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Abstract 

 

The nuclear matrix (NM) is a fibrogranular network of ribonucleoproteins upon 

which transcriptional complexes and regulatory genomic sequences are 

organized. A hallmark of cancer is the disorganization of nuclear architecture; 

however, the extent to which the NM is involved in malignancy is not well studied. 

 

The RUNX1 and RUNX2 proteins form complexes within the NM to promote 

hematopoiesis and osteoblastogenesis, respectively at the transcriptional level. 

RUNX1 and RUNX2 are both expressed in breast cancer cells (BrCCs); 

however, their genome-wide BrCC functions are unknown. RUNX1 and RUNX2 

activate many tumor suppressor pathways in blood and bone lineages, 

respectively, including attenuation of protein synthesis and cell growth via 

suppression of ribosomal RNA (rRNA) transcription, which appears contrary to 

Runx-expression in highly proliferative BrCCs. To define roles for RUNX1 and 

RUNX2 in BrCC phenotype, we examined the involvement of RUNX1 and 

RUNX2 in rRNA transcription and generated a genome-wide model for RUNX1 

and RUNX2-binding and transcriptional regulation. To validate gene expression 

patterns identified in our screen, we developed a Real-Time qPCR primer design 

program, which allows rapid, high-throughput design of primer pairs (FoxPrimer). 

In BrCCs, RUNX1 and RUNX2 regulate genes that promote invasiveness and do 
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not affect rRNA transcription, protein synthesis, or cell growth. We have 

characterized in vitro functions of Runx proteins in BrCCs; however, the 

relationships between Runx expression and diagnostic/prognostic markers of 

breast cancer (BrCa) in patients are not well studied. Immunohistochemical 

detection of RUNX1 and RUNX2 in BrCa tissue microarrays reveals RUNX1 

expression is associated with early, smaller tumors that are ER+ (estrogen 

receptor), HER2+, p53-, and correlated with androgen receptor (AR) expression; 

RUNX2 expression is associated with late-stage, larger tumors that are HER2+. 

These results show that the functions and expression patterns of NM-associated 

RUNX1 and RUNX2 are context-sensitive, which suggests potential disease-

specific roles. 

 

Two functionally disparate genomic sequence types bind to the NM: matrix 

associated regions (MARs) are functionally associated with transcriptional 

repression and scaffold associated regions (SARs) are functionally associated 

with actively expressed genes. It is unknown whether malignant nuclear 

disorganization affects the functions of MARs/SARs in BrCC. We have refined a 

method to isolate nuclear matrix associated DNA (NM-DNA) from a structurally 

preserved NM and applied this protocol to normal mammary epithelial cells and 

BrCCs. To define transcriptional functions for NM-DNA, we developed a 

computational algorithm (PeaksToGenes), which statistically tests the 
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associations of experimentally-defined NM-DNA regions and ChIP-seq-defined 

positional enrichment of several histone marks with transcriptome-wide gene 

expression data. In normal mammary epithelial cells, NM-DNA is enriched in both 

MARs and SARs, and the positional enrichment patterns of MARs and SARs are 

strongly associated with gene expression patterns, suggesting functional roles. In 

contrast, the BrCCs are significantly enriched in the silencing mark H3K27me3, 

and the NM-DNA is enriched in MARs and depleted of SARs. The MARs/SARs in 

the BrCCs are only weakly associated with gene expression patterns, suggesting 

that loss of normal DNA-matrix associations accompanies the disease state. Our 

results show that structural preservation of the in situ NM allows isolation of both 

MARs and SARs, and further demonstrate that in a disorganized, cancerous 

nucleus, normal transcriptional functions of NM-DNA are disrupted. 

 

Our studies on nuclear organization in BrCC, show that the disorganized 

phenotype of the cancer cell nucleus is accompanied by deregulated 

transcriptional functions of two constituents of the NM. These results reinforce 

the role of the NM as an important structure-function component of gene 

expression regulation.  
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Research Chapters 

 

CHAPTER 1 INTRODUCTION 

 

General background 

 

The nucleus is the eukaryotic organelle in which genomic DNA is stored, 

replicated, and transcribed (Alberts et al. 2002). Many factors collectively 

regulate the transcription of specific genes, the precise temporal expression of 

which is required for cellular functions such as cell cycle progression, cellular 

homeostasis, and lineage commitment (Lanctôt et al. 2007, Hager et al. 2009). A 

critical mechanism for gene expression regulation is the facultative spatial 

organization of regulatory genomic sequences and transcriptional complexes 

(Zaidi et al. 2007). In diseases such as breast cancer, many of the regulatory 

mechanisms controlling gene expression are impaired, which results from and 

potentiates the disease state (Meaburn et al. 2009, Misteli 2010). In cancer, 

malformed or irregular nuclei are used as diagnostic and prognostic parameters 

of disease. Cancer cell nuclei are often characterized as having “folds” or 

“indentations”. The distribution of heterochromatin is often markedly disrupted in 

cancer cells as compared to normal cells (Zink et al. 2004b). We hypothesize 

that these grossly observed nuclear changes correspond to changes in the 
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spatial organization of transcriptional regulatory complexes and genomic 

sequences. This study is focused on two components that contribute to nuclear 

organization, the nuclear matrix and RUNX proteins, and their functional 

associations with gene expression in breast cancer cells. 

 

Nuclear domains associated with transcription 

 

The diameter of the average human nucleus is approximately 6µm (Alberts et al. 

2002). However, the human genome is approximately 2 meters in length (Lander 

et al. 2001). The length of the genome in relation to the size of the nucleus 

creates a non-trivial space restriction issue. In order to attain sufficient 

compaction to fit into the nucleus, DNA is wrapped around histone octamers and 

further folded into higher-order structures (Li et al. 2007). Genes are 

subsequences of DNA that can be transcribed into RNA and comprise roughly 

1% of the human genome (ENCODE Project Consortium 2011). The small 

percentage of genomic sequence that encodes genes, combined with nuclear 

volume limitations necessitates the organization of genomic DNA such that 

genes are accessible to transcriptional regulators. Further compounding the 

spatial problem, while all cells within an organism have approximately the same 

genomic sequence, not all genes within the genome are expressed in every cell. 

Specific genes, herein referred to as phenotypic genes, are only expressed 
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within certain developmental time frames and in defined cellular lineages (Zaidi 

et al. 2005). Therefore, of the 1% of the human genome encoding genes, only a 

subset of genes are transcriptionally active in a given cell type. One mechanism 

for specification of phenotypic gene expression is coordinated spatial 

organization of genomic sequences and regulatory complexes (Stein et al. 2003, 

Misteli 2007, Hager et al. 2009). Disruption of key components of nuclear 

organization and gene expression regulation often results in developmental 

abnormalities, indicating the importance of nuclear organization as a mechanism 

for cellular phenotype (Alvarez et al. 2000, Melillo et al. 2001, De Sandre-

Giovannoli et al. 2002, Alsheimer et al. 2004, Roshon and Ruley 2005, Frock et 

al. 2006).  

 

At a gross scale, expression of genes can be bisected into two groups based on 

the chromatin environment within and surrounding the genes. Genes organized 

within more compact chromatin structures, referred to as heterochromatin, are 

unlikely to be expressed as these regions are mostly inaccessible to 

transcriptional complexes. Genic regions organized within less compact 

structures, or euchromatin, are permissive for interaction with transcriptional 

complexes and therefore have the potential to be transcribed (Li et al. 2007). 

Heterochromatin and euchromatin occupy spatially distinct regions of the 

nucleus. Light microscopy imaging of cells reveals the nucleus as being 
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organized into three regions: 1) the peripheral heterochromatin, 2) the nucleolus 

(sometimes more than one, depending on cell type), and 3) the euchromatic 

space between the nucleolus and peripheral heterochromatin (Berezney et al. 

1995, Nickerson et al. 1995). Even at this broad scale, patterns in gene 

expression form based on whether a particular gene is localized to the 

euchromatic space, the peripheral heterochromatin, or the nucleolus (Nickerson 

2001). While it is convenient to discuss these nuclear areas as if they are 

separated by a physical barrier, similar to cytoplasmic organelles, it is important 

to make the critical distinction that nuclear organelles, or compartments, are not 

separated by a membrane. Nuclear organelles are defined by the concentration 

of similar structural or functional bodies within the nucleus, not by physical 

separation via a membrane (Dundr and Misteli 2010). 

 

The nucleolus is a specialized nuclear compartment within which the short arms 

of human chromosomes 13, 14, 15, 21, and 22 are localized (Sullivan et al. 

2001). These chromosomal regions contain tandem-arrayed repeats of the gene 

encoding ribosomal RNA (rRNA), which, once processed, forms the major 

catalytic subunit of the ribosome. Specialized proteins, such as RNA Polymerase 

I (Pol I), are concentrated within the nucleolus to drive the transcription of 

ribosomal DNA (rDNA) and processing of pre-rRNA into mature ribosomes 

(McStay and Grummt 2008). The dense concentration of these regulatory factors 
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and ribosomal RNAs causes the visually distinct appearance of the nucleolus, 

which can be observed via light microscopy or staining techniques that 

distinguish between RNA and DNA, such as Papanicolaou stain (Papanicolaou 

and Traut 1997). Ribosomal RNA transcription is the rate limiting step for cellular 

growth and accounts for the majority of a cell’s transcriptional activity (Grummt 

and Voit 2010). Organization and concentration of regulatory factors within the 

nucleolus is essential for the precise regulation of rRNA transcription (Grummt 

2010). 

 

The nucleolus is not the only place where compartmentalization of transcriptional 

functions is observed in the nucleus. Typically, RNA Polymerase II (Pol II) 

transcription of phenotypic genes occurs between the nucleolus and the 

peripheral heterochromatin in the euchromatic space (Herman et al. 1978, 

Jackson and Cook 1985, Jackson et al. 1993, Wansink et al. 1993, Niedojadlo et 

al. 2011). Peripheral heterochromatin is generally transcriptionally silent, with the 

exception of genes within the peripheral heterochromatin proximal to nuclear 

pores that are sometimes observed to be highly expressed in specific instances 

(Mateos-Langerak et al. 2007, Papantonis and Cook 2010). The transcription of 

most phenotypic genes is executed by Pol II in coordination with a multitude of 

regulatory factors, which can be cell cycle, cell type, or developmentally specific 

(Stein et al. 2011). Pol II transcription occurs at a defined number of sites, 



6 
 

primarily within the euchromatic space, which are referred to as transcription 

factories (Jackson et al. 1998, Cook 1999). These transcription factories are 

relatively static in position, and contain a high concentration of transcription 

factors and RNA processing factors (Ghamari et al. 2013). The inclusion of RNA 

processing factors is likely due to the observation that RNA splicing occurs co-

transcriptionally (Xu and Cook 2008).  

 

Similar to the transcription factories, the chromosomes themselves are not free-

floating entities within the nucleus. Chromosomes occupy distinct territories 

relative to one another, which are preserved throughout multiple cell divisions 

(Lanctôt et al. 2007, Geyer et al. 2011). Transcriptionally silent chromosomal 

regions are largely localized to the peripheral regions of the nucleus, while 

transcriptionally active regions of chromosomes are found within the euchromatic 

space (Andrulis et al. 1998). Live cell imaging of genes has demonstrated that 

silent, or non-expressed genes, are quite static within the chromosome territory; 

in contrast, expressed genes are dynamic in their range of movement within the 

chromosome territory (Kosak et al. 2002, Zink et al. 2004a, Hewitt et al. 2004). 

This freedom of motion observed for expressed genes is thought to arise from 

the transient nature of transcription. Genes are typically not constitutively 

expressed; rather they are transcribed in bursts. It has been hypothesized that 
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these transient events occur concurrently with the movement of a gene into a 

transcription factory (Deng et al. 2012).  

 

It is thought that transcription factors regulate genes by binding to cis-elements 

such as promoters and enhancers (Ong and Corces 2011, Spitz and Furlong 

2012). Yet, this model may not fully explain how genes are recruited to 

transcription factories. The average gene length in the human genome is 

approximately 3,000 base pairs, which is similar to the average length of a gene 

in a simpler organism like Drosophila melanogaster (modENCODE Consortium 

et al. 2010, ENCODE Project Consortium 2011). A major difference between 

less-complex organisms and humans is the variance in gene length. Human 

genes (and many other mammals) can be tens to hundreds of kilobase pairs in 

length. Transcription factors typically bind a sequence of DNA that is roughly 10 

bases in length (Wang et al. 2012). It seems unlikely that a single binding event 

would be sufficient to drive a stable interaction between a gene that may be 

several kilobase pairs in length and a transcription factory. It is therefore more 

likely that a combination of binding events, driven by multiple DNA-binding 

factors, promotes the recruitment of a gene to the transcription factory. This idea 

is consistent with the observations that gene promoters can be occupied by 

multiple DNA-binding proteins and their cognate co-factors to regulate gene 

transcription (Lian et al. 2006). One recent study has demonstrated that, in the 
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case of longer genes, multiple interactions can be observed between the gene 

body and the transcription factory. These binding events result in multiple sub-

loop structures forming while the gene is being actively transcribed (Larkin et al. 

2012). How these DNA-binding proteins are concentrated within transcription 

factories and the binding events required for recruitment of a genic sequence to 

transcription factories are active areas of research that are likely to provide key 

insight into the regulation phenotypic gene expression.  

 

Observation and isolation of the nuclear matrix 

 

Early light microscopic images of mammalian cells defined the nucleus as dense 

chromatin and nucleoli suspended in transparent “nuclear sap” or karyolymph 

(Fawcett 1966). Use of the term karylomph implied that everything within that 

area was randomly diffusing throughout the nucleus. Thin sectioning of cells 

combined with electron microscopy allowed observation of two distinct nuclear 

structures containing genomic DNA: the previously observed densely-stained 

compacted heterochromatin and the less compact euchromatin (Nickerson et al. 

1995). Electron microscopic imaging of regressive EDTA-stained embedded thin 

sections revealed a fibrogranular network of RNPs between the densely-stained 

heterochromatin (Monneron and Bernhard 1969, Bernhard 1969, Fakan and 

Bernhard 1971). This fibrogranular network of RNPs is highly associated with 
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active transcription, as it is largely comprised of newly-synthesized pre-mRNAs 

(Bachellerie et al. 1975, Fakan and Nobis 1978, Fakan and Hughes 1989). This 

observed network of perichromatin fibrils has been defined as the “in situ nuclear 

matrix” (Berezney 1984). 

 

Berezney and Coffey isolated and characterized the nuclear matrix from rat liver 

tissue (Berezney and Coffey 1974, 1977). The previously observed in situ 

nuclear matrix can be isolated from nuclei through nuclease digestion followed by 

high salt and detergent extraction. The residual fraction maintains the 

ultrastructural and biochemical properties of the intact perichromatin fibrils. When 

histones are extracted from chromosomes, genomic DNA extends outward from 

the nuclear matrix in long (up to 100Kbp) loops (Cook and Brazell 1975, 1980, 

Benyajati and Worcel 1976, Paulson and Laemmli 1977, Marsden and Laemmli 

1979, Vogelstein et al. 1980). These observations of genomic DNA being 

tethered to the nuclear matrix at the bases of loops were very exciting and 

suggested that the nuclear matrix may play a major role in the architectural 

organization of nuclear bodies. Experimental approaches centered on the 

nuclear matrix found that many critical nuclear activities and the factors executing 

these functions are associated with the nuclear matrix. These functions include 

but are not limited to replication (Dijkwel et al. 1986, Velden and Wanka 1987, 

Tubo and Berezney 1987), DNA looping attachment sites (Gasser and Laemmli 
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1987), and transcription (Feldman and Nevins 1983, Lewis and Lebkowski 1984, 

Zehnbauer and Vogelstein 1985, van Wijnen et al. 1993). In the case of 

transcription, the number of nuclear matrix fibrils correlates with transcriptional 

activity, which supports the idea that the nuclear matrix plays a major role in 

transcriptional regulation (Petrov and Sekeris 1971). 

 

DNA associated with the nuclear matrix 

 

To understand the mechanisms by which the nuclear matrix organizes DNA into 

loops and how these binding events are associated with nuclear functions, many 

experimental approaches were designed to isolate and characterize DNA 

sequences associated with the nuclear matrix. The two most commonly used 

techniques for isolation of matrix-associated DNA rely upon similar approaches in 

which histones are extracted and non-matrix-associated DNA is removed via 

nuclease digestion (Nickerson et al. 1995). Histones are solubilized and removed 

via high concentrations of sodium chloride or the chaotropic agent and detergent 

lithium 3,5-diiodosalicylate (LiS); the residual structures after extraction are 

referred to as the nuclear matrix and the nuclear scaffold, respectively (Berezney 

and Coffey 1977, Mirkovitch et al. 1984). DNA regions isolated via sodium 

chloride or LiS are therefore referred to as matrix-associated regions (MARs) and 

scaffold-associated regions (SARs), respectively. However, because the 
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experimental approach and residual structure are similar, these approaches were 

considered interchangeable and the matrix-associated sequences were referred 

to as S/MARs (Boulikas 1995). These genomic regions attached to the nuclear 

matrix have been observed in the introns of genes, as well as within both 

proximal and distal regions flanking gene bodies (Mirkovitch et al. 1987, 

Georgiev et al. 1991, Boulikas 1995). Both cell-type and developmental time 

point differences in matrix-associated DNA near genes have been observed 

(Dworetzky et al. 1992, Bidwell et al. 1993, 1994, van Wijnen et al. 1993), so it is 

therefore critical to understand how these matrix-attachment events are 

regulated and how these genomic regions contribute to phenotypic gene 

expression regulation when associated with the nuclear matrix. 

 

S/MARs are proposed to have common sequence-based elements. There is not 

a consensus sequence motif for S/MARs in the traditional sense of a 

transcription factor motif; rather S/MARs share a set of biophysical features. Most 

commonly, S/MARs are characterized by sequences that allow for bending or 

curving of DNA, inverted repeat regions, and stretches of AT bases (Boulikas 

1995). The AT-rich S/MARs are well-characterized in terms of how frequently 

these sequences are experimentally observed to be associated with the nuclear 

matrix and in terms of the identification of proteins that preferentially bind to AT-

rich sequences. These AT-rich regions also have a unique physical property in 
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their ability to unwind under torsional stress, and have been referred to as base 

unpairing regions (BURs) (Bode et al. 1992). Proteins such as: heterogeneous 

nuclear ribonucleoprotein U (HNRNPU) (also known as scaffold attachment 

factor A (SAF-A)), special AT-rich sequence binding protein 1 (SATB1), and high 

mobility group AT-hook 1 (HMGIY) are localized within the nuclear matrix and 

bind to AT-rich S/MARs (Bode et al. 1992, Dickinson et al. 1992, Fackelmayer et 

al. 1994, Belle et al. 1998, Liu et al. 1999). These proteins bind S/MARs and 

organize genomic DNA to promote the expression of genes. SATB1 is 

particularly interesting in that it normally functions to organize and regulate the 

expression of cytokine genes in thymocytes (Cai et al. 2006). However, when 

ectopically expressed in breast cancer cells, SATB1 promotes tumor 

progression, invasion and metastasis (Han et al. 2008). The observation that the 

transcriptional role of a S/MAR-binding protein, such as SATB1, can be cell-type 

dependent suggests that unknown factors may contribute to which S/MARs are 

available for binding. 

 

RUNX proteins in development and breast cancer 

 

Runt-related transcription factors (RUNX1, RUNX2, and RUNX3) are a family of 

proteins that share a DNA-binding domain (Runt), which is highly conserved in 

Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, and 
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Drosophila melanogaster (Kagoshima et al. 1993, van Wijnen et al. 2004). Runx1 

is required for definitive hematopoiesis (Wang et al. 1996) and Runx2 is required 

for osseous development (Komori et al. 1997). Genetic ablation of either Runx1 

or Runx2 results in embryonic or post-natal death, respectively (Wang et al. 

1996, Komori et al. 1997). Runx3 appears to play roles in gut and neuronal 

development. However, due to conflicting phenotypes for independently 

developed Runx3-null mouse models of development, the predominant 

developmental role of Runx3 is unclear (Levanon et al. 2003). This dissertation is 

focused on the transcriptional roles of RUNX1 and RUNX2 in breast cancer, and 

will not focus on the functions of RUNX3. 

 

While the DNA-binding domain of RUNX proteins is found near the N-terminus, 

RUNX proteins also share a unique C-terminal domain called the nuclear matrix 

targeting sequence (NMTS), which is conserved in mammals (Zeng et al. 1997, 

1998, Tang et al. 1999). Runx2 (previously known as NMP-2) was identified as a 

nuclear matrix-specific protein that binds to and regulates the osteocalcin 

(Bglap2) promoter during osteoblast differentiation, which suggested that nuclear 

matrix targeting of RUNX proteins may be important for function (Bidwell et al. 

1993, Merriman et al. 1995). Genetic insertion of a stop codon in Runx1 or 

Runx2, before the C-terminal portion containing the NMTS results in 

developmental phenocopies of the corresponding null models (Choi et al. 2001, 
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Dowdy et al. 2010). Cell-based studies have further demonstrated the 

importance of RUNX protein targeting to the nuclear matrix in the transcriptional 

regulation of phenotypic genes (Zaidi et al. 2001, 2006, Vradii et al. 2005). The 

functional and developmental abnormalities observed when RUNX proteins lack 

the NMTS domain indicate that targeting to the nuclear matrix is essential for the 

fidelity of RUNX protein function. 

 

RUNX proteins have been described as both oncogenes and tumor suppressors, 

depending on the cellular context (Cameron and Neil 2004, Pratap et al. 2010, 

Chimge and Frenkel 2012). Traditionally, RUNX1 has been classified as a tumor 

suppressor due to the frequency of mutations and translocations of RUNX1 in 

lymphomas (Song et al. 1999, Li et al. 1999, Miething et al. 2007, De Braekeleer 

et al. 2009, Mangan and Speck 2011). There is also evidence to suggest that 

ectopic or increased RUNX1 protein expression promotes the development of 

certain cancers such as epithelial tumors, endometrial cancer, and acute 

lymphoid leukemia (Niini et al. 2000, Harewood et al. 2003, Planagumà et al. 

2004, 2011, Abal et al. 2006, Planaguma et al. 2006, Doll et al. 2009, Hoi et al. 

2010). RUNX1 is expressed in the epithelial cells of normal mammary glands 

(Blyth et al. 2010, Wang et al. 2011a, Janes 2011). In breast cancer, RUNX1: 1) 

appears to function primarily as a tumor suppressor protein as mutations in 

RUNX1 are frequently observed in patients (The Cancer Genome Atlas Network 



15 
 

2012), 2) RUNX1 transcript levels are significantly decreased in patients with 

metastatic breast cancer (Ramaswamy et al. 2003), and 3) in cell-based models 

of breast cancer development, the RUNX1 gene locus is deleted during 

oncogenic transformation (Kadota et al. 2010). RUNX2 suppresses the growth of 

proliferating osteoblasts, and it has been suggested that in this context, RUNX2 

can function as a tumor suppressor (Pratap et al. 2003, Galindo et al. 2005, 

Young et al. 2007b). Similarly, RUNX1 regulates the growth of hematopoietic 

cells (Bakshi et al. 2008); RUNX proteins bind to rDNA repeats and regulate the 

transcription of rRNA, which is the rate-limiting step in protein synthesis and cell 

growth (Grummt and Voit 2010). Although RUNX2 appears to inhibit osteoblastic 

cell growth, in multiple cancer types such as lymphoma, osteosarcoma, colon, 

pancreatic and prostate, increased RUNX2 levels are associated with the 

disease state, indicating that RUNX2 is likely functioning in an oncogenic manner 

within these cellular lineages (Stewart et al. 1997, Vaillant et al. 1999, Blyth et al. 

2006, Kayed et al. 2007, Kuo et al. 2009, Akech et al. 2010, Sase et al. 2012). In 

normal mammary epithelial cells, low levels of RUNX2 can be detected, and a 

role for regulating milk production has been proposed (Inman and Shore 2003, 

Shore 2005). In breast cancer patients, detection of RUNX2 is associated with 

poor prognosis and clinical outcome, and in cell-based experiments, RUNX2 

promotes the invasive and osteolytic properties of bone metastatic breast cancer 

cells (Pratap et al. 2008, Das et al. 2009, Onodera et al. 2010). These 

observations, taken together, suggest that RUNX1 may function as a breast 
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cancer tumor suppressor, while RUNX2 may function as a breast cancer 

oncogene; however, the roles of RUNX1 and RUNX2 in breast cancer 

development have not been directly compared. 

 

In breast cancer cells, RUNX2 is associated with the nuclear matrix. Runx2 

targeting to the nuclear matrix is required for the Runx2-dependent transcription 

of genes responsible for the osteomimetic and bone resorptive phenotype of the 

MDA-MB-231 breast cancer cells (Barnes et al. 2004, Javed et al. 2005). A 

commonly observed translocation event in acute myeloid leukemia between 

chromosome 8 and 21, t(8;21), results in a fusion protein with the N-terminus of 

RUNX1 (including the Runt DNA-binding domain) and ETO. The AML-ETO 

fusion protein interacts with the nuclear matrix, however, the subnuclear 

distribution of AML-ETO is distinct from the distribution of normal RUNX1 

expressed from the wild-type RUNX1 allele (Barseguian et al. 2002).Although the 

predominant roles for RUNX1 and RUNX2 in tumorigenesis appear to differ, 

these observations demonstrate the importance of proper subnuclear targeting to 

the nuclear matrix for the execution of these RUNX-dependent functions. 

 

Expression of a nuclear matrix-associated protein in cancer cells is often 

clinically relevant, and is not unique to RUNX proteins. For example, B23 is a 

nucleolar protein associated with the nuclear matrix that is highly expressed in 
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prostate cancer (Subong et al. 1999). A nuclear matrix-specific variant of Ciz1, 

which normally interacts with and regulates the localization of p21, promotes cell 

growth in vitro, and is sufficient to identify early stage lung cancer (Higgins et al. 

2012). NMP-22 is expressed in bladder cancer and is used to detect bladder 

cancer in patients (Soloway et al. 1996, Shariat et al. 2004, Zink et al. 2004b). 

Understanding the functions of nuclear matrix-associated proteins that are 

expressed in cancer cells, such as RUNX proteins, may lead to novel means of 

diagnosis and/or treatment. 

 

There have been no studies to date analyzing the functions of ectopically-

expressed RUNX proteins in breast cancer cells on a genome-wide scale. This is 

a critical point, as most of the previous studies that have focused on the role of 

RUNX2 in human breast cancer cells have relied on overexpression of wild-type 

or mutant Mus musculus Runx2 (Barnes et al. 2004, Javed et al. 2005, Pratap et 

al. 2008, Chimge et al. 2011). We are primarily interested in defining the native 

relationships between matrix-associated factors like RUNX proteins and the 

regulation of gene expression. Therefore, an approach in which RUNX proteins 

are depleted via RNAi was deemed preferable to overexpression for studying the 

functional contributions of RUNX proteins to the invasive phenotype of breast 

cancer cells. 
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In studies of Asian breast cancer patients, expression of RUNX2 was found to be 

associated with poor clinical outcome and estrogen receptor (ER) negative 

hormone status (Das et al. 2009, Onodera et al. 2010). To date, RUNX1 

expression in breast cancer patients has not been examined histologically on a 

broad scale. Detection of RUNX1 has been characterized by The Human Protein 

Atlas in limited samples where no clinical inferences can be drawn; in these 

studies, RUNX1 is observed to be strongly expressed in both normal and tumor 

samples (Uhlén et al. 2005, Pontèn et al. 2008, Uhlen et al. 2010). It is therefore 

of great interest to understand the functions of ectopic RUNX proteins in breast 

cancer cells and the extent to which RUNX expression is associated with breast 

cancer patient tissue samples. 

 

Controversial transcriptional associations of matrix-associated DNA 

 

Many studies investigating the transcriptional role of DNA associated with the 

insoluble matrix/scaffold have experimentally prepared “nuclear halos” before 

digestion of looped (or non-matrix-associated) DNA (Adachi et al. 1989, Gerdes 

et al. 1994, Maya-Mendoza and Aranda-Anzaldo 2003, Ostermeier et al. 2003, 

Heng et al. 2004, Keaton et al. 2011). While SARs and MARs have previously 

been described interchangeably, some recent studies have begun to make 

functional distinctions between these two classes of matrix-associated DNA and 
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their associations with transcription. Technical improvements in the ability to 

quantitatively measure specific sequences of nucleic acids in a high-throughput 

manner appear to be driving a reinvestment of effort into understanding the 

transcriptional associations of matrix-associated DNA. Isolation of the matrix-

associated DNA using LiS buffer reveals a positive correlation between gene 

expression and association of upstream genomic elements with the nuclear 

matrix (Linnemann et al. 2007, Keaton et al. 2011). These observations are 

similar to what was previously observed in smaller-scale or non-gene-specific 

experiments (Herman et al. 1978, Ciejek et al. 1983, Jost and Seldran 1984, 

Jackson and Cook 1985, Cook 1989, Ogata 1990, Jackson et al. 1993, Wansink 

et al. 1993). In contrast, when high concentrations of sodium chloride are used to 

extract chromatin prior to nuclease digestion, a strong correlation between 

proximity to the nuclear matrix and gene silencing can be observed (Maya-

Mendoza and Aranda-Anzaldo 2003, Rivera-Mulia and Aranda-Anzaldo 2010, 

Trevilla-García and Aranda-Anzaldo 2011). In these studies, proximity to the 

nuclear matrix is measured by site-specific PCR of DNA associated with the 

nuclear matrix following timed digestion with DNAse I. These observations that 

proximity to the nuclear matrix correlates with gene silencing are in stark contrast 

with many previous studies demonstrating that the nuclear matrix is the site of 

active transcription. In an attempt to reconcile these observed transcriptional 

associations for matrix-associated DNA isolated via LiS or sodium chloride, 

Linnemann and colleagues performed both isolation methods in parallel, followed 
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by hybridization of matrix-associated sequences to a chromosome-wide 

oligonucleotide array (Linnemann et al. 2008). In this study, to differentiate 

between the two extraction methods, sequences isolated via sodium chloride or 

LiS were referred to by the original descriptions of the structures isolated, MARs 

and SARs, respectively. Genome-wide transcript levels were measured by an 

Affymetrix cDNA array, and compared to the chromosome-wide profile of matrix-

associated DNA isolated by sodium chloride or LiS. Here, it was observed that 

enrichment of sodium chloride-isolated MARs within genes is negatively 

correlated with gene expression, while enrichment of LiS-isolated SARs in 

upstream genomic elements is positively correlated with gene expression. The 

positions of MARs and SARs were also different; SARs were typically observed 

5’ of genes and in gene-rich regions, while MARs were typically in gene-poor 

regions or within a silenced gene body. The Linnemann study is the only large-

scale study comparing quantitative positional measurements of matrix-associated 

DNA and gene expression between the two isolation methods. It is, however, not 

the first study to compare the isolation methods. Belgrader and colleagues 

performed a rigorous analysis of the structural and biochemical differences 

between nuclear matrices isolated via sodium chloride and LiS (Belgrader et al. 

1991). This comparative study also included the more gentle isolation of the 

nuclear matrix using low concentrations of ammonium sulfate. They observed 

gross differences in the ultrastructural preservation of the residual nuclear matrix 

following extraction via these three methods. Matrices isolated via sodium 
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chloride had non-apparent nucleoli and a high degree of aggregate-like 

structures bound to the fibrogranular nuclear matrix. When the nuclear matrix 

was isolated using LiS, the nucleolus was visible, but diffuse in appearance; LiS-

isolated nuclear matrices had fewer aggregates than sodium chloride-isolated 

nuclear matrices, but these aggregates were still frequently observed. Nuclear 

matrices isolated via ammonium sulfate, have extremely well-preserved nucleoli, 

and very few, if any, aggregates form on the filamentous matrix structure. It has 

been proposed the studying structural components of the nucleus requires the 

preservation of structure to the highest degree possible (Jackson and Cook 

1995, Nickerson 2001). The generation of data via approaches that best 

recapitulate the physiological states of intact biological systems is critical for our 

understanding of changes in phenotypic gene expression regulation. It is 

possible that the matrix-associated DNA may contain artifacts or may be missing 

information when isolated via techniques that do not preserve the structural 

integrity of the nuclear matrix. We hypothesize that isolation of matrix-associated 

DNA in a manner that preserves the architectural integrity of the nuclear matrix 

will provide a high level of insight into the native interactions between 

chromosomes and the nuclear matrix. Applying this approach at a genome-wide 

scale to compare gene expression profiles and matrix-associated DNA profiles 

from normal and cancer cells will therefore allow for quantitative investigation into 

the role of the nuclear matrix in transcriptional regulation of phenotypic gene 

expression. 
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General question to be addressed 

 

Cancer cell nuclei are generally disorganized. Are components of the nuclear 

matrix and associated DNA segments similarly disorganized? If so how do these 

observations relate to transcriptional functions? 

 

Specific questions to be experimentally addressed 

 

Is genomic DNA associated with the nuclear matrix enriched in particular 

sequences or regions? Does the pattern of matrix-associated DNA correlate with 

the enrichment of euchromatin or heterochromatin? How does enrichment of 

matrix-associated DNA compare to gene expression patterns? Are there 

differences in matrix-associated DNA between a normal mammary epithelial cell 

and a malignant metastatic breast cancer cell? 

 

In blood and bone cells, RUNX proteins control cell growth and proliferation 

through the attenuation of protein synthesis via transcriptional regulation of 

ribosomal RNA (Young et al. 2007a, Bakshi et al. 2008, Ali et al. 2010, 2012). 

Breast cancer cells are highly proliferative in the presence of RUNX1 and 
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RUNX2 proteins. Are the mechanisms of Runx-mediated growth regulation 

operative in breast cancer cells? What genes are regulated by RUNX proteins in 

a breast cancer cell? Where, in the genome, are RUNX proteins binding in breast 

cancer cells? To what extent are these binding events associated with gene 

expression regulation? 

 

RUNX1 and RUNX2 are expressed in breast cancer cell lines, what is their 

expression pattern in tumor tissue from breast cancer patients? Is the expression 

level of RUNX1 or RUNX2 in human breast cancer tissue associated with any 

particular type, grade, or stage of breast cancer? Does the presence of growth 

factor or hormone receptors such as HER2, estrogen receptor (ER), 

progesterone receptor (PR), or androgen receptor (AR) affect the expression 

intensity of RUNX1 or RUNX2 in tissue from human breast cancer? 

 

Experimental design 

 

To understand functional relationships between parameters of nuclear 

organization and gene expression regulation, we examined DNA sequences 

associated with the nuclear matrix in normal breast epithelial cells compared to 

metastatic breast cancer cells. To address this question we developed and 
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describe a method for the isolation of nuclear matrix-associated DNA (NM-Seq) 

that preserves nuclear integrity. NM-seq utilizes next-generation sequencing to 

facilitate a genome-wide unbiased comparison between matrix-associated DNA 

in normal mammary epithelial cells (MCF10a) and malignant metastatic breast 

cancer cells (MDA-MB-231). Structure-function relationships between gene 

expression patterns and nuclear organization are defined by comparing the 

profiles of matrix-associated DNA in MCF10a and MDA-MB-231 cells with the 

binding profiles of several histone modifications (H3K4me3, H3K27me3, and 

H3K9me2) and with genome-wide transcriptome data. 

 

In this study, we also examine the phenotypic roles of the nuclear matrix-

associated proteins RUNX1 and RUNX2 in MDA-MB-231 malignant metastatic 

breast cancer cells. We examine the extent to which RUNX proteins regulate cell 

growth through the transcriptional regulation of ribosomal RNA. On a genome-

wide scale, we define the genes responsive to RUNX protein levels by knocking 

down endogenous RUNX proteins. We further characterize RUNX proteins in 

breast cancer cells by comparing RUNX binding on a genome-wide scale with 

gene expression patterns to establish positional relationships for functional 

binding of RUNX proteins. To understand potential clinical impacts of these in 

vitro findings, we examine the expression of RUNX1 and RUNX2 in tumor tissue 

from more than 125 North American breast cancer patients using 
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immunohistochemistry and compare the detected levels of RUNX proteins with 

several histopathological markers of breast cancer as well as the 

growth/hormone receptors HER2, ER, PR, and AR. 

 

We describe two open-source software packages that were specifically 

developed to assist in the understanding of general parameters of nuclear 

organization. FoxPrimer is a Real-Time qPCR primer design tool and database 

with a web interface. FoxPrimer is designed for high-throughput creation, 

storage, and retrieval of high quality primers for the validation of omics-type 

datasets. FoxPrimer was used to validate gene expression data for Runx-

regulated genes in breast cancer cells. PeaksToGenes is a command-line 

interface program designed to create average gene plots and run statistical tests 

to define associative patterns in binding of nuclear features near genes. 

PeaksToGenes was used to model regulatory binding events for both matrix-

associated DNA and Runx proteins. 
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CHAPTER 2 ISOLATION AND CHARACTERIZATION OF NUCLEAR MATRIX 

ASSOCIATED DNA IN BREAST CANCER CELL LINES 
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Introduction 

 

Our understanding of how genomic DNA is organized within the nucleus of a 

eukaryotic cell has increased dramatically in recent years with the advent of deep 

sequencing technologies and research consortia such as ENCODE (ENCODE 

Project Consortium 2011). One of the most fundamental questions under 

investigation is addressing how higher-order structure of genomic DNA 

participates in gene regulation. 

  

The concept of nuclear organization has evolved through many observations of 

non-random localization of functional regulatory factors in the nucleus (Lanctôt et 

al. 2007, Misteli 2007, Zaidi et al. 2007, Stein et al. 2011). Many critical functional 

activities such as splicing, transcription, replication, DNA repair and RNA 

processing are associated with a nuclear structural scaffold comprised of a 

fibrogranular network of RNPs, the ‘nuclear matrix’ (Berezney et al. 1995, 

Nickerson 2001). While the nuclear matrix is associated with many nuclear 

functions, this study is focused on transcription and the spatial relationships of 

genes and transcription with the nuclear matrix. 

 

The nuclear matrix is a filamentous structure of RNPs (Fey et al. 1986). Using 

regressive EDTA staining, this network of RNPs can be observed in intact cells 

by electron microscopy (Monneron and Bernhard 1969, Bernhard 1969). The 
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nuclear matrix, associated proteins and DNA can be biochemically isolated using 

a variety of methods such as high salt extraction and nuclease digestion 

(Berezney and Coffey 1977), low salt 3,5-diiodosalicylic acid, lithium salt (LiS) 

buffer extraction followed by nuclease digestion (Mirkovitch et al. 1984), 

electroelution of intact nuclei (Jackson and Cook 1988), or a more “gentle” 

nuclease digestion and salt extraction procedure (Fey et al. 1986, He et al. 

1990). Common to all approaches is the digestion of DNA and extraction of 

soluble chromatin resulting in the isolation of a residual nuclear matrix.  

 

Transcription occurs at distinct foci or transcription factories within the nucleus, 

which are associated with the nuclear matrix (Jackson and Cook 1985, Jackson 

et al. 1993, 1998). Transcription factors such as RNA Pol II, co-factors, or lineage 

specific transcriptional regulators are similarly organized into transcription 

factories within which actively transcribed genes are localized (Stein et al. 2011). 

DNA-bound proteins such as topoisomerase or transcription factors such as 

hormone receptors or SATB1 recruit DNA to the nuclear matrix in a sequence-

specific manner (Van Steensel et al. 1991, Dworetzky et al. 1992, Dickinson et 

al. 1992, van Wijnen et al. 1993). Identifying genomic sequencing enriched in 

these transcription factories may provide insight into novel matrix-associated 

proteins functioning to recruit genes to transcription factories. It was 

hypothesized that computational methods may be able to predict DNA 

associated with the nuclear matrix based on a consensus sequence (Boulikas 
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1995, Singh et al. 1997), however, recent experimental approaches have 

demonstrated that the sequences of DNA associated with the nuclear matrix do 

not appear to have a conserved sequence motif (Wilson and Coverley 2013). 

