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Abstract 

 

This thesis focuses on several aspects of olfactory processing in Drosophila. In 

chapter I and II, I will discuss how odorants are encoded in the brain. In both 

insects and mammals, olfactory receptor neurons (ORNs) expressing the same 

odorant receptor gene converge onto the same glomerulus. This topographical 

organization segregates incoming odor information into combinatorial maps. One 

prominent theory suggests that insects and mammals discriminate odors based 

on these distinct combinatorial spatial codes. I tested the combinatorial coding 

hypothesis by engineering flies that have only one class of functional ORNs and 

therefore cannot support combinatorial maps. These files can be taught to 

discriminate between two odorants that activate the single functional class of 

ORN and identify an odorant across a range of concentrations, demonstrating 

that a combinatorial code is not required to support learned odor discrimination. 

In addition, these data suggest that odorant identity can be encoded as temporal 

patterns of ORN activity.  

 

Behaviors are influenced by motivational states of the animal. Chapter III 

of this thesis focuses on understanding how motivational states control behavior. 

Appetitive memory in Drosophila provides an excellent system for such studies 

because the motivational state of hunger promotes reliance on learned appetitive 

cues whereas satiety suppresses it. We found that activation of neuropeptide F 
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(dNPF) neurons in fed flies releases appetitive memory performance from 

satiety-mediated suppression. Through a GAL4 screen, we identified six 

dopaminergic neurons that are a substrate for dNPF regulation. In satiated flies, 

these neurons inhibit mushroom body output, thereby suppressing appetitive 

memory performance. Hunger promotes dNPF release, which blocks the 

inhibitory dopaminergic neurons. The motivational drive of hunger thus affects 

behavior through a hierarchical inhibitory control mechanism: satiety inhibits 

memory performance through a subset of dopaminergic neurons, and hunger 

promotes appetitive memory retrieval via dNPF-mediated disinhibition of these 

neurons. 

 

The aforementioned studies utilize sophisticated genetic tools for 

Drosophila. In chapter IV, I will talk about two new genetic tools. We developed a 

new technique to restrict gene expression to different subsets of mushroom body 

neurons with unprecedented precision.  We also adapted the light-activated 

adenylyl cyclase (PAC) from Euglena gracilis as a light-inducable cAMP system 

for Drosophila. This system can be used to induce cAMP synthesis in targeted 

neurons in live, behaving preparations.  
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Chapter I: Circuit dynamics of olfactory processing in Drosophila 

 

I.A. Introduction 

 

Where does behavior come from? 

 

For centuries, ethologists, psychologists and biologists have debated the origin of 

behavior. Early models proposed that behavior emerges from summation of 

reflexes.  The term ‘reflex’ often means a linear relationship between a stimulus 

and behavior and has an element of predictability in it.  However psychologists 

soon realized that the linear stimulus-response relationship, like that observed in 

the knee-jerk response, is an exception in complex neural systems.  Most 

behaviors are highly unpredictable and more often than not, a stimulus fails to 

elicit a predictable behavioral response. To incorporate this non-linearity in the 

response, later models for behavior incorporated a greater appreciation for a 

motivational component in behavior.  These models postulated that behaviors 

happen to neutralize different internal drives and generate a consummatory 

phase; hunger generates behaviors that lead to consumption of food, thirst leads 

to drinking, lust leads to sex, (masochism leads to graduate school). 

 

However drive alone cannot explain decisions often made during 

behavior. Memory plays an integral role in the decision-making process. For 

example, when hungry, animals are often guided to certain foods using memory 
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of prior experience.  With this in mind, some motivational theorists incorporated 

memory and internal state into their models for motivated behavior. This is simply 

illustrated in a model from Frederick Toates (1986) where he postulated that 

motivated behavior emerges from the integration between sensory information 

from incentive objects (e.g. smell, taste and the sight of food), memory for these 

incentive objects (past experience with food) and the internal physiological state 

of the animal, whether the animal is hungry or satiated (Toates, 1986 and Figure 

I.1). 

 

In my thesis I will describe olfactory memory performance of Drosophila in 

light of this model. In Chapter 1 and 2, I will discuss our current understanding of 

olfactory circuit function. Chapter 3 focuses on how motivated behavior emerges 

from the olfactory circuit. Chapter 4 summarizes previous chapters and 

discusses the development of new genetic tools that should aid neural circuit 

analysis in Drosophila. Consistent with the general theme of my graduate 

research, I particularly emphasize circuit dynamics in Drosophila olfactory 

behavior. The molecular aspect of olfaction and olfactory behavior has been 

covered in detail in some excellent recent reviews (Keene and Waddell, 2007, 

Hallem et al., 2006). 

 

Understanding the neural basis of behavior 

 
An important objective of modern neuroscience research is to understand how 

neural circuits control behavior. To address this problem an investigator needs to 
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select a behavior, identify individual neurons that are necessary for generating 

that behavior, assemble these neurons into a meaningful neural circuit and 

understand the ensemble properties of the circuit that generate the behavior. 

Such a study is daunting and seems most achievable for behaviors that require 

simple circuits. Alternatively, one might pick a model organism with a rich 

repertoire of behaviors but a relatively simple nervous system. The human brain 

contains ~ 1011 neurons and with our very rudimentary current understanding of 

the neural circuits, it will take a while before we can explain human behavior in 

terms of defined circuits. Drosophila melanogaster on the other hand has 105 

neurons and we have a rapidly improving anatomical view of the neural circuit 

detail.  Further, despite their relatively small brain fruit flies have a rich behavioral 

repertoire. The ability to combine those characteristics with electrophysiology and 

remarkably precise neural circuit intervention provided has led many 

investigators to fruit flies to investigate the neural basis of behavior. Given the 

conservation of genes, there is the hope that the underlying principles of neural 

circuit organization may also be sufficiently similar that this knowledge will be 

applicable to humans. 

 

I.B. Choosing a behavior: Olfactory behaviors of Drosophila 

 

Despite its small size compared to mammals, the Drosophila brain orchestrates a 

diverse array of sophisticated behaviors (Pitman et al., 2009). Olfactory behavior 

is among the most frequently studied and the relatively simple olfactory neural 
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circuit of the fly is extremely well characterized. The accessibility of the peripheral 

olfactory circuitry has allowed researchers to monitor neural activity via 

electrophysiology and functional imaging. The olfactory system of the fly directs 

robust odor driven behaviors including a naive attraction to some odors and 

repulsion to others.  Moreover one can assign value to ‘behaviorally 

meaningless’ odorants with olfactory conditioning, which allows researchers to 

study memory related plasticity in the olfactory system. Certain odors might be 

more meaningful to a fly on different times e.g. hungry flies might be more 

attracted to food but until our recent work an appreciation for how physiological 

state affects olfactory-driven behavior was missing. In Chapter IV I will describe 

the identification of a neural circuit that mediates such state-dependence and 

allows us to add an element of motivational control to olfactory memory 

performance. I hope I will be able to convince you that Drosophila olfactory 

system allows one to study all major components of motivated behavior with very 

high resolution.  

 

I.B. Olfactory conditioning assays: Several assays have been developed to 

study plasticity in the olfactory system. Most popular of them is classical olfactory 

conditioning. Two paradigms are commonly used in Drosophila. 

 

Olfactory aversive conditioning: The Drosophila olfactory memory field took a 

significant step forward with the development of a classical conditioning assay 

that involves a binary T-maze choice—from here referred to as the TQ assay 
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(Tully and Quinn 1985, Figure I.2A) that is performed under dim-red light or 

darkness. In this paradigm 100 flies are trapped in the training tube that has an 

electrifiable grid and the experimenter therefore has complete control over shock 

presentation, intensity and duration. Odors (referred as Conditioned Stimulus or 

CS) on an air current are piped into the training chamber. Training consists of a 1 

minute presentation of an odor (CS+) with twelve one second electric shocks 

(referred as Unconditioned Stimuli or US) (at 5 second intervals), followed by 30 

seconds of fresh air and another 1 minute presentation of a different odor without 

electric shock (CS-). Odor memory is tested at given times thereafter by 

transporting flies in the elevator to the T-maze where they are allowed 2 minutes 

to choose between tubes containing either of the two odorants they experienced 

during conditioning. A performance index (PI) is then calculated by subtracting 

the number of flies in the CS- from the number of flies in the CS+ and dividing the 

result by the total number of flies. A different population of the same genotype of 

flies is trained with the CS+ and CS- odors reversed and a final performance 

index is the average of the two reciprocal half experiments (Figure I.3). PI scores 

using the TQ paradigm can be higher than 0.9 (with a score of 1 representing 

learning in every fly) but generally range from 0.6–0.9. Memory can either be 

tested immediately after training (3 minute memory, referred to as ‘learning’ or 

short-term memory) or the flies can be transferred to food vials and housed until 

being tested at later time points to assess different memory phases (e.g., middle-

term and long-term memory). A single training session does not form persistent 

memory in the TQ paradigm and performance is essentially absent 24 hr after 
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training. However, 6–10 training sessions with or without rest intervals forms 

memory that lasts for days. 

 

Olfactory appetitive conditioning: Although training flies to avoid electric shock 

is effective, shock is not an ecologically relevant reinforcer. Tempel et al. (1983) 

described conditioning with odorants and sucrose reward using a variation of the 

Quinn-Harris-Benzer apparatus (Quinn et al. 1974). They used light (and 

negative geotaxis) to attract food-deprived flies into a training tube painted with a 

band of sucrose (US) and odor (CS+). Training consisted of two rounds of a 30 

second exposure to odor A (CS-) with no reward, 30 seconds of rest, followed by 

odor B (CS+) with sucrose reward. Memory was assayed by allowing the flies 15 

seconds to choose between the CS+ and CS- odor in a T-maze. Performance 

scores were calculated by subtracting the number of flies approaching the CS- 

from the number approaching the CS+, divided by the total number of flies 

tested. Once again, the final PI score is the average of two reciprocal 

experiments where the CS+ and CS- odorants are swapped. 

 

Flies have to be hungry to learn and retrieve memory efficiently in the 

sugar-rewarded paradigm. Tempel et al. (1983) concluded that flies exhibit 

optimal learning after 19–20 hours of starvation, a treatment that did not affect 

their intrinsic odor preference or their learning performance in the TQ assay. 

They also found that sugar reinforced memory persists much longer than shock 

reinforced memory. Appetitive conditioning is becoming more popular and is now 
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routinely performed in a TQ-like manner (Keene et al. 2006 and Figure I.2B). The 

primary difference between shock and sucrose training in the TQ machine is that 

flies are trained in two separate tubes for appetitive conditioning; one lined with 

crystallized sucrose on filter paper and one lined with blank filter paper. Using 

this approach we have recently shown that a single 2-minute pairing of odorant 

and sucrose forms protein synthesis dependent long-term memory that lasts for 

days. Extended periods of starvation can confound the appetitive paradigm. 

However, it is possible to extend the use of the assay to two-three days following 

a single session of training by feeding the flies after training and re-starving them 

before testing memory (Krashes and Waddell, 2008). 

 

IC. The circuit that drives the behavior: Anatomy of Drosophila olfactory 

system 

 

Olfactory Receptor Neurons (ORNs): The anatomy of the Drosophila olfactory 

system has been studied in detail (Keller et al., 2003, Hallem et al. 2006 and 

Figure I.4). Drosophila olfactory receptor neurons (ORNs) (also known as 

olfactory sensory neurons) are housed in sensory hairs or sensilla on either of 

two sets of fly olfactory organs, the antennae and maxillary palps. Most ORNs 

co-express a single odor-responsive olfactory receptor (OR) gene with an 

obligate dimerization partner encoded by the OR83b gene (Larsson et al., 2004, 

Benton et al., 2006, Sato et al., 2008, Benton et al., 2009) (see chapter II for 

more detail on Or83b and Or83b-independent ORNs). OR83b is required for OR 
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dendritic targeting and stability (Larsson et al., 2004, Benton et al., 2006, Sato et 

al., 2008, Wicher et al., 2009) and together the different OR/OR83b dimers form 

odor-gated ion channels (Sato et al., 2008, Wicher et al., 2008). OR-containing 

ion channels reside in the dendritic membrane of the ORN. Each ORN extends a 

single axon that synapses with second-order neurons in the antennal lobe. The 

antennal lobes of Drosophila are divided into spatially distinct spherical 

substructures of neuropil called glomeruli and ORNs that express the same OR 

gene project their axons to the same glomerulus (Vosshall et al., 2000, de 

Bruyne et al., 2001, Dobritsa et al., 2003, Goldman et al., 2005, Hallem et al., 

2006). Glomeruli contain at least four distinct classes of neurons; ORNs which 

carry odorant information into the antennal lobe, Projection Neuron (PNs) which 

carry odorant information from the antennal lobe to higher order brain centers 

(Figure I.4) and inhibitory and excitatory local interneurons, (Tanaka et al., 2009, 

Shang et. al., 2007, Wilson et al., 2005, Stopfer et al., 1997).  

 

Local Interneurons (LNs): Both excitatory cholinergic local interneurons (Shang 

et al., 2007) and inhibitory GABAergic local neurons (Tanaka et al., 2009, Okada 

et al., 2009) project to multiple glomeruli and are believed to be involved in gain-

control and oscillatory synchronization of the olfactory response. Recent studies 

reported morphological and functional subdivision among inhibitory local neurons 

(Tanaka et al., 2009) but such subdivision has yet to be reported excitatory local 

interneurons. 
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 Projection neurons (PNs): Each glomerulus is innervated by multiple PNs but 

the dendrites from each PN exclusively synapse in only one glomerulus. There 

are about 150 PNs associated with about 50 glomeruli. PNs carry the odorant 

information to two distinct anatomical regions in the fly brain, the mushroom body 

and lateral horn. PNs project their axons to these regions through three axonal 

tracts (Tanaka et al., 2004, Jefferis et al. 2007, Lin et al. 2007 and Figure I.4B). 

Most of the PNs follow the inner antennocerebral tract (iACT) and project to the 

mushroom body calyx and the lateral horn. Few PNs send their axon along either 

the medial (mACT) or the outer (oACT) antennocerebral tracts and these 

bypasses the mushroom body and directly innervate the lateral horn.  Detailed 

anatomical analysis has determined that most glomeruli are innervated by 3 PNs 

and these PNs are usually morphologically similar in their projection patterns. 

However, there are a few exceptions to this rule. For example, two separate PN 

types innervate the VA1lm glomerulus. One type follows the mACT tract, 

bypassing the mushroom body and projecting to the lateral horn, whereas the 

other type follows the iACT and arborizes in both MB and LH (Jefferis et al. 

2007). However, the functional significance of this type of innervation is still 

unclear. A less understood PN class has multiglomerular dendrites and sends 

their axons along the mACT to the lateral horn (Lai et al., 2008).  

 

Lateral horns (LH): Not much is known about the morphology of Drosophila LH 

neurons. In the locust, GABAergic projections from the LH provide inhibitory input 

to the MB  (Jortner et al. 2007, Perez-Orive et al., 2002). In Drosophila 
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morphologically diverse groups of neurons innervate LH but feedback neurons 

from the LH to the MB, like the locust lateral horn inhibitory neurons, have not 

been reported.  

 

Mushroom bodies (MB): The Mushroom bodies are amongst the most 

extensively studied structures in insect neurobiology. The general anatomy of the 

mushroom body can be subdivided into three parts, the calyx, peduncle, and 

lobes (Figure I.5). Mushroom body neurons, also known as Kenyon Cells (KCs), 

have their cell bodies localized in the dorsal-posterior part of the Drosophila 

brain. Drosophila has approximately 2,500 KCs in each mushroom body. Kenyon 

cells extend their dendrites in the calyx and their neurites then project down 

through the brain as a bundle called the peduncle. The peduncle projects to the 

anterior part of the brain where the individual KCs branch to form at least five 

anatomically distinct lobes; two vertical lobes known as α and α′ lobes and three 

horizontal lobes, named β, β′ and γ (Crittenden et al., 1998, Tanaka et al., 2008 

and Figure I.5).  The Drosophila KC population can be subdivided into at least 

three subtypes based on their morphology, developmental timing and gene 

expression patterns.  The γ neurons only project to γ lobes of the mushroom body 

and are formed during the mid-larval stage. In larval stage, they are bifurcated 

and form two lobes. During metamorphosis they undergo significant pruning and 

transformation, which results in the formation of a single horizontal γ projection in 

adult flies. The α′β′ neurons bifurcate at the anterior pedunculus and one branch 

projects vertically into the α′ lobe and the other horizontally into the β′ lobe. 
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Similarly, αβ neurons bifurcate and send one projection into the α lobe and the 

other into the β lobe (Lee et al., 1999; Zhu et al., 2003). It is unclear whether the 

different KCs are preferentially connected to particular PNs. The dendrites of the 

γ neurons preferentially occupy the center of the calyx whereas dendrites of the 

other types of KCs are more widespread across the calyx (Tanaka et al., 2004, 

Jefferis et al., 2007). However a recent report indicated more stereotyped 

projections of KC dendrites within the calyx (Lin et al., 2007).   

 

Mushroom body extrinsic neurons: A large number of neurons project onto 

the MB (for a recent description, see Tanaka et al., 2008). However, only a few 

have been shown to be involved in olfactory processing, like the dorsal paired 

medial (DPM) neurons, the anterior paired lateral (APL) neurons, dopaminergic 

neurons and octopaminergic neurons. DPM neurons are a pair of neurons that 

arborize in all the MB lobes. They express the amnesiac gene, which encodes a 

putative neuropeptide (Waddell et al., 2000) and they may use acetylcholine 

(Keene et al., 2004) as a co-transmitter. APL neurons are a pair of GABAergic 

neurons with cell bodies localized in the anterior-lateral protocerebrum (Liu and 

Davis, 2009). Like DPM neurons, APL neurons project onto all MB lobes and in 

addition they innervate the entire peduncle and calyx. Dopaminergic neurons 

arborize extensively throughout the brain (Friggi-Grelin et al., 2003 and Figure 

I.10) and different subsets of dopaminergic neurons innervate discrete regions of 

the MB including the calyx, peduncle and different regions of the MB lobes. A 

detailed description of some of these dopaminergic neurons is provided in 
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chapter III. Like dopaminergic neurons, octopaminergic neurons form 

arborizations in the MB lobes and calyx (Sinakevitch et al., 2006 and Figure I.11). 

However the MB lobe innervation by these neurons is much sparser than that of 

dopaminergic neurons. Conversely, the antennal lobes are almost devoid of 

dopaminergic projections but are densely innervated by octopaminergic neurons 

(Sinakevitch et al., 2006 and Figure I.11).   

 

PN-Third order neuron connectivity: The anatomical organization of PN 

synapses in the MB and LH has recently been investigated in great detail 

(Tanaka et al., 2004, Jefferis et al. 2007, Lin et al. 2007). PN projection data from 

32 out of ~50 PN classes is now available. PN termini in the lateral horn are 

organized into distinct zones with the same classes of PNs projecting to the 

same region of the LH. PNs responding principally to fruit odors project to the 

posterior-dorsal part of the LH whereas PNs responding to pheromones project 

to the anterior-ventral region. Sexual dimorphism among the PN projection 

patterns in the LH has also been reported.  The anatomy of LH output neurons 

has not been described in detail, although there are some indications that LH 

neurons may maintain the proposed segregation between fruit odor and 

pheromone information (Tanaka et al., 2004, Jefferis et al. 2007, Lin et al., 2007).  

 

The organization of PN synapses in the mushroom body calyx is 

significantly different. PN synapses in the calyx can be sub-divided into 3 regions 

with PNs carrying pheromone information being separated from other PNs. 
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However, there is no obvious zonal segregation between the non-pheromone PN 

termini in the calyx (Tanaka et al., 2004, Jefferis et al., 2007, Lin et al., 2007). 

 

Even with our current understanding of the anatomy, we only have a 

partial picture of the olfactory circuit. It is still unclear how motor centers are 

connected with the MB and LH. Moreover a synaptic connectivity map is still 

lacking. Development of trans-synaptic tracers and EM reconstruction of fly brain 

will provide a more detailed understanding of how neurons are connected in the 

olfactory circuit.  

 

ID.  Stimulus-response properties of the circuit: Dynamics of odor coding 

 

Tremendous progress has been made in the last two decade towards 

understanding how neurons in the olfactory circuit respond to odors. There are 

two prevalent theories on how odor information is translated by the olfactory 

circuit; labeled-line theory and spatiotemporal coding theory.  In next few 

paragraphs I will describe how different groups of neurons within the olfactory 

circuit responds to odors and point out the differences between the theories.  

 

ORN responses: Olfactory receptors vary greatly in the number of odors they 

respond to. While some receptors respond to many odorants (receptors with 

wide tuning curves or odor generalists), others respond to one or very few 

odorants (receptors with narrow tuning curves or odor specialists) (Hallem et al., 
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2006; Hallem et al., 2004). However, there is no clear dichotomy between 

specialist and generalist ORNs in terms of their tuning curves (Hallem et al., 

2006). Rather a continuum of tuning breadths is observed among receptors. 

Specialist and generalist receptors occupy the ends of this spectrum. The 

temporal responses of ORNs to different odorants are highly diverse (Hallem et 

al., 2006). A given ORN can be activated or inactivated or not respond to 

different odorants and the same odorant evokes discrete patterns of responses in 

distinct classes of ORNs. The temporal patterns of odorant-evoked activities in 

ORNs are also highly varied and the information content of these temporal 

patterns is unclear (Hallem et al., 2006). While labeled-line theory postulates that 

odors are coded by simple activation/inactivation of ORNs (i.e., a binary code), 

spatiotemporal coding theory incorporates the coding capacity of odor-induced 

temporal dynamics of ORNs. Although there is obvious capacity of coding in this 

rich diversity of temporal responses, the information content remains unclear.  

 

 PN responses: How ORN responses are translated in the antennal lobe is a 

hotly debated issue. A receptor-glomerulus map is available for 44 ORs (Couto et 

al., 2005; Fishilevich et al., 2005) and a recent study has reported the responses 

of 24 ORs to a diverse collection of 110 odorants (Hallem et al., 2006). These 

studies indicate that each odorant has a unique pattern of ORN activation that 

will vary with concentration. Due to the ORN organization in the AL, these 

combinatorial activation patterns are represented in the antennal lobe glomeruli. 

The odortopy present in the AL suggests a mechanism of odor coding that 
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utilizes spatial patterns of glomerular activation to represent an odorant (Figure 

I.6). When an odorant binds to a specific subset of receptors, the binding in turn 

activates a specific subset of glomeruli and functional imaging data shows this 

pattern of glomerular activation is highly odor-specific and stereotyped in 

Drosophila (Ng et al., 2002; Wang et al., 2003). Moreover, functional imaging 

studies indicated that PN responses might arise from linear relay of ORN inputs 

supporting a labeled-line theory of odor coding in which odor quality is encoded 

by activation/inactivation of specific combinations of neurons though successive 

layers of the olfactory circuit (Ng et al., 2002; Wang et al., 2003) (Figure I.6).  

  

  An alternative model of odor coding has emerged from 

electrophysiological studies of odor-evoked responses in ORN and PN (Laurent 

et al., 1996, Wehr et al., 1996, Stopfer et al., 2003, Mazor et al., 2005, Tanaka et 

al., 2009, and Figure I.7). Electrophysiological recordings from PNs have 

indicated that a given odorant can produce excitatory responses in ~69% of PNs 

(Wilson et al., 2004). By directly comparing presynaptic and postsynaptic tuning 

curves corresponding to the DM2 glomerulus, Wilson et al. (2004) reported that 

PNs can be even more broadly tuned than their presynaptic ORN input. Lateral 

connectivity involving LNs within the antennal lobe facilitate PN populations to 

integrate information across different ORN information channels, despite their 

principally uniglomerular dendritic fields (Wilson et al., 2005, Shang et al., 2007, 

Tanaka et al., 2009). These data along with the studies on other insects support 

a model in which odor information is encoded by spatiotemporal activation 
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patterns in the PN ensemble (Laurent et al., 1996). Furthermore, odorants evoke 

a subthreshold oscillation in the local field potential of PNs and specific PNs fire 

axon potentials at different phases of this oscillatory cycle. These oscillatory-

synchronized activities of PNs are believed to be a key component in encoding 

odor identity (Laurent et al., 1996 and Figure I.7).  

 

Local neuron responses: Both theories of odor coding have started to 

recognize the role of local neurons in odor coding. The excitatory local 

interneurons  are very broadly tuned to odors, innervate most, if not all glomeruli 

in the antennal lobe, and show little glomerular specificity in their synaptic output. 

It has been proposed that excitatory local interneurons  add a diffuse excitatory 

offset to PN signals to amplify weak signals (Shang et al., 2007). A recent study 

has shown inhibitory local interneurons  can be sub-divided into two classes. One 

class of inhibitory local interneurons  (LN1) primarily arborize in the glomerular 

regions rich in ORN termini whereas the other class (LN2) of iLN synpses are 

presynaptic to PN dendrites (Tanaka et al., 2009). Several studies have shown 

inhibitory local interneurons  prevent hyperactivation of PNs in the presence of 

strong ORN input (Root et al., 2008, Kazama et al., 2008). Tanaka et al. (2009) 

has recently demonstrated that in Drosophila, LN2 are responsible for the 

generation of odor-evoked oscillatory synchronization of PNs.  

 

Third order neuron responses:  How Drosophila LH neurons respond to 

odorants is still unknown. However studies from other insects, locusts in 
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particular, suggests LH output neurons shape MB responses to odors via 

inhibitory coupling (Perez-Orive et al., 2002, Jortner et al., 2007 and Figure I.7). 

KCs typically receive synaptic input from 10-50 % of all receptor channels 

(Jefferis et al. 2007), but their high firing thresholds ensure that each cell 

responds only to combinations of simultaneously active afferents (Perez-Orive et 

al., 2002, Jortner et al., 2007, Murthy et al., 2008, Turner et al., 2008). Patterns 

of receptor activation are thus compressed into synthetic, high-level features. 

This mechanism of feature extraction makes the system less prone to false-

positive detection. It is unclear whether odorants are represented by 

combinatorial activation of KCs. Beautiful electrophysiological studies in the 

locust MB have shown that odorants are represented by evolving temporal 

patterns of KC activity (Figure I.7) and output from LH neurons and short-lived 

spike-time dependent plasticity in some mushroom body extrinsic neurons are 

required for establishing this response. Functional imaging studies using Ca2+ 

sensitive dyes or transgenic Ca2+ indicators demonstrated sparse and distinct 

patterns of KCs are activated by specific odorants  (Wang et al., 2003, Wang et 

al., 2004). However, the poor spatial and temporal resolution of these reporters 

prevented more detailed characterization of the responses  (Jayaraman et al., 

2007). A recent electrophysiological study has demonstrated that KC responses 

to odorants are not stereotyped at the level of individual KCs  (Murthy et al., 

2008), consistent with the conclusions drawn form studies in the locust (Mazor et 

al., 2005). Decorrelation of ORN inputs in the antennal lobe and subsequent 
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synthetic coding in MB population alleviates the requirement of having a 

stereotyped odor-code in the MB. 

