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Abstract 

Despite the importance of integrins in epithelial cell biology surprisingly little is 

known about their regulation. It is known that they form hemidesmosomes (HDs), are 

actively involved in cell contacts during cell migration/invasion, and are key signaling 

molecules for survival and growth. However, there has been a distinct lack of 

understanding about what controls the dynamic integrin localization during cell activation 

and movement. Growth factors, such as EGF, are elevated during wound healing and 

carcinoma invasion leading to phosphorylation of ITGβ4 and the disassembly of the HD 

and mobilization of ITGβ4 to actin-rich protrusions. More recently the phosphorylation 

of a novel site on ITGβ4 (S1424) was found to be distinctly enriched on the trailing edge 

of migrating cells, suggesting a possible mechanism for the dissociation of ITGβ4 from 

HDs.  

Arrestin family member proteins are involved in the regulation of cell surface 

proteins and vesicular trafficking. In this study, we find that over-expression of arrestin 

family member ARRDC3 causes internalization and proteosome-dependent degradation 

of ITGβ4, while decreased levels of ARRDC3 stabilizes ITGβ4 levels. These results lead 

us to a new mechanism of ITGβ4 internalization, trafficking and degradation. During 

migration, ARRDC3 co-localizes with ITGβ4 on the lagging edge of cells but has a 

distinct distribution on the leading edge of cells. Additional immuno co-precipitation 

experiments demonstrate that ARRDC3 preferentially binds to ITGβ4 when 

phosphorylated on S1424. Using confocal microscopy, we show that the expression 

pattern of ARRDC3 on the lagging edge of a migrating cell is identical to the expression 
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pattern of ITGβ4-pS1424. We demonstrate that ARRDC3 expression represses cell 

proliferation, migration, invasion, growth in soft agar and tumorigenicity.  

Collectively, our data reveals that ARRDC3 is a negative regulator of β4 integrin 

and demonstrates how this new pathway impacts biologic processes in stem cell and 

cancer biology. Additionally, as ARRDC3 is highly expressed in several tissues and 

conserved across species, our results are likely to be translated to other models.
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CHAPTER I: 

Introduction 
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Adult Stem Cells  

An adult stem cell, also termed somatic stem cell or tissue specific stem cell, is 

defined as an undifferentiated cell, found among differentiated cells in a tissue or organ, 

that can self-renew and differentiate to yield some or all of the major specialized cell 

types of the tissue or organ (Evans and Potten, 1991; Moore and Lemischka, 2006; 

Morasso and Tomic-Canic, 2005). The primary role of adult stem cells in a living 

organism is to maintain and repair the tissue in which they are found. Unlike embryonic 

stem cells, which are defined by their origin (the inner cell mass of the blastocyst), the 

origin of adult stem cells in most mature tissues is still under investigation. Adult stem 

cells have two general properties: they are capable of long-term self-renewal and they are 

undifferentiated (Morrison and Spradling, 2008; Potten and Morris, 1988). However, 

whereas embryonic stem cells are considered to be pluripotent and therefore capable of 

differentiation into almost all cells from the three germ layers; adult stem cells are multi-

potent and only capable of producing a limited range of differentiated cells, typically 

confined to those of a single tissue (Morrison and Spradling, 2008; Potten and Morris, 

1988). 

Functions of Adult Stem Cells 

Adult stem cells are identified as the cells responsible for the regeneration of the 

tissues in which they reside. They are generally considered to be capable of 

differentiating into the multiple cell types within the tissue in which they reside 

(Spradling et al., 2001). This is vital in the overall homeostasis of the tissue as well as 

injury repair. In order for stem cells to fulfill these critical functions, they have to 
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maintain several properties. Upon division, stem cells need to maintain the stem cell pool 

(self-renewal) as well as derive more differentiated cells.  This is generally believed to be 

accomplished through asymmetrical cell division, in which one daughter cell retains the 

stem cell characteristics while the other daughter cell continues down a path of 

hierarchical differentiation. However, current data does not conclusively exclude other 

mechanisms, such as interspersed divisions of stem cells resulting in either self-renewal 

or differentiation. Stem cells are generally slow-cycling in-vivo but give rise to highly 

proliferative transit-amplifying cells, the cells which ultimately differentiate to replenish 

lost cells (Potten, 1974; Potten et al., 1974). This system is believed to minimize the 

number of times the stem cell needs to undergo DNA synthesis, thus limiting the 

introduction of mutations. 

Stem Cell Niche 

 Due to the essential role of adult stem cells in tissue regeneration and wound 

repair, the proper upkeep of these cells is crucial. Maintenance is thought to be achieved 

through the interactions between the stem cells and their specialized microenvironment 

known as the niche, first postulated by Schofield in 1978 (Schofield, 1978). Stem cell 

functions (i.e. the balance between self-renewal and differentiation) are primarily 

controlled by extracellular cues from the niche, although the natures of many of these 

signals are still unclear. Comparison of the most understood stem cell niches (mammalian 

bone marrow, skin, intestine and testis) reveals several common properties (reviewed in 

(Li and Xie, 2005; Moore and Lemischka, 2006)). The niche is typically an asymmetric 

structure; cells supporting the undifferentiated state are located on one end with cells 
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promoting differentiation on the other. This asymmetry likely helps to ensure the 

asymmetric division of the stem cells.  Also, stem cells will tightly adhere themselves 

within the niche by increasing expression of adhesion molecules such as cadherins and 

integrins. Strong adherence makes it difficult for physical damage to dislodge the adult 

stem cells from their protective environment. Additionally, all known niches contain a 

variety of support cells that are essential in producing extrinsic factors, which both 

positively and negatively regulate the growth-restrictive and un-differentiated state. The 

loss of the niche has severe consequences. Excessive self renewal at the expense of 

differentiation leads to aberrant expansion and even tumorigenesis as well as 

degeneration of the tissue. Conversely, excessive differentiation at the expense of self-

renewal will deplete the stem cell pool leading to a reduction in the regenerative capacity 

of tissues, affecting both normal homeostasis as well as wound healing. 

The Epidermis & Skin Stem Cells 

The mammalian skin represents a physical barrier between the body and its 

external environment, receiving most of the damage brought on by physical trauma and 

mutagenic UV radiation. The skin is a multi-layered epithelium that is comprised of 

sebaceous glands, hair follicles and the interfollicular epidermis.  In order to protect 

against the accumulation of mutations, the epidermis has a rapid cellular turnover, 

renewing itself in humans every 2-3 weeks (Potten, 1975a; Potten, 1975b). This 

regeneration is sustained by different populations of epidermal stem cells which 

additionally participate in the repair of the skin after injuries. These cells are quiescent 

but upon injury can be mobilized into an extensive and sustained self-renewal capacity. 
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 There are two main methods used to identify epidermal stem cells. The first 

makes use of the slow-cycling nature that defines all stem cells in a pulse-chase assay. 

Actively proliferating cells are pulse-labeled with the introduction of a DNA precursor 

like 3H-TdR or BrdU. For in-vivo studies, mice are injected at post-natal day 3 or shortly 

after the engraftment of human skin onto an adult nude mouse. The DNA precursor can 

be added into the media for in-vitro studies. The labeling period is then followed by an 

extended chase period (4-10 weeks); proliferating cells will dilute the label by half with 

every cell division.  Over time, the rapidly proliferating cells, such as the transit 

amplifying cells, will no longer contain detectable levels of label but the stem cells will 

(Bickenbach and Mackenzie, 1984; Braun et al., 2003; Cotsarelis et al., 1990). Inducible 

GFP and β-galactosidase have also been used as pulse-labeling reagents in adapted 

methods (Tumbar et al., 2004). The second method used for identification of epidermal 

stem cells involves the use of stem cell markers. Current markers include ITGα6, ITGβ1, 

CD71lo, CD34, CD200, KRT15 and KRT19 (Cotsarelis, 2006; Jih et al., 1999; Lyle et al., 

1998; Lyle et al., 1999; Trempus et al., 2003; Van Waes et al., 1991). Unfortunately, 

most of the markers identified lack specificity to epidermal stem cells alone. However, 

these markers in combination with knowledge of the approximate physical location 

relative to histological markers will allow for accurate isolation through micro-dissection 

and laser capture. A combination of cell labeling and immuno-marking techniques 

identified epidermal stem cells located in the hair follicle bulge as well as within the 

interfollicular region of the skin. 

The Hair Follicle Bulge 
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The bulge region of the hair follicle represents the best characterized epidermal 

stem cell population described to date, but there is evidence of other stem populations in 

the interfollicular epidermis and the sebaceous glands (Bieniek et al., 2007; Kaur, 2006; 

Tiede et al., 2007). In human fetal  and murine follicles, the bulge is a morphologically 

prominent outgrowth of epithelial cells below the opening of the sebaceous gland, 

marking the lower end of the permanent portion of the follicle (Akiyama et al., 1995). In 

contrast, this morphological structure is not typically seen in adult human follicles (only 

at the onset of anagen) and therefore the location of the bulge is estimated to be roughly 

located at the insertion of the arrector pili muscle (Figure 1-1). These bulge cells have 

been demonstrated to possess stem cell properties in-vivo and in-vitro (Cotsarelis et al., 

1990; Kobayashi et al., 1993). In addition to the in-vitro studies, the bulge cells possess 

the in-vivo proliferative behavior expected of stem cells. While the stem cells are 

generally slowly cycling, as determined in label-retaining studies, cell proliferation 

analysis shows that the stem cells of the mouse bulge are activated to transiently 

proliferate at the onset of anagen (Wilson et al., 1994) starting the hair cycle as 

characterized in the “bulge activation hypothesis” (Cotsarelis et al., 1990). 

 Similar to other epithelial tissues (Cotsarelis et al., 1989; Lavker and Sun, 1982) 

the bulge has all the features expected of a stem cell niche and the bulge cells display the 

characteristics of stem cells. The bulge represents the permanent portion of the hair 

follicle; while the lower follicle undergoes apoptosis and degenerates during catagen. 

Bulge cells are tightly adherent to the basement membrane and are protected from 

accidental loss to plucking (Cotsarelis et al., 1990). Plucking of human follicles, which 
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can remove a majority of the hair follicle epithelium below the level of the bulge, will 

still result in hair regeneration (Moll, 1995).  The basement membrane zone of the bulge 

also appears specialized for its role in protecting the bulge cells. K-laminin and type VII 

collagen are much more highly expressed in the basement membrane zone of the bulge 

than in the lower portion of the outer root sheath (ORS), allowing for increased adhesion  

to the niche (Akiyama et al., 1995). Additionally, the vasculature of the bulge provides 

nourishment for this important area and the bulge-containing isthmus region is the most 

richly innervated skin area (Schneider et al., 2009). The bulge area also contains a 

concentrated number of Langerhans cells, a cell type thought to help maintain the 

epidermal stem cell niche (Allen and Potten, 1974; Potten and Allen, 1976).  

There are three major epithelial cell types in which bulge cells can contribute: 

sebaceous glands, epidermis and the whole hair follicle. Bulge cells are primarily 

responsible for the regeneration of a new lower follicle and the start a new hair cycle (Liu 

et al., 2003; Lyle et al., 1998; Oshima et al., 2001). In addition, these cells can contribute 

to the sebaceous gland and epidermis as well (Ito et al., 2005; Morris et al., 2004; Oshima 

et al., 2001). The main role for inter-follicular (IF) stem cells seems to be replenishing the 

inter-follicular epidermis (IFE); however these cells are capable of giving rise to cells of 

multiple lineages including the hair (Ferraris et al., 1997; Reynolds and Jahoda, 1992; 

Silva-Vargas et al., 2005). It is likely that during normal tissue homeostasis, both inter-

follicular and bulge stem cells respond to niche derived signals and give rise to restricted 

subsets of progeny (Ferraris et al., 1997; Niemann et al., 2002). However, after an event  
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that disrupts normal tissue homeostasis (such as wounding or engraftment), all epidermal 

stem cells may be stimulated to produce daughter cells of all the epidermal lineages 

(Blanpain et al., 2004; Ito et al., 2005; Morris et al., 2004; Tumbar et al., 2004). 

Skin Stem Cell Signaling Pathways 

There are several signaling pathways critical in the regulation of bulge stem cells, 

but the Wnt/β-catenin pathway is perhaps the best characterized. Repressing this pathway 

with dominant negative forms of either β-catenin or the downstream transcription factor 

Lef1 results in the loss of hair follicles and formation of cysts of IFE with associated 

sebocytes (Huelsken et al., 2001; Zhu and Watt, 1999). Additionally, mice expressing 

either dominant negative β-catenin or dominant negative Lef1 can form sebaceous and 

hair tumors (trichofolliculomas and pilomatricomas) (Huelsken et al., 2001; Takeda et al., 

2006). Conversely, constitutively active β-catenin or Lef1 results in de novo hair 

morphogenesis at the expense of sebaceous differentiation (Gat et al., 1998; Huelsken et 

al., 2001; Zhu and Watt, 1999).  Activation of β-catenin can additionally induce bulge 

stem cells to re-enter the cell cycle in a Hedgehog (Hh) dependent manner (Lowry et al., 

2005; Niemann, 2006).  

Hh signaling is also important for lineage determination of bulge stem cells. 

Where Sonic Hh (SHH) has been shown to be important for hair follicle development and 

basal cell carcinogenesis, Indian Hh (IHH) is involved in the growth and differentiation 

of sebocytes in normal skin and in the formation of sebaceous tumors of human and mice 

(Adolphe et al., 2004; Niemann et al., 2003).  
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The appropriate timing of c-Myc expression is also important for the self-

renewal/differentiation balance. When c-Myc is mis-expressed in bulge stem cells, they 

will aberrantly differentiate into inter-follicular epidermis and sebocytes (Arnold and 

Watt, 2001; Waikel et al., 2001). However, it is believed that c-Myc actually regulates 

the departure of the bulge stem cells from their niche, and it is the absence of the 

restrictive environment that subsequently causes proliferation and differentiation (Frye et 

al., 2007; Watt et al., 2008).  

Finally, bone morphogenic protein (BMP) signaling is critical in maintaining the 

quiescence of the bulge stem cells (Andl et al., 2004; Kobielak et al., 2003; Kobielak et 

al., 2007). Bulge stem cell activation responds to cyclic BMP2 and BMP4 expression 

within the dermis (Plikus et al., 2008). Dermal BMP signals progressively diminish 

during the resting period of the hair follicle cycle promoting the switch from quiescent to 

activated bulge stem cells (Plikus et al., 2008). 

Adhesion & Migration of Skin Stem Cells  

The adhesion molecules of skin stem cells are very important in their regulation. 

Interactions with support cells and the extra-cellular matrix (ECM) via adhesion 

molecules establish and maintain niche architecture, generate and transmit regulatory 

signals and control the frequency and nature of stem cell division.  There are several 

ECM proteins and adhesion molecules up-regulated in skin stem cells (when compared to 

differentiated keratinocytes) including: TNC, COL6A1, COL18A1, FBLN1, SPARC, 

ITGβ1, ITGβ4, ITGβ6 and P-cadherin (Fuchs, 2008; Jones et al., 2007; Morris et al., 

2004; Rhee et al., 2006; Tumbar et al., 2004). The importance of these adhesion 
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molecules is highlighted by a study which deleted ITGβ1 and α-catenin from basal 

keratinocytes and resulted in random orientation of cell division and alterations in 

epidermal homeostasis (Lechler and Fuchs, 2005). These results support the hypothesis 

that signals generated from the proper interaction between adhesion molecules and the 

environment should either promote directional migration (out of niche for regeneration) 

or inhibit motility (keeping the stem cells within the niche). 

Under normal circumstance, bulge stem cells have very limited motility as it is 

crucial for the cells to remain in the niche (Roh et al., 2005). During normal tissue 

regeneration transit-amplifying (TA) cells migrate out of the niche so it is not surprising 

that these daughters of bulge stem cells exhibit a high motility (Roh et al., 2005). 

However, bulge stem cells can be induced to migrate downward to the hair follicle as 

well as outward to resurface the epidermis in response to wounding (Taylor et al., 2000). 

After injury or during normal turnover, keratinocytes become activated; simultaneously 

secreting and responding to growth factors and cytokines (Rizvi and Wong, 2005; Tomic-

Canic et al., 1998; Watt et al., 2006). After mechanical injury, bulge stem cells will start 

migrating and proliferating, generating TA cells (Blanpain and Fuchs, 2009; Owens and 

Watt, 2003). The cells undergo significant changes to their junction and adhesion 

molecules, a critical part of this process. Importantly, hemidesmosomes (HDs) are 

dissolved to allow for migration. These migrating keratinocytes produce a different set of 

membrane molecules, such as vitronectin and fibronectin receptors (importantly integrin 

α5β1), which replace the collagen receptor (integrin α2β1) and further permit migration 

(Cavani et al., 1993; Haapasalmi et al., 1996; Singer and Clark, 1999). The growth 
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factors active during wound healing such as epidermal growth factor (EGF), keratinocyte 

growth factor (KGF) and TGFβ are all potential regulators of these processes (Nanney et 

al., 1996; Werner et al., 1994; Zambruno et al., 1995). 

Stem Cells and Cancer Cells 

 Similarities between stem cells and cancer cells have long been recognized as 

both have the capacity for self renewal and unlimited replication. The identification of 

key pathways for stem cell regulation and cancer progression (such as Notch, Hedgehog 

and Wnt) reveals further parallels. Stem cells are increasingly becoming recognized as a 

model system for properties exhibited by cancer cells as well as potential targets of 

carcinogenic pathways. 

Self-renewal 

Self-renewal is the process in which a stem cell divides asymmetrically or 

symmetrically to generate one or two daughter stem cells that have a developmental 

potential similar to the mother cell.  As stem cells and cancer cells share the ability to 

self-renew, it is reasonable to propose that newly arising cancer cells appropriate (or 

“hijack”) the self-renewing cell division machinery normally expressed in stem cells. 

There is evidence showing that many pathways classically associated with cancer also 

regulate normal stem cell development. For example, the prevention of apoptosis by 

forced expression of the oncogene bcl-2 results in increased numbers of hematopoietic 

stem cells (HSCs) in-vivo, suggesting that cell death has a role in regulating the 

homeostasis of HSCs (Domen et al., 1998; Domen and Weissman, 2000). Additionally, 

the potent oncogene c-Myc controls the balance between stem cell self-renewal and 
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differentiation, presumably by regulating the interaction between hematopoietic stem 

cells and their niche (Satoh et al., 2004; Wilson et al., 2004). Other signaling pathways 

associated with oncogenesis have been shown to play a role in stem cell self renewal; 

such as the Notch (Dontu et al., 2004; Hitoshi et al., 2002; Shen et al., 2004; Vercauteren 

and Sutherland, 2004), SHH (Clement et al., 2007; Liu et al., 2006), and Wnt signaling 

pathways (Dravid et al., 2005; Reya et al., 2003).  

Importance of Environment 

 As previously discussed, the primary function of the niche is to maintain 

undifferentiated stem cells, although the precise mechanisms are still unclear. Stephen 

Paget’s “Seed and Soil” Hypothesis, introduced over a hundred years ago, postulates that 

the location of secondary tumors reflect the “fertile soil” that site/organ provides for the 

“seeds” of cancer cells (Paget, 1889). However, the role of stroma in the tumor 

microenvironment has only recently become recognized as a major influencing factor of 

cancer progression. Normal fibroblastic stroma preserves epithelial cell quiescence and 

effectively inhibits epithelial cell transformation (and consequent tumorigenesis) 

demonstrating a stromal dominance over neoplastic cells (Kenny and Bissell, 2003; 

Kuperwasser et al., 2004; Maffini et al., 2004). Correspondingly, activated stroma 

(typically damaged by age, genetic mutation, injury/inflammation, or cancer cell 

influence) can provide a more supportive microenvironment for expanded tumor growth 

(Barcellos-Hoff and Ravani, 2000; Kurose et al., 2002; Kurose et al., 2001; Li et al., 

2007; Olumi et al., 1999). 
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Normal epithelium interacts with the underlying stromal compartment through a 

basement membrane composed mainly of collagen IV and laminin. Upon carcinoma 

progression, the previously uncompromised basement membrane is degraded and 

malignant epithelial cells invade into the underlying reactive stroma (Mueller and 

Fusenig, 2004). Invasive carcinoma cells then directly interact with activated fibroblasts 

(referred to as tumor-associated fibroblasts (TAFs), carcinoma-associated fibroblasts 

(CAFs) or reactive stroma) which remain in a chronic state of activation and ultimately 

support tumor progression (Kunz-Schughart and Knuechel, 2002a; Kunz-Schughart and 

Knuechel, 2002b; Orimo et al., 2005). Stromal cells influence epithelial cell behavior by 

secreting various extra-cellular matrix proteins, chemokines, cytokines, growth factors, 

proteases, and protease inhibitors. Altogether the tumor micro-environment, similar to the 

stem cell niche, creates a specialized environment which is permissive for cancer 

progression.  

Integrins 

Integrins make up a large family of heterodimeric transmembrane cell-matrix 

receptors composed of an α and a β subunit. 18 α and 8 β subunits have been described 

and they can assemble to form 24 different heterodimers, each with a different specificity 

to extra-cellular matrix proteins such as fibronectin, laminin, vitronectin, collagen and 

thrombospondin (Figure 1-2). Each of the 24 integrins appears to have unique functions 

made evident by their ligand specificities and varying phenotypes of the knockout mice. 

Integrins form a functional link between the extra-cellular matrix and the 

intracellular signaling pathways which influence cell morphology, survival, motility,  
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proliferation, migration and invasion (Aplin et al., 1999). Binding of integrins to the 

extra-cellular matrix causes a conformation change allowing signals to be transmitted 

into the cell (in what is known as “outside-in signaling”) activating several downstream 

signaling events (Juliano et al., 2004). Since integrins do not have an intrinsic catalytic 

activity, any downstream signaling must be modulated by integrin-associated proteins. 

Some of the more important integrin-mediated signals rely on the recruitment of the Src 

and FAK families of protein tyrosine kinases (Arias-Salgado et al., 2003; Arias-Salgado 

et al., 2005). There are three main signaling pathways activated by integrins that are 

critical for both cancer cells and stem cells: cytoskeletal organization (adhesion/cell 

migration), cell proliferation and cell survival pathways.  

Adhesion/Cell Migration 

In cells, adhesion and actin polymerization are dependent on one another. 

Adhesions provide nucleation points which support actin polymerization, but actin 

polymerization determines rates of adhesion and possibly nucleates adhesions containing 

activated integrins (Butler et al., 2006). Following the binding of ECM proteins, α-actinin 

and talin are recruited to the β-integrin cytoplasmic tail rapidly followed by the actin-

binding protein vinculin, altogether forming a stable focal adhesion (Martin et al., 2002). 

Removal of any of the proteins comprising this linkage leads to the disruption of the 

entire adhesion structure (Vicente-Manzanares et al., 2009). These integrin-mediated 

adhesions serve as traction points for contractile or tensional forces through their 

interaction with the actin cytoskeleton.  
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Integrin clustering by ligand binding also results in the oligomerization of focal 

adhesion kinase (FAK). Both FAK and vinculin can interact with the Arp2/3 complex, 

which controls the assembly of a branched actin filament network in the lamellipodium 

(Butler et al., 2006). Additionally, autophosphorylation of FAK results in the recruitment 

of Src through the SH2 domain and ultimate activation of GTPases RhoA, Rac1 and 

Cdc42.  These GTPases, by way of a variety of effectors, lead to actin nucleation, 

cytoskeletal contractility, branched F-actin growth and thus membrane protrusion and 

migration (Huveneers and Danen, 2009; Kiyokawa et al., 1998; ten Klooster et al., 2006). 

Cell Survival  

Most adherent cell types depend on integrin mediated adhesion for survival 

(Giancotti and Ruoslahti, 1999). Loss of adhesion causes cells to undergo a form of 

programmed cell death referred to as anoikis (Frisch and Screaton, 2001). Anoikis likely 

prevents cells from growing in inappropriate sites after losing adhesion from their 

original surroundings, thus maintaining the integrity of tissues. Integrin-mediated cell 

adhesion in 2-dimensional culture systems stimulates Bcl-2 expression and PKB/AKT 

activity, which in turn mediates survival signals (Giancotti and Ruoslahti, 1999). In the 

absence of serum factors, integrin-mediated adhesion to fibronectin enhances survival by 

activating JNK in a FAK dependent manner (Almeida et al., 2000). Alternatively, ligand-

free integrins can trigger apoptosis of fully adherent cells via the recruitment and 

activation of caspase-8. This suggests that a given integrin expression profile renders a 

cell dependent on a specific ECM environment for its survival (Stupack et al., 2001; 

Varner et al., 1995). 
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Proliferation 

Through the activation of Rac and ERK, integrin-mediated cell adhesion in 

normal untransformed cells also regulates the G1 phase of the cell cycle (Assoian and 

Schwartz, 2001; Schwartz and Assoian, 2001). Activated Rac and ERK contribute to the 

induction of cyclin D1 in mid-G1 phase. Ultimately, these events lead to the 

phosphorylation of the retinoblastoma protein (pRb) and entry into S phase. RTK 

stimulation and integrin-mediated adhesion can each independently activate ERK 

explaining the transcriptional regulation of cyclin D1. However, it is the combination of 

RTK and integrin signaling (i.e. when adherent cells are stimulated) which creates strong 

and sustained ERK activity necessary for cell cycle progression (Chen et al., 1996; 

Renshaw et al., 1997). 

