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ABSTRACT 

 

The function of transforming growth factor β (TGF-β) in cancer is notoriously complex.  

Initially TGF-β limits tumorigenesis, but at later stages in tumor progression TGF-β 

promotes the malignant spread of tumor cells.  Past studies to understand the pro-

metastasis utility of TGF-β centered upon its ability to regulate protein-coding genes.  

Recently, a small class of non-coding RNAs known as microRNAs (miRNAs) emerged 

as novel posttranscriptional regulators of gene expression.  The significance of miRNA 

function in cellular processes from embryonic development to the maintenance of 

homeostasis in adult tissues is becoming increasingly clear.  Also apparent is the strong 

association between aberrant miRNA expression and human diseases, such as cancer.  

The contribution of miRNAs to TGF-β-mediated cellular responses remains an open 

question.  Thus, I became interested if miRNAs offered an additional layer of regulation 

in TGF-β signaling through which this cytokine exerts its pro-metastasis function.   

 

To address this inquiry, in the first part of this dissertation I investigated whether 

miRNAs influenced the ability of TGF-β to induce cellular responses directly involved 

with carcinoma metastasis, such as epithelial-mesenchymal transition (EMT).  Here, I 

identified two miRNAs, miR-21 and miR-31, that are upregulated during EMT in LIM 

1863 organoids, a colon carcinoma model of EMT driven by TGF-β.   We performed in 
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vitro studies to characterize the function of miR-21 and miR-31 and found that these two 

miRNAs positively impact the induction of EMT, migration and invasion by TGF-β.  

Furthermore, we uncovered TIAM1 (T lymphoma and metastasis gene 1) as a novel 

target of both miR-21 and miR-31 and show that downregulation of TIAM1 is critical for 

the pro-migration and pro-invasion activities of miR-21 and miR-31.  Together these 

findings reveal miR-21 and miR-31 as downstream effectors of TGF-β signaling by 

facilitating EMT, migration and invasion of colon carcinoma cells.   

 

How TGF-β regulates miR-21 and miR-31 became important questions and thus the 

focus of the second part of this thesis.  Interestingly, I found that TGF-β and TNF-α 

synergize to increase miR-21 and miR-31 levels in LIM 1863 organoids and that the 

synthesis of new factors induced by TGF-β/TNF-α are required for this upregulation.  

Moreover, I report that regulation of miR-21 by TGF-β/TNF-α occurs at multiple levels 

of biogenesis.  More specifically data provided here show that Smad4 binds to the 

promoter of miR-21 to upregulate its expression thereby specifying miR-21 as a typical 

TGF-β target gene.  This mechanism is different from one recently observed in smooth 

muscle cells in which TGF-β did not stimulate miR-21 transcription, but interestingly, 

Smad4 enhanced the Drosha-mediated processing of the miR-21 precursor.  These two 

mechanisms suggest that TGF-β regulation of miR-21 is contextual and highlight the 

complexity of TGF-β signaling.  
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As a whole, my findings establish important roles for miR-21 and miR-31 in TGF-β-

mediated cellular responses that facilitate the pro-metastasis utility of TGF-

β in colon cancer.  Also, I describe a novel mechanism by which TGF-β/TNF-α signaling 

elevates the level of miR-21 and miR-31.  Future studies that identify additional targets 

of miR-21 and miR-31 may offer further insight into the molecular mechanisms 

underlying cellular regulation by TGF-β.  This information will be vital for the design of 

therapeutic interventions for colon cancer patients. 
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The Complexity of TGF-β  in Cancer 

Cancer is a devastating disease in which transforming growth factor β (TGF-β) plays 

important, yet complex roles (Massague, 2008).  On the one hand TGF-β is recognized as 

a tumor suppressor in that genetic lesions affecting TGF-β pathway components are 

found with high incidence, particularly in pancreatic and colon cancers (Markowitz and 

Roberts, 1996; Wood et al., 2007; Jones et al., 2008).  On the other hand, many clinical 

and basic studies point to elevated TGF-β signaling in late stage cancer, and suggest a 

pro-invasion/pro-metastasis role for TGF-β (Bierie and Moses, 2006a; Padua and 

Massagué, 2009).  The dichotomous nature of TGF-β in cancer stems from its ability to 

elicit diverse cellular responses.  For example, the ability of TGF-β to potently stimulate 

growth arrest and apoptosis in multiple cell types, especially epithelial cells, ascribes an 

anti-tumorigenesis function to this cytokine (Moses et al., 1990; Tang et al., 1998).  Later 

in neoplastic progression, TGF-β alters cell biology such that sessile tumor cells gain the 

ability to disseminate to secondary sites within the body (Derynck et al., 2001; Padua and 

Massagué, 2009).  The pro-metastasis function of TGF-β is attributed to its modulating 

actions on the plasticity and microenvironment of tumor cells (Derynck et al., 2001; 

Padua and Massagué, 2009).  

 

Studies in a mouse model of skin carcinogenesis first demonstrated the contrasting 

activities of TGF-β in cancer.  In this mouse model, long-term exposure (~15 weeks) of 

the skin to chemical carcinogens induces the formation of benign papillomas, of which 

some progress to malignant squamous carcinoma (Cui et al., 1996).  An even smaller 
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percentage of these tumors progress to a very aggressive spindle cell carcinoma (Cui et 

al., 1996).  Interestingly, targeted expression of the TGF-β1 gene in keratinocytes 

reduced the overall formation of these chemically-induced skin papillomas (Cui et al., 

1996).  However, in the tumors that form, heightened TGF-β expression increased the 

rate of malignant conversion (Cui et al., 1996).  These findings indicated that TGF-β 

possesses drastically different roles in cancer, acting as both a tumor suppressor and a 

pro-invasion/metastasis factor.  Furthermore, the duality of TGF-β function during tumor 

development and progression is also observed in a number of other cancers, including 

those arising from the breast and colon (Oft et al., 1998; Tang et al., 2003; Elliott and 

Blobe, 2005).  This suggests that the complex role of TGF-β function in cancer is broad 

acting.  Therefore, it is important to delineate the downstream effectors mediating 

different TGF-β responses at early versus late stages of cancer progression.  Such 

information will be critical for designing strategies targeting specific aspects of TGF-β 

responses to combat cancer. 

 

 

TGF-β  Signaling from Membrane to Nucleus 

To gain an understanding of how TGF-β can both suppress tumorigenesis and facilitate 

cancer progression, it must first be understood how cells recognize, interpret and 

ultimately convert the TGF-β signal into cellular responses.  Biologically active TGF-β 

resides outside of the cell and, as a consequence, the TGF-β signal is relayed into and 

throughout the cell by intracellular effectors. Smad proteins are recognized as the primary 
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effectors of TGF-β signaling, although non-Smad factors (i.e., MAP kinase, Rho, and PI-

3 kinase/AKT) have been demonstrated to mediate the TGF-β stimulus, (Derynck and 

Zhang, 2003; Feng and Derynck, 2005; Moustakas and Heldin, 2005).   

 

In the Smad-mediated TGF-β signal pathway, signaling initiates at the cell surface when 

TGF-β binds to its transmembrane receptor complex comprised of the type I (TβRI) and 

type II (TβRII) serine/threonine receptor kinases (Shi and Massagué, 2003) (Fig. 1.1.).  

TGF-β initially binds to TβRII, which then recruits TβRI, thereby forming a ligand-

induced receptor complex (Shi and Massagué, 2003).  In this complex, TβRII rapidly 

phosphorylates TβRI, generating the active receptor-signaling complex (Shi and 

Massagué, 2003).  To propagate the signal, TβRI phosphorylates the C-terminus of 

receptor Smads (R-Smads), i.e., Smad2 and Smad3 (Shi and Massagué, 2003).  This 

Smad activation step is regulated by various mechanisms, including the activities of the 

inhibitory Smad, Smad7 (Massagué et al., 2005).  Smad7 competitively interferes with 

the binding of Smad2/3 to TβRI, preventing the subsequent phosphorylation of these 

receptor Smads by TβRI (Massagué et al., 2005).  In the absence of Smad7, 

phosphorylated R-Smads partner with Smad4, forming the activated Smad complex 

(Lagna et al., 1996; Zhang et al., 1996; Hata et al., 1997).  Activated Smads translocate 

into the nucleus by interacting with nuclear import factors Imp7/8 and nucleoporins 

located in the nuclear pore complex (Xu et al., 2002; Xu et al., 2007; Yao et al., 2008; 

Chen and Xu, 2010).  
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Figure 1.1 

 

 
Figure 1.1 ❘  The canonical TGF-β  signaling pathway.  TGF-β stimulates a cascade of 

events that lead to the translocation of Smad proteins into the nucleus to regulate target 

gene expression.  See text for details. 
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In the nucleus, Smads act as transcription factors to mediate TGF-β-induced changes in a 

multitude of target genes (Kang et al., 2003).  Smad3 and Smad4 are recruited to and 

directly bind DNA sequences within TGF-β target genes; Smad2 does not possess DNA-

binding capability (Massagué et al., 2005).  Sequences containing 5’-CAGAC-3’ and 5’-

AGAC-3’ are optimal for Smad binding (Massagué et al., 2005).  These DNA sequences 

are known as Smad-binding elements (SBEs) and are found in many genes that are 

transcriptionally regulated by TGF-β (Massagué et al., 2005).  In addition to SBEs, 

Smads recognize and bind to GC-rich sequences (Massagué et al., 2005).  Furthermore, 

Smads physically interact with different DNA-binding cofactors (i.e. AP-1, ATF3, 

STATs, and others) within the transcriptional complex (Feng and Derynck, 2005).  In 

mammalians there are over 30 well-characterized DNA-binding cofactors that cooperate 

with Smad proteins to increase the diversity and complexity of gene responses that TGF-

β elicits (Feng and Derynck, 2005).  Modification of gene expression by TGF-β leads to 

altered cellular responses, many of which underlie the tumor suppressor function of  

TGF-β.   

 

 

Tumor Suppressor Activities 

Cytostatic Response 

TGF-β induces two classes of Smad-dependent gene responses that effectively limit 

epithelial cell proliferation: transcriptional activation of cyclin-dependent kinase (CDK) 

inhibitors and downregulation of the c-Myc gene.  Cell cycle progression is regulated by 
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CDKs, whose activity is increased by cyclins and decreased by CDK inhibitors (CKIs).  

In epithelial cells TGF-β induces the expression of two genes coding for CKIs, p15INK4b 

and p21CIP1 (Hannon and Beach, 1994; Datto et al., 1995; Reynisdóttir et al., 1995).  

Increases in p15INK4b and p21CIP1 interfere with cyclin-CDK complexes that drive 

progression through the G1 phase of the cell cycle.  Specifically, p15INK4b inhibits 

complexes of cyclin-D/CDK4 and cyclin-D/CDK6, whereas p21CIP1 inhibits these 

complexes in addition to those containing cyclin-E/CDK-2 (Siegel and Massagué, 2003).  

Thus, TGF-β-mediated increases in p15INK4b and p21CIP1 arrest cycling cells at the G1 

restriction point, preventing DNA synthesis and subsequent mitotic division.  

 

In addition to modulating gene expression to inactivate CDKs, TGF-β also downregulates 

genes coding for transcription factors that promote cellular growth and proliferation, such 

as c-Myc and Id proteins. c-Myc drives cell cycle progression by transcriptionally 

upregulating genes, such as cyclin-D and E2F, that are required for entry into the S-phase 

of cell cycle progression, during which DNA is duplicated in preparation of mitosis 

(Siegel and Massagué, 2003).  The level of the proto-oncogene c-Myc is rapidly reduced 

upon stimulation with TGF-β (Alexandrow and Moses, 1995).  Interestingly, c-Myc 

transcriptionally represses CDKN2B and CDKN1A, genes coding for p15INK4b and 

p21CIP1, respectively (Seoane et al., 2002; Seoane et al., 2004).  Thus the rapid TGF-β-

mediated downregulation of c-Myc enables CDKN2B and CDKN1A to be activated by 

TGF-β.  In addition to negatively regulating c-Myc, TGF-β also downregulates Id 

proteins (Id1, Id2 and Id3), which were originally found to negatively regulate 
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differentiation (Norton, 2000) and later observed to promote cell cycle progression (Kang 

et al., 2003).  

 

Induction of Apoptosis 

TGF-β also mediates gene expression to induce apoptosis, a process in which injured or 

abnormal cells undergo programmed cell death.  Numerous studies established the ability 

of TGF-β to activate pro-apoptotic genes to elicit apoptosis.  For example, in a Smad-

dependent manner TGF-β transcriptionally activates TGF-β-inducible early response 

gene (TIEG1), a transcription factor that induces apoptosis in epithelial cells (Tachibana 

et al., 1997).  The death-associated protein kinase (DAPK) was also found to be a direct 

transcriptional target of Smad proteins and to act upstream of mitochondrial-based 

apoptotic events in hepatoma cells (Jang et al., 2002).  Additionally, an investigation 

utilizing hematopoietic cells found that Smads mediate TGF-β-induced apoptosis by 

upregulating Src homology 2 domain-containing inositol-5-phosphatase (SHIP), which 

ultimately inhibits the pro-survival kinase, Akt (Valderrama-Carvajal et al., 2002).  Thus, 

by regulating genes involved with cell cycle progression and cell death signaling, TGF-β 

tightly controls cell growth and proliferation and works to restrict tumor formation.  

 

 

Downfall of a Tumor Suppressor, Rise of an Oncogenic Factor 

Inhibition of the TGF-β cytostatic or apoptosis programs increases the potential for 

unchecked proliferation and survival, which facilitates oncogenesis.  For example, breast 
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carcinoma cells lacking both the p15INK4b and c-Myc responses are refractory to growth 

inhibition by TGF-β (Chen et al., 2001).  By what means do cells become desensitized to 

the potent tumor suppressive effects of TGF-β?  This query is addressed by two 

mechanisms derived from the cumulative findings of several studies.  First, TGF-β 

pathway effectors can become largely inactivated by genetic alterations, i.e. deletions or 

mutations.  Alternatively, the expression of key cofactors that TGF-β pathway effectors 

interact with to mediate the cytostasis response may be perturbed during tumor 

pathogenesis. 

 

Inactivation of Core Signaling Components  

The TGF-β signaling pathway is often disabled by mutations in core signaling 

machinery, including TGF-β receptor kinases and Smad proteins.  Mutations in the type 

II TGF-β receptor (TβRII) are frequently found in colon cancers with microsatellite 

instability, which reduces TβRII expression and abolishes binding of TGF-β to this 

receptor (Markowitz et al., 1995).  The biological consequence of losing TβRII 

expression was evaluated with in vitro and in vivo studies.  Transient expression of TβRII 

in TβRII-deficient colon cancer cell lines restored the negative effects of TGF-β on 

growth, which could be reversed by TGF-β neutralizing antibodies (Wang et al., 1995).  

Furthermore, this study showed that expression of TβRII reduced the growth of TβRII-

null cells.  Although less frequent, inactivating mutations in the type I TGF-β receptor 

(TβRI) are also observed in cancers of the prostate (Kim et al., 1996), pancreas and bile 

duct (Goggins et al., 1998), colon (Pasche et al., 1999) and ovaries (Wang et al., 2000).   
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Insensitivity to TGF-β also arises from the inactivation of Smad proteins.  Somatic 

mutations in Smad4/DPC4 (deleted in pancreatic cancer, locus 4) occurs in 50% of 

pancreatic cancers (Hahn et al., 1996) and approximately 30% of colon cancers (Miyaki 

et al., 1999).  A lower percentage (<10%) of somatic Smad4 mutations are found in 

breast, head, neck, prostate, esophageal, gastric, and ovarian cancers (Schutte et al., 

1996).  Germ line mutations in Smad4 have also been found in familial juvenile 

polyposis, which predisposes to hamartomatous polyps and gastrointestinal cancer (Howe 

et al., 1998).  Furthermore, a functional association of Smad4 loss and tumorigenesis was 

observed when Smad4 heterozygous mutant mice developed gastric polyps that, as the 

mice aged, progressed to more aggressive tumors, ultimately becoming invasive (Xu et 

al., 2000).  

 

Besides Smad4, mutations in receptor Smads (Smad2 and Smad3) are also advantageous 

for tumor development.  Initially known as JV18-1, mutations in Smad2 were found in 

cancers of the colon (Vogelstein et al., 1988) and lung (Uchida et al., 1996).  

Furthermore, in a screen of 66 sporadic colon carcinomas, four types of missense 

mutations were identified in Smad2 that resulted in non-functional protein due to either a 

lack of Smad2 expression or an inability of the mutant protein to be phosphorylated upon 

TGF-β treatment (Eppert et al., 1996).  An indication that Smad3 may be a tumor 

suppressor was offered by the finding that Smad3 expression was low or undetectable in 

gastric tissues that later developed into cancer.  Re-expression of Smad3 restored TGF-β 

responsiveness as indicated by p15INK4b and p21CIP1 gene induction (Han et al., 2003).  
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Similarly, Smad3 protein expression was found reduced or barely detectable in 

adolescents diagnosed with T-cell acute lymphoblastic leukemia (T-ALL), while Smad3 

mRNA expression was readily detectable (Wolfraim et al., 2004).  Unlike Smad2 

(Waldrip et al., 1998) or Smad4 homozygous mutant mice (Sirard et al., 1998), Smad3 

null mice are viable (Zhu et al., 1998).  Moreover, Smad3-/- mice develop sporadic colon 

carcinomas that are hyperproliferative and metastatic (Zhu et al., 1998).   

 

Together, these observations demonstrate that various cancers exhibit diminished 

expression and function in TGF-β receptors and Smad proteins.  Functional studies 

discussed above provide convincing evidence that loss of TGF-β pathway components 

renders cells unresponsive to the anti-proliferative cues elicited by TGF-β.  Uncoupling 

of the TGF-β signal from its ability to induce growth arrest or apoptosis yields a selective 

advantage to developing tumors.  This implicates an important role for the TGF-β 

pathway in maintaining cellular homeostasis to prevent abnormal cell proliferation, and 

in so doing reduces neoplastic risk.  Thus, it appears that inactivation of the TGF-β 

pathway is one of many molecular events that underlies carcinoma development.  

 

 

Retention of Selective Gene and Cellular Responses 

Some tumor cells, such as those found in breast carcinoma and glioblastoma, are able to 

evade the growth inhibitory effects of TGF-β without grossly disrupting the TGF-β 

pathway (Massagué and Gomis, 2006).  In this case, oncogenic factors perturb TGF-β 
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induction of cell cycle arrest while enabling TGF-β to elicit other cellular responses.  For 

example, in non-transformed mammary epithelial cells TGF-β appropriately exerts a 

cytostatic response.  However, transformation of these cells with oncogenes Ha-ras and 

ErbB2 potently inhibits the ability of TGF-β to induce cell cycle arrest (Chen et al., 

2001).  Further inquiry revealed that loss of the anti-proliferative response is due to a 

failure of Smads to transcriptionally repress c-Myc (Chen et al., 2001).  The authors 

postulate that oncogenes such as Ras alter the expression of cofactors that Smads 

normally partner with at the c-Myc promoter to downregulate the expression of this pro-

growth gene (Chen et al., 2001).  Interestingly, TGF-β failed to downregulate c-Myc in 

these transformed mammary cells, yet continued to control the transcription of other 

genes, including those coding for extracellular matrix components, transcription factors, 

cytokines and signal transducers- all of which facilitate tumor development and 

progression (Chen et al., 2001).   

 

Like breast carcinoma cells, glioblastoma cells are insensitive to the TGF-β cytostatic 

response.  Loss the TGF-β growth arrest response in glioblastoma is often due to 

increased expression or activity of the oncogene phosphatidylinositol 3-kinase (PI3K) or 

decreased levels of the tumor suppressor phosphatase and tensin homolog (PTEN), which 

both yield a hyperactive PI3K/Akt pathway (Massagué and Gomis, 2006).  Elevated 

PI3K/Akt activity inhibits FoxO transcription factors from serving as cofactors with 

Smads to mediate TGF-β activation of p21CIP1 and subsequent induction of cell cycle 

arrest (Seoane et al., 2004).  Once the cytostatic gene response is defunct, glioblastoma 
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cells respond to the TGF-β stimulus with increased production of platelet-derived growth 

factor (PDGF), which promotes growth, and thereby tumorigenesis (Seoane et al., 2004; 

Massagué and Gomis, 2006).   

 

These findings, along with those observed in mammary epithelial cells, demonstrate how 

oncogenic factors (i.e. Ras, PI3K, PTEN, etc.) increase the complexity of cellular 

responsiveness to TGF-β.  The presence of such oncogenic factors in developing 

neoplasms lead to the selective inactivation a subset of TGF-β gene responses, despite 

functional TGF-β receptors and Smad proteins.  Particularly disrupted are gene responses 

that impact TGF-β induction of cytostasis, albeit cells remain sensitive to other TGF-β-

stimulated responses.  Carcinoma cells employ mechanisms like these to escape the 

growth inhibitory effects of TGF-β, allowing for other TGF-β-mediated cellular 

responses (i.e., migration and invasion) to be utilized to the benefit of the incipient tumor, 

and as a result, TGF-β becomes a pro-tumor agent.   

 

 

Pro-Metastasis Function 

Tumors that retain selective TGF-β responsiveness possess increased potential to become 

malignant, which suggests that TGF-β acts as a metastasis-promoting agent in cancer 

biology.  Tumors produce excessive amounts of TGF-β (Derynck et al., 1987; Dickson et 

al., 1987; Akhurst et al., 1988).  A high TGF-β signaling activity correlates with higher 

tumor grade and incidence of metastasis, both of which contribute to a poor prognosis for 
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breast and other cancer patients (Dalal et al., 1993; Tsushima et al., 1996; Buck et al., 

2004; Bierie and Moses, 2006b).  Furthermore, gain-of-function studies place emphasis 

on the effect of inordinate levels of TGF-β on tumor progression.  For example, 

overexpression of TGF-β1 in the mammary gland of mice led to increased circulating 

tumor cells and lung metastases (Muraoka et al., 2003).  

