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ABSTRACT

The large conductance Ca H -activated K+ channel (BKca) regulates neuronal

excitability through the effux ofK , in response to membrane depolarization and

increases in intracellular Ca . The activity of the BKca channel is increased by acute

exposure to ethanol (EtOH), which is thought to underlie , in part, the influence of the

drg on peptide hormone release from neurohypophysial nerve terminals (Dopico et al.

1996 , 1998). Moreover, chronic EtOH exposure attenuates acute drg action on hormone

release, and reduces the sensitivity ofBKca channels to acute EtOH exposure (Knott 

aI. 2002). The factors regulating EtOH action on BKca channels are not well

understood. Several lines of evidence suggest, however, that the lipid composition of the

plasma membrane may influence channel sensitivity to the drug. The plasma membrane

is highly complex in its organization (Welti and Glaser, 1994; Brown and London, 1998).

There is a growing body of literature indicating that the local lipid composition of the

membrane can influence the function of ion channels , including BKca (Chang et al.

1995a, b; Moczydlowski et al. 1985; Park et al. 2003; Tumheim et al. , 1999).

Interestingly, chronic exposure to EtOH in animal models results in alterations in the

composition of synaptic plasma membranes, including changes in the amount and

distrbution of membrane cholesterol (CHS) (Chin et al. 1978; Chin et al. 1979; Wood

et al. 1989). The significance of these alterations is unclear. Here, we set out to

determine the ability of membrane lipids to modulate BKca channel activity and EtOH

sensitivity. To address this , we implement the planar lipid bilayer technique, allowing

control of both the protein and lipid components of the membrane. Native BKca channels



retain EtOH sensitivity in this reductionist preparation (Chu 
et al. 1998), and we extend

the study here to examine cloned human brain 
(hslo) BKca channels.

We show here that hslo channels maintain their characteristic large conductance

voltage and Ca ++ -dependent gating, and sensitivity to 50 ro EtOH in bilayers cast from

a 3: 1 mixture of 1-pamiltoyl-2-oleoyl-phosphatidylethanolamine (POPE) and 1-

pamiltoyl-2-oleoyl-phosphatidylserine (POPS). The addition of CHS to the bilayer

decreases both the basal activity and EtOH sensitivity of the channels , in a concentration-

dependent manner. This lends support to the notion that alterations in plasma membrane

CHS levels following chronic EtOH exposure may reflect adaptations to the acute actions

of the drug on ion channels. Furthermore, the EtOH sensitivity and CHS modulation of

these reconstituted hslo channels are greatly reduced in the absence of negatively charged

POPS in the bilayer (pure POPE). Based on these findings , we look to gain mechanistic

insight into the lipid headgroup and acyl chain properties that may regulate BKca channel

modulation by EtOH and CHS. When POPS is replaced with the uncharged lipid 1-

palmitoyl-2-oleoyl-phosphatidylcholi (POPC), the hslo response to EtOH and CHS is

restored, suggesting that the loss of negative surface charge or PS headgroup structue

itself cannot explain the lack of channel modulation by these agents in POPE bilayers.

Moreover, increases in the proportion of unsaturated acyl chains in the bilayer cannot

significantly influence the hslo response to EtOH. The loss of EtOH sensitivity in pure

POPE and CHS-containing bilayers may, therefore , reflect the propensity of POPE and

CHS to form nonlamellar (nonbilayer) structures. Regarding the basal activity of the

channel , we demonstrate that decreases in negative surface charge, increases in the



proportion of unsatuated acyl chains , and increases in the complexity of head group

interactions can all influence the steady-state activity of reconstituted 

hslo channels

relative to control POPEIPOPS (3: 1) bilayers. Overall , these data further suggest the

ability of the local lipid environment to regulate the basal function and EtOH sensitivity

of an ion channel protein.

Parts of this dissertation have appeared in separate publications:

Treistman, S. , O' Connell , R.J. , and Crowley, J.J. (2002). Arificial Bilayer

Techniques in Ion Channel Study. In 
Methods in Alcohol-Related Neuroscience

Research D. Lovinger and Y. Liu, eds. (Boca Raton, Florida: CRC Press)

Crowley, J. Treistman, S. , and Dopico , A.M. (2003). Cholesterol antagonizes

ethanol potentiation of human BKcA channels in binary phospholipid bilayers. 

Mol.

Pharm. 64(2):364-372.
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INTRODUCTION

The Lipid-based Theory of Ethanol Action on the Nervous System

The molecular mechanisms of ethanol (EtOH) action are not fully understood.

The work of Meyer and Overton from the early 20 centu demonstrates that the

anesthetic potency for a series of structurally diverse molecules , including EtOH

correlates well with their ability to partition into olive oil , a hydrophobic environment.

Early reasoning posited that this lipid solubility allows anesthetics to dissolve into the

hydrophobic portions of neurons, and alter their activity to produce anesthesia. Though

proteins , nucleic acids , and sugars all have hydrophobic regions, the lipids of the

neuronal plasma membrane emerged as the most obvious target, especially since the

membrane houses the channels and pumps that regulate excitability. EtOH was theorized

to partition into and alter the physical properties of this membrane, secondarily affecting

the activity of the integral pumps and channels. This "non-specific" mechanism could

reconcile the lack of obvious strctural similarities in the various anesthetic molecules

that would accompany traditional ligand/receptor paradigms. Furthermore, EtOH

requires milimolar concentrations for its biological actions , again indicating the lack of a

single , high affinity receptor. This general hypothesis guided early research focused on

understanding the interaction of EtOH with the lipids that compose biomembranes.

A large body of work employing techniques such as electron paramagnetic

resonance (EPR) and fluorescence polarization demonstrates the ability of the small

amphiphyllc EtOH molecule to interact with and disorder both native and artificial

membranes (Deitrch et al. 1989; Goldstein, 1986). Membrane order refers to the
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Figure 1. The influence of ethanol and cholesterol on the order of phospholipid acyl

chains.
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range of motion ( or packing) of the acyl chains of a phospholipid, such that decreases in

order correspond to increases in lipid volume. For instance, the introduction of double

bonds into phospholipid acyl chains reduces membrane order since they create "kinks

that disrupt the van der Waals interactions between chains that promote tight packing.

Both EPR and fluorescence polarization provide a measure of membrane order through

the rotational mobility of a probe within the membrane. Tightly packed acyl chains

restrict the mobility of the probe, but as the chains become disordered the movement of

the probe increases. Data from this sort of experiment demonstrate that 350 ro ethanol

can reduce the order parameter of both mouse synaptosomal membranes and artificial

vesicles composed ofphosphatidylcholine (PC) (Figure 1; Chin and Goldstein, 1981).

Furthermore, several studies demonstrate that lipid composition influences EtOH action

on the membrane. Cholesterol (CHS), for instance, imparts a concentration dependent

increase in the order of PC bilayers (Figure 1). In concurence , the ability of EtOH to

disorder PC vesicles exhibits an inverse correlation to membrane CHS levels (Chin and

Goldstein , 1981). Gangliosides , on the other hand, enhance the disordering of both PC

bilayers and PC/CHS bilayers by EtOH, when measured using fluorescence polarization

(Harris et al. 1984b). These findings suggest that EtOH can alter the physical properties

of lipids , and that the properties of certain lipid species may influence the sensitivity of

the membrane to disordering by the drg.

A number of studies aimed to correlate the in vivo behavioral response to EtOH in

animal models with the propensity for their membranes to be disordered by the drg 

vitro. Mice, bred selectively for differences in their sensitivity to the hypnotic effects of

.-E--:.
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acute EtOH exposure , showed a strong correlation between their behavioral responses

and the sensitivity to EtOH disordering exhibited by both their eryhrocyte and synaptic

plasma membranes (Goldstein et al. 1982). In addition, the synaptic membranes (Chin

et al. 1978; Harris et aI. 1984a) and erythrocytes (Chin et al. 1978) of mice chronically

exposed to EtOH demonstrate tolerance to the disordering effects ofthe drg in vitro.

Alterations in lipid composition are thought to underlie this observation, though studies

differ widely in the variety of changes reported (Gustavsson, 1990; Swann, 1987;

Taraschi et al. , 1991).

A major caveat to these studies , however, is the large concentrations of EtOH

used to elicit changes in membrane order, usually several hundred millmolar (Chin and

Goldstein, 1981; Harris et al. 1984b). Proof of this principle, the importance of

membrane order for EtOH action on ion channels , required a demonstration that

physiologically relevant concentrations of the drug (22 ro in the blood corresponds to

legal intoxication in humans; Diamond, 1992) can influence acyl chain order, and that

decreases in order elicit changes in ion channel gating. Ensuing studies provided little

data in support of this mechanism. For instance, the magnitude of the lipid disordering

caused by anesthetics and n-alkanols is small. These compounds , when tested at

concentrations three-fold higher than their respective EDso values for general anesthesia

produce changes in membrane order that are mimicked by temperature changes of less

than 1 C (Harris and Groh, 1985). Both vigorous exercise and circadian fluctuations

alter body temperatue by this amount, without leading to anesthesia (Franks and Lieb

1987). In addition, these compounds do not require lipids to alter the function of certain

..r-;...
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enzymes. Firefly luciferace , a soluble cytoplasmic protein, is inhibited by ethanol with

an EDso value that correlates well with its respective 
EDso value for anesthesia (Franks

and Lieb , 1984).

The correlation between pertrbations of membrane order and ethanol- induced

alterations in protein function remains elusive. A large body of literature demonstrates

-I,

the importance of the physical properties of the membrane in regard to the function of the

nicotinic acetylcholine receptor (nAChR) (Barrantes
, 1989). The acyl chain order

parameter ofthe native 
Torpedo electroplax membrane , a model for these studies , is 0.

(arbitrary units). The Torpedo nicotinic receptors, when reconstituted into artificial

membranes of varying composition, retain fuctional properties such as agonist binding,

gating, and desensitization until the order parameter ofthe lipid mixture decreases below

75 (Fong and McNamee, 1986). The magnitude of this reduction in membrane order is

only achieved at excessive concentrations of EtOH
, nearing 1.5M. Furthermore, ethanol

potentiates agonist-induced currents of the 
Torpedo nAChR, rather than the reduction in

activity expected through a reduction in bulk membrane order. 
It acts with an EDso of

approximately 300 ro, far below that presumed necessary to elicit membrane order

alterations that impair nAChR function (Miler et al. 1987). Taken together, these

results suggest that the mechanism of ethanol action on ion channels is not simply

through changes in bulk membrane acyl chain order. In fact
, with the advent of cloning,

mutagenesis, and expression systems a greater understanding of EtOH interactions with a

variety of ion channel classes has emerged. These studies provide the most compellng

r::"...



evidence for a site of action for EtOH on certain channel proteins themselves, rather than

a nonspecific lipid-mediated effect.

The Shift to Protein-based Theories- Evidence for a Site of Action for EtOH on Ion

Channels

EtOH exposure dramatically alters behavior, and influences the activity ofthe

neurons that underlie it. Early theories suggested EtOH actions on ion channels , the

molecules that contrbute to neuronal excitability, were transduced through pertrbations

of the order of the plasma membrane. The EtOH concentrations required to elicit these

changes were extremely high, and the degree of change in membrane order quite small

and of uncertain significance (Deitrich et al. 1989; Franks and Lieb , 1987). Overall

these observations did not provide a satisfying explanation for the actions of the drg.

The advances in cloning and mutagenesis techniques have now allowed researchers to

examine the interaction of EtOH with ion channels in tremendous detail. Investigators

can compare differences in the EtOH sensitivity across species and subtyes for a given

ion channel class. The sequence/domain requirements of these molecules that contrbute

to regulation by ethanol and other n-alcohols can be assessed through mutation. Data

compiled with these powerful approaches , samples of which are discussed below, has

solidified the shift from lipid-mediated actions of the drug to more specific protein-based

theories of action that currently predominate.

Glycine and GABA Receptors

N-alcohols, including EtOH, enhance the agonist-induced currents flowing

through GABA and glycine (GlyR) receptors. The GABA pI receptor, though, is

r"".



inhibited by these agents. Swapping domains ofthe GlyR and GABA pI protein

through the constrction of chimeric receptors , uncovers a 45 amino acid influencing n-

alcohol modulation of the curents. Residues within the second and third transmembrane

region of the proteins (S267 and A288 in GlyR, S270 and A291 in GABA a1) are

thought to be essential for some aspect of n-alcohol modulation of these receptors , since

mutation of these residues can abolish the sensitivity of the channels to n-alcohols (Mihic

et al. 1997). The hydrophobic pocket between the TM2 and TM3 regions ofthese

molecules , containing the aforementioned amino acids, may actually provide an n-alcohol

binding site. This hypothesis is supported by both chain length cutoff studies and the use

of irreversible anesthetic derivatives to modulate channel function. The potency of n-

alcohol modulation of many ligand-gated channels increases with the chain length of the

alcohol , until a cutoff point is reached. Above the cutoff, further increases in the chain

length of the alcohol either inhibit the currents, or fail to potentiate them above the level

of the n- 1 alcohol. The interpretation of this phenomenon is that there is a binding site of

a finite size , into which only alcohols of a certain molecular volume will fit. The cutoff

differs widely among the different classes of ligand-gated channels. While S267I

mutations in the GlyR abolish sensitivity (Mihic et al. 1997), S267Q mutations retain

sensitivity but decrease the cutoff from 10 carbons to 3 carbons , suggesting this residue is

involved in the binding of n-alcohols (Wick et al. 1998). This interpretation was

bolstered by a study employing propanethiol (similar to propanol), which can enhance

current amplitude reversibly, but can also covalently modify cysteine residues in the

presence of iodine (h). Wild-tye GlyRs are potentiated by propanethiol , but this
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enhancement of current can stil be washed out even following treatment with h. 

III
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S267C mutation yields irreversible modulation by propanethiol/h, suggesting that

covalent linkage to this residue traps the molecule in the n-alcohol binding site.

Irreversibly modified channels exhibit a reduced sensitivity to octanol , indicating that

modulation is through a single site (Mascia et al. , 2000).

Nicotinic Acetylcholine Receptors (nAChR)

The agonist- induced curents of the nicotinic acetylcholine receptor (nAChR),

like the GABA and GlyR, are also sensitive to n-alcohols. The receptors are composed

of a variety of a and ~ subunits , that show distinct expression patterns throughout the

nervous system. Depending on subunit composition, ethanol can either inhibit or activate

these channels. The a4~2 combination, one of the predominant heteromeric receptors in

the central nervous system, is potentiated by EtOH (Cardoso et al. 1999). The amino

acids in positions homologous to S267 and A288 of GlyR, however, do not appear to

constitute an n-alcohol binding site on the a2 subunit of the nAChR (Borghese 
et al.

2002). Cutoff studies with nAChR reveal further differences from the binding site

characteristics of the GlyR. Interestingly, the currents from this channel tye are

enhanced by ethanol, propanol , and butanol. However, pentanol and longer chain

alcohols are inhibitory, again differing from that observed with GlyR (Zuo et al. , 2001).

The a7 subunit can form homomeric nAChRs , the predominant a-bungarotoxin

receptors in the central nervous system, which are inhibited by EtOH. The NH2-terminal

region of this subunit can impart inhibition by EtOH when fused with the transmembrane

and COOH-terminal region of the 5- receptor, which is normally potentiated by the
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drug (Yu et al. 1996). EtOH also inhibits the nAChRs of the peripheral nervous system.

Residues in the pore-lining M2 segment of both the a and ~ subunits of these receptors

are thought to provide hydrophobic pockets that allow open state modulation by n-

alcohols. Mutations in this region strongly influence the actions of these drugs (Zhou 

al. 2000).

Channels

Voltage-gated Shaw2 K+ channels are inhibited by n-alcohols. Mutagenesis

studies demonstrate that the linker between the S4 and S5 regions of the a-subunit is

necessary for this inhibition , and it can confer sensitivity to hKv3.4 K+ channels that

normally do not respond to these agents (Covarrbias et al. 1995; Harris et al. 2000b).

Work from our laboratory demonstrates that two clones of the large conductance Ca 

++ -

activated K+ (BKca) channel that exhibit a high degree of homology (:;90%), 
mslo and

bslo respond oppositely to the application of ethanol (Dopico and Treistman, 1996;

Dopico 2003). G-protein coupled inward rectifier K+ (GIRK) channels are potentiated

by EtOH , while the inwardly rectifying K+ (IRK) channels are not. The EtOH sensitivity

of chimeric receptors indicated that a 43 amino acid region of the carboxyl terminus of

GIRK was important for EtOH modulation of the channel (Lewohl 
et al. , 1999).

From the results described above, it is apparent that n-a1cohol modulation of ion

channel function exhibits a degree of specificity. These experiments demonstrate not

only that certain domains of channel proteins are required for drug action, but that these

domains can confer or alter the sensitivity to EtOH when part of chimeric channel

constructs. These results suggest that the mechanism of ion channel modulation by n-
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alcohols is likely to involve a direct interaction with a hydrophobic pocket on the channel

protein itself, rather than a nonspecific disordering of the membrane lipid.

The Importance of Lipid Environment in Ion Channel Function and Ethanol

Sensitvity

Ethanol is a small , amphiphyllc molecule that can partition into and disrupt the

physical properties of the bilayer. The significance ofthe drug effects on membrane

lipids is unclear, though , due to the high concentrations of EtOH required to produce

them (Deitrich et al. 1989; Franks and Lieb , 1987). Its anesthetic actions on the nervous

system, at relevant physiological concentrations, are thought to result from drg

modulation of several classes of ion channels. Channel modulation by EtOH, in many

cases, can be linked to domains or specific residues within the sequence ofthe protein

(Harris et al. 2000a; Lewohl et al. 1999; Mihic et al. 1997; Yu et al. 1996; Zhou et al.

2000). As a result, it is generally accepted that EtOH binds in a hydrophobic pocket(s)

on the channel protein to influence gating. There are several compellng reasons , though

to revive an interest in lipid composition as it pertains to channel function and EtOH

sensitivity.

The sites on channel proteins deemed important for the actions of the drg are , to

date, largely located within transmembrane regions (GlyR and GABAA; Mihic et al.

1997) or on intracellular sites (Shaw2; Harris et al. 2000a). Partitioning of the drg into

the membrane may, therefore , be a vital step in channel modulation that is sensitive to

membrane lipid composition. Recent advances in the understanding of membrane

domain organization, and channel distribution within it, also provide cause for interest in
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the lipid microenvironment. It is increasingly clear that the plasma membrane is highly

heterogeneous , and that domains exist within the membrane that can serve important

roles in cell function (Bevers et al. 1999; London, 2002; Welti and Glaser, 1994). Data

from both native and artificial membranes , discussed below, demonstrate the complexity

of the interactions between lipid molecules, as well as integral proteins , that lead to the

formation of these domains. It is of particular interest that ion channels have been shown

to differentially associate with certain membrane domains (Bravo-Zehnder et at. , 2000;

Bruses et al. 2001; Dellng et al. 2002; Hil et al. 2002; Martens et al. 2000; Martens 

al. 2001; Shlyonsky et al. 2003; Suzui et al. 2001b), as there is increasing evidence to

indicate that the local lipid environment of an ion channel can profoundly influence its

activity (Bolotina et al. 1989; Chang et al. 1995b; Chang et al. 1995a; Levitan et al.

2000; Lundbaek et al. 1996; Moczydlowski et al. 1985; Park et al. 2003; Turneim 

al. 1999). Finally, there is a large body ofliterature that demonstrates alterations in the

membrane composition following chronic exposure to EtOH (Gustavsson, 1990; Swann

1987; Taraschi et al. 1991), suggesting the possibility that membrane lipid composition

is regulated as part of a compensatory response to the presence of the drg. Curently,

however, the role of membrane lipid composition in channel sensitivity to EtOH is

largely unexplored. These data and their implications for basal ion channel function and

EtOH sensitivity are discussed below, and represent the core of the questions to be posed

in this thesis.

Lipid Domains in Biological Membranes- Their Formation, Relevance to Cell

Function, and Ion Channel Behavior
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Plasma Membrane Leaflet Asymmetry

The plasma membrane exhibits a complex organization of lipid species both

within and across its leaflets. The maintenance of this organization involves interactions

between lipids , between lipid and proteins , and the activity of proteins involved in the

translocation of lipid species throughout the cell (Bevers 
et al. 1999; London, 2002;

Welti and Glaser, 1994). Glycolipids , phosphatidylcholine (PC) and sphingomyelin

predominate in the extracellular leaflet of the plasma membrane, while primary amine-

containing phospholipids such as phosphatidylethanolamine (PE) and phosphatidylserine

(PS) are localized to the cytosolic face. This asymetr is a largely A TP-driven

phenomenon, regulated by three major enzye activities: aminophospholipid translocase

(flppase), phospholipid translocase (floppase), and Ca dependent lipid scramblase.

Flippase localizes PE and PS to the inner leaflet, hydrolyzing approximately one A 

molecule per lipid translocation (Bevers et al. 1999). The buildup ofPS on the inner

leaflet may underlie the localization of many regulatory and strctual proteins to the

inner face of the plasma membrane, such as PKC (Palfrey and Waseem, 1985), annexin

(Meers and Mealy, 1993), and spectrn (Manno et al. 2002). High Ca 
H concentrations

inhibit flippase and activate scramblase, leading to a collapse of membrane asymmetr

important for platelet activation and macrophage recognition of apoptotic cells (Bevers 

al. 1999). Overexpression of wild-tye lipid scramblase in mast cells has an inhibitory

effect on exocytotic release elicited by a Ca 
H ionophore, with a time lag of

approximately 5 minutes. If the plasma membrane lipid asymmetr is disrupted before

application of the ionophore the inhibition is immediately apparent, suggesting a role for
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lipid asymmetry in some aspect of the exocytotic process in these cells (Kato 
et al.

2002).

In regard to ion channel function, this lipid asymmetry may have interesting

functional implications. PS , which is preferentially transported to the cytosolic leaflet

carres a net negative charge at physiological pH, creating a negative surface potential at

the inner face of the membrane. In terms of electrostatics , this results in an accumulation

of cations , and corresponding depletion of anions (Eisenberg 
et al. 1979; McLaughlin 

al. 1981). BKca channels reconstituted into negatively charged planar bilayers

(composed of PS , PEIPS , or PEIPI) exhibit higher open probability (Po) and slope

conductance (g) values , relative to channels in neutral bilayers (composed of PE, and

PEIPC) (Moczydlowski et al. 1985; Park et al. 2003; Tumheim et al. 1999). While

cation accumulation may contrbute to this phenomenon, it is unlikely to represent the

sole mechanism by which negatively charged bilayers enhance these BKca channel

properties (Park et al. , 2003).

Lateral Domains- PhosphatidylinositoI4, bisphosphate (PIP2)

Within the plane of a leaflet, lipids can associate non-randomly due to their

physical properties , or to interactions with membrane proteins (London, 2002;

McLaughlin et al. 2002; Welti and Glaser, 1994). The size, half-life, physical properties

and physiological role ofthese domains are a major focus of membrane biology and

biophysics. Phosphatidylinositol 4 bisphosphate (PIPz) is a phospholipid that plays an

important role in many aspects of cell function. It can be hydrolyzed by phospholipase C

(PLC) to produce diacylglycerol, which binds and activates protein kinase C (PKC), and
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inositol triphosphate (IP ), a diffusible second messenger that causes the release of Ca 
Ii!

