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ABSTRACT 

CISISOCS (cytokine-inducible SH2 protein/suppressor of cytokine signaling) are 

a family of proteins that are thought to act as negative regulators of signaling by 

erythropoetin, interleukin-6 and other cytokines whose receptors are related to the growth 

hormone receptor (GHR), and like growth hormone (GH), signal through the JAWSTAT 

pathway. We examined the possibility that CIS/SOCS proteins may also be involved in 

GH signaling, in particular, in termination of the transient insulin-like effects of GH. 

mRNAs for CIS, SOCS3, and to a lesser extent SOCS1 were detectable by Northern blot 

analysis of rat adipocyte total RNA, and the expression of CIS and SOCS3 was markedly 

increased 30 min after incubation with 500 nglml hGH. Both CIS and SOCS3 were 

detected in adipocyte extracts by immunoprecipitation and immunoblotting with their 

corresponding antisera. GH stimulated the tyrosine phosphorylation of a 120 kDa protein 

(p120) that was co-precipitated from adipocyte extracts along with aCIS and detected in 

Western blots with phospho-tyrosine antibodies. However, no tyrosine phosphorylated 

proteins in these cell extracts were immunoprecipitated with antibodies to CIS3lSOCS3. 

p120 was later identified as the GHR based on the observations that two GHR antibodies 

recognized p120 in scale-up experiments and that p120 and the GHR share several 

characteristics, including their molecular weights, tyrosine phosphorylation upon GH 

stimulation, interaction with CIS, similar extent of glycosylation as judged by 

electrophoretic mobility shift after Endo F digestion, comparable mobility shifts upon 



thrombin digestion, and N-terminal histidine-tagging. The findings, however, do not rule 

out the possibility that there might be other tyrosine phosphorylated 120 kDa protein(s) 

that interact with CIS and contribute to the p120 signal, as well as the GHR. 

Further studies of the association of CIS with the GHR revealed that CIS might 

selectively interact with multiply tyrosine phosphorylated forms of the GHR, and these 

tyrosines are likely located near the carboxyl end of the GHR. Overexpression of CIS 

partially inhibited GH-induced STAT5 phosphorylation in CHO cells. Studies in freshly 

isolated and GH-deprived (sensitive) adipocytes revealed that the abundance of CIS does 

not correlate with the termination of the insulin-like effects of GH or the emergence of 

refractoriness. Neither the association of CIS with the GHR nor the tyrosine 

phosphorylation status of the GHR, JAK2 and STAT5 appear responsible for 

refractoriness in adipocytes. These data imply that some negative regulators other than 

CIS might contribute to the termination of GH-induced insulin-like effects in adipocytes. 
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INTRODUCTION 

Growth hormone (GH), also called somatotropin, is a polypeptide hormone 

secreted by the anterior pituitary gland. GH was discovered and named for its action in 

promoting normal growth, and was later found to produce a variety of metabolic effects 

as well. It is the most important hormone for normal growth. In the young, growing 

individual, GH promotes cell division and differentiation both directly and indirectly 

through stimulating production of insulin-like growth factor-I (IGF-I). Lack of GH during 

childhood results in pituitary dwarfism, and overproduction of GH in children results in 

gigantism, and in adults, acromegaly. GH serves as a metabolic regulator all through life, 

long after growth has stopped. In this regard, GH accelerates fat mobilization in 

adipocytes (72) and inhibits glucose utilization in both muscle (7) and adipose tissue (68). 

GH also dampens insulin-stimulated glucose utilization in vivo and may impair glucose 

tolerance or even induce permanent diabetes mellitus (7). The metabolic effects of GH 

are exerted largely on skeletal muscle and adipose tissue, which together comprise well 

over 50% of total body mass and are the major determinants of energy balance. Other 

targets for related actions of GH are the beta cells of the pancreas, which are stimulated 

by GH to produce and secrete more insulin, and the liver. The actions of GH at the 

cellular level include both indirect mitogenic effects exerted through IGF-T (207) and its 

own direct mitogenic effects in some cells (21), lipogenesis, and anti-lipolytic metabolic 

effects (70), as well as gene regulatory actions (IGF-I, c-fos, c-jun, Spi2.1, ect.) (119) 

(45) (80) (203) (Figure 1). 
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Figure 1. Illustration of GH actions. 



Synthesis, Secretion and Metabolism of GH 

In humans, the 5 to 10 mg of stored GH makes it the most abundant hormone in 

the pituitary. Ninety percent of the GH produced by somatotropes is composed of 191 

amino acids and has a molecular weight of about 22 kDa. The remaining 1096, an 

alternatively spliced product of the same GH gene, is called 20K GH. The 20K GH has a 

molecular weight of 20 kDa and lacks residues 32-46. Both forms of hormone are 

secreted and have similar growth-promoting activity, although the metabolic effects of 

the 20K form are reduced (159). 

About half of the GH in blood circulates bound to the GH binding protein 

(GHBP), which is identical to the extracellular domain of the growth hormone receptor 

(GHR, described later). The free or unbound form of GH can readily cross capillary 

membranes. The GH that crosses the glomerular membrane is reabsorbed and degraded 

in the kidney. Less than 1% of the hormone secreted each day reaches urine in the 

recognizable form. Also, GH is degraded in its target cells following uptake by receptor- 

mediated endocytosis. 

According to the somatomedin hypothesis proposed three decades ago, GH action 

on somatic growth is dependent on an endocrine factor, IGF-I, which is mainly produced 

by the liver. The existence of IGF-I was first reported by Salmon and Daughaday in 1956 

(150). IGF-I was previously referred to as sulfation or thymidine factor, and then 

somatomedin. Serum IGF-I is tightly bound in a complex that contains two other GH- 

dependent proteins: the IGF-binding protein 3 and an acid-labile protein. In general, 

plasma concentrations of IGF-I reflect the availability of GH. They are higher than 



normal in blood of persons suffering from acromegaly and are very low in GH-deficient 

individuals (67). It has been demonstrated and widely accepted that GH's growth 

stimulating effects are mediated by IGF-I (41). However, the somatomedin hypothesis 

was challenged by the finding that local administration of human GH in vivo to the 

cartilage growth plate of the proximal tibia of hypophysectomized rats resulted in 

accelerated longitudinal bone growth (96). This study and later other studies (134)(149) 

(152)(153) suggest that GH stimulates long bone growth by inducing local production of 

somatomedin, which in turn stimulates cell proliferation in an autocrine or paracrine 

fashion (153). It is now well established that GH interacts with several peripheral tissues, 

including liver, cartilage bone and muscle. Recent studies in the liver-specific IGF-I 

knockout mouse revealed that though liver-derived IGF-I is the main source of serum 

IGF-I, i t  is not required for postnatal growth (201). These studies suggested that 

autocrinelparacrine-derived IGF-I is more important than liver-derived IGF-I for body 

growth (109). 

In most mammalian species there is a marked sex difference (sexual dimorphism) 

in the pattern of GH secretion. In male rats, GH is secreted in regular pulses every 3.0 to 

3.5 hours with low or undetectable levels between peaks. In female rats the secretion is 

more frequent, and the baseline levels are higher than in males, resulting in a continuous 

presence of GH in the circulation that is in contrast to the intermittent presence seen in 

males. The patterns of GH exposure have dramatic effects on GH-regulated events in the 

liver (183). For example, the expression of GH-regulated cytochrome P450 enzymes in 

liver is sexually differentiated (106). 



GH secretion is under minute-to-minute control by the nervous system (67). That 

control is expressed through the hypothalamo-hypophyseal portal circulation, which 

delivers two hypothalamic neuropeptides to the somatotropes: GH-releasing hormone 

(GHRH) and somatostatin. GHRH provides the primary drive for GH secretion. 

Somastatin reduces or blocks the response of the pituitary to GHRH. Their interaction 

generates a striking pulsatile pattern of GH release in both humans and experimental 

animals (124) (177). 

In addition to the neuroendocrine mechanisms that control secretion in response 

to internal or external environment and provide pulsatility under basal conditions, the 

secretion of GH is under negative feedback control. As with other negative feedback 

control systems, inhibitory signals are products of GH action, principally IGF-I. 

Increased concentration of free fatty acids (FFA) or glucose, which are also related to GH 

action, may also exert inhibitory effects and decrease GH secretion in response to a 

variety of provocative stimuli. IGF-I appears to act both at the hypothamic level by 

stimulating secretion of somatostatin (4) and at the pituitary level by decreasing the 

response of somatotropes to GHRH (90). Increased FFA and glucose similarly increase 

somatostatin secretion (95). Some evidence suggests that GH may also have a direct 

suppressive effect on its own production and may either inhibit the release of GHRH or 

increase the secretion of somatostatin (139). 



Effects of GH on adipose tissue 

GH produces a complex array of direct effects on carbohydrate and lipid 

metabolism in a variety of tissues, among which, skeletal muscles and adipose tissue are 

the main targets. Under usual physiological circumstances, the metabolic effects of GH 

are opposite to those of insulin: GH promotes lipolysis in adipocytes and ketogenesis in 

liver, limits glucose utilization in both muscle and fat, and decreases insulin-sensitivity in 

muscle, fat and liver. These responses, often classified as diabetogenic, are typically seen 

only after a lag period of 1-2 hours, and often persist for several hours. Under some 

circumstances GH may produce opposite effects and act in an insulin-like manner, which 

has been studied extensively both at the cellular level and in whole animals including 

humans. These actions include stimulation of glucose metabolism, lipogenesis and anti- 

lipolysis. They have been called insulin-like because of their similarity to the responses to 

insulin (71, 78). Insulin-like effects are evident immediately after the addition of GH to 

adipose tissue obtained from hypophysectomized rats. They are transient and disappear 

within 1-2 hours and cannot be elicited again for many hours even with high doses of 

GH. Such insensitivity to insulin-like stimulation by GH is termed refractoriness. In 

contrast, cells that exhibit GH-induced insulin-like responses (ILR) are referred to as 

sensitive cells. Characteristically, tissues freshly isolated from normal rats are 

refractory. However, sensitivity to insulin-like stimulation by GH develops in normal 

adipose tissue (71) and adipocytes (48) that are maintained in the absence of GH for 3 

hours or longer. The ILR to GH can be extended by the presence of inhibitors of RNA or 



protein synthesis (69), suggesting that GH may induce some short-lived, regulatory 

molecules to inhibit ILR. 

Refractoriness seems to be a separate event from the termination of the ILR. 

Refractoriness can be produced or prolonged without a preceding ILR by brief exposure 

to GH at a concentration that is too low to initiate an ILR (70). Conversely, an ILR is not 

followed by refractoriness if GH is removed by immunoabsorption within 60-90 minutes 

(70), or if an inhibitor of RNA synthesis is added up to 60 minutes later (73). This 

suggests that mRNAs and/or proteins that are needed for refractoriness are not 

synthesized for at least an hour after GH is added. Refractoriness is not due to down- 

regulation of the GH receptor, since GH binding is undiminished in refractory cells (78). 

One of the distinguishing characteristics of refractory and sensitive adipocytes is 

the difference of the intracellular free calcium level [Ca2+], (155). Cells deprived of GH 

for just a few hours lower their [ca2+] by a factor of -2, presumably as a result of 

internalization of L-type calcium channels (62). Reintroduction of GH restores the 

resting calcium level after a lag period of more than one hour by a process that depends 

upon RNA synthesis and appears to coincide with a shift of calcium channels from 

internal vesicles to the plasma membrane (62). Adipocytes that are refractory to insulin- 

like stimulation not only have a higher resting [Ca2+], but also respond to GH with a rapid 

increase in [Ca2+], resulting from ca2+ influx through activated L-type Ca2+ channels (63). 

Interference with the rapid increase in [Ca2+], by ca2+ channel blockers or chelation of 

extracellular [Ca2+], with EGTA restores insulin-like sensitivity (156), but the mechanism 

by which [Ca2+], affects insulin-like sensitivity is not understood. 



Growth Hormone Receptor 

For understanding regulation of normal growth and metabolism, it is essential to 

understand the molecular basis of growth hormone action. At the molecular level, all of 

the effects of GH are initiated by the binding of GH to its receptor, the growth hormone 

receptor (GHR). The GHR is a 620-residue single membrane-spanning glycoprotein that 

binds GH in its extracellular domain and transduces activating signals via its cytoplasmic 

domain (Figure 2). The GHR was first cloned from rabbit and human liver cDNA 

libraries (107), and later from liver cDNA libraries of rat (1 18), mouse (164), cow (86), 

pig (33), sheep (2) and chicken (23). The GHR is encoded by transcripts of -4 kilobases 

(kb) and the GHR gene is comprised of at least 10 exons. The cDNAs encode a -70kDa 

protein, which becomes heavily glycosylated and migrates with the mobility of a 114- 

140kDa protein in SDS-polyacrylamide gels when expressed in mammalian cells. The 

larger size of the expressed protein cannot be fully explained by glycosylation and may 

be due to ubiquitination (107). 

GHR structure The GHR belongs to the class I superfamily of cytokine receptors, 

also called the hematopoietic cytokine receptor family, which includes receptors of 

prolactin, erythropoietin (Epo) and interleukins (IL) 2-7, 9, 11 and 12, thrombopoietin, 

leukemia inhibitory factor (LIF), oncostatin, etc. All of these receptors appear to behave 

similarly with regard to signal generation and transmission and hence clues to the actions 

of GH have been obtained by comparison with the behavior of other members of the 

superfamily. Receptors of this family are either single transmembrane proteins or are 

comprised of one or more subunits which are single transmembrane proteins oriented 
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Figure 2. Schematic representation of the growth hormone receptor. N represents the 

extracellular asparagine that is a potential N-linked glycosylation site. The 7 extracellualr 

cysteines (C) form 3 cysteine pairs, leaving an unpaired cysteine proximal to the membrane. 

The sequence of the WSXWS motif in rat GHR is YGEFS. There are 10 cytoplasmic 

tyrosines (Y) in rat GHR. Regions of GHR shown to be required for various functions are 

indicated. 



with the N-terminus forming the extracellular domain (Figure 3). They are characterized 

by four conserved cysteine (Cys) residues near the amino terminus and a conserved 

WSXWS (Trp-Ser-X-Trp-Ser, X can be any amino acid) motif in the carboxyl terminal 

part of their extracellular domain. The GHR has seven Cys residues, six of which form 3 

pairs of intrachain disulfide linkage near the amino terminus. The remaining unpaired 

Cys is near the transmembrane segment, and although it is a highly conserved feature of 

the cytokine receptor superfamily, its function has not been elucidated. The WSXWS 

motif in GHR contains conservative substitutions (YGEFS) and has been postulated to 

play a critical role in ligand binding by providing structural stability (43), though it does 

not contact the ligand. The cytosolic domain contains no consensus enzymatic domain, 

and hence no catalytic activity was found. However, two motifs, Box 1 and Box 2, are 

relatively conserved in the cytoplasmic membrane-proximal domain for most receptors of 

this superfarnily. Box 1 is proline-rich and consists of eight amino acids (Y-X-X-X-A1-P- 

X-P, where Y represents hydrophobic residues and A1 represents aliphatic residues). In 

the mammalian GHR, Box 1 contains ILPPVPVP (27). Box 1 is the site of Janus Kinase 

2 (JAK2) binding for the GHR (56) and is essential for most of GHR's signaling function 

(see JAK2). Box 2 is less well conserved and begins with a cluster of hydrophobic amino 

acids, and ends with one or two positively charged amino acids (127). Deletion or 

mutation of Box 1 and Box 2 abrogates proliferative signaling in members of this 

superfarnily (92). 

GHR gene The GHR gene is located on chromsome 5, p13.lIp12, in humans 

(14), adjacent to the myc oncogene on chromosome 15 in the mouse (49), and on 
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Figure 3. Schematic representation of the structures of the hematopoietic cytokine receptor 

superfamily. PRLR: prolactin receptor; EpoR: erythropoietin receptor; IL-2R, . . .IL-9R: 

interleukin 2.. .9 receptor; GM-CSFR granulocyte-macrophage colony stimulating factor 

receptor; c-mpl: c-myeloproliferative leukemia virus or orphan receptor of unknown ligand; 

G-CSFR: granulocyte colony-stimulating factor receptor; gp130: P subunit of I . -6R; W R :  

leukocyte inhibitory factor receptor;obR: obese receptor; CNTFR: ciliary neurotrophic factor 

receptor. 



chromosome 16 in the pig (32). The prolactin receptor gene is located in the same region 

as the GHR gene in humans (11). The GHR gene comprises more than ten exons, 

extending over at least 87 kb, with the receptor itself being encoded by nine exons (66). 

Exons 2-9 range in size from 66 to 179 base pairs (bp), whereas exon 10 which encodes 

nearly all of the cytoplasmic domain and a long 3' untranslated region (UTR), is about 

3400 bp. Exon 2 encodes the signal peptide and the N-terminal six amino acid residues. 

Exons 3-7 encode the rest of the extracellular domain. Exon 8 encodes the 

transmembrane domain and the membrane proximal four residues of the cytoplasmic 

domain. Exon 9 includes coding for Box 1 but not Box 2. Multiple tissue specific 

sequences have been identified in exon 1, which encodes the 5'UTR. Existence of several 

splice variants has been reported (137), as well as a liver-specific promoter (exon 1A) 

(16) (168) (214) and exon lB(1). 

GHR isoforms Two principal products of the GHR gene are formed in most if 

not all mammalian species and arise either as a result of alternative splicing of mRNA or 

post-translational processing. In addition to the full length GHR, a soluble isofonn of 

GHR known as the GH binding protein (GHBP) circulates in the blood. The soluble 

GHR is generated differently among species. In rodents, alternative splicing gives rise to 

a 1.2 kb.mRNA encoding the short form GHR (GHR,), in which the transmembrane and 

cytoplasmic domains of the full length receptor (GHR,) are ;eplaced by a unique 27- 

hydrophilic residue carboxyl tail in mouse (164) or a 17-residue in rat (17) (57) encoded 

by Exon 8a (210) (Figure 4). Non-rodent species apparently lack the alternate exon or 

alternative splicing sites, but produce a circulating binding protein by proteolysis of 
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Figure 4. Illustration of the rat GHR isoforms. 



either the full length GHR (165) or a truncated isoform arising from alternative splicing 

in the cytoplasmic domain of the GHR (40). Although some GHRs circulates in rodent 

blood as the GHBP, some is also retained in tissues, where the amount of GHR, 

recovered from cell membrane fractions exceeds that of GHR, (57). The GHRs retained 

in tissues appears to be incompletely glycosylated and lacks the terminal sialic acid found 

in GHR or GHBP (58). In rat adipocytes and cultured 3T3-L1 cells GHRs contributes to 

surface binding of GH (59). The manner by which GHRs is tethered to membranes is 

unknown, and it is possible that GHRs might have a signaling function. GHRs may help 

mediate signal transmission initiated by ligand binding to GHR,, or enhance or diminish 

the GHR, mediated GH effects. A short form of GHR was also found in tissues of non- 

rodent species. It is noteworthy that other members in the cytokine receptor superfamily 

also have several isoforms (147), such as prolactin receptor, leptin receptor and receptors 

of IL-2 and IL-6, and that some of these are soluble and circulate in blood. 

Interaction of GH with the GHR The interaction of GH with GHR though 

complicated, is now understood structurally with a high degree of resolution, owing 

greatly to a brilliant series of crystallographic and kinetic studies employing recombinant 

GH and the extracellular domain of the GHR. These studies have elegantly demonstrated 

that GH interacts with the GHR to form a complex of 1:2 GH:GHR stoichiometry (38, 

43). Although GH is a molecule composed of four antiparallel helical bundles without an 

axis of symmetry, two distinct sites within a single molecule of the hormone engage two 

GHR at nearly identical contact points in the extracellular domain on each receptor (43). 