 

In spite of our detailed knowledge of the structural organization of the 

olfactory system, the mechanism of odor perception and discrimination has 

remained elusive. The spatiotemporal nature of olfactory responses is not unique 

to insects and is also observed in mammals (for review see Wilson and Mainen, 

2006).  It is still unclear how imaging and electrophysiological data can be 

correlated to behavior (In chapter II, I will demonstrate the importance of 

temporal dynamics in learned odor discrimination). Whereas anatomical and 

functional imaging data point towards a labeled-line like organization in the 

olfactory system, behavior and electrophysiological studies have demonstrated 

an important role of odor-evoked temporal dynamics in odor coding. It is possible 

the true scenario lies somewhere in-between where temporal dynamics within 

chemotopically/perceptually separated channels encode odorant identity. Notably 

studies in the honeybee olfactory system indicate disruption of oscillatory 

synchronization is detrimental towards discrimination of chemically similar 

odorants but does not affect discrimination between dissimilar odorants (Stopfer 

et al., 1997). 

 

IE.  Memory formation within the circuit: Olfactory memory of Drosophila 

 

Behavioral versus cellular memory 
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Two distinct approaches are used to study memory; monitoring experience 

dependent changes in behaviors (behavioral plasticity) and monitoring changes 

in neural circuits based on stimulus exposure (cellular plasticity). Landmark 

studies on Aplysia defined changes in synaptic strength as the mechanism of 

storing associative memory (Castellucci and Kandel, 1976). Stability of the 

memory depends on the stability of the changes in synapses. Long-lived 

changes involve morphological remodeling of the synapses, require protein 

synthesis and the memory lasts for days; these referred to as long-term 

memories.  A less stable form of memory is referred to as short-term memory 

that does not requires protein synthesis or morphological changes at synapses. 

All memories usually pass through a labile phase before being processed into 

more stable short/long term memories. Current models of Drosophila memory 

incorporate changes in synaptic strength as the mode for memory storage. 

Different models propose different anatomical regions and molecules involved in 

this process. In this section I will describe the proposed mechanisms and models 

of how memory related changes occur in the olfactory circuit.  However it is 

important to note that the relationship between behavioral and cellular 

approaches is still unclear. Studies on Aplysia first demonstrated a direct 

correlation between cellular and behavioral plasticity, where quantifiable changes 

in synaptic strength lead to changes in behavioral response (Castellucci and 

Kandel, 1976). Numerous studies point toward necessity of synaptic changes for 

memory formation, establishing strong correlation between cellular and 
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behavioral plasticity. However until we can artificially create memory in specific 

synapses and demonstrate behavioral memory expression, the relationship 

between cellular and behavioral plasticity will remain, at best, correlative.  

 

Memory genes and processes:  The memory formed after single-trial aversive 

conditioning lasts for hours, does not require protein synthesis and can be 

divided into three phases- short-term memory, middle-term memory and 

anesthesia-resistant memory (ARM) (Quinn et al., 1979, Quinn and Dudai, 1976). 

Long-term olfactory memory (LTM) can be formed either by single trial appetitive 

conditioning (Krashes et al., 2008) or by multiple trial aversive conditioning 

(Folkers et al., 1993, Tully et al., 1994). LTM can last for days and requires 

protein synthesis (Tully et al., 1994). Mutant analysis studies have identified a 

large number of memory-associated genes, most notable of which are members 

of the cAMP signaling cascade like rutabaga (rut) (Livingstone et al., 1984, Levin 

et al., 1992). RUT is an adenylyl cyclase and it has a high level of expression in 

the mushroom body (Han et al., 1992). Memory defects of rut mutants can be 

rescued by expressing an UAS-rut transgene in the mushroom body of adult 

flies, demonstrating RUT function in MB is sufficient for memory and the rut 

phenotype does not result from developmental defects (Zars et al., 2000; 

McGuire et al., 2003; Mao et al., 2004 and Figure I.8). The current model of 

olfactory memory formation postulates that odor-evoked PN activity increases 

Ca2+ concentration in odor-specific KCs whereas shock/sugar stimuli activate G-

protein coupled receptors (GPCRs) (Connolly et al. 1996) throughout MB. In KCs 
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where Ca2+ influx coincides with GPCR activation, RUT adenylyl cyclase is 

activated resulting in a synergistic increase in cellular cAMP concentration. 

Stability of memory depends on the duration of the cAMP surge. A prolonged 

increase in cAMP concentration results in formation of LTM via activation of 

cAMP-response-element-binding protein (CREB) (Yin et al., 1994, Yin et al., 

1995, Perazzona et al., 2004).  This model is supported by data from flies 

carrying mutations in genes associated with cAMP signaling like dnc (a cAMP 

phosphodiesterase) (Byers et al., 1981, Chen et al., 1986) and DC0 (catalytic 

subunit of protein kinase A) (Skoulakis et al., 1993) which cause memory 

phenotypes indicating an important role of cAMP signaling in olfactory memory 

formation (reviewed in Keene and Waddell 2007, Figure I.8 and I.12). 

 

Even after identification of more than 60 ‘memory genes’ our 

understanding of the molecular pathways of olfactory memory formation remains 

rudimentary. It is unclear how these genes are related to neural circuit function. 

Some of these memory genes have already been implicated in other cognitive 

processes like attention (van Swinderen, 2007). It is also unclear whether 

expression of  ‘memory genes’ in the MB is necessary for memory formation. 

Furthermore, it is unknown whether all memory genes function in the same cells 

the way depicted in most Aplysia-inspired models of Drosophila olfactory 

learning.  I therefore believe that a circuit-oriented analysis of olfactory memory is 

essential to understand how olfactory memories are stored and retrieved in fly 

brain. 
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IF.  How the circuit stores new information: Circuit dynamics of olfactory 

memory processing 

 

To understand how memories are encoded in the brain, it is essential to 

understand how the neural circuit changes with memory formation. Several 

studies have investigated conditioning-induced plasticity in different parts of the 

olfactory circuit. An early functional imaging study identified short-lived plasticity 

in the antennal lobes (Yu et al., 2004) by imaging PN responses to odorants 

using synaptophluorin to monitor synaptic release (Miesenböck et al., 1998). The 

number of glomeruli responding to an odorant was seen to increase after 

presenting flies odorants in conjunction with electric shock. It was proposed that 

this plasticity contributes to memory formation immediately after training (Yu et 

al., 2004). Two behavior studies have also implicated the antennal lobe as a site 

for memory related plasticity. Thum et al. (2007) reported the PNs are a sufficient 

site for RUT-dependent plasticity for appetitive memory formation. Ashraf et al. 

(2006) demonstrated that aversive long-term memory formation is correlated with 

a change in level of Ca2+/calmodulin-dependent kinase II (CaMKII) protein in the 

AL and postulated that synaptic protein synthesis in PNs is required for LTM 

formation. 
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All current models favor the MB as the site for CS-US association. 

Behavioral studies have demonstrated a requirement for the MB in olfactory 

learning. Mutant analysis and MB ablation studies have shown that the MB is 

required for olfactory learning whereas flies innate responses to odors appear to 

be MB-independent. This led to the hypothesis that the LH mediates innate 

olfactory behavior whereas MB is involved in mediating learned behavior 

(Heimbeck et al., 2001). However one study claimed MB output is required for 

innate odor attraction, but not for innate odor repulsion (Wang et al., 2003). More 

evidence supporting involvement of the MB in olfactory memory came from 

studies blocking MB output during different stages of memory processing. A 

temperature sensitive dominant mutant form of dynamin ,Shits1 (Kitamoto 2001), 

was used in these studies to block KC output. At high temperature (the restrictive 

temperature), this dominant mutant form of dynamin blocks neuronal output by 

inhibiting synaptic vesicle recycling. Using this approach several studies have 

implicated MB as the storage site for olfactory memory (Dubnau et al., 2001, 

McGuire et al., 2001, Schwaerzel et al., 2002 and Davis, 2005). Recently, using 

a similar approach, Krashes et al. (2007) demonstrated a differential requirement 

of the different MB neurons at different stages of aversive and appetitive olfactory 

memory processing. Output from the α′β′ neurons is required for memory 

acquisition and consolidation whereas αβ lobe output is exclusively required for 

memory retrieval.  Since αβ lobe output is required only during memory retrieval, 

current dogma implicates the α and β lobes as the storage site for appetitive and 

aversive olfactory memory (Yu et al., 2006, Krashes et al., 2007, Krashes and 



 

  24 

Waddell, 2008 and Figure I.12).  Mutant studies also implicated the mushroom 

body as the site for olfactory memory storage. Adult-restricted, MB-specific 

rescue of the putative coincidence detector encoded by rutabaga rescues the 

olfactory memory phenotype of rut mutant flies (McGuire et al., 2003; Mao et al., 

2004) suggesting CS and US information is integrated in the MB. In support of 

behavioral studies, functional imaging studies observed increases in Ca2+ 

release in the α lobe tips following CS-US coupling that is sufficient for LTM 

formation (Yu et al., 2006). However it is still unclear how increased synaptic 

strength is correlated with increased Ca2+ release, as observed in functional 

imaging studies.  

 

MB extrinsic neurons play a critical role in memory processes. Output from 

DPM neurons is required for memory consolidation. Blocking DPM neuron output 

using shits1 during consolidation abolishes both appetitive and aversive memory 

(Waddell et al., 2000, Keene et al., 2004, Keene et al., 2006; Krashes and 

Waddell, 2008). A functional imaging study found that DPM neurons respond to 

both shock and odorants stimuli used in conditioning.  An odorant-specific 

enhancement of the odor-evoked response was detected in DPM neurons 

following the CS-US pairing and this conditioned response occurred during the 

same time period in which blocking DPM output impairs memory (Yu et al. 2005). 

Unlike DPM neurons, APL neurons are believed to be involved in suppressing 

olfactory learning; inhibiting GABA synthesis in APL neurons enhances olfactory 

learning.  A functional imaging study found that like DPM neurons, APL neurons 
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are also activated by shock and odorants. However CS-US pairing reduces the 

APL neuron’s response to conditioned odorants, implicating that olfactory 

learning involved suppressing output of these neurons in an odor specific manner 

(Liu and Davis, 2009).   

 

Delivery of US information to the MB: Since the MB is regarded as the site for 

coincidence detection during classical olfactory conditioning, it is reasonable to 

assume CS and US circuits intersect at the MB. Dopamine and octopamine 

systems are believed to mediate reinforcement and play critical roles in delivering 

US information to the MB (Schwaerzel et al., 2003).  

 

Electric-shock stimulus: It is still unclear whether a specific sensory 

mechanism is involved in electric-shock perception. Functional imaging studies 

with Ca2+ reporters have yielded conflicting results. Using the ratiometric Ca2+ 

sensor Chameleon, Riemensperger et al. (2005) reported that electric shock 

specifically depolarizes dopaminergic neurons (Riemensperger et al., 2005) 

whereas several other studies have observed widespread depolarization in 

response to electric shock (Yu et al., 2005, Yu et al., 2006, Liu and Davis 2009).  

Regardless of this inconsistency, both behavior and imaging studies have 

established the importance of the dopaminergic system in aversive memory 

formation.  Tyrosine hydroxylase (TH) is a key enzyme for dopamine synthesis 

(Figure I.9) and a TH-GAL4 line has been generated fusing the TH promoter with 

GAL4 coding sequence. TH-GAL4 is specifically expressed in dopaminergic 
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neurons in Drosophila.  Using TH-GAL4; uas-Shits1 combination to silence 

dopaminergic neurons, Schwaerzel et al. (2003) demonstrated that output from 

dopaminergic neurons is required for aversive memory formation but not for 

appetitive memory formation, indicating negative reinforcement requires 

dopaminergic neurons (Schwaerzel et al., 2003). In support of this hypothesis, a 

study of Drosophila larval olfactory learning has demonstrated that artificial 

activation of dopaminergic neurons during odor presentation is sufficient to form 

aversive olfactory memory (Schroll et al., 2006). Imaging studies noted that 

dopaminergic projections on the MB lobes are strongly activated by electric 

shock but weakly activated by odorants. Moreover the response to the 

conditioned odorant is significantly prolonged after CS-US coupling 

(Riemensperger et al., 2005). This last observation indicates that like mammals, 

Drosophila dopaminergic neurons are possibly providing predictive value to the 

conditioned stimulus. Drosophila have several subtypes of dopaminergic neurons 

and it is still unclear which are relevant for memory formation; MB projecting 

subtypes are the most likely candidates.  

 

Sugar stimulus: Sugar is sensed by gustatory receptor neurons (GRNs) located 

on the tarsae, the proboscis and in internal mouthparts of Drosophila (Scott et al., 

2001, Wang et al., 2004, Thorne et al., 2005, Marella et al., 2006, Dahanukar et 

al., 2007). These neurons project their axons to the subesophageal ganglion 

(SOG) of the brain where they are believed to interact with modulatory neurons. 

Octopaminergic neurons are believed to be the modulatory system that carries 
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the reinforcing effects of sugar to the MB in appetitive conditioning. 

Octopaminergic neurons (Sinakevitch et al., 2006) arborize in the SOG where 

they possibly receive direct input from GRNs. These neurons project extensively 

in the antennal lobe, MB and LH and therefore can potentially interact with the 

olfactory circuit. The role for such octopaminergic VUMmx1 neurons in appetitive 

conditioning was first demonstrated in honeybees where it was shown that 

electrical stimulation of VUMmx1 could replace the presentation of sucrose 

(Hammer et al., 1993). The TβH gene encodes an enzyme essential for 

octopamine synthesis (Figure I.9) and studies with TβH mutant flies revealed that 

TβH function is necessary for appetitive memory, but not for aversive memory 

formation (Schwaerzel et al., 2003). The memory defect of TβH mutant flies can 

be rescued either by feeding octopamine prior to training or by induction of a 

heat-shock promoter driven transgene; indicating octopamine acts acutely in 

appetitive conditioning (Schwaerzel et al., 2003).  Consistent with this 

hypothesis, Schroll et al. (2006) demonstrated that artificial activation of 

tyraminergic and octopaminergic neurons during odor presentation can produce 

appetitive memory in larvae.  Therefore it seems likely that octopaminergic 

neurons carry the US information to the MB.  

 

How does MB output drive behavior?  It is still unclear how MB output drives 

motor behavior. An anatomical structure called the central complex is believed to 

be the motor control center of Drosophlila. Mutants with developmental defects in 

CC are defective in locomotor behaviors (Strauss and Heisenberg 1993). Thus it 
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has been postulated that MB is directly or indirectly connected to the central 

complex. However no such connection has yet been reported in Drosophila.  

Studies in locusts have indentified neurons postsynaptic to KCs but none of 

these project to the central complex. A recent study described a morphologically 

varied collection of MB extrinsic neurons in Drosophila (Tanaka et al., 2008). 

However the functional properties of these neurons remain to be tested. 

 

IG. A circuit mechanism for memory storage 

 

All Drosophila memory models, like the one described in Figure I.12 use 

coincidence detection at the mushroom body as the mechanism behind storing 

olfactory memory. A coincidence-based form of memory storage was first 

proposed by Donald Hebb (1949) who argued that learning involve coincident 

synaptic activation of neurons. These types of learning with ‘Hebbian synapses’, 

shown to exist in Aplysia (Antonov et al., 2003), have been proposed in many 

systems (Mayford et al., 1996, Tsien et al., 1996, Rogan et al., 1997, Oda et al., 

1998, Tsvetkov et al., 2002) including insect olfactory system (for reviews see 

Keene and Waddell, 2007, Davis, 2005, Heisenberg, 2003). One such study 

examined transmission and plasticity between the synapse made by Kenyon 

cells onto one of the KC downstream target β-lobe neurons, using intracellular 

recordings. These synapses are strong and excitatory and display short-lived 

Hebbian spike-timing dependent plasticity (STDP) (Cassenaer and Laurent 

2007). The authors postulated that this form of STDP enhances the 
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synchronization between the KCs and their targets and thereby helps to preserve 

the propagation of the odor-specific codes through the olfactory system. However 

a recent study on the moth Manduca sexta has found that odor-induced spiking 

in KCs cells can occur well before the US is delivered, indicating a non-Hebbian 

mechanism of memory formation (Ito et al., 2008). It is important to note that 

memory-associated changes in KCs (or in other parts of olfactory network) have 

not yet been demonstrated convincingly. It is unclear whether memory formation 

involves changes in specific synapses, like the one between KCs and yet to be 

identified fourth-order neuron, or a more global system-wide change is involved. 

If memory formation indeed involves a network-wide change, detecting such 

changes might prove extremely difficult because to our current inability to detect 

a population-wide neural communication with good spatiotemporal resolution. On 

the other hand, if olfactory memory is indeed stored form of changes in specific 

KC-output neuron synapse, identification of MB output neurons will allow direct 

testing of the hypothesis.  To complicate matters further, in chapter III, I will add 

an additional element to the olfactory behavior; motivational control of olfactory 

memory performance. All these possibilities will keep Drosophila as an exciting 

model to study behavior systems for years to come.  
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Figure I.1 

 
 
Figure I.1.  A simple model for motivation. Motivated behavior was proposed 

to emerge from integration of sensory information, memories and internal states.  

Sensory information from incentive objects, like food impinge upon the nervous 

system. Internal states, such as nutritional state in the case of feeding, sensitizes 

the nervous system and makes it responsive to the sensory incentive. The term 

Ki, represents the ‘gain’ or ‘sensitivity’ of the system. Sensory stimuli revive a 

memory of past experience of the stimulus in question. If the integration is 

positive  Ki will be relatively high and motivated behavior will be displayed. If the 

integration is negative, Ki will be low, and the system will either show no 

response or display active avoidance to the substance. (Adapted from 

Toates,1986).  
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Figure I.2 
A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B.
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Figure I.2. Olfactory conditioning-Training. (A) Aversive conditioning 

paradigm. Flies are exposed to one odor for 1 minute coincident with 12 electric 

shock followed by 30 second of clean air. They then receive the second odor for 

1 min without electric shock. (B) Appetitive conditioning paradigm. Starved flies 

are given one odor alone for 2min followed by a 30 second exposure to clean air. 

Then they receive the second odor with sugar to form an appetitive odor memory 
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Figure I.3 
 
A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. 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Figure I.3. Testing aversive olfactory learning/memory in a T-maze. (A) After 

training, flies are transported to a t-maze where they are allowed to choose 

between two odors they experienced during training. Naïve flies distribute equally 

between two arms of the maze whereas trained flies run away from the shock-

associated odor. (B) A performance index is then calculated as the number of 

flies avoiding the shock-associated odor minus the number of flies going towards 

it, divided by the total number of flies. The assay is reciprocal and a different 

population of flies of the same genotype is trained to associate the other odor 

with shock. The final score is an average of two reciprocal half experiments. 

Thus, to show any performance in this assay, flies have to be able to associate 

the both odorants with shock.  
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Figure I.4 

 
A. 

 
 
B. 
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Figure I.4. Drosophila melanogaster olfactory circuit. (A) Cartoon Drosophila 

melanogaster head: Dorsal view of a cutaway fly head showing the main 

elements of the olfactory pathway. Odors are sensed by olfactory receptor 

neurons in the antennae and maxillary palps. These neurons project axons along 

the antennal nerve to the antennal lobe glomeruli, where they are sorted 

according to chemosensitivity. From there, the information is relayed by 

projection neurons in the inner and medial antennocerebral tract (iACT and 

mACT) to the mushroom body and to the lateral horn. Gustatory stimuli are 

sensed by gustatory receptor neurons in the labellum on the tip of the proboscis, 

the elongated fly mouthpiece. (Reproduced with permission from Keene and 

Waddell,  2007) 

(B). Schematic representation of Drosophila olfactory circuit: Olfactory receptor 

neurons (ORNs) expressing the same olfactory receptor projects to the same 

glomerulus in the antennal lobe. Uniglomerular projection neurons following inner 

antennocerebral tracts carry the odor information form antennal lobe to 

mushroom body (MB) and lateral horn (LH). Some projection neurons bypass 

mushroom body and projects directly to lateral horns. Antennal lobe is also 

innervated by excitatory local interneurons and inhibitory local neurons. 

Abbreviations: mACT- medial antennocerebral tracts; oACT- outer 

antennocerebral tracts.; iLN- inhibitory local interneurons; eLN- excitatory local 

neurons. 
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Figure 1.5 

 

 

Figure 1.5. Three-dimensional model of the mushroom body. The panels 

illustrate major anatomical subdivisions of the Drosophila mushroom body. 

Kenyon cells extend their dendrites in the calyx. Beyond the calyx, Kenyon cell 

axons fasciculate to form the peduncle which projects towards the anterior 

protocerebrum. The Kenyon cell axons bifurcate upon reaching anterior 



  38 

protocerebrum to form the mushroom body lobes. The lobes can be subdivided 

into the vertical α and α′ lobes and the medial β, β′ and γ lobes. 
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Figure I.6 
 
 
 

 
 
 
Figure I.6. Labeled-line theory of odor coding. Odors activate a combination 

of olfactory receptors. ORN activation patterns are relayed into PN activation 

patterns with 1:1 correlation. PN activation results in combinatorial activation of 

KCs.  
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Figure I.7 
 
A.  
 
 

 
 
 
B. 
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Figure I.7. Spatiotemporal coding of odors.  (A) Odors evoke spatiotemporal 

activation patterns in ORNs. ORN activation patterns are decorrelated in the PN 

ensemble. ORN activity also results in oscillation in LFP of PN population. A 

similar oscillation in the LFP occurs in the KC population. However, LFP 

oscillation in the KCs is phase delayed because of phase-shifted inhibitory input 

from LH interneurons. (B) Individual PNs fire axon potentials at different phases 

of LFP oscillation. Spiking in KCs is triggered by PN spikes that are synchronous 

and in phase with the MB-LFP oscillations. Abbreviation: LFP- local field 

potential; LH- lateral horn. 

 



  42 

 Figure I.8 
 

 
 

 

Figure I.8. A simplified molecular model for olfactory memory formation in 

Drosophila mushroom body. This cartoons depicts a single KC of the MB. 

Odor induced PN activity elevates intracellular Ca2+ level in KC whereas 

unconditioned stimulus information is carried to MB by monoamines like DA (for 

aversive US) / OA (for appetitive US), which activates specific GPCRs. When 

GPCR activation coincides with Ca2+ elevation, the adenylyl cyclase RUT is 

synergistically activated. The activation of RUT results in elevations in 

intracellular cAMP concentration. NF1 is thought to be involved in the 

maintenance of AC activity.  DNC phosphodiesterase degrades cAMP. Cyclic 

AMP activates the protein kinase A (PKA-R1) tetramer by causing the release of 
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the inhibitory PKA-regulatory (PKA-R1) subunits from the catalytic subunits 

encoded by the DC0 gene. The activation of PKA leads to either the 

phosphorylation (P) of a variety of substrates (including ion channels) for the 

establishment of short-term memory or the phosphorylation of CREB for the 

establishment of long-term memory. The DPM neurons (not shown) express 

AMN neuropeptides and provide input to the MB neurons for memory 

consolidation.  

Abbreviations: DC0- Drosophila PKA catalytic subunit DC0; DA- dopamine; OA- 

octopamine; AMN-Amnesiac; NF1- Neurofibromin 1. 
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Figure I.9 

 
 

 
 
 
Figure I.9. Biosynthesis pathways for dopamine and octopamine in 

Drosophila melanogaster. 
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Figure I.10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I.10.  Arborization pattern of dopaminergic neurons in the fly brain. 

Dopaminergic neurons are labeled by anti-tyrosine hydroxylase antibody. Partial 

projection of confocal stacks from a single brain are shown (Anterior-posterior A-

D). Yellow arrows indicate mushroom body innervation. Antennal lobe is rarely 

innervated (open circle).  
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Figure I.11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I.11. Arborization pattern of octopaminergic and tyraminergic 

neurons in the fly brain. Octopaminergic and tyraminergic neurons are labeled 

by Tdc2-Gal4; uas-mCD8::GFP. Partial projections of a confocal stack from a 

single brain are shown (Anterior-posterior A-D). Yellow arrows indicate 
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mushroom body innervation. Note dense innervation in the antennal lobe (open 

circle). 

 
 
 
 
Figure I.12 
 

 
 

Figure I.12 Model for aversive olfactory conditioning and DPM neuron- 

dependent memory processing. (A). Training: Odor input through projection 

neurons (PNs) activates a sparse parallel array (red) of mushroom body Kenyon 

cells (KCs) that project in the α'β' (light blue) and αβ (pink) lobes. The reinforcing 

effect of punitive shock is delivered to the mushroom body by dopaminergic 
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modulatory neurons (DA, orange). Activated synapses are colored yellow. The 

encoded memory gains specificity through its reliance on coincident DA release 

onto Kenyon cells that have been activated by odor. Therefore, although DA is 

released onto all Kenyon cells, synaptic plasticity is only induced at the output 

synapses (blue circles) of the red neurons. (B) Short-term memory (STM) 

retrieval: Re-exposure to the conditioned odor activates the learning-modified 

Kenyon cells (red). Output through the modified Kenyon cell α'β' and αβ output 

synapses (blue circles) leads to an aversive conditioned response. Plasticity was 

also induced at the α'β' Kenyon cell–dorsal paired medial (DPM) neuron synapse 

(blue/green), but transmission through this synapse is not required for short-term 

memory. (C) Memory consolidation: Spontaneous activity (open blue triangle) in 

the projection neurons after training occasionally drives the red α'β' and αβ 

Kenyon cell neurons. Activity in the red α'β' neurons strongly drives DPM 

neurons (green) through the modified α'β' Kenyon cell–DPM synapse. DPM 

neurons feedback onto all α'β' and forward onto all αβ Kenyon cells. Although 

DPM neurons release transmitter on all Kenyon cells, consolidation is neuron 

specific because it is reliant on the cells' history (that is, only the red neuron 

synapses that were modified during training can be consolidated) and coincident 

red Kenyon cell and DPM neuron activity after training. Each time the red Kenyon 

cells are spontaneously activated over the next hour, the recurrent α'β' Kenyon 

cell–DPM neuron loop consolidates the output synapses in the red αβ  Kenyon 

cells (larger blue circle), while plasticity in the red α'β'  neuron output synapses 

(blue/red circle) wanes. (D) Middle-term memory (MTM) retrieval. Re-exposure to 



  49 

the conditioned odor activates the red Kenyon cells. However, only transmission 

from the consolidated αβ Kenyon cell output synapses (larger blue circle) is 

required to elicit the aversive conditioned response. (Reproduced with 

permission from Keene and Waddell, 2007). 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Chapter II: Input to the system: Learned odor discrimination in Drosophila 

without combinatorial odor maps in the antennal lobe 
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II.A. Introduction:  

In fruit flies, specific odorants interact with unique combinations of olfactory 

receptor neurons (ORNs) giving rise to a putative topographic odor code of 

activated glomeruli in the antennal lobe.  To test the requirement of differential 

spatial encoding for odorant discrimination we reduced olfactory input complexity 

using Or83b2 null mutant flies (Larsson et al. 2004). OR83b is an essential 

subunit of odorant receptor (OR) containing odorant-gated cation channels 

(Larsson et al. 2004, Benton et al. 2006, Sato et al. 2008, Wicher et al. 2008). 