IiI

from intracellular stores. Phosphoinositide 3-Kinase (PI3K) can phosphorylate PIP2,

creating phosphatidylinosito13 triphosphate (PIP ), which serves as an anchor for a

variety of signaling proteins (McLaughlin et al. 2002). A number of domains within

signaling and strctural proteins have been identified that bind PIP2 and PIP3, which

contribute to the membrane localization and wide array of physiological processes linked

to these molecules (Hurley and Meyer, 2001; Lemmon and Ferguson, 2001; Sato et al.

2001). There is evidence that the lateral organization of these lipids is not random.

Investigators have made use of a PIP binding domain called the pleckstrin homology

(PH) domain, by fusing it to GFP to create a marker for PIP2 within the cell. By this

method, transient domains of PIP2 are detected in the budding phagosomes of

macrophages (Botelho et al. 2000), and the membrane ruffes of epidermal growth factor

(EGF) stimulated HeLa cells (Honda et al. 1999). PIP is also localized exclusively to

the plasma membrane of hippocampal neurons, and accumulates to the center ofboutons

after electrical stimulation of the cell (Micheva et al. 2001). This and other data have

lead investigators to suggest a dynamic role for PIP2 domains in exocytosis (Holz and

Axelrod, 2002). The mechanism at hand to concentrate PIP2 in a given domain is

currently unclear. One proposed mechanism involves sequestration by a membrane-

associated PIP2 binding protein called myristoylated alanine-rich C kinase substrate

(MARCKS), which contains a cluster of basic residues that may electrostatically

sequester the trivalent PIP lipid molecules. PKC phosphorylation of MARCKS releases
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the presumed PIPz sequestering domain from the membrane
, suggesting the potential for

!il
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local release of sequestered PIPz (McLaughli
et al. , 2002).

PIPz hydrolysis regulates the activity ofP/Q- and N-tye Ca channels (Wu 

al. 2002), as well as TRP (Runnels 
et al. 2002) and BKca (Liu et aI , 2003) channels.

PIPz itself binds directly to KATP channels to modulate their activity. The Kir6.2 subunit

of the channel can associate with membranes in a manner similar to the PH-
GFP

construct used above , and muscarinic M1-mediated phospholipid depletion can reduce

this association (Cukras 
et al. 2002). PIPz is thought to compete directly with ATP for a

site on the channel , and prevent the inhibition by the nucleotide (Cukas et aI. , 2002;

MacGregor et al. 2002). The negative charge ofthe lipid is relevant in 
this phenomenon

as potency for competition decreases with decreasing negative charge
, PIP3 :; PIPz = PIP

:; PI. Phosphatidylserine (PS) is also negatively charged, and can inhibit A TP binding

despite differences in lipid headgroup strcture (MacGregor et al. 2002). Residues in the

carboxyl terminus of the Kir6.2 subunit are thought to mediate this interaction with PIPz

(Cukas et al. , 2002).

Cholesterol and Sphingomyelin-rich Lipid Rafts

Another prominent and more widely studied example of a membrane domain is

the cholesterol (CHS) and sphingomyelin (SM)-rich lipid raft structures (Figure 2a).

These membrane fragments are distinguished biochemically by their insolubility in non-

ionic detergents such as Triton X- 100 (at 4 C), and their low density that allows them to

float in sucrose gradients. Rafts form by virte of the physical 
properties and resulting

interactions of raft lipids. Lipids undergo a phase transition (T m
) from the gel (L~) to
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(shaded). Figure adapted from Pike LJ (2003) J. Lip. Res. 44(4):655-667. SPM
sphingomyelin; Chol, cholesterol; Gang, ganglioside. B) Lipid properties and
interactions that underlie raft formation. Figure adapted from Fantini J, Garmy N
Mahfoud R, and Yahi , N (2002) Exp. Rev. Mol. Med. GPLs , glycerophospholipids; Lo

liquid-ordered phase; Lc , liquid-crystalline phase; L~, gel phase.
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liquid crystallne (Lc) phase (Figue 2b). SM contains long, saturated acyl chains

differing from most biological phospholipids (denoted GPLs in Figure 2b) that are rich in

ill

ill
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kinked, unsaturated chains. As a result SM molecules undergo the transition from the 

to Lc phase at higher temperatures. SM molecules pack tightly in the 
L~ phase at 37

leading to phase separation from the Lc phase (lower T m
) phospholipids in the

membrane. The SM-rich rafts in biomembranes , however, are not in the L~ phase due to

the high concentrations of CHS found in the plasma membrane. The 
strcture of CHS

consists of a tetracyclic fused ring skeleton, a hydroxyl group at carbon 3 , and a

hydrocarbon side chain at carbon 17 (see Figure 6, Chapter I). The hydroxyl group

orients the planar, rigid molecule in the membrane , by associating with the aqueous phase

along with the polar headgroups of the membrane phospholipids. Increasing amounts 

CHS in the bilayer can broaden and eventually abolish the sharp L~-
Lc phase transition

of phospholipid bilayers, imparting the bilayer with properties of both the gel phase

(ordered acyl chains) and liquid crystalline phase (lateral mobility). This bilayer phase

induced by high CHS concentrations is referred to as the liquid-ordered phase (Lo). CHS

packs favorably with the saturated acyl chains of SM, further promoting phase separation

and raft formation in sphingolipid/phospholipid mixtures. The association of CHS with

SM is theorized to involve hydrogen bonding between the hydroxyl group on CHS and

the amide linkage ofSM (Ohvo-Rekila et al. 2002). The ability ofCHS to promote

phase separation in sphingolipid/phospholipid mixtures is thought to underlie the ability

ofCHS depletion to disrupt lipid raft strctures (Brown and London, 1998; London

2002; Ohvo-Rekila et aI. , 2002).
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The functional role of lipid raft domains in neurons includes neurotrophin

signaling, cell adhesion, axon guidance , and synaptic transmission. Several molecules

that regulate these neuronal functions exhibit raft association including

glycosylphosphatidylinositol (GPI)-anchored and transmembrane receptors , GTPases , Src

family tyrosine kinases , syntaxins 1A and 3 , neuronal cell adhesion molecules (NCAMs)

and associated adaptor proteins from the glutamate receptor interacting protein (GRIP)

family (Paratcha and Ibanez, 2002; Tsui-Pierchala et al. 2002). There is also a direct

link between ion channel localization, function and raft partitioning. Members of the

Shaker- like family of voltage-gated potassium (K ) channels differentially associate with

these raft strctures in mouse L cells , and disruption of rafts through CHS depletion alters

channel function. Kv 1 and Kv1.5 both associate with lipid rafts though only Kv1.5

colocalizes with the scaffolding protein caveolin, indicating it resides in a distinct tye of

raft domain, termed caveo1ae. On the other hand, KA.2 is consistently found in the

detergent soluble fraction of the membrane , indicating that it does not partition into these

domains. Disruption of membrane CHS disperses rafts , shifts the V 1/2 for inactivation 40

m V to the right for Kv , and both the V 1/2 for activation and inactivation approximately

10 mV to the left for Kv 1.5 (Martens et al. 2000; Martens et al. 2001). G-protein-

activated inwardly rectifying K+ (GIRK) channels are also located in lipid rafts. The

targeting of these channels within the cell appears to be determined by the presence or

absence ofNCAM140 in the raft domain along with the channel. Rafts lacking this

NCAM allow transport to the cell surface , while channels in NCAM140-containing

domains are retained in an intracellular compartment (Dellng et al. 2002). Cloned
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human BKca (hslo) channels expressed in Madin-Darby canine kidney (MDCK) cells are

sorted preferentially to the apical membrane of these polarized cells. This localization is

independent ofN-glycosylation. These channels appear to partition into lipid rafts , again

suggesting raft association may influence protein targeting in specialized cells (Bravo-

Zehnder et al. 2000). The epithelial sodium channel is present in rafts both

intracellularly and on the plasma membrane in A6 cells , but it is unclear how this

influences channel sorting or activity (Hil et al. 2002; Shlyonsky et aI. 2003). Neurons

of the chick ciliary ganglion exhibit the formation of clusters of the a7 nicotinic

acetylcholine receptor (nAChR) during synaptogenesis. The maintenance of these

clusters requires lipid rafts, as CHS depletion disrupts rafts as well as the channel clusters

(Bruses et al. 2001). AMP A receptors, GluRl- , isolated from rat forebrain neurons are

also raft-associated (Suzuki et al. 2001a). A recent study, implementing bovine aortic

endothelial cells , has demonstrated an inverse correlation between surface density of Kir

2 channels and membrane CHS content, though raft association was not analyzed

directly. Interestingly, membranes enrched in epicholesterol , an optical isomer of CHS

exhibit increases in the surface density ofKir 2 channels , suggesting that direct sterol-

protein actions may be involved (Romanenko et al. , 2002).

The functional importance of the various lipid domains found within the cell

continues to be elucidated, and emerging roles in cell surface targeting and signal

transduction are apparent. The formation of rafts is largely dependent upon the physical

properties of SPM and CHS , which pack tightly to form liquid-ordered domains that

resist detergent solubilization. It is this difference in physical properties from the bulk
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lipid that allows the isolation of these domains (Brown and London, 1998; London, 2002;

Ohvo-Rekila et al. 2002). However, there is little understanding of how these rafts , due

to their physical properties , may regulate the activity of transmembrane proteins. 

ordered environment rich in CHS or SPM could feasibly alter the activity of these

proteins , particularly ion channels that open and close within the plane of the membrane.

There are increasing examples of the modulation of channel function by membrane lipid

composition, particularly the vital raft component CHS.

The influence of membrane cholesterol has been studied in regard to the function

of a number of ion channel classes. The sterol can alter the properties of the volume-

regulated anion current. This current, studied in bovine aortic endothelial cells , is elicited

by exposure to an osmotic gradient. Depletion and enrichment of membrane cholesterol

enhances and reduces , respectively, the sensitivity of the current to a small osmotic

stimulus. Anion selectivity is unchanged, suggesting the conduction pore of the channel

is unaffected (Levitan et aI. 2000). Manipulation of membrane CHS in IMR32 cells

demonstrates that increases in the sterol content selectively shift the inactivation ofN-

tye Ca ++ channels toward more positive potentials, without influencing voltage

activation (Lundbaek et al. 1996). BKca channels , studied in patches pulled from rabbit

aortic smooth muscle cells , exhibit increased Po when the cells are treated with

mevinolin, an inhibitor of CHS biosynthesis that depletes plasma membrane cholesterol.

Conversely, enriching the membrane of these cells with CHS-rich liposomes results in a

decrease in Po (Bolotina et al. 1989). This result was extended with the study of rat brain

BKca channels incorporated into CHS-containing bilayers. As the amount of CHS in the
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lipid mixture increases , the mean open time , Po, and conductance of the channel decrease

(Chang et al. 1995b).

Biophysical Insight Into the Mechanism of Cholesterol Action on Ion Channels

Mechanistically, CHS actions on ion channels have been interpreted in light of the

influence of the sterol on the properties of the bilayer. Changes in BKca channel Po

elicited by depletion and enrichment of membrane CHS correspond with a respective

increase and decrease in the rotational diffusion coeffcient of DPH, measured by

fluorescence polarization. This technique provides a relative measure of membrane order

(Bolotina et al. 1989). However, it has been suggested that acyl chain order alone

cannot explain steady state changes in channel Po (Lundbaek et al. 1996). The

measurement ofBKca channel mean open time (to) over a series of temperatures allowed

the constrction of an Arhenius plot, indicating that CHS causes a decrease in the

activation energy for the transition from the open to the closed state (Chang et al.

1995b). CHS was theorized to decrease the stability ofthe open state by altering the

physical properties of the bilayer (Chang et al. 1995b). Essentially, if the transition from

the closed to open state of the channel is accompanied by a change in volume , a force

wil be transmitted to the bilayer as the channel opens. The properties of the bilayer wil

determine, in part, the magnitude of the resulting force deflected back on the channel.

The addition ofCHS may alter the physical properties of the membrane to destabilize the

open state of the BKca channel.

For instance , the relative volume of the polar versus non-polar area of a lipid

molecule influences its ability to pack effciently into a planar bilayer. Molecules with
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larger non-polar regions (relative to polar regions on the same molecule), like CHS , are

referred to as "cone" shaped lipids , and can promote nonbilayer phases (Figure 22).

Incorporation of such lipids into the membrane increases the stored energy in the bilayer

which may then influence the stability of certain protein conformational states (Figure

23). A more detailed description of lipid molecular shape and its influence on BKca

channel function is contained within Chapter III of the thesis.

The abundance of CHS in the plasma membrane, its ability to regulate membrane

proteins and bilayer physical properties, as well as its role in lipid rafts , suggest it is an

important modulator of membrane function. The concept of membrane domains suggests

that the location of a channel within the membrane could strongly regulate its function.

This is of particular interest when considering chronic models of EtOH exposure. A

large body of evidence indicates that changes in membrane lipid composition may occur

as part of a compensatory response to the continued presence of the drg (Gustavsson

1990; Swann, 1987; Taraschi et al. 1991). Changes in membrane CHS , in particular

have been well documented (Chin et al. 1978; Chin et al. 1979; Wood et al. , 1989).

Given its roles in domain formation, domain maintenance, and ion channel modulation

described above , it is tempting to speculate that these alterations in membrane CHS

following long term EtOH exposure may indeed be relevant to the physiology of

adaptation to the drug. A determination of the functional significance of these changes is

a major goal of this thesis.

Membrane Cholesterol and its Modulation by Chronic Ethanol Treatment
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Early hypotheses regarding EtOH action on the nervous system contended that the

drg elicited non-specific effects on channel gating, through disordering of the bulk lipid

'I!.

of the plasma membrane. This prompted numerous studies designed to correlate

behavioral sensitivity to EtOH with the sensitivity of membranes to the disordering

actions of the drg. Of particular interest was a comparison of the membranes from
!Ii
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animals chronically treated with EtOH to those that were naIve to the 
drg. These studies

detected a number of alterations in membrane composition following chronic EtOH

treatment, including changes in CHS (Gustavsson, 1990; Swann, 1987; Taraschi et al.

1991). The functional significance ofthese findings has yet to be 
clarified. Given the

complexity of membrane organization, the emerging roles for lipid domains in cell

function, and the sensitivity of channels to membrane lipid environment
, it is a

worthwhile task to revisit the importance of these changes.

CHS is a ubiquitous component of mammalian cell membranes. The sterol

disorders the acyl chains of gel-phase bilayer and orders the chains in fluid phase

membranes , maintaining an optimal fluidity for proper membrane function. Aside from

its role in regulating membrane properties , cholesterol serves as a precursor to the

synthesis of steroid hormones , bile acids , and vitamin D. The cell , therefore, tightly

regulates its metabolism to maintain CHS levels at 20 - 40% 
of total plasma membrane

lipid weight (depending upon the cell tye). CHS is obtaining by cells by both

biosynthesis and transport from lipoproteins in the plasma
, both of which are influenced

by feedback regulation at the transcriptional through post-
translational levels (Ohvo-

Rekila et al. 2002). The enzymes involved in the biosynthetic 
pathway of cholesterol , as
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well as the LDL receptor that regulates CHS uptake from the plasma, are under common

transcriptional control. Serum response elements (SREs) in the regulatory regions of

these genes allow recognition by transcription factors called serum response element

binding proteins (SREBPs). These SREBPs are found primarily in the membranes of the

endoplasmic reticulum and nuclear envelope. Decreasing sterol levels cause the NH2

terminus of the SREBP protein to be cleaved off, after which it enters the nucleus to

activate downstream genes (Thewke 
et al. 2000). The mechanism through which this

occurs may involve direct sterol binding/sensing by molecules involved in the proteolytic

processing of the SREBP proteins (Brown 
et al. , 2002).

Cholesterol antagonizes the EtOH-induced disordering of phospholipid acyl

chains (Chin and Goldstein, 1981). Synaptic membranes from EtOH tolerant mice are

resistant to disordering by EtOH and, in some cases , exhibit increases in the amount of

membrane CHS. This alteration in membrane lipid composition was theorized to

represent a compensatory response to the continued disordering presence of the drug

(Chin et al. 1978; Chin et al. 1979; Smith and Gerhart, 1982). However, these increases

in the synaptic CHS content were not detected in all strains of mice , only C57BL.

Increases in membrane CHS also appear in chronic exposure studies of human (Benedetti

et al. 1987) and rat (Kanbak et al. 2001; Lalitha et al. 1989) eryhrocytes , rabbit spinal

cord (Halat et al. 1988), human hepatic cell line WR-68 (Gutierrez-Ruiz et al. , 1995),

HeLa cells (Keegan et al. 1983), rat synaptic membranes (Renau-Piqueras et al. , 1987;

Zerouga et al. 1991), rat hepatocytes (Smith et al. 1982), and cultured rat cerebellar

granule cells (Omodeo- Sale et al. 1995). Some studies , however, did not detect changes
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in CHS composition (Swann, 1987). Interestingly, changes in the leaflet distribution of

the sterol have also been observed following chronic ethanol treatment, in the absence of

overall increases in membrane cholesterol composition. The synaptic membranes of

mice chronically treated with EtOH exhibited a 2- fold increase in the CHS content of the

outer leaflet of the plasma membrane, relative to control mice (Schroeder et al. , 1996;

Wood et al. 1989; Wood et al. , 1999).

The functional significance of these findings remains unclear. It is now obvious

though, that changes in membrane CHS content and distrbution can have profound

effects on membrane organization (Brown and London, 1998; London, 2002; Ohvo-

Rekila et al. 2002) and the behavior of several classes of ion channels (Bolotina 
et al.

1989; Chang et al. 1995b; Levitan et al. 2000; Lundbaek et aI. 1996), currently deemed

the relevant targets of drug action. To address the possibility that alterations in

membrane CHS represent a compensatory response to EtOH, it is first necessary to

determine the ability ofthe sterol to alter the interaction of the drug with a relevant target.

The BKca is modulated by both EtOH (Chu et al. 1998; Dopico et al. 1996; Dopico 

al. 1998; Dopico et al. 1999; Dopico , 2003; Jakab et al. 1997; Knott et al. , 2002;

Walters et al. 2000) and membrane composition (Bolotina et al. 1989; Chang et al.

1995b; Chang et al. 1995a; Moczydlowski et al. 1985; Park et al. 2003; Tumheim 

aI. 1999), making it an ideal model with which to pose these questions.

The Large Conductance Ca 

++ 

-activated K+ (BKca) Channel-Basic Channel

Properties and Relevance to the Physiology of EtOH



The large conductance Ca H -activated K+ (BKca) channel is expressed in many

tissues throughout the body. The channel opens in response to both membrane

depolarization and increases in intracellular (Ca )Free, allowing the effux ofK+ ions

from the cell. The channel passes K+ ions through the pore at an extremely high rate

(g:;200pS), while stil maintaining selectivity for K+ over other monovalents such as Na

As a result, BKca channels exhibit many tissue specific functions. In the nervous system

these channels colocalize with Ca channels (Marrion and Tavalin, 1998), modulate

action potentials (Poolos and Johnston, 1999), and regulate the release of

neurotransmitter (Robitaille and Charlton, 1992). BKca channel gating is relatively

complex. The channel can be activated in the absence of (Ca H)Free (Horrigan and

Aldrich, 1999; Horrigan et al. 1999), but the Vl/Z for activation shifts to the left with

increasing (Ca H)Free. Functional BKca channels consist of a tetramer of a subunits, with

each subunit contributing in a stepwise manner to the cooperative activation of the

channel by (Ca )Free (Niu and Magleby, 2002). The a subunit, shown in Figure 3 , is

encoded by the slowpoke (slo) gene, named for a Drosophila mutant, which has been

cloned from several species including the fly (Adelman 
et al. 1992; Atkinson et al.

1991), mouse (Butler et al. 1993), and human (Tseng-Crank et al. 1994). The channel

has considerable homology to other voltage gated K+ channels in the S 1-S6 region, in

that it contains an S4 voltage sensor and a P-loop between S5 and S6. It is unique in the

presence of an NHz-terminal SO transmembrane domain , and, as a result, an extracellular

NHz-terminus. It also contains a large ( 850 residues) intracellular C-terminus with a

regulator of conductance for K+ (RCK) domain, and an aspartate-rich "Ca H bowl" in the
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tail region. Mutation ofthe "
bowl" can reduce 

++ -

binding activity ofthe tail

region from the 
Drosophila (dslo) 

clone ofthe BKca channel. This coincides with an 

ill

1\1

111
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m V rightward shift in the V 1/2 for activation ofthe channel when expressed in 
HEK293

cells (Bian et ai. 2001). The RCK domain contains two additional sites important for

divalent cation regulation of channel gating. One
, in combination with the "Ca H -bowl" ,

'ji

appears sufficient to account for the behavior ofthe channel over a range of (Ca
)Free

concentrations , while a second low affnity divalent site contrbutes the modulation of the

channel by milimolar concentrations ofCa
or Mg (Shi et ai., 2002; Xia et al. , 2002).

However, recent experiments demonstrate that BKca channels lacking the intracellular C-

terminus , including the RCK domain and the Ca 
H -bowl, are not only functional, but

retain their sensitivity to Ca
rt (piskorowski and Aldrich, 2002).

Channel diversity is achieved through splice variations
, associated proteins , and

the expression of auxiliary ~ subunits (1-
4) (Figue 3), which exhibit differences in their

expression patterns and in their channel modulation. The bovine 

slo (bslo) gene , for

instance , contains 10 alternative splice sites. In 
chromaffn cells , stress hormones

regulate splicing at a site on the intracellular tail of the channel (Lai and McCobb, 2002).

Pituitary ablation causes a sharp decrease in the inclusion of a 

60 amino acid cysteine-

rich insert termed stress axis-regulated exon (STREX) (Xie and McCobb
, 1998). This

exon allows channels to activate faster with smaller depolarizatio
, and deactivate more

slowly (Saito 
et aI., 1997), thereby altering the firing pattern of the cell (Lovell and

McCobb 2001). The precise mechanism by 
which stress hormones regulate splicing in

chromaffn cells remains unclear, though both depolarizati and overexpression of
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/calmodulin-dependent protein kinase (CaMK) repress inclusion of the STREX exon

\11

(Xie and Black, 2001). In rat myometrium, a 33 amino acid insert termed splice variant 

(SV1) controls the cell surface expression of the channel. BKca channels containing

SV1 , which is spliced in between SO and S 1 , are retained in the endoplasmic reticulum in

a dominant-negative manner (Zarei 
et al. 2001). From these examples , it is clear that

splicing regulates not only channel activity, but also its intracellular trafficking. 

Drosophila an associated protein termed 
dslo interacting protein 1 (DSLIP1) also

reduces cell surface expression of the channel, though no known mammalian homologue

is known (Xia et al. 1998). Another dslo interacting protein from 
Drosophila termed

slo-binding protein (Slob), decreases cell surface expression and increases the activity of

the channels when exogenously applied to ripped-off patches (Schopperle 

et al. , 1998).

Both proteins were isolated in yeast two-hybrid screens , and both interact with the C-

terminus of the channel (Schopperle 
et al. 1998; Xia et al. 1998). Slob expression in

Drosophila appears to be under circadian control (Ceriani 
et al. 2002). There is

evidence that Slob binds the zeta isoform of 14- , suggesting it may be part ofa

regulatory complex that controls channel function (Zhou 
et al. 1999). Channel activity is

also regulated by both the catalytic subunit of cAMP-dependent protein kinase (PKAc)

and Src tyrosine kinase , both of which bind simultaneously and directly to the channel

(Wang et al. , 1999).

