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Abstract 

 The innate immune system is a multicomponent response governed by 

intricate mechanisms of induction, regulation and resolution to elicit antimicrobial 

defenses. In recent years, the complexity of eukaryotic transcriptomes has 

become the subject of intense scrutiny and curiosity. It has been established, that 

RNA polymerase II (RNAPII) transcribes hundreds to thousands of long 

noncoding RNAs (lncRNAs), often in a stimulus and cell-type specific manner. 

However, the functional significance of these transcripts has been particularly 

controversial. While the number of identified lncRNAs is growing, our 

understanding of how lncRNAs themselves regulate other genes is quite limited. 

In chapter 2, a novel lncRNA is identified, more specifically, a natural antisense 

transcript, that mediates the transcription of the pro-inflammatory cytokine IL-1α. 

Through loss-of-function studies, I report the necessity of this transcript in 

mediating IL-1α mRNA expression by affecting RNAPII binding to the IL-1α 

promoter after toll-like receptor signaling. For the first time, I show that IL-1α is 

regulated at the transcriptional level. 

As a second independent component of this thesis, we explore the role of 

the innate immune response after infection by the malaria-causing parasite, 

Plasmodium berghei ANKA (PbA), and how innate immune components are both 

beneficial and detrimental to the host depending on when and where 

inflammation is triggered during infection. We attempt to identify the “malarial 

toxin” responsible for aberrations in the immune response that is detrimental for 
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disease outcomes and the innate signaling pathways that are involved. Many 

pathogens induce pathological inflammatory conditions that lead to irreparable 

homeostatic imbalances and become fatal to the host. Here, type I Interferon 

signaling is required to dampen parasite load during liver-stage infections, but 

leads to host mobidity if these pathways are activated in the erythrocytic phase of 

infection. Together, this thesis provides new insights on how components of the 

innate immune system are regulated, and how dysregulation of immunity can 

potentially lead to adverse effects during active infections.  
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regulating the innate immune response. European Journal of Immunology. 
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CHAPTER 1: Introduction
 

Overview of the innate immune system 

Given the large number and variety of microorganisms in our environment, 

we are frequently threatened with infection and injury and must have a system in 

place to defend ourselves against harmful pathogens. The mammalian immune 

system is divided into two categories. (1) The innate immune response is the first 

line of defense against pathogens and is coordinated by a specialized group of 

cells consisting of monocytes, macrophages, dendritic cells, mast cells, 

Eosinophils, Basophils, neutrophils and Natural Killer cells (Hato and Dagher, 

2014). When infectious agents breach the skin and mucosal membranes, these 

cells are called upon to defend the organism. Activation of these cells occurs by 

triggering germline-encoded pattern recognition receptors (PRRs) to initiate an 

inducible program of inflammatory gene expression that elicits an antimicrobial 

environment. The molecular effectors of an inflammatory response tend to be 

quiescent, either not-expressed, or inducible, but can then be rapidly mobilized to 

generate a defensive and alarmed environment. The alarmed environment is 

what we call inflammation. Indicators of inflammation include swelling, heat, 

fever, and pain (Medzhitov, 2008). The quality of signals produced by the innate 

immune effectors generates the blue print for the signals that initiate the 

appropriate (2) adaptive immune response to mobilize B and T cells to undergo 

class switch recombination and somatic hypermutation for highly antigen-specific 

recognition receptors that are essential for long-term antigen specific immunity. 
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These cells have much slower kinetics, but produce memory and long-lived 

effector cells that self-renew and can be called upon quickly if there’s a second 

exposure to the same antigen for rapid elimination and minimal tissue damage. 

Not all microorganisms are detrimental to our health and some can be 

symbiotically beneficial, helping us digest nutrients or out-compete other 

populations of dangerous microbes. The immune system contains a 

sophisticated set of mechanisms that can distinguish between self versus non-

self, but also harmful versus harmless agents. Distinguishing among these 

differences are critical for survival. Hypo- or hyper- responses toward pathogens 

can lead to serious consequences that range from incomplete pathogen 

clearance to excessive pathology and irreparable tissue damage. Furthermore, 

misidentification of innocuous molecules from pollen or food byproducts as 

threats can lead to allergies and hypersensitivies; misidentification of self as non-

self can lead to autoimmunity or autoinflammatory diseases. Ultimately, this 

powerful system is the basis for our survival, but must always be stringently 

regulated.   

Transcriptional regulation of the inflammatory mediators 

 The innate immune response consists of PRRs that recognize conserved 

molecular moieties called Pattern-associated molecular patterns (PAMPs) that 

are common to many pathogens. Once these receptors are triggered, signals 

transmit to the nucleus through transcription factors, resulting in the activation of 

numerous genes via both transcriptional and post-transcriptional mechanisms. 
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Mainly in the form of cytokines, chemokines, or type I IFNs, these proteins carry 

out diverse physiological functions that can either target infectious organisms by 

directly interfering with function or replication or by activating and recruiting other 

innate immune cells to the site of infection to neutralize the target (Medzhitov, 

2009). Detailed studies of specific transcription factors and the chromatin 

organization of proinflammatory genes have revealed remarkable diversity in the 

range of mechanisms employed for transcriptional activation. This diversity 

extends beyond the binding of distinct sets of inducible transcription factors to 

different promoters and enhancers and the selective regulation of these genes 

occur at the chromatin level. 

 Many of these genes are divided into two broad categories, deemed 

primary and secondary response genes (Smale et al., 2012). Primary response 

genes are usually the most rapidly induced without de novo protein synthesis. 

The transcription factors required for activation of these genes must be 

expressed in unstimulated cells and must either be constitutively active or 

activated via posttranslational mechanisms after cell stimulation. These 

transcription factors include NF-kB, IRFs, AP1 and cAMP-responsive-element-

binding protein 1 (CREB1) families (Medzhitov and Horng, 2009). The signaling 

pathways that control the activation of these transcription factors are described 

below (Sasai and Yamamoto, 2013).  

 Secondary response genes are induced more slowly and require new 

protein synthesis. The transcription of secondary genes can depend on de novo 
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synthesis of transcription factors, signaling molecules needed for the activation of 

transcription factors, or cytokines that can act in an autocrine fashion to activate 

additional signaling pathways and transcription factors (Amit et al., 2011). 

Factors that are required for primary response genes can also contribute to the 

transcription of secondary response genes. The inflammatory program must 

accurately scale its response to avoid the consequences of excessive pathology-

inducing inflammation, but also to be robust enough to fight off an infection.  

 

lncRNAs in the genome 

 The increasing accessibility of techniques that allow researchers to 

interrogate biological phenomena at the genome-wide scale has resulted in an 

explosion of information. Now, we can investigate the full genome in the context 

of a given biological phenomenon of interest. Studies examining the 

transcriptomes of eukaryotic cells have revealed a bewilderingly complex array of 

RNA transcripts. Indeed, current estimates indicate that roughly 1-2% of the 

genome has protein coding potential whereas 85% of the genome is transcribed 

and belong to a class of RNA polymerase II (RNAPII) transcripts referred to as 

lncRNAs (Consortium et al., 2012; Dinger et al., 2009; Kowalczyk et al., 2012; Li 

and Ramchandran, 2010). 

 These observations are provocative, and have been met with considerable 

skepticism (Hongay et al., 2006) mainly due to the following: 1) improved 

sequencing technologies can detect low abundance transcripts and blur the line 
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between bone fide transcripts and technical noise, 2) lncRNAs generally lack 

sequence conservation which has been an established means for identifying 

functional genes, and 3) currently few mutations in lncRNAs have been 

documented as the cause of genetic diseases. Eventually, all of these issues will 

need to be addressed by the lncRNA community. 

 High-throughput sequencing technologies have made it possible to 

interrogate the full complement of RNA transcripts in the cell at an 

unprecedented depth. It is now possible to detect transcripts with an abundance 

of less than one copy per cell (Mercer et al., 2009; 2012). This raises the 

question as to whether many of these pervasive transcripts are inconsequential 

transcriptional byproducts or unspecific hybridization (Kowalcyzk 2012). Early 

studies using tiling arrays, which are prone to false positive detection, when in 

actuality, by RNA sequencing, a technique which has been shown to be more 

accurate, revealed that pervasive transcription made up a much smaller fraction 

of the poly(A)+ transcriptomes (~11% in humans, 4% in murine) (Tian, 2005; van 

Bakel et al., 2010). This study was, however, able to identify several thousand 

distinct, low abundance transcripts, representing 1% of all polyadenylated 

transcripts. What remains to be determined is whether lncRNA expressed at ultra 

low levels are indeed functional. This criticism can only be addressed by the 

functional validation of individual lncRNAs. While thousands of lncRNA 

transcripts have been annotated in eukaryotic cells, few have been functionally 

characterized. In-depth functional characterization for the majority of lncRNAs is 
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lacking, but the observation that many lncRNAs are expressed with cell-type 

specificity perhaps argues that their expression may be highly regulated (Dinger 

et al., 2009). Such regulation may not be anticipated for transcriptional noise, but 

that remains to be proven. 

 Currently, it is unclear whether the majority of pervasive transcription 

contributes to functional genome organization or is merely the result of 

unanticipated and promiscuous RNAPII activity. Evolutionary selection often 

denotes that a particular sequence is useful to an organism, and thus, sequence 

conversation is used as a means of identifying functional motifs and domains 

within the genome. mRNAs, and particularly the open reading frames (ORFs) of 

mRNA transcripts, display a high degree of conservation (Guttman and Rinn, 

2012). In comparison to mRNAs, lncRNAs display very little sequence 

conservation (Pang et al., 2006). Those skeptical of the functional significance of 

pervasive transcription argue that if a lncRNA was functional, then throughout 

evolution there would be some selective pressure on conserving its sequence. 

However, studies identifying novel lncRNAs based on the chromatin signature of 

active transcription in intergenic regions, have revealed lncRNAs that do not 

show sequence conservation (Guttman et al., 2009; Zhao et al., 2008). 

Additionally, it might not be fair to evaluate lncRNAs with the same parameters of 

sequence conservation as mRNAs. The constraint on an mRNA to maintain 

coding potential mandates sequences that code for amino acids, thereby have 

stringent selective pressures, whereas lncRNAs are not under the same 
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constraints to maintain coding potential and potentially have the freedom to 

evolve faster (Beltran et al., 2008; Pang et al., 2006).  

 Despite these considerations, efforts to identify conserved lncRNAs 

between species have been attempted via sequence homology and synteny 

alignments. The hope, despite contrary evidence, is that nucleotide conservation 

implies functionality and significance. Mutations that would alter sequence would 

alter function, and the more critical the mutation, the less it would be observed in 

a viable organism or inherited in viable offspring. Initial evolutionary studies 

concluded that noncoding RNA sequences appear as poorly conserved as other 

intergenic sequences that exhibit no indications of transcription (Okazaki et al., 

2002; Pang et al., 2006) but further studies described noncoding RNAs that 

exhibited signatures of functionality more closely related to protein-coding genes. 

More specifically, these noncoding RNAs displayed fewer nucleotide 

substitutions, insertions or deletions both within their predicted promoter regions 

and within their transcribed regions, and additional conservation at their splice 

sites than random (Guttman et al., 2009; Ponjavic et al., 2007) and therefore, 

may be exhibiting evolutionary constraint afterall. All this suggests that although 

sequence conservation may not be necessary in dictating functional importance, 

it may be sufficient and may be used as an initial screen in identifying biologically 

critical noncoding RNA species. Syntenic genome alignments utilizing in silico 

comparative genomic mapping may help identify species orthologs and 

nucleotide basic local alignment search tools (BLASTN) would be useful in the 



 25 

preliminary searches for evolutionarily conserved lncRNAs. However, this can be 

difficult as the absence of lncRNA annotation in many organisms preclude proper 

comparative analyses (Necsulea et al., 2014). Additionally, there are natural 

assumptions that “functional” sequences are maintained by the genome and 

therefore, the opposite must also be true—that “junk” DNA would undergo 

negative selection. Because the genome is always part of the evolutionary 

process, genomic regions can contain both functional and nonfunctional parts. 

Nonfunctional DNA may later on acquire functions and become part of the gene-

repertoire and vice versa (Doolittle, 2013). Therefore, in the early phases of 

lncRNA discovery, applying the initial criteria for defining genes may be useful for 

identification purposes, but can also lead to ambiguities. 

 Strong conservation in promoter sequences (Carninci et al., 2006) and 

weaker conservation in the sequences of their transcripts (Ponjavic et al., 2007), 

suggest that the act of transcription itself may have a greater biological 

consequence than the transcript sequence. In these situations, the regulation of 

nearby protein-coding gene expression in cis, may represent a more prominent 

function for lncRNAs. Identifying active transcription nearby, but not at the direct 

site of the protein-coding gene chromatin location, may reveal orthologous 

lncRNAs.   

 Another criticism that is commonly used to downplay the biological 

importance of lncRNAs is that not only have few lncRNAs have been identified in 

genetic screens but also few natural mutations in lncRNA genes are the main 
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cause of genetic disorders. While this criticism is generally true of monogenic 

traits and diseases, where a single allele can account for the phenotype, there is 

growing evidence that mutations in non-protein coding regions contribute to a 

phenotype (Manolio, 2009; Mattick, 2009). Genome-wide association studies 

cataloguing trait associated single nucleotide polymorphisms suggest that over 

80% of associated variants occur in noncoding regions (Hindorff et al., 2009). 

Additionally, evidence for the involvement of lncRNAs in disease states come 

from the finding that lncRNAs are dysregulated in a number of cancers and 

neurological disorders (Niland et al., 2012). Also, it is conceivable that genetic 

screens, which yielded hits in putative lncRNAs, would have been ignored, as 

many lncRNAs are found in intronic or intergenic regions and would have been 

considered inconsequential. While it is currently unclear whether all pervasive 

transcripts will turn out to have important functions in the cell, it is clear that the 

burgeoning lncRNA field is compelling us to re-evaluate the content of the 

genome.  

 RNA-dependent processes permeate many of the fundamental aspects of 

gene expression. Despite the recent flurry of interest into the ncRNA field, 

specific classes of ncRNAs have been known for decades to be critical 

components of important cellular machines. ncRNAs of the small nuclear variety 

(snRNAs) play important roles in the catalysis of pre-mRNA splicing. The 

synthesis of proteins from an mRNA template is carried out by the coordinated 

action of ribosomal RNAs (rRNAs), which catalyze peptide bond formation, and 



 27 

transfer RNAs (tRNAs), which deliver the appropriate amino acids to the 

ribosome. These ncRNA genes were thought to be a small subset of the cases 

and that the majority of distinct RNA transcripts in the cell were messengers as 

templates for amino acids in protein synthesis, with the major functional output of 

the genome being proteins (Wilusz et al., 2009).  

 Whether or not proteins were the only functional mediators of the genome 

began to be questioned heavily in the middle of the last decade when 

researchers studying diverse model organisms found that not only was RNAPII 

detected in unexpected genomic locations (Kim et al., 2005; Steinmetz et al., 

2006), but that the genome was pervasively transcribed (ENCODE Project 

Consortium et al., 2007). The vast majority of these transcripts were inferred to 

contain minimal coding capacity and thus belonged to an exploding class of 

lncRNAs. Most lncRNAs are thought to be RNAPII transcripts and similar to their 

mRNA cousins, have been demonstrated to bear distinctive features at their 

extremities (ie. A 5’ cap and 3’ poly(A) tail) (Berretta and Morillon, 2009; Guttman 

et al., 2009; Khalil et al., 2009). Because of these resemblances, lncRNAs are 

often described as mRNA-like. For mRNA transcripts, the 5’ 7-methylguanosine 

cap structure and the 3’ polyadenosine tail protect the body of the transcript from 

degradation and the rates of removal for these features dictate how long the 

mRNA transcript persists in the cell. lncRNAs are typically modified in similar 

manners to mRNAs. While the functional consequence of the presence of these 

end modifications is currently unknown, they may also play analogous protective 
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roles for lncRNAs.  

 lncRNAs are further classified based on their genomic orientation relative 

to protein coding genes (Figure 1.1). For example, long intergenic noncoding 

RNAs (lincRNAs) originate from intergenic regions of the genome (Guttman et 

al., 2009), whereas natural antisense transcripts (NATs) are produced from the 

opposite strand as a coding transcript (Li and Ramchandran, 2010) Divergent 

transcription occurs when a lncRNA is transcribed in the opposite direction as a 

coding transcript (Preker 2008). This list is not exhaustive, and as efforts improve 

to describe and refine the full complement of lncRNA transcripts continues, more 

subtypes and categories will likely emerge.   
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lncRNAs in inflammation and microbial defense 

 Despite efforts to functionally characterize individual lncRNAs are lagging, 

there is now a growing number of bone fide lncRNAs with physiological 

relevance. Research efforts have focused heavily on the capacity of lncRNAs to 

regulate the expression of protein coding genes. These transcripts execute their 

fuctions via lncRNA:protein interactions, lncRNA:mRNA interactions or 

lncRNA:DNA interactions. (as shown in Figure 1.2).  

 In some cases, it has been suggested that polymerase movement through 

the genomic locus of a lncRNA can influence expression of nearby genes in cis 

through transcriptional interference (Hirota et al., 2008; Lefevre et al., 2008). 

Regulation of transcriptional interference implies that transcription itself, rather 

than the RNA transcript produced, accounts for the functional output of the 

pervasively transcribed locus. Compelling evidence for transcriptional 

interference by lncRNAs has been demonstrated at a number of loci in various 

organisms with slight variations in the exact mechanism employed. Transcription 

of ncDNA can influence nucleosome positioning and/or transcription factor 

binding to either repress or activate nearby genes (Hainer et al., 2011). lncRNAs 

are thought to increase the binding of transcriptional activators by remodeling the 

nucleosomes at the promoter (Hirota et al., 2008). Activation by nucleosome 

remodeling can occur by binding of transcriptional activators, but can also inhibit 

the binding of a transcriptional repressor like CTCF (Lefevre et al., 2008).  

 Chromatin can also be influenced by the transcription of ncDNA through 
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post-translational modification of histones. It has been demonstrated that 

spurious transcription within protein-coding genes is repressed by the co-

transcriptional recruitment of histone modifying enzymes to the RNAPII C-

terminal domain (Carrozza 2005). The NRON lncRNA indirectly represses genes 

regulated by the nuclear factor of activated T-cells (NFAT) transcription factor by 

inhibiting NFAT’s nucleo-cytoplasmic shuttling (Figure 1.2). Specifically, NFAT is 

localized to the cytoplasm and is imported into the nucleus in response to 

calcium-dependent signals. NRON inhibits the nuclear accumulation of NFAT by 

binding to nuclear transport factors (Willingham et al., 2005).  

 Additionally, lncRNAs have been implicated in influencing chromatin 

states via more direct RNA-dependent cis and trans-acting mechanisms. Xist is a 

quintessential cis-acting lncRNA involved in the silencing of the inactive X 

chromosome in females. Xist is a 17 kb lncRNA transcribed from the inactive X 

chromosome and accumulates on the inactive X chromosome and create a 

repressive nuclear compartment that exclude RNAPII and transcription factors 

(Chaumeil et al., 2006). In recent years, a number of lncRNAs have been 

described to function in concert with Xist during X inactivation. Of these, RepA, a 

1.6kb lncRNA generated from within the Xist locus, has been shown to directly 

bind to the polycomb-repressive complex  (PRC2) to recruit PRC2 in cis to its 

own genomic locus (Zhao et al., 2008).  
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More examples of bone fide lncRNAs in the innate immune response 

 The emerging role of ncRNAs in promoting, fine-tuning and dampening 

innate immune gene expression is gaining attention. Our current understanding 

of the role of lncRNAs in health and disease is limited to a few examples thus far. 

An elegant paper by Gomez et al. 2013 utilized comparative genomics to identify 

disease susceptibility loci in two mouse strains that differed in their susceptibility 

to Theiller’s virus infection. Polymorphism differences between the SJL/J and 

B10.S mice identified a susceptibility locus that was mapped to a conserved 

lncRNA called NeST (nettoie Salmonella pas Theiler’s) (Gomez et al., 2013). 

NeST was shown to be a non-coding RNA transcribed from the IFN-γ locus, 

which in turn enhances IFN-γ expression in CD8+ T cells (Gomez et al., 2013). 

Because NeST is transcribed from the same locus as IFN-γ, it is considered to 

act in cis as an enhancer RNA by binding to WDR5, a component of the histone 

3 lysine 4 (H3K4) methyltransferase complex, and altering histone 3 methylation 

at the locus to allow inducible IFN-γ expression, thereby conferring mice 

expressing NeST with higher resistance against Theiller’s virus infection (Gomez 

et al., 2013).  

 lncRNAs of the NAT variety have been shown to influence the splicing 

patterns of mRNA transcripts encoded on the sense strand at the N-myc and 

Zeb2 loci in mammalian cells (Beltran et al., 2008). In these cases, the NAT 

production is complimentary to the affected region. It has been suggested that 

NATs from these loci form RNA-RNA duplex interactions between sense and 
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antisense strands which then inhibit splicing (Krystal 1990, Monroe and Lazar 

1991).  Translation of Zeb2 relies on an IRES, and the NAT inhibits splicing of an 

IRES containing intron, therefore, expression of the NAT facilitates expression of 

the Zeb2 protein (Beltran et al., 2008).  

microRNAs have been shown to dampen the expression level of specific 

cytokines (Ambros, 2004; Matsui et al., 2008). A number of examples have 

recently been discovered that define important roles for lncRNAs as regulators of 

cytokines and other immune mediators, in particular acting in cis. One example is 

a lncRNA that has been shown to run antisense to IL-1β in murine RAW 264.7 

macrophages, thereby dampening IL-1β expression (Lu et al., 2013). This report 

showed that LPS signaling induces the IL-1β antisense, and that overexpression 

of the antisense lncRNA decreases H3K4me3 marks at the IL-1β promoter. This 

decrease in trimethylation at the promoter leads to decreased RNA polymerase II 

(RNAPII) occupancy and therefore dampens transcription of IL-1β.  