GH binds sequentially to one receptor molecule at the so-called site 1 on GH and then to 



a second receptor at site 2 on GH (60), which produces a receptor dimer that initiates 

signaling. Binding is ordered because of a stronger interaction between GHR and site 1 1 1 

than site 2 of GH. GH:GHR, complex is further stabilized by direct interaction of the I 

GHRs between the GH binding sites and the transmembrane regions (43). This region is 

sometimes called the dimerization domain. 

The GHR and the syndrome of GH insensitivity Growth hormone insensitivity is 

an autosomal recessive disorder with elevated GH levels in blood associated with a 

reduction or abolition in the biological actions of GH (151). Laron dwarfism (105) is a 

primary representative of GH insensitivity in human. Patients with this syndrome have a 

clinical phenotype of severe growth retardation with high circulating levels of GH 

accompanied by low serum IGF-I and IGF binding protein 3, with no responsiveness to 

exogenous GH. It is caused by mutations in the GHR gene, mainly in the extracellular 

domain. The majority of GHR mutations resulting in GH insensitivity are thought to 

affect GH binding, hence the finding of low levels of GHBP in many patients. 

Interestingly, homozygous GHR/BP knockout mice showed severe postnatal growth 

retardation, proportionate dwarfism, greatly decreased serum IGF-I and elevated serum 

GH concentrations, which represent the characteristics of the phenotype typical of 

individuals with Laron syndrome (21 1) and also individuals with congenital absence of 

GH. This further confirmed the primary role of the GHR in GH's growth promoting 

effects. 

I 



GHIGHR Signaling 

Our knowledge of GWGHR signal transduction has been greatly expanded in the 

past decade of research following the cloning of the GHR and the discovery of tyrosine 

phosphorylation as a mechanism for signal transduction. More and more protein 

molecules have been discovered to be involved in GH signaling (Figure 5). These 

proteins may participate in signal transduction through several pathways and these 

pathways may intersect with each other and with signal transduction pathways associated 

with other ligands. 

Receptor dimerization As mentioned above, one GH molecule complexes with 

two molecules of GHR. The binding of GH to GHR appears to be sequential in the 

kinetic studies described by Cunningham et al (38), leading to the hypothesis that GH 

binding causes GHR dimerization. Mutated GH (G120R) in which the highly charged R 

(arginine) disrupt. the second helix, and hence site 2, fails to induce GHR dimerization. 

G120R is not only biologically inactive, but is also an antagonist of GH activity (29). 

This finding is consistent with the idea that GH-induced dimerization of GHR is required 

for GH action (34) (175) (85). Another important observation supporting GHR 

dimerization comes from the bell-shaped dose-response curve for GH-induced 

proliferation seen with increasing concentration of GH. Receptor dimerization would 

predict that at high hormone concentrations, receptors bound at site 1 interactions with 

GH would be unavailable to bind at site 2 thus preventing formation of effective 

signaling dimers (93). Two GHRs can also form a disulfide linkage through their 

unpaired cysteines. In human IM-9 lymphocytes expressing GHR, formation of GH- 



Figure 5. Illustration of GH signal transduction pathways. PLC: phospholipase C; 

DAG: diacylglycerol; PKC: protein kinase C; IRS 112: insulin receptor substrates 

1 and 2; PI-3K: phosphatidylinositol-3 kinase; MAPK: mitogen-activated protein 

kinase; SOS: son of sevenless. 



dependent disulfide linkage between GHR was found to be rapid and quantitatively 

significant (56). However, GH-induced GHR disulfide linkage does not appear to be 

required for GKR dimerization (209). 

Dimerization of the GHR upon ligand binding is typical of the behavior of the 

cytokine receptor superfamily and provides a basis for understanding how hormone 

binding can be translated into signal generation by cytokine receptors, as well (198). It 

has been shown that JAK2 activation and GH-enhanced association of JAK2 with GHR 

depend more on GHR dimerization than on tyrosine phosphorylation of GHR and/or 

JAK2 (209). The question of whether or not receptor dimerization is sufficient for GH 

signal transduction has not been settled. Crystal structure studies revealed that the 

ligand-receptor complex undergoes conformational changes following receptor 

dimerization (34). The conformational changes resulting from the binding of GH to two 

GHR may be important for GH signaling, perhaps by increasing the affinity for JAK2 or 

other associated proteins. 

JAK2 Over the past several years, a variety of cytoplasmic tyrosine protein 

kinases have been implicated in cytokine signaling. Of these, the most critical kinases 

apparently are the Janus family of protein kinases (JAKs) (91). The JAKs were initially 

identified through approaches to discover novel tyrosine kinases and therefore, their role 

in cytokine signaling was not immediately appreciated. To date, four mammalian 

members of the JAK family have been identified, consisting of ubiquitously expressed 

JAK1, JAK2 and TYK2, and JAK3, which is primarily expressed in hematopoietic cells. 

Activation of JAKs appears to be a common signaling event that occurs in response to 



ligand binding to members of the cytokine receptor superfamily. However, different 

cytokines activate different combinations of JAKs, providing one mechanism by which 

specificity in response to multiple cytokines may be accomplished. Even though the 

same JAK is activated by multiple cytokines, the level of activation varies substantially in 

response to stimulation by different cytokines, as does the time course of the response 

(161). Initially, JAK2 was thought to be the only kinase engaged in GH signaling. Later 

studies showed that JAKl and TYK2 may also be activated (162) (87), to a lesser extent, 

and thereby may mediate some of the effects of GH. 

The activated JAK2 has been shown to phosphorylate several intracellular 

substrates including GHR, JAK2 itself, as well as transcription factors of the STAT 

(Signal transducer and activator of transcription) family (28) (123) (186). Studies using 

truncated and mutated GHR have implicated the Box 1 motif as an indispensable 

component for GH-dependent association of JAK2 with GHR and for tyrosine 

phosphorylation and activation of JAK2 (56) (167) (187) (193). More distal regions of 

the GHR appear to augment the interaction (56) (167) (178). The mechanism by which 

GH activates JAK2 is unknown. Forced receptor homodimerization of only the 

transmembrane and intracellular domains of the GHR by insertion of a leucine zipper can 

lead to constitutive activation of known end points of GH signaling in engineered cells, 

supporting the view that proximity of JAK2 to the GHR is the essential element in GH 

signaling (19). It is not clear if JAK2 is constitutively bound to the GHR, or is recruited 

to the GHR upon the binding of the ligand to the receptor, nor is it known if the 

activation mechanism for JAK2 is due to a conformational change, or tyrosine 



phosphorylation or both. One hypothesis consistent with what is known about GHR 

structure and tyrosine kinase activation in general is that binding of GH to two GHR 

molecules increases the affinity of JAK2 for each GHR and allows two JAK2 molecules 

to come into sufficiently close proximity to transphosphorylate one or more tyrosines in 

the kinase domain of the paired JAK2, thereby activating JAK2 (27). JAK2 activation 

appears to be the general initial signaling event for all GH responses described so far 

except for the increase in intracellular [Ca2'] in Chinese hamster ovary (CHO) cells (20). 

STATproteins Initially identified in the interferon signaling pathway (39), STAT 

proteins are latent cytoplasmic proteins containing Src homology (SH) 2 and SH3 

domains. They participate in cytokine signaling by regulating the expression of early 

response genes. The current model of STAT activation (91) consists of the initial 

recruitment to the receptor complex through interaction of the SH2 domain of the STATs 

with phosphorylated tyrosines on the receptor. This interaction provides the specificity 

with which the cytokine activates specific STAT(s). The next step involves the tyrosine 

phosphorylation of the STAT by the associated JAK. Once phosphorylated, the STAT 

protein forms homodimers or heterodimers with other STAT proteins, translocates to the 

nucleus, binds to DNA, and activates or represses transcription of target genes (1 13). 

Seven mammalian STAT proteins have been identified, many of which play 

highly specific roles in innate and acquired immunity. STAT1 is critical for IFN-induced 

viral resistance (47, 122). similarly, STAT6 specifically mediates the effects of 1L-4 or 

IL-13 on B or T cells (98, 158), while STAT4 is critical for IL-12 signaling (99) (180). 

STAT3, when deleted, results in a very early embryonic lethality due to unknown 



defiencies. STAT5 was initially identified as a prolactin-induced mammary gland 

transcription factor (190). Two STAT5 genes encode proteins that are approximately 

95% identical in amino acid sequence: STAT5a and STAT5b (110). The two proteins 

differ primarily in their C-terminal transcription activation domains. The differences are 

also exhibited in their DNA binding specificities and tissue distributions. 

Association of STATs with GHR has been detected in 3T3-F442A cells and 

mouse L cells (200). Binding of STAT with the GHR presumably positions it optimally 

for its interaction with JAK2. GH has been shown to activate STATl, 3, 5a and 5b in 

various tissues and types of cultured cells (reviewed in (88)). In the c-fos promoter, GH 

induces the binding of three complexes to the Sis-inducible element (SIE) (25) (79) (123) 

which contains binding sites for STATl and STAT3 homodimers and STAT113 

heterodimers. GH also stimulates STAT5 binding to the IFNy-activated sequence (GAS) 

in the Spi2.1 gene (10). GH-dependent activation of STATs requires JAK2 activation. 

However, though JAK2 activation appears to be sufficient for STAT phosphorylation and 

DNA binding when JAK2 and STATs are overexpressed (166) (202) (162) or in a cell- 

free setting (76), it does not appear to be sufficient for STAT activation in intact cells. 

Current evidence suggests that STAT5 activation by GH requires phosphorylation of 

specific tyrosine residues within the GHR. Residues Tyr487,Y534, Tyr566 and Tyr627 

in porcine GHR are required for GH-dependent tyrosine phosphorylation of STAT5 (194) 

(84). In addition, the residue Tyr333 and/or Tyr338 in the juxtamembrane area of the rat 

GHR may play a role in GH-dependent activation of STAT5a and 5b (162) (163). 



In addition to tyrosine phosphorylation, recent studies show that serine 

phosphorylation also plays a role in STAT activation or regulation (140). MAP kinase 

has been shown to phosphorylate STAT5a and this phosphorylation is required for full 

activation of GH-induced STAT5a (138). STAT1, 3, 5a and 5b contain multiple 

consensus sites for phosphorylation by protein kinase C and casein kinase. Thus, it is 

possible that multiple kinases could activate STAT proteins and contribute to the 

regulation of GH signaling. 

The physiological importance of STAT 5a and 5b was further determined by 

studies in knockout mice. STAT5a appears to be required for mammary gland 

development and lactogenesis, two processes mediated by prolactin. No effect on body 

growth was noted in STATSa-deficient mice (111) (179). In comparison, STAT5b- 

deficient mice have pronounced impairment in body growth, especially in males. Serum 

IGF-I levels were reduced in males but not in females. STAT5b gene disruption also 

leads to a major loss of multiple sexually differentiated responses associated with the 

sexually dimorphic pattern of pituitary GH secretion. Male-specific gene expression in 

the liver is decreased to wild-type female levels in STATSb-deficient males, while 

female-predominant liver gene products are increased in males to near female levels 

(179). Thus, STATSb was proposed as a key intracellular mediator of the stimulatory 

effects of GH pulses on male-specific liver gene transcription (197). STATSb was also 

reported to be involved in the lipolytic action, but not in the insulin-like effects, of GH on 

adipose tissue (54). STATSalb double knockout mice were also growth retarded, and the 

phenotypes are quite similar to those observed in GH-deficient (46) or GHR-deficient 



(21 1) mice. These studies demonstrate that the two STAT5 proteins have an essential, 

and often redundant, role in a spectrum of physiological responses associated with 

growth hormone and prolactin (179). Thus, both STAT5 proteins, acting in concert, are 

required for normal GH-dependent growth. 

Other signaling molecules In addition to JAK and STAT proteins, several other 

signaling molecules appear to be involved in GH signal transduction (Figure 5). The 

MAP kinases ERKs 1 and 2 have been shown to be tyrosine phosphorylated after GH 

treatment (26) (199) (12). GH-induced phosphorylation of Shc proteins is thought to lead 

to the activation of Ras-MAP kinase pathway (185). GH also stimulates the tyrosine 

phosphorylation of the insulin receptor substrates IRSl and IRS2 and their subsequent 

binding to the 85 kDa regulatory subunit of phosphoinositol 3 (PI-3) kinase (143, 169). 

These reactions probably initiate the insulin-like responses to GH. However, no 

difference of phosphorylation of IRSl was observed between refractory and sensitive 

adipocytes, suggesting therefore, that induction of refractoriness may be distal to IRSl 

phosphorylation or perhaps that the specific tyrosines phosphorylated may be different in 

sensitive and refractory cells (169). The PI-3 kinase inhibitor wortmannin blocks the 

ability of GH to stimulate lipid synthesis in rat adipocytes (144). Phospholipases that 

lead to formation of diacylglycerol and activation of protein kinase C are also regulated 

by GH (146) (160). GH also causes an increase in [Ca2+li in freshly isolated adipocytes 

(155) (156), IM-9 lymphocytes (94), insulin secreting INS-1 cells (157), rat hepatocytes 

(1 16) and in CHO cells expressing rat GHR (20) (84). Mutagenesis studies suggest that 

calcium signaling may be independent of JAK2 activation, since Box1 is not required for 



the GH-dependent calcium increase in CHO cells (20). Recently, it has been shown that 

a variety of proteins that are involved in the regulation of the cytoskeleton are also 

regulated by GH. These proteins include focal adhesion kinase (FAK), paxillin, tensin, 

CrkII, c-Src, c-Fyn, c-cbl and Nck (213) (212). 

Regulation of GWGHR Signaling 

The actions of cytokines are limited in both duration and magnitude, making it 

important to understand the mechanism by which their actions are negatively controlled. 

However, compared to the understanding of the stimulation of JAK-STAT pathway by 

cytokines (including GH), our knowledge of the termination of these signals is very 

limited. The high affinity and rapid irreversible binding of GH to its receptor results in 

reduction in available receptor concentration, which in turn would decrease the response 

of cells to the ligand stimulation. In addition to the rapidity of receptor turnover, in the 

current view, there are at least 3 other aspects that could contribute to the termination of 

GHIGHR signaling: GHR internalization and degradation, dephosphorylation of 

phosphorylated tyrosines on proteins such as GHR, JAK2 and STATs by phosphatases, 

and expression of negative regulators such as CISISOCS proteins (see below). 

GH internalization and degradation: In the absence of ligand, GHR has a short 

half-life of 45 minutes to 2 hours (74) (148) (18) (128) depending on the cell system used 

(45 minutes in rat adipocytes (74)). In the presence of ligand, the dimerized receptors are 

found to be ubiquitinated, endocytosed and degraded (173), and such endocytosis and 

degradation of GHR is proteasome-dependent (184). It was also reported that an intact 

ubiquitination system was required for activation of the GH-induced JAK-STAT 



signaling pathway (174). In rat adipocytes, the endosomaVlysosomal pathway is also 

operative for GHR degradation, since inhibitors of lysosomal acidification increase the 

half-life of '*I-~GH bound to receptors (75). 

Phosphatases: Because tyrosine phosphorylation plays such an important role in 

cytokine signaling, phosphatases are among the first candidates that have been examined 

for their ability to down-regulate cytokine signaling. The SH2-containing 

phosphotyrosine phosphatase SHP- 1 has clearly been demonstrated to down regulate Epo 

signal transduction (103). SHP-1 directly associates with JAK2 (97) and has been 

suggested to play a role in the dephosphorylation of JAK2JSTAT in liver in response to 

GH (81). Experiments with the related phosphatase, SHP-2, however, showed that it 

associates with GHR and JAK2, and implied a positive role of SHP-2 in GH signaling 

(101), perhaps by acting as an adaptor protein in the signal complex. Both SHP-1 and 

SHP-2 have been suggested as potential phosphatases that deactivate STAT5 before 

(206) or after STAT5 translocates to nucleus (141). GH stimulates the association of 

SHP-2 with Sirp (signal-regulatory protein) (172), which appears to negatively regulate 

GHRJJAK2 signaling (17 1). Other unidentified phosphatases were also suggested to be 

involved in dephosphorylation of GWGHR signaling molecules (65). 

Cytokine-inducible inhibitors of signaling CIS proteins (gtokine-inducible SH2 

protein) are a family of cytokine-inducible inhibitors of signaling. They have also been 

called suppressor of gtokine signaling (SOCS) or STAT-induced STAT inhibitor (SSI). 

Currently, there are 8 known members in this family: SOCSl (also called JAB for JAK 

binding protein, or SSI-I), CIS (CISl), SOCS (CIS) 2, 3 ,4 ,5 ,  6 (1 17) and 7 (132). All - 



members have a conserved 40-amino-acid SOCS box (approximately 50% identity) near 

their carboxyl termini and an SH2 domain amino-terminal of the SOCS box (Figure 6). 

The function of SOCS box remains unknown. In SOCSlIJAB, the SOCS box is not 

required for its inhibitory activity but rather seems to be involved in protein stability 

(130), possibly by interacting with elongins B and C which may target proteins to 

destruction by the proteosome (208). The N-termini exhibit little sequence identity 

among CISISOCS proteins. It was found that both the N-terminus and the SH2 domain 

of SOCS-1 were required for suppression of IL-6 and LIF signaling and inhibition of 

JAK activity (133). Recently, it was shown that the N-terminal domain but not the SOCS 

box confers specificity in terms of suppressing a GH-induced STAT5 responsive reporter 

gene construct (83). 

Studies of CISISOCS proteins revealed a number of differences in their 

expression patterns. SOCSl is mainly expressed in thymus, spleen and lung whereas CIS 

is ubiquitously expressed (170). CIS has a particularly high expression level in fat tissue, 

and also in kidney and muscle (182). Second, CIS can be induced by a wider range of 

cytokines than those that induce the other family members. Originally reported to be 

induced by Epo, IL-2 and IL-3, CIS has also been shown to be induced by IL-4, IL-7, IL- 

13, thrombopoietin (Tpo), granulocyte colony-stimulating factor (G-CSF), GM-CSF, 

IFN-y, TNF-a, IL-1, macrophage colony-stimulating factor (M-CSF), IL-6, IL-12, LIF 

(170) and GH (3). Only a small subset of these stimuli induce SOCS1. SOCS2 and 

SOCS3 are somewhat more broadly expressed than SOCS1, with SOCS3 showing a 

pattern of induction similar to that of CIS (170). 



CIS (CIS1) 
SOCS1 (JAB, SSI1) 
sOCs2 (CIS2) 

SOCS Box 

NH~-( I- COOH 

SOCS4 
SOCSS 
SOCS6 
SOCS7 SH2 Domain SOCS Box 

Figure 6. Illustrated structures of CISISOCS proteins. 



Experiments with CISISOCS proteins suggest that they function to negatively 

regulate signal transduction. Induction of expression of the CISISOCS proteins has been 

reported to occur in response to various cytokines, and once induced, each member of the 

CISISOCS family proteins appears to inhibit signaling in a different way. There does not 

seem to be a universal target for these proteins. The first member of this family, CIS, was 

originally identified as an immediate early response gene induced by IL-3 and Epo in 

Ba/F3 cells (205). The CIS gene is a direct target of STAT5 (120), and its product binds 

to the tyrosine phosphorylated IL3 receptor and Epo receptor (205). It partially 

suppresses STAT5 activation in HEK 293 cells and Ba/F3 cells. It was suspected that 

CIS could suppress STAT5 phosphorylation by competing for and masking tyrosine 

phosphate docking sites for STAT5 on the receptor (120). However, no competition for 

binding to the GHR between STAT5 and CIS proteins was observed (83). Consistent 

with a potentially important physiological role of CIS in GH signaling, transgenic mice 

constitutively overexprcssing CIS exhibited growth retardation, less adipose tissue, 

inhibition of GH-mediated gene expression in liver, as well as defects in the IL-2 

response of T cells (121), which are similarly observed in mice deficient of STAT5 (179). 