 

The importance of TGF-β in metastasis was further solidified by loss-of-function 

experiments.  In a mouse model of melanoma metastasis to the liver, sustained exposure 

of a TβRII antagonist inhibited TGF-β signal transduction and protected mice from liver 

metastases (Yang et al., 2002).  In line with this data, treatment of mice with pan-acting 

anti-TGF-β antibodies suppressed the metastasis of breast cancer cells to the lung 

(Biswas et al., 2007).  Additional studies from Biwas et al. (2007) demonstrated that lung 

metastases from the breast were also decreased in mice expressing a conditional knockout 

of TβRII in their mammary glands.  Furthermore, perturbation of Smads also disrupts the 

influence of TGF-β on tumor malignancy as reduction of Smad4 expression inhibited the 

metastasis of breast carcinoma cells to the bone (Kang et al., 2005) and lungs (Padua et 

al., 2008) of mice.  

 

How does TGF-β mediate carcinoma malignancy?  Although the precise mechanism is 

poorly understood, it is clear that TGF-β acts on tumor cells and their microenvironment 

to facilitate metastasis (Yue and Mulder, 2001; Kang, 2006).  In order to metastasize, 

tumor cells must survive long enough to gain the capability to invade adjacent tissues and 
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disseminate to other locations within the body (Hanahan and Weinberg, 2000).  TGF-β 

contributes to tumor cell survival by subverting host surveillance mechanisms aimed at 

detection and elimination of abnormal, tumorigenic cells (Padua and Massagué, 2009).  

TGF-β exerts this function by negatively impacting lymphocyte proliferation, activation 

and differentiation, which together dampen host immune responses, thereby allowing 

carcinoma cells to escape immunosurveillance and consequently thrive (Geissmann et al., 

1999; Tlsty and Coussens, 2006; Padua and Massagué, 2009).  Moreover, TGF-β 

generates a nourishing environment in which the tumor prospers by upregulating pro-

angiogenic mediators vascular endothelial growth factor (VEGF) and connective-tissue 

growth factor (CTGF) (Sanchez-Elsner et al., 2001; Padua and Massagué, 2009).  A 

sustained blood supply near the tumor provides a vital supply of nutrients and oxygen to 

the tumor and establishes a means for tumors to spread to secondary locations within the 

host (Hanahan and Weinberg, 2000).  Furthermore, the metastasis-promoting function of 

TGF-β has been directly linked to its ability to initiate epithelial-mesenchymal transition 

(EMT) in cell culture (Zavadil and Bottinger, 2005; Moustakas and Heldin, 2007; Xu et 

al., 2009). 

 

Epithelial-Mesenchymal Transition 

EMT is a highly dynamic transdifferentiation process in which epithelial cells 

disassemble cell-cell adhesion structures, lose apicobasal polarity, reorganize the actin 

cytoskeleton and acquire a motile, mesenchyme-like phenotype (Greenburg and Hay, 

1982; Hay, 1995; Thiery, 2002) (Fig. 1.2).  EMT occurs during the development of 
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vertebrates; for example, EMT facilitates the remodeling of the epithelium during 

gastrulation to form the three-layered embryo (Thiery, 2002).  The ability of TGF-β to 

stimulate changes in cell morphology similar to those that transpire during EMT was 

initially observed in vitro.  Exposure of mouse mammary epithelial cells to TGF-β 

dramatically altered cell morphology from a cuboidal, epithelial appearance to an 

elongated, spindle shape that was characteristic of a fibroblastoid phenotype (Miettinen et 

al., 1994). 

 

EMT in Physiological Contexts 

The significance of TGF-β-induced EMT has also been identified in vivo, as TGF-β 

stimulates EMT throughout development and in adult tissues.  Developmentally, the 

proper formation of the heart and palate involve an EMT that is driven by TGF-β 

signaling (Nawshad et al., 2005).  During embryogenesis, structures that subsequently 

give rise to heart valves are derived from an EMT that transforms endothelia (a 

specialized squamous epithelia) into cardiac mesenchyme in the atrioventricular (AV) 

canal and outflow tract regions (Mercado-Pimentel and Runyan, 2007). TGF-β is 

required for this EMT in the chick heart, as anti-TGF-β antibodies disrupted the in vitro 

formation of cardiac mesenchyme from explants of the AV canal endothelium (Potts and 

Runyan, 1989).  Moreover, knockout of TGF-β1 or TGF-β2 causes serious heart 

malformations in mouse embryos (Letterio et al., 1994; Dickson et al., 1995). 
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Figure 1.2 

 

 

 

 

 

 



 18 

Figure 1.2 ❘  Cell morphology during different stages of EMT.  Epithelial cells undergo 

drastic changes in cellular morphology, architecture, and migratory capability during 

EMT, emerging with mesenchyme-like phenotypes and increased migratory potential. 

Epithelial cells are often organized into sheets (1) in which they laterally adhere to 

neighboring cells and to the basement membrane on their basal surface. (2) TGF-β 

stimulates the molecular events that drive EMT, including (3) downregulation of 

adhesion proteins (i.e., cadherins, cytokeratins, and others) (4) constriction at the apical 

surface, (5) disassembly and proteolytic digestion of the basement membrane (6), and cell 

ingression and migration into the interstitial matrix.   
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Late in the embryogenesis of aminotes (mammals, birds, and reptiles) EMT facilitates the 

development of the palate.  Shortly following formation of a structure known as the 

medial edge seam that is comprised of epithelial cells, an EMT transforms these cells into 

mesenchyme, allowing for palatal fusion and consequent bone formation (Fitchett and 

Hay, 1989).  Moreover, a functional role for TGF-β-induced EMT in palatogenesis was 

established by the finding that TGF-β3-null mice are born with cleft palates, indicative of 

a failure of palatal fusion (Kaartinen et al., 1995).   

 

TGF-β also influences EMT in the adult during tissue repair.  Wound healing is a 

multipart process involving inflammation, de novo tissue formation, and tissue 

remodeling to facilitate reconstruction of the wound.  Upon injury to the epithelium, 

platelets begin to produce and secrete TGF-β (Broadley et al., 1989).  Increased levels of 

TGF-β lead to the accumulation of wound-healing effectors, i.e. inflammatory cells 

(neutrophils, monocytes and lymphocytes) and fibroblasts, at the site of damaged tissue 

(Border and Noble, 1994).  Fibroblasts are vital to tissue repair, as they secrete 

extracellular matrix (ECM) proteins, such as fibronectin, proteoglycans and collagens, 

that are utilized to heal the injury (Border and Ruoslahti, 1992).  Fibroblasts at the injury 

site arise from differing origins, including the activation of resident fibroblasts 

(myofibroblasts) and recruitment of fibroblasts from the bone marrow (Kalluri and 

Neilson, 2003).  Interestingly, TGF-β stimulates EMT of the organ epithelium to also 

yield a population of fibroblasts at the wound to aid in the repair process (Iwano et al., 

2002; Kalluri and Weinberg, 2009).  
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EMT as a Precursor to Carcinoma Metastasis 

In addition to naturally occurring biological processes, phenotypic alterations that occur 

during EMT are associated with pathological conditions, namely fibrosis and carcinoma 

invasion and metastasis (Putz et al., 1999; Thiery, 2002; Petersen et al., 2003).  Fibrosis 

is a disease that results from deregulated tissue repair.  Abnormally sustained production 

of TGF-β during wound healing is a key contributor to fibrosis observed in renal, 

pulmonary, hepatic, cardiac, and ocular tissues (Border and Noble, 1994).  Elevated 

levels of TGF-β cause excessive production and deposition of ECM proteins, such as 

collagens and fibronectin (Border and Ruoslahti, 1992).  As in tissue repair, TGF-β 

stimulates EMT and the expression of ECM proteins that contributes to fibrogenesis 

(Willis and Borok, 2007).  In the lens epithelium sustained TGF-β activity orchestrates 

EMT and subsequent fibrosis, both of which are prevented in Smad3-null mice (Saika et 

al., 2004).  Similarly, loss of Smad3 expression in renal tubular epithelial cells impairs 

autoinduction of TGF-β1, decreases collagen accumulation, and consequently these cells 

do not undergo EMT thereby preventing fibrosis (Sato et al., 2003).  These findings 

suggest that TGF-β induction of EMT is essential for tissue repair and deregulation of 

this process leads to the pathogenesis of fibrosis. 

 

Interestingly, the effects of TGF-β on epithelial remodeling observed during wound 

healing and fibrosis correlate with the cellular alterations that give rise to tumor 

malignancy (Haddow, 1972; Dvorak, 1986; Roberts et al., 1988).  These observations 

provocatively suggested a link between TGF-β regulation of EMT and tumor metastasis, 
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for which Oft et al. (1998) provided supporting functional data.  Subcutaneous 

implantation of breast carcinoma cells into mice generates tumors.  Isolation and re-

cultivation of cells from these tumors showed phenotypic indications of EMT, i.e. loss of 

cuboidal shape and acquisition of mesenchyme-like characteristics (Oft et al., 1998).  

However, when this procedure is performed in breast carcinoma cells expressing a 

dominant-negative TβRII (TβRII-dn) that disrupts TGF-β signaling, the re-cultivated 

cells no longer underwent EMT and retained epithelial characteristics (Oft et al., 1998).  

Additionally, the expression of TβRII-dn reverted metastatic colon cells to an epithelial 

phenotype and prevented lung metastases in mice (Oft et al., 1998).   

 

Collectively, these observations from both physiological and pathological contexts show 

that EMT elicited by TGF-β alters cellular plasticity, and as a result, enables motility and 

invasion in the affected cells.  TGF-β is often elevated in tumor cells, which benefit from 

the pro-tumor function of TGF-β, especially the influence of TGF-β over EMT (Kang et 

al., 2005).  TGF-β-induced conversion of epithelial cells to a more mesenchymal 

phenotype appears to be a direct precursor for neoplastic cells to escape the primary 

tumor mass and metastasize to distant sites.  Thus, TGF-β arms epithelial tumors with the 

capacity to progress toward malignancy, and thereby acts as a pro-metastasis agent.   
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Transcriptional Profiling to Investigate TGF-β  Control of EMT 

The scientific community has made significant research efforts to uncover the molecular 

mechanisms that underlie the pro-metastasis function of TGF-β.  As indicated previously, 

the role of TGF-β in tumor progression towards metastasis is directly correlated with its 

ability to elicit EMT.  During EMT the expression of epithelial markers decrease, i.e. E-

cadherin, while those associated with mesenchymal cells increase, i.e. vimentin.  Thus 

studies to delineate how TGF-β facilitates tumor malignancy included investigations 

aimed at determining the means by which TGF-β orchestrated changes in gene 

expression during EMT.   

 

A multitude of genes are regulated by TGF-β at the level of transcription (Zavadil et al., 

2001; Kang et al., 2003).  As a consequence, researchers investigated TGF-β-induced 

changes in the transcriptome during EMT as a means to understand the role of this 

cytokine in metastasis.  Study of differential gene expression was primarily performed 

using microarray technology, which is capable of simultaneously evaluating the 

expression of thousands of genes in a single experiment.  Microarray-based gene 

profiling demonstrated that TGF-β stimulates epithelial cells to undergo widespread 

transcriptional reprogramming during EMT involved in both development and tumor 

metastasis (LaGamba et al., 2005; Valcourt et al., 2005).  Studies like these have also 

revealed that TGF-β directly activates the expression of transcription factors including 

SNAI1/2, Twist and ZEB1/2 (Zavadil and Bottinger, 2005; Moustakas and Heldin, 2007; 

Xu et al., 2009).  These are master regulators of the EMT program, which suppress the 
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levels of epithelial markers such as E-cadherin and zonula occludens (ZO)-1, and 

upregulate mesenchymal markers including vimentin, fibronectin, and others (Thiery and 

Sleeman, 2006).   

 

Genome-wide transcriptome analyses support observations that TGF-β crosstalks with 

other signal pathways to alter cellular plasticity during EMT (Zavadil et al., 2001; Thiery, 

2002; Derynck and Zhang, 2003).  The cooperation between Ras and TGF-β to induce 

EMT is clearly demonstrated at the cellular level in the mouse mammary epithelial cell 

model of EMT EpH4/EpRas/EpRasXT.  TGF-β elicits growth arrest in EpH4 (non-

transformed mammary epithelial) cells (Oft et al., 1996).  However, overexpression of 

hyperactive (oncogenic) Ha-ras (EpRas cells) confers selective resistance of these cells to 

the growth inhibitory effects of TGF-β, and consequentially bestows tumorigenic 

properties (Oft et al., 1996).  Importantly, in EpRas cells oncogenic Ras collaborates with 

TGF-β to stimulate EMT, invasion, and migration; the resulting cells are termed, 

EpRasXT (Oft et al., 1996).  Use of small molecule inhibitors in the EpRas/EpRasXT 

EMT model delineated a role for a hyperactive Raf/mitogen-activated kinase (MAPK) 

pathway downstream of Ras during TGF-β-induced EMT (Lehmann et al., 2000; Janda et 

al., 2002).  Importantly, microarray studies using the EpRas/EpRasXT EMT model 

further elucidated transcriptional programs that underlie cooperation between TGF-β and 

Ras in stimulation of EMT related to tumor malignancy (Jechlinger et al., 2003).  This 

study put forth by Jechlinger et al. (2003) assigned distinct gene expression profiles to 

cellular and molecular processes that correlate with EMT, metastasis and oncogene 
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function.  Knowledge of the cohort of genes that are regulated by TGF-β during EMT has 

therapeutic value.  Such a point is exemplified by the finding that the potential of tumors 

to metastasize to the bone or lung can be depicted by which TGF-β-induced genes are 

expressed in patients with breast cancer (Padua et al., 2008).  

 

Whilst microarray-based studies offer significant insight into the gene responses elicited 

by TGF-β, these analyses do not fully explain how TGF-β exerts its pro-metastasis 

function.  For example, changes in the transcriptome stimulated by TGF-β do not 

completely correlate with alterations in protein expression that are observed during EMT 

and tumor metastasis.  This suggests that in addition to transcriptional control of gene 

expression, TGF-β utilizes other regulatory mechanisms to mediate its influence on 

metastasis.  This point is underscored by a study that aimed to identify key players 

involved in TGF-β–induced EMT.  In comparison to previous like-minded studies that 

exclusively used total mRNA for microarray profiling, Jechlinger et al. (2003) performed 

microarray analyses on total, polysome-bound, and polysome-free mRNA to compare 

changes in gene expression elicited by TGF-β during EMT.  Microarray profiling of these 

three mRNA samples showed that 75% of genes involved in EMT were transcriptionally 

regulated by TGF-β, 18% were exclusively regulated at the level of translation and 7% of 

genes were regulated at both levels by TGF-β during EMT in transformed mouse 

mammary epithelial cells (Jechlinger et al., 2003).  Consistent with past investigations to 

understand gene regulation by TGF-β during EMT, this study showed that a large 

proportion (75%) of genes are controlled by TGF-β at the level of transcription.  Most 
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notable, this study also demonstrates that a small fraction (~1/5) of the genes assayed are 

regulated at the level of translation during EMT induced by TGF-β.  Together, these 

observations argue that posttranscriptional mechanisms offer additional layers of 

regulation in TGF-β regulation of cellular responses.  Hence the question can be put 

forth: what are these posttranscriptional mechanisms and by what means to they 

contribute to TGF-β induction of EMT and thereby metastasis? 

 

 

MicroRNAs: Novel Regulators of Gene Expression 

MicroRNAs (miRNAs) are 20-22-nucleotide non-coding RNAs that regulate gene 

expression at posttranscriptional levels by binding to complementary sequences in the 

3’UTR of mRNA targets, causing either translational repression or mRNA degradation 

(Bartel, 2004; Lim, 2005; Selbach et al., 2008; Guo et al., 2010) (Fig. 1.3).  

 

Initial discovery of this important function of miRNAs was made with studies that 

investigated developmental timing in C. elegans (Lee et al., 1993; Wightman et al., 

1993).  At the time, it was clear that lin-4 was important for development in C. elegans, 

as lin-4-null mutants often reiterated the first larval stage (L1) and, as a result, the adult 

stage was not reached in these mutants.  Interestingly, a loss-of-function mutant, lin-14, 

had an opposite effect as the lin-4 mutant had on development, causing precocious 

execution of events normally found in L2, L3, L4, and adult stages.  
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Figure 1.3 

 

 

Figure 1.3 ❘  MicroRNA control of gene expression.  The small, non-coding class of 

RNAs, known as microRNAs (miRNAs) (A) bind to the 3’UTRs of target mRNAs (B) to 

either direct degradation or translational repression (C), causing reduced protein 

expression of target genes. 
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These observations indicated that lin-4 negatively regulated lin-14.  Examination of the 

functional relationship between lin-4 and lin-14 by Ambros and Ruvkun revealed that 1) 

the gene encoding lin-4 did not generate protein, but yielded transcripts of 22nt and 61nt 

in length and 2) regions within lin-4 were complementary to regions within the 3’UTR of 

lin-14 (Lee et al., 1993; Wightman et al., 1993).   

 

This ground-breaking mechanism of posttranscriptional gene regulation by miRNAs is 

present in animals, plants and viruses (Bartel, 2004; Pfeffer et al., 2004).  In humans there 

are currently over 1000 known miRNAs (Griffiths-Jones et al., 2008).  The list of human 

miRNAs will most likely continue to grow as the technological advance of high-

throughput sequencing continues to identify presently unknown miRNAs.  Moreover, 

approximately 30% of the human genome is estimated to be regulated by miRNAs 

(Lewis et al., 2005), making the function of miRNAs in cellular physiology and disease 

current areas of intense research. 

 

 

MicroRNAs in Cancer 

It is now beyond question that miRNAs have critical roles in diverse physiological 

processes, including development, differentiation, apoptosis and proliferation.  Abnormal 

miRNA function underlies a number of pathological conditions, such as diabetes (Poy, 

2004) and mental retardation (Jin et al., 2004).  Rapidly emerging evidence strongly 

suggest critical roles of miRNAs in the pathogenesis of cancer (Garzon et al., 2009).  
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Alterations in miRNA expression profiles can distinguish between normal and cancerous 

tissues (Lu et al., 2005; Volinia et al., 2006).  Furthermore, miRNA expression patterns 

are highly correlative with the prognosis of cancer patients (Garzon et al., 2009).  

 

Tumor Suppressors 

Depending on the tissue of origin, miRNAs can function as tumor suppressors or 

oncogenes.  For example, deletion of the chromosomal region harboring genes encoding 

for both miR-15a and miR-16-1 causes low expression of these miRNAs in chronic 

lymphoblastic leukemia (CLL) (Calin et al., 2002).  Decreased levels of miR-15 and 

miR-16 allows for heightened expression of their common target BCL2 and subsequent 

survival of malignant B cells (Cimmino et al., 2005).  Experimental data also 

demonstrates a tumor suppressor role for the let-7 family of miRNAs.  These miRNAs 

are poorly expressed in lung, breast, and cervical cancers and are characterized as an anti-

growth factor.  Further investigation revealed that the let-7 family member miR-84 

targets Ras, a gene known to transform cells and ascribe enhanced growth properties 

(Johnson et al., 2005).  Subsequent studies identified that additional oncogenes were 

targets of the let-7 family of miRNAs, including HMGA2 (Lee and Dutta, 2007) and c-

Myc (Sampson et al., 2007), which further supports a tumor suppressor role for let-7 in 

cancer.  Other miRNAs associated with tumor suppressor function are those belonging to 

the miR-29 and miR-34 clusters.  The miR-29 cluster comprised of three miRNAs, miR-

29a, miR-29b, and miR-29c, is downregulated in CLL, AML and carcinomas of the bile 

duct, breast, and lung (Garzon et al., 2009).  Both in vitro and in vivo analyses 
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demonstrated that loss of activity of the miRNAs in the miR-29 cluster results in elevated 

levels of oncogenes TCL1, MCL1, and three DNA methyl transferases (Pekarsky et al., 

2006; Fabbri et al., 2007; Mott et al., 2007).  The miR-34 cluster miRNAs (miR-34a, 

miR-34b, miR-34c) are downregulated in pancreatic, colon, and breast cancers and target 

several cell cycle regulators including CDK4, CDK6, cyclin E2, and cell cycle-associated 

transcription factor E2F3, effectively limiting cellular proliferation (Chang et al., 2007; 

He et al., 2007a; Raver-Shapira et al., 2007). Interestingly, the miR-34 cluster is a 

component of the p53 tumor suppressor pathway as these miRNAs are transcriptionally 

activated by p53, a transcription factor that regulates genes involved with inducing cell 

cycle arrest and apoptosis in stressed and damaged cells (Chang et al., 2007; He et al., 

2007a; Raver-Shapira et al., 2007). Thus it appears that miRNAs play important roles in 

maintaining homeostasis, as loss of their expression and activity facilitates tumorigenesis. 

 

Oncogenic miRNAs 

The first miRNA attributed with oncogenic function was miR-155 (Metzler et al., 2004; 

Kluiver et al., 2005).  MiR-155 is highly expressed in hematologic cancers CLL, 

DLBCL, AML, BL and also found in solid tumors arising in the breast and lung (Garzon 

et al., 2009).  In cooperation with c-Myc, miR-155 spurs tumor development (Tam, 

2001).  Additional support for miR-155 as a causative agent in tumorigenesis is provided 

by the observation that mice transgenic for miR-155 expression in B-cells developed 

acute lymphoblastic leukemia (ALL) due to increased proliferation of B-cell precursors 

(Costinean et al., 2006; Costinean et al., 2009).  This effect of miR-155 on B-cell 
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development is attributed to its ability to target and downregulate SHIP and CCAAT 

enhancer-binding protein β (C/EBPβ), two negative regulators of interleukin-6 signaling, 

a pathway that promotes B-cell differentiation (Costinean et al., 2009; O'Connell et al., 

2009; Pedersen et al., 2009).  

