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ABSTRACT 
 

This thesis comprises two separate studies that focus on the 

consequences of cellular damage.  The first investigates the effects of DNA 

damage on centriole behavior and the second characterizes phototoxicity during 

live-cell imaging. 

Cancer treatments such as ionizing radiation and/or chemotherapeutic 

DNA damaging agents are intended to kill tumor cells, but they also damage 

normal proliferating cells.  Although centrosome amplification after DNA damage 

is a well-established phenomenon for transformed cells, it is not fully understood 

in untransformed cells.  The presence of extra centrosomes in normal cell 

populations raises the chances of genomic instability, thus posing additional 

threats to patients undergoing these therapies.  I characterized centriole behavior 

after DNA damage in synchronized untransformed (RPE1) human cells.  

Treatment with the radiomimetic drug, Doxorubicin, prolongs G2 phase by at 

least 72hrs, where 52% of cells display disengaged centrioles and 10% contain 

extra centrioles.  This disengagement is mediated by Plk and APC/C activities 

both singly and in combination.  Disengaged centrioles are associated with 

maturation markers suggesting they are capable of organizing spindle poles.  

Despite the high incidence of centriole disengagement, only a small percentage 

of centrioles reduplicate due to p53/p21 dependent inhibition of Cdk2 activity.    

Although all cells become prolonged in G2 phase, 14% eventually go through 

mitosis, of which 26% contain disengaged or extra centrioles. 



vii

In addition to cancer treatments, cellular damage can be acquired from 

various external conditions.  Short wavelengths of light are known to be toxic to 

living cells, but are commonly used during live-cell microscopy to excite 

fluorescent proteins.  I characterized the phototoxic effects of blue (488nm) and 

green (546nm) light on cell cycle progression in RPE1.  For unlabeled cells, I 

found that exposure to green light is far less toxic than blue light, but is not 

benign.  However, the presence of fluorescent proteins led to increased 

sensitivity to both blue and green light.  For 488nm irradiations, spreading the 

total irradiation durations out into a series of 10s pulses or conducting single 

longer, but lower intensity, exposures made no significant changes in 

phototoxicity.  However, reducing oxidative stress by culturing cells at 

physiological (~3%) oxygen, or treatment with a water-soluble antioxidant, Trolox, 

greatly improved the cells tolerance to blue light.   

 Collectively, my work offers an explanation for centrosome 

amplification after DNA damage and demonstrates the importance of proper 

centriole regulation in untransformed human cells.  Further, it provides a practical 

assessment of photodamage during live-cell imaging. 
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CHAPTER I: INTRODUCTION 

 

Centrosome Structure and Function 

 

The centrosome is an organelle that serves as the primary microtubule-

organizing center (MTOC) in mammalian cells and has a strong influence on 

microtubule-dependent processes.  During interphase, these effects include cell 

polarity, cell shape, cell motility, and organelle transport.  Further, in certain 

somatic cells the centrosome moves to the cell cortex, where the older, or 

mother, centriole becomes the basal body, which initiates the assembly of cilia 

and flagella (reviewed in Loncarek and Khodjakov, 2009). 

The interphase centrosome consists of two orthogonally arranged 

cylindrical structures called centrioles.  The walls of centrioles in higher 

eukaryotes are made up of nine microtubule triplets, composed of alpha and beta 

tubulin, surrounding a central pinwheel shaped core.  Structurally, the older 

(mother centriole) is distinguished from the newer (daughter centriole) by the 

presence of distal and sub-distal appendages, which are responsible for 

attaching the centriole to the plasma membrane during ciliogenesis and 

anchoring of microtubules, respectively.  Surrounding the centrioles is an 

electron-dense material known as the pericentriolar material (PCM).  The PCM 

consists of many protein complexes responsible for nucleation and organization 

of both interphase and mitotic microtubules.  Most notably the gamma-tubulin 
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ring complexes act as templates for microtubule nucleation within the PCM.  

While the PCM is known to be important for microtubule nucleation, recent 

studies have also suggested the size of the PCM could play a role in controlling 

the number of centrioles formed in the centrosome (Loncarek et al, 2008).  For a 

diagram of centrosome structure see figure I-1. 

Although centrosomes have roles during interphase, arguably, the most 

important functions of centrosomes are during mitosis.  By the start of mitosis the 

cell contains two pairs of centrosomes.  After nuclear envelope breakdown the 

two pairs of centrosomes separate to form the two poles of the spindle.  At this 

time, the centrosomes nucleate microtubules responsible for interacting with 

kinetochores to help ensure equal segregation of chromosomes (Rieder and 

Salmon, 1998).  Centrosomes also nucleate astral microtubules which interact 

with the cell cortex, and in doing so, centrosomes act in a dominant fashion in 

determining spindle polarity, position, and orientation (reviewed in Hinchcliffe and 

Sluder, 2001).  Interestingly, cells lacking centrosomes can still progress through 

mitosis and form bipolar spindles through dynein mediated organization of 

microtubules (Hornick et al., 2011).  However, acentrosomal microtubule arrays 

lack astral microtubules, and thus, encounter problems during cytokinesis due to 

defects in spindle positioning (Khodjakov and Reider, 2001). 
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Figure I-1. Centrosome Structure.  The centrosome consists of two 
centrioles, an “older” mother and a “younger” daughter, that are 
embedded in clouds of pericentriolar matter.  The walls of each 
centriole are made up of nine microtubule triplets.  The mother 
centriole contains two sets of appendages on the outer wall that the 
daughter lacks.  The distal appendages are responsible for attaching 
the centriole to the plasma membrane during ciliogenesis, while the 
sub-distal appendages anchor microtubule minus ends.  The 
pericentriolar material surrounding both centrioles contains proteins 
responsible for microtubule nucleation and anchoring.  While 
microtubules can be nucleated in the PCM present around the 
daughter centriole, they cannot anchor and are released.  This figure 
is reproduced from Loncarek and Khodjakov, 2009 with permission 
from the Korean Society of Molecular and Cellular Biology
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Centrosome Duplication Cycle 

  

To ensure the cell forms a bipolar spindle there must be two pairs of 

centrosomes by the start of mitosis.  To accomplish this, centrosomes go through 

a duplication cycle, similar to that of DNA, with each process initiated with a rise 

in CDK2/E activity (reviewed in Hinchcliffe and Sluder, 2002).  For a 

diagrammatic overview of the centrosome duplication cycle please see figure I-

2.  

Centrosome duplication is believed to begin in late mitosis or early G1, 

when the centrioles inherited at the end of mitosis become disengaged and lose 

their orthogonal orientation.  Recent studies have suggested that the combined 

activities of Plk1 and Separase play a major role in centriole disengagement, 

although the exact mechanism remains unknown (Tsou and Stearns, 2006; Tsou 

et al., 2009).  This disengagement of centrioles is believed to be the “licensing 

step”, which is required before they can duplicate.  As the cell progresses into S-

phase, a short procentriole forms adjacent to each parental centriole at the 

proximal ends, where it remains engaged until the following G1.  The presence of 

this daughter centriole is believed to block the mother from producing more than 

one centriole during this time.  Exactly how these procentrioles form still remains 

unclear.  
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Figure I-2.  Centrosome Duplication Cycle.  The centrosome must 
duplicate once and only once during each cell cycle. A.) After mitosis 
each daughter cell receives one pair of centrioles that have now lost their 
orthogonal configuration, termed disengagement. B.) As the cell 
progresses from G1 into S phase a procentriole forms at the proximal 
end of each mother centriole.  C.) The procentrioles continue to elongate 
as the cells progresses from S to G2 phase where they remain 
orthogonally oriented until mitosis.  D.) During late G2 the mother 
centrioles become disjoined allowing them to organize the spindles.  E.) 
Before mitosis the PCM is divided between the centrioles. F.) During 
mitosis a pair of engaged centrioles is present at each spindle pole and 
the daughter centriole acquires appendages. Mother and daughter 
centrioles are shown in green, procentrioles are blue and the PCM is in 
grey. Mother centrioles contain appendages shown as black lines.  This 
figured was reproduced from Crasta and Surana, 2006 (no permission 
needed). 
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However, recent evidence demonstrates that a Plk4-mediated cascade leads to 

the centrosomal recruitment of several proteins including SAS-4,5,6, CPAP, 

CP110, Cep135, and gamma-tubulin, which are all indispensable for centriole 

formation (Dammerman et al., 2008; Rodrigues-Martins et al., 2007; Kleylein-

Sohn et al., 2007).    

Later, as the cell progresses from S into G2, the newly formed daughter 

centrioles continue growing, until their full length is reached by the following G1.  

Also during this time, the centrosomes continue maturing, seen by the 

accumulation of additional PCM and the addition of appendages on the younger 

mother centriole.  In the final phase, the parental centrioles become disjoined, 

allowing them to migrate and organize the spindle poles during mitosis. 

 

 

Block to Centrosome Reduplication 

 

 When the centrosome duplicates, it is crucial that each mother centriole 

produces one and only one daughter centriole.  If a cell enters mitosis with more 

than two centrosomes it raises the chances for multipolar spindle formation, 

which can lead to genomic instability.  Under normal conditions centrosomes will 

duplicate only once, even when the cell contains the subunits sufficient to 

assemble many centrioles (Sluder at al., 1990; Gard et al., 1990).  Further, if 

untransformed cells are arrested during S-phase, which is permissive for 
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duplication, centrosomes still maintain proper copy number.  However, the 

question still remains as to how cells precisely control this once and only once 

duplication.   

  In 2003, Wong and Stearns provided strong evidence for a centrosome 

intrinsic block to reduplication.  The authors demonstrated that when G1, S, and 

G2 phase cells were fused together in various combinations, only the 

unduplicated centrosomes from the G1 cells were able to duplicate when the 

cells entered S-phase.  Thus, something intrinsic to the G2 centrosome was able 

to block reduplication.  Later, it was shown that activation of the protease, 

Separase, during the metaphase-anaphase transition leads to the 

disengagement of mother-daughter centrioles and without this disengagement 

they could not duplicate during the following S-phase (Tsou and Stearns, 2006).  

This result suggested that the physical association between the mother and 

daughter centrioles is responsible for preventing the formation of extra centrioles.  

This hypothesis was further explored by a study where the daughter centriole of 

the centrosome was laser ablated in S-phase arrested cells.  They found that the 

mother was able to assemble new daughter centrioles within 4 hours of ablation, 

which furthered the belief that the presence of the daughter centriole prevents 

the mother from reduplicating (Loncarek et al., 2008).   

 While the previous studies demonstrate that the presence of the daughter 

plays a role in blocking reduplication, it does not answer how the mother only 

forms one centriole at a time during S-phase.  In some instances during the laser 
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ablation studies, the mother produced multiple daughters at one time, suggesting 

the formation of procentrioles is not limited to one specific spot on the mother 

centriole (Loncarek et al., 2008).  Further, overexpression of Plk4, SAS-6, 

pericentrin, or CPAP leads to the production of multiple daughter centrioles 

around the mother centriole (Kleylein-Sohn et al., 2007; Rodrigues-Martins et al., 

2007; Loncarek et al., 2008a, Kohlmaier et al., 2009).  This  data suggests that a 

tightly regulated equilibrium between multiple kinases and structural proteins 

must act in concert with structural constraints to regulate centriole duplication 

(Sluder and Khodjakov 2010).  

 

 

Centrosome Aberrations and Cancer 

 

Normally, mechanisms exist within cells to properly control centrosome 

number throughout the cell cycle.  However, abnormalities can occur that cause 

failures in this control, which ultimately lead to centrosome amplification.  These 

abnormalities include centrosome overduplication, centrosome reduplication, and 

cleavage failure.  Centrosome overduplication is characterized by the formation 

of multiple daughter centrioles around a single mother and can occur due to 

overexpression of proteins that regulate procentriole formation, the size of the 

PCM, as well as the length of centrioles. (Kleylein-Sohn et al., 2007; Rodrigues-

Martins et al., 2007; Kohlmaier et al., 2009).  Centrosome reduplication occurs 
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when a mother centriole produces multiple daughters one by one, during a single 

cell cycle.  This  effect is believed to happen through improper disengagement 

between the mother and daughter centriole, which will prematurely “license” the 

mother to duplicate again if conditions are permissive.  For example, some 

cancerous cell lines, such as U2OS cells, can reduplicate their centrioles if S-

phase, which is normally permissive for duplication, is experimentally prolonged 

(Balczon et al., 1995; Stucke et al., 2002).  Finally, if defects occur during mitosis 

and a cell fails cytokinesis, the resulting state is a tetraploid cell containing twice 

the normal number of centrosomes.   

Since centrosomes act in a dominant fashion in the formation of a bipolar 

spindle, the presence of extra centrosomes during mitosis greatly increases the 

chance that cells form multipolar spindles (Figure I-3).  Such spindles can lead to 

unequal segregation of chromosomes and ultimately genomic instability due to 

the gain or loss of alleles.  Indeed, centrosome amplification is a common 

characteristic of both solid and hematological cancers (reviewed in Chan, 2011).  

In addition, deregulation of genes implicated in cancer, such as p53, also lead to 

centrosome amplification (Fukasawa et al., 1996; Chiba et al., 2000; Tarapore 

and Fukasawa, 2002), reviewed in (Fukasawa, 2007; Nigg, 2002).   

Interestingly, multipolar mitoses are often detrimental to cells because 

gross missegregation of chromosomes often leads to death (reviewed in 

Anderhub et al., 2012).  To prevent multipolar mitoses, cells have developed 

ways to form bipolar spindles in the presence of extra centrosomes.  
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Figure I-3. Spindle Morphologies of p53-/- mouse embryonic fibroblasts.  (a) 
Normal bipolar spindle. (b) Tripolar spindle. (c) Tripolar division. (d) Spindle with 
two centrosomes at one pole and one centrosome at the other.  The spindle with 
two centrosomes displays one or more chromosome oriented between the 
centrosomes. (e) Multiple centrosomes clustering to form a bipolar spindle. (f) 
Many centrosomes forming a multipolar spindle with some bundling at the bottom 
right.  Centrosomes are immunostained for gamma-tubulin (red) and 
chromosomes are stained blue.  This figure is reproduced from Figure 1, Sluder 
and Nordberg, 2014, with permission from Elsevier. 
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The most common mechanism is termed centrosome bundling or clustering, 

where multiple centrosomes coalesce into two spindle poles.  Evidence of 

centrosome clustering is reported in many cancer cells, flies, and even in some 

non-transformed cell lines (reviewed in Godinho et al., 2009).  However, it was 

shown that before centrosome clustering takes place, cells pass through a 

multipolar spindle intermediate, which leads to kinetochore-microtubule 

attachment errors and lagging chromosomes (Ganem et al., 2009).  Since many 

cancer cells cluster extra centrosomes, this provides a strong correlation 

between centrosome amplification and chromosomal instability and aneuploidy. 