SOCSl was identified as a factor capable of inhibiting IL-6-induced 

differentiation of monocytic leukemic M1 cells into macrophages (170). At the same 

time JAB was cloned based on its ability to interact with the kinase domain of JAK2, and 

SSI-1 was cloned based on homology to the SH2 domain of STAT3 (129). Analysis of 

the sequences of SOCS1, JAB and SSI-1 revealed that these proteins were identical. 

Later studies demonstrated that SOCSl inhibits all four JAK family members when 



overexpressed in COS or HEK 293 cells (52). SOCSl also inhibited IL-6 induced 

tyrosine phosphorylation of STAT3, the IL-6 signaling subunit gp130, and JAK2 (176). 

However, CIS and SOCS3 were unable to inhibit the intrinsic kinase activity of JAK2. 

Therefore it was proposed that they inhibit cytokine signaling at a step distal to JAK 

activation. Later it was found that the inhibition of SOCS3 on JAK2 activity is GHR- 

dependent (83) (142). Deletion of JABlSOCSl in mice results in perinatal lethality that is 

related to its inhibition to interferon y activation (5, 115), whereas deficiency of 

SOCS3lCIS3 in mice causes embryonic lethality associated with marked erythrocytosis 

(1 14). SOCS2 was found to interact with the insulin-like growth factor-I (IGF-I) receptor 

in mouse fibroblasts and HEK 293 cells (44). Human SOCS3, which has a 90% 

nucleotide and 97% amino acid homology to murine CIS, inhibits STAT3 

phosphorylation and cell differentiation in LIF-treated Ml'cells. Overexpression of 

SOCS3 in corticotroph AtT-20 cells inhibits LIF-induced phosphorylation of gp130 

(signaling subunit of the LIF receptor) and STAT3, ACTH secretion, and POMC gene 

expression (13). SOCS3 gene expression was found to be preferentially induced by GH in 

mouse liver and 3T3-F442A cells. In addition, expression of SOCS1 and SOCS3, but not 

CIS and SOCS2, inhibited the ability of GH to regulate GH-responsive gene expression 

in CHO cells (3). Furthermore, SOCS3 was recruited to gp130 at the SHP-2 binding site 

directly or through SHP-2, and the activities of the two inhibitors, SOCS3 and SHP-2, 

appeared to be functionaly linked (154) (131). Recently it was reported that insulin, 

whose receptor does not belong to the cytokine receptor superfamily, induces the 

expression of SOCS3 gene as well. SOCS3 inhibits insulin activation of STAT5b without 



modifying the insulin receptor kinase activity, possibly by competing for the STAT5b 

binding motif in the receptor (50) 

In addition to inhibiting activities of kinases or other phosphorylated signal 

molecules of cytokines, CISISOCS proteins apparently can modulate signaling by 

another mechanism: stimulating protein degradation. The 37 kDa form of CIS is 

ubiquitinated and might be involved in directing the EpoRtCIS complex to the 

proteasome-mediated degradation of the EpoR (188). SOCSl was also found to target 

the hematopoetic specific guanine nucleotide exchange factor, VAV, for ubiquitin- 

mediated protein degradation (42). 

The data suggest that CISISOCS may act through multiple mechanisms to 

regulate cytokine signaling. Elucidation of the mechanisms and determination of their 

physiological importance will greatly enrich our understahding of signal transduction 

pathways of cytokines in general, and of GH, in particular. 



SPECIFIC AIMS 

As described earlier, adipose tissue is a major target of GH action. Compared to 

other GH target tissues, its lack of receptors for IGF-I facilitates the study of the direct 

actions of GH without the complication of the autocrine effects of IGF-I. Refractoriness 

refers to insensitivity of adipose tissue or adipocytes to insulin-like stimulation by GH. 

The mechanism for refractoriness is unclear. It is possible some molecules can 

negatively regulate certain GH actions and thereby suppress the insulin-like effects of 

GH. Discovery of molecules responsible for such suppression will not only clarify the 

mechanism leading to refractoriness, but also help to better understand the biological 

functions of GH. The function of CISISOCS proteins as negative regulators of cytokine 

signaling makes them good candidates for proteins that might regulate insulin-like 

sensitivity and refractoriness of adipocytes (Figure 7). 

This study was initiated to investigate the functions of CISISOCS proteins in GH 

actions, in particular, in refractory phenomenon. The specific aims of this study are: 

I. To determine if GH regulates CIS/SOCS protein gene expression in rat 

adipocytes. 

11. To identify molecules that CISISOCS proteins interact with upon GH stimulation. 

m. To investigate if CISISOCS proteins are involved in GH actions and in 

refractoriness. 
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Figure 7. Illustration of the hypothesized involvement of CISISOCS proteins in 

GH-induced refractoriness. 



MATERIALS AND METHODS 

Materials 

The plasmids pcDNA31myc-CISISOCS that contain the cDNA for CIS proteins 

(1 17) and the polyclonal antibodies for CIS and SOCS3 (205) were kindly provided by 

Dr. A. Yoshimura from Kurume University, Kurume, Japan. Plasmids pLM108ffiHR and 

pcDNAIAmp-ffiHR which contain full length cDNA of rat GHR (rGHR) were kindly 

provided by Dr. N. Billestrup (Hagedorn Research Institute, Gentofte, Denmark). 

Plasmids pMetlpGHR, TR4 and Fc8 which contain wild type, mutated or truncated 

porcine GHR cDNA were provided by Dr. X. Wang from Massachusetts General 

Hospital, Boston, MA. Plasmid pGEX 4T-3 was purchased from Amersham/Pharmacia 

Biotech (Piscataway, NJ). All oligonucleotide primers here synthesized by Gibco Life 

Technologies (Rockville, MD). 

Rabbit polyclonal anti-GHR Ab2941 that was raised against the intracellular 

domain of the rat GHR fused to the maltose binding protein was prepared in this 

laboratory (57) and used for Western blotting analysis. The affinity purified Ab2941 was 

used for immunoprecipitation. Rabbit polyclonal anti-GHR BB74 was kindly provided by 

Dr. W. R. Baumbach (American Cyanamid, Princeton, NJ). Horseradish peroxidase 

(HRP)-conjugated anti-phosphotyrosine monoclonal antibodies: 4G10 was from Upstate 

Biotechnology (Lake Placid, NY), PY99 was from Santa Cruz Biotechnology Inc. (Santa 

Cruz, CA). HRP conjugated anti-myc ployclonal antibody was purchased from 

Invitrogen (San Diego, CA). Spent medium of anti-myc hybridoma 1-9E10 culture was 
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kindly provided by Dr. J. Leonard (University of Massachusetts Medical Center, 

Worcester, MA). Anti-Sirp antiserum was a gift from Dr. S. Frank (University of 

Alabama at Birmingham, Birmingham, AL). Anti-rabbit Ig, HRP-linked whole antibody 

was purchased from AmershamIPharmacia Biotech (Piscataway, NJ) and used as 

secondary antibody in Western blot analysis. All other polyclonal antibodies were from 

Santa Cruz Biotechnology Inc. (Santa Cruz, CA). 

293A cells are human embryonic kidney (HEK) 293 cells that stably express high 

levels of the rat GHR. They were prepared by Dr. G.P. Frick in this laboratory. Parental 

CHOK1, CHOA (stably express the 120 kDa rat GHR) and CH04 (stably express a 84 

kDa rat GHR) cell lines were kindly provided by Dr. C. Carter-Su (University of 

Michigan Medical School, Ann Arbor, MI) from cell lines originally developed by N. 

Billestrup (Hagedorn Research Institute, Gentofte, Denmhk). Mouse L cells (MLC) and 

W10 cells (MLC stably express the porcine GHR) were provided by Dr. X. Wang 

(Massachusetts General Hospital, Boston, MA). 

Rat adipocytes 

Rat adipocytes were prepared from rat epididymal and perirenal fat and used as 

our primary cell model in studies of GH action. Male rats of the CD strain were obtained 

from the Charles River Laboratories, Inc. (Kingston, NY) and studied when they attained 

body weights of 160-200 g. Epididymal and perirenal fat from several rats were pooled 

and minced for preparation of isolated adipocytes according to the procedure of Rodbell 

(145) as modified in this laboratory (78). After digestion for 20 min with 1 mg/ml 

collagenase (lot 143710, type A, Boehringer Mannheim Biochemicals, Indianapolis, IN) 



in KRPG (Kreb's Ringer phosphate buffer contains 5.5 mM glucose) that contains 40 I 
I 

mglml bovine serum albumin (BSA: Metrix fraction IV, Reheis Chemical Co., Phoenix, 1 
I 
I 

AZ), the cells were washed four times in KRPG containing 10 mgtml BSA, resuspended I 

t 
1:3 (voVvol) in the same buffer and incubated at 37 O C .  

I 

"Refractory cells" were prepared by stimulating freshly isolated cells with 100 nglml GH 
I 

for 1 hour, followed by incubation in GH-free KRPG buffer (with 10 mglml BSA) for 2 

more hours. "Sensitive cells" were obtained by incubating freshly isolated cells in GH- 

free KRPG buffer (with 10 mglml BSA) for 3 hours. Both freshly isolated and GH- 

pretreated cells are refractory to GH-induced insulin-like effects, whereas sensitive cells 

are responsive to GH-induced insulin-like effects. 

RNA extraction and Northern Blot anulysis 

Northern blot analysis was used to examine GH regulation of CISISOCS mRNA 

expression. Total RNA was extracted from rat adipocytes using guanidinium 

thiocyanate-acid phenol (30). Adipose tissue or adipocytes were homogenized in GTC 

solution (4 M guanidinium thiocyanate, 25 mM sodium citrate, pH 7.0, 0.5% N-lauyol 

sarcosine, 0.1 M 2-mercaptoethanol) (3 mllg adipose tissue) using a Dounce 

homogenizer. After centrifugation at 10,000xg for 10 minutes at 4"C, the aqueous 

portion was mixed with 0.1 volume 2 M NaAc, pH 4.7, 1 volume phenol and 0.2 volume 

chloroform/isoarnyl alcohol (24: 1). After centrifugation the clear aqueous portion of the 

mixture was precipitated with isopropanol. The pellet was resuspended in GTC solution 

and further precipitated with 70% ethanol. The precipitated total RNA was re-dissolved 

in DEPC(diethy1 pyrocarbonate)-treated water. 
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Total RNA was fractionated by electrophoresis through 1 % agarose-formaldehyde 

gels and transferred and subsequently UV cross-linked onto GenePlus membrane (NEN 

Life Science Products, Boston, MA). Random primed, 32~-labeled probes were prepared 

from full-length cDNA inserts encoding CIS, SOCS1, SOCS2, SOCS3 and SOCS4 using 

a random primed DNA labeling kit (Boehringer Mannheim Biochemicals, Indianapolis, 

IN). Membranes were pre-hybridized in pre-warmed Rapid-hyp buffer (Amersham 

pharmacia Biotech In., Piscataway, NJ) for 30 minutes at 65OC, then hybridized with 

radiolabeled probes for 2.5 hours. Membranes were washed for 20 minutes in 2xSSC 

(20xSSC = 3 M NaCl, 0.3 M sodium citrate), O.l%(w/v) sodium dodecylsulfate (SDS) at 

room temperature followed with 2x15 minute washes in O.lxSSC, O.l%SDS at 65OC. 

Membranes were then exposed to X-ray film with an intensifying screen at -70°C. 

Cell culture and transfections 

Mouse L cells, CHO cells, HEK 293 cells and 293A cells were maintained in 

~ ~ l b e c c o ' s  Modified Eagle Medium with 4.5 g/L glucose (DMEM high) (Gibco life 

technologies, Rockville MD) supplemented with 10% fetal bovine serum (Gibco life 

technologies, Rockville MD). Transient expression of proteins was accomplished using 

either the calcium phosphate precipitation method (adapted from (102)) or Superfect 

reagent from Qiagen (Santa Clarita, CA). Cells grown in 10Ox20rnm tissue culture 

dishes were transfected with 10 pg plasmid DNA. For transfection by calcium phosphate 

precipitation, the cells were 40-50% confluent by the time of transfection. DNA 

were made by mixing eukaryotic expression vector with lml lxHEBS (5 g/L 

HEPES, 8 g/L NaC1, 0.37 g/L KCl, 0.125 g/L Na2HP0,.2H20, 1 g/L glucose, pH 7.1) 



followed by dropwise addition of 50 p1 of 2.5 M CaCl, solution. The precipitates were 

left at room temperature for 15 minutes and subsequently added dropwise to the dish 

containing the cells. The medium was removed after 4 to 16 hours. The transfected cells 

were washed once with phosphate buffered saline (PBS) and incubated in cell growth 

medium for 48 hours before harvesting. For transfection using Superfect reagent, cells 

were 60-80% confluent at the time of transfection. Plasmid DNA was first diluted with 

300 pl cell growth medium containing no antibiotics or serum and then mixed with 60 pl 

Superfect reagent. After incubation at room temperature for 10 minutes, the mixture was 

diluted with 3 ml cell growth medium and added to PBS-washed cells. Three hours later, 

the medium containing DNA and transfection reagent was removed. The cells were 

washed with PBS, then incubated in cell growth medium. 

Cell stimulation and protein extraction i 

Rat adipocytes were incubated in 1:3 KRPG buffer with 10 mglml BSA at 37 OC. 

hGH was added to the buffer to a final concentration of 500 nglml. Cells were incubated 

for 2 minutes or longer as indicated, washed with ice cold PBSl0.4 mM sodium 

orthovanadate, and lysed in 1:2 (voVvol) cell lysis buffer (50 mM Tris-HC1, pH 8.0, 150 

mM NaC1, 1% Triton X-100, 10% glycerol, 100 mM NaF, 2 mM 

ethylenediaminetetraacetic acid (EDTA), 1 mM phenylmethylsulfonyl fluoride (PMSF), 

1 mM sodium orthovanadate, 10 mM benzamidine, 10 pglml aprotinin). After 

centrifugation at 12,000xg for 10 minutes at 4'C, the supernatants were subjected to 

irnmunoprecipitation as described below. 



Cultured cells were serum-starved in DMEM high/O.S% BSA for 16 hours, hGH 

was added directly to the medium at a final concentration of 500 nglml. Cells were 

incubated for 2 minutes or longer as indicated in the text, washed with ice cold PBSlO.4 

mM sodium orthovanadate, and lysed in 1 ml cell lysis buffer. The lysed cells were then 

scraped off the dish. After centrifugation at 14,000xg for 20 minutes at 4OC, the 

supernatants were subjected to either immunoprecipitation or polyacrylamide gel 

electrophoresis (PAGE). 

Immunoprecipitation and Weste m Blotting 

Immunoprecipitation was used to enrich the protein of interest from cell lysates 

by its specific antiserum. It was also used to study the interaction of a particular protein 

with other molecules under appropriate condition, which was referred to as co- 

immunoprecipitation. The precipitates were then analyied by Western blotting to 

examine the presence and/or the abundance of a particular protein by using an antiserum 

against this molecule. Practically, cell lysates were mixed and rotating with the 

appropriate antibody and 25 p1 protein A agarose beads (1:4 suspension) overnight at 

4OC. The immune complexes were then washed 4 times with TSA (10 mM Tris-HC1, pH 

8.0, 140 mM NaC1,0.025% NaN,)/O.l% Triton X-100. The proteins were released from 

the protein A agarose beads by boiling in Laemmli sample buffer (104) for 2 minutes and 

were resolved by SDS-PAGE prior to immunoblotting. 

Proteins were denatured and separated by SDS-PAGE, transferred to PVDF-plus 

membrane (Micron Separation Inc., Westborough, MA). After blocking with 20% horse 

serurn1TSA (for anti-phosphotyrosine) or 5% milk in washing buffer (10 mM Tris, pH 



7.4, 150 mM NaC1, 0.2% Tween 20) for 1 hour, the membranes were immunoblotted 

with appropriate primary and secondary antibodies (diluted in washing buffer). Detection 

of the blots was achieved by ECL-plus reagents (Amersham Pharmacia Biotech Inc., 

Piscataway, NJ). For stripping and reprobing, the membranes were washed with TSA, 

followed by incubating in stripping buffer (60 mM Tris, pH 6.8, 2% SDS, 0.7% 2- 

mercaptoethanol) at 50 "C for 30 minutes. The stripped membranes were then rinsed with 

washing buffer and ready for reprobing. 

Immobilization of antibody to protein A agarose 

To avoid the interference of the light chain of immunoprecipitating antibody (-50 

kDa) in Western blotting when detecting CIS or SOCS3 (29-40 kDa), the antisera used 

for immunoprecipitation were immobilized on protein A agarose beads using the 

crosslinking reagent dimethylpimelimidate (DMP). Briefly, protein A agarose beads 

were suspended in TSA, and CIS or SOCS3 antisera were added and allowed to bind at 

4OC for 2 hours with gentle rocking. The agarose beads were then washed with TSA and 

0.1 M sodium borate buffer, pH 9.0, and resuspended in sodium borate buffer. 0.2 M 

freshly prepared DMP was added and the mixture was incubated at 23OC for 30 minutes 

on a rocker. The reaction was stopped by centrifugation and aspiration of the 

supernatant. The agarose beads were then resuspended in 0.2 M ethanolamine to cap any 

partially reactive cross-linking reagent. The beads were washed with TSA and 

resuspended in TSA and ready to use. 



Deglycosylation reaction 

Glycosidase F (Endo F) removes N-linked carbohydrate moieties from 

glycoproteins. In the deglycosylation reaction, immune complexes were boiled for 2 

minutes in 15 p1 of 0.4% SDS, 1% 2-mercaptoethanol, mixed with 40 p1 of a solution 

containing 1% NP-40, 67 mM NaPi, pH 7.4, 2 mM sodium orthovanadate, protease 

inhibitor mixture and 2 pl N-glycosidase F (0.043 unidpl, Boehringer Mannheim 

Biochemicals, Indianapolis, IN), and incubated at 37OC overnight. The reaction was 

stopped by addition of Laemmli sample buffer and boiling for 2 minutes. 

Generation of Glutathione S-Transferase (GST)-CIS fusion protein and preparation of 

GST-CIS beads for pulldown assay 

A GST-CIS fusion protein was generated to precipitate (pulldown) CIS and CIS- 

associated proteins, in the same manner as the antibody to CIS. The Eco RVXba I 

fragment of pcDNA31myc-CIS which contains the entire coding region sequence of CIS 

cDNA was digested and inserted into pBluescript vector to acquire appropriate restriction 

sites for cloning. The Eco RItNco I fragment was then excised from pBluescriptlCIS and 

ligated to pGEX4T-3 digested by the same enzymes. The DNA junctions in pGEX4T- 

3lCIS so generated were confirmed by sequencing analysis. Expression of this construct 

produces a GST-CIS fusion protein with GST at the N-terminus of CIS protein and a 

thrombin cleavage site between GST and CIS sequences. 

Fusion protein induction and affinity purification on glutathione Sepharose 4B 

beads (GST beads) were performed as suggested by the manufacturer. Briefly, bacterial 

cells were allowed to grow to OD,oo=l.O at 30°C followed by induction with 0.1 mM 



isopropyl-1-thio-P-D-galactopyroanoside (IPTG) for 2 more hours. Cell lysates were 

prepared by resuspending cell pellets in PBS/l% Triton X-100 and sonication. The 

fusion protein was bound to 20 p1 GST beads (1:l slurry in PBS) followed by extensive 

washing before mixing with cell lysates and incubation at 4OC overnight. To assess the 

bound GST-CIS fusion protein, after washing with cell lysis buffer 5 times, the fusion 

protein was dissociated and denatured in Laemmli sample buffer and resolved on SDS- 

PAGE. The fusion protein was examined by Coomassie blue staining and destaining or 

Western blotting. 