Most fruit fly ORNs co-express Or83b with a single unique (OR) gene and all 

those housed in basiconic and trichoid sensillae, with the exception of a highly 

specialized class that detect CO2, require Or83b for function (Larsson et al. 2004, 

Benton et al. 2006, Jones et al. 2007, Kwon et al. 2007). Or83b is also co-

expressed with Or35a in a broadly tuned class of coeloconic ORNs. The 

remaining coeloconic ORNs, that are narrowly tuned to select fatty acids, 

aldehydes and small amines, do not express Or83b, Or or Gr genes (Fishilevich 

et al. 2005, Couto et al. 2005, Yao et al. 2005). Therefore, Or83b2 mutant flies 

are anosmic to most odorants sensed by basiconic sensillae. Importantly, ORNs 

wire to the appropriate glomeruli in Or83b mutant flies and one can restore 

function to a single ORN class by expressing a uas-Or83b transgene using Or-

specific GAL4 control (Fishilevich et al. 2005, Louis et al. 2008). Using this 

technique others demonstrated that larvae with a single ORN chemotax toward 

odorants that attract wild-type larvae (Fishilevich et al. 2005, Louis et al. 2008). 
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While clearly establishing a role for single ORNs, these studies did not 

investigate whether odorant-evoked activity through a single class of ORN can 

be decoded as a discrete odor percept. One way to do this is to assign value to 

an arbitrary odorant with associative conditioning and demonstrate that flies 

choose appropriately between odorants. If discrete spatial patterns of glomerular 

activation are essential for encoding odorant identity, flies with one ORN class 

will fail to discriminate odorants, because the glomerulus activated by all 

odorants is the same in these flies. Odorant discrimination with one class of 

ORNs would challenge a spatial encoding model.  

 

 We used an olfactory conditioning paradigm where flies associate one of 

two odorants with electric shock punishment and then choose between the two 

odorants (Tully and Quinn 1985). Trained flies preferentially avoid the T-maze 

arm with the conditioned odorant. A different population of the same genotype of 

flies is subsequently taught to associate the other odorant with punishment and a 

single learning score represents the average of the two reciprocal experiments. 

This design provides a rigorous test of odorant discrimination and controls 

against innate odorant bias. 
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II.B. Results: 

 

Flies with single functional class of ORNs learn to discriminate between 

odorants  

 The electrophysiological response to a large panel of odorants has been 

reported for most Drosophila ORs (Hallem and Carlson 2006), allowing us to 

select and test ORNs and their cognate odorants. We first determined whether 

Or83b2 mutant flies can learn to discriminate between six pairs of odorants (6-

methyl-5-hepten-2-one versus pentyl acetate, methyl salicylate versus methyl 

benzoate, isoamyl acetate versus methyl benzoate, methyl hexanoate versus di-

ethyl succinate, methyl salicylate versus 4-methyl phenol and geranyl acetate 

versus ethyl acetate) selected because they activate defined ORs (Figure II.1A). 

As expected, wild-type flies showed robust learned discrimination with all six 

odorant pairs whereas Or83b2 mutant flies did not. Therefore, Or83b expressing 

ORNs are required to learn to discriminate between the chosen odorants and 

residual responses in Or83b2 mutant flies are not sufficient to support learned 

odorant discrimination.  

 

 We next tested flies in which the function of Or46a, Or67a or Or98a-

expressing ORNs were restored individually. These ORNs are housed in different 

sensory sensilla (pb2, ab10 and ab7a) in the maxillary palp or antenna, project 

their axons to the spatially discrete VA7l, DM6 and VM5 glomeruli (Figure II.1B), 
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and respond to a subset of the odorant pairs used in Figure II.1A (Fishilevich et 

al. 2005, Couto et al. 2005, Hallem and Carlson 2006, Olsen et al. 2007). 

Furthermore, these receptors are not co-expressed with other functional ORs 

(Fishilevich et al. 2005, Couto et al. 2005, Goldman et al. 2005). We first used 

Or46a-GAL4 to express uas-Or83b in an otherwise Or83b2 mutant fly and tested 

whether these flies could discriminate between two odorants reported to activate 

OR46a; 4-methyl phenol and methyl salicylate (Olsen et al. 2007). Restoring 

OR46a ORN function in this way faithfully restored odor-evoked responses to 

those approximating wild-type OR46a neurons (Olsen et al. 2007). We assayed 

wild-type, Or83b2 mutant, Or46a-GAL4; Or83b2 and uas-Or83b; Or83b2 mutant 

flies in parallel for comparison (Figure II.1C). All flies without functional Or83b-

expressing ORNs did not learn whereas flies with restored OR46a neurons 

learned to discriminate between 4-methyl phenol and methyl salicylate. As an 

indicator of specificity, we tested flies with restored OR67a neurons. OR67a is 

broadly tuned but apparently does not respond to 4-methyl phenol and methyl 

salicylate (Hallem and Carlson 2006, Olsen et al. 2007). Consistent with this, 

OR67a restored flies did not learn with these odorants (Figure II.1C). Therefore 

flies with a single class of functional Or83b-expressing ORNs can discriminate 

between two odorants if they activate the relevant OR. 

 

 The odor-tuning curve of OR67a partially overlaps with that of OR98a 

(Hallem and Carlson 2006).  We therefore tested flies with restored OR67a or 
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OR98a neurons for learned discrimination between methyl benzoate and isoamyl 

acetate (Figure II.1D). As in the previous experiments, all flies without functional 

Or83b-expressing ORNs did not learn but robust learning was evident in flies 

with restored OR67a or OR98a neurons. Therefore Or83b2 mutant flies can use 

either OR67a or OR98a-restored ORNs to discriminate between methyl benzoate 

and isoamyl acetate.  

 

 OR67a also responds to pentyl acetate and 6-methyl-5-hepten-2-one 

(Hallem and Carlson 2006). We therefore tested whether flies with restored 

OR67a neurons could learn to discriminate between these two odorants (Figure 

II.1E). All flies without functional Or83b-expressing ORNs did not exhibit learning, 

whereas flies with restored OR67a ORNs learned. Therefore OR67a restored 

flies can learn to discriminate between at least two pairs of different odorants that 

activate OR67a. The preceding experiments demonstrate that flies can employ a 

single class of Or83b-expressing ORNs to learn to discriminate between two 

odorants that activate that ORN class, consistent with the notion that they can 

use neural activity in the same class of ORNs to differentially represent odorants. 
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Flies with single class of functional ORNs fail to recognize all components 

of an odorant mixture 

 

Our findings using Or83b2 mutant flies suggest that Or83b-independent ORNs 

are not sufficient for learned discrimination with multiple odorant combinations 

(Figure II.1). Nevertheless, we further tested whether flies with restored OR67a 

neurons had other relevant ORNs by testing whether flies could simultaneously 

encode multiple odorant components, like wild-type flies. We combined the four 

odorants that flies with restored OR67a neurons can discriminate between; 

methyl benzoate, isoamyl acetate, pentyl acetate and 6-methyl-5-hepten-2-one, 

into two binary mixtures, trained the flies with these mixtures (Figure II.2A and B) 

and tested for discrimination between the component odorants. Whereas wild-

type flies exhibited learned discrimination for all four component odorants, 

regardless of the mixture combination used during training, learned 

discrimination was only observed for the 6-methyl-5-hepten-2-one and pentyl 

acetate components in OR67a restored flies.  These data suggest that OR67a 

restored flies encode one odor component at a time, consistent with the notion 

that these odorants activate the same ORNs. 

 

To further test the model that odorants compete for ORs in OR67a 

restored flies, we trained flies with single odorants and tested discrimination with 

binary mixtures (Figure II.2C and D). We reasoned that a competing odorant in a 
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mixture during testing would mask learned behavior for the other odorant. 

Training wild-type flies with either 6-methyl-5-hepten-2-one versus pentyl acetate 

or isoamyl acetate versus methyl benzoate and testing with 6-methyl-5-hepten-2-

one + isoamyl acetate versus methyl benzoate + pentyl acetate revealed learned 

discrimination in both cases (Figure II.2C). However, in flies with OR67a restored 

neurons, robust learned discrimination was only observed following training with 

6-methyl-5-hepten-2-one versus pentyl acetate and not with isoamyl acetate 

versus methyl benzoate. We also tested learned discrimination with a different 

odorant combination; 6-methyl-5-hepten-2-one + methyl benzoate versus pentyl 

acetate + isoamyl acetate (Figure II.2D). Wild-type flies showed learned 

discrimination in both cases, whereas OR67a restored flies only showed learned 

discrimination when trained with 6-methyl-5-hepten-2-one versus pentyl acetate. 

Therefore these data are consistent with the notion that odorants compete at the 

ORN level in OR67a restored flies, providing further support that these flies have 

a single relevant ORN class (Figure II.5 and 6). 

 

OR67a restored flies cross-adapt to odorants that activate OR67a neuron 

  

 We also tested the contribution of Or83b-independent ORNs using a 

cross-adaptation assay that does not require learning. We predicted OR67a 

restored flies would cross-adapt to odorants that activate OR67a ORNs if these 

odorants activated the same ORNs. We first used methyl benzoate and pentyl 
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acetate because odorant mixture experiments suggested these odorants 

compete for OR67a neurons (Figure II.3A and B). Wild-type and OR67a restored 

flies were adapted by pre-exposure to methyl benzoate for 30 minutes and tested 

for methyl benzoate or pentyl acetate avoidance behavior. Naive wild-type and 

OR67a flies avoided methyl benzoate but avoidance was abolished in both 

genotypes following adaptation (Figure II.3A), demonstrating the efficacy of the 

adaptation protocol. For cross-adaptation we tested separate groups of methyl 

benzoate adapted flies for pentyl acetate avoidance (Figure II.3A).  Wild-type 

flies adapted with methyl benzoate avoided pentyl acetate indicating that pentyl 

acetate activates additional ORNs in wild-type flies that do not respond to methyl 

benzoate. However, OR67a restored flies adapted with methyl benzoate also 

adapted their behavioral response to pentyl acetate, suggesting that pentyl 

acetate activates the same ORNs in these flies that respond to methyl benzoate. 

We also performed reciprocal cross-adaptation experiments where flies were 

adapted to pentyl acetate and tested for pentyl acetate or methyl benzoate 

avoidance behavior (Figure II.3B). OR67a restored flies adapted to pentyl 

acetate also lost their response to methyl benzoate. In contrast, the same pentyl 

acetate pre-exposure partially altered the pentyl acetate and methyl benzoate 

response in wild-type flies. Therefore methyl benzoate and pentyl acetate 

activate overlapping ORNs in OR67a restored flies, again supporting the notion 

that odorants compete for a single relevant class of functional ORNs in OR67a 

restored flies.  
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We also used cross-adaptation to test whether odorants that can be 

discriminated by OR67a restored flies activate overlapping ORNs. Indeed, Or67a 

restored flies displayed reciprocal cross-adaptation to methyl benzoate and 

isoamyl acetate (Figure II.3A and C) and to pentyl acetate and 6-methyl-5-

hepten-2-one (Figure II.3B and D). In addition, we demonstrated that OR67a 

restored flies discriminate between methyl benzoate and pentyl acetate (Figure 

II.7), two other odorants that they cross-adapt to. These data present further 

evidence that flies can discriminate between odorants using the same, and very 

likely a single class of, ORNs. Importantly, a purely spatial model for odorant 

encoding cannot account for discrimination between two odorants that activate 

the same class(es) of ORNs. 

 

 

Or83b2 flies with functional OR67a neurons can discriminate odorants 

across changing concentration 

 Flies with a single class of functional Or83b-expressing ORNs could discriminate 

between odorants using odorant intensity (relative concentration) and / or identity 

(chemical structure) information. We therefore tested whether OR67a restored 

flies only coded odorant intensity by altering the concentration of one of the two 

odorants between training and testing discrimination. These manipulations 
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simultaneously changed absolute concentration of one of the odorants and the 

relationship between odorants. We used pentyl acetate and 6-methyl-5-hepten-2-

one because the odor-evoked firing rate of Or67a-expressing ORNs to these 

odorants has been reported to vary between 10-2 and 10-4 dilutions (Hallem and 

Carlson 2006). We first trained flies with either 10-2, 10-3 or 10-4 dilutions of 6-

methyl-5-hepten-2-one versus a constant 10-3 dilution of pentyl acetate and 

tested all groups for discrimination between 10-3 6-methyl-5-hepten-2-one versus 

10-3 pentyl acetate (Figure II.4A). Learned discrimination scores varied little for 

wild-type and OR67a rescued flies with changing 6-methyl-5-hepten-2-one 

concentration demonstrating that both wild-type and OR67a rescued flies identify 

6-methyl-5-hepten-2-one, despite a change in absolute and relative odorant 

intensity. We similarly manipulated pentyl acetate concentration between training 

and testing. In this case, learned discrimination in wild-type and OR67a restored 

flies was robust when training concentration was lower, or the same, as that at 

test (Figure II.4B). Both wild-type and OR67a restored flies performed most 

poorly when training concentration was higher than that at test. Since flies with 

restored OR67a neurons distinguish the appropriate odorant across changing 

concentration, they cannot be only coding absolute odorant intensity. 

Furthermore, since our experimental design also changed relative odorant 

intensity between training and testing, the flies do not utilize this parameter to 

discriminate odorants. Instead, these data suggest flies with restored OR67a 

neurons encode odorant identity. 
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II.C. Discussion 

 

In conclusion, multiple classes of ORNs are not required for flies to discriminate 

odorants. Although flies without functional Or83b-expressing neurons cannot 

learn to discriminate between a number of chemically distinct odorants, providing 

a single class of Or83b-expressing ORNs restores learned discrimination 

between two odorants that activate that particular ORN class. These flies cross-

adapt to odorants that activate the restored ORNs demonstrating that the 

relevant ORNs are the same, thus challenging a requirement for discrete spatial 

codes for odorants in the antennal lobe. As expected, flies with one class of 

Or83b-expressing ORNs have limitations and can apparently only encode one 

odorant that activates the appropriate receptor at a time. These data suggest a 

benefit of having multiple classes of ORNs is the ability to identify certain 

odorants present within a more complex milieu. Importantly, Or83b2 mutant flies 

with one functional class of Or83b-expressing ORNs choose appropriately 

between two odorants even though the absolute and relative concentration is 

changed between training and testing, implying that they encode odorant identity, 

and do not only rely on encoding odorant intensity.   

 

 Finding that distinct combinatorial spatial patterns of ORN activation in the 

antennal lobe are not essential to represent odorant information implies an 
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important role for odorant-evoked temporal dynamics. Previous studies in insects 

and vertebrates have documented considerable temporal complexity in odor-

evoked activity at successive layers of the olfactory system (Stopfer et al. 1997, 

Wehr et al. 1996, Friedrich and Laurent 2001, Muller et al. 2002, Perez-Orive et 

al. 2002, Lei et al. 2004, Friedrich et al. 2004, Wilson et al. 2004, Carleton et al. 

2008) but few have investigated the behavioral relevance (Stopfer et al. 1997). 

Recent work has shown that excitatory and inhibitory lateral connectivity in the 

Drosophila antennal lobe can shape projection neuron responses (Louis et al. 

2008, Wilson and Laurent 2005, Shang et al. 2007, Olsen and Wilson 2008, 

Kazama and Wilson 2008, Root et al. 2008), therefore we expect different 

temporal signals in the same ORNs to generate distinct temporal, and perhaps 

spatial, patterns of projection neuron activity. However, since flies with a single 

functional class of Or83b-expressing ORNs lack the lateral input driven by 

additional classes of ORN, it will be important to determine how lateral 

connectivity within the antennal lobe contributes to odorant discrimination in 

Drosophila. 
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II.D. Materials and methods 

 

Fly strains 

Fly stocks were raised on standard cornmeal food at 25°C and 40-50% relative 

humidity. The wild-type Drosophila strain is Canton-S. The uas-n-syb::GFP flies 

are described (Estes et al. 2000). Or83b2 mutant flies, Or98a-GAL4 (Fishilevich 

et al. 2005), and uas-Or83b transgenic flies were obtained from L. Vosshall 

(Rockefeller University). Or67a-GAL4 transgenic flies (Couto et al. 2005) were 

obtained from B. Dickson (IMP, Vienna) and Or46a-GAL4 (Fishilevich et al. 

2005); Or83b2 flies were obtained from R. Wilson (Harvard University). All 

transgenic insertions are on the second chromosome. We generated OrX-

GAL4/uas-Or83b; Or83b2 flies by crossing OrX-GAL4; Or83b2 flies to uas-Or83b; 

Or83b2 flies. Heterozygous uas-Or83b/+; Or83b2 and OrX-GAL4/+; Or83b2 flies 

were generated by crossing uas-Or83b; Or83b2 and OrX-GAL4; Or83b2 flies to 

Or83b2 flies. Mixed sex populations of flies, heterozygous for the listed 

transgenes, were tested for olfactory learning. 

 

 

Behavioral analysis 

The olfactory avoidance paradigm was essentially performed as described 

previously (Tully and Quinn 1985). The Performance Index (PI) was calculated as 

the number of flies avoiding the conditioned odor minus the number of flies 
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avoiding the unconditioned odor divided by the total number of flies in the 

experiment. A single PI value is the average score from flies of the identical 

genotype trained with each odor. For training, all odors were diluted 1:1000 in 

mineral oil (unless stated otherwise). For testing, all odors were diluted 1:1000 in 

mineral oil and adjusted so that naïve flies distributed equally between the 

odorant pair.  

 

 For olfactory adaptation experiments naïve flies or flies exposed to 

odorant A for 30min in the training chamber of the T-maze were tested for their 

preference between tubes with either odorant A versus air or for a different 

odorant versus air. Odorants were diluted approximately 1:1000 in mineral oil. 

Avoidance Index was calculated as the number of flies avoiding the odorant 

minus the number of flies avoiding the air divided by the total number of flies in 

the experiment.  

 

 To reduce variation within experiments, all genotypes were tested in each 

experimental session. Statistical analyses were performed using KaleidaGraph 

(Synergy Software). Overall analyses of variance (ANOVA) were followed by 

planned pairwise comparisons between the relevant groups with a Tukey HSD 

post-hoc test. Statistical significance from zero was determined using the Mann-

Whitney U-test. All experiments are n≥8. 
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 Methyl benzoate, isoamyl acetate, pentyl acetate, 6-methyl-5-hepten-2-

one, 4-methyl phenol, methyl salicylate, methyl hexanoate, di-ethyl succinate, 

and ethyl acetate were obtained from Sigma and geranyl acetate from Fluka. 

 

 

Immunohistochemistry 

Adult brains expressing transgenic uas-n-syb::GFP (Estes et al. 2000) were 

removed from the head capsule and fixed in 4% paraformaldehyde in Phosphate 

Buffered Saline (PBS), [1.86mM NaH2PO4, 8.41mM Na2HPO4, 175mM NaCl] for 

15 min, and rinsed in PBS-T (PBS containing 0.25% Triton X-100). Brains were 

incubated with 1:200 mAb anti-GFP (Invitrogen) and 1:100 mAb nc82 

(Hybridoma Bank, University of Iowa) followed by the appropriate fluorescent 

secondary antibodies (Jackson Laboratories). Confocal analysis was performed 

on a Zeiss LSM 5 Pascal confocal microscope. Confocal stacks were processed 

using Amira, ImageJ and Adobe Photoshop. 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Figure II.1 
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Figure II.1. Or83b2 flies with functional Or46a, Or67a or Or98a-expressing 

neurons learn to discriminate between odorants that activate these 

receptors.  (A) Or83b2 mutant flies cannot learn to discriminate between odors. 

Wild-type flies can learn to discriminate between six pairs of odorants whereas 

Or83b2 mutant flies cannot. Asterisks indicate no significant difference to zero (all 

P>0.1, Mann Whitney U-test). (B) Upper panel, volume rendering of the fly 

antennal lobes highlighting the relative position of the VA7l (orange), DM6 

(green) and VM5 (yellow) glomeruli innervated by Or46a, Or67a and Or98a 

expressing OSNs. Lower panels show corresponding confocal stack projections 

through the antennal lobes of flies expressing uas-n-syb::GFP driven by Or46a-

GAL4, Or67a-GAL4 or Or98a-GAL4. N-syb::GFP is stained with anti-GFP 

(green) and neuropil is visualized with nc82 antibody (magenta) staining. Scale 

bar is 20µm and refers to all micrographs. (C) Flies with only functional OR46a 

neurons can learn to discriminate between 4-methyl phenol and methyl salicylate 

but flies with only OR67a neurons cannot. Asterisks indicate significant difference 

(all P<0.04, ANOVA) between the marked groups and all others. (D) Flies with 

only functional OR67a or OR98a neurons can learn to discriminate between 

methyl benzoate and isoamyl acetate. Asterisks indicate significant difference (all 

P<0.005, ANOVA) between the marked groups and all others. (E) Flies with only 

functional OR67a neurons can learn to discriminate between pentyl acetate and 

6-methyl-5-hepten-2-one. Asterisks indicate significant difference (all P<0.005, 

ANOVA) between the marked groups and all others. Data are mean ± s.e.m. 
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Figure II.2 
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Figure II.2. Limitations in learned behavior in Or83b2 flies with functional 

Or67a-expressing neurons. (A) Flies with only functional OR67a neurons learn 

one component of a binary blend. Flies were trained with 6-methyl-5-hepten-2-

one + isoamyl acetate versus methyl benzoate + pentyl acetate mixtures. Wild-

type flies show learning when tested with all components alone, whereas flies 

with only functional OR67a neurons exclusively show learned discrimination for 

the 6-methyl-5-hepten-2-one and pentyl acetate components. (B) Wild-type flies 

learn both components of a different binary blend, but OR67a-restored flies only 

learn one. Flies were trained with 6-methyl-5-hepten-2-one + methyl benzoate 

versus pentyl acetate + isoamyl acetate mixtures. Wild-type flies learn all 

components, whereas flies with restored OR67a neurons again only show 

learned discrimination for the 6-methyl-5-hepten-2-one and pentyl acetate 

components. (C) Flies with restored OR67a neurons do not show learned 

discrimination of isoamyl acetate and methyl benzoate when 6-methyl-5-hepten-

2-one and pentyl acetate are also present during test. Wild-type flies trained with 

either set of single components show learned discrimination when tested with the 

additional complexity of binary mixtures, but flies with OR67a neurons only show 

robust performance if trained with 6-methyl-5-hepten-2-one versus pentyl 

acetate. (D) Flies with functional OR67a neurons do not show learned 

discrimination of isoamyl acetate and methyl benzoate when tested with a 

different composition of odorant mixtures. Wild-type flies trained with either set of 

single components, 6-methyl-5-hepten-2-one versus pentyl acetate or isoamyl 
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acetate versus methyl benzoate show learned discrimination when tested with 

binary mixtures, but flies with OR67a neurons only show robust performance if 

trained with 6-methyl-5-hepten-2-one versus pentyl acetate. Individual odor 

concentrations in the blends were the same as those used separately in Figures 

II.1D and 1E and when tested for component learning (Figures II.2A and 2B). 

Asterisks denote no significant difference to zero (all p > 0.5, Mann Whitney U 

test). 
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Figure II.3 
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Figure II.3. OR67a restored flies cross-adapt to odorants that activate 

OR67a neurons.  (A) Adaptation of innate odor avoidance behavior in wild-type 

and OR67a restored flies. Pre-exposing wild-type flies and those with restored 

OR67a neurons to methyl benzoate adapts methyl benzoate avoidance behavior. 

Flies with OR67a restored neurons, but not wild-type flies, cross-adapt to methyl 

benzoate, pentyl acetate and isoamyl acetate. Asterisk indicates significant 

difference (P<0.002, ANOVA) (B) Pre-exposure to pentyl acetate significantly 

adapts pentyl acetate avoidance behavior of flies with restored OR67a neurons 

(P<0.002, ANOVA) but does not significantly adapt wild-type flies (P>0.1, 

ANOVA). Pre-exposure to pentyl acetate cross-adapts methyl benzoate and 6-

methyl-5-hepten-2-one avoidance in flies with OR67a restored neurons (both 

P<0.001, ANOVA) but not in wild-type flies (P>0.2, ANOVA). (C) Pre-exposure to 

isoamyl acetate cross-adapts the methyl benzoate avoidance behavior of flies 

with restored OR67a neurons (P<0.002, ANOVA) but does not significantly adapt 

wild-type flies (P>0.1, ANOVA). (D) Pre-exposure to 6-methyl-5-hepten-2-one 

cross-adapts pentyl acetate avoidance behavior of flies with restored OR67a 

neurons (P<0.002, ANOVA) but does not significantly adapt wild-type flies 

(P>0.1, ANOVA). Data are mean ± s.e.m. 
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Figure II.4 
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Figure II.4. Or83b2 flies with functional OR67a neurons discriminate 

odorants across changing concentration. (A) Wild-type flies and OR67a 

restored flies were trained with 6-methyl-5-hepten-2-one concentrations that 

were 10X less, the same or 10X more than they were tested with, while pentyl 

acetate concentrations were kept constant. (B) Wild-type flies and those with 

restored OR67a neurons were trained with pentyl acetate concentrations that 

were 10X less, the same or 10X more than they were tested with, while 6-methyl-

5-hepten-2-one concentrations were kept constant. Asterisks indicate significant 

difference (all P<0.01, ANOVA). Data are mean ± s.e.m. 
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Figure II.5 

 

Figure II.5. Results from odor mixture experiments cannot be explained by 

the OR67a restored flies using spatial coding with OR67a neurons and 

another class of Or83b-independent neurons. In this model a black-filled 

circle represents an activated glomerulus. Green arrows represent predicted 

successful experiments and black arrows are predicted failure. OR67a restored 

flies can discriminate between 6-methyl-5-hepten-2-one (6M) and pentyl acetate 

(PA) (Figure II.2D) and between methyl benzoate (MB) and isoamyl acetate (IA) 

(Figure II.2C). Since all of these odorants activate OR67a neurons (green-edged 

glomerulus), a spatial coding model requires that only one of each discriminable 

odorant pair activates the other class of Or83b-independent neurons.  