 

Alongside miR-155, several other miRNAs are linked to facilitating tumor development 

and progression, including miR-21.  MiR-21 is upregulated in carcinomas of the breast, 

colon, pancreas, lung, prostate, liver and stomach (Volinia et al., 2006).  In addition, 

cancers of hematological origin, including AML and CML exhibit increased miR-21 

expression. (Garzon et al., 2005; Garzon et al., 2008).  Recently, Medina et al. (2010) 

generated a miR-21 transgenic mouse to investigate the role of miR-21 in cancer in vivo.  

In this mouse model, overexpression of miR-21 caused a pre-B malignant lymphoid-like 

phenotype, which could be reversed by decreasing miR-21 expression (Medina et al., 

2010).  These studies by Medina and colleagues also demonstrate that a single miRNA, 

miR-21 in this case, can impact several aspects of cancer biology, including initiation, 

maintenance, survival and metastasis of tumors (Medina et al., 2010). 

 

Other notable miRNAs that are associated with oncogenic activity include the miR-17-92 

cluster and members of the miR-371-373 cluster. The miR-17-92 cluster, composed of 

miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1, is the protypical 

polycistronic miRNA gene and for its role in cancer, is considered a classic oncomiR 

cluster (He, 2005).  The miR-17-92 cluster is highly upregulated in lymphomas, breast, 
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lung, colon, stomach, and pancreatic cancers (Garzon et al., 2009).  One manner in which 

this cluster contributes to tumorigenesis is through its translational repression of factors 

that regulate cellular proliferation (i.e. p21CIP1; induces cell cycle arrest) and apoptosis 

(i.e. E2F1; induces apoptosis), subsequently leading to increased survival and 

proliferation (Mendell, 2008).  Interestingly, the miR-17-92 cluster is transcriptionally 

activated by c-Myc (O'Donnell et al., 2005). This finding suggests a link between the 

miR-17-92 cluster and loss of the tumor suppressor function of TGF-β, as c-Myc is 

downregulated by TGF-β to mediate cytostasis in normal cells (Alexandrow and Moses, 

1995). However some tumors, such as those arising from the breast, TGF-β fails to 

downregulate c-Myc (Chen et al., 2001).  Such failure maintains c-Myc expression and 

activities, including transactivation of the miR-17-92 cluster, thereby facilitating evasion 

of TGF-β-induced cell cycle arrest (Petrocca et al., 2008a; Petrocca et al., 2008b). Like 

the miR-17-92 cluster, members of the miR-371-373 cluster facilitate tumorigenesis.  In 

testicular germ cell tumors that were transformed by hyperactive Ras, miR-372 and miR-

373 were able to surmount p53-mediated senescence by targeting the tumor suppressor 

LATS2 (Voorhoeve et al., 2006).  All together these studies describe both tumor 

suppressor and oncogene functions for miRNAs.  Thus precise control of miRNA 

expression has important pathophysiological implications. 
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Biosynthesis of MicroRNAs 

Genes encoding miRNAs are primarily transcribed by RNA polymerase II (pol II) into 

long primary transcripts known as pri-miRNAs (Cai et al., 2004; Lee et al., 2004) (Fig. 

1.4).  Pri-miRNAs are processed into ~70 nt hairpin-shaped precursor miRNAs (pre-

miRNAs) by the nuclear Microprocessor complex consisting of Drosha, DGCR8, and 

other regulatory factors such as p68 and p72 (Lee, 2003; Denli et al., 2004; Gregory et 

al., 2004; Han et al., 2004; Landthaler et al., 2004).  Exportin 5 exports pre-miRNAs into 

the cytoplasm where they are further processed by Dicer into ~22 bp miRNA/miRNA* 

duplexes (Hutvagner et al., 2001; Yi et al., 2003; Lund et al., 2004).  One strand of this 

duplex is preferentially loaded onto Argonaute proteins generating the RNA-induced 

silencing complex (RISC) containing the mature miRNA.  As a part of the RISC, the 

mature miRNA directs base-pairing with target mRNAs to inhibit their translation or 

induce degradation (Gregory et al., 2005; Bartel, 2009).  Multiple steps in this sequence 

of miRNA biogenesis (i.e., transcription, maturation, and stability) can be regulated by a 

variety of mechanisms, including signal pathways (Kim et al., 2009; Krol et al., 2010). 
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Figure 1.4 
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Figure 1.4 ❘  MicroRNA biogenesis. (1) Genes encoding miRNAs are transcribed by 

RNA polymerase II into primary transcripts that are (2) processed by the Drosha-DGCR8 

microprocessor into hairpin-shaped precursor miRNAs.  (3) The pre-miRNA is exported 

into the cytoplasm where (4) Dicer and Argonaute proteins (AGOs) further process it into 

a mature miRNA, which is then (5) incorporated into the RNA-induced silencing 

complex (RISC).  In the RISC, (6) AGOs facilitate miRNA-directed regulation of mRNA 

expression.  
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MicroRNAs in TGF-β  Signaling and Tumor Metastasis 

Previous reports illustrate that miRNAs are involved in TGF-β signaling and cellular 

responses (Table 1.1).  Furthermore, earlier profiling studies identified miRNAs whose 

levels undergo significant changes during TGF-β-induced EMT, suggesting the possible 

involvement of miRNAs in this process (Zavadil et al., 2007).  In particular, several 

independent studies identified the miR-200 family as important suppressors of EMT in a 

number of different models (Burk et al., 2008b; Gregory et al., 2008a; Korpal et al., 

2008b; Park et al., 2008a). MiR-200 inhibits EMT by directly recognizing 

complementary sites in the 3’-UTR of ZEB1/2 and repressing the translation of these 

positive regulators of EMT (Burk et al., 2008b; Gregory et al., 2008a; Korpal et al., 

2008b; Park et al., 2008a).  MiR-200 itself is repressed by TGF-β, through an unknown 

mechanism (Korpal et al., 2008b).  MiRNAs such as miR-9 and miR-335 promote 

metastasis by directly suppressing the levels of E-cadherin (miR-9) or SOX4 (miR-335) 

(Tavazoie et al., 2008; Ma et al., 2010).  MiR-10b has also been suggested to facilitate 

breast cancer metastasis, but this was contradicted by a more recent report in which high 

miR-10b appeared to suppress motility and invasiveness of breast cancer cells (Ma et al., 

2007; Moriarty et al., 2010).  MiR-31 acts to repress breast cancer cell migration and 

invasion, and a low miR-31 level correlates with high metastatic potential (Valastyan et 

al., 2009; Valastyan et al., 2010).  The anti-metastasis function of miR-31 is attributable 

to downregulation of three targets: integrin α5, radixin and rhoA (Valastyan et al., 2009; 

Valastyan et al., 2010).  Although these observations show that miRNAs impose another 
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layer of regulation on breast cancer metastasis, more studies are needed to fully resolve 

the function of miRNAs in TGF-β signaling. 

 
Table 1.1 ❘  MicroRNAs in TGF-β  Signaling 

 

MicroRNA Context 
 

Targets 
 

 Function References 

miR-106b-25 
cluster 

Cancer  
Cell cycle 
Apoptosis 

Bim, E2F1, p21 
Disrupts cell cycle 

arrest and apoptosis 
by TGF-β  

(Petrocca et 
al., 2008b) 

miR-15,  
miR-16 Development AcvR2a  

Hinders Nodal-
induced mesoderm 

development  

(Martello et 
al., 2007) 

miR-17-92 
cluster  

Cancer 
Cell cycle 

 

Bim, E2F1, 
p21, PTEN 

Disrupts TGF-β 
induction of cell 
cycle arrest and 

apoptosis 

(Ventura, 
2008) 

miR-133, 
miR-590 

Atrial 
fibrillation TGF-β1, TβRII 

Limits collagen 
induction  
by TGF-β  

(Shan et al., 
2009) 

miR-155 Cancer 
EMT RhoA 

Facilitates TGF-β 
disassembly of 

adherens junctions  

(Kong et al., 
2008) 

miR-192 Fibrosis 
 ZEB-1, ZEB-2 

Perturbs TGF-β 
downregulation of 

E-cadherin 

(Krupa et al., 
2010) 

miR-200 
family  

Cancer 
EMT SIP1, ZEB  

 Facilitates TGF-β 
downregulation of 

E-cadherin 

(Burk et al., 
2008b; 

Gregory et 
al., 2008a) 

miR-21 Cancer 
PDCD4, PTEN, 
TIMP1, TPM1, 

and more 

Aids with survival 
and metastasis of 

cancer cells 

(Garzon et 
al., 2009) 

miR-24 Erythropoeisis  Alk4 
Disrupts Smad2 

activation by 
Activin 

(Wang et al., 
2008) 

miR-LAT Apoptosis 
HSV infection 

Smad3,  
TGF-β1  

Confers resistance 
to TGF-β-mediated 

apoptosis in 
neurons 

(Gupta et al., 
2006) 
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Thesis Objective 

The mechanisms by which TGF-β promotes the malignant spread of carcinoma cells in 

the later stages of tumor progression are not fully understood.  So far, protein-coding 

target genes of Smads are the focus of most studies that investigate TGF-β regulation of 

cellular responses.  However, an increasing number of reports demonstrate the 

significance of miRNA function in a variety of physiological processes, including those 

regulated by TGF-β.  These observations led to the hypothesis of my thesis: miRNAs 

play an important role in TGF-β-mediated cellular responses by acting as effectors 

or modifiers of TGF-β  signaling.   

 

To investigate this idea, I studied the function of miRNAs in TGF-β-induced epithelial-

to-mesenchymal transition (EMT), a process germane to carcinoma metastasis (Hanahan 

and Weinberg, 2000).  Specifically, I pursued the following:  

Aim 1: To identify and characterize the function of miRNAs that impact 

EMT induced by TGF-β   

Aim 2:  To determine how TGF-β  signaling regulates the expression of 

candidate miRNAs 

 

These two aims explored the significance of miRNAs in TGF-β signaling- a novel angle 

to study cellular regulation by TGF-β.  The overall goal of this thesis was to increase our 

comprehension of the role of miRNAs in TGF-β-regulated cellular responses, especially 

those pertaining to tumor metastasis. 
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CHAPTER II 

 

CHARACTERIZATION OF miR-21 AND miR-31 

IN THE PRO-METASTASIS FUNCTION OF TGF-β  
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Introduction 

 

TGF-β promotes cell migration and invasion, an attribute that is linked to the pro-

metastasis function of this cytokine in late stage cancers.  However, the molecular 

determinants underlying the influence of TGF-β on metastasis are poorly understood. 

MiRNAs regulate cellular processes that advance tumors to malignancy, such as EMT, 

migration and invasion (Garzon et al., 2009).  Thus it is feasible that miRNAs are an 

important component of the pro-metastasis action of TGF-β.  In this study we utilized the 

LIM 1863 colon carcinoma organoid that undergoes epithelial-mesenchymal transition 

(EMT) in response to TGF-β to investigate role of miRNAs in EMT.  EMT in LIM 1863 

organoids is markedly accelerated by TNF-α, and we found that the levels of miR-21 and 

miR-31 were prominently elevated under the synergistic actions of TGF-β/TNF-α.  

Consistent with this, overexpression of either miR-21 or miR-31 significantly enhanced 

the effect of TGF-β alone on LIM 1863 morphological changes.  More importantly, 

transwell assays demonstrated the positive effects of both miR-21 and miR-31 in TGF-β 

regulation of LIM 1863 motility and invasiveness.  Elevated levels of miR-21 and miR-

31 also enhanced motility and invasiveness of other colon carcinoma cell lines.  We 

present compelling evidence that TIAM1, a guanidine exchange factor of the Rac 

GTPase, is a direct target of both miR-21 and miR-31.  Indeed in LIM 1863 cells, 

suppression of TIAM1 is required for miR-21/miR-31 to enhance cell migration and 

invasion.  Therefore we have uncovered miR-21 and miR-31 as downstream effectors of 

TGF-β in facilitating invasion and metastasis of colon carcinoma cells. 
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Results 

 

The colon carcinoma cell line LIM 1863 as a model of TGF-β-induced EMT 

The Ludwig Institute in Melbourne (LIM) established the LIM 1863 colorectal carcinoma 

cell line, which originated from a portion of the ileocecal valve isolated from a 74-year-

old Caucasian female with a poorly differentiated ulcerated carcinoma that extended 

through the thickness of the muscle wall (Whitehead et al., 1987). In vitro, LIM 1863 

cells are arranged around a central lumen, forming three-dimensional spheroids, which 

are commonly referred to as “organoids,” that propagate in suspension by cleavage 

(Whitehead et al., 1987; Hayward and Whitehead, 1992).  Importantly, these colonic 

organoids retain both morphological and functional differentiation traits analogous to 

those observed in the intestinal crypt in vivo. For example, LIM 1863 cells possess 

progenitor cells that undergo consistent differentiation to yield mature columnar cells 

with a polarized, structurally complete brush border and goblet cells that secrete mucus 

(Whitehead et al., 1987).  Additionally, cells appear to proliferate near the outer edges of 

the organoid and migrate toward the central lumen before shedding as dead cells into the 

culture medium (Hayward and Whitehead, 1992), indicating the LIM 1863 organiod 

possesses both zones of proliferation and differentiation similar to the normal colon.  

Together, these findings show that LIM 1863 organoids are unique amongst available 

colon carcinoma cell lines in their retention of normal colonic features.  
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Additional studies investigated the effects of various growth factors, including TGF-β, on 

LIM 1863 organoids. Like many epithelial cells, LIM 1863 organoids are sensitive to the 

anti-proliferative cues elicited by TGF-β, as indicated by reduced 3H-Thymidine 

incorporation in cells treated with TGF-β (Hayward et al., 1995). In addition, TGF-β 

induced profound changes in the morphology of LIM 1863, causing adhesion and 

spreading of organoids (Hayward et al., 1995). In 5-7 days after TGF-β stimulation, LIM 

1863 cells assume a monolayer morphology (Fig. 2.1). Co-treatment with TNF-α can 

accelerate the morphological changes to complete in 48 hours, but by itself TNF-α has no 

effect (Bates and Mercurio, 2003). This morphological change is reversible upon removal 

of TGF-β and TNF-α. These cellular characteristics and other accompanying molecular 

changes (i.e., downregulation of epithelial marker, E-cadherin and upregulation of 

mesenchymal marker, N-cadherin) led to the conclusion that this is a typical TGF-β-

induced epithelial-mesenchymal transition (EMT) (Bates and Mercurio, 2003) (Bates and 

Mercurio, 2003).  Furthermore, TGF-β-induced EMT confers migratory capability to 

LIM 1863 cells (Bates and Mercurio, 2003), establishing the LIM 1863 cell line as a 

unique three-dimensional culture system to study TGF-β regulation of tumor cell 

migratory and invasive properties (Vincan et al., 2007a; Vincan et al., 2008).  
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Figure 2.1 
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Figure 2.1 ❘  TGF-β  induces morphological changes in LIM 1863 organoids. Phase 

contrast microscopy (A-D) and schematic drawings (E-H) show the alterations in 

phenotype that LIM 1863 organoids undergo following TGF-β treatment. (A and E) In 

the absence of TGF-β, LIM 1863 cells propagate as non-adherent organoids. (B and F) 

The addition of 2ng/ml TGF-β1 to the culture media stimulates LIM 1863 organoids to 

adhere to tissue culture plate (C and G), spread (D and H), and adopt a flattened and 

migratory mesenchyme-like phenotype.  These changes in morphology occur within 5-7 

days after TGF-β stimulation and can be accelerated to occur within 24-48 hours when 

LIM 1863 organoids are treated with a combination of 2 ng/ml TGF-β1 and 10 ng/ml 

TNF-α; TNF-α alone does not alter morphology.  All microscopy images were acquired 

at 10X magnification. 
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miR-21 and miR-31 are Induced Synergistically by TGF-β and TNF-α  

in LIM 1863 organoids 

We became interested in whether miRNAs may play a role in regulating EMT of LIM 

1863.  Microarray profiling revealed miR-21 and miR-31 as the most elevated miRNAs 

after treatment of TGF-β and TNF-α (Fig. 2.2A); other differentially expressed miRNAs 

are listed in Table 2.1 and a comprehensive dataset of differentially expressed miRNAs is 

provided in the Appendix.  Northern blotting further validated the induction of the mature 

forms of these two miRNAs by TGF-β/TNF-α (Fig. 2.2B and 2.2C).  For both miR-21 

and miR-31, co-treatment with TGF-β and TNF-α was more robust than each cytokine 

individually in elevating the levels of these two miRNAs (Fig. 2.2B and 2.2C).  Given the 

synergistic effect of TGF-β/TNF-α in both the upregulation of miR-21/miR-31 and EMT, 

we reasoned that the increase in miR-21/miR-31 may have functional relevance to EMT 

of LIM 1863 organoid, and focused on these two miRNAs for further studies.  The signal 

transduction of TGF-β in LIM 1863 cells appeared to be normal, as TGF-β induced a 

rapid C-terminal phosphorylation in both Smad2 and Smad3, and activated the 

transcription of a typical target gene, Smad7 (Fig. 2.2D and 2.2E). 
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Figure 2.2 
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Figure 2.2 ❘  miR-21 and miR-31 are upregulated during TGF-β/TNF-α-induced 

EMT in LIM 1863 organoids. (A) LNA-based microarray was used to measure the 

relative ratio of each miRNA in LIM 1863 organoids with or without TGF-β/TNF-α (T + 

T) treatment. A total of 455 miRNAs were profiled. miR-21 and miR-31 were most 

significantly upregulated by TGF-β/TNF-α. (B and C) Northern blot analyses detecting 

miR-21 (B) or miR-31 (C) in LIM 1863 organoids with indicated cytokine treatment for 

24 h.  The ~21nt mature miRNAs (miR-21 or miR-31) are shown. 5S rRNA expression 

was used as an internal control. (D) Extracts from LIM 1863 cells after indicated 

cytokine treatments were analyzed by Western blotting using indicated antibodies. (E) 

Real-time quantitative RT-PCR analysis of Smad7 mRNA levels in LIM 1863 cells after 

vehicle or TGF-β/TNF-α (T+T) stimulation (mean + S.D., **, p < 0.01). U6 snRNA was 

used as the internal standard. 
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Table 2.1 ❘  Differentially expressed miRNAs during EMT in LIM 1863 cells. 

 
 Cytokine / Vehicle 

 MicroRNA TNF-α  TGF-β  T + T 

miR-21 1.58 1.75 2.80 

miR-31 1.12 1.08 2.26 

miR-202-3p 1.97 1.92 2.02 

miR-22 1.17 1.15 2.00 

miR-23a 1.19 1.37 1.98 

miR-492 1.14 1.33 1.93 

miR-517-3p 1.92 1.81 1.89 

miR-27a 1.09 1.17 1.87 

U
p 

miR-24 1.14 1.29 1.82 

miR-487b 0.58 0.57 0.53 

D
ow

n 

miR-586 0.55 0.56 0.52 
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miR-21 and miR-31 are Important Regulators in TGF-β-induced EMT of LIM 1863 cells 

TGF-β-induced EMT in LIM 1863 is a slow process.  By the first 24 hours, most 

organoids attached to the tissue culture plate, but only a small percentage of them began 

to spread out into a monolayer (Fig. 2.3A).  By counting the organoids exhibiting either a 

“spreading” or “not spreading” morphology, we quantified TGF-β-induced EMT and 

evaluated the impact of miR-21 and miR-31 overexpression.  Indeed, when examined 24 

hours after TGF-β addition, LIM 1863 organoids transfected with the precursors of either 

miR-21 or miR-31 had a significantly higher percentage adopting a “spreading” 

morphology, compared to organoids transfected with a non-targeting control miRNA 

precursor (Fig. 2.3B).  The same was observed 48 hours after TGF-β stimulation (Fig. 

2.3B).  Interestingly if the TGF-β-containing media was removed after 8 hours of 

treatment and replaced with fresh media containing TGF-β, the percentage of spreading 

organoids was greatly reduced in cells that overexpressed miR-31, but not miR-21 or 

control cells (Figs. 2.4A and 2.4B), suggesting that in the presence of TGF-β, increased 

levels of miR-31 leads to the secretion of factors that are important for the induction of 

spreading by TGF-β.  In line with this result, conditioned media from cells that 

overexpressed miR-31 caused alterations in cell morphology in naïve LIM 1863 

organoids (Fig. 2.4C). Together, these data suggest that miR-21 and miR-31 are able to 

accelerate the EMT process initiated by TGF-β.   
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Figure 2.3 
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Figure 2.3 ❘  TGF-β-induced LIM 1863 morphological changes is potentiated by 

miR-21 and miR-31.  (A) Representative LIM 1863 organoids exhibiting “spreading” or 

“not spreading” morphologies after 24 h TGF-β treatment (upper). A schematic drawing 

of “spreading” and “not spreading” morphologies is shown (lower).  (B) LIM 1863 

organoids transfected with indicated miRNA precursors were stimulated with TGF-β, and 

the morphology was scored as “spreading” or “not spreading” at 24 h or 48 h post TGF-β 

addition. The results are plotted (mean + S.D.,  > 200 organoids were counted in each 

experiment, data represent >3 experiments). (C) Same experiment as in B (only the 24 h 

time point), and plotted are the mRNA levels of indicated markers as measured by 

quantitative real-time PCR (mean + S.D, n>3), using U6 snRNA as an internal reference. 

(D) Inhibition of miR-21 and miR-31 activities suppresses TGF-β/TNF-α-induced EMT 

marker expression. LIM 1863 cells were transfected with 250 nM 2’O-Methyl RNA 

inhibitors of miR-21, miR-31 or control.  Eighteen hours later, cells were treated with 

TGF-β/TNF-α as indicated after which LAMC2 and MMP7 expression was evaluated by 

quantitative real-time PCR, using U6 snRNA as an internal control (mean + S.D, n>3). 