Afinity purification of pl20 using immobilized GST-CIS I 
GST-CIS fusion protein was prepared from 3 liters bacterial culture (enough to 

I 

produce 6 mg GST-CIS) and bound to a 2 ml glutathione Sepharose 4B column. Cell 

lysates were prepared from 3 x 1 0 ~  GH-stimulated 293A' cells, and the lysates were I 
allowed to pass through a prebound GST glutathione Sepharose 4B column at 4 ' ~ .  The 

flow through was then passed through the prebound GST-CIS glutathione Sepharose 4B 

column. The columns were washed with 500 ml cell lysis buffer and eluted with 10 ml 

elution buffer (100 mM Tris-HC1, pH 8.0, 20 mM reduced glutathione, 120 mM NaC1). 

The eluates were collected in 1 ml fractions and examined by SDS-PAGE followed by 

Coomassie blue staining and destaining to estimate the amounts of GST-CIS fusion 

protein in each fraction. The fractions that contained GST-CIS were combined and 

diluted with 50 mM Tris-HC1, pH 7.4 and concentrated to lml with Centricon 30 column 

(Millipore Corporation, Bedford, MA) to get rid of reduced glutathione. Samples were 

then added with SDS to 0.1% final concentration and boiled for 5 minutes to denature 



proteins. The prepared sample was immunoprecipitated with PY99-agarose as a second I 
11 

purification step. The precipitates were boiled in Laemmli sample buffer and resolved on 

7.5% SDS-PAGE and visualized by silver staining. 

Generation of the GHR with a thrombin cleavage site 

A thrombin cleavage site (Leu Val Pro Arg Gly Ser) was introduced into the 

extracellular domain of the GHR C-terminal to the WSXWS motif between amino acids 

229-230 by overlapping PCR. The sequences of the oligonucleotides used are: PI: 5' 

G'IT TGC CTG GGA TCC GTG 3', P2: 5' TCC CCT AGG TAC GAG TAC IITC ACT 

GAA CTC GCT G 3', P3: CTC GTA CCT AGG GGA TCA CTC CGT GTA ACG TIT 

CCT 3' and P4: ACT CCG AGG TAC CAT CA 3'. The underlined sequence encodes the 

thrombin cleavage site. In the first round of PCR, P1 and P2 were used as primers to 

synthesize the ffiHR cDNA fragment bp678-927, while P3 and P4 were used as primers 

to synthesize fragment bp927-1424. The two products from the first round PCR were 

then allowed to anneal and served as a template for the second round of PCR using P1 

and P4 as primers. After purification using QIAquick PCR purification kit (Qiagen, 

Santa Clarita, CA), the final PCR product was digested by Bam HI and Kpn I, and ligated 

to pcDNAIArnp-rGHR digested with the same two restriction enzymes. The sequence of 

the construct was confirmed by sequencing analysis. The expressed protein, GHR-T, 

generated from this construct can be cleaved by thrombin into 2 fragments: one 

composed of 233 residues and containing the majority of the extracellular domain, and 

the other containing the remaining 19 residues of the extracellular domain, the 

transmembrane domain and the intracellular domain. 



Thrombin digestion reaction 

Immune precipitates or GST-CIS precipitates were resuspended 1: 1 in PBS with 

0.02 uIp1 human thrombin (Novagen, Madison, WI). After incubation at 37OC for 2 

hours, the protein A beads or GST beads were pelleted by centrifugation and boiled in 

Laemmli sample buffer for 2 minutes. The released molecules were analyzed by SDS- 

PAGE and Western blotting. I 

Generation of His-tagged GHRs 
I 

A 6xhistine sequence was placed on the C- or N-terminus of the GHR. C- ~ 
I 

terminal His-tagged rGHR was generated by adding a 6xhistine sequence to the 3' end 

1 

just before the stop codon of GHR cDNA. In order to avoid mutation generated by 1 

synthesizing a long sequence by PCR, primers were chosen to only synthesize part of the 

GHR cDNA (from bp1125 to the stop codon). The primeis used are: 5' GGA AGA TCT 

TCT CAA GGA 3' and 5' ATG GGC CCG CGG CCG CCTA ATG GTG ATG GTG 

ATG ATG CTG CAT GAT TIT GTT CAG 3'. The underlined sequence codes for the 

6xhistine epitope tag. After PCR, the His-tagged sequence was digested with Bgl II and 

Apa I, and then ligated to pcDNAIAmp-rGHR digested with the same enzymes. N- 

terminal His-tagged rGHR was generated from the plasmid pRcCMV-NHisffiHR, which 

contains the cDNA for N-terminal His-tagged short isoform of ffiHR (GHRs) previously 

generated. The sequence coding for 6xhistine was inserted into the cDNA after the 

signal sequence of rGHRs by overlapping PCR. Because the cDNA sequence of GHRs is 

the same as that of the extracellular domain of GHR, except that coding for the 

hydrophilic tail, NHisffiHR was generated by this cut-and-paste method. The rGHR 



fragment 317-2549 was digested from pcDNAIAmp-rGHR with restriction enzymes Apa 

I and Bsu 361, and was ligated to pRcCMV-NHisffiHR, that was digested with the same 

enzymes. The NHisffiHR so-generated has a Gxhistine epitope tag at the N-terminus 

inserted just after the first amino acid, methionine. The DNA junctions of both 

CHisrCHR and NHisrGHR constructs was confirmed by sequencing analysis. 

GH binding assay 

Cells were serum starved overnight before stimulation with 500 nglml hGH (10% 

l Z 1 - h ~ ~  + 90% hGH) for 2 minutes. Cells were then lysed with cell lysis buffer and 

scraped off the culture dish. After centrifugation at 12,000xg for 10 minutes, the cell 

lysates were transferred to a fresh tube and hGH (10% ' 2 5 ~ - h ~ ~  + 90% hGH, from the 

same preparation as that used to stimulate cells) was added to a final concentration of 20 
\ 

nglml. Co-irnmunoprecipitation of lZ1-hG~ was achieved by adding Ab2941 ( 1 : l O )  or 

aCIS (1:500) and 25 pl(1:4 in TSA) protein A agarose to the lysate mixture and rotated 

at 4°C overnight. The precipitates were pelleted, and washed thoroughly, and counted by 

a y counter. Cell lysate with normal serum or no antiserum added was used as blank to 

substract nonspecific binding. To calculate receptor levels from the amount of bound 

GH, a 1: 1 complex was assumed (15). 



i 

I 
RESULTS AND DISCUSSION 

Section I 

Involvement of CISISOCS Proteins in GH Actions in Rat Adipocytes 
il 

A number of cytokhes induce CISISOCS gene expression, including GH. GH 

has been shown to induce CISISOCS mRNA expression in both 3T3-F442A cells and 

mouse hepatocytes (3). Adipose tissue is an important target of GH action and thus a 

good model to investigate the mechanism of GH effects. In order to determine the 

involvement and function, if any, of CISISOCS proteins in GH action in adipocytes, it is 

important to determine if GH regulates CISISOCS gene expression in these cells, and the 

molecules that might interact with CISISOCS proteins upoh GH stimulation. 

Results 

Expression of CIS/SOCS genes in rat adipocytes 

In freshly isolated adipocytes, a modest level of CIS mRNA was detected by 

Northern blot analysis (Figure 8). The expression of mRNAs for SOCSl and SOCS3 

was low, and mRNAs for SOCS2 and SOCS4 were undetectable in both freshly isolated 

and GH-deprived (sensitive) cells. Levels of mRNA for SOCSl and CIS declined within 

3 hours of incubation in the absence of GH (compare the basal levels from freshly 

isolated cells to those from sensitive cells). Upon the addition of GH, induction of CIS 

mRNA was apparent at 30 minutes, and increased even more at 60 minutes. The increase 
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Figure 8. GH up-regulates CISISOCS gene expression in rat adipocytes. Total RNA 

(15 pgnane) was isolated from freshly isolated or GH-deprived (sensitive) adipocytes 

treated with hGH for the indicated times. RNAs were resolved by agarose gel electro- 

phoresis, then transferred to nylon membranes. The membranes were hybridized with 

individual 32P-labeled CISISOCS cDNA probes. The lengths of exposure time for 

autoradiography were as indicated and reflect signal strength. The results shown are 

representatives of three experiments. 
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in SOCS3 mRNA was dramatic at 30 minutes and the higher level was maintained for at 

least 60 minutes, and appeared to occur more rapidly in freshly isolated cells than in GH- 

deprived cells, in which the level of mRNA was greater at 60 minutes than at 30 minutes. 

The induction of SOCSl became apparent by 60 minutes in both freshly isolated and GH- 

deprived cells, but the level was so low that it took longer exposure time for the 

autoradiography. In contrast, GH had no obvious effect on gene expression of SOCS2 

and SOCS4. Notably, similar patterns of CIS gene expression were observed in both 

freshly isolated (refractory) and GH-deprived (sensitive) adipocytes after GH treatment. 

However, CIS gene expression levels were more prominent in freshly isolated adipocytes 

than in sensitive cells. From these results, it is evident that CIS, SOCS1 and SOCS3 are 

responsive to GH treatment in rat adipocytes. 

Because the level of mRNA is not always indicative of protein expression, the 

amounts of CIS, SOCSl and SOCS3 proteins in rat adipocytes were evaluated by 

Western blot analysis using antisera specific to these proteins. While it is difficult to find 

these proteins directly in whole cell lysates, CIS and SOCS3 were readily detectable after 

immunoprecipitation with aCIS or aSOCS3 antisera. However, the signal for SOCS3 

was much weaker than that for CIS, so it took much longer exposure time to detect 

SOCS3, which is consistent with the low basal level of SOCS3 mRNA in adipocytes as 

shown in Figure 8. CIS was detected as two bands with molecular mass of 37 kDa and 

32 kDa (Figure 9). It has been demonstrated in a transcription-translation experiment that 

the in vitro translated protein corresponds to the 32 kDa form, and the 37 kDa form is a 

ubiquitinated modification of CIS (188). SOCS3 protein has a molecular mass of about 



CIS 

Figure 9. Detection of basal levels of CIS and SOCS3 proteins in rat adipocytes. 

Cell lysates from freshly isolated (F), refractory (R) or sensitive (S) adipocytes were 

prepared and immunoprecipitated with &IS or aSOCS3 immobilized on protein A 

agarose beads. The samples were analyzed by SDS-PAGE followed by Western 

blotting with aCIS or aSOCS3 antiserum, respectively, and visualized by ECL plus 

detection system. 



29 kDa. In agreement with the Northern blot data, CIS protein was more abundant in 

freshly isolated and refractory adipocytes than in the GH-deprived, sensitive cells, which 

is consistent with the up-regulation of CIS gene expression by GH. In contrast, SOCS3 

levels remained relatively constant in freshly isolated, sensitive and refractory adipocytes. 

This suggests that there may be other transcriptional-translational regulation or protein 

degradation mechanisms involved to maintain a constant level of SOCS3 level even 

though its mRNA level was augmented in the presence of GH for 30 minutes. We were 

unable to examine SOCSl protein expression, because it was not detected in the whole 

cell lysate by SOCSl antibody and no SOCSl antibody was available for 

immunoprecipitation. Considering its low mRNA level as shown by Northern analyses 

described above, it would not be surprising if SOCS 1 is undetectable in adipocytes. 

CIS and SOCS3 protein levels were further examined in consideration of GH's 

secretion pattern of one pulse every 3-4 hours. GH's pulsatile secretion pattern in male 

rodents was mimicked by challenging adipocytes with GH for 1 hour, followed by 

incubating in GH-free buffer for 4 more hours. CIS protein levels were dramatically 

increased by GH in the first hour, and declined to the basal level 2-3 hours later during 

incubation in GH-free buffer (Figure 10). In contrast, the amount of SOCS3 did not 

show any significant variation. However, both CIS and SOCS3 maintained detectable 

basal protein levels in adipocytes for at least 4 hours even in the absence of GH. 

Together, these results demonstrated that GH up-regulates CIS and SOCS3 gene 

expression, suggesting that both CIS and SOCS3, but especially CIS, might be down- 

stream mediators involved in GH action in rat adipocytes. 
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Figure 10. GH regulation of CIS and SOCS3 proteins in rat adipocytes. Freshly 

isolated adipoctyes were incubated in buffer with 500 nglml hGH for 1 hour, 

followed by incubation in GH-free buffer for indicated length of time. The lysates 

were immunoprecipitated with immobilized aCIS or aSOCS3 and analyzed by 

SDS-PAGE followed by immunoblotting with aCIS and aSOCS3, respectively. 



A tyrosine phosphorylated I20 kDa protein co-immunoprecipitates with CIS following 

GH stimulation in adipocytes 

The existence of an SH2 domain in CIS/SOCS proteins suggests that these 

proteins may interact with tyrosine phosphorylated molecules. This interaction could be 

essential for exertion of their physiological effects. Candidate molecules that may bind 

these peptides were screened using a co-immunoprecipitation assay with CIS or SOCS3 

as bait molecules. The precipitates were then analyzed by Western blotting. In lysates 

from GH-stimulated rat adipocytes, a highly tyrosine phosphorylated protein (or proteins) 

appeared to co-precipitate with CIS as detected by anti-phosphotyrosine antibody 4G10 

(Figure 11A). This protein has an apparent molecular weight of approximately 120 kDa, 

which is similar to that of the tyrosine phosphorylated GHR. This protein is referred to 

as p120. The abundance of tyrosine phosphorylated p120 peaked at 2 minutes, subsided 

by 10 minutes, decreased to a very low level by 30 minutes post GH treatment, and 

disappeared by 60 minutes. The progressive attenuation of the p120 band could be due to 

either the change of its phosphorylation status, or its association with CIS. On the other 

hand, no GH-responsive phosphorylated protein was detected that interacts with SOCS3 

by co-immunoprecipitation (Figure 1 1 B). 

As described previously, CIS associates with the tyrosine phosphorylated Epo 

receptor or the IL-3 receptor P chain following stimulation with Epo or IL-3, respectively 

(205). GHR belongs to the same receptor family as the Epo and the IL-3 receptors. 

Therefore, it is likely that CIS might associate with tyrosine phosphorylated GHR 

following GH stimulation. Furthermore, p120 shares the same apparent molecular weight 
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Figure 11. A tyrosine phosphorylated 120 kDa protein (p120) co-immunoprecipitates 

with CIS following GH treatment in adipocytes. Freshly isolated rat adipocytes were 

prepared and treated with hGH for the indicated times. The cells were then lysed and 

the lysates were subjected to immunoprecipitation with aCIS (A) or aSOCS3 (B). 

The precipitated proteins were analyzed by SDS-PAGE followed by Western blotting 

probed with anti-phosphotyrosine 4G10, and visualized by ECL plus detection system. 



on SDS-PAGE with the GHR and both proteins are tyrosine phosphorylated in GH- 

stimulated cells. This evidence supports the hypothesis that p120 may be the GHR. 

To test this hypothesis, the membrane shown in Figure 11A was stripped and 

reprobed with Ab2941, an antiserum that was raised against the intracellular domain of 

the GHR. Ab2941 did not detect any signal at the position of 120 kDa, nor did another 

GHR antiserum BB74 that was raised against the extracellular domain of the GHR. The 

same result was obtained when proteins in lysates prepared from 2x10~ adipocytes were 

immunoprecipitated with aCIS and analyzed directly by immunoblotting with Ab2941 or 

BB74. Subsequently, other proteins with similar electrophoretic mobility (or molecular 

weight) were tested by Western blot analysis using corresponding antibodies. The tested 

proteins included the IL-3 receptor P chain, gp130, JAK2, Sirp (172), FAK, c-cbl and 
I 

p130CAS (212). However, none of these antibodies recognized p120. Thus we failed to 

identify p120 by immunoblotting with available antibodies. 

There could be several explanations for this result: First, p120 is distinct from the 

GHR or any of those proteins mentioned above. Secondly, p120 is the GHR or one of 

those proteins mentioned above, but the GHR antibodies or the other antibodies used 

were much less sensitive in immunoblotting than 4G10. Thirdly, p120 is the GHR or one 

of those proteins and the detecting antibody is no less sensitive than 4G10, but because 

p120 is phosphorylated on multiple tyrosines, it has many more antigenic sites and hence 

is more easily detected by aPY. 

To test the possibility that the failure of GHR antibodies to detect p120 is due to 

lower sensitivity of GHR antibodies than the aPY, 4G10, the antibodies were tested in 



parallel. We prepared immunoprecipitates from different amounts of lysates of GH- 

stimulated adipocytes using affinity purified Ab2941 as the immunoprecipitation 

antibody. The precipitates were analyzed on duplicate membranes probed with either 

Ab2941 or 4G10 (Figure 12). Assuming that using GH at a concentration (500 nglml) 

that was 25 times higher than the Kd for the receptor to stimulate the cells is likely to 

result in all the GHR in cells being tyrosine phosphorylated (Kd=20 nglml, (78)), Ab2941 

showed the same, if not greater, sensitivity in recognizing GHR compared to that of 

4G10. These data suggest that the failure to detect p120 by Ab2941 is not due to its 

lower sensitivity, but rather that p120 may not be GHR or that only a small fraction of 

highly phosphorylated GHR protein associates with CIS. 

The third possibility could be addressed by using a larger sample size or different 

system to facilitate efficient detection by immunoblotting. However, even when lysates 

from a ten times larger sample, i.e., 4x10' GH-stimulated adipocytes were used for 

immunoprecipitation of p120, no specific signal at the position corresponding to 120 kDa 

was detected by immunoblotting with GHR antibodies, whereas again p120 was easily 

detected by 4G10. 

CISprotein complexes with the GHR 

The similar molecular weight and tyrosine phosphorylation status of p120 and the 

GHR complicated the study of the relationship of CIS to the GHR. In order to 

distinguish p120 from the GHR, a sequential immunoprecipitation procedure was 

employed to examine the interaction of CIS to the GHR and to p120. Whole cell lysates 
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Figure 12. Comparison of the immunoblotting sensitivities of Ab2941 and 4G10. Lysates 

from GH-stimulated adipocytes (Lane 1,25 pl; Lane 2,50 p1; Lane 3, 100 p1; Lane 4,250 p1; 

Lane 5,500 pl) were immunoprecipitated with Ab2941. The precipitates were loaded on 2 

gels for SDS-PAGE, followed by immunoblotting with 4G10 or Ab2941. 



prepared from freshly isolated adipocytes incubated with or without GH were divided 

equally into two groups. Lysates of one group were first immunoprecipitated with aCIS. 

The supernatants were collected and further immunoprecipitated with aGHR (Ab2941). 

Lysates of the other group were first immunoprecipitated with Ab2941, and then with 

aCIS. All precipitates from both sets of reactions were subjected to SDS-PAGE 

followed by Western blot analysis with 4G10 antibody. The results are shown in Figure 

13A. In the first group, p120 was detected by 4G10 in the first precipitation with aCIS 

as observed previously. Even after preclearing with aCIS, tyrosine phosphorylated GHR 

was still detectable by 4G10 in the subsequent precipitation with Ab2941. On the other 

hand, in lysates first precipitated with aGHR, a much stronger GHR signal was detected. 

Strikingly, no p120 signal was detected in the subsequent precipitation with aCIS. This 

result indicated that Ab2941 brought down the GHR as wellias p120 from the cell lysates 

in the first step precipitation, which resulted in the absence of p120 in samples 

irnmunoprecipitated with aCIS. In other words, it is likely that p120 either is the GHR or 

is a protein that forms a complex with a small fraction of the GHR in cells stimulated 

with GH. No matter what relationship p120 has with the GHR, this experiment 

demonstrated that CIS must interact with the GHR directly or indirectly. However, CIS 

only interacts with and hence co-precipitates with a small fraction of the phosphorylated 

GHR, which might explain why much of the GHR was still left to be precipitated with 

Ab2941 after preclearance with aCIS (Figure 13A). The p120 signal detected in the 

precipitates brought down with aCIS was much weaker than the GHR signal from the 

aGHR precipitates, suggesting the phosphorylated GHR is in great excess compared to 
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Figure 13. CIS interacts with the GHR. A. Freshly isolated adipocytes were treated with 500 

nglml hGH for 2 minutes. Cell lysates were then immunoprecipitated either with aCIS or 

Ab2941at 4°C overnight. The supernatants were transferred to f ~ s h  tubes and further immuno- 

precipitated with Ab2941 or aCIS, respectively. The precipitated proteins were analyzed by 

Western blotting with 4G 10. B. Adipocyte lysates were precipitated aCIS or Ab2941. The 

precipitates were analyzed by irnmunoblotting with aCIS. The results shown were represen- 

tatives of three independent experiments. 



the phosphorylated p120 or that Ab2941 brings down other tyrosine phosphorylated 120 

kDa proteins in addition to the GHR. Furthermore, the amount of p120 precipitated by 

aCIS and the amount of GHR precipitated by aGHR in the first group, when combined, 

approximate the amount precipitated by aGHR alone. These results suggest that CIS, 

p120 and the GHR are components of a complex present in rat adipocytes following GH 

stimulation. 