 Irrespective of the odorant chosen to activate the Or83b-independent 

neurons, combining discriminable pairs into mixtures raises a scenario where two 

of the three mixtures generate identical spatial patterns of activation, and one is 
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unique. Such a spatial coding model predicts flies will be able to discriminate 

appropriately when trained with components and tested with 6M+MB versus 

PA+IA odor blends but that when trained with components and tested 6M+IA 

versus MB+PA there will be no evidence of learning. Our results do not fit this 

model because OR67a restored flies show learned discrimination for one of the 

odorant pairs when tested with either odorant mixture.  

 Similarly, our results from experiments training flies with mixtures and 

testing with components do not support a spatial model employing OR67a 

neurons and another class of Or83b-independent neurons. The spatial model 

predicts that training with the odorant mixtures will not produce component 

learning in one case and will produce learning for both components in the other 

instance. However, OR67a restored flies show learned discrimination for one 

odorant pair in each experiment. 
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Figure II.6. 

 

Figure II.6.  Results from odor mixture experiments cannot be explained by 

the OR67a restored flies using spatial coding with OR67a neurons and 2 

additional classes of Or83b-independent neurons. Our results show that 

OR67a restored flies learn one odor from a binary mixture and these results also 

cannot be explained by increasing the number of available Or83b-independent 

neurons to two that are activated in a non-overlapping manner. Even that 

scenario produces mixtures that cannot be discriminated using purely spatial 

encoding. One could continue to increase the number of putative Or83b-

independent ORNs and eventually the flies would be predicted to encode both 

components of the mixture. However, OR67a restored flies encode one 

component of a binary mixture. Therefore the most parsimonious explanation is 

that they utilize a single class of Or83b-dependent ORNs in our experiments.  
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Figure II.7. 

 

 

Figure II.7. Flies with only functional OR67a neurons can learn to 

discriminate between methyl benzoate and pentyl acetate. Asterisk indicates 

significant difference (P<0.005, ANOVA) between the marked group and the 

others. Data are mean ± s.e.m. 
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Preface to Chapter III 
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Chapter III: Output from the system: A neural circuit mechanism integrating 

motivational state with memory expression in Drosophila 
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III.A. Introduction 

Motivation provides behavior with purpose and intensity and ensures that 

particular motor actions are expressed at the appropriate time. Although the 

concept of motivation has interested psychologists and ethologists for decades 

(Hull, 1951; Tolman, 1932; Thorpe, 1956; Bindra, 1959; Hinde, 1966; Lorenz, 

1950; Dethier, 1976; Toates, 1986; Kennedy, 1987), a detailed neurobiological 

perspective of the mechanisms underlying state-dependent changes in behavior 

is lacking. Understanding how motivational systems are organized in the brain 

and how they impact neural circuits that direct behavior is a major question in 

neurobiology and addresses the functional connection between body and mind. 

 

Hunger is perhaps the most heavily studied of the regulatory, or 

homeostatic, motivational drive states because food availability is easily 

manipulated in the laboratory. Hunger results from internally generated metabolic 

deficit signals and these signals in turn, increase the likelihood that the animal 

initiates food-seeking behavior (Dethier, 1976; Saper et al., 2002; Abizaid and 

Horvath, 2008). Models of motivation include learned representations of cues 

associated with food, such as smell and taste, that provide additional incentive 

and direction to locate a particular food source (Hull, 1951; Toates, 1986). When 

the food is located and consumed, the homeostatic process comes full-circle and 

the motivational drive to feed is neutralized. However, it is unclear how neural 

systems representing hunger and satiety are integrated with those of memory. 
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The idea that motivation could be approached experimentally in insects 

followed seminal studies of food-seeking behavior in the blowfly Phormia regina 

(Dethier, 1976). It was noted that although exposing gustatory receptor neurons 

on the proboscis to sugar always generated an electrophysiological response, 

the blowfly did not consistently respond by extending the proboscis. However, a 

food-deprived blowfly was more likely to respond with proboscis extension. A 

sophisticated genetic tool-kit for manipulating neural circuits (Keene and 

Waddell, 2007) coupled with robust behaviors makes the fruit fly Drosophila 

melanogaster ideal to understand the physiological mechanism that underlies 

such state-dependent behavior. 

 

Drosophila can be efficiently trained to associate odorants with sucrose 

reward (Tempel et al., 1983; Krashes and Waddell, 2008). Importantly, fruit flies 

have to be hungry to effectively express appetitive memory performance 

(Krashes and Waddell, 2008). Therefore motivated decision-making and 

appetitive memory performance emerges in Drosophila when the incentive of the 

conditioned odor, the learned representation of that odor, and the internal 

motivational drive state of hunger are positively integrated. This apparent state-

dependence implies that signals for hunger and satiety may interact with memory 

circuitry to regulate the behavioral expression of learned food-seeking behavior. 

The mushroom body (MB) in the fly brain is a critical site for appetitive memory 

(Schwaerzel et al., 2003; Keene et al., 2006; Krashes and Waddell, 2008). 
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Synaptic output from the MB α´β´ neurons is required to consolidate appetitive 

memory whereas output from the αβ subset is specifically required for memory 

retrieval (Krashes et al., 2007; Krashes and Waddell, 2008). This anatomy 

provides a foundation for understanding neural circuit integration between 

systems representing a motivational state and those for memory. 

 

Neuropeptide Y (NPY) is a highly conserved 36 amino acid 

neuromodulator that stimulates food-seeking behavior in mammals (Tatemoto et 

al., 1982; Clark et al., 1984; Kalra, 1997). NPY mRNA levels are elevated in 

neurons in the arcuate nucleus of the hypothalamus of food-deprived mice (Sahu 

et al., 1988; Sanacora et al., 1990) and injection of NPY into the paraventricular 

nucleus increases feeding (Stanley and Leibowitz, 1985). Most impressively, 

ablating NPY expressing neurons from adult mice leads to starvation (Bewick et 

al., 2005; Gropp et al., 2005; Luquet et al., 2005). NPY exerts its effects through 

a family of NPY receptors and appears to have inhibitory function (Colmers et al., 

1988; Colmers et al., 1991; Klapstein and Colmers, 1993; Qian et al., 1997; Rhim 

et al., 1997; Sun et al., 2003; Browning and Travagli, 2003; Lin et al., 2004). NPY 

therefore must repress the action of inhibitory pathways in order to promote 

feeding behavior. Drosophila Neuropeptide F is an ortholog of NPY, which has a 

C-terminal amidated phenylalanine instead of the amidated tyrosine in 

vertebrates (Brown et al., 1999). Evidence suggests that dNPF plays a similar 

role in appetitive behavior in flies. dNPF overexpression prolongs feeding in 
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larvae and delays the developmental transition from foraging to pupariation (Wu 

et al., 2003). Furthermore, overexpressing a dNPF receptor gene, npfr1 

(Garczynski et al., 2002), causes well-fed larvae to eat bitter-tasting food that 

wild-type larvae will only consume if they are hungry (Wu et al., 2005b). 

 

In this study we exploited dNPF to identify a neural circuit that participates 

in motivational control of appetitive memory behavior in adult fruit flies. We show 

that stimulating dNPF neurons promotes appetitive memory performance in fed 

flies, mimicking the hungry state. npfr1 is required in dopaminergic (DA) neurons 

that innervate the MB for satiety to suppress appetitive memory performance. 

Directly blocking the DA neurons during memory testing reveals performance in 

fed flies whereas stimulating them suppresses performance in hungry flies. 

These data suggest that six DA neurons are a key module of dNPF-regulated 

circuitry, through which the internal motivational states of hunger and satiety are 

represented in the MB. 
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III.B. Results 

Stimulating dNPF neurons promotes memory retrieval in fed flies 

Feeding flies after appetitive conditioning suppresses memory performance 

(Figure III.1A) and the suppression is reversed by re-starving flies (Krashes and 

Waddell, 2008). Food-deprivation is also required for efficient appetitive learning 

but a learning defect could simply result from satiated flies failing to ingest the 

reinforcing sucrose. In this study we specifically manipulated memory retrieval 

and in all experiments we ensured that flies were efficiently trained, by food-

depriving them for 18hr before training. Immediately after training we transferred 

flies to vials with, or without, food for 3hr before testing appetitive memory. Flies 

starved before and after training display robust appetitive memory but memory 

performance steadily declines following 10-30min of feeding (Figure III.1A) 

indicating a continuum of performance relative to the satiety state of the flies. 

 

Immunostaining for dNPF in adult fly brains reveals neurons in the 

subesophageal ganglion (SOG), the dorsal and lateral protocerebrum and the 

central complex (CC) (Wen et al., 2005; and Figure III.1B). One can control some 

of these neurons using a dNPF promoter-driven GAL4 to express GAL4-uas 

promoter driven transgenes (Wen et al., 2005). dNPF-GAL4 driven uas-

CD8::GFP labels most of the dNPF-immunoreactive neurons whose cell bodies 

reside in the dorsal protocerebrum but not those whose somata are clustered in 

the SOG (Figure III.1B and 8). 
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We reasoned that dNPF release might represent the food-deprived state 

in the brain and so tested whether stimulating dNPF-expressing neurons could 

over-ride the suppression of memory performance by feeding. We expressed the 

heat-sensitive uas-dTrpA1 transgene (Hamada et al., 2008) with dNPF-GAL4. 

dTrpA1 encodes a Transient Receptor Potential (TRP) channel that is required in 

a small number of neurons in the brain for temperature preference in Drosophila 

(Hamada et al., 2008). Ectopically expressed dTRPA1 conducts Ca2+ and 

depolarizes neurons when flies are exposed to >25°C allowing one to stimulate 

specific neurons. We first food-deprived and trained wild-type, dNPF-GAL4, uas-

dTrpA1 and dNPF-GAL4; uas-dTrpA1 flies, fed them ad libitum for 3-hours and 

tested appetitive memory at the permissive 23°C. No group showed robust 

appetitive memory under these conditions (Figure III.1C) and no statistical 

differences were apparent between groups (P>0.57). However, stimulating dNPF 

neurons for 30min before and during testing by shifting the flies to 31°C revealed 

memory performance in dNPF-GAL4;uas-dTrpA1 flies that was statistically 

different from all other groups (P<0.006)(Figure III.1D). Therefore stimulating 

dNPF neurons mimics food-deprivation consistent with dNPF being a key factor 

in the internal state of hunger in the brain. 
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Localizing the relevant dNPF modulated circuit 

We used a uas-RNA interference (RNAi) transgene against the dNPF receptor, 

uas-npfr1RNAi (Wu et al., 2003; Wu et al., 2005b) to localize the relevant dNPF 

modulated neurons, reasoning that npfr1 disruption would impair appetitive 

memory in hungry flies. We verified the efficacy of the uas-npfr1RNAi transgene for 

our purpose by expressing it in all neurons using n-synaptobrevin-GAL4 and 

testing appetitive memory performance. As expected the memory performance of 

uas-npfr1RNAi;n-syb-GAL4 flies was impaired and was statistically different from all 

other control groups (P<0.04). However, uas-npfr1RNAi;n-syb-GAL4 flies were 

normal for aversive olfactory conditioning (Tully and Quinn, 1985)(Figure III.9). 

We next drove uas-npfr1RNAi with GAL4 drivers that express in the dorsal 

protocerebrum and CC - c005, 210Y, 104Y and c061 and in all MB neurons or 

the MB αβ and γ neurons - OK107 and MB247. We food-deprived wild-type flies, 

flies with a piggyBac element in the npfr1 locus (Bellen et al., 2004), flies 

expressing uas-npfr1RNAi in specific neurons, and flies harboring GAL4 or uas-

npfr1RNAi alone, and tested appetitive memory 3 hr after training. The 

performance of npfr1[c01896] and c061;uas-npfr1RNAi flies was statistically 

different (both P<0.01) from all other flies (Figure III.2). These data suggest c061 

neurons mediate the effects of dNPF on appetitive memory expression. 
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Some c061 neurons innervate the MB 

We visualized c061 neurons with uas-CD8::GFP. Confocal analysis revealed 

expression including intrinsic neurons of the MBs (Figure III.3A). Since MB 

expression of uas-npfr1RNAi did not disrupt memory (Figure III.2), we crossed in a 

GAL80 transgene that blocks GAL4 activity in all MB neurons (MBGAL80; 

Krashes et al., 2007). MBGAL80 abolished MB expression but prominent 

expression remained in three neurons per hemisphere whose projections 

densely innervate the MB heel and peduncle. Another cluster of five neurons per 

hemisphere innervate a specific layer in the fan-shaped body of the CC (Figure 

III.3B, 5A, 15 and Movies S1 and S2). Higher resolution imaging revealed 

innervation of the MB peduncle occupied by αβ but not α´β´ neurons (Figure 

III.3E). Output from α´β´ neurons is required to consolidate appetitive memory 

whereas output from αβ neurons is required for appetitive memory retrieval 

(Krashes et al., 2007; Krashes and Waddell, 2008). Finding neurons that 

innervate the MB heel and αβ neurons is consistent with a model where satiety 

affects memory retrieval by modulating MB αβ and γ neurons. 

 

 

The MB-innervating neurons are dopaminergic 

Some DA neurons innervate the MB heel and base of the peduncle (Friggi-Grelin 

et al., 2003; Riemensperger et al., 2005; Tanaka et al., 2008, Figure III.11). We 

therefore immunostained c061;MBGAL80;uas-CD8::GFP brains with anti-



 90 

tyrosine hydroxylase (TH) antibody. TH specifically labels DA neurons in flies 

because they do not produce epinephrine or norepinephrine. This analysis 

revealed that the three c061 MB-innervating neurons double label with GFP and 

anti-TH (Figure III.3F) consistent with them releasing dopamine. Their position by 

the MB calyx defines them as belonging to the protocerebral posterior lateral 1 

(PPL1) DA neuron cluster (Friggi-Grelin et al., 2003; Riemensperger et al., 2005). 

Finding the MB-innervating neurons label for TH allowed us to use a TH-

promoter driven GAL80 (THGAL80) to remove DA neuron expression (Sitaraman 

et al., 2008). We combined c061 and c061; MBGAL80 with THGAL80 and uas-

CD8::GFP and visualized brains co-labeled with anti-TH. THGAL80 suppressed 

GFP expression in DA neuron somata (Figure III.3C, D and G) and eliminated 

expression in processes innervating the heel and peduncle region of the MB 

(Figure III.3C and 3D). Expression remained in c061; THGAL80 brains in MB, 

fan-shaped body and SOG (Figure III.3C). In c061; MBGAL80/THGAL80 brains, 

expression remained in the fan-shaped body and SOG (Figure III.3D). Therefore 

c061 DA neurons innervate the dorsal protocerebrum and MB heel and 

peduncle. Transgenic markers of neural polarity suggest DA processes in the 

dorsal protocerebrum are postsynaptic while those in the MB heel and peduncle 

are presynaptic (Zhang et al., 2007; and data not shown). 
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npfr1 expression in DA neurons is required for appetitive memory 

We tested the importance of npfr1 in DA neurons by expressing uas-npfr1RNAi 

with TH-GAL4. We food-deprived flies before and after training and tested 3hr 

appetitive memory. Performance of TH-GAL4; uas-npfr1RNAi flies was statistically 

different from that of wild-type, TH-GAL4 and uas-npfr1RNAi control flies (P<0.01; 

Figure III.4A). We also used THGAL80 to test whether DA neuron expression 

was required for the appetitive memory defect of c061;uas-npfr1RNAi flies. 

Memory of c061;THGAL80;uas-npfr1RNAi flies was statistically indistinguishable 

from controls (P>0.9) and was statistically different from that of c061;uas-

npfr1RNAi and THGAL4; uas-npfr1RNAi flies (Figure III.4A). Therefore npfr1 

expression is required in DA neurons that innervate the MB for appetitive 

memory performance in hungry flies. 

 

 

Blocking DA neurons promotes memory retrieval in fed flies 

We used c061; MBGAL80 and THGAL80 to test whether DA neurons were 

responsible for inhibiting memory performance in fed flies. We directly blocked 

their output during memory testing with the dominant temperature-sensitive uas-

shibirets1 (shits1) transgene (Kitamoto, 2001). shits1 blocks membrane recycling 

and thus synaptic vesicle release at the restrictive temperature of 31°C and this 

blockade is reversible by returning flies to <25°C. Flies were food deprived, 

trained and immediately transferred to vials containing food before testing 3 hr 
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memory. We performed this experiment at 23°C throughout (Figure III.4B), or we 

blocked the neurons prior to, and during memory retrieval by shifting flies to 31°C 

for 1hr before testing (Figure III.4C). We tested wild-type and single transgene 

GAL4 and uas-shits1 flies in parallel. At 23°C performance was suppressed by 

feeding and there were no significant differences between groups (P>0.77; 

Figure III.4B). However, when c061; MBGAL80; uas-shits1 neurons were blocked 

prior to and during retrieval appetitive memory performance was statistically 

different from all other groups (all P<0.04) (Figure III.4C). Expressing uas-shits1 in 

c061; MBGAL80 neurons except the DA neurons did not enhance performance 

(Figure III.4C). Memory of c061; MBGAL80 /THGAL80; uas-shits1 flies was 

statistically indistinguishable from the control groups (P>0.99). Importantly, 

blocking DA neurons did not further enhance hungry fly performance (all P>0.17; 

Figure III.4D). Therefore these data are consistent with the DA neurons limiting 

memory performance in fed flies. It is likely that dopamine provides the inhibition 

because the DA neurons do not label for the inhibitory transmitter gamma-

aminobutyric acid, GABA (Figure III.10). 

 

 

The DA neurons are MB-MP neurons 

Similar neurons that innervate the MB have been described (Tanaka et al., 

2008). NP2758 labels a single pair of MB-MP neurons, named according to the 

regions of the MB that they innervate: medial lobe and pedunculus (MP) (Figure 
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III.5B, 16 and Movies S3 and S4). From here we refer to MB-innervating DA 

neurons as MB-MP neurons. We also found that krasavietz-GAL4 (Dubnau et al., 

2003; Shang et al., 2007) combined with MBGAL80 (Krashes et al., 2007) 

expresses in MB-MP neurons (Figure III.5C and Movies S5 and S6). 

 

We counted the TH positive neurons in the PPL1 cluster in each GAL4 

line (Figure III.5E and 11B). Three TH positive cells are labeled by GFP in each 

PPL1 cluster in c061; MBGAL80;uas-CD8::GFP flies. MBGAL80; krasavietz/uas- 

CD8::GFP also labels three TH neurons but two are MB-MP neurons and the 

other innervates the vertical MB α lobe (Figure III.5C and 11C). Lastly, we 

confirmed that NP2758;uas-CD8::GFP labels one MB-MP neuron per 

hemisphere. We combined the lines in pairs and counted cells co-labeled with 

GFP and anti-TH to determine whether c061, krasavietz and NP2758 label 

overlapping MB-MP neurons. Four cell bodies are labeled in PPL1 in c061; 

MBGAL80;krasavietz flies. One of these is the α lobe projecting krasavietz 

neuron (Figure III.5C, 5D and 11), so MBGAL80;krasavietz labels two of the 

three c061 MB-MP neurons. Three cell bodies are labeled in PPL1 in NP2758; 

MBGAL80; krasavietz flies showing that NP2758 labels one of the two 

MBGAL80; krasavietz MB-MP neurons. Therefore c061;MBGAL80 labels three 

MB-MP neurons, MBGAL80;krasavietz labels two of these and NP2758 labels 

one of the MB-MP neurons that is common to c061;MBGAL80 and 

MBGAL80;krasavietz (Figure III.5D). We did not observe more than three MB-MP 
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neurons on each side of the brain. 

 

Blocking NP2758 or krasavietz;MBGAL80 neurons prior to, and during 

memory retrieval did not reveal performance in fed flies (Figure III.12). Therefore 

it is either necessary to block all six MB-MP neurons to release appetitive 

memory in fed flies or the two MB-MP neurons uniquely labeled by c061 could be 

responsible. 

 

 

MB-MP stimulation inhibits appetitive memory expression in hungry flies 

To further assess whether MB-MP neurons limit appetitive memory expression, 

we tested whether MB-MP neuron stimulation suppressed memory in hungry 

flies. We tested wild-type flies, flies expressing uas-dTrpA1 in MB-MP neurons 

and GAL4 and uas-dTrpA1 flies in parallel using two different temperature 

regimens; permissive 23°C throughout (Figure III.6A), or we stimulated neurons 

prior to, and during memory retrieval by shifting flies to 31°C (Figure III.6B). We 

starved flies, trained them and transferred them to empty vials before testing 3hr 

memory. All groups displayed robust appetitive memory at 23°C and there was 

no statistical difference between groups (P>0.96) (Figure III.6A). However, acute 

MB-MP neuron stimulation prior to, and during memory retrieval severely 

impaired memory (Figure III.6B). The performance of c061; MBGAL80/uas-

dTrpA1 flies, MBGAL80/uas-dTrpA1;krasavietz flies and NP2758;uas-dTrpA1 
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flies was statistically different from all other groups (P<0.04). These data suggest 

that stimulating two MB-MP neurons is sufficient to block appetitive memory 

performance. 

 

The suppression of performance with MB-MP activation is not due to 

irreversible MB damage. Food-deprived c061;MBGAL80/uas-dTrpA1 flies 

stimulated during acquisition (Figure III.13A) or for 1hr after training (Figure 

III.13B) showed normal 3 hr memory (P>0.58 and P>0.70 respectively). 

Furthermore, brief stimulation during testing is sufficient to suppress performance 

(P<0.005; Figure III.13C). 

 

We also stimulated MB-MP neurons with the cold-sensitive uas-TRPM8 

transgene (Peabody et al., 2009). The mammalian TRPM8 channel is activated 

below 18°C (McKemy et al., 2002; Peier et al., 2002). We starved and trained 

flies and put them in empty food vials for 3 hr before testing appetitive memory. 

No statistical difference was apparent between the performance of flies at the 

permissive 23°C (P>0.50) (Figure III.6C). However, stimulating c061-MB-MP 

neurons by shifting flies to 16°C for 1hr before testing impaired memory (Figure 

III.6D). Performance of c061;MBGAL80;uas-TRPM8 flies was statistically 

different from all other groups (P<0.03). Therefore stimulating MB-MP neurons 

with dTRPA1 or TRPM8 suppresses performance in hungry flies (Figure III.6B 

and D) and mimics feeding (Figure III.1A). 



 96 

To exclude the possibility that manipulations with uas-shits1 and uas-

dTrpA1 interfere with olfaction or gustation, we tested the acuity of all flies used 

in this study. No significant differences were found between the relevant groups 

for either odor or sucrose acuity (Table III.1). Therefore blocking output from MB-

MP neurons reveals appetitive memory performance in satiated flies whereas 

stimulating them suppresses appetitive memory expression in hungry flies. 

These data are consistent with MB-MP neurons being a neural mechanism 

through which satiety suppresses appetitive memory performance. 

 

 

III.C. Discussion 

Drosophila as a model for motivational systems 

It is critical to an animal’s survival that behaviors are expressed at the 

appropriate time. Motivational systems provide some of this behavioral control. 

Apart from the observation that motivational states are often regulated by 

hormones or neuromodulatory factors (Toates, 1986; Watts, 2003), we know little 

about how motivational states modulate specific neural circuitry. Hungry fruit flies 

form appetitive long-term memory following a 2 min pairing of odorant and 

sucrose and memory performance is only robust if the flies remain hungry 

(Krashes and Waddell, 2008). Therefore this paradigm includes key features of 

models for motivational systems (Toates, 1986): the conditioned odor provides 

the incentive cue predictive of food, there is a learned representation of the goal 
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object (odorant/sucrose), and the expression of learned behavior depends on the 

internal physiological state (hunger and not satiety). In this study we identified a 

neural circuit mechanism that integrates hunger/satiety and appetitive memory. 

 

 

What normally regulates dNPF-expressing neurons? 

We do not know the signals that ordinarily control dNPF-releasing neurons. In 

mammals NPY-expressing neurons are a critical part of a complex hypothalamic 

network that regulates food-intake and metabolism (Saper et al., 2002). In times 

of adequate nutrition, NPY-expressing neurons are inhibited by high levels of 

leptin and insulin that are transported into the brain following release from 

adipose tissue and the pancreas (Figlewicz and Benoit, 2009). In hungry mice, 

leptin and insulin levels fall leading to loss of inhibition of NPY neurons. Flies do 

not have leptin but they have several insulin-like peptides (Arquier et al., 2008), 

that may regulate dNPF neurons. Some NPY expressing neurons are directly 

inhibited by glucose (Levin et al., 2006). Fly neurons could sense glucose with 

the Bride of Sevenless receptor (Kohyama-Koganeya et al., 2008). In blowflies 

satiety involves mechanical tension of the gut and abdomen (Gelperin, 1967; 

Gelperin, 1971). Lastly, it will be interesting to test the role of other extracellular 

signals implicated in fruit fly feeding behavior including the hugin (Melcher and 

Pankratz, 2005) and take-out neuropeptides (Sarov-Blat et al., 2000; Meunier et 

al., 2007). 
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A model for the role of MB-MP neurons 

NPY inhibits synaptic function in mammals (Colmers et al., 1988; Colmers et al., 

1991; Klapstein and Colmers, 1993; Qian et al., 1997; Rhim et al., 1997; Sun et 

al., 2003; Browning and Travagli, 2003; Lin et al., 2004) and our data suggest 

that dNPF promotes appetitive memory performance by suppressing inhibitory 

MB-MP neurons. We propose a model where MB-MP neurons gate MB output 

(Figure 7). Appetitive memory performance is low in fed flies because the MB αβ 

and γ neurons are inhibited by tonic dopamine release from MB-MP neurons. 

