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Abstract:

The problem of computing the Elementary Flux Modes (EFM) and Minimal 
Cut Sets (MCS) of metabolic network is a fundamental one in metabolic 
networks. A key insight is that they can be understood as a dual pair of 
monotone Boolean functions. Using this insight, this computation 
reduces to the question of generating from an oracle a dual pair of 
monotone Boolean functions. If one the two sets (functions) is known, 
then the other can be computed via a process known as dualization.   

Fredman and Khachiyan provided two algorithms, which they called 
simply A and B, that can serve as an engine for oracle-based generation 
or dualization of monotone Boolean functions.  We look at efficiencies 
available in implementing their algorithm B, which we will refer to as FK-
B. Like their algorithm A, FK-B certifies whether two given monotone 
Boolean functions in the form of Conjunctive Normal Form (CNF) and 
Disjunctive Normal Form (DNF) are dual or not, and in case of not being 
dual it returns a conflicting assignment (CA), i.e. an assignment that 
makes one of the given Boolean functions True and the other one False. 
The FK-B algorithm is a recursive algorithm that searches through the 
tree of assignments to find a CA. If it does not find any CA, it means that 
the given Boolean functions are dual. 

In this paper, we propose six techniques applicable to the FK-B and 
hence to the dualization process. Although these techniques do not 
reduce the time complexity, they considerably reduce the running time 
in practice. We evaluate the proposed improvements by applying them 
to compute the MCSs from the EMSs in the 19 small- and medium-sized 
models from the BioModels database along with 4 models of biomass 
synthesis in E. coli that were used in an earlier computational survey.
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Abstract: The problem of computing the Elementary Flux Modes

(EFM) and Minimal Cut Sets (MCS) of metabolic network is a fun-

damental one in metabolic networks. A key insight is that they can

be understood as a dual pair of monotone Boolean functions. Using

this insight, this computation reduces to the question of generating

from an oracle a dual pair of monotone Boolean functions. If one
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the two sets (functions) is known, then the other can be computed

via a process known as dualization.

Fredman and Khachiyan provided two algorithms, which they called

simply A and B, that can serve as an engine for oracle-based gener-

ation or dualization of monotone Boolean functions. We look at ef-

ficiencies available in implementing their algorithm B, which we will

refer to as FK-B. Like their algorithm A, FK-B certifies whether

two given monotone Boolean functions in the form of Conjunctive

Normal Form (CNF) and Disjunctive Normal Form (DNF) are dual

or not, and in case of not being dual it returns a conflicting assign-

ment (CA), i.e. an assignment that makes one of the given Boolean

functions True and the other one False. The FK-B algorithm is a

recursive algorithm that searches through the tree of assignments

to find a CA. If it does not find any CA, it means that the given

Boolean functions are dual.

In this paper, we propose six techniques applicable to the FK-B

and hence to the dualization process. Although these techniques

do not reduce the time complexity, they considerably reduce the

running time in practice. We evaluate the proposed improvements

by applying them to compute the MCSs from the EFMs in the 19

small- and medium-sized models from the BioModels database along

with 4 models of biomass synthesis in E. coli that were used in an

earlier computational survey ?.
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1 Introduction

Boolean functions, defined as functions whose input is a vector x ∈ {0, 1}n

and whose output is f(x) ∈ {0, 1}, are a powerful modeling tool in a variety

of settings. In many applications, such as those described in ?, the relevant

Boolean functions have a natural monotone structure, meaning that x ≤ y =⇒

f(x) ≤ f(y), with the vector inequality interpreted component-wise. For this

reason, they can be fully represented and analyzed in terms of either their

minimal true settings or their maximal false settings. The dualization problem

for monotone Boolean functions, which consists of translating between these

two representations, is both a deep theoretical question as well as a practically

important challenge. It is closely related to the generation problem, which

consists of enumerating all the minimal true and maximal false settings of a

monotone Boolean function specified as an oracle, i.e. providing the value of

f(x) given an input x ?.

The dualization problem has numerous applications in subfields of mathe-

matics such as graph theory (computing the transversal of a hypergraph), com-

binatorics (finding minimal hitting sets), and machine learning (model-based

fault diagnosis), as well as more applied fields, including security, networking,

distributed systems and computational biology. Our interest in the problem

stems from computational biology, where we seek to perform a complete struc-

tural analysis of a metabolic network model by generating its elementary flux

modes (EFMs) and minimal cut sets (MCSs), following ?. This problem is of

ongoing interest, see for example ?.

The verification version of the dualization problem, also called the duality

problem in the literature, consists of deciding whether a list of maximal false

settings and a list of minimal true settings define the same monotone Boolean

function. For instance CNF = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3), and
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DNF = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x4) where ∨ represents “or”

and ∧ represents “and” are equivalent ways of describing a monotone Boolean

function.

The computational complexity of the duality problem is not tightly charac-

terized. Fredman and Khachiyan ? found two novel algorithms for this decision

problem that also extend to oracle-based generation of both the main func-

tion and its dual ?. These algorithms, called FK-A and FK-B, either certify

the duality or generate a new minimal true or maximal false setting in quasi-

polynomial time in the joint size of the two lists. Their behaviour in practice is

poorly understood. The only available open-source implementation for oracle-

based generation is cl-jointgen ? for FK-A, though some experiments on FK-A

and FK-B are described in ?, and an FK-A based dualization algorithm is also

available ?.

In this project, we address some computational challenges of using the FK-

B algorithm for dualizing a monotone Boolean function. Our techniques can

also be directly applied to the setting of jointly generating the minimal true

and maximal false settings of a monotone Boolean function given as an oracle.

While motivated by metabolic networks, our techniques are completely general.

A preliminary version of this work ? includes results on three basic modi-

fications to improve the performance of the FK-dualization procedure. These

are producing multiple conflicting assignments in a single iteration, substan-

tially reducing the number of redundancy tests during the execution of FK-B,

and using a memoization technique to speed up dualization. We showed that

each improvement alone produces a substantial speed-up, and in combination,

they result in an order of magnitude speed gain in clock-time relative to a naive

(unoptimized) implementation.

Here we extend that work by introducing three additional improvements
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that speed up the FK-B dualization algorithm. Briefly, these are choosing the

splitting variable based on information learned in the previous stages, choosing

whether to first set a variable to true or false when the the variable is almost

equally frequent in both the CNF and DNF, and shrinking the CNF and DNF

during dualization. The first two improvements are heuristics that use previous

information to make a decision at the current state, while the third one is an

exact test, but only applies in a special case. Our results show that these mod-

ifications further improve the performance of the FK-B dualization algorithm,

with the splitting variable heuristic showing a significant impact on the most

largest computations.

1.1 Definitions

Let n ∈ N be fixed. We write B to denote the set {0, 1}. A Boolean function

f : Bn → B is monotone if f(s) ≤ f(t) for any two vectors s ≤ t ∈ Bn, where

the inequality is interpreted component-wise. In other words, replacing a 0 with

a 1 in the input cannot decrease f ’s value. Monotone functions are precisely

those that can be constructed using the OR and AND operations, without using

any NOTs (negations). We denote the negation of any x ∈ B by x̄.