If CIS, p120 and the GHR are part of a complex, aGHR should be able to 

precipitate CIS as well. Thus rat adipocyte lysates were subjected to 

immunoprecipitation with Ab2941 immobilized on protein A agarose. The CIS protein 

that co-precipitated was detected by immunoblotting with aCIS. As expected, aGHR 

did precipitate CIS proteins, both 37 kDa and 32 kDa forms (Figure 13B), though they 

are only a small fraction of the total CIS protein in the lysates as precipitated and detected 

by aCIS. No differences in the binding of the GHR to either the 37 kDa or the 32 kDa 

forms of CIS were observed. This result confirmed that CIS has direct or indirect contact 

with GHR. However, apparently the amount of GHR that interacts with CIS was too 

small to be detected by GHR antibodies. 

p120 is a glycoprotein 

To gain further insight about the nature of p120, we examined its glycosylation 

status. The broad, fuzzy shape of the p120 band shown in Western blot analysis 

suggested that it might be glycosylated. N-glycosidase F (Endo F) removes N-linked 

carbohydrate from glycosylated proteins. Therefore we prepared p120 by aCIS 



immunoprecipitation from lysates of GH-stimulated adipocytes and digested the 

precipitates with Endo F. Endo F digestion analysis shifted the p120 band to - 95 kDa 

on SDS-PAGE (Figure 14), indicating that p120, like the GHR, is a glycoprotein. It has 

been previously demonstrated that Endo F treatment of the GHR reduced its molecular 

weight from 120 kDa to about 95 kDa (101). This correlation in shift of molecular 

weight by Endo F treatment of p120 and GHR indicated that they may have similar 

amounts of N-linked carbohydrate and that p120 might be a transmembrane protein. 

Sirp is another glycosylated protein that is also tyrosine phosphorylated upon GH 

stimulation and has an apparent molecular mass of 120 kDa (172). Thus Sirp could be a 

good candidate other than GHR for p120. However, anti-Sirp did not recognize p120. 

Furthermore, in contrast to p120, Sirp maintains a high basal level of tyrosine 

phosphorylation in adipocytes even without GH stimulation (Figure 15) and after 

deglycosylation Sirp migrates with an eletrophoretic mobilty corresponding to 65 kDa 

(172), whereas the apparent molecular weight of deglycosylated p120 is 95 kDa. Thus 

p120 could not be Sirp. 

Discussion 

Results reported here indicated that GH regulates CIS, SOCS3 and SOCSl 

mRNA expressions in rat adipocytes. A tyrosine phosphorylated protein (p120) was 

found to co-precipitate with CIS following GH stimulation, but no tyrosine 

phosphorylated proteins were found to co-precipitate with SOCS3. p120 is glycosylated 

and appears to have the same apparent mass of its N-linked carbohydrate component as 



IP aCIS Ab2941 

Endo F - + - + 

IB: 4G10 

Figure 14. p120 is a glycoprotein. Freshly isolated rat adipocytes were stimulated with 500 

nglml hGH for 2 minutes. p120 and GHR were precipitated from the lysates with aCIS and 

Ab2941, respectively. The precipitates were then divided into two halves. One half was 

digested with Endo F, the other half serves as control. The samples were then released from 

protein A beads and analyzed by SDS-PAGE followed by immunoblotting with 4G10. 
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Figure 15. GH regulation of Sirp phosphorylation in adipocytes. Freshly isolated 

adipocytes were challenged with GH for indicated lengths of time. Lysates were 

prepared from these cells and immunoprecipitated with aSirp. The precipitates were 

analyzed by SDS-PAGE followed by immunoblotting with 4G10. 



that of the GHR. It appeared that three proteins, CIS, p120 and the GHR form a complex 

upon GH stimulation of the adipocytes. 

It is puzzling that GHR antibodies did not detect any GHR signal from the 

immunoprecipitate of aCIS even though CIS was detected in the immunoprecipitates of 

Ab2941. Technically, two aspects can account for this discrepancy. On the 

irnmunoprecipitation step, the efficiency of aCIS may not be as good as that of Ab2941. 

Thus Ab2941 might bring down more CIS compared to the amount of the GHR that 

precipitated with aCIS. Even if aCIS and Ab2941 have similar efficiencies for 

immunoprecipitation, on the immunoblotting step, 4G10 and Ab2941 might have 

different sensitivities in detecting corresponding proteins. Though there may be multiple 

epitopes in the intracellular domain of the GHR that are recognized by Ab2941, many of 

them may be recognized with low avidity. The concluiion of no less sensitivity of 

Ab2941 in detecting the GHR compared to 4G 10 stands only if all the GHR in adipocytes 

precipitated by Ab2941 is tyrosine phosphorylated, an assumption that is still unverified. 

Furthermore, the signal from the GHR precipitated by aCIS would be much stronger if 

CIS selectively binds to the GHR molecules that have multiple tyrosines phosphorylated. 

Therefore, we cannot rule out the possibility that GHR is one component of p120. 

Among the five members of the CISISOCS family, GH induces expression of the 

mRNAs only of CIS, SOCS3 and SOCSl in adipocytes. The preferential induction of 

CIS and SOCS3 by GH suggests that these two proteins might be the representatives of 

the family that are subject to regulation by GH in the adipocytes, and that they might be 

involved in GH action, possibly to negatively regulate GH signaling. Co- 



immunoprecipitation studies showed that CIS is the only CISISOCS protein that 

associates with a detectable tyrosine phosphorylated protein in a GH-dependent way. 

- This is not surprising considering that CIS is more abundant in fat tissue than in other 

tissues, and in fat tissue the CIS mRNA level is higher than those of SOCS2 and SOCS3 

as revealed by the tissue distribution study by Tollet-Egnell and colleagues (182). 

CIS was the first member in the CISISOCS family to be identified. It was cloned 

originally as an immediate-early gene that was induced by IL-3 and Epo (205). CIS 

associates with EpoR or IL-3R in response to Epo or IL-3 stimulation, respectively. Since 

the GHR belongs to the same superfamily as EpoR and IL-3R, it would be reasonable to 

assume that CIS might interact with the GHR, in other words, the p120 protein is the 

GHR. However, despite the findings that these two proteins share a similar 

electrophoretic mobility shift after deglycosylation and are both tyrosine phosphorylated 

after GH stimulation, GHR antibodies failed to recognize p120. Neither did several other 

antibodies that were described previously recognize the p120 band. Therefore, the 

identity of p120 remains unknown so far. 

Studies using the intracellular domain of the GHR fused to glutathione S- 

transferase (GST) revealed that the ability of CISISOCS proteins to bind to the GHR 

varies among individual proteins in the family (83). SOCSl interacts with both the non- 

tyrosine phosphorylated and the tyrosine phosphorylated GHR, whereas the interaction of 

CIS, SOCS2 and SOCS3 requires the tyrosine phosphorylation of the GHR (83), and 

SOCS6 does not bind to the GHR fusion protein at all (142). However, in these 

experiments, the GHR fusion proteins were tyrosine phosphorylated in bacteria by elk 



kinase instead of JAK2. It is not clear if the tyrosines that are phosphorylated in bacteria 

are the same as those phosphorylated by JAK2 in eukaryotic cells. Therefore, one cannot 

necessarily predict that the same interaction will occur in physiologically activated cells. 

In the present study, we could detect no tyrosine phosphorylated protein that co- 

precipitates with SOCS3, including the tyrosine phosphorylated GHR, even though 

SOCS3 mRNA expression is induced by GH. As for the tyrosine phosphorylated p120 

that co-precipitates with aCIS, it has not been clarified yet whether it is the GHR or a 

novel protein. Nevertheless, the formation of the complex containing CIS, p120, GHR * 

and perhaps some other proteins following GH stimulation implied that among the 

CISISOCS proteins, CIS protein could be the one that is involved proximately in GH 

signaling in rat adipocytes. No matter what the identity of the p120 protein, the strong 

and rapid association of CIS with pl2O suggests that b120 might be an important 

mediator for the function of CIS in GH signaling pathway. I 

GH up-regulates the mRNA level of both CIS and SOCS3 in adipocytes. 

However, while changes in the protein level of CIS in adipocytes also reflects GH 1 

stimulation, protein levels of SOCS3 remained relatively constant in the presence or 

absence of GH. This finding implies that CIS and SOCS3 are under different 

transcriptional/translational regulation in adipocytes. The significance of such regulation 

in adipocytes is unclear. Interestingly, it was revealed recently that SOCSl is strongly , 
I 

repressed at the level of translation initiation (77). Thus transcriptional/translational 
~ 

regulation could be an another mechanism to regulate CISISOCS protein expression. In I 

addition, no tyrosine phosphorylated partner for SOCS3 was discovered upon GH 



stimulation of adipocyte. The stable and low protein level of SOCS3 might imply that it 

is an unessential regulator of GH action in this particular type of cells. This finding is 

different from what was reported for SOCS3 in cultured cells. SOCS3 was proposed as 

the major regulator of GH signaling based on the observations that its mRNA is 

preferentially induced by GH in 3T3-F442A cells and mouse liver, that it inhibits GH- 

induced STAT5 activity in CHO cells and HEK 293 cells, and that it is the only protein in 

the family that inhibits JAK2 activity by binding to the tyrosine phosphorylated GHR in 

HEK 293 cells (83). We suggest the discrepancy between our observation and what was 

reported for SOCS3 may be explained as arising from the difference between adipocytes 

and cultured cells, andlor from the expression levels of the GHR in the cultured cells 

which modify the stoichiometry relationship between the GHR and SOCS3. Adipocytes 

are terminally differentiated primary cells that are metabolically active and do not 

proliferate. In primary adipocytes, there is no clonal expansion, or at least clonal 

expansion is not the main effect of GH, while mitogenesis is one of the main effects of 

GH in cultured cells. SOCS3 might be more important for the inhibition of the mitogenic 

effects of GH, whereas CIS might be more involved in termination of the metabolic 

effects of GH. Therefore, individual CISISOCS proteins might be engaged in different 

pathways of GH signaling. 



Section I1 

CIS Interacts with the Tyrosine Phosphorylated GHR 

In the previous section, it was shown that GH up-regulates gene expression of 

CISISOCS proteins in rat adipocytes. A tyrosine phosphorylated glycoprotein, p120, was 

found to co-precipitate with aCIS, suggesting that CIS, p120 and GHR form a complex 

in adipocytes following GH stimulation. In order to study the physiological function of 

CIS in GH actions, it is important to know what molecules CIS interacts with. The strong 

association of CIS with p120 makes it imperative to characterize p120. However, rat 

adipocytes, as terminally differentiated cells, are much harder to manipulate than 

immortalized cultured cells. Therefore, I turned to cultured cells to seek ways to identify 

the mysterious p120 and determine if it is the GHR or a novel protein. 

Results 

Association ofpl20 and CIS is dependent on GH/GHR 

To further examine the relationship of p120 to the GHR, the co- 

immunoprecipitation experiment was carried out in cultured mouse L cells (MLC) which 

express no or, at least non-detectable levels of endogenous GHR. MLC or MLC that 

stably express porcine GHR (196) were transiently transfected with a plasmid containing 

myc-tagged CIS cDNA. Both aCIS and amyc antibodies precipitated a tyrosine 

phosphorylated 120 kDa protein from lysates prepared from cells stimulated with GH, 

but only in samples from cells that express the GHR (Figure 16). This result confirmed 



GHR - - - - + + + +  
CIS - - + + -  - + +  
h G H  + -  + -  + -  + 

IP: amyc IB: 4G10 

IP: aCIS IB: 4G10 

Cell lysates IB: amyc 

Figure 16. The co-immunoprecipitation of p120 with aCIS is dependent on GHR. Parental 

MLC(no detectable GHR) and W 10 (MLC stably expressing pGHR) cells were transiently 

transfected with either plasmid vector or a plasmid with myc-tagged CIS cDNA by calcium 

phosphate precipitation. Forty-eight hours after transfection, cells were treated with 500 

nglml hGH for 2 minutes. Cell lysates were then collected and immunoprecipitated with 

either amyc (upper panel) or aCIS antibody(midd1e panel), followed by Western blotting 

with 4G10. The transfection efficiency was monitored by detecting CIS protein levels in 

cell lysates by HRP-amyc (lower panel). The results shown are representatives of three 

independent experiments. 



the association of CIS with p120 in MLC, indicating that it is a phenomenon observed not 

only in primary rat adipocytes, but also in cultured cells. This experiment demonstrated 

that the association of CIS with p120 depends on the presence of the GHR on the cell 

surface. Furthermore, since p120 was only detected in GH stimulated cells, it is likely 

that CIS interacts with phosphorylated p120. However, because our ability to detect the 

120 kDa protein that co-precipitates with CIS depends on its reaction with aPY, we 

cannot rule out the possibility that unphosphorylated p120 also binds to CIS even in the 

absence of GH stimulation. 

Pulldown of pl20 protein by bacterial-produced GST-CIS fusion protein 

To introduce an alternative way to study p120, and also to solve the problem of 

the limited supply of aCIS, a plasmid construct for GST-CIS fusion protein was 

generated and transformed into bacteria cells to allow the production of a GST-CIS 

fusion protein. The bacterial-produced fusion protein binds to GST beads and can be used 

to affinity purify CIS interacting molecule(s) from mammalian cell lysates. First, the 

efficacy of GST-CIS to precipitate (pulldown) p120 was examined. Lysates from GH- 

stimulated rat adipocytes (500 nglml for 2 minutes) were incubated with immobilized 

GST-CIS. After extensive washing, the precipitates were analyzed by immunoblotting 

with aPY. As expected, the aPY recognized a 120 kDa protein in the precipitates 

formed with GST-CIS beads (Figure 17, upper panel) just as with aCIS, suggesting the 

CIS moiety produced as a GST-CIS fusion protein retains its natural capability to 

associate with p120. This result not only demonstrated the feasibility of this approach to 



Adipocytes 293A cells 
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IB: PY99 

Figure 17. p120 co-precipitates with bacterial-produced GST-CIS fusion protein. 

The GST and GST-CIS fusion proteins were produced as described in MATERIALS 

AND METHODS. The proteins were then immobilized on GST beads and mixed 

with cell lysates from adipocytes or 293A cells. The precipitates were analyzed by 

SDS-PAGE followed by immunoblotting with the indicated antibodies. 



pulldown p120 from GH stimulated lysates (to replace the C I S  antibody), but also 

confirmed the previous results of the pl20lCIS interaction from a different aspect. 

Furthermore, the 120 kDa band precipitated (from 2x106 adipocytes) by GST-CIS was 

still not recognized by aGHR (Figure 17, lower panel). Similar results were also 

observed in 293A cells (HEK 293 cells stably expressing the rat GHR) using this 

pulldown procedure (Figure 17). 

Both p120 and rat GHR can be digested by thrombin 

Because the GHR and p120 have a similar eletrophoretic mobility, the GHR may 

contribute to the phosphotyrosine signal even though it is present in an amount below the 

threshold of detection by Ab2941. The same electrophoretic mobility shared by both 

p120 and the GHR on SDS-PAGE became one of the difficulties encountered in 

attempting to differentiate signal arising from these two proteins. Therefore, I sought 

ways to alter the size of the GHR, that is, to make it either bigger or smaller. A thrombin 

cleavage site was introduced into the extracellular domain of the rat GHR near the 

transmembrane domain, C-terminal of the WSXWS motif. Thrombin should cleave this 

molecule into two fragments with electrophoretic mobilities of approximately 80 kDa and 

40 kDa. The 80 kDa fragment contains the majority of the glycosylated extracellular 

domain, while the 40 kDa fragment has the remaining 19 residues of the extracellular 

domain, the transmembrane domain and the intracellular domain. Because only the 

intracellular domain has tyrosines that can be phosphorylated upon GH stimulation, 

thrombin digestion should shift the phosphorylated GHR from 120 kDa to 40 kDa when 



detected with either PY99 or Ab2941 which was raised against the intracellular domain 

of GHR. Thus, a plasmid construct containing wild type (wt) GHR or GHR with a 

thrombin cleavage site (GHR-T) was transiently transfected into HEK 293 cells. After 

GH stimulation, the cells were lysed and the lysates were precipitated with Ab2941 or 

GST-CIS. After incubation with thrombin, the precipitates were then analyzed by 

Western blotting with either PY99 or Ab2941. 

In cells expressing GHR-T, little phosphorylated GHR could be detected by 

PY99, except for the weakly expressed endogenous GHR (Figure 18A), although there 

was an appreciable amount of GHR-T detectable by Ab2941 (Figure 18B). This 

suggested that insertion of the thrombin cleavage site in the extracellular domain either 

interferes with GH binding, or significantly changes the conformation of GHR in the 

membrane proximal region, so that little signal could be trksduced into the cells, and 

thus JAK2 could not be efficiently recruited or activated to phosphorylate GHR-T. 

Though the experiment did not work as expected, surprisingly, thrombin digestion 

shifted both the rat GHR and p120 from 120 kDa to 110 kDa (Figure 19A). Sequence 

analysis of the rat GHR revealed that there is a 3 amino acid sequence (amino acids 30- 

32) near the N-terminus that can be cleaved by thrombin. This thrombin cleavage site is 

present in GHR sequences from rat (Gly Lys Ala), mouse (Gly Lys Ala) and rabbit (Gly 

Arg Ala), but not in human, porcine, sheep or bovine (Table 1). Thus when 

overexpressed in HEK 293 cells, porcine GHR did not appear to be digested by thrombin 

(Figure 19B). Also, the weakly expressed endogenous human GHR in HEK 293 cells 

was unaffected by thrombin (Figurel8A). The presence of such a thrombin cleavage site 



Transfectant vector wtGHR GHR-T 
GH - + - + - + 

Thrombin - + - + - + - + - + - + 

IP: Ab2941 IB: aPY 

Transfectant vector wtGHR GHR-T 
GH - + + - + - 

Thrombin - + - + - + - + - + - + 

IP: Ab2941 IB:Ab2941 

Figure 18. Insertion of a thrombin cleavage site severely affected GH-stimulated GHR 

phosphorylation. 293 cells were transiently transfected with plasmids pcDNA31rGHR 

(wtGHR), pcDNA31rGHR-T (GHR-T) or vector by Superfect reagent. Forty-eight hours 

after transfection, the cells were treated with GH for 2 minutes. Proteins immunoprecipitated 

with Ab2941 from cell lysates were digested with thrombin, then analyzed by SDS-PAGE 

followed by immunoblotting with PY99 (A) or Ab2941 (B). The arrows indicate the 

positions of GHR before and after thrombin digestion. The results shown here are repre- 

sentative of four experiments. 
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Figure 19. Both rat GHR and p120, but not porcine GHR can be digested by thrombin. 