 

Hence, when the fly encounters the conditioned odorant during memory 

testing, the MB neurons encoding that olfactory memory respond, but the signal 

is not propagated beyond the MB due to the inhibitory influence of MB-MP 

neurons. However, when the flies are food-deprived dNPF levels rise and dNPF 

disinhibits MB-MP neurons, and other circuits, through the action of NPFR1. 

dNPF disinhibition of the MB-MP neurons opens the gate on the MB. Therefore, 

when hungry flies encounter the conditioned odorant during memory testing, the 

relevant MB neurons are activated and the signal propagates to downstream 

neurons, leading to expression of the conditioned behavior. Satiety and hunger 

are not absolute states. We sometimes observe above chance performance 

scores in fed flies and shorter periods of feeding after training suggest that 

inhibition of performance is graded. This could be accounted for by a competitive 

push-pull inhibitory mechanism between dNPF and MB-MP neurons. 
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By gating the MB through the MB-MP neurons, hunger and satiety are 

likely affecting the relative salience of learned odor cues in the fly brain. 

However, MB-MP neurons are unlikely to change the sensory representation of 

odor in the MB because flies trained with stimulated MB-MP neurons perform 

normally when tested for memory without stimulation (Figure III.13A). Therefore 

odors are likely perceived the same irrespective of MB-MP neuron activity. 

Furthermore, the MB-MP neurons did not affect naïve responses to the specific 

odorants used. It will be interesting to test whether MB-MP neurons change 

responses to other odorants and/or modulate arousal (Andretic et al., 2005; 

Kume et al., 2005; Seugnet et al., 2008), visual stimulus salience (Zhang et al., 

2007) and attention-like phenomena (van Swinderen, 2007). 

 

 

Structural and functional subdivision of DA neurons 

There are eight different morphological classes of DA neurons that innervate the 

MB (Mao and Davis, 2009) and our data imply functional subdivision. Previous 

studies concluded that DA neurons convey aversive reinforcement (Schwaerzel 

et al., 2003; Schroll et al., 2006; Riemensperger et al., 2005 and see Figure 

III.14). We specifically manipulated the MB-MP DA neurons. MB-MP neurons are 

not required for acquisition of aversive olfactory memory (P>0.94)(Figure III.14) 

consistent with a distinct function in controlling the expression of appetitive 

memory. Since several studies have implicated the MB α lobe in memory 
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(Pascual and Preat, 2001; Yu et al., 2005; Yu et al., 2006), other DA neurons in 

PPL1 that innervate the α lobe (like those labeled in MBGAL80;krasavietz, Figure 

III.5C and 11) may provide reinforcement. The MB-MP neurons may also be 

functionally divisible and independently regulated to gate MB function. The idea 

that a specific DA circuit restricts stimulus-evoked behavior is reminiscent of 

literature tying dopamine to impulse control in mammals (Weintraub, 2008; Blum 

et al., 1996). Previous studies of DA neurons in Drosophila (Schwaerzel et al., 

2003; Schroll et al., 2006; Seugnet et al., 2008; Andretic et al., 2005; Kume et al., 

2005; Seugnet et al., 2008; Zhang et al., 2007) have simultaneously manipulated 

all, or large numbers of DA neurons. Our data suggest that the DA neurons 

should be considered as individuals, or small groups. 

 

 

Motivation and learning in flies 

Flies have to be hungry to efficiently acquire appetitive memory but whether this 

reflects a state-dependent neural mechanism or results from the failure to ingest 

enough sugar is unclear. Stimulating MB-MP neurons in hungry flies did not 

impair appetitive memory formation (Figure III.13A) and therefore MB-MP 

neurons are unlikely to constrain learning in fed flies. Other dNPF-regulated 

neurons may provide this control since NPY has been implicated in learning 

(Redrobe et al., 2004). 
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Hunger simultaneously regulates discrete neural circuit modules 

The dNPF-expressing neurons innervate broad regions of the brain and may 

simultaneously modulate distinct neural circuits to promote food-seeking. MB-MP 

neurons represent a circuit through which the salience of learned food-relevant 

odorant cues is regulated by relative nutritional state. Given the apparent role of 

the MB as a locomotor regulator (Huber, 1967; Martin et al., 1998; Pitman et al., 

2006; Joiner et al., 2006), MB-MP neurons may also generally promote 

exploratory behavior. There are likely to be independent circuits for other 

elements of food-seeking behavior including those that potentiate gustatory 

pathway sensitivity and promote ingestion. NPY stimulates feeding but inhibits 

sexual behavior in rats (Clark et al., 1985). Modulators exerting differential effects 

could provide a neural mechanism to establish a hierarchy of motivated states 

and coordinate behavioral control. dNPF may potentiate activity in food-seeking 

related circuits while suppressing circuits required for other potentially competing 

behaviors, eg. sexual pursuit. 

 

Regulating behavior with inhibitory control 

In this study we provide the first multi-level neural circuit perspective for a 

learned motivated behavior in fruit flies. Our work demonstrates a clear state-

dependence for the expression of appetitive memory. Odorants that evoke 

conditioned appetitive behavior in hungry flies are ineffective at evoking 

appetitive behavior in satiated flies. Therefore the fly brain is not simply a 
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collection of input-output reflex units and includes neural circuits through which 

the internal physiological state of the animal establishes the appropriate context 

for behavioral expression. 

 

Dethier (1976) proposed that ‘a satiated fly receives maximum inhibitory 

feedback so that sensory input is behaviorally ineffective. As deprivation 

increases inhibition wanes and sensory input becomes increasingly effective in 

initiating feeding’. Our data provide experimental evidence that this prediction is 

also likely to be accurate for expression of appetitive memory in the fruit fly 

where the mechanism involves neuromodulation in the central brain. The DA MB-

MP neurons inhibit the expression of appetitive memory performance in satiated 

flies whereas dNPF disinhibits the MB-MP neurons in food-deprived flies. The 

likelihood that appetitive behavior is triggered by the conditioned odorant is 

therefore determined by the competition between inhibitory systems in the brain. 

The concept that continuously active inhibitory forces in the insect brain control 

behavioral expression was also proposed many years ago (Roeder, 1955). Here 

we provide evidence that these neurons exist and that their hierarchical 

arrangement is a key determinant of behavioral control. 
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III.D. Experimental Procedures 

 

Fly strains 

Fly stocks were raised on standard cornmeal food at 23°C and 60% relative 

humidity. The wild-type Drosophila strain used was Canton-S. The dNPF (Wen et 

al., 2005), c061 (www.flytrap.org), 210Y, c005, 104Y (Liu et al., 2006), OK107 

(Connolly et al., 1996) MB247 (Zars et al., 2000), TH-GAL4 (Friggi-Grelin et al., 

2003), NP2758 (Tanaka et al., 2008) and krasavietz (Dubnau et al., 2003; Shang 

et al., 2007) GAL4 lines are described. n-synaptobrevin-GAL4 flies were a gift 

from Julie Simpson (HHMI Janelia Farm Research Campus). c061 and 

krasavietz were combined with the previously described MBGAL80 transgene 

(Krashes et al., 2007). The uas-npfr1RNAi (Wu et al., 2003), uas-dcr2 (Dietzl et al., 

2007), THGAL80 (Sitaraman et al., 2008), uas-shits1 (Kitamoto, 2001), uas-

dTrpA1 (Hamada et al., 2008) and MB-DsRED (Riemensperger et al., 2005) flies 

are described. THGAL80 was combined with uas-shits1 on the 3rd chromosome. 

To express dTRPA1 in dNPF neurons we crossed uas-dTrpA1 females to dNPF-

GAL4 male flies. To screen for neurons that required npfr1 we crossed female 

uas-npfr1RNAi flies to c061, c061; THGAL80, 210Y, c005, 104Y, OK107, MB247, 

TH-GAL4, n-syb or n-syb; uas-dcr2 males. c061 is located on the X-chromosome 

so female c061;MBGAL80 flies were crossed to uas-shits1 males. Similarly, we 

crossed c061;MBGAL80 females with THGAL80; uas-shits1 males. To express 

uas-shits1 in MB-MP neurons female uas-shits1 flies were crossed to NP2758 or 
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MBGAL80; krasavietz males. Since NP2758 is on the X-chromosome, only 

female flies were assayed from the NP2758 cross. We expressed dTRPA1 in the 

MB-MP neurons by crossing female uas-dTrpA1 flies to NP2758 or 

MBGAL80;krasavietz males or c061;MBGAL80 females with uas-dTrpA1 males. 

All GAL4 and uas-transgene flies were crossed with wild-type females to create 

heterozygous controls. We visualized GAL4 expression by crossing to uas-

mCD8::GFP or uas-mCD8::GFP; MB-DsRED flies (Lee and Luo, 1999; 

Riemensperger et al., 2005). 

 

 

Behavioral analysis 

All flies were food deprived for 16–20 hr before training in milk bottles containing 

a 10x6cm filter paper soaked with water. The olfactory appetitive paradigm was 

performed as described (Krashes and Waddell, 2008). Following training, flies 

were stored for 3hr in vials with food or containing only a water-damp filter paper. 

All experiments performed after feeding included a control group of food-deprived 

flies. The performance index (PI) was calculated as the number of flies choosing 

the conditioned odor minus the number of flies choosing the unconditioned odor 

divided by the total number of flies in the experiment. A single PI value is the 

average score from flies of the identical genotype tested with each odor (3-

Octanol or 4-Methylcyclohexanol). Olfactory and gustatory acuity was performed 

according to Keene et al. (2006). 
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Statistical analyses were performed using KaleidaGraph (Synergy 

Software). Overall analyses of variance (ANOVA) were followed by planned 

pairwise comparisons between the relevant groups with a Tukey HSD post-hoc 

test. Unless stated otherwise, all experiments are n≥8. 

 

 

Immunohistochemistry 

Adult female flies were collected 3-5 days after eclosion, brains or entire central 

nervous systems were dissected in ice-cold PBS [1.86mM NaH2PO4, 8.41mM 

Na2HPO4, 175mM NaCl] and fixed in 2% paraformaldehyde solution in PBS for 

10min at room temperature (RT). Samples were then washed 5X for 15min with 

PBS containing 0.25% Triton-X100 (PBT), blocked for 1hr with PBT containing 

5% NGS (all at RT) and incubated with primary antibody in blocking solution for 2 

days at 4°C. Samples were washed 5X for 15 min in PBT, incubated with 

secondary antibody in PBT for 12 hr at 4°C and washed 10X for 15min with PBT, 

2X in PBS for 15min and mounted in Vectashield (Vector Labs) for confocal 

microscopy. Imaging was performed on a Zeiss LSM 5 Pascal confocal 

microscope and images were processed in ImageJ, Adobe Photoshop and Amira 

software. In some cases, debris on the brain surface was manually deleted from 

the relevant confocal sections to permit construction of a clear projection view of 

the z-stack. Antibodies were diluted: mouse IgG2a anti-GFP (Invitrogen 1:200); 
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rabbit anti- Tyrosine hydroxylase (Chemicon 1:100); rabbit anti-dNPF (gift from P. 

Shen 1:2000); rabbit anti-GABA (Sigma 1:100); mouse monoclonal 4B1 anti-

Drosophila ChAT (Hybridoma Bank, University of Iowa 1:100), FITC conjugated 

anti-Mouse IgG2a(Jackson Laboratory 1:200); Cy3 conjugated anti-Rabbit 

(Jackson Laboratory 1:200); Cy5 conjugated anti-Mouse IgG1γ (Jackson 

Laboratory 1:200).  
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Figure III.1 

 

 

Figure III.1. Stimulating dNPF-expressing neurons promotes appetitive 

memory expression in satiated flies. (A). Feeding for 3hr after training 
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suppresses appetitive memory performance. Double asterisk, significant 

difference (P<0.007) from all other groups. Single asterisk, significant difference 

(P<0.03) from all other groups. The temperature shift protocols are shown 

pictographically. A white bar represents storage of flies in empty vials, while a 

yellow bar indicates flies stored in food vials. This figure format is used 

throughout this study. (B) dNPF is expressed in large neurons that densely 

innervate the dorsal and lateral protocerebrum, the subesophageal ganglion and 

the central complex. Immunostaining with an anti-dNPF antibody (red), partially 

overlaps (yellow, merge) with expression of dNPF-GAL4 driven CD8::GFP 

(green). The dNPF positive cell bodies in the subesophageal ganglion are not 

labeled by dNPF-GAL4. Furthermore, the anti-dNPF antibody only labels the 

upper layer of the fan-shaped body of the central complex, consistent with the 

processes in the ellipsoid body and lower layer of the fan-shaped body being 

post-synaptic regions of dNPF-expressing neurons. Scale bar represents 20µm. 

(C) Feeding flies after training at the permissive temperature of 23˚C suppresses 

3 hr memory performance. All flies were food-deprived, trained, fed and tested at 

23˚C. (D) Stimulating dNPF neurons for 30 minutes before testing produces 

memory performance in fed flies. All flies were food-deprived, trained, and fed for 

150min at 23˚C. At that time all flies were transferred to 31˚C for 30min and 

tested for appetitive memory performance. Asterisk denotes significant difference 

(P<0.05, ANOVA) from other unmarked groups. Data are mean ± standard error 

of the mean (SEM). 
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Figure III.2. 

 

 

Figure III.2. Region-specific disruption of npfr1 expression impairs 

appetitive olfactory memory in food-deprived flies. (A) Expressing a uas-

npfr1RNAi transgene with c061 impairs 3 hr appetitive memory in food-deprived 

flies whereas expressing the uas-npfr1RNAi with 210Y, c005, 104Y, OK107 or 

MB247 GAL4 control has no effect. Asterisk denotes significant difference 

(P<0.05, ANOVA) from other unmarked groups. Data are mean ± SEM. 
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Figure III.3 
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Figure III.3. c061 labels six dopaminergic neurons that innervate the 

mushroom bodies. (A) Projection view of a c061; uas-CD8::GFP brain. Yellow 

arrows mark innervation of the heel region of the MB (filled yellow arrows) 

resembling that in TH-GAL4 labeled brains (Figure S4A) as well as a few 

neurons innervating the fan-shaped body of the central complex and a few 

neurons in the subesophageal ganglion. (B) Combining MBGAL80 with c061; 

uas-CD8::GFP eliminates MB neuron expression and reveals the detailed 

morphology of the neurons that innervate the heel region of the mushroom 

bodies (filled yellow arrows). Also see Movies S1 and S2. C. Combining 

THGAL80 with c061; uas-CD8::GFP eliminates expression in the neurons 

innervating the dorsal protocerebrum region between the mushroom body lobes 

and the MB heel (hollow arrows) but leaves expression elsewhere intact. (D) 

Projection view of a c061;MBGAL80/THGAL80;uas-CD8::GFP brain. A TH50 

promoter driven GAL80 removes expression from the neurons that innervate the 

dorsal protocerebrum and MB heel (hollow arrows) labeled by c061; MBGAL80 

and leaves prominent expression in the fan-shaped body and elsewhere intact. 

Scale bar represents 20µm. (E) Higher magnification single confocal section 

views of the MB heel and peduncle region from a c061; uas-CD8::GFP brain. 

Moving anterior to posterior from top to bottom. Top panel shows extensive 

innervation of the MB heel. Bottom panel detailing innervation in the base of the 

peduncle. Inset, schematic cross section through the peduncle explaining zones 
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occupied by the αβ, α´β´ and γ MB neurons. The MB is co-labeled in both panels 

with a MB-expressed DsRED transgene. (F) A confocal section through a 

c061;MBGAL80; uas-CD8::GFP brain at the level of the MB calyx (outlined). GFP 

(green) labels 3 large cell bodies at the side of the calyx and 5 more lateral cell 

bodies. Counter staining with an anti-tyrosine hydroxylase antibody (red) labels 

12 cell bodies in that region of the brain (known as the PPL1 cluster), and 3 of 

them overlap (merge, yellow) with c061;MBGAL80 driven GFP. Scale bar 

represents 10µm. (G) A confocal section through a c061;MBGAL80/THGAL80; 

uas-CD8::GFP brain at the level of the PPL1 cluster of DA neurons. GFP (green) 

labels 5 cell bodies and none of these overlap with anti-TH staining. Scale bar 

represents 10µm. 
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Figure III.4 
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Figure III.4. c061 labeled dopaminergic neurons are critical for regulating 

appetitive memory performance. The temperature shift protocols are shown 

pictographically above each graph. (A) Expressing the uas-npfr1RNAi transgene in 

all dopaminergic neurons with TH-GAL4 or in a subset of dopaminergic neurons 

with c061 impairs 3 hr appetitive memory in food-deprived flies. Expressing 

uasnpfr1RNAi in all c061 neurons except the dopaminergic neurons 

(c061;THGAL80;uas-npfr1RNAi flies) does not affect appetitive memory. (B) 

Feeding flies after training suppresses 3 hr memory performance of all groups 

used in this experiment. All genotypes were food-deprived, trained, fed and 

tested at the permissive temperature of 23˚C. C. Blocking synaptic output from 

the c061; MBGAL80 labeled neurons for one hour before testing using uas-shits1 

reveals memory performance in satiated flies. Removing uas-shits1 expression 

from the dopaminergic neurons reverses the memory promoting effect 

(c061;MBGAL80/THGAL80;uas-shits1 flies). All genotypes were food-deprived, 

trained and stored in food vials for 120min at 23˚C. Vials were then shifted to 

31˚C for 60min before flies were tested for appetitive memory at 31˚C. (D) 

Blocking synaptic output from the c061; MBGAL80 labeled neurons for one hour 

before testing does not enhance memory performance in food-deprived flies. All 

genotypes were food-deprived, trained and stored in empty vials for 120min at 

23˚C. Vials were then shifted to 31˚C for 60min before flies were tested for 

appetitive memory at 31˚C. Asterisks denote significant difference 

(P<0.05,ANOVA) from other unmarked groups. Data are mean ± SEM. 
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Figure III.5 
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Figure III.5. The dopaminergic c061 neurons are MB-MP neurons. (A) 

Projection view of a c061; MBGAL80; uas-CD8::GFP brain showing labeling in 

MB-MP neurons (white arrows) and in the subesophageal ganglion (also see 

Movies S1 and S2). (B) Projection view of a NP2758; uas-CD8::GFP brain 

showing labeling in MB-MP neurons (white arrows) and in the subesophageal 

ganglion (also see Movies S3 and S4). (C) Projection view of a MBGAL80; 

krasavietz/uas-CD8::GFP brain showing expression in MB-MP neurons (white 

arrows). Expression is also visible in dopaminergic neurons innervating the α 

stalk of the MB lobes (blue arrows, also see Figure III.S4C), neurons in the fan-

shaped body of the central complex and local neurons in the antennal lobe (also 

see Movies S5 and S6). The MB is co-labeled with a MB-expressed DsRED 

transgene. (D) Cartoon illustrating the gross structure of MB-MP neurons and the 

expression pattern of each GAL4 line used in this study. The MB is shown as an 

outline. Dopaminergic neuron cell bodies (red, anti-TH) of a single PPL1 cluster 

are shown with the labeling of each GAL4 line overlayed. The organization of the 

cell bodies is not stereotyped and it is difficult to distinguish the projection 

patterns of each MB-MP neuron. No order or detail is inferred here. At least one 

MB-MP neuron sends a contralateral projection to the other MB (green arrow 

head). (E) krasavietz and NP2758 label a subset of c061 labeled MB-MP 

neurons. Each column shows the separate and merged channels from confocal 

images of a PPL1 cluster in brains counter-labeled with GAL4 driven GFP 

(green) and anti-TH antibody (red). Double-labeled neurons are marked with an 
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arrow in the merged images. c061 and krasavietz;MBGAL80 driven GFP label 3 

somata that counter-stain with anti-TH whereas NP2758 driven GFP labels only 

one anti-TH labeled cell body. c061;MBGAL80; krasavietz driven GFP labels 4 

somata that counter-stain with anti-TH indicating that c061 and krasavietz 

expression overlaps in 2 neurons. NP2758;MBGAL80;krasavietz driven GFP 

labels 3 somata that counter-stain with anti-TH indicating that NP2758 labels one 

of the 2 MB-MP neurons in krasavietz; MBGAL80 (For quantification of neuron 

numbers see Figure S4B). Scale bar represents 20µm (A, B, C) or 10µm (E). 
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Figure III.6 
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Figure III.6. Stimulating MB-MP neurons before testing suppresses 

appetitive memory expression in hungry flies. The temperature shift protocols 

are shown pictographically above each graph. (A) The permissive temperature of 

23˚C does not affect 3 hr appetitive odor memory of any of the lines used in this 

study. All genotypes were starved, trained, stored for 3 hr in empty vials and 

tested for appetitive memory at 23˚C. (B) Stimulating 6, 4 or 2 MB-MP neurons 

with uas-dTrpA1 before and during testing attenuates memory performance in 

starved flies. All genotypes were food-deprived, trained and stored in empty vials 

for 120min at 23˚C and were then shifted to 31˚C for 60min before and during 

testing. (C) The permissive temperature of 23˚C does not affect 3 hr appetitive 

odor memory of any of the lines used in this study. All genotypes were starved, 

trained, stored in empty vials for 3 hr and tested for appetitive memory at 23˚C. 

(D) Stimulating 6 MB-MP neurons with uas-TRPM8 before and during testing 

attenuates memory performance in starved flies. All genotypes were food 

deprived, trained and stored in empty food vials for 120min at 23˚C and were 

then shifted to 16˚C for 60min before and during testing. Asterisk denotes 

significant difference (P<0.05, ANOVA) from other unmarked groups. Data are 

mean ± SEM. 

 

 

 



 120 

Figure III.7 

 

 

Figure III.7. Model for the role of MB-MP neurons. Left panels illustrate the 

state of the inhibitory control exerted upon the MB in the fed state (top) and 

starved state (bottom). When fed flies are exposed to the conditioned odor during 

memory testing (right panels) the appropriate projection neurons and MB 

neurons are activated (yellow). However, the signal only propagates beyond the 
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MB neurons in hungry flies when the MB-MP neuron ‘gate’ is open. Red lines 

denote inhibition and green lines relief from inhibition. See discussion for more 

detail. 

 

Table III.1 

 

 

 

Table III.1. Olfactory and Sucrose Acuity for strains used in this study. All 

genotypes were either tested for odor acuity at 23˚C or at the restrictive 

temperature for uas-shits1 or uas-dTrpA1 of 31°C. All genotypes were tested for 

sucrose acuity at the permissive temperature of 23°C. No statistical differences 

were apparent between the relevant groups. (OCT 23˚C P>0.98; MCH 23˚C 

P>0.80; OCT 31˚C P>0.88; MCH 31˚C P>0.99; sucrose P>0.89). All n≥6. 

 2 

chromosome. 
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Table S1. Sensory Acuity of strains used in this study. All genotypes were tested for 

odor acuity at 23˚C, or at the restrictive 31°C for uas-shits1 or uas-dTrpA1. All genotypes 

were tested for sucrose acuity at 23°C. No statistical differences were apparent between 

the relevant groups. (OCT 23˚C P>0.98; MCH 23˚C P>0.80; OCT 31˚C P>0.88; MCH 

31˚C P>0.99; sucrose P>0.89). All n!6.  
OCT MCH sucrose acuity
23˚C 31˚C 23˚C 31˚C 23˚C

uas-npfr1RNAi 0.51+/-0.06 0.60+/-0.07 0.61+/-0.05

c061 0.52+/-0.03 0.59+/-0.10 0.57+/-0.08

c061; uas-npfr1RNAi 0.57+/-0.05 0.55+/-0.09 0.59+/-0.08

syb-GAL4 0.56+/-0.06 0.57+/-0.05 0.61+/-0.05

uas-dcr2; syb-GAL4 0.54+/-0.06 0.53+/-0.07 -

uas-dcr2 0.51+/-0.04 0.53+/-0.06 -

uas-dcr2;uas-npfr1RNAi 0.56+/-0.08 0.55+/-0.05 0.58+/-0.04

uas-dcr2;uas-npfr1RNAi;syb-GAL4 0.52+/-0.06 0.63+/-0.08 0.65+/-0.06

uas-npfr1RNAi/TH-GAL4 0.61+/-0.09 0.70+/-0.07 0.60+/-0.07

wild-type 0.52+/-0.03 0.59+/-0.11 0.59+/-0.04

uas-shi 0.51+/-0.03 0.63+/-0.10 0.62+/-0.05

c061; MBGAL80 0.54+/-0.05 0.60+/-0.11 0.62+/-0.05

c061; MBGAL80; uas-shi 0.57+/-0.11 0.64+/-0.10 0.62+/-0.06

NP2758 0.62+/-0.09 0.53+/-0.06 0.61+/-0.05

NP2758; uas-shi 0.55+/-0.05 0.58+/-0.04 0.65+/-0.02

MBGAL80; krasavietz 0.65+/-0.07 0.57+/-0.03 0.59+/-0.07

MBGAL80; krasavietz/ uas-shi 0.56+/-0.03 0.56+/-0.03 0.64+/-0.10

THGAL80; uas-shi 0.56+/-0.06 0.59+/-0.06 0.64+/-0.07

c061; MBGAL80/THGAL80; uas-shi 0.54+/-0.02 0.56+/-0.04 0.67+/-0.06

uas-dTRPA1 0.51+/-0.06 0.65+/-0.10 0.58+/-0.09

dNPF-GAL4 0.50+/-0.04 0.60+/-0.07 0.69+/-0.05

c061; MBGAL80/uas-dTRPA1 0.56+/-0.07 0.60+/-0.12 0.59+/-0.07

dNPF-GAL4/uas-dTRPA1 0.51+/-0.05 0.57+/-0.09 0.70+/-0.03

NP2758; uas-dTRPA1 0.61+/-0.07 0.57+/-0.07 0.68+/-0.06

MBGAL80/uas-dTRPA1; krasavietz 0.64+/-0.08 0.54+/-0.03 0.61+/-0.04
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Figure III.8 

 

Figure III.8. dNPF-GAL4 does not label somata in the ventral ganglion. 

dNPF-GAL4 driven CD8::GFP (green) shows strong expression in the brain and 

fibres descending into the ventral ganglion. However, no somata are labeled in 

the ventral ganglion. Scale bar represents 50µm. 
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Figure III.9 

 

 

Figure III.9. Silencing npfr1 in all neurons specifically disrupts 3 hr 

appetitive olfactory memory. (A) Driving the uas-npfr1RNAi globally throughout 
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the brain using syb-GAL4 in the presence or absence of uas-dicer2 attenuates 

memory performance in hungry animals. uas-npfr1RNAi/syb-GAL4 and uas-dcr2; 

npfr1RNAi/syb-GAL4 flies are statistically different than wild-type, uas-npfr1RNAi, 

syb-GAL4, uas-dcr2, uas-dcr2; syb-GAL4/+ and uas-dcr2; uas-npfr1RNAi controls. 