 

 

DNA Damage and Centrosome Amplification in Transformed Cells 

 

It is widely known that DNA damage leads to centrosome amplification in 

various transformed cell lines.  Reports show that that the incidence of 

centrosome amplification in transformed cells after ionizing irradiation ranges 

from 15-65%, depending on the dose and time after irradiation (Sato et al., 2000; 

Kawamura et al., 2004; Bourke et al., 2007; Shimada et al., 2010).  In addition, 

there are many connections between DNA repair and/or checkpoint proteins and 

centrosome regulation.  For example, expression of a dominant negative mutant 

of Rad51, a homologous recombination repair protein, or conditional deletion of 

Rad51 leads to the formation of extra centrosomes (Dodson et al., 2004).  
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Interestingly, many of these DNA repair and checkpoint proteins also localize 

directly at centrosomes.  For example, ATM and ATR are serine/threonine 

kinases that are activated early in the DNA damage checkpoint response 

pathway, but also localize at the centrosome.  Additionally, both have been 

shown to play roles in centrosome regulation (reviewed in Shimada and 

Komatsu, 2009).  

Although many connections between DNA damage, checkpoint proteins, 

and centrosome regulation are established, exactly how DNA damage leads to 

centrosome amplification remains mostly a mystery.  It is known that a Chk1-

dependent prolongation of G2 phase, which involves ATM/ATR, is required for 

centrosome amplification to occur (Dodson et al., 2004; Bourke et al., 2007; 

Inanc et al., 2010).  However, recent studies provide evidence for several, and 

perhaps not mutually exclusive, models in transformed cells.  The first is that 

DNA damage leads to the de novo formation of extra centrioles.   De novo 

formation is the assembly of centrioles without any preexisting centrioles.  This 

event is reported in many cell types including blastomeres (Szollosi et al., 1972), 

lower eukaryotes (Marshall et al., 2001), and cycling somatic cells when resident 

centrioles are removed by microsurgery or laser ablation (Khodjakov et al., 2002; 

La Terra et al., 2005; Uetake et al., 2007).  Loffler et al. (2012) report for human 

lung adenocarcinoma cells that DNA damage leads to the de novo formation of 

centrin-containing centriolar satellites that may serve as platforms for the 

assembly of extra centrioles that later organize into complete centrosomes 
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(Loffler et al., 2012).   

Another model is that DNA damage leads to the loss of an inhibitory signal 

that normally blocks centriole reduplication.  This idea came from a study where 

the authors fused irradiated and control populations of G2 phase U2OS cells to 

test if centrosome amplification occurs through a diffusible stimulatory signal or 

from the loss of an inhibitory signal.  The concept is that an activating signal 

should be transmissible to the untreated centrosome when the irradiated cells 

are fused to control cells.  They found significantly higher levels of centrosome 

amplification when the cell fusions contained 2 irradiated cells than 1 irradiated 

and 1 unirradiated cells, suggesting that an inhibitory signal is lost in the 

irradiated cells (Inanc, 2010).   

A third possibility is that centrosome amplification after DNA damage is 

the result of cells spending extra time in G2.  Interestingly, when both 

transformed cells and untransformed cells are held in G2 (without DNA damage) 

using the Cdk1 inhibitor RO-3306 (RO), there was a 50-60% incidence of 

centrosome amplification (Loncarek et a., 2010).  In addition, they found that 

inhibiting the activity of Plk1 greatly reduced centrosome amplification in RO 

treated cells.  Plk1 is a serine/threonine kinase that plays roles in initiation of 

mitosis, centrosome maturation, bipolar spindle formation, DNA damage 

response, and cytokinesis (reviewed in Hyun et al., 2014).  Additionally, it has 

been shown that Plk1 acts early in mitosis to help promote centriole 
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disengagement (Tsou et a., 2009).  Interestingly, Plk1 activity also promotes 

APC/C activity (Hansen et al., 2004; Moshe et al., 2004), which can 

independently mediate centriole disengagement and subsequent reduplication of 

the mother centrioles (Hatano and Sluder, 2012).  Furthermore, Prosser et al. 

(2012) reported that both Plk1 and APC/C activities contribute to centrosome 

amplification after DNA damage in HeLa cells. 

 

DNA Damage and Centrosomes in Untransformed Cells 

 

Although centrosome amplification after DNA damage is well established 

in transformed cells, the occurrence in untransformed cells has sparsely been 

reported and not thoroughly investigated.  After ionizing radiation, the incidence 

of extra centrioles has been reported to only range from 5-10% (Kawamura et al., 

2006; Sugihara et al., 2006; Saladino et al., 2009).  This is markedly lower than 

the 15-65% incidence that is reported in transformed cells.  However, two of the 

studies reported centrosome amplification as the incidence of more than two 

centrosomes as indicated by gamma-tubulin staining.  The caveat with this 

method is that gamma-tubulin localizes in the PCM and appears as a cloud 

around the centrosome.  Therefore, the number of centriole present in each 

gamma-tubulin cloud cannot be distinguished.  For example, if the staining 

displays three gamma-tubulin foci, it is possible that one contains two centrioles, 

and the other two contain only one, which would indicate that one pair of 
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centrioles were disengaged.  Indeed, Saladino et al. (2009) reported a 5-15% 

incidence of centriole disengagement after irradiation of RPE1 cells, as indicated 

by both centrin and gamma-tubulin staining.   

Although the reported incidence of centrosome amplification is less for 

untransformed cells, even a low level of extra centrosomes poses a threat to the 

organism if cells repair the DNA damage and continue to proliferate with 

centrosome amplification.  Further, if disengaged centrioles are capable of acting 

as microtubule organizing centers during mitosis, it raises the incidence of 

functional centrosome amplification.  Therefore, DNA damage to untransformed 

cells could in principle lead to the generation of an aneuploidy state through 

altered centriole behavior. 

 

DNA Damaging Agents and Cancer 

Cancer victims are often treated with DNA damaging agents, such as 

ionizing radiation or radiomimetic drugs before or after surgery.  Cells respond to 

DNA damage by activating checkpoint proteins to arrest cells at different points in 

the cell cycle in order to allow time for repair.  This treatment prevents cells from 

entering S-phase and replicating damaged DNA or entering mitosis and 

separating damaged DNA into daughter cells.  However, if the DNA damage is 

too severe and cannot be repaired, cell death can occur.  Because cancer cells 

often have relaxed or impaired checkpoint pathways, they are more likely to 
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replicate damaged DNA increasing the likelihood of cell death (reviewed in 

Cheung-ong et al., 2013).  Although tumor cells are the intended targets, 

systemic DNA damaging drugs also hit normal proliferating cells in naturally 

regenerating tissues.  This is why patients often suffer from hair loss, nausea and 

vomiting.  Further, post surgical radiation therapy can cause DNA damage in 

cells of healing surgical wounds.  If the DNA damage leads to centrosomal 

defects, this could lead to genomic instability and normal cells could begin to 

evolve transformed characteristics. Indeed, formation of secondary tumors after 

DNA damaging therapies is a recognized problem for cancer victims.  For 

example, the genesis of therapy-related acute myeloid leukemia after treatment 

for non-Hodgkin lymphoma is a reported problem (Krishnan and Morgan 2007).  

 

 

Phototoxicity During Live-Cell Imaging 

  

In addition to chemotherapeutic drugs and ionizing radiation, cellular 

damage can be acquired from various external conditions.  For example, 

ultraviolet light can lead to photo-oxidative damage, especially to skin cells 

exposed to the sun.  Further, blue light can produce photochemical lesions in the 

retina pigment epithelium (Ham et al., 1980).  With the development of 

fluorescent proteins, these wavelengths of light are now utilized by microscopy 

techniques to visualize cell structure, function, and physiology in living cells.   
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These techniques range from long-term time-lapse observations, to advanced 

methods including fluorescence recovery after photo-bleaching (FRAP), 

fluorescence resonance energy transfer (FRET), fluorescence lifetime imaging 

(FLIM), ratiometric ion measurements, and multi-photon microscopy (reviewed in 

Stephen and Allen, 2003; O’Connor and Silver, 2013; Cardullo, 2013; Chen et 

al., 2013).  Additionally, super-resolution techniques such as stimulated emission 

depletion (STED), structured illumination microscopy (SIM), and photoactivation 

localization microscopy (PALM) have allowed researchers to begin studying 

biological structures below the diffraction limit in living cells (reviewed in Godin, 

2014).  The excitation wavelengths used for these techniques range from the 

near UV (340-360 nm) for cell permeable Ca++ indicating dyes to the far red 

(590-630nm) with some of the new generation of red fluorescent proteins and for 

multi-photon microscopy. 

  Although live-cell fluorescence microscopy is a powerful tool, a 

fundamental limitation is the phototoxicity of the high intensity shorter 

wavelengths needed to image the commonly used fluorescent constructs such as 

EGFP (reviewed in Magidson and Khodjakov, 2013; Jennifer Waters, 2013).  

Phototoxicity refers to the negative reaction of tissues and cells to exogenous 

light energy, often resulting in cellular damage.  Photodamage is believed to 

arise through the light induced formation of chemically reactive free radicals and 

the formation of singlet and triplet forms of oxygen (Zdolesk et al., 1993; Dixit and 

Cyr, 2003).  This is thought to occur primarily due to excitation of fluorescent 
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molecules into more reactive states, where they can interact with the molecular 

environment.  

Acquiring Photodamage 

Although photodamage may not be an issue for short-term observations 

where only a few images are captured, it is a serious problem for applications 

involving long-term observations.  This is especially true when each time point 

requires taking a Z stack and/or if more than one fluorescent protein is being 

visualized.  Further, advanced applications such as FRAP and FRET, and many 

super-resolution techniques use high power lasers and the illumination intensities 

required can severely damage living cells.  In addition to the techniques 

themselves, imaging equipment can also contribute to unnecessary exposures.  

For example, imprecise hardware synchronization between the shutter and 

camera can lead to actual exposure times becoming longer than what is intended 

(see Magidson and Khodjakov, 2013).  This example again becomes a greater 

problem when multiple Z-stacks are being acquired and if more than one color is 

being visualized. Importantly, photodamage can begin even before the imaging 

sequence begins.  For example, time spent scanning the slide, identifying cells of 

interest, and bringing them into to focus can require a minimum of several 

seconds, the equivalent of many imaging exposures.  
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Consequences of Photodamage 

 

The most obvious consequence of photodamage is cell death as seen by 

membrane blebbing, cell rounding, and apoptosis (Zdolesk et al., 1990; Dixit and 

Cyr 2003; Hoebe et al., 2007; Kuse et al., 2014).  However, cell death is 

paradoxically the best outcome of photodamage because the cellular changes 

are visually obvious and researchers will immediately know the experimental 

results have been impacted.  A more pernicious problem is that photodamage is 

manifested as subtle changes to cellular physiology and viability.  For example, 

illumination of mid-prophase PtK cells with 488nm light leads to chromosome 

decondensation and the return of cells to a G2-like state (Khodjakov and Reider, 

1999).  Further, fluorescently labeled microtubules can break both in vivo and in 

vitro upon exposures to high intensities of blue or green light (Vigers et al., 1988; 

Guo et al., 2006).  These changes may lead to observations that are deemed 

important, whereas they could simply be artifacts from photodamage.  Moreover, 

well before the cell visibly dies, the cell can sustain substantial functional 

damage, which may not be evident until later if the observations last long enough 

(see Magidson and Khodjakov, 2013).   

Some examples of functional photodamage, short of cell death, include 

studies of the proliferative capacity of yeast and embryonic C. elegans cells 

(Carlton et al., 2010; Tinevez et al., 2012).  Carlton et al. (2010) measured yeast 

cell doublings 20 hours after exposure to varying intensities of blue light.  They 
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found that high intensities of blue light arrested or killed cells and little to no cell 

division had occurred.  They determined that the light intensity needed to be 

reduced two fold to observe unperturbed viability.  Tinevez et al. (2012) exposed 

C. elegans embryos to repeated cycles of blue light exposures for 2 hours and 

then characterized the total number of cells formed compared to control 

embryos. Using increasing intensities of blue light they found that low intensity 

light had no effects, but above a certain threshold (4.27X10-2 J/cm2/stack) there 

was a sharp decline in the total number of cells formed. 

 

 

Experimental Stress and Photodamage 

 

In addition to the direct consequences, photodamage also acts as a 

cellular stress making cells susceptible to experimental treatments.  Since stress 

is additive, stresses that are singly of little consequence can act additively to 

significantly impact cell physiology and behavior.  For example, multiple studies 

provided evidence that the removal of the centrosome from mammalian cells 

causes a G1 cell cycle arrest (Hinchcliffe et al. 2001; Khodjakov and Rieder, 

2001).  However, a later investigation demonstrated that this arrest resulted from 

the combined stresses of centrosome removal, culture conditions, and 

microsurgery or blue light exposures during laser ablations of GFP centrin tagged 

centrioles (Uetake et al., 2007).  Similarly, experimental treatments such as drug 
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treatments and RNAi can also sensitize cells to additional stressors.  For 

example, the percentage of Ptk cells that undergo cell cycle reversion after blue 

light exposures (see above) is greater if the cells are first treated with 

antimicrotubule drugs (Khodjakov & Rieder, 1999).  

 

 

Current Understanding of Phototoxicity  

 

Traditionally the most commonly used excitation wavelengths are blue 

(488nm) for EGFP and green (~546nm) for the RFPs.  Although the damaging 

effects of blue light are well recognized (reviewed in Waters, 2013), most studies 

have focused their assays on cell death.  Cells that experience photodamage, 

but remain alive could exhibit phenotypes to the researcher that are merely 

artifacts, greatly complicating experimental analysis.  Therefore, a more sensitive 

assay of characterizing phototoxic effects of light is needed.  Further, the extent 

to which green light damages mammalian somatic cells has not been 

systematically tested.  Green light has been generally assumed to be benign, 

but, should this not be the case, investigators will have to evaluate whether the 

use of RFP constructs is worthwhile given their lower brightness relative to EGFP 

and the consequent need for longer excitations per image.  
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Summary 

 

 The work presented in this thesis comprises two separate studies 

investigating the effects of cellular damage. 

 Chapter II focuses on the characterization of centriole behavior after DNA 

damage in untransformed human cells.  While centrosome amplification after 

DNA damage in transformed cells is widely known, the effects in untransformed 

cells have not been well characterized. We were particularly interested in 

answering several questions.  First, we wanted to understand why the reported 

incidence of centrosome amplification was much higher in transformed cells 

compared to untransformed cells.  We also examined why DNA damage leads to 

a high incidence of centriole disengagement without reduplication in our cells.  

