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ABSTRACT The objective of meta-learning is to exploit knowledge obtained from observed tasks to
improve adaptation to unseen tasks. Meta-learners are able to generalize better when they are trained
with a larger number of observed tasks and with a larger amount of data per task. Given the amount of
resources that are needed, it is generally difficult to expect the tasks, their respective data, and the necessary
computational capacity to be available at a single central location. It is more natural to encounter situations
where these resources are spread across several agents connected by some graph topology. The formalism
of meta-learning is actually well-suited for this decentralized setting, where the learner benefits from
information and computational power spread across the agents. Motivated by this observation, we propose a
cooperative fully-decentralized multi-agent meta-learning algorithm, referred to as Diffusion-based MAML
or Dif-MAML. Decentralized optimization algorithms are superior to centralized implementations in terms of
scalability, robustness, avoidance of communication bottlenecks, and privacy guarantees. The work provides
a detailed theoretical analysis to show that the proposed strategy allows a collection of agents to attain
agreement at a linear rate and to converge to a stationary point of the aggregate MAML objective even in
non-convex environments. Simulation results illustrate the theoretical findings and the superior performance
relative to the traditional non-cooperative setting.

INDEX TERMS Decentralized optimization, diffusion algorithm, distributed learning, learning to learn,
meta-learning, multi-agent systems, networked agents.

I. INTRODUCTION
Training of highly expressive learning architectures, such as
deep neural networks, requires large amounts of data in order
to ensure high generalization performance. However, the gen-
eralization guarantees apply only to test data following the
same distribution as the training data. Human intelligence,
on the other hand, is characterized by a remarkable ability
to leverage prior knowledge to accelerate adaptation to new
tasks. This evident gap has motivated a growing number of
works on learning architectures that learn to learn (see [2] for
a recent survey).

The work [3] proposed a model-agnostic meta-learning
(MAML) approach, which is an initial parameter-transfer
methodology where the goal is to learn a good “launch
model”. Several works have extended and/or analyzed this

approach to great effect such as [4]–[11]. Furthermore, some
works used MAML for signal processing applications such
as image segmentation [12], speech recognition [13], and
demodulation [14]. However, there does not appear to exist
works that consider model agnostic meta-learning in a de-
centralized multi-agent setting. This setting is very natural
to consider for meta-learning, where different agents can be
assumed to have local meta-learners based on their own ex-
periences. Interactions with neighbors can help infuse their
models with new information and speed up adaptation to new
tasks.

Decentralized multi-agent systems consist of a collection
of agents with access to data and computational capabilities,
and a graph topology that imposes constraints on peer-to-
peer communications. In contrast to centralized architectures,
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which require some central aggregation of data, decentral-
ized solutions rely solely on the diffusion of information
over connected graphs through successive local aggregations
over neighborhoods. While decentralized methods have been
shown to be capable of matching the performance of central-
ized solutions [15], [16], the absence of a fusion center is
advantageous in the presence of communication bottlenecks,
and concerns over robustness or privacy. Applications that can
benefit from decentralized meta-learning algorithms include
but are not limited to the following:
� A robotic swarm might be assigned to do environmental

monitoring [17]. The individual robots can share spa-
tially and temporally dispersed data such as images or
temperatures in order to learn better meta-models to
adapt to new scenes. This teamwork is vital for circum-
stances where data collection is hard, such as natural
disasters.

� Different hospitals or research groups can work on clin-
ical risk prediction with limited patient health records
[18] or drug discovery with small amount of data [19].
The individual agents in this context will benefit from
cooperation, while avoiding the need for a central hub in
order to preserve the privacy of medical data.

� In some situations, it is advantageous to distribute a
single agent problem over multiple agents. For example,
training a MAML can be computationally demanding
since it requires Hessian calculations [3]. In order to
speed up the process, tasks can be divided into different
workers or machines.

The contributions in this paper are three-fold:
� By combining MAML with the diffusion strategy for

decentralized stochastic optimization [16], we propose
Diffusion-based Model-Agnostic Meta-Learning (Dif-
MAML). The result is a decentralized algorithm for
meta-learning over a collection of distributed agents,
where each agent is provided with tasks stemming from
potentially different task distributions.

� We establish that, despite the decentralized nature of
the algorithm, all agents agree quickly on a common
launch model, which subsequently converges to a sta-
tionary point of the aggregate MAML objective over the
task distribution across the network. This implies that
Dif-MAML matches the performance of a centralized
solution, which would have required central aggregation
of data stemming from all tasks across the network. In
this way, agents will not only learn from locally observed
tasks to accelerate future adaptation, but will also learn
from each other, and from tasks seen by the other agents.

� We illustrate through numerical experiments across a
number of benchmark datasets that Dif-MAML out-
performs the traditional non-cooperative solution and
matches the performance of the centralized solution.

Notation: We denote random variables in bold. Single data
points are denoted by small letters like x and batches of data
are denoted by big calligraphic letters like X . 1K denotes a
K × 1 vector with all entries equal to one. The Kronecker

product is denoted by ⊗. col{} stacks its arguments on top
of each other. To refer to a loss function evaluated at a batch
X with elements {xn}Nn=1, we use the notation Q(w;X ) �
1
N

∑N
n=1 Q(w; xn), where w denotes the model parametriza-

tion (such as the parameters of a neural network). To denote
expectation with respect to task-specific data, we use Ex(t ) ,
where t corresponds to the task. This is an expectation over
the distribution of x(t ), and it is conditioned on every other
random variable.

A. PROBLEM FORMULATION
We consider a collection of K agents (e.g., robots, workers,
machines, processors) where each agent k is provided with
data stemming from tasks in a set Tk . We denote the probabil-
ity distribution over Tk by πk , i.e., the probability of drawing
task t from Tk is πk (t ). In principle, for any particular task
t ∈ Tk , each agent could learn a separate model wo

k
(t ) by solv-

ing:

wo
k

(t ) � arg min
w∈RM

J (t )
k (w) � arg min

w∈RM
E

x(t )
k

Q(t )
k

(
w; x(t )

k

)
(1)

where x(t )
k denotes the random data corresponding to task t

observed at agent k. The loss Q(t )
k (w; x(t )

k ) denotes the penal-

ization encountered by w under the random data x(t )
k , while

J (t )
k (w) represents the stochastic risk. Note that the expecta-

tion in (1) is with respect to random data of a particular task t ,
i.e., within-task uncertainty.

Instead of training separately in this manner, meta-learning
presumes an a priori relation between the tasks in Tk and ex-
ploits this fact. In particular, MAML seeks a “launch model”
such that when faced with data arising from a previously
unseen task, the agent would be able to update the “launch
model” with a small number of task-specific gradient updates.
It is common to allow for multiple gradient steps for task
adaptation. For the analytical part of this work, we will restrict
ourselves to a single gradient step for simplicity. Nevertheless,
our experimental results suggest that the theoretical conclu-
sions hold more broadly even when allowing for multiple
gradient updates to the launch model. With a single gradient
step, agent k can seek a launch model by minimizing the
average risk over all tasks evaluated at an adjusted argument:

min
w∈RM

Jk (w) � Et∼πk J (t )
k

(
w − α∇J (t )

k (w)
)

(2)

where α > 0 is a step size parameter. In effect, this step
amounts to minimizing the expected risk at a look-ahead step
across all tasks. Observe that the expectation in (2) is with
respect to distribution πk over the agent-specific collection of
tasks Tk . The resulting gradient vector is given by (assuming
the possibility of exchanging expectations and gradient oper-
ations, which is valid under mild technical conditions):

∇Jk (w) �

Et∼πk

[(
I − α∇2J (t )

k (w)
)
∇J (t )

k

(
w − α∇J (t )

k (w)
)]

(3)
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In practice, due to the lack of information about πk and the
distribution of x(t )

k , evaluation of (2) and (3) is not feasible.
It is common to collect data realizations and replace (3) by a
stochastic gradient approximation:

∇Qk (w) � 1

|Sk|
∑
t∈Sk

[(
I − α∇2Q(t )

k (w;X (t )
in )
)

× ∇Q(t )
k

(
w − α∇Q(t )

k (w;X (t )
in ); X (t )

o

)]
(4)

where X (t )
in , X (t )

o are two independently-selected random
batches of data, Sk ⊂ Tk is a random batch of tasks, and |Sk|
is the number of selected tasks. Recall the notation:

∇Q(t )
k (w;X (t )

in ) = 1

|X (t )
in |

|X (t )
in |∑

n=1

∇Q(t )
k (w; x(t )

n ) (5)

where the batch X (t )
in consists of |X (t )

in | number of elements

{x(t )
n }|X

(t )
in |

n=1 . A similar definition holds for the Hessian. We

assume that all elements of X (t )
in , X (t )

o are independently

sampled from the distribution of x(t )
k and all tasks t ∈ Sk are

independently sampled from Tk .
In a non-cooperative MAML setting, each agent k would

optimize (2) in an effort to obtain a launch model that is likely
to adapt quickly to tasks similar to those encountered in Tk . In
a cooperative multi-agent setting, however, one would expect
transfer learning to occur between agents. This motivates us to
seek a decentralized scheme where the launch model obtained
by agent k is likely to generalize well to tasks similar to those
observed by agent � during training, for any pair of agents
k, �. This can be achieved by pursuing a launch model that
optimizes instead the aggregate risk:

min
w∈RM

J (w) � 1

K

K∑
k=1

Jk (w) (6)

By pursuing this network objective in place of the individual
objectives, the effective number of tasks and data each agent
is trained on is increased and hence a better generalization
performance is expected. Even though both the centralized
and decentralized strategies seek a solution to (6), in the de-
centralized strategy, the agents rely only on their immediate
neighbors and there is no central processor.

B. RELATED WORK
Early works on meta-learning or learning to learn date back
to [20]–[23]. Recently, there has been increased interest in
meta-learning with various approaches such as learning an
optimization rule [24], [25] or learning a metric that compares
support and query samples for few-shot classification [26],
[27].

In this paper, we consider a parameter-initialization-based
meta-learning algorithm. This kind of approach was intro-
duced by MAML [3], which aims to find a good initialization
(launch model) that can be adapted to new tasks rapidly. It is
model-agnostic, which means it can be applied to any model

that is trained with gradient descent. MAML has shown com-
petitive performance on benchmark few-shot learning tasks.
Many algorithmic extensions have also been proposed by [4]–
[7] and several works have focused on the theoretical analysis
and convergence of MAML [8]–[11] in single-agent settings.

A different line of work [28]–[31] studies meta-learning
in a federated setting where the agents communicate with a
central processor in a manner that keeps the privacy of their
data. In particular, [30] and [31] propose algorithms that learn
a global shared launch model, which can be updated by a few
agent-specific gradients for personalized learning. In contrast,
we consider a decentralized scheme where there is no cen-
tral node and only localized communications with neighbors
occur. This leads to a more scalable and flexible system and
avoids communication bottleneck at the central processor.

Our extension of MAML is based on the diffusion algo-
rithm for decentralized optimization [16], [32]. While there
exist other useful decentralized optimization strategies that
are based on primal-dual methods [33], alternating direction
method of multipliers [34], or consensus [35]–[37], diffu-
sion strategies have been shown to be particularly suitable
for adaptive scenarios where the solutions need to adapt to
drifts in the data and models. Diffusion strategies have also
been shown to lead to wider stability ranges and lower mean-
square-error performance than other techniques in the context
of adaptation and learning due to an inherent symmetry in
their structure. Several works analyzed the performance of
diffusion algorithms such as [32], [38]–[40]. The works [41],
[42] examined diffusion under non-convex losses and stochas-
tic gradient conditions, which are applicable to our work but
only after proper adjustment in order to account for the fact
that the risk function for MAML includes a gradient term as
part of the argument for the risk function.