Integrin-mediated adhesion, through ERK signaling, also leads to the induction of 

p21cip1 in early G1 phase and suppression or re-localization of the cyclin dependent 

kinase inhibitors p21cip1 and p27kip1 in mid–late G1 phase, coincident with activation of 

cyclin-E–Cdk2. Additionally, increased expression of c-Myc through activation of c-Src 

in response to integrin-mediated adhesion drives entry into S-phase (Benaud and 

Dickson, 2001). The organization of the actin cytoskeleton by integrins is also essential 

for adhesion-regulated proliferation. Integrin mediated control of Rho GTPases activity 

(enzymes critically involved in actin cytoskeletal organization) is an important aspect of 

adhesion mediated regulation of cyclin D1 and cdk-inhibitors. 
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Activation 

Current information regarding the regulation of integrin signaling focuses on 

conformational changes, which affect the affinity of the integrin to its ligand. Many 

integrins are expressed and remain in a low-affinity binding state until cellular 

stimulation transforms them into a high-affinity form, an event known as integrin 

activation, which can modify cell adhesion (Qin et al., 2004). Because information travels 

from the inside to the outside of the cell, this is often referred to as ‘inside-out’ signaling 

(Hynes, 2002). Although the details are still unclear, inside-out signaling typically leads 

to the binding of talin to the β-integrin cytoplasmic tail, followed by a conformational 

change of the integrin and finally an increased affinity of the integrin to the ligand 

(Anthis et al., 2009; Ling et al., 2003; Ye et al.). Other signaling events modulating 

integrin signaling (either activating or deactivating) mainly either manipulate talin-

binding or cause valency changes of the integrin (which affects ligand affinity) (Carman 

and Springer, 2003; Hynes, 2002). This regulation of integrins is essential for their 

biological functions made most obvious in platelet aggregation. If the affinity of the 

major platelet integrin (αIIbβ3) is not tightly controlled, the effects on the clotting 

process would be disastrous, leading to either thrombosis or bleeding disorders (Banno 

and Ginsberg, 2008; Kim et al., 2009). 

Trafficking 

 It has been known for almost 20 years that integrins are continuously internalized 

and recycled back to the cell surface (Bretscher, 1989; Bretscher, 1992). The trafficking 

of integrins by the endosomal pathway can influence their functions, polarize 
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distributions and affect the signaling of other associated growth factor receptors. Integrin 

endocytosis and recycling has been described as a process which moves the adhesion 

receptors from the back to the front of a migrating cell (Bretscher, 1996); however, there 

is still no evidence for such long-ranging machinery.  

Depending on the heterodimer, integrin internalization occurs through both 

clathrin-dependent and -independent mechanisms. However, not all integrins have been 

characterized leaving much still unclear (known data summarized in (Caswell et al., 

2009)). It has been speculated that the same integrin can be internalized by different 

mechanisms in response to various environmental cues (Ramsay et al., 2007). It has also 

been suggested that the mechanism of internalization will affect the trafficking route and 

subsequently the state of the cell (Caswell and Norman, 2006). 

Following endocytosis, the fate of the internalized integrin is determined in the 

early endosome: degradation, short-loop recycling or long-loop recycling. Most of the 

evidence accumulated thus far links integrins to the long-loop recycling; passing 

internalized integrins (such as α5β1, α2β1, α6β1, αLβ2, αVβ3) from the early endosome 

to the perinuclear recycling compartment before returning to the plasma membrane via a 

Rab11-dependent mechanism (Caswell and Norman, 2006). This recycling path is 

dependent on other signaling molecules such as PKB/Akt, GSK3β and PKCε (Roberts et 

al., 2004). So far only αVβ3 has been shown to be recycled in the short-loop pathway via 

Rab4, a pathway dependent on the recruitment of PKD1 (Roberts et al., 2001; Woods et 

al., 2004). 
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Integrin β4 

The β4 integrin subunit (ITGβ4) was initially identified as a tumor-associated 

antigen (TS180) associated with metastasis (Falcioni et al., 1989; Falcioni et al., 1988).  

ITGβ4 was soon identified as a partner for the α6 integrin subunit, to which it exclusively 

binds (Hemler et al., 1989; Kennel et al., 1989). A majority of integrins link the ECM to 

the actin cytoskeleton (Geiger et al., 2009), however α6β4 integrin is a laminin receptor 

which mediates the hemidesmosome (HD) formation linking the ECM with the 

intermediate filament cytoskeleton (Borradori and Sonnenberg, 1996; Green and Jones, 

1996; Nievers et al., 1999). The α6β4 integrin is unique in other ways; most obvious is 

that while all other integrins consist of a very short cytoplasmic domain of ~50 amino 

acids, the cytoplasmic tail of α6β4 (specifically the tail of ITGβ4) is 20 times as long 

(Hogervorst et al., 1990; Suzuki and Naitoh, 1990; Tamura et al., 1990). The extended 

tail is characterized by two pairs of fibronectin type III repeats separated by a connecting 

sequence. This cytoplasmic domain is crucial for the formation of HDs as well as any 

downstream signaling of α6β4 integrin stimulation (Merdek et al., 2007; Murgia et al., 

1998; Nikolopoulos et al., 2004; Nikolopoulos et al., 2005). 

Role in hemidesmosomes 

 The importance of ITGβ4 is highlighted in the knockout mice which suffer from 

junctional epidermolysis bullosa (blistering of the skin) in response to mechanical stress 

and die shortly after birth (Dowling et al., 1996; Fuchs et al., 1997; Georges-Labouesse et 

al., 1996). The blistering is due to the loss of functional hemidesmosomes (HDs) leading 

to the detachment of the skin from the basement membrane. There are currently two 
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different types of HDs described in the literature; classic or type I HD which contain 

α6β4 integrin, BPAG 180 and 230, HD1/plectin and CD151 (Litjens et al., 2006; Nievers 

et al., 1999) and type II HDs which lack the BPAG proteins (Uematsu et al., 1994). The 

linkage of integrin α6β4 to the intermediate filament through HD1/plectin is critical for 

both types of HD formation (Niessen et al., 1997; Rezniczek et al., 1998; Sanchez-

Aparicio et al., 1997). 

 Although it is important for HDs to provide strength and stability to the cell, they 

must also be dynamic and disassemble for cell migration during wound closure or 

carcinoma invasion (Daisuke Tsuruta, 2003; Geuijen and Sonnenberg, 2002; Ito et al., 

2005; Levy et al., 2007). Although the process is still unclear, studies investigating the 

mechanism of HD disassembly have found that growth factor induced phosphorylation of 

several sites within the ITGβ4 cytoplasmic tail plays a crucial role in this process. EGF 

signaling triggers PKC dependent phosphorylation on S1356, S1360, S1364 and S1424, 

all of which can individually lead to at least partial HD disassembly (Germain et al., 

2009; Rabinovitz et al., 2004; Santoro et al., 2003; Wilhelmsen et al., 2007).  

Signaling/Role in Cancer 

Although integrin α6β4 is polarized to the basal region of normal epithelia, an 

early observation described its localization in several types of carcinoma cells as diffuse 

(Tennenbaum et al., 1993). This phenomenon supports the hypothesis that α6β4 switches 

from a mechanical adhesive device into a signaling competent receptor during the 

progression from normal epithelium to invasive carcinoma (Lipscomb and Mercurio, 

2005; Santoro et al., 2003). Integrin α6β4 plays a role in a wide variety of intracellular 
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signaling, but it contains no inherent kinase activity and the precise mechanisms are still 

unclear. There are currently two different but not mutually exclusive hypotheses: the β4 

intracellular domain functions as a signaling adaptor and/or the localization of α6β4 with 

tetraspanin-enriched membrane micro-domains enhances signaling abilities (Trusolino et 

al., 2001; Yang et al., 2004). The mechanisms of α6β4 signaling in cancer are made even 

more complex considering there is both ligand-dependent and -independent activation 

(O'Connor et al., 1998). 

Integrin α6β4 signaling initiates a number of signaling cascades such as MAPK, 

PI3K/Akt and Shc/Src. These signals modulate many cellular behaviors like adhesion, 

proliferation, survival, motility and gene expression. Following stimulation, the 

cytoplasmic tail of ITGβ4 can be phosphorylated on several different tyrosine and serine 

residues. Y1494 is located in the consensus SH2 binding motif which binds phosphatase 

SHP2 (and possible SHP1) and activates Src (Bertotti et al., 2006; Merdek et al., 2007; 

Shaw, 2001; Unkeless and Jin, 1997). Studies found that Y1494 phosphorylation is 

necessary for the integrin α6β4 activation of PI3K (Dutta and Shaw, 2008; Shaw, 2001). 

PI3K activation can then lead to Akt/PKB and Rac stimulation (Shaw et al., 1997). 

Y1526 is another crucial site for integrin α6β4 signaling. When phosphorylated, Y1526 

can recruit Shc, Grb2 and Sos thus activating Ras and stimulating the MAPK, Jnk and 

Erk signaling cascades (Mainiero et al., 1997). Studies have also shown that integrin 

α6β4 regulated Rac activity in mammary epithelial cells leads to NFκB activation 

(Weaver et al., 2002; Zahir et al., 2003).  
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Integrin α6β4 can also indirectly control the expression of various genes critical 

for cancer progression. Activation of the PI3K/Akt pathway leads to the phosphorylation 

of 4E-BP1 by mTor. 4E-BP1 phosphorylation releases the repression on translation factor 

eIF-4E leading to the up-regulation of VEGF as well as other target genes (Chung et al., 

2002). Additionally, integrin α6β4 can activate the transcription factors c-Jun and STAT3 

through ErbB2 (Guo et al., 2006), NFκB through EGFR (Weaver et al., 2002; Zahir et al., 

2003) and NFAT through PI3K (Jauliac et al., 2002). The introduction of ITGβ4 into 

MDA-MB-435 cells leads to a drastic change in the genetic profile including the up-

regulation of S100A4/Metastasin, HDAC4 and SFRP1 and the down-regulation of FOS, 

EGR1 and GADD45A (Chen et al., 2009).  

The culmination of these signaling events leads to the promotion of characteristics 

essential for cancer, such as survival, proliferation, motility, invasion and anchorage 

independent growth. PI3K promotes survival as well as motility and invasion in 

carcinoma cells and angiogenesis within a tumor (Baril et al., 2007; Lee et al., 2008; 

Nikolopoulos et al., 2004; O'Connor et al., 1998; Rabinovitz and Mercurio, 1996; Rossen 

et al., 1994; Shaw et al., 1997; Wei et al., 1998). An increase in NFκB signaling leads to 

survival in addition to anchorage independent growth (Weaver et al., 2002; Zahir et al., 

2003). The previously mentioned Shp2/Src signaling pathway aids in anchorage-

independent growth when activated through integrin α6β4 (Bertotti et al., 2006). 

Altogether, integrin α6β4 signaling facilitates the survival and growth of carcinoma cells, 

especially when in a stressful environment like hypoxia (Baril et al., 2007; Chen et al., 

2009; Lipscomb and Mercurio, 2005; Lipscomb et al., 2005). Studies found that cell 
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surface expression of integrin α6β4 is up-regulated in hypoxic environments, indicating 

how crucial this signaling is for cancer cell survival (Yoon et al., 2005). 

In addition to the signaling capabilities, integrin α6β4 can also support cell 

migration and invasion through mechanical means. Antibodies specific for integrin α6β4 

inhibit carcinoma cell migration on laminin-1 as well as the formation of filopodia and 

lamellipodia (Rabinovitz and Mercurio, 1997; Rabinovitz et al., 1999). Integrin α6β4 

interacts with the F-actin in filopodia, lamellipodia and the retraction fibers of invasive 

cells (O'Connor et al., 1998; Rabinovitz and Mercurio, 1997; Rabinovitz et al., 1999). 

Further studies demonstrated that traction forces on the base of the lamellae are exerted 

directly though integrin α6β4 in cells plated on either laminin or anti-α6β4 antibodies 

(Rabinovitz et al., 2001).  

In Breast Cancer 

 Although ITGβ4 expression is also linked to poor patient prognosis in a variety of 

cancers (Raymond et al., 2007), its role in breast cancer has been of particular interest. 

Similar to other integrins, integrin α6β4 associates and cooperates with a variety of 

growth factor receptors, such as EGFR (Mariotti et al., 2001), ErbB2 (Gambaletta et al., 

2000), and Met (Chung et al., 2004; Trusolino et al., 2001). Although all of these 

receptors have known roles in cancer, ErbB2 is a dominant oncogene in breast cancer and 

is amplified in 25-30% in human breast tumors (Muthuswamy, 2006). Further studies of 

human samples found that ITGβ4 expression is correlated to breast cancer size and 

nuclear grade (Diaz et al., 2005), and significantly correlates with basal-like breast cancer 

(Lu et al., 2008). More recently, EGFR was also found to be over-expressed in the basal-
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like subgroup of breast-cancer and α6β4 was identified as important for its distribution 

and function (Gilcrease et al., 2009).  

Overall, these data demonstrate that integrin α6β4 plays a critical role in cancer 

and any further insight into the regulation of this molecule may prove invaluable towards 

the development of a targeted therapy. 

In the Epidermis 

The role of ITGβ4 in skin is moderately well defined; however there are several 

seemingly conflicting reports. As previously mentioned, the skin of mice nullizygous for 

ITGβ4 fails to remain attached to the basement membrane causing the mice to die shortly 

after birth. In humans, this disease is called junctional epidermolysis bullosa (JEB) or 

epidermolysis bullosa lethalis because of the high mortality rate associated with the 

disorder. A majority of JEB cases involve either homozygous or compound heterozygous 

mutations in the laminin 5 chain (the ligand for α6β4), but some compound heterozygous 

mutations have also been detected in the ITGβ4 gene (Niessen et al., 1996; Vidal et al., 

1995). When samples from skin lacking ITGβ4 were examined histologically, integrin α6 

was barely detectable, suggesting that it is unstable in the absence of ITGβ4 (Dowling et 

al., 1996; van der Neut et al., 1996). Some studies find mice lacking ITGβ4 maintain 

normal skin morphogenesis and show no defects in keratinocyte proliferation, survival or 

differentiation (DiPersio et al., 2000; Raymond et al., 2005). However, others report 

degeneration of basal keratinocytes and defective epidermal growth and migration in 

cells expressing a signaling defective ITGβ4 (Dowling et al., 1996; Nikolopoulos et al., 

2005). Supporting the latter finding, the cytoplasmic domain of ITGβ4 can bind to the 
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adaptor protein Shc and thus activate Ras/MAPK contributing to keratinocytes 

proliferation (Mainiero et al., 1997). Follow-up studies found that ITGβ4 needs to 

physically interact with an EGF-R family member to amplify pro-proliferative signals 

(Guo et al., 2006). These seemingly conflicting findings regarding the role of ITGβ4 in 

proliferation may be the product of the method used to nullify the signal. Signaling 

defective ITGβ4 may compete for binding sites on proliferation-promoting proteins; 

whereas this would not be a concern in ITGβ4 null cells. This would explain why the 

signaling defective ITGβ4 cells show a decrease in proliferation (Dowling et al., 1996; 

Nikolopoulos et al., 2005), whereas the ITGβ4 null cells do not (DiPersio et al., 2000; 

Raymond et al., 2005). It is possible that integrin β1, the other binding partner of integrin 

α6, provides a functionally redundant signal in regards to proliferation. 

Arrestins 

Family Members 

There are four known and well studied genes encoding arrestins. The expression 

patterns of arrestin 1 (SAG/visual arrestin) and arrestin 4 (ARR3/cone arrestin) are 

restricted, primarily localized to the visual sensory tissue where they regulate rhodopsin 

photoreceptor signaling. However, arrestin 2 (ARRB1/β-arrestin-1) and arrestin 3 

(ARRB2/β-arrestin-2) are ubiquitously expressed and interact with the vast majority of 

other GPCRs. However, recent phylogenetic analysis has identified another 6 members of 

the arrestin family in humans: ARRDC1, ARRDC2, ARRDC3, ARRDC4, ARRDC5 and 

TXNIP (Alvarez, 2008). This same study also identified VPS26 as a close relative to the 

family. 
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Role in GPCR regulation 

Arrestins were first discovered to have a role in a conserved two-step mechanism 

for regulating G protein-coupled receptors (GPCRs) (Gurevich and Gurevich, 2006b). In 

response to a stimulus, GPCRs activate heterotrimeric G proteins, but in order to turn off 

this response, the activated receptors need to be silenced. Receptor silencing is initiated 

by phosphorylation by a class of serine/threonine kinases called G protein coupled 

receptor kinases (GRKs). GRK phosphorylation creates a high-affinity binding site for 

arrestins on the GPCR; for example, the affinity of the β2 receptor-arrestin 2 interaction 

increases 10-30 fold after phosphorylation by GRK2 (Lohse et al., 1992). GPCR 

phosphorylation recruits arrestins from the cytoplasm to the plasma membrane, a binding 

which blocks further G protein-mediated signaling and redirects signaling to alternative 

G protein-independent pathways (Figure 1-3).  

Arrestins block GPCR coupling to G proteins via two mechanisms: 

desensitization and sequestration. The arrestin binds to the cytoplasmic tip of the receptor 

and masks the binding site for the heterotrimeric G-protein (preventing activation); this is 

called desensitization. However, β-arrestins can further suppress signaling by linking the 

receptor to elements of the internalization machinery (clathrin and clathrin adaptor AP2). 

This promotes receptor internalization via clathrin coated pits and subsequent transport to 

an internal compartment, known as the endosome. Subsequently, the receptor could be 

either targeted for degradation (typically via the lysosome) or recycled back to the plasma  
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membrane where it can signal again (re-sensitization). The strength of arrestin-receptor 

interaction seems to play a role in this choice: tighter complexes tend to increase the 

probability of receptor degradation, whereas more transient complexes typically favor 

recycling (Gurevich and Gurevich, 2006b). Also important in the post-endocytotic sorting 

of the internalized proteins is the ubiquitination of the receptor and/or arrestin (Bhandari 

et al., 2007; Shenoy and Lefkowitz, 2003; Shenoy et al., 2001; Shenoy et al., 2008). 

Receptor and self ubiquitination can also be controlled by the arrestin and will be further 

discussed shortly.  

Beyond GPCR regulation 

In addition to GPCRs, arrestins can bind to several other signaling proteins and 

thus affect signaling (Gurevich and Gurevich, 2004). Arrestins can act as scaffolding or 

bridging proteins which brings together signaling partners and increases efficiency. There 

is a dramatic conformational change between free and receptor-bound arrestin and this 

can influence the affinity of these other signaling molecules. Receptor-bound arrestins 

serve as scaffolds for MAP kinase cascades, bringing together apoptosis signal-regulating 

kinase 1 (ASK1) and c-Jun N-terminal kinase 3 (JNK3), as well as the kinase c-Raf-1 and 

extracellular signal-regulated kinase 2 (ERK2), thereby facilitating signaling in the 

ASK1-Map kinase kinase 4 (MKK4)-JNK3 and c-Raf-1-MAP/ERK kinase 1 (MEK1)-

ERK2 pathways (Luttrell et al., 2001; McDonald et al., 2000). Additionally, arrestin3 

binds both PKB/Akt and its negative regulator protein phosphatase 2A (PP2A), 

permitting the deactivation of Akt (Beaulieu et al., 2005). Arrestin3 also facilitates the 

deactivation of JNK3 by recruiting the dual-specificity phosphatase MKP7 (Willoughby 
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and Collins, 2005). When ERK2 and JNK3 are activated by the arrestin-receptor complex 

they stay bound to the endosomes and thus cannot translocate to the nucleus, affecting 

transcription (Luttrell et al., 2001; McDonald et al., 2000).  

Arrestins can influence gene transcription in other ways. Both arrestin2 and 

arrestin3 interact directly with IκBα, an inhibitor of NF-κB, following stimulation of the 

β2-adrenergic receptors. This interaction prevents its phosphorylation and degradation 

and thereby repressing the activity of NF-κB (Gao et al., 2004; Witherow et al., 2004). 

These arrestins regulate NF-κB signaling in another way; by interacting with the tumor 

necrosis factor receptor-associated factor 6 (TRAF6), preventing its auto-ubiquitination 

and the subsequent activation of NF-κB (Wang et al., 2006). There is further evidence 

that arrestins can effect gene transcription more directly by entering the nucleus. 

Arrestins 2 and 3 can be present in both the cytoplasm and nucleus, depending on various 

post-translational modifications (Wang et al., 2003). After translocation into the nucleus, 

arrestins can associate with transcription factors such as p300 and CREB and modulate 

transcription (Kang et al., 2005; Ma and Pei, 2007). 

In addition to signaling molecules, arrestins also recruit ubiquitin ligases to the 

receptors: the E3 ubiquitin ligase Mdm2 is mobilized by mammalian β-arrestins and 

ubiquitinates GPCRs (Shenoy et al., 2001), and the E3 ligase Deltex mobilized by Kurtz 

(an arrestin specific to Drosophila) ubiquitinates the Notch receptor (Mukherjee et al., 

2005). Through proteins known as ARTs (arrestin related trafficking adaptors), arrestins 

can recruit other E3 ligases including CHIP, NEDD4 and ITCH/AIP4 (Bhandari et al., 
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2007; Shenoy et al., 2008; Zhang et al., 2009). This function allows the arrestin to have 

even more control over the fate of its target. 

Role in non-GPCR signaling 

Arrestins can bind membrane proteins not part of the GPCR super-family, some 

of which are important for development and cancer. These include both receptor and non-

receptor tyrosine kinases, non-classical 7TMRs (like Smoothened and Frizzled), ion 

channel receptors, and cytokine receptors. Similar to their interactions with GPCRs, 

arrestins can act as a scaffolding protein (creating new signaling complexes), control 

internalization/cellular localization or promote degradation with the non-GPCR targets. 

In response to IGF stimulation, β-arrestin acts as an E3 ligase adaptor. After IGF 

binds to the tetrameric IGF1R, β-arrestin recruits Mdm2 to the receptor. Mdm2 

ubiquitinates IGF1R, thus leading to its internalization. Once internalized, β-arrestin is 

part of a new “signalsome” and mediates the activation of ERK, which then translocates 

to the nucleus and activates transcription. IGF1R is ultimately degraded by the 

proteosome (Lin et al., 1998).  

β-arrestin 2 binds to the type III TGFβ receptor, a co-receptor that contributes to 

TGFβ signaling through currently unknown mechanisms (Chen et al., 2003). 

Downstream of TGFβ-binding, β-arrestin is essential for the activation of Cdc42, which 

is then responsible for actin reorganization leading to chemotaxis and filipodial extension 

(Mythreye and Blobe, 2009). β-arrestin can also internalize the bound TGF-β receptor, 

attenuating TGFβ-mediated SMAD signaling (Chen et al., 2003). 
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In the Hedgehog (Hh) pathway, arrestins play a role in receptor signaling as well 

as sub-cellular localization. Upon Hh binding, Patched (Ptc) repression is relieved and 

Smoothened (Smo) is phosphorylated by GRK-2. This initiates the formation of a 

complex with β-arrestins and the molecular motor Kif3A. The Smo-β-arrestin-Kif3A 

complex translocates Smo to the primary cilium where Smo cleaves Gli into its active 

form. Active Gli then translocates down the primary cilium and into the nucleus where it 

activates transcription of downstream targets (Kovacs et al., 2008; Molla-Herman et al., 

2008). Smo activation and phosphorylation by GRK2 can also recruit β-arrestin 2 to the 

cell membrane which promotes clathrin mediated endocytosis (Chen et al., 2004). 

Relevant to epidermal stem cell regulation, β-arrestins have been implicated as 

important mediators of both canonical and non-canonical Wnt signaling, but in different 

capacities. β-arrestin 1 interacts with phosphorylated Dishevelled 1/2 (Dsh1 & Dsh2) 

(Chen et al., 2001), and was shown to synergistically enhance LEF-mediated 

transcription when co-expressed with either Dsh proteins. In canonical Wnt signaling, β-

arrestins also bind to Frizzled (Fz, receptor for Wnts) through Dsh and sequester the 

Axin/GSK3 destruction complex away from β-catenin, thus promoting its stabilization 

(Bryja et al., 2007). During non-canonical Wnt signaling, β-arrestins will complex with 

Dsh and AP-2 subsequently activating RhoA and Rac1 (Barnes et al., 2005). 

ARRDC3 

Arrestin domain containing protein 3 (ARRDC3, KIAA1376, TLIMP, ADC3) 

contains structural homology to β-arrestins which play an essential role in G protein-

coupled receptors (GPCRs) signaling and internalization (Alvarez, 2008; Seachrist and 
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Ferguson, 2003). Although ARRDC3 is classified as an α-arrestin, there is a cluster of 

acidic and hydrophobic residues in the C-terminus that may bind to clathrin, suggesting a 

possible role in membrane protein internalization (Alvarez, 2008).  

Prior to the work discussed in this thesis, there had been only one paper which 

looked at the function of ARRDC3 directly (Oka et al., 2006). The work of Oka et al. 

found that ARRDC3 is localized to the cell membrane, endosomes and lysosomes. This 

study also found that over-expression of ARRDC3 decreased cell proliferation and 

inhibited anchorage independent growth. Due to homology with thioredoxin binding 

protein 2 (TBP2 or vitamin D3 up-regulated protein-1), they investigated whether vitamin 

D3 affects ARRDC3 levels. Oka et al found the expression of ARRDC3 is induced in 

cells treated with vitamin D3 and, to a lesser extent, PMA. Interestingly, ARRDC3 

expression was up-regulated when cells were treated with PPARγ agonists troglitazone 

and pioglitazone, but not PPARα agonist clofibrate. However, increases in ARRDC3 

expression lead to decreases in PPARγ signaling. These data suggest that ARRDC3 is 

part of a negative-feedback regulatory pathway of PPARγ.  