Regulation of BKca channel fuction can also be achieved in a tissue-specific way

through the expression of several auxiliary ~ subunits (Orio 
et al. 2002). The ~ subunits

consist of two transmembrane domains connected by an extracellular linker
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approximately 120 residues long. Four major classes of ~ subunit have been cloned from

mammals. Co-expression of ~ 1 with the a subunit induces a leftward shift in the P 0

Voltage cure at a given Ca ++ concentration, and slows the activation and deactivation

kinetics of the channel (Cox and Aldrich, 2000). It is expressed in predominantly in

smooth muscle , and targeted deletion of the gene in mice influences arterial tone and

blood pressure , which correlate with decreases in Ca ++ sensitivity of the BKca channel

(Brenner et al. 2000b). The ~2 subunit is expressed predominantly in chromaffn cells

and brain, and it produces inactivating BK currents. It accomplishes this with an NH

terminal "ball and chain" mechanism originally described for the Shaker + channel

(Wallner et al. 1999; Xia et al. 1999). ~3 subunits consist of 4 different splice variants

(~3a-d) that are expressed in the testis , spleen and pancreas. Co-expression of ~3a-c with

the a subunit yields partially inactivating BKca current, while ~3d had no apparent effect

on channel function (Uebele et al. 2000; Xia et al. 2000). ~4 is expressed

predominantly in the brain, it reduces the apparent Ca ++ sensitivity of the BKca channel

and slows channel activation kinetics (Brenner et al. 2000a; Meera et al. , 2000).

Interestingly, residues in the extracellular loop of the ~4 subunit render the BKca channel

resistant to blockade by the peptide blockers charybdotoxin and iberiotoxin (Meera et al.

2000). Through splice variants , cytoplasmic kinases , associated factors , and

transmembrane ~ subunits the single slowpoke gene can produce tremendous diversity in

the behavior of BKca channels.

Work from this laboratory has shown that BKca channels are relevant targets of

EtOH, during both acute and chronic exposure to the drug. EtOH reversibly potentiates
--'r



native BK channels in patches pulled from rat neurohypophysial nerve terminals. This

finding suggests that significant cytoskeletal structure and diffusible second messengers

are not required for channel modulation by the drug (Dopico 
et al. 1996). Cloned mslo

channels expressed in a non-neuronal background, the Xenopus oocyte , are dose-

dependently and reversibly activated by ethanol in the ripped-off patch configuration.

The response of the channel to EtOH decreases with increasing intracellular (Ca H)Free,

suggesting the drg may behave as a partial agonist on the channel , Ca H being the full

agonist (Dopico et al. 1998). It is not currently known how the channel responds to

EtOH in solutions lacking Ca altogether. Data presented in Appendix I of this thesis

suggests that, for reconstituted channels , an exposure to high Ca H levels may promote a

robust response to a subsequent application of EtOH. Channels from GH3 pituitary

tumor cells respond to EtOH in the outside-out patch configuration, and protein kinase C

(PKC) inhibitors block augmentation of channel activity by the drug (Jakab 
et al. , 1997).

Rat skeletal muscle T -tubule BKca channels incorporated into planar lipid bilayers retain

EtOH sensitivity. This reductionist preparation, lacking native lipid and cytoskeletal

architecture, stil maintain dose-dependent modulation by the drg (Chu et al. , 1998).

Bovine aortic smooth muscle BKca channels reconstituted into planar bilayers are

inhibited by EtOH (Walters et al. 2000), as they are in more complex backgrounds

(Dopico and Treistman, 1996; Dopico , 2003). These studies clearly demonstrate that

complex membrane domain formation, cytosolic second messengers , and complex

cytoskeletal architecture are not required for the modulation of BKca channels by ethanol.
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Rat magnocellular neurons provide a model to study EtOH modulation ofBKca

channel function as it pertains to cell physiology. The cell bodies of these neurons are in

the hypothalamus and they project axons to the posterior pituitary (neurohypophysis),

where they release the peptide hormones oxytocin and vasopressin into the bloodstream.

These neurons exhibit distinct BKca channel subtypes in the soma versus the terminals.

Channels from the terminals exhibit a lower Ca 
H sensitivity than somatic BKca channels

and are resistant to charybdotoxin unlike the somatic channel subtye. These

observations are consistent with a differential expression of the auxiliary ~4 subunit.

Intriguingly, the BKca channels of the terminals respond to acute EtOH exposure

whereas the cell body variant is unaffected by the drug (Dopico 
et al. 1999). It is

currently unclear if a differential association with the ~4 subunit underlies the differences

in the BKca channel response to EtOH in the two subcellular compartments. Acute

exposure to EtOH blocks neuropeptide release from both the intact neurohypophysis and

isolated terminals (Knott et al. 2000; Wang et al. 1991a; Wang et al. 1991b). Peptide

release is a Ca H -driven process , and EtOH inhibition of release may result from both the

inhibition ofCa++ channels (Wang et al. 1994; Wang et al. 1991a; Wang et al. 1991b)

and activation ofBKca channels (Dopico 
et al. 1996; Dopico et al. 1999) elicited by the

drug in nerve terminals. Long-term exposure to EtOH renders the nerve terminals of the

magnocellular neurons resistant to inhibition of peptide release by an acute challenge

with the drg (Knott et al. 2000). This tolerance phenomenon is accounted for by

compensatory changes in the EtOH sensitivity and current density of both Ca and BKca

channels. The concentration dependence for the EtOH inhibition ofL-type Ca channels
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from the terminals of tolerant rats is shifted to the right
, and the terminals exhibit an

increase in current density. Concurrently, there is a rightward shift in the 
EtOH

activation ofBKca channels, as well as a decrease in current density (Knott 
et al. , 2002).

These alterations in channel function would combine to counteract the acute actions of

the drug. The mechanisms underlying these changes in EtOH sensitivity and current

density are unkown.

Evidence for a Potential Role of Membrane Composition in EtOH modulation of BK

channels

EtOH acutely and chronically modulates neuronal BKca channels (Dopico 

et al.

1996; Knott et al. 2002). Acute exposure to the drug potentiates channel activity (Chu 

al. 1998; Dopico et al. 1996; Dopico et al. 1998), though sensitivity to acute EtOH

drops sharply after chronic exposure, along with current density (Knott 
et al. 2002). The

mechanism by which this occurs is unkown. It is tempting to speculate a role for

membrane lipid composition in these processes.

Mice chronically exposed to EtOH exhibit alterations in the amount (Chin 

et al.

1978; Chin et al. 1979; Smith and Gerhart, 1982) or distribution (Schroeder et al. , 1996;

Wood et al. 1989; Wood et al. 1995) of membrane cholesterol (CHS). CHS and

sphingomyelin (SPM)-rich lipid raft structures serve an important functional role in cells

including the traffcking of ion channels (Bruses 
et al. 2001; Delling et al. , 2002),

including BK (Bravo-Zehnder et al. 2000). CHS is an integral component of rafts , and

alterations in membrane CHS can profoundly influence raft integrty (Brown and

London, 1998; London, 2002; Ohvo-Rekila et al. 2002). The decrease in BKca nerve
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the right following chronic exposure to the drug. The gating of native 
BKca channels

III

III

III

terminal current density in chronically exposed rats may be 
attibuted to alterations in the

intracellular traffcking of the channel , a process sensitive to the dynamics of cellular

CHS. The concentration dependence ofBKca channel 
potentiatio by EtOH is shifted to

to the actions of EtOH (Chu 
et aI. 1998; Dopico et al. 1996; Dopico et al. 1998; Jakab

Iii

Iii

derived from both muscle and brain is sensitive to the levels of CHS in the membrane.

CHS reduces the activity of channel (Bolotina 

et al. 1989; Chang et al. 1995b), opposite

et al. 1997). The membrane enrichment of CHS following chronic 
drg exposure may

represent a compensatory response to the acute effects of the drug on channel function.

Additionally, the presence ofCHS in the membrane may inhibit the response of 
the BKca

channel to acute EtOH exposure. For instance
, CHS can antagonize the effect of

halothane on nAChR from 
Xenopus myocytes. Halothane reduces the mean open time of

these channels, and enrichment of the cells with CHS-containing vesicles attenuates this

reduction (Lechleiter 
et al. 1986). Given the similarity of EtOH and halothane

, it is

feasible that CHS may exert a similar effect on the BKca channel response to EtOH.

General Experimental Approach

The reductionist planar lipid bilayer system is well suited to address these

questions. This system, described in detail in Chapter I
, allows experimental control over

both the membrane lipid environment and the channel reconstituted into it. 
The human

brain clone of the BKca channel a-subunit 
(hslo) is implemented in these studies , limiting

complications possible with native channels such as differences in splice variants. This

variant is most relevant to the human physiology of alcohol use. HEK293 cells serve as



the expression system, ideal since they lack any endogenous Ca 
H sensitive conductances

(Yu and Kerchner, 1998; Zhu et al. 1998). Channels are reconstituted into bilayers

consisting of phosphatidylethanolamine (PE) and phosphatidylserine (PS) mixed in a 3: 

ratio , a mixture widely used in BKca reconstitution experiments (Chu 
et al. , 1998;

Moczydlowski and Latorre , 1983a). This mixture wil represent a baseline for basal

channel fuction and EtOH sensitivity, to which the influence of added lipids (i.e. CHS)

can be tested on these parameters.

Organization of the Thesis

Chapter I provides a detailed description of the planar bilayer method, as it is

applied to the study of the actions of EtOH on ion channels. Chapter II details the CHS

modulation of both basal Po and the EtOH sensitivity of the BKca channel cloned from

human brain (hslo). Chapter III explores the mechanism underlying CHS modulation of

channel function, in particular the role of surface charge, lipid molecular shape, and

bilayer order. The discussion sections contained within each chapter summarize the

findings and any mechanistic insight gained. A final Discussion chapter briefly

summarizes the results and more general implications of the thesis work. Appendix I

includes preliminary data addressing the role of (Ca )Free in the response of reconstituted

hslo channels to EtOH.
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CHAPTER I

ARTIFICIAL BILAYER TECHNIQUES FOR ION CHANNEL STUDY

Introduction

Many of the early studies of alcohol' s effects in the nervous system have been

framed and interpreted to determine whether the primary target of alcohol' s action is the

lipid or the protein components of brain. We suggest that it is necessary to consider

functioning membrane proteins and their lipid environment (as well as the various

interfaces between them, such as lipid-protein, lipid-protein-water, and protein-lipid-

protein, etc.) as a dynamic system, in which the small amphiphilic alcohol molecule wil

interact simultaneously with a number of targets.

That lipids play an important role in the effects of alcohol on neural fuction is

suggested by the great diversity of lipids in nerve membranes , the large influence of lipid

composition on channel protein function, and by the fact that apparent compensatory

changes in lipid composition occur as a function of chronic drg exposure. There is now

a vast body of work that addresses the influence of chronic ethanol exposure on

membrane lipid composition and function. However, results from different laboratories

are often at odds. The complexity of natural membranes and the numerous and

interlinked lipid metabolism pathways make a reasonable analysis of lipid involvement in

alcohol' s actions in intact animals and tissue diffcult.

Understanding how the interactions between protein subunits, lipids , and water

are affected by alcohol is best accomplished in a very simplified system, where the

function of an isolated channel protein is studied in a reconstituted planar lipid bilayer.

't:-.
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This technique has proven to be a very powerful method to elucidate the role of lipids in

channel modulation. If we couple the use of the artificial membrane with the

incorporation of cloned channels, we are able to manipulate both the protein and the lipid

environment, yielding the greatest hopes of controlling enough variables to allow a

meaningful assessment of the role of lipid environment on drg action on protein targets.

Building A Planar Lipid Bilayer Setup

Due to the fragile nature of the lipid bilayer, and the need to maintain an adequate

signal-to-noise ratio, the recording chamber must be free of electrical interference

vibrations , and mechanical disturbances. As such, it is important to constrct the bilayer

rig in an area of the laboratory with little foot traffc and background noise. To eliminate

floor vibrations , place the recording chamber on a vibration isolation table. The table is

constrcted of a large metal top that is supported on a bed of compressed nitrogen gas.

They are commercially available from several sources , including Technical

Manufacturing Company (Peabody, MA) and Kinetic Systems (Boston, MA). Cost-

effective alternatives include placing the metal slab on a partially inflated motorcycle

. innertbe (Alvarez, 1986), tennis balls , or pneumatic shock absorbers (Hanke and Schlue

1993b). To eliminate electrical interference the chamber is placed in a Faraday cage

along with the probe of the patch-clamp amplifier used to measure the currents. The

cages are also commercially available, but adequate homemade versions can be

constrcted. Cages can be built inexpensively with wood frames and copper or

aluminum mesh, or from plate aluminum attached directly to the vibration isolation table.

Additionally, the recording chamber is placed in an aluminum box with a closing top to
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Faraday cage. Finally, the interior of the Faraday cage can be lined with sound-

further reduce electrical interference. Large cages are convenient when a microscope is

required for viewing the chamber. It is recommended that any piece of equipment that

wil contact the chamber, notably the perfusion system, also be shielded within the

deadening foam, to prevent the bilayer recording setup from picking up acoustic noise

from laboratory equipment and personnel.

Bilayer recording chambers come in a variety of styles. In this section
, only

chambers for use with painted bilayers wil be considered. Figure 4 
shows schematic

drawings of two tyes of bilayer recording chambers. The chambers are commonly

miled from a block of Teflon or Delrin plastic. Vertical bilayer chambers consist of two

intersecting circular holes , one of which is fitted with a polycarbonate cup. The cup

contains the aperte across which the bilayer is painted. The other chamber is

constrcted with a clear window to allow visualization of the bilayer with a microscope.

Horizontal bilayer chambers contain two holes miled on either side of the plastic block

separated by a thin layer of plastic with a hole in the center. The bottom chamber is

enclosed with a glass microscope slide , affxed to the Teflon/Delrin using a silicone

sealant. A plastic microscope coverslip is attached to the bottom of the upper chamber.

This coverslip acts as the divider between the two chambers and contains the 
apertre

that will hold the bilayer. A 7:3 mixture ofwax:Vaseline is used to attach the 
coverslip

to the plastic chamber. Both chamber styles feature wells to insert the Ag/ AgCl

electrodes , and salt bridges that connect them to the recording chambers. In addition

ports can be added to attach perfusion and vacuum lines. Perfusion 
of the bilayer should
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be designed in a way that minimizes the mechanical disturbance of the chamber. When

working with horizontal bilayer chambers, a gravity-driven setup combined with a

vacuum line is suffcient. The perfusion input and the vacuum line are placed on

opposite sides of the chamber, and the rate of perfusion is best maintained below 

ml/min. It is easier to perfuse the grounded chamber, whether upper or lower, as even a

shielded perfusion line can act as an antenna. This method of bilayer perfusion produces

noise in the current trace, and is useful mainly for bath exchange of the chamber during

breaks in the recording period. If low-noise records are required during the perfusion of

the chamber, a more elaborate perfusion system is required. Hanke and Schlue present a

push/pull motor driven syringe system that is designed to maintain the volume of the

chamber very precisely during perfusion (Hanke and Schlue, 1993b).

The apertres in the polycarbonate cups or plastic coverslips can be formed using

a technique developed by W onderlin, Finkel and French (W onderlin et al. 1990). A

small metal cone , or stylus , is attached to a power supply, used to heat it. A foot pedal is

used to activate the heating element, leaving both hands free for manipulating the plastic.

The cup or coverslip is pressed against the heated metal cone until a small depression

forms. Once the depression is formed, the foot pedal is released and the plastic is held in

place manually until it cools. After cooling, the cone-shaped depression in the cup/

coverslip is shaved with a razorblade, under a microscope, to produce a circular hole. 

is important to hold the blade level while shaving across the top of the cone. Use only

apertres that are round, level , and smooth, to promote bilayer stability. Hole size is

controlled by shaving at higher points on the cone , and working downward to increase
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the diameter. Larger apertres wil produce bilayers oflarger capacitance , promoting

incorporation, but yielding noisier recordings. Smaller holes allow more stable

recordings , but the decrease in bilayer surface area reduces the incorporation effciency.

Holes on the order of 100 !lm in diameter produce bilayers that yield a nice balance of

stability and incorporation effciency.

The electrodes in the chamber are attached to the headstage of a patch-
clamp

amplifier. Bilayer-specific models are commercially available , though any patch-clamp

amplifier can be used, provided that the feedback resistance is on the order of lOGO.

The large capacitance of the bilayer produces considerable background noise
, and allows

only poor temporal resolution of voltage steps due to large capacitive transients. Bilayer-

specific amplifiers circumvent this problem by implementing either integrating

headstages or switching-resistive headstages that allow rapid charging of the bilayer

membrane. A tyical resistive-headstage patch amplifier wil perform adequately when

recording steady state activity of a channel at a particular voltage. 
A review of methods

for maximizing bandwith and the resolution of voltage steps , while reducing background

noise , can be found in Chapter 5 of the Axon Guide (Sherman-Gold, 1993).

The design and analysis of electrophysiological experiments are commonly

performed using a suite of softare programs such as pClamp, designed by Axon

Instruments. The softare communicates directly with the amplifier, allowing

manipulation of the holding potential, and the generation of voltage pulses. As a result, a

DMA interface is required to allow crosstalk between the digital signals of the PC and the

analog signals of the amplifier. The interface connects to the PC, and usually runs off of



the PC power supply. If extremely low-noise recordings are necessary, it may be

beneficial to use an interface with an isolated power supply. The output 
ofthe amplifier

can be stored directly on the computer, or on a tape recorder (Bezanila, 1985). When the

voltage protocol involves voltage pulses with short durations , storage directly onto the

PC is acceptable. However, a tape recorder is recommended when obtaining long records

of steady state channel activity at a particular voltage. Data can be stored directly onto a

digital audio tape (DAT) recorder, or onto a Betamax tape with the use of a pulse code

modulator (PCM) to convert the amplifier output to a digital signal. A DAT recorder

designed to collect data in this fashion is available from Dagan Corporation

(Minneapolis , MN). The advantages of this mode of recording include large storage

capacity and ease of data retreval , as records are stored as separate tracks on the tape.

The Betamax/PCM combination works adequately, though Betamax tape availability is

somewhat limited. An 8-pole low-pass Bessel filter is useful for resolving the data

during an experiment, though it is best to store the data at the bandwith that it leaves the

amplifier. This allows the data to be fitered at a desired frequency when the records are

played back from the tape and stored onto the Pc. 
It is useful to view the voltage pulses

and corresponding currents on an osciloscope, both during the experiment and during

playback of data stored on tape. Figure 5 is a general schematic of the 
electronics and

connections of a tyical bilayer recording setup.

Biochemical Preparations for Reconstitution

The planar bilayer technique has a number of advantages. It allows control of both

the lipid environment of the channel , and the aqueous phases at the intra- and
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native channel from a specific tissue , or transfect a cell line with a clone of interest. The

llJ
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extracellular face of the channel. In addition
, reconstitution of channel proteins from

. .

biochemical preparatio circumvents the issue of accessibility when studying channels

in membranes not easily patched with a glass micropipette. Investigators can isolate a

use of cloned channels adds another level of control
, since manipulation of the channel

protein is possible before insertion into the bilayer. Crude membrane fractions

containing the channel of interest are suitable for incorporation into artificial membranes.

Below, a procedure is outlined for isolating both native and cloned channels. The

(BKca), studied extensively using reconstitution techniques. This channel represents
, for

channel tye discussed in each case is the large conductance Ca 

++ 

-activated K+ channel

the ethanol researcher, a functionally relevant and easily accessible target. Data 
from our

laboratory have demonstrated both acute (Dopico 

et al. 1996; Dopico et al. , 1998;

Dopico et al. 1999) and chronic (Knott 
et al. 2002) channel regulation by ethanol. In

addition, acute regulation of the drug persists in the planar lipid bilayer
, when addressed

using both native (Chu 
et al. 1998; Walters et al. 2000) and cloned (Crowley 

et al.

2000) channels. The crude membrane fractions derived from these 
sources yield a

plentiful supply of channel proteins that readily incorporate into painted 
bi1ayers. The

reader is encouraged to refer to the original citations for experimental detail
, as well as a

recent Methods in Enzymology chapter that covers ion channel reconstitution (Favre 

al. , 1999).

Rat Skeletal Muscle T- tubule Preparatio



A protocol for isolating T -tubule membranes from rabbit skeletal muscle was first

described Rosemblatt and colleagues (Rosemblatt 

et al. 1981). This technique was

(Moczydlowski and Latorre , 1983b), from which they described in detail the gating

C"" .

. .

adapted by Moczydlowski and Latorre to isolate rat skeletal muscle T-
tubules

kinetics of a Ca ++ -activated K+ channel reconstituted into planar lipid bilayers

(Moczydlowski and Latorre , 1983a). This preparation was also used to quantitate

differences in BKca channel activity in bilayers composed of neutral

phosphatidylethanolamine (PE) versus negatively-charged phosphatidylseri
(PS)

(Moczydlowski et aI., 1985). This study demonstrates not only the importance of bilayer

surface charge for channel function, but that lipid exchange occurs between the artificial

membrane and the incorporated membrane fragments. In our laboratory, rat t-
tubule

BKca channels incorporated into PEIPS (3:1 w/w) bilayers show a dose-
dependent

increase in activity upon addition of ethanol (Chu 

et al. 1998). The reader is encouraged

to obtain detailed methodology from the references above.

Crude Membrane Fractionsfrom Cultured Cells

The expression of cloned channels in cultued cells provides a number of

experimental advantages for reconstitution experiments. The high protein expression

levels and relative ease of culture maintenance provide an abundant supply of channels

for incorporation. Experiments undertaken with cloned proteins also have the obvious

advantage of manipulation of the protein sequence before expression and reconstitution.

HEK-293 cells are a common line used for expression of cloned BKca channels.

The cells express an array of endogenous chloride and potassium channels
, but no Ca 

++ -
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dependent currents are detected. In addition
, neither BKca blocker charybdotoxin nor

small-conductance Ca 
H -activated K+ channel (SK) blocker apamin can inhibit

endogenous outward currents (Yu and Kerchner
, 1998; Zhu et al. 1998). Therefore,

confirmation that a cloned channel has incorporated into a bilayer is easily accomplished

by altering the free Ca in the recording solution. Chinese hamster ovary (CHO) cells

and COS cells are also commonly used as expression systems.

The array of endogenous channels , ease of transfection, and the protein

expression levels are all important considerations when choosing a cell line to express a

cloned channel for reconstitution. An effective protocol for isolation of membrane

fragments from cultured cells is described by Sun
, Naini , and Miler (Sun et al. 1994). A

variation of this protocol, implemented during the thesis work, is described in the

Materials and Methods section of Chapter 
and the accompanying Figure 10.

Lipids used in Reconstitution Experiments

The lipids used for bilayer reconstitution experiments are commercially available

from Avanti Polar Lipids (Alabaster, AL), in both natural and synthetic form. The lipids

are purchased either as a powder or dissolved in chloroform. For a reconstitution

experiment, an appropriate phospholipid mixture is aliquoted and mixed
, under N2 gas.

The selection of the lipid mixtue is influenced both by the experimental design and by

the need to promote vesicle incorporation. The lipid mixture is vortexed and 
dred under

N2 gas. The dried lipid is resuspended at the desired concentration in decane. The

decane solvent is air-sensitive and should be stored under N2 gas.