The dual of a Boolean function f is the function fd defined by:

fd(x) = f(x) (1)

for all x = (x1, x2, . . . , xn) ∈ Bn, where x̄ = (x̄1, x̄2, . . . , x̄n).

A monotone Boolean function f is said to be in Disjunctive Normal Form

(DNF) if it is represented as an OR of ANDs, i.e. as

f =
m∨
j=1

Mj , where Mj =
∧
i∈Tj

xi (2)
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for a collection of m sets T1, T2, . . . Tm.

Here, the monomials Mj are called implicants of f . If the underlying sets

Tj satisfy the Sperner property, i.e. Tj 6⊂ Tk whenever j 6= k, then each Mj is

a prime implicant of f and m is called the size of f . In this case, the point

x ∈ Bn defined by

xi =


1 if i ∈ Tj

0 otherwise

(3)

is a minimal true point of f ; indeed, for this x we have f(x) = 1 and f(y) = 0

for any y < x, where y < x means that y ≤ x and y 6= x.

Similarly, a monotone Boolean function f is said to be in Conjunctive Normal

Form (CNF) if it is represented as an AND of ORs, i.e. as

f =
m∧
j=1

Cj , where Cj =
∨
i∈Sj

xi (4)

for a collection of m sets S1, S2, . . . Sm.

Here, the clauses Cj are called implicates of f . Once again, if the underlying

sets Sj satisfy the Sperner property, then each Cj is also called a prime implicate

of f and m is called the size of f . In this case, the point x defined by

xi =


0 if i ∈ Sj

1 otherwise

(5)

is a maximal false point of f ; indeed, for this x we have f(x) = 0 and f(y) = 1

for any y > x.

Lastly, we define the support of x, denoted supp(x), as the set {i ∈ {1, 2, . . . , n} |

xi = 1}.
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We focus on two related problems for monotone Boolean functions, duality

and dualization:

1. Duality: are two monotone Boolean functions defined by a DNF and a

CNF equivalent?

2. Dualization: compute the CNF equivalent to a given monotone DNF.

These two problems can be easily transformed into one another, as we ex-

plain below. The dualization problem is equivalent to Transversal Hypergraph

Generation, also called the Minimal Hitting Set Enumeration problem. For

background on these problems and applications, we refer the reader to ????

and references therein.

The algorithm with the best known worst-case performance guarantee for

the dualization of a monotone Boolean function f , called the FK-B algorithm,

has incremental quasi-polynomial running time ?. More precisely, starting from

a description of f in DNF, each iteration obtains an additional clause or verifies

duality of the equivalent CNF, in No(logN) time, where N is the total size of

the DNF and the current, possibly incomplete, CNF.

1.2 Application of the Dualization Problem to Metabolic

Network Structures

The dualization problem can be mapped to a variety of problems. The problem

of interest in our application is that of analyzing the structure of a metabolic

network model by finding its Elementary Flux Modes (EFMs) and Minimal

Cut Sets (MCSs). The problem of finding the smallest size EFM or MCS in

a metabolic network is NP-hard ?, while the problem of finding all the EFMs

or all the MCSs has an unknown complexity status, and can only be solved in

reasonable time for small or medium-size metabolic networks ??????.
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In the context of a metabolic network model M , the monotone Boolean

function f is defined on the characteristic vectors of subsets of reactions via

f(x) = 1 if and only if the support of x enables biomass production. In this

setting the minimal true points of f are called elementary flux modes (EFMs)

and the maximal false points of f are called minimal cut sets (MCSs), see for

example ??. In the experimental results section we apply the FK-B algorithm

with the proposed improvements to metabolic network models and study the

impact these improvements have on its performance in generating the MCSs

based on the pre-computed set of EFMs.

1.3 Some details of the FK-B dualization Algorithm

Algorithms 1 and 2 show the FK dualization and FK-B duality checking pro-

cedure respectively, following the presentations of ? and ?.

Algorithm 1: Fredman-Khachiyan Dualization

Input: A monotone Boolean function f on Bn expressed by its complete
DNF D.

Output: The complete CNF of C = Dd.

Function: FK-Dualization(D)
C = ∅;
Call FK-B on the pair (C,D);
if the returned value is ∅ then

return C;
else

let X∗ ∈ Bn be the point returned by FK-B;
compute a maximal false point of C, say Y ∗, such that X∗ ≤ Y ∗;
C = C ∧

∨
j∈supp(Y ∗)xj ;

go to Step 3;

end

Algorithm 1 starts with an empty CNF, called C, and a complete DNF,
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called D. In a loop, it checks the equivalence of C and D using the FK-B

algorithm. This algorithm either certifies duality, in which case the dualization

is complete and the CNF is returned, or it returns a conflicting assignment

(CA), that is, an assignment X∗ on which the CNF and the DNF take different

values, i.e. either CNF (X∗) = 1 and DNF (X∗) = 0, or CNF (X∗) = 0 and

DNF (X∗) = 1. It then identifies a maximal false point Y ∗ greater than X∗,

and adds its complement to the current CNF as a new clause.

Algorithm 2, FK-B, takes two Boolean functions in the form of one CNF

and one DNF, and checks if the inputs are equivalent for all possible Boolean

assignments via a recursive approach. If they are not equivalent, it returns a

conflicting assignment. The first step in this algorithm is to remove redundant

clauses from both the CNF and the DNF, which is accomplished by comparing

every pair of clauses c, c′ separately in the CNF and the DNF, and eliminating

c′ whenever c ≤ c′. This can be done in quadratic time in a direct way, and

probably not much faster, see for example ?.

Line 2 checks three necessary conditions for a CNF and DNF to be equiva-

lent. These are:

1. Existence of a non-empty intersection between every clause in CNF and

every monomial in DNF; if this condition is violated, a conflicting assign-

ment is a monomial m from the DNF that does not intersect some clause

of the CNF.

2. The presence of exactly the same variables in the CNF and the DNF; if

this condition is violated, with x being a variable in the DNF that does

not appear in the CNF, a conflicting assignment is obtained by m− {x},

where m is a monomial of the DNF that includes x. Alternatively, if x is

a variable in the CNF that does not appear in the DNF and c is a clause
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of the CNF that includes x, a possible conflicting assignment is obtained

by {V − c} ∪ x, where V is the set of all variables.

3. The maximum length of a monomial in the DNF is at most the number

of clauses in the CNF, and the maximum length of a clause in the CNF

is at most the number of monomials in the DNF. In a case that there is a

monomial m ∈ DNF that contains more variables than there are clauses

in CNF, if m′ ⊂ m is a proper subset of m satisfying m′ ∩ c 6= ∅ for every

clause c of CNF, a conflicting assignment is m′. In the other case that

there is a clause c ∈ CNF that contains more variables than number of

monomials in DNF, if c′ ⊂ c is a proper subset of c satisfying c′ ∩m 6= ∅

for every monomial m of DNF, the conflicting assignment would be V −c′,

where V is the set of all variables.