Further, we explored the roles of Plk1 and APC/C in DNA damage induced 

centriole disengagement.  Finally, we determined if cells that escaped from the 

G2 cell cycle arrest and entered mitosis, did so with disengaged or extra 

centrioles and what the outcome of such mitoses were. 

 The work in Chapter III provides a practical assessment of photodamage 

during live-cell imaging.  This study had two main objectives.   The first goal was 

to systematically characterize the phototoxicity of blue (488nm) and green 

(546nm) light on the cell cycle progression of untransformed human cells (RPE1) 

with and without the expression of fluorescent proteins.  These wavelengths are 

commonly used during fluorescence microscopy and while blue light is known to 
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be harmful, the effects of green light on mammalian somatic cells have not been 

characterized. 

The second objective was to test three different strategies that could be 

used to reduce the phototoxic effects of blue light.  First, we tested if using lower 

intensity light for longer times allows cells to buffer the effects of photodamage 

better than when short, high intensity exposures are used.  Second, we wanted 

to know if adding a long-pass filter to block possible leakage of short wavelength 

light, known to be extremely damaging to cells, could mitigate the phototoxicity.  

Finally, we tested if reducing the production of reactive oxygen species through 

low oxygen growth conditions or the addition of a free radical scavenger could 

improve tolerance for blue light. 
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PREFACE TO CHAPTER II: 

 

This work presented in this chapter appears in: 

 

Douthwright and Sluder. Link Between DNA Damage and Centriole 

Disengagement/Reduplication in Untransformed Human Cells. J Cell Physiol 

(2014) 229:1427-1436. 
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CHAPTER II: Link Between DNA Damage and Centriole 

Disengagement/Reduplication in Untransformed Human Cells 

 

Abstract 

The radiation and radiomimetic drugs used to treat human tumors damage 

DNA in both cancer cells and normal proliferating cells.  Centrosome 

amplification after DNA damage is well established for transformed cell types but 

is sparsely reported and not fully understood in untransformed cells.  We 

characterize centriole behavior after DNA damage in synchronized 

untransformed human cells.  One hour treatment of S phase cells with the 

radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 hours, though 14% of 

the cells eventually go through mitosis in that time.  By 72 hours after DNA 

damage we observe a 52% incidence of centriole disengagement plus a 10% 

incidence of extra centrioles.  We find that either APC/C or Plk activities can 

disengage centrioles after DNA damage, though they normally work in concert.  

All disengaged centrioles are associated with γ-tubulin and maturation markers 

and thus, should in principle be capable of reduplicating and organizing spindle 

poles.  The low incidence of reduplication of disengaged centrioles during G2 is 

due to the p53 dependent expression of p21 and the consequent loss of Cdk2 

activity.  We find that 26% of the cells going through mitosis after DNA damage 

contain disengaged or extra centrioles.  This could produce genomic instability 

through transient or persistent spindle multipolarity.  Thus, for cancer patients the 
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use of DNA damaging therapies raises the chances of genomic instability and 

evolution of transformed characteristics in proliferating normal cell populations. 

 

 

Introduction 

The centrosome is the primary microtubule-organizing center (MTOC) of 

the interphase mammalian cell.  In preparation for mitosis the centrosome 

duplicates, and the sister centrosomes later determine the essential bipolarity of 

the spindle.  Since centriole pairs collect the pericentriolar material (PCM) that 

forms the MTOC, the duplication of the centrosome as a whole is determined by 

the duplication and separation of centriole pairs (Sluder and Rieder, 1985).  

Centriole duplication starts with the functional separation, or 

disengagement, of mother from daughter centrioles during anaphase; this event 

is necessary to “license” both centrioles for duplication in the following S phase 

(reviewed in Nigg and Stearns, 2011).  Centriole disengagement is mediated by 

APC/C activity that leads to the degradation of securin thereby releasing the 

proteolytic activity of separase (Zou et al., 1999; Tsou and Stearns, 2006).  

Separase activity opens the centromeric cohesin complexes and cleaves the 

PCM scaffolding elements kendrin/pericentrin B (Matsuo et al., 2012; Lee and 

Rhee, 2012).  Additionally Plk1 activity in early mitosis also contributes to 

separase dependent and independent centriole disengagement.  Although 

APC/C and Plk1 activities can individually cause centriole disengagement, they 
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normally work in concert to ensure the timeliness and fidelity of disengagement in 

anaphase (Tsou et al. 2009; Hatano and Sluder, 2012).   

Centriole overduplication or reduplication leads to the formation of extra 

centrosomes (centrosome amplification) that increases the chances that the cell 

will assemble a multipolar spindle at mitosis, which can lead to whole 

chromosome gains and losses (reviewed in Brinkley, 2001; Cimini et al., 2001; 

Nigg, 2002; Ganem et al. 2009).  Also, spindle multipolarity, even transient 

multipolarity, leads to lagging chromosomes in anaphase.  Such laggards often 

become micronuclei that show delayed or incomplete DNA synthesis and 

consequently such chromosomes become grossly damaged when the cell enters 

mitosis (Ganem et al., 2009, Crasta et al., 2012).  The resulting genomic 

instability can lead to loss of normal alleles for tumor suppressor genes and other 

genetic imbalances that promote unregulated growth characteristics and 

diminished apoptotic response to cellular damage (reviewed in Orr-Weaver and 

Weinberg, 1998; Nigg, 2002).   Indeed, pre-invasive carcinomas and most late-

stage human solid tumor cells show a high incidence of centrosome amplification 

that is thought to contribute to multi-step carcinogenesis (Lingle and Salisbury, 

2000; Pihan et al., 2001; Pihan et al. 2003; Lengauer et al., 1998; Lingle et al. 

2002; Kramer et al., 2002; D’Assoro et al., 2002; Goepfert et al., 2002; Weaver et 

al., 2007; Basto et al., 2008).   

Cancer victims are often treated with DNA damaging agents, such as 

ionizing radiation or radiomimetic drugs before or after surgery.  Although tumor 
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cells are the intended targets, systemic DNA damaging drugs also hit normal 

proliferating cells in naturally regenerating tissues.  Post surgical radiation 

therapy can cause DNA damage in cells of healing surgical wounds. If the DNA 

damage leads to defects that influence genomic stability, these proliferating cells 

could begin to evolve transformed characteristics.  Indeed, formation of 

secondary tumors after DNA damaging therapies is a recognized problem for 

cancer victims. For example, the genesis of therapy-related acute myeloid 

leukemia after treatment for non-Hodgkin lymphoma is a reported problem 

(reviewed in Krishnan and Morgan 2007). 

Centrosome amplification after DNA damage is a well-established 

phenomenon that has been studied almost entirely in various transformed cell 

types. It is associated with a Chk1 dependent prolongation of G2 phase (Dodson 

et al., 2004; Bourke et al., 2007; Inanc et al., 2010).  The incidence of 

centrosome amplification reported for irradiated transformed cells ranges from 

15-65%, depending on the dose and time after irradiation (Sato et al., 2000; 

Kawamura et al., 2004; Bourke et al., 2007; Shimada et al., 2010).  Although the 

basis for centrosome amplification after DNA damage has been uncertain, recent 

studies provide evidence for several, and perhaps not mutually exclusive, 

pathways in transformed cells.  Loffler et al (2012) report for human lung 

adenocarcinoma cells that DNA damage leads to the de novo formation of 

centrin containing centriolar satellites that may serve as platforms for the 

assembly of extra centrioles that later organize complete centrosomes.  Inanc et 
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al. (2010) report that DNA damage leads to the loss of an inhibitory signal that 

normally blocks centriole reduplication.   Another possibility is that centrosome 

amplification after DNA damage is the consequence of the cells spending extra 

time in G2.  When cells (without DNA damage) are held in G2 with the Cdk1 

inhibitor RO-3306, rising Plk1 activity leads to repeated centriole disengagement 

and reduplication resulting in a 50-60% incidence of centrosome amplification 

(Loncarek et al., 2010, Prosser et al., 2012).  Plk1 activity also promotes APC/C 

activity (Hansen et al., 2004; Moshe et al., 2004), which can separately mediate 

centriole disengagement and subsequent reduplication of the mother centrioles 

(Hatano and Sluder, 2012).  Prosser et al. (2012) report that both Plk1 and 

APC/C activities participate in causing centrosome amplification after DNA 

damage in HeLa cells.  

Although DNA damage induced centrosome amplification is well 

established for transformed cells, its occurrence in untransformed cells has been 

sparsely reported and not thoroughly investigated.  After DNA damage, the 

incidence of extra centrioles has been reported to range from 5-10% and there 

can be a 5-15% incidence of disengaged but not duplicated centrioles 

(Kawamura et al., 2006; Sugihara et al., 2006; Saladino et al., 2009).  Even this 

level of centrosome amplification could pose a threat to the organism if some 

cells repair the DNA damage and continue to proliferate.  

We systematically characterized centriole behavior after DNA damage in 

synchronized untransformed human cells.  We were particularly interested in 
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several issues.  We wanted to test the roles of Plk and APC/C activities separate 

from each other in centriole disengagement after DNA damage.  We also asked 

why the reported incidence of extra centrosomes for untransformed cells after 

DNA damage is lower than that found in transformed cells.  If centrosome 

amplification after DNA damage is simply the consequence of the cells spending 

extra time in G2, we wanted to know why the incidence of centrosome 

amplification after DNA damage is significantly lower than that in cells without 

damaged DNA that are arrested in G2 with a Cdk1 inhibitor.  We also examined 

why centriole disengagement after DNA damage does not lead to much 

reduplication.  Lastly, continuous time-lapse observations also allowed us to 

precisely determine the behavior of the low percentage of untransformed cells 

that escaped G2 arrest and divided - some with extra centrosomes.   

    

 

Results 

DNA damage prolongs G2  

We used untransformed human cells (RPE1) stably expressing GFP-

centrin 1 to tag individual centrioles. These cells have an intact p53 pathway; 

centriole duplication and mitosis are normal.   

We first characterized the extent to which DNA damage prolongs G2. To 

avoid the ambiguities of interpreting the various behaviors of cells from 

asynchronous populations, we shook off mitotic cells to provide synchronized 
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populations. Twelve hours later, a time when 85% of cells were EdU positive 

(had at least entered S phase), we treated them with the radiomimetic drug 

Doxorubicin for 1 hour to induce DNA damage (Figure II-1A). Four hours after 

drug washout all cells had γH2AX foci in the nuclei confirming DNA damage 

(Figure II-1A, images).  Whereas, 90% showed numerous γH2AX foci, the 

remainder had at least several foci. We continuously followed 97 Doxorubicin 

treated cells for 3 days by time-lapse video microscopy and found that 100% 

remained in interphase through the first 24 hours.  At 48 hours 90% were still in 

interphase and by 72 hours 86% had failed to enter mitosis.  The remaining 14% 

all divided and cleaved in a bipolar fashion.  Seventy six percent of the resulting 

daughter cells arrested in interphase and never progressed onto mitosis. The 

other 24% divided once again in a bipolar fashion before the filming runs were 

terminated.  Thus, DNA damage led to a substantial and variable prolongation of 

G2 in all cells but did not permanently arrest 14% of them.   

   

Centriole disengagement and maturation during prolonged G2 

We fixed synchronized cell populations at 24, 48, and 72 hours after 

Doxorubicin washout and immunostained for C-Nap1, a protein that participates 

in linking sister centrosomes together (Figure II-1A protocol diagram).  

Centriole disengagement was determined by the spacing of GFP-centrin foci as 

well as the ratio of centrin to C-Nap1 spots (Tsou and Stearns, 2006). When 

mother-daughter centrioles are engaged, two closely paired centrin spots are 
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associated with a single C-Nap1 spot (2:1 Centrin:C-Nap1).  When centrioles 

disengage, the centrin spots are further apart and there is a C-Nap1 spot 

associated with each centrin spot (1:1 Centrin:C-Nap1).   

Control G2 cells at 17hrs after mitotic shake-off exhibited 1% incidence of 

disengaged centrioles. For cells in G2 after DNA damage the incidence of 

disengaged centrioles increased to 22% at 24 hours and to 52% at 72 hours 

(Figure II-1B) as seen by separation of individual centrin foci each associated 

with a C-Nap1 spot (3 experiments – 200 cells scored per experiment) (Figure II-

1C).  Many cells showed four separated centrin foci and others contained two 

separate centrin foci and two closely paired foci indicating that centrioles in only 

one G2 centrosome had disengaged.  The range of distances between GFP-

centrin foci rose from 0.26-0.65um in control G2 cells to 0.33-33um in cells 24 

hours after Doxorubicin washout (Figure II-1D).   
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Figure II-1.  Doxorubicin induced DNA damage leads to centriole disengagement 

during prolonged G2 phase.  (A) Diagram of experimental protocol.  Left image shows 

a 10X field of cells stained for γH2AX (red) and DNA by Hoechst (blue) 4 hours after the 1 

hour Doxorubicin pulse.  Right image is an enlargement of a portion of left image showing 

range of γH2AX labeling.  Scale bars= 40µm.  (B) Incidence of G2 cells with disengaged 

centrioles at 24, 48, and 72hrs after DNA damage.  Disengagement determined by a 1:1 

ratio of Centrin:C-Nap1 spots. Histogram bars indicate the average from at least 3 

experiments with 200 cells counted for each condition. Error bars are one standard 

deviation.  (C) Representative images of centrioles in control G2 cells and cells with 

disengaged centrioles 48hrs after Doxorubicin treatment. GFP-centrin1 (green), C-Nap1 

(red).  Scale bar=1µm. Images are maximum intensity point projections from Z series 

images.  (D) Graph representing the distances between mother and daughter centrioles 

in control G2 cells and cells 24hrs after Doxorubicin treatment.  Each dot represents the 

distance between one pair of mother-daughter centrioles.  Microns between centrioles 

are shown along the X axis.  Forty centriole pairs were measured for each condition. 
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Wang et al (2011) reported that daughter centrioles go through Plk1 

dependent “modification” indicative of maturation during mitosis, which is 

required for them to duplicate and organize a MTOC during the following cell 

cycle.  These modifications include the loss of SAS-6 as well as the recruitment 

of C-Nap1 and γ-tubulin.  We wanted to determine if the disengaged centrioles in 

our experiments, particularly the daughters, matured during the prolonged G2 

and thus, could in principle duplicate thereby amplifying centriole number.  We 

fixed cell populations 48 hours after Doxorubicin washout and immunostained 

separately for SAS-6, a cartwheel protein found in daughter centrioles; CEP170, 

an appendage protein found on mother centrioles; and γ-tubulin.  These cells 

were compared to control G2 cells (14 hours after shake-off) containing two pairs 

of engaged centrioles.  We observed that 92% of control G2 cells have 2 SAS-6 

spots (one at each daughter centriole), while 94% of Doxorubicin treated cells 

with disengaged centrioles showed no SAS-6 staining at disengaged centrioles 

(Figure II-2, top).  Ninety-eight percent of the control cells contained two 

CEP170 spots, while 91% of Doxorubicin treated cells with disengaged centrioles 

showed 4 CEP170 spots (Figure II-2, middle).  Lastly, 98% of Doxorubicin 

treated cells contained 4 γ-tubulin clouds associated with the separate centrin 

spots, while 96% of control cells showed only 2 γ-tubulin clouds (Figure II-2, 

bottom).  Together these observations indicate that disengaged daughter 

centrioles are “modified” during prolonged G2 and should, in principle, be 

capable of duplicating again.   
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Figure II-2. Disengaged centrioles display markers of maturation after DNA 

damage.  Numbers shown represent percentage of cells that contain 0, 2, or 4 foci 

of SAS-6 (top), CEP170 (middle), or γ-tubulin (bottom) associated with centrin foci 

for control G2 cells and cells 48 hours after Doxorubicin treatment.  Percentages 

are based on 150 cells observed per condition.  Images of centrioles in control 

cells and disengaged centrioles in Doxorubicin treated cells show GFP-centrin in 

green and SAS-6, CEP170, or γ-tubulin in red.  Chosen images represent most 

prevalent phenotype for each condition.  Scale bars=1µm.  Images are maximum 

intensity point projections from Z series images. 
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Plk and APC/C activities in centriole disengagement after DNA damage 

Precisely how centrioles disengage after DNA damage has been unclear.  