II. DIF-MAML
Our algorithm is based on the Adapt-then-Combine variant of
the diffusion strategy [16].

A. DIFFUSION (ADAPT-THEN-COMBINE)
The diffusion strategy is applicable to scenarios where
K agents, connected via a graph topology A = [a�k] (see
Fig. 1), collectively try to minimize an aggregate risk
J (w) � 1

K

∑K
k=1 Jk (w), which includes the setting (6) consid-

ered in this work. To solve this objective, at every iteration i,
each agent k simultaneously performs the following steps:

φk,i = wk,i−1 − μ∇Qk (wk,i−1) (7a)

wk,i =
K∑

�=1

a�kφ�,i (7b)

The coefficients {a�k} are non-negative and add up to one:

K∑
�=1

a�k = 1, a�k > 0 if agents � and k are connected
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FIGURE 1. An example of a graph topology and interactions between the
agents.

For example, the coefficients can be set using the Metropo-
lis rule [43].

Expression (7a) is an adaptation step where all agents
simultaneously obtain intermediate states φk,i by a stochas-
tic gradient update. Recall that ∇Qk (wk,i−1) from (4) is the
stochastic approximation of the exact gradient ∇Jk (wk,i−1)
from (3). Expression (7b) is a combination step where the
agents combine their neighbors’ intermediate steps to obtain
updated iterates wk,i.

B. DIFFUSION-BASED MAML (DIF-MAML)
We present the proposed algorithm for decentralized meta-
learning in Algorithm 1. A visual representation of it is pro-
vided in Fig. 2. Each agent is assigned an initial launch
model. At every iteration, the agents sample a batch of i.i.d.
tasks from their agent-specific distribution of tasks. Then, in
the inner loop, task-specific models are found by applying
task-specific stochastic gradients to the launch models. Sub-
sequently, in the outer loop, each agent computes an interme-
diate state for its launch model based on an update consisting
of the sampled batch of tasks. A standard MAML algorithm
would assign the intermediate states as the revised launch
models and stop there, without any cooperation among the
agents. However, in Dif-MAML, the agents cooperate and
update their launch models by combining their intermediate
states with the intermediate states of their neighbors. This
helps in the transfer of knowledge among agents.

III. THEORETICAL RESULTS
In this section, we provide convergence analysis for Dif-
MAML in non-convex environments. We start by listing con-
ditions that are commonplace in the analysis of learning algo-
rithms under such scenarios.

Algorithm 1: Dif-MAML.

0: Initialize the launch models {wk,0}Kk=1
1: while not done do
2: for all agents do
3: Agent k samples a batch of i.i.d. tasks Sk,i from

Tk

4: for all tasks t ∈ Sk,i do
5: Evaluate ∇Q(t )

k (wk,i−1;X (t )
in,i ) using a batch of

i.i.d. data X (t )
in,i

6: Set task-specific models
w

(t )
k,i = wk,i−1 − α∇Q(t )

k (wk,i−1;X (t )
in,i )

7: end for
8: Compute intermediate states φk,i =

wk,i−1 − (μ/|Sk,i|)
∑

t∈Sk,i
∇Q(t )

k (w(t )
k,i;X (t )

o,i )

using a batch of i.i.d. data X (t )
o,i for each task

(The gradient here is with respect to the
task-specific model — see (4) for the gradient
expression with respect to the launch model
explicitly.)

9: end for
10: for all agents do
11: Update the launch models by combining the

intermediate states wk,i =
∑K

�=1 a�kφ�,i
12: end for
13: i← i + 1
14: end while

A. ASSUMPTIONS
Assumption 1 (Lipschitz gradients): For each agent k and task
t ∈ Tk , the gradient ∇Q(t )

k (·; ·) is Lipschitz, namely, for any

w, u ∈ RM and x(t )
k denoting a data point:∥∥∥∇Q(t )

k

(
w; x(t )

k

)
− ∇Q(t )

k

(
u; x(t )

k

)∥∥∥ ≤ Lx(t )
k ‖w − u‖ (8)

We assume the second-order moment of the Lipschitz con-
stant is bounded by a data-independent constant:

E
x(t )

k

(
Lx(t )

k

)2
≤
(

L(t )
k

)2
(9)

�
We establish in Appendix A that under (8) and (9), a similar

property will also hold for gradients involving a batch of data.
In this paper, for simplicity, we will mostly work with L �
maxk maxt L(t )

k .
Assumption 2 (Lipschitz Hessians): For each agent k and

task t ∈ Tk , the Hessian ∇2Q(t )
k (·; ·) is Lipschitz in expec-

tation, namely, for any w, u ∈ RM and x(t )
k denoting a data

point:

E
x(t )

k

∥∥∥∇2Q(t )
k

(
w; x(t )

k

)
−∇2Q(t )

k

(
u; x(t )

k

)∥∥∥ ≤ ρ
(t )
k ‖w − u‖

(10)
�
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FIGURE 2. Pictorial representation of Algorithm 1.

We establish in Appendix B that under (10), a similar rela-
tion holds for Hessians involving a batch of data. In this paper,
for simplicity, we will mostly work with ρ � maxk maxt ρ

(t )
k .

Assumption 3 (Bounded gradients): For each agent k and
task t ∈ Tk , the gradient ∇Q(t )

k (·; ·) is bounded in expectation,

namely, for any w ∈ RM and x(t )
k denoting a data point:

E
x(t )

k

∥∥∥∇Q(t )
k

(
w; x(t )

k

)∥∥∥ ≤ B(t )
k (11)

�
We establish in Appendix C that under (11), a similar rela-

tion holds for gradients involving a batch of data. In this paper,
for simplicity, we will mostly work with B � maxk maxt B(t )

k .
Assumption 4 (Bounded noise moments): For each agent

k and task t ∈ Tk , the gradient ∇Q(t )
k (·; ·) and the Hes-

sian ∇2Q(t )
k (·; ·) have bounded fourth-order central moments,

namely, for any w ∈ RM :

E
x(t )

k

∥∥∥∇Q(t )
k

(
w; x(t )

k

)
−∇J (t )

k (w)
∥∥∥4 ≤ σ 4

G (12)

E
x(t )

k

∥∥∥∇2Q(t )
k

(
w; x(t )

k

)
− ∇2J (t )

k (w)
∥∥∥4 ≤ σ 4

H (13)

�
We establish in Appendix D that under (12) and (13), simi-

lar relations hold for gradients and Hessians involving a batch
of data.

Denoting the mean of the risk functions of the tasks in Tk by
Jk (w) � Et∼πk J (t )

k (w), we introduce the following assump-
tion on the relations between the tasks of a particular agent.

Assumption 5 (Bounded task variability): For each agent k,
the gradient ∇J (t )

k (·) and the Hessian ∇2J (t )
k (·) have bounded

fourth-order central moments, namely, for any w ∈ RM :

Et∼πk

∥∥∥∇J (t )
k (w)−∇Jk (w)

∥∥∥4 ≤ γ 4
G (14)

Et∼πk

∥∥∥∇2J (t )
k (w)− ∇2Jk (w)

∥∥∥4 ≤ γ 4
H (15)

�
Note that we do not assume any constraint on the relations

between tasks of different agents.
Assumption 6 (Doubly-stochastic combination matrix):

The weighted combination matrix A = [a�k] representing the
graph is doubly-stochastic and symmetric. This means that the
matrix has non-negative elements and satisfies:

A1K = 1K , A = AT (16)

We further assume that the matrix A is primitive, which means
that a path with positive weights can be found between any
arbitrary nodes (k, �), and moreover at least one akk > 0 for
some k. �

B. ALTERNATIVE MAML OBJECTIVE
The stochastic MAML gradient (4), because of the gradient
within a gradient form, is not an unbiased estimator of (3). We
consider the following alternative objective in place of (2):

Ĵk (w) � Et∼πkEX (t )
in

J (t )
k

(
w − α∇Q(t )

k (w;X (t )
in )
)

(17)

The gradient corresponding to this objective is the expectation
of the stochastic MAML gradient (4):

∇ Ĵk (w) = E∇Qk (w) (18)

For ease of reference, Table 1 lists the notation used in this
paper. We establish (18) in Appendix E. This means that the
stochastic MAML gradient (4) is an unbiased estimator for the
gradient of the alternative objective (17).

While the MAML objective (2) captures the goal of coming
up with a launch model that performs well after a gradient
step, the adjusted objective (17) searches for a launch model
that performs well after a stochastic gradient step. Using the
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TABLE 1 Summary of Some Notation Used in the Paper

adjusted objective allows us to analyze the convergence of
Dif-MAML by exploiting the fact that it results in an unbi-
ased stochastic gradient approximation. This allows the use of
standard non-convex decentralized optimization techniques.

In the following two lemmas, we will perform perturbation
analyses on the MAML objective Jk (w) and the adjusted ob-
jective Ĵk (w). We will work with Ĵk (w) afterwards. At the
end of our theoretical analysis, we will use the perturbation
results to establish convergence to stationary points for both
objectives.

Lemma 1 (Objective perturbation bound): Under assump-
tions 1,3,4, for each agent k, the disagreement between Jk (·)
and Ĵk (·) is bounded, namely, for any w ∈ RM :1∣∣Jk (w)− Ĵk (w)

∣∣ ≤ α2Lσ 2
G

2|Xin| +
BασG√|Xin|

(19)

Proof: See Appendix F. �
Next, we perform a perturbation analysis at the gradient

level.
Lemma 2 (Gradient perturbation bound): Under assump-

tions 1,3,4, for each agent k, the disagreement between ∇Jk (·)
and ∇ Ĵk (·) is bounded, namely, for any w ∈ RM :∥∥∇Jk (w)− ∇ Ĵk (w)

∥∥ ≤ (1+ αL)
αLσG√|Xin|

+ BασH√|Xin|
(20)

Proof: See Appendix G. �
Lemmas 1 and 2 suggest that the standard MAML objec-

tive and the adjusted objective get closer to each other with
decreasing inner learning rate α and increasing inner batch
size |Xin|. This is intuitive since the adjusted objective is a
look-ahead risk under stochastic gradient update whereas the
standard MAML objective is under gradient update. Stochas-
tic gradient under a batch of data gets closer to gradient with
increasing batch size. Next, we establish some properties of
the adjusted objective, which will be called upon in the analy-
sis and will let us use the standard techniques for non-convex
optimization.

Lemma 3 (Bounded gradient of adjusted objective): Under
assumptions 1,3, for each agent k, the gradient ∇ Ĵk (·) of the
adjusted objective is bounded, namely, for any w ∈ RM :∥∥∇ Ĵk (w)

∥∥ ≤ B̂ (21)

where B̂ � (1+ αL)B is a non-negative constant.

1In this paper, for simplicity, we assume that for each agent k and task
t ∈ Tk , |X (t )

in | = |Xin| and |X (t )
o | = |Xo|.

Proof: See Appendix H. �
Lemma 4 (Lipschitz gradient of adjusted objective): Under

assumptions 1-3, for each agent k, the gradient ∇ Ĵk (·) of
adjusted objective is Lipschitz, namely, for any w, u ∈ RM :∥∥∇ Ĵk (w)− ∇ Ĵk (u)

∥∥ ≤ L̂‖w − u‖ (22)

where L̂ � (L(1+ αL)2 + αρB) is a non-negative constant.
Proof: See Appendix I. �
Lemma 5 (Gradient noise for adjusted objective): Under

assumptions 1-5, the gradient noise defined as ∇Qk (w)−
∇ Ĵk (w) is bounded for any w ∈ RM , namely:

E
∥∥∇Qk (w)− ∇ Ĵk (w)

∥∥2 ≤ C2 (23)

for a non-negative constant C2, whose expression is given in
(130) in Appendix J.

Proof: See Appendix J. �
The upper bound on the gradient noise, C, increases with

parameters α, L, σG, σH , B, γG, γH , and decreases with batch-
sizes |Xin|, |Xo|.

C. EVOLUTION ANALYSIS
In this section, we analyze the Dif-MAML algorithm over the
network. The analysis is similar to [41], [42]. We first prove
that agents cluster around the network centroid in O(log μ) =
o(1/μ) iterations, then show that this centroid reaches an
O(μ)-mean-square-stationary point in at most O(1/μ2) iter-
ations. Fig. 3 summarizes the analysis.