We note that in each case, the conflicting assignment can be found in polynomial

time in the length of the CNF and the DNF.

Line 4 addresses the case in which either the CNF or the DNF is very small,

and the equivalence can be checked directly via exhaustive search through the

tree of assignments in the CNF or the DNF, whichever is smaller. If they are

inequivalent the procedure returns a conflicting assignment; otherwise, it returns

∅.

The recursive part of the algorithm starts from line 6 where a splitting vari-

able is selected; based on its frequency in the CNF and the DNF, the splitting

variable is set to either False or True, and after that the current CNF and

DNF are simplified by fixing this variable assignment and generating a recur-

sive call to the FK-B algorithm on the new, smaller problem. Note that in

line 7, a variable x is called at most µ-frequent in D if its frequency in D is

at most 1/µ(|D| · |C|), i.e. |{m ∈ D : x ∈ m}|/|D| ≤ 1/µ(|D| · |C|), where
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µ(n) ∼ log n/ log logn is the largest integer k such that kk ≤ n. A similar

definition applies to C.

Given that the FK-B algorithm, Algorithm 2, returns the first conflicting

assignment (CA) that it finds between the given CNF and DNF, computing the

dual of a given DNF using Algorithm 1 requires NCNF + 1 iterations, where

NCNF is the size of the CNF that is dual to the given DNF.

1.3.1 Preprocessing of the DNF to simplify dualization

The DNF, D, is the input in the FK-dualization algorithm 1. In the context

of metabolic networks, each monomial and variable in the DNF corresponds to

an EFM and a reaction, respectively.

When analyzing metabolic networks to obtain the MCSs from the EFMs,

it is beneficial to pre-process the given EFMs before starting the dualization

procedure. The preprocessing involves three steps:

1. Removing any reactions that are not part of any EFMs (also known as

blocked reactions ??), which correspond to unused variables;

2. Removing any reactions involved in all the EFMs (also referred to as essen-

tial reactions ??), adding them as singleton MCSs during post-processing;

3. Collapsing any group of k reactions whose presence/absence patterns in

the EFMs are identical (a special case of this is referred to as enzyme

subsets ??) into a single reaction, expanding each of the final MCSs

involving this reaction into k copies during post-processing.

The pre-processing and post-processing steps are not necessary and can be

omitted – in particular, the same dual function will be generated in the end.

However, in some cases these steps, which can be performed quickly, allow us to
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perform the dualization computation on a reduced network. This gives a faster

overall computation, so we routinely use this method.

2 Methods

2.1 Reducing the Number of Redundancy Tests in the

FK-B Algorithm

In Algorithm 2, the first step (line 2) removes redundancy in both the CNF and

the DNF. Redundancy removal involves an all-pairs comparison of the clauses

(the monomials) in the CNF (the DNF) and removes any supersets found. In

logic, removing redundancy is equivalent to applying the absorption rule to

simplify the Boolean function. While there are algorithms that slightly improve

the asymptotic running time, say by a log factor, not practical improvement in

the quadratic running time is known, and it may be that none exists ?.

This procedure is a bottleneck due to the large number of pairwise compar-

isons that must be performed in each recursive call, and this is compounded by

the fact that when we perform dualization, the FK-B algorithm is called many

times to find the clauses of the CNF.

We reduce the number of redundancy tests performed in FK-B, and con-

sequently in FK-dualization, by noting that when we set a variable to True

(False) in the CNF (DNF), there is no need to check the redundancy of the

CNF (DNF) in the next recursive call because such a setting results in clauses

(monomials) in the CNF (DNF) being removed, which cannot generate any

additional redundancy.

This is implemented using two binary flags, which are set if the redundancy

in the CNF (the DNF) needs to be checked, and cleared otherwise. FKR, the

algorithm with reduced redundancy checks, differs from the baseline, algorithm
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2, in the following ways. First, the redundancy of the CNF (the DNF) is only

checked if the corresponding flag is set. Second, in lines 8 and 20, where a

variable x is set to False, the flag for the CNF is set and the flag for the DNF is

cleared, since we only need to check the redundancy in the CNF, not the DNF.

Conversely, in lines 14 and 22, the variable x is set to True, so the flag for the

DNF is set and the flag for the CNF is cleared. Note that in lines 11 and 17, it

is assumed that variable x is respectively set to True and False, and then the

variables in c and m are respectively set to False and True. For this reason,

redundancy can be produced in those lines, so the next call to FKR needs to

check the redundancy in both the CNF and the DNF.

2.2 Finding Multiple Conflicting Assignments

Given that we can use any conflicting assignment between the current CNF

and DNF to compute a new clause in the CNF, we can find Multiple Conflict-

ing Assignments (MCAs) at the same time to generate more than one clause

per iteration of the dualization procedure, and reduce the running time of the

algorithm by reducing the total number of required iterations.

To this end, MCAs can be computed in the three situations below without a

significant increase of computational effort. The first two situations arise during

the assessment of the first two conditions necessary for equivalence in FK-B.

The first condition that we assess in the FK-B algorithm is the existence of

a non-empty intersection between every clause in CNF and every monomial in

DNF. If there is no intersection between monomial m in the DNF and clause c

in the CNF, then m makes the DNF True and the CNF False, so it is a CA.

During the dualization procedure, especially early on, many of the monomials

and clauses have no intersection. We thus consider intersections between every

clause in the CNF and every monomial in the DNF at once and can return more
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than one CA.

The second condition that we assess in the FK-B algorithm is the presence

of exactly the same variables in the CNF and the DNF. If this condition is not

met, a CA is determined from the extra variable(s) in the CNF or the DNF.

If multiple variables are present in exactly one of the CNF and the DNF, we

consider all possible conflicting assignments instead of returning only one.

The third situation in which we compute MCAs is in the case where min(|C|, |D|) ≤

2. In such cases, the conflicting assignments are directly derived from Boolean

algebra. We only consider the case |C| ≤ 2 here; the case |D| ≤ 2 is symmetric

and is processed analogously.

The following cases may happen during this step:

• |C| = 1

Here, we look for any variable x in the unique CNF clause, denoted C[1],

such that D does not contain the singleton monomial x, in which case {x}

is a conflicting assignment.

• |C| = 2

In this case, we denote the two clauses by C[1] and C[2]. There are three

sub-cases:

– Let A0 := C[1] ∩ C[2]. If x ∈ A0 is a variable such that D does not

contain the singleton monomial x, then {x} is a conflicting assign-

ment.

– Let A1 := C[1]− C[2] and A2 := C[2]− C[1]. Note that A1, A2 6= ∅

because the CNF is non-redundant. If some monomial m in D is a

subset of one of the Ai’s, then {x|x ∈ m} is a conflicting assignment.

– Let (x, y) ∈ A1×A2, with A1 and A2 defined above. If no monomial

in D is a subset of {x, y} then {x, y} is a conflicting assignment.
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In all the aforementioned cases, whenever more than one conflicting assign-

ment is found, we return all of them. An issue regarding the MCAs is that

sometimes more than one CA can be mapped to a single clause in the CNF. In

this case, we use the unique clauses resulting from the MCAs.