.;.
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Most reconstitution experiments employ mixtures of phosphatidylethanolamine
ill

11\

(PE), phosphatidylseri (PS), and phosphatidylcholine (PC). PE/PS bilayers mixed in a

3:1 (w/w) ratio are stable, and readily incorporate channels from both membrane

preparatio described above. In general , mixtures should contain PE and acidic lipids

such as PS and phosphatidylinositol (PI) to promote vesicle incorporation. In addition

certain channels require specific lipid species to function properly, such as the

requirement of cholesterol for the nicotinic acetylcholine receptor (Barrantes
, 1989).

These are important factors to consider when choosing the bilayer composition.

Experimentally, diverse lipids are often used as probes to investigate their influence on

ion channel function through alterations in physical properties such as the headgroup size

and charge , as well as the degree of acyl chain saturation. Figure 6 displays the names

and strctures of the lipids implemented in 
the experiments of this thesis.

Recording from the Planar Lipid Bilayer

To prepare the cup/coverslip for a reconstitution experiment
, the apertre is pre-

treated with the lipid mixture dissolved in decane. A sable hair paintbrush
, size 000 or

0000 , is used to paint a drop of the mixture across the hole. 
The brush is most effective

when only two bristles, positioned directly next to one another, are left in the tip. To

prepare the brush, use a microscope and a pair of microdissection scissors to snip the

bristles. To reduce contamination across experiments , a separate brush should be

prepared for use with a particular lipid mixture. 
Capilary action allows a small amount

of the decane/lipid mixture to stick to the bristles
, which is deposited across the aperte.

The drop should fill the entire opening, without flooding the coverslip. Over the course

-;,;.
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sAvanti P,.lar L ipius

palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)

DAwnti Polar Lipid

palmitoyl-2-oleoyl-phosphatidylserine (POPS)
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i;'Avanti Polar Lipid

palmitoyl-2-oleoyl-phosphatidylcholine (POPC)

Figure 6. Structures of the Lipids Employed in the Experiments of this Thesis
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Avanti Polar Lipid

dioleoyl-phosphatidylethanolaime (DOPE)
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CAvanti Polar Lipid

dioleoyl-phosphatidylserime (DO PS)

HO i
ItAvanti PQlar Lipid

Cholesterol

Figure 6 (cont' ). Structures of the Lipids Employed in the Experiments of this Thesis

.;.



of one minute , the drop wil dry and leave a rim of dried lipid around the edge of the

hole. Allow the cup/coverslip to dr for 5 minutes before recording.

Once the coverslip is dr, the recording chamber can be assembled with the

electrodes and salt bridges. Both chambers are filled with the appropriate recording

solutions , and the amplifier is switched on. The lipid mixture is again brushed across the

apertre. Instead of a paintbrush, a glass pipette with a rounded tip (formed by rotating

the pipette over a Bunsen burner) is used. Once cooled
, the bulb is dipped in the

decane/lipid mixture, and brushed across the apertre.

While attempting to form a bilayer, a repetitive trangular voltage waveform is

maintained across the apertre to monitor bilayer formation. The amplitude and rate is

set to a desired value (20 mV125 ms , for example). The capacitance of the bilayer can be

determined using the equation I = (C)(dV/dt), where I is the capacitive current amplitude

C is the capacitance , and dV/dt corresponds to the change in voltage over time (known

from the size and duration of the triangle pulse). Before recording from the bilayer
, the

trangle pulse is presented using a series of known capacitors. The size of the resulting

capacitive current is plotted against the known capacitance to produce a standard curve.

This is used to determine bilayer capacitance when the triangle pulse is 
ru across the

artificial membrane. The size of the current wil be proportional to the size of the

apertre , and it should be very square in shape. The capacitive current should retain its

size and shape for several minutes before adding the channel preparation.

The method for incorporation of channel proteins is slightly different in vertical

versus horizontal bilayer chambers. For horizontal chambers, a pipette is used to drop
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5 ~l of channel preparation above the apertre. A long gel-loading pipette tip is

recommended, as it allows a slow, controlled release of the membrane preparation. The

force of gravity wil pull the channel-containing fragments down onto the bilayer. For

vertical bilayer setups , a stirring mechanism is required to drive channel incorporation.

Regardless of the chamber tye used, there are a number of experimental conditions that

wil promote channel incorporation. The lipid mixture used to form the bilayer should

contain PE, and some proportion of negatively charged lipids such as PI or PS. The cis

chamber, to which the membrane preparation is added, should contain some free Ca

and be hyperosmotic relative to the trans chamber (Miler et aI. 1976; Miler and Racker

1976). In cases where vesicles or liposomes are added, they should be prepared such that

the interior is hyperosmotic relative to the bath solution. The mechanisms underlying

these requirements are not completely understood, and remain rigorously studied since

vesicle fusion plays a vital role in many biological processes. All of these conditions can

be optimized for a given membrane preparation , with some trial and error. More

extensive explanations of the principles of channel incorporation are available in reviews

by Labarca and Latorre (Labarca and Latorre , 1992), and chapters in Ion Channel

Reconstitution (Hanke , 1986), and Planar Lipid Bilayers: Methods and Applications

(Hanke and Schlue , 1993a).

Once channel openings appear in the bilayer recordings , further incorporation

events can be prevented by neutralizing the osmotic gradient and/or dropping the

(Ca )Free in the cis chamber. This can be accomplished by perfusion, or by addition of

salts and/or Ca H -chelators to the appropriate chamber. In cases where multiple channel
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openings are visible, the number of channels can be determined by manipulating

conditions (such as membrane potential) to maximize the open probability (Po) of the

channel. At positive potentials , the likelihood of all channels simultaneously entering the

open state is very high, and the number of channels can be determined by computing the

number of elemental contributions necessary to reach the cumulative curent. It is useful

to record the steady state channel activity at a number of voltage steps before testing the

effects of ethanol to ensure that basic channel properties, such as conductance and

voltage sensitivity, are normal. The stability ofthe bilayer is dependent upon the lipid

mixture, recording conditions , and the size and shape of the coverslip onto which the

bilayer is painted. These parameters can all be optimized through trial and error to yield

stable recordings lasting minutes , suffcient to produce a wealth of single channel data for

analysis.

Before adding ethanol, a control record should be recorded for at least one minute

at a particular voltage. It is important that the activity of the channel is stable , as any

rundown or increase can skew the effects of the drg. After the addition of ethanol

periodically monitor the capacitive current to determine the stability ofthe bilayer.

Record the channel activity at several voltage steps in the presence of ethanol, to allow

comparison of the slope conductance and voltage sensitivity in the presence and absence

of the drug.

Analysis of Single Channel Data

Data stored on a tape recorder is re-acquired in the gap-free recording mode of a

program such as Fetchex, available in the pClamp suite of softare from Axon

';.J.



Instruments. It is recommended that data generated during reconstitution experiments be

stored unfiltered, at the bandwith that it leaves the amplifier (10 kHz , for example). The

records can be passed through an 8-pole low-pass Bessel filter during re-acquisition, and

fitered at a desired frequency. This allows one record to be used for detailed kinetic

analysis , by resolving short events with minimal fitering, or to be low-pass filtered at a

lower frequency for display.

Records of steady-state single channel activity yield a wealth of information.

Programs such as Fetchan, another pClamp module , are designed to facilitate the analysis

of the data. The first step in analyzing a channel record is the construction of an all-

points amplitude histogram. The histogram wil show a peak
, with a Gaussian

distribution, for both the closed and open state of the channel. A least-squares function is

used to fit the histogram generated from the channel activity record at a given voltage.

This wil yield both the open probability (Po
) of the channel , as well as the amplitude of a

single channel event (i) at that voltage. This exercise is repeated at a number of holding

potentials, so that both i and Po can be plotted against voltage. From this , both single

channel conductance (g) and voltage sensitivity can be determined.

Comparison of the channel Po in the presence and absence of ethanol
, under

otherwise identical conditions , provides a straightforward means of assessing the overall

effect of the drug on channel activity. In single-channel bilayers
, the analysis can be

carred a step further by constrcting and analyzing an events 
list. An events list 

displayed as a histogram with the number of observations plotted versus event duration.

This histogram is fit with a series of exponential functions , using a maximum-likelihood

;.';
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estimator, to uncover the time constants for a particular channel state. An F-statistic table

ill
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is used to determine the minimum number of exponentials that adequately fit the

histogram. In practical terms, an open state histogram that is best fit with two

exponentials indicates there are a minimum of two kinetically distinct channel openings

a short and a long open state. The fit of the histogram provides not only the duration of

these kinetic states , but also the proportion of time the channel spends in them. The

analysis is performed for both the open and closed events. Events lists can be generated

from channel records before and after the addition of ethanol. Comparison 
of this data

demonstrates how the drug modifies the open and closed kinetic states of the channel.

While studying ethanol modulation of single channels can yield a wealth of

information, it may also produce significant variability in a data set. It is important to

bear in mind that whole cell electrophysiology techniques average the behavior of many

ion channels during a single sweep in any given experiment. 
This minimizes differences

in the EtOH response within a channel population that may result from
, for instance

differences in post-translational modifications or other unkown factors. For this reason

most figures in this thesis addressing the EtOH response of single channels in a given

bilayer tye are scatter plots. These plots show the response of each experiment in 
the

data set to convey the variability in the single channel responses.

Examples of Data Obtained Using the Planar Lipid Bilayer

Figure 7 and Figure 8 contain representative traces of reconstituted 

hslo BKca channels in

POPEIPOPS (3: 1) bilayers , demonstrating that characteristic voltage sensitivity (Figue

7), large conductance (Figure 7), and Ca ++ sensitivity (Figure 8) are

;;.
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Figure 7. Reconstituted BKca channels exhibit characteristic large conductance and

retain sensitivity to membrane depolarizatio in the planar lipid bilayer. Records were

obtained in POPEIPOPS (3: 1) bilayers at the indicated holding potentials
, with 50 ~M

(Ca )ic in the bath. The bilayer contains 
1 channel , and the arrows denote the closed

state. Data was low-pass filtered at 1 kHz and digitized at 10kHz. A current - voltage

plot, well fit by a linear function, indicates the large-conductance of the channel.
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Figure 8. Reconstituted BKca channels exhibit characteristic Ca ++ sensitivity in the

planar lipid bilayer. A) Records were obtained in separate POPEIPOPS (3:1) bilayers at

o mY, with the indicated (Ca )ic in the bath. The bilayers contain 1 channel , and the

arrows denote the closed state. Data was low-pass fitered at 1 kHz and digitized at 10

kHz. B) Plot summarizing the open probability versus (Ca )ic data.
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Figure 9. Representative traces of cloned hSlo BKca channels incorporated into a

POPE/POPS (3: 1) bilayer in the absence and presence of 50 ro EtOH. Records were

obtained at 0 mY, with 25 ~M (Ca )ic in the bath. The bilayer contains 2 channels , and

the arrows denote the closed state. Data was low-pass fitered at 1 kHz and digitized at

10kHz.



retained following reconstitution of the channel. Figure 9 shows representative traces of

a cloned hslo BKca channel before and after the addition of 50 ro EtOH. Ethanol

enhances the activity of the cloned channel to a similar extent to that seen for the native

rat t-tubule channel. These and previous (Chu et al. 1998) data demonstrate that the

BKca protein (or protein complex), in the absence of complex lipid architecture or

cytoplasmic elements , is capable of responding to ethanol in a manner similar to that of

the channel in situ and makes obvious the ability to manipulate the lipid environment

and assess the consequences on drug action.

Advanced Applications- Asymmetric bilayers

Most of the planar bilayer work described in the literature, and above , utilizes

symmetric bilayers , in which each of the leaflets is identical. However, biological

membranes are not typically symetrical , and a trer representation of drug action on

membranes and associated proteins will involve the generation of asymmetrc bilayers.

Described simplistically, the formation of asymmetrc bilayers is often accomplished by
;of/

the apposition of two monolayers in troughs separated by a movable partition. As the

partition is removed, the monolayers are forced together to form an asymmetric bilayer

often referred to as a folded bilayer (Cassia-Moura et al. , 2000; Heywang et al. , 1998;

Montal and Mueller, 1972; Tancrede et aI. , 1983). It is important to recognize that the

final organization of the folded bilayer may not represent total segregation of the

monolayer components from each other.

Supported bilayers
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Another "advanced" technique involves the formation of the bilayer on solid or

semi-solid platforms , enhancing their stability and allowing conditions and measurements

not possible with the previously descrbed painted bilayer. These include ordering the

lipids in the bilayer (Heywang 

et ai. 1998), simultaneous electrcal and optical

measurement of single ion channels (Ide and Yanagida
, 1999), and the use of a polymer

support platform associated with tethered bilayer-
imbedded proteins, allowig lateral

movement and monitoring ofthe protein (Wagner and Tamm, 2000).

Conclusions

The techniques and data described in this chapter 
ilustrate artificial planar bilayer

tecbniques, lld demonstrate 
how these tecbniques Cll be used to study the influence of

the lipid environment on protein function and 
drg action. We have focused on

electrophysiol 1 measurements of neuronal channels incorporated into bilayers. The

techniques of planar bilayer formation and protein incorporatio
must be practiced before

they become routine , and contain enough unkowns to stil be something of an art.

However, once incorporatio and recordings are obtained
, the analysis ofthe emerging

records is not different from those of any single channel experiment utilizing patch clamp

technology. Of course
, the nature of the artificial bilayer experiment is very reductionist

and as with any reductionist experiment
, caution must be exercised in the interpretatio

of results , since proteins (probably) do not exist in one or two-
lipid environments.

However, the information obtained from these simple experiments can be used to derive

hypothes testable in more complicated lipid environments.
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CHAPTER II

CHOLESTEROL ANT AGONIZES ETOH POTENTIATION OF HUAN BRAIN

BKca CHANNELS IN PHOSPHOLIPID BILA YERS

Introduction

Ion channels reside in a heterogeneous lipid matrix. Lipid species partition

asymmetrically both within and across biological membrane leaflets (Devaux
, 1991).

These non-random lipid associations produce domains that differ in composition and

physico-chemical properties from the bulk membrane (Welti and Glaser, 1994), resulting

in distinct micro environments for ion channels. An example is the cholesterol (CHS) and

sphingomyelin-rich lipid raft, thought to participate in many aspects of cell function

(Brown and London, 1998). Large conductance, Ca ++ -activated K+ (BKca) channels

cloned from human brain (hslo) and expressed in MDCK cells associate with these lipid

microdomains (Bravo-Zehnder et al. 2000). The biological implications of channel

association with distinct lipid domains are not well understood, but it is likely that the

domain physical properties influence channel activity.

Cholesterol is a significant component oflipid rafts and a major determinant of

overall membrane physical properties (Bloch, 1983), which may contrbute to its effects

on the activity of native ion channels (Bolotina 
et al. 1989; Barrantes , 1993; Chang 

al. 1995b; Lundbaek et al. 1996; Levitan et al. 2000). Modulation of membrane CHS

content and distribution may playa role in cellular adaptation to ethanol (EtOH).

. :f

Increased content (Chin et al. 1978; Omodeo- Sale et al. 1995) and altered distrbution
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ofCHS between membrane leaflets (Wood 
et al. 1990a) are observed in response to

EtOH exposure in both animal and cell culture models. Ethanol differentially increases

the diffusion of various lipid probes in 
Aplysia neurons, suggesting that its actions on ion

channels might depend upon the existence of dissimilar lateral domains (Treistman 

et al.

1987). In model membranes and computer simulations , EtOH affects lateral lipid

domains (Chin and Goldstein, 1981; Harris et al. 1984b; Jorgensen et al. 1993; Slater 

al. 1993) suggesting that specific lipid species might modify the sensitivity of a domain

to EtOH action. Cholesterol, in particular, counteracts EtOH' s disordering action in

mouse synaptosomal membranes and phospholipid bilayers (Chin and Goldstein
, 1981).

Interestingly, EtOH increases the fluidity of the extracellular leaflet of synaptic plasma

membranes to a larger extent than that of the cytoplasmic leaflet, an effect attributed to

the larger CHS content in the inner leaflet. After chronic EtOH treatment
, however

transbilayer differences in fluidity and CHS content are reduced in concert (Wood 

et al.

1990a).

Ethanol reversibly potentiates BKca channel activity in excised membrane patches

from rat neurohypophysial terminals, an action that may contribute to EtOH inhibition of

neuropeptide release (Dopico et al. 1996). EtOH potentiation persists after expression of

BKca (mslo) channels in Xenopus oocytes (Dopico et al. 1998), and incorporation of

native BKca channels into 1-palmitoyl-2-oleoyl phosphatidylethanolami (POPE)/l-

palmitoyl.;2-oleoyl phosphatidylserine (POPS) bilayers (Chu 
et al. 1998). Thus , neither

cytosolic second messengers , nor complex cytoskeletal architecture are required for