Although only directly investigated in the work previously mentioned, there have 

been a few passing references to ARRDC3, mostly in genetic screens. ARRDC3 was 

recently found within a cluster on chromosome 5 deleted in 17% of basal-like breast 

cancers (compared to 0% in luminal breast-cancers) suggesting a role as a tumor 

suppressor (Adelaide et al., 2007). When comparing pre-eclamptic placentas to normal, 

ARRDC3 expression was significantly higher in the pre-eclamptic samples. ARRDC3 

expression was also high in the STOX1 (Storkhead Box 1, a transcription factor in the 
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Forkhead-family) over-expression model of preeclampsia and 4 Forkhead binding sites 

were identified and verified (Rigourd et al., 2008). This data suggests that ARRDC3 may 

be regulated in response to stress by the members of the forkhead family of transcription 

factors, proteins with know roles in development as well as cancer. 

 Although limited, the current data suggests that ARRDC3, similar to other 

arrestin family members, regulates signaling pathways and subsequently effects cellular 

behaviors such as proliferation, anchorage independent growth and survival. 
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Abstract: 

Control of stem cell migration is essential for organogenesis, tissue homeostasis 

and response to injury, but the molecular mechanisms governing this process within the 

stem cell niche are still unclear. In this study, we show that ARRDC3 (KIAA1376, 

TLIMP) is more highly expressed within human adult skin stem cells when compared to 

daughter transit-amplifying cells.  We demonstrate that ARRDC3 is a novel post-

translational regulator of ITGβ4 (ITGβ4). During dynamic regulation of ITGβ4 in 

migrating cells, ARRDC3 interacts with the cytoplasmic domain of serine 

phosphorylated ITGβ4 on the lagging edge and targets it for internalization and 

proteosome dependent degradation. Over-expression of ARRDC3 inhibits stem cell 

motility while down-regulation induces active migration, but does not diminish multi-

potency. Our results identify a novel mechanism of integrin regulation that controls the 

transition from anchored stem cells to migrating daughter cells. 

Introduction: 

Adult epithelial stem cells are generally found within distinct locations tightly 

adherent to the basement membrane (Raymond et al., 2009).  Within skin, multipotent 

stem cells are located in the hair follicle bulge region, while daughter transit-amplifying 

(TA) cells are present in the hair bulb (Cotsarelis et al., 1990; Lyle et al., 1998; Morris et 

al., 2004). Several studies have identified genes over-expressed in the stem cell 

compartment of skin that help define stem cells and their niche (Morris et al., 2004; 

Ohyama et al., 2006; Tumbar et al., 2004). The challenge has now become trying to 

understand the functions of differentially expressed genes in maintaining stem cell 
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properties such as cell migration. During normal tissue homeostasis and tissue 

regeneration of wound healing, stem cells remain as permanent residents of the stem cell 

niche, while their progeny TA cells migrate away from the niche to repopulate the tissue 

(Adams and Watt, 1991; Ito et al., 2005; Roh et al., 2005). While a great deal is known 

about the molecular mechanisms of cell migration, these pathways have not been fully 

analyzed in the context of epithelial stem cells and it is also clear that additional key 

regulatory molecules have yet to be characterized. 

Members of the arrestin family of proteins represent components of the 

transmembrane receptor-binding complex that have been shown to regulate a number of 

cellular processes including cell migration (reviewed in (Kendall and Luttrell, 2009)). 

Recently, new members of the arrestin family have been identified, called “Arrestin 

Domain Containing Proteins” (ARRDC1-5, also ADC1-5) that have unidentified targets 

and functions (Aubry et al., 2009). ARRDC3 contains structural homology to the well-

characterized β-arrestins that play an essential role in G protein-coupled receptor (GPCR) 

signaling and internalization (Alvarez, 2008; Seachrist and Ferguson, 2003). Other 

arrestin family members form complexes that co-localize with key vesicular trafficking 

proteins as well as endosomes (McDonald et al., 1999). Although ARRDC3 is classified 

as an α-arrestin, there is a cluster of acidic and hydrophobic residues in the C-terminus 

that may bind to clathrin, suggesting a role in membrane protein internalization (Alvarez, 

2008). Although prior work has suggested a role for ARRDC3 in PPARγ signaling and 

endosomal functions (Oka et al., 2006), no link to surface molecules has been 

demonstrated. 
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Integrins are a class of cell surface receptors that are known to play an important 

role in epithelial cell adhesion and migration (Rabinovitz and Mercurio, 1997; Streuli, 

2009; Vicente-Manzanares et al., 2009), but there is still much to learn about the 

regulatory networks that control integrin function. Several integrins are expressed in skin 

stem cells, including the α6β4 heterodimer (here out referred as ITGβ4) (Watt, 2002).  

ITGβ4 is the core component of hemidesmosomes that anchor cytoplasmic keratin 

filaments to the extracellular basement membrane (Rezniczek et al., 1998; Schaapveld et 

al., 1998). Humans with ITGβ4 mutations suffer from a disease known as junctional 

epidermolysis bullosa (blistering of the skin) which demonstrates its significant role in 

tissue homeostasis (Gil et al., 1994; Niessen et al., 1996; Vidal et al., 1995). ITGβ4 null 

mice also demonstrate junctional epidermolysis bullosa in response to mechanical stress 

and die shortly after birth (Dowling et al., 1996; Fuchs et al., 1997; Georges-Labouesse et 

al., 1996). However, the role of ITGβ4 in the skin stem cells beyond adhesion to the 

basement membrane is currently unclear. 

In addition to adhesion, ITGβ4 confers the ability of cells to migrate and resist 

apoptotic stimuli, (Lipscomb and Mercurio, 2005; Lipscomb et al., 2005; Rabinovitz and 

Mercurio, 1996; Wilhelmsen et al., 2006). Migration of stem cell progeny is critical for 

normal tissue homeostasis and wound healing as demonstrated by the re-epithelialization 

process after the wounding of skin (Ito and Cotsarelis, 2008; Ito et al., 2005; Levy et al., 

2007). During keratinocyte migration, hemidesmosomes, containing ITGβ4, are 

disassembled by a mechanism that has not been well-characterized (Borradori and 

Sonnenberg, 1999; Litjens et al., 2006; Margadant et al., 2008). During wound healing, as 
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well as in carcinoma invasion, growth factors such as EGF are elevated and lead to 

hemidesmosome disassembly (Mainiero et al., 1996; Rabinovitz et al., 1999). EGF 

stimulation induces phosphorylation of ITGβ4 on a variety of serine and tyrosine residues 

(Germain et al., 2009; Mainiero et al., 1996; Rabinovitz et al., 2004) resulting in 

hemidesmosome disassembly and mobilization of ITGβ4 to actin-rich protrusions 

(Germain et al., 2009; Rabinovitz et al., 1999; Rabinovitz et al., 2004; Wilhelmsen et al., 

2007). More recently, phosphorylation of ITGβ4-S1424 was found enriched on the 

trailing edge of migrating cells and implicated in the dissociation of ITGβ4 from 

hemidesmosomes (Germain et al., 2009). This dynamic regulation of ITGβ4 is such a 

process that could potentially mediate the transition from anchored stem cells to actively 

migrating TA cells in human skin.  

In this study we demonstrate that a new arrestin family member, ARRDC3, is up-

regulated in skin stem cells. Using in vitro assays of stem cell behavior, we show that 

ARRDC3 has significant effects on cell migration. Our molecular studies establish that 

ARRDC3 affects stem cell function through a novel regulatory pathway involving the 

internalization and degradation of ITGβ4.  

Results: 

ARRDC3 is expressed in skin stem cells. 

We previously demonstrated key functional differences (such as cell migration 

and self-renewal) between keratinocyte stem cells and TA cells of the human hair follicle 

(Roh et al., 2005). We next wished to determine differences in the genetic expression 

profiles of these two cell types in an effort to elucidate the mechanism for the functional 
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changes. An enriched stem cell population was obtained by micro-dissection of telogen 

hair follicle bulges, while TA cell enriched population was dissected from anagen hair 

follicle bulbs (Figure 2-1A). RNA isolated from these cell populations was then used for 

subtraction hybridization. Stem cell-enriched cDNAs were then cloned and sequenced, 

identifying ARRDC3 as a differentially expressed gene.  

Real-time PCR analysis shows that ARRDC3 expression is 3.41 fold higher in 

telogen bulge cells when compared to anagen bulb cells (Figure 2-1B). Interestingly, the 

anagen bulge has a 2.03 fold higher level of ARRDC3 expression when compared to 

anagen bulb (Figure 2-1B); suggesting high ARRDC3 levels are maintained throughout 

the hair cycle and are increased during stem cell activation of telogen follicles. 

Immunofluorescence and immunohistochemistry of adult human skin sections and hair 

follicles confirmed that ARRDC3 protein is increased in keratinocyte stem cells of the 

bulge when compared to cells in the lower follicle (Figures 2-1C&D). As shown in tissue 

sections, cells in the basal layer of the bulge region demonstrate the most intense staining 

with some apparent expression in suprabasal cells as well.  Altogether these data 

demonstrate that ARRDC3 is highly expressed in epithelial stem cells and down-

regulated in daughter/TA cells. 

Interestingly, when co-stained for the skin stem cell marker keratin 15 (K15) 

(Lyle et al., 1998), only a subset of ARRDC3 positive cells are positive. This data, along 

with the staining from the skin sections, suggests that although ARRDC3 is more highly 

expressed in the stem cell region of the skin, it is not a stem cell marker. In addition, only 

a subset of keratin 15 positive cells also expressed ARRDC3 (Figure 2-2). 
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ARRDC3 sequence and structure analysis 

ARRDC3 has a high degree of sequence homology throughout several species, 

suggesting a similarly important role. ClustalW alignment on the amino acid sequence of 

ARRDC3 from G. gallus, E. caballus, R. norvegicus, M. musculus, P. troglodytes, P. 

abelii, H. sapiens, and B. taurus show at least a 98.3% similarity to the human sequence 

(Figures 2-3A & 2-4). Primary sequence analysis of ARRDC3 using secondary structure 

prediction algorithm PSPIRED found secondary structure elements consistent with other 

arrestin family members (Figure 2-3B). 3D-Jigsaw (Bates et al., 2001) generated a 

putative tertiary structure of ARRDC3 (Figure 2-5). Using GenThreader, we found that 

ARRDC3 is predicted to be a close structural homologue to VPS26 (vacuolar protein 

sorting) with an identical probability value of 5e-11 (Jones, 1999; McGuffin and Jones, 

2003; Shi et al., 2006). VPS26 is a key part of the retromer, a complex of proteins 

involved in endocytotic trafficking, endosomal sorting and the transcytosis of polarized 

cells (Alvarez, 2008; Bonifacino and Hurley, 2008; Bonifacino and Rojas, 2006; Haft et 

al., 2000; Seaman, 2005). Comparing the known structure of VPS26 and the projected 

structure of ARRDC3 reveals marked similarities (Figure 2-5).  Mutations made in the 

domains of VPS26 homologous to ARRDC3 cause an abrogation of its functions (Reddy 

and Seaman, 2001), suggesting ARRDC3 also plays a role in endocytosis or vesicular 

trafficking. 

Expression Pattern of ARRDC3 in Human Tissues 

ARRDC3 mRNA levels were analyzed in a variety of normal human tissues using 

northern blot analysis (Figure 2-6A). We found that ARRDC3 expression levels vary in 
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different tissue types. ARRDC3 expression is exceptionally high in the placenta, but is 

also high in skeletal muscle, kidney, liver and lung. ARRDC3 is weakly expressed in 

brain, skeletal muscle, colon, thymus, and small intestine. Moderate expression is seen in 

the heart and peripheral blood leukocytes (Figure 2-6A). Although widely expressed in 

human tissues, the expression patterns within specific cell types of a tissue are yet to be 

determined. Specifically, it is unclear whether ARRDC3 expression is restricted to cells 

within the adult stem cell niche. 

We next analyzed the cellular localization of ARRDC3 using a monoclonal 

antibody generated in our lab for immunofluorescence. Confocal microscopy images of 

hair follicle stem cells show endogenous ARRDC3 is weakly distributed throughout the 

cytoplasm, but is concentrated at certain sections of the cell membrane. The presence of 

ARRDC3 foci near the cell membrane suggests an association with intracellular vesicles 

(Figure 2-6B). This observation further validates the notion that ARRDC3 regulates a 

cell-surface protein. 

ARRDC3 co-localizes with endosomal markers 

Confocal microscopy images of hair follicle stem cells show that endogenous 

ARRDC3 concentrates at certain sections of the cell membrane. The presence of 

ARRDC3 foci near the cell membrane suggests an association with intracellular vesicles 

(Figures 2-6B & 2-7A). To confirm this, we examined the co-localization of ARRDC3 

with endosomal markers using a proximity ligation assay (PLA). ARRDC3 strongly co-

localizes with EEA1 and Clathrin, while only minimal signal is seen with CAV1 (Figure 

2-7B&C). To further visualize positioning within the cell, images obtained from confocal 
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microscopy were used to generate a 3D reconstruction of the cells. This reconstruction 

demonstrated that ARRDC3 co-localizes with endosomal proteins evenly throughout the 

cell. Overall, these data indicate ARRDC3 primarily associates with endosomes which 

are internalized in a clathrin dependent manner.  

ARRDC3 interacts with ITGβ4 

Due to the homology with other arrestin proteins (Figure 2-4B) (Luttrell and 

Lefkowitz, 2002), we hypothesized that ARRDC3 has similar biological functions. To 

determine potential molecular targets, a yeast-two hybrid library screen using full length 

ARRDC3 as bait was performed. This screen identified a fragment of the cytoplasmic tail 

of ITGβ4 (Figure 2-8A). This interaction can be seen endogenously in telogen cells by 

immuno co-precipitating ITGβ4 with an anti-ARRDC3 antibody (Figure 2-8B). 

Phosphatase inhibitors are necessary to see this interaction, suggesting that ITGβ4 

requires phosphorylation for binding to occur. Since ITGβ4 has several critical serine and 

tyrosine phosphorylation sites within the cytoplasmic tail, we tested for the enrichment of 

phospho-ITGβ4 after using an anti-ARRDC3 antibody for immuno co-precipitation 

(Figure 2-8B&C). Quantification using densitometry revealed that anti-ARRDC3 

antibody precipitated approximately 53% of the phospho-ITGβ4 compared to the amount 

precipitated with ITGβ4. 

Immunofluorescence of skin stem cells demonstrated co-localization of ARRDC3 

and ITGβ4 within the cell (Figure 2-8C). Interestingly, there were areas of the cell that 

appeared to show a deliberate segregation of the proteins, specifically near cell-cell 

boundaries. These data suggest that the interaction between ARRDC3 and ITGβ4 is 
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dynamic and dependent on the relative position within the cell and/or phosphorylation 

status. To further investigate the intercellular positioning of the ARRDC3/ITGβ4 

complex, we generated a 3D construction of a PLA from confocal images. Cultured stem 

cells showed a polarized localization of ARRDC3/ITGβ4 on the basal layer of the cell 

(Figure 2-8D), suggesting that ARRDC3 interacts with ITGβ4 while in HDs. Giving 

further support to this theory, PLA analysis of ARRDC3 with HD marker PLEC1 found 

the same pattern of co-localization in the basal layer of the cell (Figure 2-8E).  

ARRDC3 regulates ITGβ4 protein levels 

 Since β-arrestins target GPCRs for internalization/degradation (Luttrell and 

Lefkowitz, 2002), we hypothesized that ARRCD3 has a similar effect on ITGβ4. Using 

two different siRNAs to down-regulate ARRDC3 in cultured skin stem cells, we found an 

inverse relationship between ARRDC3 expression and ITGβ4 protein levels (Figure 2-

9A). To further verify the effects of altered ARRDC3 on ITGβ4, we infected skin stem 

cells with an adenovirus co-expressing ARRDC3 and GFP and then looked at ITGβ4 

levels using immunofluorescence. ITGβ4 was lost from ARRDC3-GFP over-expressing 

cells while there was no change in either neighboring uninfected cells or control-GFP 

infected cells (Figure 2-9B). Using flow cytometry on non-permeabilized cells, we found 

cell surface levels of ITGβ4 were completely lost in cells over-expressing ARRDC3, 

although a residual amount appeared to be retained within the cytoplasm when examined 

by immunofluorescence (Figure 2-9C).  
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ITGβ4 regulation by ARRDC3 is proteosome dependent 

As ITGβ4 affects numerous signaling pathways, it was unclear whether the 

decreased protein level was an immediate response to the interaction with ARRDC3 or 

caused by a feedback pathway leading to a decrease in mRNA and subsequently protein 

level. To test this, we transfected the skin stem cells with either a control siRNA or an 

ARRDC3 targeting siRNA. RT-PCR analysis showed no changes in ITGβ4 mRNA 

levels, demonstrating the regulation of ITGβ4 by ARRDC3 is post-transcriptional (Figure 

2-10A). To exclude the possibility that protein synthesis was necessary for the increase in 

ITGβ4 after ARRDC3 repression, we treated cells with cyclohexamide and transfected 

with either control or ARRDC3 targeting siRNAs. Cells analyzed using 

immunofluorescence and western blot analysis revealed the treatment of cyclohexamide 

did not prevent an increase in ITGβ4 (Figures 2-10B). This further supports the notion 

that ARRDC3 regulates ITGβ4 protein directly and not through its synthesis.  

We next wanted to determine the mechanisms of ITGβ4 protein degradation and 

found that ARRDC3-mediated ITGβ4 protein degradation is inhibited in the presence of 

proteosome inhibitor lactacystin. This is demonstrated by both immunofluorescence and 

western blot analysis (Figure 2-11A&B).  ITGβ4 expression was not affected by the GFP 

control virus, either with or without proteosome inhibitor. When cells are examined using 

flow cytometry, the addition of the proteosome inhibitor does not prevent ITGβ4 removal 

from the cell surface (Figure 2-11C), supporting the notion that interaction with 

ARRDC3 causes the initial internalization of ITGβ4, a process that would be unaffected 

by downstream proteosome inhibition. The addition of lysosomal inhibitor chloroquin did 
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not affect the ARRDC3-induced decrease in ITGβ4 levels (Figure 2-12), suggesting that 

the degradation is solely dependent on the proteosome. 

ARRDC3 controls stem cell motility 

Stem cells are anchored within the niche whereas their progeny must be able to 

leave the niche and replenish tissues. Knowing ITGβ4 is involved in cell motility, we 

suspected that ARRDC3 affects the motility of skin stem cells. Stem cells from human 

skin (Roh et al., 2008) were infected with either a control siRNA, an siRNA targeting 

ARRDC3, or an adenovirus expressing ARRDC3 and then used to conduct a scratch 

assays. The wound widths were measured in Adobe Photoshop (arbitrary units) from 

images taken using a 4X objective. After 48 hours, cells with decreased ARRDC3 had 

almost a complete wound closure (0.91 to 0.24) whereas the control cells did not (0.95-

0.66). Additionally, the wound width for skin stem cells over-expressing ARRDC3 was 

only minimally decreased (0.95-0.82) (Figure 2-13A).  Motility in transit-amplifying 

cells isolated from the hair bulb was assayed in the same manner (Figure 2-13B). TA 

cells with low ARRDC3 demonstrated a faster wound closure rate (0.99-0.05) compared 

to control TA cells (0.97-0.17). TA cells engineered to over-express ARRDC3 that 

showed a significantly slower rate of migration (0.94-0.50) (p<0.0006). 

Our data so far suggests that ARRDC3 plays a role in controlling skin stem cell 

migration by regulating ITGβ4. To understand how ARRDC3 behaves in migrating stem 

cells, in-vitro scratch assays were used to identify actively migrating cells and the 

endogenous expression pattern of ITGβ4 and ARRDC3 was examined. Interestingly, 

ARRDC3 and ITGβ4 maintained co-localization only on the lagging edge of the 
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migrating cells (Figure 2-14A). Furthermore, when the leading edge of the cell was 

examined, the basal plane of the cell attached to the substratum showed high levels of 

ITGβ4 while ARRDC3 was present in the apical (top) plane. This suggests ARRDC3 

interacts with ITGβ4 in HDs about to be dissolved, but not in newly formed ITGβ4 focal 

adhesions. 

ARRDC3 interacts with ITGβ4 when phosphorylated at serine-1424 

 A novel phosphorylation site on ITGβ4 was recently identified as important in 

HD disassembly and shown to be enriched on the trailing edge of a migrating cell 

(Germain et al., 2009). As this phenotype mirrored our observations of ARRDC3, this 

residue was a good candidate for the phosphorylation site which facilitates interaction 

between ITGβ4 and ARRDC3.  The relative distributions of endogenous ARRDC3, 

ITGβ4 and ITGβ4-pS1424 in migrating skin stem cells were examined using confocal 

microscopy.  Supporting our hypothesis, we found almost a complete overlap of 

ARRDC3 and ITGβ4-pS1424 localization in migrating cells (Figure 2-14B). 

We then determined that ARRDC3 physically interacts with ITGβ4-pS1424 by 

endogenous immuno co-precipitation of skin stem cell lysates (Figure 2-8B).  

Densitometric analysis demonstrates that ~68% of ITGβ4-pS1424 is immuno co-

precipitated with an ARRDC3 antibody when compared to an ITGβ4 antibody. The 

densitometric ratio of precipitated pS1424/ITGβ4 is 6.6 fold higher in the ARRDC3 

immuno co-precipitation when compared to the ITGβ4 immuno co-precipitation.  

Collectively, these data suggest that following phosphorylation of ITGβ4-S1424, 

ARRDC3 binds to the cytoplasmic tail and promotes internalization of ITGβ4. This 
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occurs during HD disassembly either while the cell is migrating (a process localized on 

the lagging edge of cells) or during normal HD turnover (a perpetual event in resting 

cells) (Daisuke Tsuruta, 2003; Geuijen and Sonnenberg, 2002). 

ARRDC3 does not affect multi-potency 

To test whether ARRDC3 affected the multi-potency of stem cells, we generated 

stable human skin stem cell lines with altered ARRDC3 expression. The lines generated 

were analyzed for ARRDC3 and ITGβ4 levels using western blot analysis (Figure 2-

15A). We then induced the altered skin stem cells lines down epidermal, hair or 

sebaceous lineages. After induction, cells were examined for morphology and expression 

of differentiation markers.  

After sebocyte differentiation was induced, each cell line showed a marked 

increase in oil red O staining (not shown) and an increase in KRT7 expression when 

compared to the un-induced control (Figure 2-15B), indicating that ARRDC3 expression 

levels do not affect the ability of stem cells to undergo sebocyte differentiation. 

Epidermal markers are increased in all stem cell lines after epidermal differentiation 

indicating that ARRDC3 expression does not affect epidermal differentiation (Figure 2-

15C). Each skin stem cell line showed an up-regulation of K6HF after hair induction 

compared to the control, confirming that ARRDC3 expression does not affect the ability 

of stem cells to undergo hair differentiation (Figure 2-15D). 

ARRDC3 expression preserves an undifferentiated state in skin stem cells  

It was interesting to note that expression of ARRDC3 appeared to shift 

undifferentiated cells towards the sebaceous lineage. A low level of spontaneous 
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differentiation occurs in the cultured Telogen E6/E7 cells seen by the faint presence of 

keratin markers when the cells are undifferentiated. However, expression of keratin 1, 

involucrin and keratin k6hf are decreased in the skin stem cells over-expressing 

ARRDC3 and expression of keratin 7 is slightly increased. This suggests that ARRDC3 

may influence the spontaneous differentiation of telogen cells down the sebaceous 

lineage (Figure 2-15). 

To test how differentiation affected ARRDC3 protein levels, we analyzed lysates 

from the parental skin stem cell line after differentiation along with the respective 

controls. Western blot analysis shows ARRDC3 levels decrease with sebocyte and hair 

differentiation but increase with skin differentiation. These changes did not correlate to 

the changes in ITGβ4 expression suggesting that it is unlikely that ARRDC3 is the only 

factor regulating ITGβ4 during skin stem cell differentiation (Figure 2-16). 

Loss of ARRDC3 causes abnormal whisker follicles and loss of fur in mice 

 In an effort to determine the role of ARRDC3 in vivo, we generated a knock-out 

mouse model using mouse embryonic stem cells, on a 129 background, generated by 

Sanger Institute (cell line CG0361, created using gene-trap technology). C57Bl6/129 

chimeras were created with these cells and mated to C57Bl6 mice to test for germline 

transmission, with the presence of the gene-trap verified by PCR amplification of the 

NEO-cassette. 

 Unfortunately, all of our efforts to create a genotyping protocol which 

distinguishes between the homozygous and heterozygous null mice have been 

unsuccessful. SIGTR performed 5’ RACE on ES cell RNA and determined the gene-trap 
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is located between exons 1 and 2 (in intron 2) of the ARRDC3 locus. We initially tried to 

use forward and reverse PCR primers (positioned every ~200 bp in the 3.5kb intron) in 

the intron paired with a reverse primer on the 5’ end of the genetrap or a forward primer 

on the 3’ end of the genetrap (respectively) to amplify the insertion site. Unfortunately, 

there was no amplification.  We next tried to generate a Southern genotyping protocol. 

However, all attempts to PCR amplify this region of the wild-type strand (in order to 

create a probe) have failed.  Consultations with the trouble-shooting departments of 

Genewiz and Genetyper indicate that this locus is “mostly inaccessible” likely due to 

supercoiling and/or CpG methylation. Both companies indicated that these difficulties 

could eventually be overcome with the right PCR conditions. For the mice discussed in 

this thesis, heterozygotes and homozygous null mice were distinguished by phenotype.  