2.3 Dealing with Repeated Subproblems

Given that FK-B is a recursive algorithm which is called many times during

dualization, certain subproblems are solved very frequently. In this case, mem-

oizing (storing for future retrieval) these subproblems and their solutions via

certificate CA’s (with dual pairs being characterized by an empty set of CAs)

is beneficial, as it can reduce the running time of both the FK-B algorithm as

well as FK-dualization as a whole.

To this end, we use a hash table whose keys are combination of the CNF and

the DNF and whose values are the CAs. To implement this idea, we compute

the key for a given CNF-DNF pair, prior to calling the FK-B algorithm. If

it is already in the hash table, we retrieve the value, i.e. the corresponding

CAs, bypassing a recursive call to FK. Otherwise, we call FK-B and store any

computed CAs as a new record in the hash table.

As we experimented with different settings in the implementation of this

memoization technique, we realized that solving small subproblems, with |C| ≤

2 or |D| ≤ 2, from scratch was faster than storing them in the hash table and

retrieving the CAs because the special case in line 4 of Algorithm 2 applies to

them. Thus, we do not use hashing on these subproblems in our implementation.

On the other hand, it is challenging to store large subproblems because there

are so many of them. This may be reduced to a degree by storing functions

only up to symmetry. A Monotone Boolean Function (MBF) f(x1, x2, . . . , xn)

is equivalent to another MBF g(x1, x2, . . . , xn) if there is a permutation σ ∈
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Sn such that f(xσ(1), xσ(2), . . . , xσ(n)) = g(x1, x2, . . . , xn). For example, the

function f(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) is equivalent to f(x1, x2, x3) =

(x1 ∧ x2) ∨ (x1 ∧ x3) via the permutation σ = (12)(3). We can then try to put

the MBF corresponding to the DNF into a canonical form for hashing.

Finding the canonical form can be done by simply generating all n! permuta-

tions, multiplying the function’s representation by a fixed matrix, and scanning

through it once, choosing the lexicographically smallest function, as described

in ?. This procedure is doable when n ≤ 6, otherwise it is difficult due to n!

possible permutations. After finding the specific permutation, the same per-

mutation is applied to the CNF, leading to the overall representation used for

hashing.

2.3.1 Choosing the Splitting Variable by a Weighting Approach

Selecting the splitting variable in the FK-B algorithm plays a key role in the

speed of the algorithm. The splitting variable is the variable with the highest

frequent variable available in the CNF and the DNF, with ties broken arbi-

trarily. Here, we present a another approach to choosing the splitting variable

using a weighting scheme. The means the worst case analysis of Fredman and

Khachiyan no longer applies, but in practice it may well reduce the number of

FK calls required.

In this approach, each variable xi is associated with a weight wi and a depth

di. The weight wi is an estimate of the suitability of variable xi to be chosen

as the splitting variable, and the depth di is the smallest recursion depth at

which variable xi has been selected as the splitting variable during the FK-

dualization procedure so far. The initial values for wi and di are 100 and ∞ for

each i, respectively.

The depth value di is updated during a dualization iteration, when the vari-
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able xi is selected as the splitting variable. When this happens, if the current

depth is d∗, di is updated to min(di, d
∗). On the other hand, the weight wi is

updated between dualization iterations according to Algorithm 3. Briefly, the

depths are normalized, the current weights are multiplied by the normalized

depths, and then they are themselves normalized to form a discrete probability

distribution.

In this approach, the splitting variable in each iteration of FK-dualization is

chosen at random from the distribution defined by the weights; a higher weight

corresponds to a higher probability of being selected as the splitting variable.

2.3.2 Choosing the Order of Settings for a Non-µ-frequent Splitting

Variable

In Algorithm 2, if the chosen splitting variable is not µ-frequent 1 in either the

CNF or the DNF, the splitting variable is first set to False, and if a conflicting

assignment is not found, it is set to True. There is no theoretical reason behind

this order for the settings, and we now present two heuristic approaches for

deciding which of the two possible orders can lead to a conflicting assignment

faster.

Both approaches make decisions based on the history of setting a variable

to True or to False first in the previous iterations of FK-dualization. The first

approach considers the variable’s entire history, i.e. the values assigned to it in

all the conflicting assignments found so far, and decides to first set the splitting

variable to the value found in the majority of previously identified conflicting

assignments. The second approach makes the decision in the exact same way,

but only considers the conflicting assignments found in the K = 5 most recent

iterations of FK-dualization.

1As mentioned earlier in page 5, a variable x is called at most µ-frequent in D if its
frequency in D is at most 1/µ(|D| · |C|), i.e. |{m ∈ D : x ∈ m}|/|D| ≤ 1/µ(|D| · |C|), where
µ(n) ∼ logn/ log logn. A similar definition applies to C.
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Note that in the both approaches, if there is no history of assignments to a

variable, the default order, first setting False, then setting True, is chosen.

2.3.3 Shrinking the CNF and the DNF in the Intermediate Steps of

FK-B

In the intermediate steps of running the FK-B algorithm on a CNF and a DNF,

it frequently happens that a variable appears as a singleton in the CNF, and

also appears in all the monomials in the DNF. Alternatively, it can happen that

a variable appears as a singleton in the DNF, and also appears in all the clauses

in the CNF. In such a situation, the variable in question can be removed from

both the CNF and the DNF without affecting equivalence (i.e. the original DNF

and CNF are equal if and only if the reduced ones are). This operation reduces

the problem size and lowers the number of recursive calls to FK-B.

This shrinkage step can be performed as a pre-processing step in the FK-B

algorithm, before checking the three necessary conditions for equivalence.

3 Experimental Results

As mentioned in Section 1.2, the dualization problem can be used to solve the

problem of finding the MCSs given the EFMs in a metabolic network model.

Here, we use the metabolic models available in the BioModels database2 to

assess the proposed algorithms. To this end, we selected 19 small and medium-

size models; their characteristics are shown in Table 1.

To prepare these models for the application of our dualization algorithm, we

performed the following steps:

1. Parsing the biological models using the SBML parser in MATLAB to

obtain a stoichiometric matrix containing the metabolites as rows and the

2http://www.ebi.ac.uk/biomodels-main/publmodels
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reactions as columns;

2. Applying EFMTool ? or FluxModeCalculator ? to extract the EFMs into

a matrix;

3. Converting the matrix into a binary one by setting all non-zero values to

one, and preprocessing it using the steps outlined in Section 1.3.1; the

resulting matrix is used as the input DNF for the dualization problem in

order to find the MCSs, corresponding to the CNF.

Different experiments have been designed to elucidate the efficiency of the

proposed modifications to the original FK algorithm, individually and in com-

bination. For this purpose, we used various metrics to compare them to the

original FK algorithm. These are:

1. Backtrack count: Quantifies how many recursive calls to the FK-B algo-

rithm return no conflicting assignment. This count decreases with better

splitting variable selection strategies.