The network centroid is defined as wc,i � 1
K

∑K
k=1 wk,i.

It is an average of the agents’ parameters. In the following
theorem, we study the difference between the centroid launch
model and the launch model for each agent k.

Theorem 1 (Network disagreement): Under assumptions 1-
6, network disagreement between the centroid launch model
and the launch models of each agent k is bounded after
O(log μ) = o(1/μ) iterations, namely:

1

K

K∑
k=1

E
∥∥wk,i − wc,i

∥∥2 ≤ μ2 λ2
2

(1− λ2)2

(
B̂2 +C2)

+ O(μ3) (24)

for

i ≥ 3 log μ

logλ2
+ O(1) = o(1/μ) (25)

where λ2 is the mixing rate of the combination matrix A, i.e.,
it is the spectral radius of AT − 1

K 1K1
T
K .

Proof: See Appendix K. �
In Theorem 1, we proved that the disagreement between

the centroid launch model and agent-specific launch models
is bounded after sufficient number of iterations. Therefore, we
can use the centroid model as a deputy for all models and
examine its convergence properties.

Theorem 2 (Stationary points of adjusted objective): In ad-
dition to assumptions 1-6, assume that Ĵ (w) is bounded from
below, i.e., Ĵ (w) ≥ Ĵo. Then, the centroid launch model wc,i
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FIGURE 3. Diagram of the analysis. Agents cluster around a common network centroid, and this centroid reaches a stationary point of the MAML
objective during meta-training. Subsequently, agents can use this launch model in order to adapt to new tasks.

FIGURE 4. Regression. (a) 40-agent sparse network. (b) Test losses during training- Metropolis - Adam. (c) Test losses with respect to number of gradient
steps after training.

FIGURE 5. Omniglot dataset: Samples from six different characters.

FIGURE 6. MiniImagenet dataset: Samples from three different classes.

will reach an O(μ)-mean-square-stationary point in at most
O(1/μ2) iterations. In particular, there exists a time instant i�

such that:

E
∥∥∇ Ĵ (wc,i� )

∥∥2 ≤ 2μL̂C2 + O(μ2) (26)

and

i� ≤
(

2(Ĵ (w0)− Ĵo)

L̂C2

)
1/μ2 + O(1/μ) (27)

Proof: See Appendix L. �

Next, we prove that the same analysis holds for the standard
MAML objective, using the gradient perturbation bound for
the adjusted objective (Lemma 2).

Corollary 1 (Stationary points of MAML objective): As-
sume that the same conditions of Theorem 2 hold. Then, the
centroid launch model wc,i will reach an O(μ)-mean-square-
stationary point, up to a constant, in at most O(1/μ2) itera-
tions. Namely, for time instant i� defined in (27):

E
∥∥∇J (wc,i� )

∥∥2 ≤ 4μL̂C2 + O(μ2)

+ 2

(
(1+ αL)

αLσG√|Xin|
+ BασH√|Xin|

)2

(28)

Proof: See Appendix M. �
Corollary 1 states that the centroid launch model can reach

an O(μ)-mean-square-stationary point for sufficiently small
inner learning rate α and for sufficiently large inner batch
size |Xin|, in at most O(1/μ2) iterations. Note that as μ→
0, the number of iterations required for network agreement
(O(log μ) = o(1/μ)) becomes negligible compared to the
number of iterations necessary for convergence (O(1/μ2)).
This follows from:

lim
μ→0

1/μ

1/μ2
= lim

μ→0
μ = 0 (29)
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FIGURE 7. Classification. (a) The network. (b) Test losses during training - MiniImagenet 5-way 5-shot -Averaging Rule- SGD. (c) Test losses during
training - Omniglot 20-way 1-shot - Metropolis- Adam.

FIGURE 8. MiniImagenet 5-way 1-shot test accuracies during training
process: Metropolis - Adam.

IV. EXPERIMENTS
In this section, we provide experimental evaluations. In par-
ticular, we present comparisons between the centralized,
diffusion-based decentralized, and non-cooperative strategies.
Our demonstrations cover both regression and classification
tasks. Even though our theoretical analysis is general with
respect to various learning models, for the experiments, our
focus is on neural networks.

The centralized strategy corresponds to a central processor
that has access to all data and tasks. Note that this is equivalent
to having a network with a fully-connected graph in terms
of loss/accuracy performance. The non-cooperative strategy
represents a solution where agents do not communicate with
each other. In other words, they all try to learn separate launch
models.

A. REGRESSION
For regression, we consider the benchmark from [3]. In this
setting, each task requires predicting the output of a sine wave
from its input. Different tasks have different amplitudes and
phases. Specifically, the phases are varied between [0, π ] for
each agent. However, the agents have access to different task
distributions since the amplitude interval [0.1, 5.0] is evenly
partitioned into K = 40 different intervals and each agent is
equipped with one of them. The outer-loop optimization is
based on Adam [44] and combination weights are set with
Metropolis rule [43].

The same model architecture (a neural network with 2 hid-
den layers of 40 neurons with ReLu activations) is used for
each agent. The loss function is the mean-squared error. As
in [3], while training, 10 random points (10-shot) are chosen
from each sinusoid and used with 1 stochastic gradient update
(α = 0.01). Adam optimizer is used with μ = 0.001. Each
agent is trained on 1000 tasks over 10 epochs (total number
of iterations = 10000). As in training, 10 data points from
each sinusoid with 1 gradient update is used for adaptation.

Every 200th iteration, the agents are tested over 1000 tasks.
All agents are evaluated with the same tasks, which stem from
the intervals [0.1, 5.0] for amplitude and [0, π ] for phase. The
results are shown in Fig. 4(b). It can be seen that Dif-MAML
converges to the centralized solution and clearly outperforms
the non-cooperative solution. This suggests that cooperation
helps even when agents have access to different task distri-
butions. Furthermore, even though our analysis was based on
stochastic gradient descent (SGD), Fig. 4(b) suggests that our
results can extend to other optimization methods. Moreover,
we also test the performance after training with respect to
number of gradient updates for adaptation in Fig. 4(c). It is
visible that the match between the centralized and decentral-
ized solutions does not change and the performance of the
non-cooperative solution is still inferior. Note that this plot is
also showing the average performance over all agents on 1000
tasks.

B. CLASSIFICATION
For classification, we consider widely used few-shot image
recognition tasks on the Omniglot [45] and MiniImagenet [25]
datasets. The Omniglot dataset comprises 1623 characters
from 50 different alphabets. Each character has 20 samples,
which were hand drawn by 20 different people —see Fig. 5
for sample characters. Therefore, it is suitable for few-shot
learning scenarios as there is small number of data per class.
The MiniImagenet dataset consists of 100 classes from Im-
ageNet [46] with 600 samples from each class —see Fig. 6
for samples. It captures the complexity of ImageNet samples
while not working on the full dataset which is huge.

Following [47] and [3], Omniglot is augmented with mul-
tiples of 90 degree rotations of the images. All agents are
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FIGURE 9. MiniImagenet test accuracies during training process 5-way 5-shot. (a) Averaging-Adam. (b) Metropolis-Adam. (c) Metropolis-SGD.

FIGURE 10. Omniglot test accuracies during training process 5-way 1-shot. (a) Averaging - SGD. (b) Averaging - Adam. (c) Metropolis - Adam.

FIGURE 11. Omniglot test accuracies during training process 20-way 1-shot Averaging rule. (a) Adam. (b) SGD.

equipped with the same convolutional neural network archi-
tecture. Convolutional neural network architectures are based
on the architectures in [3] which are based on [27].

In all simulations, each agent runs over 1000 batches of
tasks over 3 epochs. In Omniglot experiments, for the Adam
experiments μ = 0.001 and for the SGD experiments μ =
0.1. A single gradient step is used for adaptation in both
training and testing and α = 0.4. Training meta-batch size is
equal to 16 for 5-way 1-shot and 8 for 5-way 5-shot. The plots
are showing an average result of 100 tasks as testing meta-
batch consists of 100 tasks. For MiniImagenet experiments,
10-query examples are used, testing meta-batch consists of
25 tasks and α = 0.01. For the Adam experiments μ = 0.001
and for the SGD experiments μ = 0.01. The number of gradi-
ent updates is equal to 5 for training, 10 for testing. For 5-way
1-shot, training meta-batch has 4 tasks whereas 5-way 5-shot

training meta-batch has 2 tasks. Note that the first testings oc-
cur after the first training step. In other words, the first data of
all classification plots are at 1st iteration, not at 0th iteration.

In contrast to the regression experiment, in these simu-
lations, all agents have access to the same tasks and data.
However, in the centralized and decentralized strategies, the
effective number of samples is larger as we limit the number
of data and tasks processed in one agent.

Average accuracy on test tasks at every 50th training
iteration is shown in Fig. 7(b) for MiniImageNet 5-way 5-shot
setting trained with SGD and in Fig. 7(c) for Omniglot 20-way
1-shot setting trained with Adam. Note that the combination
weights are set with averaging rule [16] in Fig. 7(b) and with
Metropolis rule [43] in Fig. 7(c). Similar to the regression
experiment, the decentralized solutions quickly match the
centralized solutions and are substantially better than the
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non-cooperative solutions. Additionally, the experiments
suggest that our analysis can extend to left-stochastic combi-
nation matrices as well as multiple gradient updates to find
the task-specific models in the inner-loop of the algorithm.

In Figs. 8–11 additional plots for MiniImagenet 5-way
1-shot, MiniImagenet 5-way 5-shot, Omniglot 5-way 1-shot
and Omniglot 20-way 1-shot can be found, respectively. The
results illustrate our conclusions are valid for the specified
settings as well.

During experimentation, we observe that batch normaliza-
tion [48] is necessary for applying Dif-MAML, and diffusion
in general, on neural networks since the combination step (7b)
reduces the variance of the weights due to averaging.

V. CONCLUSION
In this paper, we proposed a decentralized algorithm for meta-
learning. Our theoretical analysis establishes that the agents’
launch models cluster quickly in a small region around the
centroid model and this centroid model reaches a stationary
point after sufficient iterations. We illustrated by means of
experiments on regression and classification problems that the
performance of Dif-MAML consistently coincides with the
centralized strategy and surpasses the non-cooperative strat-
egy significantly. For future work, decentralized learning un-
der imperfections [49], multiple updates during the adaptation
step before the combination step [50], or active task sampling
strategies [51] can be considered.

APPENDIX A
THE IMPLICATION OF ASSUMPTION 1
In Appendices A-D we denote a batch of data by X (t )

k , its size

by N (t )
k , and its elements by {x(t )

k,n}
N (t )

k
n=1.

Assumption 1 implies for the stochastic gradient con-
structed using a batch:∥∥∥∇Q(t )

k

(
w;X (t )

k

)
− ∇Q(t )

k

(
u;X (t )

k

)∥∥∥ ≤ LX (t )
k ‖w − u‖

(30)
where we have:

LX (t )
k � 1

N (t )
k

N (t )
k∑

n=1

Lx(t )
k,n (31)

Moreover,

EX (t )
k

(
LX (t )

k

)2
≤
(

L(t )
k

)2
(32)

Proof: For the stochastic gradients under a batch of data:∥∥∥∇Q(t )
k (w;X (t )

k )−∇Q(t )
k (u;X (t )

k )
∥∥∥

=

∥∥∥∥∥∥∥
1

N (t )
k

N (t )
k∑

n=1

(
∇Q(t )

k (w; x(t )
k,n)− ∇Q(t )

k (u; x(t )
k,n)
)∥∥∥∥∥∥∥

(a)≤ 1

N (t )
k

N (t )
k∑

n=1

∥∥∥∇Q(t )
k (w; x(t )

k,n)− ∇Q(t )
k (u; x(t )

k,n)
∥∥∥

(b)≤ 1

N (t )
k

N (t )
k∑

n=1

Lx(t )
k,n‖w − u‖

= LX (t )
k ‖w − u‖ (33)

where (a) follows from Jensen’s inequality, and (b) follows
from (8). Likewise,

EX (t )
k

(LX (t )
k )2 = EX (t )

k

⎛⎜⎝ 1

N (t )
k

N (t )
k∑

n=1

Lx(t )
k,n

⎞⎟⎠
2

(a)≤ 1

N (t )
k

EX (t )
k

N (t )
k∑

n=1

(Lx(t )
k,n )2

(b)≤ (L(t )
k )2 (34)

where (a) follows from Jensen’s inequality, and (b) follows
from (9).