These experimental observations are concordant with the growing database of 

specific sequences that are recognized by transcription factors (Heinemeyer et 

al. 1998, Bryne et al. 2008). In the absence of a predictive model for matrix-

associated DNA, these sequences must therefore be experimentally defined for a 

given cell population or physiological state. 

 

To study DNA associated with the nuclear matrix, two common approaches have 

been taken to isolate and identify matrix-associated DNA. Isolation is achieved 

through a step-wise process. First, chromatin is extracted via high salt or LiS 

buffer. This extraction step results in an intermediate “nucleoid” or “nuclear halo” 

structure in which DNA is observed to form loops emanating from a residual 

structure (Keaton et al. 2011, Trevilla-García and Aranda-Anzaldo 2011). It is 

thought that DNA at the base of these loops is matrix-associated DNA (Gasser 

and Laemmli 1987), therefore loop DNA is separated from matrix DNA by cutting 

DNA near the base of the loops with either DNAse I or restriction endonucleases. 

Regions of DNA enriched in association with the nuclear matrix can be measured 

by fluorescent in situ hybridization (FISH) (Gerdes et al. 1994), polymerase chain 

reaction (PCR) (Maya-Mendoza and Aranda-Anzaldo 2003) or more recently by 

hybridization to an oligonucleotide tiling array (Heng et al. 2004). 
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A confusing nomenclature was developed to describe the types of DNA regions 

associated with the nuclear matrix based on the experimental approach used to 

extract chromatin. Isolation via high salt or LiS buffer was described as isolating 

the nuclear matrix or the nuclear scaffold, respectively. Therefore, DNA 

sequences isolated from the nuclear matrix or the nuclear scaffold were referred 

to as matrix associated regions (MARs) and scaffold associated regions (SARs), 

respectively. Initial studies on transcriptional roles for matrix-associated DNA 

were typically focused on a single gene or cluster of genes, and DNA isolated via 

either of these approaches appeared to similarly enriched for transcriptionally 

active genes (Ciejek et al. 1983, Jost and Seldran 1984, Ogata 1990, Gerdes et 

al. 1994). Therefore, the MARs and SARs were considered reasonably 

interchangeable and led to the convention of referring to matrix-associated DNA 

sequences as S/MARs (Nickerson et al. 1995).  

 

Recent PCR-based quantification of matrix-associated DNA of broad gene loci 

such as the albumin locus led Aranda-Anzaldo and colleagues to propose that 

matrix-associated DNA is a transcriptionally repressive element rather than a 

transcriptionally activating element (Maya-Mendoza and Aranda-Anzaldo 2003, 

Rivera-Mulia and Aranda-Anzaldo 2010, Trevilla-García and Aranda-Anzaldo 

2011). These proposed repressive functions for matrix-associated DNA conflict 

with many previous studies indicating that the nuclear matrix-associated DNA is 
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enriched in actively transcribed genes (Herman et al. 1978, Ciejek et al. 1983, 

Jost and Seldran 1984, Jackson and Cook 1985, Cook 1989, Ogata 1990, 

Jackson et al. 1993, Wansink et al. 1993, Gerdes et al. 1994). The advent of 

genomic tiling microarrays allowed for identification of S/MARs on a broad 

chromosome-wide scale (Linnemann et al. 2007, Keaton et al. 2011) and later 

allowed Krawetz and colleagues to make a direct comparison between the 

positions of MARs (isolated via high salt) and SARs (isolated via LiS) and gene 

expression patterns on a broad scale (Linnemann et al. 2008). We are inclined to 

emphasize the results of this approach as this is the only study in which the 

chromosome-wide quantification of matrix-associated DNA isolated via high salt 

or LiS buffer has been compared. Linnemann et al. demonstrate that matrix-

associated DNA sequences isolated via high salt (MARs) are located within the 

gene bodies of poorly or non-expressed genes. In contrast, matrix-associated 

sequences isolated via LiS (SARs) are located 5’ of actively transcribed genes. 

This study suggests that the type of DNA (in relation to transcription) is 

dependent on the isolation method employed. Belgrader et al. examining the 

fibrogranular structure of the nuclear matrix via electron microscopy follow 

multiple extraction methods (Belgrader et al. 1991). High salt extraction resulted 

in a non-apparent nucleolus and a high degree of aggregate structures on the 

matrix fibrils; LiS extraction causes a diffuse nucleolar structure to form and a 

moderate level of aggregate structures. Using a gentler extraction of chromatin 

via ammonium sulfate, Belgrader et al. observed a high degree of nucleolar 
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preservation and few, if any, aggregates on the matrix fibrils. It has been argued 

that methods used to isolate the nuclear matrix should be evaluated by the 

protocol’s ability to preserve the integrity of structures, such as the RNP fibrils, 

which can be observed in the intact nucleus (Nickerson 2001), and we 

hypothesize that characterization of DNA sequences isolated from a structurally 

intact nuclear matrix will allow for a high degree of insight into the functional 

properties of matrix-associated DNA.  

 

To study the association of genomic DNA with the nuclear matrix under 

conditions in which structural integrity is preserved, we have optimized an 

experimental approach for biochemical isolation of the nuclear matrix based on 

the Penman (He et al. 1990, Nickerson et al. 1997, Wan et al. 1999) approach for 

nuclear matrix isolation. The Penman method, as demonstrated by Belgrader et 

al., better preserves the structural organization of the nuclear matrix as 

compared to the high salt and LiS extraction methods. To improve upon previous 

approaches, which quantified matrix-associated DNA via hybridization-based 

arrays, we employed recent technological advances in deep sequencing to study 

the genome-wide patterns of nuclear matrix-associated DNA utilizing long 

(100bp) paired-end sequencing. This method of sequencing gives us a high 

volume of reads as well as a high degree of confidence in the positional mapping 

of reads to the genome. Thus, we can more accurately identify specific 
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sequences enriched in association with the nuclear matrix. We have named this 

method nuclear matrix sequencing (NM-seq). 

 

In cancers, proteins that are specific to the disease state have been identified to 

associate with the nuclear matrix, however, it is not known if genomic sequences 

associated with the nuclear matrix are similarly altered (Getzenberg et al. 1991, 

1996, Partin et al. 1993, Samuel et al. 1997). To understand how matrix-

associated DNA might be involved with a disease such as breast cancer and to 

demonstrate a potential application of NM-seq, we applied our technique of 

isolating nuclear matrix-associated DNA to two breast cell lines: MCF10a 

immortalized normal mammary epithelial cells and MDA-MB-231 mesenchymal-

like metastatic breast cancer cells. 

  

Considering first the non-tumorigenic MCF10a cells, our results demonstrate that 

NM-seq can identify matrix-associated DNA in both gene-rich/actively-transcribed 

regions and gene-poor/weakly-transcribed regions, which suggests we have 

preserved both repressive (MAR) and active (SAR) interactions with the nuclear 

matrix. When comparing the normal and cancer cells, we observed disparate 

patterns of nuclear matrix-associated DNA between the MCF10a and MDA-MB-

231 cells with respect to gene-rich versus gene-poor association and GC content 

of matrix-associated DNA. Integrating gene expression data with matrix-

associated DNA enrichment patterns, we found that matrix-associated DNA is 
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enriched in regions flanking transcribed genes in MCF10a cells, while in MDA-

MB-231 cells poorly or non-expressed gene regions are more associated with the 

nuclear matrix. These results suggest that the malignant metastatic breast 

cancer cell line MDA-MB-231 has major differences in the functional association 

of genomic DNA with the nuclear matrix and in gene expression regulation when 

compared to the normal mammary epithelial cell line MCF10a. 

 

Results 

 

Preparation of nuclear matrix fraction while preserving nuclear structure 

 

Isolation of the nuclear matrix fraction is typically achieved through step-wise 

nuclease digestion and salt extraction (Nickerson 2001). Recent approaches 

used to study matrix-associated DNA (NM-DNA) have biochemically extracted 

the matrix by salt extracting nuclei, making so-called "halo" preparations, 

followed by nuclease digestion (Maya-Mendoza and Aranda-Anzaldo 2003, Heng 

et al. 2004, Linnemann et al. 2007, Rivera-Mulia and Aranda-Anzaldo 2010, 

Keaton et al. 2011, Trevilla-García and Aranda-Anzaldo 2011). Biochemically, 

these types of preparations do isolate the nuclear matrix fraction, but they also 

disrupt nuclear integrity (Belgrader et al. 1991). Structural integrity of the nucleus 

is critical for maintenance of proper DNA-matrix interactions. DNA sequences 
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associated with the nuclear matrix are highly dynamic and subject to dramatic 

changes when nuclei are salt extracted (Craig et al. 1997). Using a stabilization 

reagent, such as copper ion, prevents these salt-induced shifts in matrix-

associated DNA (Belgrader et al. 1991). 

 

Given the highly sensitive nature of DNA-matrix interactions, in an attempt to 

preserve native DNA-matrix interactions we designed a protocol based on 

previous approaches demonstrating a high degree of structural preservation of 

the nuclear matrix. The nuclear matrix can be purified while preserving nuclear 

structure using formaldehyde stabilization prior to nuclease digestion and salt 

extraction (Nickerson et al. 1997). We used this experimental approach as the 

starting point in our experimental optimization to isolate NM-DNA. The procedure 

we developed for isolating the nuclear matrix uses formaldehyde-stabilized 

nuclei, restriction enzyme digestion and high salt extraction (Figure 2.1), and 

preserves both nuclear structure and functional domain localization (Figure 2.2).  

 

After nuclear matrix isolation, formaldehyde stabilization is reversed via 

incubation at 55°C for 16 hours in elution buffer (1% SDS, 100mM Sodium 

bicarbonate), DNA is isolated and randomly sheared via sonication, and finally, 

libraries are prepared for deep sequencing (Figure 2.1 A). To control for biases 

in chromosome copy number, restriction enzyme cut sites, sample preparation 

(size selection and PCR) and sequencing, DNA isolated from digested nuclei 
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prior to salt extraction was used as “Input” control to define enrichment regions 

for NM-DNA. Applying this novel approach to our model cell lines resulted in 

166,861,270 mapped reads and 255,049,970 mapped reads for the MCF10a and 

the MDA-MB-231 NM-DNA samples, respectively. Each mapped read pair 

represents a high-confidence region as it is mapped from long (100bp) paired-

end reads. 

 

During the nuclear matrix isolation procedure, we see a significant extraction 

(>90%) of genomic DNA as measured by DAPI incorporation (Figure 2.2 A). 

Further validating the effectiveness of this protocol to preserve nuclear integrity, 

we also observe that the spatial distribution and staining intensity of several 

matrix-associated proteins (Coilin, NPAT, PML, SC-35, UBF, and Pol II) are 

maintained throughout nuclear matrix isolation (Figure 2.2 B).  
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Figure 2.1 Diagram of nuclear matrix-associated DNA isolation 
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Figure 2.1 Diagram of nuclear matrix-associated DNA isolation 

 

(A) Diagram depicting the workflow of nuclear matrix isolation. (B) 

Representation of matrix-DNA interactions in whole cell/CSK extracted nuclei, 

digested nuclei, and after salt extraction. (C) Legend for symbols/drawings used 

in (B) to represent key components of nuclear organization during isolation of the 

nuclear matrix fraction. 
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Figure 2.2 Nuclear integrity and functional domains remain intact during isolation 

of the nuclear matrix fraction. 

 



41 
 

Figure 2.2 Nuclear integrity and functional domains remain intact during isolation 

of the nuclear matrix fraction. 

 

(A) DIC III phase contrast images and DAPI staining of MDA-MB-231 cells at 

three stages of isolation of nuclear matrix: whole cell, CSK-extracted nuclei 

digested with restriction enzymes, and nuclear matrix. (B) Confocal 

immunofluorescence micrographs of critical nuclear proteins in MCF10a and 

MDA-MB-231 cells after CSK extraction or following full nuclear matrix isolation 

(NMIF). Proteins examined include: Coilin (Cajal bodies / modification of small 

nuclear/nucleolar RNAs), NPAT (nuclear protein, ataxia-telangiectasia locus - 

histone gene transcription), PML (promyelocytic leukemia - PML bodies), SC-35 

(serine/arginine-rich splicing factor 2 - pre-mRNA splicing), UBF (upstream 

binding transcription factor, RNA polymerase I - rRNA transcription), and Pol II 

(RNA polymerase II – mRNA synthesis).  
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Defining enriched regions for nuclear matrix-associated DNA 

 

When performing deep-sequencing for chromatin immunoprecipitation (ChIP-

seq), it is common protocol to define enriched regions for a given pulldown using 

some form of “peak calling” algorithm (Landt et al. 2012). Many of the most 

popular “peak calling” algorithms (MACS (Zhang et al. 2008), SPP (Kharchenko 

et al. 2008), PeakSeq (Rozowsky et al. 2009)) operate on a major assumption: 

enrichment of a single protein will produce a defined genomic interval width from 

which to build a peak-shift model for defining the peak regions. This assumption 

cannot be made when trying to define enriched regions from matrix-associated 

DNA, as isolation of the nuclear matrix enriches for an unknown number of 

proteins associated with DNA in widths of unknown length (Davie 1995, Samuel 

et al. 1997). To address this issue we developed a more direct method of 

defining genomic regions enriched (or depleted) in association with the nuclear 

matrix. At the most basic level, we are examining the ratio of NM-DNA over the 

DNA isolated from the digested nuclei fraction (DigNuc) in specific genomic 

regions defined below. This method of measuring NM-DNA enrichment as the 

ratio of matrix-associated DNA over non-extract DNA is similar to methods 

applied when using genomic-tiling arrays (Linnemann et al. 2007, 2008, Keaton 

et al. 2011). Due to the advantageous genome-wide nature of our approach, the 

DigNuc fraction provides information about regions where genomic sequences 

are over- and under-represented; using this information we can therefore 
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determine how to best scale the ratio of NM-DNA over DigNuc when defining 

enriched regions. We used the sequence enrichment scaling (SES) algorithm, as 

it empirically determines an appropriate scaling factor to be applied to the input 

(DigNuc) channel based on the sorting statistic (Diaz et al. 2012). Briefly, SES 

compares the input (DigNuc) and IP (NM-DNA) reads across the entire genome 

to identify systematic biases caused by the processing samples and deep 

sequencing. These genome-wide biases are weighted and converted into a 

scaling factor, which is then applied when calculating the enrichment of the IP 

(NM-DNA) sample over the input (DigNuc) in a specific region of the genome. 

 

Sequence complexity of nuclear matrix-associated DNA is different between 

MCF10a and MDA-MB-231 cells 

 

Structural matrix-associated DNA elements such as matrix-attachment regions 

(MARs) and scaffold-attachment regions (SARs) are procedurally isolated using 

salt conditions quite different than those we have used in our nuclear matrix 

isolation protocol (Berezney and Coffey 1977, Mirkovitch et al. 1984). Based on a 

comparative study by Linnemann et al. these sequence elements have distinct 

associations with nuclear functions (Linnemann et al. 2008). MARs appear to be 

highly enriched in gene-poor or transcriptionally silent regions, while SARs are 

highly associated with gene-rich, actively-transcribed genomic regions. It is 

thought that each of these element types can be defined by sequence motifs; 
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however, computational efforts have proven not to predict sequences isolated 

from cells (Wilson and Coverley 2013). While the order of operations (salt 

extraction, nuclease digestion) and detergents/salts used affects which type of 

DNA element will be enriched in the matrix fraction, the procedures used to 

isolate the aforementioned sequence elements significantly disrupt nuclear 

structure and organization.  

 

NM-seq preserves the integrity of nuclear organization; we therefore feel it is 

critical to report the sequence complexity of enriched sequences isolated from 

our model cell lines. By partitioning the genome into 200bp non-overlapping 

windows, we calculated the ratio of NM-DNA to DigNuc input (NM-DNA 

enrichment) and the corresponding percent of G plus C bases (GC content) in 

each window. Plotting the pairs of NM-DNA enrichment versus GC content in a 

scatterplot and calculating the Pearson correlation coefficient (r), we observe that 

in MDA-MB-231 cells the regions most associated with the nuclear matrix are 

AT-rich and that GC-content and NM-enrichment are slightly negatively 

correlated (r = -0.24). In the MCF10a cells, we observe that AT/GC content is 

relatively evenly spread across NM-DNA-enriched and NM-DNA-depleted 

regions, with a very weak positive correlation trend (r = 0.12) (Figure 2.3). These 

trends can be further visualized by separating the 200bp non-overlapping 

genomic regions into ten groups based on the rank of the NM-DNA enrichment in 
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the region (1 = most enriched, 10 = least enriched) and plotting the distribution of 

GC percentages for the regions in each group (Figure 2.4). 

 

In the MDA-MB-231 cells (breast cancer cell line), NM-DNA is enriched in AT-

sequences, while for the MCF10a (normal mammary epithelial) cell line, NM-

DNA appears to be AT/GC neutral. In the human genome, genic regions are GC-

rich or GC-neutral, while gene-poor regions are AT-rich (Lander et al. 2001). The 

observed associations of NM-DNA sequence complexity combined with the 

distributions of AT-rich and GC-neutral regions in the human genome suggests 

that NM-DNA may be enriched in different genomic regions within normal cells 

and malignant metastatic cells. 
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Figure 2.3 Nuclear matrix-associated DNA weakly correlates with AT-rich 

sequence in MDA-MB-231 cells, but not in MCF10a cells 
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Figure 2.3 Nuclear matrix associated DNA weakly correlates with AT-rich 

sequence in MDA-MB-231 cells, but not in MCF10a cells 

 

(A and B) Using genome-wide non-overlapping 200bp intervals, nuclear matrix-

associated DNA (NM-DNA) enrichment (NM-DNA / Digested Nuclei) was 

measured in MCF10a cells (A) and MDA-MB-231 cells (B) and is represented on 

the x-axis. For each 200bp interval, the corresponding percent of G plus C bases 

within the interval is plotted as the dependent variable on the y-axis. These x-y 

pairs are plotted for the entire genome using a hexagonal density scatterplot 

where an increased number of shared x-y observations are represented as 

darker hexagons (right panels). Pearson r and p-value were calculated for each 

cell line with the correlation line plotted in red; the Pearson r and p-value are 

indicated in the upper right of the scatterplot for each cell line. 

  



48 
 

Figure 2.4 GC content as a function of nuclear matrix-associated DNA 

enrichment rank shows a similar trend as the scatter plot; matrix-associated DNA 

in GC-neutral in MCF10a cells, and AT-rich in MDA-MB-231 cells. 
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Figure 2.4 GC content as a function of nuclear matrix-associated DNA 

enrichment rank shows a similar trend as the scatter plot; matrix-associated DNA 

in GC-neutral in MCF10a cells, and AT-rich in MDA-MB-231 cells. 

 

(A and B) For each cell line (MCF10a (A) and MDA-MB-231 (B)), the NM-DNA 

enrichment ratios in 200bp genome-wide non-overlapping intervals were 

measured and subdivided into 10 approximately equal groups based on ranks 

(rank 1 = top ~10% NM-DNA enrichment ratios, rank 10 = bottom ~10% NM-DNA 

enrichment ratio). For each of these ranks, the GC content was measured for the 

intervals in each rank (defined by NM-DNA enrichment) and the resultant GC 

distribution was plotted (y-axis) in box and whiskers format. Because there were 

some ties in NM-DNA enrichment ratios, the number of observations of NM-DNA 

enrichment/GC content was slightly different in each column therefore the width 

of the box and whiskers plot reflects the number of observations made. 
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Nuclear matrix-associated DNA is enriched in gene-poor regions in MDA-MB-231 

cells and gene-rich regions in MCF10a cells 

 

We next wanted to understand the positions of NM-DNA isolated from NM-seq 

compare to gene positions. Using the same 200bp windows for measuring GC-

content and NM-DNA, we measured the number of RefSeq genes that are found 

in each 200bp window (Pruitt et al. 2009). This is a greedy definition in which we 

are defining a gene as being within a given 200bp interval if any portion of the 

gene body overlaps with the 200bp interval. In these 200bp non-overlapping 

intervals, we find there are up to three genes within the interval and will refer to 

the number of genes per interval as a class of 200bp intervals. Instead of plotting 

this data as a scatterplot, we instead plotted box and whisker plots of the 

distribution of NM-DNA enrichment values found in each class of 200bp intervals 

for each cell line (Figure 2.5 A). As there are very few regions in the genome in 

which there are two or three genes per 200bp interval, the width of the box and 

whisker plots correlates with the number of 200bp intervals containing 0, 1, 2 or 3 

genes. These box and whisker plots are cropped to show the slight differences in 

the median (horizontal line) NM-DNA enrichment for each class of 200bp interval. 

The tables to the right of each box and whisker plot show the mean NM-DNA 

enrichment value per class of 200bp interval (Figure 2.5 A right).  
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To further investigate where in the genome NM-DNA isolated via NM-seq is 

enriched relative to genes, we used cytologically-defined chromosomal band 

coordinates as regions of interest (Meyer et al. 2013). These bands are 

visualized by Giemsa staining, where the density of genes within each cytological 

band is inversely correlates with the observed intensity of staining, and have 

been used for comparison of hybridization of matrix-associated DNA in a 

previous study (Craig et al. 1997). For each cytological band, we calculated the 

enrichment ratio of NM-DNA to digested nuclei as well as the percentage of the 

cytological band that is defined as a gene by RefSeq (Pruitt et al. 2009). By 

plotting these paired observations per cytological band in a scatter plot and 

calculating the Pearson r, we observe that in MCF10a cells NM-DNA enrichment 

is correlative with gene-dense regions, while in MDA-MB-231 cells NM-DNA 

enrichment is correlated with gene-poor regions (Figure 2.5 B). When the 

relationships between gene-rich and gene-poor are viewed at the resolution of 

cytological bands, there are strong relationships between NM-DNA enrichment 

and gene density, however, when viewed in finer detail (200bp), these trends are 

not readily apparent. This observation suggests that NM-DNA-enrichment 

associations with gene-density are broad and may be involved in mediating 

large-scale organization of genomic DNA. These observations suggest that our 

hypothesis based on differences in sequence complexity that matrix-associated 

DNA in each cell line would be enriched in different genomic locations is correct. 

Observed differences in both sequence complexity and gene-rich versus gene-
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poor association lead us to hypothesize that NM-DNA is likely to be differentially 

associated with transcriptional activities between normal and cancer cell lines. 
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Figure 2.5 Nuclear matrix-associated DNA is broadly associated with gene-rich 

regions in MCF10a cells and with gene-poor regions in MDA-MB-231 cells. On a 

small (200bp) scale, these associations are not observed. 
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Figure 2.5 Nuclear matrix associated DNA is broadly associated with gene-rich 

regions in MCF10a cells and with gene-poor regions in MDA-MB-231 cells. On a 

small (200bp) scale, these associations are not observed. 

 

(A) Box and whisker plots of the distributions of nuclear matrix associated DNA 

(NM-DNA) enrichment (NM-DNA / Digested Nuclei) values (y-axis) plotted based 

on the number of genes found within the corresponding 200bp intervals (x-axis) 

for MCF10a cells (upper panel) and MDA-MB-231 cells (lower panel). The width 

of the box and whisker plots corresponds to the number of times X number of 

genes are found within 200bp intervals in the human genome. Plots are cropped 

on the y-axis to show weak trends for the median values of NM-DNA enrichment 

based on the number of genes in each interval. (B) Scatterplots of percent of 

gene coverage per chromosome band (y-axis) and NM-DNA enrichment per 

chromosome band (x-axis) in MCF10a cells (left panel) and MDA-MB-231 cells 

(middle panel). These x-y pairs are plotted for the entire genome using a 

hexagonal density scatterplot in which an increased number of shared x-y 

observations are represented as darker hexagons (right panel). Pearson r and p-

value was calculated for each cell line with the correlation line plotted in red and 

the Pearson r and p-value in the upper right of the scatterplot for each cell line.  
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Genome-wide associations of nuclear matrix-associated DNA and chromatin 

modifications appears to be different in MDA-MB-231 and MCF10a cells 

 

It is not clear whether NM-DNA is associated with transcription repression or 

transcriptional association (Maya-Mendoza and Aranda-Anzaldo 2003, 

Linnemann et al. 2007, 2008, Alva-Medina et al. 2011, Keaton et al. 2011, 

Trevilla-García and Aranda-Anzaldo 2011). Modifications of histone 3 are 

strongly associated with transcriptional states (Greer and Shi 2012). We 

therefore sought to investigate how NM-DNA isolated via NM-seq is associated 

with several modifications of histone 3 on a genome-wide scale. Positional 

comparison of NM-DNA enrichment and histone enrichment has never been 

executed at genomic resolution, and NM-seq allows for this type of interrogation 

of nuclear architecture. In both the MCF10a and MDA-MB-231 cells, we 

performed ChIP-seq for the histone modifications histone 3 lysine 4 tri-

methylation (H3K4me3), histone 3 lysine 27 tri-methylation (H3K27me3) and 

histone 3 lysine 9 di-methylation (H3K9me2) and compared the genome-wide 

enrichment profiles of these histone modifications to NM-DNA enrichment 

patterns. This approach is designed to give us some idea of the extent to which 

matrix-associated DNA is associated with functionally diverse histone 

modifications using our novel isolation methods. 
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We took two unbiased approaches, k-means clustering and Pearson r 

correlation, to discover potential relationships between genomic enrichment of 

NM-DNA and of these chromatin modifications (Figure 2.6). The enrichment of 

NM-DNA, H3K4me3, H4K27me3, and H3K9me2 in 200bp, non-overlapping 

genome-wide coordinates was measured in both MCF10a and MDA-MB-231 

cells. In (Figure 2.6 A), each row is a 200bp non-overlapping interval in which we 

have measured the enrichment of NM-DNA, H3K9me2, H3K27me3, and 

H3K4me3 in each cell line. The columns correspond to the histone mark or NM-

DNA in each cell line. Once this matrix is constructed, k-means clustering is 

applied to identify patterns in the enrichment of these marks. While clustering of 

the enrichment of the histone marks appears to segregate nicely, it does not 

appear that NM-DNA enrichment patterns are affected by the patterns of 

enrichment of histone 3 modifications (Figure 2.6 A). 

 

We then performed pairwise comparisons between each histone 3 modification 

and NM-DNA enrichment, and present these data as a scatter plot correlation 

matrix (Figure 2.6 B). Along the diagonal from bottom left to top right are the 

names for cell line and sample. The left half of the matrix shows density scatter 

plots of enrichment between the pairs of samples, and the right half of the matrix 

contains the Pearson correlation coefficient (r) between the sample pairs. Here 

we observed that NM-DNA did not correlate with histone 3 modifications within 
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either cell line nor did NM-DNA in MCF10a cells correlate with NM-DNA in MDA-

MB-231 cells. 

 

Combining the observations from both approaches, we find that the enrichment 

patterns of H3K4me3, H3K27me3, and H3K9me2 are very similar across the two 

cell lines (Figure 2.6 A) and each modification is mildly correlated across cell 

lines (Figure 2.6 B). Given previous reports that matrix-associated DNA 

generally lacks nucleosomes (Boulikas 1995), we were surprised to not find 

negative correlations between NM-DNA enrichment and these chromatin marks. 

We observe essentially no correlation (positive or negative) between NM-DNA 

enrichment and these histone marks. This study is the first in which the positional 

enrichment of histone modifications has been directly compared to the positional 

enrichment of matrix-associated DNA on a genome-wide scale, so we suggest 

that, as compared to previous studies, the scale of NM-seq allows for a more 

accurate representation of the positional relationships between histone 3 

modifications and NM-DNA. If matrix-associated DNA were nucleosome-free, 

any location in which a core histone (histone 3) is found should be depleted of 

matrix-associated DNA. This analysis uncovers many locations where a histone 

protein and NM-DNA are enriched, which suggests that NM-DNA is not, as a 

rule, nucleosome-free. We cannot rule out mutual exclusivity in a shared location. 

ChIP-seq and NM-seq are measuring frequencies of interaction between a 

protein and genomic sequence or a genomic sequence and the nuclear matrix, 
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respectively. This analysis demonstrates that there is not a clear relationship 

between the positional enrichments of nuclear matrix and modifications of 

histone 3. 
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Figure 2.6 On a genome-wide scale, nuclear matrix-associated DNA is not 

negatively-correlated with the histone modifications H3K4me3, H3K27me3 and 

H3K9me2 in MDA-MB-231 or MCF10a cells. 
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Figure 2.6 On a genome-wide scale, nuclear matrix-associated DNA is not 

negatively-correlated with the histone modifications H3K4me3, H3K27me3 and 

H3K9me2 in MDA-MB-231 or MCF10a cells 

 

(A) Using genome-wide non-overlapping 200bp intervals, the enrichment of NM-

DNA (NM-DNA / Digested Nuclei), and the enrichment of the histone 

modifications H3K4me3, H3K27me3, and H3K9me2 (IP / Input) were measured 

and plotted as a heat map. Each horizontal row is the same 200bp interval. For 

each nuclear feature measured (columns), the log2 of the enrichment values was 

plotted and then clustered using the k-means expectation-maximization 

algorithm. The color scale for log2(enrichment) is found below the heat map. (B) 

Pairwise matrix of scatterplots comparing the enrichment of each nuclear mark in 

each cell line. Scatterplots (upper left panels) are hexagonal density scatter plots 

where darker dots indicate an increased number of paired x-y observations. 

Pearson r values and p-values were calculated for each pairwise comparison. 

The line of best fit is plotted in red on the scatterplots and the Pearson r and p-

values are displayed in the mirrored panels (bottom left panels). 
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Discriminative motif discovery suggests DNA-binding proteins may participate in 

the context-dependent functions of nuclear matrix-associated DNA 

 

While NM-DNA enrichment in MCF10a and MDA-MB-231 patterns may be 

similar in terms of non-correlation with the histone marks examined, the direct 

comparison of NM-DNA enrichment between MCF10a and MDA-MB-231 cells 

shows no correlation (r = -0.09) (Figure 2.6 B). Although the general trends of 

sequence complexity and correlations between gene-rich versus gene-poor 

enrichment are different between these two cell lines, direct comparison of 

positional enrichment of NM-DNA between these two cell lines shows that there 

are some genomic sequences that are associated with the matrix in both cell 

lines as well as some matrix-associated sequences that are unique to each cell 

line. This observation, combined with our comparative analyses between NM-

DNA enrichment and sequence complexity, as well as associations with gene-

rich versus gene-poor regions, leads us to hypothesize that in each cell line there 

may be different proteins responsible for recruiting DNA to the nuclear matrix. To 

determine what DNA-binding proteins may be responsible for recruitment of DNA 

to the nuclear matrix, we looked at sequence motifs enriched in nuclear matrix-

associated DNA. We defined four types of sequence regions to perform motif 

discovery: most associated with the nuclear matrix in MDA-MB-231 cells and 

least associated with the nuclear matrix in MCF10a cells, most associated with 

the nuclear matrix in MCF10a cells and least associated with the nuclear matrix 
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in MDA-MB-231 cells, least associated with the nuclear matrix in both cell lines, 

and most enriched in both cell lines. We then performed discriminative motif 

discovery on these four sets of genomic intervals to determine which types or 

families of proteins may be responsible for the disparate enrichment patterns of 

matrix-associated DNA between these two cell lines (Figure 2.7). Discriminative 

motif discover takes a set of sequences and compares against a background of 

sequences to discover sequence motifs that are significantly overrepresented in 

the set of target sequences (Heinz et al. 2010). For each category of genomic 

regions, a different set of motifs were found. This suggests that the expression of 

certain DNA-binding proteins may result in the observed differences in NM-DNA. 

It is interesting that a motif similar to the RUNX motif is discovered in the regions 

enriched in NM-DNA in both cell lines, as RUNX proteins are dependent on 

interaction with the nuclear matrix for many functions and have been reported to 

be expressed and functional in both cell lines (Zeng et al. 1997, 1998, Barnes et 

al. 2004, Shore 2005, Kadota et al. 2010). Breast cancer associated 1 (BRCA1), 

whose motif is enriched in MCF10a NM-DNA, associates with the nuclear matrix 

and participates in DNA repair, which takes place on the nuclear matrix (Huber 

and Chodosh 2005). It is not clear what function the v-maf musculoaponeurotic 

fibrosarcoma oncogene homolog (avian) (MAF) family of proteins, a motif 

enriched in NM-DNA-enrichment regions in MDA-MB-231 cells, may have. 
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Figure 2.7 Discriminative motif discovery for sequences most associated with the 

nuclear matrix in MCF10a and MDA-MB-231 cells suggests that cell-type-specific 

proteins may participate in differences in matrix-DNA associations. 
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Figure 2.7 Discriminative motif discovery for sequences most associated with the 

nuclear matrix in MCF10a and MDA-MB-231 cells suggests that cell-type-specific 

proteins may participate in differences in matrix-DNA associations. 

 

Four classes of sequences were defined empirically based on NM-DNA 

enrichment percentiles within MCF10a and MDA-MB-231 cells. Using the paired 

NM-DNA enrichment values and genomic coordinates for the previously defined 

genome-wide non-overlapping 200bp intervals, four categories were defined: 

enriched in both (intervals where NM-DNA enrichment is in the top 10% of each 

cell line), enriched in MCF10a (intervals where NM-DNA enrichment is in the top 

10% in MCF10a cells and bottom 10% in MDA-MB-231 cells), enriched in MDA-

MB-231 (intervals where NM-DNA enrichment is in the top 10% in MDA-MB-231 

cells and bottom 10% in MCF10a cells), and depleted in both (intervals where 

NM-DNA enrichment is in the bottom 10% in both cell lines). The sequence logo 

for each de novo motif and the known motifs to which each discovered motif is 

similar are presented for each of the four classes of NM-DNA enrichment. 
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NM-DNA in MCF10a cells is associated with higher gene expression, while in 

MDA-MB-231 cells NM-DNA is associated with lower gene expression 

 

In MDA-MB-231 and MCF10a cells, we observe opposite trends in NM-DNA 

enrichment with sequence complexity and gene-rich versus gene-poor regions. 

These observations lead us to hypothesize that NM-DNA may be differentially 

associated with gene expression patterns between the normal and cancer cell 

lines. Therefore, we examined the relationships between gene expression and 

NM-DNA enrichment. RNA isolated from each cell line was subjected to 

Affymetrix Human Gene 1.0ST arrays to obtain a quantitative signature of gene 

expression in each cell line. Transcript detection levels were normalized across 

arrays using the robust means algorithm (RMA) (for more details, please see 

methods) (Irizarry et al. 2003). We began with the cytological band level, and 

measured the mean RMA-normalized transcript level for all genes within the 

cytological band and compared these values to the mean NM-DNA enrichment in 

the cytological band. Again, we observed opposite results for the MCF10a and 

MDA-MB-231 cells: in MCF10a cells NM-DNA enrichment is somewhat 

correlated (Pearson r = 0.32) with transcript levels, while in MDA-MB-231 cells 

NM-DNA enrichment is somewhat negatively correlated (Pearson r = -0.32) with 

transcript levels (Figure 2.8). 
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Figure 2.8 Nuclear matrix-associated DNA enrichment correlates with higher 

levels of gene expression in MCF10a cells and with lower levels of genes 

expression in MDA-MB-231 cells. 
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Figure 2.8 Nuclear matrix associated DNA enrichment correlates with higher 

levels of gene expression in MCF10a cells and with lower levels of genes 

expression in MDA-MB-231 cells. 

 

(A and B) For each chromosomal band, the mean RMA-normalized transcript 

detection value (extracted from Affymetrix Human Gene 1.0ST arrays) for all 

genes found within the given chromosomal band was plotted as the y-coordinate 

and the corresponding enrichment of NM-DNA was plotted as the x-coordinate. 

These x-y coordinates were plotted as hexagonal density scatterplots where the 

darker hexagons represent an increased number of shared x-y observations. The 

Pearson r and p-value for MCF10a (A) and MDA-MB-231 (B) were calculated 

and the line was plotted in red over the scatter plots; the Pearson r and p-value 

are indicated in the bottom-right corner of the scatterplot in (A) and the top-right 

corner of the scatterplot in (B).  



68 
 

Using a gene-centric approach, NM-DNA is differentially associated with gene 

expression and chromatin states between MCF10a and MDA-MB-231 cells. 

 

As shown in Figure 2.8, NM-DNA is differentially associated with active gene 

expression in the MCF10a and MDA-MB-231 cells. In order to understand how 

NM-DNA enrichment differs at the gene level, we measured the enrichment of 

NM-DNA within 10Kb of all genes in the hg19 RefSeq genome (Pruitt et al. 

2009). We initially clustered these binding patterns to see if genes that are 

differentially expressed between MCF10a and MDA-MB-231 cells have a 

particular pattern of NM-DNA-enrichment, however, no meaningful clusters were 

identified (data not shown). To further define parameters of nuclear organization, 

we performed ChIP-seq for histone H3K9me2, H3K27me3, and H3K4me3. The 

enrichment ratios of these chromatin modifications were combined with the NM-

DNA enrichment data and k-means clustering was performed (Figure 2.9 A). 

 

Given our previous observations, it is expected that we observe very little NM-

DNA enrichment near gene bodies in MDA-MB-231 cells. Similar to the 

observations made in Figure 4.6, the patterns of the chromatin modifications 

(H3K4me3, H3K27me3, and H3K9me2) are even more uniform across cell lines 

at the single gene level. As observed in (Figure 2.6), H3K27me3 is detected at a 

significantly higher level in MDA-MB-231 cells as compared to MCF10a cells at 

both the genome-wide and gene-centric scales. An in vitro comparison of 
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H3K27me3 enrichment in normal (human mammary epithelial cells (HMEC)) and 

breast cancer cells (HCC1954) revealed that H3K27me3 is significantly enriched 

in the cancer cell line as compared to the normal cell line in both genic and 

intergenic regions (Hon et al. 2012). These observations are similar to the 

observations presented here where MDA-MB-231 cells are significantly more 

enriched for H3K27me3 as compared to MCF10a cells in both genic and 

intergenic regions. These cell line studies are in contrast with data observed from 

patient samples where reduction of H3K27me3 is associated with poor patient 

survival (Greer and Shi 2012).  These disparate observations of H3K27me3 

enrichment between patients and derived cell lines may be due to either 

detection methods or cell line derivation, and are not examined in this study.  

 

To investigate whether NM-DNA enrichment near genes may be involved the 

phenotypic differences between MCF10a and MDA-MB-231 cells, we defined 

genes that are differentially expressed between MCF10a and MDA-MB-231 cells. 

The genes that are significantly more or less expressed in each cell line are likely 

to be related to these phenotypic differences between these two cell lines. To 

test whether the genomic regions within and surrounding these differentially 

expressed genes are more or less associated with a pattern of chromatin marks 

and NM-DNA enrichment we used a chi-squared test. For each cluster identified 

by k-means clustering (colors on left of Figure 2.9 A), this test determines the 

extent to which these genes are over or underrepresented. This is done by 
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defining an expected value (based on the distribution (represented as a 

percentage) of all genes within each cluster) and comparing these expected 

values to the observed distribution of genes defined as more expressed in each 

cell line. We can see that the genes more expressed in MCF10a cells are 

primarily found in the purple, pink and brown clusters, while the genes more 

expressed in MDA-MB-231 cells are primarily found in the yellow, red and blue 

clusters. In the MCF10a cells, the yellow, red and blue clusters have increased 

H3K9me2 enrichment compared to the purple, pink and brown clusters, while in 

the MDA-MB-231 cells, the opposite is observed (Figure 2.9 B). In the case of 

NM-DNA, the MCF10a cells show more enrichment flanking the gene bodies in 

the purple, pink and brown clusters compared to the yellow, red and blue 

clusters. However, in the MDA-MB-231 cells there does not appear to be any 

difference in the enrichment pattern of NM-DNA between these groups of 

clusters. In MCF10a cells, the observation that the enrichment pattern of NM-

DNA near genes is related to gene expression suggests that NM-DNA may have 

a functional role in gene expression regulation. In MDA-MB-231 cells, NM-DNA 

enrichment patterns do not appear to be a strongly associated with gene 

expression patterns. These observations lead us to hypothesize that the 

functional role of NM-DNA in gene expression regulation is somehow disrupted in 

the cancer cell line. 
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Figure 2.9 Distinct patterns in the enrichment of NM-DNA and H3K27me3 for 

genes differentially expressed between MDA-MB-231 and MCF10a cells. 
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Figure 2.9 Distinct patterns in the enrichment of NM-DNA and H3K27me3 for 

genes differentially expressed between MDA-MB-231 and MCF10a cells. 