When transformed and untransformed cells (no DNA damage) are arrested in G2 

with the Cdk1 inhibitor RO-3306 (hereafter RO), Plk1 and APC/C activities 

mediate centriole disengagement, which allows centriole reduplication (Loncarek 

et al., 2010; Prosser et al., 2012; Hatano and Sluder 2012).  Therefore, we tested 

whether Plk and APC/C activities, alone or in combination, promoted centriole 

disengagement after DNA damage. 

  We synchronized cells in S with thymidine for 17 hours, released them, 

and 3 hours later pulsed with Doxorubicin for 1 hour.  Immediately after the 

Doxorubicin pulse we added the Plk inhibitor (BI 2536), an APC/C inhibitor 

(proTAME), or both (Figure II-3A).  BI 2536 at the 200nM concentration we used 

should completely inhibit Plk1 activity and largely block Plk2 and Plk3 activities 

(Steegmaier et al., 2007).  To empirically test the efficacy of proTAME in 

inhibiting APC/C activity we treated thymidine synchronized control cultures (no 

DNA damage) with 12uM proTAME after thymidine release and followed 50 cells 

by time-lapse video microscopy.  80% of the cells arrested in prometaphase for 

12 hours, 60% remained in prometaphase for 24 hours, and 48% arrested in 

prometaphase for at least 30 hours.  

Inhibition of Plk activity alone slightly diminished the incidence of centriole 

disengagement 24 hours after Doxorubicin treatment (Figure II-3B).  In contrast, 

inhibition of APC/C activity alone resulted in a decrease in centriole 
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disengagement at this time (Figure II-3B).  48 hours after Doxorubicin treatment, 

the incidences of centriole disengagement after Plk or APC/C inhibition singly 

were similar to those found after Doxorubicin treatment only (Figure II-3B,C).  

However, when Plk and APC/C activity were both inhibited, there was a marked 

decrease in the incidence of centriole disengagement at 24 and 48 hours after 

Doxorubicin treatment (Figure II-3B,C).  These observations indicate that APC/C 

activity is the primary driver of centriole disengagement in the first 24 hours and 

by 48 hours either Plk or APC/C activity singly can drive centriole 

disengagement.  Thus, Plk1 and APC/C activity play independent, but redundant 

roles in centriole disengagement after DNA damage in RPE1 cells (see also, 

Hatano and Sluder, 2012). 
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Centriole reduplication during prolonged G2 

We characterized the extent to which disengaged centrioles reduplicate 

after DNA damage.  Since we found that all disengaged centrioles were 

associated with the maturation markers, they should in principle be capable of 

duplicating during G2. We fixed cells at 24, 48, and 72 hours after Doxorubicin 

treatment and counted cells exhibiting more than 4 centrin foci (3 experiments – 

200 cells scored per time point).  Control G2 populations (no DNA damage) 

exhibited a 0.5% incidence of extra GFP-centrin foci.  24 hours after Doxorubicin 

treatment 3.5% of the cells contained 5-8 GFP-centrin foci.  At 48 hours, 4.8% 

contained extra centrin foci and by 72 hours after treatment the incidence of extra 

foci rose to 10% (Figure II-4A,B).  For all cells, every centrin focus was 

associated with γ-tubulin indicating that they were centrioles not centrin 

containing pericentriolar satellites (Loffler et al., 2012) (Figure II-4A,C).   

We previously noted that by 72 hours after DNA damage 14% of the cells 

eventually overcame the G2 arrest and went through mitosis.  Cleavage failure 

has been reported for cells dividing after DNA damage (Varmark et al., 2009).  

Two sorts of observations indicate that simple cleavage failure is not the source 

of extra centrioles in our DNA damaged cells.  First, induction of cleavage failure 

in RPE1 cells invariably leads to binucleate cells in the first post cleavage failure 

cell cycle (Krzywicka-Raka and Sluder, 2011); none of the cells containing extra 

centrioles after DNA damage were binucleate.  Second, we circled fields of cells 

after Doxorubicin treatment and continuously followed them for 72 hours before 
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fixing and immunostaining for γ-tubulin and C-Nap1.  We relocated 100 cells that 

remained in interphase for the entire duration of the films and found 10% 

contained extra centrin foci, all colocalizing with γ-tubulin or C-Nap1 (Figure II-

4C). This confirms that extra centrioles assembled during prolonged G2 after 

DNA damage. 

 

Limits on the reduplication of disengaged centrioles 

The 10% incidence of centriole reduplication we observe after DNA 

damage is substantially less than the 60% incidence found when RPE1 cells 

without DNA damage are held in G2 by inhibition of Cdk1 activity (Loncarek et 

al., 2010) and less than the 15-65% incidence of centrosome amplification after 

DNA damage in transformed cell lines (Sato et al., 2000; Kawamura et al., 2004; 

Bourke et al., 2007; Shimada et al., 2010).  These differences prompted us to 

investigate what limits the reduplication of disengaged centrioles that should in 

principle be capable of doing so.    

DNA damage in untransformed cells leads to p53 accumulation and the 

consequent expression of the Cdk inhibitor p21 (reviewed in Zhou and Elledge, 

2000).  Cdk2 activity initiates centriole duplication (reviewed in Hinchcliffe and 

Sluder 2002) and is needed for centrosome amplification after DNA damage 

(Hanashiro et al., 2008; Bourke et al., 2010).  To test if p53 activity after DNA 

damage suppressed duplication of disengaged centrioles, we knocked down p53 

in Doxorubicin treated cells and assayed for changes in the incidence of centriole  
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Figure II-4.  DNA damage leads to low levels of centriole reduplication during 

prolonged G2.  (A) Representative images of centrioles in a control G2 cell and extra 

centrioles in a cell 48hrs after Doxorubicin.  GFP-centrin (green), γ-tubulin (red).  

Scale bar=1µm. Images are maximum intensity point projections from Z series 

images.  (B) Incidence of cells with more than four centrin foci colocalizing with γ-

tubulin at 24, 48, and 72hrs after addition of Doxorubicin. Histogram bars indicate the 

average from at least 3 experiments with 200 cells counted for each condition.  Error 

bars are one standard deviation.  (C) Correlative phase contrast/immunofluorescence 

images of G2 arrested cells exhibiting more than four centrin foci colocalizing with γ-

tubulin (upper panels) or C-Nap1 (lower panels).  Phase contrast images were taken 

at 10X magnification and corresponding immunofluorescence images were acquired 

at 100X magnification.  Arrows depict cell that was followed.  GFP-centrin (green), γ-

tubulin (red), C-Nap1 (red).  Scale bars= 20µm and 1µm respectively.  hr:min shown 

in upper left corner of each frame represents time after Doxorubicin pulse.  

Fluorescence images are maximum intensity point projections from Z series images.  
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reduplication.  This allowed us to cleanly assess the role of p53 in untransformed 

cells without the suite of defects found in cancer-derived cells.  This also served 

as a model for normal cells that may suffer loss of heterozygosity for tumor 

suppressing genes during chemotherapy with DNA damaging agents.   

We transfected asynchronous cultures with siRNA for p53 and 12 hours 

later shook-off mitotic cells. Twelve hours later these cells were treated with 

Doxorubicin for 1 hour and then continuously followed by time-lapse video 

microscopy.  For 48 hours after the Doxorubicin treatment 54% remained in 

interphase while the rest of the cells entered mitosis between 24 and 48 hours.  

The duration of mitosis (cell rounding to the onset of daughter cell flattening) 

averaged 45 minutes in control cells and was prolonged 2 – 12 hours in 55% of 

the treated cells.  Of the cells that underwent prolonged mitosis, 5% failed 

cleavage and 18% divided in a multipolar (15% tripolar; 3% tetrapolar) fashion.  

To assay for centriole amplification in p53 knock down cells after DNA 

damage we followed marked fields of cells for 34 hours after Doxorubicin 

treatment (a time when 87% of cells were still in interphase).  At this time 

preparations were fixed and immunostained for γ-tubulin to complement the GFP 

centrin signals.  We relocated the fields of cells previously followed in vivo and 

counted centriole number in 152 cells we knew had remained in interphase.  We 

found that 27% of such cells contained 5 to 8 centrin foci, all colocalizing with γ-

tubulin, compared to 3% at this time for Doxorubicin treated cells with an intact 

p53 response (Figure II-5A,B).   
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We tested for p21 expression after DNA damage for cells treated with 

Doxorubicin only (no siRNA for p53).  We found that by 12 hours after the 

Doxorubicin pulse 95.5% of cells exhibited expression and nuclear localization of 

p21, compared to only 10% of G2 control cells 15 hours after mitotic shake off.  

Seventy-two hours after Doxorubicin treatment, 93.5% of the cells still exhibited 

nuclear p21 staining, a time when 52% of cells exhibit disengaged centrioles 

(Figure II-5C, upper row of images).  We did not observe increased expression 

and nuclear localization of p27 as was reported for neuroblastoma cells after 

ionizing radiation (Sugihara et al., 2006) (Figure II-5C, lower row of images). 

We also observed that p21 expression levels after DNA damage were diminished 

by p53 knock down. For cultures transfected with siRNA for p53, 24% of the cells 

showed nuclear p21 signal at 34 hours after Doxorubicin addition compared to 

over 90% for Doxorubicin treated cells with an intact p53 response (300 total 

cells were counted for each condition).  

Lastly, we repeated the p53 knockdown, treated with Doxorubicin and 

continuously treated with 10µm Roscovitine, a Cdk2 inhibitor. Thirty-four hours 

later the incidence of extra centrioles was reduced from 27% to 9% (Figure II-

5B).  Together these results indicate that duplication of disengaged centrioles in 

prolonged G2 after DNA damage is diminished by p53 mediated expression of 

p21 and the consequent inhibition of Cdk2 activity.  
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Figure II-5.  Low incidence of centriole reduplication after DNA damage is due to 

p53-mediated inhibition of Cdk2 activity.  (A) Correlative phase 

contrast/immunofluorescence images of a p53 knock-down cell 34hrs after Doxorubicin 

treatment showing extra centrioles.  Phase contrast image was taken at 10X 

magnification and corresponding fluorescence images were taken at 100X 

magnification. GFP-centrin (green), γ-tubulin (red).  Scale bars= 20µm and 1µm 

respectively.  Fluorescence images are maximum intensity point projections from Z 

series images.  (B) Incidence of cells with >4 centrin foci with indicated treatments 

34hrs after Doxorubicin treatment.  Histogram bars indicate the average from at least 3 

experiments with 50 cells counted for each condition.  Error bars are one standard 

deviation. *p≤ 0.05, determined by a two-tailed unpaired Student’s t test.  (C) 

Representative images of a control cell 14hrs after mitotic shake-off stained for p21 

(upper row) and cells 72hrs after Doxorubicin treatment stained for p21 (middle row) 

and p27 (bottom row).  Inserts are magnifications of all centrioles in each cell shown. 

GFP-centrin (green), p21 (red), p27 (red).  Merge panels include DNA stained by 

Hoechst (blue). Scale bar=20µm. Images are maximum intensity point projections from 

Z series images.  
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Mitosis after DNA damage 

Time lapse imaging of Doxorubicin treated cells revealed that even though 

most arrested in G2, 14% eventually enter mitosis within 72 hours after DNA 

damage.  Since we observe a 52% incidence of centriole disengagement plus a 

10% incidence of extra centrioles in G2 cells at this time, we wanted to know if 

cells that progressed into mitosis contained disengaged and/or amplified 

centrioles.  We synchronized cultures in S phase with thymidine for 17hrs, and 

three hours after release pulsed with Doxorubicin.  Since a small percentage of 

cells enter mitosis at variable times after DNA damage, we added Nocodazole 48 

hours after the Doxorubicin pulse to accumulate in mitosis cells escaping from 

prolonged G2.  Twenty-four hours later we fixed the cells and immunostained for 

γ-tubulin to complement the GFP centrin signal.  We imaged 53 mitotic cells and 

found 12 cells with at least one pair of disengaged centrioles and 2 cells that 

contained supernumerary centrioles (6 centrioles).  In 75 control mitotic cells all 

contained 2 pairs of engaged centrioles (For complete breakdown see Table II-

I).  Since individual centrioles can organize spindle poles (Sluder and Rieder, 

1985), 26% of the cells entering mitosis after DNA damage contained extra 

potential spindle poles.  
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Table II-I.  Centriole configurations in control mitotic cells and cells that 

enter mitosis after DNA damage 
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Discussion 

 

The radiation and radiomimetic drugs currently used to treat human 

tumors not only damage DNA in the cancer cells but also impact proliferating 

untransformed cells. Although centrosome amplification after DNA damage is 

well established for transformed cells, its occurrence in untransformed cells has 

been sparsely reported and not fully characterized (Kawamura et al., 2006; 

Sugihara et al., 2006; Saladino et al., 2009). We more thoroughly characterized 

the practical consequences of DNA damage for centrosome behavior in 

untransformed human cells. Our study differed from previous ones in at least two 

ways.  First, we focused on centriole behavior, because after disengagement 

individual centrioles, when mature, can each organize a MTOC and at mitosis 

disengaged centrioles can organize multipolar spindles (Sluder and Rieder, 

1985; Prosser et al., 2012).  Second, we damaged DNA in synchronized cell 

populations to avoid the uncertainties in interpreting the responses of cells 

experiencing DNA damage at various points in the cell cycle.   