 ARRDC3 heterozygous mice are viable, develop normally and are fertile. 

However, as the mice age, they seem to progressively lose their fur (Figure 2-17A). 

Additionally, ARRDC3 null mice are born without whiskers and lose their fur much 

faster when compared to the heterozygotes (Figure 2-17B). It was interesting to note that 

although all mice start to lose their fur, the rate and pattern of the loss appears to be 

different for each mouse. Some had large patchy losses whereas some presented with an 

overall thinning of the fur. However, as mice were not housed separately it is possible 

this phenotype is actually due to mice barbering one another. Histological examination of 

the whisker pads from ARRDC3 null mice show morphological abnormalities in the 

whisker follicles (Figure 2-18A). Additionally, the dermis is much thinner in the null 

mice and there are fewer hair follicles present compared to wild-type littermates (Figure 
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2-18B). It is possible the loss of ARRDC3 led to increased migration of hair follicle stem 

cells out of the niche. This would lead to stem cell pool exhaustion and the loss of hair 

follicle homeostasis (i.e. decreased hair follicles). As hair follicles provide structure to 

the skin, which helps to maintain the thickness of the dermis, their loss is likely the cause 

of the thin epidermal layer. However, all of these observations are preliminary as the 

mice are still on a mixed background and only a few mice have been examined.   

Discussion: 

In the present study, we demonstrate that ARRDC3 is highly expressed in the 

stem cell compartment of human skin. As it does not affect differentiation, the main 

function of ARRDC3 appears to be suppressing motility. This is especially critical at the 

time of stem cell activation when the stem cells divide asymmetrically to self-renew and 

produce a committed daughter TA cell. Since the stem cell must remain behind while the 

TA cells migrate away, high levels of ARRDC3 are likely needed within the stem cells to 

prevent migration. Indeed, we saw the highest levels of ARRDC3 in the hair follicle stem 

cell compartment in the telogen phase when stem cells are in the early stages of being 

activated. We saw elevated, but comparatively lower levels of ARRDC3 in stem cells of 

anagen stage follicles when the stem cells are quiescent and stable.  

Although the role of ITGβ4 in cell migration has been studied extensively, there 

is yet to be a clear understanding of how HD regulation is involved in this process.  In 

cultured keratinocytes, there is a constant turnover of HDs (Daisuke Tsuruta, 2003; 

Geuijen and Sonnenberg, 2002). It is thought that this dynamic state helps to maintain 

cells competent for migration, when HDs need to be rapidly disassembled to allow for 
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detachment from the basement membrane. This hypothesis explains why skin stem cells 

maintain high expression of both ARRDC3 and ITGβ4.  

Our data introduces a new hypothesis for HD disassembly during cell migration. 

In this mechanism, ARRDC3 interacts with ITGβ4 phosphorylated on S1424 by PKCα 

after the cell has received migration stimuli (Germain et al., 2009). Upon this interaction, 

ITGβ4 located on the lagging edge of the cell becomes endocytosed, dissolving the HD, 

and sent to the proteosome for degradation. This disruption of adhesion molecules at the 

lagging edge allows the cell to migrate. Although our data clearly demonstrates that 

ARRDC3 promotes the internalization of ITGβ4, it is unclear whether it is directly 

involved in the trafficking to the proteosome. Although over-expression of ARRDC3 

leads to degradation of ITGβ4, it is possible that there is a point after internalization 

where other signals from the cell could contribute to its fate; either degradation or 

trafficking. It is unclear whether ARRDC3 also plays a role in re-localizing ITGβ4 to the 

leading edge of the cell where it helps form and stabilize motility structures (filopodia 

and lamellae) (Lipscomb and Mercurio, 2005; Mercurio et al., 2001b; Rabinovitz et al., 

2004; Santoro et al., 2003).  When treated with a proteosome inhibitor, cells over-

expressing ARRDC3 have slightly higher ITGβ4 surface protein levels compared to 

untreated cells; suggesting at least a small fraction of internalized protein is returned to 

the cell surface when it cannot be degraded. Additionally, the basal ITGβ4 and apical 

ARRDC3 staining patterns seen on the leading edge of the cells suggests a role beyond 

degradation. It would be interesting to test whether an ITGβ4-binding deficient mutant of 

ARRDC3 still affects ITGβ4 protein levels and cell motility. 
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While the ARRDC3-induced changes in ITGβ4 protein levels are modest, the 

affects on cell motility are pronounced suggesting the balance between stationary and 

motile states in skin stem cells is delicate. Motility has significant implications for stem 

cell biology because stem cells need to stay within the growth and differentiation 

restricted environment of the niche. We did not see an effect of ARRDC3 expression on 

in-vitro differentiation, but it is possible that aberrant differentiation or tissue homeostasis 

would be seen in-vivo due to mis-localization of the cells. This study also does not imply 

that ITGβ4 signaling or ARRDC3 expression does not influence the differentiation of 

adult keratinocyte stem cells, only that altered ARRDC3 levels do not prevent induced 

differentiation in-vitro. Indeed, skin stem cells expressing ARRDC3 tended to have a 

lower level of spontaneous differentiation as measured by marker expression in the un-

induced cells (Figure 2-15B-D). As VPS26 is involved in receptor transcytosis in 

polarized cells, it is also possible that ARRDC3 plays a role in polarizing the skin stem 

cells during asymmetric cell division (Eaton, 2008). 

Our findings may also have a significant implication in wound healing. Upon 

injury, keratinocytes secrete a number of cytokines and growth factors (Jones et al., 1998; 

Litjens et al., 2006; Margadant et al., 2008; Wilhelmsen et al., 2007). Depending on the 

type of injury keratinocytes will differentiate, proliferate or migrate. During tissue repair, 

HDs must be deconstructed to permit migration and thus regulation of ARRDC3 would 

likely be required for the ability to heal wounds. These data are also relevant to cancer 

biology as many aspects of wound healing (cell migration, loss of cell polarity, de-

differentiation, and proliferation) are also characteristics of aggressive cancer cells. 
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Additionally, ITGβ4 increases the migration and invasion properties in cancer cells, thus 

any mechanism involved in its regulation could be used and/or altered in cancer cells.  

The necessity of phosphatase inhibitors to observe the interaction between 

ARRDC3 and ITGβ4 suggests that phosphorylation of ITGβ4 is either necessary for or 

stabilizes the interaction. The enrichment of phosphorylated forms of ITGβ4 in co-

immunoprecipitation experiments further supports this. The identical cellular distribution 

of ARRDC3 and ITGβ4-pS1424 in both migrating cells and resting cells (Figure 2-14B 

and data not shown) identifies ITGβ4-pS1424 as a candidate phosphorylation site 

required for ARRDC3 interaction.  This phosphorylation enhances the interaction 

between ARRDC3 and ITGβ4 although it is still unclear whether this occurs before or 

after the disassembly of the HD. ITGβ4-S1424 is important to HD dynamics (Germain et 

al., 2009) and it is possible that this phosphorylation allows ARRDC3 to interact with and 

then causes the internalization of ITGβ4. As S1424 is not within the interacting fragment 

of ITGβ4 identified in the yeast-two hybrid screen, the phosphorylation needs to either 

cause a conformation change or recruit other proteins thus allowing the interaction to 

occur. Our data does not exclude other possible important phosphorylation events during 

ITGβ4 internalization; S1356, S1360 and S1364 are also significant during HD 

disassembly (Germain et al., 2009; Rabinovitz et al., 2004; Wilhelmsen et al., 2007). It is 

also possible that ARRDC3 only interacts with ITGβ4 after HD disruption and the 

increased ARRDC3/ITGβ4-pS1424 is a spurious correlation, not a causative one. Indeed 

data discussed in Chapter 3 showing the ARRDC3/ITGβ4 interaction in cells lacking 

HDs supports this. 
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Altogether, our data suggests that ARRDC3 plays a role in ITGβ4 trafficking, a 

process critical in the regulation of skin stem cell migration. Although not required for 

development, the importance of ARRDC3 is highlighted by the loss of fur and whiskers 

in knock-out mice. Based on our data, it is likely that the skin stem cells in ARRDC3-null 

mice exhibit an increase in motility, causing them to migrate out of the niche escaping its 

growth and differentiation inhibitive environment. This would ultimately lead to 

exhaustion of the stem cell pool and defective homeostasis, explaining why the 

phenotype becomes more pronounced as the mouse ages.  

An interesting question raised by our data is whether ARRDC3-mediated 

internalization is the result of a specific chemotactic stimulation or if it is an inherent 

feature of the skin stem cell which is up-regulated during migration. The latter is 

supported by the co-localization seen in resting cells (Figure 2-8C) and the fact that 

keratinocytes in culture maintain a constant HD turn-over even in the absence of 

migration. 

The discovery of a new protein that plays a role in migration and potentially 

trafficking generates many questions. Little is understood about integrin internalization or 

trafficking and less is known about the events at the lagging edge of migrating cells. Our 

findings open doors to further both lines of research.  

Methods: 

Dissection of Anagen Bulb and Telogen Bulge: Keratinocytes were isolated and cultured 

as described previously (Roh et al., 2004). Briefly, fresh adult human scalp skin from 

plastic surgical procedures was obtained from the Cooperative Human Tissue Network 
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(funded by National Cancer Institute) with Institutional Review Board approval, 

according to the Declaration of Helsinki Principles. One portion of the skin (1 2 cm) was 

treated with 4 mg per mL Dispase (Sigma-Aldrich, St Louis, Missouri) in Dulbecco's 

modified Eagle's medium (Invitrogen–Gibco, Carlsbad, California) overnight at 4°C. 

Using forceps, hair follicles were plucked from the Dispase-treated skin, and segregated 

into telogen club hairs based on their morphology under a dissecting microscope. Plucked 

anagen follicles were dissected to remove the upper outer root sheath corresponding to 

the bulge region. A second portion of the skin was dissected without Dispase treatment to 

obtain the matrix area at the bottom of the hair bulb. The telogen and anagen bulb hair 

fragments were either used as explant cultures directly or were digested with 0.05% 

trypsin–ethylene diamine tetra-acetic acid (EDTA) (Gibco) for 10 min, and then Versene 

(Gibco) was added (1.33:1) for an additional 10 min. Cells were centrifuged and plated 

onto tissue culture plastic dishes (Falcon, St Louis, Missouri). The isolated cells and 

tissue fragments were then cultured in keratinocyte medium (KCM) (Roh et al., 2004) on 

a feeder layer of J2-3T3 fibroblasts that had been pre-treated with mitomycin C (15 g 

per mL) for 2 h. Media were changed every other day. For subsequent experiments, the 

trypsinization method was used to culture keratinocytes from the hair follicles. For gene-

expression analysis, the anagen bulb and telogen bulge were isolated using a dissecting 

microscope. The tissue was rapidly frozen on dry ice and stored at -80 C. Total RNA 

from telogen bulge and anagen bulb was extracted using the guanidine isothiocyanate 

method. 
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Subtraction Hybridization: The Clontech PCR-Select Differential Screening Kit was 

purchased from Clontech (cat# 637403). Manufacturer’s recommended protocol was 

followed. 

Co-immunoprecipitation: Cells were solubilized at 4 °C for 10 min in NP-40 lysis buffer 

(Boston Bioproducts) containing 1 mM sodium orthovanadate, 1 mM NaF, and protease 

inhibitors (Complete mini tab; Roche Applied Science). Aliquots of cell extracts 

containing equivalent amounts of protein were incubated overnight at 4°C with antibodies 

and protein-A/G-Sepharose (Santa Cruz) with constant agitation. Immune complexes 

were resolved by SDS-PAGE and transferred to nitro-cellulose. 

Northern Blotting Analysis: Pre-quantified RNA from BD Biosciences were subjected to 

agarose gel electrophoresis and transferred on to a nylon membrane. A fragment of DIG-

labeled ARRDC3 RNA was used for hybridization. Membrane was washed and DIG was 

detected immunologically and exposed on film. 

siRNA Sequence and Transfection: Three different siRNA oligos were designed targeting 

the following sequences in ARRDC3: 1- AAACACGGCCTTCTATGCCA, 2- 

AAAGGCGGAACAATCTTGCAC, and 3- AATCTTGCACCAGTGAGTGCT. siRNA 

duplexes against these target sequences were ordered from Qiagen along with three 

control target sequences. siRNA duplexes were transfected into cells using TransIT-TKO 

transfection reagent (Mirus) following the manufacturer’s recommended protocol. For 

experiments shown in this paper, duplexes 1 and 3 were pooled for maximum knockdown 

of ARRDC3.  



 59

Cloning and Generation of Stable Lines: pSuper vectors (Oligoengine) containing control 

shRNA (shCtl target sequence: TTCTCCGAACGTGTCACGT) and shRNAs targeting 

ARRDC3 (shARRDC3 target sequence A:GGCCTTGGCTACTACCAGT; shARRDC3 

target sequence C: GCGTGGAATATTCACTAAT) were generated in our lab per 

manufacturers recommended protocol. Full length human ARRDC3 cDNA and Flag-

LacZ fusion cDNA were cloned into the pBABE-puro expression vector (Addgene). 

Cells were transfected with TransIT Keratinocyte Reagent (Mirus) following 

manufacturers recommended protocol. Stable transformants were selected using 

puromycin and pooled. 

Adenoviral Preparation: Full length human ARRDC3 cDNA was initially cloned into 

pLEGFP (Clontech). The fragment containing ARRDC3+GFP (or GFP alone) was then 

cloned into Adeno-X LP CMV (Clontech) using the Adeno-X Expression System 2 kit 

(Clontech). Adeno-X maxi purification kit (Clontech) was used to isolate/purify the 

adenovirus. For all steps, the manufacturers recommended protocol was followed. The 

amount of virus needed was determined empirically.  

Proximity Ligation Assay: The PLA system from Olink was purchased (Mouse MINUS, 

Rat MINUS and Rabbit PLUS probe sets as well as the 613 detection kit). Telogen cells 

were cultured on poly-D lysine coated coverslips and fixed with acetone. PLA was 

performed following the manufacture’s recommended protocol.  

Yeast-2 Hybrid: The BD Matchmaker Yeast-2-Hybrid System (BD Biosciences) was 

used as per manufacturers recommended protocol, using full length ARRDC3 as bait and 

cultured telogen stem cell RNA. 
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Adenovirus Production: A GFP-tagged ARRDC3 adenoviral construct was generated 

using the AdenoX expression system from Clontech. Adenovirus was prepared using the 

AdenoX Maxi purification kit as per manufacturers recommended protocol. 

Western Blotting Analysis: Cell extracts were prepared from cultured cells lysed in NP-40 

lysis buffer (Boston Bioproducts) for 15 minutes and then clarified by centrifugation. 

Extracts containing equivalent amounts of total protein were resolved by SDS-PAGE and 

transferred to nitrocellulose membranes. Membranes were blocked for an hour using a 50 

mM Tris buffer (pH 7.5) containing 0.15 mM NaCl and 0.05% Tween 20 and 5% (w/v) 

Blocker (BioRad). Membranes were incubated overnight at 4°C in the same buffer 

containing primary antibodies (rabbit polyclonal targeting ARRDC3 (Abcam ab64817) or 

rabbit polyclonal targeting ITGβ4 (505, a generous gift from Arthur Mercurio, UMMS 

Worcester, MA or phospho-specific antibody pS1424 a generous gift from Isaac 

Rabinovitz, BIDMC & HMS Boston, MA). Proteins were detected by enhanced 

chemiluminescence (Pierce). For phospho-immunoblots, the blocking buffer for the 

primary antibodies contained 5% (w/v) BSA. 

Immunofluorescence Staining: Cells were cultured on coverslips and fixed with acetone. 

Cells were permeabilized by incubating with PBS+Triton and blocked with 5% goat 

serum. Coverslips were incubated with primary antibody (mouse monoclonal ARRDC3 

generated by our lab, rat monoclonal ITGβ4 439-9b (BD-Pharmingen cat# 555719) and 

rabbit polyclonal ITGβ4-pS1424 (generous gift from Isaac Rabinovitz, BIDMC & HMS 

Boston, MA) for 2 hr at room temperature or overnight at 4°C. After being washed, cells 

were then stained with secondary antibodies conjugated with either FITC or Texas-Red 
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(Vector) for 2 hours at room temperature. After washing, cover-slips were mounted on 

slides using vectashield (Vector) and slides were analyzed using a fluorescence 

microscope. 

Wound Assay: 8x105 Telogen or TA cells were plated in a 6-well plate in Keratinocytes 

SFM (Gibco). 24 hours after plating, cells were either transfected with siRNAs using 

TransIT-TKO (Mirus) or infected with adenovirus. 48 hours post transfection/infection; 

the cells were treated with 15µg/ml mitomycin C for two hours at 37°C. The monolayer 

was scratched with a P200 pipette tip and washed 3 times to remove floating cells. The 

wound closure was then monitored by digital photography. 

Cell Culture and In-vitro differentiation: Hair Differentiation- Cells were plated at a 

density of 5,000 cells/cm2. Cells were allowed to attach overnight in KCM without EGF 

and then changed to fresh EGF-containing KCM along with 3T3-J2 inserts. After 

overnight incubation, half of the 3T3-J2 inserts were replaced with DP inserts and all 

cells were fed with fresh media. Transwell inserts (Corning) for 12-well plates were 

prepared with 20,000 mytomycin C-treated 3T3-J2 cells per insert in KCM or 20,000 DP 

cells per insert in Chang medium C (Irvine scientific) supplemented with 10% FBS and 

P/S. Epidermal Differentiation- Cells are plated at a density of 20–25,000 cells/cm2 and 

allowed to attach overnight, and then changed to low-calcium medium, KGM 

(keratinocyte growth medium, Cellntec, Bern, Switzerland). After overnight incubation, 

keratinocytes were fed with fresh KGM supplemented with additional 1.5 mM CaCl2 and 

incubated for the indicated times (1-4 days). Sebaceous Differentiation-Cells were 

plated at a density of 20–25,000 cells/cm2 and allowed to attach overnight in sebocyte 
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media (DMEM and Ham F-12 (1:1, Gibco), 6% FBS (Gibco), 2% human serum (sigma), 

P/S, and EGF (10 nM, Sigma)] as describe previously (Akimoto et al., 2005). Cells were 

induced for sebocyte differentiation with sebocyte differentiation media containing 10 

µM Arachidonic acid (Sigma) in sebocyte media for 2-4 days. Cultured sebocytes were 

washed with propylene glycol twice for 5 minutes each, stained with 0.7% (w/v) Oil Red 

O (Sigma) in propylene glycol for 7 minutes with agitation, washed once with 85% 

propylene glycol in distilled water, and then rinsed in distilled water. Oil Red O staining 

was viewed with a light microscope. 

Generation of ARRDC3 -/- mice: ES cells on a 129 background with a gene trap inserted 

between exons 1 and 2 of ARRDC3 were purchased from SIGTR (cell line CG0361). 

Cells heterozygous for the targeted mutation were microinjected into C57BL/6 

blastocysts to produce chimeric offspring. Chimeras were mated to wild-type C57BL/6 

and tested for germline transmission using PCR amplification of the NEO cassette found 

in the genetrap. Heterozygotes were interbred to obtain homozygous mice. Homozygous 

mice were identified phenotypically.  
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ABSTRACT  
 

Large-scale genetic analyses of human tumor samples have been used to identify 

novel oncogenes, tumor suppressors and prognostic factors, but the functions and 

molecular interactions of many individual genes have not been determined. In this study 

we examine the cellular effects and molecular mechanism of the arrestin family member, 

ARRDC3, a gene preferentially lost in a subset of breast cancers. Oncomine data reveals 

that expression of ARRDC3 decreases with tumor grade, metastases and recurrences. 

ARRDC3 over-expression represses cancer cell proliferation, migration, invasion, growth 

in soft agar and in vivo tumorigenicity while down-regulation of ARRCD3 has the 

opposite effects. Mechanistic studies demonstrate that ARRDC3 acts in a novel 

regulatory pathway that controls the cell surface adhesion molecule, beta-4 integrin 

(ITGβ4), a protein associated with aggressive tumor behavior. Our data indicates 

ARRDC3 directly binds to a phosphorylated form of ITGβ4 leading to its internalization, 

ubiquitination and ultimate degradation. The results identify the ARRCD3-ITGβ4 

pathway as a new therapeutic target in breast cancer and demonstrate the importance of 

connecting genetic arrays with mechanistic studies in the search for new treatments. 

Key Words: ARRDC3/Breast Cancer/Integrin β4/TLIMP 

INTRODUCTION  

The basal-like subset of breast cancer was first identified as tumors lacking 

estrogen and progesterone receptors and HER2 amplification (“triple negative”) with a 

gene expression profile similar to basal/myoepithelial cells of the breast (Perou et al., 

2000). Basal-like breast cancers account for 8-37% of all breast cancers (depending on 
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the definition criteria) and are associated with a poor prognosis; increased development 

of distant metastasis, decreased survival rate and increased mortality (reviewed in (Rakha 

and Ellis, 2009; Rakha et al., 2008; Voduc and Nielsen, 2008)). Since these tumors lack 

expression of estrogen and progesterone receptors as well as HER2, there are limited 

treatment options and these are largely ineffective in treating patients suffering from 

basal-like breast cancer. 

Large-scale genetic analyses of human tumor samples have generated a wealth of 

molecular information and have identified potential tumor suppressors, oncogenes and 

prognostic factors (Perou et al., 2000; SÃ¸rlie et al., 2001; Sotiriou and Pusztai, 2009). 

The challenge now is to study the function of these new genes and understand their 

mechanisms of action in order to validate their clinical utility and confirm their potential 

use as targets for intervention. The arrestin family member ARRDC3 is one such gene 

that was recently found within a cluster on chromosome 5 deleted in 17% of basal-like 

breast cancers (compared to 0% in luminal breast-cancers) suggesting a role as a tumor 

suppressor (Adelaide et al., 2007). ARRDC3 contains structural homology to the arrestin 

family of proteins, which play an important role in the internalization and subsequent 

regulation of G protein-coupled receptors (GPCRs). Although ARRDC3 has been 

classified as an α-arrestin, there is a cluster of acidic and hydrophobic residues in the C-

terminus that may bind to clathrin, suggesting a role in membrane protein internalization 

(Alvarez, 2008). A role for ARRDC3 as a negative regulator of PPARγ signaling and 

endosomal functions has been suggested (Oka et al., 2006). 
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Integrins are cell surface adhesion molecules that mediate cell-extracellular 

matrix and cell-cell interactions. Binding of integrins to their ligands initiates a number of 

signaling events that modulate cellular behaviors such as adhesion, proliferation, 

survival, motility, gene expression and differentiation (Arnaout et al., 2005; Dowling et 

al., 1996; Fuchs et al., 1997; Germain et al., 2009; Hynes, 2002; Lipscomb and Mercurio, 

2005; Lipscomb et al., 2005; Mercurio et al., 2001a; Vicente-Manzanares et al., 2009; 

Watt, 2002; Wilhelmsen et al., 2006).  The ITGβ4 subunit was initially identified in 

cancer as a tumor-related antigen associated with metastasis (Falcioni et al., 1989; 

Falcioni et al., 1988) and was later found to promote motility and invasion in carcinoma 

cells (O'Connor et al., 1998; Rabinovitz and Mercurio, 1996; Rossen et al., 1994; Shaw et 

al., 1997; Wei et al., 1998). ITGβ4 signaling increases invasive potential and sustains the 

survival of carcinoma cells in stressful environments (Baril et al., 2007; Chen et al., 2009; 

Lipscomb and Mercurio, 2005; Yoon et al., 2005). Recent studies in human samples 

found ITGβ4 expression is correlated to breast cancer size and nuclear grade (Diaz et al., 

2005), and significantly associates with basal-like breast cancer (Lu et al., 2008). ITGβ4 

expression is also linked to poor patient prognosis in a variety of other cancers (Raymond 

et al., 2007). Despite its significance in tumor progression, surprisingly little is known 

about the regulation of ITGβ4 at the protein level. It is phosphorylated during signal 

transduction and is expected to be internalized, trafficked throughout the cell, and either 

recycled or degraded (Caswell and Norman, 2008; Caswell and Norman, 2006; Dutta and 

Shaw, 2008; Germain et al., 2009; Hemler, 2001; Rabinovitz et al., 2004; Wilhelmsen et 

al., 2007; Yoon et al., 2005). It has been hypothesized that after hemidesmosome 
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disruption, the newly liberated ITGβ4 is rendered capable for signaling. Activation 

results in the release of ITGβ4 from interactions with the keratin cytoskeleton and allows 

for de novo interaction with the actin cytoskeleton and signaling molecules (Lipscomb 

and Mercurio, 2005; Mitra and Schlaepfer, 2006; Rabinovitz and Mercurio, 1996; 

Wilhelmsen et al., 2007; Yoon et al., 2005). However, little is known about the 

mechanism by which this occurs.  

In order to understand the function of ARRDC3, we used over-expression and 

shRNA-mediated down-regulation studies in human breast cancer cells. We demonstrate 

significant effects on breast cancer cell migration and growth that coincided with 

dramatic effects on the cell surface protein ITGβ4. We also show that ARRDC3 

expression is inversely correlated to breast tumor grade. In this study we demonstrate that 

ARRDC3 acts as a novel regulator of tumor progression in breast cancer due to its effects 

on ITGβ4 internalization and degradation.  

