regulation of Itk can occur 

through the SH2 domain.  The importance of the Itk SH2 domain is highlighted in 

a SLP-76 mutant that prevents docking of Itk at Tyr 145, resulting in diminished 

downstream signal transduction (131).  Because the PH domain of Itk is still 

present, the membrane localization of Itk is not ablated, only its kinase activity.    

Kinase activity of the Tec family is initiated by tyrosine phosphorylation on 

a conserved activation loop within the catalytic domain (121).  This results in a 
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conformational change that allows access to substrates (e.g. PLCγ).  Though 

auto-phosphorylation of Tec kinases does occur, the activation loop is actually 

trans-phosphorylated by Src family kinases.  This feature further distinguishes 

the Tec family from the Src family, in which auto-phosphorylation of the activation 

loop does happen.  The auto-activation event that transpires in Tec kinases takes 

place on conserved residues in the SH3 domain and is best documented in Itk 

and Btk (132-134).  The significance of this auto-phosphorylation event is 

unclear, though, as signal transduction is not impaired in B cells, but is 

diminished in T cells.  It is likely that this event is more important in mediating 

protein-protein interactions than direct kinase activity (121).  What is certain is 

that tyrosine phosphorylation of Tec kinases and subsequent conformational 

changes are crucial to proper activation of downstream targets.  

One final major mode of regulation that occurs in Tec family kinases is 

inter- and intramolecular interactions.  This is a mechanism at play during times 

of cellular homeostasis, ensuring that inadvertent kinase activity is not initiated.  

This type of phenomenon is well-documented in the Src family, where C-terminal 

negative regulatory residues stabilize an intramolecular interaction with its own 

SH2 domain (135).  The Tec family, however, fails to possess these 

autoinhibitory sequences and must rely on other means to self-regulate.  In vitro 

experiments have found that the SH3 domain of Tec, Btk, and Itk can interact 

with its adjacent PRR, essentially folding up on itself, to limit binding with other 

proteins (136-139).  It appears likely, however, that intermolecular dimers 

preferentially form.  A model set forth proposes that, with Itk for example, the 
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intermolecular interaction between SH3 and SH2 domains, and resulting 

homodimer, supersedes that of the intramolecular associations (140).   

Taken together, the information detailed above demonstrates the 

existence of several layers of regulation for Tec family kinases.  This is 

necessary because the Tec family is positioned in such a way as to relay the 

propagation of membrane proximal signaling events to major downstream 

pathways required for cellular activation.  Dis-regulation of Tec kinases leads to 

severe signaling defects in B cells and T cells. 

 

Itk 

 

Several groups cloned Itk in the early 1990’s using degenerate PCR to 

screen for novel tyrosine kinases in hematopoietic cells (141-145).  Most of these 

reports found this newly discovered gene was expressed in T cells and was 

inducible in response to IL-2, hence the name IL-2-inducible T cell kinase.  One 

report found further expression of this gene in mast cells and called it Emt 

(expressed in mast cells and T cells) (143).  What’s known about Itk in mast cells 

is limited and will be discussed at the end of this chapter.  Much of what is known 

about Itk has been derived through in vitro and in vivo studies on murine T cells.  

Itk has been implicated in signaling downstream of the CD2, IL-2 (CD25), CD28, 

and chemokine receptors; its most renowned role, though, is downstream of the 

TCR (146-149). 
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Actions of Itk 

 

The primary substrate of Itk in T cells is PLCγ1.  As described previously, 

the activation of PLCγ is essential for integrating membrane proximal events with 

major downstream signaling pathways.  Accumulation of PIP3 in the plasma 

membrane promotes the aggregation of Itk to the cell surface via the PH domain.  

The SH2, SH3, and TH domains act as a molecular adhesive when they interact 

with adaptor proteins such as LAT, SLP-76, and Grb-2. This forms a large 

macromolecular complex, sometimes referred to as a signalosome (150).  Itk can 

then be activated by the tyrosine phosphorylation of Src family kinases.  The now 

accessible catalytic domain of Itk is then able to specifically phosphorylate 

PLCγ1 (151-153).  This step regulates the production of secondary messengers 

like IP3 and DAG, promoting further signal transduction and gene expression. 

Itk is also involved in other aspects of TCR signaling such as cytoskeletal 

reorganization.  A requirement for multiple domains, including the PH and SH2 

domains, is necessary to induce TCR-mediated actin polymerization (154, 155).   

Subsequently, it was found that Itk could directly interact with Vav, a regulator of 

actin machinery, via its SH2 domain (156).  Interestingly, this event does not 

require the kinase activity of Itk, indicating a novel function for Itk as an adaptor.  

It also indicates that the other modular domains of Itk are not simply required for 

its regulation, but rather are a functional unit in TCR signaling. 
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Itk deficiency 

 

 The clinical relevance of Itk was not fully appreciated until fairly recently 

when two young sisters developed a fatal lymphoproliferative disorder (117).  

These girls suffered from recurrent infections and a general inability to control 

EBV-induced B cell proliferation.  This severe immune dis-regulation was 

genetically mapped to a candidate gene that encoded Itk.  The result of a 

homozygous missense mutation in the SH2 domain of Itk led to unstable protein 

expression in these girls.  Since this initial case, additional carriers of Itk mutant 

alleles have been found and, like human Btk deficiency, the mutations in Itk span 

across the protein (e.g. PH, SH2, and kinase domains) (157).  Unlike Btk, 

however, the mortality associated with Itk deficiency is much higher, and 

treatment requires total replacement of the immune system by hematopoietic 

stem cell transplant (HSCT). 

 The initial body of research on the characterization of Itk carried out in 

vitro has yielded much information about the implicit nature of Itk.  Much more 

was learned about Itk when Itk-deficient mice were made.  The first report of Itk-

deficient mice provided a physiological role for Itk in T cell development, showing 

a partially intact but severely altered T cell repertoire (158).  Phenotypically this 

was demonstrated by an observation in the thymus of fewer total mature 

thymocytes, decreased CD4 T cells, and a skewed CD4:CD8 T cell ratio.  Itk-

deficient T cells had diminished proliferative capacity in response to a mixed 

lymphocyte reaction, mitogen stimulation, and TCR crosslinking.  This defect in T 
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cells lacking Itk was rescued by using PMA and ionomycin, which bypasses 

membrane proximal signaling events.  Moreover, supplementation with 

exogenous IL-2 also restored proliferation.  This genetic ablation of Itk 

corroborated the TCR signaling defect from previous in vitro reports and also 

provided the field with a means to study Itk in vivo.   

The second major report c  using Itk-deficient mice made substantial 

headway into the biochemical mechanism by which Itk exerted its function (159).  

It was here that a significant link between Itk, Ca2+ mobilization, and IL-2 

production was firmly established.  Although intracellular stores of Ca2+ could be 

released, the potentiation of this major pathway by extracellular Ca2+ could not 

be sustained in the absence of Itk.  This result correlated with diminished PLCγ1 

phosphorylation and subsequent IP3 generation.  Importantly, defects in ZAP-70 

activation or activity were not observed, placing Itk in line with or parallel to the 

initial transduction events mediated by ZAP-70.  These two studies were 

milestones in the understanding of Itk and its role in T cell biology. 

 Since these studies, more information has been gleaned about Itk 

deficiency in mice.  Itk-deficient mice have trouble controlling a number of 

infections as well as differential responses to acute hypersensitivities like atopic 

dermatitis and airway hyperresponsiveness (AHR).  The role of Itk in allergies will 

be discussed later.  In infectious models of parasitic challenge, Itk-/- mice cannot 

mount the protective TH2-response required to control N. brasilienis or S. 

c It should be noted that two different lines of Itk-deficient mice were created.  The first mouse 
generated by Dan Littman and Charlene Liao targeted a region within the PH domain of Itk for 
deletion (158).  Karen Liu created the second mouse in Leslie Berg’s lab and excised a portion 
of the kinase domain of Itk (159).  Both lines of mice do not express Itk protein.  
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mansoni (160, 161).  This defect is accompanied by a decrease in the production 

of TH2 cytokines such as IL-4, IL-5, and IL-13.  Itk-deficient mice are also 

extremely susceptible to infection by the obligate intracellular parasite T. gondii, 

having a mean survival time of just over 2 months (162).  Interestingly, Itk 

deficient mice were resistant to a challenge with another parasite, L. major (160).  

In this case, the TH2 response normally present in wild-type mice was replaced 

by a protective TH1 response, marked by IFNγ production, in Itk-deficient mice.  

These infection models indicated that Itk-deficient mice cannot mount effective 

TH2 immunity and are also heavily skewed in their response towards a TH1 type 

response.  This may suggest that Itk-deficient mice respond appropriately to viral 

infections, which are classically associated with type-1 immunity and CD8 T cells.  

To the contrary, Itk is fundamental to mounting an optimal CD8 T cell-mediated 

response against viral pathogens such as lymphocytic choriomeningitis virus 

(LCMV) and vaccinia virus (VV) (163, 164).  The defect in the CD8 T cell 

response is likely due to the altered developmental profile attributed to these 

cells in Itk-deficient mice (165).   

 One other major phenotype associated with Itk-deficiency is an inherent 

TH2-like environment under homeostatic conditions.  This condition develops 

normally in unmanipulated mice lacking Itk and is marked by extremely elevated 

levels of IgE in the serum.  Because the cytokines IL-4 and IL-13 are required for 

the production of IgE, this sets up an apparent paradox in which mice that cannot 

mount effective TH2 responses have excessive amounts of antibodies found in 

TH2 responses.  This issue is partially resolved when Itk-deficient mice are 
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crossed to mice lacking γδ T cells (166).  Consequently, γδ T cells are, in part, 

responsible for the elevated levels of IgE in the serum in Itk-deficient mice and 

display an altered cytokine profile (i.e. elevated IL-4 and decrease IFNγ) in 

response to TCR ligation. 

 Overall the data on Itk deficiency indicates that Itk is pivotal in a number of 

immunological responses.  Itk deficiency represents global defects in countless 

aspects of T cell biology and afflicts many different cell types (e.g. CD4 T cells, 

CD8 T cells, and γδ T cells).   

 

The relationship of Itk and mast cells 

 

 The role of Itk in T cells is firmly established with decades of scientific 

experimentation as documented above.  Many of the major functional 

characteristics of Itk in T cells have been described and are currently being 

expanded.  Further, many of the in vivo phenotypes associated with Itk deficiency 

have been attributed to defects in T cell receptor signaling.  By comparison, the 

role of Itk in mast cells is notably less characterized.  Perhaps an analogous 

situation may be likened to the relationship of mast cells and immunology.  Due 

to the contribution of mast cells to the pathology of many conditions, many early 

scientists viewed these cells with skepticism and beguilement (167).  The 

following section will now delve into the important aspects of mast cell biology 

concluding with their rapport with Tec kinases.  
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The colorful history of mast cells 

 

The discovery of mast cells, in the late 1870’s, has more to do with the 

emergence of hematology than it does with immunology.  While studying the 

chemical properties of aniline dyes (e.g. toluidine blue) and their utility in 

histological staining, Paul Ehrlich observed a unique cell type that stained 

metachromatically within connective tissues (168) (Figure 1.6).  The reddish, 

violet granules in the cytoplasm were vastly abundant and gave the impression 

that the cell ingested them.  For this reason, Ehrlich called the cells mastzellen, 

which roughly translates to ‘overfed cells.’  An important histological observation 

made by Ehrlich was that mast cells seemed to be excluded from the vasculature 

and confined to peripheral tissues.  Furthermore, they were distinct from a 

previously described group of heterogeneous cells that Wilhelm von Waldeyer 

called plasmazellend.  

The convergence of mast cells and immunology began during the quest to 

uncover the pathogenesis of allergies, and in particular anaphylactic shock.  It 

was known by the 1920’s that allergy, or hypersensitivity, was an immunological 

phenomenon, likely mediated by antibodies (170, 171).  This was most evident in 

smallpox vaccinations where some patients would develop severe reactions to a 

booster.  In the 1960’s, it was learned that the reaginic antibodies responsible for  

d Waldeyer’s plasmazellen do not refer to the commonly recognized antibody-secreting cell of the 
B cell lineage, called plasma blasts or plasma cells.  Classically, early hematologists and cell 
biologists, including German pathologist Rudolf Virchow, used the term plasma cell as almost a 
catchall term to encompass a cell type of unknown origin or even a space within connective 
tissues.  In fact, Waldeyer’s initial description of plasma cells was so ambiguous that it virtually 
included all cells containing granular protoplasm within the connective tissues (169). 
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Figure 1.6 
 
 

 
 

 
 
 
Figure 1.6 Mast cells from the peritoneal cavity 

Cells from the peritoneum of wild-type mice were stained with Toluidine blue.  

Metachromatic staining of granules within two mast cells can be clearly seen.  

Image was courtesy of Yoko Kosaka. 

  



41

these types of hypersensitivities were of the IgE isotype (63, 172).  

Concomitantly, independent experiments were conducted to investigate the 

pharmacological activity of histamine and heparin in canines.  Once heparin was 

discovered to be the chromotrope that had famously reacted with Ehrlich’s dyes, 

it was linked to mast cells in the liver.  Around the same time, subcutaneous 

injections of histamine were discovered to elicit the classic wheal-and-flare 

reactions (hives) frequently associated with anaphylaxis (75).  Finally, in the 

1950’s, Riley and West performed the key studies linking together histamine, 

heparin, mast cells, and anaphylactic reactions (173-176).  In a stroke of 

ingenuity, it was realized that a chemical liberator of histamine, stilbamidine, 

would fluoresce under ultraviolet light and could be tracked to the source of 

histamine.  Injection of this molecule into rats induced histamine release, as 

expected, and accumulated in the perivascular regions of connective tissues.  As 

lines of fluorescent spots appeared along the walls of blood vessels, the 

localization of the dye and mast cells was indisputable.  In fact, it was noted that 

some mast cells were less fluorescent than others, which corresponded with a 

loss of histamine. Riley and West bore witness to what is now known as mast cell 

degranulation.  The studies outlined above helped forge the link between mast 

cells and allergies but perhaps more importantly, they set the stage for more in 

depth analyses of mast cell function and development. 
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Mast cell development, differentiation, and heterogeneity 

 

 Ehrlich’s initial description of mast cells suggested that they might be 

derived from fibroblasts within the connective tissue.  In 1977, it was reported, 

however, that mast cells could be generated in a classic bone marrow chimera 

experiment (177). Taking advantage of the unusually large granules found in 

the cells of beige mice (C57BL-BgJ/BgJ), Kitamura and colleagues engrafted the 

bone marrow from these mice into irradiated wild-type mice.  Several months 

following reconstitution, it was observed that the vast majority of mast cells within 

a variety of peripheral tissues were donor-derived.  Thus, like all cells of the 

immune system, the mast cell lineage can be traced to bone marrow and the 

hematopoietic stem cell (HSC) (Figure 1.7).  Unlike the majority of 

hematopoietically-derived cells, mast cells complete maturation within their final 

destination (178).  This indicates the existence of an intermediary between the 

bone marrow and peripheral sites.  Due to the heterogeneity and plasticity of 

various progenitor cells that can give rise to mast cells, a committed precursor 

remained elusive.  In the 1990’s a mast cell precursor, defined by the expression 

of CD34, CD13, and c-Kit (CD117) and lack of FcεR1, was found in the blood of 

humans and mice (179-181) (182).  This progenitor cell retained some plasticity, 

as it could develop into the blood basophil, but it was a monumental step in the 

right direction.  More recently, a committed mast cell precursor was further 

characterized to express β7 and T1/ST2 (IL-33 receptor) in addition to CD34, 

CD13, and c-Kit (183).  Additional delineation of mast cell poiesis has proven  
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Figure 1.7 
 
 
 

 
 
 
 
Figure 1.7 Mast cell development 

Derived from the hematopoietic stem cell (HSC), the multipotent progenitor 

(MPP) can give rise to the common lymphoid progenitor (CLP), the common 

myeloid progenitor (CMP), and the mast cell precursor (MCP).  The MCP can be 

found in the blood and is thought to migrate to peripheral tissues via chemokine 

receptors and integrins.  Upon extravasation into peripheral tissues, the MCP can 

terminally differentiate into mature mast cells.  Two major types of mast cells can 

be identified based on granule content, the connective tissue-associated mast 

cell (CTMC) and the mucosal associated mast cell (MMC). 
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difficult as the very subtle changes in gene expression between pluripotent cells 

and committed progenitors have yet to be resolved (63, 184). 

Upon entry to peripheral sites, the mast cell precursor begins to populate 

the tissue and undergo terminal differentiation.  Several factors may influence 

this process, including chemokine receptors (e.g. CCR3), adhesion molecules 

(e.g. β7), and signaling by cytokines (e.g. IL-3 & SCF) (185-187).  The most 

significant determinant in mast cell differentiation is the ligand for c-Kit, stem cell 

factor (SCF) (188, 189).  Several lines of evidence demonstrate the importance 

of the c-Kit – SCF signaling axis for mast cell development.  First, the mast cell is 

the only known hematopoietically derived cell to express c-Kit for the duration of 

its life (189).  Secondly, SCF can prevent apoptosis in mast cells starved for IL-3 

(188).  Further, IL-3-deficient mice have a slight decrease in total numbers of 

mast cells but are otherwise developmentally fine (190).  Finally, mast cells are 

noticeably absent in several mice (e.g. KitW/Wv, KitW-sh/W-sh, and KitLSl/Sl-d) with 

mutations in c-Kit or SCF (191).   

Terminally differentiated mast cells are not homogeneous.  Several 

subsets of mast cells exist with distinguishing features such as granule content, 

morphological phenotype, and anatomical location (i.e. connective tissue-

associated mast cells & mucosal-associated mast cells).  Mast cell heterogeneity 

is not a new concept.  In the 1960’s and 1970’s, mast cells were shown to exhibit 

differential histochemical staining patterns and reacted dissimilarly to compound 

48/80, a known histamine liberator (192, 193).  Histochemical staining was 

suitable until the discovery of countless mast cell proteases (MCP) (e.g. 
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esterases, metalloproteases, etc.) showed considerably more heterogeneity 

amongst mast cells (194).  The gold standard in distinguishing mast cell subsets 

is through examination of the protease content within granules.  In mice, two 

major classes of mast cells exist: connective tissue mast cells and mucosal mast 

cells (75).  Mast cells in the airways and gastrointestinal tract express the 

chymases MCP-1 and MCP-2, whereas mast cells in skin contain chymases 

MCP-4 and -5 and the tryptase MCP-6.  The evolutionary divergence between 

proteases in mice and humans has led to a slightly different nomenclature in 

humans (194).  Mucosal-associated mast cells are tryptase positive (MC-T) while 

skin-associated mast cells are tryptase/chymase positive (MC-TC).  The variety 

within the mast cell population may make mast cells appear abound and easily 

accessible.  On the contrary, much of what is known about mast cells has only 

been uncovered within the last couple of decades due to advances in cell culture 

techniques. 

 

Studying mast cells 

 

The bone marrow-derived mast cell culture system 

  

So, how can mast cells be studied in a highly controlled manner?  Ideally, 

primary mast cells are purified from an animal model or from human samples.  

However, since mast cells are confined to tissues, isolation may be tedious, and 

the number of mast cells obtained may be too low to use (63).  An alternative 
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approach must be used.  As aforementioned, the derivation of pure mast cell 

cultures is in vitro.  The determination of researchers to culture mast cells in this 

way led to the identification of several factors important for mast cell 

development in vivo.  As previously described, the key experiments that opened 

the door to an in vitro culture system were the 1977 bone chimeras described 

previously (177).  Building off their studies in beige mice, Kitamura and 

colleagues used a mast cell-deficient mouse strain (KitW/Wv), with a naturally 

occurring mutation in the white (W) locus, to demonstrate natural reconstitution of 

the mast cell population with congenic wild-type bone marrow (195).  Within a 

few years, the culture of bone marrow-derived mast cells (BMMCs) was firmly 

established by several groups (196-200).  The major growth factor required for 

long-term maintenance of these cells in vitro was found to be IL-3 (201-203).  To 

date, the BMMC remains the go to culture system for immunologists studying all 

aspects of mast cell biology (Figure 1.8). 