2. Backtrack length: Presents the maximum depth of the recursive calls that

return no conflicting assignment. This length decreases with better split-

ting variable selection strategies as well.

3. Iteration count: Quantifies the number of recursive calls to the FK-B

algorithm. This count decreases with improved search strategies, and

many of our heuristics may contribute to this.

4. Hash table hits: Quantifies the number of successful hash queries to bypass

additional calls to the FK-B algorithm (used when the CNF and the DNF

have size at least 3). This count increases when the same (or, with option

C, equivalent) subproblem is solved multiple times.
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5. Node count: Quantifies the total number of variable settings required to

find all the conflicting assignments. This count decreases with a faster

identification of the conflicting assignments.

We ran experiments using various combinations of the ideas in Section 2.

We reference computational results using short codes to indicate the methods

in question. These use the letters F, W, S, H, C, O and R, which denote the

following:

F : The baseline Fredman-Khachiyan algorithm as presented in Algorithm 2

with reduced redundancy tests, multiple conflicting assignments and us-

ing the most frequent variable as the splitting variable. Ties are broken

randomly;

W : The splitting variable is chosen using the weighting approach;

S : The CNF and the DNF are shrunk during the intermediate steps of

running FK;

H : A hash table is used for small subproblems;

C : The canonical form of the CNF and the DNF is stored in the hash table;

O : A heuristic is used to find the optimal order of settings for non-µ-frequent

splitting variables;

R : The K = 5 most recent splits, not the full history, are used in the order

heuristic (O) above.

We denote experiments that use several of these ideals by concatenating initials.

The first symbol will be F when weighting is not used, and W when it is.

From there, symbols are appended to indicate the additional ideas added, so for

instance FHC does not use weighting, but does use hash tables and in particular
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with canonical forms. According to this scheme, the set combinations available

for testing are denoted: F, FH, FHC, FO, FOR, FS, W, WH, WHC, WO, WOR

and WS.

Now we present the experiments we carried out and discuss their results.

We note that the FK-dualization procedure can include some randomization,

for instance in tie-breaking. We use randomness only in the initialization, using

a fixed seed to make the results reproducible. Changing this seed may alter the

results, but our sensitivity analysis suggests that there is no significant impact

on the relative contributions of each modification (data not shown).

We remark that in our previous study ?, we gave clock-time comparisons

for algorithms F, H and some others as compared to a naive implementation of

FK-B. There were a clear improvement. A comparison of relative clock-time for

the additional modifications studied here are included in Section 3.5.

3.1 Reducing the Number of Redundancy Tests

The redundancy test is a key bottleneck of FK-dualization, being called on each

input to the FK-B algorithm. In this experiment we measure how much the

flags proposed in Section 2.1 reduce the number of redundancy tests.

Figure 1 shows the total number of pairwise comparisons in the redundancy

tests performed during FK-dualization. Out of 19 experiments, we saw an

average decrease of 45% in the number of comparisons, with a minimum of 22%

in BIOMD-162 and a maximum of 69% in BIOMD-107.

Given that this modification significantly reduces the running time of FK-

dualization, we only discuss the FK-B algorithm with the modification reducing

the number of redundancy tests from now on.
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Figure 1: Total number of pairwise comparisons performed in the removing
redundancy during FK-dulaization using the original FK algorithm and the
modified version of FK which the number of redundancy tests are reduced. In
the names of models we replace ‘0000000’ by ‘-’.

3.2 Finding Multiple Conflicting Assignments

As discussed in Section 2.2, finding multiple CAs at the same time can reduce

the iteration count for FK-dualization, each of which may require multiple FK

iterations. Figure 2 shows the iteration counts for the original FK algorithm

and the variant of FK that finds multiple CAs at the same time. Using this

modification reduced the number of required iterations by 10% to 65%. Sizes

of the CNF at each iteration are included as Figure 3 in on-line Appendix C.

Similar to the previous section, because this modification is clearly benefi-

cial and independent of other changes, it will become part of the baseline for

subsequent experiments.
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Figure 2: Number of FK-dulaization iterations to build the CNF from the DNF
using the original FK algorithm and the modified version of FK which multiple
CAs are found at once. In the names of models we replace ‘0000000’ by ‘-’.

3.3 Comparing FK Variants Based on Splitting Variable

Decisions

In this experiment, we compare variants of the FK-B algorithm. Our tables

include the results for the F, FH, FHC, FO, FOR, FS and W variants of the

algorithm. Additional variants are available in Supplementary File 1.

Figure 3 displays a sample result of this analysis for one model. The remain-

ing models are available in the on-line appendix. The left panels show the size

of the CNF at each iteration of the FK-dualization algorithm.

The right panels compare the methods based on the other metrics that we

introduced. In these figures, the measurements whose values are zero are shown

as bars under the baseline. Since hash tables are only used in the FH and

FHC variants, only two bars appear above the baseline for the hash table hits.

These variants also perform better on the backtrack count and backtrack length

for 15/19 of the models. The iteration count is the lowest for the W variant

Page 24 of 49

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only/Not for Distribution
24 3 EXPERIMENTAL RESULTS

B
IO

M
D

00
00

00
00

93

0

100

200

300

0 50 100 150 200
Iteration

Le
ng

th
 o

f C
N

F

Method

F
FH
FHC
FO
FOR
FS
W

10
0

10
1

10
2

10
3

10
4

Shrinking

CallsFK

Calls Hash

fetchBacktra
ck

count
Backtra

ck

length Seen

nodes

C
ou

nt

Method

F
FH
FHC
FO
FOR
FS
W

Figure 3: The left figure shows progression of constructing CNF versus iterations
in the FK-dualization algorithm. The right figure illustrates the benefit of each
improvement in FK-dualization based on five measures.

for 12/19 of the models, and the node counts are strongly correlated with the

iteration counts. Interestingly, the FH and FHC variants have the exact same

number of hash table hits, meaning that storing the subproblems in canonical

form to take equivalence into account provides no additional benefit.

In conclusion, considering both the left and the right panels suggests that W

is generally the best at reducing the number of FK calls as well as the number

of iterations required to compute the CNF.

3.4 Analysis of the Pareto Frontier

In this experiment, we try to find the minimal subsets of modifications to the

FK algorithm required to achieve the minimum value of three key metrics -

iteration count, backtrack length, and node count - for all of the models (all

possible combinations of the modifications that minimize each of these metrics

are shown in Supplementary File 2). Tables 2-4 show the results. As it can be

seen some modifications, e.g. W (weighting) or S (shrinkage), are seen in several

rows in all the tables. Such patterns can give us an idea about the benefit of

each modification.
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We also created Table 5 to summarize the optimal modifications across all

three tables for each model. The last column in this table shows the common

modifications, i.e. those needed to achieve an optimal value of each of the

metrics. For 14/19 of the models, there is at least one common modification.

The two most frequently seen common modifications are S (shrinkage) and H

(hash table). However, W (weighting) is also a frequently occurring modification

in the rest of the table.