 While our knowledge of the mechanisms and scope of lncRNA-mediated 

regulation is growing, our understanding of how lncRNAs themselves are 

regulated is still quite limited. Regulating lncRNA expression would be expected 

to be an important cellular consideration given that lncRNAs have been 

implicated in regulating a variety of processes in eukaryotes including imprinting, 

dosage compensation, cell cycle regulation, pluripotency, retrotransposon 

silencing, meiotic entry, and telomere length (Guttman et al., 2009; Hongay et al., 

2006; Loewer et al., 2010; Luke et al., 2008; Ponting et al., 2009). Moreover, 
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altered expression of lncRNAs has been implicated in disease states and 

antimicrobial defenses. Furthermore, lncRNAs often display exquisite tissue-

specificity and achieving such specificity necessitates extensive regulation 

(Dinger et al., 2009; Gomez et al., 2013; Khaitovich et al., 2006).  

 At the transcriptional level, parallels have been drawn between lncRNA 

and mRNA transcriptional regulation. For example both mRNA and lncRNA 

chromosomal loci have been shown to exhibit the active chromatin signatures 

consisting of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 

36 trimethylation (H3K36me3) in the promoter region as active transcriptional 

markers. This chromatin signature has been used extensively to identify 

thousands of lncRNA genomic loci on a genome-wide scale in mammals (Arthur 

and Ley, 2013; Guttman et al., 2009; Khalil et al., 2009; Ouyang et al., 2014; 

Peng et al., 2010). In yeast the GAL10 lncRNA was identified by a similar 

strategy in that the same signature of an actively transcribed gene was detected 

at the DNA locus. Thereafter, it was confirmed that a lncRNA was produced 

(Houseley et al., 2008; Vilaysane and Muruve, 2009). Additionally, transcription 

of a few lncRNAs, much like mRNA transcription, has been shown to be 

negatively regulated by DNA methylation at CpG dinucleotides within lncRNA 

promoter regions (Gazzinelli et al., 2004; Lujambio et al., 2010). Thus it appears 

that at least at some level, lncRNAs are subject to similar types of epigenetic 

regulation as mRNAs.  

Many immune cells develop from the bone marrow (through hematopoesis 



 35 

and myelopoesis) and circulate as non-differentiated peripheral blood 

mononuclear cells until they are triggered to differentiate by various 

differentiation factors; lncRNAs have recently been added to this list of 

differentiation triggers. For example, human granulocyte differentiation has been 

recently shown to be partly mediated by HOX antisense intergenic RNA myeloid 

1 (HOTAIRM1), an antisense lncRNA on the HOXA gene locus (Khor et al., 

2007; Mockenhaupt et al., 2006; Zhang et al., 2009). Knockdown of HOTAIRM1 

abrogated retinoic acid-dependent activation of HOXA1/A2 and CD11b and 

CD18 (Mac-1), two Beta2 integrin transcripts that are hallmark myeloid 

maturation-associated genes (Mayadas and Cullere, 2005; Zhu et al., 2005). 

Dendritic cell (DC) differentiation has also been shown to depend on a 

lncRNA. An RNA sequencing (RNA-seq) profiling study of various stages in the 

differentiation of human peripheral blood mononuclear cells (PBMCs) (Carpenter 

et al., 2013; Morse et al., 1997; Wu et al., 2010), identified lncDC as having 

expression highly correlated with DC maturation. This lncRNA was shown to be 

highly specific to DCs, not being expressed in monocytes but expressed highly in 

Lin-MHCII+CD11c+ conventional DCs as determined by cell sorting, and was 

shown to promote DC maturation by regulating STAT3 activity. lncDC acts on 

STAT3 by preventing its dephosphorylation by the protein phosphatase SHP-1, 

thereby maintaining STAT3 in an active conformation to promote STAT3 target 

gene expression (Figure 1.2). In this situation, lncDC is acting post-

translationally in the cytoplasm. Together, these studies demonstrate that the 
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mechanisms by which lncRNAs regulate immune cell differentiation are diverse, 

but also that the underlying premise that lncRNAs are key players in cellular 

differentiation is gaining more support. 

 lncRNA expression itself is regulated as part of the inducible inflammatory 

program, i.e. lncRNAs are only expressed after cells are activated. However, a 

subset is basally expressed and when TLRs are activated, the lncRNA 

expression becomes abrogated (Carpenter et al., 2013). As mentioned above, 

many immune cells must undergo various levels of cellular differentiation to be 

activated. Likewise, the gene expression programming of the differentiated cells 

is only turned on downstream of an inflammatory signal. One of the strongest 

triggers of the innate inflammatory response system is the Gram-negative 

bacterial cell wall component lipopolysaccharide (LPS). LPS activates the 

pathogen recognition receptor (PRR) Toll-like receptor 4 (TLR4), and initiates a 

signaling cascade that ultimately leads to the activation of transcription factors 

nuclear factor of kappa b (NF-kB) and interferon regulatory factors (IRFs). 

lncRNAs are being identified as signaling mediators downstream of these 

stimulation events, and one such lncRNA is lincRNA-Cox2 (long intervening non-

coding RNA)-Cox2.   

LincRNA-Cox2 was identified via RNA-sequencing of bone marrow-

derived murine macrophages activated by LPS via TLR4, and subsequently 

named due to its genomic organization proximal to the protein-coding gene 

Ptgs2, which encodes for Cox-2. Further analysis of lincRNA-Cox2 indicated that 
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another PRR trigger, the TLR1/TLR2 ligand Pam3CSK4, also induces its 

expression, which requires the activation of the adaptor protein MyD88 and NF-

kB (Carpenter et al., 2013). lincRNA-Cox2 in turn broadly regulates innate 

immune gene expression; and this regulation was shown to be both positive and 

negative. The negative regulatory activity of this lincRNA occurs through its 

interactions with hnRNPA2/B1 and hnRNP-A/B to dampen the expression of 

chemokines and interferon stimulatory genes  (ISGs) such as Ccl5, IFN-α and 

IFN-β, in the murine macrophages (Figure 1.2). lincRNA-Cox2 was also shown 

to positively influence the expression of the pro-inflammatory cytokine, IL-6, as 

well as hundreds of additional inducible immune genes, via as-yet-undefined 

mechanisms.  

Like lincRNA-Cox2, THRIL is another inducible lncRNA shown to function 

in part via its interaction with hnRNP proteins (Li et al., 2013). This lncRNA was 

identified in the THP-1 human monocyte cell line and was amongst 159 lncRNAs 

differentially expressed upon activation with Pam3CSK4 treatment. THRIL loss-of-

function (shRNA) studies revealed that THRIL contributes to the inducible 

expression of the pro-inflammatory cytokine mediators TNF-a and IL-6 upon 

Pam3CSK4 stimulation. To support this, chromatin immunoprecipitation (ChIP) 

experiments indicate that THRIL and heterogenous ribonucleoprotein (hnRNP)-L 

both localize to the TNF-α promoter upon Pam3CSK4 stimulation (Figure 1.2). 

RNA-seq performed on THRIL-knockdown THP-1 cells revealed 319 genes that 
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were attenuated in their expression, indicating a broad range of candidate 

THRIL-regulated genes. 

Another lncRNA, nuclear enriched abundant transcript 1 (NEAT1), is 

associated with the expression of IL-8 in human cell lines after HSV-1, influenza 

A (IAV) or dsRNA stimulation and promotes re-localization of HIV1 mRNA from 

the nucleus to the cytosol (Lu et al., 2013; Zhang et al., 2013). . 

Yet another group compared four strains of mice infected with SARS-CoV 

or Influenza virus A/PR/8/34 (Peng et al., 2010). A unique lncRNA signature was 

expressed in the lungs during infection, that was dependent on type I interferon 

and STAT1 signaling. Although they didn’t characterize specific lncRNAs 

identified from their screen, they were able to reveal large swaths of lncRNA 

signatures that are differentially expressed among the four strains of mice and 

correlate to their lncRNAs that are mediated through the type I interferon 

signaling pathway. 
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Recently, a lncRNA microarray from human alveolar epithelial cells (A549) 

identified 9 lncRNAs that were differentially expressed after infection with 

influenza virus (Ouyang et al., 2014). The lncRNA Negative regulator of antiviral 

response (NRAV), had a markedly reduced expression upon infection. Ectopic 

expression of this lncRNA in vivo in mice suppressed MxA, IFITM3, and the 

expression of other ISGs, resulting in increased weight loss and decreased 

survival of infected mice. This was also seen in mice infected with Sendai Virus 

(SeV), Muscovy Duck Revirus, and HSV. Although located in both nuclear and 

cytoplasmic compartments, NRAV was shown to have no effect on ISG mRNA 

stability in the cytosol, and most likely regulates histone modifications at ISG 

gene loci in the nucleus as indicated by ChIP assays showing decreased 

H3K4me3, an indicator of active transcription, and increased H3K27me3, an 

indicator of transcriptional repression. 

  

Objectives for Chapter 2 

 As described above, many groups are now unraveling the bewilderingly 

complex array of transcripts to dissect their functions in various processes. In 

Chapter 2, I dissect the role of a particular lncRNA, AS-IL1α, in its involvement in 

the inducible immune response. The objectives for chapter 2 are in three parts, 

(1) to characterize this natural antisense transcript as a bone fide lncRNA,, (2) to 

determine the role of AS-IL1α in the inducible immune response, namely explore 
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its protein-targets, and (3) to determine the mechanism by which AS-IL1α exerts 

its functions. 

 Now, I will describe the protein players involved in the signaling pathways 

that confer the innate immune response. 

Pattern recognition receptors (PRRs) 

 The innate immune response is initiated when a specific moiety of 

molecular structures termed pathogen associated molecular patterns (PAMPS) 

(Thompson et al., 2011) that are conserved among certain classes of pathogens 

or molecules present themselves during conditions of injury or infection. Other 

molecules that may be released from stressed or dying cells and stem from 

either host or pathogen called danger-associated molecular patterns (DAMPS) 

(Land, 2015) also trigger the innate immune system. Both PAMPS and DAMPS 

engage germline-encoded evolutionarily conserved receptor proteins called 

pattern recognition receptors (PRRs). Activated PRRs initiate signaling cascades 

that result in gene transcription and the production of effector molecules and 

mediate downstream molecular signals. Several groups of PRRs have been 

described and are characterized into four main families: the toll-like receptors 

(TLRs) (Beutler, 2009), the retinoic acid-inducible gene I (RIG-I) like receptors 

(RLRs) (Loo et al., 2008), C-type lectin receptors (CLRs) (Williams, 2013), and 

nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) (Davis et 

al., 2011). The effectors of these signals, typically in the form of cytokines and 

chemokines, coordinate the appropriate signals to drive the adaptive immune 
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response to produce long-term immunological memory against the original 

pathogen.  

 Triggers of inflammation include proteins, lipids, bacterial or fungal cell 

walls and membranes, carbohydrates, and deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA). Modifications and specific arrangements of these 

molecular components are conserved among certain pathogens and are potent 

ligands for PRRs to initiate inflammation. The following sections will briefly review 

the specific type of PRRs that make up the innate immune receptor repertoire. 

 

Toll-like receptors (TLRs) 

 Toll-like receptors (TLRs) are type I transmembrane proteins that traffic 

between the plasma membrane and endosomal vesicles. Those located on the 

plasma membrane (TLR1,2,4,5,6) are usually specific for hydrophobic lipids and 

proteins while those found on the endosome sense nucleic acids (TLR3,7,8,9) 

(Figure 1.1). To date, 10 human TLRs (TLR1-10), and 13 (TLR1-13) murine 

TLRs have been identified (Gürtler and Bowie, 2013). All TLRs share a common 

architecture consisting of extracellular leucine-rich repeats (LRRs) and a 

cytoplasmic Toll/Interleukin-1 Receptor (TIR) domain common to the Interleukin 

(IL)-1 receptor (Dinarello, 2013). These receptors signal by dimerization, and 

differentially recruit the adaptor proteins, Myeloid differentiation primary response 

gene 88 (MyD88), MyD88 adapter-like (Mal aka TIRAP) (Fitzgerald et al., 2001) 

and/or TIR-domain-containing adaptor inducing IFN-β (TRIF) aka TIR domain-
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containing adaptor molecule 1 (TICAM) or TRIF-related adaptor molecule 

(TRAM) aka TICAM2 (Figure 1.3). The adaptors initiate signal cascades 

culminating in the activation of differential pathways that converge onto nuclear 

factor of kappa B (NF-kB), mitogen-activated protein kinase (MAPK) or interferon 

regulator factors (IRFs). Together, these transcription factors drive expression of 

cytokines, chemokines, and/or type I interferons (IFNs) and also mediate 

downstream cellular proliferation, maturation, and survival. 
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Cytosolic nucleic acid sensors induce type I IFNs 

 Many viruses, bacterial pathogens, and parasites directly penetrate the 

cell without encountering TLRs. The interferon-stimulating properties of nucleic 

acids cannot solely be attributed to TLR signaling alone. For example, in TLR9 

knockout cells, transfection of pathogen-derived dsDNA still induced a robust 

Type I IFN response (Ishii et al., 2006; Stetson and Medzhitov, 2006). This led 

scientists to hypothesize that another class of sensors exist that are directly 

responsible for Type I IFN production.  

 All viruses, and many bacteria and protozoa enter the cell’s cytoplasmic 

compartment during their life cycles. During development and replication, these 

pathogens hijack the host’s cellular machinery in order to gather nutrients or 

produce large numbers of progeny. The process leads to accumulation of viral 

nucleic acids in the cell, which are potent PAMPs (Hornung and Latz, 2010). 

Cytosolic nucleic acid sensors detect a variety of nucleic acids. These sensors 

can be divided into RNA sensors (RLRs), and DNA responders (NLRs, ALRs) 

(Ting et al., 2010). Cytosolic sensors can activate three distinct inflammatory 

pathways, the type I interferons through transcription factors IRF3 and -7, NF-kB, 

or MAPK pathways.  Additionally, nucleic acid sensors can trigger the assembly 

of the inflammasome, a multiprotein complex that results in the caspase-1-

dependent activation of the cytokines, IL-1β, IL-1α (to a lesser extent and 

elaborated later), and IL-18. Members of the NLR family of receptors were the 

first shown to activate the inflammasome pathway. Additionally, AIM2, a member 
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of the PYHIN family, has also been shown to assemble into inflammasomes 

(Rathinam et al., 2010).   

Rig-I-like receptors (RLRs) 

The RLR receptor family is composed of three DExD/H box RNA helicases: 

retinoic acid inducible gene-1 (RIG-I) encoded by the DDX58 gene, melanoma 

differentiation-associated gene 5 (MDA-5) and laboratory of genetics and 

physiology-2 (LGP-2) (Rothenfusser et al., 2005). RIG-I and MDA-5 contain two 

tandem N-terminal caspase activation and recruitment domains (CARDs) 

followed by a DExD/H box RNA helicase domain (DEAD domain) with ATPase 

activity, and a C-terminal repressor domain (CTD). Although they have the same 

domain structure, RIG-I and MDA-5 recognize distinct RNA ligands as 

demonstrated by their crystal structures (Bin Wu et al., 2014; Niland et al., 2012). 

RIG-I recognizes small 5’ppp modified RNA and preferentially bind RNA less 

than 1000 nucleotides (nt) long. Its DEAD domain binds to the 5’ppp for specific 

recognition (Bin Wu et al., 2013; Wilusz et al., 2009). On the other hand, MDA5 

binds to the RNA phosphodiester backbone and initiates filament formation upon 

binding. This allows it to preferentially recognize double-stranded (ds)RNA 

species >2000 nt  in length (Bin Wu et al., 2014). Because 5’ppp modifications, 

and dsRNA species are not common features of mammalian RNA, but rather in 

viral genomes, these two receptors are strong agonists for sensing active viral 

infections. Additionally, recognition does not depend on sequence specificity. 

RIG-I has been implicated in sensing Sendai Virus (SeV), influenza A and B, 
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hepatitis C (HCV), vesicular stomatitis virus (VSV) and respiratory syncytial virus 

(RSV). MDA-5 recognizes encephalomyocarditis virus (EMCV), coxsackie B virus 

(CVS) and Polio. MDA-5 also detects the transfected synthetic viral RNA-mimic, 

polyinosinic:polycytidylic (poly(IC)). Upon binding to their cognate ligands, MDA-5 

and RIG-I alike form helical filaments that allow for protein-protein interactions 

through their CARD domains to recruit the adaptor mitochondrial antiviral 

signaling protein (MAVS), aka VISA, IPS-1 or CARDIF (Bin Wu et al., 2013). 

MAVS then activates the IKK-related kinase (TBK1) aka IKKi, and in turn, 

activates the transcription factors IRF3 and -7, leading to robust transcription of 

type I interferons.  

 Unlike RIG-I and MDA5, LPG-2 lacks the two N-terminal CARD domains 

and was initially shown to negatively regulate RLR activity (Rothenfusser et al., 

2005). Overexpression of LGP-2 decreased the capacity of SeV and NDV to 

induce type I IFNs. However, LGP-2 deficient mice had observable increased 

interferon signaling upon infection, which is contrary to its suggested function as 

a negative regulator (Satoh et al., 2010).  

 

Interferon-inducible cytosolic DNA receptors 

 Similar to RLRs, cytosolic DNA receptors mediate innate immune 

responses independently of TLR signaling. Unlike RNAs that are highly modified 

in microbial species, DNA sensors typically recognize non-specific, modification-

independent DNA backbones. It is speculated that the innate immune trigger is 
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due to the incorrect tropism of DNA where it should be in the nucleus rather than 

in the cytoplasm. Several DNA sensors have been described, and can be 

grouped by the signaling pathways they activate. Receptors like DAI and IFI16 

induce the expression of proinflammatory cytokines and type I IFNs upon DNA 

ligation through signaling involving the adaptor stimulator of interferon genes 

(STING) aka TMEM173 and either NF-kB for proinflammatory cytokines or IRFs 

for type I IFNs. Helicases DHX9 or -36 interact directly with DNA and MyD88 to 

activate NF-kB and IRF7. These helicases activate both proinflammatory 

cytokines and type I IFNs through MyD88-dependent, TLR-independent 

mechanisms. RNA polymerase III (RNAPIII) reverse-transcribes certain types of 

dsDNA like AT-rich DNA to an RNA ligand that activates RIG-I to induce type I 

IFN as described in the RIG-I section (Hornung et al., 2009). Flightless I 

interacting protein-1 (LRRfip1) through β-catenin, responds to microbial DNA 

through its leucine-rich repeats (LRR) and activates IRF3 via CBP/p300 

coactivation pathways (Bagashev et al., 2010). Lastly, cGAS has recently been 

identified to recognize cytosolic DNA and triggering type I IFN signaling in a 

STING-depedent manner through cyclic di-nucleotide second messenger 

signaling.  

 

Nod-like receptors (NLRs) and the inflammasome 

There are 22 human Nod-like receptors (NLRs) and 34 murine NLRs in the 

protein family that consists of cytoplasmic pathogen censors that contain a 
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central nucleotide binding and oligomerization domain (NACHT) common to all 

NLRs and C-terminal leucine-rich repeats (LRRs) (Inohara et al., 2005). The N-

terminal portion of most NLRs harbor protein-binding CARD domain, a pyrin 

domain, and a baculovirus inhibitor of apoptosis protein repeat (BIR) domain. 

NLRs that harbor a pyrin or BIR domain in their N-terminus are not involved in 

the transcriptional activation of inflammatory cytokines and are components of 

the inflammasome that regulate caspase-1 activity. All caspases are cysteine 

proteases that initiate or execute cellular programs, leading to inflammation 

and/or cell death. They are transcribed and translated as inactive zymogens that 

require proteolytic cleavage for activation. NOD1 and NO2 harbor CARDs in 

addition to LRR and NOD domains activate NF-kB via RIP2/RICK adaptor to 

drive the transcription of proinflammatory cytokines. They recognize bacterial 

peptidoglycans, g-D-glutamyl-mesodiaminopimelic acid (iE-DAP) and muramyl 

dipeptide (MDP) respectively. Many TLRs and NLRs synergistically recognize 

pathogens to mediate the activity of IL-1β and IL-18. IL-1β, the original pyrogen, 

is a pleotropic cytokine that induces fever, activates monocytes, macrophages 

and neutrophils and drives acute-phase protein synthesis. IL-18 activates natural 

killer (NK) cell activity and IFN-γ production to induce Th1 and Th17 adaptive 

immune responses. Many stimuli activate TLR ligands as mentioned above also 

activate NF-kB-dependent transcription of IL-1β and IL-18. Unlike many others, 

these cytokines lack leader sequences and are retained in the cell rather than 

secreted out via secretory vesicles. This list isn’t exhaustive, and intense 
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investigation is underway in the NLR field (Davis et al., 2011).  

 

IL-1 signaling pathway 

 IL-1 represents two proteins, IL-1α and IL-1β. Both are transcribed and 

translated as a precursor 33 kilodalton (pro) form, without a signal peptide. The 

IL1Α gene is located adjacent to the IL1B gene on the long arm of chromosome 

2. IL-1α is transcribed and translated into a 271 amino acid precursor. Similar to 

IL-1β, IL-1α lacks a signal peptide sequence and the precursor can be processed 

to produce a shorter mature protein, which is the carboxyl terminal part of the 

precursor. The differences between IL-1α and IL-1β are mainly in the cell 

sources that secrete them. They are also regulated differently, but post-secretion, 

act upon the same IL-1 receptor and downstream effects are identical. The 

signaling complex recruits MyD88, four IL-1R activating kinases and results in 

the activation of NF-kB, c-Jun N-terminal kinase (JNK) and p38-mitogen 

activated protein kinase (MAPK) target gene transcription. Pro-IL-1α is fully 

active and is usually found dispersed throughout the cytoplasm of cells (Kim et 

al., 2013). The reverse is true for pro- IL-1β, which is inactive until cleaved by 

caspase-1, which is regulated by the inflammasome. Although IL-1α can be 

found outside of cells in regions of high inflammation, functions for IL-1α are also 

intracellular. For example, following stimulation with cytokines and TLR ligands, 

intracellular pro-IL-1α translocates to the nucleus, where it participates in the 
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activation of transcription factors NF-kB and AP-1 to drive the synthesis of 

proiflammatory cytokines, including IL-6 and more IL-1α.  