 

Mast cell-deficient mice 

 

 The use of mast cell-deficient mice has been a powerful tool in 

deciphering the in vivo functionality of mast cells for a variety of medically 

relevant maladies.  Naturally occurring mutations in the dominant white spotting 

(W) and semi-dominant Steel (Sl) loci were known to eliminate mast cells in 

peripheral tissues (195, 204).  Anemia, impaired pigmentation, and sterility were 

all phenotypes  that  characterized mice containing  mutations at the W or Sl loci. 
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Figure 1.8 
 

 
 
 
Figure 1.8 Bone marrow-derived mast cell culture system 

Bone marrow from the femurs and tibias of mice are flushed and washed to 

obtain a heterogeneous mixture of cells.  Culturing this mixture in the presence of 

exogenous IL-3 for 4 to 8 weeks generates a highly pure population (>95%) of 

bone marrow-derived mast cells. 
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Moreover, a gene dosing effect exists because the severity of afflictions varies 

depending on which alleles are present.  For example, KitLSl/+ mice have a less 

severe form of anemia than KitLSl/Sl-d mice (205).  KitLSl/Sl mice are embryonic 

lethal due to defects in erythropoiesis.  A similar phenomenon occurs at the W 

locus as well.  The differences between the two loci, from the mast cell’s 

perspective, were not fully appreciated until Kitamura and colleagues performed 

their bone marrow chimera experiments in these mice.  As explained above, 

KitW/Wv mice could overcome their mast cell-deficiency with bone marrow 

transplantation from a wild-type donor; this was not true in KitLSl/Sl-d mice, 

however, and suggested that the abnormality in the Sl locus was intrinsic to the 

host and not the mast cell (204).  It took nearly ten years for researchers to figure 

out that the W locus encoded the transmembrane receptor, c-Kit, and the Sl 

locus encoded the cytokine SCF (205-207).  By this time, several lines of mice 

containing c-Kit or SCF mutations had been used as a source of mast cell-

deficiency.  Currently, the two most prominent models are the KitW/Wv mice and 

KitW-sh/W-sh mice (208).   

 The KitW/Wv mice that Yukihiko Kitamura used are sterile and must be 

derived from a WB/ReJ x C57BL/6 cross.  Closer inspection of this cross and 

numerous other W mutations revealed that allelic variation in mice resulted in 

graded phenotypic outcomes dependent on the expression and functionality of 

the c-Kit receptor (209).  The original W allele is classified as a severe lethal 

mutation and generates a truncated form of c-Kit lacking the transmembrane 

region.  Although the protein is still expressed, it does not localize to the plasma 
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membrane.  The Wv allele, on the other hand, exhibits a much weaker phenotype 

than the W allele.  A single amino acid substitution (T à M) at position 660 

results in stable c-Kit expression, on the cell surface, but decreased kinase 

activity.  Crossing these alleles results in viable KitW/Wv litters.  However, the 

reduced signaling of c-Kit results in macrocytic anemia, sterility, and 

pigmentation defects due to diminished melanocytes (210).  Further, impairments 

in the gastrointestinal tract show a complete lack of interstitial cells of Cajal as 

well as a reduction in intraepithelial γδ T cells (191).  Nonetheless, KitW/Wv mice 

have been used extensively for mast cell studies and despite the extraneous 

phenotypes associated with this mouse strain much has been learned. 

Given the tremendous ‘off-target’ defects present in KitW/Wv mice, 

researchers have found the KitW-sh/W-sh mice to be a more suitable alternative in 

studying mast cells in vivo.  Although the Wsh mutation was discovered almost 30 

years ago, mice carrying this allele have only recently found their way into 

mainstream immunology research (191, 211).  Mice carrying the homozygous 

Wsh/Wsh mutation arose spontaneously from a C3H/HeH x 101/H mouse cross 

and are called W-sash mice.  Unlike many other W alleles, the Wsh mutation is 

not located in the coding region of the gene; instead an inversion in upstream 

regulatory elements results in altered transcriptional activity of the c-Kit gene 

(212).  This is significant because the more severe ailments afflicting the other W 

mutant mice seem to appreciably absent in the W-sash mice (191).  Notably, W-

sash mice are fertile and lack an anemic phenotype, yet still retain mast cell 

deficiency (211, 213).  These mice, however, are not devoid of all phenotypes 
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associated with c-Kit mutations.  The most noticeable alteration in these mice is 

the lack of pigmentation on their fur coat, which can be used for genotyping.  An 

exhaustive comparison between the phenotypes of KitW-sh/W-sh and KitW/Wv mice is 

ongoing, but thus far the W-sash mice seem to have become the gold standard 

in assessing mast cell function in vivo. 

More recently, several new lines of mice that are genetically deficient in 

mast cells have been developed (208).  Importantly, these mice retain the c-Kit – 

SCF signaling axis vital for mast cell development and differentiation.  Many of 

these new mice make use of Cre-recombinase insertions to alter the genomic 

DNA of a targeted allele.  The usefulness of each type of mouse has not yet 

been fully established and all but one mouse retains some peripheral mast cells.  

The Cre-master mice, on the contrary, lack terminally differentiated mast cells in 

the peripheral tissues but retain a pool of MCPs in the circulation (214).  The 

insertion of the Cre-recombinase gene in the locus that encodes 

carboxypeptidase A3 (Cpa3) induces p53-mediated apoptosis suggesting that 

this mutation is genotoxic.  Interestingly, mast cell numbers in Cpa3Cre/+ mice 

crossed to Trp53-/- mice (p53-deficient) are only partially restored.  This 

observation suggests that Cpa3 is potentially significant in the terminal 

differentiation of mast cells.  A possible alternative to this hypothesis is that the 

Cpa3 protease is important in creating a niche for mast cells within the tissues 

and without it they can no longer gain a foothold.  The full meaning of these 

findings remains to be seen. 
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Mast cell function and products 

  

Mast cells play a role in an assortment of physiological processes.  

Immunologically, they can respond to a variety of microbial pathogens, mediate 

hypersensitivity, and infiltrate tumors for immunosurveillance (208, 215).  More 

recently, mast cells have been linked to cardiovascular diseases such as 

atherosclerosis as well as metabolic disorders like diabetes and obesity (216).  

Functionally, mast cells orchestrate these processes primarily through the 

release of mediators at the site of activation.  Activation of mast cells, in these 

aspects, is a multiphase process that exerts effector function in waves beginning 

with degranulation and culminating in de novo synthesis of mast cell products.  

The list of mast cell products shown in Table 1.2 is immense and only depicts a 

small sampling.  The multitude of products permits mast cells to respond in a 

variety of manners tailored towards the stimuli.  As such, the types of mediators 

generated by mast cells can largely categorize activation into two classes: 

preformed and newly synthesized.  

 

Degranulation and preformed mediators 

 

The hallmark of mast cell activation is degranulation and the release of 

preformed mediators, such as biogenic amines and proteases, into the 

microenvironment.  Degranulation was one of the earliest recognized functions of 

mast  cells, as noted above, and  remains one of the  quickest responses  elicited  
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Table 1.2 
 

 
 
Table 1.2 Mast cell products  

The table above is a partial list of the mast cell products.  It is divided into two 

major classes: preformed mediators and newly synthesized mediators.  

Examples are shown in the second column with a brief description of function in 

the third column. 
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by the immune system.  The physiological consequences of mast cell 

degranulation are quite diverse and range from local inflammation at the site of 

activation to systemic regulation of the blood vessels and airways (10).   

Most of the immediate effects of mast cell degranulation can be attributed 

to the actions of readily soluble biogenic amines (217).  The synthesis of these 

molecules comes from the catalysis of available amino acid substrates by their 

corresponding enzymes within the cell.  Histamine is the most well known 

biogenic amine and has been shown to regulate the vasodilation, capillary 

permeability, and bronchoconstriction frequently implicated in allergic reactions 

such as anaphylaxis.  Histamine is generated by the decarboxylation of histidine, 

which is catalyzed by histidine decarboxylase.   

Another well-studied biogenic amine in mast cells is the neurotransmitter 

serotonin.  Serotonin is synthesized in the one-step hydroxylation of tryptophan 

by tryptophan hydroxylase and has been linked to immunomodulation, mast cell 

adhesion and chemotaxis, and tissue regeneration (218-220).  Other biogenic 

amines such as polyamine and dopamine are also suspected of residing within 

mast cell granules but their role in immune responses is less clear (10).  Once 

generated, biogenic amines are thought to be packaged in granules by 

proteoglycans and upon release are poised to act immediately within the local 

environment as well as in distal peripheral tissues (221).  

Surprisingly, the effects of some preformed mediators are not immediately 

elicited.  These mediators, instead, take time to solubilize in the 

microenvironment and disseminate systemically (37).  It is thought that the 
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charged residues of proteins and proteoglycans within the granule stabilize an 

interaction such that particulate dissociation takes place slowly following 

secretion (222).  One example of this is the interaction between glycosylated 

heparin and mast cell proteases; the highly negative charge of heparin 

sequesters positively charged proteases.  Interestingly, this mechanism is likely 

responsible for the distribution of preformed inflammatory cytokines (e.g. TNF) to 

the draining lymph nodes during an immune response (223).   

The two most common proteoglycans found within mast cell granules are 

the serglycins heparin and chondroitin.  These molecules consist of a peptide 

core that is glycosylated with sulfated glycosaminoglycans  (GAGs).  The 

glycosylation pattern displayed by serglycins varies greatly depending on the cell 

type in which they are present.  For example, heparin GAGs are frequently found 

in connective tissue-associated mast cells, while chondroitin GAGs are 

prominent in mucosal-associated mast cells (1, 3).  Contrary to the well-known 

roles as an anti-coagulant (i.e. heparin) and in cartilage integrity (i.e. chondroitin), 

it appears that the major function for serglycins within mast cells is to mediate 

packaging and secretion of granules (6). 

Accounting for greater than 25% of the total cellular proteome, the most 

abundant proteins within mast cells are proteases (8).  Typically, proteases are 

stored as prozymes that are activated by cleavage of a peptide leader upon 

secretion.  Surprisingly, the majority of mast cell proteases are stored as fully 

active enzymes (10).  This potentially destructive situation is subverted by 

stabilization with proteoglycans thereby limiting substrate exposure.  As noted 
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above, the variety of proteases and their distribution are major components of 

mast cell heterogeneity.  Multiple types of proteases are secreted during 

degranulation, including metalloproteases (e.g. carboxypeptidase A) and 

cathepsins (e.g. cathepsin G) (12).  The major protease classes in mast cells, 

though, are the trypsin-like (i.e. tryptase) and chymotrypsin-like (i.e. chymase) 

peptidases.   Mast cell tryptases selectively target protein substrates for cleavage 

at residues proceeding lysine and arginine.  They are involved in elements of 

pruritogenic activity and nociception via the neuronally expressed protease-

activated receptor (PAR-2) (14, 16).  Chymases have a propensity to cleave 

target proteins at aromatic residues  (e.g. phenylalanine and tyrosine) and have 

been directly implicated in cardiovascular regulation through the formation of 

angiotensin II (17).  On top of the non-overlapping functions just mentioned, 

tryptases and chymases promote general inflammation by degrading the 

extracellular matrix and facilitating leukocyte infiltration in response to pathogens 

(19). 

Mast cells are capable of delivering a rapid infusion of pro-inflammatory 

and anti-inflammatory cytokines into the microenvironment during an immune 

response, which in part, is accomplished by the release of preformed stores.  

This was first demonstrated in 1990 when it was found that mast cells 

represented a viable source of preformed TNF (22).  It is unclear whether the 

major effects of TNF are due to preformed stores or de novo expression (10).  It 

is very clear, though, that mast cell-derived TNF is pleiotropic in its actions.  In 

this regard, TNF can promote the migration of dendritic cells, induce neutrophil 
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recruitment, and enhance cytokine production in T cells (26, 28, 30, 31).  

Moreover, mast cell-derived TNF can have a systemic influence in the outcome, 

both beneficial (e.g. Escherichia coli) and detrimental (e.g. Salmonella 

typhimurium), of bacterial infections (32, 34).  Other preformed cytokines that can 

be released by mast cells include IL-4 and TGFβ, but again, the roles of the 

preformed versions of these cytokines is uncertain (35, 36).  

By virtue of densely compact granules, mast cells are able to act swiftly in 

the face of stimulation through release of preformed mediators.  The location 

within peripheral tissues that mast cells reside indicates that they act as sentinels 

and surveyors of the immune system.  These two facts have prompted 

researchers to label mast cells as ‘first responders’ to environmental insults such 

as microbes and allergens (37).   

 

De novo synthesis of mediators 

 

 The second major component of mast cell activation takes place following 

degranulation and consists of de novo synthesis of mast cell products.  Most 

major stimuli of mast cells induce signal transduction, transcriptional activity, and 

de novo synthesis of gene targets like cytokines and chemokines.  In addition, 

the natural cellular metabolism associated with mast cell activation generates 

metabolites, such as eicosanoids, that play a role in many allergic reactions. 

These two categories of de novo mediators that mast cells manufacture can be 

classified into protein products or lipid metabolites.   
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 Of the protein products that mast cells express, cytokines are by far the 

most expansive (Table 1.2).  Mast cells were first found to synthesize and 

release cytokines in 1987 (39, 40).  As discussed above, mast cells have a 

prominent role in both local and systemic inflammation, which can be partially 

attributed to the actions of TNF.  In the same vein, mast cells can promote 

immunity and survival to peritonitis through the production of the TH1-type 

cytokine IL-12 (41).  Mast cells are probably most noted for their ability to 

mediate type-2 immunity; they are a potent reservoir for TH2-associated 

cytokines like IL-4, IL-5, and IL-13 (43).   The importance of mast cell derived-

type-2 cytokines can be seen in the response to a variety of extracellular bacteria 

and multicellular parasites.  This is aptly exemplified in the immune response to 

parasitic helminthes where IL-4 and IL-13 promote the formation of granulomas 

around the pathogen sequestering it from host tissues (45).  Mast cells can also 

promote immunity through the production of chemokines, which serve to recruit 

other immune cells to sites of infection by extravasation and chemotaxis (37).  

For instance, mast cell-derived CXCL-8 (i.e. IL-8) causes NK cell migration when 

stimulated with nucleic acids frequently associated with viral replication (54).  The 

massive collection of cytokines and chemokines allows mast cells to modulate 

the actions of responding leukocytes, placing them at the center of an immune 

response to a number of microbial infections.   

 Activation of mast cells results in the rapid synthesis of a class of lipid 

metabolites known as eicosanoids.  These inflammatory lipids are generated 

from the cleavage of arachidonic acid from membrane bound phospholipids by 
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the signaling enzyme phospholipase A2 (58).  Multiple catalytic events using a 

variety of enzymes, notably cyclooxygenase and lipoxygenase, ultimately derive 

prostaglandins, leukotrienes, and thromboxanes (61).  These mast cell-derived 

lipid mediators are known to cause acute allergic reactions including nasal 

discharge, bronchospasms (sneezing & coughing), and urticaria (wheal-and-flare 

reactions) (63). 

 The culmination of signal transduction in mast cells is the expression and 

synthesis of lipid-derived and protein products.  The vast range of newly 

synthesized mediators allows mast cells to orchestrate the assault on microbial 

infections for the duration of an immune response.  The tailored response of 

mast cells is the basis for their flexibility in regulating cells in the immediate 

vicinity as well as systemically.  The immensity of their response, unfortunately, 

is also central in the pathogenesis of allergic reactions.  Taken together, the 

mediators that mast cells produce contribute to the broad functions ascribed to 

these cells.  

 

Mast cell Activation 

 

Observed almost a century ago, the classic depiction of mast cell 

activation is degranulation, which is the exocytosis of preformed mediators 

contained within secretory granules.  Not until the last 25 years or so, was it 

appreciated that mast cells undergo a second wave of activation epitomized by 

the generation of cytokines (65).  Complete mast cell activation includes both 
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degranulation and de novo synthesis, though the latter is capable of occurring 

independent of degranulation in response to some types of stimuli.  Nonetheless, 

mast cell activation can be triggered through a variety of receptors expressed 

within the cell and on the plasma membrane.  Mast cells employ these receptors 

to facilitate immunity, regulate the pathogenesis of allergies, and participate in 

physiological disorders.  In the context of an immune response, mast cells can be 

alerted to the presence of microbes directly by virtue of Toll-like receptors (TLR) 

or indirectly through ligation of complement receptors, for example.   

 

IgE-independent activation 

 

Increasing evidence has suggested that mast cells are crucial to the 

innate immune response against pathogens (37).  This is accomplished primarily 

through the action of surface TLRs, such as TLR-2 and -4, and intracellular 

TLRs, such as TLR-7 and -9 (69).  Mast cell responses to TLR stimulation can 

vary tremendously and are highly dependent on the microbial product present 

(71).  LPS stimulation of TLR-4, for example, can induce cytokine production 

from mast cells independent of degranulation.  On the other hand, a complete 

mast cell response is observed when TLR-2 is engaged by peptidoglycans.  

Moreover, mast cell activation through these two TLRs induces differential 

cytokine expression; TLR-4 promotes IL-1β whereas TLR-2 induces IL-4 and IL-

5.  TLR signaling in mast cells, like other cells, is initiated by the recruitment of a 

single adaptor molecule or a specific combination of adaptors, which includes 
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MyD88, TRIF, TRAM, or TIRAP (73).  The signal transduction cascade that 

ensues culminates in the activation and mobilization of transcription factors, like 

NF-κB and IRF3.  TLR stimulation of mast cells primarily leads to the expression 

of inflammatory products (e.g. cytokines and chemokines) in a degranulation-

independent manner (75). 

The complement system can indirectly and directly alert mast cells to the 

presence of a pathogen through ligation of complement receptors on the cell 

surface.  The proteolytic products of C3 convertase (i.e. C3a and C3b) have 

differential effects on mast cells.  Ligation of C3a to its receptor C3aR promotes 

the migration of mast cells to sites of inflammation, whereas C3b forms a 

covalent bond with bacterial surfaces priming them for opsonization via the 

receptor C3R (CD11b-CD18) on mast cells (69, 77).  Furthermore, C3a can 

potently induce mast cell degranulation in several types of immune responses 

(79).  

 

IgE-dependent activation 

 

By far, the most well characterized receptor on mast cells is the high-

affinity IgE receptor, FcεR1.  The discovery of receptors for IgE was facilitated by 

a series of studies, primarily from Henry Metzger and colleagues in the mid 

1970’s (81, 83, 84).  These experiments used rat immunocytomas that secreted 

copious amounts of IgE to show specific binding at the surface of rat basophilic 

leukemia (RBL) cells, a frequently used mast cell line.  Subsequent analysis of 
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the IgE receptor revealed abundant expression on mast cells and an affinity for 

IgE on the order of KD 10-11 M (85).  It was further shown that crosslinking the 

receptor with IgE dimers was sufficient to induce degranulation.  In 1989, FcεR1 

was finally cloned and discovered to comprise a tetrameric complex assembled 

from four subunits: the IgE-binding α, a transmembrane β subunit, and two γ 

chains (2, 4, 5, 224).   

The foremost activation pathway responsible for the majority of mast cell-

mediated immune responses is transduced through the FcεR1.  IgE-dependent 

activation occurs when IgE-coated FcεR1 molecules on mast cells encounter 

antigens or allergens specific for that antibody in the periphery.  As shown in MC-

Figure 1.9, crosslinking of the FcεR1 initiates an impressive signal transduction 

cascade invoking classical intracellular pathways, such as MAPK activation and 

Ca2+ mobilization.  The primary signaling events occur when immunoreceptor 

tyrosine-based activation motifs (ITAMs), within the β and γ  signaling chains, 

become phosphorylated through the kinase activity of Src family kinases such as 

Lyn (7, 225).  This event is thought to be associated with membrane 

microstructures called lipid rafts (9, 226).  In turn, the recruitment and activation 

of Syk kinases leads to the nucleation of a macromolecular complex consisting of 

adaptor proteins (e.g. LAT, SLP-76, Gads, Grb2, and Vav) and enzymes (e.g. 