FN1: fibronectin 1; IL8: interleukin 8; LAMC2: laminin γ2; MMP7: matrix 

metalloproteinase 7. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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Figure 2.4 
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Figure 2.4 ❘   miR-31 stimulates secretion of factors that facilitate TGF-β  induction 

of EMT. (A) Schematic of the experimental timeline. (B) LIM 1863 organoids 

transfected with indicated miRNA precursors were stimulated with TGF-β.  Eight hours 

post stimulation, the media was replaced with fresh media containing TGF-β. This is the 

“wash” sample.  In the “mock” samples, the organoids remained in the same TGF-β-

containing media throughout the experiment.  After 24 hours from initial addition of 

TGF-β, the morphology was scored as “spreading” or “not spreading.” The results are 

plotted (mean + S.D.,  > 200 organoids were counted in each experiment, data represent 

>3 experiments). (C) LIM 1863 organoids were cultured for 72 hours in conditioned 

media (CM) from LIM 1863 organoids overexpressing miR-21, miR-31 or control and 

images were captured at 20X magnification. 
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To better quantify the EMT process, we measured the mRNA levels of a number of EMT 

markers.  In our LIM 1863 culture, TGF-β/TNF-α induced re-distribution of E-cadherin 

from the cell surface to the cytoplasm without much change in its protein level, indicating 

that in our hands these cells do not undergo a classical EMT (Fig. 2.5).  We measured the 

expression of other known markers including fibronectin-1 (FN1), interleukin-8 (IL-8), 

laminin-γ2 (LAMC2) and matrix metalloproteinase-7 (MMP7) (Bates et al., 2004; 

Vincan et al., 2007b).  The levels of these markers were all increased 24 hours after TGF-

β treatment (Fig. 2.3C).  Transfection of either miR-21 or miR-31 precursors further 

potentiated TGF-β in increasing the mRNA levels of FN1, IL8 and LAMC2 (Fig. 2.3C).  

In the case of MMP7, only miR-31 had a significant effect (Fig. 2.3C). Even in cells 

without any exposure to TGF-β, either miR-21 or miR-31 elevated the expression of 

these EMT markers (Fig. 2.3C) and interleukin-6 (IL-6) (Fig. 2.6), a cytokine whose 

increased expression correlates with colon carcinoma metastases (Knüpfer and Preiss, 

2010).  These more quantitative analyses further substantiated our conclusion that a high 

level of miR-21 or miR-31 facilitates TGF-β-induced EMT of LIM 1863.  Importantly, 

TGF-β-induced upregulation of Smad7 was not enhanced by either miR-21 or miR-31 

overexpression, suggesting that these two miRNAs only facilitate a subset of the TGF-β 

responses, and do not enhance TGF-β signaling in general (Fig. 2.7). 
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Figure 2.5 

 

 

 

Figure 2.5 ❘  TGF-β/TNF-α  alters E-cadherin localization in LIM 1863. LIM 1863 

organoids were treated with TGF-β and TNF-α (T + T) or without (Vehicle) for 24 hours 

and the distribution pattern of E-cadherin was detected with anti-E-cadherin antibodies.  

Nuclei were stained with DAPI. 
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Figure 2.6  

 

 

 

Figure 2.6 ❘  IL-6 is upregulated by miR-21 and miR-31. LIM 1863 organoids were 

transfected with indicated miRNA precursors.  After 48 hours, RNA was collected and 

reverse transcribed.  Standard PCR was performed with the resultant cDNA to evaluate 

the expression of IL-6 using forward primer, 5’- ATGAACTCCTTCTCCACAAGCGC -

3’ and reverse primer, 5’- GAAGAGCCCTCAGGCTGGACTG -3’.  GAPDH levels 

were determined as an internal reference using forward primer 5’-

AACAGCCTCAAGATCAGCAA-3’ and reverse primer, 5’-

CAGTCTGGGTGGCAGTGAT-3’. 
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Figure 2.7 

 

Figure 2.7 ❘   TGF-β  regulation of Smad7 is not affected by miR-21 or miR-31.  LIM 

1863 organoids transfected with indicated miRNA precursors were stimulated with TGF-

β for 24 h and Smad7 expression was measured by quantitative real-time PCR (mean + 

S.D, n>3), using U6 snRNA as an internal standard. 
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We further carried out loss-of-function studies to evaluate the importance of miR-21 and 

miR-31 in TGF-β/TNF-α-induced EMT of LIM 1863 cells.  Indeed, when miR-21 or 

miR-31 activity was neutralized by antisense 2’O-methyl RNA oligonucleotides, TGF-

β/TNF-α induction of the mesenchymal markers LAMC2 and MMP7 was substantially 

decreased (Fig. 2.3D).  This further supported the requirement of miR-21 and miR-31 in 

EMT-associated morphological changes induced by TGF-β/TNF-α in LIM 1863 cells. 

 

miR-21 and miR-31 Regulate the Migration and Invasion of LIM 1863 cells  

EMT is often linked to a gain in the migratory and invasive properties of the cell.  Even 

though the LIM 1863 organoids hardly migrated in the standard transwell assay, we 

found that if cells were immediately plated after dissociation of the organoids by trypsin, 

there was migration in the transwell assay with 10% FBS and media from NIH 3T3 

culture as the chemoattractant (Fig. 2.8A).  The same was observed in the Matrigel 

invasion assay (Fig. 2.8B).  When LIM 1863 cells transfected with miR-21 or miR-31 

precursors were tested in these assays, they exhibited significantly enhanced migratory 

and invasive properties compared to cells transfected with a control miRNA precursor 

(Figs. 2.8A and 2.8B).  Interestingly, corroborating the results in Matrigel invasion 

assays, we noticed that when plated onto the Matrigel filter, LIM 1863 cells transfected 

with miR-21 or miR-31 readily adhered and spread out, whereas cells transfected with a 

control miRNA precursor did not show such characteristics (Fig. 2.8B, phase contrast 

images).  These observations support the notion that an increase in miR-21 or miR-31 

enhances the migration and invasion properties of LIM 1863 cells.   
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Figure 2.8 
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Figure 2.8 ❘   miR-21 and miR-31 regulate LIM 1863 migration and invasion. (A and 

B)  LIM 1863 organoids were transfected with 100 nM miR-21 or miR-31 precursors or a 

negative precursor control (C). Forty-eight hours later, the organoids were dissociated by 

trypsin and 1 x 105 cells were seeded into the upper wells of transwell chambers coated 

without (A) or with Matrigel (B).   After 72 h, cells that migrated to the lower chambers 

were counted (mean + S.D., 8 fields per filter were examined per experiment). LIM 1863 

cells transfected with miR-21 and miR-31 precursors spontaneously attached and spread 

on Matrigel-coated filters (phase contrast images in B, right). (C and D), Inhibition of 

miR-21 and miR-31 activities affects TGF-β//TNF-α-induced LIM 1863 cell migration 

and invasion.  LIM 1863 cells were transfected with 250 nM 2’O-Methyl RNA inhibitors 

of miR-21, miR-31 or control. Eight hours post-transfection, cells (5 x 105 for migration 

and 1x106 for invasion assay) were seeded into the upper wells of transwell chambers 

coated without (C) or with Matrigel (D) and treated with TGF-β//TNF-α (T+T) or 

without.  After 72 h, the number of cells that migrated to the lower chamber was counted 

(mean + S.D., 8 fields per filter were examined). *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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If the dissociated LIM 1863 cells were treated with TGF-β/TNF-α upon plating into the 

transwells, the motility was markedly increased (Fig. 2.8C).  Importantly, when miR-21 

function was inhibited by the 2’O-Methyl anti-miR-21 oligonucleotide, TGF-β/TNF-α-

induction of LIM 1863 motility was significantly reduced (Fig. 2.8C).  This suggests that 

miR-21 is required for TGF-β/TNF-α-regulation of LIM 1863 cell migration.  In 

contrast, we observed little effect with anti-miR-31, suggesting miR-31 is not as rate-

limiting as miR-21 is in regulating LIM 1863 motility.  In Matrigel assays, TGF-β/TNF-

α also stimulated invasion of the LIM 1863 cells (Fig. 2.8D).  Interestingly, inhibition of 

either miR-21 or miR-31 significantly decreased LIM 1863 invasion in response to TGF-

β/TNF-α, so both of these two miRNAs have non-overlapping targets that are important 

for LIM 1863 to invade through the extracellular matrix (Fig. 2.8D).  From these gain- 

and loss- of function studies, we conclude that both miR-21 and miR-31 positively 

regulate migration and invasion properties of the LIM 1863 cancer cells.  
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Pro-migration and Pro-invasion Functions of miR-21 and miR-31 in  

Other Colon Cancer Cell Lines  

To determine if the activities of miR-21/miR-31 we observed so far are unique to LIM 

1863 cells, we overexpressed these two miRNAs in SW480 and DLD1 colon cancer cell 

lines.  Since in our hands these two cell lines do not undergo EMT in response to TGF-β, 

we only evaluated their motility and invasion.  Indeed in both cell lines, transfection of 

miR-21 and miR-31 precursors resulted in a marked increase in cell migration and 

invasion (Fig. 2.9A and 2.9B).  Given that SW480 cells do not express SMAD4 and 

experiments in Figure 2.9 were all done without TGF-β stimulation, our observations also 

suggest that the pro-metastasis activities of miR-21 and miR-31 do not depend on a 

functional TGF-β/SMAD pathway.  Interestingly, under exactly the same conditions, 

miR-31 overexpression substantially suppressed motility and invasion of a breast cancer 

cell line MDA-MB-231 (Fig. 2.9C), consistent with previous reports of an anti-metastasis 

function of miR-31 in breast cancer (Valastyan et al., 2009; Valastyan et al., 2010).  

Therefore, the impact of miR-31 on cancer cell migratory properties is dependent on cell 

context.  

 

All of the above evidence points to pro-cancer invasion and metastasis functions of miR-

21 and miR-31 in multiple colon cancer cell lines.  These results also agree with previous 

studies of colon cancer tissues in which higher levels of miR-21 and miR-31 have been 

linked to colon cancer progression to a late stage and metastasis (Bandrés et al., 2006; 

Slaby et al., 2008). 
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Figure 2.9 
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Figure 2.9 ❘  Context-dependent pro-migration and pro-invasion activities of miR-21 

and miR-31 in colon and breast cancer cells.  (A-C), Control, miR-21 or miR-31 

precursors (100 nM) were transfected into DLD1 (A), SW480 (B) or MDA-MB-231 (C) 

cells. The motility and invasiveness of these cells were analyzed by transwell migration 

and invasion assays as in Fig. 2.8A and 2.8B. Plotted is the number of cells that migrated 

to the lower chamber was counted (mean + S.D., >3 fields per filter were examined,      

**, p < 0.01; ***, p < 0.001). 
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TIAM1 is a Target for Both miR-21 and miR-31 

One critical question is the downstream targets of miR-21 and/or miR-31 that contribute 

to the cellular impact of these two miRNAs.  Using TargetScan to search for 3’-UTR 

sequences with 7 nucleotide matches to the seed region of miR-21 or miR-31, TIAM1 (T 

lymphoma invasion and metastasis 1) emerged as a possible target for miR-21 (Lewis et 

al., 2005).  Upon visual inspection we found weak recognition sites for miR-31 (e.g. a 6 

nucleotide match) in the TIAM1 3’-UTR as well.  TIAM1 is a guanine nucleotide 

exchange factor (GEF) of Rac, and has been implicated in regulating cell migration, 

invasion and tumor progression (Habets et al., 1994; Mertens et al., 2003; Minard et al., 

2006).  Indeed, treating the LIM 1863 organoids with TGF-β/TNF-α substantially 

reduced the protein level of TIAM1 (Fig. 2.10A) and this downregulation of TIAM1 by 

TGF-β/TNF-α was not observed when organoids were transfected with inhibitors 

targeting both miR-21 and miR-31 (Fig. 2.11).  These observations further prompted us 

to investigate TIAM1 as a possible target of miR-21 and/or miR-31.  Transfection of LIM 

1863 cells with precursors for either miR-21 or miR-31 resulted in markedly decreased 

abundance of TIAM1 protein when compared to the non-targeting miRNA precursor 

control (Fig. 2.10B).  Quantitative real-time PCR revealed no change in the mRNA level 

of TIAM1 by either miR-21 or miR-31 (Fig. 2.12).  Thus miR-21 and miR-31 appear to 

control TIAM1 expression mainly through repression of the protein translation, not 

degradation of the mRNA.  Consistent with the functional data in Figure 2.9, miR-21 and 

miR-31 also downregulated TIAM1 in DLD1 and SW480 cells (Fig. 2.10C).  
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Figure 2.10 
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Figure 2.10 ❘  TIAM1 is an endogenous target of both miR-21 and miR-31. (A) LIM 

1863 organoids were treated with TGF-β/TNF-α (T+T) for 24 h and Western blotting 

was performed to determine TIAM1 levels (C16, Santa Cruz), with β-tubulin as a loading 

control.  B-C, miR-21 and miR-31 downregulate TIAM1 protein abundance in multiple 

colon cancer cell lines.  LIM 1863 (B), DLD1 (C) or SW480 (C) cells were transfected 

with 100 nM miR-21 or miR-31 precursors, or a negative control precursor.  After 72 h, 

TIAM1 protein level was measured by Western blotting. (D), LIM 1863 cells were 

transfected with 100 nM indicated miRNA precursors and 48 h later, the levels of mature 

miR-21 and miR-31 were determined by the TaqMan miRNA assay (mean + S.D., n>3). 

(E), (left) Alignment of TIAM1 3’-UTR with the miR-21 sequence. The numbering starts 

from the first residue after the stop codon. Asterisks indicate the nucleotides that were 

mutated (CT->TG for both site 1 and site 2 mutations). (right), miR-21 directly targets 

the 3’-UTR of TIAM1. LIM 1863 cells were transfected first with 100 nM of miR-21 

precursor or a control. Eighteen hours later the same cells were transfected with a Renilla 

luciferase reporter containing the wild type or mutant TIAM1 3’UTR (e.g. S1: site 1 

mutation; S2: site 2 mutation; S1/2: double mutation).  A constitutively active firefly 

luciferase reporter was used as the internal control. The luciferase activities were 

measured and plotted (mean + S.D., n>3). *, p < 0.05.(F), Similar experiments as in (E), 

analyzing the inhibitory impact of miR-31 on the 3’UTR of TIAM1. The mutated TIAM1 

3’-UTR residues are marked by “*” (CC->TT), the numbering is the same as in (E).     

**, p < 0.05; ***, p < 0.001. 
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Importantly, we found that transfection of miR-21 did not cause a significant change in 

mature miR-31 level, and vice versa (Fig. 2.10D).  Therefore, miR-21 and miR-31 do not 

influence the expression levels of each other and likely impact the expression of TIAM1 

independently.   

 

To further validate whether TIAM1 is a direct target of miR-21 or miR-31, we 

engineered a luciferase reporter construct containing the 1970-bp 3’-UTR of the TIAM1 

gene.  Indeed the miR-21 precursor significantly reduced the reporter expression (Fig. 

2.10E). We identified two potential miR-21 target sites (matching 7 nt of the miR-21 seed 

sequence) in the TIAM1 3’-UTR (Fig. 2.10E, left) that are conserved across seven 

species (Fig. 2.13).  Mutation of either one of the two potential miR-21 target sites in the 

TIAM1 3’UTR reduced, but did not fully abolish the suppression by miR-21 (Fig. 2.10E, 

left).  Only when both sites were mutated did the miR-21 precursor completely fail to 

repress the reporter expression (Fig. 2.10F, right).  These data strongly support the 

hypothesis that TIAM1 is a direct target of miR-21 in LIM 1863 cells.  Transfection of 

miR-31 precursor also significantly reduced the TIAM1 3’-UTR reporter (Fig. 2.10F).  

However, we could only find one stretch of 6 nucleotides complementing the miR-31 

seed sequence (Fig. 2.10F), which is poorly conserved (Fig. 2.13).  Nevertheless, 

mutation of this sequence significantly alleviated the repression by miR-31 (Fig. 2.10F).  

This strongly suggests that miR-31 also directly represses TIAM1 translation.  The 

remaining inhibitory effect of miR-31 may be due to additional cryptic sites within the 

TIAM1 3’-UTR or other indirect mechanisms. 
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Figure 2.11 

 

 

 

Figure 2.11 ❘  Inhibition of both miR-21 and miR-31 negate TGF-β /TNF-α  

downregulation of TIAM1.  LIM 1863 cells were transfected with 125 nM 2’O-Methyl 

RNA inhibitors (2’OMe) targeting miR-21, miR-31 or a negative control that targets 

eGFP.  Eighteen hours later, cells were treated with TGF-β/TNF-α (T + T).  After 24 h, 

protein lysates were made and western blotting was performed using antibodies to detect 

TIAM1.  β-Tubulin expression was evaluated as a loading control.  
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Figure 2.12 

 

 
 

Figure 2.12 ❘   miR-21 and miR-31 have no effect on TIAM1 mRNA expression.  

miR-21 and miR-31 has no effect on TIAM1 mRNA expression.  Total RNA was 

isolated from LIM 1863 cells (as in Fig 3B) and the relative expression of TIAM1 was 

determined by real-time PCR, using U6 snRNA as an internal reference (mean + S.D., 

data represents 4 experiments). 
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Figure 2.13 

 

Figure 2.13 ❘  Species conservation of the miR-21 and miR-31 sites in the TIAM1 

3’UTR. A, Schematic of the human TIAM1 3’UTR.  The relative location of the miR-21 

and miR-31 binding sites are noted.  Alignment of binding sites for miR-21, B, and miR-

31, C, in the TIAM1 3’UTR in human, chimpanzee, rhesus macaque, cow, dog, rat and 

mouse.  
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Repression of TIAM1 Expression is Important for Pro-metastasis Functions of miR-21 

and miR-31 in LIM 1863 cells  

In order to validate whether TIAM1 is a relevant factor in LIM 1863 morphological 

changes in response to TGF-β/TNF-α, we introduced exogenous TIAM1 through a 

lentiviral vector (Fig. 2.14A, left) in order to override its suppression by miR-21 and 

miR-31.  Ectopic TIAM1 expression did not cause any noticeable changes in the 

morphology of LIM 1863 organoids at basal state (Fig. 2.14A, right).  However, upon 

TGF-β/TNF-α treatment, TIAM1-overexpressing LIM 1863 organoids completely failed 

to undergo morphological changes as the control cells did (Fig. 2.14B).  Moreover, 

overexpression of TIAM1 also prevented TGF-β/TNF-α from enhancing motility and 

invasiveness of LIM 1863 cells (Figs. 2.14C and 2.14D).  Therefore, a low level of 

TIAM1 is important for TGF-β/TNF-α to promote LIM 1863 EMT, migration and 

invasion. 

 

Next we more directly tested whether the pro-migration and –invasion activities of miR-

21 and miR-31 are also dependent on suppression of TIAM1. Indeed, miR-21/miR-31 

precursors were no longer capable of enhancing motility and invasiveness of LIM 1863 

cells overexpressing TIAM1 (Figs. 2.14E and 2.14F).  These data further substantiate our 

model that repression of TIAM1 is a critical component in miR-21/miR-31 regulation of 

migratory and invasive properties of LIM 1863 cells. 
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Figure 2.14 
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Figure 2.14 ❘  Elevated TIAM1 level antagonizes LIM 1863 morphological changes, 

motility and invasion in response to TGF-β/TNF-α  and miR-21 and miR-31. (A) 

Phase contrast images showing no obvious morphological changes in LIM 1863 

organoids with or without TIAM1 overexpression. (B), TIAM1 overexpression greatly 

reduced the ability of LIM 1863 cells to undergo EMT.  Cells transduced with TIAM1 or 

empty vector (control) were stimulated with TGF-β/TNF-α (T+T).  The morphology of 

the organoids (n > 75 per group) was scored as “spreading” or “not spreading” as in Fig. 

2.3B at 6 h and 24 h time points (mean + S.D.,  >75 organoids were counted in each 

experiment, data represent >3 experiments). **, p < 0.01. (C and D), Transwell 

migration (C) and Matrigel invasion (D) assays measuring LIM 1863 cell motility and 

invasiveness, respectively. LIM 1863 cells were transduced with lentiviral vectors 

encoding TIAM1 or control. Cells (5 x 105 for the migration assay and 1 x 106 for the 

invasion assay) were then seeded into the upper chambers and treated with vehicle or 

TGF-β/TNF-α (T+T) as indicated. After 72 h, the number of cells that migrated to the 

lower chambers was counted (mean + S.D., 8 fields per filter were examined).  

***, p < 0.001. (E and F), LIM 1863 cells transduced with TIAM1-expressing or control 

vectors were further transfected with miR-21 (21), miR-31 (31) or control (C) precursors 

as indicated. Cells were then analyzed for motility (E) and invasion (F) (mean + S.D., 8 

fields per filter were examined). ***, p < 0.001. 
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Summary 

 

TGF-β is implicated in advancing carcinomas to malignancy.  Our data provides strong 

evidence for the contribution of miR-21 and miR-31 to the metastasis-promoting utility 

of TGF-β.  In this study, we examined LIM 1863, a 3D organoid culture derived from 

colon carcinoma and undergoes EMT in response to TGF-β.  We observed upregulation 

of miR-21 and miR-31 during EMT of LIM 1863 organoid.  Overexpression as well as 

inhibition experiments support the contributions of both miR-21 and miR-31 not only in 

the morphological changes of LIM 1863 in response to TGF-β, but also in cell motility 

and invasion.  Furthermore, we show that TIAM1 (T lymphoma and metastasis gene 1) is 

a direct target of both miR-21 and miR-31, and that the suppression of TIAM1 is 

important for the pro-migration and –invasion activities of miR-21 and miR-31.  

Therefore, we have identified miR-21 and miR-31 as positive regulators of colon 

carcinoma migratory and invasive properties. 
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Experimental Procedures 

 

Cell Culture and Cytokine Treatment – LIM 1863 cells and DLD1 were maintained in 

RPMI 1640 supplemented with 5% fetal or 10% bovine serum (FBS), respectively. 293T, 

MDA-MB-231 and SW480 cells were maintained in Dulbecco’s Modifed Eagle’s (DME) 

media supplemented with 10% FBS. All cell culture media also contained penicillin (100 

units/ ml) and streptomycin (100 units/ ml) (Invitrogen). For cytokine treatment, human 

TGF-β1 (R&D Systems) and human TNF-α (R&D Systems) were used at a final 

concentration of 2.5 ng/ml and 10 ng/ml, respectively. Cycloheximide (Sigma), was used 

at a final concentration of 15 µg/ml for 30 min. 