 Both IL-1α and IL-1β can be secreted by a number of cells including 

macrophages, monocytes, neutrophils, lymphocytes, and epithelial cells. IL-1α 

and IL-1β both signal through the IL-1R. IL-1R is expressed on many cell types, 

including lymphocytes and thymocytes. The IL-1R consists of an extracellular 

ligand-binding domain, organized similarly to members of the Ig-superfamily, and 

a cytoplasmic region containing a TIR domain. Signaling through IL-1R requires 

many of the same adaptor proteins that are associated with TLR signaling, 

including MyD88, IRAK, TRAFs and lead to NF-kB activation and 

proinflammatory cytokine production.  

 As mentioned earlier, IL-1α can be active in its pro-form. Although it can 

be cleaved by caspase-1 into its mature form for secretion out of the cell to signal 

through IL-1R on neighboring cells like IL-1β, this isn’t necessary for its function. 

Indeed, for this reason, IL-1α is classified as an alarmin (Figure 1.4). Alarmins 

are molecules that are passively released by necrotic cells, and can 

subsequently activate neighboring cells to trigger highly inflammatory states. 

Because dysregulation of inflammation lies at the heart of many inflammatory 

triggers, hyper expression of IL-1α in a cell could be deleterious to the local 

cellular environment. For this reason, IL-1α requires extra attention and requires 

tight regulation.  

 Under circumstances where normal cell turnover and apoptosis is 
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occurring, IL-1α translocates into the nucleus and becomes tightly bound to 

chromatin and does not become active. Only under necrotic conditions, does 

cytoplasmic IL-1α, cleaved or non-cleaved become released into the extracellular 

space and initiate IL-1R signaling (Cohen et al., 2010a). Additionally, IL-1α 

sequesters to IL-1 receptor, type II (IL-1R2), which acts as a decoy receptor for 

IL-1α to remain inactive until there is an inflammatory trigger (Figure 1.4) 
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Malaria  

 The Plasmodium spp. parasite was identified as the causative agent of 

malaria in 1880, and the mosquito was identified as the vector in 1897 (Cox, 

2010). Despite subsequent efforts in all areas of biology, epidemiology, and 

public health, there is still no effective vaccine for the prevention of malaria 

(Arama and Troye-Blomberg, 2014). Physical barriers such as bed nets and 

screens, as well as chemical prevention methods like insecticides and mosquito 

repellents, have drastically slowed the transmission of the disease. Additional 

discoveries of therapeutics have dampened the overall malaria burden 

worldwide. However, this disease still accounts for 584,0001 number of deaths 

people annually according to the World Health Organization.  The risk of malaria 

is highly dependent on interactions between the host, parasite, mosquito vector 

and environment. Changes in any one of these elements may drastically impact 

the risk of infection. In the following sections, I will describe the Plasmodium 

species and the innate sensing of malaria parasites that contribute to the 

outcome of infection. 

 Four Plasmodium spp. cause malaria worldwide, with Plasmodium 

falciparum causing the most mortality.  They are protozoan parasites of the 

apicomplexan phylum. Malarial disease ranges from severe, life-threatening 

illness, to mild febrile illness to asymptomatic infections. Severe malaria is 

characterized by coma, hyperparasitemia, hypoglycemia, or anemia and typically 

                                            
1 http://www.who.int/mediacentre/factsheets/fs094/en/ 
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presents itself in young children or adults without previous exposure. As the 

population exposed to malaria ages, lower parasitemia and rates of disease 

occur. Repeated exposure to parasites results in mild febrile illnesses to 

asymptomatic or subclinical disease.  Cerebral malaria (CM) is among the most 

severe complications by P. falciparum infection, described by diffuse 

encephalopathy, associated with loss of conscience and muscular tone. The 

degree of loss of consciousness ranges from confusion to coma. Typical CM is 

associated with poor prognosis, with a 20-30% mortality (Brewster 1990). 

Mouse Cerebral Malaria 

 Rodent malaria parasites in mice is the choice model for studying the 

pathogenesis of CM. Four species and 113 subtypes of rodent Plasmodium 

exists (Carter and Walliker, 1976), but only P. berghei and P. yoelii have been 

used consistently for CM studies. P. berghei is the only species that is able to 

induce CM in mice, rats, and hamsters (Bafort et al., 1980; Mackey et al., 1980; 

Mercado, 1965; Rest, 1983). Among all strains of P. berghei isolated, four of 

them P. berghei SP11, ANKA (PbA), NK65, and Kyberg (K173) have been used 

to study CM. This is worth mentioning because the use of these different isolates 

have caused a lot of confusion in the field. For a long time, only PbA was 

reported to induce neurological signs in mice. NK65 was only shown to induce 

neurological symptoms in one occasion with rats (Kamiyama et al., 1987). And 

low-dose injection of K173 showed CM-associated neurological signs, but may 

go away with higher-dose injections (Rae et al., 2004). Most studies of CM have 
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been performed using multiclonal parasite lines and phenotypes differ drastically 

from lab to lab as the parasite passage increases. Indeed, for these reasons, 

there has been extensive contention and debate over the relevance of the rodent 

models, and it is evident that experimental models do not reproduce all the 

features of CM. Additionally, the mouse model lacks parasite sequestration in the 

brain, which is a key manifestation in human disease, and have been observed 

to preferentially sequester to different organs bringing the question of what the 

mouse model actually dies from. This, however, is debatable as a number of 

studies have observed parasite sequestration (Engwerda et al., 2002; Hearn et 

al., 2000), but it is difficult to discern if the iRBCs are located in the blood stream 

in the brain or actually bound to brain endothelial cells. To add even more 

confusion to the existing data, only some strains of mice are susceptible to CM 

(CBA/J, C57BL/6J, 129/Ola, etc) (Grau 1990, Mackey 1980, Amani 1998, Bagot 

2002). Despite all of this, though not perfect, these animal models have been 

instrumental in our understanding of certain mechanisms associated with CM (de 

Souza et al., 2010; Longley et al., 2011).  

Plasmodium life cycle 

 If the lack of a consensus mouse model and Plasmodium strain isn’t 

enough, to further complicate the process, malaria parasites undergo various life 

stages in multiple hosts. An infected female Anopheles mosquito takes a blood 

meal, and deposits sporozoites into the dermis of the mammalian host. They 

enter the bloodstream and migrate to the liver where they undergo a replication 
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amplification stage in hepatocytes for 48 hours (mice) and up to 2 weeks 

(humans). Merozoites are the form that is released after rupture of infected 

hepatocytes and invade red blood cells (RBCs) and initiate the asexual 

replication cycle. (Figure 1.5) Each cycle of invasion and replication occurs from 

24-72 hours depending on the Plasmodium species. Clinical symptoms including 

fever and inflammation occur during this stage.  

 Failure to control a malaria infection is in part, related to the complexity of 

the parasite and the interaction with the immune system of the host. Although 

there are now more efforts being made to understanding the nature and control 

of immunity or the pathological consequences of the host’s response to 

Plasmodium, a lot remains to be learned. Key questions include what molecular 

contributions of Plasmodium initiates the immune response. How is that 

regulated? What are the mechanisms that determine the severity of disease? 

Because of the different location of the parasite and the different antigens 

expressed at the liver and blood stages, the relevant immune responses and 

their specificity and regulation will not be the same for the liver and blood stages 

of infection. A thorough understanding of the mechanisms and antigens 

recognized at both of these stages, and the differentiation of immunity to disease 

and infection will be important for the construction of an effective vaccine.  
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Figure 1.5. Plasmodium life cycle. 

Three distinct stages of the parasite life cycle. Infection initiates upon deposition 
of sporozoites (spz) by infected-mosquitoes taking a blood meal from a 
mammalian host. The sporozoites migrate to the liver and matures divides in liver 
hepatocytes. The mature merozoite emerges from hepatocytes to initiate the 
invasion of red blood cells (RBCs) in repeated cycles for the rest of the infection 
until the host clears or becomes moribund to infection. The transmission cycle 
continues when another blood meal is taken by a mosquito and takes up 
Plasmodium-infected blood. (image from Menard 2005).  
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For each stage of infection, there are several potential targets of the protective 

immune response; molecules on the surface of the sporozoites, infected liver 

cells, blood stage merozoites, and infected red blood cells have been identified.  

Innate immune contribution to illness during malaria 

 The “cytokine storm” observed during malaria is thought to be a major 

contributor to malaria-dependent mortality. Through pattern recognition receptors 

(PRRs), parasite molecules are detected and trigger signaling cascades that 

converge into a productive inflammatory response. This triggers the activation 

and selection of B and T cells that undergo receptor class-switching and somatic 

hypermutation that yields in adaptive immunity toward the original pathogen. In 

the case of Plasmodium parasites, these PRRs include the toll-like receptor 

(TLR) family (Gazzinelli et al., 2004). For example, in humans, polymorphisms in 

TLR2, 4, 9 and Mal (also known as TIRAP) have been associated to be 

protective in the clinical outcome of malaria (Khor et al., 2007; Mockenhaupt et 

al., 2006). Glycosylphospatidylinositols (GPIs) from the parasite, which anchor a 

range of Plasmodium molecules to cell surfaces, are considered likely candidates 

to induce host inflammatory responses, fever and other pathology. GPI anchors 

have been shown to trigger TLR2 (Zhu et al., 2005), (Nebl et al., 2005), and to a 

lesser extent, TLR4 (Krishnegowda et al., 2005) and were thought to be the 

dominant immunostimulatory PAMP. TLR1-2 is activated by GPI anchors 

containing three fatty acid chains, whereas TLR2-6 is activated by two fatty 

chained GPI anchors. Activation of these TLRs mediate MyD88 signaling which 
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leads to NF-kB nuclear activity and induction of TNF-α, nitric oxide (NO) and pro-

IL1b transcription. However, GPI anchors but do not encompass the entire 

immune stimulatory activity of malaria (Wu et al., 2010). Others claim that murine 

cerebral malaria is independent of TLR signaling (Togbe et al., 2007). 

IL-1β-mediated fever is one of the hallmarks of malaria that causes many 

of the symptoms associated with disease (Brown et al., 1999; Clark et al., 1994; 

Clark and Rockett, 1994). The inflammasome is central to IL-1β regulation. Mice-

deficient in MyD88 and IL1R-IL18R signaling have decreased production of IL-12 

and attenuated pathology during infection with murine Plasmodium spp. (Adachi 

et al., 2001; Franklin et al., 2009; Pichyangkul et al., 2004). Studies of cerebral 

malaria in mice lacking TLRs have suggested that although TLRs contribute to 

experimental cerebral malaria (ECM), additional signaling mechanisms also 

contribute to this extreme manifestation of disease (Togbe et al., 2007). 

Parasites consume hemoglobin as a source of nutrients during the blood-stage 

infection and release toxic iron-containing heme. In order to detoxify the heme 

molecules, the parasite converts the heme into an inert crystal called hemozoin 

(Hz). This byproduct has been shown to activate TLR9 (Coban et al., 2007) and 

was later discovered that DNA-bound to Hz was the actual trigger for the TLR9-

dependent inflammation (Parroche et al., 2007).   

Polymorphisms in the type I IFN receptor (IFNAR1) (Aucan et al., 2003) 

are linked to increased survival from malaria. A number of reports have revealed 
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the ability of Plasmodium to induce type I IFNs (Aucan et al., 2003) (Pichyangkul 

et al., 2004; Vigário et al., 2007). Type I IFNs are typically induced in response to 

nucleic acids. Although plasmacytoid dendritic cells (pDCs) are a major source 

during virus infections and may regulate the IFN response to schizonts 

(Pichyangkul et al., 2004) many other cell types can also produce these 

cytokines. Several additional nucleic acid sensors have also been implicated in 

IFN gene regulation, however their role in malaria has not been thoroughly 

explored. In this study we investigated the role of TLR-independent DNA sensors 

in type I IFN production during malaria in response to both liver-stage and blood-

stage infections. 

Objectives for Chapter 3 

In Chapter 3, the objectives are to define the PAMP and innate immune 

response to liver-stage infections by PbA in mice. We found that RNA serves as 

a PAMP by activating MDA5-MAVS, and mediating Type I IFN production and 

subsequent interferon-stimulatory gene (ISG) production. These proteins play a 

role in dampening the initial parasite load. Next, we look at the blood-stage 

infection by PbA iRBCs. We demonstrate that in this situation, type I IFNs 

contribute to cerebral malaria through a STING-dependent pathway. We also 

define a new A/T-rich DNA motif that activates this response. Furthermore, Hz 

has been shown to activate TLR9, but we show that it also triggers 

inflammasome activation to mediate robust IL-1β production. Each part of the 

study reinforces the notion that there are multiple PAMPS that contribute to the 



 62 

inflammatory response during malaria infection. Each of these PAMPS exhibits 

themselves in different forms dependent on the life-stage of the parasite. 
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CHAPTER 2: A Natural Antisense Transcript controls inducible

transcription of the proinflammatory cytokine ILN1α.
 

Abstract 

Natural antisense transcripts (NATs) are a class of long noncoding RNAs 

(lncRNAs) that are complementary to other protein-coding genes.  Although 

thousands of NATs are encoded by mammalian genomes, their functions in 

innate immunity are unknown.  Here, we identify and characterize a novel NAT, 

AS-IL1α that is partially complementary to IL-1α.  Similar to IL-1α, AS-IL1α is 

expressed at low levels in resting macrophages and is induced following infection 

with Listeria monocytogenes or stimulation with TLR ligands (Pam3CSK4, LPS, 

PolyI:C). Inducible expression of IL-1α mRNA and protein were significantly 

reduced in macrophages expressing shRNA that target AS-IL1α.  AS-IL1α does 

not alter the stability of IL-1α mRNA, as expected of many natural antisense 

transcripts.  Instead, AS-IL1α was required for the recruitment of RNA 

Polymerase II (RNAPII) to the IL-1α promoter to initiate transcription in the 

nucleus.  In summary, our studies identify AS-IL1α as important regulator of IL-

1α transcription during the inflammatory response. 
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Introduction 

lncRNAs are differentially regulated in dendritic cells after 

lipopolysaccharide (LPS) (Guttman et al., 2009) and macrophages after 

Pam3CSK4 stimulation (Carpenter et al., 2013). There is a strong correlation 

between the immune protein coding genes that were strongly induced and 

neighboring lncRNAs suggesting that these genes may be co-regulated and may 

represent a new component of the inducible immune response. These 

observations, along with other lncRNAs that have been implicated in regulating 

the immune system, either by cell activation processes or regulating the effector 

cytokines themselves, indicate that lncRNAs are regulated and may be important 

in mitigating various immune processes and functions. Through our own RNA-

sequencing data, we have implicated a type of lncRNA called a natural antisense 

transcript (NAT) that regulates the transcription of the pro-inflammatory cytokine, 

IL-1α.  

Natural antisense transcripts (NATs) are one class of lncRNAs that are 

defined as being complementary to one or more protein-coding genes (Werner et 

al., 2009).  Some estimates indicate that ~50-70% of lncRNAs are NATs, making 

them a substantial proportion of the noncoding genome (Derrien et al., 2012; 

Khorkova et al., 2014; Werner et al., 2009). NATs have been shown to regulate 

the expression of their sense gene pair or of related genes in both activating and 

repressive contexts (Liu et al., 2014; Matsui et al., 2008; Vigetti et al., 2014). 

Similar to the broader class of lncRNAs, it is thought that NATs function in a cell-
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type specific manner.  However, the functions of NATs in innate immunity are 

relatively unexplored. 

Macrophages constitute the first line of defense against microbial 

pathogens and participate in triggering inflammation by exogenous and 

endogenous stimuli. Production of pro-inflammatory cytokines is among the 

earliest of the host’s cellular responses to infection. Of particular relevance to this 

study are the pro-inflammatory cytokines, IL-1α and IL-1β. These cytokines are 

induced rapidly and amplify inflammation via IL-1 receptors expressed on 

adjacent cells (Chen et al., 2007). The significant potential of these cytokines to 

cause tissue damage highlight the need for rigorous control of their production 

and activity. IL-1β requires the activation of the inflammasome to convert it to the 

mature biologically active cytokine. Although IL-1α may be cleaved into its 

mature protein, it can also be activated in its full-length form and is therefore 

considered an endogenous alarmin, which are molecules that upon release from 

damaged or dying cells, will trigger the immune system (Kim et al., 2013). 

IL-1α appears to be primarily regulated during transcription and splicing as it is 

translated as an active protein (Dinarello et al., 2012). 

This chapter contains three parts: (1) to characterize the molecular and 

cellular structure of AS-IL1α, (2) to determine the role of AS-IL1α on other genes 

upon perturbation of its own expression in order to determine its targets, and (3) 

to elucidate some mechanistic insights to how AS-IL1α may exhibit its functions. 
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Materials and methods 

In vivo infections. C57BL/6 mice were purchased from The Jackson Laboratory 

(Bar Harbor, ME) and bred at UMASS Medical School. Mouse strains C57Bl/6 

were maintained in specific pathogen-free conditions in accordance with the 

Institutional Animal Care and Use Committee (IACUC). Listeria monocytogenes 

(clinical isolate 10403s) was from V. Boyartchuk (NTNU, Trondheim, Norway) 

and infected as described (Severa et al., 2014) for 24 hours before harvesting 

the spleen.  

 

RNA-sequencing. Single cell suspensions from spleens were used to make total 

RNA. 4 µg of total RNA was used to generate libraries for RNA-sequencing 

(Illumina unstranded mRNA kits). Samples were sized, quantified and validated 

on a Bioanalyzer tp ensure RNA quality. Libraries were sequenced on a High-

Seq System (Illumina 2000, San Diego, CA) as paired-end 50 reads.  Sequence 

reads were aligned to the mouse genome (assembly NCBI m37/mm9) using 

TopHat (Trapnell et al., 2009). Gene level read counts based on the resulting 

alignments were calculated using HTSeq (http://www-

huber.embl.de/users/anders/HTSeq/) and the Ensembl65 gtf transcript 

annotation file. The DESeq R package (Anders and Huber, 2010) was used to 

normalize gene counts, calculate fold change in gene expression, estimate p-

values and adjusted p-values for change in gene expression values, and to 

perform a variance stabilized transformation on read counts. The Circos program 
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(Krzywinski et al., 2009) was used to visualize genome-wide gene expression 

changes. Log2 fold change values were computed by subtracting the log2 

variance stabilized counts of the unstimulated sample from the log2 variance 

stabilized counts of the Listeria monocytogenes-stimulated splenocytes All 

protein coding genes that were annotated with particular GO IDs (GO:0006955, 

GO:0045088, GO:0009607, GO:0009615, GO:0006952, GO:0006954, 

GO:0032020, GO:0051707, GO:0051707, GO:0035455, GO:0035457, 

GO:0006950, GO:0001866, GO:0009611) were classified as immune genes and 

colored red.  

 

Accession numbers. All raw data from RNA-sequencing are available for 

download from NCBI Gene Expression Omnibus under the accession number (in 

submission). 

 

Cell culture. Murine bone marrow derived macrophages (mBMDMs) were derived 

by flushing progenitor cells out using PBS, pelleted, depleted of RBCs using RBC 

lysis buffer (Sigma). BMDMs were harvested from bone marrow extracted from 

mouse femurs and cultured in DMEM supplemented with 10% FCS, 100 U/mL 

penicillin, 100 ug/mL streptomycin and ciprofloxin, and 25% L929 conditioned 

supernatant (as the source of M-CSF) and maintained at 37*C in a humidified 

atmosphere of 5% CO2, in 75 or 175 cm2 culture flasks. Or Human Embryonic 

Kidney (HEK) 293T Cells were cultured in DMEM supplemented with 10% FCS, 
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100 U/ml penicillin, 100 ug/ml streptomycin and ciprofloxin. Either cell type was 

seeded at 1x105/ml in a total volume of 15 mL (75 cm2 flask) or 35 ml (175 cm2) 

flask, and passaged when confluent as follows: cell monolayers were washed 

with medium incubated with 1 mL trypsin/EDTA (75 cm2 flask) or 2 ml (175 cm2) 

flask at 37*C until detachment was evident and 9 ml medium was added to 

terminate trypsinization. Cells were then centrifuged 400g, 5 minutes, 4*C and 

the pellet re-suspended in 10 ml medium. Cell number and viability was 

determined by mixing a 10 ul aliquot of re-suspended cells with 90 ul 0.4% trypan 

blue solution, and applying 10 ul of this mixture to a hemocytometer. The dye is 

excluded from viable cells, and under bright field microscopy membrane-

damanged cells stain blue-violet, whereas undamaged cells appear translucent.  

 

Cell stimulations. Cells were infected with L. Monocytogenes or stimulated with 

lipopolysaccharide (LPS) (100 ng/mL), Pam3CSK4 (100 nM), Poly(I:C) (25 

µg/mL)  and ISD (3 uM) oligonucleotides (Unterholzner et al., 2010) as described 

in (Severa et al., 2014). After 2 hours incubation, total RNA was harvested from 

all conditions (RNeasy, Qiagen). 

 

RNA isolation and qRT-PCR. RNA was isolated from cells prepared as described 

above for BMDMs and maintained in culture as described. Stimulated cells were 

harvested into RLT buffer containing 2-bME for subsequent processing with the 

RNease Mini kit (Qiagen). Each RNA sample was adjusted to contain the same 
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quantity of RNA using the Nanodrop ND-1000 spectrophotometer (Thermo 

Scientific). Reverse transcription was performed using iScript RT cDNA kit 

(BioRad) and qRT-PCR was performed using SYBR Green PCR Master Mix 

(BioRad) with the primers listed below in Table 2.1. 