EtOH action on BKca channels.

~~~



Here , we use hslo channels expressed in HEK 293 cells
, and incorporated into

bilayers made of only one or two phospholipid species to study CHS modulation of EtOH

action on channel function. This preparation allows near complete control of both protein

and lipid constituents. Results indicate that increased bilayer CHS antagonizes EtOH

potentiatio of channel activity in a concentration-
dependent manner. The reciprocal

actions of EtOH and CHS on commonly targeted channel dwell states are the major

determinants ofCHS antagonism ofEtOH effect on channel 
activity. Furthermore , the

effect of each of these modulators on channel activity is drastically reduced in the

absence of phosphatidylserine in the bilayer.

Materials and Methods

HEK 293 membrane preparati HEK-293 membrane fragments were isolated using a

protocol for COS cells (Sun 
et ai. 1994), modified slightly. Briefly, HEK 293 cells

stably transfected with 
hslo cDNA (a gift from Dr. P. Ahring, NeuroSearch AlS

Denmark) were grown to confluence
, pelleted, and resuspended on ice in 10 ml of buffer

(mM): 30 KCl , 2 MgCh, 10 N- hydroxyethylpiperazine- 2-ethanesulfonic acid

(HEPES), 5 ethylene glycol-bis(~-aminoethyl ether)- N' , tetraaceti acid (EGTA);

pH 7.2. The cell suspension was forced through a 27-
gauge needle 4 times , and sonicated

at 30% maximum power for 30 sec
, twice. The suspension was layered on a 20-

38%

sucrose density gradient (in 20 mM MOPS
, pH 7. 1) and centrifuged at 25 000 rpm for 60

min at 4 C. The band at the 20%-38% interface was collected with a syrnge
, diluted

with bidistiled H , and centrfuged in a 50.2 Ti rotor at 45
000 rpm for 60 min at 4

The resulting pellet was resuspended in 
2001-1 of buffer (mM): 250 sucrose

, 10 HEPES;

,;.;.



pH 7.3. Aliquots were stored at - C. Figue 10 is a schematic representation of the

isolation and reconstitution of the HEK-293 membrane fragments.

Electrophysiology. Channels were incorporated by dropping 0.5 ~l of the membrane

preparation onto bilayers consisting of POPE/POPS and differing concentrations ofCHS.

Lipids were dried under N gas , and resuspended in decane in a 3: 1 (w/w) POPEIPOPS

ratio, with 0-49 mol% CHS. The final lipid concentration was 25 mg/ml. Bilayers were

formed by painting the lipid mixture across a 100 j. hole formed in a plastic coverslip

(W onderlin et al. 1990). Capacitance was monitored by the capacitive current generated

by a trangle pulse (20 m V /25 ms). Vesicle fusion was promoted by an osmotic gradient

with the cis chamber (to which the vesicles were added) hyperosmotic to the 
trans. Only

channels with their Ca 
H -sensor facing the 

cis chamber were studied. Solutions consisted

of (ro): cis, 300 KCl , 10 HEPES , 1. 10 N-(2-hydroxyethyl) ethylene-diaminetriacetic

acid (HEDTA) ((Ca )free 50 ~M) or 1.45 HEDTA ((Ca )free 15 ~M), 1.05 CaClz, pH

, and trans 30 KCl , 10 HEPES , 0. 1 HEDTA, pH 7.2. CHS action on baseline channel

function was studied at 50 ~M (Ca )free, and 0 mY, which promotes high channel

activity, from which the inhibitory effects ofCHS can be effectively quantitated. EtOH

sensitivity was tested at 10 ~M (Ca )rree, at potentials between - 10 mV and +60 mY

which yields activity low enough to prevent a "ceiling effect" (reaching maximal

channel NP ) when measuring EtOH potentiation. The magnitude ofEtOH activation 

slo activity(No EtOH/P Control) is independent of voltage within this range (Dopico

et al. 1998). (Ca H)free in the cis chamber was adjusted using aliquots from aIM stock

solution ofHEDTA (pH 7.2) (Ca )free values given are nominal , calculated

--..
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Figure 10. Isolation and reconstitution ofHEK-293 membrane fragments.
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with the Max Chelator Sliders program (C. Patton, Stanford University).

Experiments were performed at room temperature (20-25 OC) to facilitate

comparison with our previous studies examining EtOH action on BKca channels (Dopico

et al. 1996; Dopico et al. 1998; Chu et al. 1998). Single channel events were recorded

at a bandwidth of 10 kHz using a patch clamp amplifier (model 8900, Dagan Corp.

Minneapolis, MN), and stored on videotape using Pulse Code Modulation (model DMP-

100 , Nakamichi , Tokyo , Japan). Data were low-pass fitered at either 3 (for dwell time

analysis) or 1 kHz (for display and NP determination) using an eight-pole Bessel fiter

(model 902 , Frequency Devices , Haverhil, MA), and digitized at 10 kHz.

Data Analysis. Data were acquired and analyzed using pClamp 6.0.2 (Axon Instr. , Union

City, CA). As an index of steady-state channel activity we used the product of the

number of channels in the bilayer during recording (N) and the open channel probability

(Po). N was monitored pre- and post-EtOH by stepping to positive potentials to

maximize Po. Experiments showing an increase in N after EtOH addition were discarded.

NP 0 was determined from periods of at least 20 sec of continuous recording. Dwell time

histograms were constrcted using the half-amplitude threshold criterion, events shorter

than 0.3 ms being excluded. An F table (pO:O.01) was used to determine the minimum

number of exponential components to appropriately fit dwell-time histogram data. Fift

percent of maximal effect (EC or ICso) was obtained from concentration-response

curves by extrapolation. Data are shown as mean:!S. M. The significance ofthe

difference between means was determined by ANOV A and test a posteriori (Dunnett' s).
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Chemicals. All solutions were prepared with Mili-Q water, and ultrapure grade salts.

Ethanol (100% , anhydrous) was purchased from American Bioanalytical (Natick, MA),

decane ( 99% pure , anhydrous) from Sigma-Aldrich (Milwaukee , WI), and POPE

POPS , and CHS from Avanti Polar Lipids (Alabaster, AL).

Results

Ethanol increases hslo channel activity in binary bilayers. We first determined

whether EtOH modifies hslo steady-state activity (N 0) in a binary phospholipid mixture.

We chose a 3: 1 POPEIPOPS (w/w) planar bilayer, where EtOH sensitivity of native

skeletal muscle BKca channels was initially explored (Chu 
et al. 1998). Thus , cloned

hslo subunits were incorporated into this bilayer tye , where they displayed characteristic

features ofBKca channels: large unitary slope conductance ( 330 pS , Figure 7), and

increases in Po as the applied voltage is made more positive (Figure 7) (9. 8 mV::O.4

mV/e-fold change in NP (n= 12)) and/or (Ca H) at the cytosolic side of the channel is

increased (Figure 8). Figure 11 shows traces of hslo activity before and during

application of 50 ro EtOH to the "intracellular" side of the POPE/POPS bilayer. The

EtOH-induced increase in Po shown in the figure, which occurred within 1-5 min of drug

exposure, was observed in 8 out of 10 bilayers , the average NP showing a 5.2::1.5 fold

increase over pre-EtOH values. EtOH- induced potentiation of hslo channel activity in

the POPE/POPS bilayer is similar to our previously reported results in complex

lipid/protein systems with mslo subunits expressed in oocytes (Dopico et aI. , 1998),

native BKca channels studied in situ (Dopico et al. 1996), and rat skeletal muscle t-

tubule BKca channels reconstituted into this bilayer tye (Chu et al. , 1998).
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Control +50 mM EtOH

NPo = 0.010 NPo = 0.063

.J ' J 11 . J I

.-I . '1L ,. 1 lid

j11 I. ..'1 TII .

-t tt 1 J .

100 mS=-
10 pA

100 mS::
10 pA

Figure 11. Ethanol (50 ro) increases hslo channel activity in planar POPE/POPS

bilayers. Traces of hslo activity recorded before (left) and during (right) application of
EtOH to the intracellular (cis) side of the same POPEIPOPS 3:1 (w/w) bilayer. The

potential across the bilayer was set at 0 m V and free (Ca H)ic 1 0 ~M. Data were low pass

filtered at 1kHz and sampled at 10kHz. Arows denote the current level corresponding

to channel closed states. Steady-state channel activity (N 0) was determined from

continuous recording (see Materials and Methods).
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Thus hslo subunits , POPE, POPS , and the system interfaces are suffcient for EtOH

potentiation ofBKca channel activity.

In contrast to its action on steady-state activity, 50 ro EtOH consistently failed

to modify other parameters of hslo function, such as unitary amplitude (14. VS. 14. 8 pA

recorded at 0 mV and 300/30 ro (K V(K )o in the presence and absence of EtOH

respectively) (Figure 11), suggesting that EtOH actions on 
hslo channels are restricted to

modification of channel gating. This is also in agreement with data obtained with BKca

channels in more complex lipid/protein systems (Dopico 
et al. 1996 , 1998; Chu et al.

1998; Jakab et al. 1997), validating our minimal system for studies on CHS modulation

ofEtOH sensitivity.

Cholesterol blunts alcohol potentiation of hslo channel activity. We next tested

whether CHS incorporation into this binary bilayer could modify EtOH-induced increases

in hslo activity. Figure 12 shows that CHS incorporation (11-33 mol%) into POPE/POPS

bilayers diminishes EtOH-induced potentiation in a concentration dependent manner

(ICso= 15 mol%). CHS content of 23 mol% resulted in almost total prevention of channel

potentiation by 50 ro EtOH. Under these conditions , EtOH slightly increased channel

activity in 2 out of 5 experiments, and slightly inhibited activity in the remaining 3 cases

yielding no net effect on channel activity (average NP value=0.96:t 0.38 of controls).

This lack of a major alcohol effect in the presence of CHS may be explained by: 1)

reduced EtOH partitioning into CHS-containing bilayers, 2) CHS antagonism ofEtOH at

EtOH' s recognition site(s) on the hslo subunit or its immediate phospholipid
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Cholesterol (moIOk)

Figure 12. Cholesterol antagonizes EtOH-induced potentiation of hslo channel activity
in POPE/POPS 3:1 (w/w) bilayers. The plot shows that average ratios of 

hslo in the

presence and absence of 50 ro EtOH are progressively decreased as the bilayer CHS
content is increased. EtOH potentiation is significantly reduced at 

23 mol% (CHS)

(IC =15 mol%). The potential at the cis side ofthe bilayer was set between -10 and +20

, and free (Ca )ic 10 ~M. Data were low pass fitered at 1 kHz and sampled at 10

kHz. NP 0 values were determined from continuous recording (see Materials and
Methods). Data are means::SEM; n= 2 -8 bilayers; *Significantly different from
POPE/POPS (control) values (pO:O.05; ANOV A and Dunnett' s test) POPE, 1-palmitoyl-
2-oleoyl-sn-glycero- 3-phosphoethanolamine; POPS; 1-palmitoy 1- 2-oleoyl-sn-glycero- 3-

phospho serine; CHS , cholesterol.
of basal channel activity.
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microenvironment (see Discussion), and/or 3) the actions ofCHS and EtOH on channel

kinetic states are of opposite sign, and balanced
, which results in reciprocal modulation

Cholesterol reduces basal 
hslo channel activity in POPE/POPS bilayers. 

A reduction

in hslo activity caused by the presence of CHS in the bilayer could explain part or all of

the CHS antagonism of EtOH potentiatio of hslo activity in POPE/POPS bilayers.

Figue 13a shows 
hslo single channel activity recorded under identical conditions of

voltage and free (Ca )ic at the cis side of POPE/POPS bilayers in the absence and

presence of CHS in this bilayer. Increases from 
11 to 49 mol% inhibit 

hslo activity in a

concentration-dependent manner. Maximal inhibition is reached at 33-
49 mol% CHS

with an IC =15.5 mol% (Figure 13b). Both the concentration for maximal effect and the

ICso are similar to those for CHS blunting of EtOH-
induced increases in 

hslo activity (see

above), which suggests that CHS inhibition of channel basal activity contributes to the

sterol modulation of alcohol-induced potentiatio of hslo activity.

Inhibition of basal Po could result from a CHS-
induced decrease in t , an increase

in t , or a combination of both. Figure 13c and 13d clearly demonstrates that the third

possibility is the case. Furthermore, single channel analysis reveals differential CHS

effects on t and t , dependent upon concentration. While inhibition of channel 
to is

maximal at 23 mol% CHS (ICso=4.3mol%) (Figure 13c), channel t failed to reach a well-

defined maximum at the concentrations tested (Figure 13d). 
Ifa maximal effect is

assumed at the highest (CHS) tested (49 mol%), t
data extrapolation yields an

=36. 1mol%, representing a minimum for this value. Thus
, at concentrations of CHS
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Figure 13. Inhibition of basal hslo channel activity, and its underlying changes in mean

open and closed times , as a function of cholesterol content in POPEIPOPS 3:1 (w/w)

bilayers. A) Single current traces displaying 2 sec of 
continuous recording obtained in

the absence (top) and presence (bottom) of 49 mol% CHS. The potential at the cis side of
the bilayer was set at 0 mY, and free (Ca )ic 50 ~M. Data were low pass fitered at 

kHz and sampled at 10kHz. Arows denote the current level corresponding to channel

closed state(s). POPE, 1-palmitoyl-2-oleoyl-sn-glycero- phosphoethanolamine; POPS;

palmitoyl-2-oleoyl-sn-glycero- phosphoserine; CHS , cholesterol; B) Increases in CHS

content (11-49 mol%) inhibit hslo activity (Po) in a concentration-dependent manner.

Maximal inhibition is reached at 33-49 mol% CHS (IC =15.5); C) Channel mean open

time (t ) is maximally inhibited at 23 mol% CHS (ICso=4.3); D) Channel mean closed

time (t ) fails to reach a well-defined maximum, but progressively increases as CHS

content in the bilayer increases. If a maximal effect is assumed to be reached at the
maximal (CHS) tested (49 mol%), data extrapolation renders 

ECso 36 mol%. Both t

and t were obtained by weighting the different exponential components of respective
dwell-times distributions (Fig. 17). For B)-D), data are means::SEM; n= 2 - 8 bi1ayers;

Significantly different from POPE/POPS (control) values (p.:0.
05); **Significantly

different from POPEIPOPS (control) values (p':0.
01) (ANOY A and Dunnett' s test).
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below the ICso for the reduction in Po, decreases in channel activity are determined by a

major reduction in t and a minor increase in t . In contrast, above ICso, fuher reduction

in Po is primarily due to a progressive increase in t

As with EtOH (see above), CHS- induced modifications of 
hslo channel Po were

not accompanied by significant changes in conductance (PS): 323.
3:15 in POPEIPOPS

(n=12), 329.2:14 in POPE/POPS+13% CHS (n=ll), 335.
3:17.3 in POPEIPOPS+33%

CHS (n=4); all measurements obtained in 300/30 ro (K )J(K )o (r ;: 0.95 for linear fits

of iN data). This result is in agreement with studies ofCHS action on BKca 
channels in

rabbit aorta (Bolotina et al. 1989). A subtle 7% change in slope conductance has been

reported for rat brain BKca channels incorporated into POPEIPOPS (55:45) bilayers

containing 11 % CHS (w/w) (Chang et al., 1995), an effect not apparent in our system.

Those experiments were conducted in the presence of a 300/100 
ro (cis/trans) KCl

gradient, while ours were performed with a larger 300/30 ro KCl gradient. This lower

trans chamber (K ) in our experiments likely created a driving force large enough to

mask subtle changes in slope conductance caused by CHS. In summary, CHS-
induced

reduction of hslo channel Po occurred without major changes in unitary conductance
, as

in more complex systems. As for EtOH , the channel pore- forming hslo subunits

reconstituted into a minimal bilayer system are sufficient for CHS modulation of BKca

channel activity.

Role of phosphat idyl serine 
for the actions of EtOH and CHS on hslo channels. We

next tested the role of POPS in the modulation of channel activity by EtOH by casting

bilayers from 100% POPE. The amount ofPS is altered in synaptic 
plasma membranes
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after EtOH treatment (Sun and Sun, 1985). Removal of POPS may alter lateral domain

formation in the bilayer resulting from POPE-POPS and POPS-POPS headgroup

i..

interactions. Headgroup interactions and lateral domains may influence EtOH action

(Treistman et al. 1987; Jorgensen et al. 1993), as well as CHS miscibility in the

membrane (see Discussion).

POPS carries a net negative charge at physiological pH, at which our experiments

were performed. Negative surface charge promotes adsorption of cations to the

membrane (McLaughlin et al. 1981), and reduces BKca channel conductance and Po

(Moczydlowski et al. 1985; Tumheim et aI. 1999; Park et al. 2003). As expected hslo

channels displayed changes in slope conductance consistent with the loss of negative

charge carred by POPS: 323.3::5. 8 (n= 12) vs. 281.8::11.1 pS (n= 14) (p-c0.004), in

POPEIPOPS (3:1; w/w) vs. POPE bilayers , respectively (data obtained at 0 mV and 50

11M (Ca H) free), In addition hslo channel steady-state activity followed a monotonic

function of the POPS concentration in the bilayer (Figure 14). These results also suggest

that CHS inhibition of hslo activity discussed above cannot be attibuted solely to a

dilution of the POPS concentration caused by addition of the sterol to the lipid mixture.

Though the addition of32 mol% CHS to the POPEIPOPS (3:1) mixtures causes the PS

concentration to drop from 25% to 20% of the total lipid weight, the decrease in Po the

sterol elicits (Figure 13b) is far greater than that expected from the corresponding dilution

of POPS (Figure 14).

Figue 15a shows that application of either 50 or 100 ro EtOH fails to

significantly increase the NP 0 of hslo channels incorporated into pure POPE bilayers

,:.:.
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Figure 14. Dilution of POPS in the binary POPEIPOPS mixture influences hslo Po in a

concentration dependent manner. Po values were calculated from hslo channels

reconstituted into bilayers with varying weight percentages of POPS in a binary mixture
with POPE. Current records were obtained at 0 mY , and (Ca )free 50 ~M on the

intracellular side of the bilayer. Data were low pass filtered at 1 kHz and sampled at 10

kHz. Po values were obtained from continuous recording (Materials and Methods). The
number of experiments performed for each condition is shown in parenthesis above each
point. *Significantly different from POPE/POPS (3:1 , or 25% w/w) values (p.cO.05).
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(Fig. 15a). The average NP 0 during EtOH exposure reached 1.46:i0.
63 of control (n= 11)

at 50 ro and 0.60:t0.09 of control (n=4) at 100 ro, a 
concentration near lethal blood

levels in naIve mammals (Diamond, 1992). For comparison, potentiatio by 50 

ethanol reached (values compared to control) 5.
2:t1.5 in 75:25 (w/w) POPE/POPS,

3:t1.3 in 85:15 (w/w) POPE/POPS , and 1.5:t0.6 in 100% POPE , suggesting that the

alcohol response may be a monotonic function of POPS concentration in the bilayer.

Next, we determined whether the absence of POPS from the planar bilayer

affected CHS inhibition of 
hslo channels. Figure 15b demonstrates that

, in spite of a

large variability in Po (as with native BKca channels; Chu 

et al. 1998), average hslo

activity in POPE+23 mol% CHS (p::0.3) or POPE+33 mol% CHS (p::0.2) was not

significantly different from that in pure POPE bilayers. Thus
, CHS- induced hslo

inhibition, like EtOH- induced hslo activation , is significantly reduced in a single species

POPE bilayer, suggesting that a negatively charged headgroup or other 
strctural

requirement associated with the presence of POPS in the bilayer favors CHS and EtOH

modulation of hslo channel function (see Discussion).

Cholesterol and ethanol target both common and distinct 

hslo channel dwellng

states. Modulation of hslo channel function by CHS and EtOH is characterized by

striking similarities: both agents modify channel Po with minor
, if any, modification of

conductance. Furthermore , CHS and EtOH effects on 
hslo baseline activity are

determined by the amount of POPS in the bilayer (Figure 15). Thus
, we considered the

possibility that CHS and EtOH actions on 

hslo channels are mediated by a single

;i!"
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Figure 15. Both ethanol and cholesterol fail to markedly modify the activity of 

hslo

channels incorporated into a POPE bilayer. A) EtOH concentrations (50 and 100 
ro)

that increase hslo channel activity in POPEIPOPS bilayers fail to potentiate activity in
100% POPE bilayers. Ratios ofNP values obtained in the presence and absence of

EtOH (left, 50 ro; right, 100 ro) are shown in a scatter graph, where each data point

represents an individual bilayer (n). Meanj:SEM of data are shown at the top ofthe
graph. The dotted line highlights the point at which NP 

0 EtOH / NP 0 Control= 1. The

potential at the cis side of the bilayer was set between -
20 and +60 mY, and free

(Ca )ic 10 ~M. Data were low pass fitered at 1 kHz and sampled at 10 kHz. NP

values were obtained from continuous recording (Materials and Methods). B) The
significant inhibition of 

hslo activity by CHS in POPEIPOPS bilayers is not observed

when CHS action is evaluated in POPE bilayers. Scatter graph 
of hslo NP 0 from POPE

bilayers in the absence (left) and presence of23 mol% (middle) or 32 
mo1% CHS. Data

points represent individual bilayers. Meanj:SEM of data are shown at the top of the
graph. The potential at the cis side of 

the bilayer was set at 0 m V , and free (Ca H)ic 50

~M. Data were low pass fitered at 1 kHz and sampled at 10kHz. NP 0 values were

obtained from continuous recording (Materials and Methods). POPE
, 1-palmitoyl-

01eoyl-sn-glycero- phosphoethanolamine; CHS , cholesterol.
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common mechanism. In this case , we might expect channel dwell-time histograms in the

presence of each agent to show a mirroring profie of actions.

Dwell times in the absence and presence of 50 ro EtOH 
were evaluated in

several POPE/POPS (3:1) bilayers (V=0-20 mY; (Ca )free=15 ~M; n=3). In both the

absence and presence of EtOH, the open times distribution could be well fitted with a

double exponential (Figure 16a), indicating the existence of at least two open states.

Although 50 ro EtOH characteristically increases channel NP 0 to 5- fold of control

values , on average , it only slightly increased the duration of short and long openings.

These drg-induced changes in open channel populations result only in a minor change in

mean open time. Thus , a major increase in hslo steady state activity induced by acute

EtOH could be obtained in the absence of a significant increase in channel mean open

time.

The closed times distribution was also well fitted with a double exponential

function , in both the absence and presence of EtOH, (Figure 16b), indicating the

existence of at least two closed states. Two actions ofEtOH are evident: a decrease in

the average duration of long closures, and a marked shift in the closed channel population

from long to brief events. EtOH-induced changes in the closed times distrbution result

in a significant change in mean closed time ( 60% of control), the major contrbutor to

EtOH-induced increase in channel Po, In summary, EtOH markedly increases 
hslo

steady-state activity by producing a marked reduction in the average duration of channel

long closures and their relative contrbution to the total time spent in closed states

without causing a major change in the channel mean open time.
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Control
N=387
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50 mM EtOHN=732 0.
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t2=165. 887 (0.607)
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Figure 16. Representative dwell-times distributions of hslo channel activity

reconstituted into POPEIPOPS 3:1 (w/w) bilayers in the absence (top) and presence
(bottom) of 50 ro EtOH, which show the targeting of open (A) and closed (B) times by
the drug, that lead to potentiation of channel activity. A) Open time distrbutions in both

absence and presence of EtOH were well fitted with a double exponential. EtOH slightly
increased the duration of short openings while slightly shifting the channel population
from long to short openings; B) Closed time distrbutions in both absence and presence of
EtOH were also well fitted with a double exponential. EtOH decreased the duration of
long closures and markedly shifted the channel population from long to short closures.
The potential at the cis side of the bilayer was set between 0 and 20 mY, and free

(Ca ++)ic 15 ~M. In both A) and B), each panel shows the total number of events (N), the
duration of each particular component (t, in msec), and the relative contribution of each
component to the total fit (in parentheses). The solid line represents the composite fit.
Data were low pass filtered at 3 kHz and sampled at 10kHz. The following are

mean:1SEM values (n=3) for the time constants (msec) and the fractional contrbution of

each component to the total fit respectively: control open states , 'tfast=0.768:10. 142 and

150:10.016 , 't =7.917:10.962 and 0. 850:10.016; open states in EtOH, 'tfast=0.963:10. 178

and 0. 176:10.014 , 'tslow=8.643:11.572 and 0. 824:10.014; control closed states

'tfast =0.712:10. 178 and 0.206:10.008 , 'tstow=218.671:18.671 and 0.794:10.008; closed states

in EtOH, 'tfast=0. 588:10.015 and 0.335:10.046 , 'tslow=151.996:17. 811 and 0.659:10.049.
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Were CHS and EtOH having opposite effects on channel Po solely by targeting

common kinetic states in opposite fashion, we might expect a profie of changes in open

and closed times distributions by CHS mirroring those caused by EtOH. 
This

complementarity was indeed present, but each of these agents also had unique effects not

mirrored by the other. The dwell time data for 
hslo channels in POPEIPOPS (3:1)

bilayers with increasing amounts of CHS (n=2-8 for each CHS concentration) were

obtained under identical conditions of voltage (0 mY) and (Ca
)free (50 ~M). The closed

times distributions in the presence and absence of CHS could be well fitted with two