A. GHR and p120 were precipitated fromlysates of GH-stimulated 293A cells by Ab2941 

or GST-CIS. After digested with thrombin, the immune complexs were analyzed by SDS- 

PAGE followed by immunoblotting with PY99. The results shown here are representatives 

of four experiments. B. HEK 293 cells were transiently transfected with a plasmid containing 

the cDNA encoding the porcine GHR. The GHR was precipitated from lysates with Ab2941, 

digested with thrombin and analyzed as described above. The results represent two experiments. 



in only some species is both interesting and puzzling, but its significance, if any, is 

unknown. Cleavage by thrombin should shorten the rat GHR by 14 residues, and thus 

reduce the apparent molecular mass by only about 1.7 kDa. There is no potential 

glycosylation site within or close to these 14 residues (Table 1). However, thrombin 

cleavage reduced the apparent molecular weight of the GHR by about 10 kDa as shown 

on SDS-PAGE, suggesting the existence of some covalently bound factor to the N- 

terminus of the rat GHR or some configuration that produces anomalous mobility on 

SDS-PAGE. 

Table 1. The GHR sequences (amino acids 1-50) from different species 

Amino acids 1-17 are signal peptide. The thrombin cleavage sites are indicated by bold letters. The 
potential Asn-linked glycosylation sites (NXSIT, X can be any amino acid except Pro and Asp) are 
underlined. 

Regardless of its significance, the identical eletrophoretic mobility shifts of both 

the GHR and p120 after thrombin digestion indicated that the two proteins shared another 

characteristic: a thrombin cleavage site that produced the same reduction in their apparent 
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Species 
Rat 
Mouse 
Rabbit 
Porcine 
Human 
Sheep 
Bovine 

molecular weights. 

GHR Sequences 
MDLWRVFLTL ALAVSSDMFP GSGATPATLG KASPVLQRIN PSLRESSSGK 
MDLCQVFLTL ALAVTSSTFS GSEATPATLG KASPVLQRIN PSLGTSSSGK 
MDLWQLLLTV ALAGSSDAFS GSEATPATLG RASESVQRVH P6LGTNNGK 
MDLWQLLLTL AVAGSSDAFS GSEATAAILS RAPWSLQSVN PGLKTSKE 
MDLWQLLLTL ALAGSSDAFS GSEATPAVLV RASQSLQRVH PGLETEGK 
MDLWQLLLTL AVAGSSDAFS GSEATPAFFV RASQSLQILY PVLETNNGN 
MDLWQLLLTL AVAGSSDAFS GSEATPAFLV RASQSLQILY PVLETEGN 



The pl20protein in cells expressing His-tagged GHR 

GHR tagged with 6xhistidines at either the C-terminus (CHisGHR) or the N- 

terminus (NHisGHR) were expressed in HEK 293 cells. CHisGHR retained the typical 

electrophoretic mobility of wtGHR (120 kDa) as detected by PY99, but for some 

unknown reason, addition of the His-tag on the N-terminus of GHR increased its 

apparent mass to about 130 kDa on SDS-PAGE. This observation provided us with 

another opportunity to differentiate p120 from the GHR. Thus, plasmids containing 

cDNA for wtGHR, CHisGHR or NHisGHR were transiently transfected into HEK 293 

cells. The cells were lysed after GH stimulation and precipitated by either Ab2941 or 

GST-CIS. The precipitates were analyzed by immunoblotting with aPY. As shown in 

Figure 20, the mobility of the NHisGHR was retarded compared to that of wtGHR and 
I 

CHisGHR. Examination of the tyrosine phosphorylated protein brought down by GST- 

CIS from cells expressing NHisGHR revealed that it, too, was retarded on SDS-PAGE to 

a similar extent, while its counterpart in cells expressing CHisGHR remained at 120 kDa. 

Retardation of the electrophoretic mobilities for both the GHR and p120 in cells 

overexpressing the NHisGHR implied that either addition of the His-tag to the N- 

terminus of the GHR conferred a similar anomalous increase in size to p120, or that p120 

is the GHR. 

Unsuccessful purification of pl20 using GST-CIS pulldown and Proteinchip technology 

Although several lines of evidence described above suggest that the GHR is the 

major component of p120, the lack of direct evidence leaves the identity of p120 unclear. 



Transfectant GFP CHisGHR NHisGHR wtGHR 

GH - + - + - + - + 

ppt: GST-CIS IB: PY99 

IP: Ab2941 IB: PY99 

Figure 20. Expression of His-tagged GHRs in HEK 293 cells. Plasmids containing cDNA 

for wild type ffiHR (wtGHR), N-terminal His-tagged GHR (NHisGHR), C-terminal His-tagged 

GHR (CHisGHR) or green fluorescent protein (GFP) as control were transiently transfected 

into HEK 293 cells by Superfect reagent. 48 hours after transfection, the cells were treated with 

GH for 2 minutes and the lysates were immunoprecipitated with Ab2941 or GST-CIS. The 

precipitates were analyzed by immunoblotting with PY99. Lines were drawn to show the up- 

shift of the NHisGHR and the p120 in cells expressing NHisGHR. The results shown are repre- 

sentatives of two independent experiments. 



The most straightforward way to identify p120 is to obtain amino acid sequence 

information from the purified protein. The identification approach involves digesting gel 

purified p120 with a site-specific protease (i-e. trypsin) and then mass analyzing the 

resultant peptides. The peptide masses can then be submitted to one of several mass 

database search algorithms that are available on web based servers. It may turn out that 

p120 is the GHR or a known protein whose protease digestion pattern can be found in the 

database. The available knowledge may help to understand p120's function in GH 

signaling or we can use an antibody (commercially available or produced by us) to 

further the investigation. If p120 is a novel protein, its partial sequences can be obtained 

by microsequencing, and degenerate oligonucleotide probes can be prepared for its 

cloning. 

GST fusion proteins have been successfully used to affinity purify tyrosine 

phosphorylated proteins in at least two studies (135, 136). The efficacy of the pulldown 

experiment using GST-CIS fusion protein facilitated purification of p120. The thrombin 

cleavage site between GST and CIS sequences in the GST-CIS fusion protein would 

provide a specific criterion to selectively elute only CIS and CIS-binding protein(s). 

However, CIS was not released from GST portion of the fusion protein after thrombin 

digestion, possibly by some tertiary structure involvement with GST. Therefore, we 

sought a two-step purification procedure for p120. 

The minimum amount of protein required for mass spectrometric analysis is 5 

pmole, that is 600 ng of p120. Assuming there are 1000 copies of p120 in a single 293A 

cell, 3x109 cells will be needed to purify sufficient protein on a yield of 10%. At least 



1000:l for the ratio of GST-CIS to p120 was used to allow efficient capture of the 

protein. GST-CIS fusion protein was prepared from bacterial culture and bound to a 

glutathione Sepharose 4B column. Cell lysates were prepared from 3x10' GH-stimulated 

293A cells grown in 160 culture dishes (145 mmx20 mm). The lysates were first passed 

through the prebound GST glutathione Sepharose 4B column to reduce nonspecific 

binding, and then through the prebound GST-CIS glutathione Sepharose 4B column. 

After extensive washing, the fusion protein and proteins associating with it were eluted 

with reduced glutathione. The eluates were concentrated and immunoprecipitated with 

PY99-agarose for a second purification step. The final products were analyzed by SDS- 

PAGE and visualized by silver staining of the gel. Although p120 had been greatly 

enriched on the GST-CIS column, eluates contained significant amounts of 

contaminating proteins that produced a lot of interference to the identification to the pl2O 

band on the silver stained gel. Further purification by anti-phosphotyrosine PY99-agarose 

turned out to be of low efficiency. Because our ability of detecting and purifying p120 

relies on its tyrosine phosphorylation status, the low efficiency could be caused by the de- 

phosphorylation of p120 with time. Several attempts at purification have been fruitless. 

We also tried to take advantage of the ProteinChip SELDI (surface enhanced laser 

desorption/ionization) technology, which might have provided us an alternative way to 

characterize p120 at femtomole amount and more rapidly. It uses ProteinChip Arrays 

containing chemically or biochemically treated surfaces for specific interaction with 

proteins of interest. The mass profile of the proteins bound to each of the proteinchip 

array surfaces is quantitatively detected in minutes by the ProteinChip Reader. Proteases 



can be used to produce a peptide map of a purified protein bound to the chip by on-chip 

digestion. 

Based on the tyrosine phosphorylation status of GST-CIS or aCIS precipitated 

p120, two different chips were selected: immobilized metal affinity capture chip MAC3 

and preactivated surface chip PSI. IMAC3 can be coated with Fe3+, which can bind the 

phosphate groups on tyrosine phosphorylated p120. Alternatively, PSI can be coated 

with aPY which recognizes p120 as well. Ideally, IMAC3 would be the first choice 

because of its low "noise" after on-chip protease digestion. We set up a collaboration 

with Dr. S-M Ho of the Surgery Department who owns the system. However, even with 

the help from the manufacturer, Ciphergen Biosystems, Inc., numerous preliminary 

experiments were unsuccessful, and we abandoned this method when progress along 

other lines made this approach less critical. 

p120 is recognized by GHR antibodies in scale-up experiments 

The strongest evidence against the hypothesis of p120 being the GHR is that GHR 

antibodies failed to recognize it despite the strong signal detected by aPY. Because there 

are 8-10 tyrosines in the GHR intracellular domain, it is possible that the GHR has 

multiple tyrosines phosphorylated, and thus can bind multiple copies of aPY to give a 

much stronger signal than a single tyrosine phosphorylated protein with the same amount 

of protein as detected by aPY. The mass abundance of this multiple phosphorylated 

protein might be just below the detection threshold of GHR antibodies. The low protein 

abundance on the membrane could be the reason why the GHR antibodies could not 



recognize p120, assuming p120 was the GHR. Therefore, it was necessary to test if the 

GHR antibodies could recognize p120 when there is sufficient mass of p120 on the 

membrane. Though the purification of p120 by GST-CIS was unsuccessful, we were able 

to enrich p120 on the GST-CIS beads from the lysate of lo7 GH-stimulated 293A cells, 

which represents 10 times more sample than used in the regular immunoprecipitation or 

pulldown experiments. The precipitates were analyzed by immunoblotting with GHR 

antibodies again. Interestingly, in addition to the GHR bands detected in Ab2941 

precipitates, this time both Ab2941 and BB74 detected a faint band at the position of 120 

kDa from GST-CIS precipitates, but only in samples from GH-stimulated cells (Figure 

21). Therefore, at least some of the p120 signal comes from the GHR. This result 

provides direct evidence supporting p120 being the GHR. 

Western blot analysis of GHR using either ~ b 2 9 4 1 "  or BB74 indicates 2 distinct 

bands, one corresponding to 100 kDa and one corresponding to -120 kDa. Similar 

findings have been obtained by others (172). GH-dependent tyrosine phosphorylation is 

evident only in the120 kDa band. Of the two bands of the GHR, 120 kDa and 100 kDa, 

as detected by both Ab2941 and BB74, only the tyrosine phosphorylated 120 kDa form 

co-precipitates with GST-CIS in amounts detectable by Ab2941, implying that tyrosine 

phosphorylation is a prerequisite for the association of CIS with the GHR. It may be 

i recalled that we failed to detect GHR in the pulldown experiment from adipocytes even 
5 
t using 4x107 cells. This is not surprising considering the difference of level of GHR 

expressed in adipocytes (6,000-12,000 copies/cell) and 293A cells (120,000-240,000 

copies/cell). Furthermore, considering the difference of GHR protein abundance from 
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Figure 21. p120 is recognized by GHR antibodies in scale-up experiments. Lysates of 

7x107 293A cells stimulated with GH were precipitated with Ab2941 or GST-CIS. The 

volume of lysates used for GST-CIS pulldown were 4 times as big as those used for 

Ab2941 precipitation. The precipitates were loaded on 3 gels for SDS-PAGE followed 

by immunoblotting with PY99, BB74 or Ab2941. The results shown are representative 

of three independent experiments. 



both precipitates as detected by both GHR antibodies, the GHR precipitated by GST-CIS 

showed a higher density of tyrosine phosphorylation than the GHR precipitated by 

Ab2941 as detected by aPYs,  assuming the similar efficiency for Ab2941 

immunoprecipitation and GST-CIS pulldown. Assuming all of the p120 signal comes 

from the GHR, there are two explanations to this result. First, all the GHRs in cells may 

not be phosphorylated after GH stimulation. Second, there may be subtypes of 

phosphorylated GHR with different degrees of phosphorylation and different tyrosines 

phosphorylated in cells following GH stimulation. CIS may selectively bind to a subtype 

of GHR that is heavily phosphorylated or is phosphorylated on a particular tyrosine that 

is favorably detected by aPY. On the other hand, it is also possible that the120 kDa band 

is composed of the GHR and some other tyrosine phosphorylated protein(s) with the 

molecular mass at 120 kDa If so, the other protein would have to be below detection 

level of aPY because little residual band was detected at 120 kDa after GHR-T was 

cleaved by thrombin (Figure 19) or in cells overexpressing NHisGHR (Figure 20). 

Total cellular GHR, tyrosine phosphorylated GHR and CIS-associated GHR 

To further address this point, the GHR from both the GST-CIS and Ab2941 

precipitates were analyzed for protein abundance and the extent of their tyrosine 

phosphorylation. Lysates from GH-stimulated 293A cells were precipitated by Ab2941 

to obtain the total cellular GHR. Simultaneously, 5-fold larger samples of the same total 

lysates were subjected to pulldown by GST-CIS to obtain CIS-associated GHR. The 

precipitates from GST-CIS pulldown were serially diluted to match the tyrosine 



phosphorylation density of GHR from Ab2941 precipitates, the samples were then loaded 

on two gels for SDS-PAGE arranged as shown in Figure 22A. After transfer, the 

membranes were immunoblotted with aPYs. On the other hand, the GHR in Ab2941 

precipitates was serially diluted to match the abundance of CIS-associated GHR. The 

samples were then loaded on two gels for SDS-PAGE arranged as shown in Figure 22B. 

After transfer, the membranes were immunoblotted with GHR antibodies. The 

immunoblotting analysis showed that the tyrosine phosphorylation signal of the undiluted 

CIS-associated GHR is close to that of GHR precipitated by Ab2941, as detected by two 

different aPYs, PY99 and 4G10. However, the protein level of undiluted CIS-associated 

GHR is only between 114 to 118 of that of the GHR precipitated by Ab2941, as detected 

by two different aGHRs, BB74 and Ab2941 (Figure 22B). Therefore, in order to obtain 

the same strength of signal from tyrosine phosphorylation, 4 to 8 times as much protein 

amount will be required for the GHR as for CIS-binding GHR. In other words, on the 

same protein level, CIS-binding GHR is 4 to 8 times as much tyrosine phosphorylated as 

the GHR. Either some tyrosine phosphorylated 120 kDa protein(s) other than the GHR 

also contribute to the tyrosine phosphorylation signal, or CIS interacts preferentially with 

multiply tyrosine phosphorylated GHR, or both. 

An '=I-GH binding assay was employed to quantitatively estimate the amount of 

CIS that interacts with GHR. Adipocytes or 293A cells were stimulated with ' 2 5 ~ - ~ ~  for 

2 minutes. The cell lysates were then immunoprecipitated with Ab2941 or aCIS in the 

presence of '=I-GH. Amounts of the GHR or CIS-associated GHR were calculated from 



ppt Ab2941 GST-CIS Ab2941 GST-CIS 

1 112 114 118 1/16 1 112 114 118 1/16 

IB: PY99 IB: 4G10 

B. 

ppt Ab2941 GST-CIS Ab2941 GST-CIS 

1 112 114 118 1116 

IB: BB74 

1 112 114 118 1116 
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Figurte 22. Comparison of tyrosine phosphorylation and protein abundance of CIS-associated 

GHR and total cellular GHR. Lysates from 7x107 293A cells (stimulated with GH) were 

precipitated with Ab2941 or GST-CIS. Five fold larger aliquots of lysates were used for GST- 

CIS pulldown than for Ab2941 precipitation. After release from agarose beads, the immune 

complex precipitated from GH-stimulated cells was serially diluted with sample buffer from 1 

to 1/16 and loaded on 4 gels for SDS-PAGE, arranged as shown above. After transfer to PVDF 

membrane, the membranes were immunoblotted with PY99 or 4G10 (A),or, BB74 or Ab2941 

(B). The results shown are representative of two experiments. 



cpm of the 1 2 ' 1 - ~ ~  that co-precipitated with Ab2941 or aCIS, respectively. As shown in 

Table 2, only 3.6% GHR in adipocytes and 0.50% GHR in 293A cells interact with CIS. 

These values are consistent with the results from Western blot analysis. 

Table 2. Binding assay of GHR and CIS-associated GHR in adipocytes and 293A cells 

I I GHR I CIS-associated GHR I % CIS-associated GHR I 

Adipocytes 

I I I I I 
Data of adipocytes were provided by Dr. GP Frick. 

1 I I 

The preclearance experiment described earlier (Figure 13A) showed that aCIS 

could only co-precipitate no more than half of tyrosine phosphorylated GHR as judged 

from the tyrosine phosphorylation signal in immunoblotting, that is, CIS interacts with 

only a fraction of tyrosine phosphorylated GHR. Putting that observation together with 

results shown in Figure 22, it suggests that either only a small percentage of total cellular 

GHR is tyrosine phosphorylated after GH stimulation and CIS interacts with a small 

fraction of tyrosine phosphorylated GHR, or that CIS selectively associates with multiply 

tyrosine phosphorylated GHR. Both alternatives are valid possibilities considering that 

there are 10 tyrosines in the intracellular domain of the rat GHR. 

(fmoV107 cells) 
11 1 

293A cells I 1472 

(fmoV107 cells) 
4.0 

7.3 

IGHR 
3.6 

0.50 



Discussion 

The direct evidence supporting the p120 protein being the GHR is that two GHR 

antibodies can recognize p120 in scale-up experiments. In addition we have 

demonstrated that p120 and the GHR share several characteristics, including: 

1. Tyrosine phosphorylation upon GH stimulation; 

2. The same molecular weights, 120 kDa; 

3. Interaction with CIS; 

4. N-glycosylation to similar extent as judged by similar electrophoretic mobility 

shifts after Endo F digestion; 

5. The similar electrophoretic mobility shifts after thrombin digestion: 

6. Retarded electrophoretic mobility in cells overexpressing NHisGHR. 

On the whole these data make it clear that the GHR is at least one major component in the 

p120 band. We cannot rule out, at this point, the possibility that there might be other 

tyrosine phosphorylated 120 kDa protein(s) that interact with CIS and that contribute to 

the p120 signal. But such protein(s), if there are any, have to be of sufficiently low 

abundance to be undetectable in any of the electrophoretic mobility shift studies described. 

The detection of the GHR in GST-CIS precipitates prepared from 293A cell 

lysates demonstrated that CIS interacts with the GHR. Although the low abundance of the 

GHR in adipocytes prevented us from obtaining a similar result, apparently the same 

interaction exists in adipocytes as CIS co-precipitates with GHR antibody (Figure 13B). 

The demonstration that CIS interacts with the GHR in both adipocytes and cultured cells 

showed, for the first time in pure mammalian cell systems, that CIS can interact with 



another member of the cytokine receptor superfamily, in addition to EpoR, IL-2R and IL- 

3R. Thus it is likely that CIS exerts its effects on cytokine signaling through direct 

interaction with receptors of cytokines. Our results not only are consistent with later 

findings showing that CIS binds to GST fused GHR intracellular domain (142) (83), but 

further demonstrate that CIS is capable of binding to the full length GHR naturally 

expressed in primary adipocytes as well as to GHR overexpressed in cultured cells. 