 

(A) For each annotated transcript in RefSeq, the enrichment (NM-DNA / Digested 

Nuclei or IP / Input) of NM-DNA, H3K4me3 (K4me3), H3K27me3 (K27me3) and 

H3K9me2 (K9me2) was measured in 30 defined relative genomic regions: 10Kb 

5’-transcriptional start site (TSS) to the TSS in 1Kb steps, transcription 

termination site (TTS) to 10Kb 3’-TTS in 1Kb steps, and TSS to TTS. These 

enrichment ratios for the relative genomic coordinates were concatenated 

horizontally to combine each nuclear feature from both cell lines so that each 

horizontal row in the heat map represents one RefSeq transcript. The colors on 

the left side of the heat map correspond to clusters discovered by k-means 

expectation maximization. The enrichment ratios were log2-transformed and the 

colors corresponding to the log2-transformed enrichment ratios are found below 

the heat map. (B) Distributions are presented as a percent of total number of 

genes for each of the three gene lists for each cluster identified by k-mean 

clustering. Chi-squared table of the distribution of all genes in RefSeq 

(Expected), genes more expressed in MDA-MB-231 cells (MDA-MB-231 

Observed) and genes more expressed in MCF10a cells (MCF10a Observed).   
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Direct comparison of matrix-associated DNA enrichment with gene expression 

patterns 

 

Because we observed some differences in how NM-DNA and H3K27me3 are 

associated with gene expression patterns between MCF10a and MDA-MB-231 

cells, we directly tested whether these binding profiles are significantly different 

near gene bodies using PeaksToGenes (please see chapter 5 for more complete 

methods description). 

 

Using the internal spike-in controls defined by Affymetrix as negative controls, we 

separated the RefSeq genes in the array into two categories: expressed (greater 

than the mean of the RMA-normalized expression values of the negative control 

probes) and non-expressed (less than or equal to the mean of the RMA-

normalized expression values of the negative control probes). Then, we 

performed the Wilcoxon Rank Sum Test for the observed signal enrichment of 

H3K4me3, H3K27me3, H3K9me2, and NM-DNA in each relative genomic 

window, comparing the expressed genes versus the non-expressed genes.  

 

The histone modification H3K4me3 is associated with transcriptional initiation (Li 

et al. 2007), and in both MCF10a and MDA-MB-231 cells the genes defined as 

expressed are significantly more associated with H3K4me3 in regions proximal to 

the TSS as compared to genes defined as non-expressed (Figure 2.10 A). The 
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repressive histone modification H3K27me3 (Li et al. 2007) is significantly more 

associated with genes defined as non-expressed in both MCF10a and MDA-MB-

231 cells when compared to expressed genes (Figure 2.10 B).  

 

The widely observed functions of H3K4me3 and H3K27me3 combined with their 

strong associations near expressed and non-expressed genes in both cell lines 

suggest that our defining of expressed versus non-expressed genes is valid.  

 

H3K9me2 is thought to be associated with repression (Hawkins et al. 2010), and 

in both MCF10a and MDA-MB-231 cells, enrichment of this chromatin 

modification within the gene body is very strongly associated with non-expressed 

genes (Figure 2.10 C). There is one slight difference, however, in the regions 

flanking the gene bodies: in MDA-MB-231 cells, non-expressed genes are 

significantly more associated with H3K9me2 enrichment, while in MCF10a cells 

there is a much weaker association of H3K9me2 enrichment. This analysis 

provides evidence to suggest that H3K9me2 may be differentially associated with 

gene expression between MCF10a and MDA-MB-231 cells.  
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Figure 2.10 Histone marks linked to transcriptional activation or repression are 

appropriately associated with expressed or non-expressed genes, respectively. 
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Figure 2.10 Histone marks linked to transcriptional activation or repression are 

appropriately associated with expressed or non-expressed genes, respectively. 

 

(A, B, and C) For each annotated transcript in RefSeq, the enrichment (IP / 

Input) of H3K4me3 (A), H3K27me3 (B) and H3K9me2 (C) was measured in 30 

defined relative genomic regions: 10Kb 5’-transcriptional start site (TSS) to the 

TSS in 1Kb steps, transcription termination site (TTS) to 10Kb 3’-TTS in 1Kb 

steps, and TSS to TTS in 10 approximately equal intervals (scaled to 1Kb in 

length). Using a Wilcoxon Rank Sum Test, contrast test types were run to 

contrast genes expressed in a cell line versus genes not expressed in a cell line. 

Lines represent the mean enrichment of the nuclear mark being measured (left y-

axis) in the relative genomic region (x-coordinate) for the set of genes being 

contrasted (color-coded and defined below graphs). Triangles correspond to the 

approximate p-value (95% CI) for the Wilcoxon Rank Sum Test run at each 

relative interval (right y-axis). All panels: MDA-MB-231 (left) and MCF10a (right). 

Error bars are SEM.  
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Comparing NM-DNA enrichment in MCF10a cells near expressed versus non-

expressed genes, we observed that NM-DNA is significantly enriched flanking 

the gene bodies of actively expressed genes (green line) and within the gene 

bodies of non-expressed genes (pink line) (Figure 2.11 A – right). The 

magnitudes of the mean differences between NM-DNA enrichment within 

MCF10a expressed (green) and MCF10a non-expressed (pink) were quite high. 

In regions flanking gene bodies (especially 5’-TSS), the magnitude of the mean 

differences of NM-DNA enrichment near MCF10a expressed (green) and 

MCF10a non-expressed (pink) were not large. However, using p-values 

approximated from the Wilcoxon Rank Sum Test (triangles), we observed that 

these small differences in flanking regions were highly reproducible, and we think 

it is therefore important to understand what these types of matrix-DNA 

interactions may mean.  

 

In MDA-MB-231 cells, NM-DNA was enriched near the TSS of expressed genes 

(blue) and near the TTS and 3’-end of non-expressed (red) genes (Figure 2.11 A 

– left). Compared to the enrichment patterns observed in MCF10a cells (Figure 

2.11 A – right), the mean magnitudes of MDA-MB-231 expressed (blue) and 

MDA-MB-231 non-expressed (red) genes were lower than their respective 

expression counterparts in the MCF10a cells. This is expected given the gene-

poor preferences for NM-DNA enrichment observed in MDA-MB-231 cells. 

Further comparison of these two plots revealed very different patterns in the 
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mean enrichment positions of NM-DNA relative to expressed and non-expressed 

genes. While the magnitude of the mean NM-DNA enrichment within MDA-MB-

231 non-expressed (red line) genes was greater than expressed genes (blue 

line), the p-values associated with these differences were much higher when 

compared to the plots for MCF10a cells. Further inspection revealed differences 

in NM-DNA enrichment within the 5’-end of gene bodies of expressed and non-

expressed genes between MDA-MB-231 and MCF10a cells. In MCF10a cells, 

there was a clear distinction between NM-DNA enrichment within and outside of 

the gene bodies of non-expressed genes (pink line), while in MDA-MB-231 cells 

NM-DNA was only statistically significantly enriched in the 3’-half of gene bodies 

of non-expressed genes (red line). Another major difference between these two 

cell lines was the differences in how NM-DNA was enriched in regions flanking 

expressed and non-expressed genes. In MCF10a cells, some of the most 

significant differences in the enrichment patterns of NM-DNA are observed in 

intergenic regions 5’ of the TSS, in contrast NM-DNA in MDA-MB-231 cells is 

similarly enriched near expressed and non-expressed genes. The one 

consistency between these two cell lines is that NM-DNA enrichment within the 

gene body is associated with lower expression levels, but even that observation 

is weakly conserved in the MDA-MB-231 cells. 

 

When considering genes that are differentially expressed between MCF10a and 

MDA-MB-231 cells for either H3K9me2 (Figure 2.11 B) or NM-DNA (Figure 2.11 
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C), we observe that the trends in association of NM-DNA and H3K9me2 with 

gene expression are even more exaggerated. The genes used for comparison 

were defined using expression data from Affymetrix and a contrast test was 

performed to define genes that are differentially expressed between MCF10a and 

MDA-MB-231 cells. From this test two lists of genes were defined: genes more 

expressed in MCF10a (orange line) cells and genes more expressed in MDA-

MB-231 cells (purple line). When performing the Wilcoxon Rank-Sum Test using 

PeaksToGenes, the background list of genes is the rest of the RefSeq mRNAs 

for each respective list in each cell line (brown line – MDA-MB-231, cyan line – 

MCF10a). In MCF10a, regions flanking the genes expressed more in MCF10a 

cells as compared to MDA-MB-231 (orange line) are significantly enriched in NM-

DNA (Figure 2.11 B – right), and weakly associated with H3K9me2 (Figure 2.11 

C – right) as compared to the rest of the MCF10a transcriptome (cyan line). Both 

H3K9me2 and NM-DNA are enriched within the gene bodies of the rest of the 

MCF10a transcriptome (cyan line) as compared to genes more expressed in 

MCF10a compared to MDA-MB-231 cells (orange line). Comparing the MCF10a 

NM-DNA profiles in (Figure 2.11 C – right) to (Figure 2.11 A – right), we 

observed the p-values associated with the differences in NM-DNA enrichment 

within gene bodies and flanking gene bodies are higher when comparing genes 

more expressed in MCF10a cells to the rest of the MCF10a transcriptome as 

compared to MCF10a expressed versus MCF10a non-expressed genes. Of note 

is the observed magnitude of NM-DNA enrichment in regions flanking genes 
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more expressed in MCF10a cells (orange line) being increased as compared to 

the rest of the MCF10a transcriptome (cyan line) (Figure 2.11 C – right). This 

suggests that in normal cells, regions flanking highly expressed genes have 

increased association with the nuclear matrix. 

 

In MDA-MB-231, the entire region near genes more expressed in MDA-MB-231 

cells as compared to MCF10a (purple line) is significantly depleted in association 

of H3K9me2 as compared to the rest of the MDA-MB-231 transcriptome (brown 

line) (Figure 2.11 B – left). This is different from what is observed in MCF10a 

cells (Figure 2.11 B – right) where we observed that NM-DNA enrichment in 

regions flanking gene bodies of MCF10a more expressed genes (orange line) is 

not significantly different from the enrichment near the rest of the MCF10a 

transcriptome (cyan line). Interestingly, the pattern of 5’ gene body enrichment of 

NM-DNA for MDA-MB-231 expressed genes (blue line) (Figure 2.11 A – left), is 

not observed when comparing genes more expressed in MDA-MB-231 cells 

(purple line) to the rest of the MDA-MB-231 transcriptome (brown line) (Figure 

2.11 C – left). 

 

Consistently observed in both cell lines are the strong associations of both 

H3K9me2 and NM-DNA within the gene bodies of either non-expressed or less-

expressed genes. In terms of matrix-associated DNA, these types of sequences 

would be functionally characterized as MARs (Linnemann et al. 2008). In both 
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cell lines, NM-DNA enrichment near the TSS is associated with expressed 

genes. These types of sequences would be functionally characterized as SARs 

(Linnemann et al. 2008). It is interesting that SARs are also found in regions 

flanking gene bodies of expressed genes, however, this association between 

NM-DNA and gene expression is only observed in the normal mammary 

epithelial cell line MCF10a. These analyses demonstrate the ability of our 

protocol to isolate and enrich for two functional species of DNA associated with 

the nuclear matrix. While these types of matrix-associated DNA have different 

roles in gene expression regulation, analyzing enrichment patterns of matrix-

associated DNA from our protocol in a gene-centric manner allows for unbiased 

categorization of both MARs and SARs. 
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Figure 2.11 Meta-gene analysis reveals significant differences in the associations 

between NM-DNA enrichment and H3K9me2 enrichment and gene expression 

patterns in MDA-MB-231 and MCF10a cells. 
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Figure 2.11 Meta-gene analysis reveals significant differences in the associations 

between NM-DNA enrichment and H3K9me2 enrichment and gene expression 

patterns in MDA-MB-231 and MCF10a cells. 

 

(A, B and C) For each transcript annotated in RefSeq, the enrichment (NM-DNA 

/ Digested Nuclei or IP / Input) of NM-DNA, or H3K9me2 was measured in 30 

defined relative genomic regions: 10Kb 5’-transcriptional start site (TSS) to the 

TSS in 1Kb steps, transcription termination site (TTS) to 10Kb 3’-TTS in 1Kb 

steps, and TSS to TTS in 10 approximately equal intervals (scaled to 1Kb in 

length). Using a Wilcoxon Rank Sum Test, several contrast test types were 

performed: (A) genes expressed in a cell line versus genes not expressed in a 

cell line, (B & C) more expressed in one cell line versus the rest of the 

transcriptome. Lines represent the mean enrichment of the nuclear mark being 

measured (left y-axis) in the relative genomic region (x-coordinate) for the set of 

genes being contrasted (color-coded and defined below graphs). Triangles 

correspond to the approximate p-value (95% CI) for the Wilcoxon Rank Sum Test 

run at each relative interval (right y-axis). All panels: MDA-MB-231 (left) and 

MCF10a (right). Error bars are SEM. 

 

  



84 
 

Discussion 

 

Here we describe NM-seq, which is a method for the isolation of genomic DNA 

associated with the nuclear matrix in a manner that preserves nuclear integrity. 

When applied to a normal mammary epithelial cell (MCF10a) and a malignant 

metastatic breast cancer cell (MDA-MB-231), we demonstrated that NM-seq was 

capable of isolating sequences that can be characterized as either SARs or 

MARs, based on the positions of these sequences relative to gene expression 

patterns. When viewing the enrichment pattern of NM-DNA on a whole 

chromosome for both MCF10a and MDA-MB-231 cells, we observed that there 

was a somewhat inverse pattern of enrichment (Figure 2.12 A). However, it is 

important to note that the most enriched regions in MDA-MB-231 cells were 

similarly enriched in MCF10a cells (although significantly less than other 

enriched regions in MCF10a cells). This observation, combined with the 

observed massive increases in H3K27me3 enrichment, suggests that MDA-MB-

231 cells are deficient in normal structure-function relationships.  
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Figure 2.12 Chromosome-wide pattern of NM-DNA enrichment in MCF10a and 

MDA-MB-231 cells and model for transcriptional associations in each cell line 
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Figure 2.12 Chromosome-wide pattern of NM-DNA enrichment in MCF10a and 

MDA-MB-231 cells and model for transcriptional associations in each cell line 

 

(A) Circos histogram plot of chromosome 11 NM-DNA enrichment in MDA-MB-

231 cells (blue) and MCF10a cells (orange). Outer ring depicts ranges of Giemsa 

stain positivity per chromosomal band; red = centromeres and telomeres, white 

to black (and intermediate grays) indicate intensity of Giemsa staining (Meyer et 

al. 2013). Inner bars represent gene bodies. (B) Cartoon showing less frequent 

DNA-matrix interactions in MDA-MB-231 cells leading to alterations in gene 

expression.  
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Our results demonstrate that there are major differences in the structure-function 

relationships between a normal mammary epithelial cell line (MCF10a) and a 

malignant metastatic breast cancer cell line (MDA-MB-231). Marked 

reorganization of nuclear heterochromatin is a “hallmark of cancer”, and indicates 

that the cancer cells are fundamentally different from their normal counterparts in 

terms of nuclear organization (Hanahan and Weinberg 2000). While this study is 

limited to two immortalized breast lines, the observed correlations between 

expression of matrix-associated proteins and cancer progression suggests that 

changes in DNA associated with the nuclear matrix would follow suit (Samuel et 

al. 1997, He et al. 2008). We suggest that this study is limited in terms the 

inference of general roles for the associations between nuclear matrix-associated 

DNA and transcriptional states because we have only used two cell lines. This 

study demonstrates a potential application of NM-seq in understanding 

differences between the transcriptional associations of NM-DNA in normal and 

disease-state cells. Integrative combinations of NM-seq with ChIP-seq for 

modifications of histone H3 further demonstrates how NM-seq can be used to 

investigate the relationships between chromatin states and matrix-associated 

DNA.  

 

To further study how matrix-associated DNA may be involved with nuclear 

organization, we propose that the application of NM-seq to several tier 1 
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ENCODE cell lines (ENCODE Project Consortium 2011) would yield great 

insight. There are many nuclear functions known to be enriched in association 

with the nuclear matrix such as replication, transcription, RNA splicing, and DNA 

repair (Nickerson 2001). Because it is likely infeasible for one research group to 

perform the required experiments to investigate all these parameters in one cell 

line, using ENCODE cell lines allows for incorporation of these data without 

having to execute these experiments in house. This same logic can be applied to 

non-ENCODE datasets that are publicly available such as lamin-associated 

domains (LADs) (Guelen et al. 2008, Peric-Hupkes et al. 2010). LADs are 

defined using Lamin B1 that is modified to methylate adenine bases where Lamin 

B1 is bound (Guelen et al. 2008), which utilizes an approach called DNA adenine 

methylation identification (DamID) (Germann and Gaudin 2011). We hypothesize 

that LADs may have a significant overlap with NM-DNA in the same cell line 

because Lamin B1 is a matrix-associated protein and is known to bind S/MARs 

(Ludérus et al. 1992). However, it remains to be seen where these overlaps will 

occur and how the enrichment of NM-DNA within these regions compares to the 

global NM-DNA enrichment profile. 

 

Our motif discovery results suggest that multiple transcription factors may be 

involved in NM-DNA interactions with the nuclear matrix. Runx1 and Runx2 are 

required for definitive hematopoiesis and osteoblast maturation respectively 
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(Wang et al. 1996, Komori et al. 1997). Truncation of the C-terminus (required for 

matrix interaction) of Runx1 or Runx2 results in developmental phenocopies of 

the null phenotype (Choi et al. 2001, Dowdy et al. 2010). We therefore 

investigated the extent to which RUNX1 or RUNX2 (from ChIP-seq in Chapter 3) 

binding is enriched in NM-DNA enriched regions in the MDA-MB-231 cells. 

Although there is no overlap between the datasets beyond what can be 

considered random (data not shown), the development of these experimental 

approaches allows researchers to address these nuclear matrix-centric 

hypotheses in a rapid and thorough manner consistent with the types of -omics 

analyses currently being implemented in a variety of developmental and disease-

specific contexts. 

 

In this limited two cell line approach, we are considering MCF10a normal 

mammary epithelial cells as a model for normal associations between NM-DNA 

and transcriptional activity. In Figure 2.11 A, we observed large differences in 

the magnitude of the mean NM-DNA enrichment within the gene bodies of 

MCF10a expressed (green line) and MCF10a non-expressed (pink line) genes. 

Conversely, we observed small differences in the magnitude of the mean NM-

DNA enrichment in regions flanking the gene bodies of MCF10a expressed 

(green line) and MCF10a non-expressed (pink line) genes. While the observed 

differences in magnitude of NM-DNA enrichment in both gene-centric locations 
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(gene bodies and flanking regions), the p-values from the Wilcoxon Rank Sum 

Test were very similar across all regions. What these p-values are effectively 

saying is that the chances that these observed differences are some kind of 

outlier are very low. A potential mechanism that may explain why we observed 

highly reproducible differences in NM-DNA enrichment in both expressed and 

non-expressed genic regions is the dynamic movement of genes to and from 

transcription factories (Lanctôt et al. 2007, Ronneberger et al. 2008). We must 

first consider that when we are measuring enrichment of NM-DNA, what we are 

really measuring is the frequency with which sequences of DNA are interacting 

with the nuclear matrix. The more often a region interacts with the nuclear matrix, 

the more DNA will be sequenced from this region, and thus we will calculate this 

region to be more highly enriched in association with the nuclear matrix. 

Immunofluorescence studies of the movements of expressed versus non-

expressed genes demonstrated that expressed genes are highly dynamic in their 

range of motion within their chromosome territory, while non-expressed genes 

are relatively static in position (Andrulis et al. 1998, Kosak et al. 2002, Zink et al. 

2004a, Hewitt et al. 2004). Further, expressed genes are not constitutively 

expressed; rather they are thought to be transcribed in bursts when associated 

with transcription factories (Dundr and Misteli 2010, Deng et al. 2012). Given that 

the nuclear matrix is enriched in newly synthesized RNA and is localized within 

euchromatic regions, we expect actively transcribed genes to have some 

association with the nuclear matrix. We observed that expressed genes are 
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slightly enriched in association with the nuclear matrix in regions flanking gene 

bodies (Figure 2.11 A – right), however, the magnitude of these differences was 

weak. Considering that genes are only transiently associated with transcription 

factories, we propose that the nuclear matrix serves as a platform to organize 

actively transcribed sequences through interactions with sequences flanking the 

transcribed regions. The transient nature of genes with transcription factories 

explains the highly reproducible (low p-value), yet weak magnitude differences in 

NM-DNA enrichment observed for regions flanking expressed genes. These 

matrix-DNA interactions would therefore serve as an organizational platform for 

the recruitment of transcription and splicing factors to be spatially enriched in 

order to promote accurate and precise transcription in response to physiological 

demands. Conversely, the strong enrichment of NM-DNA within the gene bodies 

of non-expressed genes may be explained by the lack of movement of non-

expressed genes. Whereby lack of gene movement results in more stable 

interactions with the nuclear matrix (or NM-DNA enrichment). These non-

expressed genes would typically be observed in the regions of peripheral 

heterochromatin. While the nuclear matrix is less abundant in the peripheral 

heterochromatin regions, it is still present. These repressive regions may have 

more overlap with the previously discussed LADs; however, this is only 

speculation.  
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This study is the first to analyze matrix-associated DNA on a genome-wide scale 

at such a fine resolution (single base). It is also the only study that has made 

direct positional comparisons between matrix-associated DNA and histone 

modifications. These histone modifications (H3K4me3, H3K27me3, and 

H3K9me2) have not previously been analyzed on a genome-wide scale in either 

cell line. These advances, combined with the integration of transcriptome-wide 

gene expression analysis, make the impact of this study highly significant. Using 

a genome-wide unbiased approach, the results of this study reproduce and 

extend many of the seminal experiments demonstrating the functional 

associations between matrix-associated DNA and gene expression (Ciejek et al. 

1983, Jost and Seldran 1984, Jackson and Cook 1985, Cook 1989, Jackson et 

al. 1993, Linnemann et al. 2008, Rivera-Mulia and Aranda-Anzaldo 2010, 

Trevilla-García and Aranda-Anzaldo 2011). Rather than showing that the nuclear 

matrix is enriched for actively-transcribed loci, without knowing which loci are 

which, or showing that a single gene or small cohort of genes are associated with 

the nuclear matrix in a location-specific manner, we have shown that on a 

genone-wide scale there is are location-specific associations between the 

nuclear matrix and regions flanking transcribed genes. This is an important 

breakthrough in our ability to understand how the nuclear matrix is involved in the 

organization of transcriptional domains within the nucleus. We propose that NM-

seq can be utilized as a tool to study the functional contribution of the nuclear 

matrix to many nuclear functions, not only transcription. Because so many 
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groups are rapidly adopting genome-wide approaches for studying nuclear 

organization-based questions, we further propose that NM-seq should be 

considered as a complimentary tool for addressing these problems. 

 

Materials and Methods 

 

Cell Culture 

 

MCF10a cells were cultured in phenol-free DMEM/F12 media supplemented with 

EGF, insulin, cholera toxin and hydrocortisone and subcultured as described 

(Debnath et al. 2003). 

 

MDA-MB-231 cells were grown and subcultured as previously described (Pratap 

et al. 2008). 

 

Immunofluorescence microscopy 

 

Cells were grown on coverslips coated in 0.5% w/v gelatin as previously 

described prior to extraction (Ali et al. 2010, 2012). Fixed cells/nuclei/matrices 
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were then incubated with primary antibodies (NPAT, Coilin, PML, SC-35, UBF 

and Pol II) prior to incubation with AlexaFluor-conjugated secondary antibodies 

as previously described (Ghule et al. 2009, Ali et al. 2010, 2012). 

Immunofluorescence was executed in parallel to preparation of nuclear matrices 

for genomic DNA extract and deep-sequencing.  

 

ChIP-seq 

 

ChIP was performed on subconfluent cells as previously described (Lee et al. 

2006) with the following modification: after sonication, buffer C was exchanged 

for FA buffer (50mM HEPES-KOH, pH 7.5, 140mM Sodium Chloride, 1mM 

EDTA, 1% v/v Triton X-100, 0.1% w/v Sodium Deoxycholate, 0.1% w/v SDS, 1x 

Roche cOmplete EDTA-free protease inhibitor cocktail, 25nM MG132 in 

Nuclease-Free Water) prior to antibody pulldown using Amicon columns 

(10,000kDa MWCO). After genomic DNA was isolated for both specific IPs and 

Input DNA, libraries were prepared for paired-end multiplexed tag Solexa/Illumina 

sequencing using the Illumina DNA Sample Prep Kit v2.0 according to 

manufacturer instructions. 
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Isolation of nuclear matrix 

 

This section is not presented as methods, but rather in protocol format. 

 

Buffers: 

 

4x CSK Salts 

400mM Sodium Chloride, 4mM EGTA, 40mM PIPES pH 6.8 12mM Magnesium 

Chloride in Nuclease Free Water. This buffer is stable (maintains pH) at 4°C for 

approximately one month. 

 

4x Digestion Buffer 

200mM Sodium Chloride, 4mM EGTA, 40mM PIPES pH 6.8 12mM Magnesium 

Chloride in Nuclease Free Water. This buffer is stable (maintains pH) at 4°C for 

approximately one month. 

 

CSK Extraction Buffer 

1x CSK Salts, 300mM Sucrose, 0.5% v/v Triton X-100 in Nuclease Free Water. 
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CSK Crosslinking Buffer 

1x CSK Salts, 300mM Sucrose, 1%w/v Formaldehyde in Nuclease Free Water. 

 

CSK Wash Buffer 

1x CSK Salts, 1mM EDTA, 1mM EGTA, 300mM Sucrose in Nuclease Free 

Water 

 

Nuclear Matrix Digestion Buffer 

1x Digestion Buffer, 300mM Sucrose, 0.5%v/v Triton X-100, 600U/mL MspI, 

600U/mL HaeIII, 600U/mL RsaI, 600U/mL AluI, 600U/mL BamHI, 600U/mL PvuII 

in Nuclease Free Water. 

 

Digestion Wash Buffer 

1x Digestion Buffer, 300mM Sucrose, 10mM EDTA, 10mM EGTA in Nuclease 

Free Water. 
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Matrix Extraction Buffer 

1x Digestion Buffer, 300mM Sucrose, 10mM EDTA, 10mM EGTA, 250mM 

Ammonium Sulfate in Nuclease Free Water. 

 

Crosslink Reversal Buffer 

100mM Sodium Bicarbonate, 0.5%w/v SDS, 10mM EDTA, 10mM EGTA in 

Nuclease Free Water. 

 

Sonication Buffer 

10mM Tris-Cl, pH 8.0, 100mM Sodium Chloride, 1mM EDTA, 1mM EGTA, 

0.1%w/v Sodium Deoxycholate, 0.5%w/v N-Lauroylsarcosine in Nuclease Free 

Water. 

 

Day 1 

All buffers for this section should be prepared several hours prior to removing 

cells from the incubator. With the exception of the Crosslink Reversal Buffer, all 

buffers should be kept on ice in nuclease-free tubes/bottles. 
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It is important that the sucrose in the matrix buffer and the glycerol in the enzyme 

buffers are properly dissolved in solution before beginning. 

Add the formaldehyde to the CSK Crosslinking Buffer immediately before adding 

to cells. 

1. Grow adherent cells to passage (near confluence) density on a 100mM tissue 

culture plate. 

2. Remove plates from incubator and place on ice. Be sure that the plates are 

partially buried into the ice, and not just resting on top. Be careful not to push the 

plates in so far that ice will fall into the plates, and try to make the plate surface 

as level as possible for even buffer distribution. 

3. Aspirate media, gently wash cells twice with ice cold PBS to remove all media, 

serum, and non-adherent cells. 

4. Add 5mL CSK Extraction Buffer to each plate. Incubate on ice for 10 minutes. 

During incubation, gently rotate ice bucket in air to ensure the buffer is evenly 

dispersed across the cells. 

5. Aspirate CSK Extraction Buffer and discard. Wash cells gently twice with CSK 

Wash Buffer. 

6. Add 5mL CSK Crosslinking Buffer. Incubate on ice for 10 minutes. During 

incubation, gently rotate ice bucket in air to ensure the buffer is evenly dispersed 

across the cells. 
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7. Add 250µL freshly-prepared 2.5M Glycine to each plate, gently rotate to mix. 

Incubate for 10 minutes on ice to stop formaldehyde crosslinking, gently rocking 

ice bucket as before. 

8. Aspirate buffer from cells, and appropriately discard. Gently wash cells twice 

with CSK Wash Buffer. 

9. Add 1mL Nuclear Matrix Digestion Buffer to each plate. Place cells in 30°C 

incubator for 1 hour. Every 15 minutes, rotate the plates to ensure buffer is 

evenly distributed. 

10. For plates to be used for digested nuclei: 

(a) Scrape plates and all buffer into 50mL Amicon column with 10,000MWCO. 

(b) Add 10mL Digestion Wash Buffer to tube. 

(c) Spin at max speed for column until volume reaches approximately 400µL. 

(d) Add 10mL Crosslink Reversal Buffer. 

(e) Spin at max speed for column until volume reaches approximately 400µL. 

(f) Transfer top solution to 1.75mL Axygen tube. 

(g) Add 4µL of 20mg/mL Proteinase K to tube (final concentration of 200µg/mL). 

(h) Incubate in a 65°C water bath for 16 hours. 

For plates to be used for nuclear matrix preparation: 
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(a) Place plates back on ice. 

(b) Aspirate Nuclear Matrix Digestion Buffer. 

(c) Wash gently with Digestion Wash Buffer twice. 

(d) Add 5mL Matrix Extraction Buffer. Incubate on ice for 10 minutes. Gently rock 

ice bucket as described above. 

(e) Aspirate Matrix Extraction Buffer. Gently wash cells twice with Digestion 

Wash Buffer. 

(f) Scrape residual matrices on plates in 400µL Crosslink Reversal Buffer into 

50mL Amicon column with 10,000mwco. 

(g) Add 10mL Crosslink Reversal Buffer to tube. Spin at max speed for column 

until volume reaches approximately 400µL. Repeat. 

(h) Transfer top volume to 1.75mL Axygen tube. 

(i) Add 4µL of 20mg/mL Proteinase K to tube (final concentration of 200µg/mL). 

(j) Incubate tube in a 65°C water bath for 16 hours. 

Days 2: Genomic DNA Isolation 

Make a fresh preparation of phenol:chloroform:isoamyl alcohol (25:24:1) and 

chloroform:isoamyl alcohol (24:1). 

1. Pre-spin 2.0mL Phase-Lock Heavy (Qiagen) tubes. 
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2. Transfer solution from Axygen tube into Phase-Lock Heavy tube. 

3. Add 400µL phenol:chloroform:isoamyl alcohol. Vigorously mix for 15s. 

4. Spin at 10,000g for 10 minutes. 

5. Add 400µL chloroform:isoamyl alcohol. Vortex by tapping the bottom of the 

tube while holding the top for 30s. Spin again. 

6. Transfer supernatant into 1.75mL Axygen tube. 

7. Add 8µL 10mg/mL RNAse A to tube (final concentration of 200µg/mL). 

Incubate tube for 2 hours in 37°C water bath. 

8. Add 4µL 20mg/mL Proteinase K to tube (final concentration of 200µg/mL). 

Incubate tube for 2 hours in 55°C water bath. 

9. Pre-spin 2.0mL Phase-Lock Heavy tubes. 

10. Transfer solution from Axygen tube into Phase-Lock Heavy tube. 

11. Add 400µL phenol:chloroform:isoamyl alcohol. Vigorously mix for 15s. 

12. Spin at 10,000g for 10 minutes. 

13. Add 400µL chloroform:isoamyl alcohol. Vortex by tapping the bottom of the 

tube while holding the top for 30s. Spin again. 

14. Transfer supernatant into 1.75mL Axygen tube. Add 800µL ice-cold 100% 

Ethanol. Mix by inverting tube. 
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15. Place tube at -20°C overnight. 

Day 3: Sonication 

Freshly prepare Sonication Buffer and store on ice. 

Freshly prepare 80% Ethanol and store at -20°C for several hours before 

washing DNA pellet. 

Sonication conditions need to be empirically determined as not all sonicators are 

the same. Presented here is the methods used in our lab. 

1. Remove tubes from -20°C, spin at 4°C at full speed for 20 minutes. 

2. Gently remove and discard supernatant. 

3. Add 1mL ice cold 80% ethanol. Spin at 4°C at full speed for 10 minutes. 

Remove supernatant. Repeat. 

4. Add 500µL Sonication Buffer to tube, allow DNA to go into solution on ice. 

5. Suspend tube in ice water bath in sonication cabinet. 

6. Position tube so that the micro-tip is a few millimeters from the bottom of the 

tube and perfectly centered. 

7. Run the following sonication cycle 8 times: 

(a) Total sonication time of 20 seconds, oscillating between 1 second of 

sonication and 2 seconds of rest. 
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(b) 30 seconds of rest in between each cycle. 

8. Add 1mL ice-cold 100% Ethanol. Place tube at -20°C overnight. 

 

Gel Verification 

 

1. Cast a 2% TAE-agarose gel. 

2. Remove tubes from -20°C, spin at 4°C at full speed for 20 minutes. 

3. Gently remove and discard supernatant. 

4. Add 1mL ice cold 80% ethanol. Spin at 4°C at full speed for 10 minutes. 

Remove supernatant. Repeat. 

5. Add 100µL TE to pellet. 

6. Quantify DNA using Qubit dsDNA HS Assay (Invitrogen). 

7. Run a small (~200ng) amount of DNA (if you can spare it) for several hours at 

30V. Use a 100bp DNA ladder for a marker. Gel can be stained with ethidium 

bromide or other in-gel DNA visualizing reagent. Our lab used ethidium bromide. 

8. Visualize DNA using UV; if distribution is centered higher than 400bp, repeat 

sonication steps. A 400bp band will be selected from the gel during library 

preparation for sequencing. It is important that the distribution of band sizes is 
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centered at 400bp so that the slice selected will have a high probability to be 

representative of the entire population of DNA fragments. 

 

Library Preparation 

 

From this point, all DNA is treated as ChIP DNA for the preparation of genomic 

DNA libraries for deep-sequencing on the Illumina Hi-Seq 2000. All libraries are 

prepared according to the manual provided with the Illumina TruSeq DNA 

Sample Preparation v2 Guide. 

Buffers 

All buffers should be made fresh the day of the experiment unless otherwise 

noted, and are made with nuclease-free water in nuclease free tubes/bottles. All 

reasonable precautions to maintain a nuclease-free environment when 

preparing/using these buffers should be made. 

 

2.55M Sucrose 

Sucrose (g):    1710g  

Nuclease-free Water  900mL 
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Final Molarity   2.55M 

The following is from the Lamond lab protocol for sucrose buffer preparation 

http://www.lamondlab.com/f7nucleolarprotocol.htm: The stock solution is stable 

indefinitely at 4°C. This procedure can be carried out at RT. There is no need to 

heat up the solution to help disolve the sucrose. Heating up an incompletely 

dissolved sucrose solution can lead to charring of sucrose and affect the quality 

of the sucrose solution. 

Prepare the sucrose buffer as follows: 

1. Weigh out 1710 g sucrose. Keep it aside in a clean container. 

2. Put exactly 900ml water and a magnetic bar in a 5 liter beaker. Put the beaker 

on a stirrer and start stirring. 

3. Add 1/3 of the sucrose into the beaker. Make sure the magnetic bar is rotating 

freely. Stir for 1 hour. 

4. Add another 1/3 of the sucrose into the solution. Again make sure the rotation 

of the stir bar is not impaired. Stir for another 1 hour.. 

5. Add the remaining sucrose. Stir for another 1 hour, or until all the sucrose has 

gone into solution. The final volume should be exactly 2 liters. 

 

http://www.lamondlab.com/f7nucleolarprotocol.htm
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Read Mapping 

 

100bp paired-end reads were mapped to the hg19 build of the human genome 

using Bowtie2 (Langmead and Salzberg 2012). 

 

Read Conversion 

 

Mapped reads were converted to BED-format reads for analysis using SAMTools 

(Li et al. 2009) and BedTools (Quinlan and Hall 2010) 

 

Discriminative Motif Discovery 

 

Homer (Heinz et al. 2010) motif discovery software was used to discover 

enriched motifs. For each set of test intervals, a GC/CpG/length-matched set of 

intervals was generated by Homer and used as background. 

 

GC Content 
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GC content was measured using custom Perl scripts reliant upon BioPerl (Stajich 

et al. 2002) to calculate GC content from FASTA-format sequence files. 

 

Giemsa Chromosome Bands 

 

Coordinates of Giemsa bands and RefSeq gene positions were extracted from 

the UCSC Genome Browser for hg19 (Meyer et al. 2013). 

 

Scatterplots and Correlation Coefficient Calculation 

 

Hexagonal plots and Pearson R correlation coefficient calculations were done in 

R using the “hexbin” package and the “cor.test” function. 

 

Heat Maps and Clustering 

 

K-means clustering and heat maps were generated in R. Heat maps were 

generated using the “heatmap.2” function from the “gplots” library. K-means 

clustering was performed using the “kmeans” function of the “stats” core 

package. 
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Affymetrix Arrays and Analysis 

 

Human Gene 1.0ST arrays from Affymetrix were used to measure gene 

expression levels in MCF10a and MDA-MB-231 cells. cRNA amplification and 

hybridization to the array was performed by the UMASS Medical School 

Genomic Core as previously described (Dowdy et al. 2010). 

 

Analysis was performed in R to execute normalization, quality control, transcript-

level reporting, annotation, and contrast tests. The “affy” (Gautier et al. 2004) 

package was used to read in raw fluorescent values from arrays; values were 

normalized across all arrays using quantile normalization (Bolstad et al. 2003), 

robust means average (RMA) background correction and median polish (Irizarry 

et al. 2003). Quality control plots were generated to ensure the arrays did not 

have any artifacts and post-processing values were in similar ranges. Transcripts 

were annotated using the “annotate” package, the 

“hugene10sttranscriptcluster.db” package. Contrast tests were generated and 

performed using the “limma” package. 
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Circos Plot 

 

Circos plot of NM-DNA-enrichment on human chromosome 11 was done using 

Circos  (Krzywinski et al. 2009). 
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CHAPTER 3 GENOME-WIDE ANALYSIS OF BINDING AND GENE 

EXPRESSION REGULATION OF RUNX1 AND RUNX2 IN MDA-MB-231 CELLS 

AND ASSOCIATION OF RUNX1 AND RUNX2 EXPRESSION WITH HORMONE 

RECEPTORS IN BREAST CANCER PATIENT SAMPLES 
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Introduction 

 

Transcription factors and their cognate coregulatory partners are critical for cell-

type specific expression of phenotypic genes. In cancer, many transcription 

factors with functions required for normal developmental processes function in 

tumor cells to promote cancer progression. For example, transcription factors 

that mediate signaling pathways for growth and tissue formation, including the 

TGF-beta, BMP, and WNT pathways, are highly active (Zaidi et al. 2007). Here, 

we address the functional activities of a transcription factor family that is required 

for developmental processes and whose expression is deregulated in breast 

cancer cells, though their distinct functional roles in contributing to the 

progression of tumor growth and later metastatic events are not clear. 

 

Runx1 and Runx2 are developmentally required for the emergence and 

maturation of the hematopoietic (Wang et al. 1996) and osseous (Komori et al. 