exponentials in the representative example shown (Figure 17b), which is particularly

useful for a comparison with the closed time distribution in the presence ofEtOH (Figure

16b). These data demonstrate that CHS increases the average duration of longer closures

and shifts the closed channel population from short to longer closures
, these two changes

being a mirror of EtOH actions that lead to channel activation. However
, CHS also

increases the average duration of short closures , an action not mirrored by EtOH.

In addition, representative open times distributions (Figure 17a), fitted by double

exponential functions , indicate that CHS at all concentrations tested decreased the

average duration of long openings , a dwell state basically unmodified by EtOH. Figure

17a also shows that CHS produces a minor shift from long to short openings
, being

another contrbutor to the decrease in mean open time induced 
by CHS. In summary,

overall antagonism between CHS and EtOH on 
hslo steady-state activity results from the

targeting of both common and distinct channel dwelling states by these modulators

probably reflecting their common and distinct sites of action (see Discussion).
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Figure 17. Representative dwell-times distributions of hslo channel activity

reconstituted into POPEIPOPS 3:1 (w/w) bilayers in the absence (top panels) and
presence of increasing amounts of cholesterol. The potential at the cis side of the bilayer
was set at 0 mY, and free (Ca )ic::50 ~M. A) Open time distributions in both absence

and presence of CHS were well fitted with a double exponential. Increases in CHS
content up to 23 mol% progressively decrease the average duration of long openings; B)
Closed time distrbutions in both absence and presence of 

CHS were also well fitted with



a double exponential function. Increases in CHS content (11-49 mol%) progressively

shift the channel population from short to long closures , and increase the duration of long

closures. In both A) and B), each panel shows the total number of events (N), the

duration of each particular component (t, in msec), and the relative contrbution of each

component to the total fit (in parentheses). The solid line represents the composite fit.
Data were low pass fitered at 3 kHz and sampled at 10kHz. The average values for the

time constants (msec) and the fractional contribution of each component to the total fit
for the open states were: POPEIPOPS , 'tfast= 1.61:t0.393 and 0. 139:t0.041

low=11.765:t2. 111 and 0.861:t0.041 (n=8); POPE/POPS+10 mol% CHS

'tfast=1.557:t0.356 and 0. 185:t0. , 'tslow=5.773:t0.333 and 0.815:t0.09 (n=5);

POPEIPOPS+23 mol% CHS , 'tfast=1.242:t0.309 and 0.239:t0.073, 'tslow=4. 194:t0.77 and

704:t0.108 (n=7); POPEIPOPS+32 mol% CHS , 'tfast=1.046:t0.218 and 0.22:t0.079,

'tslow =4.628:t0.246 and 0.779:t0.079 (n=4); POPE/POPS+49 mol% CHS , 'tfast=1.066 and

0.28 , 't =6.981 and 0.72 (n=2). The average values for the time constants (msec) and

fractional contribution of each component of the distrbution to the total fit for the closed
states were: POPEIPOPS , 'tfast=0.436:t0.094 and 0. 835:tO.033 , 'tslow=12.994:t5.904 and

165:t0.033 (n=8); POPEIPOPS+10 mol% CHS , 'tfast=0.694:t0.053 and 0.671:t0.07,

'tslow =19.152:t4.341 and 0.329:t0.07 (n=5); POPEIPOPS+23 mol% CHS

'tfast =0.587:t0. 113 and 0.533:t0.078 , 'tslow=21.022:t4.11 and 0.467:t0.077 (n=7);

POPEIPOPS+32 mol% CHS , 'tfast=1.155:t0. 126 and 0.566:t0.079 , 'tslow=42.971:t13.052

and 0.434:t0.079 (n=4); POPE/POPS+49 mol% CHS , 'tfast=1.462 and 0. , 'tslow=146.

and 0.33 (n=2).
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The role of the lipid environment in the function of embedded ion channel

Discussion

proteins and their drg sensitivity is diffcult to assess in complex biological systems
, but

into planar lipid bi1ayers. Our data demonstrate the feasibility of this approach
, since

is more approachabl in reduced preparatio such as with cloned channels incorporated

hslo channels in POPE and POPE/POPS bilayers retain basic BKca channel

characteristics and respond to the change in bulk phospholipid composition. 
Of course

this reductionist approach ignores many of the potential interactions present in a rich

heterogeneous natural membrane. However
, the model used successfully addresses the

specific questions that are being asked.

Modulation ofBKca activity by ethanol and cholesterol is reduced in POPE bilayers.

We demonstrate that both CHS and EtOH modulation of basal 

hslo activity are

dramatically impaired in the absence of POPS in the bilayer. 
The fact that these agents

modulate hslo channel activity in POPE/POPS
, but fail to do so in pure POPE bilayers

could be attbuted to the loss of headgroup negative charge
, differing headgroup size

and/or altered headgroup interactions. Neutral PE bilayers have a high propensity to

transition from the lamellar phase into the Hn (inverted hexagonal) phase (Figure 22), a

transition directly attenuated by negative membrane surface charge 
carred by PS (Lewis

and McElhaney, 2000). Though this transition for POPE generally occurs at higher

temperatures than those employed in this study (70
C; Pare and Lafleur, 1998), we

cannot rule out that such a tendency may mask or alter the actions of CHS or EtOH under

the exact conditions employed in our system. Both PE and CHS are nonlamellar phase-

;..
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preferrng lipids , which can presumably increase curvature stress when incorporated into

a lamellar bilayer (Stubbs and Slater, 1996; Lundbaek 
et al. 1996). It is possible that a

pure POPE bilayer with a high initial degree of curvature stress (Figure 23) masks sterol

modulation of this parameter. The inability ofCHS to modify 

hslo function when added

to POPE bilayers might also reflect a relatively low lateral miscibility of CHS in pure PE

(McMullen et al. 1999), perhaps alleviated by the headgroup structure and charge in the

POPEIPOPS mixtue.

Increases in membrane cholesterol, which occur in animal models 
of chronic ethanol

exposure, antagonize ethanol actions on BKca channels.

In both cell culture and animal models of chronic EtOH exposure
, alterations in

both content (Chin 
et al. 1978; Omodeo- Sale et al. 1995) and distribution (Wood 

et al.

1990a) of membrane CHS have been reported. These alterations might represent a

compensatory response (i.

, "

tolerance ) to counteract the effects ofEtOH on relevant

targets , such as defined ion channel populations. Here
, we demonstrate that increases in

the CHS content of POPE/POPS bilayers , indeed, reduce EtOH potentiation of 
hslo

channel Po,

Increases in bilayer/membrane CHS content diminish the lipid/membrane

partition coefficient of a variety of small anesthetics
, such as halothane (Lechleiter 

et al.

1986), uncharged pentobarbitone (Miler and Yu, 1977), and benzyl alcohol (Colley and

Metcalfe , 1972). Isothermal titration calorimetry data show that EtOH partitioning into

phosphatidylcholi (PC) liposomes is also reduced by CHS , when present in the bilayer

at concentrations 
10 mol% (Trandum 

et aI. 2000). Consistent with these findings
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Figue 12 demonstrates that CHS effects on EtOH sensitivity of 
hslo channels is largely

absent at 10 mol% CHS , but evident at concentrations above 23 mol%.

The effect of CHS on EtOH partitioning may be explained by bilayer phase

behavior. Isothermal titration calorimetry (Trandum 

et al. 1999) and computer

stimulation (Jorgensen 
et al. 1993) studies strongly suggest that EtOH preferentially

partitions into bilayers at the interfaces between the gel and the liquid crystallne domains

that form as the bilayer approaches the transition temperature. High bilayer CHS

concentrations abolish the gel to liquid crystalline transition
, causing the bilayer to exist

in a liquid-ordered state (Trandum 
et aI. 2000). The resulting disappearance of the

gel/liquid crystallne interfaces preferentially targeted 
by EtOH would serve to decrease

its partitioning into the membrane. In fact, X-ray diffraction studies ofPOPEIPOPS

mixtures suggest that at 25 , multilayer samples exist as a combination of both gel and

liquid crystallne phases (Chang 
et al. 1995b). The coexistence of these lateral domains

would support the partitioning of EtOH into this lipid mixture. We show here that

channels are sensitive to EtOH in POPEIPOPS bilayers 
(Figue 9, Figure 11). However

in bilayers containing :;20 mol% CHS which lack these domain interfaces (Chang 

et al.

1995b), EtOH potentiation of 
hslo activity is markedly reduced (Figure 12). Thus , our

data are consistent with a CHS-induced reduction of EtOH partitioning in the bilayer. 

our system, however, the hydrocarbon interior of the bilayer should contain contaminant

decane in equilibrium with that in the torus that surrounds the bilayer (Gruen
, 1981), so

we cannot rule out some contrbution of this solvent to the phase behavior of the bi1ayers

employed in our study. The manipulation of parameters like temperature and acyl chain



saturation wil yield further insight into the importance of bilayer phase behavior on BKca

ethanol sensitivity.

Further evidence that CHS reduces EtOH interaction with the membrane comes

from NMR spectroscopy data demonstrating that EtOH resides at the lipid-water

interface in phospholipid bilayers. The carbonyl groups in the glycerol backbone are

specifically favored hydrogen bonding sites for EtOH (Barr and Gawrisch, 1994), this

binding being decreased by increasing amounts of CHS (Barr and Gawrisch, 1995).

Since CHS interacts with PC at the same carbonyl groups in the glycerol backbone

(Worcester and Franks , 1976), this was interpreted as CHS directly competing for

EtOH' s favored binding sites (Barr and Gawrisch, 1995). CHS location at the

phospholipid carbonyl groups would also increase the packing density ofthe

phospholipids and antagonize the increase in acyl chain motion ("disordering

introduced by EtOH (Sun and Sun , 1985), which may contribute to functional antagonism

on hslo kinetics (see below).

Comparison of ethanol and cholesterol actions on BKca kinetics and bilayer physical

properties.

Apart from effects on EtOH partitioning, CHS may directly antagonize the 
action

of the drug on the bilayer or the hslo channel itself. If CHS and EtOH act through a

single, common mechanism, we might expect them to exert reciprocal actions on

common dwell states of the channel. Indeed, EtOH and CHS produce a mirrored shift

between the long and short channel closed states and have opposite actions on the mean

duration of long closures. This suggests that CHS and EtOH share a common target on
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the channel protein or in the phospholipid bilayer
, which is important in determining the

stability of the channel closed state(s). A similar increase in the average duration of

native BKca channel long closures following CHS enrichment of myocyte membranes

has been reported (Bolotina 
et al. 1989). Channel Po was approximately halved

coincident with a similar decrease in the rotational diffusion 
coeffcient of DPH (Bolotina

et al. 1989), indicating that a reduction in acyl chain order accompanies the reduction in

channel activity. Spin-labeling experiments also demonstrate that CHS increases while

EtOH decreases bilayer order (Chin and Goldstein
, 1981). Interestingly, the magnitude

of CHS and EtOH effects on multilayer PC vesicle order are similar to those in brain

synaptosomal membranes (Chin and Goldstein
, 1981). Thus , we postulate that opposite

actions ofCHS and EtOH on acyl chain order may 
underlie or, at least, contribute to CHS

and EtOH opposing effects on common channel dwell states
, such as the long closed

state.

In addition to their common modulation of channel long closures, CHS and EtOH

exhibit individual effects on channel dwell times
, which contrbute to their opposite

actions on Po. These distinct effects on channel dwell states may represent independent

actions of these modulators on specific bilayer characteristics that modify channel

function. For example, EtOH increases the rate of phospholipid desorption
, displacing

water from the hydrogen-bonded network of water molecules in the hydration layer

whereas CHS has little, if any, effect on phospholipid desorption (Slater 

et al. , 1993).
'i;
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Changes in phospholipid desorption alter not only lipid-
lipid interactions , but also

protein-lipid interactions , with eventual modification of ion channel function.
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Interestingly, EtOH desorption is more marked in PS than PE (Slater 

et aI. , 1993),

consistent with the EtOH activation of 

hslo channels (Figures 11 and 15).

Monolayer or bilayer properties modified by CHS, but not EtOH
, include a

broadening and eventual elimination ofthe gel-
to-liquid crystalline phase transition

(Figure 2), a decrease in the cross sectional area occupied by the phospholipid in the

liquid-crystalli state (Figure 1), increases in both bilayer thickness and mechanical

strength , and increases in the lateral stress (Figure 23) and stiffness of the phospholipid

monolayer or bilayer in the physiologically relevant fluid phase (McMullen 

et al. , 1999;

Nielsen et al. 1999). In particular, changes in lateral stress and bilayer stiffness have

been causally related to modification of ion channel function. Cholesterol and other

compounds promoting negative monolayer curvature increase stiffness and decrease

channel activity, while compounds promoting positive monolayer curvature have

opposite effects on both stiffness and channel activity (Lundbaek 

et al. 1996; Bezrukov

et al. 1998). Furthermore , CHS inhibition of native BKca channels in PE/PS bilayers has

been linked to an increase in bilayer lateral stress caused by the presence of the sterol

(Chang et al. 1995b). A major consequence of increases in lateral stress is a reduction in

the activation energy for the transition from open to closed state(s). This reduces the

average duration oflong openings , as we report here (Figue 17a). Thus , we postulate

that the distinct decrease in the average duration of long openings observed with CHS, an

effect not mirrored by EtOH, may be related to the increase in lateral stress caused by the

sterol.

Summary.



In our demonstration of CHS blunting of alcohol potentiation of 
hslo activity we

used 50 ro EtOH, close to legal intoxication ( 20 ro) and below lethal blood levels in

naIve subjects (:: 90 ro), and a range ofCHS content similar to that found in cell

membranes (5.6-44 mol%). Thus , modification of hslo function by EtOH may depend on

the membrane CHS content where the channel resides. Membrane CHS content and/or

distrbution might contribute to differential EtOH sensitivity ofBKca in different cell

tyes and in similar channel subtyes from different neuronal domains , as in supraoptic

neurons (Dopico et al. 1999). Present results might also help to explain recent findings

that rats chronically fed with EtOH display not only reduced BKca current density in

neurohypophysial terminals , but also reduced BKca sensitivity to acute EtOH (Knott 

al. , 2002).

Our findings suggest that manipulation of membrane lipid composition may

represent a mechanism for plasticity responsible for alteration of channel basal Po as well

as sensitivity to small amphiphiles such as EtOH. This hypothesis becomes particularly

attactive when coupled with data demonstrating alterations in lipid composition after

EtOH exposure , and more generally with the emerging theme of lipid domains. Here
, we

demonstrate that alcohol action on the activity of a human neuronal ion channel depends

on the lipid environment of the channel protein.
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CHAPTER III

ROLE OF SURF ACE CHAGE, LIPID MOLECULAR SHAPE , AND ACYL CHAIN

SA TUR nON IN THE BASAL ACTIVITY AND ETHANOL SENSITIVITY OF

RECONSTITUTED HSLO CHANNELS

Introduction

Membrane lipids differ widely in their structure , and in the physical properties

they impart on the bilayer and its transmembrane channels (Andersen 
et al. , 1999;

Barrantes 2002). The large conductance Ca -activated K+ (BKca) channel has served as

a model for assessing the influence of lipid environment on channel function. Alterations

in cholesterol (CHS) levels (Chang et al. 1995b; Figure 13), membrane surface charge

(Moczydlowski et al. 1985; Turneim et al. 1999; Figure 14), and headgroup strcture

(Chang et al. 1995a) can influence the basal activity of both native and cloned BKca

channels reconstituted into planar bilayers. Through the rapid effux of K+ in response to

membrane depolarization and increases in intracellular free Ca H , these channels regulate

cellular excitability and neurotransmitter release. The modulation of BKca function by

membrane lipid composition is of particular interest given the non-random leaflet

(Devaux and Zachowski , 1994) and lateral domain (Welti and Glaser, 1994) organization

of the plasma membrane. Moreover, membrane lipid composition is tightly regulated

(Brown and Goldstein, 1999; Thewke et al. 2000), perhaps as a homeostatic mechanism

to maintain optimal membrane function. These findings raise the possibility that local

differences in lipid composition and physical properties may arise, which regulate the

function of BKca channels.

..-:.
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EtOH is an amphiphilic molecule that potentiates BKca channels when applied

acutely in native membranes (Dopico 
et al. 1996; Knott et al. 2002), ripped-off patches

(Dopico et aI. 1998), and in the planar lipid bilayer (Chu 
et al. 1998; Figure 9 and 11).

BKca channels isolated from the neurohypophysis of rats chronically exposed to EtOH

however, exhibit a reduction in sensitivity to the drg (Knott et al. 2002). Interestingly,

animal models of chronic EtOH exposure also show alterations in the amount (Chin 

al. 1978; Omodeo- Sale et aI. 1995) or distribution (Wood et al. 1989 , 1990a) ofCHS

as well as changes in the acyl chain profie and headgroup composition of the plasma

membrane from a variety of tissues (Swann, 1987). Since the basal function and EtOH

potentiation of BKca persist in a planar bilayer system, composed of cloned human BKca

(hslo) channels reconstituted into 1-palmitoyl-2-oleoyl-phosphatidylethanolamine

(POPE)/ 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) mixtures , the influence of such

changes in membrane lipid composition can be determined. We have previously shown

that the potentiation of hslo by EtOH is significantly reduced in both pure POPE bilayers

(Figure 15) and POPEIPOPS (3:1) mixtures with high (::23 mol%) cholesterol (CHS)

(Figure 12) concentrations. In addition, the ability ofCHS to inhibit basal hslo Po is

reduced in the pure POPE membrane relative to the POPEIPOPS (3:1) mixture (Figure

15). Here, we begin to explore the contribution of lipid physical properties such as

negative surface charge, lipid molecular shape, and acyl chain saturation in the regulation

of hslo basal activity and EtOH sensitivity.

The phosphatidylserine (PS) headgroup carres a net negative charge at

physiological pH. BKca channels reconstituted into negatively charged planar bilayers



exhibit higher open probability (Po) values relative to those in neutral bilayers , perhaps as

a result of relative increases in the Ca ++ concentration at the intracellular face of the

membrane (Moczydlowski et al. 1985; Tureim et al. 1999). The decreased effcacy

of both EtOH and CHS in the modulation of channels in POPE bilayers , versus

POPE/POPS (3: 1) mixtures , suggests that negative charge or PS headgroup strcture

could be required in the mechanism of action of these agents on 
hslo channels in our

system.

A second interpretation stems from the molecular shape of

phosphatidylethanolami (PE). PE molecules have a small polar headgroup cross-

section relative to their hydrophobic region, yielding a molecular "cone" shape and a

preference for nonlamellar phases (Figure 22) that creates a membrane curvature stress

(Gruner, 1985; Israelachvili et al. 1980). CHS exerts similar effects on membranes

(Lundbaek et aI , 1996; Figure 22), and neither pure POPE nor CHS-containing (::23

mol%) bilayers support EtOH modulation of reconstituted 
hslo channels (Figure 12 and

15). Furhermore, the nonlamellar propensity of POPE is attenuated by negatively

charged POPS (Epand and Bottega, 1988; Lewis and McElhaney, 2000), and these

mixtures support drug action (Chu 
et al. 1998; Figure 9 and 11). This correlation

suggests that "cone" shape nonlamellar lipids may antagonize the actions ofEtOH on

hslo channels , perhaps through increases in curvature stress. Furhermore , if CHS

inhibition of hslo Po depends upon its molecular "cone" shape , its actions may be masked

in pure POPE membranes with a greater initial curature stress relative to the

POPE/POPS (3: 1) mixtures that support sterol inhibition.
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In addition to surface charge and curature stress , other lipid physical properties

may contrbute to modulation of basal activity and EtOH sensitivity of 
hslo channels in

our system. CHS increases the order of phospholipid acyl chains above 
the main phase

transition of the membrane , and antagonizes the disordering actions of EtOH on acyl

chains (Chin and Goldstein, 1981). This is coincident with sterol inhibition of basal 
hslo

Po and antagonism ofEtOH action on reconstituted 
hslo channels in POPEIPOPS (3:1)

mixtues (Figure 12 and 13). CHS addition to POPEIPOPS (3:1) also creates a ternary

mixture with a more diverse set of interactions between headgroups. It is possible that

the complexity of the headgroup interactions in a ternary mixture may contribute to the

differences in basal activity and EtOH sensitivity from the POPEIPOPS (3: 
1) mixture.

Here, we test the ability of EtOH and CHS to modulate channel fuction in

neutral POPE/1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. POPC is

uncharged, but it has a "cylindrcal" molecular shape with proportional polar and non-

polar moieties. It strongly prefers lamellar phases , and in a mixture with POPE , it can

counteract the ability of POPE to form nonlamellar phases (Epand and Bottega
, 1988).

The role of bilayer surface charge can, therefore , be separated from any impact on protein

fuction caused by the enhanced nonlamellar tendencies of the pure POPE membrane

relative to the POPEIPOPS (3: 1) mixture , in regards to hslo modulation by EtOH and

CHS. We next assess the ability of20 mol% POPC to modulate both basal activity and

EtOH sensitivity of reconstituted 
hslo channels in the POPE/POPS (3:1) background.

Like the addition of CHS , this substitution creates a ternary lipid mixture with a more

complex set of head group interactions. Based on the molecular shape of PO 
PC and CHS
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however, these molecules do not influence curature stress in the same manner. This

allows separation of the complexity of a ternary lipid mixture from the physical

properties of the CHS molecule itself. Finally, we test a PE/PS mixture containing only

monounsaturated oleic acid side chains , predicted to decrease acyl chain order, for the

basal activity and drug response of reconstituted 

hslo channels to assess any correlation

between bilayer order and channel function.

Materials and Methods

HEK 293 membrane preparatio HEK-293 membrane fragments were isolated using a

protocol for COS cells (Sun 
et al. 1994), modified slightly. Briefly, HEK 293 cells

stably transfected with 
hslo cDNA (a gift from Dr. P. Ahng, NeuroSearch AlS,

Denmark) were grown to confluence, pelleted, and resuspended on ice in 10 ml of buffer

(ro): 30 KCl, 2 MgCh, 10 N- hydroxyethy1piperazine- 2-ethanesulfonic acid

(HEPES), 5 ethylene glycol-bis(~-aminoethyl ether)- N' , N' - tetraacetic acid (EGTA);

pH 7.2. The cell suspension was forced through a 27-gauge needle 4 times , and sonicated

at 30% maximum power for 30 sec , twice. The suspension was layered on a 20-38%

sucrose density gradient (in 20 ro MOPS, pH 7.
1) and centrfuged at 25 000 rpm for 60

min at 4 C. The band at the 20%-38% interface was collected with a syringe, diluted

with bidistiled H , and centrfuged in a 50.2 Ti rotor at 45 000 rpm for 60 min at 4

The resulting pellet was resuspended in 200 ~l of buffer 
(ro): 250 sucrose , 10 HEPES;

pH 7.3. Aliquots were stored at -

Electrophysiology. 
Channels were incorporated by dropping 0.5 ~l of the membrane

preparation onto preformed bilayers cast from mixtures of POPE
, POPS , POPC and CHS.

.:,;.
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Lipids were dried under N2 gas , and resuspended in decane , for a final lipid concentration

of 25 mg/ml. Bilayers were formed by painting the lipid mixture across a 100 11M hole

formed in a plastic coverslip (Wonderlin 
et al. 1990). Capacitance was monitored by the

capacitive current generated with a triangle pulse (20 mV/25 ms). Vesicle fusion was

promoted by an osmotic gradient, with the cis chamber (to which the vesicles were

added) hyperosmotic to the trans. Only channels with their Ca -sensor facing the cis

chamber were studied. Solutions consisted of (ro): cis, 300 KC1, 10 HEPES , 1.10 N-

(2-hydroxyethyl) ethylene-diaminetriacetic acid (HEDT A) ((Ca H) free 55 ~M), 1.

CaCh, pH 7.2 , and trans, 30 KCl , 10 HEPES , 0.1 HEDTA, pH 7.2. CHS action on

channel function was studied at 55 ~M (Ca H)free, which promotes high channel activity,

from which the inhibitory effects of CHS can be effectively quantitated. EtOH sensitivity

was tested at 10 ~M (Ca H) free, which yields lower activity and prevents a "ceiling effect"

when measuring EtOH potentiation. The magnitude of EtOH activation of 
slo activity is

independent of voltage within the range studied here (Dopico 
et al. 1996). (Ca )rree in

the cis chamber was adjusted using aliquots from aIM stock solution ofHEDTA (pH

7.2). (Ca )rree values given are nominal, calculated using the Max Chelator Sliders

program (C. Patton, Stanford University).

Experiments were performed at room temperature. Single channel events were