(B) Driving the uas-npfr1RNAi globally throughout the brain using syb-GAL4 in 

the presence or absence of uas-dicer2 does not affect 3 minute aversive memory 

performance. Data are mean ± SEM. Asterisks denote significant difference 

(P<0.05, ANOVA) from other unmarked groups. Data are mean ± SEM. 
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Figure III.10 

 

 

 

Figure III.10. MB-MP neurons do not contain GABA or acetylcholine. (A) The 

separate and merged channels from confocal images of a PPL1 cluster in a 

c061;MBGAL80;uas-CD8::GFP brain counter-labeled with GFP (green) and an 
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anti-GABA antibody (red). (B) The separate and merged channels of a confocal 

image at the level of the MB heel in an NP2758;uas-CD8::GFP brain counter-

labeled with GFP (green) and anti-TH antibody (red) and anti-ChAT (choline 

acetyl transferase) antibody. GFP strongly labels the heel region of the MB (white 

arrow). This region is also innervated by dopaminergic processes in the anti-TH 

labeled image. Anti-TH also strongly labels dopaminergic neuron cell bodies at 

that level of the brain (white arrow head). Anti-ChAT strongly labels many 

processes in the brain but is notably absent from the heel region of the MB. 

Scale bar represents 10µm. 
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Figure III.11 

 

 

Figure III.11. Analysis of expression in subsets of dopaminergic neurons. 

(A) A projection view of frontal sections from a brain containing labeled 

dopaminergic neurons with TH-GAL4 driven uas-CD8::GFP reveals dense 

innervation of specific domains in the dorsal protocerebrum including the heel of 
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the MB (yellow arrows). (B) Quantification of the number of anti-TH labeled 

neurons and GFP-positive neurons in the PPL1 cluster of the three GAL4 lines, 

c061;MBGAL80, MBGAL80;krasavietz and NP2758, used in this study. Data are 

mean ± SEM. n=16 PPL1 clusters from 8 brains per genotype. (C) The 

MBGAL80;krasavietz line labels two MB-MP neurons and one additional 

dopaminergic neuron in each PPL1 cluster that projects to the stalk of the α lobe. 

Projection view of a MBGAL80;krasavietz/uas-CD8::GFP brain reveals the MB-

MP neuron processes in the heel of the MB (yellow arrows) as well as projections 

from other neurons on the stalk of the MB α lobe (blue arrows). (D) Projection 

view of a MBGAL80/THGAL80;krasavietz/uas-CD8::GFP brain reveals that the 

THGAL80 transgene removes expression from the MB-MP neurons and the 

neurons projecting to the stalk of the a lobe (hollow arrows). Scale bar represents 

20µm. 
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Figure III.12 
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Figure III.12. Blocking only 2 or 4 of the 6 MB-MP neurons does not release 

appetitive memory performance in fed flies. (A) Feeding flies after training 

suppresses 3 hr memory performance of all groups used in this experiment. All 

genotypes were food-deprived, trained, fed and tested at the permissive 

temperature of 23˚C. (B) Blocking synaptic output from 6 MB-MP neurons with 

c061; MBGAL80 for one hour before testing using uas-shits1 reveals memory 

performance in satiated flies but blocking 4 with MBGAL80;krasavietz or 2 with 

NP2758 does not. All genotypes were food-deprived, trained and stored in food 

vials for 120min at 23˚C. Vials were then shifted to 31˚C for 60min before flies 

were tested for appetitive memory at 31˚C. Data are mean ± SEM. 
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Figure III.13 
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Figure III.13. Stimulating MB-MP neurons during testing suppresses 

appetitive memory performance but stimulating during acquisition or 

temporarily after training does not. (A) All genotypes were food-deprived, 

trained and stored in food vials for 120min at 23˚C. Vials were then shifted to 

31˚C for 15min before flies were tested for appetitive memory at 31˚C. (B) All 

genotypes were food-deprived and trained at 23˚C. They were then immediately 

transferred to food vials at 31˚C for 60min and returned to 23˚C for 120min 

before being tested for memory at 23˚C. (C) All genotypes were food-deprived at 

23˚C and 30min before training they were transferred to 31˚C and trained. After 

training they were stored in food vials for 180min at 23˚C before flies were tested 

for appetitive memory at 23˚C. Asterisk denotes significant difference (P<0.05, 

ANOVA) from other unmarked groups. Data are mean ± SEM. 
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Figure III.14 

 

 

Figure III.14. Blocking MB-MP neurons does not impair acquisition of 

aversive odor memory. All flies were incubated at 31˚C for 30min before and 

during training with the aversive odor and shock protocol. Immediately after 

training all flies were returned to 23˚C and tested for 3 hr aversive odor memory. 

Asterisk denotes significant difference (P<0.05, ANOVA) from other unmarked 

groups. Data are mean ± SEM. 
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Figure III.15 

  A. 
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Figure III.15. Projection pattern of c061;MBGAL80. (A) 3-dimensional 

projection view of a confocal stack of a c061;MBGAL80/uas-CD8::GFP;MB-

DsRed brain. To produce this movie the green channel was thresholded to reveal 

the projections of MB-MP neurons in more detail. Thresholding made the 

neurons that project to the fan-shaped body of the central complex invisible. (B) 

A 3D volume rendered view of a c061;MBGAL80/uas-CD8::GFP;MBDsRed brain 

using Amira software. 
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Figure III.16 

A. 
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Figure III.16. Projection pattern of NP2758. (A) A 3-dimensional projection 

view of a confocal stack of an NP2758;uas-CD8::GFP;MB-DsRed brain. (B) 3D 

volume rendered view of a c061;MBGAL80/uas-CD8::GFP;MBDsRed brain using 

Amira software. 
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Figure III.17 
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Figure 17. Projection pattern of MBGAL80; krasavietz. (A) 3-dimensional 

projection view of confocal stack of an MBGAL80/ uas-CD8::GFP; 

krasavietz/MB-DsRed brain. (B) A 3D volume rendered view of an 

MBGAL80/uas-CD8::GFP; krasavietz/MB-DsRed brain using Amira software 
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Chapter IV. Final Summary, conclusions and future directions 

 

 

IV.A. Odor Coding:  

 

Temporal coding in ORNs: The topographical organization of the antennal lobe 

segregates incoming odor information into combinatorial maps of activated 

ORNs. One prominent theory suggests that insects and mammals discriminate 

odors using distinct combinatorial spatial codes (Figure I.6, Ng et al., 2002; Wang 

et al.,2003). Using the genetic tools available in Drosophila, we tested the 

combinatorial coding hypothesis by engineering flies that have only one class of 

functional ORNs and therefore cannot support combinatorial maps. These files 

can be taught to discriminate between two odorants that activate the single 

functional class of ORN. They can also identify an odorant across a range of 

concentrations, demonstrating that a combinatorial code is not required to 

support learned odor discrimination. In addition, these data suggest that odorant 

identities can be distinguished using differences in the odor-evoked temporal 

firing patterns in the same ORNs. Electrophysiological studies will be required to 

address how PN populations respond to different temporal patterns of ORN 

activity. 
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Intensity coding: Spatiotemporal patterns of ORN activity vary with changing 

odor intensity. It is still unclear how the olfactory circuit compensates for changes 

in odor concentration to maintain appropriate coding of odor identity. Since more 

classes of ORN are activated with increasing odorant concentration, a 

combinatorial code would not support odor-generalization across a concentration 

range. Electrophysiological studies in locust have reported existence of 

concentration-invariant spatiotemporal features in the PN ensemble (Stopfer et 

al., 2003) activity but such features have not been reported in Drosophila to date. 

Two recent studies have reported that a purely combinatorial code mediates 

innate odor attraction in Drosophila larvae and adults. Kreher at al. (2008) 

demonstrated that two receptors Or42a and Or42b mediate the larval response 

to ethyl acetate and the net behavioral response is a linear summation of the 

individual olfactory neuron responses. A similar study on odor attraction of adult 

flies came to a similar conclusion (Semmelhack and Wang, 2009). However 

these studies did not test odor discrimination. A purely combinatorial code also 

cannot explain how larvae with a single class of functional ORNs can track 

odorants across an intensity gradient (Louis et al., 2008).  Behavioral studies 

have found that larvae with a single class of functional ORNs are more sensitive 

to changes in odorant concentration and this enhanced sensitivity is mediated by 

iLNs (Asahina et al., 2009). Our preliminary studies of intensity discrimination in 

adult flies with a class of functional ORNs indicated that these flies are more 
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sensitive to changes in odor concentration (Figure IV.1).  It will be interesting to 

test the role of iLNs for this enhanced sensitivity.   

 

 

How to correlate different approaches? 

 

A major roadblock in understanding odor coding has been the lack of correlation 

between data from different labs. The problem stems from the different 

approaches used to study odor coding. It is unclear how data collected using the 

different approaches; functional imaging with synaptic release based sensors or 

Ca2+ sensors and electrophysiological analyses using patch-clamp electrodes, 

sharp-electrodes and field-recording as well as population-based behavioral 

paradigms, relate to one another.  

 

 Odor is a very complex stimulus and ORN responses to odors vary immensely 

depending on the odor-delivery system.  In the field, it is customary to express 

odor concentration as the odor-dilutions used in the master stock. However, the 

actual amount of odor that reaches the fly antennae depends on the flow-rate of 

the carrier airstream. Since odor responses vary greatly with odor concentration, 

non-standard odor delivery systems make it difficult to compare data from 

different labs. Moreover the airstream itself may trigger PN responses, which 
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makes it critical to establish a standardized protocol for baseline correction and 

odor delivery.  

 

Another problem in comparing behavioral data with physiology data has been the 

absence of a good single-fly learning assay. Ideally one would like to compare 

physiology and behavioral data using the same preparation. However, a typical 

3-hour memory score in a T-maze based assay is PI=0.3 which means 65% of 

the population of flies displays the appropriate response. The reason for this low 

response probability is unclear. It is possible that the non-perfect response 

probability is built into the system and reflects the probability of eliciting a learned 

response in the network. This makes the task of developing a single fly learning 

assay extremely difficult. A population-based assay smoothes-out the variability 

of the system but with a single fly assay it might take an extremely large sample 

size to reach statistically significant data. For example a typical sample size in a 

T-maze assay is n=6, which means the data, comes from 1200 flies per 

genotype. To reach a similar sample size with a single fly assay one might need 

to perform over 1000 individual experiments per genotype.  Thus a fresh 

approach to fly behaviors might be essential to overcome this obstacle.  Another 

problem in comparing behavior data with physiology data is the difference in the 

exposure time to the odor stimulus. The longest odor-exposure time used in 

physiology experiments is 1-2 seconds whereas T-maze behavior uses 1-2 

minutes of odor-exposure.  It is unclear how increased duration of odor-exposure 
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affects the neuronal response to odors. Flies actively tracking an odor-stream 

move in and out of the odor-plume, presumably to prevent adaptations of ORNs 

(Duistermars et al., 2008). Moreover, in free-flight, cross-modal integration 

between visual, mechanical and olfactory stimuli is essential for a fly to actively 

track an odor (Duistermars et al., 2008).  While the t-maze assay does a fantastic 

job in reducing the complexity of the response, a richer behavioral assay might 

be required to fully appreciate the information-coding capacity of the system. 

 

 

IV.B. The role of the mushroom bodies in memory processes:  

 

IV.B.1. Improved anatomical specificity of MB-GAL4 drivers: 

 

Like other Drosophila labs, we rely heavily on the GAL4/UAS system (Brand and 

Perrimon 1993) to drive expression of transgenes in subpopulations of neurons.  

Using this approach, our lab has demonstrated that blocking DPM and MB α′β′ 

neuron output during acquisition or within the first hour after training (during the 

period of memory consolidation) severely impairs aversive and appetitive 

olfactory memory but blocking MB αβ neurons during these time periods has no 

effect (Keene et al., 2004; Krashes et al., 2007). Instead MB αβ neuron output is 

essential for memory retrieval when output from DPM and MB α′β′ neurons is 

dispensable (Krashes et al., 2007; Krashes and Waddell, 2008).  A caveat to the 
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use of GAL4 system is that the expression pattern of most GAL4 enhancer trap 

lines is rarely exclusive to the cells of interest. Our lab has utilized genetic 

techniques to improve the resolution of the analyses in MB neurons. We 

introduced the use of a MB expressed GAL80 transgene to block GAL4 activity in 

MB neurons and assess the role of other neurons labeled by MB-expressing 

GAL4 lines (Krashes et al., 2007) and recently we developed a technique to 

restrict gene expression exclusively to different subsets of mushroom body 

neurons.  

 

We have used a pan-MB expressed LexA transgene (247-LexA) to 

express a LexA-operator driven FLP recombinase (lexAop-FLP) in all MB 

neurons. The FLP recombinase activity can then be used to remove either a 

STOP cassette from a uas>STOP>X transgene (where ‘>’ denotes a FLP 

Recombinase Target, FRT site, X denotes gene of interest) or a GAL80 cassette 

from a tub>GAL80> transgene (tub denotes the tubulin promoter). When 

combined with a mushroom body GAL4 line the uas-X transgene is only 

expressed where MB-GAL4 and 247-LexA expressions overlap, i.e. in specific 

subsets of MB neurons (Figure IV.2-6). Flipping-out the >STOP> cassette 

preceding a transgene requires putting fewer transgenes in a single fly but it 

requires construction of a new trangene including the >STOP> cassette. Using 

the tub>GAL80> method allows one to use any pre-existing uas-transgene but 
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one must deal with possible perdurance of GAL80 even after FLP-out of the 

transgene. 

Both these approaches dramatically improve the specificity of existing MB-

GAL4 drivers. Moreover, this allows us to sub-divide the MB based on 

neurotransmitter use. For example GAD1-GAL4 labels GABAergic neurons in the 

fly brain including some MB neurons but broad expression of GAD1-GAL4 makes 

it unsuitable for behavioral studies. Using the FLP-out approach we can 

manipulate GABAergic kenyon cells for behavioral studies (Figure IV.6).  

 

We are currently using this technique to investigate the roles of the 

different mushroom body neuron subsets in memory processes. In addition, we 

are using this approach to perform a gene-expression analysis between the 

different subsets of MB neurons. These new techniques will help us to develop a 

greater understanding of MB function.   

 

 

IV.B.2. Role of cAMP signaling in synaptic plasticity:  

 

The cAMP signaling pathway is believed to be critical for numerous cellular 

processes including synaptic plasticity (Review Keene and Waddell 2007, Figure 

I.8 and 12). The current model for memory formation suggests the nature of 

memory formed following classical conditioning depends on the duration of cAMP 
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elevation after training. A transient increase in cAMP level results in formation of 

short-term memory whereas a prolonged increase in cAMP level produces 

persistent PKA activity, activation of the transcription factor cAMP response-

element binding protein (CREB) and results in formation of long-term memory 

(Review Keene and Waddell 2007, Figure I.8 and 12).  However the available 

tools for modulating the cAMP cascade involve mutant-rescues and 

pharmacological manipulation, neither of which provides acute spatiotemporal 

control over cAMP signaling. Thus, a central tenet of memory formation is difficult 

to tested directly using currently available tools. 

 

A light-inducible cAMP system: To address this problem, we adapted the 

photo-activated adenylyl cyclase (PAC) from Euglena gracilis as a light-inducible 

cAMP system for Drosophila. PAC mediates photoavoidance in Euglena and is  a 

tetrameric enzyme consisting of two subunits of PACα and two PACβ. Both 

subunits independently exhibit adenylyl cyclase activity that is enhanced by blue 

light. However, catalytic activity of the tetramer is higher than that of the 

individual subunits (Iseki et al., 2002).  

 

We made multiple fly-lines carrying PACα and PACβ subunit transgenes 

under the control of the UASGAL4 promoter. This allowed us to express the PAC 

subunits in specific cells using GAL4 enhancer-trap fly lines. We combined PACα 

and PACβ lines with a cAMP-response element promoter-driven luciferase 
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transgene (CRE-luciferase) and monitored light-induced changes in cAMP levels 

by using a luciferase assay system (Figure IV.7).  

We used two independent UAS-PACα and one UAS-PACβ line for our 

preliminary analysis and discovered that PACα alone is sufficient to elevate 

cAMP level following exposure to blue-light. Moreover, PACβ appears to have an 

inhibitory effect on cAMP induction in Drosophila (Figure IV.7). An independent 

study by Schroder-Lang et al. (2007) came to a similar conclusion. To test the 

utility of the PACα system we collaborated with Vivian Budnik’s laboratory to 

explore the role of cAMP signaling in modulating developmental synaptic 

plasticity. Our preliminary data indicates that PACα mediated elevation of cAMP 

can induce synaptic growth at the larval neuromuscular junction (Koon et al. 

unpublished data). 

 

A single-trial of aversive conditioning produces short-term memory that 

lasts for a few hours (Tully and Quinn, 1985) whereas a single trial of appetitive 

conditioning produces long-term memory that persists for days (Krashes and 

Waddell, 2008). It is possible that appetitive conditioning produces a prolonged 

change in cAMP level in the MB and thereby allows formation of a more stable 

memory. If this is true, artificial elevation of cAMP in the MB with the PACα 

system might allow us to promote LTM following single-trial aversive 

conditioning. 
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IV.C. Motivational control of behavior:  
 
Appetitive memory in Drosophila provides an excellent system to study 

motivational control of behavior because the motivational state of hunger 

promotes appetitive memory performance whereas satiety suppresses it. We 

found that activation of neuropeptide F (dNPF) neurons in fed flies releases 

appetitive memory performance from satiety-mediated suppression. Through a 

GAL4 screen, we identified six dopaminergic neurons that are a substrate for 

dNPF regulation. In satiated flies, these neurons inhibit mushroom body output, 

thereby suppressing appetitive memory performance. Hunger promotes dNPF 

release, which blocks the inhibitory dopaminergic neurons. The motivational drive 

of hunger thus affects behavior through a hierarchical inhibitory control 

mechanism: satiety inhibits memory performance through a subset of 

dopaminergic neurons, and hunger promotes appetitive memory retrieval via 

dNPF-mediated disinhibition of these neurons. This study establishes Drosophila 

as a model organism to study motivational systems and resolves motivation to a 

neural mechanism involving dNPF and dopamine that imparts state-dependent 

control on appetitive memory. The hierarchical arrangement of opposing 

inhibitory systems may be a common motif in the conditional control of behavior. 

Future studies will determine whether other motivational states such as thirst 

utilize control systems resembling the dNPF/DA system we have identified for 

hunger. 
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Figure IV.1 

 
Figure IV.1. Or83b2 flies with OR67a functional ORNs are more sensitive to 

concentration difference. OR67a rescue flies are tested for their ability to 

discriminate between two different concentrations of 6-methyl-5-hepten-2-one (6-

met). Unlike OR67a rescue flies, wild type flies cannot discriminate between 

small differences in concentrations.  Numbers on X-axis indicate dilutions of 

odorants X 10-3 
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Figure IV.2 
 
A.  
  
 
 
 
 
 
 
 
 
 
 
 
B. 
 
 
 
 
 
 
 
 
 
 
 
 
C. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 152 

Figure IV.2. Strategy for restricting Gal4 expression within mushroom body 

subsets. (A) MB1-Gal4 is expressed in γ lobes and in antennal lobes (blue). (B) 

MB2-LexA is expressed in all lobes of mushroom body. (C) Target gene is 

expressed where MB1-Gal4 and MB2-LexA expression overlaps, i.e. in 

mushroom body γ lobes. 
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Figure IV.3 

A. 

 

B. 
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Figure IV.3. Alternative genetic strategies for restricting Gal4 expression 

within mushroom body subsets. (A) A pan-neuronal mushroom body-LexA 

driver is used to express FLP-recombinase, which removes the STOP cassette 

from a uas>STOP>GFP transgene. A MB GAL4 driver can then be used to drive 

the uas-GFP in MB subsets. (B) A restricted MB GAL4 can drive expression of 

GFP, but the expression is inhibited by the presence of GAL80 transgene driven 

with ubiquitous Tubulin promoter. In the same fly, a pan-neural mushroom body-

LexA driver is used to express FLP-recombinase. FLP removes the GAL80 from 

the Tub>GAL80> cassette in MB, allowing expression of the GFP only in 

overlapping neurons.  
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Figure IV.4 

 

 
 
 



 156 

Figure IV.4. Improved specificity with uas>STOP> FLP-out approach: Whole 

brain projections showing standard GAL4 patterns (left panels) and enhanced 

specificity with ‘FLP-out’.  

 
 
Figure IV.5 
 
 

 
 
 
 

Figure IV.5. Improved specificity with Tubulin>GAL80> FLP-out approach. 

Whole brain projections showing enhanced specificity with Tub>GAL80> ‘FLP-

out’. Scale bar represents 20µm. 
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Figure IV.6 
 

 
 
 

Figure IV.6 Subdividing mushroom body according to transmitter use.  

(A) GABAergic neurons of mushroom body are labeled with GAD-Gal4 ‘FLP-out’. 

(B) Cholinergic Kenyon cells are labeled with Cha-Gal4 ‘FLP-out’. Scale bar 

represents 20µm.  
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Figure IV.7 
 

 
 

Figure IV.7.  Blue light exposure activates PACα alone. Relative changes in 

luciferase activity induced by exposing transgenic flies to blue light (400-500 nm). 

All flies harbor the CRE-luciferase reporter and one (alpha-68, alpha-91 or beta-

39) or both of the PAC subunit transgenes.  
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Preface to Appendix 

 

This chapter has been published separately in: 

 

Rickmyre, J. L., DasGupta, S., Ooi, D. L., Keel, J., Lee, E., Kirschner, M. W., 

Waddell, S., and Lee, L. A. (2007). The Drosophila homolog of MCPH1, a human 

microcephaly gene, is required for genomic stability in the early embryo. J. Cell. 

Sci 120, 3565-3577. 

 

DasGupta, S. performed the experiments described in Figure 8. 
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Introduction
Drosophila melanogaster is an ideal model organism for study
of the cell cycle during development (reviewed by Foe et al.,
1993; Lee and Orr-Weaver, 2003). Drosophila achieves rapid
embryogenesis by using a streamlined cell cycle that is not
dependent on transcription or growth. The first 13 embryonic
cell cycles are nearly synchronous nuclear divisions without
cytokinesis occurring in the shared cytoplasm of the syncytial
blastoderm. These cycles differ from canonical G1-S-G2-M
cycles in that they have no intervening gaps; instead DNA
replication and mitosis rapidly oscillate. Maternal RNA and
protein stockpiles drive these abbreviated ‘S-M’ cycles (~10
minutes each). In mammalian embryos, rapid peri-gastrulation
divisions that occur later in development share many features
and have been proposed to be related by evolutionary descent
to early embryonic divisions of flies and frogs (O’Farrell et al.,
2004). Thus, advances gained from studies of these streamlined
cycles in ‘simple’ model organisms likely have relevance for
understanding mammalian cell cycles.

In a genetic screen for regulators of embryonic S-M cycles,
we identified the Drosophila homolog of a human disease
gene, MCPH1 (microcephalin). Mutation of human MCPH1
causes autosomal recessive primary microcephaly, a
developmental disorder characterized by severe reduction of

cerebral cortex size (Jackson et al., 2002). Mcph1 is highly
expressed in the developing forebrain of fetal mice, consistent
with its proposed role in regulating the number neuronal
precursor cell divisions and, ultimately, brain size (Jackson et
al., 2002). Human MCPH1 protein is predicted to contain three
BRCA1 C-terminal (BRCT) domains (reviewed by Glover
et al., 2004; Huyton et al., 2000), which mediate
phosphorylation-dependent protein-protein interactions in cell-
cycle checkpoint and DNA repair functions.

Several studies have implicated human MCPH1 in the
cellular response to DNA damage. The DNA checkpoint is
engaged at critical cell-cycle transitions in response to DNA
damage or incomplete replication and serves as a mechanism
to preserve genomic integrity (reviewed by Nyberg et al.,
2002). Triggering of this checkpoint causes cell-cycle delay,
presumably to allow time for correction of DNA defects. When
a cell senses DNA damage or incomplete replication, a kinase
cascade is activated. Activated ATM and ATR kinases
phosphorylate their targets, including the checkpoint kinase
Chk1, which is activated to phosphorylate its targets. The first
clue that MCPH1 plays a role in the DNA damage response
came from siRNA-mediated knockdown studies in cultured
mammalian cells demonstrating a requirement for MCPH1 in
the intra-S phase and G2-M checkpoints in response to ionizing

Mutation of human microcephalin (MCPH1) causes
autosomal recessive primary microcephaly, a
developmental disorder characterized by reduced brain
size. We identified mcph1, the Drosophila homolog of
MCPH1, in a genetic screen for regulators of S-M cycles in
the early embryo. Embryos of null mcph1 female flies
undergo mitotic arrest with barrel-shaped spindles lacking
centrosomes. Mutation of Chk2 suppresses these defects,
indicating that they occur secondary to a previously
described Chk2-mediated response to mitotic entry with
unreplicated or damaged DNA. mcph1 embryos exhibit
genomic instability as evidenced by frequent chromatin
bridging in anaphase. In contrast to studies of human
MCPH1, the ATR/Chk1-mediated DNA checkpoint is
intact in Drosophila mcph1 mutants. Components of this
checkpoint, however, appear to cooperate with MCPH1 to

regulate embryonic cell cycles in a manner independent of
Cdk1 phosphorylation. We propose a model in which
MCPH1 coordinates the S-M transition in fly embryos:
in the absence of mcph1, premature chromosome
condensation results in mitotic entry with unreplicated
DNA, genomic instability, and Chk2-mediated mitotic
arrest. Finally, brains of mcph1 adult male flies have defects
in mushroom body structure, suggesting an evolutionarily
conserved role for MCPH1 in brain development.
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radiation (Lin et al., 2005; Xu et al., 2004). Two recent reports
have further implicated MCPH1 in the DNA checkpoint,
although puzzling discrepancies remain to be resolved
(reviewed by Bartek, 2006). One report indicates that MCPH1
functions far downstream in the pathway, at a level between
Chk1 and one of its targets, Cdc25 (Alderton et al., 2006).
Another report (Rai et al., 2006) suggests that MCPH1 is a
proximal component of the DNA damage response required for
radiation-induced foci formation (i.e. recruitment of
checkpoint and repair proteins to damaged chromatin).

Additional functions have been reported for MCPH1.
MCPH1– lymphocytes of microcephalic patients exhibit
premature chromosome condensation (PCC) characterized by
an abnormally high percentage of cells in a prophase-like state,
suggesting that MCPH1 regulates chromosome condensation
and/or cell-cycle timing (Trimborn et al., 2004). A possible
explanation for the PCC phenotype is that MCPH1-deficient
cells have high Cdk1-cyclin B activity, which drives mitotic
entry; decreased inhibitory phosphorylation of Cdk1 was found
to be responsible for elevated Cdk1 activity in MCPH1-
deficient cells (Alderton et al., 2006). It is not clear whether
MCPH1’s role in regulating mitotic entry in unperturbed cells
is related to its checkpoint function; intriguingly, Chk1 has
similarly been reported to regulate timing of mitosis during
normal division (Kramer et al., 2004). MCPH1 (also called
Brit1) was independently identified in a screen for negative
regulators of telomerase, suggesting that it may function as a
tumor suppressor (Lin and Elledge, 2003). Further evidence for
such a role comes from a study showing that gene copy number
and expression of MCPH1 is reduced in human breast cancer
cell lines and epithelial tumors (Rai et al., 2006).