3.5 Comparison of Processing Times

Table 6 presents the processing time for each metabolic model using different

FK variants that gives a better understanding on how each improvement can

affect processing time. As shown, W variant is the fastest one in 17 models out

of 19 models.

Additionally, we tested the F and W variants on four Ecoli metabolic net-

works including acetate, succinate, glycerol and glucose ??. Table 7 presents

their characteristics and the required time to find the MCSs. As shown, W vari-

ant works well in the two biggest networks and significantly reduces the process-

ing times in comparison with F variant. The processing times we obtained here

are competitive with the reported processing times for the FK-implementation

in ?, which also solved these problems more quickly via other methods.

4 Discussion

In 1996, Fredman and Khachiyan ? proposed two novel algorithms, so-called

FK-A and FK-B, to identify duality between two monotone Boolean functions

whose time complexities are quasi-polynomial time of the input size. Con-

sidering the duality test algorithm, if one of the monotone Boolean function
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is known, its dual function can be produced using the conflicting assignment

returning from FK-A or FK-B algorithms in an incremental manner. The

computational complexity of such dualization algorithm would still be quasi-

polynomial. However, the dualization algorithm is not fast enough in practice

when the given monotone Boolean function is of medium or large size.

In this project, we proposed several improvements/techniques to reduce the

FK-B running time in practice. These improvements do not affect the theoret-

ical time complexity of the FK-B algorithm, however, they make it possible to

use the FK-B to solve medium-to-large-scale dualization problem in practice.

The first improvement is using flags to reduce the number of redundancy

tests, pair comparisons, in each recursive call of the FK-B algorithm. The

second improvement is about returning multiple conflicting assignment instead

of only one. In dualization, this helps to produce more than one monomial in the

DNF in each iteration. The third one is about using a hash table and instead of

solving repeated subproblems several times, fetch the conflicting assignments.

In the fourth improvement, instead of choosing the most frequent variable in

both the CNF and the DNF as splitting variable, we choose splitting variable

randomly while the chance of a variable being selected is based on its history of

acting as splitting variable in previous iterations. In this way, if a variable has

been acted as splitting variable in previous iterations and led to a conflicting

assignment fast it gets more chance to be selected as a splitting variable in the

current point. In the fifth improvement, we focused on a situation where the

splitting variable is not µ-frequent in either of CNF or DNF. In this case, instead

of first setting the variable to False and search for a conflicting assignment(s)

and in case of not finding any conflicting assignment(s) setting the variable to

True and repeat the search again, we consider history of the variable when it

has appeared in previous conflicting assignments. It is firstly set to False if
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in majority of previous identified conflicting assignments it is False, otherwise

it is firstly set to True then if any conflicting assignments is found, the other

option, i.e. True or False, is tested. The last improvement is about shrinking

the CNF and the DNF in the middle of FK-B recursive calls where one variable

appears as a singleton in the CNF/DNF and appears in all monomials/clauses

in DNF/CNF. In this case, this variable can safely be removed from both CNF

and DNF which results in having a smaller problem to solve.

The proposed modifications have been applied on FK-B algorithm and FK

dualization and as an application we have used the modified algorithm in finding

minimal cut sets based on given elementary flux modes in metabolic networks.

The results show that the proposed improvements can reduce the running time

by an order of magnitude on most of the examples.

It is noteworthy to highlight that the proposed modifications/techniques are

general and applicable to any problems, e.g. transversal hypergraph genera-

tion problem ?, that can be mapped to Monotone boolean function dualization

problem.

5 Code and Data Availability

The data, code and on-line appendices are available on GitHub Repository:

https://github.com/NaSed/Modified_FK_B_Algorithm.
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Algorithm 2: The Fredman-Khachiyan Algorithm B (FK-B)

Input: Monotone DNF D and CNF C.
Output: ∅ in case of equivalence; otherwise, an assignment A with

D(A) 6= C(A).

Function: FK-B(C,D)
remove redundant clauses from D and C;
if a necessary condition is violated then

Return conflicting assignment
end
if min{|D|, |C|} ≤ 2 then

return ∅ or the conflicting assignment found by a direct check
else

choose a splitting variable x;
if x is at most µ-frequent in D then
A ← FK-B(Dx

1 , C
x
0 ∧ Cx1 ) // recursive call for x set to False if

A 6= ∅ then
Return A

for all clauses c ∈ Cx0 do
A ← FK-B(Dc,x

0 , Cc,x1 ) // see 〈1〉 below
if A 6= ∅ then

return A ∪ {x}
end

end

else if x is at most µ-frequent in C then
A ← FK-B(Dx

0 ∨Dx
1 , C

x
1 ) // recursive call for x set to True

if A 6= ∅ then
return A ∪ {x}

end
for all monomials m ∈ Dx

0 do
A ← FK-B(Dm,x

1 , Cm,x0 ) // see 〈2〉 below
if A 6= ∅ then

return A ∪ {m}
end

end

else
A ← FK-B(Dx

1 , C
x
0 ∧ Cx1 ) // recursive call for x set to False

if A = ∅ then
A ← FK-B(Dx

0 ∨Dx
1 , C

x
1 ) // recursive call for x set to True

if A 6= ∅ then
return A ∪ {x}

end

end

end

return A

〈1〉: Dx
1 ≡ Cx0 ∧ Cx1 : recursive call for all maximal non-satisfying

assignments of Cx0 for x set to True. Dc,x
0 and Cc,x1 denote the formulae

we obtain by setting all the variables in c to False.
〈2〉: Dx

0 ∨Dx
1 ≡ Cx1 : recursive call for all minimal satisfying assignments

of Dx
0 for x set to False. Dm,x

1 and Cm,x0 denote the formula we obtain
by setting all the variables in m to True.
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Algorithm 3: Updating variable weights. This algorithm is called between
dualization iterations.
Input: A table W with rows indexed by the variables, and two columns:

1) Weight and 2) Depth.
Output: The updated weight table W .
Function: UpdatingWeights(W )
W [Weight] = W [Weight]�W [Depth]; // element-wise multiplication;
W [Weight] = Normalize(W [Weight]);
return W ;

Table 1: Characteristics of models. Metabolites: number of metabolites; EFMs:
number of elementary flux modes (monomials in the DNF); n<prer : Number of
reactions (variables) before the preprocessing steps; n>prer : Number of reac-
tions (variables) after the preprocessing steps; n<postMCS : Number of minimal cut

sets (clauses in the CNF) before the postprocessing steps; n>postMCS : Number of
minimal cut sets (clauses in the CNF) after the postprocessing steps.