recorded at a bandwidth of 10 kHz using a patch clamp amplifier (model 8900, Dagan

Corp. , Minneapolis , MN), and stored on videotape using Pulse Code Modulation (model

DMP- 100 , Nakamichi , Tokyo , Japan). Data were low-pass fitered at either 3 (for dwell

.:;..
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time analysis) or 1 kHz (for display and NP determination) using an eight-pole Bessel

fiter (model 902 , Frequency Devices , Haverhill , MA), and digitized at 10 kHz.

Data Analysis. Data were acquired and analyzed using pClamp 6.
0.2 (Axon Instr. , Union

City, CA). As an index of steady-state channel activity we used the product of the

number of channels in the bilayer during recording (N) and the open channel probability

(Po). N was monitored pre- and post-EtOH by stepping to positive potentials to

maximize Po. Experiments showing an increase in N after EtOH addition were discarded.

NP 0 was determined from periods of at least 20 sec of continuous recording. 
Data are

shown as mean:tS. M. The significance of the difference between means was

determined by Student's 
tests.

Chemicals. All solutions were prepared with Mili-Q water, and ultrapure grade salts.

Ethanol (100%, anhydrous) was purchased from American Bioanalytical (Natick
, MA),

decane (::99% pure , anhydrous) from Sigma-Aldrich (Milwaukee , WI), and POPE

POPS, DOPE, DOPS , POPC, and CHS from Avanti Polar Lipids (Alabaster
, AL).

Results

We have shown recently that the modulation of 
hslo channel activity by EtOH

and CHS is reduced in a POPE background, relative to a POPEIPOPS (3:1) mixtue

(Figure 12). POPE bilayers lack negative surface charge
, but may also exhibit increased

curature stress due to the "cone" shape and resulting nonlamellar tendency of the PE

headgroup. Here , we set out to distinguish between these two possibilities by employing

a POPEIPOPC (3:1) mixture that dissociates the lack of negative surface charge from the

properties of the pure POPE membrane. We first demonstrate that
, like channels in

-:"".
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POPE membranes hslo channels reconstituted into uncharged POPEIPOPC (3: 1) bilayers

exhibit lower Po and g values than channels in charged POPEIPOPS (3: 
1) membranes

under identical conditions (0 mY , (Ca )Free 50 ~M , KCl gradient 300 mM30 mM i/o):

POPE/POPS (3:1) Po= 0.7871: 0.058 (n= 8), g= 330 1: 6 pS (n= 16) vs. POPE/POPC (3:1)

0.2361: 0.067 (n= 12), g= 304 1: 10 pS (n= 17) (p 0: 0.05). This result is consistent with

previous findings addressing BKca channel activity in charged and uncharged bilayers

(Moczydlowski et al. 1985; Tumheim et al. 1999; Park et al. , 2003).

CHS and EtOH modulation of 
hslo channels reconstituted into 

POPE/POPC (3:1)

bilayers. Figue 18a shows representative traces of the activity of single 
hslo channels

recorded under identical conditions (+30 mY , (Ca 1Free 50 ~M , KC1 gradient 300

mM/30 mM i/o) in POPEIPOPC (3:1) bilayers lacking (left) and containing (right) CHS.

In this background, 23 mol% CHS is able to reduce 
hslo Po nearly 80% (Figure 18b;

POPEIPOPC (3:1) Po= 0.406 1: 0.077 (n= 12) vs. POPEIPOPC/23 mol% CHS Po
= 0.091

1: 0.069 (n=4) (p 0: 0.05). Slope conductance , as in the POPEIPOPS (3:1) background

(Chapter II), appears unaffected (POPE/POPC g= 304 
1: 10 pS (n= 18), vs.

POPE/POPC/23 mol% CHS g= 312 1: 18 pS (n= 5). This result suggests CHS

modulation of hslo channel activity is independent of both negative surface charge and

PS headgroup structure itself.

We have shown that EtOH action on hslo channels is also reduced when

reconstituted into uncharged POPE bilayers , versus that seen in POPEIPOPS (3: 1)

membranes. Channels in these uncharged POPE membranes are not potentiated by the
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Figure 18. Cholesterol can inhibit hslo activity in uncharged POPEIPOPC mixtures. (A)

Representative traces from single channels reconstituted into POPEIPOPC (3: 
membranes (top) and POPEIPOPC123 mol% CHS (bottom) bilayers. Records were

obtained at +30 m V , with 50 ~M (Ca H ) Free on the intracellular side of the bilayer. Data

was low-pass filtered at 1 kHz, and sampled at 10 kHz. (B) 
Hslo Po is significantly

reduced by 23 mol% CHS in an uncharged POPEIPOPC (3:1) background (*
, p': 0. 05).
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drg at both 50 mM (8/11 channels) and 100 mM (4/4 channels) concentrations (Figue

15). Figure 19a contain representative traces of the same hslo channel in a

POPEIPOPC (3:1) bilayer before (above) and after (below) the addition of 50 mM EtOH

to the upper chamber. As in the POPE/POPS (3: 1) mixture , the drug potentiated channel

activity in 6/7 of experiments when studied in the uncharged POPEIPOPC (3: 1) mixture.

The magnitude of the response to 50 mM EtOH was smaller, though not statistically

different, than observed in POPE/POPS (3:1) mixtures (2.41X vs. 5. 19X, respectively)

, Student's t- test) (Figure 19b). For comparison, the data obtained previously in

POPE membranes (from Figure 15) are shown. This suggests that, as for CHS

modulation of hslo channels , negative surface charge and PS headgroup structure are not

necessary to support EtOH action on channel activity.

Modification of hslo function by a ternary head group composition. The addition of

CHS to POPEIPOPS (3: 1) bilayers results in a significant decrease in both the basal

activity and EtOH sensitivity of reconstituted hslo channels (Figure 12 and 13). The

' .

I':

addition ofCHS would be expected to increase curvature stress (Chang 
et al. 1995b;

Lundbaek et al. 1996), increase acyl chain order (Ohvo-Rekila et al. 2002), and create a

. .

ternary mixture with a more complex set of lipid interactions. It is unclear which of these

attbutes , if any, may explain the influence of the sterol on hslo function. In contrast, a

ternary mixture created by adding POPC to the POPE/POPS (3: 1) combination, while

yielding a comparable greater variety of lipid interactions , should not influence acyl

chain order or curvature stress in the same manner as CHS. In spite of this , Figure 20a

..;.
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Figure 19. EtOH activates hslo channels in uncharged POPEIPOPC mixtures. (A)

Representative traces of 
hslo channel activity in a POPEIPOPC bilayer before and after

the addition of 50 mM EtOH. Records were obtained at +10 mY
, with 10 ~M

(Ca )Free on the intracellular side of the bilayer. Data was low-pass fitered at 1 kHz, and

sampled at 10 kHz. (B) EtOH consistently activates hSlo 
channels (6/7 cases) in

POPE/POPC (3:1) bilayers , as in POPEIPOPS (3:1) membranes (N. , P 
1). For

comparison, the data obtained previously in uncharged POPE mixtures is shown. Each
point represents a single experiment, and arrows indicate overlapping values. The n for

each condition is shown on the plot, and the Mean (S. ) is displayed above each

column (* , p 0: 0.05).
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Figure 20. POPC (20 mol%) added to the POPEIPOPS (3:1) mixture can reduce the
basal activity of reconstituted 

hslo channels , but cannot significantly reduce EtOH

sensitivity. (A) Open probability of 
hslo channels reconstituted into POPE/POPS (3:1),

POPEIPOPS (3:1) + 23 mol% CHS (Crowley et aI
, 2003), and POPEIPOPS (3:1) + 20

mo1% POpc. Records were obtained at 0 mY, with 50 ~M (Ca )Free on the

intracellular side ofthe bilayer. Data was low-pass filtered at 1 kHz , and sampled at 10

kHz. (B) NP EtOHI 0 Control values for hslo channels in the same mixtures. Records

were obtained between - 10 and +30 mY, with 10 ~M (Ca )Free on the intracellular side

of the bilayer. Each point represents a single experiment
, and arrows indicate

overlapping values. The n for each condition is shown on the plot
, and the Mean

(S. ) is displayed above each column (* , p .: 0.05).
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demonstrates that the addition of20 mol% POPC to the POPE/POPS (3:1) mixture can

reduce the basal Po of hslo in a manner similar to a roughly equivalent amount (23 mo1%)

ofCHS (Figure 13b), when recorded under the same conditions (0 mY, (Ca Freez50 ~M

KCl gradient 300 mM/30 mM i/o). However, the addition of PO PC doesn t antagonize

the potentiation of the channel by 50 mM EtOH (Figure 20b). Channels are strongly

activated by 50 mM EtOH in 3/8 cases , not significantly changed in 4/8 cases , and

inhibited in 1/8 cases , yielding an average fold increase of2.29:t0. , that is not

statistically different from POPEIPOPS (3: 1) (pzO. 1). These observations suggest that

modulation of basal hslo Po can occur without large predicted alterations in acyl chain
fi.

order, or increases in curvature stress. However, significant changes in EtOH sensitivity

appear to require modulation of bilayer properties beyond the increase in headgroup
'i.

diversity introduced here.

The influence of acyl chain order on the activity and EtOH sensitivity of

reconstituted hslo channels. To address the importance of acyl chain order, we next

studied a 3:1 PEIPS mixtue containing mono-unsaturated oleic side chains at both the

sn- 1 and sn-2 position (DOPE/DOPS). Bilayers cast from this mixture wil be less

ordered than the corresponding POPEIPOPS (3: 1) bilayer due to the lack of saturated

chains in the hydrocarbon interior. Figure 21a demonstrates that, relative to POPEIPOPS

(3: 1), the basal activity of hslo channels is significantly decreased in the DOPEIDOPS

(3:1) mixture , under identical conditions (0 mY, (Ca Freez50 ~M, KCl gradient 300

mM/30 mM i/o). However, acyl chain order does not correlate directly with BKca

.:';
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Figure 21. Hslo channels in DOPEIDOPS (3:1) bilayers containing only mono-
unsaturated acyl chains exhibit reduced basal Po, but maintain sensitivity to 50 mM
EtOH. (A) Open probability values for channels in POPEIPOPS (3:1) and DOPE/DOPS

(3:1) bilayers. Records were obtained at 0 mY
, with 50 ~M (Ca )Free on the intracellular

side ofthe bilayer. Data was low-pass filtered at 1 kHz , and sampled at 10 kHz. The n

(in parenthesis) is shown for each data set (*
, p 0: 0.05). (B) Scatter plot ofNP

EtOHI 0 Control values for channels in POPEIPOPS (3: 
1) and DOPE/DOPS (3: 1)

bilayers. Records were obtained with 10 ~M (Ca )Free on the intracellular side of the

bilayer. Each point represents a single experiment, and arrowS indicate overlapping

values. The n for each condition is shown 
on the plot, and the Mean (S. ) is

displayed above each column.
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channel Po, since manipulations expected to increase (POPEIPOPS (3:1) +23 mol% CHS)

or decrease (DOPEIDOPS (3: 1)) bilayer order both elicit decreases in the basal activity 

reconstituted hslo channels.

If reductions in membrane order caused by EtOH (Chin and Goldstein
, 1981)

were a determining factor ofEtOH action on BKca channels , we might expect a decrease

in chain order to increase channel activity, as EtOH does. As shown above
, this is not the

case. Through the same logic , we might expect decreases in membrane order to enhance

the actions ofthe drug on BKca channels. However, Figure 21 b demonstrates that 
hslo

channels in DOPE/DOPS (3:1) bilayers are potentiated by 50 mM EtOH in only 4/10

cases , unchanged in 3/10 cases , and inhibited in 3/10 cases. Overall , the fold increase in

open probability elicited by the drg was 2.93:t1.13 , which was not statistically different

from that observed in POPEIPOPS (3:1) bilayers (p
0.25). These results suggest a

reduction in bilayer order is unlikely to explain the actions of the drug on the gating of

BKca channels.

Discussion

This study assesses the influence of membrane lipid physical properties on the

activity and EtOH sensitivity of reconstituted 
hslo channels. The modification of surface

charge density, headgroup strcture and composition, and acyl chain saturation were

addressed in regard basal 
hslo function and EtOH sensitivity. The results presented here

provide further support for the notion that the local lipid environment of a channel can

modulate its activity and pharmacological properties.
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Cholesterol modulation of BKca channels does not require negative surface charge

or PS headgroup structure.

The ability of cholesterol (CHS) to modulate 
hslo channel Po is independent of

membrane negative surface charge and PS headgroup structure. Under the conditions

tested (+30 mY , 50 ~M (Ca )Free), CHS reduction of 
hslo activity approached 80%

(Figure 15b). This indicates that sterol modulation of 

hslo Po was at least as robust in the

POPE/POPC (3: 1) background as in the charged POPEIPOPS (3: 1) background (45%

reduction for the same mol% CHS , 0 mY, 50 ~M (Ca )Free)' The inability ofCHS to

influence channel behavior in pure POPE bilayers is likely to reflect some aspect of the

physical properties of this bilayer tye, rather than the loss of POPS and its associated

charge. For instance , reports aimed at understanding the thermotropic phase behavior of

PE/CHS bilayers suggest that the strong electrostatic and hydrogen-
bonding headgroup

interactions ofPE molecules , and PE-CHS hydrophobic mismatch, favor PE/PE binding

as opposed to PE/CHS interactions (McMullen 

et al. 1999). This can cause a limited

lateral miscibility, and the appearance ofCHS-rich and CHS-
poor domains to form in

these bilayers (McMullen 
et al. 1999). This is in contrast to PC-CHS mixtures in which

the sterol is miscible and can promote the formation of the liquid-ordered phase

vi.

(McMullen et al. 1993). It is possible that a limited lateral miscibility ofCHS in the

POPE bilayer underlies the reduced sterol modulation of BKca activity in POPE/23 mol%

CHS bi1ayers. However, the degree ofCHS-PE interaction is susceptible to the

temperature , amount of CHS , as well as the length and saturation of acyl chains in the

mixture. In general , low temperatures , longer, saturated acyl chains, and higher levels of
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CHS promote the formation ofCHS-rich and CHS-
poor domains (McMullen 

et al.

1999). As in PC-CHS mixtures , CHS can promote the formation of the liquid-ordered

phase in POPE bilayers (Pare and Lafleur, 1998), suggesting that the sterol is miscible in

the POPE/CHS bilayers used in this study.

Increases in curvature stress may underlie modulation of basal BKca activity by

cholesterol and POPE.

The molecular cone shape, and resulting nonlamellar natue, of the PE

phospholipid may also influence the ability of CHS to modulate BKca 
channel function.

The cone shape of PE derives from a small polar headgroup volume relative to the larger

volume of its hydrophobic moiety (Israe1achvili et al. 1980). The packing density of the

polar headgroups for a cone shaped molecule like PE are lower than for molecules like

, whose large polar headgroup area creates a more cylindrical shape. This is 
ilustrated

in Figure 22. Upon the addition of nonlamellar lipids
, the negative curvature of a

monolayer wil increase in an effort to reduce packing energies in the headgroup and acyl

chain regions. However, the opposing monolayer wil exhibit equal and opposite

tendencies , yielding a bilayer with an elastic curvature stress (Gruner 

et al. , 1985;

Gruer, 1985; Hui and Sen, 1989). Curvature stress can modify the activity of a variety

of transmembrane and membrane-associated proteins
, including the channels formed by

alamethicin peptides (Keller 
et al. 1993). Interestingly, CHS is thought to increase

curvatue stress since the cross-sectional size differences of the polar and non-
polar

moieties follow the same trend as for PE (Demiel 

et al. 1972; Lundbaek et al. 1996). It

, therefore, possible that the POPE background has a high initial curvature stress that
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A) Lameller Phase
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Figure 22. Schematic of "cone" and "cylindrical" lipids , and the phases they prefer.

Figure adapted from Szule JA, Fuller NL , and Rand RP (2002) Biophys. J. 82(2):977-
984. "Cylindrcal" lipids like PS and PC form flat, stable mono layers , and pack

effciently into the lamellar (bilayer) phase. PE and CHS have a molecular "cone" shape

for which the lowest energy packing conformation cannot be assumed in a flat lamellar
strcture. Under certain conditions (such as: high temperature, high degree of acyl chain

saturation, or dehydration) these lipids form non-bilayer phases such as the reverse
hexagonal phase. However, below the transition from bilayer to non-bilayer phase, these

lipids impart on the bilayer a curvature stress implicated in the modulation of several
classes of membrane protein. This stress arises from the latent energy stored in the
bilayer as a result of forcing these "cone" shaped lipids into a lamellar phase.

?t:,
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can mask further increases in this parameter caused by CHS. The addition of either

POPC or POPS to the POPE bilayer may attenuate its curature stress , and uncover CHS

actions on channel function. Indeed, both POPC and POPS can attenuate the nonlamellar

nature of POPE, as demonstrated by an increase in the temperature at which the resulting

mixture wil undergo the transition to an inverted hexagonal phase (Epand and Bottega

1988).

Lipids that promote curvature 
stress antagonize ethanol actions on 

BKca channels.

Ethanol is able to reliably potentiate the activity of BKca channels in uncharged

POPEIPOPC membranes (6/7 cases), suggesting that both negative surface charge and PS

headgroup strcture are not essential in the mechanism of drug action. The degree 

channel potentiation by 50 mM EtOH appears lower in this mixture , though not

statistically different from POPEIPOPS (3:1) membranes (Figure 19b). This could reflect

a limited ability of PS charge or structue to tune some aspect of drg action. Regardless

the lack of EtOH modulation in POPE membranes is also attributed to an intrinsic

propert of the POPE bilayer. Ethanol, as demonstrated by NMR, can bind near the

lipid-water interfaces of E. coli-derived PE and disorder the entire length of the acyl

chains in the physiologically relevant fluid phase (Barr and Gawrsch, 1994). It

therefore seems likely that adequate drg partitioning should occur in our POPE

membranes , though differences in acyl chain composition from egg PE must be

considered. In addition, short chain alcohols , including EtOH, can stabilize the lamellar

structure of egg PE (Tilcock and Cullis, 1987), suggesting the reduction in EtOH
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sensitivity of hslo channels in POPE membranes is not attibuted to an EtOH-induced

disruption of bilayer strcture.

Both CHS and EtOH modulate 
hslo Po in POPE/POPC membranes , in a manner

qualitatively similar to that seen for the charged POPE/POPS (3: 
1) bilayer. This suggests

net negative membrane surface charge and PS headgroup 
strcture are not essential in the

mechanism of action of these agents. The presence of the POPE headgroup itself cannot

prevent channel modulation by CHS or EtOH, as it is present in all mixtures tested.

However, pure POPE membranes do not support significant modulation of 
hslo activity

by CHS or EtOH. When either negatively charged 
POPS or uncharged POPC are added

to the POPE bilayer, the actions of both agents are restored. The ability 
of both POPS

and POPC phospholipids to accomplish this suggests that it is not necessarily 
attibuted

to their charge or strcture , but the ability of both phospholipid to attenuate the

nonlamellar tendency of the pure POPE membrane. In fact, it has been previously shown

that mixing with either POPC or POPS can attenuate the nonlamellar tendency of POPE

measured as an increase in the bilayer to inverted hexagonal phase transition temperature

(Epand and Bottega, 1988).

Ternary lipid mixtures, per se, do not antagonize ethanol actions on BKca channels.

The addition of20 mol% POPC to the POPEIPOPS (3:1) mixture reduces the

basal Po of hslo channels in a similar fashion to a comparable amount ofCHS (23 mol%)

(Figure 20a). POPC carries the same profie of acyl chains as both 
POPE and POPS , so

the order of the hydrocarbon interior is unlikely to differ dramatically. Relative to the

cone shape ofPE and CHS , the cylindrical phosphatidy1choli (PC) strongly prefers the
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lamellar phases (Stubbs and Slater, 1996). POPC, as a result, would not increase

curvature stress. As a result, it is not immediately obvious how the addition of PO 

influences basal channel function. It is possible that the altered headgroup interactions of

a ternary lipid mixture influence the lateral organizatio
of the bilayer. The basal Po in

the POPEIPOPS (3:1) + 20 mol% POPC ternary mixture is similar to that seen in the

POPEIPOPC (3: 1) mixture , suggesting perhaps a preferential association of the channel

with POPE and POPC.

In contrast, CHS reduces the EtOH sensitivity of 
hslo channels when added (:;23

mo1%) to POPEIPOPS (3:1) mixtures (Figure 12), while similar amounts of PO 
PC (20

mol%) cannot do so (Figure 20b). As indicated above
, membrane curatue stress is a

unifying theme in the reduced efficacy ofEtOH in pure POPE and POPEIPOPS (3:1)

containing high CHS concentrations. The addition of PO 
PC to the POPEIPOPS (3:1)

mixture would not be expected to influence curvatue stress 
in a manner similar to CHS

and does not significantly reduce 
hslo EtOH sensitivity, consistent with this hypothesis.

Acyl chain order does not directly correlate with changes in basal activity or ethanol

sensitivity of BKca channels.

To assess the influence of bilayer order on the activity and EtOH sensitivity of

hslo channels , we employ here a PEIPS (3:1) mixtue containing only mono-unsatuated

oleic acid side chains. The presence of only unsaturated chains in the hydrocarbon 
core

of the bilayer cause the mixture to be substantially less ordered than the corresponding

POPE/POPS (3:1) bilayer. Figure 21a demonstrates that decreasing the order of acyl

chains , without modifying headgroup composition and surface potential
, reduces the

..:"-
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basal activity of reconstituted 
hslo channels. There does not appear to be a direct

correlation between bilayer order and 
hslo open probabilty, since lipid substitutions

expected to increase (23 mol% CHS) (Figure 13) or decrease (DOPEIDOPS 3:1) 
(Figue

21a) acyl chain order both result in a decrease of basal 
hslo function.

EtOH is known to disorder acyl chains , though the functional significance of this

effect is unclear in regard to modulation of ion channel activity (Chin and Goldstein

1981). If decreases in the acyl chain order of POPEIPOPS (3: 1) bilayers underlie the

activation ofBKca channels by EtOH, reconstitution of the channels in a less ordered

bilayer, like DOPE/DOPS (3:1), would be expected to increase channel activity and

enhance the actions of EtOH on channel activity. The data obtained in DOPEIDOPS

(3: 1) mixtures shown here indicates that neither prediction is borne out experimentally.

In the DOPE/DOPS (3: 1) background only 40% of the reconstituted hslo channels are

potentiated by EtOH, compared to 80% in the POPEIPOPS (3: 1), and the average

potentiation ofBKca activity elicited by EtOH in these bilayer tyes are not statistically

different. As in the modulation of basal Po, these results do not indicate a direct

correlation between acyl chain order and BKca EtOH sensitivity. Therefore , while CHS

can antagonize EtOH disordering of phospholipid acyl chains (Chin and Goldstein
, 1981)

it is unlikely to explain sterol antagonism ofBKca potentiation by EtOH (Figure 12).

This view is strengthened by the observation that pure POPE membranes also antagonize

EtOH activation of the reconstituted BKca channels, and EtOH disordering of PE bilayers

has been previously demonstrated (Barr and Gawrsch, 1994).

.:-
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Ethanol partitioning and acyl chain unsaturation.

It has been demonstrated previously that EtOH partitioning into membranes is

maximal at temperatures near the main phase of the bilayer
, where there is a dynamic

coexistence of both gel and liquid crystalline phases (Jorgensen 

et al. 1993; Trandum 

al. 1999). The transition temperature of the DOPEIDOPS (3: 
1) mixture is well below

room temperature at which these experiments were conducted. Therefore
, the membrane

wil not exhibit the coexistence of gel and liquid crystallne phases theorized to promote

EtOH partitioning (Jorgensen 
et al. 1993). While a smaller percentage of 

hslo channels

were activated by 50 mM EtOH in this background
, robust potentiation was elicited in

several cases and the overall response was not statistically different from POPEIPOPS

(3: 1). This suggests that even if parti tioning is decreased, the impact upon channel

sensitivity was not apparent.

Summary

POPEIPOPS (3:1) bilayers support BKca channel modulation by EtOH (Figure 9

Figure 11) and CHS (Figure 13), while in POPE membranes the 
effcacy of both is

drastically reduced (Figure 15). The effcacy ofEtOH and CHS restored in the neutral

POPEIPOPC (3:1) background (Figue 18 , Figue 19), suggesting that a negative

membrane surface potential or PS headgroup strcture itself are not required for BKca

channel modulation by EtOH and CHS. It is , therefore , an intrinsic propert of the pure

POPE that masks the action of these agents.

The "cone" molecular shape of lipids like POPE and CHS can increase the

curvatue stress in the bilayer. Both POPE and CHS-containing membranes support low
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basal BKca channel activity and both antagonize the actions of EtOH on BKca channels.

Furthermore , CHS inhibition of basal BKca activity is reduced in the POPE background

suggestive that, since their effects are not additive , POPE and CHS modulate a common

bilayer property (curvature stress) important for the basal function and EtOH sensitivity

ofBKca channels. Figure 23 provides a model to summarize these concepts.

..;.
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Monolayer curvature is dependent on the shape ("