The 4-8 times difference of the tyrosine phosphorylation signal between the GHR 

and the CIS-binding GHR explains the failure of GHR antibodies to detect p120 in regular 

immunoprecipitation/pulldown and immunoblotting experiments. Even though there may 

be other CIS-binding 120 kDa proteins that contribute to the p120 phosphotyrosine signal, 

it appears that the CIS-associated GHR represents the majority of it. Since the 

intracellular domain of the rat GHR has 10 potential tyrosin1e phosphorylation sites, it is 

poosible that CIS selectively bind to multiply tyrosine phosphorylated GHR. This 

suggests that GHR molecules are not uniformly tyrosine phosphorylated in GH-stimulated 

cells. The exact tyrosine phosphorylation patterns of GHR are unknown. Mutational 

analysis showed that phosphorylation of Tyr534 and Tyr566 in porcine GHR is required 

for GH-dependent activation of Spi2.11CAT constructs (189), that of Tyr487 and Tyr534 

is required for GH-promoted tyrosine phosphorylation of STAT5 (1 89) and that of Tyr333 

and/or Tyr338 is required for GH-stimulated lipid and protein synthesis (1 12). Thus 

tyrosine phosphorylation patterns of the GHR may confer specificity to individual 

signaling pathways. 



The identification of the interaction of CIS with the GHR is encouraging for 

further study of the mechanism of CIS action. Our data from immunprecipitation and 

immunoblotting analysis of transfected cultured cells showed that the phosphorylated 

GHR bound to CIS represents only a small fraction of the total phosphorylated GHR 

present in both adipocytes (Figurel3A) and 293A cells (Figure 22). Using ? -~GH 

binding to estimate the amount of the GHR that co-immunoprecipitates with CIS revealed 

that only about 3.6% GHR binds to CIS in adipocytes and that only about 0.50% GHR 

associated with CIS in 293A cells, which is consistent with results from Western blotting 

analysis. The difference between adipocytes and 293A cells may reflect the difference in 

abundance of the naturally produced GHR in adipocytes and the cDNA-derived GHR 

expressed in 293A cells. Overexpression of the GHR in 293A cells produced an 

abnormal stoichiometric relationship between GHR and endogenous CIS, but the 

significance of the association with so little of the GHR in primary adipocytes is 

puzzling. It is possible that only a small portion of the total cellular GHR is sufficient to 

transduce signals from extracellular ligand stimulation to an intracellular physiological 

response, or at least to transduce the signals to a CIS-related pathway. Studies on the 

relationship between binding and biological effects of human GH in rat adipocytes 

showed that different concentrations of ligand are needed to elicit various biological 

effects. Whereas the half-maximal concentration of GH needed to produce the response 

of refractoriness is as low as 5 nglml, 50-100 nglml of GH was required to produce half- 

maximal insulin-like effects: antilipolysis, glucose oxidation and leucine oxidation (78). 

This suggests different fractional occupancy of the GHR on the cell surface may confer 



specificity leading to a specific biological response. On the other hand, co- 

irnmunoprecipitation experiments may have underestimated the amount of association 

between CIS and the GHR depending on how well the association is preserved during 

cell lysis and immunoprecipitation procedure, and on the relative efficiency of 

irnmunoprecipitating antibodies. Binding assay detects only the GHR that are bound by 

lZ51-GH and thus it is likely to underestimate the amount of GHR that interacts with CIS if 

the three molecules are not simultaneously in the same complex. The actual fraction of 

the GHR that interacts with CIS may be bigger than 0.5-3%. Also, because the turnover 

of the GHR is rapid even in the absence of ligand, it is possible that a significant fraction 

of GHR found in the whole cell lysates is not accessible to GH in cells, but is in transit to 

or from the cell surface. Therefore, it is reasonable to assume that the binding of CIS to a 

fraction of the GHR in cells may lead to a specific CIS controlled pathway. 

It  is well known that the electrophoretic mobility of GHR is 114-140 kDa 

(depending on species) (107) (53) (56), which is significantly higher than its deduced 

molecular weight (-70 m a ) .  Removal of the N-glycosylation portion usually reduces 

the GHR to around 95 kDa. The amino terminal sequencing of GHR purified from rabbit 

liver showed that ubiquitin is associated with 20%-50% of the receptor molecule (107). 

Thus not all the GHR molecules are ubiquitinated and ubiquitination of the GHR is likely 

to occur after the molecule is internalized. The ubiquitination of proteins must occur on 

lysine residues because the &-amino group of this amino acid is essential for conjugation 

(89). There are several lysines in the N-termini of the GHRs that are conserved among 

species. Covalent binding of one or more ubiquitin moieties would add about 9 kDa per 



ubiquitin molecule to the protein. Thus glycosylation and ubiquination have been two 

factors known to contribute to the size difference of the GHR. However, other studies 

revealed that at any one time, only a few percent of rabbit GHR is ubiquitin-conjugated 

and the poly-ubiquitinated receptor appeared as a broad band, most of which is larger 

than 200 kDa, and ubiquitination is likely to be on the intracellular domain of the receptor 

(173). It is not clear if the same is true for the GHR from other species. Therefore, 

ubiquitination of the GHR is still an unsettled issue. On the other hand, if the Lys31 in 

the thrombin cleavage site in the rat GHR is one of the ubiquitination sites, it could 

explain the reduction of about 10 kDa (9 kDa from ubiquitin plus 1.7 kDa from the N- 

terminal fragment) from the receptor by thrombin digestion (from 120 kDa to 110 

kDa)(Figure 19). Otherwise, there must be other factors covalently linked to the GHR, 

because there is no lysine upstream of the Lys3 1. The presence of a thrombin cleavage 

site near the N-termini of the GHR from some species but not others may provide a tool 

to discover such a factor. The retardation of the electrophoretic mobility of the N- 

terminal histidine-tagged GHR but not that of the C-terminal histidine-tagged GHR 

expressed in 293 cells (Figure 20) could be resulted from some small factor covalently 

bound to the N-terminus of the GHR that contributes disproportionately to its larger 

molecular mass. Such a factor might, like ubiquitin, be involved in regulation of the 

cellular fate of the GHR. 



Section 111 

Physiological Function Studies of CIS in GH Actions 

The identification of the GHR as at least an important component of the CIS- 

binding p120 facilitated our study of the function of CIS in the GH signaling pathway. 

The ability of CIS to associate with the GHR upon GH stimulation implies that it might 

be capable of modulating GH signaling through its interaction with the GHR. As 

CISISOCS proteins are considered to be negative regulators of cytokine signaling, we 

questioned if CIS might negatively regulate GH activity. In this chapter, studies are 

focused on exploring the physiological functions of CIS in terms of GH signaling in both 

cultured cells and primary rat adipocytes. 

Results 

Identification of the site on GHR that interacts with CIS 

So far we have demonstrated that CIS interacts with tyrosine phosphorylated 

GHR following GH stimulation. However, the mechanism of interaction between CIS 

and the GHR was unclear. Previous data showed that only the tyrosine phosphorylated 

form of the GHR co-precipitates with GST-CIS (Figure 21) and CIS co-precipitates with 

GHR antibody only in GH-stimulated cells (Figurel3B), indicating the importance of 

phosphorylated tyrosines for CISIGHR interaction. In the cytoplasmic domain of the 

GHR there are 8-10 tyrosines, depending on the species, that could be phosphorylated 

after GH stimulation. The importance of these phosphorylated tyrosines in GH action has 



been emphasized in many studies (reviewed in (27) (88)). They provide the docking sites 

for signaling molecules with SH2 or SH3 domains. Considering the existence of an SH2 

domain in CISISOCS proteins, it is possible that these tyrosines also serve as the 

interaction sites for CIS. To address this point, cDNAs for wild type porcine GHR (wt), 

a GHR truncation which lacks the carboxyl terminal half of its cytoplasmic domain 

(TR4) (amino acids 1-476)(195) and the GHR with all 8 tyrosines in the cytoplasmic 

domain mutated to phenylalanines (Fc8) (194) were transiently expressed in mouse L 

cells, together with cDNA for CIS. Co-immunoprecipitation of CIS with the GHR was 

then examined after incubating these cells with GH. The results showed that a 120 kDa 

band was detected by aPY only in cells expressing wt GHR, but not in cells expressing 

TR4 or Fc8, although the wt GHR, TR4 and Fc8 were expressed at similar levels (Figure 

23). The absence of tyrosine phosphorylated protein ~ o - ~ r e c i ~ i t a t i n ~  with CIS in Fc8 

expressing cells suggests that either the GHR is the only tyrosine phosphorylated protein 

that interacts with CIS or that the binding of other tyrosine phosphorylated 120 kDa 

protein(s) requires tyrosine phosphorylation of the GHR. Furthermore, no tyrosine 

phosphorylated protein was observed that co-precipitates with CIS in TR4 expressing 

cells, indicating the carboxyl terminus of the GHR is required for CIS interaction with the 

GHR. Therefore, it is likely that CIS interacts with phosphorylated tyrosine(s) on the 

GHR, and these tyrosines are located near the carboxyl terminus of the GHR. This is 

consistent with later findings that CIS is capable of binding to GST-fused GHR 

intracellular domain fragment as short as 80 amino acids, provided the fusion protein is 

tyrosine phosphorylated ( 142). 
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Figure 23. The tyrosines on the C terminus of GHR cytoplasmic domain are required for 

CISIGHR interaction. Mouse L cells were transiently transfected with plasmid containing 

myc-tagged CIS cDNA together with plasmid containing cDNA of wild type porcine GHR 

(wt), GHR with the C-terminal half of cytoplasmic domain truncated (TR4) or GHR with 

all tyrosines in cytoplasmic domain mutated to phenylalanines (Fc8). The cells were 

incubated with or without hGH (500 nglml) for 2 minutes. A. The lysates were precipitated 

with wnyc and analysed by immunoblotting with aPY to examine the interaction of GHR 

with CIS. B. The expression of GHRs was monitored by precipitating and immunoblotting 

With Ab2941. The molecular weight of Fc8 is about the same as that of wtGHR. TR4 has a 

predicted mobility corresponding to around 64 kDa, which routinely coincides with non- 

specific bands when immunoblotted with Ab2941. C. Cell lysates were analyzed by 

immunoblotting with HRP-amyc to check the expression of myc-CIS. 



Five tyrosines in the C-terminal part of the porcine GHR were deleted in the TR4 

construct, Tyr487, Tyr534, Tyr566, Tyr595 and Tyr627. Three of these tyrosines, 

Tyr534, Tyr566 and Tyr627 (equivalent to Tyr534, Tyr566 and Tyr626 in the rat GHR) 

have been identified as STAT5 binding sites in the GHR (84) (82). The lack of 

interaction between CIS and GHR in TR4 expressing cells suggests that those tyrosines 

may also be binding sites for CIS on the GHR. Competition of CIS for the STAT5 

binding sites on the GHR may underlie at least some of the actions of CIS in GH 

signaling. 

CIS partially inhibits GH-induced STA T5 phosphorylation in CHO cells 

It has been shown that CIS partially suppresses Epo-induced STAT5 activation in 

HEK 293 cells and BalF3 cells. The CIS gene was to be a direct target of 

STAT5 (120). In order to establish the relationship of CIS with GH-induced STAT5 

activation, CIS cDNA was transiently expressed in CHO cells to examine the effect of 

CIS expression on GH-induced STAT5 phosphorylation. We found that when CIS was 

overexpressed in CHO cells that stably express the rat GHR, tyrosine phosphorylation of 

STAT5 is decreased compared to that in cells with no exogenous CIS (Figure 24). 

Furthermore, this phenomenon is only observed in CHOA cells which express the full 

length rat GHR, but not in CH04 cells which were stably transfected with cDNA that 

encodes the full length GHR, but express a functional GHR with a smaller molecular 

weight, 84 kDa (191). The molecular basis for the smaller molecular weight of GHR 

expressed in CH04 cells is unknown. Our data suggest that the difference between the 
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Figure 24. Overexpression of CIS in CHO cells partially inhibits GH-activated STAT5 

phosphorylation. Parental CHOK1, CHOA and CH04 cells were transiently transfected 

with pcDNA3Imyc-CIS by Superfect transfection reagent. 48 hours after transfection, the 

cells were treated with or without 500 nglml hGH for 2 minutes. The lysates were incubated 

with anti-STAT5 and immunoprecipitates were collected on protein A coated agarose beads. 

The precipitates were resolved on SDS-PAGE followed by Western blotting with 4G10 to 

detect phospho-STAT5 (pY-STAT5). The membrane was then stripped and reprobed with 

anti-STAT5 to show the STAT5 abundance on each lane. The expression of CIS in cells 

was monitored by analyzing cell lysates with amyc. The co-immunoprecipitation of CIS 

and the GHR was not detected by 4G10 in these cells (lower pannel). Similar results were 

obtained in another experiment of the same design. 



120 kDa GHR in CHOA cells and the 84 kDa GHR in CH04 cells may account for the 

difference in CIS inhibition on GH-induced STAT5 activation. It is puzzling that the 

CIS/GHR interaction as shown by co-immunoprecipitation is barely detectable in CHO 

cells (Figure 24), although both CHOA cells and CH04 cells express more GHR than 

adipocytes (192) (125), implying that the CISIGHR interaction is cell-type specific and 

CIS inhibition of GH-induced STAT5 activation may not rely on such interaction . 

CIS/GHR association and protein phosphorylation in refractory and sensitive adipocytes 

The finding of an inhibitory effect of CIS on STAT5 phosphorylation in cultured 

cells encouraged us to go back to adipocytes to investigate the effects of the CISIGHR 

association and its correlation to the GH-induced insulin-like response. As the first step, 

the status of this association was examined in both freshl; isolated (refractory) and GH- 

deprived (sensitive) adipocytes (Figure 25, upper panel). The co-precipitation of GHR 

with CIS was observed both in refractory adipocytes (freshly isolated adipocytes) and 

adipocytes that are sensitive to the insulin-like effects of GH. The appearance of CIS- 

associated GHR peaked at 2 minutes after GH stimulation, and rapidly declined to a low 

level by 20 minutes after GH stimulation in both refractory and sensitive cells. 

Attenuation of the co-precipitation of GHR with CIS shown here might be caused by 

reduction in the level of CIS protein or phosphorylated GHR, or by the dissociation of the 

two proteins. Examination of CIS protein levels from the same samples revealed that the 

reduction of CIS protein level does not account for the attenuation of CISIGHR 

interaction. When comparing CIS abundance in freshly isolated cells and sensitive cells, 
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Figure 25. CIS and tyrosine phosphorylation of key GH signaling molecules in adipocytes. 

Freshly isolated and sensitive adipocytes were stimulated with hGH for indicated lengths of 

time. The lysates were precipitated with antibodies against CIS, GHR, JAK2, STATS. The 

precipitates were analyzed by immunoblotting with 4G10. CIS protein levels were monitored 

by blotting the membrane with aCIS. Caveolin was detected directly from lysates to monitor 

the equality of sample size. Similar results were obtained from another experiment of the same 

design. 



apparently the three-hour deprivation of GH greatly reduced the CIS level, especially the 

ubiquitinated 37 kDa form, suggesting that the reduction in the amount of CIS protein in 

cells is caused by both degradation and decreased synthesis. The reduction of CIS protein 

levels in sensitive cells further confirmed the dependence of CIS abundance on GH, 

which is consistent with what has been described in Section I. On the other hand, the 

appearance of the CIS-associated GHR shared a similar timecourse with the 

phosphorylated GHR. Therefore, it is most likely that the level of phosphorylated GHR 

determines the extent of CISIGHR association. However, no significant difference in the 

CISIGHR association was observed between freshly isolated and sensitive cells, nor was 

there a difference in the phosphorylation status of the GHR, JAK2 and STAT5 (Figure 

25), indicating that these molecules are not likely to be key players in the termination of 

GH-induced insulin-like effects or the emergence of the refractoriness in adipocytes. 

Efects of CIS on GH/GHR signaling 

As described previously, CISISOCS proteins are thought to function primarily as 

negative regulators of cytokine signal transduction by down regulating the activity of key 

signal transducers, such as JAK2 and STAT5. Since CIS only associates with tyrosine 

phosphorylated GHR, such association may be capable of modulating the activities of 

GH signal transducers. We therefore chose the well characterized key molecules in GH 

signaling to evaluate possible effects of CIS by monitoring their phosphorylation status. 

These molecules include the GHR itself, JAK2 and STAT5 (Figure 26). Freshly isolated 

adipocytes were stimulated with GH for various lengths of time from 0 to 60 minutes. 
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Figure 26. Effect of CIS on GH signaling. Freshly isolated rat adipocytes were treated with 

hGH (500 nglml) for the indicated times. Cell lysates were prepared and subjected to immuno- 

precipitation with the indicated antibodies. The samples were analyzed by SDS-PAGE followed 

by Western Blotting probed with 4G10. The bottom panel shows CIS protein levels at the 

corresponding time points as detected by aCIS after immunoprecipitation with immobilized 

aCIS. The results shown are representative of two experiments. 



CIS-associated GHR, the GHR, JAK2 and STAT5 were precipitated from cell lysates 

with corresponding antisera and their phosphorylation status was visualized by Western 

blot analysis with 4G10 antibody. CIS protein levels were monitored by Western blotting 

using aCIS. The results are shown in Figure 26. Phosphorylation of CIS-associated 

GHR, the GHR and JAK2 peaked at 2 minutes and that of STAT5 at 10 min after GH 

treatment. Phosphorylation of all three proteins decreased to very low levels 60 min after 

GH treatment. The amount of CIS protein did not show any dramatic change within the 

time period tested in this experiment. Thus, the amount of CIS does not appear to 

correlate with the phosphorylation status of all these GH signal transducers. The similar 

pattren of the phosphorylated GHR precipitated by Ab2941 and the CIS-associated GHR 

confirmed that it is the status of phosphorylated GHR that determines the degree of 

association between CIS and the GHR. 

To further address the correlation of CISIGHR association with the key molecules 

mentioned above, the responses of these molecules to a second exposure to GH was 

examined. Freshly isolated adipocytes were incubated in buffer with GH for one hour, 

followed by incubation in GH-free buffer for various lengths of time before they were 

challenged with GH again. The proteins were analyzed as described above. Data in 

Figure 27 showed that there was a period of latency in the response of all these proteins 

to re-phosphorylation after reintroduction of GH following 1 hour's GH treatment. 

Phosphorylation of the GHR, JAK2 and STAT5 remained low even 1 hour after the first 

exposure to GH, and recovery of the full response to GH was not seen until 90 minutes 

after the first exposure to GH. The CIS protein level declined gradually in the absence of 
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Figure 27. Desensitization of phosphorylated proteins stimulated by GH in rat adipocytes. 

Freshly isolated adipocytes were incubated in KRBG/l% BSA with 500 nglml hGH for 1 

hour, then in GH-fiee buffer for the indicated washout times prior to re-stimulation of protein 

phosphorylation by addition of 500 ndml  hGH for 2 minutes. Cell lysates were prepared and 

aliquots subjected to immunoprecipitation with the indicated antibodies. The samples were 

analyzed by SDS-PAGE followed by Western Blotting with 4G10. The lowest panel shows 

CIS protein levels at corresponding time points as detected by &IS after immunoprecipitation 

with immobilized aCIS . The results shown are representative of two experiments. 



GH, and the decline was more apparent for the ubiquitinated 37 kDa form. However, 

reduction of the protein level of the 37 kDa form of CIS did not interfere with the re- 

association of CIS with GHR when the GHR fully regained its responsiveness to GH 90 

minutes after the initial GH challenge. 

Results of the above two studies revealed no direct correlation of CIS protein 

level or CISIGHR association with the changes in the GH-stimulated activities of GH 

signal mediators. No inhibitory effects of CIS could be discerned from these data, nor 

did CIS appear to be responsible for initiation or termination of GH-induced 

phosphorylation of GHR, JAK2 and STAT5 in adipocytes. 

Discussion 

To date except for the tyrosine phosphorylation of SOCS3 that occurs in IL-2 

stimulated cells (36), no basal or GH-induced tyrosine phosphorylation of CISISOCS 

proteins has been reported. The relatively constant abundance of CIS in freshly isolated 

or sensitive adipocytes does not appear to account for the rapid and dramatic changes of 

the tyrosine phosphorylation status of the GH signal transducers, namely, the GHR, 

JAK2 and STATS. Overexpression of CIS in CHO cells resulted in partial inhibition of 

GH-induced STAT5 phosphorylation, but endogenously expressed CIS in adipocytes did 

not appear to be responsible for the changes of STAT5 phosphorylation following GH 

stimulation, washout or rechallenge. The failure to implicate CIS or the tyrosine 

phosphorylation status of the GHR, JAK2 and STAT5 as major players in refractoriness 



to the insulin-like effects of GH in rat adipocytes suggests some other negative regulators 

might contribute to this phenomenon. 