Doxorubicin as used here damaged DNA in all cells and continuous time-

lapse observations revealed that 86% of the cells arrested in G2 for at least 72 

hours. In the G2 arrested populations, there was an increasing incidence of 

mother-daughter centriole disengagement that rose to 52% by 72 hours.  On top 

of this we observed a 10% incidence of extra centrioles, consistent with values 

previously reported.  Since all disengaged and reduplicated centrioles were 



48

associated with γ-tubulin, the total incidence of functional centrosome 

amplification in prolonged G2 rose to 62% by 72 hours after DNA damage.  This 

is substantially higher than the 5-15% incidence of centrosome amplification 

previously reported in studies on asynchronous untransformed cells after DNA 

damage (Kawamura et al., 2006; Sugihara et al., 2006; Saladino et al., 2009). 

The 10% incidence of extra centrioles we observed arose from reduplication 

during G2, not from cells that entered mitosis and failed cleavage.   

The basis for centrosome amplification in transformed and untransformed 

cells has been uncertain.  Proposed explanations include centrosome specific 

signaling, de novo centriole assembly, and centriole disengagement/reduplication 

due to G2 arrest (Inanc et al., 2010; Loffler et al., 2012, Prosser et al., 2012).  

Our results reveal that mother-daughter centriole disengagement after DNA 

damage is dependent on APC/C and/or Plk activities while the cells are arrested 

in G2.  Blocking both activities almost completely suppressed centriole 

disengagement.  Even though these activities normally act synergistically to 

disengage centrioles late in mitosis (Tsou et al., 2009), we found that either 

acting alone can eventually mediate disengagement after DNA damage.  In the 

first 24 hours after DNA damage APC/C activity appears to be the primary driver 

of disengagement, but by 48 hours either APC/C or Plk activities can cause 

centriole disengagement.  These observations are consistent with the report that 

without DNA damage either Plk or APC/C activity alone is sufficient to disengage 

centrioles during prolonged S or G2 phases, albeit more slowly than both acting 
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together (Hatano and Sluder, 2012, also see Loncarek et al., 2010 and Prosser 

et al., 2012).  Which members of the Plk family participate in centriole 

disengagement after DNA damage is not certain.  Plk1 activity is reported to be 

suppressed after DNA damage and Plk2 and Plk3 activities are reported to rise 

(Smits et al., 2000; reviewed in Bahassi, 2011).  We did not observe obvious 

signs of possible de novo centriole assembly as indicated by the presence of 

supernumerary centrin foci lacking or weakly staining for γ-tubulin and C-Nap1 

(Loffler et al., 2012).  In our system all centrin foci showed robust co-localization 

of C-Nap1 and γ-tubulin.   

In our experiments we noted a high incidence of centriole disengagement 

without reduplication; most cells contained just 4 separated centrioles and only 

10% contained extra centrioles.  This was curious because all the disengaged 

centrioles showed maturation characteristics, such as loss of SAS-6, the 

presence of CEP170, and accumulation of γ-tubulin, suggesting that they should 

in principle have been capable of reduplication (see Wang et al., 2011).  Also, 

when these untransformed cells (without DNA damage) are arrested in G2 by 

inhibition of Cdk1 activity, the rate of centriole reduplication is ~60% (Loncarek et 

al., 2010).  The results of our investigation of this issue indicated that a limit to 

reduplication of disengaged centrioles after DNA damage involves the p53 

dependent expression of p21 resulting in the inhibition of Cdk2 activity.  Knocking 

down p53 in Doxorubicin treated cells allowed an almost 10 fold increase in the 

incidence of centriole reduplication during prolonged G2, and this increase could 
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be reversed by inhibiting Cdk activity with Roscovitine.  Cdk2 inhibition by p21 

(reviewed in Maugeri-Saccà et al., 2013) is the likely limit for centriole 

reduplication, because inhibition of Cdk1 activity alone promotes supernumerary 

centriole assembly during G2 (Loncarek et al., 2010).  Also, Cdk2 activity not 

only initiates normal centriole duplication (reviewed in Hinchcliffe and Sluder, 

2002) but also is needed for centrosome amplification after DNA damage 

(Hanashiro et al., 2008; Bourke et al., 2010).  p21 depletion in U2OS cells 

increases centrosome amplification after ionizing radiation (Shimada et al., 

2011).  An additional limit to centriole reduplication is suggested by reports that 

DNA damage leads to p53 mediated downregulation of Plk4, a kinase essential 

for the assembly of daughter centrioles (Li et al., 2005, Nakamura et al., 2013).   

Putting these observations together, we propose that p53 mediated p21 

expression after DNA damage arrests the cells in G2, a cell cycle phase in which 

natural increases in Plk and APC/C activities leads to the gradual disengagement 

of mother-daughter centrioles in most cells.  However, the reduplication of these 

disengaged centrioles does not occur in most cases due to the inhibition of Cdk2 

activity by p21.  This explains why RO induced G2 arrest without DNA damage 

allows for a high incidence of centriole reduplication and why DNA damage in 

transformed cells with defects in the p53 – p21 pathways leads to a higher 

incidence of centriole reduplication than we find for untransformed cells.   

We note that not all RPE1 cells exhibited centriole disengagement 72 

hours after DNA damage.  The gradual increase in the incidence of 
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disengagement from 24 to 72 hours suggests that the disengagement process is 

slow and had we followed cells longer, we perhaps could have seen a greater 

percentage of cells with centriole disengagement.  We also found that ~10% of 

the cells showed centriole reduplication during prolonged G2 after DNA damage.  

The substantial prolongation of G2 in these cells speaks for p53 activity and one 

could thus ask why any showed centriole reduplication.  We speculate that the 

inhibition of Cdk2 activity in those cells was not complete. 

We were interested in whether DNA damaging therapies could have 

practical consequences for proliferating normal cells in cancer patients.  Time-

lapse observations of Doxorubicin treated cells revealed that ~14% eventually 

entered mitosis after spending substantial time in G2.  We found that 26% of 

these cells went through mitosis with disengaged and extra centrioles, which 

would predispose them to assemble multipolar or transiently multipolar spindles.  

However, our time-lapse records showed that all cells in the end cleaved in a 

bipolar fashion.  This is not surprising given that this cell type efficiently bundles 

centrosomes at mitosis (see Uetake and Sluder, 2004; Krzywicka-Racka and 

Sluder, 2011).  Nevertheless, transient spindle multipolarity can lead to lagging 

chromosomes in anaphase and formation of micronuclei that do not fully replicate 

DNA, resulting in profound chromosome damage at mitosis (Ganem et al., 2009; 

Crasta et al., 2012).   Therefore, DNA damage in proliferating normal cells during 

therapy with radiation or radiomimetics could lead to genomic instability through 

spindle pole amplification.  Also, if the DNA damage compromises the p53– p21 
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pathways in any of these cells, they could tolerate mistakes and start to evolve 

transformed characteristics. 
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Materials and Methods 

 

Cell culture, drug treatment, and RNAi 

HTERT-RPE1 cells stably expressing GFP-centrin1 were cultured in F12/DME 

(1:1) medium supplemented with 10% FBS and 1% Penicillin-Streptomycin.  

Cells were synchronized by mitotic shake-off or in G1/S-phase with 2.5mM 

thymidine (Sigma). To arrest cells in mitosis 1.6µm Nocodazole (Sigma) was 

used. Click-iT EdU assay (Invitrogen) was used to determine cells that had 

entered S-Phase. DNA damage was induced with a 1 hour 0.5µM Doxorubicin 

treatment.  Plk1 activity was inhibited with 200nM BI2536 (ChemieTek); APC/C 

activity was inhibited with 12µM proTAME (R&D Systems), Cdk2 activity was 
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inhibited with 10µm Roscovitine (AG Scientific).  The siRNA oligo duplex used to 

target human p53 was an ON-TARGETplus siRNA (J-003329-14, Dharmacon).  

A final concentration of 50nM siRNA was transfected using RNAiMAX (Life 

Technologies) according to manufacturers instructions.  Fresh media was added 

4 hours after transfection.  Protocols for cell collection, siRNA transfection, drug 

treatments, and fixation times are shown diagrammatically at the top of 

corresponding figures and described in the text and figure legends.   

 

Immunofluorescence  

Cells were grown on glass coverslips and fixed in methanol at -20°C for >5 min.  

Primary antibodies used were: C-Nap1 (Santa Cruz; sc-135851) at 1:100; γH2AX 

(Millipore; #05-636) at 1:1000; γ-tubulin (Santa Cruz; sc-51715) at 1:200; SAS-6 

(Santa Cruz; sc-81431) at 1:100; CEP170 (Invitrogen; #41-3200) at 1:500; p21 

(AbCam; ab7960) at 1:200; p27 (Cell Signaling; #3698) at 1:1000.  Secondary 

antibodies conjugated to AlexaFluor 594 (Life Technologies) were used at 

1:1000.  Hoechst 33258 (Sigma) was used to label DNA. Cell preparations were 

observed with a Leica DMR microscope equipped for phase contrast and 

epifluorescence. A 10X NA 0.3 or 100X NA 1.3 objective lens was used to collect 

Z stacks (0.2 µm steps) and the images shown are maximum intensity point 

projections series compiled with Slidebook software (Intelligent Imaging 

Innovations).  Distances between centrioles were also measured using Slidebook 

software. 
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Live cell imaging 

Cells were grown on glass coverslips and assembled into chambers containing 

F12/DME (1:1) medium as previously described (Uetake and Sluder, 2012).  

Groups of cells were circled on the coverslips with a diamond scribe and followed 

at 37°C with BH2 (Olympus), or DMEXE (Leica) microscopes equipped with 

phase-contrast optics using 10X objectives/ 0.3–0.32 NA.  Image sequences 

were taken with Orca ER (Hamamatsu Photonics); Retiga EX (Qimaging, Corp.); 

or Retiga EXi Fast (Qimaging, Corp.) cameras.  Images were acquired every 3 

min with C-imaging software (Hamamatsu Photonics) and were exported as 

QuickTime videos using CinePak compression (Apple).  
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CHAPTER III: Comparative Phototoxicty of 488nm and 546nm Light on Cell 

Cycle Progression in Untransformed Human Cells 

 

Abstract 

We characterized practical aspects of using 488 and 546nm light for 

fluorescence observation of live untransformed human cells.  Unlabeled mitotic 

cells were shaken off and given single 30 seconds to 2.5 minute irradiations in 

early G1 from a mercury arc lamp on a fluorescence microscope with GFP and 

RFP filter cubes.  With 488nm light irradiations we observed a dose dependent 

decrease in the percentage of cells that progressed to mitosis and a slowing of 

the cell cycle for those that did enter mitosis.  For 546nm light irradiations there 

was a 10-20% reduction in the percentage of cells entering mitosis but no strong 

dose dependency.  For the longest irradiations, ~12% of cells died within 48 

hours for 488nm light compared to only ~2% for 546nm.  Cells expressing GFP-

centrin1 or mCherry-centrin1 were more sensitive to 488 and 546nm irradiations 

respectively - fewer entered mitosis for each dose than unlabeled cells.  For 

488nm light irradiations of unlabeled cells, reducing the intensity tenfold or 

spreading the exposures out into a series of 10 second pulses at 1 minute 

intervals produced a minor and not consistent improvement in the percentage of 

the cells entering mitosis.  However, reducing the oxidative stress on cells, either 

by culturing at ~3% oxygen or adding the water soluble reducing agent Trolox, 

provided a noticeable increase in the fraction of cells entering mitosis.  Thus, for 
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live cell fluorescence studies, the relatively low phototoxicity of 546nm light 

suggests that use of RFP constructs is advantageous.  For studies with GFP 

constructs reduction in oxidative stress can diminish the phototoxic effects of 

488nm light. 

 

 

Introduction 

 

Live cell fluorescence observation of mammalian somatic cells is a 

powerful and widely used method to study cell structure, function, and 

physiology.  Applications range from basic long-term time lapse cell observations 

to advanced methods including fluorescence recovery after photo-bleaching 

(FRAP), fluorescence resonance energy transfer (FRET), fluorescence lifetime 

imaging (FLIM), and ratiometric ion measurements (reviewed in Stephen and 

Allen, 2003; O’Connor and Silver, 2013; Cardullo, 2013; Chang et al., 2013).  

The excitation wavelengths used range from the near UV (340-360 nm) for cell 

permeable Ca++ indicating dyes to the far red (590-610nm) with some of the new 

generation of red fluorescent proteins.   

 A fundamental limitation for fluorescence observation of live cells has 

been the phototoxicity of the high intensity shorter wavelengths needed to image 

the commonly used fluorescent constructs such as EGFP (reviewed in Magidson 

and Khodjakov, 2013; Waters J 2013).  Photodamage occurs through the light 
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induced formation of chemically reactive free radicals and formation singlet and 

triplet forms of oxygen (Zdolesk et al., 1993; Dixit and Cyr, 2003).  The most 

obvious practical consequences of photodamage are bleaching of the 

fluorophore and cell death as seen by membrane blebbing, cell rounding, and 

apoptosis (Zdolesk et al., 1990; Dixit and Cyr 2003; Hoebe et al., 2007; Kuse et 

al., 2014).  Paradoxically, obvious changes in cell morphology and cell death 

may be the kindest manifestation of photodamage.  One knows right away that 

there is damage that has impacted the experimental results.  A more pernicious 

problem occurs when the excitation light diminishes cell viability, alters cell 

physiology, and stresses the cell thereby making it susceptible to additional 

experimental stressors.  Well before the cell visibly dies or the fluorophore 

bleaches, the cell can sustain substantial functional damage, something that may 

not be evident until later if the observations last long enough (see Magidson and 

Khodjakov, 2013).  

Stress is additive and stresses that are singly of little consequence can act 

additively to significantly impact cell physiology and behavior.  Consequently, the 

interpretation of the experimental results is greatly complicated by the problem 

that one cannot fully know if the response of the cell is due to photodamage or 

the experimental perturbation or both.  For example studies provided seemingly 

compelling evidence that the removal of the centrosome from mammalian cells 

causes a G1 cell cycle arrest (Hinchcliffe et al. 2001; Khodjakov and Rieder, 

2001).  However, a later investigation demonstrated that this arrest resulted from 
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the combined stresses of centrosome removal, culture conditions, and 

microsurgery or blue light exposure in conducting the laser ablations of GFP 

centrin tagged centrioles (Uetake et al., 2007).  Other examples of functional 

photodamage, short of cell death, include the finding that illumination of mid-

prophase PtK cells with 488nm light leads to chromosome decondensation and 

the return of cells to a G2-like state (Khodjakov and Reider, 1999).  Also, 

exposure to blue light can markedly diminish the proliferative capacity of yeast 

and embryonic C. elegans cells (Carlton et al., 2010; Tinevez et al., 2012).   