We report here the identification and phenotypic
characterization of Drosophila mutants null for mcph1. We
show that syncytial embryos from mcph1 females exhibit
genomic instability and undergo mitotic arrest due to activation
of a DNA checkpoint kinase, Chk2. We find that, in contrast
to reports of MCPH1 function in human cells, the ATR/Chk1-
mediated DNA checkpoint is intact in Drosophila mcph1
mutants. We propose that Drosophila MCPH1, like its human
counterpart, is required for proper coordination of cell-cycle
events; in early embryos lacking mcph1, chromosome
condensation prior to completion of DNA replication causes
genomic instability and Chk2-mediated mitotic arrest.

Results
Screen for Drosophila cell-cycle mutants identifies
absent without leave (awol)
In an effort to identify genes required for S-M cycles of the
early embryo, we previously screened (Lee et al., 2003) a
maternal-effect lethal subset of a collection of
ethylmethanesulfonate (EMS)-mutagenized lines from Charles
Zuker’s lab (Koundakjian et al., 2004). We screened ~2400
lines by examining DAPI-stained embryos of homozygous
females. Because early embryonic development is entirely
regulated by maternally deposited mRNA and protein, only the
maternal genotype is relevant in this screen. We identified 33
lines (12 chromosome II and 21 chromosome III mutants)
representing 26 complementation groups in which the majority
of embryos from mutant females arrest at the syncytial
blastoderm stage. We previously identified two alleles of giant
nuclei, which prevents excessive DNA replication in S-M

cycles (Freeman et al., 1986; Renault et al., 2003), from this
collection (Lee et al., 2003). We have now identified alleles of
four well-known regulators of the cell cycle from the same
screen (supplementary material Table S1). All four genes
encode protein kinases with conserved roles in cell-cycle
regulation. wee1, grapes, telomere fusion and aurora encode
Drosophila orthologs of Wee1 (a Cdk1 inhibitory kinase),
DNA checkpoint kinases Chk1 and ATM (ataxia telangiectasia
mutated), and the mitotic kinase Aurora A, respectively
(Fogarty et al., 1997; Glover et al., 1995; Oikemus et al., 2004;

Journal of Cell Science 120 (20)

Fig. 1. The awol phenotype. Representative syncytial embryos (A,B)
and mitotic spindles (C-K) in embryos from wild-type or
awolZ1861/awolZ0978 females. (A,B) DNA staining of embryos from
awol females shows arrest with condensed chromosomes and
unevenly spaced nuclei (B) compared to wild type (A).
(C-G) Microtubules are in green and DNA in red. (C) Asynchronous
neighboring nuclei in embryo from awol female (left, interphase;
right, mitosis). (D) Metaphase spindle with duplicated centrosomes
in embryo from awol female shows asynchronous nuclear and
centrosome cycles (duplication normally occurs in telophase).
(E) Shortened, barrel-shaped spindle in embryo from awol female.
(F) DNA displaced from metaphase plate is tethered by microtubules
to spindle pole in embryo from awol female. (G) Wild-type spindle.
(H-K) Microtubules are in green and centrosomes in red. (H-I) awol
spindles with missing or ectopic centrosomes. (K) Wild-type spindle.
Bars, 20 !m.
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3567MCPH1 regulates Drosophila embryogenesis

Price et al., 2000). Identification of these alleles of bona fide
cell-cycle regulators validates our screen.

We chose for further study the largest complementation
group on chromosome II (comprising ZII-0978, ZII-1861 and
ZII-4050) identified in our screen. Females homozygous or
transheterozygous for any of these mutations are completely
sterile, producing embryos that arrest in a metaphase-like state
(~90% of embryos) in cycles 1-8 (the majority in cycles 6-8).
Unevenly spaced, asynchronously dividing nuclei and
centrosome duplication prior to chromosome segregation are
often seen (Fig. 1B-D; Table 1); all of these are consistent with
failure of nuclear divisions. Tubulin foci are frequently missing
from one or both poles of mitotic spindles, which are typically
shorter and more barrel-shaped than those of wild type (Fig.
1E; Table 1). Chromosomes are poorly aligned and
occasionally displaced from the metaphase plate (Fig. 1F).
Staining for Centrosomin, a core centrosomal component (Li
and Kaufman, 1996), revealed that lack of tubulin foci at one
or both poles in mutant-derived embryos is due to an absence

of centrosomes (Fig. 1H,I; Table 1); we occasionally see
ectopic centrosomes embedded in spindles (Fig. 1J; Table 1).
On the basis of the phenotype of acentrosomal mitotic spindles,
we have given the name ‘absent without leave’ (‘awol’) to
mutants of this complementation group.

awol encodes the Drosophila homolog of MCPH1
We localized awol to a region including five genes by a
combination of mapping strategies (see Materials and Methods
for details). A candidate in this region was the Drosophila
homolog of the human disease gene, MCPH1 (Jackson et al.,
2002). Sequencing of PCR-amplified mcph1 coding region
from homozygous mutant genomic DNA revealed that
awolZ0978 and awolZ4050 are distinct missense mutations in
mcph1 causing non-conservative amino acid changes and
awolZ1861 is a nonsense mutation resulting in severe truncation
of the protein (Fig. 2A). Thus, all three EMS-induced awol
alleles represent mutations affecting MCPH1 protein.
Furthermore, females carrying any of these awol alleles in

Fig. 2. mcph1 is the awol gene. (A) The
Drosophila mcph1 gene structure. Exons are
represented by filled boxes, 5"- and 3"-
UTRs by open boxes, and splicing events by
thin lines. The gene CG13189 lies within
the largest intron of mcph1. Alternative
splicing produces transcript mcph1-RA or
-RB. Arrows below gene or transcript names
indicate direction of transcription. Positions
of the point mutations in each of the three
EMS-induced alleles of awol and resulting
amino acid changes (numbers refer to
MCPH1-B) are indicated above the mcph1
gene. Imprecise excision of P-element
EY11307 (inverted triangle) generated allele
mcph1Exc21 (deleted region indicated by
gap). (B) Western analysis reveals trace
amounts of or no MCPH1 protein in
extracts of awol embryos relative to wild
type (loading control: anti-#-tubulin). The
excision allele (Exc21) of mcph1 serves as
negative control. Df=Df(2R)BSC39, which
removes the mcph1 genomic locus.
(C) Comparison of the BRCT domain content (hatched boxes) of the two Drosophila MCPH1 isoforms (MCPH1-A and -B) and human
MCPH1 protein (bottom). Positions of the amino acid changes in each of the three EMS-induced alleles of awol are indicated by asterisks. A
double-sided arrow indicates the region of MCPH1-B used for antibody production.

Table 1. Mitotic spindle defects in mcph1 embryos and suppression by mnk
Centrosome number (% spindles)† Other spindle defects (% spindles)†

Genotype MI* Decreased‡ Increased§ Barrel Interacting¶ Multipolar

Wild type 54.1 0.2 0.0 0.1 0.0 0.0
mcph1** 88.8 43.6 46.0 97.5 0.0 0.2
mnk 54.2 0.2 0.1 0.0 0.2 0.0
mnk mcph1Z1861 57.5 0.2 1.2 0.0 15.0 6.0

*Mitotic index=% embryos in mitosis/total number of embryos (>100 embryos scored per genotype). The presence of both condensed chromosomes and a
mitotic spindle was used as the criterion for scoring mitotic embryos.

†To quantify spindle defects, >500 spindles from 25 embryos were scored per genotype. 
‡Spindles with centrosomal detachment at one or both poles.
§Spindles with >1 centrosome per pole (one or both poles) or ectopic centrosomes within spindle. Telophase spindles were not scored because centrosome

duplication normally occurs at this phase in the early embryo.
¶Two spindles connected by microtubules.
**mcph1Z1861/mcph1Z0978.
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trans to a deletion of the mcph1 genomic locus produce
embryos with phenotypes indistinguishable from that of
homozygous mutant females (data not shown), suggesting that
all three Zuker awol alleles behave genetically as nulls.

To confirm that mutation of mcph1 is responsible for the
awol phenotype, we generated a null allele (mcph1Exc21) by
imprecise P-element excision (Fig. 2A). mcph1Exc21

homozygous females produce embryos with the awol
phenotype; similar results were obtained for females carrying
this excision in trans to any of the EMS-induced awol alleles
or a deletion of the mcph1 genomic locus (data not shown),
further confirming that mutation of mcph1 causes the awol
phenotype. Importantly, expression of transgenic mcph1 using
the UAS-Gal4 system (Brand and Perrimon, 1993; Rorth,
1998) restored fertility to awolZ0978/awolZ4050 females,
resulting in a hatch rate of ~40% of their embryos
(supplementary material Table S2). Thus, mcph1 is the awol
gene. We used the MCPH1 isoform that is most abundant in
the early embryo for transgenic rescue; it is possible that full
rescue of the maternal-effect lethality of awol mutants might
additionally require expression of the less abundant isoform
(see below for description of MCPH1 isoforms; Fig. 2A and
supplementary material Fig. S1B).

To further characterize our mcph1 alleles, we generated
polyclonal antibodies against an MBP-MCPH1 fusion. Anti-
MCPH1 antibodies recognize a major band of ~90 kDa,
consistent with the predicted size of MCPH1-B, when used to
probe immunoblots of wild-type embryo extracts (Fig. 2B). In
contrast, for all mcph1 alleles identified here, we detect greatly
reduced or no MCPH1 protein in mutant-derived embryos.
Thus, all of these alleles are null (or nearly null) for MCPH1
protein.

MCPH1 isoforms differ in expression pattern and BRCT
domain content
Our genetic data revealed that mcph1 null alleles are
homozygous viable and that mcph1 is required maternally for
early embryonic development. To measure MCPH1 levels
throughout Drosophila development, we probed immunoblots
of extracts from various developmental stages with anti-
MCPH1 antibodies (supplementary material Fig. S1A). As
expected, MCPH1 is abundant in ovaries and early embryos,
whereas older embryos under zygotic control have relatively
low amounts. MCPH1 is present in larval brains and imaginal
discs but undetectable in adult brain extracts. Although high
levels of MCPH1 are present in adult testes, it is not required
for male fertility (data not shown).

Two major isoforms of MCPH1 were detected by
immunoblotting: ~90 kDa (predominant in ovaries and
embryos) and ~110 kDa (predominant in testes). Both
isoforms were detected in larval tissues. The most recent
mcph1 gene model annotated by FlyBase predicts two splice
variants (A and B) differing at their 5"-ends that encode
proteins with distinct amino termini (Grumbling and Strelets,
2006). We compared sizes of recombinant MCPH1-A and -B
proteins (produced by in vitro transcription-translation
reactions) to that of endogenous MCPH1 isoforms by
immunoblotting. We found that the gel mobilities of MCPH1-
A and -B closely match that of MCPH1 in testes and ovaries,
respectively; thus, MCPH1-A is the ~110 kDa isoform that is
abundant in testes, and MCPH1-B is the ~90 kDa isoform that

is abundant in ovaries and early embryos (supplementary
material Fig. S1B).

We observed a discrepancy between relative sizes of
MCPH1-A and -B on our immunoblots (A larger than B;
supplementary material Fig. S1B) and as predicted by FlyBase
[779 versus 826 amino acids, respectively (Grumbling and
Strelets, 2006)]. We were unable to find 3"-end sequence data
for mcph1-A on public databases, so we fully sequenced a
representative clone (LP15451) and found it to encode a
protein of 981 amino acids, which closely matches our
estimated size of 110 kDa for endogenous MCPH1-A.
Furthermore, our sequencing revealed that mcph1-A contains
coding sequence from both mcph1 and CG30038, a gene
predicted to overlap the 3"-end of mcph1 (Fig. 2A). Thus,
mcph1-A and -B are alternatively spliced at both ends,
producing proteins that differ in their N- and C-terminal
regions (Fig. 2C), and predicted gene CG30038 comprises
alternatively spliced exons of mcph1-A.

MCPH1-A and -B proteins both contain BRCT domains
(three or one, respectively). The arrangement of BRCT
domains within MCPH1-A (one N-terminal and two paired C-
terminal) resembles that of human MCPH1 (Fig. 2C).
Drosophila and human MCPH1 have highest sequence identity
in their BRCT domains (37.6%, 52.5% and 26.8% between the
N-terminal, first C-terminal, and second C-terminal domains,
respectively). The presence of extended amino termini in both
Drosophila isoforms relative to human MCPH1 raises the
possibility that the reported human sequence (Jackson et al.,
2002) may not be full-length.

MCPH1 is a nuclear protein
Because Drosophila MCPH1 contains BRCT domains, we
hypothesized that it has a nuclear function. In syncytial
embryos, MCPH1 signal localizes to interphase nuclei and
disappears in mitosis (supplementary material Fig. S2). As
control for antibody specificity, no MCPH1 signal was detected
in interphase nuclei of embryos derived from mcph1 null
females. Because MCPH1 protein is readily detectable
throughout the cell cycle (by immunoblotting of extracts from
staged embryos; data not shown), the disappearance of
MCPH1 signal in mitosis, as observed by immunostaining, is
probably due to its dispersal into the cytoplasm upon nuclear
envelope breakdown. Human MCPH1 has been reported to
localize to the nucleus (Lin et al., 2005) as well as to
centrosomes (Jeffers et al., 2007; Zhong et al., 2006); we
observe no centrosomal localization for MCPH1 in syncytial
embryos of Drosophila.

Mitotic arrest in mcph1 syncytial embryos is a
consequence of Chk2 activation
The defective mitotic spindles of embryos derived from mcph1
females (hereafter referred to as ‘mcph1 embryos’) exhibit key
features reminiscent of Chk2-mediated centrosomal
inactivation. In particular, these spindles are short, barrel-
shaped, anastral, and associated with poorly aligned
chromosomes (Fig. 1). Late syncytial embryos of Drosophila
use a two-stage response to DNA damage or replication defects
(Sibon et al., 2000). The DNA checkpoint mediated by Meiotic
41 (MEI-41) and Grapes (GRP), the Drosophila orthologs of
ATR (ATM-Rad3-related) and Chk1 kinases, respectively,
delays mitotic entry via inhibitory phosphorylation of Cdk1 to

Journal of Cell Science 120 (20)
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allow repair of DNA damage or completion of replication
(Sibon et al., 1999; Sibon et al., 1997). When this checkpoint
fails, a secondary damage-control system operating in mitosis
is activated; resulting changes in spindle structure block
chromosome segregation, presumably to stop propagation of
defective DNA (Sibon et al., 2000; Takada et al., 2003). This
damage-control system, known as centrosomal inactivation, is
mediated by the checkpoint kinase Chk2 (Takada et al., 2003).

Loss of $-tubulin from centrosomes of mitotic spindles is
another characteristic feature of Chk2-mediated centrosomal
inactivation. We detected decreased $-tubulin staining of
centrosomes during mitosis in mcph1 embryos compared to
wild type (supplementary material Fig. S3). We typically
observe complete detachment of centrosomes from spindles in
mcph1 embryos. High levels of DNA damage induced by
intense laser illumination can similarly cause complete
centrosomal detachment from spindle poles of wild-type
embryos (Takada et al., 2003), suggesting that the spindle
changes we observe in mcph1 embryos represent an extreme
form of centrosomal inactivation.

To determine whether mitotic defects in mcph1 embryos are
due to Chk2-mediated centrosomal inactivation, we created
lines doubly mutant for mcph1 and maternal nuclear kinase
(mnk), also known as loki, which encodes Drosophila Chk2
(Abdu et al., 2002; Brodsky et al., 2004; Masrouha et al., 2003;
Xu et al., 2001). A similar approach has been used to
demonstrate Chk2-mediated centrosomal inactivation in grp,
mei-41 and wee1 embryos (Stumpff et al., 2004; Takada et al.,
2003). Null mnk mutants are viable and fertile, but they are
highly sensitive to ionizing radiation (Xu et al., 2001).
Remarkably, we found that mnk suppresses many of the mitotic
defects of mcph1 embryos (Fig. 3A-D; Table 1). Mitotic
spindles are restored to near-normality: in contrast to the short,
barrel-shaped, anastral spindles of mcph1 embryos, mnk mcph1
embryos have elongated spindles with attached centrosomes.
Thus, Chk2 activation contributes significantly to the mcph1
phenotype in syncytial embryos.

In addition to suppressing the mitotic spindle defects of
mcph1 embryos, mnk strikingly suppresses their developmental
arrest (Fig. 3G-K). Whereas mcph1 embryos uniformly (100%)
arrest in early to mid-syncytial cycles (cycles 1-8), most
(>95%) mnk mcph1 embryos complete syncytial divisions,
cellularize, and cease developing near gastrulation. Thus, Chk2
activation causes mcph1 embryos to arrest at the syncytial
stage. Cellularized mnk mcph1 embryos show irregularities in
cell size and shape and intensity of DNA staining; gastrulation
is grossly aberrant. We conclude that mutation of mnk removes
the ‘brakes’ from mcph1 embryos, allowing further nuclear
divisions and development in the face of DNA defects, which
eventually become so severe that embryos die peri-
gastrulation.

mcph1 syncytial embryos exhibit a high frequency of
chromatin bridging
We sought to understand the primary defects leading to Chk2
activation in mcph1 embryos. Known triggers of Chk2-
mediated centrosomal inactivation are mitotic entry with
incompletely replicated or damaged DNA (Sibon et al., 2000;
Takada et al., 2003). Although mnk suppresses many of the
cell-cycle defects of mcph1 embryos, we occasionally observe
abnormal DNA aggregates shared by more than one spindle

and multipolar spindles in mnk mcph1 embryos that progress
beyond the usual mcph1 arrest point (Fig. 3E; Table 1). These
defects are not observed in mnk embryos, suggesting that they
are due to a lack of mcph1. In whole mounts of both mnk
mcph1 and mcph1 embryos, we frequently observe chromatin
bridging, which represents a physical linkage of chromosomes
that prevents their segregation to opposite poles at anaphase
(Fig. 3F; data not shown); this bridging could result from
mitotic entry with unreplicated, damaged, and/or improperly
condensed chromosomes. We were prohibited from
quantifying this phenotype, however, as yolk proteins obscure
nuclei that lie deep within the interior of early syncytial
embryos. We circumvented this problem by adapting a larval

Fig. 3. Suppression of mcph1 by Chk2 (mnk). (A-J) Representative
mitotic spindles in syncytial embryos and whole-mount embryos
from mcph1Z1861, mnk mcph1Z1861 and wild-type females. Bars, 20
!m. (A-F) Microtubules are in green and DNA in red; low (A,B) and
high (C-F) magnification views. mcph1 embryos have awol-type
(barrel-shaped, acentrosomal) spindles (A,C). awol phenotype is
suppressed in mnk mcph1 embryos (B,D): note restoration of
elongated spindles and attached centrosomes. Other defects are seen
in mnk mcph1 embryos, such as DNA shared by two spindles (E) and
DNA bridging (F, arrow). (G,H) Cellularized embryos (2-3 hours)
stained for actin (green) and DNA (red). mnk mcph1 embryos reach
gastrulation with irregular cell size and DNA content (G) compared
to wild type (H). (I,J) DNA-stained embryos (3-4 hours). mnk mcph1
embryos (I) arrest peri-gastrulation with aberrant morphology
compared to wild type (J). (K) Quantification of suppression of
developmental arrest of mcph1Z1861 embryos by mnk.
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brain squash protocol for this developmental stage that allowed
us to more clearly observe chromosomes of early embryos.

Using this approach, we found a high frequency of
chromatin bridging in mcph1 embryos (68% of late anaphase-
to-telophase figures) in cycles 4-6, prior to their Chk2-
mediated arrest (Fig. 4). Multiple bridges are often present
between segregating chromosomes. Spindle pole-to-pole
distances are increased dramatically compared to wild-type
figures, presumably due to an extended anaphase B in a failed
attempt to separate chromosomes that remain physically
linked. All mcph1 alleles reported here exhibit a similar degree
of bridging, whereas this phenotype was rarely observed (<3%)
in squashes of wild-type embryos (Fig. 4 and data not shown).
Chromatin bridging probably represents a primary defect of
mcph1 embryos because it occurs at a similar frequency (81%)
in mnk mcph1 embryos that lack the Chk2-mediated
checkpoint. We hypothesize that mcph1 embryos incur
chromosomal lesions that cause Chk2-mediated centrosomal
inactivation and mitotic arrest as secondary consequences.

We occasionally observe apparent DNA breakage
(evidenced by gaps in DAPI staining) along the length of
bridging chromatin that is extensively stretched between poles
in mcph1 and mnk mcph1 embryos (data not shown). We
propose that DNA breakage is not a primary defect in mcph1
embryos but rather occurs secondary to bridging. Our attempts
to confirm the presence of DNA breaks in syncytial embryos
(mcph1 or irradiated wild type) by phospho-histone H2Av or
TUNEL staining have been unsuccessful.

mcph1 is not required for the DNA checkpoint in
Drosophila
Chk2-mediated centrosomal inactivation can be triggered in
Drosophila syncytial embryos by DNA damaging agents, the

DNA-replication inhibitor aphidicolin, or mutation of DNA
checkpoint components (MEI-41 or GRP) or WEE1, a kinase
that prohibits mitotic entry via inhibitory phosphorylation of
Cdk1 (Sibon et al., 2000; Stumpff et al., 2004; Takada et al.,
2003). Human MCPH1-deficient cells show defective G2-M
and intra-S phase checkpoint responses following DNA
damage (Alderton et al., 2006; Lin et al., 2005; Xu et al., 2004).
In light of these studies linking human MCPH1 to the
ATR/Chk1 pathway and our results that Drosophila mcph1
embryos undergo Chk2-mediated arrest, we sought to
determine if MCPH1 is required for the DNA checkpoint in
Drosophila.

Because MEI-41 and GRP are required during larval stages
for the DNA checkpoint (Brodsky et al., 2000; Jaklevic and Su,
2004), we tested whether MCPH1 is required. In response to
ionizing radiation (IR), eye-antennal imaginal disc cells of
wild-type larvae undergo G2 arrest. We found that mcph1
larvae also exhibit IR-induced G2 arrest under conditions in
which mei-41 larvae fail to arrest (Fig. 5A). We next tested the
intra-S phase response to IR in larval brain cells. mcph1 brains
exhibited IR-induced intra-S phase arrest similar to that of wild
type, whereas no arrest was seen in mei-41 brains (Fig. 5B).
We also tested sensitivity of mcph1 larvae to hydroxyurea
(HU), which blocks DNA replication. Under conditions in
which no mei-41 larvae survived, mcph1 larvae were HU
resistant, surviving at near-Mendelian ratios (Fig. 5C). We
conclude that MCPH1 is not required for the DNA checkpoint
in larval tissues. We also found that mcph1 larvae, in contrast
to mei-41, survive normally following low-dose IR exposure
(Fig. 5D), indicating that MCPH1 is not required for DNA
repair (Jaklevic and Su, 2004). 

The MEI-41/GRP-mediated DNA-replication checkpoint is
also developmentally activated at the midblastula transition
(MBT) (Sibon et al., 1999; Sibon et al., 1997). Rapid S-M cycles
of the early embryo are under maternal genetic control, and the
switch to zygotic control occurs at the MBT after cycle 13.
During late syncytial cycles (11-13), titration of a maternal
DNA-replication factor is thought to induce a mei-41/grp-
dependent checkpoint that causes Cdk1 inhibitory
phosphorylation. Mitotic entry is thereby slowed, presumably to
allow time to complete replication. Embryos from mei-41 or grp
females fail to lengthen interphase in late syncytial cycles and
undergo extra S-M cycles (Sibon et al., 1999; Sibon et al., 1997).

We asked if MCPH1 is required for the MEI-41/GRP-
dependent DNA-replication checkpoint at the MBT. mcph1
embryos undergo arrest due to Chk2 activation prior to their
reaching cortical divisions (cycles 10-13). Thus, to test whether
mcph1 is required for cell-cycle delay at the MBT, we
performed live analysis of cortical divisions in mnk mcph1
embryos that lack a functional Chk2-mediated checkpoint. We
reasoned that any primary defects in cell-cycle timing due to
mutation of mcph1 would still be apparent in mnk mcph1
embryos. This assumption is strengthened by a recent study
showing that mnk grp embryos that progress through the MBT
due to lack of Chk2-mediated arrest retain the cell-cycle timing
defects of grp embryos (Takada et al., 2007). We monitored
timing of nuclear envelope breakdown and reformation by
differential interference contrast microscopy (DIC) and found
no significant differences in interphase or mitosis lengths in
mnk mcph1 and wild-type embryos (Fig. 6A).

To further confirm that the DNA-replication checkpoint is

Journal of Cell Science 120 (20)

Fig. 4. Chromatin bridging in mcph1 embryos. Syncytial embryos
were squashed and the DNA stained. (A) Representative late
anaphase-to-telophase figures (images shown at same magnification).
DNA bridging and increased pole-to-pole distances are seen in
squashes of mcph1Z1861/mcph1Z0978 and mnk mcph1Z1861 embryos.
Bars, 10 !m. (B) Quantification of DNA bridging in
mcph1Z1861/mcph1Z0978 and mnk mcph1Z1861 embryo squashes. Wild-
type and mnk embryos served as controls.
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3571MCPH1 regulates Drosophila embryogenesis

intact in mnk mcph1 embryos, we assessed the extent of
inhibitory phosphorylation of Cdk1 and found it to be
comparable to that of wild type (Fig. 6B). We also found wild-
type levels of Cyclin B and Cyclin A in mnk mcph1 embryos
(Fig. 6C; data not shown). Low levels of Chk1 protein have
been reported in MCPH1 siRNA human cells (Lin et al., 2005;
Xu et al., 2004), but we detected normal levels of Grapes
(Chk1) in mcph1 and mnk mcph1 embryos (Fig. 6D). Thus, our
data do not support a role for Drosophila MCPH1 in control
of cell-cycle timing in syncytial embryos via regulation of
Cdk1 phosphorylation, Cyclin B, or Grapes levels.

mcph1 cooperates with mei-41 and grp to regulate
syncytial divisions
Previous studies of grp and mei-41 embryos largely focused on
mitotic defects in cortical nuclear divisions, which are
amenable to live analysis (Sibon et al., 2000; Takada et al.,
2003). Given the earlier arrest point of mcph1 embryos, we

initially concluded that mcph1 and mei-41/grp must have
discrete roles. We subsequently found, however, that a sizeable
fraction of embryos (17-33%) from homozygous or
hemizygous grp females arrest in pre-cortical cycles (1-9) with
acentrosomal, barrel-shaped spindles nearly identical to that of
mcph1 (Fig. 7A). We obtained similar results for all three grp
alleles tested (Fig. 7B), including the null grp209 (Larocque et
al., 2007). Our data and a previous report of defective Cyclin
A proteolysis in pre-cortical grp embryos (Su et al., 1999) have
established a role for grp in regulating the cell cycles of early
syncytial embryos. We also found that mcph1 dominantly
enhances a weak mei-41 phenotype to a degree similar to that
of grp (Fig. 7C). Intriguingly, by immunoblotting, we
consistently observe an upward mobility shift in MCPH1 in
grp or mei-41 embryonic extracts (Fig. 7D). Taken together,
these data suggest that MCPH1 cooperates with MEI-41 and
GRP to regulate the cell cycles of the early embryo via a
mechanism independent of Cdk1 phosphorylation.