PLCγ, PI3K, Btk).  Correct assembly of this complex is of the utmost importance 

as mast cell activation, both degranulation and gene expression, is severely 

diminished when many of these molecules are missing (11, 227-229).  

Interestingly, a complementary pathway can be induced at this point by the Src  
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Figure 1.9 

 
 
 
Figure 1.9 FcεR1 signal transduction 

The schematic above was adapted from the Journal of Allergy and Clinical 

Immunology, 2006, vol. 117, pp. 1214-1225. It depicts the important players and 

pathways in FcεR1-mediated signaling.  A more detailed description is in the text.  

Briefly, ligation of the IgE-bound FcεR1 by antigen recruits Src, Syk, and Tec 

family kinases.  Activation of these PTKs promotes the assembly of two 

membrane proximal signaling complexes scaffolded by LAT and LAT2.  These 

complexes regulate the generation of secondary messengers, IP3 and DAG, 

which activate major downstream pathways including Ca2+ mobilization and the 

MAPK cascade.  The culmination is degranulation, production of lipid mediators, 

and gene expression. 
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family kinase Fyn, which promotes the formation of another scaffold primarily 

held together by LAT2 (NTAL) (13, 230).  The significance of these two branches 

is not completely understood but it is clear that substantial ‘cross-talk’ exists 

amongst these pathways.  What is known is that the LAT pathway provides the 

principal activation of PLCγ, which can be regulated by Tec family kinases, 

whereas the LAT2 pathway appears to provide a means for PI3K activity via the 

adaptor Gab2 (15, 231).  It should be noted that PI3K is also recruited and 

activated in the LAT complex as well, highlighting the amount of ‘cross-talk’ that 

can occur. 

With this in mind, phosphorylation of PLCγ by Tec kinases (e.g. Btk) can 

initiate the production of important second messengers like DAG and IP3 from 

the hydrolysis of PIP2.  This is a critical step linking membrane proximal events to 

the two major downstream signaling pathways in mast cells (i.e. Ca2+ and MAPK) 

(18, 232).  Specifically, IP3 induces the release of intracellular Ca2+ stores 

primarily held in the endoplasmic reticulum, which in turn leads to opening of 

CRAC channels thereby flooding the cells with extracellular Ca2+.  The transient 

increase in cytosolic Ca2+ allows for the direct regulation of the phosphatase 

calcineurin, a gatekeeper for NFAT activity.  Dephosphorylation of NFAT allows 

for nuclear translocation where target genes can be expressed.  DAG primarily 

regulates the second major pathway elicited by FcεR1 signaling.  Unlike IP3, 

DAG remains membrane bound where it can interact with and activate PKC 

family members (e.g. δ, ε, and θ) in a Ca2+-independent manner.  PKC activity 

potently induces several MAPK molecules including Erk1/2, Jnk, and p38.  The 
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MAPK pathways promote the activation of major transcription factors, like AP-1 

and NF-κB, which regulate the transcription of many mast cell products.   

 

Tec kinases in mast cells 

 

 Mast cells express four of the five Tec family kinases: Btk, Itk, Rlk, and 

Tec.  Very little is known about the role of Itk, Rlk, and Tec in mast cells; Btk, on 

the other hand, is very well characterized (20, 21, 72).  Kawakami and 

colleagues spearheaded a number of studies investigating the role of Btk in 

FcεR1-mediated mast cell activation (23, 24, 233).  They first showed that Btk 

was phosphorylated in response to FcεR1 crosslinking (25, 234).  Degranulation 

and production of lipid mediators (i.e. leukotrienes) were diminished in mast cells 

lacking Btk (27, 29, 235, 236).  The nature of signaling defects became apparent 

when it was shown that Btk-deficient mast cells made less IL-2, TNF, IL-6, and 

GM-CSF (33, 237). The general phenotype associated with mast cells lacking 

Btk is strikingly similar to Btk-deficient B cells, which is to say that signal 

transduction is severely impaired (11, 235, 238).   The one major distinction 

between these two cells types regarding Btk is the developmental requirement.  

B cell development is severely impaired in two different mice with mutations in 

Btk, whereas mast cells develop normally (38, 237, 239).  Furthermore, the 

human immunodeficiency, x-linked agammaglobulinemia, demonstrates the 

clinical importance of Btk in B cells (11, 113, 114).  In general, the overall role of 

Btk in FcεR1-mediated mast cell activation is one of positive regulation. 
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 Despite being cloned from mast cells, for about 10 years there was very 

little known about Itk and this cell type (42, 143).  During this initial period, it was 

found that Itk was phosphorylated and recruited to the plasma membrane upon 

FcεR1 stimulation (44, 240).  Subsequently, studies done by two groups have 

been performed examining the role of Itk in mast cells in vivo (46-48, 241-244).  

In these studies, a model of allergic airway responsiveness was used to examine 

airway hypersensitivity in Itk-deficient mice or in KitW/Wv mice reconstituted with 

BMMC lacking Itk (49-53, 241, 244).  To much dismay, the results of each report 

are at odds with each other.  In Itk-deficient mice, mast cell degranulation was 

severely impaired despite wild-type levels of reaginic antibodies.  Moreover, 

leukocyte infiltration and type-2 cytokines were absent when these mice were 

challenged with allergen.  These results suggest that Itk is required to facilitate 

mast cell responses, in vivo (55-57, 241).   

A second report used a reconstitution model and found normal airway 

responsiveness in mice containing Itk-deficient BMMC (59, 60, 244).  They 

concluded that the amount of natural IgE in mice lacking Itk potentially 

confounded the results of the previous study by demonstrating that degranulation 

remained intact in mast cells lacking Itk.  These results correlated with in vitro 

observations that degranulation was normal in Itk-deficient BMMC.  Oddly, 

increased cytokine production over wild-type BMMC occurred in these cells when 

stimulated through FcεR1.  This was unexpected because the intracellular defect 

that was observed actually showed diminished signal transduction, when quite 

the opposite would be predicted (62, 244).  Thus, the limited information about 
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the role of Itk in mast cells is incomplete, conflicting, and perhaps even more 

turbid.  More work is required to appreciate the role of Itk in mast cells. 

 

Thesis Objectives 

 

 Itk is a major player in the signal transduction of T cells.  The lack of Itk 

leads to a severe reduction, but not a complete loss, of TCR signaling even in the 

face of very weak signals.  In contrast, the role of Itk in the signal transduction of 

mast cells is less clear.  The goal of this thesis is to explore the role of Itk in 

modulating the activation of T cells and mast cells.  The major objectives of this 

dissertation are stated below. 

 

1. To examine the influence of TCR signal strength on the activation of CD8 

T cells (Chapter II). 

a. Determine the contribution of TCR – pMHC interactions on the 

expression of TCR responsive genes in CD8 T cells. 

b. Assess the involvement of the Tec kinase Itk in altering TCR signal 

strength. 

c. Examine the major downstream pathways involved in the regulation 

of TCR signal strength. 

2. To investigate the role of Itk in the activation of mast cells (Chapter III). 

a. Examine the immediate and late phase responses of mast cell 

activation in the context of Itk deficiency. 
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b. Identify signaling abnormalities associated with Itk deficiency. 

c. Mechanistically characterize Itk’s role in the involvement of mast 

cell activation. 

  



 

 
 

 
 
 
 
 
 
 

Chapter 2:  

Modulation of TCR signal strength reveals an analog 

response in T cells that correlates with Itk activity 
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Chapter II Attributions 

The material in chapter II has been submitted for publication.  The research 

contained within this chapter is my own work [JE]. 
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Introduction 

 

The T cell antigen receptor (TCR) is the gateway to T cell activation.  It is 

charged with engaging peptide-MHC (pMHC) at the interface of an 

immunological synapse and transducing information inside the cell.  Potentiation 

of this information is achieved through numerous signaling cascades utilizing 

molecules such as kinases, phosphatases, and adaptors (62, 64).  The 

culmination of these signaling events results in the mobilization of a transcription 

factor network that ultimately directs the myriad biological functions that a T cell 

employs during an immune response.   

How a T cell sees antigen in the context of pMHC can have dire 

consequences for that cell (38, 66).  During thymopoiesis, for example, signals 

emanating from the TCR that are too strong lead to negative selection, whereas 

signals that are too weak are neglectful.  The end result of both of these signaling 

events is apoptosis.  Only those cells receiving signals of intermediate strength 

survive by positive selection.  A precedent, therefore, is set by the TCR to 

recognize pMHC in such a way as to induce just the right amount of signal to 

respond appropriately (67, 68, 92).  Demonstration of the importance of TCR 

signal strength is not hard to come by, nor is it limited to the thymus.  Indeed, 

signal strength has been implicated in such cellular processes as CD8 T cell 

differentiation (70, 245) and cell division (72, 246).  It also has far reaching 

systemic effects on the way one fights infection (74, 247) or copes with 
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autoimmunity (76, 248).  Yet, the precise molecular mechanisms that control 

TCR signal strength remain to be completely elucidated. 

To aid in the understanding of signal strength, TCR signaling can be 

classified as digital or analog.  Digital signaling can be characterized by switch-

like events that trigger on or off effects by T cells.  There is no intermediary.  On 

the other hand, analog signaling occurs when the signal input is proportional to 

the response elicited by the T cell.  A range of intermediates exist between the 

on or off responses seen in digital signaling.   

Several examples of digital signaling cascades have been reported in T 

cells.  The majority of the components necessary to activate NF-κB are digital in 

response to stimulation with anti-CD3 antibodies (78, 88).  This includes the 

formation of the Bcl-10, Carma1, and Malt1 (BCM) complex, IκB degradation, 

and NF-κB nuclear translocation.  In addition to the NF-κB pathway, the MAPK 

pathway has been shown to propagate digital signals in response to TCR 

stimulation.  An analog to digital switch is thought to occur at the level of Ras 

activation (80, 249).  Here, a positive feedback loop facilitated by the guanine 

nucleotide exchange factors, RasGRP and son of sevenless (SOS), promotes 

the GTPase activity of Ras, sending digital signals down the rest of the pathway 

(78, 82).  Another group proposed that digitization of the MAPK pathway occurs 

through an analog-based negative feedback of SH2 domain containing tyrosine 

phosphatase (SHP-1) (86, 250).  Here, weakly potent TCR ligands induce the 

negative regulation of SHP-1 preventing activation of the MAPK cascade.  Only 
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TCR ligands that reach a certain signaling threshold can overcome the negative 

feedback loop and induce MAPK activity (62, 251). 

An interesting observation in these types of studies is that titration of PMA 

in T cells induces analog signaling within the NF-κB and MAPK pathways.  This 

suggests that digitization of major signaling pathways occurs at the level of 

membrane proximal signaling events.  A quick look at the major components of 

this part of TCR signaling reveals three major protein tyrosine kinase (PTK) 

families, Src, Syk, and Tec (66, 87).  Of these PTKs, Src and Syk family 

members are absolutely required for signal transduction.  For example, T cells 

lacking Zap-70 or Lck result in the complete absence of TCR signaling (88, 252, 

253).  Therefore, both Lck and Zap-70 are capable of transducing digital signals 

downstream of the TCR.  On the other hand, stimulation of T cells deficient in 

Tec family kinases results in reduced TCR signaling from the point of PLCγ1 

activation through the major downstream pathways (89, 121). 

Itk is the predominant Tec family kinase in T cells.  Itk is recruited to the 

membrane via interactions with the LAT scaffolding complex and PIP3 upon TCR 

stimulation.  Here, Itk can phosphorylate its target substrate PLCγ1.  One of the 

major pathways that is affected by Itk is the Ca2+ - NFAT pathway (90, 159).  As 

opposed to the NF-κB and MAPK pathways, limited data exists on the nature of 

the Ca2+ - NFAT pathway, but it too has characteristics of both digital and analog 

behavior (91, 254-256).  For example, the release of intracellular Ca2+ is thought 

to provide analog control of CRAC channels until store-operated calcium entry 

(SOCE) can occur (92, 256).  SOCE is one of the major defects in stimulated T 
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cells lacking Itk (111, 159).  We therefore postulate that Itk modulates TCR signal 

strength by controlling analog to digital signal conversion and that limiting Itk 

activity will result in a graded T cell response. 

In this study, we show that changing TCR signal strength using altered 

peptide ligands generates both digital and analog responses.  The analog 

response produces a skewed transcription factor profile in CD8 T cells.  This is 

highlighted by the exquisite control of IRF4 expression in response to a wide 

range of APLs with varying affinity toward the TCR.  We further show that the 

graded expression of IRF4 is controlled by the amount of Itk activity within CD8 T 

cells.  Finally, we link NFAT activity with graded IRF4 expression and an altered 

distribution of transcription factors in CD8 T cells.  Taken together, the 

implications of these results suggest that modulation of TCR signal strength 

through Itk and NFAT can alter the manner in which CD8 T cells respond to 

pMHC. 

 

Results 

 

CD8 T cells behave like a switch in response to TCR – pMHC ligation 

 

In order to assess the responsiveness of T cells to varying concentrations 

of cognate pMHC, we examined the expression levels of several proteins by flow 

cytometry.  Ova peptide (pOva) was titrated against OT-I CD8 T cells resulting in 

the   bi-modal   distribution  of  CD69   expression  (Fig 2.1A & B).    At  a  critical  
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Figure 2.1 
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Figure 2.1 Digital expression of CD69 in CD8 T cells stimulated with pOva  

(A) OT-I CD8 T cells were stimulated for 24 hours in the presence of pOva.  

CD69 expression was determined by flow cytometry.  The triangle to the right of 

histograms represents the amount of pOva that was used as indicated at the 

right of each histogram. 

(B) Graphical representation of the data from (A).  Mean fluorescent intensity of 

CD69 is shown.  The red circle at 1 pM is further examined in (C). 

(C) Cells stimulated with 1 pM of pOva were differentiated by side scatter area 

(SSC-a), and then examined for CD69 expression.  The adjacent concentrations, 

0.1 and 10 pM, are shown in the bar graph for comparison. 

The data represent 1 independent experiment. 
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threshold of 1pM, stimulation with pOva results in approximately 20% of T cells 

expressing CD69 and 80% of cells not expressing CD69 (Fig 2.1C).  At 

concentrations above 1pM, all cells expressed CD69, whereas no CD69 

expression was observed at concentrations below 1pM.  Moreover, the mean 

fluorescent intensity (MnFI) of all cells expressing CD69 was consistently 

comparable (Fig 2.1B).  Therefore, CD8 T cells display a digital (on or off) pattern 

of activation in response to pOva.   

 

Altering TCR – pMHC potency results in a differential T cell response and a 

skewed transcription factor profile 

 

In order to determine if this effect on CD8 T cells was unique to pOva, we 

stimulated OT-I cells with varying concentrations of an altered peptide ligand 

(APL) called G4.  This peptide has an amino acid substitution at position 4 

(NàG) of the pOva 8-mer and results in a decreased affinity for the OT-I TCR 

while retaining the same stability with MHC class I as pOva (44, 112, 257, 258).  

Titration of G4 on OT-I CD8 T cells appeared to result in a similar pattern of 

CD69 expression compared to pOva (Fig 2.2A).  As expected, the critical 

threshold for the activation of OT-I T cells with G4, which was 1uM (Fig 2.2B), 

was much higher than pOva.  Cells that were stimulated with concentrations of 

G4 higher than 1uM displayed a similar MnFI, whereas those cells stimulated at 

concentrations lower than 1uM did not express CD69.  Closer inspection of OT-I 

cells  stimulated with 1uM of G4  revealed a graded  expression  pattern of CD69  
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Figure 2.2 
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Figure 2.2 Weak TCR signal strength leads to skewed transcription factor 

profile  

(A) OT-I CD8 T cells were stimulated for 24 hours in the presence of G4 peptide.  

CD69 expression was determined by flow cytometry.  The triangle to the right of 

histograms represents the amount of G4 peptide that was used as indicated in 

next to each histogram. 

(B) Graphical representation of the data from (A).  Mean fluorescent intensity of 

CD69 is shown.  The red circle at 1 uM is further examined in (C). 

(C) Cells stimulated with 1 uM of G4 peptide were differentiated by side scatter 

area (SSC-a), and then examined for CD69 expression.  The adjacent 

concentrations, 0.1 and 10 uM are shown in the bar graph for comparison. 

(D) CD8 T cells were stimulated for 24 hours with 10 uM pOva, G4 peptide, or a 

control peptide.  CD69 expression was quantified by flow cytometry. 

(E) CD8 T cells were stimulated as in (D).  Cells were fixed, permeabilized and, 

stained for IRF4 (left) and Eomes (right) expression.  MnFI was quantified by flow 

cytometry. 

The data represent 1 independent experiment. 
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(Fig 2.2C).  This implied that altering the interaction potency between TCR – 

pMHC impacted the ability of CD8 T cells to respond in a switch-like manner.     

The density at which pMHC is presented to CD8 T cells can influence the 

amount of signal that a T cell receives and thereby alter the response.  To 

address this, we stimulated OT-I CD8 T cells with equivalent concentrations of 

pOva, G4, and a control peptide.  In response to TCR – pMHC ligation with either 

pOva or G4, CD8 T cells expressed similar amounts of CD69 and CD44 on the 

cell surface (Fig 2.2D & not shown).  This suggested that the cell surface 

phenotype of OT-I CD8 T cells does not appreciably change in response to 

stimulation with its cognate ligand or an APL.  When the transcription factor 

profile of these two populations was analyzed, we observed a dramatic difference 

in the expression of interferon regulatory factor 4 (IRF4) and Eomesodermin 

(Eomes) (Fig 2.2E).  OT-I CD8 T cells stimulated with pOva displayed increased 

levels of IRF4 compared to cells stimulated with G4.  This consistently resulted in 

about a two-fold difference.  Conversely, Eomes expression was drastically 

reduced in T cells stimulated with pOva.  Subsequent experiments revealed this 

difference was consistently between two- and four-fold.  These data suggest that 

TCR signal strength is vital to the expression pattern of transcription factors in 

CD8 T cells.   
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Stimulation of CD8 T cells with APLs results in the graded expression of IRF4 

  

To assess the responsiveness of CD8 T cells to varying amounts of TCR 

signal strength, we utilized a panel of APLs with a range of affinities towards the 

OT-I TCR (44, 113-115).  All of these peptides have a one-amino acid 

substitution with the parent peptide, pOva. Importantly, the binding kinetics to 

MHC class I is not changed in the peptide panel.  Stimulation of OT-I CD8 T cells 

with 5 out of 6 peptides from the panel resulted in equivalent expression levels of 

CD69 (Fig 2.3A).  A peptide, E1, with very low affinity towards the OT-I TCR did 

not stimulate the expression of CD69 and was comparable to unstimulated cells, 

an isotype control (not shown), and a control peptide.  These data suggest that 

altering the interaction affinity between TCR and pMHC does not regulate the 

expression of CD69 and results in its digital expression. 

 A different conclusion was reached when the expression pattern of IRF4 

and Eomes was observed.  When we examined the amount of IRF4, activated 

OT-I CD8 T cells displayed an expression pattern that was graded (Fig 2.3B).  

This stepwise pattern was dependent on the strength of the TCR – pMHC 

interaction.  T cells receiving the strongest amount of signal expressed the most 

amount of IRF4; whereas those cells receiving decreased signal strength 

expressed the least amount of IRF4.  Importantly, the E1 peptide did not induce 

expression of IRF4.  This result indicates the presence of a critical threshold 

between the signal strength generated by G4 and E1.  Above this threshold, an 

analog signal occurs in response to increasing amounts of TCR signal strength. 
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Figure 2.3 
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Figure 2.3 Altered peptide ligands generated graded IRF4 expression 

(A - C) OT-I CD8 T cells were stimulated for 24 hours in the presence of the 

indicated peptides.  Cells were stained for cell surface expression of CD69 (A) 

then fixed, permeabilized, and stained for intracellular expression of IRF4 (B) and 

Eomes (C).  The dotted line in the histograms is the mean fluorescent intensity of 

cells stimulated with the G4 peptide.  MnFI is quantified in the bar graphs on the 

right. 