Model Metabolites EFMs n<prer n>prer n<postMCS n>postMCS

BIOMD0000000034 9 13 22 22 56 56
BIOMD0000000042 15 35 25 20 56 188
BIOMD0000000048 23 63 25 14 320 12960
BIOMD0000000089 16 20 36 28 192 15552
BIOMD0000000093 34 24 46 24 293 2001
BIOMD0000000094 34 23 45 23 293 667
BIOMD0000000106 25 12 32 17 14 512
BIOMD0000000107 14 11 23 13 14 448
BIOMD0000000108 9 50 17 17 60 60
BIOMD0000000110 15 12 22 15 48 864
BIOMD0000000162 32 60 45 20 675 1928934
BIOMD0000000163 16 12 26 21 156 1296
BIOMD0000000165 37 20 30 9 16 576
BIOMD0000000166 3 18 9 9 27 27
BIOMD0000000169 11 17 27 23 128 1536
BIOMD0000000170 7 10 17 15 32 128
BIOMD0000000171 12 16 26 23 65 264
BIOMD0000000173 26 14 26 10 17 4617
BIOMD0000000228 9 13 22 20 128 512
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Table 2: Achieving the minimum calls to FK using minimal FK improvements.

Model FK
calls

Successful
HashFetch

Backtrack
counts

Backtrack
length

Seen
nodes

Method

BIOMD0000000034 666 1 23 54 249 WH
BIOMD0000000042 253 46 8 12 126 FHS
BIOMD0000000048 2176 0 175 543 1207 W
BIOMD0000000089 1700 0 2 8 269 WS
BIOMD0000000093 2748 0 96 226 695 WS
BIOMD0000000094 2748 0 96 226 695 WS
BIOMD0000000106 63 6 0 0 15 FHS
BIOMD0000000107 37 0 0 0 16 WS
BIOMD0000000108 292 28 8 24 169 FHS
BIOMD0000000110 319 0 1 2 100 W
BIOMD0000000162 8244 0 4 12 853 WS
BIOMD0000000163 790 1 4 11 220 WH
BIOMD0000000165 62 0 3 6 32 WS
BIOMD0000000166 141 0 0 0 48 WS
BIOMD0000000169 868 1 0 0 225 WH
BIOMD0000000170 122 0 2 7 55 W
BIOMD0000000171 229 0 7 18 84 WS
BIOMD0000000173 29 2 1 1 14 FHS
BIOMD0000000228 331 0 4 8 107 WS
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Table 3: Achieving the minimum backtracking length using minimal FK im-
provements.

Model FK
calls

Successful
HashFetch

Backtrack
counts

Backtrack
length

Seen
nodes

Method

BIOMD0000000034 678 45 0 0 86 FHS
BIOMD0000000042 253 46 8 12 126 FHS
BIOMD0000000048 2288 322 109 292 1436 FHS
BIOMD0000000089 6769 181 0 0 347 FHS
BIOMD0000000093 2748 0 96 226 695 WS
BIOMD0000000094 2748 0 96 226 695 WS
BIOMD0000000106 63 6 0 0 15 FHS
BIOMD0000000107 37 0 0 0 16 WS
BIOMD0000000108 292 28 8 24 169 FHS
BIOMD0000000110 505 35 1 1 82 FH
BIOMD0000000162 79013 650 0 0 2584 FHS
BIOMD0000000163 2337 86 0 0 176 FH
BIOMD0000000165 64 9 1 1 31 FH
BIOMD0000000166 141 0 0 0 48 WS
BIOMD0000000169 868 1 0 0 225 WH
BIOMD0000000170 232 18 2 4 60 FH
BIOMD0000000171 449 68 6 8 223 FHS
BIOMD0000000173 29 2 1 1 14 FHS
BIOMD0000000228 2530 89 2 2 216 FHS
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Table 4: Achieving the minimum number of seen nodes using minimal FK
improvements.

Model FK
calls

Successful
HashFetch

Backtrack
counts

Backtrack
length

Seen
nodes

Method

BIOMD0000000034 678 45 0 0 86 FHS
BIOMD0000000042 253 46 8 12 126 FHS
BIOMD0000000048 2220 4 187 563 1169 WHS
BIOMD0000000089 1700 0 2 8 269 WS
BIOMD0000000093 2748 0 96 226 695 WS
BIOMD0000000094 2748 0 96 226 695 WS
BIOMD0000000106 63 6 0 0 15 FHS
BIOMD0000000107 37 0 0 0 16 WS
BIOMD0000000108 292 28 8 24 169 FHS
BIOMD0000000110 453 33 3 7 79 FHS
BIOMD0000000162 8244 0 4 12 853 WS
BIOMD0000000163 2337 86 0 0 176 FH
BIOMD0000000165 64 9 1 1 31 FH
BIOMD0000000166 196 13 0 0 46 FHS
BIOMD0000000169 2256 87 0 0 205 FHS
BIOMD0000000170 122 0 2 7 55 W
BIOMD0000000171 229 0 7 18 84 WS
BIOMD0000000173 29 2 1 1 14 FHS
BIOMD0000000228 563 0 2 4 103 W
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Table 5: Modifications helped to achieve minimum value for each measurement.

Model Minimizing
FK calls

Minimizing
backtracking length

Minimizing
seen nodes

Common
modification

BIOMD0000000034 WH FHS FHS H
BIOMD0000000042 FHS FHS FHS FHS
BIOMD0000000048 W FHS WHS
BIOMD0000000089 WS FHS WS S
BIOMD0000000093 WS WS WS WS
BIOMD0000000094 WS WS WS WS
BIOMD0000000106 FHS FHS FHS FHS
BIOMD0000000107 WS WS WS WS
BIOMD0000000108 FHS FHS FHS FHS
BIOMD0000000110 W FH FHS
BIOMD0000000162 WS FHS WS S
BIOMD0000000163 WH FH FH H
BIOMD0000000165 WS FH FH
BIOMD0000000166 WS WS FHS S
BIOMD0000000169 WH WH FHS H
BIOMD0000000170 W FH W
BIOMD0000000171 WS FHS WS S
BIOMD0000000173 FHS FHS FHS FHS
BIOMD0000000228 WS FHS W
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Table 6: Comparing processing times. The numbers show the time in seconds
and in each row the lowest number is bold.

Model F FH FHC FO FOR FS W
BIOMD0000000034 0.81 1.69 1.7 0.75 0.78 0.63 0.51
BIOMD0000000042 2.04 1.85 1.94 2 1.96 1.22 1.25
BIOMD0000000048 25.43 12.02 12.15 25.58 25.76 22.18 7.39
BIOMD0000000089 14.66 7.82 7.73 14.64 14.71 10.81 4.71
BIOMD0000000093 46.87 20.46 19.79 47.46 47.01 38.1 11.28
BIOMD0000000094 40.68 20.03 20.16 40.44 40.64 36.57 10.8
BIOMD0000000106 0.08 1.45 1.44 0.08 0.08 0.05 0.05
BIOMD0000000107 0.07 1.45 1.45 0.07 0.07 0.05 0.04
BIOMD0000000108 1.71 1.97 2 5.34 2.34 1.08 0.62
BIOMD0000000110 0.47 1.64 1.64 0.48 0.48 0.41 0.19
BIOMD0000000162 649.62 310.64 310.99 650.85 656.5 683.58 64.21
BIOMD0000000163 4.28 3.97 3.86 4.3 4.29 4.49 1.65
BIOMD0000000165 0.06 1.48 1.47 0.06 0.07 0.04 0.04
BIOMD0000000166 0.14 1.53 1.53 0.14 0.14 0.15 0.06
BIOMD0000000169 4.15 3.38 3.38 4.16 4.16 3.04 1.41
BIOMD0000000170 0.2 1.51 1.51 0.2 0.2 0.15 0.06
BIOMD0000000171 1.26 2 1.99 1.18 1.2 0.9 0.28
BIOMD0000000173 0.03 1.49 1.49 0.03 0.04 0.04 0.05

Table 7: Comparing processing times for Ecoli metabolic networks. In each row
the lowest processing time is bold.