Fig. 5. mcph1 larvae have intact DNA checkpoints and normal sensitivity to DNA-damaging agents. (A,B) Cell-cycle checkpoints in mcph1
larvae. Bars, 50 !m. (A) G2-M checkpoint. Eye-antennal imaginal disks were dissected from untreated (left) or irradiated (right) larvae, fixed,
and stained with antibodies against phosphorylated Histone H3 (anti-PH3), a marker of mitotic cells. Lack of anti-PH3 staining post-IR
indicates G2 arrest. Representative disks are shown (with at least twelve discs scored per genotype). (B) Intra-S phase checkpoint. Brains were
dissected from untreated (left) or irradiated (right) larvae and labeled with BrdU. Decreased BrdU staining in brain lobes (arrows) post-IR
indicates intra-S phase arrest. Representative brains are shown (with at least six brains scored per genotype). (C,D) Survival of mcph1 larvae
following exposure to DNA-damaging agents. (C) Sensitivity to hydroxyurea (HU). Larvae were grown on food minus or plus HU and allowed
to develop. For each genotype, the ratio of homozygous mutant to total progeny is expressed as a percentage with total number of adult flies
scored shown in parentheses. (D) Sensitivity to IR. Third instar larvae were untreated or exposed to low-dose irradiation and allowed to
develop. For each genotype, the ratio of eclosed adults to total pupae is expressed as a percentage with total pupae shown in parentheses. 
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mcph1 males exhibit defects in adult brain structure
On the basis of the reduced brain size of patients with mutation
of mcph1, we tested whether mutation of Drosophila mcph1
affects brain development. We did not observe an obvious
change in overall brain size, but we did observe morphological
defects in central brain structures. The mushroom bodies
(MBs) of the Drosophila adult brain are bilaterally
symmetrical structures required for olfactory memory and
other complex adaptive behaviors (de Belle and Heisenberg,

1994). MB structure is stereotyped, and gross morphological
brain defects often uncover structural defects in MBs. The
2500 intrinsic neurons in each MB can be subdivided into at
least three morphologically well-defined subsets (#%, #"%" or
$) based on bundling of their axonal projections in the region
of the MBs called the lobes (Crittenden et al., 1998). Each MB
neuron contributing to the #% subdivision bifurcates and sends
one axon branch vertically to the # lobe and one horizontally
to the % lobe. Anti-Fasciclin II (FasII) antibodies strongly

Journal of Cell Science 120 (20)

Fig. 6. Intact DNA-replication checkpoint and normal Cyclin B
levels in mcph1 embryos. (A) Quantification of cell-cycle timing
during cortical divisions of early embryogenesis. No significant
differences in interphase (I) or mitosis (M) lengths were observed for
mnk mcph1Z1861 embryos compared to wild-type or mnk controls,
whereas shorter interphases were apparent in mei-41 embryos (cycles
12 and 13). Average times with standard deviations (error bars) are
shown. Numbers of embryos scored for each genotype are shown in
parentheses. (B) Western analysis using phospho-specific antibodies
against Cdk1 reveals wild-type levels of pY15-Cdk1 in extracts of
mnk mcph1Z1861 embryos (1-2 hours). Control grp embryos have
reduced pY15-Cdk1 levels. (C) Western analysis reveals normal
Cyclin B levels in mnk mcph1Z1861 embryos (1-2 hours). (D) Western
analysis reveals normal GRP levels in mcph1 and mnk mcph1Z1861

embryos (1-2 hours unless otherwise indicated). Loading controls:
anti-#-tubulin or anti-GAPDH.

Fig. 7. mcph1 cooperates with mei-41 and grp in the early embryo.
(A) Mitotic spindle from a pre-cortically arrested grapesZ5170 embryo
resembles awol-type spindles of mcph1 embryos. Microtubules are in
green and DNA in red. Scale bar: 10 !m. (B) Quantification of
mcph1-like arrest in grp embryos (2-4 hours). (C) mcph1 dominantly
enhances mei-41 embryonic lethality. Introduction of one copy of
mcph1Z1861 into a semi-sterile mei-41 background (mei-41RT1/mei-
41D5) reduces embryonic hatch rate more than threefold.
(D) Immunoblotting shows slower gel mobility of MCPH1 in mei-
41RT1 or grp1 embryos (1-2 hours) relative to wild type.
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3573MCPH1 regulates Drosophila embryogenesis

label MB neurons that lie in the #% lobes (Grenningloh et al.,
1991), thereby allowing straightforward visualization of
developmental defects.

Our initial analysis revealed obvious morphological MB
defects in brains of mcph1Z1861 and mcph1Exc21 male flies (Fig.
8A). The nature of the MB defects was variable, ranging from
missing or malformed lobes to complete absence of lobes, and
defects were often asymmetric. For unknown reasons, we never
observed MB defects in brains of female mcph1 flies (data not
shown). Quantification revealed defects in 22% of mcph1Z1861

and 13% of mcph1Exc21 male brains (Fig. 8B). We similarly
found defects in 11.5% of brains from males carrying
mcph1Z1861 in trans to a deletion of the mcph1 genomic locus;
no defects were found in control heterozygous (mcph1Z1861/+)
male brains. These data establish a role for mcph1 in
Drosophila brain development.

Discussion
We identified Drosophila mcph1, the homolog of the human
primary microcephaly gene MCPH1, in a genetic screen for
cell-cycle regulators and have shown that it is required for
genomic stability in the early embryo. Three additional
primary microcephaly (MCPH) genes have been identified in
humans: ASPM, CDK5RAP2, and CENPJ (reviewed by Cox et
al., 2006). Much of our understanding of the biological
functions of the proteins encoded by human MCPH genes has
come from studies of their Drosophila counterparts. Mutation
of abnormal spindle (asp), the Drosophila ortholog of ASPM,
results in cytokinesis defects and spindles with poorly focused
poles (do Carmo Avides and Glover, 1999; Wakefield et al.,
2001). The Drosophila ortholog of CDK5RAP2, centrosomin
(cnn), is required for proper localization of other centrosomal
components (Li and Kaufman, 1996; Megraw et al., 1999).
Sas-4, the Drosophila ortholog of CENPJ, is essential for
centriole production, and the mitotic spindle is often
misaligned in asymmetrically dividing neuroblasts of Sas-4
larvae (Basto et al., 2006). Whereas all of these primary
microcephaly genes are critical regulators of spindle and
centrosome functions, mitotic defects in Drosophila mcph1
mutants are largely secondary to Chk2 activation in response
to DNA defects; thus, mcph1 probably represents a distinct
class of primary microcephaly genes.

MCPH1 is a BRCT domain-containing protein, suggesting
that it plays a role in the DNA damage response. Conflicting
models of MCPH1 function, however, have emerged from
studies of human cells as it has been proposed to function at
various levels in this pathway: upstream, at the level of
damage-induced foci formation (Rai et al., 2006) and further
downstream, to augment phosphorylation of targets by the
effector Chk1 (Alderton et al., 2006). The phenotype of
embryos from null mcph1 females is more severe than that of
embryos from null grp females, suggesting that enhancement
of phosphorylation of GRP (Chk1) substrates is not the sole
function of MCPH1. Furthermore, we found both the DNA
checkpoint in larval stages and its developmentally regulated
use at the MBT to be intact in mcph1 mutants, suggesting a
requisite role for MCPH1 in the DNA checkpoint evolved in
higher organisms. 

Studies of human cells suggest a role for MCPH1 in
regulation of chromosome condensation. Microcephalic
patients homozygous for a severely truncating mutation in
MCPH1 show increased frequency of G2-like cells displaying
premature chromosome condensation (PCC) with an intact
nuclear envelope (Alderton et al., 2006; Trimborn et al., 2004).
Depletion of Condensin II subunits by RNAi in MCPH1-
deficient cells leads to reduction in the frequency of PCC,
suggesting that MCPH1 is a negative regulator of chromosome
condensation (Trimborn et al., 2006). Alderton et al. (Alderton
et al., 2006) observed a decreased level of inhibitory
phosphates on Cdk1 that correlated with PCC in MCPH1-
deficient cells. The authors proposed that MCPH1 maintains
Cdk1 phosphorylation in an ATR-independent manner because
PCC is not seen in cells of patients with Seckel syndrome,
which is caused by mutation of ATR; residual ATR present in
these cells, however, may be sufficient to prevent PCC
(O’Driscoll et al., 2003). Furthermore, in several experimental
systems, ATR and Chk1 have been implicated in an S-M
checkpoint that prevents premature mitotic entry with

Fig. 8. Defects in male mcph1 brains. Adult male brains were stained
with anti-FasII antibodies to visualize mushroom body (MB) #%
lobes and the ellipsoid body of the central complex (CC). (A) MB
#% lobes of wild-type brains are symmetric, whereas MBs of mcph1
brains are occasionally defective with missing or diminished #%
lobes (arrowheads). Df=Df(2R)BSC39, which removes the mcph1
genomic locus. (B) Quantification of brain defects in mcph1 males.
Sample number for each genotype is indicated in parentheses (top).
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unreplicated DNA (reviewed by Petermann and Caldecott,
2006).

We have shown that embryos from grp (Chk1) females
occasionally undergo mcph1-like arrest in early syncytial
cycles, prior to the time at which inhibitory phosphorylation of
Cdk1 is thought to control mitotic entry. Thus, decreased
signaling through the DNA checkpoint resulting in less Cdk1
phosphorylation is unlikely to explain this mcph1-like arrest.
In contrast to studies of MCPH1-deficient human cells, we
detect no decrease in pY15-Cdk1 levels in mcph1 embryos
allowed to progress beyond their normal arrest point by
mutation of mnk (Chk2). Based on these data and the PCC
phenotype associated with loss of MCPH1 in humans, we
propose a model in which MEI-41/GRP cooperate with
MCPH1 in syncytial embryos in a Cdk1-independent manner
to delay chromosome condensation until DNA replication is
complete (Fig. 9). In the absence of mcph1, we hypothesize
that embryos condense chromosomes before finishing S phase,
resulting in DNA defects (bridging chromatin), Chk2
activation, and mitotic arrest. We were precluded from directly
monitoring chromosome condensation in mnk mcph1 embryos
expressing Histone-GFP as previously described (e.g. Brodsky
et al., 2000) because we were unable to establish fly stocks
carrying this transgene in the mnk background. Live imaging
of mcph1 embryos was not technically feasible because they
arrest prior to cortical stages, and yolk proteins obscure more
interior nuclei in early embryos. grp embryos have been
reported to initiate chromosome condensation with normal
kinetics (Yu et al., 2000), although a subtle PCC phenotype
might be difficult to detect.

Support for our model that MCPH1 allows completion of S
phase by delaying chromosome condensation comes from the
observation that inhibition of DNA replication in syncytial
embryos (via injection of aphidicolin or HU) results in
phenotypes similar to those observed in mcph1 embryos,
including chromatin bridging, which is presumably a direct
consequence of progressing through mitosis with unreplicated
chromosomes (Raff and Glover, 1988), and Chk2 activation
(Takada et al., 2003). Alternatively, mcph1 might be required
during S phase for timely completion of DNA synthesis; in this
case, mcph1 embryos would initiate chromosome condensation
with normal kinetics prior to completing replication.
Coordination of S-phase completion and mitotic entry may be
particularly critical in the rapid cell cycles of the early embryo
that lack gap phases and may explain why loss of Drosophila
mcph1 is most apparent at this developmental stage.
Interestingly, even in the absence of exogenous genotoxic
stress, MCPH1-deficient human cells also exhibit a high
frequency of chromosomal aberrations (Rai et al., 2006), which
may be a consequence of PCC.

An evolutionary role for mcph1 in expansion of brain size
along primate lineages has emerged in recent years (reviewed
by Woods et al., 2005). In brains of Drosophila mcph1 males,
we find low-penetrance defects in MB structure. Both MCPH1
isoforms are expressed in larval brains, and all mcph1
mutations described here affect both isoforms, so it is unclear
whether MB formation requires one or both isoforms. The lack
of MB defects in mcph1 females is puzzling because both
isoforms are found in male and female larval brains (data not
shown); other sex-specific factors are probably involved.
Larval brains of mcph1 males show no obvious aneuploidy

(data not shown) or spindle orientation defects (Andrew
Jackson, personal communication), so the cellular basis for
these defects remains to be determined. It will be interesting
to test in future studies whether mei-41 and grp, which
cooperate with mcph1 to regulate early embryogenesis, are
similarly required in Drosophila males for brain development.

In conclusion, we have demonstrated an essential role for
Drosophila MCPH1 in maintaining genomic integrity in the
early embryo. Our data suggest that, in contrast to the
mammalian protein, Drosophila MCPH1 is not required for the
DNA checkpoint, although its role in regulating other
processes (e.g. chromosome condensation) may be conserved.
We predict that the early embryo of Drosophila will continue
to be an important model genetic system for unraveling the
biological functions of MCPH1, a critical determinant of brain
size in humans.

Materials and Methods
Drosophila stocks
Flies were maintained at 25°C using standard techniques (Greenspan, 2004). Wild-
type stocks used were y w or Oregon-R. Zuker alleles of mcph1 are cn bw and
balanced over CyO. Zuker stock designations have been shortened and superscripted
to indicate that they are alleles of mcph1 (e.g. ZII-1861 becomes mcph1Z1861).
Deficiency strains, P-element lines for mapping, mutants for complementation

Journal of Cell Science 120 (20)

Fig. 9. Proposed model of Drosophila MCPH1 function. Asterisks
represent key points at which human MCPH1 reportedly functions.
Our data suggest that MCPH1 cooperates with MEI-41/GRP in a
Cdk1-independent manner to promote genomic integrity in embryos,
possibly by controlling timing of chromosome condensation.Jo
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testing (grp1, aurora1, wee1ES1), nanos-Gal4:VP16 stock, and mei-41 mutants were
from Bloomington Stock Center. mcph1 P-element insertions were from
Bloomington Stock Center (EY11307), Kyoto Stock Center (NP6229-5-1), or a gift
from Steven Hou (l(2)SH0220). tefu356, mnk6006 and grp209 stocks were gifts from
Mike Brodsky, Bill Theurkauf and Tin Tin Su, respectively.

Identification of new alleles of cell-cycle regulators
A combination of female meiotic recombination, deficiency mapping and direct
complementation testing of candidates was used to identify mutants from our screen.
Complementation testing with known cell-cycle regulators was performed by
assessing fertility of females carrying a Zuker chromosome in trans to a known
mutation. We used the following alleles: wee1ES1 (Price et al., 2000), grp1 (Fogarty
et al., 1997), tefu&356 (Oikemus et al., 2004) and aur1 (Glover et al., 1995).

Quantification of embryonic hatch rates
For hatch rate assays, embryos (0-4 hours) were collected on grape plates, counted
and aged ~40 hours at 25°C. The number of hatched embryos was determined by
subtracting the number of unhatched (intact) embryos from the total number
collected. Hatch rate is the ratio of hatched to total embryos expressed as a
percentage.

Genetic and molecular mapping of awol
The awol gene was localized by a combination of mapping strategies. We first
screened a collection of deficiencies on the second chromosome for non-
complementation of the female sterility of awolZ1861. We found that females carrying
awolZ1861 in trans to Df(2R)BSC39 produced embryos with the awol phenotype;
similar results were obtained for awolZ0978 and awolZ4050. Thus, awol lies between
the breakpoints of Df(2R)BSC39 in the polytene interval 48C5-E1, a region that
contains ~35 genes. We mapped awol by P-element-induced male recombination
(Chen et al., 1998) relative to the following insertion lines: Mtork03905, ERp60BG01854,
KG04952, otkEP2017 and CG8378EP2501. We thereby narrowed awol to a region of
five genes (including mcph1) that lie distal to ERp60BG01854 and proximal to
KG04952. The awol stock used (cn ZII-1861 bw/CyO) has visible flanking markers
cn and bw. The source of transposase was Delta2-3 Sb. Multiple independent
recombinant chromosomes were recovered for each P-element line tested. Genomic
DNA was extracted from whole flies homozygous for awol mutations essentially as
previously described (Ballinger and Benzer, 1989). mcph1 coding regions were
PCR-amplified from genomic DNA and sequenced.

Generation of mcph1 excision line
P-element insertions have been identified in the 5"-UTR of mcph1 (NP6229-5-1)
and within its largest intron (l(2)k06612, l(2)SH0220 and EY11307) (Grumbling and
Strelets, 2006). l(2)k06612 is no longer available from stock centers. We mapped
the lethality of line l(2)SH0220 (Oh et al., 2003) outside of the mcph1 genomic
region (data not shown). We found that EY11307 homozygous and
EY11307/mcph1Z1861 transheterozygous females are viable, fertile and produce
embryos with nearly wild-type levels of MCPH1 protein, indicating that this P-
insertion has little effect on mcph1 transcription; similar results were obtained for
NP6229-5-1 (data not shown). EY11307 is inserted in the 5"-UTR of CG13189,
which encodes a putative metal ion transporter, and the largest intron of mcph1 (Fig.
2A). All EMS-induced mcph1 mutations described here lie outside of CG13189
(including two beyond its 3" end), thereby making it unlikely that decreased
CG13189 activity causes the awol phenotype. We performed imprecise P-element
excision of EY11307 to generate mcph1Exc21, which lacks two internal exons and
part of the 3"-most exon of mcph1; this excision left the 5"-UTR, coding region and
3"-UTR of CG13189 intact, but probably removed some of its promoter (Fig. 2A).

Embryo fixation, staining and microscopy
Embryos (1-2 hours unless otherwise indicated) were collected for staining using
standard techniques (Rothwell and Sullivan, 2000). For mouse anti-#-tubulin
(DM1#, 1:500, Sigma) or rabbit anti-Centrosomin (1:10,000, a gift from W.
Theurkauf) staining, embryos were dechorionated in 50% bleach, fixed, and
devitellinized by shaking in a mixture of methanol and heptane (1:1). For staining
with guinea pig anti-MCPH1 (1:200) or mouse anti-actin (1:400, MP Biomedicals)
or co-staining with anti-#-tubulin (YL1/2, Serotec, 1:250) and anti-$-tubulin (GTU-
88, 1:250, Sigma), embryos were fixed fore 20 minutes in a mixture of 3.7%
formaldehyde in PBS and heptane (1:1). The aqueous layer containing
formaldehyde was removed and embryos devitellinized as described above.
Embryos were incubated in primary antibodies at 4°C overnight except for anti-
MCPH1 (4°C for three days). Secondary antibodies were conjugated to Cy2
(Jackson ImmunoResearch). Embryos were stained with propidium iodide (Sigma)
and cleared as previously described (Fenger et al., 2000). A Nikon Eclipse 80i
microscope equipped with a CoolSNAP ES camera (Photometrics) and Plan-Apo
(20', 100') or Plan-Fluor 40' objectives was used; for confocal images, we used
a Zeiss LSM510 microscope equipped with a Plan-Neofluar 100' objective.

Embryo squashes and quantification of DNA bridging
Methanol-fixed embryos (40-80 minutes) were placed in 2-!l drops of 45% acetic

acid on coverslips for 1-2 minutes. Slides were lowered onto coverslips, inverted
and embryos squashed by hand between blotting paper. Samples were snap-frozen
in liquid nitrogen, coverslips removed, and slides immersed in ethanol at –20°C for
10 minutes and air-dried. Vectashield mounting medium with DAPI (Vector Labs)
and new coverslips were added to slides. Fluorescence microscopy (100' objective)
was used to visualize DNA. Late anaphase and telophase figures (cycle-5 to -7
embryos) were examined. The presence of one or more linkages between DNA
masses segregating to opposite poles was scored as a bridging defect.

Live embryo imaging
For analysis of cell-cycle timing, embryos (0-1.5 hours) were dechorionated in 50%
bleach, glued (octane extract of tape) to glass-bottomed culture dishes (MatTek
Corp.), and covered with halocarbon oil 27 (Sigma). DIC images of dividing
embryos at 21.5-22.5°C were captured (20-second intervals) using a Nikon Eclipse
TE2000-E inverted microscope with a CoolSNAP HQ CCD camera (Photometrics),
Plan-Apo 20' objective, and IPLab image acquisition software (BD Biosciences).
Interphase length was determined by counting frame numbers from nuclear
envelope formation to breakdown. Mitosis length was determined by counting frame
numbers from nuclear envelope breakdown to reformation. Cycle number was
determined by nuclear size and density.

mcph1 cDNA clones and transgenes
cDNA clones encoding MCPH1-B (LD43341) or MCPH1-A (LP15451) were from
the Drosophila Gene Collection or Drosophila Genomics Resource Center,
respectively. MCPH1-B coding region was PCR-amplified from LD43341,
subcloned into UASp (Rorth, 1998), and transformed into y w flies (Spradling,
1986). To generate IVT constructs, MCPH1-B coding region was subcloned into
pCS2. The BRCT domains of MCPH1 were identified using ScanProsite.
Descriptions of FlyBase’s annotation of mcph1 were based on version FB2006_01
(Grumbling and Strelets, 2006). GenBank accession number for LP15451 encoding
MCPH1-A is EF587234.

Polyclonal antibodies against MCPH1
Maltose-binding protein (MBP) fused to MCPH1-B protein (residues 1-352) was
used to produce antibodies. N-terminal MCPH1-B sequence was PCR-amplified
from LD43341 and subcloned into pMAL (New England Biolabs). MBP-N-
MCPH1-B was made in bacterial cells, purified using amylose beads, and injected
into guinea pigs for antibody production (Covance). Anti-MCPH1 antibodies were
affinity purified using standard techniques.

Protein extracts and immunoblots
Protein extracts were made by homogenizing either embryos (1-2 hours old unless
otherwise indicated) or dissected tissues in urea sample buffer as described
previously (Tang et al., 1998). Proteins were transferred to nitrocellulose for
immunoblotting using standard techniques. MCPH1-A and -B (unlabeled proteins)
were made by coupled transcription-translation of LP15451 and LD43341,
respectively, according to the manufacturer’s protocol (Promega). Antibodies were
used as follows: guinea pig anti-MCPH1 (1:200-500), mouse anti-Cyclin B (F2F4,
1:200, Developmental Studies Hybridoma Bank), rabbit anti-pY15-Cdk1 (1:1000,
Upstate), rabbit anti-Grapes (1:500, a gift from T. T. Su) (Purdy et al., 2005), mouse
anti-#-tubulin (DM1#, 1:5000, Sigma), mouse anti-GAPDH (1:1000, Abcam).
HRP-conjugated secondary antibodies and chemiluminescence were used to detect
primary antibodies.

DNA damage response assays
We used a Mark I cesium-137 irradiator as a source of irradiation (IR). To test the
G2-M checkpoint post-IR, we used the method of Brodsky et al. (Brodsky et al.,
2000) except that fluorescently coupled secondary antibodies were used. To test the
intra-S phase checkpoint post-IR, we used the method of Jaklevic and Su (Jaklevic
and Su, 2004) except that larvae were exposed to 40 Gray (4000 Rad). To test
sensitivity to irradiation, third instar larvae were untreated or exposed to 10 Gray
(1000 Rad), transferred to food, and allowed to pupate and eclose as adults. Mutant
chromosomes were balanced over CyO, arm-GFP (Sullivan et al., 2000) and
homozygotes identified by lack of GFP signal. Numbers of pupae formed and empty
pupal cases (due to eclosion) were scored up to 10 days post-IR. Percentage eclosion
(measure of survival) is the number of empty pupal cases expressed as a percentage
of total pupae. All irradiated larvae formed pupae in these experiments. To test
hydroxyurea (HU) sensitivity, heterozygous adults (ten males and ten virgin
females) were added to vials. After embryo collection (48 hours), adults were
removed and 500 ml of 20 !M HU in water was added to food 24 hours later. Adult
progeny were scored after 2 weeks. HU sensitivity is indicated by preferential loss
of a specific genotypic class.

Adult brain immunostaining
Adult brains were fixed, immunostained and examined by confocal microscopy as
previously described (Krashes et al., 2007) using mouse anti-Fasciclin II antibodies
(1D4, 1:4, Developmental Studies Hybridoma Bank).
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Fig. S1 
 
 

 
 
Fig. S1. Developmental expression of alternate MCPH1 isoforms. (A,B) 

MCPH1 immunoblots. (A) Developmental western of wild-type extracts shows 

MCPH1 protein is present in a variety of tissues and at several life-cycle stages. 

Extracts of embryos and testes were relatively underloaded (loading control: anti-

α-tubulin). (B) Type A and B MCPH1 isoforms produced in vitro co-migrate on 

SDS-PAGE with endogenous MCPH1 isoforms abundant in testes and ovaries, 

respectively. 
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Fig. S2 
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Fig. S2. MCPH1 is a nuclear protein. Wild-type syncytial embryos were fixed 

and stained with an antibody against MCPH1 (green) and DNA dye (red). 

Representative embryos in various cell-cycle stages are shown. MCPH1 

localizes to the nucleus during interphase and prophase and is no longer 

detectable during later stages of mitosis (following nuclear envelope breakdown). 

No MCPH1 signal is detected in interphase nuclei of mcph1Z1861 mutants 

(negative control). Bar, 10 µm. 

 
 
Fig. S3 

 
Fig. S3. Decreased γ-tubulin staining of centrosomes in mcph1 embryos. 

Syncytial embryos from wild-type or mcph1Exc21 females were fixed and co-

stained with antibodies against α-tubulin (red) and γ-tubulin (green). 

Representative mitotic spindles are shown. Bar, 10 µm. 
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