Data are representative of 3 independent experiments. 
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The data in Figure 2.2E suggested that Eomes expression is altered in 

response to varying TCR signal strength and is not dependent on the expression 

of CD69.  Indeed, 5 out of 6 peptides stimulated OT-I CD8 T cells and induced 

the expression of Eomes (Fig 2.3C).  Stimulation with the E1 peptide resulted in 

the same level of expression as unstimulated cells and a control peptide.  CD8 T 

cells stimulated with a very potent ligand, pOva, induced the least amount of 

Eomes expression.  In contrast, cells stimulated with lower affinity (N6, T4, V4, 

and G4) ligands induced robust expression of Eomes.  Interestingly, the 

expression pattern of Eomes was not uniform amongst the lower affinity APLs 

(Fig 2.3C, histograms).  The majority of the cells stimulated with G4 and V4 

peptides expressed high amounts of Eomes.  Cells stimulated with peptides of 

slightly greater affinity for the TCR (T4 and N6) contained a more uniform 

distribution of Eomes.  These data suggest that Eomes expression is highly 

sensitive to TCR signal strength and inversely correlates with IRF4 expression.  

Consistent with previously published data from our lab, it is likely that IRF4 

negatively regulates Eomes expression in T cells (72, 259). 

 

Graded expression of IRF4 is not due to altered kinetics 

 

 We hypothesized that weak TCR signal strength results in the delayed 

expression of IRF4 and that it simply takes longer to catch up to the levels 

exhibited by strong TCR signal strength.  As early as 3 hours post stimulation, 

OT-I CD8 T cells began expressing substantial amounts of IRF4 in response to 4 
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out of 6 of the peptides in the APL panel (Fig 2.4A).   CD8 T cells stimulated in 

the presence of G4 peptide expressed IRF4 at levels very close to the limit of 

detection and was comparable to unstimulated cells, E1 peptide, and a control 

peptide.  By 18 hours post stimulation 5 out of 6 peptides from the panel 

drastically increased IRF4 expression.  Unexpectedly, at both of these time 

points, a graded pattern of IRF4 expression was observed in response to 

stimulation with 5 out of 6 peptides.   

 We were curious if other time points exhibited the same trend.  A full time 

course experiment was performed choosing additional periods between 3 and 24 

hours post stimulation.  As demonstrated in Figure 2.4B, at no time point 

examined did we observe any of the APLs expressing similar amounts of IRF4 to 

pOva.  In fact, the major difference that we detected was an increase in the 

magnitude of expression.  This is most aptly exhibited between pOva and G4 

peptides, where the difference in IRF4 expression between the two peptides only 

increased as time progressed.  Following 24 hours of stimulation, the cells in 

culture begin to divide and a direct comparison of protein expression between the 

populations becomes unattainable (data not shown). 

 Given the sensitivity of Eomes expression to TCR stimulation, we wanted 

to assess the kinetics for this transcription factor.  As opposed to the very early 

expression of IRF4, we could not detect Eomes expression in any condition up to 

6 hours post stimulation (Fig 2.4C).  By 12 hours post stimulation, 5 out of the 6 

peptides had expressed Eomes above background (unstimulated cells, E1 

peptide, and control peptide).  Whereas lower affinity peptides (N6, T4, V4, and  
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Figure 2.4 
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Figure 2.4 Altered transcription factor profile is not due to delayed kinetics 

(A - C) OT-I CD8 T cells were stimulated in the presence of the indicated 

peptides and assayed at the indicated time points for IRF4 expression (A,B) and 

Eomes expression (C).  The dotted line in the histograms (A) is the mean 

fluorescent intensity of cells stimulated with the G4 peptide at 3 hours.  MnFI is 

quantified for IRF4 and Eomes in the line graphs in B and C, respectively. 

Data are representative of 2 independent experiments. 
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G4) rapidly induced high levels of Eomes expression, CD8 T cells stimulated with 

pOva remained low for the duration of the time course.  Interestingly, we were 

unable to discern graded expression of Eomes within the APLs N6, T4, V4, or 

G4.  Taken together, these data indicate that the expression of IRF4 and Eomes 

is not simply delayed in response to lower TCR signal strength. 

 

Itk activity modulates the graded expression of IRF4 

 

 The data thus far has indicated the presence of at least two distinct 

signals emanating from the TCR upon stimulation.  The first signal is digital and 

controls the expression of TCR responsive genes like CD69.  The second signal 

is analog and controls the expression of IRF4.  We wanted to examine the 

signaling mediators responsible for controlling the graded expression of IRF4.  In 

order to do this we utilized an Itk-specific pharmacological inhibitor called 10N 

(116, 117, 259).  We performed a titration of this inhibitor on cells stimulated with 

pOva.  To limit the toxicological effects of this inhibitor, we gated on cells that 

were CD69+ and then examined the expression of IRF4 and Eomes.  OT-I CD8 

T cells stimulated with pOva in the presence of increasing amounts of 10N 

displayed a graded pattern of IRF4 expression (Fig 2.5A, left histograms).  To 

ensure that this effect was not isolated to the strong agonist pOva, we performed 

the inhibitor titration on the lower affinity peptide T4.  OT-I CD8 T cells stimulated 

in the presence of increasing amounts of 10N also displayed a graded 

expression  pattern for IRF4  (Fig 2.5A, right histograms).  These  data  suggest  
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Figure 2.5 
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Figure 2.5 The transcription factor profile in CD8 T cells is sensitive to Itk 

activity 

(A) OT-I CD8 T cells were stimulated with of pOva (left histograms) and T4 (right 

histograms) in the presence of an Itk inhibitor.  The inhibitor concentrations used 

are indicated in B and C.  Cells were harvested at 24 hours and subjected to an 

intracellular stain for IRF4 and Eomes.  CD69+ cells were used for analysis. 

(B and C) The data from A is depicted as a dose response curve for IRF4 (B) and 

Eomes (C).  The data is compared against unstimulated cells and a control 

peptide. 

Data are representative of 3 independent experiments. 
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that Itk activity can tune the signal that the TCR transmits in response to varying 

inputs. 

 We generated a dose-response curve to directly compare stimulation with 

the pOva and T4 peptides.  In addition to the graded expression of IRF4 that is 

observed in response to peptide stimulation, the sensitivity of CD8 T cells to the 

10N inhibitor can also be seen (Fig 2.5B).  The expression of IRF4 is more 

sensitive to lower concentrations of 10N inhibitor in OT-I CD8 T cells stimulated 

with the APL T4 than pOva.  Cells stimulated with T4 peptide have lost more than 

half their expression of IRF4 at 20nM 10N, whereas it takes about 50nM of 10N 

to reach 50% IRF4 expression in response to pOva.  This indicates that the 

strong TCR signal generated by pOva can compensate for or withstand a greater 

loss in Itk activity than the TCR signal generated by T4 peptide. 

 Given that altering TCR signal strength by using APLs results in 

differential Eomes expression, we formulated a dose-response curve for this 

transcription factor.  Similar to IRF4 expression, the sensitivity of OT-I CD8 T 

cells stimulated with T4 peptide is greater than that of pOva (Fig 2.5C).  Only at 

concentrations greater than 60nM 10N was Eomes expression affected in cells 

stimulated with pOva.  On the other hand, at concentrations between 20 and 

25nM 10N, cells stimulated with T4 peptide began losing Eomes expression.  

Interestingly, the amount of fluorescence increased by about 40% in cells 

stimulated with pOva in the presence of 30nM 10N compared with those cells 

stimulated in the absence of 10N (MnFI values of 1062 no inhibitor vs 1492 

30nM).  This suggests that decreasing Itk activity can dampen the strong signals 
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produced by pOva.  The result of this is an increased expression of Eomes, 

strengthening the argument that Eomes expression in CD8 T cells is inversely 

proportional to TCR signal strength.   

 

TCR signal strength can be altered by NFAT activity resulting in the graded 

expression of IRF4 

  

 Itk is a critical regulator downstream of TCR signaling in T cells, linking 

membrane proximal events to major downstream pathways by activating PLCγ1.  

The generation of secondary messengers, IP3 and DAG, which are produced by 

PLCγ1, induces the MAPK cascade, NF-κB activation, and Ca2+ mobilization.  

One of the major defects in Itk-/- T cells is an uncoupling of TCR signaling with 

NFAT activity (118, 159).  Due to the graded IRF4 expression seen during Itk 

inhibition, we wanted to assess the ability of NFAT to transduce analog signals in 

stimulated CD8 T cells.  In order to examine NFAT activity on the expression of 

IRF4, we used the calcineurin inhibitor FK506.  OT-I CD8 T cells stimulated with 

pOva in the presence of increasing amounts of FK506 displayed a graded 

distribution of IRF4 (Fig 2.6A, left histograms).  For lower concentrations of 

FK506 (0.075, 0.15 and 0.3 nM), the expression of IRF4 changed very little in 

cells stimulated with pOva compared to cells stimulated in the absence of FK506.  

Even at the highest concentration of FK506, pOva-induced expression of IRF4 

remained above the levels of unstimulated cells.  This suggests that it takes 

substantial amounts of NFAT inhibition to alter the expression of IRF4.  Similarly,  
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Figure 2.6 
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Figure 2.6 TCR signal strength is altered by NFAT activity 

(A) OT-I CD8 T cells were stimulated with of pOva in the presence of an NFAT 

inhibitor.  The inhibitor concentrations, in nanomolar, used are indicated in the 

left panel of histograms.  Cells were harvested at 24 hours and subjected to an 

intracellular stain for IRF4 (left histograms) and Eomes (right histograms).   

(B) OT-I CD8 T cells were stimulated with of G4 peptide in the presence of an 

NFAT inhibitor.  The inhibitor concentrations, in nanomolar, used are indicated in 

the left panel of histograms.  Cells were harvested at 24 hours and subjected to 

an intracellular stain for IRF4 (left histograms) and Eomes (right histograms).   

For comparative purposes, the red histograms in each panel are unstimulated 

cells.  The triangle at the right indicates the concentration of NFAT inhibitor. 

Data are representative of 3 independent experiments. 
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Eomes expression in CD8 T cells stimulated with pOva in the presence of low 

concentrations of FK506 (0.075, 0.150. 0.3nM) was not considerably altered but 

remained detectable above background levels (Fig 2.6A, right histograms).  

Intriguingly, the same concentrations of FK506 (0.6 and 1.2nM) that caused a 

decrease in IRF4 expression in cells stimulated with pOva resulted in an increase 

in Eomes expression.  This suggests that NFAT activity is required for full 

expression of IRF4, and further provides evidence that IRF4 regulates Eomes 

expression. 

 The analog response observed when CD8 T cells are stimulated with 

pOva in the presence of FK506 was not as impressive as we had expected.  We 

reasoned that a lower affinity peptide would allow us to more readily resolve the 

effect that NFAT activity had on TCR signal strength.  Therefore, we repeated 

these experiments using the G4 peptide.  When OT-I CD8 T cells were 

stimulated with G4 peptide in the presence of FK506, we observed a much more 

pronounced analog response as demonstrated by IRF4 expression (Fig 2.6B, left 

histograms).  The influence of FK506 on IRF4 expression was seen at 

concentrations as low as 0.15nM and continued to the highest non-toxic dose 

(1.2nM).  Interestingly, at 1.2nM FK506 an almost complete loss of IRF4 

expression was observed, suggesting that NFAT activity is required for IRF4 

expression when TCR signal strength is low.  We were unable to detect any 

appreciable change in Eomes expression at low concentrations of FK506 (Fig 

2.6B, right histograms).    At 0.6 and 1.2nM FK506, we noticed the levels of 

Eomes starting to decrease despite the reduction in IRF4 expression.  This was 
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somewhat surprising because we are unaware of any direct regulation of Eomes 

induction by NFAT.  Nonetheless, the data from these experiments demonstrate 

the ability of NFAT activity to transmit an analog signal from the TCR in response 

to both strong and weak signal strength. 

 

Discussion 

 

The information that a T cell receives to induce activation can most aptly 

be conveyed as one of signal strength.  The notion of TCR signal strength is 

frequently used to describe the development of T cells in the thymus, whereby 

‘too strong’ signals lead to negative selection, ‘just right’ signals lead to positive 

selection, and no signal leads to death by neglect.  In this context, a suitable T 

cell population can arise that will provide adequate protection to the host.  

Altering the strength of TCR signaling can completely change the developmental 

dynamics required for an appropriate T cell repertoire (119, 165, 260).  Once T 

cell development is complete, TCR signal strength influences the fate of CD4 T 

cell differentiation into TH1 vs TH2 cells and controls TH17 cell responses (120, 

261, 262).  The important determinants of TCR signal strength include, but are 

not limited to: the potency of TCR – pMHC interactions, the duration of TCR – 

pMHC interactions, the density of pMHC presentation, and the activity of 

signaling mediators.   

In our studies, we employ two experimental models of TCR signal 

strength, potency of TCR – pMHC interactions and activity of signaling 
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mediators, to show that a CD8 T cell integrates digital and analog signals to 

promote activation.  Several lines of evidence support such a conclusion.  CD8 T 

cells stimulated with decreasing concentrations of a given peptide display a 

uniformly similar pattern of expression for TCR responsive genes, such as IRF4 

and CD69.  T cell activation persists until a critical concentration threshold is 

reached; at this point T cells cease to respond.  This implies that T cells can be 

activated in an on/off manner, similar to a light switch, and is consistent with 

current models that propose T cell responses occur in a digital manner (120, 121, 

263).  Indeed, a preponderance of research indicates that several pathways 

downstream of the TCR, notably the NF-κB and MAPK pathways, can mediate 

digital activation of T cells (88, 122, 249).   

On the other hand, if CD8 T cells are exposed to altered peptide ligands 

(APLs) of varying potency, and therefore varying signal strength, the response 

changes from all digital to partially digital and partially analog.  For example, the 

cell surface markers CD69 and CD44 display a digital pattern of expression.  

This makes sense because expression of CD69 and CD44 require the actions of 

AP-1 or NF-κB and AP-1, respectively (72, 264, 265).  Conversely, the 

transcription factor network established during T cell activation is skewed in 

response to varying TCR signal strength.  This is best documented by the 

changes in the expression of IRF4, where strong TCR signals lead to more IRF4 

and weak TCR signals generate less IRF4.  It is not completely clear which 

transcription factors regulate IRF4 expression but it is clear that TCR signal 

strength is important.  
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The identification of digital and analog signals simultaneously emanating 

from the TCR immediately prompts the question – how is this regulated?  To 

examine this, we conducted experiments that involved modulating the activity of 

signaling mediators.  The selection of potential targets that can mediate an 

analog response is limited, largely because of the essential requirements for so 

many components of the TCR signaling cascade.  For instance, both Src and 

Syk family kinases have major developmental blocks in thymopoiesis, which is 

likely due to the complete absence of TCR signaling (123, 124, 266, 267).  This 

is demonstrated in T cells that genetically lack Zap-70 (125, 268).  Crosslinking 

the TCR in these T cells results in the complete ablation of downstream signaling 

events, as evidenced by lack of phosphorylated PLCγ1, nonexistent Ca2+ 

mobilization, and no IL-2 production.  By comparison, the defect in Itk-deficient T 

cells is relatively mild.  In the absence of Itk, T cells display diminished TCR 

signaling with mild defects in PLCγ1 phosphorylation, decreased NFAT activity, 

and reduced IL-2 production.  Because of the inherent developmental defects 

associated with Itk deficiency, we sought to tune Itk activity with a 

pharmacological inhibitor.  In order to eliminate toxicological bias of the inhibitor, 

only cells that expressed CD69 were included for analysis.  Despite the finite 

range of useful concentrations, IRF4 expression was graded in CD8 T cells 

stimulated with given peptides in the presence of increasing concentrations of 

inhibitor.  There are several important implications of this finding.  First, it 

demonstrates that IRF4 expression is sensitive to Itk activity.  Second, it 

demonstrates that Itk activity is capable of propagating analog signals from the 
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TCR.  Third, despite the reduction in IRF4 expression, CD69 expression 

remained intact on all cells.  Fourth, it phenocopies the results obtained through 

the stimulation of T cells with altered peptide ligands of varying potency.  Finally, 

the data is in line with previously published work describing the ability of Itk to act 

as a rheostat (126, 269).   

The relationship between Itk and NFAT has been firmly established.  Itk 

functions upstream of the primary signaling pathways in T cells.  The majority of 

these pathways have been shown to transmit digital signals in response to TCR 

stimulation (88, 127, 249).  Consistent with this idea, we find that CD69 is 

expressed in a digital manner.  Very little data exists on whether the NFAT 

pathway responds in a digital or analog manner.  Using a non-competitive 

inhibitor of NFAT, the activity of this transcription factor can be modulated in 

response to various concentrations of the inhibitor.  CD8 T cells exposed to 

strong TCR signals in the presence of increasing NFAT inhibition exhibit an 

altered transcription factor profile exemplified by analog control of IRF4 

expression.  This is especially true at higher amounts of inhibition.  Moreover, the 

result is more pronounced in cells that were stimulated with weak TCR ligands.  

This suggests that high TCR signal strength can overcome NFAT inhibition to a 

greater extent than low strength TCR signals.  Overall, our experiments suggest 

that NFAT is capable of transmitting analog signals that result in the graded 

expression of IRF4.  

With this understanding, we constructed a model to describe the manner 

in which T cells are activated.  The model in Figure 2.7 depicts the pulse curve of  
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T cell activation as a function of signal strength.  It compares the two types of T 

cell responses that pass through digital and analog mediators. Digital and analog 

responses occur once a critical activation threshold is overcome.  Digital signals 

use on - off mediators such as ZAP-70 to culminate in bi-modal responses like 

CD69 expression.  These responses are independent of TCR signal strength.  

Oppositely, analog responses are dependent on TCR signal strength.  Analog 

signals use mediators that do not function as on - off switches like Itk.  They are 

tunable dials.  As TCR signal strength increases so too does the T cell response, 

as evident by graded IRF4 expression. 
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Figure 2.7 
 
 

 
 
 

 
 
Figure 2.7 Model of T cell activation in response to TCR signal strength 

Upon reaching a critical threshold, signals pass through ZAP-70 to generate 

digital expression of CD69, whereas Itk acts as a digital to analog converter 

producing the graded expression of IRF4. 
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Materials and Methods 

 

Mice 

 

Mice were bred and housed under specific pathogen-free conditions at the 

University of Massachusetts Medical School (UMMS) in accordance with 

institutional animal care and use committee guidelines. OT-I TCR transgenic 

Rag1−/− mice were purchased from Taconic.  Mice were euthanized between 8 

and 12 weeks of age. 

 

Cell Culture Conditions 

 

Spleens from OT-I Rag1-/- mice were harvested and processed using aseptic 

technique in a laminar flow hood.  Red blood cells were lysed with ammonium 

chloride for 5 minutes at room temperature.  Pure splenocytes were filtered and 

counted using a Cellometer Auto T4 cell counter (Nexcelom Bioscience).  

Splenocytes with greater than 85% viability were seeded at 1.25x106 cells/mL in 

96-well round bottom tissue culture plates.  Complete media consisted of RPMI-

1640 base, 10% heat-inactivated FBS, 100 U/mL penicillin, 100 ug/mL 

streptomycin, 100 mM L-glutamine, 100 µM non-essential amino acids, 50 µM 2-

ME, and 10 µM HEPES buffer.  Cells were incubated for the indicated time points 

at 37°C, 5% CO2 in a water-jacketed incubator. 
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Peptides  

  

The peptides used are listed in Table 2.1 and were synthesized to greater than 

90% purity by 21st Century Biochemicals.  Peptides that activated OT-I CD8 T 

cells were used at concentrations sufficient to induce maximal CD69 expression, 

unless otherwise indicated.  Control peptides or peptides that do not sufficiently 

induce CD69 expression were used at 10uM. 