1997) lineages, respectively; they are also associated with tumor growth and 

metastasis (Pratap et al. 2006). In their native cellular context, RUNX proteins 

participate in multiple critical signaling pathways and regulate the expression of 

phenotypic genes and ribosomal RNA (Young et al. 2007a, 2007b, Bakshi et al. 

2008). Further, the result of RUNX binding to a gene promoter may be either 

activation or repression, depending on the co-regulatory proteins it recruits 

(Cameron and Neil 2004). These observations indicate that the presence of a 
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RUNX protein within a given cell does not necessarily predict the outcome on the 

transcriptional program. 

 

In breast and prostate cancer cell lines, both of which are predisposed to bone 

metastasis, RUNX2 plays a key transcriptional role in promoting both the 

osteomimetic and osteolytic activities of tumor cells (Barnes et al. 2004, Javed et 

al. 2005, Pratap et al. 2008, Akech et al. 2010). The mechanisms by which 

RUNX2 promotes metastatic bone disease have been well characterized in vitro 

and include the activation of bone/ECM-adhesion proteins (OP, BSP) and 

invasion-related factors (MMPs, VEGF), as well as mediating the TGF-

beta/SMAD signaling pathway and the vicious cycle of tumor growth and bone 

resorption (IHH/PTHRP) (Pratap et al. 2010, Chimge and Frenkel 2012). 

 

RUNX1, on the other hand, appears to function as a tumor suppressor in the 

MCF10a mammary epithelial cells and derived tumorigenic cell lines (Kadota et 

al. 2010, Wang et al. 2011a, Janes 2011). In MDA-MB-231 cells stably 

transfected with estrogen receptor alpha (ER-α), RUNX1 has been proposed to 

function as a tethering factor for ER-α to cooperatively promote estrogen 

stimulation (Stender et al. 2010). However, the functions of RUNX1 in the context 

of parental, ER-negative MDA-MB-231 cells are unknown. 

 

In Asian patients, RUNX2 expression is an independent predictor of disease and 
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is primarily associated with estrogen receptor negative (ER-) breast cancers (Das 

et al. 2009, Onodera et al. 2010). In a small scale study of European breast and 

breast cancer tissues, the Human Protein Atlas found that RUNX2 was not 

expressed in either normal or tumor tissues (Uhlén et al. 2005, Pontèn et al. 

2008, Uhlen et al. 2010). These observations lead us to hypothesize that due to 

the small sample size of the Human Protein Atlas study, the observation of 

RUNX2 not being expressed may not be representative of the expression profile 

of RUNX2 in all patients. An alternative explanation is that the expression of 

RUNX2 may be unique to Asian patients as a large scale study of the expression 

of RUNX2 in American or European patients of breast cancer has yet to occur. 

 

While the in vitro functions of RUNX1 in breast cells may not be well described, 

there is evidence to suggest that in breast cancer patients RUNX1 functions as a 

tumor suppressor. RUNX1 transcript is significantly lower in metastatic breast 

cancer cells as compared to primary tumors (Ramaswamy et al. 2003), and 

RUNX1 is significantly mutated in patients of breast cancer (The Cancer Genome 

Atlas Network 2012). In the Human Protein Atlas study mentioned above, 

RUNX1 was strongly detected in normal breast tissue and in tumor tissue, 

however, the sample size was small (Uhlén et al. 2005, Pontèn et al. 2008, Uhlen 

et al. 2010). These in vivo observations or RUNX1 expression patterns and 

mutational frequencies seemed counterintuitive to the observation that RUNX1 

was highly expressed in the malignant metastatic MDA-MB-231 cells, so it is 
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therefore necessary to examine both the functions of RUNX1 in MDA-MB-231 

cells and the expression pattern of RUNX1 in patient samples of breast cancer. 

 

To investigate the roles of RUNX1 and RUNX2 in breast cancer, we examined 

the extent to which RUNX expression is associated with breast cancer 

progression and transition into early metastatic disease. To accomplish this, we 

used cell line models of breast cancer as well as human breast cancer patient 

tissue. Using MDA-MB-231 cells as a model of metastatic breast cancer cells to 

define the functions of endogenously expressed RUNX proteins, we 

characterized the patterns of genome-wide RUNX1 and RUNX2 binding and 

genome-wide transcriptome response to RNAi-mediated knockdown of RUNX 

proteins. Here we report that while RUNX1 and RUNX2 both appear to play roles 

in transcriptionally regulating genes involved in the invasive phenotype of MDA-

MB-231 cells, only RUNX1 appears to be bound near the promoters of these 

genes. In human patients, while neither RUNX1 nor RUNX2 appear to be 

independent prognostic markers of disease, we do see RUNX1 expression as 

primarily associated with early stages of disease, while RUNX2 expression is 

primarily found in middle-late stage breast cancer. Integrating common markers 

of breast cancer prognosis (ER, PR, HER2, and AR), we find that RUNX1 

expression is correlated with AR expression, and association of RUNX1 with 

either ER or HER2 is dependent on AR status. These results suggest that the 

expression of RUNX proteins in breast cancer is highly sensitive to hormone 
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receptor status. 

 

Results 

 

Runx proteins do not regulate ribosomal RNA transcription, protein synthesis, or 

cell growth in MDA-MB-231 cells 

 

In the hematopoietic and osteoblastic lineages, RUNX1 and RUNX2, 

respectively, control cell growth by regulating the rate limiting step of protein 

synthesis by suppressing transcription of ribosomal RNA. RUNX proteins 

regulate rRNA transcription through binding to the rDNA repeats and are 

observed to colocalize with upstream binding factor (UBF) at the periphery of 

nucleoli (Young et al. 2007a, Bakshi et al. 2008, Ali et al. 2010, 2012). Both 

RUNX1 and RUNX2 have been observed to be expressed in the malignant 

metastatic MDA-MB-231 cells, which are highly proliferative (Barnes et al. 2004, 

Javed et al. 2005, Pratap et al. 2008, Stender et al. 2010). It is therefore of 

interest to investigate whether the growth-suppressive function of RUNX proteins 

are operative in breast cancer cells.  

 

We began by detecting the levels the levels of RUNX proteins in adjacent normal 

breast tissue from human patients by immunohistochemistry (Figure 3.1 A). The 
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Human Protein Atlas has previously observed that RUNX1 can be detected in 

normal breast tissue, while RUNX2 cannot (Uhlén et al. 2005, Pontèn et al. 2008, 

Uhlen et al. 2010). While examination of RUNX protein levels in patient tissues 

does not provide a good indication of the potential for RUNX proteins to regulate 

rRNA transcription, it does allow for a comparison of the levels of RUNX1 and 

RUNX2 in normal breast tissue. This approach further indicates the extent to 

which we can reproduce the observations of others. Immunohistochemical 

staining of RUNX1 and RUNX2 in adjacent normal mammary epithelial cells 

showed that RUNX1 was strongly expressed while RUNX2 was not detected at 

all (Figure 3.1 A).  

 

Immunofluorescence (IF) is a method of immunodetection of an antigen via a 

fluorescent-conjugated secondary antibody and is generally considered more 

sensitive than detection with a horseradish peroxidase (HRP)-conjugated 

secondary antibody. This method allows for examination of the subnuclear 

localization of RUNX proteins and the extent to which RUNX proteins colocalize 

with upstream binding factor (UBF), which is a required member of the RNA 

polymerase I (Pol I) complex and for rRNA transcription (Voit et al. 1995). 

Therefore, we used IF to detect the level and subnuclear localization of RUNX1, 

RUNX2, and UBF in: 1) non-tumorigenic breast cells (MCF10a), 2) malignant, 

poorly-invasive breast cancer cells (MCF-7), and 3) malignant, highly-invasive 

breast cancer cells (MDA-MB-231) (Figure 3.1 B). By qualitatively comparing of 
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the observed levels of RUNX1 and RUNX2 in normal breast tissue (Figure 3.1 

A) to the levels detected by immunostaining in MCF10a cells (Figure 3.1 B – top 

row), we similarly observed that RUNX1 is expressed, while RUNX2 barely 

detected. Weak detection of RUNX2 in the non-tumorigenic MCF10a cells and no 

detection of RUNX2 in adjacent normal breast tissue is likely a technical issue as 

RUNX2 has been observed in normal MCF10a cells by electro-mobility shift 

assay (EMSA) (Inman and Shore 2003, Shore 2005). These results also give us 

an indication of the threshold of sensitivity for detection of RUNX proteins breast 

cancer patient tissue, which will be presented later. Using IF in non-tumorigenic 

breast and breast cancer cell lines, we observed that RUNX proteins were not 

co-localized with UBF (Figure 3.1 B). This suggests that RUNX1 and RUNX2 are 

unlikely to be functioning to regulate rRNA transcription. However, these IF 

results only describe the potential for RUNX proteins to regulate rRNA 

transcription based on spatial proximity to UBF, and do not provide direct 

evidence. 

 

To further investigate the roles of endogenous RUNX1 and RUNX2, we chose to 

use the MDA-MB-231 cell line, as this cell line has the highest endogenous levels 

of both RUNX1 and RUNX2 of those examined (Figure 3.1B – bottom row). 

Utilization of this cell line, in which both RUNX1 and RUNX2 are endogenously 

expressed at high levels, also allows us to test the degree to which the functions 

of RUNX1 and RUNX2 are overlapping. RUNX2 regulates the transcription of 
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rRNA by binding to the rDNA repeats in SaOS-2 cells, therefore SaOS-2 cells 

were used as a control (Young et al. 2007a, Ali et al. 2010, 2012). Although we 

do not observe overlap in the IF signals of RUNX proteins and UBF in MDA-MB-

231 cells, we wanted to directly test the extent to which RUNX proteins are 

bound to ribosomal genes. Therefore, using chromatin immunoprecipitation 

followed by sequence-specific Real Time qPCR we measured the binding of 

RUNX1 and RUNX2 to genomic regions upstream (rDNA A) and within (rDNA 

B/C) ribosomal genes in MDA-MB-231 cells and SaOS-2 cells (Figure 3.1 C). In 

this experiment, UBF was used as a positive control for immunoprecipitation of 

ribosomal DNA, while normal rabbit immunoglobulin G (IgG) was used as a 

control for immunospecificity. UBF is more strongly bound to rDNA repeats as 

compared to RUNX proteins (Young et al. 2007a, Bakshi et al. 2008, Ali et al. 

2010, 2012), therefore the percent of input recovered by UBF 

immunoprecipitation (green bars) is plotted on the right y-axis, while normal 

rabbit IgG, RUNX1, and RUNX2 are plotted on the left y-axis. In SaOS-2 cells, 

immunoprecipitation with RUNX1 (yellow bars) or RUNX2 (green bars) recovered 

more input DNA at rDNA B and rDNA C as compared to immunoprecipitation 

with normal rabbit IgG (pink bars), which indicates that both RUNX1 and RUNX2 

are bound to the rDNA repeats in SaOS-2 cells. In MDA-MB-231 cells, we 

observed that RUNX1 immunoprecipitation recovered more DNA at rDNA B and 

rDNA C than normal rabbit IgG, indicating that RUNX1 is likely bound to rDNA. 

We also observed that while the mean amount of rDNA B and rDNA C recovered 
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by RUNX2 immunoprecipitation was more than with rabbit IgG in MDA-MB-231 

cells, there was a high degree of variability (error bars for replicates) in the 

amount of rDNA B/C recovered by RUNX2 immunoprecipitation. This suggests 

that if RUNX2 is bound to rDNA repeats in the MDA-MB-231 cells the interaction 

between RUNX2 and rDNA may be weak or only occurring in a subset of MDA-

MB-231 cells.   
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Figure 3.1: RUNX1 and RUNX2 do not colocalize with UBF and are weakly 

bound to ribosomal DNA in breast cells. 
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Figure 3.1: RUNX1 and RUNX2 do not colocalize with UBF and are weakly 

bound to ribosomal DNA in breast cells. 

 

(A) Immunohistochemical staining of RUNX1 and RUNX2 in patient samples of 

normal adjacent breast tissue. (B) Immunofluorescence staining of RUNX1, 

RUNX2 and UBF in non-tumorigenic (MCF10a), malignant, poorly-invasive 

(MCF-7) and malignant, highly-invasive (MDA-MB-231) breast cell lines. (C) 

Chromatin immunoprecipitation using normal rabbit IgG, RUNX1, RUNX2, and 

UBF from SaOS-2 osteosarcoma and MDA-MB-231 bone metastatic breast 

cancer cells followed by qPCR for regions proximal to the TSS of the human 

rDNA repeat (Ali et al. 2010, 2012). CYBB – cytochrome b-245, beta polypeptite / 

GP91-PHOX; rDNA A/B/C ribosomal DNA regions, refer to Ali et al. 2010 Figure 

1D; Runx1p1 – RUNX1 promoter 1 (p1) region. Bars represent mean percent of 

input and error bars equal SEM for two technical replicates and two biological 

replicates.  
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Combining our ChIP observations with our IF observations indicates a possible 

disconnect between the anti-nucleolar localization of RUNX proteins in whole 

cells observed by IF and the binding of RUNX proteins to rDNA repeats in 

biochemically extracted chromatin. IF and ChIP provide evidence for the location 

of a protein not the function of a protein, so the extent to which RUNX proteins 

regulate protein synthesis in breast cells has not been thoroughly addressed. 

Therefore, using the MDA-MB-231 cells as a model of breast cancer cells and 

SaOS-2 cells as a model for normal RUNX function, we investigated the 

functional contributions of RUNX proteins in the regulation of cell growth, rRNA 

transcription, and protein synthesis (Figure 3.2). To simultaneously measure the 

extent to which RUNX proteins regulate cell growth and rRNA transcription, we 

performed a time course of RNA interference (RNAi) knockdown of the 

endogenous RUNX proteins in both MDA-MB-231 and SaOS-2 cells. We 

observed that the short interfering RNAs (siRNAs) targeting RUNX1 and RUNX2 

were sufficient to significantly reduce the protein detected in whole cell lysates at 

24, 48, and 72 hours in SaOS-2 and MDA-MB-231 cells (Figure 3.2 A). We also 

saw two interesting phenomena in the levels of RUNX proteins, which were 

uniquely observed in the MDA-MB-231 cells: 1) as MDA-MB-231 cell density 

increased over time, the levels of RUNX1 and RUNX2 decreased, and 2) the 

levels of RUNX2 were significantly lower in MDA-MB-231 cells as compared to 

SaOS-2 cells. By counting the number of cells in culture after 24, 48, and 72 

hours post-transfection of siRNA, we measured the effects of RUNX proteins on 
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growth (Figure 3.2 B). Here, we observed that RUNX proteins do not 

significantly affect growth in either MDA-MB-231 cells or SaOS-2 cells. RUNX2 

has previously been observed to affect the growth of SaOS-2 cells, but only in 

the absence of histone deacetylase 1 (HDAC1) (Ali et al. 2012), so not seeing a 

growth affect in a RUNX knockdown still does not rule out RUNX-regulation of 

rRNA transcription and protein synthesis. We therefore examined the levels of 

pre-ribsomal RNA (pre-rRNA) after 24, 48, and 72 hours (Figure 3.2 C). pre-

rRNA is rapidly processed into mature rRNA, and is used as a proxy for 

measuring rRNA transcription rates (Grummt and Voit 2010). Knockdown of 

RUNX1 and RUNX2 in Kasumi-1 and SaOS-2 cells, respectively, has resulted in 

reduction of pre-rRNA levels (Young et al. 2007a, Bakshi et al. 2008, Ali et al. 

2010, 2012). We observed that knockdown of RUNX2 in SaOS-2 caused a 

significant increase in pre-rRNA levels cells at 24, 48, and 72 hours post-

transfection, and knockdown of RUNX1 in SaOS-2 caused an increase only at 

the 24 hour time point (Figure 3.2 C – left). In contrast, knockdown of RUNX 

proteins in MDA-MB-231 cells had no significant effects on pre-rRNA levels at 

any time post-transfection (Figure 3.2 C – right). Pulse-labeling proliferating 

cells with 35S-tagged amino acids allows for a measurement of the rate of protein 

synthesis in the cell population. 48 hours post-transfection of RUNX siRNAs, 

SaOS-2 and MDA-MB-231 cells were pulse labeled with radiolabeled methionine 

and cysteine to measure the effects of RUNX proteins on the rate of protein 

synthesis (Figure 3.2 D). Each replicate experiment was quantified by 
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densitometry and combined (Figure 3.2 D – right). We observed that RUNX1 

and RUNX2 significantly affected the rate of protein synthesis in SaOS-2 cells, 

but not at all in MDA-MB-231 cells. These observations are consistent with the 

results for pre-rRNA levels following knockdown of RUNX proteins (Figure 3.2 

C).  

 

Our combined observations in MDA-MB-231 cells show that RUNX proteins do 

not co-localize with components of RNA Pol I-mediated transcription (UBF) by 

immunofluorescence (Figure 3.1 B), are not strongly bound to the rDNA by ChIP 

(Figure 3.1 C), and do not appear to affect pre-rRNA levels (Figure 3.2 C) or 

protein synthesis rates (Figure 3.2 D) by RNAi knockdown of Runx proteins. 

These results clearly demonstrate that Runx proteins do not regulate the 

transcription of rRNA in MDA-MB-231 cells. Transcription and processing of 

rRNA are rate limiting steps for cellular growth. The observation that Runx 

proteins are not affecting these processes is consistent with the result that Runx 

proteins do not affect the growth of MDA-MB-231 cells (Figure 3.2 B). 

  



127 
 

Figure 3.2: RUNX1 and RUNX2 in MDA-MB-231 cells does not appear to affect 

cell growth, ribosomal RNA transcription or protein synthesis. 
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Figure 3.2: RUNX1 and RUNX2 in MDA-MB-231 cells does not appear to affect 

cell growth, ribosomal RNA transcription or protein synthesis. 

 

(A) Representative western blot in SaOS-2 (top panel) and MDA-MB-231 (bottom 

panel) cells detecting levels of RUNX1 (top blots), RUNX2 (middle blots), and 

Lamin C (bottom blots) in response to siRNA 24, 48, and 72 hours (x-axis) post-

transfection. RUNX2 blots in SaOS-2 panel are for linear detection range (upper) 

and equal exposure to MDA-MB-231 cells (lower). (B) Cell counts for MDA-MB-

231 (left panel) and SaOS-2 (right panel) at 24, 48, and 72 hours following 

transfection with siRNA. Symbol represents mean and error bars represent SEM 

for 3 transfection replicates with two counting replicates each for 2 biological 

replicates. (C) Time course of knockdown of RUNX proteins in MDA-MB-231 and 

SaOS-2 cells. NS = Non-silencing siRNA, R1 = RUNX1 siRNA, R2 = RUNX2 

siRNA, and D = RUNX1 and RUNX2 combined siRNAs. X-axis is time post 

transfection, at which point RNA was isolated, cDNA amplified and qPCR for pre-

rRNA was executed. Relative expression values are plotted against ACTB 

internal control using delta-Ct method (Bustin et al. 2009). Bars represent mean 

relative expression and error bars equal SEM for two technical replicates each of 

two biological replicates. (D) Representative radiograph of 35S-Met/Cys pulse-

labeled SaOS-2 (left half of blot) or MDA-MB-231 (right half of blot) protein 

lysates run on an SDS-PAGE gel and exposed to film following 48 hours of 

transfection (left panel). Densitometric mean and SEM (error bars) of 35S-
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Met/Cys incorporation for SaOS-2 and MDA-MB-231 cells for 2 biological 

replicates (right panel). (All) NS = Non-silencing siRNA, R1 = RUNX1 siRNA, R2 

= RUNX2 siRNA, and D = RUNX1 and RUNX2 combined siRNAs.   
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Expression of RUNX proteins in MDA-MB-231 cells promotes an invasive 

phenotype 

 

Given that we observed such disparate effects of RUNX knockdown on rRNA 

expression, protein synthesis and cell growth between breast cancer and 

osteosarcoma cells, we sought to understand the potentially novel transcriptional 

functions of RUNX proteins in MDA-MB-231 breast cancer cells. To this end, we 

performed Affymetrix transcriptome analysis under conditions where cells were 

transfected with either a non-silencing control or a combined pool of RUNX1 and 

RUNX2 siRNAs. We identified 66 protein coding genes whose transcript levels 

were changed more than 1.5 fold and whose fold changes were reproducible 

across biological replicates (p < 0.05). Using DAVID (Huang et al. 2009a, 2009b) 

to understand the biological consequences of changes in the levels of these 

transcripts, we found these genes to be ontologically associated with terms 

related to adhesion, migration, and invasion (Table 3.1). One striking observation 

found in the genes responsive to RUNX RNAi in MDA-MB-231 cells was the lack 

of genes that are regulated during hematopoiesis and osteoblastogenesis by 

RUNX1 and RUNX2 respectively (Vradii et al. 2005, Young et al. 2007b, van der 

Deen et al. 2012). This observation combined with the non-regulation of rRNA 

transcription suggests that endogenously-expressed RUNX1 and RUNX2 in 

MDA-MB-231 cells have distinct regulatory roles as compared to RUNX1 and 

RUNX2 in the hematopoietic and osseous lineages, respectively.  



131 
 

Table 3.1: Ontological terms enriched in genes responsive to RUNX-siRNA. 
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Table 3.1: Ontological terms enriched in genes responsive to RUNX-siRNA. 

 

Using DAVID, genes responsive (fold-change >= 1.5, p-value < 0.05) to RUNX-

siRNA were subjected to ontological term clustering to search for over-

represented GO terms associated with Runx-siRNA-responsive genes. 
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Given the ontological associations of the RUNX-siRNA-responsive genes (Table 

3.1), we investigated the extent to which RUNX expression might affect the 

invasiveness of MDA-MB-231 cells. One way to measure the invasiveness of a 

cell line is to perform a Matrigel invasion assay. In these experiments, cells are 

cultured in the top of a transwell insert and a chemoattractant is cultured under 

and surrounding the insert. The bottom of the insert has small holes through 

which the cells can migrate towards the chemoattractant. The control experiment 

is just naked plastic, while the invasion experiment has a layer of Matrigel 

between the cells and bottom of the insert through which the cells have to invade 

to migrate towards the chemoattractant. After the cells have been allowed to 

migrate towards to chemoattractant for a fixed period of time, cells are fixed in 

ethanol and cells that did not migrate through the pores in the insert are 

removed. Cells that have moved through the pores of the insert are now adhered 

to the bottom of the insert, these are stained and the numbers of cells which 

have migrated or invaded are quantified. While it is known that overexpression of 

Mus musculus Runx2 in MDA-MB-231 cells causes increased invasiveness 

(Barnes et al. 2004, Javed et al. 2005), it is not known how RUNX1 contributes to 

the invasiveness of MDA-MB-231 cells. Using Matrigel invasion assays, we 

observe that knockdown of RUNX1 or RUNX2 (Figure 3.3 A) reduces the 

invasiveness of MDA-MB-231 cells (Figure 3.3 B). These results are in 

accordance with what was expected based on the DAVID analysis.  
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Figure 3.3 RUNX proteins promote the invasiveness of MDA-MB-231 cells 
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Figure 3.3 RUNX proteins promote the invasiveness of MDA-MB-231 cells 

(A) Representative Western blot showing protein levels for RUNX1 (top blot), 

RUNX2 (middle blot), and Beta-Actin (lower blot) following 48 hours of siRNA 

transfection. (B) Column plot depicting mean and SEM (error bars) percent of 

invasion for each siRNA transfection (N=2). (All) NS = Non-silencing siRNA, R1 

= RUNX1 siRNA, R2 = RUNX2 siRNA, and D = RUNX1 + RUNX2 siRNAs.  
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RUNX proteins share a highly conserved Runt homology domain, which binds 

the same consensus sequence (Van Wijnen et al. 2004); however, it is not 

known the extent to which these two proteins overlap in function when 

endogenously expressed in the same cell line. To address this, we performed 

gene-specific Real-Time qPCR on genes identified by Affymetrix using primer 

pairs designed by FoxPrimer (see Chapter 4 for methods). Of the 66 total genes, 

we were able to validate 44 primer pairs that were greater than 80% efficient as 

measured by standard curve (Bustin et al. 2009). Using these 44 genes, we 

performed qPCR on cDNA amplified from RNA isolated from MDA-MB-231 cells 

transfected with non-targeting, RUNX1, RUNX2, or RUNX1+RUNX2 siRNA and 

found that the expression of 41 genes were significantly changed compared to 

control in response to at least one siRNA transfection. Categorizing these 

transcripts by responsiveness to RUNX siRNA resulted in three major classes 

(Figure 3.4): 1) responsive to either RUNX1 or RUNX2 siRNA (Figure 3.5 A), 2) 

primarily responsive to RUNX1 siRNA (Figure 3.5 B), and 3) primarily 

responsive to RUNX2 siRNA (Figure 3.5 C). Five genes for which we were able 

to design efficient primers for Real Time qPCR did not show a significant change 

in expression in the confirmation experiments (data not shown). One gene, 

myelin protein zero-line 2 (MPZL2), showed an increase in detection in response 

to RUNX siRNAs, and therefore did not fall into the three major categories (data 

not shown). The observation that so many of the genes (approximately 2/3) are 

primarily responsive to only one RUNX protein is quite unexpected. This 
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suggests that while the phenotypic response of RUNX protein knockdown is 

similar in MDA-MB-231 cells, the mechanisms in use by RUNX1 and RUNX2 

may be different. 
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Figure 3.4 Genes responsive to RUNX-siRNAs fall into three major categories 
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Figure 3.4 Genes responsive to RUNX-siRNAs fall into three major categories 

 

Mean and SEM (error bars) plots of three major classes of genes identified and 

validated by Affymetrix Human Gene 1.0ST array based on response to 48 hours 

of siRNA transfection. NS = Non-silencing siRNA, R1 = RUNX1 siRNA, R2 = 

RUNX2 siRNA, and D = RUNX1 + RUNX2 siRNAs.  
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Figure 3.5 Real Time qPCR validation of Affymetrix-identified genes 
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Figure 3.5 Real Time qPCR validation of Affymetrix-identifed targets 

 

Real Time qPCR validation of genes responsive to RUNX-siRNA ordered by 

response group: (A) responsive to either, (B) reponsive to RUNX1, and (C) 

reponsive to RUNX2 . Primers were designed using FoxPrimer (Chapter 4). Bars 

represent mean and error bars are SEM for two biological replicates for each 

gene normalized by delta-delta-Ct to ACTB.  
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Alongside the Affymetrix experiments, we performed ChIP-seq for endogenous 

RUNX1 and RUNX2 in MDA-MB-231 cells. As mentioned before, the Affymetrix 

experiment was done using a double-knockdown system. Previous models of 

RUNX-mediated transcriptional functions based on single gene regulation 

suggest that we should be able to use RUNX1 and RUNX2 binding sites to 

determine which genes identified by Affymetrix can be uniquely regulated by 

RUNX1 or RUNX2 in MDA-MB-231 cells (Lian et al. 2006). Accordingly, binding 

within the promoter region of a gene should be sufficient for RUNX to 

transcriptionally regulate gene expression in trans. In our ChIP-seq of 

endogenous RUNX1 and RUNX2 in MDA-MB-231 cells, we found that RUNX1 

and RUNX2 did not share many of the same binding sites (Figure 3.6 A), which 

may explain the large number of genes that were uniquely responsive to RUNX1 

or RUNX2 siRNA (Figure 3.4 & Figure 3.5). Contrary to previous models, where 

RUNX proteins exclusively bind to promoter regions, we also found that the vast 

majority of RUNX binding sites defined by MACS (Zhang et al. 2008) were not 

located within promoter regions. When defining a promoter region as 1Kb 5’ of 

the transcriptional start site (TSS) we observed only about 10% and less than 1% 

of all RUNX1 and RUNX2 peaks, respectively, were bound within the promoters 

of RefSeq (Pruitt et al. 2009) genes in MDA-MB-231 cells (Figure 3.6 B). These 

observations are particularly interesting because all RUNX proteins share the 

same common DNA sequence binding motif (Figure 3.6 C), which was defined in 

vitro on naked DNA (Melnikova et al. 1993), however, in MDA-MB-231 cells there 
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was not a lot of overlap between the binding of RUNX1 and RUNX2. This 

suggests that the in vivo binding of RUNX proteins is more complicated than 

sequence motif recognition alone. 

 

To investigate a potential mechanism as to how RUNX1 and RUNX2 are not 

occupying many of the same binding sites, we performed discriminative de novo 

motif discovery (Heinz et al. 2010) on the enriched intervals defined by MACS 

and found that the RUNX1 ChIP-Seq was enriched for a motif very similar to a 

previously identified RUNX1 motif, while the motif enriched in the RUNX2 ChIP-

Seq was most similar to the motif discovered by a PU.1 ChIP-seq (Figure 3.6 D). 

PU.1 is a member of the E-twenty six (ETS) transcription factor family, all of 

which bind a similar sequence motif (Gutierrez-Hartmann et al. 2007). Runx2 has 

been shown to interact with Ets1 and synergistically regulate gene expression in 

murine cells (Sato et al. 1998), so it is possible that in MDA-MB-231 cells much 

of the DNA-binding activity of RUNX2 is derived through an interaction with an 

ETS factor. However, it is not known which ETS factor RUNX2 may be 

interacting with in MDA-MB-231 cells. Runx2 has also been observed to 

synergistically cooperate with CCAAT/enhancer binding proteins alpha and delta 

(C/EBPα & C/EBPδ) through a protein-protein interaction in the osteocalcin 

promoter (Gutierrez et al. 2002). In this study, Runx2 was still recruited to the 

osteocalcin promoter even in when the RUNX-binding site was mutated. This 

suggests that RUNX2 in MDA-MB-231 cells has the potential to be recruited to 
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DNA independently of the RUNX-binding sequence by protein-protein 

interactions with co-factors. The difference in motifs found within the enriched 

regions along with the significantly reduced number of RUNX2 peaks in 

promoters suggests that in the context of MDA-MB-231 cells, RUNX2 

transcriptional activities may be quite different than those of RUNX1.  
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Figure 3.6 RUNX proteins do not bind similar regions in MDA-MB-231 cells 
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Figure 3.6 RUNX proteins do not bind similar regions in MDA-MB-231 cells 

(A) Venn diagram depicting the number of overlapping RUNX1 and RUNX2 

ChIP-seq peak regions as identified by MACS (Zhang et al. 2008). (B) Pie chart 

of the genomic locations of RUNX1 (left) and RUNX2 (right) MACS peaks, which 

are found 2Kb 5’-TSS to the TSS (black) as compared to anywhere else in the 

genome (grey). (C) SeqLogo of the consensus RUNX motif (Heinemeyer et al. 

1998, Bryne et al. 2008). (D) Top results of discriminative motif discovery for the 

sequences within the genomic intervals defined as peaks for RUNX1 (top) and 

RUNX2 (bottom).  
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Functional RUNX1 peaks are associated with binding near the TSS and 

enrichment of H3K4me3 

 

To understand what role chromatin may be playing in the binding of RUNX 

proteins to DNA, we compared RUNX1 and RUNX2 ChIP-seq data with ChIP-

seq data for H3K4me3, H3K27me3, and H3K9me2 in MDA-MB-231 cells (from 

Chapter 2). We focused on the discovery of proximal (within 10Kb of genes) 

patterns in RUNX1 or RUNX2 binding as based on previous models of RUNX 

protein functions we had high confidence these regions would give insight into 

potential regulatory roles of RUNX proteins (Lian et al. 2006). Our goal was to 

understand if a pattern of RUNX1, RUNX2, H3K4me3, H3K27me3, and 

H3K9me2 binding was found near the genes that are responsive to RUNX 

siRNA. To identify these patterns, we created a matrix of enrichment data where 

each relative genomic region1 for each mark is treated as a dimension and for 

each gene measured using the Affymetrix arrays a point based on these 

dimensions is defined in high-dimensional space using the corresponding 

enrichment ratio (IP reads / input reads). Next, we applied k-means clustering to 

partition these points into clusters based on Euclidean distance between all 

points and randomly generated cluster centers. The centers are randomly 

regenerated until a best fit for cluster assignment is reached. Based on these 

                                            
1 See Chapter 5 for more detailed methods regarding the definition of relative 
genomic regions. 



148 
 

cluster definitions, we plotted a heat map of the enrichment (IP reads / input 

reads) for relative genomic regions for each gene for each factor (Figure 3.7 A). 

When attempting to cluster with only RUNX proteins, we were not able to identify 

any meaningful clusters in relation to RUNX siRNA-responsive genes (data not 

shown). The genes responsive to RUNX siRNA were plotted both within the main 

(clustered) figure and on their own (Figure 3.7 A – bottom). Visually, the binding 

profile of RUNX1, RUNX2, H3K4me3, H3K27me3, and H3K9me2 near RUNX 

siRNA-responsive genes looked most similar to the purple and light blue clusters. 

Using a chi-squared contingency table to identify the clusters in which RUNX 

siRNA-responsive genes are most enriched or depleted, we found that RUNX 

siRNA-responsive genes were overrepresented in the purple, pink, light blue and 

orange clusters (Figure 3.7 B). Based on the patterns of H3K4me3, which is 

associated with transcriptional activation and the transcriptionally repressive 

marks H3K27me3 and H3K9me2, we expected that the gene expression patterns 

would be similar (Li et al. 2007). Using gene expression measured by Affymetrix 

arrays, we plotted the distribution of robust means average (RMA) (Irizarry et al. 

2003) transcript detection levels for each gene in each cluster as a box and 

whiskers plot (Figure 3.7 C). Within the orange-red, black, grey, yellow, red, and 

blue clusters, the transcriptional initiation-associated chromatin modification, 

H3K4me3, was strongly enriched near the TSS, and these clusters contained 

some of the highest expressed genes as defined by Affymetrix arrays (Figure 3.7 

C). Four of the clusters (purple, pink, light blue and orange) which were 



149 
 

overrepresented for genes responsive to RUNX siRNA were similarly enriched 

for H3K4me3 near the TSS (Figure 3.7 A) and contained genes that are highly 

expressed (Figure 3.7 C). This suggests that the genes regulated by RUNX 

proteins in MDA-MB-231 cells are among the most highly expressed transcripts. 

We observed a clear enrichment of RUNX1 binding near the TSS of genes within 

these clusters, while RUNX2 binding did not appear to be strongly focused 

anywhere (Figure 3.7 A). However, considering only the genes responsive to 

RUNX siRNA (Figure 3.7 A – bottom) this pattern of RUNX1 binding near the 

TSS was less apparent. This suggested that the strongest RUNX1 binding 

events near the TSS may not be associated with a functional response in gene 

expression when RUNX1 is knocked down using siRNA. 
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Figure 3.7 Gene-centric clustering of RUNX1, RUNX2, H3K4me3, H3K27me3, 

and H3K9me2 show that RUNX1 is primarily upstream of genes marked by 

H3K4me3 near the TSS and are strongly expressed. 
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Figure 3.7 Gene-centric clustering of RUNX1, RUNX2, H3K4me3, H3K27me3, 

and H3K9me2 show that RUNX1 is primarily upstream of genes marked by 

H3K4me3 near the TSS and are strongly expressed. 

 

(A) Heatmap of signal ratios (IP/Input) for each RefSeq (Pruitt et al. 2009) gene 

(row) measured by Affymetrix Human Gene 1.0ST array. For each gene, 30 

relative genomic regions were defined: 10Kb 5’-TSS to TSS in 1Kb steps, TTS to 

10Kb 3’-TTS in 1Kb steps, and TSS to TTS in 10 approximately equal steps 

(normalized to 1Kb per step). The matrix of signal ratios per relative genomic 

region per transcription factor / histone modification per gene were then 

subjected to k-means clustering to identify 12 clusters (marked by colors on left). 

Scale is presented below heat map. (B) Chi-squared table showing expected 

(distribution of all genes) versus observed (distribution of genes responsive to 

RUNX siRNA) per cluster color. (C) Mean RMA-normalized expression values 

(Irizarry et al. 2003) for the genes in each cluster in box and whisker plot. 

Horizontal red dotted line represents the mean RMA-normalized detection level 

of all negative control probes, which is later used to define expressed versus 

non-expressed genes.  
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RUNX1 is associated with actively expressed genes and weakly associated with 

RUNX siRNA responsive genes. 

 

To understand further how RUNX binding is associated with gene expression in 

the MDA-MB-231 cells, we used PeaksToGenes to perform statistical tests on 

the enrichment of each factor in relative genomic regions. As we saw in Figure 

3.7, strong RUNX1 binding was most concentrated on the TSS of genes that are 

likely to be expressed based on the enrichment of H3K4me3 in the same region 

and the cluster of genes having a generally high expression distribution (Figure 

3.7 C). However, this is not direct evidence that RUNX1 preferentially binds to 

expressed genes as many genes in these k-means-identified clusters are not 

responsive to RUNX siRNA. To directly test whether RUNX protein binding in 

MDA-MB-231 cells is associated with actively expressed genes, we first bisected 

the list of genes whose transcript levels are measured by Affymetrix Human 

Gene 1.0ST arrays into two groups. Then, using internal spike-in negative control 

probe sets, expressed genes and non-expressed genes were respectively 

defined as transcripts whose mean detection level across all biological replicates 

were greater than or less than or equal to the mean of the negative control probe 

sets.  

 

To determine the validity of our division of transcripts into expressed genes or 

non-expressed genes, we first tested whether binding of H3K4me3 (activating), 
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H3K27me3 (silencing) and H3K9me2 (silencing) were appropriately enriched in 

binding near expressed or non-expressed genes (Li et al. 2007). Using 

PeaksToGenes, we observed that H3K4me3 (Figure 3.8 – top) binding was 

significantly enriched near the TSS of expressed genes (green line), while 

binding of H3K27me3 (Figure 3.8 – middle) and H3K9me2 (Figure 3.8 – 

bottom) was significantly enriched across the entire region. Based on the 

associations of these chromatin modifications with gene expression (Li et al. 

2007), these results suggest that our use of the Affymetrix spike-in controls 

allowed for reasonably appropriate definitions of expressed and non-expressed 

genes. There is a caveat with our bisection, which is that there are likely to be 

some incorrectly-classified genes, however, the robust associations we observed 

between the positional enrichment histone modifications and expression category 

suggests that these misclassifications were infrequent. 
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Figure 3.8 Chromatin marks are appropriately associated with expressed versus 

non-expressed genes in MDA-MB-231 cells. 
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Figure 3.8 Chromatin marks are appropriately associated with expressed versus 

non-expressed genes in MDA-MB-231 cells. 

 

PeaksToGenes analysis of H3K4me3 enrichment (upper panel), H3K27me3 

enrichment (middle panel) and H3K9me2 enrichment (lower panel) for expressed 

genes (green line) and non-expressed genes (red line). Triangles are Wilcoxon 

Rank-Sum Test p-values (right y-axis) and error bars are SEM. For more detailed 

methods, please see Chapter 5.  
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Extending this PeaksToGenes analysis to the binding of RUNX1 and RUNX2 

near expressed (green line) and non-expressed genes (red line), we found that 

RUNX1 binding is significantly enriched within the promoters (-2Kb of the TSS) of 

expressed genes and weakly so in regions flanking expressed genes (Figure 3.9 

A – left). RUNX2 binding was only weakly associated in regions flanking the 

gene bodies of expressed genes and not enriched near the promoters (Figure 

3.9 A – right). Interestingly, both RUNX1 and RUNX2 binding within the gene 

body (TSS to TTS) was strongly associated with genes defined as non-

expressed (Figure 3.9 A). Due to the length-based normalization done within 

gene bodies, there is consistently more signal found within gene bodies. 

Because of this technicality, statistical tests were only done within a single 

relative genomic region not across relative genomic regions2. It is difficult to know 

how statistically significant each individual binding event is when considering 

binding ratios. Specifically, a binding ratio of two-fold could be derived from two 

reads in the IP and one read in the Input, or the same two-fold ration could have 

been derived from 50 reads in the IP and 25 reads in the Input. It is more likely 

that the two-fold enrichment measured in the second case is more reproducible. 