APPENDIX B
THE IMPLICATION OF ASSUMPTION 2
Assumption 2 implies for the loss Hessian under a batch of
data:

EX (t )
k

∥∥∥∇2Q(t )
k

(
w;X (t )

k

)
−∇2Q(t )

k

(
u;X (t )

k

)∥∥∥≤ρ
(t )
k ‖w − u‖

(35)
Proof: For the loss Hessians under a batch of data:

EX (t )
k

∥∥∥∇2Q(t )
k (w;X (t )

k )−∇2Q(t )
k (u;X (t )

k )
∥∥∥

= EX (t )
k

∥∥∥∥∥∥∥
1

N (t )
k

N (t )
k∑

n=1

(
∇2Q(t )

k (w; x(t )
k,n)− ∇2Q(t )

k (u; x(t )
k,n)
)∥∥∥∥∥∥∥

(a)≤ 1

N (t )
k

N (t )
k∑

n=1

E
x(t )

k,n

∥∥∥∇2Q(t )
k (w; x(t )

k,n)−∇2Q(t )
k (u; x(t )

k,n)
∥∥∥

(b)≤ 1

N (t )
k

N (t )
k∑

n=1

ρ
(t )
k ‖w − u‖

= ρ
(t )
k ‖w − u‖ (36)

where (a) follows from Jensen’s inequality, and (b) follows
from (10).
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APPENDIX C
THE IMPLICATION OF ASSUMPTION 3
Assumption 3 implies for the loss gradient under a batch of
data:

EX (t )
k

∥∥∥∇Q(t )
k

(
w;X (t )

k

)∥∥∥ ≤ B(t )
k (37)

Proof: The bound for the norm of the stochastic gradients
constructed using a batch is derived as follows:

EX (t )
k

∥∥∥∇Q(t )
k (w;X (t )

k )
∥∥∥ = EX (t )

k

∥∥∥∥∥∥∥
1

N (t )
k

N (t )
k∑

n=1

∇Q(t )
k (w; x(t )

k,n)

∥∥∥∥∥∥∥
(a)≤ 1

N (t )
k

N (t )
k∑

n=1

E
x(t )

k,n

∥∥∥∇Q(t )
k (w; x(t )

k,n)
∥∥∥

(b)≤ 1

N (t )
k

N (t )
k∑

n=1

B(t )
k

= B(t )
k (38)

where (a) follows from Jensen’s inequality, and (b) follows
from (11).

APPENDIX D
THE IMPLICATION OF ASSUMPTION 4
Assumption 4 implies for the gradient and the Hessian under
a batch of data:

EX (t )
k

∥∥∥∇Q(t )
k

(
w;X (t )

k

)
− ∇J (t )

k (w)
∥∥∥4 ≤ 3σ 4

G

(N (t )
k )2

(39)

EX (t )
k

∥∥∥∇2Q(t )
k

(
w;X (t )

k

)
−∇2J (t )

k (w)
∥∥∥4 ≤ 3σ 4

H

(N (t )
k )2

(40)

Proof: We apply induction on N (t )
k [52]. For N (t )

k = 1, ex-
pression (39) trivially holds since (12) is a tighter bound than
(39). Now assume that (39) holds for N (t )

k − 1. Define:

r(w) � ∇Q(t )
k (w; x(t )

k )−∇J (t )
k (w)

r
N (t )

k
(w) � ∇Q(t )

k (w;X (t )
k )−∇J (t )

k (w)

= 1

N (t )
k

N (t )
k∑

n=1

∇Q(t )
k (w; x(t )

k,n)− ∇J (t )
k (w) (41)

Then, we get:

E‖r
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k
(w)‖4

= E
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k − 1

N (t )
k
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4
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2
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(
(N (t )

k − 1)2

(N (t )
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‖r
N (t )

k −1(w)‖2 + 1

(N (t )
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+ 2
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(N (t )
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E

[
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]
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E
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]
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E
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]
+ 1
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E
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+ 6(N (t )
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E

[
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]
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(N (t )
k )4

E

[
‖r
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k −1(w)‖4

]
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k )4
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E

[
‖r
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]
E
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(d )≤ (N (t )
k − 1)4
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k )4

3σ 4
G

(N (t )
k − 1)2

+ 1
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k )4

σ 4
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(N (t )
k )4
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G

(N (t )
k − 1)

σ 2
G

= σ 4
G

(N (t )
k )2

(
3(N (t )

k − 1)2

(N (t )
k )2

+ 1
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k )2
+ 6(N (t )

k − 1)

(N (t )
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)
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k )2

(
3(N (t )

k )2 − 2

(N (t )
k )2

)

≤ 3σ 4
G

(N (t )
k )2

(42)

where (a) follows from expansion of the square and drop-
ping the cross-terms that are zero due to the independence
assumption on the data,(b) follows from Cauchy-Schwarz, (c)
follows from independence assumption on the data, and (d )
follows from the induction hypothesis, (12), and the following
variance reduction formula:

E‖r
N (t )

k −1(w)‖2 = 1

N (t )
k − 1

E‖r(w)‖2 (43)

For proving (40), just replacing the gradients with the Hes-
sians in (41) is enough.
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APPENDIX E
PROOF OF (18)
Recall the definition of the adjusted objective:

Ĵk (w) = Et∼πkEX (t )
in

J (t )
k

(
w − α∇Q(t )

k (w;X (t )
in )
)

(44)

The gradient corresponding to this objective is:

∇ Ĵk (w) = Et∼πkEX (t )
in

[(
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k (w;X (t )
in )
)

× ∇J (t )
k
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w − α∇Q(t )

k (w;X (t )
in )
)]

(45)

Expectation of the stochastic MAML gradient is given by:
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(46)

where (a) follows from the i.i.d. assumption on the batch of
tasks, (b) follows from conditioning, and (c) follows from the
relation between loss functions and stochastic risks.

APPENDIX F
PROOF OF LEMMA 1
The disagreement between (2) and (17) is:∣∣Jk (w)− Ĵk (w)

∣∣ = ∣∣∣E [J (t )
k (w̃1)− J (t )

k (w̃2)
]∣∣∣

(a)≤ E

∣∣∣J (t )
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k (w̃2)
∣∣∣ (47)

where w̃1 � w − α∇J (t )
k (w), w̃2 � w − α∇Q(t )

k (w;X (t )
in )

and (a) follows from Jensen’s inequality. Lipschitz property
of the gradient (Assumption 1) implies:

J (t )
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2
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Combining the inequalities yields:
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(c)≤ α2Lσ 2
G

2|Xin| +
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(50)

where (a) follows from Assumption 3, (b) follows from insert-
ing w̃1 and w̃2 expressions, and (c) follows from Assumption
4.

APPENDIX G
PROOF OF LEMMA 2
Using (3) and (18) we have:

∇Jk (w) = Et∼πk
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k (w))∇J (t )
k (w − α∇J (t )

k (w))
]

= Et∼πk

[
∇J (t )

k (w − α∇J (t )
k (w))

− α∇2J (t )
k (w)∇J (t )

k (w − α∇J (t )
k (w))

]
(51)

and

∇ Ĵk (w) = Et∼πkEX (t )
in

[
(I − α∇2Q(t )

k (w;X (t )
in ))

× ∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))
]

= Et∼πkEX (t )
in

[
∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))

− α∇2Q(t )
k (w;X (t )

in )∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))
]

(52)

The norm of the disagreement then follows:∥∥∇Jk (w)− ∇ Ĵk (w)
∥∥

=
∥∥∥E [∇J (t )

k (w − α∇J (t )
k (w))

− α∇2J (t )
k (w)∇J (t )

k (w − α∇J (t )
k (w))

− ∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

+α∇2Q(t )
k (w;X (t )

in )∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))
] ∥∥∥

(a)≤ E

[∥∥∥∇J (t )
k (w−α∇J (t )

k (w))−∇J (t )
k (w−α∇Q(t )

k (w;X (t )
in ))
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+ α∇2Q(t )
k (w;X (t )

in )∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

−α∇2J (t )
k (w)∇J (t )

k (w − α∇J (t )
k (w))

∥∥∥]
(b)≤ E

[∥∥∥∇J (t )
k (w−α∇J (t )

k (w))−∇J (t )
k (w−α∇Q(t )

k (w;X (t )
in ))
∥∥∥

+ α

∥∥∥∇2Q(t )
k (w;X (t )

in )∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

−∇2J (t )
k (w)∇J (t )

k (w − α∇J (t )
k (w))

∥∥∥] (53)

where (a) follows from applying Jensen’s inequality and re-
arranging terms, and (b) follows from applying the triangle
inequality. We bound the terms in (53) separately. For the first
term we have:

E

∥∥∥∇J (t )
k (w − α∇J (t )

k (w))−∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))
∥∥∥

(a)≤ LαE
[∥∥∥∇J (t )

k (w)−∇Q(t )
k (w;X (t )

in )
∥∥∥]

(b)≤ Lα
σG√|Xin|

(54)

where (a) follows from Assumption 1, and (b) follows from
Assumption 4.

Rewriting the second term in (53):

E

[∥∥∥∇2Q(t )
k (w;X (t )

in )∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

−∇2J (t )
k (w)∇J (t )

k (w − α∇J (t )
k (w))

∥∥∥]
(a)≤ E

[∥∥∥∇2Q(t )
k (w;X (t )

in )∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

−∇2J (t )
k (w)∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))
∥∥∥

+
∥∥∥∇2J (t )

k (w)∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

−∇2J (t )
k (w)∇J (t )

k (w − α∇J (t )
k (w))

∥∥∥] (55)

where (a) follows from adding and subtracting the term
∇2J (t )

k (w)∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in )) and applying the tri-

angle inequality. We bound the terms in (55) separately. For
the first term:

E

[∥∥∥∇2Q(t )
k (w;X (t )

in )∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

− ∇2J (t )
k (w)∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))
∥∥∥]

(a)≤ E

[∥∥∥∇2Q(t )
k (w;X (t )

in )− ∇2J (t )
k (w)

∥∥∥
×
∥∥∥∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))
∥∥∥]

(b)≤ E

[∥∥∥∇2Q(t )
k (w;X (t )

in )− ∇2J (t )
k (w)

∥∥∥]B

(c)≤ B
σH√|Xin|

(56)

where (a) follows from sub-multiplicity of the norm, (b) fol-
lows from Assumption 3, and (c) follows from Assumption 4.
For the second term in (55):

E

[∥∥∥∇2J (t )
k (w)∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))

−∇2J (t )
k (w)∇J (t )

k (w − α∇J (t )
k (w))

∥∥∥]
(a)≤ E

[∥∥∥∇2J (t )
k (w)

∥∥∥∥∥∥∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

−∇J (t )
k (w − α∇J (t )

k (w))
∥∥∥]

(b)≤ LE
[∥∥∥∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))

−∇J (t )
k (w − α∇J (t )

k (w))
∥∥∥]

(c)≤ αL2
E

[∥∥∥∇J (t )
k (w)−∇Q(t )

k (w;X (t )
in )
∥∥∥]

(d )≤ αL2 σG√|Xin|
(57)

where (a) follows from sub-multiplicity of the norm, (b) and
(c) follow from Assumption 1, and (d ) follows from Assump-
tion 4. Combining the results completes the proof.