  In practice photodamage may not always be an issue for short-term 

observations involving few images.  However, it is a serious problem for 

applications involving long-term observations with many images, particularly 

when each time point requires taking a Z-stack and/or if more than one 

fluorescent protein is being visualized.  Further, due to imprecise hardware 

synchronization between the shutter and camera, actual exposure times are 

often longer than what is set.  This can be especially troublesome when many Z-

stacks are recorded for multiple colors (see Magidson and Khodjakov, 2013).  

Importantly, in all applications photodamage begins even before the imaging 

sequence begins; scanning the slide, identifying a cell of interest, and bringing 

the structures of interest to focus in the center of the field can require a minimum 

of several seconds – the equivalent of many imaging exposures.  

Traditionally the most commonly used excitation wavelengths are blue 

(488nm) for EGFP and green (~546nm) for the RFPs.  Although the damaging 
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effects of blue light are well recognized (reviewed in Waters, 2013), the extent to 

which green light damages mammalian somatic cells has not been systematically 

tested.  Green light has been generally assumed to be benign, but, should this 

not be the case, investigators will have to evaluate whether the use of RFP 

constructs is worthwhile given their lower brightness relative to EGFP and the 

consequent need for longer excitations per image. 

Our study had two objectives.  First, we systematically characterized the 

relative phototoxicity of blue (488nm) light on the cell cycle progression of 

untransformed human cells expressing and not expressing fluorescent proteins.  

This result provided us with the basis against which to directly compare the 

effects of equivalent exposures, in both watts and total photons, of green 

(546nm) light on cell cycle progression.  We chose these wavelengths because 

they are widely used for work with GFP and RFP and can serve as a proxy for 

the phototoxicity of similar wavelengths used to excite other fluorescent proteins, 

such as CFP (439nm) and YFP (514nm).   

Second, we tested the efficacy of three stratagems that have or could be 

used to mitigate the phototoxicity of 488nm blue light in imaging. We examined 

the reciprocity relationship for photodamage between intensity and exposure 

duration to test the intuitive notion that lower intensities for longer times allow 

cells to some extent buffer the photodamage (discussed in Swedlow and 

Andrews 2005; Magidson and Khodjakov, 2013). We also tested if there is 

functionally significant leakage of short wavelengths through the excitation filter.  
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Although modern excitation filters for 488nm excitation commendably provide ~5 

OD suppression of wavelengths below 488nm, the high pressure mercury arc 

lamps in widespread use have extremely strong emission lines at 410, 365, and 

366nm.  Lastly, we tested if reduction of oxidative stress could improve the cell’s 

tolerance for blue light. 

 

Results 

Experimental system:   

 All work was performed with hTERT – RPE1 cells.  These untransformed 

human cells have intact cell cycle checkpoints including a normal p53 response 

to damage.  In response to various experimental perturbations these cells 

behave in a qualitatively identical fashion to primary human cells (Uetake et al., 

2004, 2007, 2010).  We did not use cancer cell lines, all of which have suites of 

defects that could in principle mask or alter their sensitivity and response to 

photodamage.  

 To assay for photodamage we used the timing and extent of interphase 

cell cycle progression because this is a more sensitive assay than overt cell 

death.  We shook off mitotic cells and plated them on coverslips.  Two hours later 

(early G1) marked fields of cells were irradiated with one of several regimes of 

blue (488nm) or green (546nm) light and then continuously followed with phase 

contrast optics by time-lapse video microscopy with shuttered green light.  Under 
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our observation conditions control RPE1 cells proliferate to confluency and 

remain viable for at least 13 days.    

 

Single dose irradiations of 488nm and 546nm light  

We first tested the effects of single irradiations of blue or green light 

ranging from 0.5 – 2.5 minutes on unlabeled cells.  Light was delivered through a 

conventional epifluorescence pathway with a 100W high-pressure mercury lamp 

and Leica L5 or Leica Red-GFP filter cubes (See Figure III-1A,B) and a 20X, 0.4 

NA objective. Light intensities at the specimen plane were 14mW/mm2 for 488nm 

and 21mW/mm2 for 546nm light (See Table III-1 for specifics).  Irradiated and 

same preparation control fields were continuously followed using shuttered 

transmitted green light for 48 hours (~2 normal cell cycles).  We determined how 

many cells progressed into mitosis, and if so, the total time each took to reach 

mitosis.  

For 488nm light irradiations we observed a dose-dependent decrease in 

the percentage of cells that progressed into mitosis compared to control cells.  

Also, those that did reach mitosis took longer to do so (Figure III-2A).  These 

results are plotted as the total percentage of cells that had entered mitosis as a 

function of time after the irradiation, with every point on the curve being a cell that 

entered mitosis.  In addition, cells that arrested for 48hrs were positive for 

nuclear p21 (Figure III-3). For the 1min and longer irradiations, some cells 

became less flat than the controls and showed reduced motility for up to 20  
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Table III-1.  Description of the equipment and parameters used for light 
irradiations 

 
Equipment/Parameters 
 

   
Description 

 

 
Microscope 

   
Leica DMRE  

 

 
Light Source 

   
100W High Pressure Mercury Arc Lamp 
(OSRAM) 

 

 
Objectives 

   
Irradiate: Leica N Plan, 20X, 0.40NA 
Film: Leica HC Plan Fluotar, 10X, 0.30NA 

 

 
Filter Cubes 
 
 
Light Intensities 
 
 
Epi-illumination  
Field Diaphragm 
 
Epi-illumination 
Condenser Diaphragm 
 

   
Leica L5: Excitation= BP 480/40 
Leica Red-GFP: Excitation= BP546/12 
 
Blue: 14mW/mm2 
Green: 21mW/mm2 
 
Set just inside field of view 
 
 
Set 67% open 
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A

Figure III-1.  Spectral Characteristics of Filter Cubes. (A) Graph displaying 
%transmission vesus wavelength for the L5 filter cube.  Green line represents the 
dichroic mirror, the blue line represents the excitation filter, and the red line 
represents the emission filter.  (B) Graph displaying %transmission vesus wavelength 
for the Red-GFP filter cube.  The light purple dashed line represents the dichroic 
mirror, the blue line represents the excitation filter, and the dark purple dotted line 
represents the emission filter.  Graphs are courtesy of Leica Microsystems. 

B
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hours. After that time they flattened, resumed normal motility, and some 

eventually entered mitosis.  We also found a dose-dependent increase in the 

percentage of cells that died, going up to an average of 12% for the 2.5min 

irradiations (Figure III-2D).  For 546nm light irradiations, we found a 10-15% 

reduction in the number of cells eventually reaching mitosis, but no strong dose 

dependency (Figure III-2B).  For the cells that did not enter mitosis, we did not 

observe any changes in cell flattening or motility as was the case for the 488nm 

irradiations.  For the longer irradiations with green light only 2% of the cells died 

(Figure III-2D). 

Since we used different watts per mm2 for the two wavelengths and blue 

light is more energetic per photon than green light, we expressed the exposures 

in terms of total number of photons delivered per unit area for both wavelengths. 

Percent cells that entered mitosis within 48 hours for total photon doses are 

shown in Figure III-2C.  For 488nm light exposures there is a clear dose 

dependency for the extent of interphase arrest.  For 546nm light irradiations, 

there is a modest but roughly constant reduction in the percentage of cells 

entering mitosis.   
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Figure III-‐3. 488nm Irradiations lead to p21 nuclear localization. Populations of
cells were marked and irradiated with 488nm light for 1.5min. After 48hrs, cells
were fixed and stained for p21 and Hoechst. The percentage of cells positive for
nuclear p21 are listed for the irradiated and control cells. At least 150cells were
counted for each condition.

9.1% 48.5%
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Fluorescent proteins and sensitivity to blue or green light 

The generation of reactive oxygen species (ROS) is believed to play a role 

in causing phototoxicity (Zdolesk et al., 1990; Zdolesk et al., 1993; Dixit and Cyr, 

2003).  Dixit and Cyr (2003) reported that the presence of a fluorescent protein 

enhances the amount of ROS in tobacco cells exposed to 546nm light.  Thus, we  

tested if expression of fluorescent proteins influences the sensitivity of cells to 

blue or green light.  

 We repeated the 30s, 1min, and 1.5min single 488nm irradiations using 

RPE1 cells stably expressing GFP-centrin1.  Centrin1 is present throughout the 

cytoplasm, and a small percentage is concentrated in the distal lumen of 

centrioles throughout the cell cycle (Piel et al., 2001).  For unirradiated cells 99% 

of wild type and GFP centrin1 expressing cells entered mitosis with essentially 

the same kinetics (Figure III-4A).  For the 30s irradiation 10% fewer GFP 

centrin1 expressing cells entered mitosis in 48 hours than the unlabeled cells 

(Figure 2A).  We did not observe a difference for the 1min irradiations, but at 

1.5min, 25% fewer GFP centrin1 expressing cells entered mitosis compared to 

unlabeled cells.  The same experiment was conducted with 546nm irradiated m-

Cherry centrin1 expressing cells.  Ninety percent of the unirradiated cells entered 

mitosis in 48 hours (Figure III-4B).  This suggests that m-Cherry centrin1 

expression per se is a stress.  Nevertheless, we observed a modest light dose 

dependent decrease in the percentage of cells that entered mitosis (Figure III-  
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Figure III-4.  Effects of single 488nm and 546nm light irradiations on 
G1 to mitosis progression for cells expressing fluorescent proteins. 
Percentages of the irradiated populations that entered mitosis are shown 
as a function of time after the irradiation.  A.) The percentage of the 
irradiated populations that entered mitosis as a function of time after 
488nm irradiations are shown in black for the unlabeled cells and in red 
for the cells expressing GFP-centrin1.  B.) Percent entry into mitosis with 
time after 546 nm irradiations is shown in black for the unlabeled cells 
and in red for the cells expressing mCherry-centrin1.  Each line is the 
combined data from 3 or more experiments and total cells followed for 
each irradiation regime are given next to each curve.   
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4B), something not seen to this extent for unlabeled cells exposed to green light 

(Figure III-2B).    

 

Reciprocity relationships  

The possibility that spreading light exposures out over longer times allows 

cells to some extent buffer the photodamage has been an attractive notion 

(discussed in Swedlow and Andrews, 2005; Magidson and Khodjakov, 2013).  

Support for this notion comes from the report of Dixit and Cyr (2003) that 

reducing 488nm light intensity and increasing exposure times led to a reduction 

in mitotic arrest and cell death for tobacco cells.  We used two strategies to slow 

the delivery of the 488nm light without diminishing the total doses given.  First, 

we broke the full intensity irradiations into a series of 10 second exposures 

separated by one minute, similar to what would happen with the repetitive 

acquisition of Z-stacks of 20 images each with a 500 millisecond camera 

exposure.  Second, we used single irradiations at 10% intensity for 

correspondingly longer times.   

For the following experiments we used unlabeled cells exposed to 488nm 

light.  First we spread the 30s, 1min, and 1.5min total 488nm irradiations into a 

series of 10 second pulses, each administered every minute.  For the 30 second 

total exposures, the same percentage of the cells entered mitosis by 48 hours for 

the population given pulses as did for the single, full time irradiations (Figure III-
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5A).  We note that some cells in the populations exposed to pulses entered 

mitosis sooner than their counterparts given a single longer irradiation.  For the 1 

minute total exposures spread out into pulses, the kinetics for entry into mitosis 

was slightly faster and by 48 hours 10% more cells entered mitosis than 

populations given a single irradiation.  For the 1.5 minute total exposures, those 

populations given pulses entered mitosis slightly slower than their single dose 

counterparts but by 48 hours similar percentages had entered mitosis. Thus, 

spreading out the exposure to 488nm irradiation into a series of full strength 

pulses provides at best a modest improvement in cell viability.   

To test if longer but lower intensity single irradiations moderated the 

phototoxic effects of 488nm light we cut the incident intensity to 10% with a 

neutral density filter.  Unlabeled cells were given single correspondingly longer 

exposures so as to maintain the same total light dosages as the 30 second, 1 

minute, and 1.5 minute irradiations used in the experiment plotted in Figure III-

2A.  As shown in Figure III-5B, we found no great or consistent improvement in 

the percentage of cells entering mitosis by 48 hours.  Thus, longer but lower 

intensity exposures did not mitigate the phototoxicity for 488nm light.   
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Figure III-5. Effects of prolonging the delivery of 488nm irradiations 
on G1 to mitosis progression for unlabeled cells.  A.) The total doses 
were spread out into a series of 10 second, full intensity pulses delivered 
one minute apart.  The percentage of the irradiated populations that 
entered mitosis as a function of time after single irradiations are shown 
in black and in red for the same doses spread out into pulses.  B.) The 
total doses were delivered as single 10X longer irradiations of 10% 
intensity– blue curves and single full intensity irradiations – black curves. 
Each line is the combined data from 3 or more experiments and total 
cells followed for each irradiation regime are given next to each curve. 
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Additional attenuation of short wavelengths 

 High-pressure mercury arc lamps have strong emission lines at 365-366, 

and 405 and 436 nm.  The 365 - 366 nm line is ~30 times brighter than the 

488nm peak and the others are ~20 times brighter.  Although modern 488nm 

excitation filters provide ~5 OD suppression of wavelengths below 488nm, we 

tested if putative leakage of these short wavelengths through the 488 and 546nm 

excitation filters participated in producing phototoxicity.  We added a long-pass 

filter into the light path that adds 4 OD suppression below <430nm (Figure III-6C) 

and repeated the single 488nm and 546nm irradiations.  Since the long-pass 

filter reduced watts per mm2 at the specimen plane for each wavelength, we 

expressed the exposures in terms of total number of photons per unit area 

delivered.  Addition of the long pass filter produced no improvement in the 

percentage of cells entering mitosis by 48 hours for any of the 488nm exposures 

and at best a slight improvement for the 546nm irradiations (Figure III-6A,B).  