RESULTS 

ARRDC3 expression is down-regulated during tumor progression 

To investigate how ARRDC3 expression is altered during carcinogenesis, we 

used Oncomine to analyze published microarray data. Levels of ARRDC3 mRNA are 

lower in breast cancer tissues compared to normal mammary gland tissue (Figure 3-1A). 

As normal mammary tissue is mostly fat whereas tumors contain varying levels of 

stroma, this alone is not conclusive. However, levels of ARRDC3 mRNA decrease upon 

the transformation of purified and cultured human mammary epithelial cells (Figure 3-

1B).  Oncomine data also reveal that there is a decrease in ARRDC3 mRNA in metastatic 
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tumors when compared to the primary tumor (Figure 3-1C). Additionally, ARRDC3 

expression is lower in breast cancer patients that relapsed within 5 years of initial 

diagnosis compared to tumors from patients that remained disease free for >5 years 

(Figure 3-1D). Combined, these data indicate that ARRDC3 repression occurs early in 

oncogenesis, decreases throughout tumor progression and indicates a poor prognosis. 

ARRDC3 affects in-vitro human cancer cell tumorigenicity 

 To evaluate the potential role of ARRDC3 as a suppressor of tumor growth, we 

generated stable cancer cell lines either over-expressing or repressing ARRDC3 in the 

basal-like breast cancer cell line MDA-MB-231. We first noticed a change in the 

comparative growth rates. When quantitated, ARRDC3 over-expression causes a 

decrease in cell growth rates whereas the repression of ARRDC3 increases cell growth 

(Figure 3-2A).  

To investigate the affect of ARRDC3 on invasiveness, the sub-lines were used in 

a Matrigel chemoinvasion assay. Over-expression of ARRDC3 in MDA-MB-231 cells 

caused a 50% reduction in the number of invasive cells where the repression of ARRDC3 

caused a two fold increase (Figure 3-2B).  

The sub-lines were then used in a scratch assay to test whether ARRDC3 affects 

cancer cell migration. We found a dramatic decrease in cell migration in the ARRDC3 

over-expressing sub-lines (Figure 3-2C). The sub-lines with repressed ARRDC3 

exhibited a significant increase in migration rate.  

We next evaluated the role of ARRDC3 in anchorage independent growth using 

the sub-lines.  After 4-weeks growth in soft agar, colony number and size were calculated 
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using ImageJ. There was a significant decrease in colony number in the ARRDC3 over-

expressing sub-lines. The sub-lines with repressed ARRDC3 demonstrated a significant 

increase in colony number (Figure 3-2D). ARRDC3 expression also affected the size of 

the colonies; sub-lines with repressed ARRDC3 had a higher percentage of colonies 

>200μm whereas lines over-expressing ARRDC3 had a lower percentage of colonies 

>200μm (Figure 3-2E). 

To evaluate the effect of ARRDC3 on viability, MTT assays were used to analyze 

MDA-MB-231 cells with either repressed ARRDC3 or over-expression of ARRDC3. 

Cells with altered ARRDC3 expression demonstrated no changes in cell viability when 

MTT signal was normalized to the total number of cells. However, when cells were 

assayed day 4 after mitomycin C treatment, cells with repressed ARRDC3 had increased 

viability while cells over-expressing ARRDC3 demonstrated decreased viability when 

compared to day 0 untreated cells (Figure 3-2F). 

ARRDC3 suppresses in-vivo tumorigenicity  

 To assess the role of ARRDC3 in tumor development in-vivo, 1x106 cells of the 

stable sub-clones of MDA-MB-231 cells were injected into the mammary fat pad of nude 

mice. All sub-clones formed tumors efficiently by 7-weeks in 85-100% of the mice 

suggesting that ARRDC3 does not affect in-vivo tumor incidence. However, the sub-lines 

with repressed ARRDC3 formed measurable tumors more quickly (2 weeks) when 

compared to the control line (3 weeks). In contrast, the formation of tumors from the 

ARRDC3 over-expressing line was delayed (4 weeks) when compared to the control line 

(3 weeks). Seven weeks post injection, all mice were euthanized and the tumors were 
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dissected and measured. ARRDC3 significantly suppressed tumor growth in-vivo as 

determined by the weekly and final tumor volume measurements (Figure 3-3A-C).  

To determine whether there was a difference in the proliferation of the tumor 

cells, sections from the xenograft tumors (n=5 tumors for each cell line) were stained for 

Ki67. As expected from the in-vitro studies, repressing ARRDC3 increases the percent of 

Ki67 positive cells by almost 2-fold, while over-expressing ARRDC3 decreases the 

number of Ki67 positive cells by approximately 3-fold (Figure 3-3D). When quantitated, 

these differences were statistically significant.  

When examined microscopically, all tumors displayed an undifferentiated solid 

tumor morphology (Figure 3-4). To assess the contribution of ARRDC3 to in-vivo tumor 

cell survival, H&E stained sections of the xenograph tumors were quantitatively 

evaluated for central necrosis using ImageJ software. Although larger tumors are 

generally more necrotic, tumors derived from the shARRDC3 lines contained 

significantly less necrosis when compared to control tumors (Figure 3-5B). In contrast, 

tumors from the ARRDC3 over-expressing cell line, although smaller, were highly 

necrotic (Figure 3-5B). When quantitated, these differences were statistically significant. 

When TUNEL staining was performed on sections from the xenograft tumors, the 

expression of ARRDC3 appeared to have no effect on the number of apoptotic cells 

(Figure 3-5C), suggesting that ARRDC3 acts independently from the apoptotic pathway. 

Altogether, these data demonstrate that ARRDC3 suppresses in-vivo tumor cell growth 

and possibly affects the viability of tumor cells. 
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ARRDC3 negatively regulates ITGβ4 

 Our early adeno-viral mediated over-expression experiments caused detachment 

of MDA-MB-231 cells from the substratum after one week in culture suggesting a defect 

in cell adhesion. The MDA-MB-231 human cancer cell depends on the cell surface 

adhesion molecule ITGβ4 for cell adhesion to laminin, survival, migration and invasion 

(Lee et al., 2008; Mercurio and Rabinovitz, 2001; Shaw et al., 1997). To determine 

whether ARRDC3 expression directly influences ITGβ4 levels in breast cancer cells, 

transient over-expression and RNAi analyses were performed using the MDA-MB-231 

cell line. Over-expression of ARRDC3 causes a significant decrease in ITGβ4 protein 

levels by Western blot. Conversely, cells transfected with a siRNA targeting ARRDC3 

demonstrate a marked increase in ITGβ4 (Figure 3-6A). To verify that ITGβ4 was only 

affected in cells with altered ARRDC3, MDA-MD-231 cells were infected with an 

ARRDC3 and GFP co-expressing adenovirus and evaluated for ITGβ4 levels using 

immunofluorescence. Only GFP+ cells demonstrated a decrease in ITGβ4 surface 

expression while there was no change in ITGβ4 protein levels in control GFP-only 

infected cells (Figure 3-6B). Therefore, it is unlikely that the decrease in ITGβ4 levels is 

in response to a paracrine signaling pathway as ARRDC3 over-expression does not affect 

neighboring cells.  Flow cytometric analysis showed that over-expression of ARRDC3 

induces a complete lack of ITGβ4 protein at the cell surface (Figure 3-6C). 

ARRDC3 regulates ITGβ4 protein levels in a proteosome-dependent manner 

To help determine whether ARRDC3 regulates ITGβ4 at the level of mRNA 

expression or post-translationally, MDA-MB-231 cells were treated with cyclohexamide 



 95

after infection with either an adenoviral ARRDC3 & GFP virus (adARRDC3) or a 

control GFP-only virus (adGFP). Down-regulation of ITGβ4 in adARRDC3 infected 

cells was detected by western blot analysis and immunofluorescence despite treatment 

with cyclohexamide (Figure 3-7). These data demonstrate that ARRDC3 regulation of 

ITGβ4 protein levels is a post-translational process leading to increased degradation that 

does not require transcription of new genes. 

 We next wanted to determine the mechanism of ITGβ4 degradation in breast 

cancer cells. MDA-MB-231 cells were treated with the proteosome inhibitor lactacystin 

prior to infection with adARRDC3. The addition of lactacystin prevented the ARRDC3 

mediated decrease in ITGβ4 protein levels as determined by immunofluorescence and 

Western blots (Figure 3-8A&B). Since proteosome inhibition should not affect 

internalization, lactacystin treatment does not prevent the significant decrease in surface 

ITGβ4 as seen by flow cytometry (Figure 3-8C). To exclude the possibility of lysosomal 

contribution to the protein degradation, the experiment was repeated using chloroquin  

instead of lactacystin prior to infection. Chloroquin treatment did not prevent ITGβ4 

reduction after infection with adARRDC3 (Figure 3-9A&B). 

ARRDC3 directly interacts with activated ITGβ4 

A novel phosphorylation site on ITGβ4, serine-1424, was recently identified as 

important in hemidesmosome disassembly and shown to be enriched on the trailing edge 

of migrating cells (Germain et al., 2009). This phosphorylation, along with the 

phosphorylation of other serines, results in the disassembly of the hemidesmosome and 

mobilization of ITGβ4 to actin-rich protrusions (Germain et al., 2009; Rabinovitz et al., 
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1999; Rabinovitz et al., 2004; Wilhelmsen et al., 2007). To determine if this site is 

important in ARRDC3 mediated ITGβ4 internalization during breast cell migration, 

endogenous expression patterns of ITGβ4, ITGβ4-pS1424 and ARRDC3 were examined 

using confocal microscopy on migrating cancer cells.  ARRDC3 co-localizes with ITGβ4 

only on the lagging edge of the cell, where ITGβ4-pS1424 is enriched (Figure 3-10A). 

We then determined that ARRDC3 physically interacts with ITGβ4-pS1424 by 

endogenous immuno co-precipitation on lysates prepared from MDA-MB-231 cells pre-

treated with phosphatase inhibitors (Figure 3-10B).  Densitometric analysis demonstrates 

~70% of ITGβ4-pS1424 is immuno co-precipitated by an ARRDC3 antibody when 

compared to an ITGβ4 antibody. The densitometric ratio of precipitated pS1424/ITGβ4 is 

3.5 fold higher for the ARRDC3 immuno co-precipitation when compared to the ITGβ4 

immuno co-precipitation suggesting, ARRDC3 preferentially interacts with this 

“activated” (i.e. engaged in a signaling cascade) form of ITGβ4.  

As the regulation of ITGβ4 by ARRDC3 is dependent on the proteosome, we next 

wondered whether ARRDC3 interacts with ITGβ4 after it is targeted for degradation. In 

untreated MDA-MB-231 cells, there is an undetectable amount of ubiquitinated ITGβ4, 

even after ITGβ4 immuno co-precipitation. However, when cells were pre-treated with 

proteosome inhibitor lactacystin, higher molecular weight bands of ITGβ4 were detected 

after immuno co-precipitation with both ARRDC3 and ITGβ4 antibodies (Figure 3-10C). 

Immuno-blotting the same membranes for Ubiquitin revealed almost equal amounts of 

ubiquitinated- ITGβ4 is immuno co-precipitated with the ARRDC3 antibody when 
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compared to the ITGβ4 immuno co-precipitation (Figure 3-10C). This suggests that 

ARRDC3 maintains in complex with ITGβ4 after it is targeted for degradation. 

ARRDC3 specifically targets ITGβ4 

Cancer cells frequently have defects within vesicular trafficking and/or 

endocytotic pathways (reviewed in (Mosesson et al., 2008)). To demonstrate that 

ARRDC3 is specifically targeting ITGβ4, rather than stimulating generalized 

endocytosis, we examined a variety of cell surface proteins after cells (MDA-MB-231) 

were infected with either adGFP or adARRDC3. Analysis of non-permeabilized cells by 

flow cytometry shows that ARRDC3 over-expression did not affect surface levels of 

ITGβ1, CD44 and EpCam (Figure 3-11). These data indicate that ITGβ4 is specifically 

targeted by ARRDC3. 

Effects of ARRDC3 on in-vitro tumorigenicity is dependent on ITGβ4 

 To determine whether ITGβ4 was required to mediate the effects of ARRDC3 on 

cancer cell behavior, we used MDA-MB-435 (a cancer line which does not express 

ITGβ4) and MDA-MB-435+β4 cells (a daughter cell line engineered to over-express 

ITGβ4), to create lines with altered ARRDC3 levels and assayed for tumorigenicity. 

When analyzed by western blot, the inverse relationship between ARRDC3 and ITGβ4 

protein levels were maintained (Figure 3-12). 

 Similar to MDA-MB-231 cells, the MDA-MB-435+β4 cells showed marked 

changes in proliferation, migration, invasion and anchorage independent growth. Over-

expression of ARRDC3 in MDA-MB-435+β4 cells caused decreased proliferation and 

migration, while repression of ARRDC3 lead to increased proliferation and migration 
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(Figure 3-13A&B).  Soft agar assays again showed that over-expression of ARRDC3 

inhibits anchorage independent growth, while repressed ARRDC3 promotes 

tumorigenicity in the MDA-MB-435+β4 cells (Figure 3-13C&D). Cell invasion assays 

demonstrated a 50% decrease in the number of invasive cells in ARRDC3 over-

expressing cells whereas repression of ARRDC3 caused a two-fold increase (Figure 3-

13E).  In contrast to the ITGβ4-positive cell lines, ARRDC3 had marginal effects on the 

parental, ITGβ4-negative MDA-MB-435 cell line (Figure 3-13A-E). Interestingly, 

ARRDC3 over-expression reduced the tumorigenic properties of the MDA-MB-435+β4 

cells to that of the parental line. Altogether, these data show that ARRDC3 affects in-

vitro tumorigenicity, principally in an ITGβ4-dependent fashion. However, the data also 

shows that ARRDC3 also has an ITGβ4-independent effect on in-vitro tumorigenicity, 

but the physiological relevance of this pathway is unclear.  

ARRDC3 down-regulation and coordinate ITGβ4 up-regulation in human breast tumors 

Since there is an extensive connection between ITGβ4 and breast carcinogenesis, 

we examined protein levels of ARRDC3 and ITGβ4 in normal breast tissue and primary 

human breast cancers (invasive ductal carcinomas) obtained from UMass Cancer Center 

Tissue and Tumor Bank. As expected, ARRDC3 expression appeared to be inversely 

correlated to ITGβ4. It is interesting to note that moderate expression of ARRDC3 is not 

sufficient to completely abrogate ITGβ4 (Figure 3-14). 

We next examined expression of ARRDC3 and ITGβ4 in normal breast tissue 

sections using immuno-fluorescence. As expected, ITGβ4 positive cells were located in 

the basal layer of normal ducts.  Conversely, ARRDC3 was more highly expressed in 
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luminal cells and breast stroma (where ITGβ4 expression is negligible) but weakly 

expressed in basal cells (where ITGβ4 expression is highest) (Figure 3-15). 

The combination of our data and the current knowledge of ITGβ4 strongly 

suggested that repression of ARRDC3 would lead to a more aggressive/metastatic 

phenotype. To analyze the expression pattern of ARRDC3 in tumors, 52 human breast 

tumors of varied grade and ER/PR/HER2 receptor status (obtained from UMass Cancer 

Center Tissue and Tumor Bank) were used for ITGβ4 & ARRDC3 co-

immunofluorescence.  Expression of ARRDC3 was inversely correlated to tumor Grade 

(Table 3-1 & Figures 3-16 through 3-18). Within grade 1 tumors, 5/6 demonstrated high 

ARRDC3 staining while the outlier exhibited strong ITGβ4 staining (Figure 3-16). 

Interestingly, although expression of ARRDC3 varied greatly in grade 2 tumors, levels 

were inversely correlative to ITGβ4 expression (Figure 3-17). Grade 3 tumors generally 

expressed low or undetectable levels of ARRDC3. Only 2/22 grade 3 tumors displayed 

high expression of ARRDC3 (Figure 3-18). Although 11/52 tumors expressed no/low 

levels of ARRDC3 and ITGβ4, only 1/52 tumors had intense staining for both ARRCD3 

and ITGβ4. Matched primary/metastatic tumor samples showed a further repression of 

ARRDC3 level in the metastatic lesion (Figure 3-19).  

The combination of our data and the current knowledge of ITGβ4 strongly 

suggested that repression of ARRDC3 would lead to a more aggressive/metastatic 

phenotype. Overall, the data support the hypothesis that ARRDC3, probably through its 

effects on ITGβ4, acts as a regulator of breast cancer.  
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DISCUSSION 

In the present study, we describe a novel regulatory pathway involving the 

internalization and degradation of the cell surface protein ITGβ4, which has significant 

effects on breast cancer cell growth and tumorigenicity. We demonstrate that ARRDC3, 

previously identified by genetic screening as a potential tumor suppressor (Adelaide et 

al., 2007), is a new regulator of breast cancer progression. We show that ARRDC3 

directly binds to ITGβ4, specifically when phosphorylated at S1424, and ultimately leads 

to proteosome dependent degradation. The subsequent change in ITGβ4 protein levels 

significantly affects in-vitro tumorigenic properties such as proliferation, migration, 

invasion and growth in soft agar. In-vivo analyses demonstrate that ARRDC3 expression 

inversely correlates with tumor growth in nude mice and viability of tumor cells under 

stressed environments. Additionally, data from human breast cancer samples show that 

ARRDC3 expression is, in general, inversely correlated to ITGβ4 protein levels. 

ITGβ4 is part of a genetic signature correlated to basal-type breast cancer (Lu et 

al., 2008). It was therefore very interesting to note that ARRDC3 is part of a cluster on 

chromosome 5 deleted in 17% of the same basal-type breast cancer subset (compared to 

0% in luminal breast-cancers) (Adelaide et al., 2007). We found that ARRDC3 protein 

was low or absent in 5 of 11 human infiltrating ductal carcinomas of the breast, and these 

tumors had high levels of ITGβ4. Although we do not know the mechanism by which 

ARRDC3 is down-regulated within these tumors, we suspect that chromosome deletion is 

not the only cause of ARRDC3 deficits. Further genetic, epigenetic and mutational 

analyses of the ARRDC3 locus are needed to more fully investigate the transcriptional 
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regulation of ARRCD3 within tumors. All basal-like breast cancer samples we analyzed 

had little to no expression of ARRDC3 (Figure 3-20), suggesting that ARRDC3 may be 

inactivated by additional mechanisms other than chromosomal deletion. These data also 

suggest the loss of ARRDC3 is more critical in basal-type breast cancers, which typically 

express high levels of ITGβ4. Understanding the mechanism of ITGβ4 regulation by 

ARRDC3 may lead to improved therapies for this aggressive subset of breast cancer that 

currently has a very poor prognosis. However, it should be noted that neither ARRDC3 

repression nor ITGβ4 expression was exclusive to basal-like breast tumors meaning that 

potential therapies designed around this process would be beneficial to other cancer types 

as well. 

Interestingly, some tumors we evaluated maintained expression of both ARRDC3 

and ITGβ4. It is possible that the effects of ARRDC3 on ITGβ4 are simply dose 

dependent and moderate expression of ARRDC3 maintains intermediate levels of ITGβ4. 

Low or moderate levels of ARRDC3 may also allow for the recycling of ITGβ4 similar to 

the effects of -arrestin on GPCRs (Luttrell and Lefkowitz, 2002). It is worth speculating 

how one tumor we evaluated maintained high expression of both ARRDC3 and ITGβ4. If 

the pathway in which ARRDC3 targets ITGβ4 for degradation is somehow altered, it is 

possible that ARRDC3 could allow for the mobilization and recycling of ITGβ4 from 

hemidesmosomes at an increased rate. The presence of increased surface ITGβ4 we 

observed after treatment with a proteosome inhibitor may be evidence of such a 

mechanism (Figure 3-8C). This would facilitate the speed in which filamentous actin 

protrusions form, thus promoting tumor progression. However, further trafficking studies 
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are necessary to determine whether ITGβ4 is actively being recycled to the cell surface in 

the absence of degradation.  

ITGβ4 is the core component of hemidesmosomes which anchor keratin filaments 

within the cell to the basement membrane (Borradori and Sonnenberg, 1999; Jones et al., 

1998; Wilhelmsen et al., 2006). Hemidesmosomes mediate stable adhesion but are highly 

dynamic structures that can quickly disassemble under conditions in which detachment 

from the sub-strata is required, such as during cell migration or carcinoma invasion 

(Geuijen and Sonnenberg, 2002; Tsuruta et al., 2003). Previous investigations of the 

mechanism of hemidesmosome disassembly revealed the importance of several 

phosphorylation sites on ITGβ4 (Germain et al., 2009; Mainiero et al., 1996; Rabinovitz 

et al., 1999; Rabinovitz et al., 2004; Wilhelmsen et al., 2007). Our data reveal a novel 

intermediate in hemidesmosome disassembly during cell migration. After the cell 

receives migration stimuli, ARRDC3 directly interacts with ITGβ4 phosphorylated on 

S1424 by PKCα (Germain et al., 2009). As this phosphorylation event only occurs on the 

lagging edge of the cell, only ITGβ4 located there becomes endocytosed and sent to the 

proteosome, ultimately dissolving the hemidesmosome. This disruption of adhesion 

molecules at the lagging edge allows the cell to migrate. Although we demonstrated that 

ARRDC3 preferentially binds to the pS1424 form of ITGβ4, it is possible that other 

phosphorylation sites are mediators of ARRDC3 binding.  

Until recently, there have been relatively few investigations of the factors 

involved in integrin endocytosis. Internalization of integrins α5β1, αvβ6, αvβ3, α6β1 

have been associated with clathrin-mediated endocytosis (Caswell and Norman, 2008; 
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Ezratty et al., 2009), whereas integrins α5β1, αvβ3, α2β1 (Caswell and Norman, 2008; 

Shi and Sottile, 2008) have been connected to caveolae dependent endocytosis. Integrin 

α6β4 has been shown to associate with lipid rafts (Gagnoux-Palacios et al., 2003) 

suggesting that caveolae may play a role in internalization. However, not all integrin 

α6β4 was found associated with lipid rafts. Our data provides additional insight to the 

area of integrin endocytosis. Since ARRDC3 contains clathrin binding motifs it is 

possible that it functions by a clathrin-dependent mechanism although more investigation 

of the protein complexes within this pathway is needed. Lastly, ARRDC3 does not 

appear to interact with 1 integrins (Fig. 3-11) and because of the unique long 

cytoplasmic tail of ITGβ4, ARRDC3 is likely specific for this integrin.  

It has been hypothesized that during the progression from normal epithelium to 

invasive carcinoma, the function of ITGβ4 switches from a mechanical adhesive device 

into a signaling-competent receptor. In this case, ITGβ4 needs to be liberated from 

hemidesmosome where it can then be trafficked to actin-rich motility structures 

(filopodia and lamellae) (Lipscomb and Mercurio, 2005; Mercurio et al., 2001b; Santoro 

et al., 2003). Our findings highlight the importance of the ITGβ4-pS1424 site in this 

process as endogenous ARRDC3 co-localizes with this phosphorylated form of ITGβ4, 

likely causing internalization. ITGβ4-pS1424 has been identified as a critical residue in 

HD disassembly; however, MDA-MB-231 cells do not form HD. It is possible that the 

site is still phosphorylated prior to internalization of ITGβ4 regardless whether HDs need 

to be dissolved.  It is also possible that the real phosphorylation event increasing the 

ARRDC3/ITGβ4 interaction is caused by the same signals leading to ITGβ4-S1424 
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phosphorylation. It would be interesting to test whether SD (which mimics 

phosphorylation) and SA mutants (which cannot be phosphorylated) of residue S1424 

affect the ARRDC3/ITGβ4 interaction.  

It is clear from our data that ARRDC3 plays a role in the regulation of ITGβ4 

protein levels and likely contributes to the control of ITGβ4 function during breast cancer 

progression. The interaction between ARRDC3 and ITGβ4 may represent a new 

therapeutic target for basal-like breast cancers. Disruption of this interaction, by peptides 

or small molecules, may stabilize ITGβ4 in hemidesmosomes and block its growth and 

pro-survival effects. These data also highlight the importance of ITGβ4-blocking 

antibodies as a potential therapy. 

Our data does not exclude the possibility that ARRDC3 has an ITGβ4 

independent mechanism of action in cancer cells or in normal cells. The effects of 

ARRDC3 on cancer cells lacking ITGβ4 had marginal statistical significance and the 

overall effects were small (Figure 3-13). It is therefore unclear whether these effects are 

biologically significant. Considering its similarity to β-arrestins, ARRDC3 may also 

regulate G-protein coupled receptors (GPCRs). Possible targets could include 

Smoothened and Frizzled receptors (Class-6 GPCRs) or chemokine receptors (Class-1 

GPCRs); which all have extensive implications in cancer in addition to potential 

therapeutic targets. 

Although our data demonstrate tumor growth suppressor functions of ARRDC3 in 

breast cancer, it should not be taken for granted that this will readily translate to other 

tissues. ITGβ4 can play a dichotomous role in certain tissue types, either positively or 
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negatively regulating tumor progression (Giancotti, 2007; Rabinovitz and Mercurio, 

1996; Raymond et al., 2007).  The overall role of ARRDC3 in a specific cancer would 

depend on the role of the target proteins (like ITGβ4) in the cancer cells. 

In summary, our data identifies ARRDC3 as a novel regulator of breast cancer 

progression that targets ITGβ4 for internalization and proteosome dependent degradation. 

We reveal several oncogenic properties affected by changes in ARRDC3 expression and 

identify a correlation between ARRDC3 expression and human breast tumor 

grade/aggressiveness. Our research also raises additional questions. What other proteins 

work with ARRDC3 in ITGβ4 internalization? Is ARRDC3 involved in other steps of 

integrin trafficking? How is ARRDC3 regulated? What is the biological significance of 

possible ITGβ4-independent pathways? What other cancers show deregulated ARRDC3 

expression? Our data open several avenues of future research in cancer biology, which 

may ultimately lead to new treatment strategies. 