However, instead of setting some kind of threshold for the minimum number of 

reads within a region to calculate a binding ratio, we relied upon the peak calling 

algorithm employed by MACS (Zhang et al. 2008). Peak-calling algorithms, such 

as MACS, measure signal ratios and then using both global and local parameters 

                                            
2 Discussed further in Chapter 5. 
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of variations in read numbers to determine whether a certain region is statistically 

significantly enriched for reads in the IP sample. To determine whether there 

were differences in the associations of the most significant regions (MACS 

peaks) of RUNX1 and RUNX2 with expressed or non-expressed genes, we 

applied PeaksToGenes analysis. We employed a non-parametric Wilcoxon Rank 

Sum test, which allows for non-normally distributed data and for unequal sample 

sizes (Wilcoxon 1945); the binding data for RUNX1 and RUNX2 in MDA-MB-231 

cells fit these parameters. Using RUNX1 and RUNX2 peak regions, we observed 

a non-significant association of RUNX1 peaks with regions near the TSS of 

expressed genes (blue line) (Figure 3.9 B – left) while RUNX2 peaks were not 

differentially associated with either expressed (blue line) or non-expressed genes 

(orange line) (Figure 3.9 B - right). While RUNX1 binding appeared to be 

increased near the TSS of expressed genes (blue line) as compared to non-

expressed genes (orange line), the result of the Wilcoxon Rank Sum test was not 

statistically significant. As we observed in (Figure 3.6 B), RUNX2 peaks were 

generally not found near the promoters of either expressed or non-expressed 

genes (Figure 3.9 B – right). Using MACS peaks instead of raw signal ratios as 

a measure of RUNX protein binding, we observed that the binding of RUNX 

proteins within the gene bodies (TSS to TTS) was no longer preferentially 

associated with non-expressed genes (red line in Figure 3.9 A, orange line in 

Figure 3.9 B). This suggests that the binding of RUNX proteins within gene 

bodies of non-expressed genes is weak compared to other regions (therefore not 
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defined as peaks), yet this binding is highly significant when the same relative 

genomic regions are compared to expressed genes (Figure 3.9 A). What this 

PeaksToGenes analysis of RUNX2 peaks also reveals is that RUNX2 peaks 

were very poorly associated with genes in general as compared to RUNX1; while 

RUNX1 had approximately 20 times more peaks in MDA-MB-231 cells as 

compared to RUNX2 (Figure 3.6 A), the mean enrichment of RUNX1 and 

RUNX2 in genic regions (within genes and 10Kb regions flanking gene bodies) 

was approximately 100-fold different (3.4x10-2 peaks per Kb and 3.1x10-4 peaks 

per Kb respectively) (Figure 3.9 B). Therefore, although there are differences in 

the number of highly-enriched peak regions for RUNX1 and RUNX2, the 

distribution of these peaks was not similar with respect to genic versus intergenic 

regions. These positional relationships observed for RUNX2 binding are quite 

different than the results obtained for the binding of endogenous RUNX proteins 

in osteosarcoma (Van der Deen et al. 2012), leukemia, and osteoblasts 

(unpublished findings – see Appendix). RUNX1, binding in genic regions 

appeared to be concentrated near actively expressed genes, which is consistent 

with previous studies of Runx1 in leukemic and hematopoietic cells (Pencovich et 

al. 2011, Tijssen et al. 2011, Wang et al. 2011b). Genes responsive to RUNX 

siRNA were overrepresented in clusters whose transcript levels were generally 

high, indicating that they are actively expressed genes (Figure 3.7). Therefore, 

we conclude that RUNX siRNA-responsive genes are likely to be expressed. 

Through PeaksToGenes analysis, we discovered that RUNX1 is preferentially 
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bound near the TSS and promoter regions of actively-expressed genes, while 

RUNX2 was not significantly associated with genic regions. Based on these 

results, we can hypothesize that RUNX1 binding within these regions is likely to 

be most associated with genes responsive to RUNX siRNA.  
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Figure 3.9 PeaksToGenes analysis of RUNX1 and RUNX2 binding showed that 

RUNX1 promoter binding was strongly associated with expressed genes 
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Figure 3.9 PeaksToGenes analysis of RUNX1 and RUNX2 binding showed that 

RUNX1 promoter binding was strongly associated with expressed genes 

 

(A) RUNX1 signal ratios (IP/Input) (left) and RUNX2 signal ratios (IP/Input) (right) 

associations with expressed (green) versus non-expressed (red) genes. (B) 

Associations of RUNX1 peaks (left) and RUNX2 peaks (right) with expressed 

(blue) versus non-expressed (orange) genes. (A & B) For each relative genomic 

region (as shown in Figure 3.7 A), the series of values corresponding to the 

number of peaks or the signal ratios (IP/Input) or number of peaks was taken for 

expressed or non-expressed genes and a Wilcoxon Rank-Sum Test was 

performed. Plotted is the mean value of each set (as a line – left y-axis) and the 

resultant p-value at each relative genomic region (as the triangles – right y-axis). 

Error bars are SEM. For more detailed methods please see Chapter 5. 
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Genes responsive to RUNX siRNA are associated with H3K4me3 and RUNX1 

binding near the TSS 

 

While we observed that RUNX1 binding is preferentially located within the 

promoters of expressed genes, we wanted to address whether the binding 

patterns of RUNX1 or RUNX2 in MDA-MB-231 cells were preferentially 

associated with genes responsive to RUNX siRNA. If we observe that RUNX1 or 

RUNX2 is generally bound with certain region relative to genes responsive to 

RUNX siRNA, we can conclude that this binding of RUNX1 or RUNX2 is likely to 

be responsible for the functional responses observed after RUNX siRNA 

transfection.  As we had observed that RUNX1 binding is preferentially 

associated with the promoters and TSS regions of actively-expressed genes 

(Figure 3.9), and that genes responsive to RUNX siRNA are likely to be highly 

expressed (Figure 3.7), we therefore used PeaksToGenes to directly test 

whether RUNX1 binding is more enriched near genes responsive to RUNX 

siRNA. 

 

Before looking at RUNX1 and RUNX2 binding, we first examined whether binding 

of H3K4me3, H3K27me3, or H3K9me2 is enriched near genes responsive to 

RUNX siRNA. We observed that genes responsive to RUNX siRNA were 

overrepresented in clusters that have strong H3K4me3 signal near the TSS 
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compared to other clusters and weak H3K27me3 and H3K9me2 signal 

throughout the measured genic region compared to other clusters (Figure 3.7 A 

& B). Therefore, we used PeaksToGenes to contrast the binding of these 

chromatin marks near genes that are either responsive (purple line) or non-

responsive (brown line) to RUNX siRNA (Figure 3.10). We observed that the 

activating histone modification H3K4me3 was weakly associated with the TSS 

regions of RUNX siRNA-responsive genes (Figure 3.10 – top), which indicates 

that in general, these RUNX siRNA-responsive genes (purple line) have 

H3K4me3 near the TSS, but not significantly more than other genes (brown line). 

When analyzing the binding of the repressive histone modifications H3K27me3 

(Figure 3.10 – middle) and H3K9me2 (Figure 3.10 – bottom) we observed that 

the binding of these marks were generally more associated with RUNX siRNA 

non-responsive genes (brown line) than with RUNX siRNA responsive genes 

(purple line). Thus, the RUNX siRNA-responsive genes are characterized by 

enrichment of H3K4me3 binding near the TSS and a paucity of H3K27me3 or 

H3K9me2 binding, which suggests that RUNX proteins are regulating the 

transcript levels of euchromatic genes that are likely to be actively expressed. 
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Figure 3.10 Genes responsive to RUNX siRNA are not associated with 

H3K27me3 or H3K9me2, and are associated with H3K4me3 near the TSS 
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Figure 3.10 Genes responsive to RUNX siRNA are not particularly associated 

with any of the histone marks examined. 

 

PeaksToGenes analysis of H3K4me3 signal ratios (IP/Input) (upper panel), 

H3K27me3 signal ratios (IP/Input) (middle panel) and H3K9me2 signal ratios 

(IP/Input) (lower panel) for genes responsive to RUNX siRNA (purple line) and 

genes non-responsive to RUNX siRNA (brown line). Triangles are Wilcoxon 

Rank-Sum Test p-values and error bars are SEM. See Chapter 5 for more 

detailed methods. 
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We next examined the relationships between the binding patterns of RUNX1 and 

RUNX2 in MDA-MB-231 cells and genes responsive to RUNX siRNA. Comparing 

the enrichment of binding (signal ratio) near RUNX siRNA-responsive genes to 

RUNX siRNA non-responsive genes, we observed that RUNX1 binding was non-

significantly more associated with the upstream and promoter regions of genes 

responsive to RUNX siRNA (purple line) (Figure 3.11 A - left). RUNX2 binding 

does not appear to have a preferential enrichment near the RUNX siRNA-

responsive genes or the RUNX siRNA non-responsive genes (Figure 3.11 A - 

right). The same rationale used for the inclusion of MACS peaks for this analysis 

applies here when comparing the binding of RUNX proteins near RUNX siRNA-

responsive genes or RUNX siRNA non-responsive genes. Here, we observed 

that RUNX1 peaks were non-significantly enriched near the TSS of RUNX siRNA 

responsive genes (green line) (Figure 3.11 B – left). Unexpectedly, there was 

not a single RUNX2 peak within the gene body or within 10Kb of any genes 

responsive to RUNX siRNA (green line) (Figure 3.11 B – right). Neither RUNX2 

signal ratio analysis (Figure 3.11 A – right) nor RUNX2 MACS peaks analysis 

(Figure 3.11 B – right) provided any indication of how RUNX2 may be 

functioning to regulate gene expression in MDA-MB-231 cells. We observed that 

in MDA-MB-231 cells RUNX2 is not binding to the RUNX motif (Figure 3.6 C), 

has very few peaks (Figure 3.6 A) and has both nuclear and cytoplasmic 

localization (Figure 3.1 B). Transfection of RUNX2 siRNA in MDA-MB-231 cells 

affected the transcript levels of many genes that are unrelated to bone (Table 3.1 
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& Figure 3.5 C) and were not observed to be changed when RUNX2 is knocked 

down in an osteoblastic cell such as SaOS-2 (Young et al. 2007b, van der Deen 

et al. 2012). Given the deregulated sub-cellular localization and genomic binding 

properties of RUNX2 we cannot determine the mechanisms by which RUNX2 is 

regulating the transcript levels of RUNX2 siRNA-responsive genes. Considering 

the preferential association of RUNX1 binding (Figure 3.7 A & Figure 3.11 A – 

left & Figure 3.11 B – left) and of H3K4me3 binding (Figure 3.10 – top) near 

the TSS of RUNX siRNA-responsive genes, leads us to conclude that this 

binding is functionally important for transcriptional regulation of genes responsive 

to RUNX siRNA. In our analysis of RUNX1 and RUNX2 binding patterns near 

genes responsive to RUNX siRNA, we chose to consolidate the genes 

responsive to RUNX1 siRNA, responsive RUNX2 siRNA and responsive to either 

into one group. There are several reasons for doing this: 1) Only 66 genes were 

identified to be responsive to combined RUNX1 and RUNX2 siRNA transfection, 

which is much less than we had expected given similar RUNX2 studies in SaOS-

2 cells (Young et al. 2007b, van der Deen et al. 2012), 2) 66 genes is a small 

enough list to make statistical tests less robust, separating the genes into smaller 

groups would make these tests even less informative, and 3) of the 66 genes 

identified to be responsive to RUNX siRNA, we were only able to experimentally 

validate 44 of them using separate RUNX1 and RUNX2 siRNAs (Figure 3.4 & 

Figure 3.5), which would make point number 2 an even larger concern once the 

genes are separated by response pattern. We observed that RUNX1 binding is 
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preferentially associated with the TSS of RUNX siRNA-responsive genes, and if 

we extend the trend observed in Figure 3.4, approximately 1/2 of these genes 

would not responsive to RUNX1 siRNA. Therefore, we expect this association to 

be stronger when only considering RUNX1 siRNA-responsive genes. A technical 

issue, which can be observed in Figure 3.5, is that the response to transfection 

of both RUNX1 and RUNX2 siRNA is typically less robust than for a single 

siRNA. This leads us to conclude that the samples used for Affymetrix analysis 

may be missing a great deal of information regarding genes that are uniquely 

responsive to RUNX1 or RUNX2. Extrapolating this idea to the binding pattern of 

RUNX1 in MDA-MB-231 cells, it is possible that many of the binding events 

proximal to the TSS were actually responsible for the regulation of these genes 

but were masked in the Affymetrix experiment due to our use of combined 

siRNAs. 
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Figure 3.11 Genes responsive to RUNX siRNA are are slightly more associated 

with RUNX1 binding near the TSS 
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Figure 3.11 Genes responsive to RUNX siRNA are slightly more associated with 

RUNX1 binding near the TSS. 

 

PeaksToGenes analysis of RUNX1 (left) and RUNX2 (right) (A) enrichment 

(IP/Input) and (B) MACS peaks. Purple line: mean signal ratio (IP/Input) for 

binding near RUNX siRNA responsive genes. Brown line: mean signal ratio 

(IP/Input) for binding near RUNX siRNA non-responsive genes. Green line: mean 

peaks per relative genomic region for RUNX siRNA responsive genes. Pink line: 

mean peaks per relative genomic region for RUNX siRNA non-responsive genes. 

No p-values were significant (<= 0.05) for Wilcoxon Rank-Sum Test and were not 

plotted. Error bars are SEM. See Chapter 5 for more detailed methods. 
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RUNX proteins are expressed in samples isolated from human patients of breast 

cancer 

 

We have examined the phenotypic contributions and functions of RUNX1 and 

RUNX2 in MDA-MB-231 cells. These in vitro results suggest possible 

mechanisms or roles for RUNX1 and RUNX2 in human breast cancer patients, 

but do not allow for insight into the clinical relevance of RUNX1 and RUNX2 

expression in breast cancer cells. The MDA-MB-231 cell line is a model of 

advanced bone, brain and lung metastatic breast cancer (Yoneda et al. 2001), 

however, it does not allow for insight into whether RUNX proteins are expressed 

during tumor initiation or progression to the metastatic state. Recent in vivo 

immunohistochemical evidence suggests that RUNX1 protein is detected in the 

epithelial cells of both normal breast tissue and breast cancer tissue (Uhlén et al. 

2005, Pontèn et al. 2008, Uhlen et al. 2010), and that increased RUNX2 

expression is associated with the disease state (Das et al. 2009, Onodera et al. 

2010). It is therefore important to correlate in vivo expression of RUNX1 and 

RUNX2 with prognostic and diagnostic markers of breast cancer in various 

stages leading up to and including metastatic disease. 

 

Using formalin-fixed paraffin-embedded (FFPE) human breast cancer samples 

from the UMMS tissue bank and FFPE human breast cancer tissue microarrays 

(TMAs) from US BioMax, we stained tissue samples from more than 125 patients 
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with antibodies for RUNX1 or RUNX2. The TMAs from US BioMax were 

BR1503a and BR10010, which are breast cancer progression and breast cancer 

metastasis to lymph node arrays, respectively. BR10010 is a matched metastatic 

breast cancer array of samples taken from 25 patients; for each patient BR10010 

contains two samples each of tissue from primary breast tissue and lymph tissue 

to which the primary breast tumor has metastasized. Primary tumor samples and 

metastatic tumor samples analyzed had not metastasized to or been taken from 

distal tissues such as brain, lung, liver or bone. Typically, once patients present 

with distal metastases, biopsies or fine needle aspirates (FNAs) are no longer 

taken for analysis, so it is difficult to obtain samples from advanced metastatic 

disease.  

 

Using a semi-quantitative scoring system, two researchers blindly scored TMAs 

stained with RUNX1 and RUNX2 to determine whether RUNX protein expression 

was associated with any prognostic or diagnostic markers of breast cancer 

progression (Figure 3.12 A). Strong expression of RUNX1 was observed in 

almost all mammary epithelial cells of any pathology, while RUNX2 positive 

tissues were less frequent (Figure 3.12 B-D). Using this scoring system, we 

examined the extent to which the expression levels of RUNX proteins are 

significantly more or less associated with the expression of: HER2, PR, ER, and 

AR; as well as the cytopathologically-defined: TNM (tumor size, node status, and 

distal metastases status), breast cancer grade, breast cancer stage, pathology, 
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and tissue type. We did not observe RUNX1 expression to be preferentially 

associated with any particular subtype of breast cancer (Figure 3.12 C – left), 

while RUNX2 expression was primarily observed in invasive ductal carcinoma 

compared to normal adjacent tissue, fibroadenoma, cystosarcoma phyllodes, 

ductal carcinoma in situ, and metastatic breast tissue to the lymph nodes (Figure 

3.12 C - right). The column graphs presented are the mean RUNX protein 

detection score associated with the subtype. While these graphs may give the 

impression that few or no samples were judged to be greater than ‘++’ for 

RUNX2, the low mean score is actually due to the high number of samples for 

which RUNX2 was not detected. Interestingly, while RUNX proteins appear to 

play a role in the invasiveness of MDA-MB-231 cells, we observe that breast 

cancer cells that have metastasized to the lymph node have significantly less 

RUNX1 (Figure 3.10 D – left) and RUNX2 (Figure 3.10 – right) expression than 

in the primary tumor site. This comparison is derived from the BR10010 array in 

which primary and metastatic patient tissues were matched and from the 

BR1502a in which metastatic and non-metastatic tissues primary tissues were 

compared. This observation is similar to a previous study in which a significant 

reduction in RUNX1 transcript levels in metastatic breast tissue was observed 

compared to non-metastatic breast cancer tissue (Dairkee et al. 2004), and 

suggests that the invasive phenotype in vitro associated with RUNX1 and 

RUNX2 is unlikely to have participated metastasis to primary lymph nodes.  
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Figure 3.12 RUNX1 is expressed in normal breast and multiple breast cancer 

subtypes, while RUNX2 is primarily expressed in invasive ductal carcinoma. Both 

RUNX1 and RUNX2 expression is significantly lower in breast cancer cells that 

have metastasized to lymph tissue. 
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Figure 3.12 RUNX1 is expressed in normal breast and multiple breast cancer 

subtypes, while RUNX2 is primarily expressed in invasive ductal carcinoma. Both 

RUNX1 and RUNX2 expression is significantly lower in breast cancer cells that 

have metastasized to lymph tissue. 

 

(A) Representative images of scoring rubric taken from invasive ductal 

carcinoma samples for RUNX1 (top row) and RUNX2 (bottom row). (B) 

Representative images of RUNX1 (upper panel) and RUNX2 (lower panel) in 

NAT (normal adjacent tissue), FibroAd (fibroadenoma), CysPh (cystosarcoma 

phyllodes), DCIS (ductal carcinoma in situ), IDC (invasive ductal carcinoma), and  

Met (breast tissue metastasized to lymph). (C) Mean and SEM (error bars) score 

given to RUNX1 (left) and RUNX2 (right) staining for each pathology type. * = 

Kruskal-Wallis p-value < 0.05 comparing RUNX2 scores in IDC to Met (right). (D) 

Mean and SEM (error bars) score given to RUNX1 (left) and RUNX2 (right) 

staining for tissue type. **  = Kruskal-Wallis p-value < 0.01 comparing RUNX1 

staining in Malignant to Metastatic (left). **  = Kruskal-Wallis p-value < 0.01 

comparing RUNX2 staining in Malignant to Metastatic (right). 
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RUNX1 is primarily expressed in normal tissue and in early smaller tumors, while 

RUNX2 is primarily expressed in middle to late-stage larger tumors 

 

Next we examined whether the expression intensity of RUNX1 or RUNX2 in the 

malignant cells was associated with diagnostic markers of breast cancer (tumor 

node metastasis (TNM), grade, and stage). This analysis will allow us to 

understand whether RUNX proteins have a temporal relationship with disease 

progression.  

 

TNM is a scoring metric used to define the size of the primary tumor as well as 

the extent to which the tumor has metastasized to proximal (node status) and 

distal sites3. T is for the size of the tumor, and has the following designations: 1) 

Tx – tumor was not able to be classified, 2) Tis – ductal carcinoma in situ, 3) T0 – 

no tumor, 4) T1 – can be broken down into the following four categories: i) T1mi 

– tumor diameter is less than 0.1cm, ii) T1a – tumor diameter is greater than 

0.1cm but less than 0.5cm, iii) T1b – tumor diameter is greater than 0.5cm but 

less than 1.0cm, and iv) T1c – tumor diameter is greater than 1cm but less than 

2cm, 5) T2 – tumor diameter is greater than 2cm but less than 5cm, 6) T3 – the 

tumor diameter is greater than 5cm, and 7) T4 – can be broken down into four 

categories: i) T4a – tumor has invaded into chest wall, ii) T4b – tumor has 

                                            
3 http://www.cancerresearchuk.org/cancer-help/type/breast-cancer/treatment/tnm-breast-cancer-
staging - last accessed March 31st, 2013 

http://www.cancerresearchuk.org/cancer-help/type/breast-cancer/treatment/tnm-breast-cancer-staging
http://www.cancerresearchuk.org/cancer-help/type/breast-cancer/treatment/tnm-breast-cancer-staging
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invaded into skin and patient presents with local swelling, iii) T4c – both T4a and 

T4b, and iv) T4d – tumor is classified as inflammatory carcinoma, local area is 

red, swollen and painful to the touch. N is for the characterization of the node 

stages, and the relevant categorization is as follows: 1) NX – samples cannot be 

assessed, 2) N0 – nodes are negative for metastases, 3) N1 – positive 

metastases in nodes of upper armpit and nodes are not stuck to surrounding 

tissues, 4) N2 – positive metastases in nodes of upper armpit, which are stuck to 

each other and surrounding tissues or positive metastases in internal mammary 

nodes. There are further designations for node status, but none of these were 

present in the US BioMax arrays or samples from UMMS analyzed. Similarly, the 

M designation is for distal metastases and, as discussed above, because we did 

not analyze any samples with distal metastases the classifications of this 

parameter will not be discussed.  

 

Breast cancer staging is a method of grouping the TNM classifications. These 

groupings have been observed to have similar clinical outcomes, and are treated 

likewise4. There are more stages defined than were present in the arrays 

analyzed from US BioMax. Only the stages represented on these arrays and 

subsequently immunostained for RUNX proteins will be discussed here. Stage 0 

is cancer in situ or TisN0M0. Stage I is small tumors (less than 2cm in diameter). 

                                            
4 http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-staging - Last accessed 
March 31st, 2013. 

http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-staging
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Stage I is bisected into Ia and Ib, however, the staging data from US BioMax did 

not have this distinction. Stage Ia tumors are non-metastatic (T1N0M0), while 

stage Ib tumors have micrometastases to the axillary lymph nodes (T1N1miM0). 

The US BioMax data for stage two is defined as Stage II, Stage IIa, and Stage 

IIb. While there is not a clear definition for what Stage II is, stage IIb and Stage 

IIb are well-defined. It is likely that tumors classified as Stage II only had 

characteristics of both IIa and IIb such that a distinction could not be made. 

Stage IIa is small tumors that have metastasized to the lymph nodes (T1N1M0), 

but not to distal organs. Stage IIb is larger tumors that may or may not have 

metastasized to the lymph nodes (T2N1M0 or T3N0M0), and the tumor has not 

metastasized to distal organs. Stage IIIa is tumors no larger than 5cm in diameter 

that have metastasized to many axillary lymph nodes or internal mammary lymph 

nodes (T0-2N2M0), or tumors that are large (greater than 5cm in diameter) that 

have not invaded the skin or chest wall and have spread to multiple lymph nodes 

(T3N1-2M0). Stage IIIa tumors have not metastasized to distal organs. Stage IIIb 

tumors have invaded the chest wall or skin and may or may not have 

metastasized to the lymph (T4N0-2M0), but have not metastasized to distal 

organs. No samples of Stage IIIc or Stage IV were present in this study. 

 

Tumor grade is a measure of how abnormal the cells and tissue structure are in a 
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patient sample5. These grades correlate with how likely a tumor is to proliferate 

and affect diagnosis and prognosis. The scoring system employed by the US 

BioMax was not breast cancer-specific; rather US BioMax used the general 

scoring system that can be applied to all tumors. Grade 1 is low grade and well 

differentiated. Grade 2 is intermediate grade and moderately differentiated. 

Grade 3 is high grade and poorly differentiated. 

 

We observed RUNX1 expression to be significantly associated with small, non-

metastatic tumors (T1N0M0) (Figure 3.13 A – left) and RUNX2 expression was 

significantly associated with large, non-metastatic tumors that have grown into 

the chest wall or skin, but have not metastasized (T4N0M0) (Figure 3.13 A - 

right). Again, we observed that RUNX1 was significantly associated with grade 1 

(low grade), well differentiated breast cancer (Figure 3.13 B – left), while 

RUNX2 was associated with grade 2 (intermediate grade), moderately 

differentiated breast cancer (Figure 3.13 B - right). Contrasting RUNX 

expression against breast cancer stage, we observed that RUNX1 expression 

was most associated with stage I breast cancer (Figure 3.13 C – left), while 

RUNX2 expression was observed to be most associated with stage IIIb breast 

cancer (Figure 3.13 C - right).  

 

                                            
5 http://www.cancer.gov/cancertopics/factsheet/detection/tumor-grade - Last accessed March 
31st, 2013 

http://www.cancer.gov/cancertopics/factsheet/detection/tumor-grade
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Taken together, these associations of RUNX1 and RUNX2 staining intensity with 

early and late disease states, respectively, we hypothesize that RUNX proteins 

are likely participating in a defined event of breast cancer progression within the 

primary tumor. Unfortunately, our in vitro cell model is a very late-stage model, so 

we do not know what processes may be regulated as a consequence of RUNX 

expression at a these earlier time points. It is quite interesting that the expression 

of RUNX2, which has been shown to promote the invasive and osteolytic 

properties of MDA-MB-231 cells (Barnes et al. 2004, Javed et al. 2005, Pratap et 

al. 2008), is so specifically associated with non-metastatic disease (T4N0M0) 

(Figure 3.13 A – right). We can, however, make some correlation between the 

invasive phenotypes observed in association with RUNX2 in vitro with the 

observation that RUNX2 expression was significantly associated with breast 

tumors that have invaded into the chest wall or skin. It is, however, important to 

note that most metastatic tumors examined had not invaded into the chest wall or 

skin, so it appears that RUNX2 is not playing a role in breast cancer metastasis. 

Previously, RUNX1 was shown to have a statistically significant rate of mutations 

in breast cancer patients (The Cancer Genome Atlas Network 2012), which 

suggests that RUNX1 may function as a tumor suppressor. Here, we observed 

that the expression of RUNX1 was primarily associated with early, malignant 

tumors (T1N0M0) (Figure 3.13 A – left) that are low grade and well differentiated 

(Grade 1) (Figure 3.13 B – left) as compared to normal or advanced disease 

tissue. It is unknown whether RUNX1 is mutant in these early tumors we have 
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examined, so we cannot determine the extent to which the RUNX1 protein 

detected is functioning normally. Therefore, it is difficult to speculate what role 

RUNX1 may be playing in breast disease progression, and further highlights the 

need to investigate the properties of RUNX1 in breast cancer (Janes 2011). 
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Figure 3.13 RUNX1 is primarily associated with early, smaller tumors while 

RUNX2 is most associated with late, larger tumors. 
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Figure 3.13 RUNX1 is primarily associated with early, smaller tumors while 

RUNX2 is most associated with late, larger tumors. 

 

(A) Mean and SEM (error bars) RUNX1 (left) and RUNX2 (right) scores 

associated with TNM (tumor node metastases) stages. **** = Kruskal-Wallis p-

value < 0.0001 comparing RUNX1 staining in T1N0M0 to – (normal) (left). *** = 

Kruskal-Wallis p-value < 0.0001 comparing RUNX2 staining in T4N0M0 to – 

(normal) (right). (B) Mean and SEM (error bars) RUNX1 (left) and RUNX2 (right) 

scores associated with breast cancer grades. * = Kruskal-Wallis p-value < 0.05 

comparing RUNX1 staining in Grade 1 versus Grade 2 (left). ** = Kruskal-Wallis 

p-value < 0.01 comparing RUNX2 staining in Grade 2 versus – (normal) (right). 

(C) Mean and SEM (error bars) RUNX1 (left) and RUNX2 (right) scores 

associated with breast stage. **** = Kruskal-Wallis p-value < 0.05 comparing 

RUNX1 staining in Stage I versus – (normal) / Stage IIb / IIa (left). * = Kruskal-

Wallis p-value < 0.05 comparing RUNX2 staining in Stage IIIb versus – (normal) 

(right).  
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RUNX1 expression is correlated with AR expression and has a strong 

association with ER+ breast cancer, which is dependent on AR status 

 

As RUNX2 has been previously reported to be primarily expressed in ER- Asian 

breast cancer patients (Das et al. 2009), and RUNX1 has been reported to 

function as a tethering factor for ER-alpha in vitro (Stender et al. 2010), it is of 

particular interest to define the associations between RUNX protein expression 

and ER in North American breast cancer patients. We observed that RUNX1 

expression was significantly associated with ER+ breast cancer (Figure 3.14 A – 

left), while RUNX2 expression was not dependent on ER status (Figure 3.14 A - 

right). This observation is particularly interesting because RUNX2 expression 

has previously been shown to be inversely correlated with ER in vitro and in 

Asian breast cancer patients (Das et al. 2009, Chimge et al. 2011), which is 

contradictory to what we have observed in North American patients. A further 

contradictory result is the observation that RUNX2 was an independent predictor 

of breast disease, progression and metastasis in Asian patients (Onodera et al. 

2010), while in North American patients we observed RUNX2 is not an 

independent prognostic factor and is primarily expressed in large, invasive, non-

metastatic (T4N0M0) ductal carcinoma (Figure 3.12 B & Figure 3.13 A – right).  

Breast cancer incidence and death is much higher in North America as compared 

to Asia, and it is hypothesized that environmental factors (such as diet and 

lifestyle) rather than genetics contribute to these observed differences in breast 
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cancer epidemiology (Jemal et al. 2010). It is unknown which factor or 

combination of factors may be driving the differences observed in the expression 

patterns of RUNX2 between North American and Asian patients. Further, there 

are no studies that provide a strong link between RUNX2 expression levels and 

environmental factors. 

 

Extending our analysis to HER2, we found that the expression of both RUNX1 

and RUNX2 were associated with HER2+ breast cancer (Figure 3.14 B), an 

observation which, in the case of RUNX1, was dependent on ER status (Figure 

3.14 C). Neither RUNX1 nor RUNX2 expression were observed to be 

significantly associated with PR status (Figure 3.14 D), however, RUNX1 

expression was significantly associated with ER+/PR- breast cancer (Figure 3.14 

E). We further observed that RUNX2 expression was not altered by combined 

ER/PR status (data not shown). 

 

In breast cancer, androgen receptor (AR) is a prognostic indicator, known to 

inhibit the activity of ER-alpha (Hickey et al. 2012). We observed that RUNX1 

expression levels were correlated with AR levels (Figure 3.14 F), and the 

association of RUNX1 expression with ER+ breast cancer was highly dependent 

on AR status (Figure 3.14 G). RUNX2 expression was not observed to be 

affected by AR status or AR/ER combined status (data not shown). This 

observation represents a potentially novel subtype of breast cancer, which is 
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RUNX1, ER, and AR positive. Based on our observations (Figure 3.13 A – left), 

this subtype of cancer is likely to be a low grade, small tumor. 

 

A common means of describing breast cancers in both prognostic and diagnostic 

terms is to look at the combined statuses of HER2, ER and PR (Allred et al. 

1998). We therefore investigated the extent to which combining these growth and 

hormone receptor statuses affected the observed expression levels of RUNX 

proteins. We observed no statistically significant associations between these 

triple statuses with RUNX1 (Figure 3.14 H – left) or RUNX2 (Figure 3.14 H - 

right). However, the previously observed trend for RUNX2 association with 

HER+ breast cancer (Figure 3.14 B – right) was observed when looking at all 

three receptors combined (Figure 3.14 H – right). 

 

These results demonstrate that the expression of RUNX proteins, while not 

correlated with disease progression, are sensitive to growth and hormone 

receptor expression patterns. Given the observed functional differences for 

RUNX proteins between osteosarcoma and breast cancer cells, we hypothesize 

that RUNX proteins in the presence or absence of these hormone receptors may 

have quite distinct functional roles. A key finding in our comparison of RUNX1 

and RUNX2 expression levels with growth/hormone receptor status was that 

triple-negative (HER2-/PR-/ER-) breast cancer was associated with the lowest 

RUNX1 levels (Figure 3.14 H – left) and nearly the lowest RUNX2 levels (Figure 



187 
 

3.14 – right). Triple-negative breast cancer is clinically associated with poor 

patient outcome (Dent et al. 2007), and the observation that the expression of 

RUNX proteins in human breast cancer was more associated with at least one 

growth/hormone receptor (Figure 3.14) leads us to hypothesize that RUNX-

positive breast cancer is associated with positive patient outcome. The presence 

of HER2, ER, or PR is used to determine treatment regimens targeted towards 

these receptors and generally patients have higher survival rates (Dent et al. 

2007). Unfortunately, our hypothesis was not testable with these samples as we 

did not have access to patient outcome data such as survival, disease-free 

survival or metastatic events.  
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Figure 3.14 RUNX1 expression correlates with AR expression in breast cancer. 

RUNX1 is primarily associated with HER2+/PR-/ER+ breast cancers, and 

RUNX1 association with ER+ breast cancer is dependent on HER2+ and AR+ 

status. RUNX2 expression is primarily associated with HER+ breast cancers. 
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Figure 3.14 RUNX1 expression correlates with AR expression in breast cancer. 

RUNX1 is primarily associated with HER2+/PR-/ER+ breast cancers, and 

RUNX1 association with ER+ breast cancer is dependent on HER2+ and AR+ 

status. RUNX2 expression is primarily associated with HER+ breast cancers. 

 

(A) Mean and SEM (error bars) scores for RUNX1 (left two columns) and RUNX2 

(right two columns) in ER+ and ER- breast cancers. * = Kruskal-Wallis p-value < 

0.05 comparing RUNX1 scores in ER+ versus ER-. (B) Mean and SEM (error 

bars) scores for RUNX1 (left two columns) and RUNX2 (right two columns) in 

HER2+ and HER2- breast cancers. * = Kruskal-Wallis p-value < 0.05 comparing 

RUNX1 scores in HER2+ versus HER2-. ** = Kruskal-Wallis p-value < 0.01 

comparing RUNX2 scores in HER2+ versus HER2-. (C) Mean and SEM (error 

bars) scores for RUNX1 (left panel) and RUNX2 (right panel) combining HER2 

and ER statuses in breast cancer samples. ** = Kruskal-Wallis p-value < 0.01 

comparing RUNX1 scores in HER2+/ER+ versus HER2-/ER-. ** = Kruskal-Wallis 

p-value < 0.01 comparing RUNX2 scores in HER2+/ER- or HER2+/ER+ versus 

HER2-/ER-. (D) Mean and SEM (error bars) scores for RUNX1 (left two columns) 

and RUNX2 (right two columns) in PR+ and PR2- breast cancers. (E) Mean and 

SEM (error bars) scores for RUNX1 combining PR and ER statuses in breast 

cancer samples. **** = Kruskal-Wallis p-value < 0.0001 comparing RUNX1 

scores in PR-/ER+ versus PR-/ER-. (F) Mean and SEM (error bars) of RUNX1 

score associated with AR score (x-axis). **** = Kruskal-Wallis p-value < 0.0001 
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comparing RUNX1 scores in AR- to AR++ or AR+++ (F). Mean and SEM (error 

bars) scores for RUNX1 combining AR and ER statuses in breast cancer 

samples. **** = Kruskal-Wallis p-value < 0.0001 comparing RUNX1 scores in 

AR+/ER- or AR+/ER+ versus AR-/ER- (G). Mean and SEM (error bars) scores for 

RUNX1 (left panel) and RUNX2 (right panel) in all permutations of HER2, PR and 

ER. RUNX1 (left panel) non-parametric (Kruskal-Wallis) ANOVA p-value < 0.05. 

RUNX2 (right panel) non-parametric (Kruskal-Wallis) ANOVA p-value < 0.01 (H). 
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Discussion 

 

Here we present an unbiased analysis of the functions of RUNX1 and RUNX2 in 

MDA-MB-231 cells. We demonstrate that RUNX proteins did not affect the rate of 

protein synthesis MDA-MB-231 cells through the transcriptional regulation of 

ribosomal RNA as they did in SaOS-2 cells. Using transcriptome-wide profiling of 

gene expression following knockdown of RUNX proteins, we found that the 

majority of genes responsive to RUNX siRNA were uniquely responsive to either 

RUNX1 or RUNX2. This observation is particularly interesting as this is the first 

analysis of the extent to which endogenous RUNX1 and RUNX2 functionally 

overlap on a genome-wide scale. This study is also the first time the genome-

wide binding profile of RUNX proteins has been characterized using endogenous 

protein in a breast cancer cell line. Similar to the observations made for 

transcriptome functions, RUNX binding positions had very little overlap. Given 

that RUNX proteins share a highly-conserved Runt-homology domain 

responsible for DNA-binding, this is a very interesting result. Because this is an in 

vivo result and not an EMSA or other in vitro approach, this suggests that RUNX 

proteins are sensitive to more than just local genomic sequence when interacting 

with chromatinized DNA. As discussed earlier, previous studies have 

demonstrated that RUNX proteins can be recruited to genomic regions through 

protein-protein interactions with co-factors that are independent of a RUNX-

binding site (Gutierrez et al. 2002). Our results suggest that the genomic 
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locations of RUNX proteins are sensitive to more than just the local sequence 

motifs. The binding of other transcription factors has similarly been shown to be 

sensitive to co-factors and chromatin states (Wang et al. 2012), so our 

observations we not unexpected. Given that RUNX proteins appear to be 

sensitive to context, we propose that understanding the contextual factors that 

affect the binding and regulatory roles of RUNX proteins are equally as important 

as studying the temporal expression patterns of RUNX proteins in breast cancer 

progression and metastasis. 

 

We also observed that while the majority of RUNX1 binding loci are not in the 

“promoter” of genes, those near the TSS were highly likely to be functional 

binding sites as these locations were enriched for H3K4me3 and near genes that 

were responsive to RUNX siRNA. We observed strong RUNX “foci” when 

staining nuclei for RUNX proteins, which leads us to believe that RUNX proteins 

are in close three-dimensional proximity with one another in intact nuclei. A 

limitation of this current study is the ability to understand how these non-promoter 

intergenic RUNX binding loci are related to one another in three-dimensional 

context, especially given evidence suggesting that RUNX1 mediates chromatin 

looping to activate gene expression (Jiang and Peterlin 2008, Levantini et al. 

2011). 
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This study is also the first study to analyze the expression of RUNX1 in human 

breast cancer patients via immunohistochemistry and the first study to examine 

RUNX2 expression in North American patients. Our results demonstrate that in 

North American patients RUNX proteins were not independent prognostic factors 

of disease. The observation that RUNX1 and RUNX2 were associated with early 

and late disease states, respectively, and regulated a novel cohort of genes in 

vitro suggests that RUNX proteins may play important temporal roles during 

tumor progression. This is an important point given the many observations of the 

context-specific roles for RUNX proteins (Cameron and Neil 2004). While RUNX1 

may function as a tumor-suppressor protein in normal mammary epithelial cells 

(Kadota et al. 2010, Wang et al. 2011a), we observed RUNX1 functions to 

promote the invasive/metastatic potential of malignant metastatic MDA-MB-231 

cells. Extending these in vitro observations to our observations in human patients 

suggest that it will be quite interesting to investigate the functions of RUNX 

proteins when expressed in breast cancer cells of varying hormone receptor 

statuses. However, as discussed before, RUNX1 is frequently mutated in human 

breast cancer (The Cancer Genome Atlas Network 2012), and we have observed 

that RUNX1 expression is low in late disease and significantly lower in metastatic 

diease. These previously observations, combined with our study suggest that 

RUNX1 may play an important tumor suppressor role in breast cancer. As 

cancers progress, traits that give the cells a growth advantage for the cancer 

cells are selected. Therefore, the observations that RUNX1 expression is 
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reduced in late-stage and metastatic disease, combined with the high rate of 

mutations observed in the RUNX1 gene suggests that it is advantageous for the 

cell to have either less RUNX1 or a mutant form of RUNX1. 