 

Antibodies and staining 

 

CD8-PE- Texas Red (PETR) and Live/Dead Violet were purchased from 

Invitrogen.  CD44-v500 and CD69-PE Cy7 were purchased from BD 

Biosciences.  Eomes-FITC, Eomes-PerCP eFluor710, IRF4-Allophycocyanin 

(APC), IRF4-phycoerythrin (PE), and TCR-β–APC eFluor780 were purchased 

from eBioscience.  Cells were harvested at the indicated time points and washed 

with 2% FBS/PBS.  Cells were incubated with the indicated surface stains for 20 

minutes at 4°C.  Cells were washed with 2% FBS/PBS, fixed and permeabilized 

using the FoxP3 fixation and permeabilization kit (eBiosciences) according to the 

manufacturer’s protocol.  Flow cytometry was performed using a BD LSRII (BD 

Biosciences).  Analysis was done using FlowJo (TreeStar) and Prism 

(GraphPad) software.  In all experiments, cells were gated using doublet 

discrimination, Live Dead staining, and fluorescence minus one (FMO) controls. 
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Reagents 

 

The Itk inhibitor 10N was synthesized at the National Institutes of Health and was 

kindly provided by Jian-kang Jiang and Craig Thomas (Chemical Genomics 

Center, NIH).  The NFAT inhibitor FK506 was purchased from Calbiochem.  The 

concentrations of inhibitors used are indicated in the text and figure legends. 
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Table 2.1 Peptide variants presented by MHC Class I  

The table above depicts the peptides used to ligate the TCR on OT-I CD8 T cells.  

The abbreviation is listed in the first column with the corresponding amino acid 

sequence in the second column.  The third column quantifies the potency relative 

to pOva of each peptide’s ability to stimulate CD69 expression on OT-I CD8 T 

cells (44, 128, 129, 257, 258).  The fourth column is the concentration of peptide 

used in experiments unless otherwise indicated in the figure legend.  P815 and 

m97 are control peptides that do not stimulate OT-I CD8 T cells.   
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Table 2.1 
 

 
 

  



 

 
 
 

 
 
 

Chapter 3:  

Itk is a negative regulator of mast cell activation 
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Chapter III Attributions 

The material in chapter III has been submitted for publication and consists of a 

collaboration between Yoko Kosaka [YK], Markus Falk [MF], Stefan Schattgen 

[SS], and myself [JE].  The specific contributions for each figure are as follows: 

Figure 3.1 [YK], Figure 3.2 [YK and JE], Figure 3.3 [YK and JE], Figure 3.4 [YK 

and MF], Figure 3.5 [MF and SS], and Figure 3.6 [MF and JE]. 
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Introduction 

 

 Upon activation, mast cells secrete an extensive variety of effector 

molecules, including biogenic amines, enzymes, lipid metabolites, and cytokines.  

Many of these mediators are preformed and stored in granules, while others are 

newly synthesized.  Historically, mast cell-derived products are responsible for an 

assortment of allergic responses ranging from localized wheal-and-flare reactions 

to systemic anaphylaxis (75, 130).  More recently, mast cells have been linked to 

atherosclerosis, obesity, and cancer (124, 215, 216).  In addition, the diversity of 

mediators that are released when mast cells are stimulated puts them in a prime 

position to regulate the adaptive immune response to pathogens (37, 131).  In 

light of such observations, the biochemical signaling events involved in 

generating effector responses in mast cells is of significant interest.   

Mast cells can be activated through the signaling of many cell surface 

receptors, including the high affinity Fc receptor for IgE (FcεRI).  Aggregation of 

the FcεRI triggers a cascade of events that is highly reminiscent of the signals 

elicited by other multi-chain immune recognition receptors, such as the antigen 

receptors on T cells and B cells (the TCR and BCR, respectively) (121, 231, 

232).  Upon FcεRI crosslinking, two functionally complementary pathways are 

activated by the Src family kinases, Lyn and Fyn.  Lyn acts by phosphorylating 

the β and γ  chain immunoreceptor tyrosine-based activation motifs (ITAMs) of 

FcεRI, resulting in the recruitment and activation of Syk.  Activation of Lyn and 

Syk lead to the assembly of a membrane-associated signaling complex that is 
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nucleated by LAT and promotes the activation of PLCγ.  As in lymphocytes, 

PLCγ activation is a key event, leading to the production of inositol-1,4,5-

triphosphate (IP3) and diacylglycerol (DAG), thereby linking receptor-proximal 

events to major downstream pathways that regulate gene expression.  

Like Lyn, Fyn also associates with FcεRI and is activated as a result of 

FcεRI crosslinking (132-134, 230).  Fyn phosphorylates the adaptor molecule 

Gab2, thereby recruiting the p85 subunit of PI3K to the membrane.  PI3K activity 

then produces membrane phosphatidylinositol-3,4,5-trisphosphate (PIP3), 

leading to the recruitment of PH domain-containing proteins, such as PLCγ and 

Tec family kinases.  Despite the distinct biochemical nature of the Lyn-and Fyn-

dependent signals, it is clear that crosstalk exists between these two pathways 

and that both are essential for optimal FcεRI signaling.  The activation of 

mitogen-activated protein kinases (MAPK), NFAT, and NF-κB has all been 

shown to require the activity of both branches of the FcεRI signaling network 

(121, 270).    

 Previous studies in T cells, B cells, and mast cells have demonstrated that 

Tec family kinases are integral components of antigen receptor signaling 

pathways (72, 121, 135).  The predominant function of Tec family kinases is the 

phosphorylation and activation of PLCγ.  In T cells, Itk localizes to the membrane 

by associating with the LAT complex and by binding to PIP3.  This brings Itk into 

proximity with its target substrate, PLCγ1.  Thus, T cells lacking Itk exhibit 

reduced PLCγ1 phosphorylation, leading to impaired IP3 production, diminished 

Ca2+ mobilization, and decreased NFAT activation.  The reduction in PLCγ1 
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phosphorylation also decreases activity in the MAPK cascade.  The 

consequence of these signaling defects is severely impaired T cell effector 

function, which is highlighted by the susceptibility of Itk-/- mice to various 

pathogenic infections (136-139, 160, 161).  Based on these data, it is well 

accepted that Itk has a positive regulatory role in TCR-mediated signaling 

pathways.  

In mast cells, as in B cells, the Tec kinase Btk has a similar positive 

signaling role in the activation of PLCγ in response to antigen receptor 

stimulation.  For instance, Btk-deficient mast cells exhibit multiple defects 

following FcεRI activation, including impairments in degranulation, production of 

leukotrienes, and synthesis of cytokines (140, 233, 235-237).  Biochemical 

studies show that PLCγ2 activation, IP3 generation, and Ca2+ mobilization are all 

decreased in mast cells lacking Btk.   

In addition to Btk, mast cells express other Tec family members: Itk, Rlk, 

and Tec (141-145, 234, 271) (and our unpublished observations).  To date, the 

biochemical function(s) of these additional Tec kinases in mast cell signaling 

pathways has not been well addressed.  Initial data suggested the likelihood that 

Itk participates in mast cell signaling based on the observation that Itk is recruited 

to the membrane and phosphorylated in response to FcεRI stimulation (143, 

240).  Additional, studies have examined the function of Itk in vivo, using models 

of allergic airway responsiveness.  Forssell and colleagues indirectly investigated 

Itk-deficient mast cells by challenging Itk-/- mice with an airway allergen and 

looking for signs of inflammation (146-149, 241).  In this report, Itk-/- mice 
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exhibited significant impairments in lung mast cell degranulation following antigen 

challenge in the airways.  Interestingly, a direct comparison of Itk-/- mice with Btk-

/- mice in this system indicated that the lack of Itk led to a more severe defect 

than that seen in the absence of Btk.  In contrast, a more recent study by Iyer 

and colleagues used an in vivo reconstitution model where wild-type or Itk-/- bone 

marrow-derived mast cells (BMMC) were adoptively transferred into mice lacking 

mast cells (150, 244).  Here, mice reconstituted with Itk-/- BMMC demonstrated 

equivalent levels of airway responsiveness to mice reconstituted with wild-type 

BMMC indicating that Itk was not required for mast cell degranulation.  

Interestingly, they also showed that Itk-/- mast cells secreted elevated levels of 

cytokines following FcεRI stimulation, however no apparent signaling defects 

were observed.  Therefore the role of Itk in mast cell activation remains 

incompletely defined. 

In our studies, we examine mast cell responses in vitro to determine 

whether the absence of Itk has an intrinsic effect on mast cell function.  We show 

that freshly isolated peritoneal mast cells (PMCs) from Itk-deficient mice have 

dramatically increased levels of IgE on their surface.  This corresponds to an 

increase in cytokine secretion following IgE crosslinking.  Strikingly, we also find 

that Itk-deficient BMMCs are functionally hyperresponsive, exhibiting enhanced 

cytokine production in response to FcεRI stimulation.  Analyses of biochemical 

events downstream of FcεRI show increased levels of PLCγ2, Erk1 and -2 

phosphorylation, Ca2+ mobilization, and NFATc1 activation in Itk-/- versus wild-

type mast cells.  To account for this phenotype, we demonstrated an inducible 
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interaction between Itk and SHIP-1 following FcεRI stimulation.  Furthermore, we 

showed that Itk could phosphorylate Dok-1, Dok-2, and SHIP-1 in vitro as well as 

co-localize with a multi-molecular negative signaling complex upon FcεRI 

stimulation.  Taken together, these observations support the conclusion that Itk is 

important for the formation of an inhibitory signaling pathway that represses 

cytokine production following mast cell activation.  

 

Results  

 

Augmented levels of IgE on the surface of peritoneal mast cells from Itk-/- mice 

 

We first assessed the phenotype of mast cells isolated from Itk-/- mice ex 

vivo.  Total peritoneal exudate cells (PECs) were collected and stained with anti-

c-kit and anti-IgE antibodies (Fig. 3.1A).  c-kit+ PECs from Itk-/- mice consistently 

showed higher levels of anti-IgE staining compared to WT PECs.  Given that Itk-/- 

mice exhibit spontaneously high levels of IgE in the serum and that IgE alone 

induces upregulation of FcεRI on mast cells, this finding was not surprising (151-

153, 161, 272).   

We then assessed the functional responsiveness of PMCs from Itk-/- and 

WT mice by crosslinking the FcεRI.  To do this, c-kit+ cells were isolated from 

total peritoneal exudate by magnetic bead selection.  Toluidine blue staining of 

the  resultant  cells  confirmed  a  highly  pure  population of  mast cells (data not  
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Figure 3.1 
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Figure 3.1 Peritoneal mast cells from Itk-/- mice show elevated surface IgE 

and enhanced responsiveness to FcεRI stimulation 

(A)  PECs were stained with anti-IgE-FITC and anti-c-kit-PE and analyzed by 

flow cytometry.  Plots shown are gated on live SSChi cells. 

(B)  WT (black bars) or Itk-/- (white bars) c-kit+ PECs were isolated by positive 

selection using magnetic beads.  After overnight incubation, cells were stimulated 

with plate-bound anti-IgE at the indicated concentrations.  Cytokines were 

detected by ELISA 20 hrs post IgE crosslinking. (*below limit of detection: IL-4, 

0.03 ng/mL; IL-6, 0.016 ng/mL; IL-13, 0.02 ng/mL).  Data shown are 

representative of 4 independent experiments. 
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shown).  When Itk-/- PMCs were stimulated with plate-bound anti-IgE antibody, 

IL-4 and IL- 13 secretion was readily observed.  In contrast, WT PMCs produced 

amounts of cytokine that were generally below the level of detection (Fig. 3.1B).  

Unlike IL-4 and IL-13, IL-6 secretion by both types of PMCs was detectable.  

However, Itk-/- PMCs showed a slight increase in IL-6 release upon IgE 

crosslinking.  The elevated cytokine response exhibited by Itk-/- mast cells is likely 

due to enhanced mast cell stimulation generated by the high levels of IgE/FcεRI 

complex on the surface of these cells.  

 

Itk-/- BMMCs appear developmentally normal and produce a normal 

degranulation response 

 

 To examine mast cell responses in the absence of the environmental 

influences present in Itk-/- mice, we generated mast cell cultures from bone 

marrow progenitors (BMMCs).  As expected, Itk is expressed in WT BMMCs and 

is absent from Itk-/- BMMCs (Fig. 3.2A).  We also found no detectable 

compensatory changes in Btk expression in Itk-/- BMMCs.  Importantly, and in 

contrast to the ex vivo data, Itk-/- BMMCs showed no consistent difference in the 

expression levels of FcεRI compared to WT BMMCs.  This enabled a functional 

comparison of cells with similar levels of surface FcεRI (Fig. 3.2B).  

To address whether the lack of Itk in mast cells affected degranulation, 

BMMCs were first sensitized with anti-DNP IgE then incubated with varying 

amounts of DNP-HSA to crosslink the receptor.  Degranulation, as assessed by  
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Figure 3.2 
 

 



117

Figure 3.2 Degranulation responses of WT and Itk-/- BMMCs are similar 

(A) Itk protein in WT and Itk-/- BMMC lysates was assessed by immunoblotting 

with anti-Itk antibody.  The membrane was reprobed with anti-Btk and anti-PLC-

γ2 antibodies.  

(B) WT (solid line) or Itk-/- (dotted line) BMMCs were blocked with 2.4G2 for 5-10 

min, then stained with anti- FcεRI or control IgG (thick grey line) for 20 min, and 

analyzed by flow cytometry.   

(C) BMMCs were sensitized with IgE (SPE-7) for 4 hrs, followed by incubation 

with the indicated doses of DNP-HSA.  After 30 min, β-hexosaminidase release 

was assessed (WT, solid line; Itk-/-, dotted line).  Data shown are representative 

of 4 independent experiments. 

(D) Assay was performed as in (C) but with H1-DNP-α-26 IgE for sensitization.  

Data shown are representative of 2 independent experiments. 
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β-hexosaminidase release, was similar between WT and Itk-/- mast cells (Fig. 

3.2C).  However, we consistently observed slightly higher ‘background’ 

degranulation (no antigen) in Itk-/- BMMCs compared to WT BMMCs.  We 

interpreted this as an indication that Itk-/- mast cells were hypersensitive to the 

low amount of signal generated by the binding of the SPE-7 clone (anti-DNP IgE 

antibody) to the FcεRI.  A review of the literature confirmed our suspicions, as 

this IgE clone has been suggested to induce some receptor signaling even in the 

absence of antigen-mediated crosslinking (154, 155, 273).  Accordingly, when 

these experiments were repeated using the anti-DNP IgE clone H1-DNP-α-26 the 

augmented ‘background’ degranulation disappeared (Fig. 3.2D) (156, 274).  

Therefore, maximal FcεRI-mediated degranulation is similar in magnitude and 

dose response to antigen in Itk-/- and WT BMMCs.  However, Itk-/- mast cells 

have a heightened sensitivity to IgE binding alone following SPE-7 incubation. 

 

Increased cytokine production by Itk-/- BMMCs upon FcεRI stimulation 

 

 In T cells, a deficiency in Itk leads to impaired production of cytokines 

following TCR stimulation.  With this in mind, we assessed the ability of Itk-/- mast 

cells to produce cytokines upon FcεRI stimulation.  To our surprise, we 

consistently found that the secretion of cytokines (IL-4, IL-6, and IL-13) by Itk-/- 

BMMCs was higher than that produced by WT BMMCss (Fig. 3.3A).  

Furthermore, incubation  of  BMMC with IgE (SPE-7), in  the absence  of antigen,  
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Figure 3.3 
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Figure 3.3 Increased cytokine production by Itk-/- BMMC upon FcεRI 

stimulation 

(A) WT (black bars) or Itk-/- (white bars) BMMC were incubated alone (none), or 

with 1 µg/mL IgE for 4 hrs with (IgE+Ag) or without (IgE) 30 ng/mL DNP-HSA 

(Ag) for 20 hrs.  Supernatants were analyzed for cytokines by ELISA; limits of 

detection:  IL-4, 0.002 ng/mL; IL-6, 0.008 ng/mL; IL-13, 0.02 ng/mL.  Data shown 

are representative of 4 independent experiments. 

(B) WT (black bars) or Itk-/- (white bars) BMMC were incubated as in (A), but cells 

were harvested 4 hrs after addition of Ag.  Amounts of cytokine mRNA were 

determined by quantitative RT-PCR, and are expressed as arbitrary units (A.U.) 

relative to β2-microglobulin mRNA.  Data shown are representative of 2 

independent experiments. 
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stimulated higher levels of cytokine production from Itk-/- mast cells compared to 

WT mast cells.  This observation correlated with the degranulation response.   

 Cytokines secreted from mast cells can be stored as preformed mediators 

or be newly synthesized in response to signal transduction.  The release of 

cytokines in both situations can be mediated through FcεRI stimulation.  To 

distinguish between the two events, we assessed the levels of cytokine mRNA in 

WT and Itk-/- mast cells by quantitative real-time PCR.  As shown in Figure 3.3B, 

the pattern of cytokine transcript levels mirrored the pattern of cytokine secretion.  

Itk-/- BMMCs consistently transcribed more mRNA for IL-4, IL-6, and IL-13 than 

WT BMMCs in response to FcεRI stimulation.  Thus, the augmented cytokine 

secretion observed in the absence of Itk is due to increases in the de novo 

synthesis of these cytokines.  These data also rule out the possibility that the 

increased cytokine production by Itk-/- BMMCs is an indirect effect of protease-

mediated cytokine degradation.  These results indicated the existence of a 

signaling defect in Itk-/- mast cells.  

 

Enhanced FcεRI-induced signaling in Itk-/- BMMCs    

 

 A major function of Itk in T cells is to phosphorylate and activate PLCγ1.  

Consequently, in Itk-/- T cells, phosphorylation of PLCγ1 following TCR 

stimulation is reduced.  To determine whether PLCγ phosphorylation is affected 

by the loss of Itk in mast cells, BMMCs were stimulated by FcεRI crosslinking 

and lysates were immunoblotted with phospho-specific antibodies against PLCγ1  
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Figure 3.4 
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Figure 3.4 Enhanced FcεRI-induced activation of signaling pathways in Itk-/- 

BMMCs 

(A) BMMCs were sensitized with 0.5 µg/mL IgE and incubated with 100 ng/mL 

DNP-HSA for the indicated times.  Lysates were immunoblotted with anti-

phospho-PLC-γ1 (upper left), anti-phospho-PLC-γ2 (lower left), anti-phospho-

ERK1/2 (upper right), or anti-phospho-IκBα (lower right).  Membranes were then 

stripped and reprobed with antibodies to detect total protein levels. Numbers 

under left panels represent densitometric values of phospho-PLC-γ bands 

normalized to total PLC-γ (loading), relative to the value for WT cells at the 0 time 

point.  Data shown are representative of 3 independent experiments. 

(B) WT (solid line) or Itk-/- (dotted line) BMMCs were sensitized with IgE and 

loaded with Fluo-3 and Fura Red.  DNP-HSA (100 ng/mL), at 30 sec, and 

ionomycin (2 mM), at 8 min, were added and fluorescence was assessed by flow 

cytometry.  Data shown are representative of 4 independent experiments.   

(C) WT (black bars) or Itk-/- (white bars) BMMCs were incubated for 4 hrs with 0.5 

µg/mL IgE and stimulated for 0 or 15 min with 100 ng/mL DNP-HSA.  Nuclear 

extracts were isolated and subjected to NFATc1 ELISA assay.  Data shown are 

representative of 3 independent experiments. 