 

miRNA Microarray – Total RNA was extracted using the mirVanaTM RNA Isolation Kit 

(Ambion) according to the manufacturer’s instructions from LIM 1863 cells that were 

treated with both TGF-β and TNF-α media only for 24 h.  Total RNA was submitted to 

Exiqon (Vebaek, Denmark) for miRNA microarray profiling services, in which RNA was 

labeled with Hy3- and Hy5 fluorophores and hybridized to a miRCURY LNA microRNA 

Array (version 8.1).  All subsequent data analysis was performed by Exiqon.  

 

Northern Blotting – Total RNA was extracted using the mirVanaTM RNA Isolation Kit 

according to manufacturer’s instructions (Ambion). Twenty micrograms of total RNA 

was resolved on denaturing agarose gels and transferred to nylon membranes.  Following 

UV-crosslinking, membranes were incubated with random-primed miR-21 or GAPDH 
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cDNA probes in Church’s hybridization buffer (0.5 M NaHPO4, pH 7.2; 1 mM EDTA; 

7% SDS) at 42 ˚C for 18 h. For detecting the miR-21 primary transcript, the probe 

encompassed 250 bp on both sides of the mature miR-21 sequence. Membranes were 

washed three times in 2X SSC, 0.1% SDS at room temperature. To detect precursor and 

mature miRNA species, 20-40 µg of total RNA was resolved on 20% denaturing 

polyacrylamide gels, transferred to nylon membranes, UV-crosslinked and probed with 

5’-end labeled DNA oligonucleotide probes to detect miR-21 (5’-

TCAACATCAGTCTGA TAAGCTA-3’), miR-31 (5’-CAGCTATGC 

CAGCATCTTGCC-3’), or 5S rRNA (5’-TTAGCTTCCGAGATCA-3’) in Church’s 

hybridization buffer at 370C for 18 h. Membranes were washed as above, except at 370C.  

All membranes were exposed to phosphor imaging screens, and scanned with a Storm 

860 PhosphorImager (Molecular Dynamics). 

 

Overexpression and Inhibition of miRNA Function – Human miRNA21 and miRNA31 

precursors (AM17100) and a Cy3-labeled pre-miR negative control (AM17120) were 

purchased from Ambion.  miRNA activity was inhibited using chemically synthesized 

2’O-Methyl-modified RNA oligonucleotides (Dharmacon) that were antisense to 

miRNA21 (5’-mUmCmAmAmCmAmUmC mAmG mUmCmUmGm-AmGmCmUmA-

3’) or miRNA31 (5’-mCmAmGmCmUmAmUmGmCmC 

mAmGmCmAmUmCmUmUmGmCmC-3’). A 5’-Cy3 labeled RNA oligonucleotide 

(Integrated DNA Technologies) targeting eGFP (5’-Cy3mA mAmGmGmCmAm-

AmGmCmUmGmAmC mCmCmUmGmAmAmGmU-3’) was used as a negative control. 
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All transfections were performed utilizing Lipofectamine 2000 (Invitrogen) following the 

manufacturer’s protocol. LIM 1863 organoids were resuspended in RPMI 1640 

supplemented with 5% FBS and transfected with 100 nM of miRNA precursors in 24-

well tissue culture plates.  For migration and invasion assays, LIM 1863 organoids were 

trypsinized and dissociated before transfection.  In 24-well tissue culture plates, 3 x 105 

cells were transfected with 100 nM miRNA precursors or 250 nM miRNA inhibitors. 

 

Real-Time RT-PCR – Total RNA was isolated using the mirVanaTM RNA Isolation Kit 

following manufacturer’s instructions (Ambion).  One microgram of RNA was reverse 

transcribed using the iScript cDNA synthesis kit (Bio-Rad, Richmond, CA).  SYBR-

green real-time quantitative PCR was performed using a Bio-Rad MyiQ PCR detection 

system with the following gene-specific primers: Fibronectin-1 (FN1), forward 5’-

GAGCCATGTGTCT-TACCATT-3’ and reverse 5’- AGTATTTCTGGTCCTGCTCA-

3’; Interleukin-8 (IL8), forward 5’- ATGACTTC CAAGCTGGCCGTGGCT-3’ and 

reverse 5’- TCTCAGCC-CTCTTCAAAAAACTTCTC-3’; Laminin-γ-2 (LAMC2), 

forward 5’- CTGCAGGT GGACAACA-GAAA-3’ and reverse 5’- 

TCTGCTGTCACATTGGCTTC-3’; Matrix metalloproteinase-7 (MMP7), forward 5’-

CATGAGTGAGCTACAGTGGG-A-3’ and reverse 5’-CTAT-

GACGCGGGAGTTTAACAT-3’; T-lymphoma invasion and metastasis-1 (TIAM1), 

forward 5’- AAGACGTACTCAGGC CATGTCC – 3’ and reverse 5’- GACCCAA-
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ATGTCGCAGTCAG -3’; and U6 snRNA, forward 5’-CTCGCTTCGGCAGCACA-3’ 

and reverse 5’- AACGCTTCACGAATTTGCGT-3’.  

 

To measure mature miR-21 and miR-31 levels by quantitative real-time PCR, 10 ng of 

total RNA was reverse-transcribed using the TaqMan miRNA reverse transcription kit 

and RT primers for miR-21, miR-31 and U6 snRNA (Applied Biosystems). The cDNAs 

were then analyzed by real-time PCR using TaqMan probes for miR-21, miR-31 and U6 

snRNA (Applied Biosystems).   

 

Cell Migration and Invasion Assay – Uncoated or Matrigel-coated transwells containing 

8 µm pores were used for the assays (BD Biosciences).  Cells were seeded into the upper 

chamber in serum-free RPMI 1640 media. Conditioned DME media from NIH 3T3 cells 

containing 10% FBS was added to the lower chamber.  Cells were fixed in 100% 

methanol 72 h later and stained with a 1:5 dilution of Giemsa (Sigma) for 40 min at room 

temperature.  Cells remaining on the upper side of the filter were removed with a cotton 

swab.  The filters were then mounted onto cover slips and images were taken at 10X 

magnification.  From these images, the number of migratory or invasive cells was 

counted. 

 

Dual Luciferase Reporter Assay – The full-length TIAM1 3’UTR (1970 nt) was cloned 

into Xba I and Not I sites of a modified pRL-TK vector (Promega) immediately 

downstream of the Renilla luciferase stop codon and designated pRL-TIAM1. The 
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putative miR-21 and miR-31 recognition elements (MRE) in the TIAM1 3’UTR were 

mutated by site-directed mutagenesis (Stratagene). For the dual luciferase assay, LIM 

1863 cells were transfected with 100 nM of pre-miR-21, pre-miR-31 or a negative 

precursor control using Lipofectamine 2000 (Invitrogen).  After 24 h, cells were co-

transfected with 200 ng of pRL-TIAM1 and 100 ng of pGL3-luc as the internal control.  

Cell extracts were prepared 48 h later and the Dual-Glo luciferase reporter assay 

(Promega) was performed according to the manufacturer’s protocol. 

 

Lentiviral Transduction – To generate lentiviral particles, 293T cells in 10 cm plate were 

transfected with 12 µg of pLenti-CMV-puro (empty vector or containing TIAM1-FLAG), 

8 µg of pCMV-dR8.74, and 4 µg of pMD2-VSVG.  Forty-eight hours later the media was 

harvested, cleared by a 0.45 µm filter, mixed with polybrene and applied to dissociated 

LIM 1863 cells.  After overnight incubation, the virus-containing media was replaced 

with fresh media. 
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CHAPTER III 

 

IDENTIFICATION OF TGF-β  REGULATORY MECHANISMS 

IN THE EXPRESSION OF miR-21 AND miR-31 
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Introduction 

 

MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression by 

targeting mRNAs for translational repression or degradation (Lim et al., 2005; Selbach et 

al., 2008; Guo et al., 2010).  It is apparent that miRNAs are intimately involved in the 

regulation of fundamental cell processes including differentiation, cell proliferation, 

apoptosis and migration (Gusev et al., 2007).  Aberrant miRNA expression is linked to 

the development and progression of cancer (Garzon et al., 2009).  Extensive profiling 

studies on human samples revealed that miRNA expression patterns are drastically 

different between normal and cancerous tissues. (Lu et al., 2005; Volinia et al., 2006).  

The downregulation of certain miRNAs (e.g. miR-15a/miR-16-1, let-7) and upregulation 

of others (e.g. miR-17-92 cluster and miR-21) have been shown to correlate with 

tumorigenesis, and many miRNAs function to regulate many aspects of cancer cell 

biology, from cell proliferation and apoptosis to metastasis.  These findings have led to 

the notion that miRNAs could function as oncogenes or tumor suppressors (Garzon et al., 

2009).  Thus understanding how miRNA expression is controlled is an important topic in 

cancer biology.  

 

A growing number of signaling pathways that are deregulated in cancer, such as p53, c-

Myc and TGF-β, are implicated in the regulation of miRNA expression (Garzon et al., 

2009; Heldin et al., 2009).  TGF-β regulates of a multitude of miRNAs, such as miR-155, 

miR-192 and the miR-200 family (Heldin et al., 2009).  In Chapter II, we added miR-21 
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and miR-31 to the growing list of miRNAs that are regulated by TGF-β signaling.  The 

biological impact of TGF-β is mediated mostly by the Smad family of transcription 

factors (Massagué et al., 2005).  Receptor Smads (R-Smads, including Smads 1, 2, 3, 5 

and 8) are phosphorylated in response to TGF-β cytokines, and consequently associate 

with Smad4.  Such R-Smad/Smad4 complexes, in conjunction with additional 

transcription factors, are responsible for transcriptional regulation of a large number of 

genes upon TGF-β stimulation (Massagué et al., 2005).  Interestingly, in a study carried 

out in smooth muscle cells, Davis et al. reported that rather than their usual function as 

transcriptional activators, R-Smads act to enhance the Drosha-mediated processing of pri-

miR-21 by interacting with the Microprocessor component p68 (Davis et al., 2008).  

More recently, such pro-miRNA processing function of R-Smads was expanded to a 

number of other miRNAs, all of which share with pri-miR-21 a 5’-CAGAC-3’ RNA 

motif in the stem region that is directly bound by R-Smads (Davis et al., 2010).  

Interestingly, such pro-miRNA processing function was not observed for Smad4 (Davis 

et al., 2008).  

 

We recently observed that TGF-β and TNF-α increased levels of miR-21 and miR-31 in 

colon cancer cells (Chapter II).  In this study, we sought out to determine the nature by 

which ΤGF-β/TNF-α upregulates miR-21 and miR-31.  Here we show that TGF-β/TNF-

α signaling induces the synthesis of new factors to increase the levels of miR-21 and 

miR-31.  Further studies provide evidence in a number of cell lines that miR-21 is 

regulated by TGF-β primarily at the transcription level, not at the miRNA processing 
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steps.  Both loss- and gain-of function analyses suggest that Smad4 is essential for TGF-β 

transactivation of the gene coding miR-21.  We mapped a promoter element critical for 

the upregulation of miR-21 gene transcription by TGF-β and show that Smad4 binds to 

this region in vivo.  Therefore, Smad4 acts as a classic transcription factor in mediating 

the increase in miR-21 expression in response to TGF-β.  Smad4 was previously shown 

to enhance the processing, but not transcription of miR-21 in response to TGF-β in 

smooth muscle cells.  Therefore, depending on cellular contexts, Smad4 may act on 

different steps of miR-21 biosynthesis to promote the expression level of this important 

miRNA. 
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Results 

 

 TGF-β/TNF-α Upregulate miR-21/miR-31 at the Transcription and Processing Levels 

TGF-β and TNF-α synergize to induce EMT in the colorectal carcinoma cell line 

LIM1863 (Bates and Mercurio, 2003).  In this accelerated model of EMT, we previously 

observed a robust increase in the mature forms of miR-21 and miR-31 (Chapter II).  

Here, we sought out to further investigate how TGF-β signaling regulates miR-21 and 

miR-31.  In a time course analysis, we found that while the miR-21 precursor (a ~ 70 nt 

stem-loop processing intermediate) in LIM 1863 was rapidly increased and reached a 

plateau 2 hours after TGF-β/TNF-α stimulation, the increase in the mature miR-21 was 

delayed and did not reach its peak until 24 hours later (Fig. 3.1A).  While this observation 

suggests activation of miR-21 gene transcription by TGF-β/TNF-α, it is also clear that 

the processing from precursor to mature miR-21 is the more rate-limiting step in TGF-

β/TNF-α induction of this miRNA.  Interestingly, pre-treating the LIM 1863 organoids 

with cycloheximide effectively abrogated the increase in mature miR-21 by TGF-β/TNF-

α, and yet had no effect on the increase in miR-21 precursor (Fig. 3.1A).  This suggests 

that TGF-β/TNF-α enhances the Argonaute-mediated processing of miR-21 precursor 

through an indirect mechanism, requiring the synthesis of unknown factors.  Northern 

blotting of total RNA revealed three primary transcripts of the miR-21 gene, ranging in 

size from 1 to 4 kb (Fig. 3.1B).  All three transcripts rapidly increased two hours after 

TGF-β/TNF-α treatment, which was not affected by cycloheximide (Fig. 3.1B).  

Therefore, the level of miR-21 is regulated by TGF-β/TNF-α at the initial transcription  
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Figure 3.1 
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Figure 3.1 ❘  TGF-β/TNF-α  regulates miR-21 and miR-31 abundance at the 

transcription and processing steps.  (A) TGF-β/TNF-α (T + T) induction of mature 

miR-21 was abrogated by cycloheximide (CHX). LIM 1863 organoids were incubated 

with DMSO or 15 µg/ml cycloheximide for 30 min followed by treatment with both 

TGF-β and TNF-a (T + T) for the indicated times. Shown are Northern blotting analysis 

of miR-21 precursor (pre-miR-21, ~70 nt) and mature miR-21 (~21 nt), with 5S rRNA as 

the loading control.  (B) TGF-β/TNF-α induced a rapid increase in the miR-21 primary 

transcript (pri-miR-21), which was not affected by cycloheximide. Northern blotting of 

total RNA shows three prominent miR-21 primary transcripts with ~ 1 Kb, ~2 Kb and ~ 4 

Kb in size (arrows).  GAPDH served as the loading control. (C) Similar experiment as in 

(A) showing the increase in mature miR-31 in response to TGF-β/TNF-α was affected by 

cycloheximide. (D) TGF-β/TNF-α -induction of miR-21 and miR-31 is disrupted by 

Drosha knock-down.  LIM 1863 cells that were stably transduced with a Drosha-targeting 

or control (Con) shRNA were treated with TGF-β/TNF-α (T + T) for 36 h after which 

mature miR-21 and miR-31 expression was evaluated by real-time quantitative RT-PCR 

(mean + S.D., **, p <0.01; ***, p < 0.001). U6 snRNA was used as the internal standard. 
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and the processing steps, and only miR-21 gene transcription is a direct downstream 

target of TGF-β/TNF-α signaling.  

 

The increase in mature miR-31 by TGF-β/TNF-α became noticeable 2 h after the 

cytokine treatment, and continued to accumulate until 24 h later (Fig. 3.1C).  

Cycloheximide also effectively inhibited such upregulation of mature miR-31 by TGF-

β/TNF-α (Fig. 3.1C).  However, neither the primary nor the precursor forms of miR-31 

were detectable by Northern blotting, so we could not determine whether miR-31 is also 

regulated at the primary transcription level like in the case of miR-21.  Therefore, for 

both miR-21 and miR-31, the upregulation by TGF-β/TNF-α appears to be indirect and 

requires new synthesis of unknown factors. 

 

Furthermore, when we knocked down the essential miRNA processing factor Drosha 

using a previously validated shRNA, TGF-β/TNF-α failed to elevate the level of mature 

miR-21 and miR-31 (Fig. 3.1D and 3.2) (Kumar et al., 2007).  This observation suggested 

that the increase in miR-21/miR-31 upon TGF-β/TNF-α stimulation is due to new 

biosynthesis and/or processing of miRNAs. 
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Figure 3.2 

 
 

Figure 3.2 ❘   Efficiency of Drosha knockdown by shRNA.  Knockdown efficiency of 

Drosha shRNA construct. Total RNA was isolated from LIM 1863 cells that were stably 

transduced with a Drosha-targeting or control (Con) shRNA vector.  Drosha expression 

was measured via quantitative real-time RT-PCR (mean + S.D., ***, p < 0.001). U6 

snRNA was used as the internal standard. 

 

 

 

 

 

 

 



 90 

The miR-21 primary transcript level is increased by TGF-β/TNF-α treatment 

Next we aimed to determine whether TGF-β induction of miR-21 expression was mainly 

at the transcription level.  Consistent with results in Fig. 3.1B, treatment of LIM 1863 

cells with both TGF-β/TNF-α caused a rapid (< 1 h) and marked upregulation of pri-

miR-21, which remained well over basal levels for at least 24 hours, as determined by 

real-time quantitative PCR (Fig. 3.3A).  Moreover, either of these two cytokines alone 

was sufficient to induce the pri-miR-21 level in LIM 1863 cells (Fig. 3.3B).  But the 

combined treatment with both TGF-β and TNF-α resulted in much higher pri-miR-21 

than that achieved after treatment with TGF-β or TNF-α alone (Fig. 3.3B). 

 

Effect of actinomycin D on miR-21 biogenesis 

To determine if the upregulation of pri-miR-21 by TGF-β/TNF-α is mainly due to 

enhanced transcription, we employed actinomycin D, a potent inhibitor of transcription 

(Sobell, 1985). Treatment of LIM 1863 cells with actinomycin D prior to TGF-β/TNF-α 

stimulation abolished the ability of these cytokines to upregulate pri-miR-21 (Figs. 3.4A 

and 3.3B). In the presence of actinomycin D alone, the basal level of pri-miR-21 steadily 

declined over a 24-hour period (Figure 3.4C). This observation confirmed that active 

transcription is critical in the upregulation of pri-miR-21 by TGF-β/TNF-α signaling. 

Although we observed a sharp increase in the miR-21 primary transcript, it was not until 

at least 24 hours later that we saw elevated mature miR-21 levels (Figure 3.4D). This 

observation suggested that there is a lag between transcriptional activation of the miR-21 

gene and complete maturation of miR-21. 
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Figure 3.3 
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Figure 3.3 ❘   TGF-β/TNF-α  increases the miR-21 primary transcript level. (A) Real-

time quantitative PCR analysis of pri-miR-21 level in LIM 1863 cells treated with both 

TGF-β and TNF-α (T + T) or with media only (Vehicle) as indicated. (B) After treatment 

of LIM 1863 cells with TNF-α, TGF-β, or TGF-β and TNF-α combined (T + T) for 2 

hours, the pri-miR-21 level was measured by real-time quantitative PCR. For all 

experiments, U6 snRNA expression was determined as an internal reference  

(mean + S.D, n>3). ***, p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 93 

Figure 3.4 
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Figure 3.4 ❘  miR-21 is transcriptionally regulated by TGF-β/TNF-α .  LIM 1863 cells 

were pretreated with (A) DMSO or (B) actinomycin D (ActD) for 30 min followed by 

treatment with TGF-β/TNF-α (T + T) or media as indicated.  The level of pri-miR-21 

was measured using real-time quantitative PCR.  (C) The data in (A) and (B) were re-

plotted to emphasize the effect of ActD alone on pri-miR-21 expression. (D and E) The 

same experiments were performed as in (A and B), with the exception that the level of 

mature miR-21 was measured. (F) A new graph of the data from (D and E) was generated 

to highlight the effect of ActD alone on the level of mature miR-21. For all experiments, 

U6 snRNA expression was used as an internal reference (mean + S.D, n>3). *, p < 0.05; 

**, p < 0.01; ***, p < 0.001. 
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Interestingly, we observed that actinomycin D treatment itself caused a substantial 

increase in mature miR-21 over time, through unknown mechanisms (Figs. 3.4E and 

3.4F). Importantly, in cells treated with actinomycin D, TGF-β/TNF-α did not further 

induce the level of mature miR-21 (Fig. 3.4E). Together, these experiments support the 

hypothesis that the upregulation of mature miR-21 by TGF-β/TNF-α in LIM 1863 cells is 

primarily at the level of transcriptional activation of the miR-21 gene.  

 

TGF-β upregulates the miR-21 primary transcript in HaCaT cells 

Next, we aimed to determine whether TGF-β/TNF-α induction of miR-21 transcription 

was a unique response of LIM 1863 cells. We tested HaCaT, an immortalized human 

keratinocyte cell line that is highly responsive to TGF-β (Hannon and Beach, 1994; 

Reynisdóttir et al., 1995). Northern blot analysis confirmed that treatment of HaCaT cells 

with TGF-β/TNF-α for 2 hours upregulated the miR-21 primary transcript nearly 8-fold 

and this level persisted for at least 24 hours (Fig. 3.4A), similar to results observed in 

LIM 1863 cells (Fig. 3.2). Like in LIM 1863 cells, pri-miR-21 was robustly induced 

within 2 hours of TGF-β treatment in HaCaT cells (Fig. 3.4B). However, in contrast to 

LIM 1863 cells, TNF-α did not induce pri-miR-21 expression in HaCaT cells, which 

could be due differences in TNF-α signaling components in these cell lines (Fig. 3.4B). 