 

These results show a strong correlation between RUNX1 expression and 

androgen receptor (AR) expression. This is especially interesting as AR 

expression is an emergent marker associated with disease progression and 

treatment (Hickey et al. 2012). This study further shows that RUNX2 expression 

is not associated with estrogen receptor (ER) status, while one study in Asian 

patients found that RUNX2 expression is inversely correlated with ER expression 

(Das et al. 2009) and another study in Asian patients defined RUNX2 as an 

independent prognostic marker of breast cancer (Onodera et al. 2010). The 

differences observed between RUNX2 clinical associations in North American 

patients and Asian patients reinforce the idea that the expression and functions 

of RUNX proteins are highly sensitive to context. A recent study in North 

American breast cancer patients by The Cancer Genome Atlas Network showed 

that neither RUNX1 nor RUNX2 expression is significantly associated with 

disease progression (The Cancer Genome Atlas Network 2012). This study also 

found that in ER+ breast tumors, RUNX1 has a significant frequency of mutations 

that would cause early translational termination. The endogenous RUNX1 in the 

MDA-MB-231 is the correct length, so our in vitro studies did not address the 
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functions of these truncated RUNX1 proteins; however, previous work has shown 

that shortened RUNX transcripts lack the ability to interact with the nuclear matrix 

and therefore cannot function correctly (Zeng et al. 1997). This may be a 

potential mechanism by which the tumor suppressor functions observed for 

RUNX in normal mammary epithelial cells can be bypassed (Kadota et al. 2010, 

Wang et al. 2011a). 

 

There are several technical limitations of this study that are important to discuss. 

First, our RNAi study was not as well-controlled as it could be. We did not use 

multiple siRNAs targeting RUNX mRNAs to demonstrate that the majority of the 

genes responsive to the RUNX siRNA transfections were specific and not off-

target effects. We also did not perform a compensation experiment in which we 

express transgenic RUNX protein following an siRNA-mediated knockdown of 

the endogenous protein to rescue the transcriptional effect of the knockdown. 

With these caveats, we recognize that an unknown number of genes identified by 

Affymetrix could be the result of off-target effects. This is hopefully not the case 

as the number of genes (66) was quite small as compared to the several hundred 

genes identified in knockdowns done in SaOS-2 cells (Young et al. 2007b, van 

der Deen et al. 2012) or by overexpression of Runx2 in MCF-7 cells (Chimge et 

al. 2011). Another important consideration to make is our use of the MDA-MB-

231 cells as a model cell line for RUNX protein functions in breast cancer. MDA-
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MB-231 cells are isolated via pleural effusion from a patient who had a recurrent 

disease following mastectomy and treatment with 5-fluorouracil followed by 

combined treatment with Adriamycin, Cytoxan, and methotrexate (Brinkley et al. 

1980). The patient was again treated with methotrexate 5 days prior to isolation 

of MDA-MB-231 cells, and the patient died a few months after isolation of the 

cells. Therefore, these MDA-MB-231 cells represent an extremely aggressive 

form of breast cancer. We observed much weaker expression of RUNX proteins 

in more advanced breast cancers and significantly less in metastatic breast 

disease. Further, we observed that RUNX proteins were more strongly 

expressed when the breast cancer was positive for at least one growth or 

hormone receptor. MDA-MB-231 cells are triple-negative breast cancer cells, 

which further make them a less appropriate cell-based model for studying the 

functions of RUNX proteins in breast cancer. This is especially critical given that 

we are proposing that the functions of RUNX proteins are sensitive to cellular 

context. A further complication, for which we have not addressed, is the mutation 

status of RUNX1 and RUNX2 in MDA-MB-231 cells. As mentioned before, we 

observed that the RUNX1 and RUNX2 Western blot bands migrated at the 

appropriate molecular weight in an SDS-PAGE gel, so we do not suspect that 

RUNX proteins were truncated in MDA-MB-231 cells. However, this does not rule 

out the possibility that these RUNX genes may have point mutations that cause 

aberrant functions. We have operated under the assumption that RUNX1 and 

RUNX2 were wild-type in MDA-MB-231 cells, but we should not rule out the 
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possibility that many of the breast cancer-specific functional roles for RUNX1 and 

RUNX2 we have observed may be a consequence of mutations. 

 

Materials and Methods 

 

Tissue Microarrays 

 

TMAs (BR1503a & BR10010) were obtained from US BioMax. Information 

pertaining to Grade, Stage, TNM, Type, ER, PR, HER2, AR, p53, and ki67 were 

provided by US BioMax. 

 

BR1503a is a primary breast tissue array of 150 samples of 75 patient cases: 3 

cases of adjacent normal breast tissue, 3 cases of breast fibroadenoma, 2 cases 

of breast cystosarcoma phyllodes, 7 cases of breast intraductal carcinoma, and 

60 cases of breast invasive ductal carcinoma. Duplicate cores per case. 

 

BR10010 is a breast carcinoma and matched metastatic carcinoma array of 100 

samples of 50 patient cases: 46 cases of invasive ductal carcinoma, 1 case of 
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micropapillary carcinoma, 2 cases of invasive lobular carcinoma, and 1 case of 

neuroendocrine carcinoma. Duplicate cores per case. 

 

Immunohistochemistry 

 

RUNX2 staining was done using a lab stock of Mouse Monoclonal hybridoma 

(IgG purified) clone 8G5 as previously (Das et al. 2009) with the following 

modification: antibody concentration was reduced to 1:500 dilution. 

 

RUNX1 staining was done as previously described (Liu et al. 2011) using RUNX1 

Rabbit Polyclonal 4334 from Cell Signaling. 

 

Histology Quantification 

 

Each tissue section was imaged and independent researchers blindly scored the 

sections based on the metric in Figure 3.12 A, which is based on the nuclear 

intensity of DAB. 
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Histological Statistics 

 

Statistical analyses were performed by converting histological scores (-, +, ++, 

+++, and ++++) into scalar variables (0, 100, 200, 300, and 400). Scores such as 

+/++ were converted to the halfway point i.e. 150. Statistical testing was 

performed in GraphPad Prism using the Kruskal-Wallis non-parametrc ANOVA or 

(for 3 or more groups) or the non-parametric t-tests (Wilcoxon Rank-Sum). Non-

parametric tests were used as the data values are not normally distributed. 

Kruskal-Wallis ANOVA tests were followed by multiple comparisons for each 

group. 

 

siRNA Oligos 

 

Smart Pool: ON-TARGETplus Non-silencing siRNA (D-001810-0X) Dharmacon. 

SMARTpool: ON-TARGETplus RUNX1 siRNA (L-003926-00-0005) Dharmacon 

SMARTpool: ON-TARGETplus RUNX2 siRNA (L-012665-00-0005) Dharmacon 

 

siRNA Transfection 
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siRNA transfection was done using Oligofectamine (Invitrogen) and Opti-MEM 

(Invitrogen) using 50nM siRNA according to manufacturer’s instructions. 

 

Affymetrix Arrays and Analysis 

 

Human Gene 1.0ST arrays from Affymetrix were used to measure gene 

expression levels in MDA-MB-231 cells following Runx siRNA transfection. cRNA 

amplification and hybridization to the array was performed by the UMASS 

Medical School Genomic Core as previously described (Dowdy et al. 2010). 

 

Analysis was performed in R to execute normalization, quality control, transcript-

level reporting, annotation, and contrast tests. The “affy” (Gautier et al. 2004) 

package was used to read in raw fluorescent values from arrays; values were 

normalized across all arrays using quantile normalization (Bolstad et al. 2003), 

robust means average (RMA) background correction and median polish (Irizarry 

et al. 2003). Quality control plots were generated to ensure the arrays did not 

have any artifacts and post-processing values were in similar ranges. Transcripts 

were annotated using the “annotate” package, the 

“hugene10sttranscriptcluster.db” package. Contrast tests were generated and 

performed using the “limma” package. 
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Matrigel Invasion and Migration Assays 

 

Proliferating MDA-MB-231 cells were trypsinized and counted using Cellometer 

Auto T4 Cell Counter. A cell suspension of 100,000 cells/mL in growth medium 

was prepared and 100μL of the suspension was loaded into each BD Matrigel 

24-well 8.0 µm PET Membrane Invasion Chamber (#354483). Matrigel coated 

plates, and control insert plates had 500μL NIH3T3-conditioned medium loaded 

in the bottom as the chemoattractant. Plates and chemoattractant medium were 

incubated at 37°C for 3-4 hours prior to loading MDA-MB-231 cells. Cells were 

incubated for 16 hours at 37°C in 5% CO2 and then fixed and stained using the 

Fisher HealthCare PROTOCOL Hema 3 Manual Staining System (#22-122-911) 

according to the manufacturer's instructions. Matrigel and cells that did not 

invade were eliminated by cotton swabs. Cells that had migrated or invaded to 

the other side of the inserts were counted using an inverted light microscope. 

 

Immunofluorescence 

 

Cells were grown on gelatin-coated coverslips, fixed, stained, and imaged for 

RUNX1 (Cell Signaling Rabbit Polyclonal RUNX1 4334), RUNX2 (Santa Cruz 
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Biotechnologies Rabbit Polyclonal RUNX2 M-70), and UBF (Santa Cruz 

Biotechnologies Mouse Monoclonal UBF F-9) as previously described (Ali et al. 

2010, 2012). 

 

Growth Curve 

 

For each biological replicate, cells were plated at equal density (150,000 cells per 

well on day 1). On day 2, three wells of a 6-well plate per time point (24, 48, and 

72 hours post-transfection) were transfected with siRNA. At each time point, 

three wells per siRNA were trypsinized, spun down, and resuspended in equal 

volume growth media. The cell suspension from each well was used on each 

side of a Cellometer counting slide and counted using a Cellometer T4 Auto Cell 

Counter (making 6 technical replicates per time point, per biological replicate). 

 

35S-Protein Synthesis Labeling 

 

Protein synthesis was measured as described in (Ali et al. 2010, 2012). Briefly, 

cells were grown in Met/Cys free medium prior to pulse labeling with EasyTag 

EXPRESS35S Protein Labeling Mix (Perkin Elmer). Protein was lysed and run on 
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an SDS-PAGE gel, then dried on Whatman paper. Blot was exposed to film and 

densitometry was used to quantify differential amino acid incorporation. 

 

Chromatin Immunoprecipitation 

 

ChIP conditions for RUNX1, RUNX2 and UBF in MDA-MB-231 cells as described 

(Lee et al. 2006) with the following modifications:  

Crosslinking 

1. Cells were grown to near-confluence in 100mm dishes. 10 plates per ChIP 

antibody are used. 

2. Cells were washed in 37°C serum-free medium twice, and then placed in 

10mL 37°C serum-free medium before addition of 1mL crosslinking buffer 

(50mM HEPES-KOH, 100mM sodium chloride, 1mM EDTA, 0.5mM 

EGTA, 2.75% w/v formaldehyde) and incubated for 5 minutes at room 

temperature. 

3. 500µL freshly-prepared 2.5M glycine was added to quench crosslinking 

reaction, and incubated for 5-10 minutes at room temperature. 

4. Plates were then placed on ice such that the plates were surrounded by 

ice on all sides and washed twice with ice-cold PBS. Then, 500µL of ice-
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cold PBS supplemented with Roche cOmplete EDTA-Free Protease 

Inhibitor and 25nM MG132 is added. 

5. Cells were scraped and placed in nuclease-free 1.75mL tubes (Axygen 

MCT-175-C 1.7) and spun at 500g for 5 minutes at 4°C. 

6. Supernatant was removed and tube was dropped in liquid nitrogen and 

stored at -80°C until sonication. 

Nuclear Isolation & Sonication 

1. Cells were removed from -80°C and placed on ice in 1mL freshly-prepared 

ice-cold Buffer A (50mM HEPES-KOH pH 7.5, 140mM sodium chloride, 

1mM EDTA, 10% v/v glycerol, 0.5% v/v NP-40, 0.25% v/v Triton X-100, 1x 

cOmplete EDTA-Free Protease Inhibitor, 25µM MG-132 in nuclease-free 

water). 

2. Once cells had thawed, tubes were placed on upright rotator at 4°C for 10 

minutes. 

3. Nuclei were spun down at 700g for 5 minutes at 4°C and Buffer A 

supernatant was removed. 

4. Nuclei were resuspended in 1mL freshly-prepared ice-cold Buffer B 

(10mM Tris-HCl pH 8.0, 200mM sodium chloride, 1mM EDTA, 1mM 

EGTA, 1x cOmplete EDTA-Free Protease Inhibitor, 25µM MG-231 in 
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nuclease-free water) and placed on upright rotator at room temperature for 

10 minutes. 

5. Nuclei were spun down at 700g for 5 minutes at 4°C and Buffer B 

supernatant was removed. 

6. Nuclei were resuspended in freshly-prepared ice-cold Buffer C (10mM tris-

HCL pH 8.0, 100mM sodium chloride, 1mM EDTA, 1mM EGTA, 0.1% w/v 

sodium deoxycholate, 0.5%w/v N-lauroylsarcosine, 1x cOmplete EDTA-

Free Protease Inhibitor, 25µM MG-132 in nuclease-free water) and 

incubated on ice for at least 20 minutes prior to sonication. 

7. Sonication was done on a Misonix Sonic Dismembrator S-4000 using a 

1.6mm microtip adapter. Tube was positioned in an ice water bath such 

that the probe tip was a few millimeters from the bottom of the tube (clear 

tube is helpful here) and perfectly centered. Sonication program was as 

follows: 

a. 8 cycles, with 30 second rest periods between each cycle. 

b. Each cycle was 20 seconds total pulse time, oscillating between 1 

second “on” and 2 seconds “off”. 

8. Following sonication, an aliquot of lysate was taken and processed for 

DNA purification to verify by agarose gel that the median fragment size is 

approximately 400bp. Lysates were frozen until validation was completed. 
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Immunoprecipitation 

1. Once fragment size had been validated, lysates were thawed and 100µL 

10% v/v Triton X-100 was added to each tube and tubes were spun at full 

speed at 4°C for 20 minutes. Soluble fractions from all tubes (from same 

cell line / condition) were combined into one nuclease-free tube on ice. 

2. For each IP, approximately 10mL lysate was added to a nuclease-free 

15mL conical. 50µL of lysate was set aside as “input” and stored at 4°C.  

3. 50µg of each antibody was added to appropriate 15mL conical tubes, and 

tubes were placed on vertical rotator at 4°C for 16 hours. 

4. Invitrogen Protein A and Protein G Dynalbeads were thoroughly 

resuspended. 

5. 50µL each Protein A and Protein G Dynalbeads were added to each 15mL 

tube. Tubes were placed back on vertical rotator at 4°C and incubated for 

4 hours. 

6. 1 1.75mL nuclease-free tube per IP was placed on MagnaRack 

(Invitrogen). Lysates were added to tubes, when beads were fully adhered 

to magnet, cleared lysate was removed. This was repeated until all beads 

had adhered to magnets. 

7. Beads were gently washed with the following freshly-prepared ice-cold 

buffers in order: Low Salt Wash Buffer (0.1% w/v SDS, 1% v/v Triton X-
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100, 2mM EDTA, 150mM Sodium Chloride, 20mM Tris-HCl pH 8.0 in 

Nuclease-Free Water), High Salt Wash Buffer (0.1%w/v SDS, 1% v/v 

Triton X-100, 2mM EDTA, 500mM Sodium Chloride, 20mM Tris-HCl pH 

8.0 in Nuclease-Free Water), TEN (1mM ETDA, 10mM Tris-HCl pH 8.0, 

50mM Sodium Chloride). 

8. Beads were placed in 100uL freshly-prepared room temperature Elution 

Buffer (1% w/v SDS, 100mM Sodium Bicarbonate, 10mM EDTA in 

Nuclease Free Water) and tubes were placed on tube shaker for 30 

minutes at room temperature. Tubes were then moved to MangaRack, 

Cleared solution was transferred to fresh tube. These steps was repeated 

twice. 

9. 200µL TE Buffer was added to lysates to bring the final volume to 400uL. 

150µL Elution Buffer and 200µL TE Buffer was added to 50 µL Input 

sample set aside earlier. Genomic DNA isolation proceeds as described 

(Lee et al. 2006). 

 

ChIP-qPCR 

 

For ChIP-DNA isolated as above, ChIP-qPCR was performed as described (Ali et 

al. 2010, 2012). 
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ChIP-seq Library Preparation 

 

For ChIP-DNA isolated as above, libraries were prepared for paired-end 

multiplexed Illumina/Solexa sequencing using the Invitrogen TruSeq DNA 

Sample Prep v2.0 Kit according to manufacturer’s instructions. 

 

Read Mapping 

 

Reads were mapped to hg19 using Bowtie2 for paired-end reads (Langmead and 

Salzberg 2012). 

 

Peak Calling 

 

Peaks were called on aligned sequences using MACS (Zhang et al. 2008). 

 

Conversion of SAM to BED files 
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Mapped reads were converted to BED-format reads for analysis using SAMTools 

(Li et al. 2009) and BEDtools (Quinlan and Hall 2010). 

 

Discriminative Motif Discovery 

 

Homer (Heinz et al. 2010) motif discovery software was used to discover 

enriched motifs. For each set of test intervals, a GC/CpG/length-matched set of 

intervals was generated by Homer and used as background. 
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CHAPTER 4 FOXPRIMER: A QPCR PRIMER DESIGN PROGRAM 
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Background 

 

The advent of high-throughput sequencing technologies has allowed for the 

application of systems biology-type approaches to a wide range of cell biological 

models. Often, it is necessary to validate genome-wide findings at single gene or 

genomic locus resolution, and this is commonly done through the design of Real-

Time qPCR (quantitative polymerase chain reaction) primers for the amplification 

of either cDNA (complimentary DNA) or genomic DNA. We propose that the tools 

and methods used to design Real-Time qPCR primers should be both rigorous in 

design parameters and accommodate batch design. A major hurdle in the design 

of Real-Time qPCR primers is the investment of time required to make good 

primers. While there are many available programs to automate the design of 

primer pairs, they do not provide the user with enough information to decide 

which primers have the best chance of being efficient for qPCR. Further, we have 

not found a program that provides sufficient detail about the positions of primers 

to determine whether they can be used for a circumstance such as amplification 

of a specific isoform, or detection of cDNA in samples with genomic DNA 

contamination. To facilitate the process of designing qPCR primers in a rapid 

manner, we have designed the FoxPrimer suite of primer design algorithms. 

Through the use of a web interface, FoxPrimer mechanizes the design workflow 

via a number of robust command-line tools and stores the primer results in a 
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rapidly-searchable local database. These design choices provide a simple 

interface, which can be shared among a group of users. 

 

Purpose 

 

The design of Real Time qPCR primers is a critical step in any experimental 

approach where quantitative analysis is essential. Biological interpretation of 

results is often highly dependent on the use of primers that are specific, highly 

efficient, and well-annotated in position. In our experience, with the wealth of 

tools available to end-users for primer design, creating primers that fit the 

specificity requirement is generally successful. However, a single open-source 

program that meets all three requirements does not exist; instead users must rely 

on multiple programs to design and annotate primer pairs. FoxPrimer is designed 

to create and store Real-Time qPCR primers that meet all three of these 

requirements (specific, efficient, and well-annotated), while providing a simple 

web-based interface for the end-user. 

 

A non-experimental hurdle for primer design is the management of primer 

sequences within a research group or among collaborators. Commonly, 

researchers maintain a large spreadsheet of primers and their cognate 

information. While this may work well for individual use, this can easily become 
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quite unwieldy when a single document is shared among many users and may 

become a problem if all users are allowed to read and write to the same file. 

Further complicating the issue with spreadsheet-style storage is the implicit 

requirement that researchers must manually enter the primer information, which 

in many cases is very time-consuming. This is especially problematic when 

implementing a policy in which primer location is required for entry into the 

spreadsheet, as many primer design programs do not provide this information 

and would therefore become a barrier for users to easily store their primer 

information in a consistent format that is useful to others.  

 

FoxPrimer is designed to rapidly annotate primer pairs that have been 

experimentally validated, storing the primer information in a searchable 

database. To store validated primers, users only need to enter the sequences 

and a few other pieces of information, while FoxPrimer handles the annotation 

and storage into the primer databases. FoxPrimer therefore offers a solution for 

management of a database of primer information indexed with uniform 

information and with minimal time and effort requirements on the end-user for 

entry. 

 

Real Time qPCR Primer Design Rules 
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General considerations 

 

Primer pairs designed for Real Time qPCR typically have the following 

characteristics: primer oligo length between 18 and 24 nucleotides, melting 

temperature between 58°C and 62°C, and primer product size of approximately 

100bp. There are other considerations as well, such as no self-complementarity 

and low probability of recognizing repetitive sequences. Real-Time qPCR primers 

should amplify a single product as measured experimentally by a single band on 

a gel (after reaction) or a single sharp peak on a dissociation curve. One of the 

most critical, and often overlooked, aspects of Real Time qPCR primer usage is 

validation of primer efficiency by standard curve. Two common means of 

determining relative levels of a target sequence rely on the use of one or more 

internal controls or reference genes; both of these methods require all primer 

pairs (target and control) to amplify products at similar rates (Pfaffl 2001, 

Hellemans et al. 2007). Primer pair efficiency is measured by the rate at which 

the target is amplified in response to template concentration; across a wide range 

of concentrations, each time the concentration doubles, the detection value (Ct) 

should increase by one giving an efficiency of 100% (Bustin et al. 2009). Primer 

pairs that are not highly sensitive to template concentration are not suitable for 

quantitative use, and should therefore not be used for Real Time qPCR. While 

many algorithms are designed to give the best chance at having highly efficient 
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primer pairs, experimental validation of primer pair efficiency is absolutely 

required. 

 

cDNA Primer Design Considerations 

 

When designing Real Time qPCR primers with the intent of amplifying specific 

cDNA targets, there are several considerations that must be kept in mind. The 

first is the ability to recognize the mature mRNA sequence with greater efficiency 

than any genomic DNA contamination. The amount of contaminating genomic 

DNA in an RNA sample can be reduced by DNAse I digestion prior to cDNA 

amplification. Experimentally, taking an equal amount of RNA and performing the 

cDNA amplification reaction without the addition of reverse transcriptase creates 

a negative control template that can be used in the Real Time qPCR reaction to 

quantify the extent of genomic DNA contamination in the sample. 

 

In eukaryotes, intronic sequences that are part of the pre-mRNA are spliced out 

of the transcript to form the mature mRNA. The junction points at which the 

exons are joined represent sequences that are typically not found at the genomic 

level and are unique to the mature transcript. When designing Real Time qPCR 

primers for the amplification of specific cDNA templates, using primer pairs for 
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which one or both oligos span these exon-junction points should create a primer 

pair that is highly specific for the mature form of the mRNA. Alternatively, 

designing a primer pair for which the primers recognize different exons with a 

large intron between the exons creates a bias towards the mature mRNA, if the 

Real Time qPCR elongation time is quite short. Lastly, primer pairs within the 

same exon will have the same ability to amplify genomic DNA as cDNA. Often, a 

primer pair that falls within the same exon is the only primer pair that meets the 

requirements for efficiency, and it is therefore critical to include experimental 

controls as described above. This last consideration is especially important when 

designing primers for genes that do not contain introns. 

 

Manual Primer Design 

 

Before describing how FoxPrimer works, we describe our workflow for manual 

primer design, which has proven to be quite successful in meeting our three 

requirements for primer design. FoxPrimer mechanizes each of these steps, 

saving time and effort on the part of the researcher. 

 

cDNA Primer Design 

Our typical workflow for manual design of cDNA primers for a single transcript 

has been empirically defined to have a very high rate of success in terms of 
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target specificity and primer pair efficiency. The design and positional-annotation 

of Real-Time qPCR primers for the amplification of cDNA has two parts. First, the 

cDNA sequence is aligned to the reference genome to define intron-exon 

junctions and intron sizes. Then, primers are designed for the cDNA sequence 

and locations are manually annotated based on cDNA-genomic DNA alignment 

coordinates. To accomplish these tasks, we use two web-based tools: NCBI 

Splign <http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi> (Kapustin et al. 

2008) to define transcript splice junctions and Primer3-Web 

<http://frodo.wi.mit.edu/> (Rozen and Skaletsky 2000) for primer design. We then 

manually determine the locations of primer pairs relative to exon/intron 

coordinates. Comparing this workflow to the one executed by FoxPrimer, we can 

see that while the underlying tools for this workflow are quite similar, FoxPrimer 

requires much less investment of time and effort from the user (Table 4.1). 

 

Genomic DNA (ChIP) Primer Design 

 

When designing primers for amplification of genomic DNA, we first determine the 

genomic region in which we would like the primers to be designed and then 

download the genomic sequence. FoxPrimer only requires a BED-format file of 

genomic coordinates, which is, conveniently, the type of file generated by many 

popular peak-calling algorithms (MACS (Zhang et al. 2008), SPP (Kharchenko et 

http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi
http://frodo.wi.mit.edu/
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al. 2008), PeakSeq (Rozowsky et al. 2009)). The next consideration is whether 

we want primers to amplify a defined sub-sequence such as a motif or whether 

the goal is to amplify a broader region. If the objective is to design primers 

flanking a specific motif, either TFSEARCH 

<http://www.cbrc.jp/research/db/TFSEARCH.html> (Heinemeyer et al. 1998) or 

FIMO (Find Individual Motif Occurences) <http://meme.nbcr.net/meme/cgi-

bin/fimo.cgi> (Grant et al. 2011) is used to define the location of the motif of 

interest in a genomic sequence. Primer3-Web <http://frodo.wi.mit.edu/> (Rozen 

and Skaletsky 2000) is then used for primer design (setting the subsequence 

string if making primers for a specific motif). The positions of the primers within 

the genomic sequence are then manually calculated primers relative to a gene of 

interest. Again, comparison of this workflow to the one executed by FoxPrimer, 

shows that while the underlying tools are quite similar, FoxPrimer requires much 

less investment of time and effort from the user and provides more information 

about the relative location of the primer pair (Table 4.2). 

http://www.cbrc.jp/research/db/TFSEARCH.html
http://meme.nbcr.net/meme/cgi-bin/fimo.cgi
http://meme.nbcr.net/meme/cgi-bin/fimo.cgi
http://frodo.wi.mit.edu/
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Table 4.1 cDNA Primer Design 
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Table 4.2 Genomic DNA (ChIP) Primer Design 
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Program Structure - Model, View, Controller 

 

FoxPrimer is written in Perl on the Catalyst web framework 

<http://www.catalystframework.org/>. The program is structured such that the 

Model, View and Controller (MVC) (GuangChun et al. 2003) architecture can be 

easily separated for future development of FoxPrimer. 

 

Model  

 

FoxPrimer is structured where the majority of program logic and execution occurs 

within the Model. The Perl modules that constitute the Model of the FoxPrimer 

MVC are self-contained and are capable of executing primer design functions 

independent of the Catalyst Controller module. This design approach allows for 

easier maintenance and testing of the FoxPrimer suite of primer design functions 

should interactions with external utilities become unstable in the future. 

 

Controller 

 

The FoxPrimer Controller module is only responsible for relaying information 

from the user to the Model where all of the business logic takes place. Then, the 

Controller returns error messages or final data to the View (in this case the web 

http://www.catalystframework.org/
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page). The FoxPrimer controller ensures that the data entered by the user are 

valid and relays error messages as needed. 

 

View 

 

The FoxPrimer View module is the web page where the user can interact with the 

settings and view output from the program. All code related to the display of the 

web pages is separate from any code involved in the business logic of the 

program. This design allows editing of the aesthetics without affecting the Model 

and Controller elements of the program. The FoxPrimer View module uses 

Template Toolkit <http://www.template-toolkit.org/> to render HTML code, and 

allows the Controller to pass Perl data structures to the View and have the 

Template Toolkit iterate through the information and properly display data to the 

user. 

 

Program Function 

 

cDNA Primer Design 

 

Upon entering the program, the View module (or the web page) renders and 

presents the user with a prompt for a comma-delimited list of RefSeq  (Pruitt et 

http://www.template-toolkit.org/
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al. 2009) RNA accessions (Figure 4.1). By default, the fields for product size, 

minimum intron size, and number per type are already filled, but can be changed 

by the user. The number per type field determines how many of each type of 

cDNA primer type will be returned. Primer types are defined by the locations of 

the primer pairs relative to the intron-exon junctions of the transcript. There are 

four types of primers that are returned to the user: junction spanning primers 

(one or both olgios span the intron-exon junction), exon primer pair (primers 

target different exons that have one or more introns between the exons whose 

combined length is greater than the user-defined minimum intron size), smaller 

exon primer pair (primers target different exons that have one or more introns 

between the exons whose combined length is less than the user-defined 

minimum intron size), and intra-exon primers (primers that map to the same 

exon). Also by default, the mispriming library for Primer3 is set to 'human', but 

can be changed based on the organism for which the user is designing qPCR 

primers. Once the FoxPrimer Controller has determined that all of the fields are 

valid, it will begin to check the RefSeq accessions entered by the user. 
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Figure 4.1 cDNA primer design form 
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Gene2Accession Database 

 

FoxPrimer relies on RefSeq accession and NCBI "GenInfo Identifier" or GI to 

determine the location of the sequence on genomic DNA, and to rapidly fetch the 

cDNA and genomic sequences from GenBank. In order to implement this large 

database of information, FoxPrimer provides a helper script that interacts with the 

NCBI FTP server to download the gene2accession flat file 

<ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2accession.gz> containing the 

requisite information, parses the file, and then stores the relevant information in a 

local SQLite <www.sqlite.org> database. Storage in the SQLite database allows 

FoxPrimer to rapidly determine if a user-defined RefSeq accession is valid before 

attempting to interact with GenBank. 

 

FoxPrimer will design primers for each valid accession, while each accession 

that is not found by FoxPrimer in the gene2accession database will be returned 

to the user in an error message. If the user has not entered any valid accessions, 

then the program will exit and inform the user which accession(s) were not found 

in the gene2accession database in an error message. 

 

BioPerl 

 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2accession.gz
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FoxPrimer uses BioPerl (Stajich et al. 2002) to interact with NCBI and fetch a 

sequence object for each cDNA and genomic DNA pair found in the 

gene2accession database. FoxPrimer stores in memory the GI for the cDNA, and 

the GI, start position, stop position and strand for the genomic DNA. Then, using 

the BioPerl Bio::DB::GenBank module FoxPrimer fetches sequence objects from 

NCBI and extracts a description of the mRNA from the cDNA object. Sequences 

from both cDNA and genomic DNA objects are written to temporary files in 

FASTA format. 

 

Sim4 

 

Once the sequences have been fetched from NCBI and written to file, FoxPrimer 

uses Sim4 (Florea et al. 1998) to align the cDNA sequence to the genomic DNA 

sequence to determine the coordinates of intron-exon junctions and lengths (if 

any) of each intron. Sim4 is an algorithm written to rapidly determine a best-fit 

alignment for a cDNA sequence to a genomic DNA sequence. Sometimes, 

multiple alignments are found, but this is rare. In such an instance, FoxPrimer will 

consider each alignment as valid, and proceed with primer design algorithm 

treating each alignment as a different pair of cDNA and genomic DNA. 

 

BioPerl provides an interface to call Sim4 from the FoxPrimer Model modules 

and fetches the results for each alignment determined by Sim4 (usually only one 
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per cDNA-gDNA pair). FoxPrimer then determines the coordinates of the 5' and 

3' end of each exon, as well as the length of each intron, and stores the 

information in memory.  

 

Updated_Primer3_Run 

 

FoxPrimer then uses Primer3 to design several hundred primers using the cDNA 

sequence as the template and the user-defined product size boundaries as the 

only constraint. BioPerl provides a module to interact with Primer3, however, this 

module was written for a previous release of Primer3. The algorithm for Primer3 

(current version is 2.2.3) has since been updated and so have the inputs for 

Primer3. Therefore, FoxPrimer features an updated version of 

BioPerl::Module:Bio::Tools::Run::Primer3, which we will submit to the BioPerl 

group when FoxPrimer is made public. 

 

Based on the constraints defined by the user for how many of each type of 

primer to be designed, FoxPrimer will iterate through the primers designed by 

Primer3 in increasing primer pair penalty score. For each primer pair, FoxPrimer 

defines the primer pair type. FoxPrimer will continue through the list of primers 

until the maximum number of each type of primer pair has been reached, or the 

primers designed by Primer3 have been exhausted. 
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Once FoxPrimer has finished designing primers for each accession entered by 

the user, the primers are stored in a local SQLite database for designed cDNA 

primer pairs. The primer information is then returned the user in a table via the 

FoxPrimer View module, together with any error messages (Figure 4.2). Once 

the primers have been stored in the created primers database, they can be 

searched and retrieved rapidly using the FoxPrimer search functions described 

later. 
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Figure 4.2 Example output from FoxPrimer for cDNA primer design 
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Figure 4.2 Example output from FoxPrimer for cDNA primer design 

 

Screenshot of example output from FoxPrimer cDNA primer design. Tables of 

primers for each transcript are ordered by ascending primer pair penalty score 

from Primer3. 
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Genomic DNA Primer Design 

 

For design of genomic DNA qPCR primers, the FoxPrimer View module renders 

a form for the user to complete, along with a widget allowing the user to upload a 

BED-file of genomic interval coordinates (Figure 4.3). FoxPrimer will check to 

ensure that a file has been uploaded, and if not, the Controller will inform the 

View to prompt the user to upload a BED file. By default, the View has entered a 

product size for the primer pairs to be created, and the drop down menus for the 

genome and motif have been set to hg19 and "no motif", respectively. Each of 

these parameters can be changed by the user. 
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Figure 4.3 Genomic DNA primer design form 
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Dynamic Genome Addition 

 

FoxPrimer is capable of designing genomic DNA qPCR primers for all RefSeq-

annotated genomes. To extract the genomic sequences for primer design, 

FoxPrimer requires large (hundreds of megabytes to several gigabytes, 

depending on genome size) UCSC 2bit-format files for each genome. It is 

unreasonable to expect users of FoxPrimer to need a sequence file for all 

RefSeq genomes or to have the requisite disk space to store these files. 

FoxPrimer therefore offers dynamic genome addition for each reference genome 

the user would like to design genomic DNA qPCR primers for. A helper script is 

provided, which interacts with the UCSC MySQL server 

<http://genome.ucsc.edu/goldenPath/help/mysql.html> to extract the necessary 

files and genomic coordinates for genomic DNA primer design. Once a genome 

has been installed using this helper script, the genome will appear in the 

dropdown menu on the website and users will be able to design genomic DNA 

primers for this genome. 

 

Available Motifs 

 

Often, users will want to design their genomic DNA primers so that they amplify a 

genomic region that matches the DNA-binding motif for a specific protein. To 

assist in the design of primers, which are targeted around motifs, FoxPrimer 

http://genome.ucsc.edu/goldenPath/help/mysql.html
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provides a set of 454 motifs from the 2009 JASPAR/TRANSFAC position weight 

motif matrices (Bryne et al. 2008). FoxPrimer provides helper scripts to update 

the motif list or add custom position weight matrices. The FoxPrimer Controller 

makes a call to the FoxPrimer Model modules to dynamically fetch a list of motifs 

available to the user. This list is sent to the FoxPrimer View module and 

displayed in the form of a drop down menu.  

 

By default, FoxPrimer will only read and design primers for the first 10 lines of a 

BED file. This design limits the time between execution and results. This variable 

is clearly defined in the FoxPrimer Model modules, and can be changed by the 

administrator. 

 

If any interval in the uploaded BED-file is 30bp or less, FoxPrimer will assume 

the user is requesting primer pairs to flank this region and will mark them as 

such. FoxPrimer will extend the coordinates of such an interval in both the 5' and 

3' directions by twice the length of the maximum user-defined product size. The 

coordinates of the original interval are stored and defined as the target sequence 

for Primer3. This ensures that any short interval supplied by the user will be 

included in the product amplified by the designed primer pairs. 

 

TwoBitToFa 
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For each set of valid coordinates, FoxPrimer will use these coordinates to write 

the FASTA format sequence to a temporary file. TwoBitToFa is provided as part 

of the source code written by Jim Kent for the UCSC genome browser (Meyer et 

al. 2013). This program provides very rapid retrieval of genomic sequence from a 

highly compressed 2bit file containing all genomic sequences. A FASTA format 

file is needed to find motifs (if required) using FIMO, and to design primers using 

Primer3. 

 

FIMO 

 

If the user elects to search for a motif within the genomic intervals, FoxPrimer will 

search for the user-defined motif using FIMO (Find Individual Motif Occurences) 

from the MEME (Multiple Em for Motif Elicitation) suite of motif-oriented programs 

(Grant et al. 2011). FoxPrimer makes a call to FIMO, informing FIMO of the 

sequence to search and the motif for which to search. If the motif is not 

discovered in an interval, that interval is returned to the user in an error message 

after primers have been designed around all other motifs discovered. For each 

motif discovered, FoxPrimer will treat these short intervals as described above 

(coordinates are extended, and used as target sequence for primer design).  

 

For each motif found in the target sequences, FoxPrimer will use the 

aforementioned Updated_Primer3_Run Model module to create 5 primer pairs. 
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FoxPrimer will store the necessary information about the primer oligos, and then 

use the relative template coordinates to extrapolate these coordinates into 

genomic coordinates. 

 

Primer Position Determination 

 

Designing a pair of primers to amplify genomic DNA is not a difficult task. It is, 

however, time-consuming to determine where these primers are relative to 

nearby genes. This information is important and should be stored for each primer 

pair. For some users, simply knowing where the primers are in raw genomic 

coordinates will satisfy their research needs, and FoxPrimer provides this 

information for each primer pair. However, knowing where a primer pair is 

located relative to nearby genes is a critical piece of information. To define the 

positions of primers relative to nearby genes, FoxPrimer implements a version of 

the algorithm used in PeaksToGenes (see Chapter 5). FoxPrimer creates a 

temporary BED-file of coordinates using the 5'-end of each primer as the 

genomic start and genomic end of the positive and negative strand primers, 

respectively. Then, using intersectBed from the BEDTools suite of programs 

(Quinlan and Hall 2010), FoxPrimer defines a list of genes that are within 100Kb 

of the primer pair. FoxPrimer then iterates through the list of genes, and 

mathematically determines the relative positions of the primer pair to each gene 

in the list. 
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Once FoxPrimer has determined the relative locations of all designed primers, 

the information for each primer pair is entered into the created primers database 

for genomic DNA primers. Like the created cDNA primers database, this 

database allows all created primers to be rapidly searchable by the user. Finally, 

the primer information is sent from the FoxPrimer Controller to the FoxPrimer 

View, and a table of primer information as well as messages, describing any 

errors that that may have occurred during primer design, is returned to the user. 

 

Validated Primer Entry 

 

Given the investments of time and reagent cost to validate a primer pair, it is 

critical that validated primers be stored in a location where they are both secure 

and accessible.  By implementing an SQLite database for primer information 

storage, FoxPrimer accomplishes both of these goals. 

 

To facilitate rapid addition of validated primers to the SQLite database, 

FoxPrimer allows batch entry of primers. FoxPrimer requires the user to enter 

primer information in the form of a tab-delimited file containing the following 

information: “Primer Type”, “Left Primer Sequence”, “Right Primer Sequence”, 

“Accession”, “Your Name”. “Efficiency”, “Left Primer Location”, “Right Primer 

Location”, and “Genome”. The last three parameters are only required if the 
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primers are designed for genomic DNA amplification, and informs FoxPrimer 

about where it should make the template DNA for in silico validation. 