METHODS 

Cells and Reagents. MDA-MB-435 human breast carcinoma cells expressing wild-type 

ITGβ4 were generated previously (Shaw et al., 1997). MDA-MB-231 human breast 

carcinoma cells were obtained from the Lombardi Breast Cancer Depository 

(Georgetown University).  

siRNA Sequence and Transfection. Three different siRNA oligos were designed 

targeting the following sequences in ARRDC3: 1- AAACACGGCCTTCTATGCCA, 2- 

AAAGGCGGAACAATCTTGCAC, and 3- AATCTTGCACCAGTGAGTGCT. siRNA 

duplexes against these target sequences were ordered from Qiagen along with three 



 106

control target sequences. siRNA duplexes were transfected into cells using HiPerFect 

transfection reagent (Qiagen) following the manufacturer’s recommended protocol. For 

experiments shown in this paper, duplexes 1 and 3 were pooled for maximum knockdown 

of ARRDC3.  

Cloning and Generation of Stable Lines. pSuper vectors (Oligoengine) containing 

control shRNA (shCtl target sequence: TTCTCCGAACGTGTCACGT) and shRNAs 

targeting ARRDC3 (shARRDC3 target sequence A:GGCCTTGGCTACTACCAGT; 

shARRDC3 target sequence C: GCGTGGAATATTCACTAAT) were generated in our 

lab per manufacturers recommended protocol. Full length human ARRDC3 cDNA and 

Flag-LacZ fusion cDNA were cloned into the pBABE-puro expression vector (Addgene). 

Cells were transfected with Fugene HD (Roche) following manufacturers recommended 

protocol. Stable transformants were selected using puromycin and pooled. 

Adenoviral Preparation. Full length human ARRDC3 cDNA was initially cloned into 

pLEGFP (Clontech). The fragment containing ARRDC3+GFP (or GFP alone) was then 

cloned into Adeno-X LP CMV (Clontech) using the Adeno-X Expression System 2 kit 

(Clontech). Adeno-X maxi purification kit (Clontech) was used to isolate/purify the 

adenovirus. For all steps, the manufacturers recommended protocol was followed. The 

amount of virus needed for each cell type was determined empirically.  

Immunofluorescence. Cells were cultured on coverslips and fixed with acetone. Cells 

were permeabilized by incubating with PBS+Triton and blocked with 5% goat serum 

(Gibco). Coverslips were incubated with primary antibody (rabbit polyclonal ARRDC3 

(Abcam) and/or ITGβ4 439-9b (BD-Pharmingen)) for 2 hr at room temperature or 
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overnight at 4°C. After being washed, cells were then stained with secondary antibodies 

conjugated with either FITC or Texas-Red (Vector Laboratories) for 2 hours at room 

temperature. After washing, cover-slips were mounted on slides using Vectashield with 

DAPI (Vector Laboratories) and slides were analyzed using a fluorescence microscope. 

Wound Assay. 5x105 cells were evenly plated in a 6-well plate. 24 hours after plating, 

the 100% confluent cells were treated with 15µg/mL mitomycin C (Roche) for 90 

minutes at 37°C. The monolayer was scratched with a P200 pipette tip and washed 3 

times to remove floating cells. The wound closure was then monitored by digital 

photography. 

Growth in Soft Agar. 1.0 x 103 cells were suspended in 2mL of serum-containing 

medium containing 0.3% agar and overlaid on a 1mL base layer of 0.75% agar in six-

well plates. The soft agar was overlaid with complete medium (0.5 mL/well), which was 

changed every 2 days. After 3-4 weeks of incubation, viable colonies were stained by 

adding MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) into the 

covering media. Images were captured using bright-field microscopy and the number and 

size of the colonies were analyzed using ImageJ software. Only colonies with a diameter 

of >50μm were counted.  

Invasion. Matrigel invasion assays were performed as described previously using 6.5-

mm Transwell chambers (8-μm pore size, CoStar) (Shaw et al., 1997). After 4 hours, the 

cells that had invaded to the lower surface of the filters were fixed in methanol for 10 

minutes. The fixed membranes were mounted on glass slides using Vectashield mounting 

medium containing DAPI (Vector Laboratories). Invasion was quantified by counting the 
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number of stained nuclei in five independent fields in each transwell using ImageJ 

software. 

Xenograft Mouse Studies. Animals' care was in accordance with guidelines approved by 

IACUC. Cells were trypsinized, washed five times with sterile PBS, and re-suspended in 

35μL phenol red-free Matrigel immediately before injection. Female immuno-

compromised mice (nu/nu; National Cancer Institute) at 9 wk of age were anesthetized 

briefly with isofluorane and cells were injected into the #3 and #8 mammary fat pad (1 x 

106 cells per injection in 50μL of Matrigel, two injection sites per mouse). Estimated 

tumor volume was determined using the following formula: (4/3) π (1/2 x smaller 

diameter) 2 (1/2 x larger diameter). At the final time point, mice were euthanized using 

isoflourane and cervical dislocation. Final tumor volume (after dissection) was 

determined using the following formula: (4/3) π (1/2 x length) (1/2 x width) (1/2 x 

height).  

Tumor Analysis. All tumors were cut in half lengthwise. One piece was then imbedded 

in paraffin after formalin fixation, where the remaining piece was cut in two for fixation 

in O.C.T. and protein extraction. Sections of paraffin-embedded tumor were used for 

H&E staining, Ki67-IHC and TUNEL staining. All of the staining was performed by the 

DERC-Histology facility at UMass Medical School. 

Western Blot Analysis. Cell extracts containing equivalent amounts of total protein were 

resolved by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were 

blocked for an hour using a 50 mM Tris buffer (pH 7.5) containing 0.15 mM NaCl and 

0.05% Tween 20 and 5% (w/v) Blocker (BioRad) in PBS+ Tween 20. Membranes were 
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incubated overnight at 4°C in the same buffer containing primary antibodies (rabbit pAB 

targeting ARRDC3 (Abcam ab64817) or rabbit pAB targeting ITGβ4 (505, a generous 

gift from Arthur Mercurio, UMMS Worcester, MA). Proteins were detected by enhanced 

chemiluminescence (Pierce). For phospho-immunoblots, the blocking buffer for the 

primary antibodies contained 5% (w/v) BSA. 

STATISTICAL ANALYSIS: All values in the present study were expressed as mean ± 

SEM unless otherwise noted. The significant differences between the groups were 

analyzed by a Student’s t test and a P value of <0.05 was considered significant. 
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Table 3-1: Expression of ARRDC3 in Human Breast Tumors 

ID HER2 ER PR Cancer Type Grade ITGβ4 ARRDC3
0630T - + weak Lobular Carcinoma 1 + +++
0832T - + - Ductal Carcinoma 1 + +++
0885T - + + Ductal Carcinoma 1 + ++
0909T - + weak Ductal Carcinoma 1 - +++
1334T - + + Lobular Carcinoma 1 +++ + 
1640T - + - Ductal Carcinoma 1 ++ ++
0199T + + + Ductal Carcinoma 2 ++ ++
0248T - + + Ductal Carcinoma 2 +++ + 
0327T + + + Ductal Carcinoma 2 ++ ++
0424T - + + Papillary Carcinoma 2 - + 
0448T - - - Ductal Carcinoma 2 +++ + 
0462T - + - Ductal Carcinoma 2 ++ ++
0480T - + + Ductal Carcinoma 2 + + 
0545T + + - Ductal Carcinoma 2 ++ ++
0576T - + - Ductal Carcinoma 2 +++ + 
0638T - + - Ductal Carcinoma 2 + ++
0837T weak - - Ductal Carcinoma 2 ++ + 
0884T - + - Lobular Carcinoma 2 ++ + 
0934T + - - Ductal Carcinoma IS 2 +++ + 
0960T + + + Ductal Carcinoma 2 + + 
1003T - + + Ductal Carcinoma 2 - ++
1099T - + - Ductal Carcinoma 2 + + 
1281T - + + Lobular Carcinoma 2 ++ - 
1376T - + + Lobular Carcinoma 2 +++ + 
1403T + + + Ductal Carcinoma 2 ++ ++
1404T - + + Lobular Carcinoma 2 +++ + 
1471L - + + Carcinoma 2 +++ + 
1471T - + + Ductal Carcinoma 2 +++ + 
1502T - + + Ductal Carcinoma 2 ++ ++
1569T - + + Ductal Carcinoma 2 + +++
0237T + - - Ductal Carcinoma 3 +++ - 
0316T + - + Ductal Carcinoma 3 +++ + 
0442T + - - Ductal Carcinoma 3 +++ + 
0454T - + + Lobular Carcinoma 3 +++ ++
0471T + + - Lobular Carcinoma 3 - + 
0489T - + + Lobular Carcinoma 3 + - 
0577T - + - Lobular Carcinoma 3 +++ + 
0690T - - - Ductal Carcinoma 3 - + 
0738T - - + Ductal Carcinoma 3 +++ + 
0839T - - - Ductal Carcinoma 3 - - 
0902T - - - Ductal Carcinoma 3 - ++
0957T - - - Ductal Adenocarcinoma 3 +++ + 
0959M - + - Carcinoma 3 - + 
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0959T - + - Ductal Carcinoma 3 + + 
1060T - + - Ductal Carcinoma 3 + + 
1097T weak + weak Ductal Carcinoma 3 ++ + 
1200T - - - Ductal Carcinoma 3 +++ - 
1342M - - - Ductal Carcinoma 3 +++ + 
1550T - + + Lobular Carcinoma 3 +++ + 
1623T - + + Ductal Carcinoma 3 +++ + 
1645T NT + + Lobular Carcinoma 3 ++ - 
1659T - + - Ductal Carcinoma 3 +++ + 

 
Table 3-1: Expression of ARRDC3 in human breast tumors. 52 human breast tumors were 

analyzed for ARRDC3 and ITGβ4 expression using immuno-fluorescence. ID refers to 

the UMass Tissue Bank tumor number. HER2, ER and PR statuses, cancer type and 

grade are those determined at the time of diagnosis. A – indicates no detectable 

expression, + is low expression, ++ is moderate expression and +++ is high expression. 

All samples were processed at the same time using the same master-mix of primary and 

secondary antibodies. Images from each sample were taken all on the same day using the 

same exposure times for each channel. Expression levels were determined by a person 

blinded to the sample information. 



 137

 

 

 

 

 

 

 

 

CHAPTER IV:  

Final Thoughts and Future Directions 
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The arrestin family of gene products was originally discovered as molecules that 

desensitize, or turn off, classical G protein-coupled receptor (GPCR) signaling 

(Hausdorff et al., 1990). Upon ligand binding, GPCRs are phosphorylated on many sites 

within an intracellular loop by GPCR kinases (GRKs). This modification leads to 

enhanced β-arrestin binding, physically blocking further signaling to G proteins and thus 

leading to receptor desensitization. Arrestins can also mediate internalization of 

receptors, leading to numerous physiological outcomes including receptor degradation, 

receptor recycling, and the generation of “signalosomes” where arrestins scaffold various 

proteins to potentiate distinct downstream signaling events (Figure 1-2). In recent years, 

these multifunctional adaptor proteins have also come to be appreciated as important 

mediators of core signaling pathways used in growth, differentiation, homeostasis and 

cancer. This includes the Hedgehog, Wnt, Notch, and TGFβ signaling pathways. Arrestin 

proteins are also key regulators of endocytosis: a complex cellular program, through 

which cells can regulate signaling, modulate adhesion and become polarized. 

The culmination of the data presented in my thesis underlines a mechanism by 

which ITGβ4 is regulated by ARRDC3. Through this mechanism, ARRDC3 can directly 

bind to ITGβ4, the phosphorylation of which seems to increase the affinity of the 

interaction. Preliminary data indicates that ARRDC3 preferentially binds to ITGβ4-

pS1424, although it is still unclear whether S1424 is the key site mediating the 

interaction. Upon this interaction, ITGβ4 becomes internalized and sent to the 

proteosome for degradation (Figure 4-1A). In a migrating cell these events appear to be 

restricted to the lagging edge of the cell on the basal layer, where the adhesion structures 
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are likely about to become disrupted (Figure 4-1B). This specific localization is likely 

critical in cell motility as cells cannot migrate without the disruption of these adhesion 

molecules. This regulation plays a critical role in all cellular functions affected by ITGβ4 

signaling; such as adhesion, migration, survival, invasion and proliferation. 

ARRDC3 deficient mice 

The importance of this regulation is best highlighted in our preliminary 

observations of ARRDC3 null mice. Although these mice develop normally, they display 

what we consider to be an “aging phenotype” compared to their wild-type littermates. 

This includes a loss of fur, decreased wound healing and a higher disposition towards 

lymphoma (Table 4-1). Mice heterozygous for ARRDC3 display a phenotype that is 

intermediate between the null and wild-type mice.  

Null mice exhibited patchy fur loss by 4 months of age and progressed as the 

mice aged (Figure 2-17). Additionally, these mice appeared more prone towards 

dermatitis and wounding (as reported by the animal facility veterinarians) than their wild-

type or even heterozygous littermates. Although fighting wounds are not uncommon in 

mice, a disproportionate number of ARRDC3 null and heterozygous mice needed to be 

euthanized due to their injuries compared to wild-type littermates (Table 4-1). In 

addition, in each of four separate mating cages (all containing one ARRDC3 null female, 

one ARRDC3 heterozygous female and one wild-type male) only the ARRDC3 null 

females presented with injuries on their hindquarter regions. This suggests that the loss of 

ARRDC3 renders the mouse either more likely to become wounded and/or decreases the 

rate at which the wounds are repaired. As the dermis is much thinner in the null mice 



 140

compared to wild-type littermates (Figure 2-18B), it is probable that ARRDC3 null mice 

wound more easily. However, this does not exclude the possibility that there is an 

impairment of the wound healing process. A decrease in the number of stem cells would 

affect homeostasis as well as prolong the wound healing process. Altogether, our 

observations support the notion that although ARRDC3 does not affect differentiation, its 

loss does allow for an increase in the migration of skin stem cells outside of the niche 

likely leading to an exhaustion of the stem cell pool and defective skin homeostasis. As 

these thoughts are generated from general observations outside of a well controlled 

experiment, definitive conclusions cannot be made. A formal study where a full-thickness 

skin biopsy is performed on each mouse and the wound-healing rates and histology are 

monitored would help to answer this question. 

Additionally, ARRDC3 null and heterozygous mice seemed to have an increased 

disposition towards developing cancer. All ARRDC3 null mice (not euthanized for lethal 

wounds) died before 11 months of age. Post-mortem necropsy of all mice revealed both 

spleenomegaly as well as large masses within (but not part of) the intestines. Histological 

analyses of the spleen and the masses found an abundance of plasma cells indicating 

these mice suffered from a lympho-proliferative disease, most likely multiple myeloma 

based on the presence of “clock-face” cells (Figure 4-2A&B). This predisposition 

towards lymphoma was also evident in the heterozygous mice, although survival for this 

genotype exceeded that of the null mice. However, it is impossible to distinguish the 

affects of ARRDC3 from the normal pathology of 129; B6 mice. Studies indicate that 

only 44.5% of 129;B6 mice are alive at 2 years and 54% of these mice develop 
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lymphoma (Haines et al., 2001). However, the 129; B6 mice had an average disease 

latency of 15 months whereas the ARRDC3 null mice all developed lymphoma before 1 

year. This decreased latency suggests a tumor suppressive role for ARRDC3, but as wild-

type littermates were not monitored for lymphoma, we cannot be sure. Interestingly, a 

single 19-month old ARRDC3 heterozygote generated a mass in the mammary tissue. 

Histological analysis revealed that this mass was a well-differentiated mammary adeno-

carcinoma (Figure 4-2C). However, as mammary carcinomas can spontaneously form in 

<1% of wild-type mice (albeit at a latency of 24+ months), it is possible that the 

formation of this tumor is unrelated to ARRDC3 deficiency. The analysis of a larger 

cohort of ARRDC3 -/- and ARRDC3 +/- on a pure background is needed to determine 

whether these mice are more cancer-prone. 

Impact in hemidesmosome regulation & cell migration 

While the ARRDC3 induced changes in ITGβ4 protein levels are modest, the 

affects on cell motility are pronounced (Figures 2-9A & 2-13). This suggests the balance 

between stationary and motile states of both skin stem cells and cancer cells is delicate. 

Motility has significant implications for both cancer and stem cells. Stem cells need to 

stay within the growth and differentiation restricted environment of the niche whereas 

increased migration of cancer cells is a hallmark characteristic of metastasis. 

Hemidesmosomes (HDs) are dynamic structures which are constantly turning over, even 

in resting cells (Daisuke Tsuruta, 2003; Geuijen and Sonnenberg, 2002). This 

phenomenon is thought to keep the cell in a “primed” state allowing it to respond more 

quickly to migratory stimuli. It is likely that the internalization of ITGβ4 by ARRDC3 is 
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part of the normal machinery involved in HD turnover. Our data showing the co-

localization of ARRDC3 with ITGβ4 and plectin on the basal layer of resting cells 

supports this hypothesis (Figure 2-8C&D). It would be interesting to investigate whether 

the ARRDC3 and plectin co-localization also becomes polarized within a migrating cell.  

It is important to remember that our studies examining the localization of ITGβ4 

and ARRDC3 (for both resting and migrating cells) were performed using cells cultured 

in their cell-line specific media. Although this media contains EGF, the concentration 

(10ng/mL) is 10-fold lower than that used when stimulating cells to undergo HD 

disassembly (Germain et al., 2009; Rabinovitz et al., 2004; Wilhelmsen et al., 2007). To 

study the role of ARRDC3 in hemidesmosome disassembly further, the cells would need 

to be stimulated by concentrations of EGF closer to 100ng/mL and re-analyzed using 

either proximity ligation analysis (PLA) or immuno-fluorescence (IF).  

It would be interesting to evaluate the importance of the S1424 site in ITGβ4 

regulation by ARRDC3. Our data suggest that phosphorylation on this site enhances the 

interaction between ARRDC3 and ITGβ4 (Figures 2-8B, 2-14B, and 3-10A&B). 

However, the fragment of ITGβ4 used in the original yeast-2 hybrid screen only included 

amino acids 987-1120 (Figure 4-3A). It is possible that S1424 provides a binding site for 

another protein that either hinders ARRDC3 interaction when un-phosphorylated or 

stabilizes the interaction when phosphorylated. It would also be interesting to test 

whether the phosphorylation status of S1356, S1360, and S1364 impact ARRDC3 

mediated internalization of ITGβ4. These sites are phosphorylated in response to EGF (a 

key growth factor in HD disassembly as well as cell migration) and are crucial in HD 
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disassembly (Rabinovitz et al., 2004; Wilhelmsen et al., 2007). If ARRDC3 plays a role 

in normal HD disassembly, it would be logical that the phosphorylation of these sites also 

affect the affinity between ARRDC3 and ITGβ4. However, it is possible that ARRDC3 

can only interact with ITGβ4 after it is liberated from the HD therefore the increased 

ARRDC3/ITGβ4-pS1424 interaction is only correlative.  

It is also feasible that these phosphorylation events are effects of ARRDC3 

binding rather than vice versa. For other family members, the phosphorylation of the 

receptor allows for the binding of the arrestin at the site of phosphorylation (Gurevich 

and Gurevich, 2006b; Luttrell and Lefkowitz, 2002). Arrestins can then act as scaffolding 

proteins or bridging factors which recruit other signaling molecules including kinases 

(Buchanan and DuBois, 2006; Gurevich and Gurevich, 2006a). ARRDC3 may be the 

molecule responsible for recruiting PKC and PKA (the kinases responsible for 

phosphorylating S1356, S1360, S1364 and S1424) to the cytoplasmic tail of ITGβ4 

(Germain et al., 2009; Rabinovitz et al., 1999; Rabinovitz et al., 2004; Wilhelmsen et al., 

2007). It is possible that the ARRDC3-interaction region on ITGβ4 is upstream of all of 

these key phosphorylation sites to allow access for any kinases it recruits (Figure 4-3B). 

We know that phosphatase inhibition allowed us to see the interaction between ARRDC3 

and ITGβ4, but more specific mutational analysis would need to be performed to know 

which sites are critical for binding. 

Potential Regulation of ARRDC3 

 Further insight into the transcriptional regulation of ARRDC3 is another area of 

interest. One study suggests that ARRDC3 is under the control of the Forkhead 
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transcription factor family member STOX1 (Rigourd et al., 2008). It is therefore possible 

that other Forkhead family members can also regulate ARRDC3. Some of these have also 

been found to repress cancer progression (Ahmad et al., 2009; Rayoo et al., 2009; Zhang 

and Sun, 2009), whereas others seem to promote cancer progression (Han et al., 2008; 

Storz et al., 2009). 

 As the surface expression of ITGβ4 increases in a hypoxic environment (Yoon et 

al., 2005), we sought out to investigate whether ARRDC3 was repressed in hypoxia 

versus normoxia. Contrary to our expectations, ARRDC3 mRNA actually increased in 

cells cultured in a hypoxic environment (Figure 4-4). This data corresponded to 

information found on Oncomine (Figure 4-4). When we examined the ARRDC3 

promoter, we found 2 conserved HRE (hypoxia response elements). However, chromatin 

immuno-precipitation would need to be performed to determine whether ARRDC3 is 

actually a direct target of HIF1. Regardless, it is difficult to reconcile how increased 

ITGβ4 surface expression occurs after an increase in ARRDC3 mRNA. This suggests that 

ARRDC3 has a role in ITGβ4 regulation beyond degradation. 

Integrin Recycling 

We show that ARRDC3 promotes the internalization of ITGβ4 and subsequent 

degradation via the proteosome (Figures 2-11C & 3-8C). It is worth speculating how 

some of the tumors analyzed maintained expression of both ARRDC3 and ITGβ4 (Figure 

3-14). It is possible that the effects of ARRDC3 on ITGβ4 are simply dose dependent and 

moderate expression of ARRDC3 maintains intermediate levels of ITGβ4. Low or 

moderate levels of ARRDC3 may also allow for the recycling of ITGβ4 similar to the 
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effects of -arrestin on GPCRs (Luttrell and Lefkowitz, 2002). It is conceivable that 

lower levels of ITGβ4 would indicate less ligand-independent signaling therefore less 

stimulated ITGβ4 needed to endocytose. However, this would not explain the one tumor 

we evaluated which maintained high expression of both ARRDC3 and ITGβ4 (Table 3-

1). If the pathway in which ARRDC3 targets ITGβ4 for degradation is somehow altered, 

ARRDC3 expression may allow for an increase in the mobilization rate (and hence 

recycling rate) of ITGβ4. This would facilitate the speed in which filamentous actin 

protrusions form, thus promoting tumor progression. However, further trafficking studies 

are necessary to determine whether ITGβ4 is actively being recycled to the cell surface in 

the absence of degradation. 

Integrin Trafficking 

Although our data clearly demonstrates that ARRDC3 actively promotes the 

internalization of ITGβ4, it is unclear whether it is directly involved in the trafficking to 

the proteosome. Although over-expression of ARRDC3 leads to degradation of ITGβ4, it 

is possible that there is a point after internalization where other signals from the cell 

could contribute to its fate; either degradation or recycling. The ubiquitination state of 

ITGβ4 likely plays a role in this fate decision. We show that ITGβ4 in complex with 

ARRDC3 is ubiquitinated (Figure 3-10C). As arrestins can behave as scaffolding 

molecules, ARRDC3 may potentially play a role in the recruitment of the ubiquitination 

machinery necessary for modifying ITGβ4. The C-terminus of ARRDC3 contains a 

PPXY motif that can interact with HECT ubiquitin ligases such as Smurf1, WWP1/2, 

Itch and the NEDD family proteins (Ingham et al., 2004; Martin-Serrano et al., 2005; 
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Sangadala et al., 2007). As with the integrin recycling, more definitive trafficking studies 

would need to be performed to determine whether ARRDC3 plays a role beyond the 

internalization of ITGβ4. 

Although our data demonstrates that ARRDC3 over-expression leads to the 

degradation of ITGβ4, this is not necessarily its role in the cell when expressed at 

endogenous levels. It is possible that ARRDC3 also plays a role in re-localizing ITGβ4 to 

either the cell surface or the leading edge of the cell where it helps form and stabilize 

motility structures (filopodia and lamellae) (Lipscomb and Mercurio, 2005; Mercurio et 

al., 2001b; Rabinovitz and Mercurio, 1997; Santoro et al., 2003). When treated with a 

proteosome inhibitor, cells over-expressing ARRDC3 have slightly higher ITGβ4 surface 

protein levels compared to untreated cells; suggesting at least a small fraction of 

internalized protein is returned to the cell surface when it cannot be degraded (Figure 2-

11C & 3-8C). Additionally, the basal ITGβ4 and apical ARRDC3 staining patterns seen 

on the leading edge of the cells suggests a role beyond degradation (Figure 2-14A). 