 

Table 2.1.  qRT-PCR primers and shRNA targeting sequences 
 
 shRNA target sequences 
shRNA-GFP-For 5’CCGGAAGCAAGCTGACCCTGAAGTTCATCTCG

AGTACTTGAAGTCCCAGTCGAACGTTTTTTTG3’ 
shRNA-GFP-Rev 5’AATTCAAAAAGCAAGCTGACCCTGAAGTTCATT

CTCGAGTACTTGAAGTCCCAGTCGAACGTT3’ 
shRNA#1-For 5’CCGGAAGAAGGTATTTTTACCCATCCTCGAGGA

TGGGTAAAAATACCTTCTTTTTTTG3’ 
shRNA#1-Rev 5’AATTCAAAAAAAGAAGGTATTTTTACCCATCCTC

GAGGATGGGTAAAAATACCTTCTT 3’ 
shRNA#2-For 5’CCGGAACTGGCTAGGGAGGACAAAACTCGAGT

TTTGTCCTCCCTAGCCAGTTTTTTTG-3’ 
shRNA#2-Rev 5’AATTCAAAAAAACTGGCTAGGGAGGACAAAACT

CGAGTTTTGTCCTCCCTAGCCAGTT-3’ 
shRNA#3-For 5’CCGGAACTGGCTAGGGAGGACAAAACTCGAGT

TTTGTCCTCCCTAGCCAGTTTTTTTG-3’ 
shRNA #3-Rev 5’AATTCAAAAAAACTGGCTAGGGAGGACAAAACT

CGAGTTTTGTCCTCCCTAGCCAGTT-3’ 
  
 qRT-PCR primer sequences 
AS-IL1α-For 5’- AGGCTTGGGATTCACTTGAC-3’ 
AS-IL1α-Rev 5’-TCTCTCTGGGCTTCAGTTCC-3’ 
IL-1α mature-For 5’TCTCAGATTCACAACTGTTCGTG-3’ 
IL-1α mature-Rev 5’AGAAAATGAGGTCGGTCTCACTA-3’ 
Gapdh-For 5’-CAAGGTCATCCATGACAACTTTG-3’ 
Gapdh-Rev 5’-GTCCACCACCCTGTTGCTGTAG-3’ 
18s rRNA-For 5’-CGCGGTTCTATTTTGTTGGT-3’ 
18s rRNA-Rev 5’-AGTCGGCATCGTTTATGGTC-3’ 
7SK – For 5’-AGAACCTCCAAACAAGCTCTCAAGG-3’ 
7SK – Rev 5’-AGAAAGGCAGACTGCCACATGCAG-3’ 
IL1α intron 5-exon 6 – 
For 

5’-CACACACACACACACATCTGC-3’ 
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IL1α intron 5-exon 6-Rev 5’-GGGCTGGTCTTCTCCTTGAG-3’ 
IL1α intron 1 – For 5’-CGCTCTTCCCGTTTTGTAAG-3’ 
IL1α intron 1 – Rev 5’-GTGGCCATGTGTGTGTCACT-3’ 
IL1α intron 2 – For 5’-TCCTCCTCCTCCTCCTTCTC-3’ 
IL1α intron 2 – Rev 5’-GAACCTGATGGCCTCTCTCA-3’ 
AS-IL1α-specific RT 
primer 

 

  
 ChIP primers 
(TSS+22)IL1α-For 5’-AGTCAACTCATTGGCGCTTG-3’ 
(TSS+22)IL1α-Rev 5’-AGAGGACAGTCAAGGAGCAAAC-3’ 
(TSS+227)IL1α-For 5’-CAAGATGGCCAAAGTTCCTGAC-3’ 
(TSS+227)IL1α-Rev 5’-TGGAGTCAAAGGAACCTTGAGC-3’ 
(TSS+87 )IP10-For 5’-CCGTCATTTTCTGCCTCATC-3’ 
(TSS+87 )IP10-Rev 5’-CTGCAAGCTGAAGGGATTTC-3’ 
(TSS+73)Gapdh-For 5’-TAGGACTGGATAAGCAGGGC-3’ 
(TSS+73)Gapdh-Rev 5’-GAACAGGGAGGAGCAGAGAG-3’ 
 

Polysome profiling. Macrophages were seeded at 5 million cells in a 100 mm 

dish. After 16 hours of culture cells were pre-treated with cycloheximide (100 

ug/ml) for 10 minutes at 37ºC or with harringtonine (2 ug/ml) for 25 minutes 

followed by cycloheximide (100 ug/ml) for 10 minutes. Cells were washed twice 

in ice-cold PBS+Cycloheximide (100 ug/ml) and scraped in 1ml of 

PBS+Cycloheximide (100 ug/ml). Cells were then pelleted at 500g for 5 minutes 

at 4ºC and lysed in 1ml of lysis buffer (10mM Tris-HCl pH. 7.5; 5mM MgCl2; 

100mM KCl; 1% Triton X-100; 2mM DTT; 100 ug/ml Cycloheximide and 1X 

Protease-Inhibitor Cocktail EDTA-free (Roche). After incubation at 4ºC for 10 

minutes, lysate was cleared at 1300.g for 10 minutes at 4ºC, the supernatant 

recovered and absorbance at 260nm measured. 10 A260 units complemented or 

not with 35 mM of EDTA were loaded on top of a 10 to 50% (Weight/Volume) 
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sucrose gradient (20mM HEPES-KOH pH. 7.4; 5mM MgCl2; 100mM KCl; 2mM 

DTT; 100 µg.ml-1 of Cycloheximide) and centrifuged in a SW-40ti rotor at 35,000 

rpm for 2h40min at 4ºC. After centrifugation, samples were collected from the top 

of the gradient into 15 fractions while absorbance at 254nm was measured. 

Collected fractions were complemented with 0.4 femto moles of a firefly coding 

RNA (Spike-In), SDS (1% final), proteinase K (200 ug/ml) and incubated at 42ºC 

for 45 minutes. After proteinase K treatment, RNA was extracted using one 

volume of Phenol (pH 4.5):Chloroform:Iso-amyl alcohol (25:24:1). The recovered 

aqueous phase was supplemented with 20 µg of glycogen, 300 mM sodium 

acetate pH 5.2, and 10 mM MgCl2. RNA was precipitated with 3 volumes of 

100% ethanol at −20°C overnight. After a wash with 70% ethanol, RNA was re-

suspended in 50 µl of water (Carpenter et al., 2013). 

 

Generation of wildtype and AS-IL1α knockdown shRNA-mediated macrophage 

cell lines. shRNA sequences were designed as described (Hornung et al., 2008)  

in Figure 2.$$ and ordered from IDT through UMass Molecular Biology Core 

Labs. Forward and reverse strands were denatured and annealed by mixing 1:1 

of each, diluting with nuclease-free water, and placing on a 95*C heatblock. After 

10 minutes, heatblock was turned off to allow slow cooling to room temperature 

to allow the oligonucleotides to anneal. These oligonucleotides were ligated into 

a pLKO.1 TRC cloning vector (Moffat et al., 2006). (Sigmal-Aldrich) (see Table 

2.1 for sequences). Generation of the plasmid was determined by running a 1% 
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agarose gel and the 7 kb fragment was extracted using Qiagen Gel Extraction kit. 

Competent e.coli DH5α cells with plasmid DNA as follows: 50 ul competent cells 

were incubated on ice with 1 ug plasmid DNA for 1 hour, followed by heat 

shocking of cells for 2 minutes at 42*C. Cells were cooled on ice for 1 minute 

before being transferred to a 1 mL warm luria broth without antibiotic selection. 

Cells were allowed to recover for 2 hours at 37*C. Transformed cells were plated 

onto L-agar containing ampicillin and left for 16 hours at 37*C. This was 

performed on 4 shRNAs and 10 colonies were chosen from each plate. The 

selected single colonies were selected and grown overnight at 37*C in ampicillin-

containing Luria broth. Isolation of plasmid DNA from e. coli DH5a was 

performed using 1 ml of the broth and run on a Qiagen miniprep column 

according to manufacturer’s instructions (Qiagen).  Sequencing of plasmid DNA 

was performed by GeneWiz for positive incorporation of shRNA oligonucleotides 

into pLKO.1 vector. Lentiviral particles were produced in 2x106 HEK 293T cells 

transfected with 4 ug shRNA, along with 1 ug pMD2 and 3 ug pSPAX using 

GeneJuice (Novagen) for 48 hours. Viral supernatant was collected and passed 

through a 0.45 um filter and added to immortalized BMDMs. Puromycin (3 ug/ml) 

was added to the culture media for selection of shRNA-incorporated cells. 

Knockdown efficiency was assessed by one-step qRT-PCR (BioRad) with the 

primers listed in Table 2.1. 
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Figure 2.1. Lentiviral vector pLKO.1 map. Vector map of the lentiviral construct 
used to insert shRNAs targeting GFP (control) or AS-IL1α (3 lines) and 
transduced into immortalized macrophages. shRNA double-stranded 
oligonucleotides were cloned into the vector using Age I and Eco RI restriction 
sites. Ampicillin was used to positively select for the E.coli DH5α transformed 
plasmids. Puromycin was added to the culture media to positively select for 
transduced cells. *Vector map was downloaded from www.addgene.com 
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Figure 2.2. Design of shRNA sequences to insert into pLKO.1 cloning vector. A 
non-targeting sequence against GFP (control line) and three discrete sequences 
specifically targeting AS-IL1a were generated using the above formula. The two 
oligonucleotides were purchased from IDT through UMass Molecular Core 
Facility and annealed in lab before cloning into the pLKO.1 vector. 
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Western blot. Immortalized macrophages (imacs) were plated at a density of 

1x106 cells/ml in 1 mI in a 12-well plate. They were stimulated with PBS or 100 

ng of LPS/ml for 6 hours. Cells were washed with 1X PBS, scraped and 

centrifuged at 400g, 5 minutes 4*C. PBS was removed and lysis buffer 

containing the following recipe was used to resuspend the cells at 100 ul for 10 

minutes on ice: Lysed cells were then centrifuged at 14000g, 10 minutes 4*C and 

supernatant containing protein was quantified by Bradford assay. They were then 

diluted to equal protein concentrations, mixed with 4x sample buffer, boiled for 5 

minutes and loaded onto a 5% stacking gel and 10% resolving SDS-PAGE gel. 

Immunoblotting was performed using mouse IL-1α/IL-1F1 antibody (R&D 

Systems AB-400NA) and anti-goat IgG) (BioRad 172-1011).  

 

Nanostring Analysis.  Cells were treated with either PBS or LPS (100 ng/ml) for 6 

hours and purified using an RNeasy Mini Kit (Qiagen). Total RNA was hybridized 

to nCounter CodeSets, which were constructed for detecting selected mouse-

specific genes and levels of RNA measured using the nCounter Digital Analyzer 

as described (Carpenter et al., 2013; Dixit et al., 2010). To account for technical 

variation in lane hybridization, samples were first normalized to positive and 

negative internal controls provided by Nanostring that are independent of our 

samples. We determined the normalization factor be generating the geometric 

mean and normalized to reference housekeeping genes to account for sample 

variability. The final counts serve as the number of total counts of each gene. 
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Values are displayed as a heatmap generated by log2-transformation and row 

clustering using http://anto.umassmed.edu/~adam/heatmap/enterInformation.php 

 

Cell fractionation. Cytosolic and nuclear fractions were prepared as described 

(Smale et al., 2012). The cell lysis buffer contained 0.15% NP-40, and the 

sucrose cushion did not contain detergent. Cells treated with PBS or LPS (100 

ng/ml) for 6 hours were lysed with 0.15% NP-40. After fractionation, cytoplasmic 

and nucleoplasmic RNA was purified using Qiagen RNAse columns. GAPDH and 

7SK were used for cytoplasmic and nuclear controls respectively. Primers are 

listed in the Table 2.1. 

 

RNA stability experiments.  α-amanitin (50 ug/ml) (Sigma-Aldrich A2263) or 

actinomycin D (5 ug/ml) (Sigma-Aldrich A1410) was treated onto WT or shRNA-

AS-IL1α cells for 6, 12, or 24 hours after a 6 hour LPS stimulation (100 ng/ml).  

RNA was measured the same way. RNA was harvested and cDNA was made 

prior to qRT-PCR.  IL-1α mRNA and 18S rRNA degradation was determined 

using the primers listed in Table 2.1.  

 

Chromatin Immunoprecipitation (ChIP). Cells were stimulated with LPS for 6 

hours, fixed in 1% formaldehyde, lysed, and sonicated to shear the chromatin. A 

sample of the sheared chromatin was removed from the larger sample and 

subjected to deproteination, quantified via Nanodrop, and run on a 2% agarose 
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gel to determine the size of the sheared chromatin.  5 ug of chromatin was pre-

cleared with Dynabeads Protein G (10009D) from Novex/Life Technologies and 

subjected to immunoprecipitation with antibodies specific to RNAPII (Active Motif 

102660), H3K9-acetylation (Abcam AB4441), or IgG isotype control (Abcam 

AB37415) overnight.  Immunoprecipitated fragments were washed and 

deproteinated to obtain purified DNA that was used for PCR amplification at the 

IL-1α, IP-10, or gapdh promoter that are shown in Table 2.1.  

 

Mice: Ptpnspin mutant or cage-matched wildtype or heterozygous control mice 

footpads or femurs were a gift from Thirumala-Devi Kanneganti, PhD (St. Jude) 

aged 4-6 weeks. Footpads were extracted for RNA, reverse transcribed and 

performed qRT-PCR for AS-IL1α, IL-1α and GAPDH. Bone marrow was 

extracted from femurs and differentiated into BMDMs as described above before 

plating and stimulating with LPS (100 ng/ml) for 6 hours, harvesting RNA, making 

cDNA, and qRT-PCR on the same genes.  

 

 

Results 

Identification of AS-IL1α, a natural antisense non-coding RNA in the IL-1α 

locus.  

To assess lncRNA expression during an active infection, we infected 

C57Bl/6 mice with Listeria monocytogenes (Lm) and performed RNA-
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sequencing. We chose Lm since it activates multiple innate pathways and drives 

a robust acute inflammatory response both in vivo and in vitro. Spleens from 

infected and non-infected mice were harvested 24 hours after infection and total 

RNA was prepared for RNA-sequencing. Consistent with previous reports (Leber 

et al., 2008), Listeria monocytogenes induced expression of a wide range of 

protein-coding immune genes (Figure 2.3a, inner track).  We also detected 

many lncRNAs that were differentially expressed following Listeria infection 

(Figure 2.3a, outer track).   

Strikingly, one of these lncRNAs (hereafter referred to as AS-IL1α) was 

induced 14-fold and was encoded by the opposite strand of the IL-1α locus on 

chromosome 2. Similar to what we had seen in vivo and in our RNA-seq data, 

AS-IL1α levels also increased in macrophages infected with Listeria 

monocytogenes (MOI 5 and 10) (Figure 2.3b).  
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We used PCR to confirm the orientation and gene structure of AS-IL1α. 

We amplified the AS-IL1α region identified by our qRT-PCR primers, and then 

designed new primers to “walk” further into the gene in order to identify the full-

length mature transcript in murine macrophages. The schematic drawn in Figure 

2.4 is the maximally amplified region as we have achieved today. It differs from 

the annotated sequence on ENSEMBL 9.0 in that we’ve never been able to 

amplify the annotated exon 1. To the best of our sequencing data, we modeled 

the sequence architecture as shown in Figure 2.4. For the sequences mapped, 

see Appendix I. 

In order to function as a lncRNA, we must demonstrate that this gene 

does not encode for a protein (Mattick and Rinn, 2015). To assess the protein-

coding potential of AS-IL1α, we performed polysome profiling which maps the 

portion of the transcript that actually get translated (Ingolia et al., 2012). 

Macrophages were treated with cycloheximide, which traps ribosomes along their 

RNA strands and these RNA were detected in the heavier fractions of a sucrose 

density gradient.  To compare, cells were also treated with EDTA post-

cycloheximide treatment, which disrupts all RNA-protein interactions and these 

RNA were detected in the lighter fractions of a gradient. A third set of cells were 

pre-treated with harringtonine prior to cycloheximide, which inhibits translation 

and polysome formation by causing ribosomes to accumulate at their initiation 

sites.  Thus, pre-treatment with harringtonine causes these RNA species to shift 

to lighter fractions in a sucrose gradient.  As expected, harringtonine prevented 
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polysome formation in both GAPDH and IL-1α mRNA (Figure 2.5), and both 

mRNAs shifted to lighter fractions in the sucrose gradient.  In contrast, AS-IL1α 

was largely unaffected by harringtonine treatment, indicating that it is unlikely to 

associate with ribosomes. Of note, however, is the heavy sedimentation of AS-

IL1α in cycloheximide alone and cycloheximide and harringtonine treatment 

samples. These high sedimentation fractions are disruptable by EDTA. Most 

likely, there are large protein complexes co-aggregating with this transcript. 

Collectively, these studies indicate that AS-IL1α is unlikely to encode a protein 

product.   
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AS-IL1α  is inducible in macrophages exposed to TLR ligands via NF-κB.  

In order to further characterize AS-IL1α, we examined its expression in 

bone marrow derived macrophages (BMDMs) stimulated with ligands of TLRs 

and other innate receptors. We found that AS-IL1α was up-regulated after 

stimulation with LPS (TLR4), Pam3CSK4 (TLR1/2) and PolyI:C (TLR3) (Figure 

2.6a).  In contrast, Interferon stimulatory DNA (ISD), which activates the 

intracellular cGAS DNA sensing pathway, failed to upregulate AS-IL1α. We next 

wanted to understand the signaling pathway responsible for the inducible 

expression of AS-IL1α.  We focused on LPS signaling and compared inducible 

levels of AS-IL1α in WT and MyD88-/-/TRIF-/- DKO cells. In the absence of 

MyD88/TRIF, LPS failed to upregulate AS-IL1α (Figure 2.6b). We also treated 

macrophages with Bay11-7085, an inhibitor of NF-κB, which prevented the LPS 

inducible expression of AS-IL1α (Figure 2.6c).  Collectively, these data indicate 

that AS-IL1α is induced by multiple TLRs via MyD88/TRIF signaling and NF-κB.   

 

Knocking down AS-IL1α inhibits inducible IL-1α expression 

To determine whether AS-IL1α contributes to inflammatory gene 

expression in macrophages, we next generated macrophage cell lines in which 

AS-IL1α expression was specifically silenced by shRNA. We made three 

independent shRNAs that targeted AS-IL1α exons that did not overlap with those 

of IL-1α. Using the cloning vector, pLKO.1 (Figure 2.1), we transduced 293T 
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cells with three different shRNAs and a control non-targeting green fluorescent 

protein (GFP) shRNA (Figure 2.2). After 48 hours, the supernatants containing 

lentivrirus were added onto wildtype-immortalized macrophages. We confirmed 

that AS-IL1α was significantly silenced in LPS-stimulated cell lines that 

expressed these shRNA (Figure 2.7a). In shRNA-GFP lines, LPS strongly 

induced IL-1α mRNA levels whereas LPS only induced abrogated levels of IL-1α 

mRNA in cells expressing shRNA-AS-IL1α (Figure 2.7b). Consistent with the low 

levels of mRNA, LPS failed to induce the high levels of IL-1α protein normally 

detected by immunoblotting  (Figure 2.7c). These results indicate that AS-IL1α is 

required for the inducible expression of IL-1α and that this NAT regulates its 

protein-coding partner in a positive manner. 
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We next used a non-enzymatic RNA profiling technology that employs 

bar-coded fluorescent probes to simultaneously analyze mRNA expression levels 

of differentially regulated genes following LPS stimulation in control and AS-IL1α 

silenced macrophages (6 hours) (nCounter, Nanostring). Consistent with the 

qRT-PCR analysis, IL-1α was the most significantly affected gene in the shRNA 

lines (Figure 2.8 and Table 2.2 for adjusted values). We also found that IL-1β 

levels were decreased in the shRNA cell lines, albeit to a lesser extent.  A heat 

map depicting immune gene expression in control shRNA-GFP and AS-IL1α 

shRNA cells is shown. Whether or not AS-IL1α regulates just the cis-gene IL-1α, 

or somehow regulating the entire IL-1 locus needs to be further determined. 

Additionally, whether other genes affected on the Nanostring are secondary 

effects of abrogated IL1α-IL1 receptor signaling is unclear.   

In order to determine whether IL-1α also induces the transcription of AS-

IL1α, we measured expression of AS-IL1α in macrophages from mice deficient in 

IL-1α.  In these cells, the inducible expression of IL-1α was absent as expected. 