Moreover, TGF-β treatment of HaCaT cells for 24 hours yielded nearly four times more 

mature miR-21 than in untreated cells (Fig. 3.4C), consistent with published data 

(Zavadil et al., 2007). In all, these results show that in both HaCaT and LIM 1863, TGF-

β alone is sufficient to activate transcription of miR-21.  
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Figure 3.5 
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Figure 3.5 ❘  TGF-β  induces miR-21 gene transcription in HaCaT cells.  (A) Northern 

blot analysis of pri-miR-21 expression in HaCaT cells after treatment with TGF-β/TNF-α 

(T + T) or media only (-) as indicated.  GAPDH was the loading control. (B) Pri-miR-21 

expression in HaCaT after a 2 hour treatment with TNF-α, TGF-β, TGF-β/TNF-α (T + 

T) or media only (Vehicle), as determined by real-time quantitative PCR. (C) The mature 

miR-21 level in HaCaT cells following 24 hours of TGF-β or media alone (Vehicle) was 

measured by real-time quantitative PCR. U6 snRNA expression was determined as the 

internal standard for real-time quantitative PCR experiments and data represent the mean 

(+ S.D, n>3). ***, p < 0.001. 
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Transcriptional activation of miR-21 is dependent on Smad4 

Smads are the primary intercellular effectors of TGF-β-induced transcriptional responses 

(Massagué, 1998; Massagué et al., 2005). Thus, we next tested if the common Smad, 

Smad4, was required for transcriptional activation of the miR-21 gene by TGF-β. We first 

examined SW480 cells, a Smad4-deficient colon carcinoma cell line (Zhang et al., 1996). 

When SW480 cells were treated with TGF-β, TNF-α, or both for 2 hours, no increase in 

pri-miR-21 expression was detected (Fig. 3.6A). However, after we introduced a Smad4 

expression vector into SW480 cells, pri-miR-21 was rapidly (< 2 h) induced by TGF-β, 

supporting the importance of Smad4 in the transcriptional regulation of miR-21 (Fig. 

3.6B). Furthermore, we carried out a loss-of-function analysis to study the role of Smad4 

in miR-21 gene transcription. The human breast carcinoma cell line MDA-MB-231 

expresses functional Smad4 and pri-miR-21 was substantially induced within 2 hours of 

TGF-β/TNF-α treatment (Fig. 3.6C).  Such upregulation of the pri-miR-21 level was 

abolished when the endogenous Smad4 was depleted by a previously validated shRNA 

construct (Fig. 3.6C) (Kang et al., 2005). Importantly, upon expression of an shRNA-

resistant Smad4, the induction of pri-miR-21 by TGF-β/TNF-α was largely restored (Fig. 

3.6C) (Kang et al., 2005). Together these data strongly suggest that Smad4 plays a critical 

role in transcriptional activation of the miR-21 gene in response to TGF-β/TNF-α. This 

conclusion is different from the observations in smooth muscle cells where TGF-β-

induction of miR-21 production was shown to be independent of Smad4 (Davis et al., 

2008).   
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Figure 3.6 
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Figure 3.6 ❘  Smad4 is required for TGF-β  induction of miR-21 transcription.  (A) 

SW480 cells were treated for 2 hours with TNF-α, TGF-β, combined TGF-β and TNF-a 

(T + T) or media only (Vehicle) and pri-miR-21 level was measured by real-time 

quantitative PCR. U6 snRNA was used as the standard (mean + S.D, n>3).  (B) Northern 

blot analysis of pri-miR-21 expression in parental SW480 cells (Ctrl) or those expressing 

Smad4 (S4) after TGF-β treatment as indicated (left panel). Western blot analysis to 

detect Smad4 in the indicated SW480 cell lines; β-Tubulin level served as a loading 

control (right panel).  (C) Left, MDA-MB-231 parental cells (Ctrl) or those in which 

endogenous Smad4 was depleted by shRNA (sh-S4) and then restored by a shRNA-

insensitive Smad4 expression vector (S4 rescue) were treated with TGF-β/TNF-α (T + T) 

or media only (Vehicle) for 2 hours and pri-miR-21 expression was evaluated with 

Northern blotting. As a loading control, GAPDH expression was determined. Right, 

Western blot to detect Smad4 expression in MDA-MB-231 cell lines. β-Tubulin 

expression was used a loading control. 
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Identifying TGF-β response elements in the promoter of the miR-21 gene 

We next investigated the promoter elements responsible for transcriptional regulation of 

miR-21 by TGF-β/TNF-α.  To do this, we first evaluated the location of the miR-21 

promoter.  According to miRBase: the microRNA database (version 10), miR-21 

transcripts overlapped with those of VMP-1 (also known as TMEM49), a TGF-β target 

gene (Hill et al., 2005; Griffiths-Jones et al., 2008).  Based on this information, we 

surmised that elements in the VMP-1 promoter were sensitive to TGF-β/TNF-α signaling 

and, as a result, gave rise to increased levels of transcripts containing miR-21.  However 

the expression pattern of transcripts containing VMP-1 and miR-21 did not coincide 

following treatment of LIM 1863 cells with either TNF-α, TGF-β, or both cytokines (Fig. 

3.7).  This observation suggested that that miR-21 did not arise from VMP-1-containing 

transcripts and that miR-21 is an independently expressed gene, an idea that was 

independently validated (Fujita et al., 2008). 

 

We examined regions within 5 kb of the miR-21 stem loop to locate the miR-21 

promoter.  We generated a series of luciferase reporter constructs and tested them in LIM 

1863 organoids (Fig. 3.8A). We started with a 2.7 kb promoter fragment, which was 

activated by either TGF-β or TNF-α (Fig. 3.8B). More importantly, the 2.7 kb construct 

also recapitulated synergistic activation by TGF-β/TNF-α stimulation (Fig. 3.8B). By 

serial deletions, we identified an 812 bp minimal region that conferred TGF-β 

inducibility in LIM 1863 cells (Fig. 3.8B). Combined TGF-β/TNF-α treatment resulted 

in further enhancement of the reporter expression, while TNF-α alone elicited only a 
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moderate effect (Fig. 3.8B). To better define the TGF-β sensitive element, 200-bp 

deletions were made from either the 5’- or 3’- end of the 812-bp luciferase reporter.  

When these reporters were tested for responsiveness to TGF-β/TNF-α, all of those 

lacking the 3’-200 bp showed no increase in luciferase activity (Fig. 3.8C), whereas the 

reporters that retained this 3’-200 bp region were induced to similar levels as the 812-bp 

reporter (Fig. 3.8C). This suggested that this 200-bp region contained a TGF-β sensitive 

element and prompted us to search for possible sequences that might confer such a 

response to TGF-β.  Within this 200-bp region are Smad-binding elements and AP-1 

consensus sequences (Fig. 3.8D).  Mutation of these elements revealed that the most 3’ 

AP-1 site reduced luciferase activity nearly to basal level in response to TGF-β/TNF-α 

(Figs 3.8D and 3.8E) or TGF-β alone; TNF-α did not induce luciferase activity (Fig. 

3.8E).  Therefore, we have identified the promoter region responsible for TGF-β-

upregulation of miR-21 gene transcription. 

 

Next, we tested the ability of Smad4 to bind to this TGF-β-responsive region in vivo by 

chromatin immunoprecipitation (ChIP). Since the strongest reporter activity was 

observed when cells were treated with both TGF-β and TNF-α (Fig. 3.8), we decided to 

perform ChIP under this condition. Indeed the ChIP analysis showed increased binding of 

endogenous Smad4 to the TGF-β-response region in the miR-21 promoter after TGF-

β/TNF-α stimulation (Fig. 3.9). This result supports the notion that Smad4 acts as a 

conventional transcription factor to activate transcription of the miR-21 gene upon TGF-β 

stimulation. 
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Figure 3.7 
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Figure 3.7 ❘  VMP-1 and miR-21 are independently regulated genes.  (A) Schematic of 

VMP-1 and miR-21 on chromosome 17 in the human genome.  (B) The expression 

patterns for transcripts containing VMP-1 and miR-21 are different.  LIM 1863 organoids 

were treated as indicated for 24 h followed by Northern blot analysis with probes 

depicted in (A). GAPDH expression was determined as a control. 
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Figure 3.8 

 

 

 



 106 

 
Figure 3.8 ❘  The miR-21 gene contains a TGF-β-responsive region. (A) Schematic 

view of the miR-21 locus in the human genome.  Solid bars indicate the DNA fragments 

that were cloned into firefly luciferase reporters. Dashed bars correspond to the DNA 

region bearing TGF-β response elements.  (B) Luciferase reporter activities after 

treatment of LIM 1863 cells with TNF-α, TGF-β, TGF-β/TNF-α (T + T) or media only 

(Vehicle) for 24 hours. (C) Luciferase reporter activities after treatment of LIM 1863 

cells with TGF-β/TNF-α or media only (Vehicle) for 24 hours of reporters with 200-bp 

deletions from either the 5’- or 3’-end of the 812-bp region (D) Luciferase reporter 

activities from constructs bearing mutations in Smad and AP-1 sites after treatment of 

LIM 1863 cells with TGF-β/TNF-α or media only (Vehicle) for 24 hours (E) Luciferase 

reporter activities after treatment of LIM 1863 cells with TNF-α, TGF-β, TGF-β/TNF-α 

(T + T) or media only (Vehicle) for 24 hours of the indicated wild type and mutant 200-

bp reporter. As an internal control for all reporter experiments, each reporter was co-

transfected with a Renilla luciferase construct (mean + S.D, n>3). *, p < 0.05; **,            

p < 0.01; ***, p < 0.001. 
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Figure 3.9 

 

 

 

 

 

Figure 3.9 ❘  Smad4 binds to the mapped TGF-β  response element in the miR-21 

locus.  After treatment of LIM 1863 cells with TGF-α/TNF-β (T + T) or media alone 

(Vehicle) for 2 hours, chromatin immunoprecipitation (ChIP) was performed using 

antibodies that recognize Smad4 or c-Jun as described in the Experimental Procedures. 
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Summary 

 

Increased levels of miR-21 and miR-31 correlate with advanced tumor stage in patients 

with colorectal carcinoma, emphasizing the need to uncover factors involved in the 

metabolism and function of these two miRNAs.  In Chapter II we observed increased 

levels of miR-21 and miR-31 in response to TGF-β/TNF-α signaling in LIM 1863 

colorectal carcinoma cells, and this contributes to enhanced cancer cell motility and 

invasiveness.  In this study we investigated the mechanism by which TGF-β and TNF-α 

regulate miR-21 and miR-31.  We found that higher levels of the mature forms of miR-21 

and miR-31 induced by TGF-β/TNF-α signaling required the synthesis of new proteins.  

Furthermore in the case of miR-21, we found that TGF-β appeared to enhance the 

transcription of the gene encoding miR-21, contrasting to findings in smooth muscle cells 

where TGF-β enhanced mainly the processing of miR-21 (Davis et al., 2008; Davis et al., 

2010).  Our data strongly suggest that in a number of cell lines TGF-β activates the 

transcription of the miR-21 gene through Smad4.  Therefore, in a cell-context-dependent 

manner, TGF-β can regulate the biogenesis of miR-21 through different mechanisms. 
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Experimental Procedures 

 

Cell culture and cytokine treatment  

LIM 1863 cells were maintained in RPMI 1640 supplemented with 5% fetal bovine 

serum (FBS). HaCaT and MDA-MB-231 cell lines were maintained in Dulbecco’s 

Modified Eagle (DME) media supplemented with 10% FBS. All culture media also 

contained penicillin and streptomycin (100 units/ml), both from Invitrogen. For 

experiments using cytokines, cells were treated with 2.5 ng/ml TGF-β (R&D Systems) 

and 10 ng/ml TNF-a (R&D Systems). Actinomycin D (Sigma) was used at a final 

concentration of 1 ug/ml.  

 

Northern blotting 

Northern analysis was performed as previously described (Cottonham et al., 2010 ). 

Briefly, total RNA was separated on denaturing agarose gels and cross-linked to nylon 

membranes. Membranes were probed with 5’-end-labeled radiolabeled probes to detect 

transcripts containing VMP-1, miR-21 or GAPDH.  Radioactive signals were quantified 

using the ImageQuant software (Molecular Probes) or ImageJ software (Abramoff et al., 

2004). 

 

Real-time quantitative PCR 

Total RNA was isolated using Trizol (Invitrogen) and 1 ug was reverse-transcribed with 

the iScript cDNA synthesis kit (Bio-Rad). Real-time quantitative PCR was performed 
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using the following gene-specific primers: miR-21 primary transcript (pri-miR-21) 

forward, 5’-TCCGTTTTCTTGAGCGTTTT-3’ and reverse, 5’- 

AGTATGCAGCAGCCCAGTTT-3’; and U6 snRNA forward, 5’-

CTCGCTTCGGCAGCACA-3’ and reverse 5’-AACGCTTCACGAATTTGCGT-3’.  

Mature miR-21 levels were determined using the TaqMan miRNA assay with primers to 

detect miR-21 and U6 snRNA provided by the manufacturer (Applied Biosystems). 

 

Luciferase reporter assay  

Genomic DNA was isolated from LIM 1863 cells and used as a template to clone regions 

upstream of miR-21 into the MluI and XhoI sites of pGL3-promoter (Promega). The 2.7 

kb reporter was cloned using primers forward, 5’-TTAAAAGTCAGGGCCAGGAG-3’ 

and reverse, 5’-CTGTGCTTCCCTCGAGTTTC-3’ and the 2.4 kb reporter was cloned 

using forward primer, 5’-GACTACGCGTGTCTTTTCTGTAAACGATTCTGAGG-3’ 

and reverse primer, 5’-GACTGCTAGCAGGTGGTACAGCCATGGAGATG-3’.   

Deletion constructs (i.e. the 1.8 kb, 0.9 kb, 0.8 kb, etc.) of the miR-21 gene promoter 

depicted in Figure 3.8 were further generated by PCR cloning.    

 

LIM 1863 cells were transfected with 200 ng of firefly reporter vector and 250 ng of the 

control Renilla luciferase reporter vector using Lipofectamine 2000 (Invitrogen).  

Eighteen hours later, cells were treated with TNF-α, TGF-β, TGF-β/TNF-α (T + T) or 

media only. After 24 hours of cytokine treatment, firefly and Renilla luciferase activities 

were measured using the Dual Luciferase Reporter Assay (Promega). 
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Chromatin immunoprecipitation 

Approximately 300 mg of LIM 1863 cells were treated with TGF-β/TNF-α (T + T) or 

media (vehicle) for 2 h and then fixed with 1% formaldehyde for 15 min at 37 0C.  Cross-

linking was quenched with 0.125 M glycine for 5 min at room temperature. Extracts were 

prepared and sonicated to yield DNA fragments of approximately 500 bp.  The chromatin 

was adjusted to 1X ChIP buffer (10 mM Tris, pH 8; 1% Triton X-100; 0.1% 

deoxycholate; 140 mM NaCl; 1 mM EDTA, pH 8; 0.5 mM EGTA, pH 8; 1 mM PMSF). 

Chromatin was pre-cleared for 2.5 h with Dyna Protein A magnetic beads (Invitrogen) 

that had been pre-blocked with 1 mg/ml herring sperm DNA and 1 mg/ml BSA. Pre-

cleared chromatin was incubated with 4 µg of antibodies that recognize Smad4 or c-Jun 

(Santa Cruz) or rabbit IgG (negative control) at 4 0C for 16 h. Immune complexes were 

recovered by incubating samples with blocked Dyna Protein A magnetic beads for 1 hr at 

4 0C. The beads were washed three times with 1X ChIP buffer and resuspended in 0.5% 

SDS, 200 µg/ml proteinase K in TE buffer. Cross-links were reversed by incubating the 

samples at 55 0C for 3 h and then at 65 0C for 6 h. DNA was phenol-chloroform extracted 

followed by ethanol precipitation. Standard PCR was performed to detect the miR-21 

promoter region using forward primer, 5’-

GACTACGCGTTCCATGTATTCTGGGTAAGAAGG-3’ and reverse primer, 5’-

GACTGCTAGCGAGGCACCTCCCACTAGTCA-3’. 
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Overview 

TGF-β is linked to the advancement of late-stage tumors towards malignancy (Padua and 

Massagué, 2009).  Previous studies to elucidate molecular determinants involved in the 

pro-metastasis function of TGF-β focused on its transcriptional regulation of protein-

coding genes.  However, mounting evidence shows miRNAs significantly regulate gene 

expression at the level of translation.  Importantly, miRNAs function in key cellular 

processes and deregulation of miRNA activity is involved with several diseases, 

including cancer.  At the commencement of this thesis research, little knowledge existed 

about the function of miRNAs in TGF-β signaling, especially in the context of cancer.  

Thus, this body of work aimed to increase our understanding of the role of miRNAs in 

the metastasis-promoting function of TGF-β.  

  

MiR-21 and miR-31 as Effectors of TGF-β  Signaling 

We conclude that miR-21 and miR-31 are novel downstream effectors of TGF-β and 

TNF-α signaling, and directly regulate the motility and invasiveness of colon carcinoma 

cells.  Although these two miRNAs are likely to have many different direct targets, they 

converge on TIAM1, a protein known to regulate migration and invasion of various 

cancer cells (Habets et al., 1994; Mertens et al., 2003; Minard et al., 2006).  Therefore, 

we have uncovered a novel miRNA-mediated mechanism through which TGF-β, in 

conjunction with TNF-α, promotes invasion and metastasis of colon cancer.  Our data 

from Chapter II corroborate previous clinical studies which associate elevated miR-21 

and miR-31 levels to late stage colon cancer progression and metastasis (Bandrés et al., 
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2006; Slaby et al., 2007).  With this new mechanistic understanding of miR-21 and miR-

31 function in colon cancer cell biology, we suggest a possible utility of miR-21 and 

miR-31 as molecular markers or therapeutic targets of colon cancer.  

 

Interestingly, although there have been several reports that downregulation of the miR-

200 family is a common element in EMT, we did not find evidence of a change in miR-

200 expression during EMT in LIM 1863 organoids (Burk et al., 2008b; Burk et al., 

2008a; Gregory et al., 2008a; Gregory et al., 2008b; Korpal et al., 2008b; Korpal et al., 

2008a; Park et al., 2008a; Park et al., 2008b).  This could suggest that either the miR-200 

level is already low in LIM 1863 or that ZEB1/2, the miR-200 target, is not rate-limiting 

in this system. Unlike miR-200 that suppresses an upstream master regulator of the EMT 

program such as ZEB1/2, miR-21 and miR-31 may impact on more downstream events 

such as TIAM1. Therefore, overexpression of miR-21 or miR-31 may not be sufficient to 

initiate the EMT program, but rather play a facilitating role.  

 

In Chapter II of this study we found that both miR-21 and miR-31 target TIAM1 in LIM 

1863 cells.  Functional assays further confirmed the biological relevance of TIAM1 

downregulation in miR-21/miR-31 regulation of LIM 1863 motility and invasiveness.  

However, it is important to point out that miR-21 and miR-31 functions are not limited to 

suppressing TIAM1. These two miRNAs likely have other different targets, in addition to 

TIAM1, that may also be important for cell migration and invasion.  Such a scenario 

could explain how in anti-miR-21-treated LIM 1863 cells, even though TIAM1 would 
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still be repressed by miR-31 upon TGF-β/TNF-α treatment, the motility of LIM 1863 

cells was inhibited (Fig. 2.8C).  Furthermore, the anti-miR experiments also suggested 

that while miR-31 is not as critical as miR-21 in TGF-β/TNF-α-induced enhancement of 

migration, in terms of invasiveness, miR-21 and miR-31 play non-redundant roles and 

both are indispensable (Fig. 2.8D).  This finding highlights the need to identify a 

comprehensive cohort of genes regulated by miR-21 and miR-31. Recent technological 

advances and an increased understanding of the biochemistry underlying miRNA target 

recognition make it possible to use high-throughput methods (i.e. deep-sequencing or 

proteomics) to identify these targets and test their functional relevance. Additionally, 

such data will prove useful in deciphering whether these miRNAs, either individually or 

in concert, target mRNAs with similar functions, thereby effecting specific biological 

pathways that are regulated by TGF-β, such as those pertaining to migratory and invasive 

cellular properties. Nevertheless, the smaller-scale efforts undertaken in this study 

identified TIAM1 as a biologically functional target of miR-21 and miR-31.  

 

As a GEF for the Rho family of small G proteins, TIAM1 has been implicated in many 

aspects of cellular regulation, and its roles in several types of cancer have been 

documented (Mertens et al., 2003; Minard et al., 2004). However, the contribution of 

TIAM1 to tumor growth, invasion and metastasis is rather complicated and context-

dependent. For example, whether TIAM1 stimulates migration or adhesion may depend 

on which G protein is specifically under TIAM1 regulation.  A recent model suggests that 

in migratory cells, TIAM1 preferentially activates Rho, whereas in adherent cells TIAM1 
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preferentially activates Rac (Minard et al., 2004).  Mediation of adherence by Rac is 

counterintuitive as Rac often plays a central role in migration by stimulating lamellipodia 

formation (Ridley, 2001).  However, Rac is not required for migration and has been 

linked to the formation of cadherin-based adhesion structures (Ridley, 2001). Perhaps the 

more convincing evidence for the role of TIAM1 in migration and invasion comes from 

studies with the Tiam -/- mice.  Interestingly, while ablation of the TIAM1 gene 

significantly inhibited tumorigenesis in a Ras-induced skin cancer model, the tumor that 

did form progressed to malignance more efficiently (Malliri et al., 2002).  More relevant 

to our study, in an APC mutant Min mouse strain that develop intestinal tumors, TIAM1 

deficiency reduced the incidence of polyps formation, but the tumors were more invasive 

(Malliri et al., 2006).  Consistent with this, knockdown of TIAM1 by siRNA suppressed 

the proliferation of DLD1 colon cancer cells and reduced cell adhesion (Malliri et al., 

2006).  These all support our model that downregulation of TIAM1 by miR-21/miR-31 

facilitates colon cancer invasion and metastasis.  