Our results do not rule out the possibility that CIS exerts its effects not through its 

protein abundance in cells, but through its availability. CIS could be bound by another 

protein at rest, and be released when the cells were activated (GH stimulated). The free 

CIS would then be able to bind to the receptor and exert its effects. Indeed, the ability of 

several CISISOCS proteins to bind to GST-fused GHR intracellular domain and produce 

dramatic different inhibitory effects on GH signaling (83) suggests that binding to the 

receptor is not sufficient to account for inhibition of GH signaling. In refractory and 

sensitive cells association of CIS with the GHR followed the same timecourse as that of 

the GHR tyrosine phosphorylation. Thus, if CIS has any function in refractoriness, it 

must act through other mechanism(s) in addition to its interaction with the GHR. The 

protein that traps CIS might be tyrosine phosphorylated and have a molecular mass of 

120 kDa. The existence of another 120 kDa CIS-binding protein might explain the heavy 

tyrosine phosphorylation signal from the GST-CIS precipitates compared to the weak 

signal from the same amount of the same precipitates but detected by the GHR antibodies 

(Figure 22). The lack of the tyrosine phosphorylated protein that co-precipitates with CIS 

in Fc8 expressing mouse L cells suggests if there exists such a CIS-binding protein, its 

interaction with CIS is dependent on the tyrosine phosphorylation of the GHR. 

An ideal way to study the effect of CIS in refractoriness would be to overexpress 

or knockout CIS in adipocytes and then determine if any changes of the insulin-like 

responses to GH are noted in these cells. CIS transgenic mice have been produced (121), 



but except for growth retardation and scarcity of adipose tissue, no changes of GH- 

induced activities in their adipocytes have been reported. Because adipocytes are 

terminally differentiated cells, they cannot be transfected like dividing cells. Adenovirus 

carrying CIS cDNA has been generated and used to transduce adipocytes. However, it 

takes at least 48 hours for protein expression before any measurement can be made. 

Adipocytes can be cultured, but conditions for producing refractoriness under these 

circumstances are not known. In our experience, adipocytes lose a considerable amount 

of fat after 3 hours incubation at 37°C in KRPG buffer containing 5.5 mM glucose and 10 

mg/ml BSA. Forty-eight-hour incubations of adipocytes in DMEM not only results in a 

major loss of cells, but also changes cell morphology. Besides, we were unable to 

determine if the incubated adipocytes still retain the physiological characteristics of 

freshly isolated adipocytes. Differentiated primary preadipocytes obtained from rat 

adipose tissue or 3T3-F442A cells did not appear to be good substitutes either on this 

aspect. Therefore, so far, the primary adipocyte is the only cell model that has been used 

to investigate refractoriness. Nevertheless, the finding of an alternative cell system that 

can be genetically engineered would definitely advance further study. 

The factors that cause delayed recovery of the response of the GHR, JAK2 and 

STAT5 to GH-stimulation after initial exposure to GH are not known. Full 

responsiveness to GH-stimulation was regained in about 90 minutes after the removal of 

GH, a time that differs from the 3 hours required for termination of refractoriness after 

excision of adipose tissue. However, since tyrosine phosphorylation is usually an early 

response to cytokine stimulation, responsiveness of unknown molecules downstream of 



the pathway may be more reflective of refractoriness. The factors that are responsible for 

the appareance of refractoriness are likely to be further downstream of or distinct from 

JAK-STAT pathway. Furthermore, negative regulatory proteins induced by GH through 

the JAK-STAT or other pathways require time for synthesis and to be cleared by 

degradation. Interestingly, the temporally related effects of GH on STAT5 activity in 

liver cell lines reported as measured by electrophoresis migration shift assay (EMSA) or 

activation of a reporter gene are remarkably similar to our findings in adipose tissue (55). 

In the liver, these effects are of particular importance for the sexually dimorphic 

regulation of hepatic genes that depend upon intermittent stimulation with GH as seen in 

male rats as compared to the nearly constant stimulation by GH seen in female rats. 

Upon initial stimulation with GH, STAT5 activity increased to a maximum at around 1 

hour and returned to baseline within 1 hour after removal of GH (64). A GH-free interval 

of at least 2.5 hours was needed before GH could again fully activate STAT5, 

reminiscent of the period of refractoriness in adipocytes. Cycloheximide added along 

with GH maintained STAT5 activity for at least 4 hours suggesting, as with termination 

of the insulin-like response (69), that a short-lived protein is somehow involved in 

turning off the GH response (65) (55). Inhibition of phospholipase C and blockade of 

serinelthreonine kinases also prolonged the activated state of JAKISTAT signaling (55). 

Although the role of changes in [Ca2+], have not been explored in this light in 

hepatocytes, it was noteworthy that inhibition of phospholipase C and protein kinase C in 

adipocytes prevents GH-induced increase in [Ca2+], and that elevated [Ca2+], is associated 

with refractoriness in adipocytes. No short-lived protein has been identified that 



contributes to the delayed response of STAT5 to GH stimulation in liver cells. Induction 

of CIS by GH was hypothesized to be one mechanism by which sexually dimorphic GH 

signaling via STATSb is achieved in the rat liver. Although GH regulates CIS mRNA 

expression in rat liver and in cultures of primary rat hepatocytes, and constitutive 

expression of CIS inhibited the GH-induced transactivation of a STATS-responsive 

reporter gene construct (100), there is no direct evidence to confirm that hypothesis yet. 

As neither the mechanisms underlying desensitization of GH-stimulated STAT5 activity 

in liver cells nor refractoriness to insulin-like responses of GH in adipocytes are clear at 

present, it is hard to predict how much these two phenomena are related. We suspect 

these are separate events, since so far no evidence has implicated STAT5 in 

refractoriness. 

The lack of difference of the GH-induced phosphorylation of the GHR, JAK2 and 

STAT5 between refractory and sensitive adipocytes suggests that the tyrosine 

phosphorylation status of these mediators may not be the determinants of refractoriness 

or that refractoriness results from a more distal change. However, the data described here 

on the tyrosine phosphorylation of proteins differs from those reported by Eriksson et a1 

(53). In their study, no tyrosine phosphorylation of GHR and JAK2 was observed in 

freshly isolated and hence refractory adipocytes after 10 minutes of GH stimulation. 

Their data imply activation of phosphotyrosine phosphatase or suppression of tyrosine 

kinase activities in refractory cells. No confirmation of these results has been published 

by others researchers. Furthermore, because the refractory state is the one that prevails in 

vivo it is unlikely that JAK2 cannot be activated by GH in vivo in adipocytes. Clearly 



JAK2 is activated in liver, muscle (3 1) and other tissues (18 1) at times of refractoriness to 

insulin-like stimuli. Also, although the lipolytic action of GH appears to involve the 

STAT5 proteins, an insulin-like effect of GH on glucose conversion to lactate was 

observed in adipose tissue from mice deficient in STATSaIb, suggesting the insulin-like 

effects of GH on glucose metabolism involve different mechanisms than GH-stimulated 

STAT5 activation (54). Therefore, it is likely that JAK2lSTAT5 pathway remains active 

in refractory cells. 

The requirement of phosphorylated tyrosines located on the C-terminal part of the 

GHR for interaction with CIS suggests that CIS may interact with the GHR through its 

SH2 domain. Although a functional SH2 domain of CIS was not required for its 

interaction with IL-2R P subunit in transfected HEK 293T cells, phosphotyrosine binding 

nevertheless was essential for expression of inhibitory action of CIS (9). The SH2 

domain of SOCSl was also found to be required for its binding to JAK2 (133), though 

the isolated SH2 domain of SOCSl failed to inhibit JAK2 autophosphorylation in HEK 

293 cells and had no effect on the transcriptional activity of the c-fos promoter in BaIF3 

cells (52). In the case of SOCS3, an additional 46 amino acids C-terminal to the SH2 

domain seem to be needed for SOCS3 binding to the GST-fused GHR intracellular 

domain, as well as inhibition of GH-induced signaling (83). Therefore, it is possible that 

the SH2 domain needs a particular tertiary structure to play its role, or  that the 

simultaneous binding of an SH2 domain and another motif in the CISISOCS is required. 

It has been predicted recently that two functional domains are required, one, which 

includes the SH2 domain, is involved in binding to phosphotyrosines in cytokine 



receptors or JAK kinases, and the other, which includes the N-terminal domain, is 

involved in the actual inhibitory effects (83). Also, individual members of the family 

may act differently, as the N-termini of each of the proteins share little homology, which 

may confer specificity to individual action. 

Although the mechanism of action of CIS is unclear, currently several 

possibilities have been postulated (204) (8): 1) CIS could be an adaptor protein that 

interacts with other proteins through its SH2 domain, N-, or C- terminal domain; 2) It 

could directly block tyrosine phosphorylated motifs on receptors, preventing their 

coupling to stimulating signal molecules; 3) Because of the short half-life of CIS, it may 

act as  a scavenger of phosphorylated proteins, targeting them for degradation. 

The relationship of CIS to STAT5 has not been well defined to date. There are 

four MGF boxes (TTCNNNGAA, consensus STAT5 recognition sequence) in the 

promoter region of the CIS gene, and disruption of the MGF boxes abolished the Epo- 

dependent activation of CIS promoter (120), suggesting that the CIS gene is a direct 

target of STATS. Overexpression of CIS partially inhibits Epo-induced STAT5 

phosphorylation (120), as well as IL-2-mediated activation of STAT5 and Lck-mediated 

phosphorylation of the IL-2R P subunit in 293 cells (9). Depending on the reporting 

systems used to examine the effect, overexpression of CIS in cultured cells showed 

partial or no inhibitory effects on GH-induced STAT5 activation (Table 3). For example, 

CIS did not show any effect on GH-stimulated transcription of the Spi2.1 promoter which 

is STATS-dependent (83). In the present study, we have shown that overexpression of 

CIS in CHO cells partially inhibited GH-induced STAT5 phosphorylation, as it did to 



Table 3. Effects of CIS on GH-induced STAT5 activity 

EMSA: electrophoretic mobility shift assay 
Ntcp: hepatic Na+/taurocholate cotransporting polypeptide (6 1) 
CAT: chloramphenicol acetyltransferase 

Reporting System 

EMSA using an STAT5 response 
element derived from rat p casein 
gene 
Rat ntcplluciferase reporter gene 
activity (4 copies of a STAT5 
response element) 
Spi2.1 promoter1CAT activity 

EMSA using a STAT5 binding 
element from Spi2.1 promoter 

lmmunoprecipitation and Western 
blotting for STAT5 
phosphorylation in CHO cells 

Epo-induced phosphorylation of STAT5 in hematopoietic cells that express CIS and 

STATS. However, we were unable to correlate the change of CIS abundance with GH- 

induced phosphorylation of STAT5 or other key GH signal transducers in adipocytes. 

The lack of inhibition by CIS on STAT5 phosphorylation in adipocytes might imply that 

CIS has different roles in mitogenically active cells and terminally differentiated 

adipocytes. Alternatively, it is possible that CIS can inhibit STAT5 phosphorylation only 

when overexpressed in great excess but not when present in physiological concentrations. 

Inefficient expression (or protein instability) of CIS in transfected cells has also been 

suspected to account for the lack of inhibition in some studies (142). In addition, we 

suspect the interaction of CISIGHR andlor the inhibitory effect of CIS on GH-induced 

STAT5 activity is cell type-dependent and may involve other factors. 

Effects 

Partial inhibition 

Almost complete 
inhibition 

No inhibition 

Partial inhibition 

Partial inhibition 

Reference 

(142) 

(142) 

(83) 
(3) 

(83) 

This study 



The results observed in the present study are consistent with recent reports by 

Ram et  al. (142), in which CISISOCS proteins were divided into three categories 

according to their inhibition of GH-stimulated STAT5 signaling. SOCSl and SOCS3 

were highly potent inhibitors, CIS and SOCS2 were somewhat weaker inhibitors when 

expressed at similar protein level, and SOCS6 was non-inhibitory. In that report it was 

proposed that CIS/SOCS proteins inhibit GH-stimulated STAT5 signaling by three 

distinct mechanisms. SOCSl acts at the level of JAK2 tyrosine kinase, SOCS3 acts at 

the level of the membrane-proximal tyrosine residues Tyr333 and Tyr338 of the GHR, 

and CIS and SOCS2 act on the level of membrane-distal tyrosine residue(s). The 

demonstration of individual proteins acting on distinct molecular targets of the 

GHRJJAK2 complex suggests that each of the GH-inducible CISISOCS genes may play a 

unique role in termination of GH signaling or in selectively modulating GH signal 

pathways. 

The specific consequences of CISISOCS binding to the receptor are not known at 

present. SOCS3 was found to bind to the SHP-2 binding site on gp130 and the activities 

of SOCS3 and SHP-2 were functionally linked and modulated (131) (154). As a 

phosphotyrosine phosphatase whose enzymatic activity can be increased by 

phosphorylation (189), SHP-2 could negatively regulate cytokine signaling as well. The 

linkage of SOCS3 with SHP-2 might determine the inhibitory specificity of particular 

downstream pathways. Although SOCS3 was also found to bind to the phosphotyrosines 

that are STAT5 binding sites in the GHR, SOCS3 did not appear to compete with STAT5 

for binding to the GHR (83). In a proposed "bridge model", SOCS3 would serve as an 



inhibitory bridge by binding simultaneously to GHR phosphotyrosines 3331338 through 

its SH2 domain and to JAK2 via its kinase inhibitory sequence (residues 22-34) (142). 

However, CIS only produces incomplete inhibition of JAK2 activity, and mutation of 

tyrosines 3331338 in the GHR does not interfere with the inhibition of GH-induced 

STAT5 activity by CIS. Thus CIS does not seem to fit the bridge model. Instead, CIS 

may suppress STAT5 activity by binding to the membrane-distal phosphotyrosine 

residues in the GHR that are STAT5 binding sites. Because other upstream 

phosphotyrosine residues such as Tyr333 and Tyr338 can also support GH-stimulated 

STAT5 signaling, the multiplicity of the STAT5 binding sites in the GHR might explain 

the weak or non-inhibitory effect of CIS on GH-activated STAT5 signaling. 

On the other hand, one implication of these studies might be that the inhibition of 

STAT5 activation is not the main aspect of the physiologicd function of CIS in cytokine 

signaling. One of the two forms of CIS, the 37 kDa form, was found to be ubiquitinated 

and degraded rapidly by proteosomes. Proteosome inhibitors appeared to protect the 

CIS-EpoR complex and thus inhibit the inactivation of the EpoR and STAT5 in human 

leukemic cells (188). SOCSl was implicated in the hematopoietic-specific guanine 

nucleotide exchange factor VAV's ubiquitin-dependent degradation (42). It was also 

reported that the SOCS box mediates interactions with elongins B and C, which in turn 

may couple SOCS proteins and their substrates to the proteasomal protein degradation 

pathway (208). In this respect, it was proposed that CISISOCS proteins may act as 

adaptor molecules that target activated cell signaling proteins to the protein degradation 



pathway. These findings suggest that targeting for protein degradation might be an 

efficient mechanism for CISISOCS protein to inhibit cytokine signaling. 



SUMMARY 

Studies of the CISISOCS family suggest these proteins function as negative 

regulators of cytokine signaling. The present study focused on the investigation of the 

involvement of CISISOCS proteins in GH action, in particular, on the possible role of 

CISISOCS proteins in termination of GH-induced insulin-like effects and emergence of 

refractoriness in rat adipocytes. To answer the questions asked as the specific aims, the 

foregoing study found: 

I. GH up-regulates the mRNA expression of CIS, SOCS3 and SOCSl genes in rat 

adipocytes. 

11. CIS associates with the tyrosine phosphorylated GHR upon GH stimulation of 

both adipocytes and cultured cells. 

I. CIS binds to a small fraction of tyrosine phosphorylated GHR in both 

adipocytes and 293A cells. 

ii. The GHR that CIS binds to is  likely to be multiply tyrosine 

phosphorylated. 

iii. CIS binds to the GHR through phosphotyrosines near the carboxyl 

terminus of its intracellular domain. 

iv. There could be another protein (or proteins) that binds to CIS and has a 

molecular weight of 120 kDa, but if so, the abundance of this protein is 

below the detection threshold of anti-phosphotyrosine antibodies. 



v. A thrombin-cleavage site is found near the amino terminus of the GHR of 

rat, mouse and rabbit, but not of human, sheep and bovine. 

vi. No tyrosine phosphorylated proteins have been found to co-precipitate 

with SOCS3 in rat adipocytes. 

111. Although CIS partially inhibited GH-induced STAT5 phosphorylation when 

overexpressed in CHO cells, no such effect was apparent in primary rat adipocytes. 

Neither the change of protein abundance of CIS nor its interaction with the GHR 

correlated with the time course of refractoriness. Therefore, CIS does not appear to be a 

major contributor to refractoriness. 



FUTURE DIRECTION 

The future work will focus on two aspects: to investigate the physiological 

function of CIS in GH signal transduction and to discover molecules that regulate the 

insulin-like-effects of GH and cause refractoriness. 

The strong and rapid binding of CIS to the tyrosine phosphorylated GHR in 

response to GH stimulation implies that this interaction is important. We would like to 

determine what CIS does by binding to the GHR. Since inhibition of GH-induced STAT5 

activity does not appear to be the major function of CIS, the consequence of CISIGHR 

interaction may lie downstream of STAT5 or lead to another pathway. Examination of 

end points of GH action in cells expressing a CIS mutant that does not bind to the GHR 

may lead to information on the significance of CISIGHR interaction. Alternatively, the 

CIS gene can be knocked out from mice or tissue-specifically disrupted from adipose 

tissue to analyze the overall physiological function of CIS and its involvement in 

metabolism in adipose tissue. Also, the possible role of CIS in targeting the GHR for 

degradation has not been explored yet. We will examine the ubiquitination status of the 

GHR in the presence and absence of CIS in cultured cells to see if CIS potentiates GHR 

ubiquitination, as SOCSl does to VAV (42). Proteosome inhibitors such as LLnL (N- 

acetyl-leucyl-nor-leucinal) and lactacystin (37) can be used to examine if CIS targets the 

GHR to proteosomal degradation, as it does to EpoR (188). 

On the other hand, although CIS does not appear to regulate the insulin-like- 

effects of GH, results presented here and in other studies clearly demoilstrate the 



complexity of this physiological phenomenon. As our first attempt to get a broad range 

of understanding of gene regulation by GH, I have used differential display technology 

(108) to examine changes in the gene expression pattern in sensitive and refractory 

adipocytes. However, because of the limitation of the differential display technology that 

has also been demonstrated in other studies (24) (126), we could not confirm the 

differentiated gene expressions by Northern blot analysis. With the completion of the 

human genome project and the progress of genome projects of other species including 

mouse, a nearly complete platform is available for studying gene expression profiles. 

Instead of analyzing one or several genes a time, DNA microarray technology offers 

promise to analyze expression profiles of a great number of genes in altered physiological 

conditions, as exemplified in recent reports (35) (22) (6). This novel technology has also 

i 

been extended to protein arrays, or "proteomics" (51). In these reports, altered gene 

profiles under disease condition were clearly demonstrated, and provided new directions 

in cancer classification and development of new drug targets. With a similar approach, 

i.e. by gene profiling the GH sensitive and refractory cells, the underlying mechanism 

which has been sought for decades could be elucidated. Furthermore developing an in 

vivo system that is capable of altering cell sensitivity to the insulin-like-effects of GH will 

greatly facilitate the study on this aspect of GH action. 
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