LPS treatment however, led to increased levels of AS-IL1α.  These observations 

indicate that transcription of AS-IL1α is regulated independently of IL-1α (Figure 

2.9). 
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Table 2.2. Nanostring Adjusted mRNA counts 
Treatment NT LPS 
 
shRNA:  GFP AS-IL1α-#1 AS-IL1α-#2 GFP AS-IL1α-#1 AS-IL1α-#2 

Genes             
Il6 1 4 3 613 417 648 
Il21 1 3 2 5 5 10 
tlr11 1 6 5 9 12 15 
nlrp12 1 1 7 3 6 12 
tlr5 1 4 2 4 8 9 
cxcl9 2 26 8 28 90 157 
Il23a 2 3 1 78 63 103 
cxcl1 2 6 3 20 107 98 
Ifna4 2 6 4 9 13 15 
arg2 3 15 10 16 26 38 
prdm1 3 17 14 14 60 85 
Ifng 3 7 2 14 4 7 
Il13 4 4 3 12 9 22 
Il12b 4 8 5 15 202 225 
arg1 4 4 3 21 10 8 
Il-4 5 7 7 13 8 15 
tgfb2 5 4 8 20 17 21 
Il-10 6 8 4 40 131 179 
IL-1α 6 5 8 20635 2789 3892 
mmp2 6 6 7 19 17 26 
Il12a 7 6 4 9 5 5 
nlrp6 7 8 10 30 11 12 
Ifnb1 7 9 5 361 188 288 
nlrc4 17 138 101 20 116 168 
socs1 19 17 8 182 343 451 
Il-33 20 3 4 132 6 10 
socs3 30 26 19 1110 820 1200 
nos2 32 18 11 600 656 933 
ccr1 33 36 33 46 12 18 
ccr2 35 8 8 66 6 10 
cd86 38 306 247 93 141 292 
IrakM 41 111 90 180 445 812 
cxcl2 58 60 60 16652 13182 22428 
tlr9 59 282 197 77 49 82 
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rybp 69 350 220 142 189 281 
Il15 71 144 98 403 733 830 
tlr1 72 69 35 364 42 62 
IL-1β 83 30 14 77402 12299 16876 
Ifi205 94 511 342 724 4958 5900 
ccl4 98 484 421 13466 20942 36025 
tlr3 107 263 260 189 217 407 
cd18 116 214 142 151 97 141 
eya4 117 621 370 47 89 135 
a20 133 425 310 2434 6056 8580 
yaf2 141 239 194 255 101 196 
Irf1 164 414 310 916 2263 3353 
cd40 244 350 280 2843 5688 7324 
cd80 249 103 74 3030 314 508 
tlr8 249 890 626 185 260 360 
nlrc5 294 339 255 540 336 537 
pstpip1 336 455 330 366 112 226 
md2 379 603 442 484 208 354 
tlr4 384 996 721 217 132 183 
cxcl10 398 348 528 3888 12952 26125 
tnfa 448 493 342 12162 11604 20561 
stat3 471 1412 1146 1172 1082 1662 
nfkb2 484 588 435 4369 2854 4126 
duba 533 1011 638 964 692 1145 
Il-18 580 775 533 1205 442 737 
myd88 595 1208 931 1258 1228 2066 
nlrp3 605 494 413 8239 6198 9918 
Irf2 616 595 429 694 299 540 
cox2 667 212 193 31295 14225 22562 
oas2 675 811 619 1185 567 882 
aim2 710 758 593 1523 418 798 
zbp1 748 15 12 1524 5 22 
Icam1 838 1867 1436 4634 6859 9755 
dusp6 854 1083 809 2277 421 802 
tlr2 936 582 478 2793 1867 2853 
tlr7 952 840 668 991 545 870 
nfkb1 988 942 741 7469 2730 4159 
casp1 1010 3931 2639 1668 2516 3807 
mnda 1066 4591 3242 2044 4274 6555 
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trex1 1071 781 692 3022 2660 4320 
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Although AS-IL1α was predominantly located in the nucleus, we wanted to 

rule out the possibility that AS-IL1α controlled the stability of IL-1α.  For example, 

AS-IL1α could function similarly to Bace1-AS, which stabilizes its cognate gene 

by binding to its mRNA and preventing its degradation (Faghihi et al., 2008).  In 

order to determine if AS-IL1α changes the stability of IL-1α mRNA, we compared 

IL-1α mRNA levels in control shRNA-GFP expressing macrophages and the 

shRNA-AS-IL1α line before and after treatment with α-amanitin, a mushroom 

toxin, which binds to RNA polymerase II (RNAPII) and prevents new 

transcription. We stimulated the shRNA-GFP macrophages as well as AS-IL1α 

knockdown macrophages with LPS for 6 hours and then treated cells with α-

amanitin at the time points indicated before harvesting the RNA (Figure 2.10a). 

We did not detect any change in the degradation rate of IL-1α mRNA in the 

presence or absence of AS-IL1α.  We confirmed these results in two additional 

shRNA lines and using actinomycin D, another inhibitor that blocks transcription 

by intercalating into DNA (Figure 2.10b). As a control, we also measured levels 

of 18S ribosomal RNA, an RNA polymerase I transcript that is not affected by α-

amanitin treatment.  These results indicate that AS-IL1α does not alter the 

stability of IL-1α mRNA.  
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AS-IL1α is localized to the nucleus and enhances IL-1α  expression at the 

transcriptional level 

Long non-coding RNAs can be found in the nucleus, cytoplasm or in both 

compartments (Cheng et al., 2005; Louro et al., 2009; Wu et al., 2008). To gain a 

better understanding of how AS-IL1α might regulate IL-1α gene expression, we 

first examined its localization in macrophages by performing subcellular 

fractionation of nuclear and cytosolic compartments and analyzing RNA levels 

after LPS stimulation by qRT-PCR.  We also measured levels of GAPDH, IL-1α 

as well as the nuclear RNA, 7SK. As expected, the mature IL-1α and GAPDH 

transcripts were localized to the cytosol, while 7SK RNA was confined to the 

nucleus. The induced levels of AS-IL1α were primarily nuclear (Figure 2.11).  

Since AS-IL1α was localized to the nucleus, we hypothesized that AS-

IL1α regulated the transcription of IL-1α. We designed qRT-PCR primers that 

spanned exon-exon boundaries to measure mature IL-1α transcripts, and 

compared those expression levels using primers that measured intron-containing 

sequences of the IL-1α pre-mRNA (see Table 2.1 and Appendix I for sequences 

and amplicon regions).  This analysis revealed that the pre-mRNA levels of IL-1α 

were also decreased in the three AS-IL1α shRNA lines (Figure 2.12a).  To 

confirm the specificity of our assay, we made reverse transcription primers that 

targeted AS-IL1α only and compared it to our normal method of reverse 

transcription using poly-d(T) and random hexamer primers. The trends were 
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comparable indicating the abrogated AS-IL1α expression levels were specific to 

AS-IL1α and not promiscuous priming (Figure 2.12b). 

We next performed chromatin immunoprecipitation (ChIP-PCR) assays to 

measure RNAPII occupancy at the region surrounding the transcription start site 

(TSS) of the IL-1α locus (+22bp). In order to shear the chromatin to the 

appropriate size after lysing and fixing the cells with formaldehyde, we took a 

small aliquot of the sonicated chromatin samples, and ran it on an agarose gel. 

Fragment sizes greater than 500 base pairs would indicate an incomplete 

fragmentation. Once we determined our samples were sheared properly, we 

were able to immunoprecipitate the samples with either RNA polymerase II 

(RNAPII) or Histone 3 Lysine 9 (H3K9)-acetylation (Ac), which is an indicator of 

active transcription. As expected, LPS treatment in the shRNA-GFP control cells 

resulted in robust RNAPII binding at this region.  This was greatly reduced in 

macrophages expressing AS-IL1α shRNA (Figure 2.13a).  We observed similar 

results when we measured the epigenetic mark H3K9-Ac, an indicator of active 

transcription at this same locus (Figure 2.13b).  The effect of AS-IL1α shRNA 

was specific to the IL-1α locus, as recruitment of RNAPII to GAPDH or the IP-10 

locus was unaffected in the knockdown line. These results indicate that AS-IL1α 

is required to facilitate RNA polymerase II dependent recruitment to the IL-1α 

locus to allow transcription to proceed in LPS-stimulated cells.   
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A      B 

  
Figure 2.13. Decreased RNAPII recruitment on AS-IL1α KD lines by 
Chromatin immunoprecipitation (ChIP). (A) Antibodies against RNA 
polymerase II (RNAPII) or IgG isotype control were used.  Regions of the IL-1α 
gene, near the transcription start site (+22), or downstream of the gene (+227) 
were measured for RNAPII binding   RNAPII recruitment did not decrease at the 
CXCL10 (IP10) or Gapdh promoter. (B) ChIP of H3K9 Acetylation. ChIP 
comparing shRNA-GFP cells and shRNA-AS-IL1a was performed. Antibodies 
against H3K9 acetylation or IgG isotype controls were used. Regions of the IL-1α 
gene, near the transcription start site (+22) or Gapdh, and CXCL10.  
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Our observations thus far have been made in cell lines using shRNA 

technology. Additional means of creating a knockout or knockdown of AS-IL1α 

would have been beneficial to our study to mitigate the possibility that we were 

observing shRNA off-target effects. As a true NAT, the majority of this transcript 

overlaps within the antiparallel transcript of the protein-coding IL-1α. Deletion of 

AS-IL1α by CRISPR technology or TALENs, which mitigate double-stranded 

breaks, could very well delete both genes. Instead, we tried to use locked nucleic 

acid (LNA) technology, which would target only AS-IL1α -containing DNA strand. 

In order to determine whether or not this technology was feasible to us, we 

worked with Anastasia Khorkova’s group, which frequently uses LNAs to delete a 

control gene that they frequently knockdown, the Huntington’s gene (HTT) in 

Chinese Hamster Ovary (CHO) cells. We attempted to delete HTT in 

immortalized mouse macrophages and were unable to abrogate HTT expression 

more than 20% of the basal expression, therefore, did not consider LNAs as a 

sufficient means of gene knockdown in our system. 

Additionally, because IL-1α has been implicated in various inflammatory 

diseases and is studied in various mouse models contexts, we sought to 

determine if AS-IL1α might be correlated in the dysregulation of IL-1α expression 

itself in these models. Thoureau Kanneganti’s lab group utilizes a mouse with a 

mutation in the protein Src homology region 2 domain-containing phosphatase-1 

(SHP1) called protein tysosine phosphatase N-terminal (PTPNspin) mice (Lukens 

et al., 2013) that exhibits a spontaneous arthritis-like inflammatory disease in the 
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footpads. SHP-1 is highly expressed in hematopoetic cells and a key negative 

regulator of signaling (Xu et al., 2000). Mutations in this gene lead to 

hyperproliferation of hematopoetic cells and eventually develop an IL-1α-

dependent autoinflammatory phenotype. When these mice were crossed to IL-1α 

knockout mice, disease was abrogated, indicating the critical activity of IL-1α in 

mediating disease. We wanted to know whether or not AS-IL1α was also 

exhibiting an increased expression in these mice. Comparing footpads of 

PTPNspin mice to littermate controls, we measured IL-1α and AS-IL1α 

expression. In the mice that exhibited the inflammatory phenotype (swollen 

footpads), there was an increased expression both IL-1α and AS-IL1α compared 

to WT, non-inflamed mice (Figure 2.14a). Additionally, when we took bone 

marrow from these mice and differentiated the progenitor cells into BMDMs, and 

stimulated them with LPS, we were able to induce much more robust levels of IL-

1α and AS-IL1α (Figure 2.14b) indicating that these cells were much more 

susceptible to inflammation. Although this data is only correlative, it suggests that 

in vivo, when high levels of AS-IL1α were present, IL-1α expression was also 

significantly increased. 
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A        

 
 B 

 
Figure 2.14. PTPNspin mice have elevated IL-1α and AS-IL1α expression. (A) 
Footpads were harvested from Ptpnspin mice and Heterozygous (Het) or wildtype 
(WT) littermate controls. IL-1α (left column) or AS-IL1α (right column) were 
measured by qRT-PCR. First experiment represented (top row) and second 
experiment is represented (bottom row). Two footpads from two different mice 
were represented per genotype. (B) BMDMs were harvested from femurs of 
Ptpnspin mice or Het littermate controls. Each datapoint represents femurs that 
were differentiated into BMDMs from a different mouse. Cells were plated at 
1x106 cells/well and stimulated with PBS or LPS (100 ng/ml) for 6 hours before 
harvesting for RNA and measured for IL-1α or AS-IL1α by qRT-PCR.  
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Discussion  

Impaired transcription and release of IL-1α contributes to many 

inflammatory and autoimmune conditions, including familial Mediterranean fever 

(FMF), type 2 diabetes and certain types of cancer (Chen et al., 2007; Dinarello 

et al., 2012; Rider et al., 2013).  These diseases are frequently treated with an IL-

1R1 receptor antagonist, Anakinra. A monoclonal anti-IL1α antibody, MABp1, is 

also currently in Phase III clinical trials for the treatment of type 2 diabetes, 

advanced cancers, and acne vulgaris with some success reported thus far (MD 

et al., 2014). Although generally recognized as safe and effective these therapies 

some limitations, primary due to short half lives of these biologics in vivo. A better 

understanding of the mechanisms regulating IL-1 transcription and function could 

lead to improved therapeutics for a myriad of inflammatory diseases.  

Large-scale sequencing projects have identified thousands of lncRNAs in 

the genome (Guttman et al., 2009) and lncRNAs are emerging as important 

regulators of gene expression in diverse biological contexts including immunity. 

LPS has been shown to induce widespread changes in lncRNA expression in 

immune cells (Guttman et al., 2009).  It has also been shown that these lncRNAs 

in turn can promote or repress inflammatory gene expression in immune cells 

(Carpenter et al., 2013; Rapicavoli et al., 2013). Here, we identified, AS-IL1α, a 

natural antisense lncRNA that is transcribed from the opposite strand of the IL-1α 

locus in macrophages exposed to microbial products. Although AS-IL1α is 

expressed at lower levels than IL-1α, their expression dynamics are similar. 
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Using loss of function approaches, we uncovered an important role for this 

lncRNA in controlling IL-1α gene transcription. The presence of AS-IL1α 

therefore adds another regulatory checkpoint to ensure that production of IL-1α 

mRNA is carefully regulated. Indeed, disruption of AS-IL1α function could limit 

IL-1α transcription and potentially alleviate the damaging effects of excessive 

IL-1α levels during infection and autoimmune disease. 
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CHAPTER 3: Characterizing the Innate immune response to

Plasmodium infections.
 

Abstract 

Malaria is a disease that can affect over 1/3 the world’s population, with the 

majority occurring in developing countries. Cerebral malaria is a serious 

neurological manifestation of malaria disease associated with high levels of 

inflammatory cytokines in circulation that lead to a disruption in the integrity of the  

blood-brain barrier (BBB) (van der Heyde et al., 2006). The molecular 

mechanisms underlying the inflammatory response during malaria infection are 

still poorly understood. Inflammatory cytokines and type I IFNs induced when 

innate immune sensors recognize components of the malaria parasite can 

contribute to clearance of the parasite and in some circumstances, these same 

effectors can lead to the development of a more severe form of disease called 

cerebral malaria. First, we investigated the role of these inflammatory pathways 

during the liver stage of infection, which is typically asymptomatic. When mice 

are infected with liver-tropic PbA sporozoites (spz), a type I IFN response 

ensues. This host response is responsible for up-regulating interferon stimulated 

genes (ISGs) and limiting the parasite load in the liver. The expression of ISGs is 

abrogated in IFNAR-/- mice. In contrast to the blood-stage disease, type I IFNs 

are protective to the host during this stage of disease. This protective phenotype 
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is dependent on IRF3/7 and the adaptor MAVS suggesting that parasitic RNA is 

recognized by host cells.  

 Once liver-stage infection ends, systemic blood-stage Infection of 

C57BL/6 mice with Plasmodium berghei ANKA (PbA) leads to experimental 

cerebral malaria (ECM). In this model, animals succumb seizures 6-12 days 

post-infection. Concomitant with our findings that patients with febrile malaria 

present with an IFN signature, we have found that mice lacking the type I IFN 

receptor, IFNAR-/-, and transcription factors IRF3-/-IRF7-/- are protected from 

ECM-mediated death, implicating an important role of type I IFNs in exacerbating 

the ECM phenotype and suggesting that the nucleic-sensing pathway is 

activated. Our lab has identified several Plasmodium derived PAMPs that are 

involved in driving the innate immune responses. Firstly, we demonstrated that 

an A-T-rich motif, prevalent in the Plasmodium genome, is sensed by innate 

immune system. We next showed that pro-inflammatory responses during blood-

stage infections are exacerbated by the Plasmodium heme metabolite, hemozoin 

(Hz), which triggers the inflammasome, leads to elevated IL-1β secretion and 

increased neutrophil recruitment. Collectively, these findings reveal a complex 

role for type I IFNs whereby, an early and efficacious induction of type I IFN 

during Plasmodium infections may limit parasitic loads during liver stage infection 

but subsequent waves of continuous type I IFNs contribute to pathology, ECM 

and death. This study supports the notion that malaria is a multifarious disease 
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and alterations in any number of variables can lead to drastically different 

disease outcomes. 
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Introduction 

 3.3 billion people worldwide live in malaria-endemic areas and are at risk 

of being infected and the latest estimate from the World Health Organization 

estimates that 584,000 people annually succumb to mortality by this disease 

(2014). People experiencing malaria typically exhibit high fever and paraoxysm. 

Repeated cycles of schizont rupture are thought to coincide with episodic fevers, 

chills, headaches and profuse sweating (Maegraith and Fletcher 1972). Fever is 

associated with pathophysiology and thought to contribute to morbidity, 

especially in children and Plasmodium-naïve adults. Driven by cytokines such as 

IL-1β and TNF-α, the clinical manifestations associated with these cytokines is 

also thought to be responsible for the up-regulation of adhesion molecules that 

result in the sequestration of infected RBCs in capillary beds into various organs 

(Hunt et al., 2010). While it is clear that Plasmodium infections are associated 

with significant immune system activation, the initial components of these 

immune responses are ill understood. An appropriate immune response is 

important for the clearance of the parasite as well as an efficacious vaccine, and 

thus requires a robust initiation of the innate immune system for the appropriate 

acquired immune response. Attaining a better understanding of the interactions 

between Plasmodium species and the innate immune system may lead to 

improved management of its disease-associated symptoms, and may also lead 

to better vaccine targets. Thus far, much of the focus on studying malaria has 

centered on the adaptive immune system. However, since disease 
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manifestations that are associated with pathophysiology are mediated by innate 

pro-inflammatory cytokines, our goal is to understand the early triggers of this 

inflammation. 

 Despite a substantial body of evidence that supports the role of Toll-like 

receptors (TLRs) in the innate immune response to parasitic diseases, and 

mounting evidence that this is also true for malaria, it is unclear whether or not 

TLRs are the primary and sole means for innate immune recognition of 

Plasmodium species. In this study, we investigate a composite innate immune 

response to different stages of the Plasmodium parasites’ infection of the 

mammalian host. First, during its incubation phase as a sporozoite infecting 

hepatocytes and second, during its clinically symptomatic phase as a blood-

infecting parasite. To fully elucidate the innate immune contribution at these two 

stages, we utilize mouse models of infection using the murine-tropic Plasmodium 

berghei ANKA (PbA) strain. Isolated schizonts from PbA infected mice we in a 

liver-stage infection as well as a blood-stage infection (bypassing the liver-stage 

by i.v. injections).  

 This project contains three parts: (1) to demonstrate that the type I 

interferon (IFN) response is initiated upon detection of PbA sporozoite infection in 

murine hepatocytes and dampens parasite load, (2) but that same type I IFN 

response can be deleterious to the hose during blood stage infections and 

contribute to mortality in a cerebral malaria mouse model, and (3) that the 
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inflammatory response during the blood stage infection contributes to pathology 

and death in the host, which is mediated by cellular PAMPs.  

 

Materials and Methods 

Plasmodium liver stage infection was obtained by intravenous injection (into 

different mouse strains and lines) of a designated amount of sporozoites of the 

following species, strains and lines: GFP-expressing P. berghei ANKA wt and 

p36p-, P. yoelii 17XNL, P. berghei NK65 wt and uis3- sporozoites, all obtained by 

dissection of Anopheles stephensi infected mosquitoes bred at the IMM and NYU 

insectariums. Ifnar1 flox/flox mice were used to generate LysM-Cre-Ifnar1flox/flox 

and Alb-Cre-Ifnar1flox/flox mice. Mavs-/- mice were obtained originally from Z.J. 

Chen (South Western Medical School, Dallas, TX), Mda5-/- mice from M. 

Colonna (Washington University, St. Louis, MI), Tlr3-/-, Tlr4-/-, Trif-/- and Myd88-

/- from S. Akira (Osaka University, Japan) and used to generate Trif-/-/Myd88-/- 

mice. Irf9-/- Irf7-/-and Irf3-/- mice were kindly provided by T. Taniguchi (University 

of Tokyo, Japan) and used to generate Irf7-/-/Irf3-/- mice. IMM Animal Care 

Committee approved all protocols. Activation of type I IFN response was 

obtained  by peritoneal injection of PolyI:C (Invitrogen). Parasite liver load was 

measured by qRT-PCR of Plasmodium 18S rRNA at different time points after 

infection. Activation of type-I IFN response was established by genomic-wide 

transcriptional profile, Western blot or qRT-PCR analysis by measuring the 

expression of several ISGs in Plasmodium-sporozoite versus mock-infected 
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(injected with salivary gland (Sg) extracts of non-infected mosquitoes) mouse 

livers. Data are expressed as mean±s.d. Statistically significant differences 

between two different groups were analyzed using the Mann Whitney test. 

p<0.05 were considered statistically significant. All statistic tests were performed 

using Graph Prism 5.0 or 6.0 Software. 

 

RNA extraction. For mouse liver RNA extraction, whole livers were 

homogenized in 3 ml denaturing solution (4M guanidine thiocyanate; 25 mM 

sodium citrate pH 7, 0.5% N-lauroylsarcosine and, 0.7% β mercaptoethanol in 

DEPC-treated water). RNA was extracted using RNeasy Mini kit (Qiagen). 

Complementary DNA was synthesized using Transcriptor First Strand cDNA 

Synthesis kit (Roche). Gene expression analysis was performed using kits from 

Applied Biosystems. For analysis, the expression levels of all target genes were 

normalized against hypoxanthine guanine phosphoribosyltransferase (Hprt) 

housekeeping gene (ΔCt). Gene expression values were then calculated based 

on the ΔΔCt method, using the mean of control group as calibrator to which all 

other samples were compared. Primer pairs used to detect target gene 

transcripts are listed below.  

Hepatocyte and nonparenchymal cell isolation. Mouse primary hepatocytes 

were isolated using a modified two-step perfusion protocol followed by a Percoll 

purification step. Briefly, mice were killed by CO2 inhalation and immediately 

processed for cannulation of the portal vein using a 26-gage needle. Upon 
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successful cannulation, the inferior vena cava (IVC) was cut to allow fluid to 

drain. Liver perfusion medium (LPM, Gibco) was perfused at 8–9 ml/min for 10 

min followed by liver digestion medium (LDM, Gibco) also at a rate of 8–9 

mL/min for 10 min. Intermittent clamping of the IVC (3-s clamp every 30 s) was 

performed during LDM perfusion to improve tissue digestion. After digestion, the 

liver was excised and the cells were liberated by tearing and shaking of the liver 

with forceps. The cell suspension was then sequentially filtered through a 100-

µm and a 70-µm cell strainer and spun at 50g for 3 min. The cell pellet was 

resuspended in Williams’s Medium E (Gibco) with 10% of fetal bovine serum 

(FBS, Gibco) and carefully overlaid on a 60% Percoll solution (1:1). The cell 

suspension was fractionated by centrifugation at 750g for 20 min, without break, 

at 20 °C. Viable hepatocytes deposited in the pellet were washed with Williams’s 

Medium E with 10% FBS, spun at 50g for 3 min and resuspended in complete 

Williams’s Medium E (supplemented with 4% FBS and 1% 

penicillin/streptomycin, Gibco). Viability and yield were assessed by trypan blue 

staining. To obtain mouse primary nonparenchymal cells, perfused livers were 

squeezed in 1X PBS solution containing DNase (2 U/ml), filtered through a 70-

µm filter followed by 8-min centrifugation at 1,300 r.p.m. The pellet was 

resuspended in 10 ml of 35% Percoll and centrifuged at 2,600 r.p.m. for 20 min 

without break at 20 °C. The pellet representing the nonparenchymal cells was 

washed in 1× PBS containing 2% serum before resuspension into lysis/binding 

buffer. qRT-PCR analysis of the relative expression of macrophage (Cd68), 
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neutrophil (Ncf2) and hepatocyte (ApoAI) markers was performed to confirm 

purity of the obtained populations.  