 

The FoxPrimer Controller will make calls to the FoxPrimer Model modules to 

ensure that the fields entered in the file are valid. The user will be informed of 

any errors via an error message from the FoxPrimer View. For each primer pair, 

FoxPrimer will use Primer3 to calculate the Tm and primer pair penalty, and use 

the aforementioned algorithms to determine exonic or genomic positions of the 

primers for cDNA and genomic primers, respectively. After these parameters 

have been defined, the primer pair is entered into the validated primer database, 

which can be searched by the user. 

 

Discussion 

 

FoxPrimer provides a simple interface to a series of robust programs for the 

design of Real Time qPCR primers that amplify either cDNA or genomic DNA 

sequences. For each primer pair designed, FoxPrimer provides detailed 

information about the location relative to either exons or nearby genes. Because 

FoxPrimer also reports the primer pair penalty score, the user can make 

informed decisions about which primer pairs should be experimentally tested. 
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FoxPrimer can be used to make primer pairs for a single mRNA or genomic 

interval quickly.  However, the real strength of this program lies in its ability to 

accomplish these tasks in batch. A limited version of FoxPrimer is available at 

<http://www.foxprimer.org>, and is running on a micro-instance of Amazon EC2, 

therefore, strict limits have been set to reduce compute cycles and costs. On 

more powerful private servers, FoxPrimer has been tested to design hundreds of 

primer pairs within a few minutes. High-throughput design of primers with a 

strong probability of meeting the requirements of Real Time qPCR will be a 

useful time-saving tool for the validation of next-generation sequencing projects. 

 

FoxPrimer has been a valuable tool for many researchers within our research 

group over the course of its development. It is our hope this program will see 

widespread adoption due to its simple interface and open source nature. 

 

Program Requirements 

 

• Perl >= 5.14.2 

• Perl module dependencies (see ‘INSTALL’ file for specifics) 

• Primer3 command-line version 

http://www.foxprimer.org/
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• Sim4 

• twoBitToFa (Kent Source) 

• FIMO (From MEME) 

• BEDtools 

• SQLite3 

• MySQL 

• OS X or Linux 
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CHAPTER 5 PEAKSTOGENES: AVERAGE GENE PLOT GENERATION AND 

STATISTICAL TESTING 

  



243 
 

Authors and contributions 

Jason R. Dobson, Andre J. van Wijnen, Jane B. Lian, Gary S. Stein, Janet L. 

Stein. 

 

PeaksToGenes was designed, written and tested by JRD. 

  



244 
 

Introduction 

 

Gene expression is a highly regulated process that ultimately leads to the 

determination of cellular phenotype and functions. Characterization of the 

patterns and relationships in the regulatory networks controlling gene expression 

at the transcriptional level is much sought after information. This will allow for a 

greater understanding of the mechanism contributing to processes such as 

development, tissue turnover, response to external stimuli, and disease. 

 

Chromatin features including nucleosome positioning, histone modifications, 

hypersensitive regions, and DNA-binding proteins like transcription factors 

contribute to transcriptional regulation. Many of these epigenetic marks have 

been assigned a particular role in transcriptional regulation based on observed 

functions related to candidate genes. Approaches utilizing next-generation 

sequencing to experimentally understand the genome-wide functions of these 

chromatin features have allowed an unprecedented level of insight into and 

understanding of the regulatory roles of many proteins. 

 

Examination of the patterns of chromatin feature locations in relation to gene 

expression from next-generation sequencing data has dramatically increased our 
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understanding of chromatin-mediated regulation of transcription. However, a 

major hurdle in measuring and defining these relationships has been the 

researchers’ ability to manage the data according to their experimental needs. To 

assist in the process of defining patterns and relationships between chromatin 

features and gene expression, we will describe the programming framework 

PeaksToGenes. 

 

PeaksToGenes is designed to help the user identify patterns in sequencing 

results for the purpose of making predictions about the potential transcriptional 

functions of the chromatin features being investigated. A common means to 

begin identifying patterns in chromatin features is to construct an average gene 

profile of the mark across the entire genome. These average gene profiles show 

where a particular mark is most commonly found relative to gene bodies and can 

be used to perform statistical tests to determine how significant a given 

observation is. At the core, PeaksToGenes constructs these average gene 

profiles and then allows the user to query these profiles without manually 

designing scripts to create or extract information. 

 

PeaksToGenes is written in Modern Perl, and relies only on open-source 

dependencies. This design approach allows for a completely exposed API, 

allowing the user to easily write their own extensions for PeaksToGenes should 
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they have more specific experimentally-driven questions. Here, we describe the 

major functions and API of PeaksToGenes. 

 

Average Gene Profiles 

 

PeaksToGenes is designed to test whether the binding profile of a given protein 

is different near one subset of genes versus another subset of genes. These 

gene lists should be large enough so that the group sizes will be sufficient for 

robust statistical testing. Although there are many instances where proteins are 

known to bind distal to gene bodies and have enhancer-type functions, 

PeaksToGenes is focused on proximal binding and therefore focuses on 

genomic regions 10Kb upstream of the transcriptional start site (TSS), within the 

gene body, and 10Kb downstream of the transcriptional termination site (TTS). 

For each gene, PeaksToGenes stores either the number of peaks or the ratio of 

“IP” over “input” reads per relative genomic region (described below), making it 

relatively quick to contrast two lists of genes against one another. 

 

The 10Kb regions upstream of the TSS and downstream of the TTS are split into 

1Kb non-overlapping intervals. If used in “contrast” mode, PeaksToGenes will 

look in each one of these intervals and calculate the ratio of “IP” reads to “input” 
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reads. PeaksToGenes can optionally use a scaling factor, such as sequence 

enrichment scaling (SES) (Diaz et al. 2012) or RPKM (reads per kilobasepair per 

million reads) (Landt et al. 2012), which is multiplicatively applied to the number 

of “input” reads found in the interval. Alternatively, if PeaksToGenes is run in 

“annotate” mode, the number of peak regions will be counted for each relative 

genomic region. 

 

PeaksToGenes looks at the gene body in two ways: based on transcriptional 

regions and based on relative genomic coordinates. The transcriptional regions 

are defined by the function of the transcribed sequences, which fall into four 

categories: five prime untranslated regions (5’-UTRs), exons, introns, and three 

prime untranslated regions (3’-UTRs).  The genomic regions are defined by 

relative coordinates between the TSS and TTS and are divided into ten 

approximately equal length intervals, which we call “gene body deciles”. Because 

the relative coordinates within the gene bodies are not the same length as the 

relative genomic coordinates, the number of peaks or reads found in each 

coordinate are linearly scaled to 1Kb prior to applying the same ratio or counting 

functions described above for flanking regions. 

 

Once PeaksToGenes has defined either the number of peaks or the signal ratio 

for each relative genomic region for each gene in the given RefSeq genome, 
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these scalar numbers are stored in a local SQLite database indexed by genome, 

RefSeq mRNA accession and the name the user has chosen for the 

experimental sample. The user can then specify multiple gene lists to be utilized 

for statistical testing or just simple averaging of the signal ratios or numbers of 

peaks near the list of genes. 

 

Matrix Files 

 

The average genome profile (generated as described above) is stored in the 

local SQLite database. The data can be accessed by the user several ways. 

Often, users will want to create some kind of heat map, or manipulate the data 

using functions separate from the statistical contrast tests provided by 

PeaksToGenes. To that end PeaksToGenes provides the “matrix” function, which 

allows the user to specify a list of RefSeq accessions and a series of datasets 

(from the same genome) for which they would like a tab-delimited file of binding 

information printed to file. Each row represents a particular RefSeq gene, and 

each column represents a relative genomic region for a particular data set. The 

relative regions included in this matrix file are ordered from 10Kb 5’-TSS, gene 

body deciles, to 10Kb 3’-TTS for each dataset (protein) in the order (left to right) 

in which the datasets were defined as arguments for the “matrix” function. We 

often find that the files exported from this function are especially useful for the 
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creation of heat maps and for identifying patterns in protein binding using 

expectation maximization algorithms such as k-means clustering. 

 

Statistical Tests 

 

PeaksToGenes is designed to help the user test the hypothesis “is the binding of 

this protein different near one set of genes versus another?” By defining the 

binding profile of the protein in terms of peaks or signal ratios within gene bodies 

and in the flanking genomic regions, PeaksToGenes creates “populations” of 

scalar data points to which we can apply statistical approaches. In the current 

version of PeaksToGenes, the statistical tests are one-way tests contrasting the 

binding profile of a protein on one set of genes versus another set of genes 

within each relative genomic region. More specifically, PeaksToGenes will take 

two lists of genes and extract all of the binding data in the “1Kb upstream” region 

(or “promoter”) and determine whether the binding data within the two lists is 

significantly different. This is the repeated for each relative genomic region 

defined above.  

 

By default, PeaksToGenes will not run any statistical tests because it is important 

for the user to understand which tests are appropriate for their data. The two 
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tests included in this implementation of PeaksToGenes make very different 

assumptions about the nature of the data in each list, and ignoring these 

assumptions can lead to both false positive and false negative results; referred to 

as type I and type II statistical errors, respectively. Regardless of which 

combination of tests or no tests is chosen by the user, PeaksToGenes will create 

a tab-delimited file containing the sum, mean, and standard error of the mean 

(SEM) of binding data for each relative genomic region for each list of genes. 

 

Fisher-ANOVA 

 

The one-way parametric ANOVA test (Fisher ANOVA) provided by 

PeaksToGenes tests whether the means of two lists are different (Field 2007). 

This tests whether, on average, the binding profile is significantly different in a 

given genomic region near one set of genes versus another set of genes. This 

test may not be appropriate in all cases as it assumes that the data are normally 

distributed. In the case of data derived from peak intervals, this test is never 

appropriate as there are more values of zero than any other, and in the case of 

signal ratio data this must be examined on a case-by-case basis, as often the 

data are not normally distributed. 
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Wilcoxon Rank-Sum (Mann-Whitney U) 

 

The Wilcoxon Rank-Sum (or Mann-Whitney U) Test (Wilcoxon 1945) is used to 

determine whether the values in one list tend to be greater than the values in the 

other list. In the case of PeaksToGenes, this test determines whether the binding 

profiles in a particular relative genomic region near one set of genes tend to have 

higher values than the binding profiles near another set of genes. Instead of 

using the scalar value from the binding profile, this test assigns a rank to each 

value and then determines if the sum of the ranks in each list meet the expected 

values under the assumption that the lists have similar data. This test is most 

appropriate for binding profiles derived from signal ratios and can be used for 

binding profiles derived from peaks data. It should be noted that using binding 

profiles derived from peaks data can be computationally difficult as the number of 

genomic regions with zero peaks is quite high and the algorithm used to rank the 

data will take quite a long time dealing with all the ties found with a zero value. 

 

Implementation 

 

PeaksToGenes is written in Modern Perl, using objective-oriented program 

function encapsulation style. The objective-oriented set of Perl modules imported 

by Moose is used to provide the syntactic sugar for the creation of classes and 



252 
 

objects. User-defined experimental information and corresponding binding data is 

stored in a local SQLite database, using the Perl module DBIx::Class to form 

relationships between tables and form the interface between the database and 

the user. These design choices allow for additional Perl modules to be added by 

the user or in future development for the rapid addition of complementary 

functions. 

 

Interface 

 

The primary interface to PeaksToGenes is the script‘peaksToGenes.pl’. This 

script is a command-line interface, which allows the user to perform all the 

requisite functions described herein: installing databases, annotating datasets, 

deleting datasets, and performing statistical contrast tests. The 

‘peaksToGenes.pl’ script uses command-line arguments such as, “--

annotate”, “--contrast”, “--processors”, or “--test_genes”, which are used 

to define input files and settings.  

 

Each of the functions used by PeaksToGenes is encapsulated as an object class 

by Moose, allowing the user to write their own script or Perl module to utilize the 



253 
 

PeaksToGenes functions and database utilizing object-oriented programming 

paradigms. 

 

Input Files 

 

When using the “signal_ratio” function, PeaksToGenes expects BED-format files 

of reads for both the IP sample and the input sample. We use the following 

BASH pseudocode to generate these BED-format files from raw reads: 

for sample in IP Input 

do 

# Map to reference genome 

bowtie [bowtie options] [ebwt_files] –S 
${sample}.fastq > ${sample}.sam 

 

# Convert from SAM to BAM 

samtools view –bS ${sample}.sam > ${sample}.bam 

 

# Sort the BAM file 

samtools sort ${sample}.bam ${sample}_sorted 

 

# Remove the unsorted BAM file 

rm ${sample}.bam 
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# Convert the sorted BAM file to BED format 

bamToBed –i ${sample}_sorted.bam > ${sample}.bed 

 

# Remove the sorted BAM file 

Rm ${sample}_sorted.bam 

   

  done 

 

Alternatively, when using the “annotate” function, PeaksToGenes expects a 

BED-format file of intervals an external program or algorithm has defined as 

“peaks”. 

 

Error Handling 

 

There are a multitude of safeguards written into the current implementation of 

PeaksToGenes designed to prevent wasted time and unexpected program 

behavior. The first line of defense against these problems occurs in the main 

PeaksToGenes class ‘PeaksToGenes.pm’, which ensures that all required 

command-line arguments are defined for a given function and are properly 

formatted. If there any of these parameters are in error, PeaksToGenes will 

return an error message to the user, and terminate execution. The second error-

checking function occurs via checking the formatting of each peaks or reads file 

defined by the user to ensure the file adheres to proper BED-format 



255 
 

specifications. For each error found in a given file, PeaksToGenes informs the 

user of the type of error and the line at which the error(s) has occurred and will 

then cease execution. Another error-checking function implemented in 

PeaksToGenes is the checking of RefSeq accessions defined for contrast 

testing. If there is an invalid or deprecated accession for the given genome, 

PeaksToGenes returns these accessions to the user, and continues execution 

with the valid accessions found. If too many accessions are invalid, the user can 

choose to terminate execution; the program will still function correctly without 

user intervention. If there are no valid accessions entered, PeaksToGenes will 

exit before trying to extract genomic annotation data and run statistical contrast 

tests. 

 

Parallel Processing 

 

CPU manufacturers are beginning to hit limits in individual processor speeds and 

have begun pushing towards using many cores in parallel. PeaksToGenes is 

designed to take advantage of the ability to utilize multiple processors anywhere 

parallel operations were safe and tested to increase speed of operation. 

Parallelization is accomplished through the Perl module Parallel::ForkManager, 

which relies on the Unix fork operation to carry out instructions in parallel. The 

ability to utilize multiple processors in parallel is especially powerful when 
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PeaksToGenes is used on a computing cluster. Utilizing as many as 24 (a 

limitation of our cluster, not PeaksToGenes) processors in parallel allows for 

rapid execution of the PeaksToGenes functions. Many of the signal ratio 

annotation functions take quite a long time to complete, so parallelization of 

these functions allows for faster generation of results. 

 

Genomic Indexes 

 

In order to understand spatial relationships between the user's dataset and 

genes, a meta-gene profile must be created. To facilitate this process, 

PeaksToGenes uses a set of BED-format coordinate files, which contain 

genomic intervals whose positions are relative to a given RefSeq accession. 

PeaksToGenes does not come with any of these indexes installed, rather it 

provides a function to dynamically add genomic information based on the user's 

needs. This allows a great deal of flexibility, and at the time of writing 

PeaksToGenes is capable of dynamically adding 62 RefSeq genome definitions.  

 

To accomplish these functions, PeaksToGenes::Update::UCSC uses DBIx::Class 

to interact with the UCSC MySQL server to fetch the genomic coordinates of 

each RefSeq transcript as well as the sizes of each chromosome in the genome 
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of interest. These coordinates are then used to define 34 distinct genomic 

locations relative to RefSeq transcript genomic coordinates within the limits of the 

chromosome sizes. Each location is written in a separate BED-format file, and 

the full path to the file is stored in the PeaksToGenes SQLite database by 

PeaksToGenes::Update.  

 

For each relative location, PeaksToGenes creates a BED-format file with the 

coordinates for that relative location for every gene whose coordinates are valid. 

The path to these BED-format files are stored in the PeaksToGenes database, 

so that when the user chooses to annotate a dataset, the location of the files will 

be statically stored within the program and need not be known to the user. If for 

some reason, the user moves or deletes the BED-format relative location files, 

PeaksToGenes will quit during the annotation process, and inform the user that 

the files could not be found prompting the user to run the update function again. 

This will prevent unpredictable behavior and errors in interpretation downstream. 

 

Annotation / Average Gene Profile Creation 

 

With a set of genome-defined indexes in place, PeaksToGenes uses the 

intersectBed utility from the BedTools suite of command-line tools to assign 
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information from the user's dataset into the intervals defined by 

PeaksToGenes::Update. This operation is primarily performed on BED-formatted 

reads files (generated using the pseudocode above). Alternatively, 

PeaksToGenes can use BED-format files corresponding to externally defined 

“peak” intervals. 

 

For each relative genomic index, PeaksToGenes normalizes the number of 

peaks/peak scores/reads per 1Kb. This calculation is done as needed during the 

parsing of the results of the intersectBed command, and allows for bias to be 

reduced from larger sub-genomic regions such as gene body deciles or introns. 

This calculation further allows the raw values for each relative genomic region to 

be interpreted as the aggregate number of peaks/peak scores/reads per Kb. 

 

For each peak (or read interval) found within a particular relative genomic 

location, PeaksToGenes::Annotate::BedTools (for peaks) or 

PeaksToGenes::SignalRatio::BedTools (for reads) stores in memory both the 

number of peaks/reads as well as the aggregate peak scores (from MACS, SPP, 

etc.). These large hash references are then converted into a DBIx::Class insert 

statement by PeaksToGenes::Annotate::Database (for peaks) or 

PeaksToGenes::SignalRatio (for reads), and then inserted into the 

PeaksToGenes database using a bulk insert. 
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SQLite Database 

 

The process of generating an average gene profile is relatively quick. The issue 

is how to store this information in a way that is consistent, so that strict functions 

can be written to interpret and parse the files, and that is less prone to end-user 

tampering, so that PeaksToGenes will have an easier time recalling information 

from annotation/signal_ratio functions. We did not want to come up with an 

additional file format for the rapid storage and retrieval of this type of information, 

so we chose to use a local SQLite database to store the results of the meta-

genome profiles. 

 

Storing the data in a relational database management system (RDBMS) allows 

for strict data types in each field, adding an extra layer of error checking to 

ensure that data is properly handled and that results can be properly interpreted. 

Further, the use of an RDBMS allows for other means of extracting meta-genome 

information from PeaksToGenes database should a user decide to write their 

own implementation to access the database in another language (C++, Python, 

etc.) or through the SQLite command-line. 
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There are many different implementations of SQL-mediated control of RDBMS, 

however, we chose SQLite as we feel it the easiest to implement for end-users, 

especially those who do not have root/admin privileges (such as on a computing 

cluster). SQLite does, however, have some drawbacks in performance as 

compared to MySQL or PostgreSQL, which causes the time for insertion of the 

meta-genome profile data into the database to be quite long (SQLite, at this time, 

does not allow asynchronous transactions). However, we feel that the lack in 

performance is outweighed by the flexibility permitted by SQLite. 

 

Results 

 

Using PeaksToGenes to Identify Patterns in Chromatin Context Prior to Estrogen 

Stimulation in MCF-7 Breast Cancer Cells 

 

To demonstrate the functions of PeaksToGenes, we chose to examine the 

relationships between the chromatin context of MCF-7 breast cancer cells and 

their response to estrogen stimulation. Of particular interest are the positions of 

transcription factors such as ER-alpha and CTCF relative to genes responsive to 

estrogen stimulation. Positional binding of ER-alpha in relation to ER-alpha-

responsive genes has been investigated using other means (Carroll et al. 2006, 

Hurtado et al. 2011, Zwart et al. 2011) as well as the cooperative functions of 
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ER-alpha and CTCF on the promoters of ER-responsive genes (Ross-Innes et al. 

2011). To understand what role the chromatin context may be playing in ER-

response, the positions and binding intensities of the chromatin modifications 

histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 27 acetylation 

(H3K27ac), and histone 3 lysine 27 trimethylation (H3K27me3) were examined 

as well. Functional ER-alpha binding sites are associated with H3K4me3, slightly 

associated with H3K27ac and not significantly associated with H3K27me3 

(Joseph et al. 2010). Data for ER-responsive genes, ER binding, CTCF binding, 

and histone marks were extracted from publicly-available data for each of the 

aforementioned studies. 

 

Using PeaksToGenes, we find that genes responsive to ER-stimulation in MCF-7 

breast cancer cells are significantly enriched in binding of both ER-alpha and 

CTCF near the TSS. Further, we observe that the chromatin near the TSS of ER-

responsive genes is in a predominately open conformation, as H3K4me3 is 

highly enriched at these loci. PeaksToGenes provides a rapid means to perform 

a common form of epigenomics analysis, which produces results similar to those 

produced by home-grown scripting and code. 
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ER-responsive genes are significantly enriched in association with ER-alpha in 

proliferating MCF-7 cells 

 

The binding profile of ER-alpha in MCF-7 cells was defined using the 

PeaksToGenes “signal_ratio” function with input scaling using the sequence 

enrichment scaling algorithm. RefSeq mRNAs defined as responsive to ER-

stimulation after 3 hours were used as the list of “test_genes”, while the 

remaining RefSeq mRNAs on the Affymetrix HGU133A Plus 2 array were used 

as the “background_genes”. Here we observe that regions near the TSS of 

genes responsive to ER-stimulation are significantly enriched in binding of ER-

alpha (Figure 5.1). This is consistent with similar analyses done with ER-alpha 

(Carroll et al. 2006, Hurtado et al. 2011). 
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Figure 5.1 ER-responsive genes are significantly enriched in ER-alpha binding 

near the TSS 
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Figure 5.1 ER-responsive genes are significantly enriched in ER-alpha binding 

near the TSS 

 

PeaksToGenes average gene profile of the binding of ER-alpha as measured by 

the ratio of IP reads over input reads. Blue line is the mean ER-alpha signal ratio 

per relative genomic region near genes responsive to ER-stimulation, while the 

red line is the same data near genes defined as non-responsive to ER-

stimulation. Triangles represent the Wilcoxon Rank Sum p-value generated by 

using this test to compare the binding of ER for ER-responsive genes versus the 

non-responsive genes in each relative genomic region. Error bars are SEM. 
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Genes responsive to ER stimulation are enriched in CTCF binding near the TSS 

 

ER-alpha and CTCF bind many of the same genomic regions, and these co-

binding events are highly functional in response to ER stimulation (Ross-Innes et 

al. 2011). Using PeaksToGenes, we can observe that the same genes, which 

have significant binding of ER-alpha near the TSS are also significantly 

associated with CTCF binding near the TSS (Figure 5.2). It is interesting that 

some of the genes that are not responsive to ER stimulation (red line) show an 

increase in CTCF binding near the TSS, which suggests that CTCF may have 

TSS-centric functions independent of ER-alpha binding in MCF-7 cells. CTCF 

typically binds to open regions of chromatin that are DNAse I-sensitive, and it is 

thought that these CTCF binding events promote the interactions of distal 

enhancer regions with promoter regions (Sanyal et al. 2012, Merkenschlager and 

Odom 2013). Therefore, the ER-independent binding of CTCF within promoter 

regions is not unexpected. 

 

Genes Responsive to Estrogen Signaling are Associated with Open Chromatin 

Marks 

 

To further characterize the pre-estrogen-stimulation chromatin state of genes that 

are responsive to estrogen, we looked the chromatin modifications H3K4me3 
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and H3K27ac, which are associated with transcriptional activation, and 

H3K27me3, commonly associated with transcriptional repression. We used 

PeaksToGenes to address the extent to which more binding of these histones 

was differentially associated with genes responsive to estrogen signaling. 

Functional ER-alpha binding near the TSS of genes is associated with H3K4me3 

(Joseph et al. 2010); using PeaksToGenes, we observe the same association 

between H3K4me3 and genes responsive to ER-stimulation (which has strong 

ER-binding in near the TSS) (Figure 5.3). Because we have chosen to plot these 

three marks on the same scale, it is difficult to resolve some of the finer 

differences in H3K27ac and H3K27me3 binding between the ER-responsive and 

non-responsive genes. However, while the magnitudes of the mean differences 

are not great, we do observe statistically significantly increased levels of 

H3K27ac and reduced levels of H3K27me3 near the TSS of ER-responsive 

genes. These results, combined with the H3K4me3 results, suggest that ER-

responsive genes have an open chromatin configuration near the TSS. 
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Figure 5.2 Genes responsive to ER stimulation are strongly associated with 

CTCF binding near the TSS. 
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Figure 5.2 Genes responsive to ER stimulation are strongly associated with 

CTCF binding near the TSS. 

 

PeaksToGenes average gene profile of the binding of CTCF as measured by the 

ratio of IP reads over input reads. Blue line is the mean CTCF signal ratio per 

relative genomic region near genes responsive to ER stimulation, while the red 

line is the same data near genes defined as non-responsive to ER stimulation. 

Triangles represent the Wilcoxon Rank Sum p-value generated by using this test 

to compare the binding of ER for ER-responsive genes versus the non-

responsive genes in each relative genomic region. Error bars are SEM. 
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Figure 5.3 The TSS of genes responsive to ER stimulation are enriched in open 

chromatin marks 
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Figure 5.3 The TSS of genes responsive to ER stimulation are enriched in open 

chromatin marks 

 

PeaksToGenes average gene profile of the binding of (A) H3K4me3, (B) 

H3K27ac and (C) H3K27me3 as measured by the ratio of IP reads over input 

reads. Blue line is the mean histone mark signal ratio per relative genomic region 

near genes responsive to ER-stimulation, while the red line is the same data near 

genes defined as non-responsive to ER-stimulation. Triangles represent the 

Wilcoxon Rank Sum p-value generated by using this test to compare the binding 

of ER for ER-responsive genes versus the non-responsive genes in each relative 

genomic region. Error bars are SEM. 
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Discussion 

 

PeaksToGenes provides an open source framework for the analysis of 

epigenomic data in a gene-centric manner. The addition of statistical testing 

provides access to robust statistical methods without having to restructure the 

data. PeaksToGenes also provides convenient functions to write the average 

gene profiles to file so the user may perform their own analyses. We further 

demonstrate the ability of PeaksToGenes to reproduce previous results using ER 

stimulation in MCF-7 cells as a model. 

 

Using publicly available datasets we demonstrate a potential use case for 

PeaksToGenes. The analysis provided by PeaksToGenes allows for rapid insight 

into the binding events near a subset of genes. In this case, we examined the 

average profile of genes that are defined as responsive to ER-stimulation (Carroll 

et al. 2006). ER-alpha transcriptional activity occurs near the TSS of actively 

expressed genes marked by H3K4me3, and cooperatively functions with CTCF 

(Joseph et al. 2010, Ross-Innes et al. 2011). 

 

PeaksToGenes is not designed to be the only form of analysis done with 

epigenomic data; rather, PeaksToGenes can be considered as a complementary 
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analysis approach. In no way is PeaksToGenes a replacement for such 

approaches as chromosome segmentation or hidden Markov modeling (Ernst 

and Kellis 2012, Hoffman et al. 2012); however, PeaksToGenes requires minimal 

computational aptitude to find more general patterns and associations between 

protein binding and genes. 

 

Program Requirements 

 

• Perl >= 5.14.2 

• Perl Module dependencies (see ‘INSTALL’ file for details) 

• BEDtools 

• SQLite3 

• MySQL 

• OS X or Linux 

 

Data sources 

 



273 
 

ER-responsive genes 

 

ER-responsive genes in MCF-7 cells are genes defined as ER-responsive after 3 

hours of ER stimulation using Affymetrix arrays (Carroll et al. 2006). 

 

ER-alpha ChIP-seq 

 

ER-alpha binding profile in MCF-7 cells was extracted from (Hurtado et al. 2011). 

 

CTCF and H3K4me3 ChIP-seq 

 

CTCF and H3K4me3 binding profiles in MCF-7 cells were downloaded from 

ENCODE, and produced by the University of Washington ENCODE group 

(ENCODE Project Consortium 2011). 

 

H3K27ac and H3K27me3 ChIP-seq 
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H3K27ac and H3K27me3 binding profiles in MCF-7 cells were downloaded from 

ENCODE and produced by the Stanford / Yale / USC / Hardvard (SYDH) 

(ENCODE Project Consortium 2011).  
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CHAPTER 6: DISCUSSION 

 

Isolation of the in situ nuclear matrix 

 

The nuclear matrix and previous methods of biochemical fractionation has been 

quite a controversial concept, and has resulted in the nuclear matrix being 

maligned as “operationally defined”. Much of the scientific disagreement stems 

from the development of a myriad of protocols to isolate the nuclear matrix and 

thereby questions the functional relevance of this insoluble fraction. While 

compositions of the “matrix” isolated in most procedures are similar in terms of 

the relative amounts of RNA, DNA and proteins, the ultrastructural organization 

of the in situ nuclear matrix is only preserved under specific circumstances 

(Belgrader et al. 1991).  

 

The physical appearance of many nuclear bodies is largely tethered to functional 

activity, suggesting that organizational parameters are synergistically derived 

from physiological demands. Nuclear bodies form de novo, utilize RNA as a 

structural scaffold, and are self-organizing (reviewed in (Dundr and Misteli 

2010)). Given the dynamic relationship between functional demand and structural 

organization, it seems counterintuitive to expect that extracting these nuclear 
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bodies and the nuclear matrix while destroying native structure will result in a 

biochemically faithful isolate.  

 

The nuclear matrix is enriched in newly transcribed RNA, and in close physical 

proximity to open, active chromatin (Bachellerie et al. 1975, Fakan and Nobis 

1978, Fakan and Hughes 1989). The Laemli group developed a protocol to 

isolate matrix-associated DNA, which relies on LiS buffer for extraction 

(Mirkovitch et al. 1984, Izaurralde et al. 1988). Due to differences in the structural 

appearance of the residual structures from the “high salt” and “LiS” matrix 

preparations, DNA isolated from these preparations were defined as matrix 

associated regions “MARs” and scaffold associated regions “SARs” respectively 

(Belgrader et al. 1991). This marked one of the major splits in the nuclear matrix 

field in terms of the functional characterization of NM-DNA. 

 

For both “high salt” and “LiS” matrix preparations, without some form of 

stabilization, many matrix-DNA interactions are lost. Somehow, the experiments 

demonstrating loss of matrix-DNA attachments were not considered in the 

majority of attempts to understand the role of NM-DNA in gene expression 

regulation; most of these protocols are reliant upon methods that destabilize 

matrix-DNA interactions in the preparation of non-stabilized “nuclear halos” prior 

to nuclease digestion and NM-DNA isolation (Maya-Mendoza and Aranda-
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Anzaldo 2003, Linnemann et al. 2008, Keaton et al. 2011). Given the 

functionally-derived organizational properties of nuclear bodies, and the dynamic 

matrix-DNA interactions (Misteli 2010, Dundr and Misteli 2010), the question is 

then, how can native DNA-matrix interactions be extracted using a protocol that 

does not preserve structural integrity or matrix-DNA interactions? As we are 

interested in understanding how malignant nuclear disorganization and nuclear 

matrix transcriptional functions are related, we realized how critical it would be to 

ensure that the methods used to isolate matrix-associated DNA would preserve 

the structural integrity of the nuclear matrix and associated nuclear bodies. 

 

As mentioned above, there are two approaches that are commonly used to 

isolate matrix DNA, both of which rely on the intermediate “nuclear halo” 

preparation prior to nuclease digestion. Using the high salt extraction protocol, 

MARs are enriched, which are experimentally defined as transcriptionally 

repressive (Maya-Mendoza and Aranda-Anzaldo 2003, Rivera-Mulia and Aranda-

Anzaldo 2010, Trevilla-García and Aranda-Anzaldo 2011). In contrast, using the 

“LiS” extraction method, SARs are enriched, which are associated with 

transcriptionally-active genes (Heng et al. 2004, Keaton et al. 2011). One study 

has shown that using both methods side-by-side in the same cell line to extract 

MARs and SARs results in the isolation of DNA sequences enriched near 

transcriptionally silent or active genes respectively (Linnemann et al. 2008). The 
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aforementioned studies used either tiling-PCR or hybridization arrays of a subset 

of the genome to measure the positional enrichment of DNA isolated from the 

nuclear matrix; however, we wanted to generate completely unbiased, genome-

wide measurements of matrix-associated DNA positional enrichment. The 

investment of time, energy, and money to perform a genome-wide screen using 

both the high salt and LiS methods in parallel seemed excessive, and the 

intermediate “nuclear halo” step seemed antithetical to our goal of preserving the 

ultrastructural organization of the in situ nuclear matrix. We therefore began 

looking at alternative approaches to isolating DNA associated with the nuclear 

matrix. 

 

Two approaches became immediately attractive to us in terms of their ability to 

preserve nuclear integrity. One is the use of agarose-suspended digestion and 

electroelution-mediated extraction developed by Jackson and Cook (Jackson and 

Cook 1988). The other uses formaldehyde to stabilize matrix-DNA interactions 

prior to nuclease digestion and salt extraction (Nickerson et al. 1997). The 

formaldehyde-stabilized method was more practical in terms of our ability to 

execute this procedure on a large enough scale to collect sufficient material for 

deep-sequencing library preparation, so we used this approach as a starting 

point for the optimization of the methods described above. This method of matrix 

isolation results in the isolation of a fibrogranular network of RNPs that is 
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structurally indistinguishable from the that which is observed in an intact nucleus 

via regressive EDTA staining and electron microscopy (Nickerson et al. 1997). 

This level of structural preservation, combined with reversibly cross-linked 

stabilization, satisfied our requirements for an experimental approach to isolate 

native DNA-matrix interactions. 

 

Roles of RUNX1 and RUNX2 in recruitment of DNA to the nuclear matrix 

 

RUNX proteins have a conserved amino acid sequence in the C-terminal 

domain, the nuclear matrix targeting signal (NMTS), which is required for 

interaction with the nuclear matrix and transcriptional activities (Zeng et al. 1997, 

1998, Zaidi et al. 2001, 2006). The DNA-binding domain of RUNX proteins is 

located in the N-terminal half of the protein and is not required for interaction with 

the nuclear matrix (Zeng et al. 1997, van Wijnen et al. 2004). It is not known 

whether RUNX proteins recruit genomic DNA to the nuclear matrix, however, it 

has been hypothesized that this is a function of RUNX proteins. 

 

Given that RUNX transcriptional activity was observed to be coupled to 

association with the nuclear matrix, and the strong associations we observed 

between actively expressed gene promoters and RUNX1 binding, we expect to 
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see cooperative enrichment of matrix-associated DNA and RUNX1 in the MDA-

MB-231 cells. However, we did not see any relationships between the two 

datasets nor with RUNX2 and NM-DNA (data not shown), which would lead us to 

believe that RUNX proteins are not involved in the recruitment of DNA to the 

nuclear matrix in MDA-MB-231 cells.  

 

The MDA-MB-231 cells are perhaps not the best cell line to try to understand 

whether RUNX proteins recruit DNA to the nuclear matrix, as the normal 

associations between transcriptional activity and matrix-association are not well 

represented in the malignant MDA-MB-231 cells. This may, in part, explain why 

RUNX functions in breast cancer cells are so different from what is observed in 

hematopoietic and osteoblastic cells. It would be interesting to execute a similar 

study in the context of a blood or bone cell line to understand how related NM-

DNA and RUNX binding are, as a normal organizational context may be more 

representative of RUNX-matrix functions. 

 

Computational tools for analysis of nuclear organization 

 

In this dissertation, we describe the development and application of FoxPrimer 

and PeaksToGenes, which are used to interrogate experimentally derived 
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nuclear organization data. While the specific applications of these tools may 

differ, FoxPrimer and PeaksToGenes are designed to provide results to the user 

in a rapid yet thorough manner and are open source software packages. We 

suggest that the shared design philosophy of FoxPrimer and PeaksToGenes will 

allow groups utilizing next-generation type sequencing approaches a means to 

address some of their specific questions using free, well-documented software. 
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Appendices 
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CHAPTER A1 HSA-MIR-30C PROMOTES THE INVASIVE PHENOTYPE OF 

MDA-MB-231 CELLS 
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Introduction 

 

Breast cancer is the most commonly diagnosed disease among women.  

Aggressive breast cancers have high potential to become metastatic, a transition 

that makes clinical intervention very difficult. Therefore, understanding the 

molecular mechanisms that have the potential to facilitate a more invasive or 

metastatic state are critical to understand the progression to metastatic breast 

cancer. 

 

A frequent site of breast cancer metastasis is bone. Upon metastasizing to bone, 

breast cancer cells typically participate in what is known as the "vicious cycle" of 

osteolysis. During this process, breast cancer cells push the normally 

homeostatic signals of bone resorption and bone mineralization towards a more 

resorptive state, thereby causing osteolysis, bone density loss and ultimately 

pathological fractures (Guise et al. 2006). At a molecular level, many of the 

genes upregulated in bone metastatic breast cancer cells are typically involved in 

the process of bone differentiation, such as MMP9, MMP13, VEGF, and PTHLH 

(Pratap et al. 2006). High expression of these genes is clinically associated with 

poor outcome and prognosis for patients (Kingsley et al. 2007). 

 

Runx2 is a transcription factor required for the development of ossified bone 

(Komori et al. 1997). In breast cancer cell lines, Runx2 transcriptionally regulates 
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the expression of many genes known to be important for breast cancer 

metastasis and bone osteolysis and is involved in promoting the osteolytic 

properties of MDA-MB-231 cells as observed in intra-tibial orthotopic injection 

studies (Barnes et al. 2004, Javed et al. 2005, Pratap et al. 2008). 

 

During osteoblast differentiation, a number of small non-coding RNAs, 

microRNAs (including mir30c), have been characterized to target the 3'-UTR of 

the Runx2 transcript as a mechanism of lineage specification. When osteoblast 

progenitor cells commit to the osteoblast lineage, the levels of these Runx2-

targeting miRNAs are significantly reduced, thereby facilitating the developmental 

requirement for increased Runx2 levels as a function of osteoblast differentiation 

(Zhang et al. 2011). 

 

One of the many challenges in cancer is discovering intervention therapies that 

will more specifically target the cancer cells rather than normal cells. As has been 

previously described, mir30c is highly capable to target the Runx2 mRNA and 

reduce Runx2 protein levels (Zhang et al. 2011). We investigated the extent to 

which mir30c down-regulation of RUNX2 protein could reduce the invasive 

phenotype of MDA-MB-231 breast cancer cells. We observed that while mir30c 

does reduce the levels of RUNX2 protein, mir30c significantly increases the 

invasiveness of MDA-MB-231 cells. We used a qPCR screen of in silico 

predicted targets of mir30c whose ontological associations are related to the 
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invasive phenotype. We identify NOV as the target of mir30c, which is likely 

playing a role in the increased invasiveness of MDA-MB-231 cells. The functional 

consequences of altering NOV through siRNA are consistent with the predicted 

function of repressing the invasiveness of MDA-MB-231 cells. These studies 

demonstrate the potential for miRNAs to have quite undesirable effects in vivo 

due to the multiplicity of potential targets and affected pathways. 

 

 

 

Results 

 

hsa-mir-30c promotes the invasiveness of MDA-MB-231 breast cancer cells 

 

In vitro, MCF-7 breast cancer cells are much less invasive than MDA-MB-231 

cells (Morini et al. 2000). We observed statistically significant higher levels of 

endogenous hsa-mir-30c in the more invasive breast cancer cell line MDA-MB-

231 compared to the MCF7 cell line (Figure A.1 A). 

 

In osteoblasts, mmu-mir-30c post-transcriptionally regulates the levels of Runx2 

(Zhang et al. 2011). In the MDA-MB-231 cell line, trans-expression of hsa-mir-

30c or an anti-mir sequence designed to inhibit the function of endogenous hsa-
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mir-30c causes the expected changes in the RUNX2 proteins levels (Figure A.1 

B). Therefore, as in osteoblasts (Zhang et al. 2011), RUNX2 is regulated by hsa-

mir-30c.  