Model # of reactions # of EFMs # of MCSs Processing Time (seconds)
F W

Acetate 21 363 54 2.47 1.94

Glucose 34 21592 857
317905.62
(88.3 hrs)

225271.3
(62.58 hrs)

Glycerol 28 9479 376
19131.28
(5.31 hrs)

9005.03
(2.5 hrs)

Succinate 26 3421 159 179.43 220.95
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ANALYSIS OF METABOLIC NETWORK MODELS USING THE
FREDMAN-KHACHIYAN ALGORITHM B
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Appendix A. Summary of Results Based on Splitting Variable Decisions
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Figure 1. The figures in each row belongs to a model. The figures in the first column
show progression of constructing CNF versus iterations in FK-dualization algorithm.
The figures in the second column illustrate how beneficial each improvement is in
FK-dualization based on five measures: ‘Backtrack count’ shows how many times
wrong branches of tree of assignments have been chosen to go through that finally
it had to return to the higher levels; ‘Backtrack length’ shows how deep it has gone
through the wrong branches; ‘Seen nodes’ shows the number of variables that have
been set to either true or false or both to reach to the conflicting assignment(s); ‘FK
Calls’ indicates to the number of recursive calls to FK algorithm; and ‘Hash fetch’
shows the number of successful fetches to the hash table in case that keys are not
stored in the canonical form and if |C| < τ and |D| < τ where τ = 3, the hash table
is not used.

Page 38 of 49

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only/Not for Distribution
ON-INE APPENDICES TO SPEEDING UP FK-B 3

B
IO

M
D

00
00

00
00

89

0

50

100

150

200

0 50 100 150
Iteration

Le
ng

th
 o

f C
N

F
Method

F
FH
FHC
FO
FOR
FS
W

10
0

10
1

10
2

10
3

10
4

Shrinking

CallsFK

Calls Hash

fetchBacktra
ck

count
Backtra

ck

length Seen

nodes

C
ou

nt

Method

F
FH
FHC
FO
FOR
FS
W

B
IO

M
D

00
00

00
00

93

0

100

200

300

0 50 100 150 200
Iteration

Le
ng

th
 o

f C
N

F

Method

F
FH
FHC
FO
FOR
FS
W

10
0

10
1

10
2

10
3

10
4

Shrinking

CallsFK

Calls Hash

fetchBacktra
ck

count
Backtra

ck

length Seen

nodes

C
ou

nt

Method

F
FH
FHC
FO
FOR
FS
W

B
IO

M
D

00
00

00
00

94

0

100

200

300

0 50 100 150 200
Iteration

Le
ng

th
 o

f C
N

F

Method

F
FH
FHC
FO
FOR
FS
W

10
0

10
1

10
2

10
3

10
4

Shrinking

CallsFK

Calls Hash

fetchBacktra
ck

count
Backtra

ck

length Seen

nodes

C
ou

nt

Method

F
FH
FHC
FO
FOR
FS
W

B
IO

M
D

00
00

00
00

10
6

5

10

2.5 5.0 7.5 10.0 12.5
Iteration

Le
ng

th
 o

f C
N

F

Method

F
FH
FHC
FO
FOR
FS
W

10
0

10
0.5

10
1

10
1.5

10
2

Shrinking

CallsFK

Calls Hash

fetchBacktra
ck

count
Backtra

ck

length Seen

nodes

C
ou

nt

Method

F
FH
FHC
FO
FOR
FS
W

Figure 1. Continued.
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Figure 1. Continued.
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Figure 1. Continued.
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Figure 1. Continued.
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Appendix B. Analyzing Reactions in the Biological Models

Figure 2 shows the occurrence frequency of reactions in EFMs and MCSs for each model. As
shown, in most of the models, occurrence frequency of reactions in the EFMs are less than the MCSs,
e.g. BIOMD0000000034 and BIOMD0000000048.
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Figure 2. Frequency of occurrence of reactions in EFMs and MCSs.

Page 43 of 49

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only/Not for Distribution
8 NAFISEH SEDAGHAT, TAMON STEPHEN, AND LEONID CHINDELEVITCH

0 2 4 6 8 10 12 14 16 18

Reactions

0

5

10

15

F
re

qu
en

cy

BIOMD0000000106

EFMs
MCSs

(7) BIOMD0000000106

0 2 4 6 8 10 12 14

Reactions

0

5

10

15

F
re

qu
en

cy

BIOMD0000000107

EFMs
MCSs

(8) BIOMD0000000107

0 2 4 6 8 10 12 14 16 18

Reactions

0

5

10

15

20

25

30

35

F
re

qu
en

cy

BIOMD0000000108

EFMs
MCSs

(9) BIOMD0000000108

0 5 10 15

Reactions

0

5

10

15

20

25

30

35

40

45

F
re

qu
en

cy

BIOMD0000000110

EFMs
MCSs

(10) BIOMD0000000110

0 2 4 6 8 10 12 14 16 18 20

Reactions

0

100

200

300

400

500

600

F
re

qu
en

cy

BIOMD0000000162

EFMs
MCSs

(11) BIOMD0000000162

0 5 10 15 20 25

Reactions

0

50

100

150

F
re

qu
en

cy

BIOMD0000000163

EFMs
MCSs

(12) BIOMD0000000163

Figure 2. Continued.
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Figure 2. Continued.

Page 45 of 49

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only/Not for Distribution
10 NAFISEH SEDAGHAT, TAMON STEPHEN, AND LEONID CHINDELEVITCH

0 2 4 6 8 10 12 14 16 18 20

Reactions

0

20

40

60

80

100

120

F
re

qu
en

cy

BIOMD0000000228

EFMs
MCSs

(19) BIOMD0000000228

Figure 2. Continued.
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Appendix C. CNF Completion Progress

Figure 3 demonstrates the progression of constructing CNF when FK and modified FK in the
dualization procedure.
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Figure 3. Progression of constructing CNF across FK-dualization iterations when
FK and FKM have been used for equivalency check between the CNF and the DNF.
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Figure 3. Continued.
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Figure 3. Continued.
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Figure 3. Continued.

School of Computing Science, Simon Fraser University
Email address: nf_sedaghat@sfu.ca

Department of Mathematics, Simon Fraser University
Email address: tamon@sfu.ca

MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College
London.

Email address: l.chindelevitch@imperial.ac.uk

Page 50 of 49

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