Plasmodium blood-stage infection. The P. berghei ANKA (Pba) strain (gift of 

A. Luster, Harvard, Boston, MA) was maintained by passage in C57BL/6 mice. 

Mice were inoculated i.p. with 1 × 105 iRBCs and neurological symptoms and 

death were recorded daily. Cerebral malaria was diagnosed by clinical signs 

including ataxia, paralysis, deviation of the head, convulsions, and coma, 

followed by death. Moribund animals were scored as dead, and euthanized. For 

ex vivo infections with PbA iRBCs, BALB/c mice were injected with PbA at 1 × 

105 iRBCs and parasitemia was monitored daily. Blood was collected by cardiac 

puncture at 65% parasitemia.  

RNA extraction and real time PCR. Human PBMC, mouse BMDM, HEK293 or 

mouse splenocytes (3–10×106 cells/condition), were stimulated for 6 to 17h 

using Hemozoin (100µM) or poly(dA-dT) (5µg/ml), CpG motifs (5µM), AT-rich 

ODN (3µM), or Pf gDNA (5µg) all of which were transfected with lipofectamine 

2000 (Invitrogen). RNA was extracted with RNeasy kit (Qiagen, CA), cDNA was 

synthesized, and quantitative RT-PCR analysis was performed with primers as 

described (Charrel-Dennis et al., 2008; Goutagny et al., 2010). Gene expression 

data is presented as a ratio of gene copy number per 100 copies of b-actin ± SD.  

P. falciparum culture. Erythrocytic stages of Pf 3D7 isolates were cultured and 
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natural hemozoin and DNA from Pf were purified as described (Parroche et al., 

2007). For iRBC preparation, malaria cultures were synchronized with sorbitol for 

3 cycles. Pf culture stage and parasitemia was assessed daily by field staining. 

Where indicated, Pf enriched cultures at 8% parasitemia and trophozoite or 

schizont stages were purified as described (Baratin et al., 2005; Cooper et al., 

2005; Wu et al., 2010). The culture was then adjusted to a parasitemia of 8% and 

used to stimulate PBMCs at 40% hematocrit.  

ELISA. Cell culture supernatants were assayed for hIFN-α by ELISA (R&D or 

Bender MedSystems), according to the manufacturer’s instructions. The mouse 

TNFα and IL-6 kits were from e-Biosciences, while the murine IFNβ kit is as 

described (Roberts et al., 2007). 

Table 3.1. Primers/Oligonucleotide sequences.  

Gene 
name  Forward Primer  Reverse Primer  

Mus musculus  
AT5 GGGTAAATTTTTACTATGGG   

AT6 ATATATATTTTTACCATAAT   

Hprt  CATTATGCCGAGGATTTGGA  AATCCAGCAGGTCAGCAAAG  

Ifit1  CCTTTACAGCAACCATGGGA
GA  GCAGCTTCCATGTGAAGTGAC  

Ifi44  TCGATTCCATGAAACCAATC
AC  CAAATGCAGAATGCCATGTTTT  

Usp18  CGTGCTTGAGAGGGTCA GGTCGGGAGTCCACAACTTC  
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TTTG  

Ifit3  CTGAACTGCTCAGCCCACA
C  TGGACA T ACTTCCTTCCCTGA  

Irf7  CTTCAGCACTTTCTTCCGAG
A  TGT AGTGTGGTGACCCTTGC  

Ifnb  CCCTATGGAGATGACGGAG
A  CTGTCTGCTGGTGGAGTTCA  

Plasmodium  
18S 
PbA 

AAGCATTAAATAAAGCGAAT
ACATCCTTAC  

GGAGATTGGTTTTGACGTTTATG
TG  

 

Results 

Liver-stage sporozoites induce a robust Type I IFN response 

 Clinical malaria begins when fully differentiated schizonts rupture from the 

liver hepatocytes and release the merozoites that commence to invade 

erythrocytes (Prudêncio and Mota, 2007). As such, for many decades, it was 

assumed that the liver-stage infection was immunologically silent (Ejigiri and 

Sinnis, 2009). However, we now know that as parasites develop and replicate 

inside hepatocytes, liver-stage specific antigens develop. Indeed, the last few 

vaccines developed were protein-based vaccines that targed the 

circumsporozoite (CS) protein, which is a major sporozoite surface antigen 

(Arama and Troye-Blomberg, 2014; Cohen et al., 2010b). The liver-stage, 

therefore, plays a critical role in the life cycle of Plasmodium development. At this 

key stage, when parasite load is much lower than when it reaches the blood 

stage, and the disease is not yet systemic, it can become a great opportunity to 



 119 

fight infection. Thus, understanding the immunological events that occur during 

the liver stage can facilitate our progress towards discovering better therapies 

and vaccines.  

 Most studies that have examined innate immune pathways implicate 

proinflammatory cytokines in the pathogenesis of disease. We have also seen 

the role of type I IFNs as a way to inhibit cerebral malaria by reducing parasite 

burden in mice if administered prior to infection (Vigário et al., 2007). In order to 

study liver-stage infection, we harvested Anopheles mosquito salivary glands 

(sg) infected with Plasmodium berghei ANKA (PbA) and infected WT mice 

intravenously (IV) through the retroorbital vein. The sporozoites migrate to the 

liver and divide in the hepatocytes for 48 hours post-infection. We performed a 

transcriptomic microarray on murine liver homogenates comparing wildtype (WT) 

mice versus mock infection (Anopheles mosquito salivary glands alone) (Figure 

3.1a). Genes that were up-regulated more than two fold (89 genes) were 

surprisingly all ISGs linking the Type I IFN pathway to liver-stage infections 

(Figure 3.1b). This ISG signature was abrogated in the absence of IFNAR. We 

also determined the parasite load by extracting total RNA from WT and IFNAR-/- 

livers and performed qRT-PCR on Plasmodium-specific 18S rRNA and found 

that in the absence of Type I IFN receptor, the parasite load increased 

substantially (Figure 3.1c). This indicates that Type I IFN signaling and ISGs are 

directly implicated in dampening parasite load. Among the most highly induced 

genes were the ISGs, Interferon-induced protein with tetrapeptide repeats 1 
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(IFIT1), interferon inducible 44 (IFI44), ubiquitin-specific protease 18 (USP18) 

also known as Ubl carboxyl-terminal hydrolase 18 (UBP18) which has been 

shown to cleave ISG15, IFIT3, and interferon regulatory factor 7 (IRF7).  We 

therefore, designed qRT-PCR primers for these genes to confirm their induction 

during sporozoite infection. This data confirmed the findings in the microarray 

that showed these genes with abrogated expression in IFNAR-/- mice (Figure 

3.2). This information contradicts the previously held notion that during the liver-

stage of infection, Plasmodium is immunogenically silent.  
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A         B    C 

 
 
Figure 3.1. Plasmodium sporozoite infection induces a robust Type I IFN 

signature. (A) Schematic for wildtype or IFNAR-/- mice infected with non-infected 

(NI) mosquito salivary glands alone or Plasmdium berghei-infected salivary 

glands. (B) Heatmap of microarray data of noninfected or infected sporozoites. 

The Type I IFN signature disappears in IFNAR-/- mice. (C) Plasmodium 

sporozoite parasite load is measured using primers targeting the 

Plasmodium18S rRNA and the housekeeping gene, HPRT. In IFNAR-/- mice, the 

parasite load is significantly increased. 
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Figure 3.2. Sporozoites induce ISGs in an IFNAR-dependent manner. Wildtype 

(WT) or IFNAR-/- mice were injected with salivary gland homogenates from non-

infected mosquitoes (NI (Sg)) or Plasmodium berghei sporozoite-infected 

mosquitoes (Pb SPZ) for 42 hours. IFIT1 (pink), IFI44 (blue), USP18 (green), 

IFIT3 (yellow) and IRF7 (grey) all were highly upregulated during the infection. 

This response was abrogated in IFNAR-/- mice. 
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 We then tested whether or not this response required an active infection. 

We repeated the same infection protocol in WT mice as described above using 

increasing numbers of live sporozoites that were just harvested from mosquitoes, 

or heat-inactivated (dead sporozoites), irradiated sporozoites (alive but 

attenuated) or p36p mutant sporozoites (Douradinha et al., 2007) (genetically 

attenuated due to the lack of the microneme protein) (Figure 3.3). In the absence 

of a replication sufficient parasite, the ISGs IFIT1 and USP18 were severely 

dampened, suggesting that an active replication is required for mounting a type I 

IFN response. This could either be due to a potential PAMP that is only 

expressed by live parasites or perhaps due to insufficient parasite numbers that 

aren’t high enough to activate the Type I IFN response.  

 Next, we wanted to determine what other components in the Type I IFN 

pathway were required for the sporozoite-induced IFN response. We infectious 

various knockout mice deficient for the signaling components involved in the 

signaling pathway to type I IFN response and found that the ISG induction was 

largely independent of adaptors Myd88 and Trif, as well as TLR3 and TLR4 

(Figure 3.4), but dependent on transcription factor IRF3, and to a lesser degree 

IRF7 (Figure 3.5a).  Looking upstream, we observed that the ISG response 

However, the adaptor MAVS-/- (IPS1) mice were completely abrogated in ISG 

induction (Figure 3.5b). This was a surprise because it meant that the likely Type 

I IFN trigger was an RNA species, which has never been implicated during 

Plasmodium infections. More surprisingly, the intracellular RNA receptor, MDA5 
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was implicated (Figure 3.5c). This signifies that during Plasmodium liver-stage 

infections, RNA can act as a major pattern associated molecular pattern (PAMP).  

 Because Type I IFN signaling is intact in most cells, we wanted to 

determine whether or not the ISG induction was due to direct hepatocyte 

infection or due to recruitment of liver leukocytes to the site of infection. Using 

wildtype C57Bl/6 mice, we separated hepatocytes from the liver using a 

collagenase protocol to discrupt the liver matrix as well as sort for leukocytes. We 

were able to determine that although leukocytes contributed slightly to the 

production of ISGs in response to Plasmodium sporozoites at 48 hours post-

infection, just before the parasites egress from the liver-stage to the blood-stage 

of infection, the more prolific ISG producers were the hepatocytes (Figure 3.6). 

 During the incubation phase of infection when Plasmodium resides in 

hepatocytes, low levels of detection of the parasite RNA trigger a type I IFN 

response that can dampen the initial parasite load. This signaling is mediated by 

MAVS and MDA5, but it is unclear whether or not the PAMP is host or malarial-

derived. In all, this part of the study reveals that after a mosquito takes a blood 

meal from its mammalian host, Plasmodium sporozoites get deposited into the 

bloodstream where it eventually settles in the liver hepatocytes. There it grows 

and divides for (48 hours in mice) up to 1-2 weeks in humans. It is the initial 

detection of RNA as a PAMP that triggers the type I IFN response, leading to the 

production of ISGs to dampen the liver parasite load (Schematic in Figure 3.7).  
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  C 

 
Figure 3.5. Signaling molecules involved in the production of ISGs in the 
liver. Wildtype (WT) or various knockout mice as indicated were injected with 

salivary gland homogenates containing 5x104 Plasmodium berghei ANKA 

sporozoites for 42 hours intravenously. IFIT1 (pink), IFI44 (blue), USP18 (green), 

IFIT3 (yellow) and IRF7 (grey) are shown. 
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Figure 3.6. Hepatocytes are the better producers of ISGs during liver-stage 
infection. Hepatocytes and liver leukocytes were separated from parenchymal 

cells as described after 42 or 48 hours post infection with PbA spz. ISGs were 

measured by qRT-PCR. 
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 When this response isn’t sufficient to eliminate infection, the sporozoites 

egress from the liver to initiate the blood-stage of infection, where symptoms of 

disease manifest itself. When merozoites infect RBCs, macrophages in the 

periphery phagocytose the iRBCs and can trigger an inflammatory response that 

activates both the type I IFN and IL-1 pathways. These pathways are responsible 

for the physical symptoms of disease. When unchecked, excessive cytokine 

production leads to vascular permeability, which includes an opening to the blood 

brain barrier. Pathology in the brain leads to the highly fatal manifestation of 

malaria called cerebral malaria and often leads to death in both mice and 

humans.  

 

Type I IFNs contribute to experimental cerebral malaria during blood stage-

infections 

 Prior to my arrival, the laboratory performed global gene expression 

profiling of human peripheral blood mononuclear cells (PBMCs) harvested from 

14 febrile Plasmodium falciparum (Pf)-infected patients before and after 

treatment with anti-malarial drugs. Analyses revealed that these patients elicited 

a robust Type I interferon signature (data not shown). We wanted to know 

whether or not the same Type I IFN response could abrogate severity of disease 

utilizing a mouse model for cerebral malaria, one of the clinically most fatal 

outcomes of complicated malaria. 
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 We infected wildtype and IFNAR-/- mice 6-10 weeks of age with 

Plasmodium berghei ANKA (PbA)—infected blood (iRBCs) intraperitoneally (IP) 

and monitored their survival and bled them to determine parasitemia over 20-25 

days post-infection. This model recapitulates human disease in various aspects 

including neurological symptoms that include ataxia, convulsions, paralysis, 

coma and followed by death (Bagot et al., 2002). Wildtype C57Bl/6 (WT) mice 

succumb to death by cerebral malaria between 6-12 days post-infection after 

exhibiting neurological symptoms (Figure 3.8a left panel). These mice all died 

had exhibited cerebral complications prior to death, and similar to human 

disease, did not exhibit exacerbated parasitemia levels at the time of death nor 

anemia (Figure 3.8a right panel), indicating that the cause of death was not due 

to extreme parasite burden or excessive erythrocyte lysis. Surprisingly, IFNAR-/- 

mice did not succumb to cerebral malaria, indicating that the presence of Type I 

IFN signaling is actually detrimental to disease outcome. 

 We performed the same infection protocols on IRF3/7 double knockout 

(dKO) mice, and these survival curves phenocopied the IFNAR-/- mice data and 

were protected from experimental cerebral malaria (ECM) as well (Figure 3.8b). 

In this scenario, type I IFNs are pathological for blood-stage infection, which is 

contrary to the data from liver-stage infections where type I IFN is protective. One 

of the features of cerebral malaria is the association between the pathological 

“cytokine storm” and its association with the broken BBB that is observed in 

complicated cerebral malaria patients (Pino et al., 2005). On the other hand, type 
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I interferons have not previously been shown to be associated with contributing 

to malaria severity. None of these cohorts of mice had increased parasitemia 

upon death, suggesting that the abrogation of those specific genes did not cause 

increased parasite burden that was not controlled, but rather, an inflammation-

depdendent phenotype that was no longer active that became protective for the 

mice. 

 

Plasmodium AT-DNA are immunostimulatory and trigger type I IFN 

production 

 Because type I interferons are typically triggered by nucleic acid sensing 

pathways that signal through TBK1, STING, IRF3/7 and IFNAR, we hypothesized 

that nucleic acid sensing was involved in the innate immune response to 

Plasmodium and wanted to investigate the role of a TLR-independent DNA 

sensor involved in the type I IFN response. To date, Plasmodium species are the 

most AT-rich genome sequenced to date (up to 80% A/T) (Gardner et al., 2002). 

We have identified over 6000 A-T nucleotide rich motifs, ATTTTTAC (AT5 ODN 

or AT5 PDE or A6E) in the Plasmodium falciparum (Pf) genome. We made 

oligonucleotides from these regions of the Pf genome and transfected 

macrophages with poly (dA-dT) or the oligonucleotides and found that they were 

strong inducers of IFN−β as measured by ELISA (Figure 3.9a). We also 

repeated the same experiment using Plasmodium-infected RBCs (iRBCs) 

harvested from an infected C57Bl/6 mouse. As expected, uninfected RBCs were 
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non-immunostimulatory. However, the infected RBCs were highly stimulatory for 

IFN-β as measured by ELISA and that response was dependent on the 

transcription factors, IRF3/IRF7 and the intracellular DNA adaptor TMEM173, 

also known as STING (Figure 3.9b,c). Together, these data suggests that the 

high A-T content in the Plasmodium genome may specifically be triggering the 

Type I IFN response during blood-stage malaria that contributes to the 

manifestation of ECM-mediated mortality.  
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iRBCs, through hemozoin, activate the inflammasome to trigger IL-1β  

production 

 Because the AT-DNA activated the intracellular DNA-sensor pathway, we 

also wanted to look at whether or not or Plasmodium DNA would activate the 

inflammasome and trigger IL-1β activity. We harvested bone marrow from AIM2-

/- mice and their WT littermate controls (AIM2+/+) and differentiated them into 

BMDMs for 7 days using L929 secreting M-CSF supernatants. As expected, 

Plasmodium DNA was a potent inducer of the IL-1β pathway as well. However, 

when we used the same AT-rich oligonucleotides that induced a potent IFN-β 

response, we found that they didn’t depend on AIM2, as the knockout cells were 

just as responsive as the AIM2+/+ cells (Figure 3.10a,b).  When transfection 

total genomic DNA from various Plasmodium clones, however, the IL-1β 

response was clearly AIM2-dependent. This tells us that although DNA is a 

potent trigger for the inflammasome activity, the AT-rich DNA motifs are 

specifically involves in activating the Type I IFN response.  

 Nucleic acids have been shown to be potent triggers for the innate 

immune response, it isn’t surprising that Plasmodial-derived DNA will also trigger 

the innate signaling pathways. We show here, that AT-DNA activates the STING-

IRF3/7 axis to induce type I Interferons, and although total genomic DNA triggers 

IL-1β via AIM2 inflammasome, the AT-DNA in particular, doesn’t activate the 

pyrogen, IL-1β. During blood-stage infection, iRBCs are a major source of 

“malaria toxin”. iRBCs contain hemozoin, which we believe acts as a carrier for 



 138 

the DNA (Parroche et al., 2007).  We tested increasing concentrations of iRBCs 

to determine which inflammasome was responsible for IL-1β production. We 

found that this response is completely NLRP3-mediated, and to a lesser degree, 

requires AIM2 inflammasomes as well (Figure 3.11). Because NLRP3 is 

activated by crystals like hemozoin, it is probable that iRBCs phagocytosed by 

macrophages, contain DNA-carrying hemozoin, which upon phagosomal 

destabilization, can trigger a robust IL-1β response.  

 We show that parasitic nucleic acids also serve as PAMPs in triggering a 

robust innate immune response. RNA during the liver-stage, and DNA in the 

blood-stage (Figure 3.12), perhaps carried by hemozoin, can trigger a robust 

type I IFN response and also induce the IL-1 pathway. If these pathways are too 

potent, severe complications including a highly fatal neurological development, 

cerebral malaria, can occur. The host immune response to parasites plays a 

significant role in developing ECM. As immunity to malaria is extraordinarily 

complex, it is often difficult to isolate the variables that contribute to disease. We 

have aided in identifying the molecular triggers to the immunity against malaria.  

 Here, we find evidence to support the existence of multiple nucleic acid 

sensing pathways to be active in the detection of malaria: one through the 

previously shown TLR9 activity through CpG motifs, a second one via interaction 

of malarial AT-rich motifs through an unknown cytosolic DNA receptor. Both of 

these pathways trigger inflammatory cytokines as well as type I IFN production. 
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Upon schizont rupture, hemozoin crystals containing malarial DNA activate both 

NLRP3 and AIM2 inflammasomes.  
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Discussion 

 The basic objective of this project was to understand how the immune 

system can participate or interfere with the malaria infection process. Although 

drastic efforts to develop an effective vaccine has yielded incomplete results, 

epidemiological and experimental studies have demonstrated that protective 

immunity can be induced against malaria (Langhorne et al., 2008). Natural 

immunity to malaria can be acquired with time after repeated infections, and it is 

thought that antibodies are made to target merozoites. Experimentally, sterile 

immunity has been achieved in humans against the pre-erythrocytic stage only 

after immunization with radiation-attenuated sporozoites (Kumar et al., 2006), 

and against blood stage parasites only after repeated immunization with live 

blood stage paraistes under drug prophylaxis. To answer these questions, we 

utilized a mouse model of infection to show, for the first time, that although the 

liver-stage infection is asymptomatic, it is not immunologically silent like 

previously thought. Type I IFNs are induced in infected hepatocytes. It may be 

below the level of detection, however, because a natural infection only occurs 

with a few parasites deposited into the skin and subsequently sequestered into 

hepatocytes to initiate infection. That signal is picked up only in an extreme dose 

of infection (we started with 50,000 sporozoites in the liver). However, the 

conclusions are clear that an innate immune response can be induced, and that 

response can alleviate parasite burden. Moreso, at each stage of disease, 

different triggers of the immune response, RNA during the liver-stage, and DNA 
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during the blood-stage, converges to produce type I IFNs. Triggering the immune 

response at the appropriate time is critical for the appropriate outcome of 

disease. Ultimately, further experimentation will be required to determine the 

exact nucleic acid triggers of the type I IFN response during both disease stages, 

as well as implicating the signaling molecules upstream of the transcription 

factors IRF3/7 during blood-stage disease to confirm the importance of the 

molecules STING and TBK1 during infection.  
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Chapter 4: Discussion, perspectives, and implications
 
 

The innate immune system is the body’s first line of defense against 

pathogens. This response is governed by PRRs that recognize PAMPS and 

DAMPS and activate downstream signaling molecules. Effectors like 

proinflammatory cytokines, chemokines and type I IFNs mediate this response. 