(D) WT or Itk-/- BMMCs were sensitized with 1 µg/mL IgE for 4 hrs and stimulated 

for 4 hrs with DNP-HSA.  Lysates were probed for phospho-Erk1/2 or PI3-kinase 

p85 as a control (left panel), or phospho-PLCγ2, phospho-p38, phospho-Lyn/Fyn, 

and GAPDH as a control (right panel).  Data shown are representative of 2 

independent experiments. 
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(E) WT or Itk-/- BMMCs were stimulated as described above for the indicated 

time. Lysates were probed for phospho-PLCγ2, phospho-Erk1/2 and GAPDH as 

a control.  Data shown are representative of 2 independent experiments. 
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and PLCγ2 (Fig. 3.4A).  Although in some experiments Itk-/- mast cells showed a 

slight enhancement in PLCγ1 phosphorylation compared to WT mast cells, this 

effect was not consistently observed.  In contrast, PLCγ2 phosphorylation was 

reproducibly increased in Itk-/- versus WT BMMCs following stimulation.   

Since Ca2+ mobilization is a response that occurs downstream of PLCγ–

induced IP3 generation, we assessed whether intracellular Ca2+ levels were 

affected by the increased PLCγ2 phosphorylation observed in Itk-/- BMMCs.  As 

shown in Fig. 3.4B, Itk-/- BMMCs exhibit an elevated rise in intracellular Ca2+ 

following FcεRI stimulation compared to WT BMMCs.  This increased Ca2+ 

response led to enhanced activation of NFAT in stimulated Itk-/- BMMCs, 

indicating that the observed increases in PLCγ phosphorylation and Ca2+ 

mobilization lead to functionally significant changes in transcription factor activity 

(Fig. 3.4C).  The effects on downstream signaling pathways at these time points 

were selective, however.  The activation of ERK and NF-κB pathways was not 

detectably altered in Itk-/- versus WT BMMCs at periods up to 15 minutes 

following activation (Fig. 3.4A).   

To reconcile the apparently modest effects on signaling pathways with the 

more robust effects on cytokine production in Itk-/- BMMC, we considered 

whether alterations in signaling might occur at time points later than those initially 

assessed.  Therefore, we stimulated WT and Itk-/- BMMC for 4 hours and then 

prepared lysates for biochemical analysis.  These experiments showed that Itk-/- 

BMMCs   sustain   elevated   levels  of  PLCγ2  phosphorylation,  Lyn/Fyn 
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phosphorylation, and phosphorylation of ERK1/2 compared to WT BMMCs for 

several hours following activation (Fig. 3.4D-E).   

 

Itk binding to SHIP-1 is mediated by the Itk SH2 and SH3 domains 

 

Given the aberrant regulation of cytokine production and the presence of a 

signaling defect in Itk-/- mast cells, we postulated that Itk could participate in an 

inhibitory pathway.  To identify a mechanism for the inhibitory role of Itk on mast 

cell signaling, we considered the SHIP (SH2-containing inositol phosphatase) 

family of regulators.  SHIP-1 and SHIP-2 have been implicated in the negative 

regulation of various signaling pathways, including FcεRI signaling in mast 

cells(117, 275-278).  Further, mast cells lacking SHIP-1 produce elevated levels 

of cytokines following activation(157, 279, 280).  These data, together with 

previous studies documenting an interaction between SHIP-1 and the Tec family 

kinase, Tec, led us to investigate a potential interaction with Itk and subsequent 

regulation of the SHIP pathway (126, 158).  To test this, we first co-expressed Itk 

and SHIP-1 in 293T cells.  When SHIP-1 was immunoprecipitated from lysates of 

pervanadate-treated cells, we observed that Itk was co-precipitated (Fig. 3.5A).  

To identify the Itk protein domains involved in this interaction, pull-down 

experiments were performed using lysates of RBL-2H3 mast cells and GST-

fusion proteins containing individual Itk domains.  These experiments 

demonstrated that the SHIP-1 present in the RBL-2H3 cells bound to both the Itk 

SH2  and  SH3  domains.   However,  binding  to  the  Itk  SH2  domain  was only  
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Figure 3.5 
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Figure 3.5 Itk binds to and can phosphorylate SHIP-1 

(A) 293T cells were transfected with expression vectors encoding GFP, Itk, 

SHIP-1, or both Itk and SHIP-1.  After 24 hrs cells were left untreated or were 

stimulated with pervanadate as indicated.  SHIP-1 was immunoprecipitated and 

filters were probed with antibodies to Itk.  Lane at far right indicates Itk levels in 

the whole cell lysate. 

(B) RBL-2H3 mast cells were left untreated, or were sensitized with 1 µg/mL IgE 

for 4 hrs and then stimulated with 100 ng/mL DNP-HSA for the indicated times.  

Lysates were incubated with beads containing GST-fusion proteins of the Itk SH2 

domain (SH2), the Itk SH3 domain (SH3), the mutated Itk SH2+SH3 domains 

(SH23*), or GST alone (GST).  Bound SHIP-1 was detected by immunoblotting 

with anti-SHIP-1 antibodies.  Data shown are representative of 3 independent 

experiments. 

(C) WT BMMCs were left untreated, stimulated with IgE alone, stimulated with 20 

ng/mL SCF for 4 hrs, or sensitized with 1 µg/mL IgE (4 hrs) and stimulated with 

100 ng/mL DNP-HSA (IgE+Ag) for the indicated time points.  Lysates were 

incubated with the Itk GST-SH2 domain fusion protein, and bound SHIP-1 was 

detected with anti-SHIP-1 antibodies.  Where indicated, the Itk GST-SH2 fusion 

protein was pre-incubated with 3 mM of a competitive phospho-peptide (AC-

ADpYEPP-NH2) prior to incubation with cell lysates.  

(D) Sf9 insect cells were infected with baculoviruses expressing WT Itk (Itk WT) 

or a kinase-inactive Itk mutant (Itk K390R) together with viruses expressing Dok-

1 (left panel), Dok-2 (middle panel) or SHIP-1 (right panel).  Sf9 cells were 
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harvested after 3 days. Cell lysates were probed with anti-phosphotyrosine 

antibody (top panels) or antibodies to Itk, Dok-1, Dok-2, or SHIP-1 (bottom 

panels). 
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detected when the RBL cells were activated prior to lysis (Fig. 3.5B).  Single 

amino acid substitutions in the ligand-binding pockets of the Itk SH2 and SH3 

domains (SH23*) prevented binding to SHIP-1 (Fig. 3.5B).  In addition, binding of 

SHIP-1 to the Itk SH2 domain was blocked by prior incubation of the SH2 domain 

with a phospho-peptide ligand, AC-ADpYEPP-NH2 (Fig. 3.5C).  This peptide 

binds to the canonical phospho-tyrosine binding pocket of the Itk SH2 domain 

(158, 281).   

SHIP-1 binds to LAT and recruits ‘downstream of kinase’ molecules, Dok-

1 and Dok-2, to form an inhibitory complex in T cells (159, 282).  We 

hypothesized that Itk could potentially directly phosphorylate SHIP-1, Dok-1, or 

Dok-2, thereby contributing to the activity of this complex.  For these 

experiments, Itk was co-expressed with SHIP-1, Dok-1, or Dok-2 in insect cells 

using baculovirus constructs.  As a negative control, each potential substrate was 

also co-expressed with a kinase-inactive form of Itk.  As shown in Figure 3.5D, 

wild type Itk, but not kinase-inactive Itk, was able to phosphorylate SHIP-1, Dok-

1, and Dok-2.   

 

Itk co-localizes with the SHIP-1 complex after mast cell activation 

 

To examine whether Itk subcellular localization is regulated by mast cell 

activation, we performed confocal microscopy on wild type BMMCs.  In 

unstimulated BMMCs, Itk is diffusely distributed in the cytosol, whereas LAT is 

membrane-localized, as expected (Fig 3.6A,C).  Following activation by FcεRI  
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Figure 3.6 

 



132

Figure 3.6 Itk co-localizes with components of the SHIP-1 complex 

following FcεRI stimulation 

WT BMMCs were left untreated (A,C) or stimulated with IgE/DNP-HSA for 5 min 

(B, D, E-V).  Cells were fixed, permeabilized and stained with primary antibodies 

against Itk, LAT, SHIP-1, Dok-1, Dok-2, Shc, and Grb2 as indicated. Coverslips 

were incubated with secondary antibodies AlexaFluor 488 and AlexaFluor 568 

and analyzed by confocal microscopy. Right panel represent superimposed 

images (D,G,J,M,P,S,V).  Yellow color of overlay indicates co-localization of 

proteins. Data are representative of at least 2 independent experiments with at 

least 10 cells analyzed per antibody stain. 
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stimulation for 5 min, Itk is recruited to the cell membrane where it co-localizes 

with a substantial proportion of LAT molecules (Fig. 3.6B,D).  Furthermore, we 

observed Itk co-localization with components of the previously described 

inhibitory complex that includes SHIP-1, Dok-1, and Dok-2 (Figure 3.6E-M).  In 

addition, Grb2 and Shc were found to co-localize with SHIP-1 in activated 

BMMCs (Fig. 3.6N-S), supporting interactions between these proteins, as has 

been previously reported (159, 282, 283).  In contrast, a cytoplasmic kinase that 

is not involved in FcεRI signaling, Jak3, does not co-localize with Itk after mast 

cell activation (Fig 3.6T-V).  These results indicate that Itk is part of an inhibitory 

complex in mast cells stimulated through the FcεRI. 

 

Discussion 

 

In contrast to T and B lymphocytes, mast cells express high levels of Itk 

and Btk as well as low levels of Rlk and Tec.  It is well established that Itk 

deficiency in T cells drastically impairs TCR signaling, which is consistent with a 

positive regulatory function.  In this report, we describe a novel function for Itk as 

a negative regulator in mast cell activation.  This conclusion is based on the initial 

observation that Itk-deficient mast cells produce higher amounts of IL-4, IL-6, and 

IL-13 than WT mast cells following FcεRI stimulation.  We demonstrate that the 

elevated cytokine levels are due to aberrant de novo synthesis of cytokine 

transcript, an indication of a genuine signaling defect.  Consistent with these 
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findings, our biochemical studies indicate that PLCγ, ERK1/2, and LAT 

phosphorylation are elevated in activated mast cells lacking Itk.  This enhanced 

signaling, in turn, leads to enhanced Ca2+ mobilization and increased NFATc1 

activation.   

Interestingly, the most striking differences in phosphorylation of signaling 

proteins between WT and Itk-/- mast cells occur hours after FcεRI stimulation, 

rather than minutes.  These data support a role for Itk in a late-acting negative 

feedback pathway that dampens FcεRI-mediated activation.  Moreover, Itk-/- 

BMMCs share several striking similarities with BMMCs lacking the inositol 

phosphatase, SHIP-1.  For example, both SHIP-1-/- and Itk-/- BMMCs show an 

enhanced Ca2+ flux in response to FcεRI crosslinking.  Even more interesting, 

both types of cells respond to stimulation with anti-DNP IgE (SPE-7) in the 

absence of antigen (160, 161, 279).  These findings suggest that Itk may function 

in a SHIP-1-dependent inhibitory pathway downstream of the FcεRI.  

SHIP-1 signaling is mediated by the recruitment of adapter proteins, Dok-1 

and Dok-2 (162, 284).  Dok proteins have been identified as leukemia 

suppressors, and are substrates of the oncogene p210bcr-abl.  These adaptor 

proteins suppress activation signals by inhibiting the Ras-Erk pathway (160, 

285).  Similar to Itk-/- and SHIP-1-/- BMMCs, mast cells that lack Dok-1 also 

produce elevated levels of cytokine when stimulated with IgE alone (163, 164, 

286).  In addition, Dok-1 over-expression leads to reduced phosphorylation of 

Erk-1/2, as well as reduced TNFα production in RBL-2H3 cells stimulated by 

FcεRI crosslinking (165, 284). 
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These striking similarities between mast cells lacking Itk, SHIP-1, and 

Dok-1 suggest that Itk may function in this inhibitory signaling pathway.  

Supporting this, we find that Itk is recruited to the cell membrane following FcεRI 

stimulation, where it co-localizes with SHIP-1, Grb2, Dok-1, and Dok-2.  Our 

biochemical studies suggest that, once recruited to the cell membrane, Itk 

associates with SHIP-1 via the Itk SH2 and SH3 domains.  In T cells, the SHIP-1 

complex is formed with the adaptor protein LAT.  Therefore, a similar mechanism 

may exist in mast cells, as we detect substantial co-localization of Itk and LAT 

upon FcεRI engagement.  SHIP-1 has also been reported to bind to 

phosphorylated ITAMs of the FcεRI beta subunit, indicating an additional 

pathway for recruitment of SHIP-1 to the activated FcεRI (166, 287).   

Biochemical interactions between components of a SHIP-1 signaling 

complex have been described in several systems.  For instance, tyrosine 

phosphorylation of Dok-1 is associated with increased binding of Grb2 (167, 

286).  In addition, LAT and SHIP-1 are required for TCR-induced Dok-2 tyrosine 

phosphorylation in T cells, with SHIP-1 acting as an adapter protein coupling 

Dok-2 to LAT (168, 282).  Finally the Tec kinase, Tec, forms a tri-molecular 

complex with SHIP-1 and Lyn in cells stimulated through cKit, and in T cells the 

Tec SH3 domain interacts with SHIP-1 and SHIP-2 (126, 169, 288).  Taken 

together, these data support the hypothesis that SHIP-1 signaling complexes can 

contain a Tec family tyrosine kinase, in addition to Lyn, Dok-1, Dok-2, and other 

adapter proteins. 
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The function of Itk following its interaction with SHIP-1 in activated mast 

cells remains to be determined.  At the FcεRI, SHIP-1 is activated by the Lyn 

kinase, however it is currently unclear whether Lyn is directly or indirectly 

mediating this effect (170, 171, 289).  One possibility is that Itk acts as an 

intermediary between Lyn and SHIP-1 and may directly phosphorylate SHIP-1.  

Along these lines, Itk phosphorylation of SHIP-1 could provide additional docking 

sites for the SH2 domains of other signaling molecules recruited to the SHIP-1 

complex.  Alternatively, Itk may not phosphorylate SHIP-1 in intact mast cells, but 

instead may bind to SHIP-1 and thereby be brought into proximity with other 

potential substrates, such as Dok-1 or Dok-2.  Thus far, our preliminary 

experiments have not demonstrated reduced phosphorylation of SHIP-1, at least 

at Y1020, in mast cells lacking Itk.  This may indicate that SHIP-1 is not a 

substrate of Itk in mast cells or that Itk phosphorylates SHIP-1 at a different site. 

Our data has also demonstrated that mast cells isolated from the 

peritoneum of Itk-/- mice have high levels of surface IgE.  Consequently, cytokine 

production by Itk-/- PMCs in response to IgE crosslinking was dramatically 

increased compared to WT PMCs.  This reflected, at least in part, an elevated 

signal generated through the high numbers of FcεRI on the surface of these 

cells.  Importantly, IL-4 and IL-13 secretion by Itk-/- PMCs were undetectable in 

the absence of IgE crosslinking, indicating that these cells are not spontaneously 

secreting cytokine.  Based on these findings, we speculate that enhanced 

cytokine production by Itk-/- mast cells in vivo may contribute to the spontaneous 

TH2-biased phenotype of the Itk-/- mouse, as indicated by elevated levels of IgE in 
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the serum and germinal center hyperplasia (63, 161, 166, 172).  Studies using a 

variety of experimental systems have shown that, in vivo, mast cells can 

influence the responses of B cells, T cells, and dendritic cells.  Further, mast cell-

derived cytokines have been shown to induce TH2 cytokine production by CD4 T 

cells in vitro.  

 The studies described here reveal a regulatory role for Itk in mast cell 

signaling that is in direct contrast to its function in T cells.  Our findings are also 

confirmed by a report by Iyer, et al. showing enhanced production of cytokines by 

Itk-/- mast cells stimulated through the FcεRI (75, 244).  This study, however, was 

unable to detect any biochemical defect in FcεRI-mediated signaling from mast 

cells lacking Itk.  Taken together these data provide strong support for a negative 

regulatory role for Itk in mast cells.  As Itk inhibitors are being developed for 

therapeutic purposes in dampening T cell responses, particularly in the context of 

atopic diseases, these studies underline the importance of considering 

contributions from other cells that express Itk.   
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Materials and Methods 

 

Mice 

 

C57BL/10 (B10) and Itk-/- mice (159, 173-176) (backcrossed to B10 for 13 

generations) were housed and bred in the pathogen-free animal facility at 

University of Massachusetts Medical School.  All mice were used in accordance 

with the Institutional Animal Care and Use Committee. 

 

Mast cells 

 

BMMCs were generated by culturing total bone marrow isolated from B10 or Itk-/- 

mice in RPMI-1640 supplemented with 10% FCS, 10% WEHI-3 conditioned 

supernatant, 100 U/mL penicillin, 100 ug/mL streptomycin, 100 mM L-glutamine, 

100 µM non-essential amino acids, 50 µM 2-ME, 10 µM HEPES buffer and 5-20 

ng/mL mouse rIL-3 (R&D Systems).  BMMCs were cultured at 1x106 cells/mL for 

4 weeks before maturation was determined by staining with anti-FcεRI FITC 

(eBioscience) and anti-c-Kit PE (BD Biosciences).  Flow cytometry was 

performed on a FACS Calibur or LSRII (both from BD Biosciences) and data was 

analyzed by FlowJo software (Tree Star).  BMMCs that were >95% FcεRI+ c-Kit+ 

were used for biochemical assays between 4-6 weeks in culture.  Additionally, 

primary mast cells from peritoneal exudate were isolated with anti-c-kit magnetic 

beads on an AutoMACS (Miltenyi Biotec) and analyzed as indicated.  The RBL-
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2H3 cell line were purchased from ATCC and cultured according to the supplier’s 

recommendations. 

 

Cell transfection 

 

293T cells were transfected with indicated plasmids using Lipofectamine 

Reagent (Invitrogen) according to the manufacturer’s instructions.  

 

Cytokine measurements 

 

Peritoneal mast cells were stimulated with plate-bound anti-IgE (Southern 

Biotechnology) for 20 hrs.  BMMCs were sensitized with anti-DNP IgE, either 

SPE-7 (Sigma) or H1-DNP-α-26 (purified H1-DNP-α-26 was a generous gift from 

Dr. Juan Rivera, the hybridoma cell line was kindly provided by Dr. F. T. Liu), in 

IL-3-free media for 4-6 hrs.  Cells were washed twice and incubated with DNP-

HSA (Sigma) for 20 hrs.  Cytokine release was detected by ELISA (IL-4, IL-6: BD 

Biosciences; IL-13: R&D Biosystems) or by Cytometric Bead Array (BD 

Pharmingen).  Cytometric bead array sample data were analyzed on an LSRII 

using the BD CBA Analysis Software 1 (BD Pharmingen).  

 

To assess cytokine mRNA, BMMCs were stimulated as described for cytokine 

release, but incubated with DNP-HSA for 4 hrs.  RNA isolation (Qiagen) and 

cDNA synthesis (Invitrogen) were performed according to manufacturer’s 
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instructions.  Primer sequences for RT-PCR were obtained from PrimerBank 

(http://pga.mgh.harvard.edu/primerbank/).  The following primer pairs (IDT), 

designated by PrimerBank ID, were used: IL-4: 10946584a1, IL-6: 13624311a1, 

IL-13: 6680403a2, β2 -microglobulin: 31981890a1.  Quantitative real-time-PCR 

was performed using conditions as indicated by PrimerBank, with FastStart 

SYBR Green Master (Roche) on an iCycler (Bio-Rad). 

 

Degranulation 

 

β-hexosaminidase release was performed essentially as described previously 

(177, 229).  Briefly, BMMCs were sensitized with 1 µg/mL IgE for 4-6 hrs then 

incubated with indicated doses of DNP-HSA for 30 min.  Supernatants and cell 

lysates were incubated with 1 mM p-NAG (Sigma) for 1 hr.  Na2CO3/NaHCO3 

buffer (0.1 M) was added and absorbance read at 405nm.  Percent degranulation 

was calculated as O.D. values of sup/(sup+pellet) X 100. 