 

There is likely more complexity regarding the roles of miR-21 and miR-31 in cancer 

biology, considering that each miRNA impacts on many targets (Bartel, 2004).  From 

many miRNA profile studies of clinical samples, a high miR-21 level has emerged as a 

common molecular marker of several types of solid tumor including colon cancer 

(Cummins et al., 2006; Volinia et al., 2006).  Several targets for miR-21 have been 

demonstrated in many cell lines, and it is evident that miR-21 is involved in multiple 

aspects of cancer development from initiation to metastasis (Krichevsky and Gabriely, 
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2009).  Interestingly, opposite to our hypothesis in colon cancer cells, miR-31 appears to 

be a negative regulator of breast cancer metastasis (Valastyan et al., 2009; Valastyan et 

al., 2010).  In breast cancer cells, the anti-metastasis impact of miR-31 was attributed to 

suppression of integrin α5, radixin and rhoA, and TIAM1 was not identified as a miR-31 

target in that context (Valastyan et al., 2009; Valastyan et al., 2010).  Whether the 

difference in biological outcomes could be attributed to distinct cohorts of mRNAs 

regulated by miR-31 in colon versus breast cancer cells still awaits investigation.  Equally 

possible is that TIAM1 function could also be cancer cell-type specific, and indeed 

previous studies have found that heightened TIAM1 serves to enhance motility and 

invasion of breast cancer cells, in contrast to our observation here in colon cancer cells 

(Bourguignon et al., 2000; Moriarty et al., 2010).  How TIAM1 may function in a cell 

context-dependent manner is another interesting question in understanding the molecular 

underpinnings of carcinoma metastasis. 

 

 

Regulation of miR-21 and miR-31 by TGF-β  and TNF-α  

Many studies identified changes in miRNA levels that accompany normal development 

and disease processes (Bushati and Cohen, 2007). With elucidation of the biological 

functions of various miRNAs, how the expression levels of these miRNAs are regulated 

in normal and pathophysiological contexts become important questions. Conceivably, 

regulation of miRNA biogenesis can occur at several points, including transcription, 

posttranscriptional processing, nuclear export and RISC loading (Kim et al., 2009).  
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There are a number of examples in which miRNA gene transcription is activated by 

transcription factors that are also known to regulate protein-coding genes. For instance, 

the transcription factors myogenin and MyoD1 directly bind to the loci of miR-1 and 

miR-133 to upregulate expression of these miRNAs during skeletal muscle differentiation 

(Chen et al., 2006; Rao et al., 2006).  Similarly, the tumor suppressor p53 

transcriptionally activates the miR-34 and miR-107 families to enhance cell cycle arrest 

and apoptosis (He et al., 2007b).   

 

An interesting observation presented in Chapter III is that the elevation of both miR-21 

and miR-31 is not an immediate early signaling event downstream of TGF-β/TNF-α and 

requires de novo protein synthesis.  Moreover, it is the processing from precursor to 

mature miR-21 that is more rate limiting.  This agrees with a report by Davis et al. in 

which TGF-β upregulation of miR-21 in vascular smooth muscle cells (VSMC) was 

attributed primarily to miRNA maturation, not transcription (Davis et al., 2008).  

However, in LIM 1863 cells at least, transcription of the miR-21 gene was robustly 

activated by TGF-β/TNF-α, with a time course typical of an immediate early target gene.  

Therefore, the transcriptional regulation of miR-21 by TGF-β/TNF-α is cell context-

dependent.  In VSMC the processing of miR-21 was acutely activated by TGF-β (Davis 

et al., 2008), but in contrast the accumulation of mature miR-21 in LIM 1863 organoids 

was much delayed and dependent on new protein synthesis.  Therefore, the underlying 

mechanism for TGF-β/TNF-α upregulation of mature miR-21 in LIM 1863 likely differs 

from that in VSMC.   
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Further investigations put forth in Chapter III, show that Smad4, acting as a transcription 

factor, is responsible for TGF-β-induced miR-21 gene transcription.  Interestingly, in 

primary smooth muscle cells TGF-β upregulates the level of miR-21 through a 

posttranscriptional mechanism that is independent of Smad4 (Davis et al., 2008).  It was 

proposed that upon TGF-β treatment, the interaction between R-Smads and pri-miRNAs 

containing a 5’-CAGAC-3’ motif in their stem region facilitates recruitment of the 

Drosha Microprocessor and enhances processing of pri-miRNA into precursor miRNA.  

Interestingly, Smad4 apparently lacks such ability to bind RNA or the 

Drosha/DGCR8/p68 complex and does not play a role in Drosha-mediated miRNA 

processing (Davis et al., 2008).  An unresolved question is whether such R-Smad-

mediated regulation of pri-miRNA processing is a common mechanism in other cell 

lines. 

 

On the other hand, our study in Chapter III strongly supports the role of Smad4 as a 

classic transcription factor in activating the transcription of miR-21 in response to TGF-β.  

We observed this function of Smad4 in a number of cell lines.  Our experiments with 

actinomycin D indicated that TGF-β upregulates mature miR-21 level mainly through 

enhancing the transcription of the miR-21 gene.  Therefore, R-Smads and Smad4 may act 

at different steps of the miRNA biosynthesis pathway, in a cell context-dependent 

manner, to regulate the level of specific miRNAs such as miR-21.  Recent studies also 

suggested that miRNA precursor processing can be co-transcriptional (Morlando et al., 
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2008; Pawlicki and Steitz, 2008).  In this model, Drosha is recruited to the miRNA gene 

locus and such recruitment appears to require ongoing transcription. Thus, it is plausible 

that the function of Smad as a typical transcription factor and its role in miRNA precursor 

processing can be linked. 

 

MiR-21 is emerging as a critical player in cancer biology.  The level of miR-21 is 

elevated in several major types of solid tumor and could serve as a useful molecular 

marker of these cancers (Volinia et al., 2006). Recent work in mouse models further 

confirmed the general pro-tumorigenic function of miR-21 (Hatley et al., 2010; Medina et 

al., 2010). Besides our finding here that the TGF-β pathway directly activates 

transcription of the miR-21 gene, transcription factors such as STAT3, AP1 and steroid 

hormone receptors have also been found to upregulate the transcription of miR-21 

(Loffler et al., 2007; Fujita et al., 2008; Ribas et al., 2009; Wickramasinghe et al., 2009). 

Therefore, the promoter region of miR-21 appears to be responsive to a multitude of 

signaling pathways, consistent with the idea that this biologically important miRNA is 

under exquisite regulation.   

 

Implications for the Role of miR-21, miR-31, and Stromal Factors  

in Carcinoma Metastasis 

A provocative finding presented in Chapters II and III of this study is that both TGF-β 

and TNF-α act together to upregulate miR-21 and miR-31- a finding that hints at the 

interplay between tumor cells and their surrounding environment during malignant 
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conversion.  In the tumor stroma, TGF-β and TNF-α are present and generate an 

environment permissive for tumor metastasis (Tlsty and Coussens, 2006).  Tumor cells 

synthesize and secrete copious amounts of TGF-β (Derynck et al., 2001), which initiates 

alterations in cell physiology and the surrounding extracellular matrix to progress tumors 

toward malignancy (see Chapter I).  Furthermore, elevated TGF-β levels in the tumor 

microenvironment attract macrophage precursors (Assoian et al., 1987).  Infiltrating 

macrophages are stimulated by TGF-β to secrete a milieu of cytokines that includes TGF-

β and TNF-α (Roberts et al., 1988; Tlsty and Coussens, 2006).  Like TGF-β, chronic 

levels of TNF-α are also associated with tumor progression and metastasis, as this 

cytokine promotes cell migration, proliferation, ECM remodeling, stroma development 

and angiogenesis (Szlosarek et al., 2006; Tlsty and Coussens, 2006).  Secretion of TGF-β 

and TNF-α by tumor cells and stromal cells, respectively, form a locally sustained source 

of these cytokines in the tumor microenvironment, which facilitates carcinoma 

malignancy.  

 

In culture, stimulation of LIM 1863 organoids with TGF-β and TNF-α leads to EMT, 

autocrine production of TGF-β and TNF-α, (Bates and Mercurio, 2003; Bates et al., 

2005) and increased levels of miR-21 and miR-31 (Chapters II and III).   In LIM 1863 

organoids, TNF-α is not sufficient to increase levels of either miR-21 or miR-31 (Chapter 

II) or drive EMT induction in this colon carcinoma model (Bates and Mercurio, 2003).  

However, TGF-β alone impacts miR-21 biogenesis at multiple levels (Chapters II and 

III).  Furthermore, in LIM 1863 organoids TGF-β induces EMT, albeit it is a slow 
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process (5-7 days) in comparison to TGF-β/TNF-α stimulated EMT (24-48 hours).  As 

demonstrated in Chapter II, the combined exposure of LIM 1863 cells to TGF-β/TNF-α 

not only accelerates EMT, but also intensifies the upregulation of both miR-21 and miR-

31.   Thus, it is feasible that a tumor microenvironment rich in TGF-β causes macrophage 

infiltration, TNF-α secretion and subsequent activation of signal cascades to yield 

increased levels of miR-21 and miR-31 as a means to facilitate tumor metastasis  

(Fig. 4.1).  

 

Elevated levels of miR-21 and miR-31 facilitate metastatic conversion of colon 

carcinoma cells by altering tumor cell plasticity (Chapter II).   It is also possible that 

miR-21 and miR-31 activities influence the tumor microenvironment.  Support for this 

idea is provided by the finding in Chapter II that miR-21 and miR-31 function increases 

the expression of fibronectin (FN-1), laminin-γ5 (LAMC2), matrix metalloprotease-7 

(MMP-7), and interleukin-8 (IL-8), which are all upregulated to a greater extent in the 

presence of TGF-β.  These factors are all markers of EMT and metastasis and play roles 

in altering the tumor microenvironment (Bates et al., 2004; Vincan et al., 2007b).  

Continual deposition of extracellular matrix proteins such as FN-1 and LAMC2, and their 

degradation by proteases like matrix MMP-7, contribute to remodeling of the tumor 

microenvironment and enables tumor cells to migrate and invade (Stetler-Stevenson et 

al., 1993).   
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Figure 4.1 
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Figure 4.1 ❘  Contribution of tumor cells and the microenvironment to the 

upregulation of miR-21 and miR-31. (1) Tumor cells secrete TGF-β in an autocrine 

fashion, which initiates alterations in tumor cell physiology, (2a) moderately upregulates 

miR-21 and (2a) attracts macrophage precursors into the area surrounding the tumor. (2b) 

Infiltrating macrophages secrete TNF-α. (3) Increased levels of TGF-β and TNF-α act on 

tumor cells and lead to (4) significant upregulation of mature miR-21 and miR-31 levels. 
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Furthermore, upregulation of MMP7 expression in cancer cells activates pro-MMP9, 

which in turn is linked to the proteolytic activation of latent TGF-β (Yu and 

Stamenkovic, 2000; Ii et al., 2006).   This suggests that miR-21 and miR-31 may cause 

increased biologically active TGF-β in the tumor stroma. 

 

Increased levels of IL-8 are associated with invasive and malignant phenotypes in colon 

carcinoma (Li et al., 2001) and is secreted by LIM 1863 cells during EMT (Bates et al., 

2004).  Besides leukocyte attraction, IL-8 is also involved with angiogenesis, which 

facilitates tumor survival and spread of carcinoma cells to distant locations (Koch et al., 

1992).  Provocatively, miR-31 leads to the secretion of soluble factors that appear to be 

trophic in nature, as conditioned media from miR-31 overexpressing cells altered the 

morphology of control cells (Chapter II).  The identity of these factors awaits further 

investigation.  Taken together, it appears that the microenvironment of the tumor 

facilitates upregulation of miR-21 and miR-31, which then mediates the influence of 

TGF-β on metastasis.   

 

 

Conclusions and Remaining Questions  

Aberrant TGF-β signaling forms the basis of several diseases, especially cancer.  In later 

stages of tumor progression, in which TGF-β is highly expressed, TGF-β signaling often 

promotes tumor invasion and metastasis (Massagué et al., 2000; Han, 2005).  It is 

believed that cancerous cells gain metastatic capability by recapitulating EMT, which 
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TGF-β is known to potently induce (Thiery, 2002; Nawshad et al., 2005).   Therefore 

elucidating the molecular underpinnings that enable carcinoma cells to respond to TGF-β 

with EMT and ultimately metastasis may yield novel points of regulation in the TGF-β 

signaling pathway.  Most importantly, increased understanding of how TGF-β exerts its 

pro-metastasis function may aid in developing therapies to impede tumor progression. To 

that end, this research shows that miR-21 and miR-31 are components of a larger 

molecular program that TGF-β initiates to ultimately elicit EMT, migration and invasion 

in colorectal carcinoma (Fig. 4.2).  This new knowledge impacts our understanding of the 

regulatory mechanisms involved with the metastasis-promoting utility of TGF-β.   

 

Given the actions of miR-21 and miR-31 on TGF-β-mediated EMT, migration, and 

invasion in colon carcinoma, what can be inferred about the role of these miRNAs in the 

role of TGF-β in normal colonic physiology?  As described in Chapter I, EMT and 

migration play important roles in tissue regeneration that is mediated by TGF-β (Kalluri 

and Weinberg, 2009). Furthermore, the colon epithelium suffers persistent injury from 

parasite, bacterial, and viral infections in addition to tissue damage caused by toxins 

absorbed through the diet.  These injuries often lead to chronic states of inflammation and 

disorders such as irritable bowel syndrome, Crohn’s disease and ulcerative colitis (Xavier 

and Podolsky, 2007). At these sites of tissue damage, both TGF-β and TNF-α are present 

due to similar mechanisms as those observed in the microenvironment of tumor cells. In 

the colon, tissue injury initiates a number of molecular events, such as activation of the 

NFκB pathway in immune and intestinal epithelial cells (Lin and Karin, 2007; Nenci et 
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al., 2007).  NFkB signaling leads to upregulation and secretion of a milieu of pro-

inflammatory cytokines, including TNF-α, to mediate inflammation as a component of 

the host immune response (Lin and Karin, 2007). To limit the duration of the 

inflammatory process, anti-inflammatory cytokines, such as TGF-β, are upregulated (Lin 

and Karin, 2007).  TGF-β serves a dual role- both mediating the conclusion of 

inflammation and orchestrating the repair of the injured tissue. Thus, exposure of colonic 

tissue to pathogens can lead to increased levels of TGF-β and TNF-α, which then act on 

the colon epithelium, increasing levels of miR-21 and miR-31. Once upregulated, it is 

possible that these miRNAs mitigate the actions of TGF-β (i.e., stimulation of EMT and 

migration) during repair of the colonic mucosa. An equally provocative and unresolved 

question includes, how might miR-21 and miR-31 impact the role of TGF-β in the repair 

of other tissues, such as those of the kidney or liver? Do these miRNAs play a role in the 

pathophysiological counterpart of tissue repair, fibrosis?  At present studies are underway 

in our laboratory to determine the contribution of miRNAs to kidney fibrosis.  How miR-

21 and miR-31 impact the role of TGF-β in renal fibrosis is currently an open question. 
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Figure 4.2 
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Figure 4.2 ❘   The role of miR-21 and miR-31 in the pro-metastasis function of  

TGF-β  in colorectal carcinoma. TGF-β cooperates with TNF-α to increase levels of 

miR-21 and miR-31, two miRNAs that facilitate the ability of TGF-β to induce EMT, 

migration, and invasion of colorectal carcinoma cells.  
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APPENDIX 

 

 
Table A.1 ❘  LNA miRNA microarray data for LIM 1863 cells treated with  
                   TGF-β/TNF-α . 
 

Gene Id Annotation 
Median 
Ratios 

Log Median 
Ratios 

Median 
Hy3 

Median 
Hy5 CV 

17748 hsa-let-7a 1.04 0.05 3070 2965 2.29 
17749 hsa-let-7b 1.16 0.21 1265 1084 1.12 
19004 hsa-let-7c 1.06 0.08 2321 2195 4.10 
17750 hsa-let-7d 0.92 -0.13 227 249 0.96 
17751 hsa-let-7e 0.82 -0.29 128 156 3.78 
17752 hsa-let-7f 0.80 -0.32 97 122 3.06 
19602 hsa-let-7g 0.99 -0.01 170 171 2.95 
19580 hsa-let-7i 1.18 0.24 464 384 3.47 
10916 hsa-miR-1 1.30 0.38 110 84 6.81 
19581 hsa-miR-100 NA NA NA NA NA 
17615 hsa-miR-101 0.95 -0.08 92 98 5.83 
10919 hsa-miR-103 0.94 -0.09 624 668 1.97 
10920 hsa-miR-105 NA NA NA NA NA 
19582 hsa-miR-106b 0.80 -0.31 192 239 2.23 
10923 hsa-miR-107 1.21 0.28 867 713 1.29 
13485 hsa-miR-10a 0.84 -0.25 939 1115 3.89 
10925 hsa-miR-10b 0.74 -0.44 81 109 2.47 
19583 hsa-miR-122a 1.11 0.15 72 64 1.80 
14328 hsa-miR-124a 1.28 0.35 105 82 3.45 
10928 hsa-miR-125a 0.98 -0.03 188 194 2.65 
10929 hsa-miR-125b 1.06 0.09 166 154 6.49 

4610 hsa-miR-126 1.00 0.00 74 74 4.17 
10930 hsa-miR-126* 0.98 -0.03 69 71 48.88 
10931 hsa-miR-127 0.81 -0.31 73 90 1.64 
10932 hsa-miR-128a 1.00 0.00 91 91 4.94 
19584 hsa-miR-128b 1.05 0.08 73 70 0.45 
10934 hsa-miR-129 1.24 0.32 269 232 15.07 
10935 hsa-miR-130a 1.05 0.08 74 69 4.24 
10936 hsa-miR-130b 1.01 0.02 179 176 1.43 
10937 hsa-miR-132 NA NA NA NA NA 

10938 
hsa-miR-133a-
133b 0.90 -0.14 90 100 2.00 

10940 hsa-miR-134 0.90 -0.16 82 92 2.81 
10941 hsa-miR-135a 1.66 0.73 137 83 9.72 
10942 hsa-miR-135b 1.19 0.25 111 93 7.25 
10943 hsa-miR-136 1.09 0.12 100 91 0.41 
10944 hsa-miR-137 1.45 0.53 121 84 5.21 
13140 hsa-miR-138 1.10 0.14 101 90 2.97 
10945 hsa-miR-139 1.18 0.24 85 72 4.34 

4700 hsa-miR-140 1.09 0.13 84 77 18.57 
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10946 hsa-miR-141 1.08 0.11 155 143 1.97 
10947 hsa-miR-142-3p 0.83 -0.27 1261 1498 6.93 
19015 hsa-miR-142-5p 0.71 -0.50 311 430 3.27 
13177 hsa-miR-143 0.98 -0.03 69 70 0.32 
10950 hsa-miR-144 1.14 0.19 82 72 0.70 
10951 hsa-miR-145 1.06 0.09 83 78 2.00 
10952 hsa-miR-146a 1.07 0.10 89 83 4.37 
10306 hsa-miR-146b 1.02 0.03 78 76 2.07 
10954 hsa-miR-147 1.23 0.30 84 68 1.45 
10955 hsa-miR-148a 1.16 0.21 134 117 3.78 
19585 hsa-miR-148b 0.85 -0.23 111 131 2.01 
19586 hsa-miR-149 NA NA NA NA NA 
19587 hsa-miR-150 0.91 -0.14 76 84 0.87 
17463 hsa-miR-151 0.96 -0.06 122 128 2.33 
17676 hsa-miR-152 0.94 -0.09 81 86 1.21 
10961 hsa-miR-153 1.08 0.11 71 66 2.95 
10962 hsa-miR-154 1.16 0.21 106 92 2.81 
10963 hsa-miR-154* 0.89 -0.17 76 85 6.37 
10964 hsa-miR-155 1.16 0.21 103 89 2.94 
10965 hsa-miR-15a 0.95 -0.08 115 121 1.68 
17280 hsa-miR-15b 0.87 -0.19 432 495 3.01 
10967 hsa-miR-16 0.86 -0.22 511 575 3.39 
19588 hsa-miR-17-3p 1.00 0.00 238 241 4.54 

17605 
hsa-miR-17-5p-
106a 0.70 -0.51 701 993 3.16 

10971 hsa-miR-181a 1.08 0.11 78 72 6.57 
11013 hsa-miR-181a* 1.03 0.04 73 71 2.27 
10972 hsa-miR-181b 1.14 0.19 90 78 1.99 
10973 hsa-miR-181c 1.91 0.94 156 81 3.30 
10974 hsa-miR-181d 1.17 0.23 86 73 0.94 
10975 hsa-miR-182 1.30 0.38 203 155 4.21 
10976 hsa-miR-182* 1.17 0.22 111 95 4.38 
10977 hsa-miR-183 0.93 -0.10 240 257 1.01 
10978 hsa-miR-184 1.23 0.30 491 387 7.39 

5560 hsa-miR-185 0.94 -0.09 1320 1339 5.38 
10979 hsa-miR-186 1.07 0.09 103 96 7.85 
17643 hsa-miR-187 1.00 0.00 69 69 2.28 
19589 hsa-miR-188 1.10 0.14 75 68 1.18 
10982 hsa-miR-189 0.91 -0.14 74 82 1.16 
10983 hsa-miR-18a 0.91 -0.14 364 397 7.88 
13178 hsa-miR-18a* 0.74 -0.44 77 104 3.11 
13141 hsa-miR-18b 0.86 -0.22 278 332 2.21 
10984 hsa-miR-190 1.28 0.35 98 77 2.09 
10985 hsa-miR-191 0.97 -0.05 552 569 3.55 
13126 hsa-miR-191* 1.14 0.19 90 79 2.29 
17732 hsa-miR-192 0.93 -0.10 494 525 3.25 
13172 hsa-miR-192 0.88 -0.19 73 82 3.66 
10986 hsa-miR-193a 1.11 0.15 1570 1419 6.65 
10987 hsa-miR-193b 1.05 0.07 105 100 3.90 
10988 hsa-miR-194 1.00 0.00 254 255 3.43 
13148 hsa-miR-195 0.74 -0.44 76 103 3.32 
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10990 hsa-miR-196a 1.12 0.16 144 127 5.33 
10991 hsa-miR-196b 1.18 0.23 115 97 3.36 
10992 hsa-miR-197 1.09 0.12 149 137 1.33 
10993 hsa-miR-198 0.96 -0.06 371 380 4.16 
19590 hsa-miR-199a 0.99 -0.01 69 70 1.30 
10995 hsa-miR-199a* 1.03 0.05 69 67 1.80 
19591 hsa-miR-199b 1.07 0.10 71 66 3.07 
10997 hsa-miR-19a 1.00 0.00 187 184 4.57 
10998 hsa-miR-19b 0.92 -0.11 143 154 4.07 
11000 hsa-miR-200a 1.32 0.40 2886 2173 3.56 
13127 hsa-miR-200a* 1.00 0.01 75 75 3.75 