Indeed, small changes in an organism’s ability to regulate the inflammatory 

response can lead to deleterious effects for the organism to combat disease or to 

re-establish homeostasis after infection. This thesis research has focused on two 

independent projects: (1) we identified AS-IL1α, a TLR-inducible lncRNA that is a 

component of the inflammatory response, which regulates the transcription of a 

highly inflammatory cytokine, IL-1α and (2) we explored the role of Plasmodium 

PAMPS in both liver (RNA) and blood-stage (DNA+hemozoin) during malaria 

infection that may contribute to the pathogenesis of disease.  

Notes on antisense transcription    

 It is well known that antisense transcription exists and a multitude of 

genes are transcribed from opposite chromosomal strands.  It has also been 

widely appreciated that when the genome produces transcripts from both 

strands, roles can be ascribed involving gene regulation that mediates RNA 

interference or even gene silencing on the chromatin level. Some 

sense/antisense partners share promoters and as such, re-defines the notion of 

what a transcriptional unit is. Current studies estimate over 2481 pairs of 
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overlapping sense/antisense transcripts have been annotated via the Functional 

Annotation of Mouse (FANTOM) consortium and Riken group (Werner et al., 

2009). 20.1% of these were bidirectionally transcribed loci, while 14.8% 

contained overlapping exons.  It should be noted that these parameters are 

based on the latest algorithms, and much of the defined mechanisms are based 

on speculations from known examples. It needs to be emphasized that the only 

way to truly define these classes of noncoding elements is through individual 

interrogation, much like the protein-coding research. It is unclear why in some 

instances, an antisense transcript will behave similarly to RNAi, where 

complimentary base-pairing would lead to its expected degradation, where as in 

other cases like AS-IL1α, the lncRNA would function to promote more 

transcription. It was a surprise to us that this lncRNA behaved this way, as we 

expected AS-IL1α to behave like a typical antisense transcript. For decades, 

researchers have been exploiting antisense oligonucleotides (ASOs) to 

knockdown sequences of interest, including mRNAs. Indeed, there is an entire 

industry dedicated to manufacturing these ASOs as a method to silence genes. 

When a much larger antisense RNA becomes transcribed (>300 nt), perhaps, 

tertiary structures and folding of the transcript must dictate its functions. In the 

context of AS-IL1α, from the polysome profiling experiments, we were able to 

demonstrate the unlikelihood of this transcript to be translated. However, this 

experiment also revealed that AS-IL1α has a dense sedimentation, indicating that 

it must belong to a high molecular weight protein complex. It remains to be seen 
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how exactly this lncRNA functions at the IL-1α promoter. We don’t know if it binds 

to the chromatin directly, or if it is mediated through protein:chromatin 

interactions. The model we have now shows that AS-IL1α gets transcribed upon 

TLR-stimulation mediated through NF-kB. At the same time, IL-1α is getting 

transcribed, too because TLR-signaling also induces IL-1α transcription (Figure 

4.1). But the presence of AS-IL1α then drives much more rampant IL-1α 

transcription, which can be seen at 6 hours post-TLR stimulation and this is 

corroborated by the ChIP results because much more RNAPII gets recruited in 

the presence of AS-IL1α than in the knockdown cells. 

 

AS-IL1α  mechanism 

 From these studies, we observe the role of AS-IL1α in promoting the 

transcription of its antisense gene, IL-1α. Gathered from the polysome profiling 

data, and extrapolating from examples of other lncRNA antisense transcript 

mechanisms of action, the reigning model is that TLR signaling induces the 

transcription of both AS-IL1α and IL-1α. I could not confirm that AS-IL1α 

transcription kinetics occur faster than IL-1a transcription, but would be expected 

if AS-IL1α is necessary for IL-1α transcription. Unfortunately, using the typical 

laboratory qRT-PCR assays do not detect that level of sensitivity required to 

discriminate the subtle differences in induction kinetics at very early time points. 

In this model, even one copy of AS-IL1α RNA would be sufficient to begin driving 
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more transcription of its protein-coding gene. Performing a global run on assay 

followed by RNA-sequencing (GRO-seq) (García-Martínez et al., 2004) would 

interrogate the sequences that initiate transcription in WT or knockdown cells and 

can reveal early kinetic differences in transcription as well as the transcription of 

target genes that are altered. Nuclear-localized lncRNAs like AS-IL1α typically 

have been shown to modulate epigenetic processes to alter gene expression. In 

the case of AS-IL1α, I observe decreases in histone modifications and RNAPII 

recruitment to the IL-1α promoter in cells with abrogated AS-IL1α expression. 

Either AS-IL1α acts as a guide to recruit key transcription factor complex proteins 

to bind at the promoter and initiate transcription in cis at the promoter of its 

protein-coding partner, or may behave as a multiprotein-complex scaffold for the 

actual assembly of the transcription factor protein complex. It will be difficult to 

distinguish the subtle but important differences in mechanism. In the guide 

scenario, AS-IL1α is necessary to physically bring the auxillary proteins to the 

promoter itself, whereas in the scaffold model, AS-IL1α would be necessary for 

maintaining the protein complex, but the physical recruitment to the promoter 

itself, would be mediated by the proteins and not the RNA itself. In order to 

determine the order of assembly, several key experiments would need to be 

performed. First, the cloned lncRNA would need to be in vitro transcribed and 

biotinylated. Immunoprecipitation followed by mass spectrometry would be 

performed to identify key protein binding partners. Subsequent genetic 

manipulation via knockdown or knockout of the proteins themselves in the 
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presence or absence of the lncRNA would sanction the interrogation of which 

components are necessary and sufficient for observing the histone modifications 

and RNAPII recruitment that precedes transcription. RNA immunoprecipitation 

(RIP) studies, would also reveal whether or not the lncRNA binds directly to the 

chromatin (which supports the guide model) rather than the scaffold model. From 

the nanostring experiments, IL-1α was implicated as the most highly abrogated 

gene in the absence of AS-IL1α, other gene expression changes were still 

observed. What remains to be seen is whether or not the amelioration of AS-IL1α 

really only affects IL-1α gene expression and subsequent observations of gene 

changes are a result of dampened IL-1α signaling or if other genes are directly 

affected due to decreased AS-IL1α activity. Performing the same nanostring 

experiment on IL-1α or IL-1 receptor knockout cells to examine other gene 

expression changes would resolve these confounding data.  

 Lastly, overexpression studies would nicely complement the current study 

utilizing knockdown approaches. Overexpressing the lncRNA in a vector with an 

inducible promoter could drive AS-IL1α expression and subsequently observe all 

and any other genes that could be induced in the presence of the lncRNA. This 

would answer the question of whether or not promoter-specific localization of the 

lncRNA is sufficient to drive the transcription of those target genes, or if the AS-

IL1α transcript itself is only mediating the transcription of IL-1α. Inconclusive data 

from such experiments may not indicate that the lncRNA does not regulate IL-1α, 

but more thorough and targeted overexpression systems would need to be 
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utilized in order to direct the lncRNA overexpression to the desired IL-1α 

promoter region. Novel techniques exploiting the CRISPR-Cas9 system allows 

for the attachment of an RNA to the CRISPR guide RNA to the target chromatin 

location without cleavage (John Rinn lab, data unpublished). In the future, this 

technique could be extremely useful in teasing out the specific expression 

localization necessary for observing cis-effects. Currently, probing cis effects are 

difficult and require the production of flox-knockout animals that can mediate 

allele-specific gene disruption (Dimitrova et al., 2014). 
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Figure 4.1. Model of AS-IL1α on IL-1α  transcription. Transcription of IL-1α 
and AS-IL-1α occurs after TLR signaling and activation of the transcription 
factors NF-kB and AP-1, but not via intracellular nucleic acid receptors. Once AS-
IL1α is transcribed, it leads to more RNAPII recruitment (green) to transcribe 
more IL-1α mRNA . 
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AS-IL1α  orthologs 

 Identifying putative AS-IL1α orthologs would strengthen the case for the 

biological importance of this lncRNA in regulating IL-1α mRNA expression. The 

implications for such an ortholog would be 1) that there was a selective 

advantage for organisms across multiple species to maintain this gene, revealing 

the necessity of added regulation on the cytokine, IL-1α, and 2) that sequence 

specificity in part, mediates its function. Utilizing nucleotide Basic Local 

Alignment Search Tool (BLASTN) and both the predicted nucleotide sequence 

obtained from ENSEMBL 7.0 and confirmed cDNA sequencing data (Figure 4.2), 

a syntenic region at the IL-1α locus was identified in the human genome. More 

specifically, regions of sequence conservation at the IL-1α gene, but beyond the 

IL-1α gene borders are observed. It is unclear, however, if these regions of 

conservation represent a potential un-annotated gene that might be orthologous 

to AS-IL1α and experimental confirmation of inducibility and cloning would need 

to be performed to validate functional gene orthologs. Additional searches for 

sequence conservation was performed using BLASTN to query the mature AS-

IL1α sequence and compared against sequenced model organisms in the NCBI 

database, ranging from e. coli to Homo sapiens. Initial results using this method 

indicated that based on sequence alone, AS-IL1α may be present in rodents, 

including hamsters and rats as well. If these in silico interrogations are correct, 

then perhaps this lncRNA arose separately in the rodent evolutionary lineage, or 

other organisms also express this lncRNA, but have not maintained sequence 
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conservation due to the lack of selective pressure on the importance of the actual 

nucleotide sequence itself. One can argue that these searches are preliminary at 

best, albeit superficial, but are essential first steps in gene discovery. 

Implications on IL-1α 

Although the IL-1α molecule has long been recognized, implicating its 

disctinct role in various diseases has been limited as both IL-1α and IL-1β 

activate the same IL-1 receptor and elicits the same downstream signaling 

events. One critical difference is that unlike IL-1β, IL-1α is active even in its 

uncleaved form and doesn’t require inflammasome activation in order to mediate 

its functions. That means, once translation is completed, IL-1α is fully capable of 

activating the immune response.  Of note, IL-1α, not IL-1β is thought to be 

responsible for early neutrophil recruitment (Ozaki et al., 1987). In vivo, this is 

probably due to IL-1α bypassing the requirement for cleavage. Hence, in 

situations where sterile inflammation or high levels of necrosis is observed, IL-1α 

propogates inflammation and induces a feed-forward signaling loop that 

promotes more inflammation and eventually pathology. In inflammatory bowel 

disease (IBD) models, it should be noted that IL-1α propogates colitis, whereas 

IL-1β exascerbates it (Bersudsky et al., 2014). Only treatment with anti-IL-1α 

antibodies was able to ameliorate disease, whereas anti-IL1β nor IL-1R blocades 

were sufficient to abrogate disease.  
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In the context of this study, IL-1α transcription was investigated in 

macrophages as a component of the TLR-inducible immune response. However, 

it should be noted that IL-1α is constitutively expressed in non-hematopoetic 

cells, namely epithelial cells like keratinocytes. It should be interesting to explore 

the necessity of this lncRNA in those cell types, whether it is expressed at all, or 

if it is basally transcribed at low levels.  

Another unique feature of IL-1α is its nuclear localization sequence 

present in the N-terminal half of the precursor deemed the propiece. The IL-1α 

propiece translocates to the nucleus and participates in the regulation of 

transcription. Therefore, IL-1α, like IL-1 family members IL-33 and IL-37, is a 

dual-function cytokine, binding to chromatin as well as to its cell surface receptor. 

Some cancer cells can express membrane-bound IL-1α, which can increase 

immunogenicity of tumor cells and serve in anti-tumor immune surveillance and 

tumor regression. However, in the tumor microenvironment, the precursor to IL-

1α released from dying tumor cells is inflammatory and, similar to IL-1β, 

increases tumor invasiveness and angiogenesis.  

Future Directions and lncRNAs in innate immunity 

 lncRNA research is a relatively new field in biology. Without a doubt, there 

is one lncRNA (Xist) that has huge implications in vital life if perturbed. But 

currently, the data is limited on how much these lncRNAs affect normal 

physiological functions in vivo or whether the aberrant expression would lead to 
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disease outcomes. In order to fully appreciate lncRNAs, and in our case, AS-

IL1α, it would be necessary to generate a knockout mouse and determine if in 

the absence of this lncRNA, the alterations in IL-1α expression would abrogate or 

exacerbate various diseases within an entire organism.  
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The global view of lncRNA research 

With the results from the Encyclopedia of the DNA element (ENCODE) 

project and revealed new layers of complexicity previously unappreciated in the 

eukaryotic transcriptomes, more biologists are beginning to take interest in this 

novel class of regulatory RNAs. At the Keystone research symposia in 2013, 

there were two general groups delving into lncRNA research. The first group 

consists of the obstinate molecular biologists analyzing the genome on a global 

scale, mobilizing new technology to look at these nucleic acids in novel ways to 

find common pathways, or new themes and patterns to group these RNAs. The 

other group, passionate about their disease system, be it cancer, or 

development, or inflammation, had specific questions and utilized RNA-

sequencing technology to discover potential gene candidates that might be 

perturbed in their systems, with the end goal of new discoveries for therapy or 

basic biology in specific signaling pathways. It is quite a fascinating time to 

witness and partake in research with this group of people. It will be interesting to 

see how the research evolves. 

 

Innate immunity to malaria 

In many ways, Plasmodium infections are the “Goldilocks” of disease responses. 

As we have seen in Chapter 3, excessive or subpar immune activation at the 

wrong place or wrong time could result in deleterious outcomes. During the initial 

stage of infection in liver hepatocytes, robust activation of the cytosolic RLRs 
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could wield a type I IFN signaling cascade that is sufficient to severely dampen 

parasite load (Figure 4.3). The problem is, unlike in our disease model where we 

inject 50,000 sporozoites into the mouse, a real mosquito-dependent infection 

would only release a few sporozoites. So although the innate immune system 

can be induced, the question is whether or not in an actual infection, the 

infectious agent initiates at a level below detection. We haven’t tested whether or 

not this initial response in the liver stage actually affects the final disease 

outcome in the ECM mouse model. Here, we isolated the parasite in separate 

stages and infected the mice at each stage of its life cycle rather than letting it 

progress from sporozoite stage to end-stage disease. Through collaborative 

discussion, it was said that in some instances, using the usual 50,000 sporozoite 

infection will still lead to ECM if disease was allowed to progress to blood stage, 

but that result is inconsistent. 

 It has been noted that the cytokine storm patients exhibit during malaria 

infection strongly coincides with disease severity and outcomes. We see that in 

the blood-stage model of disease where the absence of IFNAR and its upstream 

signaling molecules is actually protective of disease. This excessive inflammatory 

response is driven by AT-DNA and hemozoin coated with DNA, as well as other 

previously identified malarial toxins like GPI-anchors. (Figure 4.3) Being able to 

dissect the molecular interactions between host and pathogens will be crucial to 

our ability to develop new therapeutics. For the first time, we were able to show 

that type I IFNs are important for mediating disease severity in malaria and an 
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immunostimulatory AT-rich DNA motif that activates an unidentified nucleic acid 

sensor. It remains to be seen if cGAS is that receptor or if there is another. 

 

Figure 4.3. Schematic for innate immune detection during liver and blood 
stage malaria infection. Upon infection by sporozoites into liver hepatocytes, 
presumably RNA (from either host or parasite) activates the RLR, MDA5 and the 
adaptor MAVs leading to activation of the transcription factor IRF3, and to a 
lesser degree, IRF7 and transcription of type I IFNs. This leads to activation of 
IFNAR1 for the production of ISGS like IFIT1 and USP18. Detection of 
Plasmodium spz leads to dampened parasite load. However, any spz that 
matures into blood-infecting merozoites, will be phagocytosed by circulating 
macrophages as an iRBC and triggers a cytosolic nucleic acid sensor leading to 
activation of STING/TBK1, IRF3/7 and IFNAR. This signaling cascade during 
systemic infection contributes to increased inflammation and ultimately the 
manifestations of ECM that lead to death. This signaling is triggered in part, by 
AT-rich DNA and hemozoin. 
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The convergence of genetics, parasite, kinetics of immune responses 

 It is hypothesized that malaria transmission began roughly 6,000 years 

ago based on DNA sequencing from parasites of infected mosquitoes traced 

over the African continent (Su, 2014). Speculations are based on the emergence 

of parasite population, but contradict other estimates of 100,000-400,000 years. 

Regardless, the conclusion is that Plasmodium has been a strong driver of 

human disease and people that inherited genes that were anti-Plasmodial 

became a strong selective advantage in areas where Plasmodium was endemic. 

For example, we know that humans that carry sickle-cell are much more 

prevalent in Plasmodium endemic regions (Aidoo et al., 2002) and those people 

confer protection against malaria. Other studies have linked genetics that confer 

protection to malaria are also more disposed to autoimmunity (Daniel-Ribeiro and 

Zanini, 2000). In these cases, perhaps the inflammatory environment is 

protective, similar to having a prophylactic treatment prior to infection. But there 

have been reports that autoimmune patients with SLE make antibodies that can 

cross-react to Plasmodium antigens (Zanini et al., 2009). It could be interesting to 

see if other genes linked to autoimmunity would be involved in mitigating 

Plasmodium infections. However, this parasite is complicated – with 14 

chromosomes, and multiple life stages, it’s very likely that this pathogen has and 

will continue to evolve with us. It is important to understand how and what the 

inflammatory triggers of disease are, in order to develop new therapeutics and 

potentially find the vaccine cure, but in the immediate future, the best therapies 
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are within the public health sector, utilizing bednets and public education 

outreach for improved diagnostics and upgrading infrastructure. 
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Appendix I: ASNIL1α sequences
 

Annotated cDNA sequence from ENSEMBL: 

 Predicted Gene Gm14023: ENSMUSG00000085498 

 Novel processed transcript 

ACTTCCGCAGCGGTGCCTCTGAGGTGGGAGCTGGTCACAGGAAAGCAGCT
TCTAACCTGCTGTATTGTCTCTAAAACCACTACTTGGTTTTGGTGGTACATTA
TATGGGTCTCATGATGGAGCCCTGGCAGGCTTGGGATTCACTTGACCGACA
AGAATAGACTTGGAATCACAAAGATTCTCCTGCATCTACTTCCCACCGGGAA
GCAAGTTCCCAAGTGACAAGGAAGACTACCAGTATTCCCAGTCTCTAATTCA
GATGAGTATATGCTAAGTATGGGGAACTGAAGCCCAGAGAGATTAAGGAAC
ATGACTAAGGCGGTGGCAGCTAGCAGAGGTCATGAGCCAATGAACCACGG
CTGCTTTCTCTCCAACAGAAGACCTTTACATGACCTTTGCAGTATGGCCAAG
AAAGGAGTCCTTGAATCATGGGTTATGGACTGCAGGTCATCTTCAGTGAAG
GTCTCACTGAAACTCAGCCGTCTCTTCTTCAGAATCTTCCCGTTGCTTGACG
TTGCTGATACTGTCACCCGGCTCTCCTTGAAGGTGAAGTTGGACATCTTTGA
CGTTTCAGAGGTTCTCAGAGATACAAACTGATCTGTGCAAGTCTCATGAAGT
GAGCCATAGCTTGCATCATAGAAGGATTTCTGTAAGGAGGAAAAGTGGAAC
CTGAGAAGTTATCTATGCCCTTGAGATGAGATTCTTCAGTAGGATCTGTAT 
CCTGCAGGCTTAGTGAGAGTGGTCCCCATTGTGCTTCCTCCCTCCCTCCCT
CCCTTCCTCCTAAGCATCCTCCCAATGTCCTTCCTTCCTTCCTTCCTTCCTTC
CTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCCCACTGCATTCC
TTCCTTTTCCTTGCTTGGGTTTTCCTGAAACCATGTGATTTTTTTTTTTTTTGA
GAAGAAGGTATTTTTACCCATCTTTAGGCTCAAAAATAAAGCATTTTAATGAA
ATAGATTAATAAGCAATCTTGGTAAGTTAGATCCTTCTATTAAGAGGACTAAC
ATCTACTTGAGAGTGCTCAAAATATTTTAGAAAATACATTTGGCCCTCTGTTT
TGCCTGCCTGCATCCTCAGATTCAACCAATATTAAGATTCAAAATATTTTCTA
GAAATAAATGACATCTATACTGAACATGTGCATTTTTATTTTCTAAATAATCTA
ATCATTACTTCATATGCATAAGAATTATTTCCATAGCATCTGTGTTGTGGCAG
GTATTGTTAGGTCACCTAGATATGATTTAAAGTCATTTGAGAATGCATATATG
CTTGGGACTTAAACATCTGATTCTAAGCTCCCATGGATGCCTTTAGTATGGC
TGTTCTTCTGGAAGTAGCTTTTAAAGCTAGTATTGCAGATACACAAAATGACA
TAACTTGGTGAGTGTGTGCAACATATTTACTTTCTCTTGGCTAGGCTCCTCA
ACCTCAGTTCTGTGGGCTATCTGGTTATCTCTAGCCTCTAGTCTCTTAGGAG
ACAGACCCCAGGTGAGGTGGGCTGAAGCAACTGGCTAGGGAGGACAAA 
ATTAACATTTTGAAGAAACCTAGCCCTGTTCTTAGGGCTTCAGATAGTTCTCT
GTTATGAAAGAGCCAATGAACATGAAGAATGCCATTTAACTACTAGTATGAA
GAACCAAGTGATCTCATTTATAAAGAGTAAATGTATTTATATCTCTAGTGAGG
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GTGAGACATAAGTATGTACTACTCAGTTCTCATTGTGCTTTTCTGGTAGGTG
AACTAGTGTGG 
 
 
Exon breakdown from ENSEMBL database: 
 
ENSMUST00000144178 ENSMUSE00000837831 exon1: 
ACTTCCGCAGCGGTGCCTCTGAGGTGGGAGCTG  
 
>ENSMUST00000144178 ENSMUSE00000735388 exon2: 
GTCACAGGAAAGCAGCTTCTAACCTGCTGTATTGTCTCTAAAACCACTACTT
GGTTTTGG TGGTACATTATATG  
 