cone" vs.

cylinder ) of the lipids in the mixture. "Cone" shaped lipids, with no

extrinsic constraints, wil exhibit concave monolayer curvatures to
minimize packing energies. This tendency is antagonized by the
addition of "cvlindrical" lipids in the mixture.

6 =PE,
CHS

o =ps
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Greater stored energy (dark gray) in bilayers containing "
cone

shaped lipids, as a result of forcing them into a flat lamellar
structure. This stored energy, or curvature stress, 

is reduced with

increasing proportions of "cylindrical" lipid.

POPE/POPS (3:1) + 
23 mol% CHS

POPE

POPE/POPS (3:1)
POPE/POPC (3:1)

EtOH Sensitivity:

Figure 23. Model. "Cone" -shaped lipids promote curvature stress , and also antagonize

EtOH actions on reconstituted BKca channels.
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DISCUSSION

The influence of lipid environment on the basal function and ethanol (EtOH)

sensitivity of ion channels is not easily approached in complex natural membranes
, but

can be assessed in minimal preparations such as the planar lipid bilayer. This 
system

allows experimental control over both the protein and lipid components in the study of

channel physiology. This technique was employed to systematically address the

influence of membrane lipid composition on both the basal activity and ethanol (EtOH)

sensitivity of cloned human 
(hslo) large conductance Ca 

++ 

-activated K+ (BKca) channels.

A complex array of lipid species compose the plasma membrane
, which distrbute

non-randomly into domains within and across bilayer leaflets (Devaux and Zachowski

1994; London, 2002; Welti and Glaser, 1994). For instance , cholesterol (CHS) and

sphingomyelin form lipid raft strctures , that can be isolated from natural membranes by

virte of their physical properties (Figure 2; London, 2002). These domains are enrched

in signaling molecules and channel proteins (Tsui-
Pierchala et al. 2002), including BKca

(Bravo-Zehnd et aI, 2000). Membrane properties such as CHS content, headgroup

composition, and lipid surface potential can influence BKca channel function (Chang 

al. 1995b; Chang et al. 1995a; Moczydlowski 
et al. 1985; Park et al. 2003; Chapter II

and III), indicating that lipid domain partitioning could regulate channel activity.

Moreover, the lipid composition of the membrane is tightly regulated (Brown and

Goldstein, 1999; Thewke et al. 2000), and it adapts in response to chronic EtOH

exposure (Swann, 1987; Taraschi et al. 1991; Wood et al. 1990b). EtOH acutely

potentiates BKca channels in rat neurohypophysial nerve terminals (Dopico 

et al. , 1996;
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Dopico et al. 1999), but this sensitivity is diminished following chronic exposure to the

drg (Knott et al. 2002). In addition, BKca channels from the soma of the same neurons

are insensitive, even acutely, to EtOH. The mechanistic basis for these observations is

unkown, but we determine here the potential contribution of changes in the membrane

lipid environment. CHS is a particularly enticing candidate since this sterol is

instrmental in regulating membrane properties (London, 2002; Ohvo-Rekila et al.

2002), and both increases in membrane CHS concentration and alterations in the leaflet

distrbution (Chin et al. 1978; Omodeo- Sale et al. 1995; Wood et al. 1990b) ofCHS

occur in response to chronic EtOH exposure. Here, we begin to link chronic EtOH-

induced alterations in membrane composition, such as increases in CHS , with the loss of

BKca channel sensitivity to EtOH that also occurs following chronic exposure to the

drg. The control of the lipid bilayer composition, and resulting physical properties

afforded by the planar bilayer technique allows inquiry into the manner by which lipid

composition influences BKca channel function.

The major findings of this thesis are: 1) CHS antagonizes the basal activity and

EtOH sensitivity of reconstituted BKca channels in POPE/POPS (3: 1) bilayers , 2) The

influence on channel fuction of both EtOH and CHS are drastically reduced upon

removal of POPS from the lipid bilayer, 3) This impairment in the pure POPE

background is not attbuted to the loss of membrane surface potential , 4) The loss of

EtOH action on reconstituted hslo channels correlates with the nonlamellar nature ofthe

bilayer, and 5) (Appendix I) Ca pre-exposure ofthe bilayer or the protein may regulate

the EtOH sensitivity of hslo channels.
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A more detailed mechanistic interpretatio
of these observations is found

separately within the Discussion sections of Chapters II and III of the thesis. Figure 22

and the model shown in Figure 23 of Chapter III summarize the lipid physical properties

that correlate with a reduction in the BKca channel EtOH response. Here
, we discuss

some more general implications of the work. First
, and most obvious , the lipid

composition of the membrane can influence BKca channel function. 
The basal activity of

the channel is inhibited, for instance, by increases in CHS and decreases in negatively

charged POPS. Moreover, alterations in lipid physical properties such as acyl chain

unsaturation, without changing the headgroup compositio
of the membrane , influence

basal Po. This is evidenced by differences in basal activity between POPE/POPS (3: 

and DOPEIDOPS (3: 1) bilayers (Figure 21). 
This suggests that the physical properti

imparted on the bilayer by a particular lipid species can influence the function of

transmembrane ion channels. However
, since lipids are not modular in structure

, the

isolation of a single lipid physical 
propert is difficult even in a reductionist planar

bilayer system. Regardless , general conclusions can be drawn. Relative to POPE/POPS

(3: 1) bilayers , the EtOH sensitivity of reconstituted 

hslo channels is significantly reduced

in both pure POPE and POPEIPOPS bilayers containing large amounts of CHS (::23

mol%). Both POPE and CHS have a 
molecular shape conducive, energetically, to the

transition from bilayer to nonlamellar inverted phases. Below the temperature for this

transition, however, these nonlamellar lipids impart a curvature stress within the bilayer

that modulates protein function. This interpretatio
is most compelling, since differences
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in surface charge cannot explain this phenomenon
, and the loss ofEtOH sensitivity does

not correlate linearly with bilayer order (see Chapter III).

Applying these general observations back to the native membrane
, we might

predict that BKca channels partitioned into CHS-rich domains would differ in basal

activity and EtOH sensitivity from those in the bulk lipid. 
Such domains seem to exist in

natural membranes , and are referred to as lipid rafts (Brown and London
, 1998; London

2002). Moreover hslo channels transfected into Madin-Darby canine kidney (MDCK)

cells can partition into lipid rafts, and this partitioning appears to regulate their sorting to

the apical membrane of these polarized cells (Bravo-
Zehnd et al. 2000). Raft domains

are also emerging as a mechanism to organize and regulate important signaling molecules

(Tsui-Pierchal et al. 2002). The experiments described here suggest, in addition, that

the physical properties of these CHS-
rich domains could regulate the basal activity and

EtOH sensitivity ofBKca channels. It should be noted that most 
data concerning the

nature of rafts stems from their biochemical isolation
, and relatively little is known

regarding their formation, lifetime, and regulation in living cells. The potential for

controllng traffcking, organization
, and modulation of ion channels and downstream

signaling molecules by virte of CHS-rich membrane domains , however, is tremendous.

This becomes doubly interesting when considered in the context of membrane adaptation.

The modulation of membrane lipid composition may reflect a means to maintain

homeostatic membrane properties. This phenomenon is widely seen in the adaptation of

bacteria to differing environmental conditions (Cronan
, Jr. , 2002; Hazel and Wiliams

1990), perhaps as a means to maintain constant a physical 
propert such as curvature
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stress (Osterberg et al. 1995). In mammals , processes such as aging and chronic EtOH

exposure can precipitate changes in membrane lipid composition
, including alterations in

CHS (Giusto et al. 2002; Schroeder et al. 1996). The vast body of data examining

:J:

changes in lipid composition following chronic EtOH exposure has largely been

interpreted in the context of compensatory adaptations to the acute actions ofEtOH on

membrane lipids. Interpretation in this way is unsatisfactory, 
since it is increasingly clear

that these acute actions of the drug do not provide a mechanistic explanation for its

actions on the nervous system (see Introduction). It may, perhaps
, be fritful to consider

the changes in lipid composition as adaptation to the acute actions of EtOH on membrane

function as a whole. This would include not just the maintenance of lipid physical

properties , but monitoring and adapting to the readout of membrane function as the drug

interacts with relevant targets such as ion channels. Plasticity 
of this nature is a

functional hallmark of a neuron. This view serves to reconcile the lack of a unifying

theme in the array oflipid changes described (Gustavsson
, 1990; Swann, 1987; Taraschi

et al. 1991) since neurons , based on their physiological roles, wil undoubtedly differ in

basal membrane function and properties , as well as their homeostatic set points. 

causative link between tolerance to EtOH action on neurons and changes in their lipid

composition wil require extensive future work. It is an enticing prospect 
since it is

increasingly clear that the cell uses lipids not simply to create a barrier
, but to organize

and regulate the proteins vital for its function. We begin here with the demonstration

that, at least in a simple bilayer system, the lipid environment of an ion channel regulates

both its basal function and response to EtOH.
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APPENDIX A

PRE-EXPOSUR TO HIGH CONCETRATIONS ENHANCES THE ETHANOL

SENSITIVITY OF RECONSTITUTED HSLO CHANNELS

Introduction

The large conductance Ca H -activated K+ (BKca) channel is a target of both acute

and chronic ethanol (EtOH) exposure. EtOH potentiates BKca channels in native

membranes (Dopico et al. 1996; Knott et al. 2002), ripped-off patches (Dopico et al.

1996; Dopico et al. 1998; Dopico et al. 1999) and planar lipid bilayers (Chu et al. , 1998;

Figure 7 , Figure 8). The persistence of EtOH modulation through the decreasing

complexity of these preparations suggests that the drg does not require diffusible second

messengers or a complex lipid environment to activate BKca channels. It is more likely

that EtOH interacts with the channel protein itself, or at the lipid/protein interface. BKca

channels are gated by membrane voltage and increases in the intracellular free Ca 

concentration ((Ca H)Free). Increases in (Ca H)Free cause a shift in the half-activation

voltage (V 112) for the channel toward more hyperpolarized values. As a result, these

channels may playa vital role in cellular excitability and Ca 
H -

dependent processes such

as vesicle release. Indeed, EtOH potentiation ofBKca channels in rat neurohypophysial

nerve terminals occurs coincidentally with drug inhibition of peptide hormone release by

these terminals. The enhancement ofBKca current by EtOH would repolarize the cell

thereby reducing Ca influx and, consequently, vesicle release. The effcacy of EtOH in

modulating both channel function and peptide release drops sharply in terminals isolated

from rats chronically exposed to the drug, suggesting a form of tolerance occurs (Knott 

.;-
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al. 2000; Knott et al. 2002). The seemingly direct nature of the interaction between

EtOH and BKca channels, in combination with its physiological significance, warrants

further study into the mechanism of drug action on the channel.

EtOH is a functional partial agonist of the BKca channel , with Ca H as the full

agonist (Dopico et al. 1998). EtOH potentiates channel activity (agonism), but also

antagonizes the ability of Ca 
H to do so. The BKca channel response to EtOH has not

been tested under zero Ca conditions No such interaction with membrane voltage was

discemable (Dopico et al. 1998). . The mechanistic basis for this observation is unclear.

Regardless , it suggests that the (Ca )Free levels at the intracellular face of the channel

during the application ofEtOH wil influence the degree to which the channel responds to

the drg.

Here, we address a different aspect of the interplay between Ca H and EtOH, the

Ca H "history" prior to EtOH application. In planar lipid bilayer reconstitution

experiments , cloned human BKca (hslo) channels respond robustly to EtOH if

incorporated into the bilayer in the presence of 
50 ~M (Ca )Free. Following channel

insertion the (Ca )Free is reduced to 10 ~M with a chelator, to generate a basal activity

from which potentiation by 50 mM EtOH is assessed. Under these conditions the

channel activity is routinely increased on the order of five-fold, as shown in Chapter II

(Figure 11). Initial experiments demonstrate , in contrast, that hslo channels incorporated

into the bilayer and tested directly at 1 0 ~M (Ca H)Free, without prior exposure to 50 ~M

(Ca )Free, are not as responsive to EtOH application. Essentially, hslo channels in both

experiments are tested for EtOH sensitivity with the same level ofCa in the bath (10
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~M (Ca )Free) but only channels pre-exposed to 50 ~M(Ca
)Free respond significantly to

the drg. This suggests prior exposure to higher (Ca
)Free may prime or enhance the

response of hslo channels to EtOH. We set out to quantify differences in the EtOH

response as a function of pre-exposure to high (Ca
)Free levels.

Materials and Methods

HEK 293 membrane preparatio HEK-293 membrane fragments were isolated using a

protocol for COS cells (Sun 
et al. 1994), modified slightly. Briefly, HEK 293 cells

stably transfected with 
hslo cDNA (a gift from Dr. P. Ahing, NeuroSearch AlS

Denmark) were grown to confluence
, pelleted, and resuspended on ice in 10 mlofbuffer

(mM): 30 KCl , 2 MgCh, 10 N- hydroxyethy1piperazine- 2-ethanesulfonic acid

(HEPES), 5 ethylene glycol-bis(~-aminoethyl ether)- N' , N' - tetraacetic acid (EGTA);

pH 7.2. The cell suspension was forced through a 27-gauge needle 4 times, and sonicated

at 30% maximum power for 30 sec
, twice. The suspension was layered on a 20-

38%

sucrose density gradient (in 20 mM MOPS, pH 7.1) and centrifuged at 25,
000 rpm for 60

min at 4 C. The band at the 20%-38% interface was collected with a syringe
, diluted

with bidistiled H , and centrfuged in a 50.2 Ti rotor at 45
000 rpm for 60 min at 4

The resulting pellet was resuspended in 200 ~l of buffer (mM): 250 sucrose
, 10 HEPES;

pH 7.3. Aliquots were stored at -

Electrophysiology. 
Channels were incorporated by dropping 0.

5 ~1 ofthe membrane

preparati onto preformed bilayers cast from mixtures of POPE and POPS (3:1 w/w).

Lipids were dried under N2 gas , and resuspended in decane, for a final lipid concentration

of 25 mg/ml. Bilayers were formed by painting the lipid mixture across a 100 
IlM hole
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formed in a plastic coverslip (Wonderlin 
et al. 1990). Capacitance was monitored by the

capacitive current generated with a trangle pulse (20 mV/25 ms). 
Vesicle fusion was

promoted by an osmotic gradient, with the cis chamber (to which the vesicles were

added) hyperosmotic to the 
trans. Only channels with their Ca 

H -sensor facing the cis

chamber were studied. Solutions consisted of (mM): 
cis, 300 KCl , 10 HEPES , 1.

CaCh, and either 1.45 N-(2-hydroxyethyl) ethylene-diaminetraceti acid (HEDTA)

((Ca H) free 15 ~M), 1.25 HEDT A ((Ca H) free 25 ~M), or 1. 10 HEDT A ((Ca H)free 50

~M), pH 7. , and trans, 30 KCl , 10 HEPES , 0. 1 HEDTA, pH 7.2. EtOH sensitivity was

tested at 1 0 ~M, 15 ~M , and 25 ~M (Ca H)free. EtOH modification of slo activity is

independent of voltage within the range studied here (Dopico 
et aI. 1996). (Ca )free in

the cis chamber was adjusted using aliquots from either a 300 mM stock solution of

CaCh, or from a 1M stock ofHEDTA. (Ca )free values given are nominal , calculated

using the Max Chelator Sliders program (c. Patton, Stanford University).

Experiments were performed at room temperature. Single channel events were

recorded at a bandwidth of 10kHz using a patch clamp amplifier (model 8900
, Dagan

Corp. , Minneapolis, MN), and stored on videotape using Pulse Code Modulation (model

DMP- 100 , Nakamichi , Tokyo , Japan). Data were low-pass fitered at either 3 (for dwell

time analysis) or 1 kHz (for display and NP determination) using an eight-pole Bessel

fiter (model 902 , Frequency Devices , Haverhil , MA), and digitized at 10 kHz.

Data Analysis. Data were acquired and analyzed using pClamp 6.0.2 (Axon Instr. , Union

City, CA). As an index of steady-state channel activity we used the product ofthe

number of channels in the bilayer during recording (N) and the open channel probability

"-"
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(Po). N was monitored pre- and post-EtOH by stepping to positive potentials to

maximize Po. Experiments showing an increase in N after EtOH addition were discarded.

NP 0 was determined from periods of at least 20 sec of continuous recording. Data are

shown as mean:tS. M. The significance of the difference between means was

determined by Student' tests.

Chemicals. All solutions were prepared with Mili-Q water, and ultrapure grade salts.

Ethanol (100%, anhydrous) was purchased from American Bioanalytical (Natick
, MA),

decane (::99% pure, anhydrous) from Sigma-Aldrich (Milwaukee, WI), and POPE and

POPS from Avanti Polar Lipids (Alabaster, AL).

Results

Hslo channels incorporated into 1-palmitoyl-2-oleoyl-phosphatidylethanolamine

(POPE)/ 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) (3: 1) bilayers respond robustly

to 50 mM EtOH when incorporated into the bilayer in the presence of 
50 ~M (Ca H)Free.

In these experiments the (Ca )Free in the bath is then reduced, using N-(2-hydroxyethyl)

ethylene-diaminetriacetic acid (HEDTA), to 
10 ~M before assessing EtOH sensitivity.

This protocol yields , on average , a 5.04 :t 1.35 fold potentiation of channel activity by 50

mM EtOH (Figue 9 , Figure 11). Figure 24 demonstrates , however, that hslo channels

incorporated and tested directly at lower (10 - 15 ~M) Ca levels , without prior

exposure to 50 ~M (Ca H)Free, are not responsive when exposed acutely to 50 mM EtOH.

The ratio of NP 0 in EtOH to control NP 0 values (N 0 EtOH/ 0 Control) under these

conditions is 0.92:t 0.09. Incorporation in higher (Ca )Free, therefore, may promote the

sensitivity of hslo channels to acute EtOH exposure. The control NP 0 values obtained at
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Control

50 mM EtOH

2000 mSJ
5 pA

Figure 24. Hslo channels incorporated in low (10 - 15 ~M) (Ca )Free conditions are less

responsive to 50 mM EtOH. Representative traces of a single 
hslo channel in a

POPE/POPS (3: 1) bilayer, recorded before and after the addition of 50 mM EtOH.
Records were obtained at 0 m V , the channel was incorporated, and tested for EtOH

sensitivity, with 15 ~M (Ca )Free on the intracellular side ofthe bilayer. Data was low-

pass fitered at 1 kHz, and sampled at 10kHz. Arows denote the closed state.
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10- 15 ~M (Ca H)Free are similar whether the channels were exposed to 50 ~M (Ca H)Free

in the bath during incorporation, or incorporated directly in lower (Ca H) Free (50 ~M

chelated to 10 ~M (Ca )Free : control NP values = 0.003- 041

, -

10 - +50 mY; direct

incorporation into 10-15 ~M (Ca )Free; control NP values = 0.014- 043 0 mY). This

suggests no obvious differences in steady state open probability occur as a result of pre-

exposure to high (Ca H)Free, though a more detailed look at kinetic characteristics is

warranted.

We next tested whether channels reconstituted and tested for EtOH sensitivity at

an intermediate (Ca H) Free value, 25 ~M , respond to 50 mM EtOH. This experiment

provides two important pieces of information. It allows a rough determination of the

range of (Ca H)Free pre-exposure that promotes EtOH sensitivity, and it rules out the

necessity of the Ca H chelation process itself in promoting 
hslo channel sensitivity to the

drug. When incorporated and directly tested for EtOH sensitivity in the presence of 25

~M (Ca )Free (Figure 25a) channels in 9/14 bilayers are potentiated by 50 mM EtOH

yielding an average of 1.74:t 0.45 fold of control NP values. Exposure to 25 ~M

(Ca H) Free is , therefore , suffcient to prime hslo EtOH potentiation. Furthermore, EtOH

potentiation is inhibited by increases in bilayer cholesterol (CHS) (Figure 25b),

suggesting the mechanism of EtOH action on 
hslo channels reconstituted and tested in

this fashion is fundamentally similar to channels that are incorporated at higher (Ca )Free

concentrations (Figure 11).

..",;;"
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A. POPE/POPS

Control

2000 m
5 pA

+ 50 mM EtOH

2000 m""
5 pA

B. +23 mol% CHS

Control

+ 50 mM EtOH

2000 m
5 pA

74(0.45) 53(0. 12)

POPE/POPS POPE/POPS
23 101% CHS

2000 m-;
5 pA

Figure 25. Hslo channels reconstituted into POPEIPOPS (3: 1) bilayers and tested for

EtOH sensitivity at 25 ~M (Ca )Free exhibit a response to 50 mM EtOH, and this

response is sensitive to membrane CHS levels. Representative traces of 

hslo channel

activity in a POPEIPOPS (3:1) bilayer (A) and a POPEIPOPS (3:1) bilayer containing 23
mol% CHS (B), before and after addition of 50 mM EtOH. 

Data were obtained at 0 m V

(A) and +20 mV (B), with 25 ~M (Ca )Free in the bath. Data was low-pass fitered at 

kHz, and sampled at 10kHz. Arows denote the closed state. C) Scatter plot

sumarizing data from (A) and (B). Each point represents an experiment from a
different bilayer, the Mean(S.E.M.) is indicated above each column.
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15 J.M Ca

50 J.M Ca

. .

15 J.M Ca

+ 50 mM EtOH

2000 ms!
5 pA

Figure 26. Brief exposure to 50 ~M (Ca )Free following incorporation in 15 ~M

(Ca )Free can restore EtOH sensitivity of reconstituted 
hslo channels. Traces show the

same single hslo channel in a POPEIPOPS (3:1) bilayer following incorporation at 15 ~M

(Ca )Free, during and after exposure to 50 ~M (Ca )Free, and during exposure to 50 mM

EtOH. Records were obtained at 0 mY , at the indicated (Ca )Free levels. Data are low-

pass fitered at 1 kHz, and digitized at 10kHz. Arows denote the closed state.
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The response to EtOH when channels are incorporated and tested at 25 ~M

(Ca H)Free is smaller than that seen when channels are incorporated at 50 ~M (Ca H) Free

and tested at 10 ~M (Ca )Free (1.74:t 0.45 versus 5.04:t 1.35 , respectively). Two factors

may contribute to the smaller NP EtOH/P 0 Control ratio seen at 25 ~M (Ca H ) Free

versus 10 ~M (Ca )Free. The first, and most likely, is the prior observation that the EtOH

response ofBKca channel is diminished as the Ca concentrations in the bath (during

exposure to EtOH) increase (Dopico 
et al. 1998). The second involves the larger control

hslo NP 0 values at 25 ~M (Ca H) Free (N 0 = 0.008 - 0. 314; 25 ~M (Ca H) Free, -20 - 0

mY), relative to those obtained at 10 ~M (see above). These higher control values could

bias the NP EtOH/ Control ratio toward lower values. This is less likely, since the

degree of EtOH potentiation is unaffected by the increases in control NP 0 values caused

by membrane voltage (Dopico et al. , 1998).

We have shown that incorporation of channels must occur with at least 25 ~M

(Ca H)Free in the bath in order for EtOH to significantly activate reconstituted 
hslo

channels. We next determine if hslo channels reconstituted in 15 ~M (Ca )Free can 

primed with CaClz to respond to 50 mM EtOH. To do so , channels are incorporated

given a brief pulse ofCaClz (to achieve 50 ~M (Ca )Free final), and rinsed back to 15

~M (Ca H)Free prior to the addition of EtOH. Figure 26 demonstrates that this treatment is

suffcient to restore the hslo channel response to EtOH. This indicates that pre-exposure

to high Ca H does not need to occur during channel incorporation, but only at some point

before EtOH exposure.
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Discussion

Here, we demonstrate that prior exposure to at least 25 ~M (Ca )Free is necessary

for hslo channels reconstituted into POPEIPOPS (3:1) bilayers to respond significantly to

50 mM EtOH. EtOH is known to serve as a functional partial agonist, and Ca a full

agonist, ofBKca channels. Increases in (Ca )Free in the bath solution reduce the

potentiation of hslo channels by EtOH (Dopico et al. 1998). However, this is the first

demonstration that Ca H history can influence EtOH sensitivity at a given (Ca H) Free level.

Future experiments must determine if the depolarization of membrane voltage can

substitute for a pulse of high Ca H, since it is unclear whether a high channel Po or Ca H

itself primes the EtOH response. It is also currently unclear whether the target of the

high Ca H pre-exposure is the channel itself or the lipid bilayer. In addition to increasing

channel activity and binding the C-terminal tail of the BKca channel (Bian et aI. , 2001),

interacts with negatively charged phosphatidylserine (PS) headgroups in the bilayer.

Ca H can adsorb to PS-containing membranes (McLaughlin 
et al. 1981) and causes phase

separation when present in milimolar concentrations (Papahadjopoulos and Poste , 1975;

Ti1cock et al. 1988). Therefore , it is important to determine whether this general

phenomenon occurs in uncharged POPE/1-palmitoyl-2-oleoyl-phosphatidylcholi

(POP C) (3:1) bilayers that are not influenced by Ca in this manner.
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