APPENDIX H
PROOF OF LEMMA 3
Recall the formula for the gradient of the adjusted objective
(18):∥∥∇ Ĵk (w)

∥∥ = ∥∥∥E [(I − α∇2Q(t )
k (w;X (t )

in ))

× ∇Q(t )
k

(
w − α∇Q(t )

k (w;X (t )
in );X (t )

o

)] ∥∥∥
(a)≤ E

∥∥∥(I − α∇2Q(t )
k (w;X (t )

in ))

×∇Q(t )
k

(
w − α∇Q(t )

k (w;X (t )
in );X (t )

o

) ∥∥∥
(b)≤ E

[∥∥∥(I − α∇2Q(t )
k (w;X (t )

in ))
∥∥∥

×
∥∥∥∇Q(t )

k

(
w − α∇Q(t )

k (w;X (t )
in );X (t )

o

) ∥∥∥]
(c)≤ Et∼πk

[
EX (t )

in

[
EX (t )

o

[∥∥∥(I − α∇2Q(t )
k (w;X (t )

in ))
∥∥∥

×
∥∥∥∇Q(t )

k

(
w − α∇Q(t )

k (w;X (t )
in );X (t )

o

) ∥∥∥]]]
(d )≤ Et∼πk

[
EX (t )

in

[∥∥∥(I − α∇2Q(t )
k (w;X (t )

in ))
∥∥∥B
]]

(e)≤ (1+ αL)B (58)

where (a) follows from Jensen’s inequality, (b) follows from
sub-multiplicity of the norm, (c) follows from conditioning,
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(d ) follows from Assumption 3, and (e) follows from As-
sumption 1.

APPENDIX I
PROOF OF LEMMA 4
Define the following variables:

w̃2 � w − α∇Q(t )
k (w;X (t )

in ) (59)

ũ2 � u− α∇Q(t )
k (u;X (t )

in ) (60)

Recall the formula for the gradient of the adjusted objective
(18):

∇ Ĵk (w) = E

[
(I − α∇2Q(t )

k (w;X (t )
in ))∇Q(t )

k (w̃2;X (t )
o )
]

=E
[
∇Q(t )

k (w̃2;X (t )
o )−α∇2Q(t )

k (w;X (t )
in )∇Q(t )

k (w̃2;X (t )
o )
]

(61)

and

∇ Ĵk (u)

= E

[
(I − α∇2Q(t )

k (u;X (t )
in ))∇Q(t )

k (̃u2;X (t )
o )
]

=E
[
∇Q(t )

k (̃u2;X (t )
o )−α∇2Q(t )

k (u;X (t )
in )∇Q(t )

k (̃u2;X (t )
o )
]

(62)

Bounding the disagreement:∥∥∥∇ Ĵk (w)− ∇ Ĵk (u)
∥∥∥

=
∥∥∥E[∇Q(t )

k (w̃2;X (t )
o )−∇Q(t )

k (̃u2;X (t )
o )

− α
(
∇2Q(t )

k (w;X (t )
in )∇Q(t )

k (w̃2;X (t )
o )

− ∇2Q(t )
k (u;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )
)]∥∥∥

(a)≤ E

[∥∥∥∇Q(t )
k (w̃2;X (t )

o )−∇Q(t )
k (̃u2;X (t )

o )

− α
(
∇2Q(t )

k (w;X (t )
in )∇Q(t )

k (w̃2;X (t )
o )

− ∇2Q(t )
k (u;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )
)∥∥∥]

(b)≤ E

[∥∥∥∇Q(t )
k (w̃2;X (t )

o )− ∇Q(t )
k (̃u2;X (t )

o )
∥∥∥]

+ αE
[∥∥∥∇2Q(t )

k (w;X (t )
in )∇Q(t )

k (w̃2;X (t )
o )

− ∇2Q(t )
k (u;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )
∥∥∥] (63)

where (a) follows from Jensen’s inequality, and (b) follows
from the triangle inequality. We bound the terms in (63) sepa-
rately. For the first term,

E

[∥∥∥∇Q(t )
k (w̃2;X (t )

o )− ∇Q(t )
k (̃u2;X (t )

o )
∥∥∥]

(a)≤ E

[
LX (t )

o ‖w̃2 − ũ2‖
]

(b)≤ E

[
LX (t )

o

(
‖w − u‖

+ α

∥∥∥∇Q(t )
k (w;X (t )

in )−∇Q(t )
k (u;X (t )

in )
∥∥∥)]

(c)≤ E

[
LX (t )

o

(
‖w − u‖ + αLX (t )

in ‖w − u‖
)]

(64)

(d )≤ L(1+ αL)‖w − u‖ (65)

where (a) follows from Assumption 1, (b) follows from re-
placing w̃2, ũ2 and applying triangle inequality, (c) follows
from Assumption 1, (d ) follows from the independence as-
sumption on X (t )

in ,X (t )
o and taking the expectation. For the

second term we have:

E

∥∥∥∇2Q(t )
k (w;X (t )

in )∇Q(t )
k (w̃2;X (t )

o )

−∇2Q(t )
k (u;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )
∥∥∥

(a)≤ E

[∥∥∥∇2Q(t )
k (w;X (t )

in )∇Q(t )
k (w̃2;X (t )

o )

−∇2Q(t )
k (w;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )
∥∥∥]

+ E

[∥∥∥∇2Q(t )
k (w;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )

−∇2Q(t )
k (u;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )
∥∥∥] (66)

where (a) follows from adding and subtracting the same term
and triangle inequality. For the first term in (66), we have:

E

∥∥∥∇2Q(t )
k (w;X (t )

in )∇Q(t )
k (w̃2;X (t )

o )

−∇2Q(t )
k (w;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )
∥∥∥

(a)≤ E

[∥∥∥∇2Q(t )
k (w;X (t )

in )
∥∥∥

×
∥∥∥∇Q(t )

k (w̃2;X (t )
o )− ∇Q(t )

k (̃u2;X (t )
o )
∥∥∥]

(b)≤ E

[
(LX (t )

in )
(

LX (t )
o (1+ αLX (t )

in )‖w − u‖
)]

(c)≤ L2(1+ αL)‖w − u‖ (67)

where (a) follows from sub-multiplicity of the norm, (b)
follows from Assumption 1 and (64), (c) follows from the
independence assumption on X (t )

in ,X (t )
o and taking the expec-

tation.
For the second term in (66), we have:

E

∥∥∥∇2Q(t )
k (w;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )

−∇2Q(t )
k (u;X (t )

in )∇Q(t )
k (̃u2;X (t )

o )
∥∥∥

(a)≤ E

[∥∥∥∇2Q(t )
k (w;X (t )

in )− ∇2Q(t )
k (u;X (t )

in )
∥∥∥

×
∥∥∥∇Q(t )

k (̃u2;X (t )
o )
∥∥∥]
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(b)≤ Et∼πk

[
EX (t )

in

[
EX (t )

o

[∥∥∥∇2Q(t )
k (w;X (t )

in )−∇2Q(t )
k (u;X (t )

in )
∥∥∥

×
∥∥∥∇Q(t )

k (̃u2;X (t )
o )
∥∥∥]]]

(c)≤ Et∼πk

[
EX (t )

in

[∥∥∥∇2Q(t )
k (w;X (t )

in )−∇2Q(t )
k (u;X (t )

in )
∥∥∥B
]]

(d )≤ ρB‖w − u‖ (68)

where (a) follows from sub-multiplicity of the norm, (b)
follows from conditioning, (c) follows from Assumption 3
and (d ) follows from Assumption 2. Combining the results
completes the proof.

APPENDIX J
PROOF OF LEMMA 5
We will first prove three intermediate lemmas, then conclude
the proof.

First, we define the task-specific meta-gradient and task-
specific meta-stochastic gradient:

∇Qk
(t )

(w) � (I − α∇2Q(t )
k (w;X (t )

in ))

×∇Q(t )
k

(
w − α∇Q(t )

k (w;X (t )
in );X (t )

o

)
(69)

∇Jk
(t )

(w) � (I − α∇2J (t )
k (w))∇J (t )

k (w − α∇J (t )
k (w)) (70)

Lemma 6: Under assumptions 1,3,4, for each agent k, the

disagreement between ∇Qk
(t )

(·) and ∇Jk
(t )

(·) is bounded in
expectation, namely, for any w ∈ RM :

E‖∇Qk
(t )

(w)− ∇Jk
(t )

(w)‖2 ≤ C2
1 (71)

where C2
1 is a non-negative constant, given by:

C2
1 � 6(1+ αL)2σ 2

G(
1

|Xo| +
L2α2

|Xin| )

+ 6α2σ 2
H

|Xin| (B2 + σ 2
G

|Xo| )+
9α4

|Xin|2 (σ 4
H + L4σ 4

G) (72)

Proof: We introduce the error terms:

e(t )
h,x � α∇2J (t )

k (w)− α∇2Q(t )
k (w;X (t )

in ) (73)

e(t )
g,o � ∇Q(t )

k

(
w − α∇Q(t )

k (w;X (t )
in );X (t )

o

)
− ∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in )) (74)

e(t )
g,x � ∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))

− ∇J (t )
k (w − α∇J (t )

k (w)) (75)

Rewriting (69):

∇Qk
(t )

(w) =
(

I − α∇2J (t )
k (w)+ e(t )

h,x

)
×
(
∇J (t )

k (w − α∇J (t )
k (w))+ e(t )

g,o + e(t )
g,x

)
(76)

It then follows:

∇Qk
(t )

(w)−∇Jk
(t )

(w)

= (I − α∇2J (t )
k (w))e(t )

g,o + (I − α∇2J (t )
k (w))e(t )

g,x

+ e(t )
h,x∇J (t )

k (w − α∇J (t )
k (w))+ e(t )

h,xe(t )
g,o + e(t )

h,xe(t )
g,x (77)

Bounding the disagreement:∥∥∥∇Qk
(t )

(w)−∇Jk
(t )

(w)
∥∥∥

(a)≤
∥∥∥(I − α∇2J (t )

k (w))
∥∥∥‖e(t )

g,o‖ +
∥∥∥(I − α∇2J (t )

k (w))
∥∥∥‖e(t )

g,x‖

+ ‖e(t )
h,x‖
∥∥∥∇J (t )

k (w − α∇J (t )
k (w))

∥∥∥+ ‖e(t )
h,x‖‖e(t )

g,o‖

+ ‖e(t )
h,x‖‖e(t )

g,x‖
(b)≤
∥∥∥(I − α∇2J (t )

k (w))
∥∥∥‖e(t )

g,o‖ +
∥∥∥(I − α∇2J (t )

k (w))
∥∥∥‖e(t )

g,x‖

+ ‖e(t )
h,x‖
∥∥∥∇J (t )

k (w − α∇J (t )
k (w))

∥∥∥+ ‖e(t )
h,x‖‖e(t )

g,o‖

+ ‖e
(t )
h,x‖2
2
+ ‖e

(t )
g,x‖2
2

(78)

where (a) follows from sub-multiplicative property of the
norm and the triangle inequality, while (b) follows from ab ≤
a2+b2

2 .