Although we show that ARRDC3 and ITGβ4 directly interact, it is important to 

realize that we do not show whether any of the ARRDC3-induced affects on ITGβ4 are a 

result of this interaction. Although it is probable that ARRDC3 and ITGβ4 need to 

physically interact to cause internalization and degradation, we would need to generate an 

ITGβ4-binding deficient form of ARRDC3 and test whether it affects ITGβ4 protein 

levels and cellular process like migration. This mutant could also be used to determine 

the relevance of other ARRDC3 targets in cell migration, invasion, etc. 
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It is also interesting to speculate what proteins (besides ARRDC3) make up the 

machinery involved in ITGβ4 regulation. Until recently, there have been relatively few 

investigations of the proteins involved in integrin endocytosis. Internalization of integrins 

α5β1, αvβ6, αvβ3, α6β1 have been associated with clathrin-mediated endocytosis 

(Caswell and Norman, 2008; Ezratty et al., 2009), whereas integrins α5β1, αvβ3, α2β1 

(Caswell and Norman, 2008; Shi and Sottile, 2008) have been connected to caveolae 

dependent endocytosis. ITGβ4 has been shown to compartmentalize in lipid rafts to 

permit association with a palmitoylated Src family kinase (allowing for mitogenic 

signaling) (Gagnoux-Palacios et al., 2003) suggesting that caveolae may play a role in 

internalization. However, our data suggested the endocytosis of ITGβ4 is through a 

clathrin-dependent pathway (Figure 2-7C). Further evidence supporting our data is the 

clathrin binding motifs within ARRDC3. However, this does not exclude the possibility 

that ARRDC3 can promote non-clathrin mediated endocytosis. Also, as not all integrin 

α6β4 is found associated with lipid rafts, it is possible that another protein may be 

responsible for either internalizing ITGβ4 while in lipid rafts or removing ITGβ4 from 

the lipid raft. Since the mechanism of internalization is thought to contribute to the fate of 

the endosome, ARRDC3 might differentially co-localize with clathrin or caveolin in 

response to different stimuli. As our data only looked at normal resting cells, it is possible 

that we would see a different set of machinery in migrating or cancer cells. Further 

experiments would need to be done to investigate this possibility.   

Implications in Cancer 
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It has been hypothesized that the function of ITGβ4 switches from a mechanical 

adhesive device into a signaling-competent receptor during the progression from normal 

epithelium to invasive carcinoma (Lipscomb and Mercurio, 2005; Mercurio et al., 2001b; 

Santoro et al., 2003). It would be interesting to see if expression of ARRDC3 inhibits or 

promotes this process. Relatively high expression of ARRDC3 in grade one tumors 

suggests that its loss is not necessary for tumorigenesis, although it seems to turn off as 

the tumor progresses. It is clear from our data that ARRDC3 plays a role in the regulation 

of ITGβ4 protein levels and likely contributes to the control of ITGβ4 function during 

breast cancer progression. However, as we are unclear whether ARRDC3 plays a role in 

the trafficking and/or recycling of ITGβ4, it is hard to determine whether its expression in 

the early stages of cancer would be beneficial or detrimental. This could be determined 

by crossing our ARRDC3 null and heterozygous mice to a mammary tumor model (such 

as Brca1fl/fl; MMTV-Cre; Trp53+/−) and determine if there is any affect on either the 

penetrance or the latency of disease. Approximately 73% of these mice form mammary 

carcinomas by 6-8 months of age allowing room to show both acceleration and inhibition 

of carcinogenesis (Xu et al., 1999).  

Another question raised by our experiments concerns the effect of ARRDC3 

expression on metastasis. Although we examined the lungs of mice from the xenograph 

study and only found micro-metastases in the shARRDC3 tumors, we cannot draw any 

conclusions as the tumors from each sub-line were of different sizes. It is possible that if 

permitted to grow to as large a volume, the tumors with over-expressed ARRDC3 would 

metastasize to the same extent. Additionally, the MMTV-PyMT transgenic mice form 
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highly aggressive tumors which metastasize to the lungs (Guy et al., 1992); crossing them 

with the ARRDC3 -/- null mice would help to answer whether ARRDC3 expression 

affects metastasis. However, the combined knowledge that over-expression of ARRDC3 

decreased in-vitro invasion, repressed ARRDC3 promoted in-vitro invasion and ITGβ4 is 

known to promote metastasis; it is probable that ARRDC3 is a negative regulator of 

metastasis as well. 

The interaction between ARRDC3 and ITGβ4 may represent a new therapeutic 

target for basal-like breast cancers that can be manipulated by peptides or small 

molecules. These data also highlight the importance of ITGβ4-blocking antibodies as a 

potential therapy in breast cancer. However, it should not be taken for granted that this 

will readily translate to other tissues. ITGβ4 can play a dichotomous role in various tissue 

types, either positively or negatively regulating tumor progression (Giancotti, 2007; 

Rabinovitz and Mercurio, 1996; Raymond et al., 2007).   The overall role of ARRDC3 in 

a specific cancer would depend on the role of its target protein(s) in that particular cancer 

type. 

 Another question arising from our human breast cancer analysis concerns the 

significance of genes differentially expressed in cancer stroma versus the malignant cells. 

When assigning scores for ARRDC3 and ITGβ4 expression, only the malignant glands 

were evaluated. A serial section for each sample was used for H&E analysis and this was 

referenced throughout the scoring to ensure only tumor tissue was being examined. 

Interestingly, the tumor stroma, especially in grade 3 tumors, tended to express higher 

levels of ARRDC3, even when the breast cancer cells did not (an example can be seen in 
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Figure 3-18). Although it is possible the staining is non-specific, I feel that is unlikely as 

not all tumor stroma stained positive for ARRDC3. Without further knowledge of the 

roles for ARRDC3 beyond that of ITGβ4 regulation, it is impossible to hypothesize the 

significance of its expression in stroma. It would be interesting to test whether ARRDC3 

null mice show changes in in vivo tumor formation in a breast cancer xenograph study 

when compared to wild type mice. 

 Interestingly, although ARRDC3 is preferentially lost in basal like breast cancers 

(Adelaide et al., 2007), data obtained from Oncomine revealed that basal like breast 

cancers demonstrate no change in ARRDC3 mRNA levels when compared to non-basal 

like cancers (Figure 4-5). This could indicate that the loss of ARRDC3 does not influence 

the tumor classification. However, it is also possible the samples used in the microarray 

analysis were not purely cancer cells, but had contaminating stroma. In order to 

definitively answer this question, tumors with known classification would need to be 

analyzed for ARRDC3 expression using either IHC/IF on tumor sections or real-time 

PCR from laser-captured tumor cell RNA. 

Other potential targets of ARRDC3 

Our data does not exclude the possibility that ARRDC3 has targets other than 

ITGβ4 in either cancer cells or in normal cells. ARRDC3 could be similar to β-arrestins 

(which have a vast array of targets) or visual arrestins (which are only responsible for 

regulating rhodopsin in photoreceptors of the eye). As the expression of ARRDC3 is not 

nearly as restricted as the expressions of visual arrestins (Figure 2-3A); I believe it is 

probable that targets other than ITGβ4 exist. Supporting this notion, we see statistically 



 151

significant effects on tumorigenicity when modulating ARRDC3 in cancer cells lacking 

ITGβ4 (Figure 3-13). Unfortunately, as overall effects were small, it is unclear whether 

these targets are biologically significant in cancer. Considering its similarity to β-

arrestins, ARRDC3 may also regulate G-protein coupled receptors (GPCRs). Possible 

targets could include Smoothened and Frizzled receptors (Class-6 GPCRs) or RhoA/C 

(Class-1 GPCRs); which all have extensive implications in cancer and skin stem cells. 

Although our data does not exclude the possibility that other integrins are regulated by 

ARRDC3, this is unlikely. Our data shows that ARRDC3 expression does not appear to 

affect 1 integrin (Fig. 3-11). Additionally, the region in which ARRDC3 interacts with 

ITGβ4 is within the unique long cytoplasmic tail which does not share homology with 

other integrins. 

Final Thoughts 

 The research presented in this thesis provides insight into the regulation of ITGβ4 

and how it affects systems within stem cell and cancer biology. This research lays the 

groundwork for a lot of future research as well. ARRDC3 may be critical for maintaining 

adult stem cells (other than skin) within their niche. Also, any protein with a potential 

role in aging is of profound interest because it may provide information into the ultimate 

deterioration of organ systems. Additionally, ARRDC3 may be the key in therapeutic 

targeting of ITGβ4 in cancer; however a deeper understanding of the mechanism in 

which it regulates ITGβ4 is needed before this potential can be realized.  
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 Number DOB Genotype DOD Age (Days) Comments 
71 22-Jan-08 +/+ 4-Jan-10 713   
72 22-Jan-08 +/+ 4-Jan-10 713   
73 22-Jan-08 +/+ 4-Jan-10 713   
74 22-Jan-08 +/+ 4-Jan-10 713   
75 22-Jan-08 +/+ 4-Jan-10 713   
76 22-Jan-08 +/+ 4-Jan-10 713   
77 22-Jan-08 +/+ 4-Jan-10 713   
78 22-Jan-08 +/+ 4-Jan-10 713   
79 22-Jan-08 +/+ 4-Jan-10 713   
80 22-Jan-08 +/- 16-Sep-09 603 dermatitis 
81 22-Jan-08 +/- 15-Feb-09 390 dead from fighting wounds 
82 22-Jan-08 +/- 26-Nov-08 309 dead from fighting wounds 
83 22-Jan-08 +/- 13-Mar-09 416 found dead; cancer 
84 22-Jan-08 +/- 23-Nov-09 671 found dead; cancer 
85 22-Jan-08 +/- 6-Jun-09 501 dead from fighting wounds 
86 3-Mar-08 +/- 2-Dec-09 639 breast cancer 
87 3-Mar-08 +/- 30-Aug-09 545 found dead 
88 3-Mar-08 +/+ N/A N/A   
89 3-Mar-08 -/- 7-Jul-08 126 dead from fighting wounds 
90 3-Mar-08 -/- 8-Jul-08 127 dead from fighting wounds 
91 3-Mar-08 +/+ 11-Jan-10 679   
92 3-Mar-08 +/- 6-Apr-09 399 found dead 
93 3-Mar-08 +/+ 11-Jan-10 679   
94 3-Mar-08 -/- 12-Dec-08 284 found dead; cancer 
95 3-Mar-08 -/- 29-Sep-08 210 found dead; cancer 
96 3-Mar-08 +/- N/A N/A dermatitis & fur loss 
97 3-Mar-08 +/- N/A N/A dermatitis & fur loss 
98 3-Mar-08 +/+ N/A N/A   
99 3-Mar-08 +/+ N/A N/A   

100 3-Mar-08 +/+ 1-Dec-08 273 dead from fighting wounds  
101 3-Mar-08 +/+ N/A N/A   
102 3-Mar-08 +/- N/A N/A dermatitis 
103 3-Mar-08 +/- N/A N/A dermatitis 
104 3-Mar-08 -/- 22-Oct-08 233 found dead; cancer 
105 3-Mar-08 +/- N/A N/A dermatitis 
106 3-Mar-08 +/+ N/A N/A   
107 3-Mar-08 +/- N/A N/A fur loss 
108 3-Mar-08 +/- N/A N/A fur loss 
109 3-Mar-08 +/+ N/A N/A   
110 8-Mar-08 +/- N/A N/A fur loss 
111 8-Mar-08 +/- 1-Dec-08 268 dead from fighting wounds 
112 8-Mar-08 +/- 1-Dec-08 268 dead from fighting wounds 
113 8-Mar-08 +/- N/A N/A fur loss 
114 8-Mar-08 +/+ N/A N/A   
115 8-Mar-08 +/+ N/A N/A   
116 8-Mar-08 +/+ N/A N/A   
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Table 4-1: Loss of ARRDC3 in mice appears to have an aging phenotype. Four different 
litters of ARRDC3 wild type, heterozygous and null mice were observed over a 
phenotype. All ARRDC3 null mice lacked whiskers from birth, yet ARRDC3 
heterozygous mice did not appear to have this defect. Mice lacking ARRDC3 seemed 
more prone to develop cancer (specifically lymphoma) or obtain lethal wounds from 
fighting. All mice are on a 129; B6 background. 
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Abstract: 

The most common translocation in childhood T cell acute lymphoblastic leukemia 

(T-ALL) involves the LMO2 locus, resulting in ectopic expression of the LMO2 gene in 

human thymocytes. The LMO2 gene was also activated in 3/20 patients with X-linked 

Severe Combined Immune Deficiency (X-SCID) treated with gene therapy due to 

retroviral insertion in the LMO2 locus. The LMO2 insertions predisposed these children 

to T-ALL, yet how LMO2 contributes to T cell transformation remains unclear. The LIM 

domain containing LMO2 protein regulates erythropoiesis as part of a large 

transcriptional complex consisting of LMO2, TAL1, E47, GATA1 and LDB1 that 

recognizes bipartite E box-GATA1 sites on target genes. Similarly, a 

TAL1/E47/LMO2/LDB1 complex is observed in human T-ALL and Tal1 and Lmo2 

expression in mice results in disease acceleration. To address the mechanism(s) of 

Tal1/Lmo2 synergy in leukemia, we generated Lmo2 transgenic mice and mated them 

with mice that express wild type Tal1 or a DNA binding mutant of TAL1. Tal1/Lmo2 

and MutTAL1/Lmo2 bitransgenic mice exhibit perturbations in thymocyte development 

due to reduced E47/HEB transcriptional activity and develop leukemia with identical 

kinetics. These data demonstrate that the DNA binding activity of Tal1 is not required to 

cooperate with Lmo2 to cause leukemia in mice and suggest that Lmo2 may cooperate 

with Tal1 to interfere with E47/HEB function(s). 

Introduction: 

LMO2 was first implicated in leukemogenesis in 1992 when found associated 

with a t(11;14)(p13;q11) and t(7;11)(q34;p13) chromosomal translocations (Boehm et al., 

1990; Garcia et al., 1991). The LMO1 and LMO2 proteins are found expressed in human 

T-ALL and LMO proteins are co-expressed in approximately 80% of TAL1+ human T-

ALL patients (Ferrando et al., 2002; Rabbitts, 1994; Wadman et al., 1994). Interest in 

LMO2-mediated leukemogenesis was reignited in 2002, when 4/5 children in 2 X-SCID 

gene therapy trials developed T-ALL due to retroviral insertion in the LMO2 

locus(Hacein-Bey-Abina et al., 2003a; Hacein-Bey-Abina et al., 2003b). Two leukemic 

patients exhibited evidence of TAL1 activation and 3 patients developed NOTCH1 
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mutations (Hacein-Bey-Abina et al., 2008; Howe et al., 2008). Studies in mouse T-ALL 

models revealed that Tal1 and Lmo proteins cooperate to cause leukemia in mice (Larson 

et al., 1996; Wadman et al., 1994), but precisely how LMO proteins contribute to 

leukemogenesis remains unclear.  

LMO2 is part of the “LIM only” family of proteins that are thought to serve as 

bridging factors in transcriptional complexes (Wadman et al., 1997). LIM-domains are 

cysteine-rich zinc-binding domains that are structurally similar to DNA-binding GATA 

finger domains; however, currently there is no evidence to suggest that LMO proteins 

bind DNA. LMOs are thought to mediate protein:protein interactions via their LIM 

domains and evidence suggests that LMOs act as transcriptional co-regulators. There are 

4 human LMO proteins (LMO1-4) and all four LMO proteins have been associated with 

oncogenesis (Aoyama et al., 2005; Fisch et al., 1992; Visvader et al., 2001).  

LMO2 is a nuclear protein that in erythroid cells forms a multi-protein complex 

which includes TAL1, E47, GATA-1, and LDB1 (Valge-Archer et al., 1994). These 

proteins form a functional transcriptional complex and recognize a bipartite DNA 

sequence consisting of an Ebox and a GATA site separated by one helix turn (Wadman et 

al., 1997). The Tal1/E47/Lmo2/Ldb1/GATA-1 complex regulates the expression of genes 

important in erythroid or megakaryocytic differentiation, including p4.2, glycophorin A, 

c-kit, p21CIP and the transcription factors Gfi-1b and eklf (Goardon et al., 2006; Krosl et 

al., 1998; Lahlil et al., 2004; Lecuyer et al., 2002; Xu et al., 2006). Lmo2 is thought to 

bridge the TAL1/E47 heterodimer to GATA-1, and by mechanisms not fully understood, 

enhance transcription (Xu et al., 2003). Based on their roles in regulating gene expression 

during hematopoiesis, Tal1 and Lmo2 have been thought to contribute to leukemia by 

transactivating the expression of genes such as retinaldehyde dehydrogenase, the 

transmembrane protein TALLA1, the receptor tyrosine phosphatase IA2, cyclin D2, heat 

shock cognate 73 and a bub-like gene (Davenport et al., 2000; Ono et al., 1997).  

An alternative model posits that in leukemic cells the Tal1/Lmo2 complex 

interferes with the transcriptional activity of E47/HEB, by sequestering E47 and HEB 

proteins and/or by recruiting co-repressors to E-box regulated loci (Herblot et al., 2000; 
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O'Neil et al., 2004). The E47/HEB complex directs the expression of several genes 

essential for proper lymphoid development including the preTα chain of the pre-TCR, the 

Rag1 and Rag2 recombinases, CD3, CD4, CD5 and the T cell receptor α/β 

genes(Greenbaum and Zhuang, 2002a; Greenbaum and Zhuang, 2002b). A HEB or E47 

deficiency disrupts thymocyte development and E47-deficient mice are predisposed to 

the development of T cell leukemia (Bain et al., 1997). Our published work provides 

genetic evidence to support the inhibition model of TAL1-mediated leukemogenesis. We 

demonstrate that a DNA binding mutant form of TAL1 (R188G;R189G) (referred to here 

as mutTAL1) is able to induce T-ALL-like disease in mice and T cell leukemogenesis is 

accelerated when Tal1 is expressed on an E2A or HEB heterozygous background (O'Neil 

et al., 2001; O'Neil et al., 2004). Moreover, the functions of Tal1 in early hematopoietic 

development also do not appear to require the DNA binding properties of Tal1 (Schlaeger 

et al., 2004). More recently, the ETO-2 repressor has been identified as a novel 

component of the TAL1/LMO2 complex in erythroid cells (Goardon et al., 2006). Thus, 

Tal1/E47 or HEB/Lmo2 complexes may also actively repress the expression of E-box 

containing genes during normal erythroid differentiation and in leukemia. 

To determine the molecular basis of the observed Tal1/Lmo2 synergy and to 

distinguish between the transcriptional activation and inhibition models, we asked 

whether the DNA binding properties of Tal1 were required to collaborate with Lmo2 to 

cause T cell leukemia in mice. To test this model, we generated bitransgenic mice co-

expressing LMO2 with wild type Tal1 or with a DNA binding TAL1 mutant. We 

observed disease acceleration in both the Tal1/Lmo2 and mutTAL1/Lmo2 transgenic 

mouse lines, indicating that the DNA binding properties of TAL1 are not required to 

cooperate with Lmo2 to cause disease in mice. Moreover, thymocyte development was 

inhibited in pre-leukemic Tal1/Lmo2 and mutTAL1/Lmo2 mice due to reduced 

expression of E47/HEB-regulated genes important for thymocyte differentiation. These 

data indicate that Lmo2 may accelerate Tal1-mediated leukemogenesis by enhancing the 

sequestration and/or inhibition of the E47/HEB heterodimer. 
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Results and Discussion: 

Generation of transgenic mice expressing a DNA binding mutant of TAL1 and Lmo2  

Approximately 80% of TAL1 expressing T-ALL patients also express LMO 

proteins (Ferrando et al., 2002). Tal1 and Lmo expression in the mouse results in 

dramatic acceleration of disease (Aplan et al., 1997; Larson et al., 1996). To determine 

how Lmo2 contributes to TAL1-mediated leukemogenesis and to understand the basis for 

the TAL1 and LMO oncogenes cooperativity, we asked whether the DNA binding 

properties of TAL1 were required to cooperate with Lmo2 to cause disease in mice. To 

express both oncogenes in developing mouse thymocytes, we generated transgenic mouse 

lines where the mouse Lmo2 cDNA was expressed under the control of the proximal lck 

promoter (Figure 1A). The 3´ untranslated regions of this construct contain introns, exons 

and the poly A addition site of the human growth hormone gene (Abraham et al., 1991). 

The prox lck Lmo2 construct was microinjected into the pronuclei of fertilized FVB/N 

oocytes. Sixteen founder mice were identified initially by Southern blot analysis and two 

founder lines (Fo5 and 19) with variable expression levels were expanded for further 

study (Figure 1B).  

The Lmo2 transgenic mouse lines were mated with transgenic mice expressing 

wild type Tal1 or a DNA binding mutant of TAL1. The DNA binding mutant mice 

express a form of TAL1 where the contact residues of the basic DNA binding domain, 

arginine 188 and 189 have been mutated to glycines (designated R188G;R189G) (Hsu et 

al., 1994). This mutant form of TAL1 heterodimerizes with E47 or HEB proteins but fails 

to stably bind E box binding sequences in-vitro and in vivo (Hsu et al., 1994; O'Neil et 

al., 2001). Like Tal1 transgenic mice, expression of a TAL1 DNA binding mutant 

perturbs thymocyte development and approximately half of the mice develop a T-ALL-

like disease (O'Neil et al., 2001).  

To determine whether the DNA binding activities of TAL1 were required to 

cooperate with Lmo2 to cause disease in mice, we generated a cohort of 15 Tal1/Lmo2 

and 11 mutTAL1/Lmo2 bitransgenic mice and monitored the animals daily for 

development of disease. Both Lmo2 transgenic lines were included in the study and both 
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lines cooperated with Tal1 and the DNA binding mutant to accelerate leukemogenesis in 

mice (p<.0001) (Figure 1C). Surprisingly, Tal1/Lmo2 and mutTAL1/Lmo2 transgenic 

mouse lines developed disease with nearly identical kinetics (Figure 1C), in spite of the 

fact that the DNA binding mutant TAL1 transgenic mice develop disease more rapidly 

than wild type Tal1 transgenic mice (O'Neil et al., 2001). Approximately 30% of Tal1 

transgenic mice develop leukemia after a long latency, whereas mutTAL1 mice develop 

disease with a median survival of 215 days (Kelliher et al., 1996; O'Neil et al., 2001). In 

contrast, when Lmo2 is co-expressed with Tal1 or mutTAL1, 100% of the mice develop 

T-ALL-like disease with a median survival of approximately 100 days. No significant 

difference was observed when Tal1/Lmo2 and mutTAL1/Lmo2 survival curves were 

compared (p<0.581). Histopathologic examination of tumors isolated from the 

bitransgenic mice revealed a range of tumor immunophenotypes (Table 1), with tumors 

predominantly containing DN and DP or CD8SP cells observed in both Tal1/Lmo2 and 

mutTAL1/Lmo2 mice (Table 1). This study reveals that Tal1/Lmo2 synergy does not 

require the DNA binding properties of TAL1, suggesting that Lmo2 does not contribute 

to leukemia by enhancing or altering the transcriptional activity of the Tal1/E47 or HEB 

heterodimer.  

 

 

 



 186

Thymocyte developmental arrest in Tal1/Lmo2 and mutTAL1/Lmo2 mice:  

We have shown that thymic expression of Tal1 or the DNA binding mutant 

results in a decrease in overall thymocyte cellularity due to fewer DP and CD8-positive 

thymocytes (Kelliher et al., 1996; O'Neil et al., 2001). Expression of Lmo2 under the 

control of the proximal lck promoter appeared to have no detectable effects on DP 

thymocyte development (Figure 2B), however Lmo2 expression decreased thymocyte 

cellularity and skewed DN development; although no increases in the absolute numbers 

of DN thymocytes was observed (Figure 2A and C). Consistent with published reports 

(Larson et al., 1996), co-expression of Tal1 and Lmo2 reduces thymic cellularity and 

blocks DP thymocyte development, resulting in increases in the relative and absolute 

number of DN thymocyte precursors in preleukemic Tal1/Lmo2 mice (Figure 2B and D). 

DP thymocyte development was consistently more severely affected in Tal1/Lmo2 mice 

derived from Lmo2 founder (Fo)19 compared to Fo5 (Figure 2B).  

To determine whether the thymocyte developmental block reflects alterations in 

Tal1-mediated gene expression, we examined thymocyte development in 

mutTAL1/Lmo2 pre-leukemic mice. We found thymocyte cellularity futher reduced in 

mutTAL1/Lmo2 mice compared to mice that express the TAL1 DNA binding mutant 

only (Figure 2A). Overall cellularity was similarly reduced in all the Tal1/Lmo2 and 

mutTAL1/Lmo2 mice examined. Similar to the Tal1/Lmo2 mice, DP thymocyte 

development was consistently more severely affected in mutTAL1/Lmo2 mice derived 

from Fo19 compared to founder Fo5 (Figure 2B). Importantly, the DNA binding TAL1 

mutant cooperated with Lmo2 to induce similar effects on thymocyte development as 

wild type TAL1 (Figure 2).  

Expression of Lmo2 with Tal1 or mutTAL1 also altered DN thymocyte 

development, resulting in arrest at the DN3-DN4 precursor stage (Figure 2C and D). In 

contrast, an E2A or HEB deficiency results in an arrest of DN thymocyte development at 

the DN1 and DN3 stages, respectively (Bain et al., 1997; Greenbaum and Zhuang, 2002a; 

Greenbaum and Zhuang, 2002b). These studies demonstrate that Lmo2 does not require 

the DNA binding properties of TAL1 to perturb thymocyte development. The block in  
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thymocyte development induced by either form of Tal1 is not complete, as DP and SP 

thymocytes are detected (Figure 2C). Moreover, immunophenotyping of Tal1/Lmo2 and 

mutTAL1/Lmo2 tumors revealed that tumors from both bitransgenic lines were often 

heterogeneous, consisting of DN and DP and/or CD8 SP cells (Table 1). For example, 

although the primary Tal1/Lmo2 tumor 5338 is clonal, it contains DN, DP and CD8-SP 

cells, suggesting that differentiation proceeds at some level after leukemic 

transformation.  