>ENSMUST00000144178 ENSMUSE00000742797 exon3: 
GGTCTCATGATGGAGCCCTGGCAGGCTTGGGATTCACTTGACCGACAAGAA
TAGACTTGGAATCACAAAGATTCTCCTGCATCTACTTCCCACCGGGAAGCAA
GTTCCCAAGTGACAAGGAAGACTACCAGTATTCCCAGTCTCTAATTCAGATG
AGTATATGCTAAG  
 
>ENSMUST00000144178 ENSMUSE00000761765 exon4: 
TATGGGGAACTGAAGCCCAGAGAGATTAAGGAACATGACTAAGGCGGTGG
CAGCTAGCAG 
AGGTCATGAGCCAATGAACCACGGCTGCTTTCTCTCCAACAGAAGACCTTTA
CATGACCT TTGCAGTATGGCCAAGAAAGGAGTCCTTGA  
 
ENSMUST00000144178 ENSMUSE00000744940 exon5: 
ATCATGGGTTATGGACTGCAGGTCATCTTCAGTGAAGGTCTCACTGAAACTC
AGCCGTCTCTTCTTCAGAATCTTCCCGTTGCTTGACGTTGCTGATACTGTCA
CCCGGCTCTCCTTGAAGGTGAAGTTGGACATCTTTGACGTTTCAGAGGTTCT
CAGAGATACAAACTGTCTGTGCAAGTCTCATGAAGTGAGCCATAGCTTGCAT
CATAGAAGGATTTCTGTAAGGAGGAAAAGTGGAACCTGAGAAGTTATCTATG
CCCTTGAGATGAGATTCTTCAGTAGGATCTGTATCCTGCAGGCTTAGTGAGA
GTGGTCCCCATTGTGCTTCCTCCCTCCCTCCCTCCCTTCCTCCTAAGCATCC
TCCCAATGTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTT
CCTTCCTTCCTTCCTTCCTTCCCCACTGCATTCCTTCCTTTTCCTTGCTTGGG
TTTTCCTGAAACCATGTGATTTTTTTTTTTTTTGAGAAGAAGGTATTTTTACCC
ATCTTTAGGCTCAAAAATAAAGCATTTTAATGAAATAGATTAATAAGCAATCT
TGGTAAGTTAGATCCTTCTATTAAGAGGACTAACATCTACTTGAGAGTGCTC
AAAATATTTTAGAAAATACATTTGGCCCTCTGTTTTGCCTGCCTGCATCCTCA
GATTCAACCAATATTAAGATTCAAAATATTTTCTAGAAATAAATGACATCTATA
CTGAACATGTGCATTTTTATTTTCTAAATAATCTAATCATTACTTCATATGCAT
AAGAATTATTTCCATAGCATCTGTGTTGTGGCAGGTATTGTTAGGTCAC 
CTAGATATGATTTAAAGTCATTTGAGAATGCATATATGCTTGGGACTTAAACA
TCTGATTCTAAGCTCCCATGGATGCCTTTAGTATGGCTGTTCTTCTGGAAGA
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GCTTTTAAAGCTAGTATTGCAGATACACAAAATGACATAACTTGGTGAGTGT
GTGCAACATATTTACTTTCTCTTGGCTAGGCTCCTCAACCTCAGTTCTGTGG
GCTATCTGGTTATCTCTAGCCTCTAGTCTCTTAGGAGACAGACCCCAGGTGA
GGTGGGCTGAAGCAACTGGCTAGGGAGGACAAAATTAACATTTTGAAGAAA
CCTAGCCCTGTTCTTAGGGCTTCAGATAGTTCTCTGTTATGAAAGAGCCAAT
GAACATGAAGAATGCCATTTAACTACTAGTATGAAGAACCAAGTGATCTCAT
TTATAAAGAGTAAATGTATTTATATCTCTAGTGAGGGTGAGACATAAGTATGT
ACTACTCAGT TCTCATTGTGCTTTTCTGGTAGGTGAACTAGTGTGG  
 
Note: Only Exon 2 through 5 was confirmed through primer walking experiments, 

using designed primers, PCR, running amplicons on 1% agarose gel, followed by 

transformation using DH5α competent bacteria and sequencing positively 

selected clones through Genewiz. 

 

qRT-PCR primers are highlighted in orange. 
 
 Regions of AS-IL1α (nt 498-647) comoplimentary to IL-1α indicated in red. 
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Appendix 2: Generating an LPSNstimulated human dendritic cell

transcriptome
 

Preface to Appendix 2 

* Library preparation was done in collaboration with Zhaozhao Jiang 

Introduction 

RNA-sequencing allows the annotation of all expressed transcripts, which 

includes determining a gene’s splice junctions, quantifying expression levels of 

individual transcripts, idenfitying novel or rare transcripts, as well as give clues 

about alternative splicing of each gene. In Figure A2.1, I address the 5 steps 

involved in a typical RNA-sequencing (RNA-seq) experiment. In the first step, we 

must consider the question we want to address and the purpose of the RNA-seq 

library. In our case, we are interested in studying the role of long noncoding 

RNAs in the inflammatory immune response. We wanted to investigate the 

inducible immune system upon challenge by a potent inflammatory stimulus like 

lipopolysaccharide (LPS). Other labs have successfully deposited transcriptomes 

from murine CD11c+ dendritic cells in response to LPS (Guttman et al., 2009) or 

murine macrophages stimulated with Lipid A over zero to 24 hours in specific 

subcellular fractions (Smale et al., 2012). Each one of these data sets has 

produced an explosion of data that give specific insights into what genes are part 

of which inducible wave of transcription and how these genes may regulate or be 

regulated during an active inflammatory response.   
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Figure A2.1. The workflow to produce an RNA-seq library. 
 

One of the major questions our lab has been interested in is how long noncoding 

RNAs (lncRNAs) are involved in these pathways. However, it is problematic to 

identify lncRNAs in murine cells that are absolutely involved in the human 

inflammatory response due to the non-sequence conservation of lncRNAs from 

species to species. One reason is that many lncRNAs contain repeat elements 

that are species specific. Another is the reigning hypothesis that because 

regulatory RNAs exert much of their function via secondary or tertiary structures 

that are difficult to identify, their primary sequence is less likely to undergo 

evolutionary pressure for conservation. Unlike proteins where single nucleotide 

changes can result in deleterious translational effects leading to truncated or null 

proteins, single nucleotide mutations in RNAs are unlikely to be as detrimental to 

the functional transcript. Ultimately, in order to study lncRNAs in human health, 

we wanted to directly use human immune cells, but to do it in a manner that 

would allow us to directly compare and contrast with the existing murine 

datasets. In steps two through five of the workflow, building an adequate RNA-

seq library requires validation and quality control for RNA quality proper selection 

of RNA species in order to minimize the noise associated with the technological 

limitations that still exists with RNA-sequencing data. In this appendix, I will go 

Set up 
Experiment

RNA
preparation

Library
preparation

Sequence Analysis
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over our workflow and explain what we ultimately did in order to guide a potential 

RNA-seq performer in the future. 

 

Materials and Methods 

Dendritic cell culture. About 60 ml whole blood was harvested from three human 

healthy donors (NY biologics). In LeucoSep tubes (Greiner Bio One), 15 ml 

Lymphoprep solution (Stemcell Technologies) was added and centrifuged at 

2000 RPM, 30 seconds, room temperature (RT). The whole blood was diluted 

1:3 in phosphate buffered saline (PBS). The more dilute the blood is, the easier it 

will be to remove the buffy coat where the peripheral blood mononuclear cells 

(PBMCs) are. The diluted blood is added to the leukosep tubes and centrifuged 

at 2000 RPM, 25 minutes, RT, without brakes. Remove the buffy coat and 

centrifuge 2000 RPM, 5 minutes, 4*C, with brakes. RBCs were lysed using RBC 

lysis buffer (Sigma R7757), resuspended and incubated 5 minutes on ice and 

centrifuged again as the previous settings. CD14+ monocytes were enriched 

from PBMCs by positive selecting using CD14 MicroBeads (Miltenyi Biotec 130-

050-201) and MACS LS separation columns (Miltenyi Biotec 130-042-401), with 

MACs pre-separation filter (Miltenyi Biotec 130-041-407). Cells were plated using 

RPMI medium containing containing 25 mM HEPES, 5 ml NEAA (100X), 5 ml 

GlutaMax (100X), 1 mM Na-Pyuvate Penicillin-streptomycin (Invitrogen), 5% 

human serum (Omega HS-20 Heat inactivated at 55*C for 30 minutes and 

filtered with 0.22 uM) and 1:25 human GM-CSF + 1:50 human IL-4 for 10 days. 
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Cytokines. hGM-CSF or hIL-4 was produced in HEK 293 cells transduced with a 

lentiviral vector pAIP encoding either cytokine as described in (Reinhard et al., 

2014).  

 

Flow cytometry. Cells were plated at 1x106 cells per antibody stain in a v-bottom 

96-well plate and centrifuged at 400g, 5 minutes, 4*C. Media was removed and 

cells were resuspended in FACS buffer (PBS+2%FCS). We used the following 

antibodies: phycoerythrin (PE) anti-CD11c, allophycocyanin (APC) anti-DC-Sign, 

and fluorescence minus one (FMOs) for gating. Cells were acquired on a LSR II 

(BD Biosciences) and analyzed with FlowJo software (Tree Star). 

   

Gene expression analysis. RNA isolated from human CD14+ monocytes or DCs 

treated with LPS (100 ng/ml) for the indicated time points were harvested into 

RLP buffer containing 2-mercaptoethanol for subsequent processing with the 

RNease Mini kit (Qiagen). Each RNA sample was adjusted to contain the same 

quantity by using the Nanodrop ND-1000 spectrophotometer (Thermo Scientific). 

RNA was then reverse transcribed (Biorad) into cDNA for subsequent qRT-PCR 

analysis, or 100 ng was used to be hybridized and quantified with the NanoString 

nCounter analysis system (NanoString Technologies) per the manufacturer’s 

protocol. The gene expression data first were normalized to an internal positive 

control set, then to an internal negative control set, and then to seven 
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housekeeping genes. All values were log10-transformed, and a heatmap was 

generated via http://anto.umassmed.edu/~adam/heatmap/enterInformation.php. 

qRT-PCR from above was performed using SyBr Green PCR Master mix 

(BioRad) with the following primer pairs: HPRT, forward, 5’-

ATCAGACTGAAGAGCTATTGTAATGA-3’, reverse, 5’-

TGGCTTATATCCAACACTTCGTG-3’; TNF-a, forward, 5’-

CCTCTCTCTAATCAGCCCTCTG-3’, reverse, 5’-

GAGGACCTGGGAGTAGATGAG-3’; IL-6, forward, 5’-

TCTCCACAAGCGCCTTCG-3’, reverse, 5’-CTCAGGGCTGAGATGCCG-3’.   

 

RNA quality. 2-3 ul of RNA was submitted to the UMass Molecular Biology Core 

lab that operates an Agilent lab-on-chip system. Cloning was performed on the 

end point cDNA library samples. pGEMT cloning vector was used (Promega). 

 

RNA-sequencing library. Illumina TruSeq stranded total RNA with RiboZero kit 

was purchased (Illumina RS-122-2201) 

 

Results 

 In order to look at the inducible immune response in dendritic cells, we 

took 3 human healthy donor blood, harvested their PBMCs, and differentiated 

those cells into CD14+ dendritic cells (DCs). Once these cells were differentiated, 

as confirmed by flow cytometry (Figure A2.2), around 95% were found to be 
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positive for the DC markers, CD11c and CD-Sign as compared to CD14+ 

monocytes harvested together.  

 We then plated the cells and stimulated them with the Gram-negative 

bacteria cell wall TLR4 agonist, lipopolysaccharide (LPS). Over a time course, 0, 

0.5, 1, 2, 4, 6 and 24 hours, we harvested the cells for RNA, reverse transcribed 

into cDNA and performed qRT-PCR on the DCs from the three different donors. 

Surprisingly, the three donors had quite distinct kinetics and absolute expression 

levels for the cytokines, TNF-α and IL-6.  Interestingly, these discrepancies 

reveal potential genetic differences that account for the donor cells’ ability to 

respond to LPS (Figure A2.3). We decided to use all three donors’ as biological 

triplicate PBMCs to perform an RNA-seq and compare their different 

transcriptomes. Before we did that, we performed a Nanostring analysis (Figure 

A2.4 and Table A2.1) on these donors’ RNA and saw that although their gene 

expression levels differed, the kinetics of the genes expressed more or less 

corroborated what was in the literature in regards to early and late response 

genes (Smale et al., 2012).  

 In order to build an RNA-seq cDNA library, we must start with high quality 

RNA. In order to determine that our samples had intact RNA, we ran all of our 

samples through a Bioanalyzer (UMass Core facility), which can indicate the 

RNA integrity of the samples and whether or not there is contaminating DNA 

(Figure A2.5a and b) and only the 18S and 28S rRNA peaks should be visible. A 

typical RNA integrity number (RIN) of 8 or higher should be useds as a general 
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guideline for good quality RNA. Once the libraries were made, the samples are 

subjected to a Bioanalyzer analysis again to determine the quality of RNA at the 

end of the preparation. The libraries should have fragment sizes about 270-350 

nucleotides long (Figure A2.6) compared to the average RNA fragment size prior 

to preparing the library at about 1500-2500 nucleotides long (Figure A2.5). 

 

Discussion 

 Once the transcriptomes of these three donors’ dendritic cells are profiled, 

we can utilize this data set to ask many questions regarding the transcriptional 

dynamics involved in LPS signaling in human cells.  Comparative genomics 

would be a useful analysis to determine if murine lncRNAs are conserved across 

species in humans. We can also compare the three different donors’ genome 

and differential expression of various genes that may contribute to their overall 

differences in proinflammatory cytokine expression levels. There are many 

avenues in which we could utilize these libraries and will generally be a good tool 

for the scientific community to have access to. 
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Figure A2.4. Gene expression changes from dendritic cells from 3 donors 
stimulated with LPS at various time points.   
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monocyt
es #12 

LPS 0h 
#12 

LPS 0h 
#13 

LPS 0h 
#14 

LPS 2h 
#12 

LPS 2h 
#13 

LPS 2h 
#14 

LPS 6h 
#12 

LPS 6h 
#13 

LPS6 h 
#14 

A20 5559 778 385 410 7927 9314 13178 10142 5398 5303 

AIM2 38 82 29 28 35 41 28 308 332 139 

CASP1 1170 1749 742 1049 341 214 546 1861 1026 947 

CASP4 931 1645 964 1099 239 229 473 1428 1698 1430 

CCL2 108 25369 14337 10182 9812 7156 8070 71054 21659 36839 

CCL3 3258 2030 473 225 47514 50233 80413 44160 19169 27327 

CCL4 727 858 148 55 13085
7 62937 14167

6 92089 19264 37670 

CCL5 99 242 64 33 1735 3481 2174 6401 15559 4020 

CCL8 3 3394 2010 1077 1599 1872 1116 25654 18012 27077 

CCR1 2246 22141 13163 11166 2154 1412 2625 8216 5273 5918 

CCR2 -1 60 8 8 12 5 18 13 -5 0 

CD40 80 6270 3835 2491 4767 4162 4775 22742 22696 11169 

CD55 20 152 48 36 12 7 6 23 26 20 

CD80 4 259 201 82 289 336 392 1404 1870 1173 

CD86 3076 14258 9824 8769 2200 1968 3092 5770 4212 3517 

CLTC 640 7488 3818 3108 787 473 917 1659 815 915 

CR1 1156 18725 17796 11254 1558 1781 2627 4099 3753 2627 

CXCL10 36 337 21 15 11757 13879 4671 85620 56261 52864 

CXCL2 8502 4265 778 1327 1168 5857 8361 1483 71 636 

DDX1 247 2792 1163 1080 249 151 282 984 369 418 

DDX21 1749 1897 955 881 406 253 530 1615 365 371 

DDX58 89 545 222 242 670 678 642 3814 5239 4545 

DHX36 149 820 503 474 96 91 187 328 221 220 

DHX9 1048 2627 1452 1194 296 175 359 885 427 459 

DIABLO 3 50 24 7 20 6 14 27 1 3 

G6PD 1578 17075 7250 6215 1930 892 1889 6359 2348 2873 

HCK 2230 9686 6768 5112 1502 1026 2012 12439 6757 7495 

HMOX1 8627 28746 9492 9086 1713 788 1413 13866 5322 3551 

ICAM1 3450 11724 5411 2719 18016 11785 18394 42370 32676 13830 

IFI16 511 7677 4382 3649 487 450 663 3191 3596 3362 

IFI30 21877 16258
1 50425 51408 14842 5680 11505 47024 14189 13661 

IFIT1 346 633 316 255 1585 2075 1758 8078 9458 8946 

IFIT2 239 482 497 521 8255 14911 11753 8699 31614 18289 

IFNA4 4 26 19 7 9 -1 9 23 5 1 

IFNAR1 39 1069 590 434 89 52 117 546 302 207 

IFNB 14 70 19 15 336 3272 1024 45 50 22 
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IFNG 9 38 3 -1 4 2 3 99 12 15 

IFNGR2 8009 20615 12771 8304 4588 3062 6101 19164 9027 8551 

IKBKE 94 810 448 384 120 78 147 448 193 351 

IL10 81 963 309 262 552 164 193 2146 343 136 

IL12A 21 -8 -5 -9 16 107 147 9 27 20 

IL12B -2 19 7 3 471 667 1321 3720 4463 4284 

IL13 14 31 12 4 7 0 11 26 9 9 

IL15 188 36 4 20 11 -1 3 81 97 67 

IL18 142 1019 657 822 698 407 1194 1757 551 729 

IL1Α 66 31 11 39 4738 5710 10502 5678 338 968 

IL1B 3361 33 15 5 18202 19468 33714 23507 1790 3993 

IL1RA 2045 74598 40455 32690 32072 17259 39051 28079
8 

12159
8 

10295
8 

IL23A 8 58 52 45 1205 938 2068 1301 1474 1772 

IL33 0 2 -5 -4 4 5 5 -3 -2 2 

IL4 21 89 15 21 11 10 13 41 18 25 

IL6 32 638 657 146 7978 12828 21201 7555 3628 6055 

IL8 81621 276 167 190 20654 17667 46266 50558 17530 76645 

IRAK3 725 1137 499 549 157 68 225 661 357 428 

IRF2 76 2144 1064 937 168 199 306 1037 1017 855 

IRF5 1114 5840 3646 2896 465 298 597 1061 633 862 

IRF7 992 456 303 210 322 249 390 1934 1873 2036 

IRF8 1216 4350 2488 2558 5066 3513 6601 2242 3157 1277 

ITGB2 15745 70187 50550 38083 7405 6395 10051 19529 12835 9982 

LBP 14 24 16 8 5 0 3 44 12 10 
LGP2/D
HX58 112 424 258 245 215 242 274 1371 1277 974 

LY96 776 9941 4811 4572 918 786 1274 2186 2206 1292 

MNDA 5 308 23 9 40 -1 10 82 4 -2 

MYD88 2547 4906 1977 1643 1010 546 1068 6961 3243 3279 

NFKB1 597 989 440 394 1081 709 1326 3365 3170 2837 

NFKB2 2170 895 647 306 1585 1224 2680 4024 4905 3780 

NFKBIA 53306 11329 5089 3534 21833 20909 34854 42420 16415 16845 

NLRC4 49 875 851 874 26 58 142 85 77 129 

NLRC5 481 405 251 139 24 19 33 723 557 527 

NLRP12 302 135 211 163 20 19 32 35 12 13 

NLRP3 6319 953 783 698 642 647 1087 2813 1037 537 

NLRP6 21 16 5 8 0 -3 0 5 0 2 

NOS2 169 215 104 146 53 27 76 266 125 131 

PRDM1 304 507 210 329 49 73 237 190 68 123 
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PSTPIP
1 605 676 783 651 43 59 106 53 40 21 

PSTPIP
2 632 1242 683 531 1107 593 1102 6149 5333 4445 

PTGS2 615 55 27 24 1952 3028 3578 4300 1243 1279 

PYHIN1 4 16 -4 -5 4 1 7 -3 0 -2 
RASGE
F1B 365 441 279 261 597 1003 1550 516 482 680 

REL 1295 1016 515 477 859 605 1053 465 361 365 

RSAD2 70 50 25 32 205 157 79 6078 7356 6460 
SAMHD
1 3973 45812 24473 21811 3476 2329 4304 9256 6069 6885 

SOCS1 20 6427 3817 3145 1009 586 758 1719 2913 1238 

SOCS3 3163 2431 1328 1260 1414 912 1178 6375 7421 2594 

TAP1 211 732 523 390 297 235 284 2759 2004 1457 

TAP2 353 516 320 318 82 47 118 452 305 340 

TGFB 5103 9172 4595 3696 1041 556 1016 3392 1306 1121 

TLR1 1036 2360 1078 1004 97 61 108 2916 1053 503 

TLR2 1567 953 608 418 358 188 491 4277 2146 1636 

TLR3 10 155 61 56 16 16 18 81 51 36 

TLR4 1683 7378 3465 3746 683 496 962 814 553 733 

TLR5 111 1019 478 384 26 14 32 68 19 17 

TLR6 162 756 542 436 29 26 58 240 174 81 

TLR7 37 194 81 76 65 24 66 166 65 45 

TLR8 207 1504 1229 1196 171 141 246 1560 935 576 

TLR9 12 29 19 17 0 1 -1 17 8 13 

TNFA 994 143 96 57 18179 41007 38343 17588 4691 4904 

TNFR1 2671 7667 3687 3275 282 183 314 2705 1599 1443 

TREX1 744 2091 1334 663 167 115 168 519 549 330 
 
Table A2.1. Nanostring analysis of human innate immune genes on three 

donors’ dendritic cells.  
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A 

 
 

B   C 

                            
Figure A2.5. RNA integrity Analysis by Bioanalyzer.(A) Traces indicate 
average RNA length around 1500-2500 nucleotides and shouldn’t be too 
fragmented. (B) Only the 18S and 28S rRNA bands are visible and (C) RIN 8+ 
should be used for successful library prerparation.  
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Figure A2.6. Confirmation of correct fragment size after library preparation. 
After cDNA library is prepared, the average transcript length should be 
approximately 270-300 basepairs. These bioanalyzer traces confirm size 
selection was properly performed. 
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