Thus, addition of a long pass filter to the fluorescence-illuminating pathway is not 

detrimental, but does not represent a practical way to mitigate the phototoxicity of 

488nm light.  
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Figure III-6.  Introduction of a long pass filter into the irradiating pathway to test 
for phototoxic consequences of putative leakage of short wavelengths through 
excitation filters.  A.) Percentage of cells that entered mitosis by 48hrs as a function of 
total 488nm photons/mm2 administered at the specimen plane with (red) and without 
(black) the long pass filter.  B.) Percentage of cells that entered mitosis by 48hrs as a 
function of total 546nm photons/mm2 administered at the specimen plane with (red) 
and without (black) the long pass filter.  Each point represents the average from at least 
3 experiments and error bars depict SEM.  C.) Graph displaying the absorption in 
O.D.’s for the long-pass filter as a function of wavelength. Graph is courtesy of Paul 
Goodwin (API). 

C 
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Reducing oxidative stress 

 The production of ROS can lead to oxidative stress and damage living 

cells. Heretofore, all of our experiments were conducted with cells cultured at 

atmospheric oxygen level (~20%), which is higher than the physiologic levels 

within mammalian organisms (3-14%), depending on the tissue (reviewed in Sen 

and Roy, 2010).  Thus, we used two ways to reduce oxidative stress in unlabeled 

cells and tested if this reduced the phototoxicity of 488nm light.  We equilibrated 

cells and the culture medium with 3% oxygen, 5% CO2, and 92% nitrogen.  

Mitotic shake off cells were plated on coverslips and later mounted in 

observations chambers under these conditions.  Marked fields were either given 

single 1 or 1.5 minute irradiations with 488nm light or not irradiated to serve as a 

control.  Shake-off cells (no light) grown at low 3% oxygen exhibited similar cell 

cycle dynamics as cells grown at atmospheric oxygen.  For the 1 minute 

irradiations we found that 27% more cells entered mitosis than those irradiated 

under atmospheric oxygen levels (Figure III-7A).  For the 1.5 minute irradiations 

25% more cells progressed to mitosis than those irradiated under standard 

atmospheric oxygen levels (Figure III-7B).  Nevertheless, reduced oxygen levels 

did not completely mitigate phototoxic consequences of 488nm light.  

Approximately 7% fewer cells entered mitosis for the 1.5 minute irradiations than 

for the 1 minute irradiations (Figure III-7A versus III-7B).  Our second strategy 

was to continually treat cells grown at atmospheric oxygen level with 500um 

Trolox, a water-soluble antioxidant.  For the 1min irradiations almost all cells  
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Figure III-7. Effects of 488nm light irradiations on G1 to mitosis 
progression under conditions of reduced oxidative stress. 
Percentages of the irradiated populations that entered mitosis are 
shown as a function of time after the irradiation.  A.) Comparison of 
populations receiving single 1 minute irradiations under atmospheric 
(20%) oxygen levels plus 500uM Trolox (red), under ~3% oxygen 
levels (blue), under atmospheric oxygen levels (black), and under 3% 
oxygen levels with no light (green).  B.) The results of the same 
experiment with 1.5 minute single irradiations. Each line is the 
combined data from 2 or more experiments and total cells followed for 

h i di ti  i   i  t t  h  
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progressed into mitosis, a 38% increase over cells irradiated without Trolox.  For 

the 1.5 minute irradiations 85% of the cells progressed to mitosis, approximately 

a 35% improvement.  Together, these results indicate that reduction in oxidative 

stress reduces the phototoxic consequences of 488nm light exposures, but does 

not eliminate it.   

 

 

Discussion 

Beyond the photobleaching of fluorescent proteins, a major limitation for 

the repetitive imaging of living cells has been the degradation of cell viability.  

This is particularly a problem when the cells do not immediately die, but their 

cellular function is compromised but not obviously so in the experimental 

context.  The purpose of our study was to provide practical assessment of the 

phototoxicity of 488 and 546nm light on untransformed human cells that have the 

normal suite of checkpoints and damage responses.  We also tested strategies 

that have or could be used to mitigate phototoxicity.  We used blue and green 

light because they are commonly used to image cells expressing GFP or RFPs 

and we expect that these wavelengths can be used as a proxy for similar 

wavelengths used to excite other fluorescent proteins such as, ECFP, EYFP, and 

dsRed.  As a functional measure for phototoxicity we used the cell cycle arrest 

because it a more sensitive assay than overt cell death.   
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488nm light 

  It comes as no surprise that 488nm light is phototoxic to living cells as 

seen here as a dose dependent reduction in the percentage of the cells that 

enter mitosis and the slower progression through interphase for those that do 

reach mitosis.  Single 2.5 minute irradiations of unlabeled cells led to an 

interphase arrest of 90% of the cells.  There was a dose dependent increase in 

the incidence of cell death, reaching 12% for the longest exposures. We also 

found that expression of GFP-centrin 1 sensitized cells to 488nm light 

exposures.  For example, 1.5 minute irradiations reduced the percentage of cells 

entering mitosis from 53% for unlabeled cells down to 28% for GFP-centrin 1 

expressing cells.  In a broader sense this finding suggests that investigators 

should follow only those cells that express low levels of the fluorescent-tagged 

proteins even though the distribution of the tagged proteins may be harder to 

image.   

  It has long been suspected that longer lower intensity irradiations of 

488nm light promote cell viability by allowing the cell time to buffer the phototoxic 

reactions to some extent (Dixit and Cyr, 2003; discussed in Magidson and 

Khodjakov, 2013).  However, for the range of light doses we used in G1 we found 

at best a slight and not consistent reduction in phototoxicity when total light 

doses were spread out as a series of 10 second pulses given a minute apart or a 

ten fold reduction in the excitation intensity for single exposures.  Thus, it 
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appears that there is little to be gained by slowing the delivery of the 488nm light; 

total dose is what matters.   

  We also tested anecdotal reports that the use of a long pass filter in the 

illumination pathway promotes cell viability by suppressing the putative leakage 

through the excitation filter of the intense mercury arc emission lines at 

wavelengths less than 430 nm.   The possible value of this test is supported by 

the fact that the 365, 366, and 410 nm emission lines individually are up to 

approximately 30 times as intense as the 488nm emission peak. However, we 

found no significant reduction in phototoxicity with the presence of a long pass 

filter that provides a ~4 OD’s of additional suppression of these short 

wavelengths.   

  The one experimental stratagem that improved cell viability after 488nm 

light exposure was reducing the oxidative stress to the cells.  The generation of 

reactive oxygen species (ROS) is believed to be the driving force is causing 

phototoxicity (Zdolesk et al., 1990; Zdolesk et al., 1993; Dixit and Cyr, 2003).  

Cells are almost universally cultured under atmospheric conditions (~20% or a 

pO2 of 140 mm Hg at sea level).  This is higher than the in vivo mammalian 

levels, which range from 3-14% depending on the tissue (reviewed in Sen and 

Roy, 2010). We found that reducing oxygen levels in the observation chambers 

to ~3% allowed substantially more cells to progress to mitosis for two exposures 

to 488nm light.  Trolox, a water-soluble antioxidant, has been used to reduce 

photobleaching of fluorescent proteins (discussed in Swedlow and Andrews, 
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2005; Waters, 2013).  Here we tested if it could also diminish the phototoxicity of 

488nm light for cells grown under atmospheric conditions.  We found that 

inclusion of 500uM Trolox in the culture medium noticeably increased the 

percentage of cells that progressed to mitosis at atmospheric oxygen levels.  

Indeed, Trolox was slightly better than low oxygen levels in promoting cell 

viability.  Thus, long term imaging of cells expressing GFP, or fluorescent 

proteins with similar excitation wavelengths, should substantially benefit from 

culturing the cells at reduced oxygen levels or the addition of Trolox to the culture 

medium.  

  

546nm light 

  Compared to 488nm light, 546nm light is far less phototoxic for unlabeled 

cells.   We observed a 10–15% reduction in the percentage of cells entering 

mitosis after all irradiations and no clear dose dependency.  Also, only 2% of the 

cells died after the longest irradiations.  When the doses are expressed as the 

total number of photons delivered per unit area of the specimen plane, unlabeled 

cells well tolerated just over 50% more incident 546nm photons than found for 

highest dose of 488nm light.  However, the expression of a RFP construct 

sensitized the cells to 546nm irradiation.  Cells expressing mCherry-centrin1 

showed a modest dose dependent reduction of cells entering mitosis suggesting 

a participation of the fluorescent protein in phototoxic reactions.   
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  These results reveal that 546nm light is a far less toxic wavelength for 

imaging than 488nm light.  This means that the use of RFP constructs in 

repetitive imaging should allow better cell viability than the use of GFP 

constructs.  This could translate into more frequent imaging and longer film runs.  

However, 546nm light is not entirely safe; there is some functional phototoxicity, 

particularly when the cell expresses a RFP construct.  Additionally, the 

investigator will have to take into account that RFPs are generally less bright 

than GFP and consequently may require longer excitation exposures for each 

image.     
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Materials and Methods 

 

Cell culture, treatment, and immunofluorescence  

hTERT-RPE1-WT cells and hTERT-RPE1 cells stably expressing GFP-centrin1 
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or mCherry-centrin1 were cultured in F12/DME (1:1) medium supplemented with 

10% FBS and 1% Penicillin-Streptomycin.  For noted experiments, 500um Trolox 

(Sigma) was added to culture media one day before mitotic shake-off and re-

added immediately after shake-off.  All cells were grown at atmospheric oxygen 

(~20%) unless specified.  For low oxygen culture conditions, cells were grown 

and maintained in a modular incubator chamber (Billups-Rothenberg) flushed 

with a custom gas mixture containing 3% oxygen, 5% CO2 and 92% nitrogen 

one day before mitotic shake-off and re-flushed immediately after mitotic shake-

off.   For immunofluorescence experiments cells were grown on glass coverslips 

and fixed in methanol at -20 degrees celsius for >5 minutes.  The primary 

antibody p21 (AbCam) was used at 1:200. Secondary antibodies conjugated to 

AlexaFluor 594 (Life Technologies) were used at 1:1000. Hoechst 33258 (Sigma) 

was used to label DNA.  

 

Light irradiations and live-cell imaging 

Mitotic shake-off cells were grown on glass coverslips and assembled into 

observation chambers containing F12/DME (1:1) medium as previously 

described (Sluder et al., 2005).  Groups of cells were circled on the coverslips 

with a diamond scribe.  Two hours after shake-off blue (488nm) or green 

(546nm) light was delivered to cells through a conventional epifluorescence 

pathway, with a 100W high-pressure mercury lamp (OSRAM) and Leica L5 or 

Leica Red-GFP filter cubes and a 20X, 0.4 NA objective.  Multiple fields of cells 



82

were followed at 37°C with DMRE or DMIRE2 (Leica) microscopes equipped with 

phase-contrast optics using 10X/0.3 NA objectives using shuttered green light.  

Image sequences were taken with Orca ER (Hamamatsu Photonics) cameras.  

Images were acquired every 3min with C-imaging software (Hamamatsu 

Photonics) and were exported as QuickTime videos using CinePak compression 

(Apple).  

 

Light intensity and photon determination 

Light intensities for each wavelength were determined using a Newport 1916-C 

power meter.  The detector was placed at the specimen plane under the 20X 

objective and intensities were measured in watts.  Light output was regularly 

monitored to ensure light output was consistent between experiments.  For total 

photon determination we calculated the energies from each peak wavelength 

(4.07X10-19J/photon for 488nm, 3.64X10-19J/photon for 546nm) using E=hc/λ.  

We then divided the power measurements by the corresponding energies to 

determine photons/s.  This number was then multiplied by the total seconds of 

each exposure to determine total photons administered. 
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CHAPTER IV: DISCUSSION AND FUTURE DIRECTIONS 

 

 The work presented in this thesis covers two separate studies on 

the consequences of cellular damage.  Together, my work demonstrates the 

importance of proper centriole regulation after DNA damage in untransformed 

human cells, suggests a connection between DNA damaging cancer therapies 

and the development of further transformation (Chapter II), and provides 

practical assessments of microscopy induced photodamage and potential ways it 

can be mitigated (Chapter III).  Here, I have discussed the current understanding 

of centriole behavior after DNA damage, the connection between centrosome 

amplification and cancer, and the importance of recognizing microscopy induced 

phototoxicity.  Further, I propose questions that still remain and suggest possible 

work that can be done to continue progress in each of these areas.  

 

DNA damage and centrosome amplification 

It is well established that DNA damage leads to centrosome amplification 

in transformed cell lines.  Interestingly, the reported incidence of centrosome 

amplification in untransformed cells was much less than reports for transformed 

cells.  However, the findings in untransformed cells were sparsely reported and 

not completely understood.  We were particularly interested in better 

characterizing centriole behavior after DNA damage in untransformed human 
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cells, as well as, determining the reason for the large difference in centrosome 

amplification between untransformed and transformed cells. 

Our findings that only 10% of cells contained centrosome amplification 

after treatment with Doxorubicin were consistent with previous reports using 

ionizing radiation (Kawamura et al., 2006; Sugihara et al., 2006; Saladino et al., 

2009).  However, we revealed that over half of cells had at least one pair of 

disengaged centrioles, something not previously reported.  This led us to 

investigate why centrioles were not reduplicating despite becoming prematurely 

disengaged, which should “license” them to do so.  We found that after DNA 

damage, activation of p53, and subsequently p21, led to inhibition of Cdk2 

activity.  Cdk2 activity is necessary for centriole duplication at the G1/S transition 

during the cell cycle (Hinchcliffe and Sluder, 2002).  Consistent with these 

findings, p21 depletion leads to an increase in centrosome amplification in U2OS 

cells (Shimada et al., 2011).  Interestingly, many transformed cell lines contain 

defects in the p53/p21 pathway.  This provides an explanation for why many 

transformed cell lines display much more centrosome amplification after DNA 

damage than untransformed human cells.  However, Cdk2 might not be the only 

protein that mediates centriole reduplication.  For example, it was reported that 

DNA damage leads to p53-mediated downregulation of Plk4, a kinase required 

for daughter centriole assembly (Li et al., 2005; Nakamura et al., 2013).  Thus, 

multiple levels of control might exist to limit centriole reduplication after DNA 

damage.   
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Moving forward, it would be interesting to see if inhibiting other proteins 

normally required for centriole duplication, such as Plk4 and SAS-6, would limit 

centriole reduplication in transformed cell lines.   Reports have demonstrated that 

APC/C-Cdh1 activity targets SAS-6 for degradation in late anaphase (Strnad et 

al., 2007; Puklowski et al., 2011), and we, and others, have shown that APC/C is 

active after DNA damage.  Thus, this would provide another explanation as to 

why only a small number of cells exhibit extra centrioles in untransformed cells.  

Consistent with this idea, we report that 97% of cells contain no SAS-6 staining 

at centrioles, by 48hrs after DNA damage.   