 

To assess the effect of hsa-mir-30c or the anti-mir on the invasive potential of 

MDA-MB-231 cells, we transfected the cells for 48 hours and then loaded the 

cells into transwell culture plates with or without a layer of MatriGel. Cells were 

placed in the top of the transwell, while conditioned osteoblast media was placed 

in the bottom well as a chemoattractant for the cells to mimic a bone 

environment. After the cells were permitted to either migrate or invade towards 

the osteoblastic medium, cells were fixed and stained with HEMA3 (Figure A.1 

C). We observe that hsa-mir-30c expression levels are linked with the invasive 

potential of MDA-MB-231 breast cancer cells. We observe that the anti-mir 

control affects the endogenous levels of RUNX2, so the anti-mir reagents were 

not used for the rest of this study as we were concerned about off-target effects. 
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Figure A.1 hsa-mir-30c promotes the invasiveness of MDA-MB-231 cells and 

regulates RUNX2 levels 
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Figure A.1 hsa-mir-30c promotes the invasiveness of MDA-MB-231 cells and 

regulates RUNX2 levels 

 

(A) qPCR for hsa-mir-30c in MCF-7 and MDA-MB-231 cells, normalized to U6 

RNA. Mean and SEM (error bars) for two technical replicates of two biological 

replicates. * = Student’s t-test p-value < 0.05. (B) Representative Western blots 

of lysates of MDA-MB-231 following 48 hours of transient transfection of non-

targeting miRNA (NT), hsa-mir-30c (30c), non-targeting anti-miRNA (A-NT) and 

anti-hsa-mir-30c (A-30c). Top blot: RUNX2, bottom blot: α-Tubulin.(C) 

Representative Matrigel invasion assay in MDA-MB-231 cells following 48 hours 

of transient transfection of non-targeting miRNA (NT), hsa-mir-30c (30c) and anti-

hsa-mir-30c (A-30c), cells are stained with HEMA3.  
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The canonical 5-prime end of hsa-mir-30c, not the "star" or 3-prime end of hsa-

mir-30c, promotes the invasiveness of MDA-MB-231 cells 

 

During normal miRNA biogenesis, the stem-loop structure that is termed the pre-

miRNA is cleaved and only one end of the longer pre-miRNA is integrated into 

the Dicer complex (Kim 2005). In the case of hsa-mir-30c, the 5'-end of the stem-

loop is most commonly detected as the mature form of the miRNA (Griffiths-

Jones et al. 2006). When the "star" strand or in the case of hsa-mir-30c the 3'-

end of the stem-loop is utilized, a unique set of mRNAs can be targeted by the 

Dicer complex. The phenomenon of alternate utilization of the non-canonical part 

of the pre-miRNA has been observed in leukemic cells (Kuchenbauer et al. 

2011), and we investigated the extent to which this kind of transformation may be 

occurring in MDA-MB-231 metastatic breast cancer cells. 

 

To test whether the hsa-mir-30c-mediated effect on the invasiveness of MDA-

MB-231 cells was due to the canonical miRNA strand, we transfected either hsa-

mir-30c-5p (canonical) or hsa-mir-30c-3p (star) to evaluate potential changes in 

the invasive properties of MDA-MB-231 cells. While hsa-mir-30c-3p does inhibit 

the migration of MDA-MB-231 cells, it does not affect the invasiveness (Figure 

A.2 A-C]. Further, using primers specifically designed to detect either the 5'- or 

3'-form of hsa-mir-30c, we observe that the ratio of the endogenous levels of 5'-

form are several hundred fold higher than the 3'-form in both MDA-MB-231 and 
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MCF-7 breast cancer cells (Figure A.2 D). These results suggest that the 

phenomenon of “star”-strand miRNA activity does not have a major contribution 

to the invasiveness of MDA-MB-231 cells. 
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Figure A.2 The 5'-end of the hsa-mir-30c hairpin is the predominant mature 

miRNA detected in and promoting the invasiveness of MDA-MB-231 cells 
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Figure A.2 The 5'-end of the hsa-mir-30c hairpin is the predominant mature 

miRNA detected in and promoting the invasiveness of MDA-MB-231 cells 

 

(A) Representative images Matrigel invasion assay following 48 hours of 

transient transfection of siRNA of cells stained with HEMA3. (B) Percent of cells 

that migrated through the control inserts, defined by count of stained cells on the 

bottom of the inserts as a percent of cells loaded into inserts. Mean and SEM 

(error bars) for four technical replicates each of two biological replicates. * = p-

value from one-way ANOVA followed by paired t-tests < 0.05. (C) Percent of cells 

that invaded through the Matrigel inserts, normalized to the number of cells that 

migrated through the control inserts. Mean with SEM (error bars) for four 

technical replicates each of two biological replicates. ** = p-value from ANOVA 

with paired follow-up t-tests < 0.01.  (A-C) NT = non-targeting miRNA, 30c = hsa-

mir-30c, and 30c* = hsa-mir-30c-3p. (D) qPCR detection of endogenous hsa-mir-

30c (hsa-mir-30c-5p) and hsa-mir-30c* (hsa-mir-30c-3p) in MCF-7 and MDA-MB-

231 cells. Mean with SEM (error bars) for two technical replicates each of two 

biological replicates normalized to U6 snRNA using the delta-Ct method. * = p-

value from Student’s t-test comparing hsa-mir-30c (hsa-mir-30c-5p) and hsa-mir-

30c* (hsa-mir-30c-3p) in MDA-MB-231 cells < 0.05.  
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Screening via ontological terms and qPCR reveals Nov to be a target of hsa-mir-

30c in MDA-MB-231 breast cancer cells 

 

To identify potential targets of hsa-mir-30c participating in the invasive phenotype 

associated with hsa-mir-30c expression in MDA-MB-231 cells, we performed a 

screen in three steps: 1) generate a list of potential targets based on seed 

sequence targeting potential using the top 300 human mRNA targets from 

microRNA.org; 2) Filter the list based on known functions and ontological terms 

for mRNAs that code for proteins associated with invasion, adhesion, or 

migration, as well as mRNAs that code for transcription factors (Figure A.3 A); 3) 

qPCR screen for functional targets measuring the relative mRNA levels in MDA-

MB-231 cells after being transfected with either non-targeting miRNA or hsa-mir-

30c. We observe NOV to be the most downregulated upon transfection of hsa-

mir-30c (Figure A.3 B). Furthermore, the protein levels of NOV were reduced by 

hsa-mir-30c transfection (Figure A.3 C). The observation that NOV mRNA is 

reduced upon transfection of hsa-mir-30c is highly reproducible as observed in 

multiple biological replicates (Figure A.3 D). Aligning the sequence of hsa-mir-

30c with the sequence of the NOV 3’-UTR, mirSVR predicts three potential 

binding sites for hsa-mir-30c (Figure A.3 E). Further, hsa-mir-30c is unique 

among the mir-30 family members, as a unique site is predicted for hsa-mir-30c 

that is not shared by the other family members (Figure A.4). Based on 

ontological terms associated with Nov, and the reduction of NOV protein levels in 
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response to hsa-mir-30c levels, we hypothesize that NOV may be involved in the 

regulation of MDA-MB-231 invasiveness. 

  



298 
 

Figure A.3 Predictive, ontological, and qPCR screen for hsa-mir-30c reveals 

NOV as a target of hsa-mir-30c 
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Figure A.3 Predictive, ontological, and qPCR screen for hsa-mir-30c reveals 

NOV as a target of hsa-mir-30c 

 

(A) Summary table of genes chosen for qPCR screen based on: mirSVR score 

<http://www.microrna.org> (Betel et al. 2008), NCBI GeneRIF, and ontological 

terms. (B) The log2 of the fold change in mean with SEM detection levels (hsa-

mir-30c / non-targeting miRNA) is plotted for each set of primers for each 

transcript normalized to HPRT using delta-delta Ct method. (C) Representative 

Western blots for lysates of MDA-MB-231 cells following 48 hours of transient 

transfection with non-targeting miRNA (NT) or hsa-mir-30c (30c). Top blot: NOV, 

bottom blot: Lamin C. (D) qPCR for NOV levels for two technical replicates each 

for three biological replicates following 48 hour transient transfections of non-

targeting miRNA (NT) and hsa-mir-30c (30c) normalized to HPRT using delta-

delta Ct method. Mean with SEM. ** = p-value from Student’s t-test < 0.01. (E) 

Alignment of hsa-mir-30c (top sequences) with the 3’-UTR of NOV (bottom 

sequences) with the 5’-positions within the NOV 3’-UTR being relative to the 5’-

start of the 3’-UTR for each of the three predicted targeting sites. Target scores 

are provided by mirSVR. Uppercase letters linked with a “|” character indicates a 

perfect match, while uppercase letters linked with a “:” character indicates a 

wobble pair.  

http://www.microrna.org/
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Figure A.4 Alignment of mir-30 family members on the NOV 3’-UTR 
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Figure A.4 Alignment of mir-30 family members on the NOV 3’-UTR 

 

For each of the predicted sites of targeting by hsa-mir-30c on the NOV 3’-UTR 

(A-C), if an alignment is possible, the alignment of each mir-30 member is 

presented. Alignment of hsa-mir-30 family members (top sequences) with the 3’-

UTR of NOV (bottom sequences); the 5’-positions within the NOV 3’-UTR are 

relative to the 5’-start of the 3’-UTR for each of the three predicted targeting sites. 

Target scores are provided by mirSVR. Uppercase letters linked with a “|” 

character indicates a perfect match, while uppercase letters linked with a “:” 

indicate a wobble pair. 
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hsa-mir-30c regulation of NOV and invasion is independent of RUNX2 

 

To understand whether there is cross-talk between RUNX2/hsa-mir-30c/NOV, we 

modulated RUNX2 levels in MDA-MB-231 cells using lentivirus-mediated stable 

cell lines expressing either empty vector, wild-type Mus musculus Runx2 or a 

subnuclear-targeting-deficient mutant form of Mus musculus Runx2, which 

inhibits the invasiveness of MDA-MB-231(Barnes et al. 2004, Javed et al. 2005). 

In overexpression conditions, we observe that neither Runx2 nor the RY-mutant 

form of Runx2 altered the protein levels of Nov (Figure A.5 A) or the levels of 

hsa-mir-30c (Figure A.5 B). Further, we tested whether a reduction in the 

endogenous levels of RUNX2 in MDA-MB-231 cells via siRNA, which reduces 

invasiveness of MDA-MB-231 cells (Pratap et al. 2008), affects the levels of NOV 

protein or hsa-mir-30c. Here, we observe that Nov protein levels are not affected 

by RUNX2 knockdown (Figure A.5 C), and that hsa-mir-30c levels, while slightly 

reduced, are not statistically significantly changed by RUNX2 siRNA (Figure A.5 

D). These results suggest that hsa-mir-30c/NOV-mediated regulation of the 

invasiveness of MDA-MB-231 cells is occurring through a RUNX2-independent 

pathway. 
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Figure A.5 RUNX2 does not significantly regulate the expression levels of either 

hsa-mir-30c or NOV 
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Figure A.5 RUNX2 does not significantly regulate the expression levels of either 

hsa-mir-30c or NOV 

 

(A & B) Detection of NOV and hsa-mir-30c levels in MDA-MB-231 stably 

expressing empty vector (EV), wild-type Runx2 (WT), or R398A/Y428A mutant 

Runx2 (RY). (A) Representative Western blots of MDA-MB-231 stable cell 

lysates. Top blot: Runx2 (top band: transgenic murine Runx2, lower band: 

endogenous human RUNX2). Middle blot: NOV. Lower blot: Lamin C. B) qPCR 

detection for hsa-mir-30c in consecutive (N=2) passages of stable MDA-MB-231 

cells normalized to U6 snRNA. (C & D) Detection of Nov and hsa-mir-30c 

following 48 hours of transient transfection of non-targeting siRNA (NS) and 

RUNX2 siRNA (siR2). (C) Representative Western blots of MDA-MB-231 lysates 

following 48 hours of siRNA transfection. Vertical dashed line indicates that the 

image of the blot was cut for figure. Top blot: RUNX2. Middle blot: NOV. Lower 

Blot: α-Tubulin. (D) qPCR detection of hsa-mir-30c levels of two technical 

replicates each of four biological replicates following 48 hour transfection of 

siRNA. p-value from Student’s t-test: approaching statistical significance. B,D) 

Bars equal mean, error bars equal SEM. 
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NOV inhibits the invasiveness of MDA-MB-231 cells 

 

To determine the involvement of NOV in the invasive phenotype of MDA-MB-231 

cells, we used siRNA specific for Nov to knock down the protein (Figure A.6 A) 

and observed the effects of reduced NOV on MDA-MB-231 invasiveness. When 

NOV protein is significantly reduced, similar to hsa-mir-30c overexpression, the 

invasiveness of MDA-MB-231 cells is significantly increased (Figure A.6 B-D). 

These results suggest that the targeting of NOV by hsa-mir-30c is a contributing 

factor in the invasive phenotype imparted to the MDA-MB-231 cells by hsa-mir-

30c. 
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Figure A.6 NOV inhibits the invasiveness of MDA-MB-231 cells 
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Figure A.6 NOV inhibits the invasiveness of MDA-MB-231 cells. 

 

(A) Representative Western blot for NOV (upper blot) and tubulin (lower blot) 48 

hours post-transfection with siRNA. Vertical dashed line indicates where image of 

gel was cut for figure. (B) Representative image of HEMA-3 stained cells, which 

migrated through either the control inserts (upper row) or Matrigel inserts (lower 

row) after 48 hours of transfection with siRNA. (C) Quantification of 4 technical 

replicates of 2 biological replicates measuring the percent of cells that migrated 

through the control inserts (100% being the number of cells loaded into the 

inserts). (D) Quantification of 4 technical replicates of 2 biological replicates 

measuring the percent of cells that invaded through the Matrigel normalized by 

the number of cells migrated through the control inserts. (A-D) NS = Non-

silencing siRNA, siNOV = NOV siRNA. (C & D) Bars equal mean, error bars 

equal SEM. ** = Student’s t-test p-value < 0.01. 
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Discussion 

 

Here we identify a novel pathway by which hsa-mir-30c promotes the 

invasiveness of the MDA-MB-231 cell line through targeting of NOV. 

Concomitant reductions in the levels of both NOV and RUNX2 upon increased 

levels of hsa-mir-30c causes increased invasiveness of the MDA-MB-231 cells. 

Demonstrating the specificity of NOV’s involvement in the invasive phenotype 

observed, transfection of siRNA targeting NOV results in significant increases in 

the invasiveness of MDA-MB-231 cells. 

 

While it is clear that RUNX2 plays a major role in promoting the osteomimetic 

and osteolytic properties of MDA-MB-231 cells (Barnes et al. 2004, Javed et al. 

2005, Pratap et al. 2008), it remains unclear how RUNX2 levels are regulated at 

both the transcriptional and post-transcriptional levels in breast cancer cells. mir-

30c targets Runx2 in osteoblasts, and during osteoblast differentiation hsa-mir-

30c levels are reduced in concert with increased levels of Runx2, a process that 

is required for proper mineralization of osteoblasts (Zhang et al. 2011).  

 

The mir-30 family shares a conserved seed sequence. However, our in silico 

research suggests that seed sequence differences may give rise to selectivity of 

targeting among mir-30 members. This is particularly interesting taking into 
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account a recent study showing that hsa-mir-30a targets the 3’-UTR of VIM, 

causing reduced VIM protein levels and invasiveness of MDA-MB-231 cells 

(Cheng et al. 2012). While levels of VIM and hsa-mir-30a were outside the scope 

of this study, we do observe that hsa-mir-30a does not appear to be a strong in 

silico-predicted target of NOV, whereas hsa-mir-30c both in silico and in vitro 

appears likely to target NOV. We did not examine the extent to which hsa-mir-

30c may be targeting VIM in our system; however, the functional consequence of 

increased invasiveness of MDA-MB-231 cells following the reduction of NOV 

through either hsa-mir-30c or NOV-siRNA suggests that the invasiveness of 

MDA-MB-231 cells is quite sensitive to NOV levels. It is also quite interesting that 

these mir-30 miRNAs appear on many chromosomes rather than co-regulated in 

a cluster, and are involved in the regulation of a myriad of pathways such as 

tumor suppression (p53) (Li et al. 2010), apoptosis (BCL) (Jia et al. 2011), and 

epithelial to mesenchymal transition (VIM) (Cheng et al. 2012). Individual 

members of the mir-30 family have been implicated in both tumor suppression 

and oncogenesis; it is therefore difficult to define the family as a “tumor 

suppressive” or “oncogenic”. This ambiguity makes studying the functions of the 

mir30 family members on a case-by-case basis critical for understanding the 

basis of post-transcriptional molecular mechanisms of disease. The relative 

levels of the mir-30 family members and their temporal expression may play a 

critical role in disease progression. 
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NOV appears to play a context-sensitive role in oncogenesis/tumor suppression 

(Brigstock 2003). In several cancers that develop from mesenchymal tissues, 

NOV has been shown to promote tumor growth and metastasis (Manara et al. 

2002, Benini et al. 2005, Vallacchi et al. 2008). By contrast, in the context of 

brain cancer NOV appears to inhibit tumor progression (Fu et al. 2004, Sin et al. 

2008). While it is unclear what the function of NOV is when looking at breast 

cancer cell line data (Ghayad et al. 2009, Sin et al. 2009), NOV expression in 

human tissue samples of breast cancer shows a clear negative association 

between NOV expression and late-stage and metastatic disease (Jiang et al. 

2004). These histological results strongly suggest that in breast cancer, a 

disease that develops from epithelial tissue, NOV functions to inhibit disease 

progression.  We demonstrate that a major function of NOV is inhibition of the 

invasive phenotype of a metastatic breast cancer cell line (MDA-MB-231), similar 

to the associations of NOV expression with disease progression and metastasis 

in patients. 

 

Materials and Methods 
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RNA isolation 

RNA was isolated using Qiagen miRNAeasy Mini Kit (217004) following the 

manufacturer's recommended protocol with optional in-column DNAse I digestion 

of genomic DNA (Qiagen RNase-Free DNase Set 79254). 

 

miRNA amplification and detection 

Complimentary miRNA-specific cDNA was amplified and detected using Applied 

Biosystems TaqMan MicroRNA Assays for hsa-mir-30c (#4427975) hsa-mir-30c-

2* (#4427975) and RNU6B (#4427975). 

 

cDNA amplification and detection  

cDNA was amplified from equal quantities of total cellular RNA for each 

treatment or cell line. cDNA was amplified using the Invitrogen SuperScript First-

Strand Synthesis System for RT-PCR (#11904-018) according to the 

manufacturer's protocol. Reactions were volumetrically diluted, and reaction 

products were used as templates for Real Time qPCR using Bio-Rad iQ SYBR 

Green Supermix (#170-8880). 
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cDNA qPCR primers 

Real Time qPCR primers were designed using FoxPrimer (www.foxprimer.org) 

and validated for efficiency by standard curve using cDNA amplified from 

untreated MDA-MB-231 cells. 

 

 

Protein isolation and Western blotting 

Cells grown on tissue culture plates were placed directly on ice, and washed 

twice with PBS supplemented with Roche cOmplete, EDTA-free Protease 

Inhibitor Cocktail (#11873580001) and 25μM MG132 (Calbiochem (EMD 

Millipore) CAS 133407-82-6). Cells were scraped into screw-top microcentrifuge 

tubes, gently spun down to pellet cells and excess PBS was aspirated and 

discarded. Cells were snap-frozen in liquid nitrogen. Protein lysates were 

prepared by the addition of RIPA buffer (50mM Tris pH 7.4, 150mM NaCl, 2mM 

EDTA, 1% v/v NP-40, 0.1% w/v SDS, 1x Roche cOmplete, EDTA-free Protease 

Inhibitor Cocktail and 25μM MG132) and placing tubes on a 100°C heat block for 

10 minutes. Protein lysates were quantified using Pierce BCA Protein Assay Kit 

(#23225) according to manufacturer's instructions. 50μg protein per sample was 

loaded onto an SDS-PAGE gel. SDS-PAGE was performed as described (Jitesh 

Cancer Research Paper). Briefly, lysates were run through an 8.5% acrylamide 

http://www.foxprimer.org/
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gel, and then transferred to a PVDF Transfer Membrane (Thermo Scientific 

#88518). 

Membranes were blocked with 5% (w/v) milk (BioRad #170-6404XTU) in PBS 

and then subjected to immunodetection using the following primary antibodies 

and dilution factors in 1% (w/v) milk in PBS: Nov (Santa Cruz Biotechnology H-71 

sc-50304 1:1000), Lamin A/C (Santa Cruz Biotechnology N-18 sc-6215 1:5000), 

α-Tubulin (Santa Cruz Biotechnology H-300 sc-5546 1:2000), Runx2 (Lab 

hybridoma clone 8G5 1:1000). Secondary antibodies used were from Santa Cruz 

Biotechnology and were diluted 1:5000 in 1% (w/v) milk in PBS: donkey anti-goat 

IgG-HRP (sc-2020), goat anti-mouse IgG-HRP (sc-2005), and goat anti-rabbit 

IgG-HRP (sc-2004). After incubation with primary and secondary antibodies, the 

membranes were washed three times for thirty minutes each with 0.1% (v/v) 

Tween-20 in PBS. HRP reaction was achieved by one minute incubation with 

Perkin Elmer Western Lightning ECL (NEL102001EA). Membranes were 

exposed to Kodak BioMax Light File for Chemiluminescent Imaging (#868-9358) 

in serial exposure times to empirically determine the exposure time at which 

signal is most linear. 

 

Matrigel invasion and migration assays 

Proliferating MDA-MB-231 cells were trypsinized and counted using Cellometer 

Auto T4 Cell Counter. A cell suspension of 100,000 cells/mL in growth medium 
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was prepared and 100μL of the suspension was loaded into each BD Matrigel 

24-well 8.0 µm PET Membrane Invasion Chamber (#354483). Matrigel coated 

plates, and control insert plates had 500μL NIH3T3-conditioned medium loaded 

in the bottom as the chemoattractant. Plates and chemoattractant medium were 

incubated at 37°C for 3-4 hours prior to loading MDA-MB-231 cells. Cells were 

incubated for 16 hours at 37°C in 5% CO2 and then fixed and stained using the 

Fisher HealthCare PROTOCOL Hema 3 Manual Staining System (#22-122-911) 

according to the manufacturer's instructions. Cotton swabs were used to 

eliminate cells which did not migrate/invade as well as Matrigel. Cells were 

counted using an inverted light microscope. 

 

Transient transfection 

Proliferating MDA-MB-231 cells were transfected with 50nM of siRNA/miRNA 

using Oligofectamine (Invitrogen #12252-011) accoding to the Oligofectamine 

protocol. 

 

siRNAs 

Dharmacon SMARTpool: ON-TARGETplus RUNX2 siRNA (L-012665-00-0005) 

Dharmacon SMARTpool: ON-TARGETplus NOV siRNA (L-010527-00-0005) 

Dharmacon ON-TARGETplus Non-targeting Pool (D-001810-10-05) 



315 
 

 

miRNAs and anti-miRNAs 

Dharmacon miRIDIAN microRNA hsa-mir-30c-1 mimic (C-300542-03-0005) 

Dharmacon miRIDIAN microRNA hsa-mir-30c-1* mimic (C-301199-01-0005) 

Dharmacon miRIDIAN microRNA hsa-mir-30c-1 haripin inhibitor (IH-300542-07-

0005) 

Dharmacon miRIDIAN microRNA Mimic Negative Control #1 (CN-001000-01-05) 

Dharmacon miRIDIAN microRNA Hairpin Inhibitor Negative Control #1 (IN-

001005-01-05) 

 

Screen for hsa-mir-30c targets 

The top 300 targets of hsa-mir-30c based on mirSVR were downloaded from 

microrna.org in January, 2011. Gene symbols were used to access gene 

ontology (GO) terms from DAVID (http://david.abcc.ncifcrf.gov/) and gene 

reference into function (GeneRIF) from NCBI 

(http://www.ncbi.nlm.nih.gov/gene/about-generif). Genes whose GO terms or 

GeneRIFs were associated with invasion, migration, extracellular matrix, or 

transcription factors were selected and qPCR primers were designed. After 48 

hours of transfection, RNA was isolated, cDNA was amplified and Real Time 

http://www.microrna.org/microrna/home.do
http://david.abcc.ncifcrf.gov/
http://www.ncbi.nlm.nih.gov/gene/about-generif


316 
 

qPCR was carried out to detect the relative levels of mRNAs following 

transfection with hsa-mir-30c. 

 

Cell lines 

Cell lines were grown and maintained as previously described (Jitesh Cancer 

Research paper). 

 

Stable cell lines 

Constructs and stable cell lines were generated as previously described (Pande 

et al. 2013). 
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Global genomic analysis of AML1-ETO and transcriptional co-regulators in 

t(8;21) leukemia 

Trombly, D.J., Whitfield, T.W., Padmanabahn, S., Dobson, J.R., Gordon, J.A., 

Lian, J.B., van Wijnen, A.J., Stein, J.L., and Stein, G.S.* 

 

Abstract 

 

The acute myeloid leukemia-related t(8;21) fusion protein AML1-ETO impairs the 

function of AML1 and other myeloid transcription factors, which results in 

differentiation arrest and increased self-renewal properties. The oncogenic 

phenotype caused by AML1-ETO has been primarily studied at single gene 

resolution, therefore we utilized chromatin immunoprecipitation-sequencing 

(ChIP-seq) to understand the global contributions of AML1-ETO and associated 

co-regulatory proteins to the leukemic properties of the t(8;21) model cell line 

Kasumi-1. We find that both AML1 and AML1-ETO are more associated with the 

nuclear co-repressor protein (N-CoR) as compared to the histone 

acetyltransferase p300, which indicates a bias towards transcriptional repression 

as a mechanism for self-renewal and differentiation arrest. Terms identified by 

independent gene ontology analyses show significant overlap between the 

AML1, AML1-ETO, and N-CoR, datasets but not for p300, further suggesting that 

these proteins function cooperatively. To understand the alternative functions of 
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AML1-ETO, de novo motif discovery was used to identify potential co-regulatory 

DNA-binding proteins. Genomic regions co-occupied by AML1-ETO and N-CoR 

in Kasumi-1 cells are enriched in PU.1, RUNX1 and CEBPβ motifs indicating that 

PU.1 may be important for the repressive functions of AML1-ETO and N-CoR. In 

summary, our study identified a RUNX1/AML1-ETO/N-CoR gene regulatory 

network that can be used to interrogate the molecular mechanisms of 

differentiation arrest in t(8;21) leukemia. 
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Genomic occupancy of RUNX2 with global expression profiling identifies 

novel mechanisms regulating osteoblastogenesis 

Wu, H., Whitfield, T.W., Gordon, J.A., Dobson, J.R., Moore, J., van Wijnen, A.J., 

Stein, J.L., Lian, J.B., and Stein, G.S.* 

 

Abstract 

 

Proliferation and differentiation of osteoblasts are highly regulated during bone 

development and formation, as well as normal turnover and repair in the adult 

skeleton. Runx2, the master regulator of osteoblastogenesis, directs a 

transcription program necessary for bone formation through both transcriptional 

and epigenetic mechanisms. While individual Runx2 gene targets have been 

identified, insight into the broad spectrum of Runx2 functions is obtainable by 

global analysis of Runx2 binding. Here, we performed genome-wide 

characterization of Runx2 occupancy at three major stages of osteoblast 

differentiation: proliferation, matrix deposition and mineralization. Novel findings 

include: 1) distinct patterns of Runx2 distribution in genomic regions including 

upstream, proximal promoters, introns, and exons, and intergenic regions; 2) 

greater than 80% of all Runx2 binding occurs in non-proximal promoter regions 

indicating that Runx2 function extends beyond classical transcriptional control; 3) 

Runx2 binding profiles during osteoblast differentiation that result in functional 
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changes in gene expression; and 4) novel biological targets and validated 

functional cis-elements regulated by Runx2.  These data comprise a 

comprehensive map of Runx2 interactions with chromatin revealing gene 

regulatory roles, as well as potential involvement in other nuclear functions and 

chromatin organization in developing osteoblast. 
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Disruption of the RUNX2 response to SMAD signaling affects bone 

turnover in adult mice 

Lou, Y., Dobson, J.R., Wu, H., Frederick, D., Hussain, S., van Wijnen, A.J., 

Stein, G.S., Lian, J.B., Stein, J.L.* 

 

Abstract 

 

Bone morphogenetic protein (BMP) and transforming growth factor-β (TGFβ) are 

required for bone formation and bone turnover in vivo. Previous studies have 

shown that three critical residues (HTY426-428) of the transcription factor 

RUNX2 are required for its interaction with SMAD proteins. Mutation of HTY426-

428 to AAA426-428 can abolish the activity of RUNX2 to execute and complete 

BMP2/ TGFβ signaling for osteoblasogenesis in vitro. Here, we describe a 

mouse model with this triple amino acid mutation inserted into the endogenous 

RUNX2 locus to test the consequences of disruption of a Runx2-Smad 

transcriptional complex in vivo. The RUNX2HTY426-428AAA mice have grossly 

normal skeleton at the birth. Histological and µCT imaging analysis of 

RUNX2HTY426-428AAA mice beyond three months of age revealed similar bone 

lengths but extended lengths of trabecular area of tibiae and femurs (P<0.01) as 

compared to wild-type mice of matched ages. To define pathways affected by the 

HTY mutation that may be causing the observed trabecular phenotype, genome-
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wide transcriptome analysis was performed. Proliferating primary osteoblasts 

isolated from newborn RUNX2HTY426-428AAA mice or wild-type mice were 

cultured with or without BMP2 treatment and gene expression was measured 

using Affymetrix GeneChip Mouse Genome 2.0 arrays. The analyzed result has 

revealed that disruption of Runx2-Smad interaction can alter 860 genes’ 

response to the BMP2 signaling pathway. Ontological terms associated with 

these genes were examined to identify biological themes associated with each 

group of genes. This analysis revealed an increase in proliferation-related and 

bone-related genes combined with reduced expression of genes involved in 

adipocyte and chondrocyte differentiation. Thus, coordinated changes in the 

expression of these genes can cause a cell autonomous defect. By ex vivo and 

in vivo studies, we have also found that the RUNX2HTY426-428AAA mice 

exhibited a slightly enhanced osteogenesis differentiation of calvarial osteoblast 

and bone marrow stromal cells (BMSCs), an inhibition of osteoclast and 

adipocyte lineage differentiation of BMSCs, and accelerated bone fracture-

healing process. These observations were mirrored in our analysis of 

proliferating primary osteoblasts. These findings indicate that the bone resorption 

is compromised by the Runx2HTY mutation, while bone formation is slightly 

increased in RUNX2HTY426-428AAA mice, which caused increased trabecular 

bone in our RUNX2HTY426-428AAA knock-in mice. Taken together, our findings 

suggest that a RUNX2-SMAD functional complex may be dispensable for normal 
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skeletal development, but is required for the balance between bone formation 

and bone resorption in vivo. 
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Regulation of breast cancer cell proliferation and metabolism by SWI/SNF 

chromatin remodeling enzyme ATPases 

Wu, Q., Madany, P., Akech, J., Dobson, J.R., Douthwright, S., Underwood, J.M., 

Colby, J.L., van Wijnen, A.J., Stein, J.L., Chiosea, S., Lian, J.B., Stein, G.S., 

Imbalzano, A.N., Nickerson, J.A.* 

 

Abstract 

 

The mammalian SWI/SNF complexes mediate ATP-dependent chromatin 

remodeling that functions as a master regulator of gene expression in a broad 

range of biological function. Dysregulation of this process has been shown to 

play an important role in oncogenic transformation. Human SWI/SNF consists of 

at least nine subunits, including one of two mutual exclusive ATPases hBRM 

(human Brahma) and BRG1 (Brahma-Related Gene 1). Several subunits of this 

complex, SNF5, BAF57 and BAF180, have been documented as tumor 

suppressors in human and mice BRG1 is commonly considered as a tumor 

suppressor based on the observations that it is frequently deleted in lung cancer, 

and that ~10% of Brg1 heterozygous mice developed mammary tumors. 

However, there is an increasing body of evidences indicated that BRG1 may 

function differently in melanoma, prostate cancer and glioma. BRG1 and BRM 
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are expressed in nearly all breast cancer cell lines, and their role in breast cancer 

has yet not been fully characterized.  

 

We reported here that BRG1 and BRM expression is up-regulated in primary 

human breast cancers. Knockdown of these enzymes in metastatic human 

breast cancer MDA-MB-231 cells decreased cell proliferation by extending cell 

cycle without cell cycle arrest in a specific phase. Loss of BRG1/BRM had a 

more profound effect on anchorage-independent growth and tumor-initiation 

progenitor population. When injected into mammary fat pad, those knockdown 

cells were unable to or formed much smaller tumors. We link the proliferation 

defect to the observation that BRG1/BRM regulates fatty acid synthesis by 

binding to the promoters of and controlling expression of key metabolic enzymes 

controlling fatty acid synthesis such as ACC and FASN.  An additional 

mechanism of regulation occurs via BRG1/BRM directly interacting with AMPK to 

sequester it from inactivate ACC.  As a consequence, inhibition of BRG1/BRM 

expression sensitized cancer cells to chemotherapeutic agents, suggesting that 

the SWI/SNF ATPases may have potential as a therapeutic target for malignant 

breast cancer. 
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Runx2 transcriptional activation of Indian Hedgehog and a downstream 

bone metastatic pathway in breast cancer cells. 

Pratap, J., Wixted, J.J., Gaur, T., Zaidi, S.K., Dobson, J.R., Gokul, K., Hussain, 

S., van Wijnen AJ., Stein, J.L., Stein, G.S., Lian, J.B. Cancer Res. 2008 October; 

68(19): 7795. 

 

Abstract 

 

Runx2, required for bone formation, is ectopically expressed in breast cancer 

cells. To address the mechanism by which Runx2 contributes to the osteolytic 

disease induced by MDA-MB-231 cells, we investigated the effect of Runx2 on 

key components of the "vicious cycle" of transforming growth factor beta 

(TGFbeta)-mediated tumor growth and osteolysis. We find that Runx2 directly 

up-regulates Indian Hedgehog (IHH) and colocalizes with Gli2, a Hedgehog 

signaling molecule. These events further activate parathyroid hormone-related 

protein (PTHrP). Furthermore, Runx2 directly regulates the TGFbeta-induced 

PTHrP levels. A subnuclear targeting deficient mutant Runx2, which disrupts 

TGFbeta-induced Runx2-Smad interactions, failed to induce IHH and 

downstream events. In addition, Runx2 knockdown in MDA-MB-231 inhibited IHH 

and PTHrP expression in the presence of TGFbeta. In vivo blockade of the 

Runx2-IHH pathway in MDA-MB-231 cells by Runx2 short hairpin RNA inhibition 
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prevented the osteolytic disease. Thus, our studies define a novel role of Runx2 

in up-regulating the vicious cycle of metastatic bone disease, in addition to 

Runx2 regulation of genes related to progression of tumor metastasis. 
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Transcriptional corepressor TLE1 functions with Runx2 in epigenetic 

repression of ribosomal RNA genes. 

Ali, S.A., Zaidi, S.K., Dobson, J.R., Shakoori, A.R., Lian, J.B., Stein, J.L., van 

Wijnen, A.J., Stein, G.S.* Proc. Natl. Acad. Sci. U.S.A. 2010 March; 107(9): 

4165. 

 

Abstract 

 

Epigenetic control of ribosomal RNA (rRNA) gene transcription by cell type-

specific regulators, such as the osteogenic transcription factor Runx2, conveys 

cellular memory of growth and differentiation to progeny cells during mitosis. 

Here, we examined whether coregulatory proteins contribute to epigenetic 

functions that are mitotically transmitted by Runx2 in osteoblastic cells. We show 

that the transcriptional corepressor Transducin Like Enhancer-1 (TLE1) 

associates with rRNA genes during mitosis and interphase through interaction 

with Runx2. Mechanistically, depletion of TLE1 relieves Runx2-mediated 

repression of rRNA genes transcription and selectively increases histone 

modifications linked to active transcription. Biologically, loss of TLE-dependent 

rRNA gene repression coincides with increased global protein synthesis and 

enhanced cell proliferation. Our findings reinforce the epigenetic marking target 

genes by phenotypic transcription factors in mitosis and demonstrate a 
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requirement for retention of coregulatory factors to sustain physiological control 

of gene expression during proliferation of lineage committed cells. 
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Cancer-related ectopic expression of the bone-related transcription factor 

RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation 

and motility. 

Leong, D.T.*, Lim, J., Goh, X., Pratap, J., Pereira, B.P., Kwok, H., Nathan, S., 

Dobson, J.R., Lian, J.B., Ito, Y., Voorhoeve, P.M., Stein, G.S., Salto-Tellez, M., 

Cool, S.M., van Wijnen, A.J.* Breast Cancer Res. 2010 October; 12(5):R89. 

 

Abstract 

 

INTRODUCTION: 

Metastatic breast cancer cells frequently and ectopically express the transcription 

factor RUNX2, which normally attenuates proliferation and promotes maturation 

of osteoblasts. RUNX2 expression is inversely regulated with respect to cell 

growth in osteoblasts and deregulated in osteosarcoma cells. 

METHODS: 

Here, we addressed whether the functional relationship between cell growth and 

RUNX2 gene expression is maintained in breast cancer cells. We also 

investigated whether the aberrant expression of RUNX2 is linked to phenotypic 

parameters that could provide a selective advantage to cells during breast cancer 

progression. 
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RESULTS: 

We find that, similar to its regulation in osteoblasts, RUNX2 expression in MDA-

MB-231 breast adenocarcinoma cells is enhanced upon growth factor 

deprivation, as well as upon deactivation of the mitogen-dependent MEK-Erk 

pathway or EGFR signaling. Reduction of RUNX2 levels by RNAi has only 

marginal effects on cell growth and expression of proliferation markers in MDA-

MB-231 breast cancer cells. Thus, RUNX2 is not a critical regulator of cell 

proliferation in this cell type. However, siRNA depletion of RUNX2 in MDA-MB-

231 cells reduces cell motility, while forced exogenous expression of RUNX2 in 

MCF7 cells increases cell motility. 

CONCLUSIONS: 

Our results support the emerging concept that the osteogenic transcription factor 

RUNX2 functions as a metastasis-related oncoprotein in non-osseous cancer 

cells. 
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A RUNX2-HDAC1 co-repressor complex regulates rRNA gene expression 

by modulating UBF acetylation. 

Ali, S.A., Dobson, J.R., Lian, J.B., Stein, J.L, van Wijnen, A.J., Zaidi, S.K., Stein, 

G.S.* J. Cell Sci. June 2012; 125(Pt 11): 2732. 

 

Abstract 

 

The osteogenic and oncogenic transcription factor RUNX2 downregulates the 

RNA polymerase I (RNA Pol I)-mediated transcription of rRNAs and changes 

histone modifications associated with the rDNA repeat. However, the 

mechanisms by which RUNX2 suppresses rRNA transcription are not well 

understood. RUNX2 cofactors such as histone deacetylases (HDACs) play a key 

role in chromatin remodeling and regulation of gene transcription. Here, we show 

that RUNX2 recruits HDAC1 to the rDNA repeats in osseous cells. This 

recruitment alters the histone modifications associated with active rRNA-

encoding genes and causes deacetylation of the protein upstream binding factor 

(UBF, also known as UBTF). Downregulation of RUNX2 expression reduces the 

localization of HDAC1 to the nucleolar periphery and also decreases the 

association between HDAC1 and UBF. Functionally, depletion of HDAC1 relieves 

the RUNX2-mediated repression of rRNA-encoding genes and concomitantly 

increases cell proliferation and global protein synthesis in osseous cells. Our 
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findings collectively identify a RUNX2-HDAC1-dependent mechanism for the 

regulation of rRNA-encoding genes and suggest that there is plasticity to 

RUNX2-mediated epigenetic control, which is mediated through selective mitotic 

exclusion of co-regulatory factors. 
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