The expression of E47/HEB-regulated genes is decreased in both Tal1/Lmo2 and 

mutTAL1/Lmo2 mice.  

To understand how Lmo2 can cooperate with a DNA binding mutant of TAL1 

and interfere with thymocyte development, we examined the expression of E47/HEB 

target genes known to regulate thymocyte differentiation. Previously, we found the 

expression of PreTα, Rag1/2, CD3 CD4, T cell receptor α/β and CD5 repressed in the 

presence of the Tal1 oncogene (O'Neil et al., 2004). The expression of these thymocyte 

differentiation genes was further decreased in Tal1/E2A+/- or HEB+/- mice, indicating 

that Tal1 alters thymocyte development by interfering with the transcriptional activities 

of the E47/HEB heterodimer (O'Neil et al., 2004). Using real time PCR, we quantified 

the expression of the immunoglobulin and T cell receptor gene recombinases Rag1 and 
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Rag2 and the pre-Tα chain of the pre-TCR. We found the expression of Rag1 and Rag2 

significantly decreased in Tal1 and mutTAL1 preleukemic thymocytes (Figure 3). Slight 

decreases in Rag1/2 expression were also detected in the Lmo2 transgenic thymus, 

although no gross perturbations in the thymocyte developmental profile were observed. 

Co-expression of Tal1 or its DNA binding mutant with Lmo2 resulted in consistent 

further decreases in Rag1 and Rag2 expression (Figure 3). Similarly, we found preTα 

expression further repressed in preleukemic Tal1/Lmo2 or mutTAL1/Lmo2 thymocytes 

than in thymocytes expressing Tal1, mutTAL1 or Lmo2 alone (data not shown). The 

reduced expression of these E47/HEB-regulated genes does not reflect changes in the 

relative percentage of DN vs DP stage thymocytes, as significant decreases in Rag1/2 and 

PreTα gene expression were observed in Tal1 and mutTAL1 animals, where the 

thymocyte developmental profile is only modestly altered (Figure 2B). These data reveal 

that in the presence of Tal1 and importantly, a DNA binding mutant of TAL1, Lmo2 

expression results in further reductions in E47/HEB transcriptional activity. These 

findings suggest that Lmo2 binding to Tal1 or mutTAL1/E47 or HEB heterodimers may 

stabilize the Tal1/E47 or HEB complex, resulting in greater E47/HEB sequestration.  

Consistent with our in vivo data, the binding affinities for the Tal1/E47 

heterodimer have been measured in vitro and shown to significantly increase in the 

presence of Lmo2 (KA of ~ 4 X 107 vs KA of ~ 1 X 108)(Ryan et al., 2008). Therefore, 

Lmo2 binding appears to increase the affinity of Tal1 for E47 or HEB and this interaction 

is greater than the affinity of Lmo2 for its LIM domain binding partner, Ldb1 (KA of 5 X 

107) (Ryan et al., 2008). These estimates predict that E protein sequestration may be 

favored in a setting where Tal1 and Lmo2 are both expressed. 

Our findings have therapeutic implications and suggest that interfering with 

Tal1/E47 or Tal1/Lmo2 binding may release E47/HEB proteins and stimulate leukemic 

cell differentiation and/or apoptosis. Disrupting a large protein interface such as a helix-

loop helix interaction with small molecules may not be feasible. However, in some 

instances, only a minor part of the protein dimer interfaces contribute to the affinity  
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between proteins (Clackson and Wells, 1995; Kussie et al., 1996; Wells, 1996; Wells and 

de Vos, 1996). Targeting these regions may be sufficient to inhibit protein:protein 

interactions. Small molecules have in fact been identified that interfere with the 

Myc/Max bHLH/LZ interaction and these molecules have been shown to interfere with c-

Myc-induced transformation in vitro (Berg et al., 2002). Alternatively, interfering with 

Lmo2 binding to Tal1 may be sufficient to induce apoptosis of T-ALL cells. Retroviral 

expression of an anti-Lmo2 single chain Fv antibody fragment or an Lmo2 aptamer have 

been shown to reduce leukemic growth in transplanted mice (Nam et al., 2008), 

suggesting that interfering with LMO2 protein interactions may be an effective 

therapeutic strategy for some relapsed T-ALL patients. 
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Materials and Methods: 

Generation of transgenic mice: Murine Lmo2 cDNA was cloned into p1017, a plasmid 

containing the proximal lck promoter and the human growth hormone splice and poly 

adenylation addition sites. The plasmid DNA was sequenced and digested with SpeI for 

microinjection into the FVB/N pronuclei. Transgenic founders were identified by 

Southern blotting and mated with FVB/N mice.  

Cell culture and flow cytometry: Mouse T-ALL tumors were minced into a single-cell 

suspension using frosted slides and cultured in RPMI with 10% fetal bovine serum, l% 

glutamine, penicillin/streptomycin, and 50 μM β-mercaptoethanol at 37°C under 5% 

CO2. Thymi from preleukemic mice were gently disrupted with frosted glass slides in 

order to produce single cell suspensions. The thymocytes were washed with PBS and 

stained with fluorescent labeled antibodies and subjected to flow cytometry at the FACS 

facility at the University of Massachusetts Medical Center. For double negative analysis, 

cells were stained with antibodies for the lineage antibodies, and the lineage negative 

cells were stained with CD44-APC and CD25-Fitc. Antibodies used in flow cytometry 

included CD3-PE, CD4-PE, CD4-Cy5 PE, CD8- FITC, CD8-Cy5-PE, CD25-Fitc, CD44-

APC, and lineage markers (Pharmingen). Data were analyzed using FlowJo software 

(Treestar, Inc.). For tumor immunophenotyping, primary tumors cells were stained with 

either PE or FITC-conjugated anti-mouse Ly-2 (CD8), L3T4 (CD4), CD25, and CD3 

antibodies (BD Pharmingen, San Diego, CA, USA), and analyzed by flow cytometry. 

Quantitative PCR: RNA was extracted from primary thymocytes using Trizol. cDNA 

was synthesized using the Superscript first-strand synthesis system (Invitrogen). Rag1, 

Rag2, and pre-Tα expression was assayed using primers as described in reference (Hsu et 

al., 2003; Huang et al., 2003). To determine target gene expression levels, cDNA was 

serially diluted and quantified using the SYBR green kit (QIAGEN) gene-specific 

primers and β-actin specific primers using relative quantification analysis.  
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Appendix 2: Targeting the Notch1 pathway in a Mouse T-ALL Model 
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Abstract: 

Gain of function mutations in NOTCH1 are frequently detected in patients with T 

cell acute lymphoblastic leukemia (T-ALL) and in mouse models of the disease.  

Treatment of mouse or human T-ALL cell lines with γ-secretase inhibitors (GSI) to 

inhibit Notch1 activity in vitro results in growth arrest and apoptosis.  These studies 

reveal GSI as potential therapeutic agents in the treatment of T-ALL.  To determine 

whether GSI have anti-leukemic activity in vivo, we treated near end stage 

tal1/ink4a/arf+/- leukemic mice with vehicle or with a GSI developed by Merck Research 

Laboratories (MRK-003).  We found that GSI treatment significantly extended the 

survival of leukemic mice, when compared to vehicle treated mice.  Notch1 target gene 

expression was repressed and increased numbers of apoptotic cells were detected in the 

thymic masses isolated from the GSI treated mice.  This study demonstrates that Notch1 

activity can be successfully inhibited in vivo when administered as a single agent to mice 

with advanced disease, GSI treatment prolongs survival.  This work supports the idea of 

targeting NOTCH1 in the treatment of T-ALL patients.   

Introduction: 

T cell acute lymphoblastic leukemia (T-ALL) is associated with the mis-

expression of the basic helix-loop-helix transcription factor TAL1/SCL and LIM-domain 

only proteins LMO1 and LMO2 (Aplan et al., 1991; Aplan et al., 1992; Bash et al., 1995; 

Bernard et al., 1991; Boehm et al., 1991; Brown et al., 1990; Royer-Pokora et al., 1991).  

These oncogenes are found mis-expressed in greater than 60% of human T-ALL patients 

(Bash et al., 1995; Ferrando et al., 2004; Ferrando and Look, 2003).  Mouse models of T-

ALL recapitulate the disease through ectopic expression of Tal1 in the thymus (Kelliher 

et al., 1996). These mice develop respiratory distress due to the presence of large thymic 

massess and have detectable T cell blasts in peripheral blood lymphocytes (PBL), spleen, 

liver, and kidney (Kelliher et al., 1996; Shank-Calvo et al., 2006).  Mis-expression of 

Tal1 results in perturbed thymocyte development by interfering with the basic-helix-loop-

helix (bHLH) heterodimer E47/HEB that regulates the expression of genes critical for 

thymocyte differentiation including rag1/2, pre-Ta, CD4,CD3, TCRa/b (Herblot et al., 
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2000; O'Neil et al., 2001; O'Neil et al., 2004).  Consistent with this finding, loss of the 

E2A gene that encodes the E47/E12 bHLH protein is associated with human T and B cell 

leukemias (Mullighan et al., 2007). 

Mutations in the Notch 1 receptor have been frequently detected in mouse T-ALL 

models (Dumortier et al., 2006; Lin et al., 2006; O'Neil et al., 2006; Reschly et al., 2006) 

and importantly in 54% of T-ALL patients (Grabher et al., 2006; Weng et al., 2004). 

These mutations cluster in the heterodimerization domains (HD) or result in truncation of 

PEST regulatory sequences (O'Neil et al., 2006; Weng et al., 2004).  Mutations in the HD 

result in increased susceptibility to cleavage by the gamma-secretase complex, whereas 

deletion of PEST regulatory sequences results in increased Notch1 stability (Gupta-Rossi 

et al., 2001; Malecki et al., 2006; Sanchez-Irizarry et al., 2004).  Treatment of mouse tal1 

leukemic cell lines in vitro with gamma secretase inhibitors (GSI) results in cell cycle 

arrest and apoptosis, revealing that Notch1 signaling is required for leukemic 

growth/survival (O'Neil et al., 2006). Notch1-mediated leukemic growth in mouse and 

human T-ALL cells is mediated in part by the direct transcriptional activation of c-myc 

(Palomero et al., 2006; Sharma et al., 2006; Weng et al., 2006).  Similarly, Notch1 

mediated mammary tumorigenesis in the mouse also appears c-myc dependent (Klinakis 

et al., 2006).   It remains unclear, however, whether c-myc expression is required for 

Notch1-mediated leukemogenesis or whether other Notch1 target genes contribute.  

Although the majority of mouse tal1 leukemic cell lines undergo apoptosis upon 

GSI treatment in vitro, it is unclear whether Notch1 can be inhibited for extended periods 

of time in vivo.  An additional concern regarding targeting Notch1 in T-ALL is that in 

contrast to mouse, human T-ALL lines appear relatively GSI resistant in vitro, raising the 

possibility that GSI alone may not prove effective in the treatment of T-ALL patients.  

Moreover, whether GSI can be administered in vivo for extended periods of time without 

associated toxicities remains uncertain.   

In this study, we examine the effects of GSI treatment in our mouse T-ALL 

model.  To examine GSI efficacy and to accurately reflect the clinical experience, we 

treated near end stage leukemic mice and found that GSI treatment extends the survival 
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of leukemic mice, but is not sufficient to eliminate disease.  Collectively, this work 

supports the idea of targeting NOTCH1 in the treatment of T-ALL.  

Results: 

The GSI MRK-003 represses Notch1 target gene expression and induces apoptosis of 

mouse T-ALL cell lines and primary tal1/ink4a/arf+/- tumors. 

The prevalence of mutations that result in activated NOTCH1 in T-ALL patients 

raises the possibility that GSI used to inhibit Notch1 and other GS-dependent substrates 

in vitro may have anti-leukemic activity in the clinic. GSI have been developed by Merck 

Research Laboratories, Inc yet their ability to inhibit Notch1-mediated mouse leukemic 

growth was untested (Lewis et al., 2007; Sparey et al., 2005). To test whether MRK-003 

inhibited Notch1, multiple mouse T-ALL cell lines were treated with 1mM or 10mM of 

MRK-003 and Notch1 target gene expression examined. Decreased levels of hes1 and 

deltex expression were observed in the MRK-003 treated cultures following treatment for 

24 hours (Figure 1A).   

We then compared the relative effectiveness of MRK-003 with DAPT, another 

GSI known to inhibit mouse leukemic growth (O'Neil et al., 2006). Multiple mouse T-

ALL cell lines were treated with 1mM MRK-003 or with 1mM of DAPT for three days 

and cell cycle analysis performed.  In all three of the cell lines tested, increases in the 

percentage of apoptotic cells was observed in MRK-003 treated cultures.  In cell line 

5151, DAPT treatment failed to induce apoptosis above background levels, whereas 58% 

apoptotic cells were detected in the MRK-003 treated cultures (Figure 1B).  This in vitro 

data suggested that MRK-003 may be effective at inhibiting Notch1-mediated leukemic 

growth in vivo.  However, tumor adaptation to culture clearly involves the accumulation 

of additional genetic changes and therefore, in vitro GSI responses using mouse or human 

T-ALL cell lines may not accurately predict GSI efficacy in vivo.   

To test whether MRK-003 might be effective against primary tumors harboring 

spontaneous notch1 mutations, thymic tumor masses isolated directly from tal1/ink4a/arf 

+/- mice were treated with vehicle only, with 1mM DAPT or 1 mM MRK-003 for three 

days. The percentage of apoptotic cells was then determined by Annexin V/PI staining 



 200

followed by flow cytometry. As expected, apoptotic cells (32.4%) were observed in the 

DMSO or vehicle treated cultures over the three day culture period.  DAPT treatment, 

however, increased the percentage of apoptotic cells to approximately 62.2 % (29.8% 

increase), whereas the MRK-003 treated cultures contained 88.8% Annexin V/PI-positive 

cells (56.4% increase). Although apoptosis varied among the 3 primary tumors tested in 

this assay, the trend remained the same. 
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GSI treatment prolongs survival in a mouse T-ALL model 

These ex vivo studies indicated that MRK-003 administration to leukemic mice 

might induce apoptosis in vivo, decrease tumor burden, and increase overall survival. To 

test this possibility, we treated mice daily with 50 mg/kg, 200 mg/kg, or 1000 mg/kg 

MRK-003 and determined plasma concentrations of the compound. We found that 

effective plasma MRK-003 concentrations (1-10 µM) were achieved in mice treated with 

all 3 doses (Figure 2A). However, when the MRK-003 compound was given daily at 150 

mg/kg, the mice began to develop diarrhea and lose weight (Figure 2C; R1 compared with 

V). Chronic GSI administration is known to result in gastrointestinal (GI) toxicity due to 

Notch inhibition in the intestinal epithelium, resulting in gut metaplasia. To assess GSI 

efficacy on mouse leukemic growth, we adopted an intermittent GSI dosing regimen that 

achieved effective concentrations of the drug without associated toxicities. Specifically, 

mice treated with 150 mg/kg MRK-003 for 3 days followed by a 4-day rest period had 

effective plasma compound levels (Figure 2B), did not lose body weight (Figure 2C, 

mouse R2), and exhibited limited gut metaplasia. MRK-003 plasma levels peak after 

administration and effective drug concentrations are detected at 24 hours after treatment. 

In addition, in a preclinical mouse model, this intermittent dosing schedule was well 

tolerated, as no evidence of intestinal effects were detected after a 35-day treatment 

period. In an attempt to accurately reflect the clinical experience, near-end-stage leukemic 

days followed by a 4-day recovery period. After the 3 days of GSI treatment, plasma 

compound levels were determined and an EC50 of 5 to 10 µM MRK-003 was achieved 

(data not shown). Leukemic mice were treated with vehicle or MRK-003 after the 3 days 

on, 4 days off treatment regimen throughout the duration of the study. We found that GSI 

treatment resulted in a statistically significant increase in overall survival of leukemic 

mice compared with vehicle-treated mice (Figure 2D; P < .005). The median survival 

period for GSI-treated mice was 18 days compared with 3 days for the vehicle-treated 

group. In most cases, responses were evident in the MRK-003–treated mice immediately 

after the 3-day treatment period, as measured by an increase in physical activity and 
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improved rates of respiration. Importantly, body weights are maintained in MRK-003–

treated animals after successive cycles of intermittent GSI dosing. This pilot study 

supports the idea that GSI-associated toxicities may be overcome with intermittent dosing 

and provides evidence that Notch1 inhibition improves mouse leukemic survival in vivo. 

GSI treatment induces apoptosis of leukemic cells in vivo 

To determine whether GSI treatment induces apoptosis in vivo, we performed 

TUNEL staining on thymomas isolated from vehicle- or GSI-treated mice. We detected 

increases in the percentage of apoptotic tumor cells in mice treated with MRK-003, 

compared with tumors exposed to vehicle only (Figure 3A-B; P = .034 by Wilcoxon rank 

sum test). However, similar to our in vitro data (Figure 1B and (Sharma et al., 2006), the 

in vivo tumor response to GSI was variable. Three of the 4 GSI-treated mice examined 

exhibited an increase in apoptotic leukemic cells, with 2- to 10-fold increases in TUNEL+ 

tumor cells observed (Figure 3B). An increase in TUNEL+ cells was not observed in 1 of 

4 tumors from the GSI-treated group (mouse 6448). However, we were unable to detect a 

Notch1 mutation in this tumor. The reasons for the variable GSI responses both in vitro 

and in vivo are unclear. One possibility for the variable in vivo responses may be that 

some tumors require longer treatment periods. For these studies, leukemic mice were 

treated with vehicle or with GSI for 3 days and then the mice were humanely killed and 

tumor sections analyzed for the presence of apoptotic cells. It is conceivable that more 

consistent responses may be observed in leukemic mice treated with multiple GSI doses. 

Nonetheless, GSI treatment clearly induced apoptosis and extended the survival of 

leukemic mice. 

Transient GSI responses do not reflect development of GSI resistance 

One potential reason for variable responses may be that the GSI treated mice 

develop GSI resistance.  To exclude this possibility, T-ALL cell lines were generated 

from the GSI and vehicle treated mice and their response to GSI quantified in vitro.  As 

expected, truncated Notch1 proteins were detected in both vehicle and GSI treated mice 

and GSI treatment significantly reduced Notch1 protein levels (Figure 4A).  Leukemic 
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cell lines also clearly remained dependent on Notch1 for growth, as G1 arrest and 

apoptosis was observed upon GSI treatment (Figure 4B).  These findings indicate that 

transient responses to GSI in vivo do not reflect the development of GSI resistance.  
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Repression of Notch1 target gene expression in GSI treated mice 

To further understand why GSI treatment prolonged survival but failed to 

eliminate disease, we examined Notch1 target gene expression using real time PCR in the 

vehicle and GSI treated leukemic cohorts.  We found hes1 expression reduced in MRK-

003 treated leukemic mice compared to mice that received vehicle only (Figure 5).  The 

levels of hes1 repression were similar to levels observed when the leukemic cell line 720 

is treated with GSI in vitro.   

Discussion: 

The prevalence of NOTCH1 and FBW7 mutations in human T-ALL (O'Neil et 

al., 2006; O'Neil et al., 2007; Thompson et al., 2007; Weng et al., 2004) and in mouse T-

ALL models (Dumortier et al., 2006; Lin et al., 2006; O'Neil et al., 2006) prompted 

several laboratories to ask whether leukemic growth remained NOTCH1-dependent.  GSI 

treatment of mouse and human T-ALL cell lines and primary mouse tumors expressing 

mutated Notch1 proteins (Figure 1C) revealed that sustained Notch1 signals appear 

required for continued growth and survival in vitro  (Lewis et al., 2007; O'Neil et al., 

2006; Palomero et al., 2006; Sharma et al., 2006; Weng et al., 2004; Weng et al., 2003).  

These findings raised the exciting possibility that Notch1 inhibition may prove effective 

in treating T-ALL patients and led to the opening of a phase 1 clinical trial on 8 relapsed 

leukemia and lymphoma patients.  However, the trial closed due to significant dose 

limiting toxicities with the critical question regarding GSI efficacy in T-ALL 

unanswered.  

To address this question, we examined the effect of GSI treatment in our mouse 

T-ALL model where the effects of Notch1 inhibition could be addressed on primary 

tumors opposed to relapsed disease (and where microenvironmental influences remained 

intact). Seventy four percent of tal1/ink4a/arf+/- transgenic mice develop a T-ALL like 

disease due to mutations that result in premature truncation of the Notch1 receptor 

(O'Neil et al., 2006).  To determine whether Notch1 can be targeted in vivo, we needed to 

develop a GSI dosing regimen that minimized the ‘on target’ gastrointestinal (GI) toxicity 

associated with Notch1 inhibition.  We determined that intermittent GSI dosing 
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(150mg/kg three days on and four days off) reduced the GI toxicity and then tested 

whether this regimen had any effect on the survival of leukemic tal1/ink4a/arf+/- mice.  

We found that GSI treated mice 
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survived on average 15 days longer than leukemic mice treated with vehicle only.  

Notch1 target gene expression (hes1 and c-myc) was repressed and increased numbers of 

apoptotic cells were detected in the thymic masses of diseased mice treated with GSI.  

These data support the idea that Notch can be successfully targeted in vivo and that 

treatment with GSI as a single agent has efficacy and extended the survival of leukemic 

mice. 

Despite the expression of other T-ALL associated oncogenes such as tal1/scl and 

lmo1/2 and the loss of tumor suppressors (ink4a/arf, pten), mouse T cell leukemic growth 

appears preferentially ‘addicted’ to the Notch1 proliferative signal(s).  Although GSI 

treatment significantly increased the overall survival period, it was not sufficient to cure 

the mice and 100% of the GSI treated mice eventually succumbed to disease.  The 

transient GSI response was not due to the development of GSI resistance, as all mouse 

tumors tested remained GSI responsive when re-examined in vitro.  One possibility is 

that the transient response to GSI may reflect the intermittent dosing regimen and long 

term suppression of Notch1 activity may require more frequent GSI administration. 

Alternatively, chronic GSI treatment may promote reliance on other growth and survival 

pathways.  For example, Gleevec administration to mice with CML-like disease shifts the 

reliance from activated ABL towards a greater dependence on the IL-7 signaling pathway 

(Williams et al., 2006). Both studies highlight the importance of examining drug efficacy 

in mouse models that maintain the appropriate microenvironment.   
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Although the results from this mouse GSI study are promising, human T-ALL cell 

lines are far less responsive to GSI treatment in vitro (Lewis et al., 2007; Weng et al., 

2004).  Even at increased concentrations and extended incubation periods (>10days), 

little evidence of cell death is observed when human T-ALL cell lines or primary 

leukemic samples are treated with GSI (Lewis et al., 2007; Palomero et al., 2006; Weng 

et al., 2004). These findings cast doubt as to whether GSI or other Notch1 inhibitors will 

be effective in T-ALL patients.  Additionally, an effective GSI dose with minimal 

toxicity may be difficult to achieve in patients.  In fact, we found the response of GSI 

strain dependent, raising the possibility that genetic background may influence patients 

GSI responses (Pradip Majumder, unpublished data or personal communication).   

Materials and Methods: 

Mouse T-ALL Cell Lines  

Murine leukemic cell lines were cultured in RPMI with 10% FBS, 1% glutamine, 

Penicillin/ Streptomycin, 50μM β-mercaptoethanol at 37°C under 5% CO2.  To inhibit 

Notch1 signaling, cells were plated at 1x106 in a 10cm dish in the presence of either 

MRK-003 (Merck Research Laboratories, Inc.,). Mock-treated cells were cultured with 

DMSO at a final concentration of 0.01%. 

GSI efficacy studies  

A cohort of tal1/ink4a/arf +/- transgenic mice was generated (n= 30) and monitored daily 

for the onset of leukemia as described previously (Shank-Calvo et al., 2006).   Once 

disease became evident (respiratory distress, inactivity, weight loss) leukemic 

tal1/ink4a/arf +/- mice were randomly assigned to the vehicle or GSI treatment groups 

(vehicle cohort n=14, GSI cohort n=16).   Leukemic mice were administered either a 

150mg/kg dose of freshly prepared MRK-003 (dissolved in 0.5% methylcellulose) or a 

comparable volume of 0.5% methylcellulose by oral gavage.  Mice were treated for three 

consecutive days followed by a rest period of four days. Mice were euthanized when 

deemed moribund by a third party blinded to the treatment group. Survival data was 

plotted using Kaplan-Meyer survival curves and statistical analysis performed using 

SPSS software.  
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TUNEL staining 

Paraffin embedded tumor sections were analyzed for apoptosis using the ApopTag Plus 

peroxidase TUNEL kit (Chemicon, Temecula, CA). Approximately, 10 fields from each 

slide were counted and compared to the serial section not treated with the TdT enzyme.  

Flow cytometry 

Mouse leukemic cells were pelleted by centrifugation for 10 minutes at 2000 rpm, 

washed in PBS, and resuspended in 70% ice-cold ethanol. Cells were fixed overnight and 

then stained with propidium iodide. DNA content was analyzed by flow cytometry 

(FACScan) (BD Biosciences, San Jose, CA). Data was analyzed using FlowJo version 

7.0 (Tree Star, Ashland, OR). Following GSI or vehicle treatment for three days, primary 

thymic masses isolated directly from tal1 transgenic animals were stained with FITC-

Annexin V/PI and analyzed by flow cytometry (BD Biosciences, San Jose, CA). 
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