Taking the square of the norm and using (
∑6

i=1 xi )2 ≤
6(
∑6

i=1 x2
i ) yields:∥∥∥∇Qk

(t )
(w)− ∇Jk

(t )
(w)
∥∥∥2

≤ 6
∥∥∥(I − α∇2J (t )

k (w))
∥∥∥2‖e(t )

g,o‖2

+ 6
∥∥∥(I − α∇2J (t )

k (w))
∥∥∥2‖e(t )

g,x‖2

+ 6‖e(t )
h,x‖2

∥∥∥∇J (t )
k (w − α∇J (t )

k (w))
∥∥∥2 + 6‖e(t )

h,x‖2‖e(t )
g,o‖2

+ 3‖e(t )
h,x‖4 + 3‖e(t )

g,x‖4 (79)

Taking the expectation with respect to the inner and outer
batches of data yields:

EX (t )
in ,X (t )

o

∥∥∥∇Qk
(t )

(w)−∇Jk
(t )

(w)
∥∥∥2

≤ 6
∥∥∥(I − α∇2J (t )

k (w))
∥∥∥2
EX (t )

in ,X (t )
o

[
‖e(t )

g,o‖2
]

+ 6
∥∥∥(I − α∇2J (t )

k (w))
∥∥∥2
EX (t )

in ,X (t )
o

[
‖e(t )

g,x‖2
]

+ 6EX (t )
in ,X (t )

o

[
‖e(t )

h,x‖2
] ∥∥∥∇J (t )

k (w − α∇J (t )
k (w))

∥∥∥2

+ 6EX (t )
in ,X (t )

o

[
‖e(t )

h,x‖2‖e(t )
g,o‖2

]
+ 3EX (t )

in ,X (t )
o

[
‖e(t )

h,x‖4
]

+ 3EX (t )
in ,X (t )

o

[
‖e(t )

g,x‖4
]

(80)
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We bound the terms of (80) one by one:∥∥∥(I − α∇2J (t )
k (w))

∥∥∥ (a)≤ (1+ αL) (81)∥∥∥(I − α∇2J (t )
k (w))

∥∥∥2 ≤ (1+ αL)2 (82)

where (a) follows from Assumption 1. Moreover,

EX (t )
in ,X (t )

o
‖e(t )

g,o‖2

= EX (t )
in ,X (t )

o

∥∥∥∇Q(t )
k

(
w − α∇Q(t )

k (w;X (t )
in );X (t )

o

)
− ∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))
∥∥∥2

(a)= EX (t )
in ,X (t )

o

∥∥∥∇Q(t )
k (w̃2;X (t )

o )−∇J (t )
k (w̃2)

∥∥∥2

(b)≤ σ 2
G

|Xo| (83)

where (a) follows from defining w̃2 � w − α∇Q(t )
k (w;X (t )

in ),

and (b) follows from conditioning on X (t )
in and Assumption 4.

Likewise,

‖e(t )
g,x‖

=
∥∥∥∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))−∇J (t )
k (w − α∇J (t )

k (w))
∥∥∥

(a)≤ αL
∥∥∥∇J (t )

k (w)−∇Q(t )
k (w;X (t )

in )
∥∥∥ (84)

where (a) follows from Assumption 1. It then follows:

‖e(t )
g,x‖4 ≤ α4L4

∥∥∥∇J (t )
k (w)− ∇Q(t )

k (w;X (t )
in )
∥∥∥4

(85)

Taking expectations:

EX (t )
in

[
‖e(t )

g,x‖4
]

≤ α4L4
EX (t )

in

[∥∥∥∇J (t )
k (w)−∇Q(t )

k (w;X (t )
in )
∥∥∥4
]

(a)≤ α4L4 3σ 4
G

|Xin|2 (86)

where (a) follows from Assumption 4. Similarly:

EX (t )
in

[
‖e(t )

g,x‖2
]

(a)≤ α2L2
EX (t )

in

[∥∥∥∇J (t )
k (w)−∇Q(t )

k (w;X (t )
in )
∥∥∥2
]

(b)≤ α2L2 σ 2
G

|Xin| (87)

where (a) follows from taking square and expectation of (84),
and (b) follows from Assumption 4. Furthermore,

EX (t )
in
‖e(t )

h,x‖4 = α4
EX (t )

in

∥∥∥∇2J (t )
k (w)− α∇2Q(t )

k (w;X (t )
in )
∥∥∥4

(a)≤ α4 3σ 4
H

|Xin|2 (88)

EX (t )
in
‖e(t )

h,x‖2 = α2
EX (t )

in

∥∥∥∇2J (t )
k (w)− α∇2Q(t )

k (w;X (t )
in )
∥∥∥2

(b)≤ α2 σ 2
H

|Xin| (89)

where (a) and (b) follow from Assumption 4. Moreover,∥∥∥∇J (t )
k (w − α∇J (t )

k (w))
∥∥∥2 ≤ B2 (90)

because of Assumption 3, and

EX (t )
in ,X (t )

o

[
‖e(t )

h,x‖2‖e(t )
g,o‖2

]
= EX (t )

in

[
EX (t )

o

[
‖e(t )

h,x‖2‖e(t )
g,o‖2

]]
(a)≤ EX (t )

in

[
‖e(t )

h,x‖2
σ 2

G

|Xo|
]

(b)≤ α2 σ 2
H

|Xin|
σ 2

G

|Xo| (91)

where (a) follows from (83), and (b) follows from (89). Sub-
stituting the results into (80) completes the proof.

Defining J∗k (w) := Jk (w − α∇Jk (w)) where Jk (w) =
Et∼πk [J (t )

k (w)], we have the following two lemmas.
Lemma 7: Under assumptions 1,3,5, for each agent k, the

disagreement between ∇Jk
(t )

(·) and ∇J∗k (·) is bounded in
expectation, namely, for any w ∈ RM :

E

∥∥∥∇Jk
(t )

(w)−∇J∗k (w)
∥∥∥2 ≤ C2

2 (92)

where C2
2 is a non-negative constant, given by:

C2
2 � 8(1+ αL)2(1+ α2L2)γ 2

G + 4B2α2γ 2
H

+ 2α4γ 4
H + 16(1+ α4L4)γ 4

G (93)

Proof: Recall the definitions:

∇Jk
(t )

(w) = (I − α∇2J (t )
k (w))∇J (t )

k (w − α∇J (t )
k (w)) (94)

∇J∗k (w) = (I − α∇2Jk (w))∇Jk (w − α∇Jk (w)) (95)

Defining the error terms:

e(t )
h,t � α∇2Jk (w)− α∇2J (t )

k (w) (96)

e(t )
g,t � ∇J (t )

k (w − α∇J (t )
k (w))− ∇Jk (w − α∇Jk (w)) (97)

We have:

∇Jk
(t )

(w)

= (I − α∇2Jk (w)+ e(t )
h,t )(∇Jk (w − α∇Jk (w))+ e(t )

g,t ) (98)

It then follows:

∇Jk
(t )

(w)−∇J∗k (w)

= (I − α∇2Jk (w))e(t )
g,t + e(t )

h,t∇Jk (w − α∇Jk (w))+ e(t )
h,t e

(t )
g,t

(99)

Taking the norms:∥∥∥∇Jk
(t )

(w)−∇J∗k (w)
∥∥∥
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(a)≤
∥∥∥(I − α∇2Jk (w))

∥∥∥‖e(t )
g,t‖ + ‖e(t )

h,t‖
∥∥∥∇Jk (w − α∇Jk (w))

∥∥∥
+ ‖e(t )

h,t‖‖e(t )
g,t‖

(b)≤
∥∥∥(I − α∇2Jk (w))

∥∥∥‖e(t )
g,t‖ + ‖e(t )

h,t‖
∥∥∥∇Jk (w − α∇Jk (w))

∥∥∥
+ ‖e

(t )
h,t‖2
2
+ ‖e

(t )
g,t‖2
2

(100)

where (a) follows from the sub-multiplicative property of
norms and the triangle inequality, (b) follows from ab ≤
a2+b2

2 . Using (
∑4

i=1 xi )2 ≤ 4(
∑4

i=1 x2
i ) and taking expecta-

tion yield:

E

∥∥∥∇Jk
(t )

(w)− ∇J∗k (w)
∥∥∥2

≤ 4
∥∥∥(I − α∇2Jk (w))

∥∥∥2
E

[
‖e(t )

g,t‖2
]

+ 4
∥∥∥∇Jk (w − α∇Jk (w))

∥∥∥2
E

[
‖e(t )

h,t‖2
]

+ 2E
[
‖e(t )

h,t‖4
]
+ 2E

[
‖e(t )

g,t‖4
]

(101)

We bound terms in (101) one by one. Note that∥∥∥(I − α∇2Jk (w))
∥∥∥2 ≤ (1+ αL)2 (102)

by Assumption 1, while

‖e(t )
g,t‖

=
∥∥∥∇J (t )

k (w − α∇J (t )
k (w))− ∇Jk (w − α∇Jk (w))

∥∥∥
(a)=
∥∥∥∇J (t )

k (w − α∇J (t )
k (w))−∇J (t )

k (w − α∇Jk (w))

+∇J (t )
k (w̃3)−∇Jk (w̃3)

∥∥∥
(b)≤
∥∥∥∇J (t )

k (w − α∇J (t )
k (w))−∇J (t )

k (w − α∇Jk (w))
∥∥∥

+
∥∥∥∇J (t )

k (w̃3)−∇Jk (w̃3)
∥∥∥

(c)≤ αL
∥∥∥∇J (t )

k (w)−∇Jk (w)
∥∥∥+ ∥∥∥∇J (t )

k (w̃3)− ∇Jk (w̃3)
∥∥∥

(103)

where (a) follows from the definition w̃3 � w − α∇Jk (w),
(b) follows from triangle inequality, and (c) follows from
Assumption 1.

For the second-order moment of e(t )
g,t , using (a+ b)2 ≤

2(a2 + b2) and taking expectation result in:

Et∼πk‖e(t )
g,t‖2 ≤ 2α2L2

Et∼πk

[∥∥∥∇J (t )
k (w)−∇Jk (w)

∥∥∥2
]

+ 2Et∼πk

[∥∥∥∇J (t )
k (w̃3)− ∇Jk (w̃3)

∥∥∥2
]

(a)≤ 2α2L2γ 2
G + 2γ 2

G

= 2γ 2
G(1+ α2L2) (104)

where (a) follows from Assumption 5.
For the fourth-order moment of e(t )

g,t , using (a+ b)4 ≤
8(a4 + b4) and taking expectation result in:

Et∼πk

[
‖e(t )

g,t‖4
]
≤ 8α4L4

Et∼πk

[∥∥∥∇J (t )
k (w)−∇Jk (w)

∥∥∥4
]

+ 8Et∼πk

[∥∥∥∇J (t )
k (w̃3)− ∇Jk (w̃3)

∥∥∥4
]

(a)≤ 8α4L4γ 4
G + 8γ 4

G

≤ 8γ 4
G(1+ α4L4) (105)

where (a) follows from Assumption 5. Also,∥∥∥∇Jk (w − α∇Jk (w))
∥∥∥2 ≤ B2 (106)

by Assumption 3, and

Et∼πk‖e(t )
h,t‖4 = Et∼πk

∥∥∥α∇2Jk (w)− α∇2J (t )
k (w)

∥∥∥4

= α4
Et∼πk

∥∥∥∇2Jk (w)−∇2J (t )
k (w)

∥∥∥4

(a)≤ α4γ 4
H (107)

Et∼πk‖e(t )
h,t‖2

(b)≤
√
Et∼πk‖e(t )

h,t‖4
(c)≤ α2γ 2

H (108)

where (a) follows from Assumption 5, (b) follows from
Jensen’s inequality, and (c) follows from taking square root
of (a). Inserting all the results into (101) completes the proof.