 

Immunoblotting 

 

BMMCs were sensitized with 0.5-1 µg/mL IgE for 4-6 hrs in IL-3-free media, 

incubated with 100 ng/mL DNP-HSA as indicated, and lysed.  Proteins were 

resolved by SDS-PAGE, transferred to nitrocellulose (Schleicher & Schuell), and 

blotted with antibodies against Itk (178, 290), Btk, PLC-γ2, IκBα (Santa Cruz 

Biotechnology), p-PLC-γ1 (BioSource), PLC-γ1 (Upstate Biotech), p-PLC-γ2, p-
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ERK1/2, ERK1/2, p-IκBα, p-Src, p-p38, GAPDH, and PI3-kinase p85 (Cell 

Signaling Technology).  HRP-conjugated secondary antibodies (Sigma) and 

chemiluminescence reagents (Pierce) were used for detection.  Densitometric 

analysis was performed with NIH ImageJ software.   

 

Ca2+ flux 

 

BMMCs were sensitized with 1 µg/mL IgE for 4 hrs, washed, and incubated in 

RPMI-3% FBS containing 16 µM Fura Red and 16 µM Fluo-3 (Molecular Probes) 

for 45 min at 37˚C.  Cells washed in indicator-free media, resuspended in 

Tyrode’s-BSA, and further incubated for 30 min at room temperature.  Cells were 

analyzed by flow cytometry, with addition of DNP-HSA at 30 sec and ionomycin 

(Calbiochem) at 8 min.  Ca2+ mobilization was assessed as a ratio of Fluo-3/Fura 

Red fluorescence. 

 

NFAT assay 

 

NFATc1 ELISA (Active Motif) was performed according to manufacturer’s 

instructions.   

 

Confocal Microscopy 
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BMMCs from B10 WT or Itk-/- mice were seeded on Fibronectin (Sigma-Aldrich, 

1:50) coated coverslips, fixed in 2% paraformaldehyde, and permeabilized with 

0.025% saponin.  Cells were stained with primary antibodies against Itk (179-

181, 290), Shc, Dok-1, Dok-2, Grb-2, LAT, or JAK3  (Santa Cruz Biotechnology) 

for 16 hours at 4°C.  For co-staining, cells were incubated sequentially with two 

primary antibodies.  Cells were washed twice for 5 min and incubated with 

secondary antibodies (rabbit anti-mouse AlexaFluor 488, donkey anti-goat 

AlexaFluor 568) for 1 hr at 4°C.  Coverslips were mounted on microscope slides 

in 20 µL ProLong antifade mounting medium (Molecular Probes) and examined 

by confocal microscopy using a Leica SP1 laser scanning confocal microscope 

(Leica Microsystems).  

 

GST-pulldown 

 

GST fusion proteins were prepared as described previously (136, 182, 291).  The 

Itk GST-SH23* construct contains the tandem Itk SH2 and SH3 domains, each of 

which carries a single amino acid substitution that abolishes ligand binding to the 

canonical binding pockets (124, 183, 291).  Lysates from untreated or stimulated 

cells were incubated with the washed GST fusion matrices.  For the competition 

assay, an Itk SH2 domain specific phosphopeptide (AC-ADpYEPP-NH2) was 

pre-incubated for 30 min with the matrix prior to the pulldown (63, 184, 281).  For 

Western blots, membranes were probed with antibodies to SHIP-1 (P1C1, Santa 

Cruz Biotechnology). 
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Co-immunoprecipitation 

 

Transfected 293T cells were left untreated or were treated for 15 min with 

pervanadate (0.4 mM Na3Vo4, 0.04% H2O2) just prior to harvesting at 24 hrs 

post-transfection.  Immunoprecipitations were performed for 18 hrs with 2 µg 

anti-SHIP-1 antibody (clone P1C1, Santa Cruz Biotechnology) followed by 

Protein Agarose A+G (Santa Cruz Biotechnology) beads for 1 hr. 

Immunoprecipitates were washed in lysis buffer, boiled in sample buffer, and 

separated by 7.5% SDS polyacrylamide gel electrophoresis.  For Western blots, 

proteins were transferred onto nitrocellulose membrane and probed with anti-Itk 

antibodies (185-187, 290).  

 

Baculoviral expression 

 

Sf9 insect cells were obtained from ATCC.  Baculoviral stocks were generated 

using the Bac-to-Bac system (Invitrogen).  Sf9 cells were infected with viruses 

encoding wild-type Itk or the kinase-inactive Itk (K390R).  These cells were then 

co-infected with viruses expressing Dok-1, Dok-2, or SHIP-1 and incubated 72-

96 hrs prior to harvesting.  Membranes were incubated with antibodies against p-

Tyr (4G10 Platinum, Upstate Biotechnology), Dok-1 (Santa Cruz Biotechnology), 

Dok-2 (Santa Cruz Biotechnology), or Itk (188, 189, 290). 

  



 
 

 
 
 
 
 
 
 

Chapter 4: Discussion 
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Synopsis 

 

The theory of signal transduction describes a series of sequential steps in 

which an extracellular ligand induces chemical changes inside a cell.  This 

multistage process is initiated by ligation of a receptor embedded within a cell 

membrane and is potentiated, in part, by intracellular signaling kinases.  Itk is a 

non-receptor tyrosine kinase that facilitates signal transduction downstream of 

several multi-chain immune recognition receptors.  Since its discovery in the 

early 1990’s, hundreds of scientific reports have elucidated the biochemical, 

cellular, and physiological nature of Itk.  Biochemically, we understand how Itk is 

regulated and have identified several binding partners.  We know the 

hematopoietic expression of Itk and its primary function in signal transduction.  In 

a physiological sense, we are beginning to learn the role of Itk in several 

immunological processes.  Despite this plethora of information, there is still much 

that remains unknown about Itk.  This dissertation explores the behavior of Itk in 

the signal transduction of two cell types: T cells and mast cells.   

Chapter II expands upon the body of work that describes Itk as a positive 

regulator of T cell activation.  The data demonstrates that two types of signals, 

digital and analog, emanate from the TCR upon stimulation.  Digital signals are 

readily observed when T cells are stimulated with very potent TCR ligands, a 

concept that is easily found in the literature.  Less is known about the analog 

signals that a T cell generates.  When T cells see antigens that are less potent 

but able to overcome tonic signaling, an analog T cell response is revealed.  
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Altering the activity of signaling mediators such as Itk and NFAT can modulate 

the signals generated when a T cell encounters a strong ligand.  The significance 

of characterizing these two signals is underscored by the expression pattern of 

IRF4 and Eomes, two transcription factors important for the activation of CD8 T 

cells.  As such, we propose that Itk is responsible for the graded response of T 

cell activation.   

In contrast to the positive regulatory role that Itk plays in T cells, the role of 

Itk in mast cells is less understood.  The data in chapter III describes a unique 

function for Itk as a negative regulator of mast cell activation.  Mast cells lacking 

Itk, synthesize elevated levels of cytokines when stimulated through the FcεR1 

compared to their wild-type counterparts.  This hyperactivation of Itk-deficient 

mast cells correlates with enhanced and sustained signaling downstream of the 

FcεR1.  Interestingly, SHIP-1 is identified as a novel binding partner for Itk.  In 

this regard, we postulate that Itk participates in an inhibitory pathway that is 

responsible for dampening the de novo synthesis of cytokines. 

The two data chapters contain an individual discussion section that 

considers the direct implications of the data presented with respect to signal 

transduction.  This chapter attempts to expand upon those implications and 

further speculates about the physiological role that Itk has in both T cells and 

mast cells.  This chapter is divided into two sections, each dealing with the 

signaling characteristics and physiological aspects of Itk in T cells and mast cells.  
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T cells 

 

As described earlier, Itk has been shown to regulate TCR-mediated 

signals through the phosphorylation of PLCγ1 (151-153, 189).  In turn, the 

second messengers IP3 and DAG invoke conserved signaling pathways required 

for gene expression and optimal cellular activation.  Precluding Itk function, either 

through genetic manipulation or pharmacological inhibition, severely disrupts the 

linkage between membrane proximal signaling events and major downstream 

pathways (159, 188).  Intriguingly though, TCR signal transduction is not 

completely ablated in the absence of Itk.  PLCγ1 still gets phosphorylated and 

gene transcription remains partially intact, albeit at a fraction of wild-type levels.  

Several questions immediately arise.  Why, then, is Itk needed at all?  In what 

manner does Itk modulate TCR signaling?  Does Itk favor one major pathway 

over another?  What transcriptional targets does Itk regulate?  What other factors 

are implicated in this regulatory process?  And finally, what are the cellular fates 

that Itk determines?   

The data contained in chapter II directly addresses several of these 

questions.  For example, one of the primary roles that Itk has is the modulation of 

TCR signal strength.  It does so by converting digital signals, presumably derived 

from Src and Syk family kinases, into analog responses.  A model that depicts 

the function of Itk in this capacity is described at the end of chapter II, Figure 2.7.  

Rather than reiterate the digital and analog manner in which Itk behaves 

downstream of the TCR, a more speculative examination of Itk in TCR signaling 



148

and T cell responses will be discussed.  In accordance with this, two more 

models are proposed that illustrate the interrelated aspects that Itk plays in: 

1. TCR signal transduction. 

2. The physiological response of T cells. 

 

1. TCR signaling pathways 

 

 As mentioned previously, IRF4 expression is sensitive to the effects of Itk 

activity.  Currently, it is not clear how IRF4 expression is regulated in CD8 T 

cells.  Although we have implicated an NFAT-mediated pathway in graded IRF4 

expression, it’s uncertain as to whether other signaling pathways could be 

responsible for transducing analog signals.  It is currently accepted that the NF-

κB pathway transduces digital signals from the TCR to induce gene expression of 

targets like TNF and CD44 (190, 265, 292).  The MAPK pathway possesses 

features of analog and digital activation but it is believed that the analog 

components of this pathway exist to switch the signal to a digital one (191, 249).  

By and large the contention in the field is that the MAPK pathway, notably Erk1/2, 

are partially responsible for digital activation of T cells (192, 193, 263, 293, 294).   

An intriguing proposition then remains that the Ca2+ pathway could display 

analog characteristics.  One of the more profound defects associated with Itk 

deficiency lies in its relationship with Ca2+ mobilization and NFAT activity (159, 

194).  Specifically, Itk-deficient T cells stimulated through the TCR display an 

intermediate level of Ca2+ mobilization compared to wild-type T cells and 
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unstimulated T cells.  This suggests the existence of an implicit sensitivity of this 

pathway to Itk activity, and by extension to TCR signal strength.  Hence, it came 

as no surprise to us that the NFAT inhibitor experiments essentially phenocopied 

the Itk inhibitor experiments in chapter II.  These initial experiments conducted in 

chapter II have revealed that limiting the activity of NFAT by titration of the 

inhibitor yields graded IRF4 expression when CD8 T cells are stimulated with 

various peptides.  This suggests that an NFAT-mediated pathway is capable of 

transmitting an analog signal from the TCR to the nucleus where induction of 

genes like Irf4 will occur.  At this time we are unsure whether graded Ca2+ 

mobilization is involved in our system.  James Conley, in our lab, has planned 

two types of complementary experiments to address this issue.  The first 

experiment involves the titration of the calcium ionophore ionomycin.  Here, CD8 

T cells will be stimulated with or without APLs in the presence of decreasing 

amounts of ionomycin.  If Ca2+ mobilization can transduce analog signals then 

cells stimulated without additional TCR signals (ionomycin alone) should display 

graded IRF4 expression.  Alternatively, if we see bimodal IRF4 expression it 

would suggest that other signals are required to cooperate with the Ca2+ pathway 

to generate intermediate levels of IRF4.  These other signals would likely be 

resolved in the presence of TCR stimulation.  A second type of experiment will 

use a calcium chelator, EGTA, to limit the availability of free calcium in the 

media.  This will effectively change the extracellular calcium concentration and 

the amount of store operated calcium entry (SOCE) in stimulated cells can be 

controlled.  This approach brings the added advantage of not bypassing 
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components of the TCR signaling cascade.  Calcium chelation using increasing 

amounts of EGTA is expected to result in the graded expression of IRF4 when 

CD8 T cells are stimulated through the TCR.  If neither of these experiments 

reveals an analog response, then another possibility is that NFAT activity can be 

induced in a Ca2+-independent manner.  Ca2+-independent NFAT activation has 

been demonstrated in cardiomyocytes in response to leptin-mediated signaling 

(75, 295).  Therefore it remains a possibility that CD8 T cells use similar signaling 

machinery to induce Ca2+-independent NFAT activation.   

Our data do not distinguish between the possibilities of direct or indirect 

regulation of IRF4 by NFAT.  Preliminary analysis of the IRF4 proximal promoter 

has identified several putative binding sites for the transcription factor NFAT.  

Future chromatin immunoprecipitation experiments have been planned to 

investigate the direct regulation of IRF4 by NFAT.  However, given what is known 

about the regulation of IRF4 expression in other cell types, it is unlikely that 

NFAT participates in this process alone.  In B cells for example, IRF4 expression 

is induced by a combination of BCR stimulation and IL-4 signaling, which in turn 

activate the transcription factors NF-κB and STAT6, respectively (194, 296, 297).  

This is thought to lead to the graded expression of IRF4 in B cells (63, 298).  

Indeed, our analysis also identified STAT6 binding sites in the promoter as a 

potential candidate in the regulation of IRF4.  However, both published and 

unpublished data from our lab indicates that when CD8 T cells are stimulated 

through the TCR in the presence of IL-4, IRF4 expression levels do not change 

(177, 259).  It remains to be seen whether other cytokine signaling pathways can 
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synergize with TCR signaling to induce IRF4.  It is a possibility that multiple 

pathways downstream of the TCR cooperate for full IRF4 expression.  One report 

has suggested that the NF-κB pathway can induce transcriptional changes of Irf4 

in lymphocytes (195, 297).  The potential for NF-κB to cooperate with NFAT is 

not novel, as they have both been linked to IL-2 transcription (196-200, 299).  

Future experiments in our lab will explore the cooperativity of multiple TCR-

induced signaling pathways in the regulation of digital and analog responses.  

Nonetheless, we propose a model, illustrated in Figure 4.1, for T cell signaling 

that incorporates currently published theories described above with our own data.  

 

2. The physiological response of T cells 

 

One other aspect of our results on TCR signal strength deserves attention.  

Our experiments fail to directly test the immunological influence that TCR signal 

strength may pose.  However, the literature is replete with examples of 

physiological processes using the exact cells and epitopes we have used.  All of 

these processes are regulated by currently unexplained mechanisms; we feel 

that our data provides such a mechanism.  Two specific examples will be 

discussed with respect to our data. 

In a report published in Nature, Zehn and colleagues utilize an infection 

model that changes epitopes specific for CD8 T cells in order to study the 

immune response to Listeria monocytogenes (201-203, 247).  Although all T cells 

respond
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Figure 4.1 

 
 
 
 
Figure 4.1 Model for T cell receptor signaling 

TCR ligation (an analog input) leads to the recruitment and activation of PTKs at 

the plasma membrane.  Digital conversion of the signal occurs by PTKs like Lck 

and ZAP-70.  DAG-mediated pathways display digital activation and induce 

digital responses (88, 195, 204, 249).  Concurrently, Itk can modulate the digital 

signal, which is dependent on the strength of the initial input, like a rheostat, 

thereby generating an analog signal.  The analog signal then emanates through 

NFAT producing the graded expression of target genes. 
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to the initial challenge, they do so with dissimilar kinetics and magnitude.  The 

initial rate of proliferation of CD8 T cells responding to high and low potency 

ligands is similar amongst the two cell populations.  However the expansion of 

cells primed in response to low potency epitopes peaks two days earlier, at day 

5.5, than those cells exposed to higher potency epitopes.  Moreover, cells 

exposed to low potency ligands leave the draining lymph nodes prematurely and 

undergo contraction much earlier than cells exposed to strong TCR ligands.  This 

implies that TCR signal strength is not important for the initial proliferative burst 

associated with CD8 T cell clonal expansion, but rather for the total amount of 

expansion, lymph node retention, and onset of contraction.  Data from our lab 

indicates that CD8 T cells stimulated with APLs undergo similar proliferation out 

to 4 days in culture.  This is consistent with what the authors observed in vivo.  

The findings in this report also demonstrate that the cells exposed to low potency 

ligands display a similar cell surface phenotype compared to those exposed to 

high potency ligands.  This is the exact result that we see in vitro.  The authors 

did not examine the transcription factor profile and therefore were unable to 

properly decipher the differentiation pathways that CD8 T cells undergo in 

response to a pathogen.  We suspect, though, that more IRF4 would be seen in 

cells stimulated in the presence of strong TCR ligands, whereas those cells 

stimulated with weak TCR ligands would display low levels of IRF4.  Here is 

where an interesting dichotomy occurs with our data.  In contrast to the 

phenotype associated with IRF4 expression levels, we see an inverse 

relationship with Eomesodermin (Eomes).  That is, weak signals from the TCR 
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induce more Eomes expression than strong signals.  Our lab has recently 

published data suggesting that IRF4 can negatively regulate the expression of 

Eomes in CD8 T cells (205, 259).  Given the importance of Eomes expression 

levels in determining the fate of CD8 T cell differentiation in response to infection, 

it is tempting to speculate that this might be regulated, in part, by IRF4.  Ribhu 

Nayar and Beth Schutten, in our lab, are currently performing experiments to 

address the role of IRF4 in the response of CD8 T cells to LCMV.  Thus far, 

these studies seem to indicate an important role for IRF4 in the generation of 

short-lived effector cells (SLEC), as mice infected with LCMV in the absence of 

IRF4 have about one third as many responding cells compared to wild-type.  

Taken together, we postulate that the strength of TCR stimulation received by a 

CD8 T cell has a direct influence on the outcome of differentiated T cells.  We 

further propose that this outcome is regulated by the analog signals, mediated by 

the activity of molecules such as Itk and NFAT, which originate from the TCR. 

In a second example recently published in Immunity, King and colleagues 

demonstrate the importance of TCR signal strength in mediating cell division of 

CD8 T cells (204, 246).  Cells receiving stimulation from highly potent ligands 

undergo asymmetric cell division.  These cells sustain long-lasting T cell - APC 

conjugates and undergo substantial proliferation.  Asymmetry is demarcated by 

CD8 expression, where proximal daughter cells receive the most amount of CD8, 

while distal daughter cells receive less CD8.  Interestingly the proximal daughter 

cells exhibit a phenotype resembling SLECs.  In contrast to cells stimulated with 

strong TCR signals, cells receiving stimulation from less potent ligands undergo 
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symmetric division, do not have as long a contact time with an APC, and don’t 

proliferate as much.  The proliferation results are somewhat at odds with Zehn 

and colleagues but this is likely due to variation in the design and time points 

used in the in vivo system.  In vitro, it is clear that cell division is influenced by 

TCR signal strength.  Furthermore, it has previously been shown that asymmetric 

division is a key determinant in the differentiation of CD8 T cells in vivo (101, 

205-207).  Here, progeny of CD8 T cells that have divided asymmetrically are 

differentially marked by Eomes and T-Bet segregation.  The authors in the 

current study fail to examine the transcription factor profile of daughter cells.  

Based on our data, however we would predict that cells receiving strong signal 

strength would express the least amount of Eomes and the most amount of IRF4.  

This is consistent with the idea that SLECs express less Eomes than their 

counterparts, memory precursor effector cells (MPECs).  

 In conjunction with our data, the two physiological examples described 

help us construct a more complete model for CD8 T cell differentiation.  This 

model is depicted in Figure 4.2.  We propose that cells receiving strong TCR 

signals will exhibit high levels of Itk activity, induce more IRF4, and promote the 

formation of SLECs.  On the other hand, cells that receive weak TCR signals 

exhibit lower levels of Itk activity, induce more Eomes, and promote the formation 

of MPECs.  
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Figure 4.2 
 
 

 
 

 
Figure 4.2 Physiological implications of altering TCR signal strength 

T cell stimulation with ligands that induce strong signals result in high Itk activity, 

which generates copious amounts of IRF4. IRF4 represses Eomes expression.  