  

DNA damage and centriole disengagement 

We found that 52% of untransformed cells contained disengaged 

centrioles by 72hrs after treatment with Doxorubicin.  Additionally, we 

demonstrated that either APC/C or Plk activities could disengage centrioles after 

DNA damage.  These observations are consistent with the report that without 

DNA damage either Plk or APC/C activity alone is sufficient to disengage 

centrioles during prolonged S or G2 phases, albeit more slowly than both acting 

together (Hatano and Sluder, 2012; Loncarek et al., 2010; Prosser et al., 2012).  

However, many questions still remain.  First, it is unclear which members of the 

Plk family actually participate in disengagement after damage.  It is reported that 

Plk1, the obvious choice, is inhibited after DNA damage (Smits et al., 2000).   

Therefore, a few possible explanations exist.  Plk1 activity could act early after 



86

DNA damage to disengage centrioles and then becomes downregulated 

afterwards.  To explore this, we attempted to stain cells for the phosphorylated 

active form of Plk1, which was shown to localize to centrioles in conditions that 

allow disengagement (Loncarek et al., 2010), at multiple time-points after DNA 

damage.  However, we were unsuccessful at finding any localization at 

centrioles.  Another option would be to repeat these experiments and quantify 

phosphorylated Plk1 levels by western blot analyses to determine if and when 

Plk1 becomes activated after DNA damage.   

The second possibility is that Plk1 is not responsible for disengagement, 

but Plk2 or Plk3 can compensate for the activity.  To support this idea, Plk2 and 

Plk3 activities were shown to rise after DNA damage (Bahassi, 2011).  Further, 

according to unpublished results, Plk2 and Plk3 can phosphorylate the Plk1 

target Emi1 in vitro (discussed in Wiebusch and Hagemeier, 2010).  Our results 

using the Plk inhibitor BI 2536 could not distinguish between these possibilities 

because it inhibits the activities of Plk1, 2, and 3.  Therefore, more specific 

inhibitors to Plk2 and Plk3 are needed in order to determine which proteins are 

responsible.  Alternatively, RNAi of individual members could prove useful, but 

due to possible compensation caveats, this would have to be done very 

systematically. 

The second major question that remains from our study is what are the 

targets of Plk and APC/C that lead to centriole disengagement?  Reports show 
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that APC/C activity leads to the degradation of securin and subsequent activation 

of the protease Separase, which is required for centriole disengagement (Zou et 

al., 1999; Tsou and Stearns, 2006).  However, the question still remains, what 

are Plk and Separase doing?  There is attractive evidence that Plk1 and 

Separase regulate centriole disengagement in a similar fashion to sister 

chromatid separation.  In prophase, Plk1 phosphorylates SA2, causing 

dissociation from chromosome arms, and it also phosphorylates Scc1, a 

cohesion subunit, causing it to be cleaved by Separase in late mitosis (Hauf et 

al., 2005; Peters et al., 2008).  Recently, Schockel et al. (2011) demonstrated 

that expression of non-cleavable Scc1, blocked centriole disengagement, and 

conversely, cohesin subunits engineered to have cleavable sites promoted 

disengagement.  In addition, many cohesion subunits are reported to localize to 

centrioles and control engagement (Thein et al., 2007; Wang et al., 2008; 

Nakamura et al., 2009; Beauchene et al., 2010; Gimenez-Abian et al., 2010).  

Thus, much evidence is growing to support the idea that centriole disengagement 

is regulated similarly to sister chromatid separation.  While very appealing, many 

questions still remain.  For example, does the entire cohesin complex or just a 

few subunits mediate engagement?  Further, does the complex form a ring 

around centrioles as they do at chromosomes?  With the advancements in super-

resolution microscopy, it will be interesting and important to see if the localization 

pattern of some of these proteins can be determined at centrioles. 
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Centrosome amplification and cancer 

 For over 100 years it has been proposed that centrosomal defects can 

lead to aneuploidy and cancer (Boveri, 1914).  During this time it has been 

shown that most tumors contain centrosome aberrations (reviewed in Nigg et al., 

2014).  Although the direct connection still remains unknown, it is proposed that 

the presence of extra centrosomes in mitosis leads to multipolar spindle 

formation or transient bipolar spindles, which can lead to lagging chromosomes, 

ultimately leading to genomic instability.   

We demonstrated that after DNA damage, 10% of cells contain extra 

centrioles and 52% have disengaged centrioles.  These, disengaged daughter 

centrioles displayed markers of maturation, suggesting they could assemble a 

spindle during mitosis.  Thus, the total incidence of functional amplification was 

62%.  We were interested in knowing if cells containing disengaged or extra 

centrioles could enter into mitosis after DNA damage, and if so what was the 

consequence.   We found that 14% of cells eventually entered mitosis after being 

prolonged in G2, and of these, 26% contained disengaged or extra centrioles.  

Interestingly, based on our time-lapse recordings, all cells that entered mitosis 

divided in a bipolar fashion.   This suggests that the cells were able to cluster the 

centrosomes at mitosis to avoid multipolarity.  This is not surprising as RPE1 

cells commonly display centrosome clustering in the presence of extra 

centrosomes (Uetake and Sluder, 2004; Krzywicka-Racka and Sluder, 2011).  

However, even when cells form bipolar spindles with extra centrioles, often times 
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they go through a transient multipolar intermediate leading to lagging 

chromosomes (Ganem et al., 2009; Crasta et al., 2012).  This suggests that DNA 

damage in normal proliferating cells could lead to genomic instability.  This is 

especially troublesome for cancer patients who receive radiation therapy and/or 

DNA damaging drugs.   

 For future work, it would be of great importance to perform live-cell 

fluorescence imaging on RPE1 cells that progress into mitosis after DNA damage 

to determine if cells do experience lagging chromosomes.  Further, it is unknown 

what happens to the daughter cells that formed from cells with extra 

centrosomes.  Extension of time-lapse recordings might show if they immediately 

arrest in the next cell cycle or continue to proliferate.  This could provide useful 

insight into whether cells can propagate with chromosome damage and/or 

genetic imbalances.    

 

Phototoxicity in live-cell imaging 

The light intensities used for fluorescence imaging can lead to 

photodamage and have toxic effects on living cells.  Although this is a recognized 

problem for shorter wavelengths commonly used to visualize EGFP, the 

phototoxic effects of 546nm (green) light have not been systematically studied in 

mammalian cells.  Therefore, we characterized the effects of 488nm and 546nm 

light on cell cycle progression in unlabeled untransformed human (hTERT-RPE1) 

cells.  We chose these cells because they have an intact p53 pathway and stress 
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and/or damage is known to cause substantial delays or arrests in the cell cycle.  

This allowed us to use cell cycle progression as a marker for phototoxicity, which 

is a more sensitive assay than overt cell death.  This is important because well 

before cells visually die from photodamage, they can experience altered cellular 

physiology, which can complicate experimental analysis without the knowledge of 

the researcher.  Further, while primary RPE cells are pigmented, hTERT-RPE1 

cells are not pigmented in culture (Rambhatla et al., 2002; Denton et al., 2006).  

Therefore, these cells should not contain additional light absorbing molecules 

and are a good representative of commonly used human cells in culture. 

 

Effects of 488nm and 546nm light 

In line with previous reports in different cell types, RPE1 cells were very 

sensitive to exposures of blue light (Zdolesk et al., 1990; Dixit and Cyr 2003; 

Hoebe et al., 2007; Robertson et al., 2013; Tinevez et al., 2013; Kuse et al., 

2014).  Single increasing irradiations led to a dose-dependent decrease in the 

percentage of cells that enter mitosis and cells that did reach mitosis took longer 

to do so.  When we compared the effects of green (546nm) light to blue (488nm) 

light in both watts and total photons, we found that cells were much less sensitive 

to green light.  Together, these findings demonstrate that shorter wavelengths of 

light are more harmful to untransformed human cells, which until now has only 

been an assumption.  This suggests if only single color imaging is needed, using 

RFP constructs is a safer option for live-cell experiments.  However, it is worth 
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noting that 546nm irradiations still led to a 10-15% decrease in cells that entered 

mitosis and thus, is not completely benign.   

Interestingly, it is known that fluorescent proteins and dyes contribute to 

the generation of phototoxicity, but our results revealed that unlabeled RPE1 

cells are intrinsically photosensitive.  Thus, the question remains, what is leading 

to phototoxicity in these cells?  While the answer is still up for debate there have 

been a few hypotheses in the literature.  In 2009, it was shown that removing 

vitamins from cell culture media, specifically riboflavin, led to significant increases 

in the photostabilities of green fluorescent proteins (Bogdanov et al., 2009).  The 

belief is that these vitamins can serve as cell permeant electron acceptors to 

propagate oxidative stress.  Another, and not exclusive hypothesis, is that 

molecules in the cell can absorb light and promote the generation of 

photodamage.  For example, mitochondria contain many molecules, such as 

cytochromes, flavoproteins, and NAD(P)H, that absorb both UV and visible light 

(Cheng and Packer, 1979).  In support of this idea, it was demonstrated that non-

UV visible light significantly impacts yeast metabolism, likely due to cytochrome 

light absorption (Robertson et al., 2013).  In our experiments, the cell culture 

media was not devoid of vitamins, therefore, both scenarios are a possibility.  

However, if the phototoxic effects were due solely to molecules in the media, the 

effects should be widespread in the population since they would have to be 

diffusible.  When we analyzed cells that were outside the irradiated area, they 
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were much healthier, suggesting that factors within the cells themselves are 

probably involved. 

 

Impact of fluorescent proteins 

Although our results revealed that unlabeled RPE1 cells are intrinsically 

photosensitive, it is possible that the amount of photodamage produced would be 

increased when fluorescent proteins are present.  Indeed, Dixit and Cyr (2003) 

reported that the levels of reactive oxygen species (ROS) produced in tobacco 

cells that are expressing a fluorescent protein are increased compared to 

unlabeled cells.  Our results demonstrated that RPE1 cells stably expressing 

GFP-centrin1 were more sensitive to blue light than unlabeled cells.  

Interestingly, control RPE1 mCherry-centrin1 cells displayed a longer average 

cell cycle length that unlabeled RPE1 cells.  This result suggests that the 

presence of mCherry-centrin1 is a stress, which can increase the cell’s sensitivity 

to further stressors, such as the mitotic shake-off.  Despite this finding, when 

cells were irradiated with 546nm light we observed a dose dependent decrease 

in the percentage of cells that entered mitosis.  Together these data provide 

evidence that excitation of fluorescent proteins can exacerbate the phototoxic 

effects of light on cells.  In addition, the observations with mCherry-centrin1 cells 

indicate that even though green light exposure is relatively benign for cells, it is 

less so when it excites a fluorescent protein.  Additionally, in our experiments we 

used fluorescently tagged centrin1, which is a cytosolic protein.  For researchers 
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using cells expressing fluorescently tagged nuclear or mitochondrial proteins, 

there could be an increased risk of acquiring phototoxic effects due to their 

location.  The generation of ROS in either of these organelles greatly increases 

the chances of inducing DNA damage and oxidative stress.  Therefore, imaging 

conditions may need to be further adjusted depending on the tagged protein of 

interest. 

Moving forward, as the generation and improvements of far-red exciting 

fluorescent proteins continues, it will be interesting to see if phototoxicity can be 

further alleviated with the use of even longer wavelengths of light.  This may 

allow researchers who require multicolor imaging to shift to the combination of 

RFPs and far-red exciting proteins.  Further, multi-photon microscopy, which 

utilizes light in the far-red, may be a safer option for live-cell imaging. 

 

Reciprocity relationships 

It is commonly believed that the rate at which photons are delivered to 

cells impacts the level of phototoxicity produced (discussed in Magidson and 

Khodjakov, 2013).  For example, long exposures with low intensity light are 

thought to be less harmful to cells than short exposures using high intensity light.  

The belief is that spreading the total dose over a longer period of time allows for 

cells to appropriately scavenge excess ROS or repair a certain amount of 

photodamage.  Only when the damage reaches a certain threshold does it pose 

a problem to cells.  For tobacco cells, Dixit and Cyr (2003) reported that reducing 
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blue light intensity, but increasing exposure times resulted in less mitotic arrest 

and cell death, despite a higher total energy dose.   

We tested this hypothesis in two different fashions.  First, we spread our 

single irradiations into 10s pulses, administered every minute until the total 

exposures were the same and secondly, we added a neutral density filter, 

allowing only 10% transmission of light, and extending our irradiation times ten-

fold.  Our results, however, revealed no consistent improvements in cell cycle 

progression for either condition.  Therefore, for untransformed human cells, if the 

total energy dose is constant, the rate at which the photons are delivered does 

not have an impact on the phototoxic effects on cell cycle progression.  This 

suggests that sacrificing signal to noise to improve cell health may not always be 

necessary.  However, this may also vary depending on the imaging system used.  

For example, with confocal microscopy, each point in the sample receives short, 

high intense pulses of light as opposed to continuous sample illumination for 

wide-field microscopy.  With such high powered and directed pulses, the risk of 

severely damaging cells increases.  Indeed, Tinevez et al., (2012) reported that 

for the same total energy dose administered to C. elegans embryos, spinning-

disk confocal microscopy induced more photodamage than wide-field 

microscopy.  Therefore, reducing light intensity and extending exposures might 

be required for live-cell imaging in other systems.  None-the-less, for all 

applications it is important to find the appropriate balance between exposure time 

and light intensity to avoid phototoxicity that could confound results. 
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Oxidative stress 

We have shown that blue light is extremely damaging to untransformed 

human cells.  Although cells tolerated green light much better than blue light, 

imaging with the use of only RFP’s is not always an option.  Often times the 

signal is not bright enough, or simply multiple colors are desired.  Since the 

generation of reactive oxygen species is believed to be the driving force in the 

production of photodamage (Zdolesk et al., 1993; Dixit and Cyr, 2003), we were 

interested if reducing the level of oxidative stress may allow cells to cope with 

and relieve photodamage before it becomes a burden.  Indeed, the use of 

oxygen scavengers has shown to reduce photobleaching during live-cell 

fluorescence imaging (reviewed in Waters, 2013).  Our results revealed that 

culturing cells at oxygen levels closer to physiological conditions (~3%) or the 

addition of Trolox, a water-soluble antioxidant, to the cell culture media, 

significantly improved cell cycle progression after exposure to blue light.  While 

both treatments were successful, the addition of Trolox showed greater 

improvements.  Remarkably, ~40% more cells treated with Trolox entered mitosis 

after the 1min single irradiations of blue light compared to cells without Trolox 

treatment.  Further, cell cycle timing for these cells was very similar to that of 

control shake-off cells, suggesting an almost entirely healthy population.  These 

findings provide researchers an easy and effective method of reducing 

phototoxicity for long-term live-cell fluorescence imaging.   
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