Next, we prove the last intermediate lemma.
Lemma 8: Under assumptions 1,3,4,5, for each agent k, the

disagreement between ∇J∗k (·) and ∇ Ĵk (·) is bounded, namely,
for any w ∈ RM :∥∥∥∇J∗k (w)−∇ Ĵk (w)

∥∥∥ ≤ C3 (109)

where C3 is a non-negative constant, given by:

C3 � (1+ αL)αL
σG√|Xin|

+ (1+ αL)2γG + Bα
σH√|Xin|

+ BαγH + α2 σ 2
H

|Xin| + α2γ 2
H + α2L2 σ 2

G

|Xin|
+ 2(1+ α2L2)γ 2

G (110)

Proof: Recall the definitions:

∇J∗k (w) = (I − α∇2Jk (w))∇Jk (w − α∇Jk (w)) (111)

∇ Ĵk (w) = E

[
(I − α∇2Q(t )

k (w;X (t )
in ))

×∇Q(t )
k

(
w − α∇Q(t )

k (w;X (t )
in );X (t )

o

) ]
= Et∼πk

[
EX (t )

in

[
(I − α∇2Q(t )

k (w;X (t )
in ))

×∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))
]]

(112)
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Recall the error terms:

e(t )
h,x � α∇2J (t )

k (w)− α∇2Q(t )
k (w;X (t )

in ) (113)

e(t )
h,t � α∇2Jk (w)− α∇2J (t )

k (w) (114)

e(t )
g,x � ∇J (t )

k (w − α∇Q(t )
k (w;X (t )

in ))

−∇J (t )
k (w − α∇J (t )

k (w)) (115)

e(t )
g,t � ∇J (t )

k (w − α∇J (t )
k (w))−∇Jk (w − α∇Jk (w)) (116)

We can rewrite the components of the adjusted objective gra-
dient as:

I − α∇2Q(t )
k (w;X (t )

in ) = I − α∇2Jk (w)+ e(t )
h,x + e(t )

h,t (117)

∇J (t )
k (w − α∇Q(t )

k (w;X (t )
in ))

= ∇Jk (w − α∇Jk (w))+ e(t )
g,x + e(t )

g,t (118)

and the distance as:∥∥∥∇ Ĵk (w)− ∇J∗k (w)
∥∥∥

=
∥∥∥E[(I − α∇2Jk (w))(e(t )

g,x + e(t )
g,t )

+∇Jk (w − α∇Jk (w))(e(t )
h,x + e(t )

h,t )

+ (e(t )
g,x + e(t )

g,t )(e(t )
h,x + e(t )

h,t )
]∥∥∥

(a)≤ E

[∥∥∥(I − α∇2Jk (w))(e(t )
g,x + e(t )

g,t )

+∇Jk (w − α∇Jk (w))(e(t )
h,x + e(t )

h,t )

+ (e(t )
g,x + e(t )

g,t )(e(t )
h,x + e(t )

h,t )
∥∥∥]

(b)≤
∥∥∥(I − α∇2Jk (w))

∥∥∥E [‖e(t )
g,x‖
]

+
∥∥∥(I − α∇2Jk (w))

∥∥∥E [‖e(t )
g,t‖
]

+
∥∥∥∇Jk (w − α∇Jk (w))

∥∥∥E [‖e(t )
h,x‖
]

+
∥∥∥∇Jk (w − α∇Jk (w))

∥∥∥E [‖e(t )
h,t‖
]

+ E

[
‖e(t )

h,x‖2
]
+ E

[
‖e(t )

h,t‖2
]
+ E

[
‖e(t )

g,x‖2
]

+ E

[
‖e(t )

g,t‖2
]

(119)

where (a) follows from Jensen’s inequality, (b) follows from
triangle inequality and ‖(a+ b)(c+ d )‖ ≤ ‖a‖2 + ‖b‖2 +
‖c‖2 + ‖d‖2.

We bound the terms in (119) one by one. Note that∥∥(I − α∇2Jk (w))
∥∥ ≤ (1+ αL) (120)

by Assumption 1. Also,

E‖e(t )
g,x‖

(a)≤
√
E‖e(t )

g,x‖2
(b)≤ αL

σG√|Xin|
(121)

where (a) follows from Jensen’s inequality, and (b) follows
from (87). Likewise,

E‖e(t )
g,t‖

(a)≤ αLEt∼πk

[∥∥∥∇J (t )
k (w)− ∇Jk (w)

∥∥∥]
+ Et∼πk

[∥∥∥∇J (t )
k (w̃3)− ∇Jk (w̃3)

∥∥∥]
(b)≤ αLγG + γG

≤ (1+ αL)γG (122)

where (a) follows from (103) and taking the expectation, and
(b) follows from Assumption 5. Moreover,∥∥∥∇Jk (w − α∇Jk (w))

∥∥∥ ≤ B (123)

by Assumption 3, and

E‖e(t )
h,x‖

(a)≤
√
E‖e(t )

h,x‖2
(b)≤ α

σH√|Xin|
(124)

where (a) follows from Jensen’s inequality, and (b) follows
from (89). Also,

E‖e(t )
h,t‖

(a)≤
√
E‖e(t )

h,t‖2
(b)≤ αγH (125)

where (a) follows from Jensen’s inequality, and (b) follows
from (108). Moreover,

E‖e(t )
h,x‖2 ≤ α2 σ 2

H

|Xin| (126)

by (89),

E‖e(t )
h,t‖2 ≤ α2γ 2

H (127)

by (108),

E‖e(t )
g,x‖2 ≤ α2L2 σ 2

G

|Xin| (128)

by (87), and

E‖e(t )
g,t‖2 ≤ 2(1+ α2L2)γ 2

G (129)

by (104). Inserting all the bounds into (119) completes the
proof.

Now, combining the results of the previous three interme-
diate lemmas, we will prove that C2 = 3

|Sk | (C
2
1 +C2

2 +C2
3 ),

i.e.,

E

∥∥∥∇Qk (w)−∇ Ĵk (w)
∥∥∥2 ≤ 3

|Sk|
(C2

1 +C2
2 +C2

3 ) (130)

where C1,C2 and C3 expressions are given in Lemma 6,
Lemma 7 and Lemma 8, respectively.

Proof:

E

∥∥∥∇Qk (w)− ∇ Ĵk (w)
∥∥∥2

= E

∥∥∥ 1

|Sk|
∑
t∈Sk

∇Qk
(t )

(w)− ∇ Ĵk (w)
∥∥∥2
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= E

∥∥∥ 1

|Sk|
∑
t∈Sk

(∇Qk
(t )

(w)− ∇ Ĵk (w))
∥∥∥2

= 1

|Sk|2
∑
t∈Sk

E

[∥∥∥∇Qk
(t )

(w)−∇ Ĵk (w)
∥∥∥2
]

+ 1

|Sk|2
∑

t1 �=t2

E

[
(∇Q(t1)

k (w)−∇ Ĵk (w))T

× (∇Q(t2)
k (w)−∇ Ĵk (w))

]
(a)= 1

|Sk|2
∑
t∈Sk

E

[∥∥∥∇Qk
(t )

(w)− ∇ Ĵk (w)
∥∥∥2
]

+ 1

|Sk|2
∑

t1 �=t2

[
E

[
(∇Q(t1)

k (w)−∇ Ĵk (w))T
]

× E

[
∇Q(t2 )

k (w)−∇ Ĵk (w)
] ]

(b)= 1

|Sk |2
∑
t∈Sk

E

∥∥∥∇Qk
(t )

(w)− ∇ Ĵk (w)
∥∥∥2

= 1

|Sk|
E

∥∥∥∇Qk
(t )

(w)−∇ Ĵk (w)
∥∥∥2

(131)

where (a) follows from independence assumption on batch
of tasks, and (b) follows from the definition of the adjusted
objective. Now, bounding the term in (131):

∇Qk
(t )

(w)−∇ Ĵk (w)

= (∇Qk
(t )

(w)−∇Jk
(t )

(w))+ (∇Jk
(t )

(w)− ∇J∗k (w))

+ (∇J∗k (w)−∇ Ĵk (w)) (132)

By triangle inequality:∥∥∥∇Qk
(t )

(w)− ∇ Ĵk (w)
∥∥∥ (133)

≤
∥∥∥∇Qk

(t )
(w)−∇Jk

(t )
(w)
∥∥∥+ ∥∥∥∇Jk

(t )
(w)− ∇J∗k (w)

∥∥∥
+
∥∥∥∇J∗k (w)−∇ Ĵk (w)

∥∥∥ (134)

Using (
∑3

i=1 xi )2 ≤ 3(
∑3

i=1 x2
i ) :∥∥∥∇Qk

(t )
(w)− ∇ Ĵk (w)

∥∥∥2

≤ 3
∥∥∥∇Qk

(t )
(w)− ∇Jk

(t )
(w)
∥∥∥2 + 3

∥∥∥∇Jk
(t )

(w)−∇J∗k (w)
∥∥∥2

+ 3
∥∥∥∇J∗k (w)−∇ Ĵk (w)

∥∥∥2
(135)

Taking expectations:

E

∥∥∥∇Qk
(t )

(w)−∇ Ĵk (w)
∥∥∥2

≤ 3E

[∥∥∥∇Qk
(t )

(w)−∇Jk
(t )

(w)
∥∥∥2
]

+ 3E

[∥∥∥∇Jk
(t )

(w)−∇J∗k (w)
∥∥∥2
]
+ 3
∥∥∥∇J∗k (w)− ∇ Ĵk (w)

∥∥∥2

(136)

(a)≤ 3(C2
1 +C2

2 +C2
3 ) (137)

and (a) follows from definitions of C1,C2,C3. Inserting (137)
into (131) completes the proof.

APPENDIX K
PROOF OF THEOREM 1
For analyzing the centroid model recursion it is useful to
define the following variables, which collect all variables from
across the network:

W i � col
{
w1,i, . . . ,wK,i

}
(138)

A � A⊗ IM (139)

ĝ(W i ) � col
{∇Q1(w1,i ), . . . ,∇QK (wK,i )

}
(140)

Then, we rewrite the diffusion equations (7a)–(7b) in a more
compact form as:

W i = AT (W i−1−μ̂g(W i−1)) (141)

Multiplying this equation by 1
K 1T

K ⊗ I from the left and using
(16) we get the recursion:(

1

K
1T

K ⊗ I

)
W i

=
(

1

K
1T

K ⊗ I

)
W i−1−μ

(
1

K
1T

K ⊗ I

)
ĝ(W i−1)

(142)

Rewriting the centroid launch model as:

wc,i =
K∑

k=1

1

K
wk,i =

(
1

K
1T

K ⊗ I

)
W i (143)

and defining the extended centroid matrix,

Wc,i � 1K ⊗ wc,i =
(

1

K
1K1

T
K ⊗ I

)
(W i−1−μ̂g(W i−1))

(144)
it follows that:

W i−Wc,i

=
(
AT − 1

K
1K1

T
K ⊗ I

)
(W i−1−μ̂g(W i−1))

(a)=
(
AT − 1

K
1K1

T
K ⊗ I

)(
I − 1

K
1K1

T
K ⊗ I

)
× (W i−1−μ̂g(W i−1))

=
(
AT − 1

K
1K1

T
K ⊗ I

)
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×
(
W i−1−Wc,i−1−

(
I − 1

K
1K1

T
K ⊗ I

)
μ̂g(W i−1)

)
(b)=
(
AT − 1

K
1K1

T
K ⊗ I

) (
W i−1−Wc,i−1−μ̂g(W i−1)

)
(145)

where (a) and (b) follows from the equality:(
AT − 1

K
1K1

T
K ⊗ I

)(
I − 1

K
1K1

T
K ⊗ I

)
= AT − 1

K
1K1

T
K ⊗ I (146)

which follows from doubly-stochastic combination matrix as-
sumption. Taking the squared norms:∥∥W i−Wc,i

∥∥2

=
∥∥∥∥(AT − 1

K
1K1

T
K ⊗ I

) (
W i−1−Wc,i−1−μ̂g(W i−1)

)∥∥∥∥2

(a)≤ λ2
2

∥∥W i−1−Wc,i−1−μ̂g(W i−1)
∥∥2

(b)≤ λ2
∥∥W i−1−Wc,i−1

∥∥2 + μ2 λ2
2

1− λ2
‖̂g(W i−1)‖2 (147)

where (a) follows from sub-multiplicative property of the
norms and (b) follows from ‖a+ b‖2 ≤ 1

β
‖a‖2 + 1

1−β
‖b‖2

for 0 < β < 1 with the choice of β:

β = λ2 =
∥∥∥∥AT − 1

K
1K1

T
K ⊗ I

∥∥∥∥ < 1 (148)

Taking expectation conditioned on W i−1:

E

[∥∥W i−Wc,i
∥∥2|W i−1

]
≤ λ2E

[∥∥W i−1−Wc,i−1
∥∥2|W i−1

]
+ μ2 λ2

2

1− λ2
E
[‖̂g(W i−1)‖2|W i−1

]
≤ λ2E

[∥∥W i−1−Wc,i−1
∥∥2|W i−1

]
+ μ2 λ2

2

1− λ2

K∑
k=1

E

[∥∥∇Qk (wk,i−1)
∥∥2|W i−1

]
(a)= λ2E

[∥∥W i−1−Wc,i−1
∥∥2|W i−1

]
+ μ2 λ2

2

1− λ2

K∑
k=1

∥∥∇ Ĵk (wk,i−1)
∥∥2

+μ2 λ2
2

1− λ2

K∑
k=1

E

[∥∥∇Qk (wk,i−1)−∇ Ĵk (wk,i−1)
∥∥2|W i−1

]
(b)≤ λ2E

[∥∥W i−1−Wc,i−1
∥∥2|W i−1

]
+ μ2 λ2

2

1− λ2
KB̂2

+ μ2 λ2
2

1− λ2
KC2

= λ2E

[∥∥W i−1−Wc,i−1
∥∥2|W i−1

]
+μ2 λ2

2

1− λ2
K
(
B̂2 +C2)

(149)

where (a) follows from dropping the cross-terms due to un-
biasedness of the stochastic gradient update, and (b) follows
from Lemmas 3 and 5. Taking expectation again to remove
the conditioning:

E
∥∥W i−Wc,i

∥∥2 ≤ λ2E
∥∥W i−1−Wc,i−1

∥∥2

+ μ2 λ2
2

1− λ2
K
(
B̂2 +C2) (150)

We can iterate, starting from i = 0, to obtain:

E
∥∥W i−Wc,i

∥∥2

≤ λi
2‖W0−Wc,0 ‖2 + μ2 λ2

2

1− λ2
K
(
B̂2 +C2) i∑

k=0

λi−k
2

≤ λi
2‖W0−Wc,0 ‖2 + μ2 λ2

2

(1− λ2)2 K
(
B̂2 +C2)

(a)≤ μ2 λ2
2

(1− λ2)2 K
(
B̂2 +C2)+ O(μ3) (151)

where (a) holds whenever:

λi
2‖W0−Wc,0 ‖2 ≤ cμ3

⇐⇒ i logλ2 ≤ 3 log μ+ log c− 2 log ‖W0−Wc,0 ‖

⇐⇒ i ≥ 3 log μ

logλ2
+ O(1) = o(1/μ) (152)

where c is an arbitrary constant.

APPENDIX L
PROOF OF THEOREM 2
We first prove two intermediate lemmas, then conclude the
proof.

Recall the centroid launch model:

wc,i =
K∑

k=1

1

K
wk,i =

(
1

K
1T

K ⊗ I

)
W i (153)

which leads to the recursion:

wc,i = wc,i−1 − μ

K

K∑
k=1

∇Qk (wk,i−1) (154)

This is almost an exact gradient descent on the aggregate cost
(6) except for the perturbation terms. Decoupling them gives
us:

wc,i = wc,i−1 − μ

K

K∑
k=1

∇ Ĵk (wc,i−1)− μd i−1 − μsi (155)
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where the perturbation terms are:

d i−1 � 1

K

K∑
k=1

(∇ Ĵk (wk,i−1)−∇ Ĵk (wc,i−1)
)

(156)

si �
1

K

K∑
k=1

(∇Qk (wk,i−1)− ∇ Ĵk (wk,i−1)
)

(157)

Here, d i−1 measures the disagreement with the average launch
model whereas si represents the average stochastic gradient
noise in the process. Based on the network disagreement result
Theorem 1, we can bound the perturbation terms in (155).

Lemma 9 (Perturbation bounds): Under assumptions 1-6,
perturbation terms are bounded for sufficently small outer-
step sizes μ after sufficient number of iterations, namely:

E‖d i−1‖2 ≤ μ2L̂2 λ2
2

(1− λ2)2

(
B̂2 +C2)+ O(μ3) (158)

E‖si‖2 ≤ C2 (159)

Proof: We begin by studying the perturbation term si aris-
ing from the gradient approximations. We have:

E‖si‖2 = E

∥∥∥∥∥ 1

K

K∑
k=1

(∇Qk (wk,i−1)− ∇ Ĵk (wk,i−1)
)∥∥∥∥∥

2

(a)≤ 1

K

K∑
k=1

E
∥∥∇Qk (wk,i−1)−∇ Ĵk (wk,i−1)

∥∥2

(b)≤ 1

K

K∑
k=1

(
C2)

= C2 (160)

where (a) follows from Jensen’s inequality, and (b) follows
from Lemma 5. For the second perturbation term arising from
the disagreement within the network, we can bound:

‖d i−1‖2 =
∥∥∥∥∥

K∑
k=1

1

K

(∇ Ĵk (wk,i−1)−∇ Ĵk (wc,i−1)
)∥∥∥∥∥

2

(a)≤
N∑

k=1

1

K

∥∥∇ Ĵk (wk,i−1)−∇ Ĵk (wc,i−1)
∥∥2

(b)≤ L̂2

K

K∑
k=1

∥∥wk,i−1 − wc,i−1
∥∥2

= L̂2

K

∥∥W i−1−Wc,i−1
∥∥2

(161)

where (a) follows from Jensen’s inequality, and (b) follows
from Lemma 4. Taking the expectation and using Theorem 1
we complete the proof:

E‖d i−1‖2 ≤ μ2L̂2 λ2
2

(1− λ2)2

(
B̂2 +C2)+ O(μ3) (162)

Next, we present the second lemma.
Lemma 10 (Descent relation): Under asssumptions 1-6 we

have the descent relation:

E
[
Ĵ (wc,i )|wc,i−1

]
≤ Ĵ (wc,i−1)− μ

2
(1− 2μL̂)

∥∥∇ Ĵ (wc,i−1)
∥∥2 + 1

2
μ2L̂C2

+ O(μ3) (163)

Proof: First, observe that since each individual Ĵk (·) has
Lipschitz gradients by Lemma 4, the same holds for the aver-
age: ∥∥∇ Ĵ (w)− ∇ Ĵ (u)

∥∥
=
∥∥∥∥∥∇
(

K∑
k=1

1

K
Ĵk (w)

)
−∇

(
K∑

k=1

1

K
Ĵk (u)

)∥∥∥∥∥
=
∥∥∥∥∥

K∑
k=1

1

K

(∇ Ĵk (w)−∇ Ĵk (u)
)∥∥∥∥∥

(a)≤
N∑

k=1

1

K

∥∥∇ Ĵk (w)− ∇ Ĵk (u)
∥∥

(b)≤
N∑

k=1

1

K
L̂ ‖w − u‖

= L̂ ‖w − u‖ (164)

where (a) follows from Jensen’s inequality, and (b) follows
from Lemma 4. This property then implies the following
bound:

Ĵ (wc,i )

≤ Ĵ (wc,i−1)+ ∇ Ĵ (wc,i−1)
T (

wc,i − wc,i−1
)

+ L̂

2

∥∥wc,i − wc,i−1
∥∥2

(a)≤ Ĵ (wc,i−1)− μ
∥∥∇ Ĵ (wc,i−1)

∥∥2 − μ∇ Ĵ (wc,i−1)
T

× (d i−1 + si ) + μ2 L̂

2

∥∥∇ Ĵ (wc,i−1)+ d i−1 + si
∥∥2

(165)

where (a) follows from (155). Taking expectations, condi-
tioned on W i−1 yields:

E
[
Ĵ (wc,i )|W i−1

]
(a)≤ Ĵ (wc,i−1)− μ

∥∥∇ Ĵ (wc,i−1)
∥∥2 − μ∇ Ĵ (wc,i−1)

T
d i−1

+ μ2 L̂

2

∥∥∇ Ĵ (wc,i−1)+ d i−1
∥∥2 + μ2 L̂

2
E
[‖si‖2|W i−1

]
(b)≤ Ĵ (wc,i−1)− μ

∥∥∇ Ĵ (wc,i−1)
∥∥2 + μ

2

∥∥∇ Ĵ (wc,i−1)
∥∥2

+ μ

2
‖d i−1‖2 + μ2L̂

∥∥∇ Ĵ (wc,i−1)
∥∥2 + μ2L̂‖d i−1‖2
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+ μ2 L̂

2
E
[‖si‖2|W i−1

]
≤ Ĵ (wc,i−1)− μ

2

(
1− 2μL̂

) ∥∥∇ Ĵ (wc,i−1)
∥∥2

+ μ

2

(
1+ 2μL̂

) ‖d i−1‖2 + μ2 L̂

2
E
[‖si‖2|W i−1

]
(166)

where (a) follows from Esi = 0, and (b) follows from
Cauchy-Schwarz and ab ≤ a2+b2

2 .
Taking expectations to remove the conditioning and the

bounds from Lemma 9 yields:

EĴ (wc,i )

≤ EĴ (wc,i−1)− μ

2

(
1− 2μL̂

)
E
∥∥∇ Ĵ (wc,i−1)

∥∥2

+ μ3

2

(
1+ 2μL̂

)
L̂2 λ2

2

(1− λ2)2

(
B̂2 +C2) + μ2 L̂

2
C2

+ O(μ4)

= EĴ (wc,i−1)− μ

2

(
1− 2μL̂

)
E
∥∥∇ Ĵ (wc,i−1)

∥∥2 + μ2 L̂

2
C2

+ O(μ3) (167)

The proof of the theorem is based on contradiction. First
define:

c1 � 1− 2μL̂

2
(168)

c2 � L̂C2

2
+ O(μ) (169)

We will prove that

E
∥∥∇ Ĵ (wc,i� )

∥∥2 ≤ 2μ
c2

c1
(170)

i� ≤
(

Ĵ (w0)− Ĵo

c2

)
1/μ2 (171)

which correspond to (26) and (27), respectively. Descent rela-
tion (163) can be rewritten as:

E
[
Ĵ (wc,i )|wc,i−1

] ≤ Ĵ (wc,i−1)− μc1
∥∥∇ Ĵ (wc,i−1)

∥∥2 + μ2c2

(172)
Suppose there is no time instant i� satisfying ‖∇ Ĵ (wc,i� )‖2 ≤
2μ

c2
c1

. Then, for any time i we obtain:

EĴ (wc,i )
(a)≤ Ĵ (w0)− μc1

i∑
k=1

(
E
∥∥∇ Ĵ (wc,k−1)

∥∥2 − μ
c2

c1

)
≤ Ĵ (w0)− μ2c2i (173)

where (a) follows from starting from the first iteration and
iterating over (172). But when the limit is taken we get
limi→∞ EĴ (wc,i ) ≤ −∞, which contradicts the boundedness
from below assumption Ĵ (w) ≥ Ĵo for all w. This proves (26).
In order to prove (27), we iterate over (172) up to time i�, then,

the first time instant where E‖∇ Ĵ (wc,i� )‖2 ≤ 2μ
c2
c1

holds:

Ĵo ≤ EĴ (wc,i� )

≤ Ĵ (w0)− μc1

i�∑
k=1

(
E
∥∥∇ Ĵ (wc,k−1)

∥∥2 − μ
c2

c1

)
≤ Ĵ (w0)− μ2c2i� (174)

Rearranging terms completes the proof.

APPENDIX M
PROOF OF COROLLARY 1
We begin by adding and subtracting ‖∇ Ĵ (wc,i� )‖2:

E
∥∥∇J (wc,i� )

∥∥2

= E
∥∥∇J (wc,i� )−∇ Ĵ (wc,i� )+∇ Ĵ (wc,i� )

∥∥2

(a)≤ 2E
∥∥∇J (wc,i� )−∇ Ĵ (wc,i� )

∥∥2 + 2E
∥∥∇ Ĵ (wc,i� )

∥∥2
(175)

where (a) follows from the inequality ‖a+ b‖2 ≤ 2‖a‖2 +
2‖b‖2. Inserting (20) and (26) completes the proof.
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