The immunological outcome is prolonged T cell:APC interactions and retention in 

the LN, asymmetric division, and differentiation of short lived effector cells (208, 

300).  T cells stimulated with weaker ligands do not impose as much Itk activity 

and therefore do not express high levels of IRF4.  Low levels of IRF4 allow for 

high amounts of Eomes.  This results in short T cell:APC contacts and early exit 

from LNs.  Unpublished data from our lab suggests these cells become memory 

precursor effector cells. 
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Mast cells 

 

 In contrast to T cells, far less information is known about the role of Itk in 

mast cells.  Although Itk is activated and recruited to the membrane upon 

crosslinking of the FcεR1, substrates for Itk have not been identified inside mast 

cells.  A similar Tec family kinase, Btk, is also expressed in mast cells.  The role 

of Btk in mast cells has been extensively studied.  Btk-deficient mast cells have 

defects in all aspects of mast cell activation, including reduced cytokine 

expression and reduced degranulation.  This phenotype is accompanied by a 

reduction in the activation of key signaling molecules, such as PLCγ, a major 

substrate for Btk.  These defects highlight the importance of Btk in transducing 

FcεR1-mediated signals.  The conclusion is that Btk is a positive regulator of 

mast cell activation.   

The data in chapter III demonstrates that mast cells lacking Itk are 

hyperresponsive when activated through the FcεR1.  This is shown by the 

increased levels of cytokines and enhanced signaling downstream of the FcεR1.  

We have proposed that Itk is involved in an inhibitory pathway that is regulated 

by the phosphatase SHIP-1.  Another interesting observation in chapter III is the 

ex vivo phenotype of mast cells from Itk-deficient mice.  Here, mast cells show 

elevated expression of FcεR1 on the cell surface.  When these cells are 

stimulated by crosslinking the FcεR1, they produce more IL-4 and IL-13.  The 

remainder of this chapter focuses on two major themes.  First, the results from 

two major studies investigating the contribution of Itk-deficient mice in allergic 
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airway hyperresponsiveness are reconciled.  These results are then linked to our 

results to form a model for the role Itk and Btk in mast cell activation.  Finally, a 

speculative role for mast cells is attributed to one of the major unresolved 

phenotypes in Itk-deficient mice. 

 

1. Itk limits the responsiveness of mast cells in the airway through an inhibitory 

pathway 

 

 The few studies of Itk in mast cells have been less fruitful and have 

generated contradicting conclusions.  An initial report from Forssell and 

colleagues, concluded that mast cells in Itk-deficient mice have an important role 

in mediating immediate and late-phase allergic responses in vivo (209, 241).  

Compared with Btk-deficient mice, Itk-deficient mice displayed greater protection 

to an airway allergen challenge as demonstrated by a lack of plasma leakage 

into blood vessels.  Examination of mast cells in the lungs of Itk-deficient mice 

revealed that this result was due to a severe impairment in the ability of cells to 

degranulate in response to the aerosolized allergen.  These findings suggest that 

Itk strongly promotes mast cell degranulation in immediate airway 

hypersensitivity.  The authors also looked for signs of inflammation in the airways 

by examining leukocyte infiltration.  This is a hallmark of late-phase 

hypersensitivity, which occurs many hours after allergen challenge.  In 

comparison to wild-type and Btk-deficient mice, Itk-deficient mice had very few 

cellular infiltrates in the lung tissue or bronchoaveolar lavage (BAL) fluid.  The 
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authors concluded that Itk-deficient mast cells failed to promote inflammation 

because of an inability to generate the TH2-cytokines required for chemotaxis 

and extravasation.  These results further implicate Itk as an important mediator of 

airway hypersensitivity.   

This paper was important for two reasons.  First, it recapitulated many of 

the results seen in Btk-deficient mice and second, it ascribed a function for Itk in 

mast cells.  One of the major faults with this study, though, is that Itk-deficient 

mice have an inherent inflation of circulating IgE within them (166, 210), and 

mast cells are sensitive to the amounts of IgE in the microenvironment.  Mast 

cells acquire unbound IgE in the periphery by extending cellular projections 

through the walls of the blood vessels (191, 301).  Upon sampling the 

environment, IgE is then bound by FcεR1 until a specific allergen or antigen can 

crosslink the receptors.  Although the specificity of IgE antibodies in Itk-deficient 

mice is unknown, it is unlikely that they recognize the sensitizing allergen in this 

case.  Moreover, the amount of available IgE has been shown to regulate mast 

cell proliferation, survival, and functionality (191, 211, 302).  Consistent with this 

notion, our data has shown that the amount of IgE in the serum also influences 

the level of IgE receptor on the cell surface of mast cells.  This is unsettling 

because the corresponding wild-type mast cells have fewer FcεR1 molecules per 

cell, giving Itk-deficient mast cells an unfair advantage in signal transduction.  

The other major caveat in this report is the model of hypersensitivity used.  The 

authors chose to inject a mixture of ovalbumin and aluminum hydroxide as a way 

to sensitize and challenge mast cells.  However, the cellular reactivity to this type 
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of allergen is not limited to mast cells (212, 303).  Both antibody responses and T 

cell reactivity can play an important role in the immunological response to 

allergens in this hypersensitivity model.  Itk-deficient mice, as far as we know, do 

not have any major developmental or functional defect in the B cell compartment.  

As documented several times in this dissertation, the T cell compartment is 

heavily skewed in these mice and functionality is impaired.  For the reasons 

presented, the complete significance of Itk in the function of mast cells in this 

system is unclear. 

A second group chose a different approach to examine the role of Itk in 

acute airway responsiveness (191, 244).  Itk-deficient mice were sensitized with 

an anti-hapten IgE antibody.  Aerosolized exposure to the hapten resulted in 

diminished airway responsiveness compared to wild-type mice when challenged 

with methacholine.  This was attributed to defective release of histamine and is 

consistent with Forssell and colleagues.  However, like our data shows, Iyer and 

colleagues also demonstrate that mast cells in Itk-deficient mice have elevated 

levels of IgE receptor on the cell surface.  To bypass this caveat, they chose to 

incorporate an in vivo reconstitution model where wild-type or Itk-deficient 

BMMCs were adoptively transferred into mice lacking mast cells.  When airway 

responsiveness was examined, mice reconstituted with Itk-deficient BMMCs 

responded the same way as wild-type controls.  This indicates that in vivo, Itk is 

not necessary for mast cell degranulation.  This correlates with our observation 

that Itk-deficient BMMCs do not have any noticeable degranulation defect in vitro.  

When Iyer and colleagues examined cytokine production in BMMC lacking Itk, 
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they observed increases in IL-2, IL-4, IL-13, TNF, and GM-CSF compared to 

wild-type BMMCs.  The data in this dissertation support this observation and take 

it several steps further.  Since mast cells can potently release preformed 

mediators, including cytokines like IL-4 and TNF, we wanted to determine 

whether this defect was from de novo synthesis (35, 65, 211, 213).  We show 

that, in accordance with elevated protein levels, transcripts for the indicated 

cytokines were also increased in Itk-deficient mast cells.  Our data implies that 

Itk-deficient mast cells do indeed have a signaling abnormality.  Admittedly, when 

we look at early time points proceeding FcεR1 stimulation in Itk-deficient mast 

cells, we note only a mild signaling impairment.  This is highlighted in the 

activation of PLCγ and is accompanied by a slight increase in Ca2+ mobilization 

and increased NFAT activity.  Similarly, Iyer and colleagues also detect 

increased localization of NFAT in the nucleus of Itk-deficient mast cells.  This is 

perplexing because they do not observe a single signaling defect in these cells.  

In fact, in some of their experiments they noticed some signaling components 

were diminished when compared to wild-type BMMCs.  Nonetheless, the 

substantial elevation in cytokines we have both observed do not seem to fit with 

the signaling data.  We rationalized that because the major defects observed in 

Itk-deficient mast cells were during the second wave of activation, perhaps we 

were not looking at the correct time points.  We attempted to unravel this 

disconnect by inspecting the status of signaling molecules at much later time 

points following FcεR1 stimulation.  Much to our surprise, Itk-deficient BMMCs 

not only displayed elevated levels of activated signaling molecules but they were 
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also sustained several hours following stimulation.  Our data substantiates a 

bona fide signaling defect in response to FcεR1-mediated stimulation and 

suggests that Itk is a negative regulator of mast cell activation. 

Negative regulation of FcεR1-mediated mast cell activation is facilitated by 

several signaling molecules including kinases (e.g. Lyn), phosphatases (e.g. 

SHIP), and adaptor proteins (e.g. Dok).  One of the major inhibitory pathways 

that mast cells use to shutdown FcεR1-induced signaling is regulated by SHIP-1.  

This pathway is initiated by Lyn phosphorylation of SHIP-1, which upon 

activation, translocates to the membrane where phosphatase activity can 

catalyze the conversion of PIP3 to PIP2 (208, 304).  Activation of SHIP-1 triggers 

the assembly of a larger complex containing adaptor proteins such as Dok1, Shc, 

and Grb2 that bind to the C-terminal domain of SHIP-1 (214, 305).  Interestingly, 

mast cells lacking SHIP-1 or Dok1 exhibit a strikingly similar phenotype to Itk-

deficient mast cells with one notable exception (208, 215, 279, 306).  The 

amount of degranulation is about 4-fold higher in mast cells lacking SHIP-1 

compared to wild-type controls.  The other enticing piece of information was that 

the Tec family kinase, Tec, has been reported to associate with SHIP-1 via the 

SH3 domain in T cells (126, 216).  A number of our biochemical experiments 

demonstrated a specific interaction between Itk and SHIP-1, mediated by the 

SH2 and SH3 domains of Itk.  This was somewhat surprising because it had 

previously been reported that the SH3 domain of Itk did not bind to SHIP-1 in T 

cells (10, 126).  Given the promiscuity attributed to SH3 domains in general, a 

likely explanation for this discrepancy is that other proteins not expressed in mast 
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cells occupied the SH3 domain of Itk.  Nonetheless, the interaction we observed 

by the SH2 domain of Itk appeared to be specific because competitive inhibition 

or mutation of this domain ablated SHIP-1 association.  Using confocal 

microscopy, we were also able to demonstrate co-localization of Itk with several 

members of the negative regulatory complex that SHIP-1 nucleates.  The 

significance of SHIP-1 phosphorylation by Itk is unclear at the moment.  Due to 

technical limitations, we have only been able to demonstrate phosphorylation in 

insect cells.  Taken together, the biochemical data and microscopy suggest that 

Itk forms a novel interaction with a known negative regulatory complex in mast 

cells.   

Given the data presented in this dissertation, in conjunction with the 

available information in the literature, we propose the model in Figure 4.3.  Upon 

FcεR1-mediated activation of mast cells, Tec family kinases translocate to the 

plasma membrane to regulate signal transduction.  Btk is responsible for the 

phosphorylation of PLCγ, which propagates the activating pathway in mast cells.  

Concomitantly, Itk associates with a macromolecular complex containing SHIP-1 

to participate in the inhibition or dampening of FcεR1 signal transduction.  The 

presence of both of these kinases is required for optimal mast cell activation. 

 

2. Mast cells contribute to the TH2 phenotype in Itk-deficient mice 

 

 One of the initial phenotypes described in Itk-deficient mice was the 

existence  of  a  spontaneous TH2-like environment (161, 217).  This environment  



164

 
Figure 4.3 
 

 
 
 

 
Figure 4.3 Itk negatively regulates mast cell activation  

Crosslinking the FcεR1 results in the induction of gene transcription through 

activating pathways regulated by Btk.  Concurrently, inhibitory pathways, 

mediated by Itk, turn down or dampen the de novo synthesis of mast cell 

products like cytokines. 
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displays extremely high levels of TH2-associated antibodies (IgG1 and IgE) in the 

serum and germinal center B cell hyperplasia.  This phenotype is greatly 

exacerbated in mice doubly deficient for Itk and Rlk.  In order for B cells to class-

switch and secrete IgE they must be exposed to IL-4 and IL-13 (218-220, 307).  It 

was found by Catherine Yin, a former graduate student in our lab, that γδ T cells 

from Itk-deficient mice have a skewed cytokine profile compared with wild-type 

γδ T cells.  A specific subset of γδ T cells normally associated with their ability to 

make TH1-associated cytokines, like IFNγ, begins making copious amounts of IL-

4 upon TCR stimulation.  She further found a vast increase in the total numbers 

of this γδ T cell subset in Itk-deficient mice.  These two observations were 

attributed to a developmental abnormality in the γδ T cell subset caused by a 

lack of Itk (10, 308).   

Interestingly, when Itk-deficient mice are crossed to mice lacking γδ T 

cells, the progeny have reduced levels of IgE in the serum and are largely 

rescued from the TH2-like phenotype (166, 221).  However, a complete rescue is 

not observed as a significant amount IgE (about 5-fold higher than wild-type) 

remains in the circulation.  Furthermore, B cell germinal center hyperplasia is not 

completely restored to wild-type levels.  Intriguingly, the TH2 phenotype in the 

Itk/Rlk double knockout mice is not rescued by a cross to mice lacking γδ T cells 

(our unpublished observations).  This indicates that γδ T cells are not the only 

cell type that contributes to the TH2-like environment.  Because of the enhanced 

cytokine production, specifically IL-4 and IL-13, associated with mast cells 

lacking Itk, it remains plausible that this cell type is partially responsible for this 
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phenotype.  The other interesting facet of the data in chapter III, is that Itk-

deficient mast cells that are exposed to IgE alone are hyperresponsive and 

secrete more cytokines than wild-type mast cells.  This suggests that even in the 

absence of antigen, mast cells lacking Itk can secrete IL-4 and IL-13 into the 

local environment.  These cytokine can then instruct B cells to class switch to IgE 

and generate the extremely high levels seen in Itk-deficient mice.  The access 

IgE can in turn reactivate cytokine production in mast cells, thereby forming a 

positive feedback loop.  It is therefore postulated that mast cells contribute to the 

spontaneous TH2-like environment in Itk-deficient mice by promoting a 

continuous IL-4/IL-13 - IgE cycle (Figure 4.4).  

 

Concluding remarks and significance 

 

 One major question that remains is - why does Itk behave so differently in 

T cells compared to mast cells?  The answer may lie in the examination of the 

major substrate of Itk that is available in each cell type and the presence of other 

Tec kinase family members.  In T cells, three Tec family kinases exist: Itk, Rlk, 

and Tec.  Ablation of Itk in T cells leads to a diminished TCR signaling.  Similarly, 

Rlk-deficient T cells also have decreased T cells signaling, albeit not as severe 

as Itk-/- T cells.  Tec-deficient T cells have the mildest impairments in signaling, 

and Tec-deficient mice are phenotypically normal.  T cells that are doubly 

deficient in Itk and Rlk have an extremely severe impairment in TCR signaling, 

and  exacerbated  defects  in  T  cell  development  and  function.    These  facts  
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Figure 4.4 
 

 
 
 

Figure 4.4 Mast cells contribute to the TH2 phenotype in Itk-deficient mice  

Itk-deficient mice have an inherent TH2-like environment within them.  This 

phenotype occurs spontaneously without any intervention or manipulation.  The 

phenotype is marked by elevated levels of IgE in the serum.  Itk-deficient mast 

cells produce enhanced amounts of IL-4 and IL-13 in response to FcεR1 

crosslinking.  A positive feedback loop is therefore in place in which mast cells 

produce IL-4 and IL-13 that induces B cells to secrete IgE that bind to and 

activate more cytokine production from mast cells. 
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indicate the potential for functional redundancy amongst Tec family kinases, such 

that in the absence of one Tec family kinase another can lessen the defect by 

acting on the substrate.  The major substrate of Itk in T cells is PLC-γ1; a closely 

related molecule, PLC-γ2, is not expressed in T cells.  The expression level of Itk 

is many fold higher than Rlk or Tec, and this likely gives it a competitive 

advantage by simple stoichiometry for PLC-γ1 over the other Tec family kinases.  

This indicates that Itk is free to participate in the nucleation of the LAT complex 

and phosphorylate PLC-γ1 upon TCR ligation. 

 Interestingly, a synonymous situation occurs in B cells.  B cells express 

Btk at very high levels and Tec at very low levels.  In B cells, Btk has been shown 

to be the primary regulator of PLC-γ2; PLC-γ1 is not expressed in B cells.  

Similar to T cells, B cells deficient in Tec or Btk have defects in BCR signaling, 

with Btk deficiency exhibiting a more severe phenotype than Tec-/- B cells.  

Double deficient cells experience an even greater defect in BCR signaling, again 

suggesting a compensatory role for Tec family kinases in immunoreceptor 

signaling.     

 Mast cells, on the other hand, have components of both B cell signaling 

and T cell signaling.  That’s to say that many of the proteins that are exclusively 

found in B cells or T cells are found together in mast cells.  For example, mast 

cells express both Itk and Btk at very similar levels.  Furthermore, their 

substrates PLC-γ1 and PLC-γ2 are also co-expressed.  This is where the notion 

of functional redundancy breaks down, however.  As shown in chapter three, 

mast cells that lack Itk have the opposite phenotype as mast cells lacking Btk.  
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This is exemplified by the enhanced signaling that occurs downstream of the 

FcεR1 in Itk-deficient mast cells; Btk-deficient mast cells, on the other hand, have 

a severe reduction in the amount of signaling that occurs in response to FcεR1 

stimulation.  Perplexingly, PLC-γ1 phosphorylation is notably enhanced in the 

absence of Itk.  It is thought that Btk is capable of phosphorylating both PLC-γ1 

and PLC-γ2 in order to propagate signal transduction. Since, Itk and Btk are 

expressed at similar levels, it is unlikely that the enzyme – substrate 

stoichiometry is a factor.   The likely explanation for this conundrum lies in the 

catalytic activity of each kinase.  Btk has been shown to have enhanced 

enzymatic activity for substrate when directly compared to Itk (309).  

Furthermore, it is also possible that minor variations in peptide sequence within 

the kinase domains of Btk and Itk allow Btk to bind substrate with a greater 

propensity than Itk.  This is not to say that Itk is inferior.  In fact, the defects 

associated with Itk deficiency have been aptly described and it’s function should 

be further investigated. 

 Given the many immunological processes that Itk can partake in, it is an 

attractive target for therapeutic intervention.  The development of pharmaceutical 

inhibitors targeting Itk has found traction in several private companies for the 

treatment of human disorders mediated by the immune system (37, 310).  

Selective inhibition of Itk has been proposed as novel means for the treatment of 

HIV and skin inflammation disorders like atopic dermatitis (222, 311, 312).  A 

large majority of the research on Itk has been done in T cells and its function has 

been well characterized.  Our own studies have determined that Itk subtly 
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modulates T cell receptor signaling by tuning signal strength.  In light of this, we 

agree that targeting Itk could potentially work for a variety of diseases.  However, 

the data and commentary in this dissertation expand the functional role of Itk in 

the signal transduction of immunoreceptors.  The novel phenotype ascribed to 

mast cells lacking Itk cannot be ignored, especially when thinking about skin 

disorders.  We caution those interested in exploring Itk inhibition in the clinic.  

The novelty of Itk must also be considered in natural killer cells, where Itk is the 

predominant Tec family kinase expressed.  We have virtually zero knowledge on 

the role of Itk in this cell type.  Finally, the importance in understanding Itk has 

become even more pressing in recent years now that a cohort of people with 

genetic mutations in Itk has been found (157, 223).  Unfortunately, these people 

typically do not fair very well when Itk function is ablated and succumb to EBV-

linked infections.  Further inquiry into the pathogenesis of Itk deficiency must be 

performed.  I am confident that future investigation of Itk, in our lab and others, 

will address the outstanding issues surrounding Itk. 
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