9578 hsa-miR-200b 1.01 0.02 664 654 2.41 
17427 hsa-miR-200c 1.02 0.03 620 604 6.41 
11003 hsa-miR-202 0.99 -0.02 617 624 3.39 
10314 hsa-miR-202* 2.02 1.02 159 79 4.06 
11004 hsa-miR-203 1.70 0.77 322 189 3.68 
11005 hsa-miR-204 1.17 0.22 97 83 1.70 
11006 hsa-miR-205 0.93 -0.10 75 80 3.59 
11007 hsa-miR-206 1.04 0.06 87 83 3.80 

5730 hsa-miR-208 0.95 -0.07 93 99 3.41 
11008 hsa-miR-20a 0.77 -0.37 816 1058 3.37 
10999 hsa-miR-20a 0.78 -0.35 697 899 3.35 
11009 hsa-miR-20b 0.81 -0.30 135 168 1.66 

5740 hsa-miR-21 2.80 1.48 2049 721 4.02 
13511 hsa-miR-210 1.18 0.23 660 590 5.95 
11011 hsa-miR-211 1.12 0.16 95 85 0.52 
19592 hsa-miR-212 0.76 -0.39 173 226 2.86 
11014 hsa-miR-214 1.02 0.02 539 520 4.32 
11015 hsa-miR-215 0.92 -0.12 349 380 6.91 
11016 hsa-miR-216 1.08 0.11 74 69 0.80 
19016 hsa-miR-217 1.02 0.03 71 71 1.06 
11018 hsa-miR-218 1.08 0.11 82 76 4.16 
11019 hsa-miR-219 1.01 0.01 69 67 2.41 
11020 hsa-miR-22 2.00 1.00 212 106 3.50 
11021 hsa-miR-220 1.15 0.21 78 68 4.65 
11022 hsa-miR-221 1.17 0.23 387 329 5.39 
11023 hsa-miR-222 1.06 0.08 2089 1971 6.39 
11024 hsa-miR-223 1.09 0.13 108 99 3.96 
11025 hsa-miR-224 1.02 0.03 77 76 3.67 
11026 hsa-miR-23a 1.98 0.98 932 471 3.89 
11027 hsa-miR-23b 1.29 0.37 494 382 4.01 
17506 hsa-miR-24 1.82 0.86 500 276 1.82 
11029 hsa-miR-25 1.16 0.21 101 87 2.89 
11030 hsa-miR-26a 1.31 0.39 346 267 1.74 
11031 hsa-miR-26b 1.40 0.48 371 262 2.18 
19593 hsa-miR-27a 1.87 0.91 251 134 2.57 
13175 hsa-miR-27b 1.19 0.25 155 131 1.52 
11034 hsa-miR-28 0.89 -0.17 77 87 3.54 
19594 hsa-miR-296 1.24 0.31 228 183 4.86 
11037 hsa-miR-299-3p NA NA NA NA NA 
11038 hsa-miR-299-5p 0.94 -0.10 79 83 3.49 
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11039 hsa-miR-29a 1.13 0.18 3781 3341 3.52 
11040 hsa-miR-29b 1.22 0.28 329 267 4.99 
11041 hsa-miR-29c 1.05 0.08 190 180 5.66 
13143 hsa-miR-301 0.58 -0.79 65 111 5.81 
11222 hsa-miR-302a 1.18 0.24 89 75 7.39 
11042 hsa-miR-302a* 1.03 0.05 86 83 3.29 
11043 hsa-miR-302b 1.04 0.06 74 70 2.39 

5930 hsa-miR-302b* 1.09 0.13 83 76 6.04 
11044 hsa-miR-302c 1.15 0.20 87 76 4.19 
11045 hsa-miR-302c* 0.96 -0.06 125 130 0.86 
11046 hsa-miR-302d 1.13 0.18 83 73 1.69 
19595 hsa-miR-30a-3p 1.04 0.06 67 65 1.95 
11048 hsa-miR-30a-5p 0.88 -0.19 112 128 2.99 
17565 hsa-miR-30b 0.81 -0.31 329 407 0.68 
17502 hsa-miR-30c 0.96 -0.05 231 241 0.82 
19596 hsa-miR-30d 0.85 -0.23 104 122 2.20 
11224 hsa-miR-30e-3p 0.91 -0.14 77 85 8.22 
13174 hsa-miR-30e-5p 1.05 0.08 90 85 2.48 
11052 hsa-miR-31 2.26 1.18 308 137 6.49 
11053 hsa-miR-32 0.81 -0.30 80 97 2.92 
11054 hsa-miR-320 1.12 0.16 2473 2213 6.18 
11055 hsa-miR-323 1.05 0.07 77 74 6.19 
11056 hsa-miR-324-3p 1.01 0.02 157 156 2.16 
11057 hsa-miR-324-5p 0.96 -0.05 91 95 2.30 
11058 hsa-miR-325 1.19 0.26 78 65 0.47 
11059 hsa-miR-326 1.11 0.14 393 347 3.33 
11060 hsa-miR-328 0.94 -0.10 75 80 2.40 
11061 hsa-miR-329 1.04 0.06 71 68 0.73 
11062 hsa-miR-33 1.02 0.02 81 80 0.46 
11063 hsa-miR-330 0.83 -0.27 72 86 2.99 
11064 hsa-miR-331 1.09 0.12 118 111 7.93 
11065 hsa-miR-335 0.87 -0.20 92 107 4.95 
11066 hsa-miR-337 1.20 0.27 83 70 4.87 
11067 hsa-miR-338 1.48 0.56 209 142 1.62 
19597 hsa-miR-339 0.82 -0.28 76 91 3.37 
17294 hsa-miR-33b 1.18 0.24 98 83 1.76 
13144 hsa-miR-340 0.97 -0.04 88 91 2.55 
11069 hsa-miR-342 NA NA NA NA NA 
11070 hsa-miR-345 0.92 -0.13 108 118 3.31 
19018 hsa-miR-346 0.91 -0.13 166 183 1.67 
11072 hsa-miR-34a 1.34 0.42 110 82 1.49 
11073 hsa-miR-34b 1.01 0.01 66 67 1.71 
11074 hsa-miR-34c 1.08 0.10 77 72 4.42 
14301 hsa-miR-361 0.78 -0.35 108 139 2.82 
14279 hsa-miR-362 1.09 0.12 70 65 1.92 
11077 hsa-miR-363 1.09 0.13 75 69 0.76 
11078 hsa-miR-365 1.03 0.04 140 137 4.16 
14280 hsa-miR-367 1.14 0.19 73 64 0.87 
19598 hsa-miR-368 1.02 0.03 63 62 3.14 
11081 hsa-miR-369-3p 1.47 0.55 120 82 4.72 
13145 hsa-miR-369-5p NA NA NA NA NA 
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11082 hsa-miR-370 1.11 0.16 267 242 1.50 
11083 hsa-miR-371 1.13 0.17 82 74 3.28 
11084 hsa-miR-372 1.11 0.15 77 69 3.81 
11085 hsa-miR-373 1.21 0.27 73 61 2.79 
11086 hsa-miR-373* 1.42 0.51 680 487 3.24 
11087 hsa-miR-374 1.06 0.08 79 75 3.97 
11088 hsa-miR-375 1.09 0.12 120 108 3.46 
11089 hsa-miR-376a 1.04 0.06 70 67 1.89 
14268 hsa-miR-376a* 1.03 0.04 71 69 3.69 
11090 hsa-miR-376b 1.14 0.19 82 72 3.32 
11091 hsa-miR-377 1.15 0.20 90 80 1.96 
11092 hsa-miR-378 0.96 -0.06 78 81 3.00 
11093 hsa-miR-379 1.18 0.24 97 82 2.58 
11094 hsa-miR-380-3p 1.14 0.19 73 63 2.14 
13170 hsa-miR-380-5p 1.00 0.00 70 70 3.89 
14306 hsa-miR-381 0.95 -0.08 274 292 2.70 
11097 hsa-miR-382 1.06 0.09 187 174 1.99 
11098 hsa-miR-383 1.10 0.14 71 66 2.12 
11099 hsa-miR-384 1.14 0.19 84 73 4.69 
11240 hsa-miR-409-3p 0.97 -0.05 77 79 3.38 
14310 hsa-miR-409-5p 0.88 -0.19 80 91 2.96 
11102 hsa-miR-410 0.99 -0.02 66 69 2.52 
17482 hsa-miR-411 NA NA NA NA NA 
11103 hsa-miR-412 1.04 0.06 76 72 4.43 
17474 hsa-miR-421 0.82 -0.28 101 123 1.88 
11104 hsa-miR-422a 1.17 0.22 83 72 2.72 
11105 hsa-miR-422b 0.79 -0.35 177 229 5.19 
11106 hsa-miR-423 0.85 -0.24 100 118 1.50 
11107 hsa-miR-424 0.91 -0.13 84 92 2.39 
11108 hsa-miR-425-3p NA NA NA NA NA 
17608 hsa-miR-425-5p 1.06 0.08 136 131 2.57 
13171 hsa-miR-429 0.98 -0.03 137 140 5.12 
11110 hsa-miR-431 1.06 0.08 72 68 4.41 
11111 hsa-miR-432 1.27 0.34 88 70 1.26 
13128 hsa-miR-432* 0.82 -0.29 92 113 3.61 
11112 hsa-miR-433 1.06 0.09 79 74 1.94 
11113 hsa-miR-448 1.10 0.13 78 71 3.31 
11114 hsa-miR-449 1.16 0.22 89 77 1.88 
17706 hsa-miR-449b 0.99 -0.01 74 75 2.90 
17835 hsa-miR-450 0.98 -0.03 78 80 5.72 

8538 hsa-miR-450 1.11 0.16 77 68 3.63 
11248 hsa-miR-451 0.77 -0.37 82 105 0.79 
11116 hsa-miR-452 0.94 -0.09 325 344 0.90 
13129 hsa-miR-452* NA NA NA NA NA 
11117 hsa-miR-453 1.29 0.36 86 67 2.04 
17450 hsa-miR-454-3p 1.10 0.14 72 66 2.55 
13179 hsa-miR-455 1.03 0.04 71 69 3.12 
13180 hsa-miR-483 2.30 1.20 331 144 1.38 
13181 hsa-miR-484 1.73 0.79 182 106 2.09 
11118 hsa-miR-485-3p 1.02 0.03 96 92 5.52 
11119 hsa-miR-485-5p 1.12 0.17 74 67 3.05 
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13182 hsa-miR-486 1.57 0.65 149 95 5.21 
13183 hsa-miR-487a 0.95 -0.07 83 87 5.02 
14285 hsa-miR-487b 0.53 -0.91 154 290 4.04 
11120 hsa-miR-488 NA NA NA NA NA 
11121 hsa-miR-489 0.89 -0.16 74 83 2.87 
11122 hsa-miR-490 0.93 -0.11 143 155 8.46 
11123 hsa-miR-491 0.99 -0.02 84 85 2.31 
11124 hsa-miR-492 1.93 0.95 2511 1306 5.01 
14270 hsa-miR-493-3p 1.01 0.02 73 71 4.82 
11125 hsa-miR-493-5p 1.35 0.43 116 86 4.76 
14287 hsa-miR-494 0.61 -0.70 1719 2764 14.37 
17348 hsa-miR-495 1.09 0.12 82 76 4.29 
11128 hsa-miR-496 1.08 0.12 72 67 2.65 
11129 hsa-miR-497 1.23 0.30 90 72 2.12 
11130 hsa-miR-498 1.12 0.16 1757 1574 2.99 
14313 hsa-miR-499 1.07 0.10 77 69 5.16 
11132 hsa-miR-500 1.16 0.22 155 133 4.20 
11133 hsa-miR-501 1.05 0.08 74 72 1.97 
11134 hsa-miR-502 1.14 0.19 89 78 1.07 
11135 hsa-miR-503 1.04 0.06 969 922 3.37 
11136 hsa-miR-504 1.09 0.12 79 73 2.99 
14314 hsa-miR-505 1.00 0.00 69 69 0.56 
11138 hsa-miR-506 1.03 0.05 85 82 5.05 
11139 hsa-miR-507 1.17 0.23 89 77 1.81 
11140 hsa-miR-508 1.39 0.47 111 80 3.32 
11141 hsa-miR-509 1.26 0.34 81 64 1.41 
11142 hsa-miR-510 0.94 -0.09 141 155 6.45 
11143 hsa-miR-511 1.12 0.16 76 69 3.61 
11144 hsa-miR-512-3p 1.14 0.19 80 68 5.69 
11145 hsa-miR-512-5p 0.98 -0.03 393 399 4.30 
11146 hsa-miR-513 0.92 -0.12 1846 2011 3.31 
11147 hsa-miR-514 1.17 0.23 80 69 1.33 
11148 hsa-miR-515-3p 1.01 0.01 67 67 0.57 
11149 hsa-miR-515-5p 1.08 0.11 77 72 2.47 
11150 hsa-miR-516-3p 1.08 0.11 81 75 0.91 
11151 hsa-miR-516-5p 0.86 -0.22 121 137 3.32 
13130 hsa-miR-517* 1.89 0.92 160 85 4.77 

11153 
hsa-miR-517a-
517b 1.16 0.22 87 73 2.59 

11154 hsa-miR-517c 1.20 0.26 91 76 0.97 
11155 hsa-miR-518a 1.13 0.17 83 74 0.64 
11156 hsa-miR-518b 1.12 0.17 113 99 2.59 
11157 hsa-miR-518c 1.17 0.23 79 68 3.94 
13131 hsa-miR-518c* 0.89 -0.17 881 991 2.24 
11158 hsa-miR-518d 1.12 0.16 83 73 2.92 
11159 hsa-miR-518e 1.09 0.12 74 68 2.43 
11160 hsa-miR-518f 1.10 0.14 78 72 4.19 

10586 
hsa-miR-518f*-
526a 1.06 0.09 288 270 1.00 

11161 hsa-miR-519a 1.04 0.05 71 68 1.93 
11162 hsa-miR-519b 1.16 0.21 77 66 3.74 
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10482 hsa-miR-519c 1.07 0.09 68 63 3.06 
11163 hsa-miR-519d 0.77 -0.38 117 152 2.60 
11164 hsa-miR-519e 0.77 -0.38 80 103 3.40 
13132 hsa-miR-519e* 0.97 -0.04 270 274 2.58 
11165 hsa-miR-520a 1.09 0.12 74 68 0.96 
13133 hsa-miR-520a* 0.83 -0.27 84 99 1.74 

11166 
hsa-miR-520c-
520b 1.07 0.10 70 65 1.13 

11168 hsa-miR-520d 1.12 0.17 75 66 2.13 
13134 hsa-miR-520d* 0.79 -0.33 95 121 3.00 
11169 hsa-miR-520e 1.62 0.69 130 80 3.12 

11167 
hsa-miR-520f-
520c 1.19 0.25 77 65 1.95 

13146 
hsa-miR-520g-
520h 1.14 0.19 73 64 0.26 

11171 hsa-miR-521 1.14 0.19 80 71 5.85 
11172 hsa-miR-522 1.21 0.28 82 68 6.07 
11173 hsa-miR-523 1.02 0.03 78 77 5.10 
10618 hsa-miR-524* 0.77 -0.38 77 100 7.25 
11175 hsa-miR-525 0.82 -0.28 178 223 2.82 

11174 
hsa-miR-525*-
524 1.08 0.11 83 76 2.76 

11176 hsa-miR-526b 0.81 -0.31 91 113 1.46 
13136 hsa-miR-526b* 1.46 0.54 119 81 5.40 
13137 hsa-miR-526c 1.15 0.20 152 133 1.06 
11177 hsa-miR-527 0.92 -0.12 156 172 2.00 
17624 hsa-miR-532 0.83 -0.26 85 104 3.61 
14271 hsa-miR-539 1.12 0.16 72 63 1.94 
14315 hsa-miR-542-3p 1.10 0.14 72 66 2.20 
14273 hsa-miR-542-5p 1.05 0.07 78 75 2.91 
13712 hsa-miR-544 1.08 0.12 69 64 4.85 
17846 hsa-miR-545 1.08 0.11 85 80 7.56 
13721 hsa-miR-545 1.03 0.05 72 69 6.79 
17535 hsa-miR-548a 1.09 0.12 80 73 4.64 
17298 hsa-miR-548b 1.18 0.24 93 78 5.35 
15313 hsa-miR-548c 1.11 0.15 81 72 2.64 
17533 hsa-miR-548d 1.05 0.07 78 75 2.80 
17370 hsa-miR-549 0.96 -0.05 76 79 3.62 
17660 hsa-miR-550 0.84 -0.26 94 113 0.28 
17272 hsa-miR-551a 1.24 0.31 183 148 1.97 
17500 hsa-miR-551b 1.07 0.10 80 73 4.30 
17668 hsa-miR-552 0.82 -0.28 75 90 3.55 
17271 hsa-miR-553 1.12 0.16 77 70 2.04 
17640 hsa-miR-554 0.96 -0.05 81 85 4.50 
17612 hsa-miR-555 1.01 0.01 76 75 7.30 
17426 hsa-miR-556 1.13 0.17 82 72 1.78 
17376 hsa-miR-557 1.14 0.19 675 592 3.03 
17652 hsa-miR-558 1.01 0.02 76 75 0.16 
14755 hsa-miR-559 1.01 0.02 71 70 2.88 
17456 hsa-miR-560 NA NA NA NA NA 
14773 hsa-miR-561 1.19 0.25 92 78 1.34 
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17536 hsa-miR-562 1.04 0.06 76 73 4.25 
17569 hsa-miR-563 1.04 0.05 69 67 4.16 
17645 hsa-miR-564 1.16 0.21 103 89 1.08 
17413 hsa-miR-565 1.04 0.05 151 148 5.88 
17634 hsa-miR-567 1.02 0.03 67 67 1.88 
17661 hsa-miR-568 1.00 0.01 79 79 3.27 
14854 hsa-miR-569 1.07 0.10 77 73 2.47 
14863 hsa-miR-570 0.98 -0.04 64 66 0.42 
17490 hsa-miR-571 1.02 0.02 68 66 2.67 
17551 hsa-miR-572 1.28 0.35 1913 1493 10.12 
17641 hsa-miR-573 1.05 0.07 89 85 1.07 
17662 hsa-miR-574 NA NA NA NA NA 
17626 hsa-miR-575 1.44 0.53 133 93 7.03 
17396 hsa-miR-576 0.92 -0.12 81 87 2.69 
17420 hsa-miR-577 0.98 -0.02 69 70 2.87 
17302 hsa-miR-578 1.13 0.17 80 71 2.04 
17628 hsa-miR-579 1.04 0.06 71 68 3.07 
17459 hsa-miR-580 1.05 0.07 77 72 3.03 
14962 hsa-miR-581 1.21 0.27 99 81 3.50 
17380 hsa-miR-582 1.09 0.12 73 66 2.43 
17295 hsa-miR-583 0.96 -0.06 864 920 7.63 
17423 hsa-miR-584 0.62 -0.69 561 916 4.19 
17546 hsa-miR-585 1.03 0.04 100 97 2.89 
17572 hsa-miR-586 0.52 -0.95 61 119 2.34 
17594 hsa-miR-587 0.96 -0.06 65 68 0.24 
17630 hsa-miR-588 1.05 0.07 84 79 1.67 
17570 hsa-miR-589 NA NA NA NA NA 
17503 hsa-miR-590 0.78 -0.36 89 114 8.76 
17404 hsa-miR-591 1.06 0.08 78 74 5.15 
17312 hsa-miR-592 1.13 0.18 85 75 3.71 
17564 hsa-miR-593 0.87 -0.20 72 84 10.06 
17349 hsa-miR-595 1.06 0.09 84 79 3.92 
17449 hsa-miR-596 0.81 -0.31 79 97 3.15 
17424 hsa-miR-597 1.02 0.02 71 70 1.35 
17637 hsa-miR-598 NA NA NA NA NA 
17600 hsa-miR-599 1.06 0.08 83 79 1.44 
17377 hsa-miR-600 0.95 -0.07 151 155 3.32 
17498 hsa-miR-601 0.76 -0.40 84 110 1.09 
17510 hsa-miR-602 1.09 0.13 1974 1808 1.17 
17393 hsa-miR-603 1.11 0.15 86 78 1.68 
17592 hsa-miR-604 0.95 -0.07 78 82 3.01 
17374 hsa-miR-605 1.02 0.03 71 70 2.30 
17387 hsa-miR-606 0.94 -0.09 64 68 0.17 
17598 hsa-miR-607 0.97 -0.05 68 69 2.27 
17443 hsa-miR-608 0.78 -0.36 82 105 5.02 
17353 hsa-miR-609 1.12 0.17 76 68 2.35 
17445 hsa-miR-610 1.04 0.06 70 68 3.20 
17611 hsa-miR-611 0.79 -0.34 82 102 1.79 
17346 hsa-miR-612 1.10 0.14 2937 2738 2.74 
17577 hsa-miR-613 NA NA NA NA NA 
17326 hsa-miR-614 1.02 0.02 89 89 1.85 
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17574 hsa-miR-615 0.45 -1.16 142 333 6.28 
17289 hsa-miR-616 1.00 0.00 88 88 1.61 
17552 hsa-miR-617 0.98 -0.03 193 200 6.25 
17336 hsa-miR-618 1.16 0.22 93 80 1.57 
17405 hsa-miR-619 1.04 0.06 78 76 5.20 
15349 hsa-miR-620 1.12 0.16 82 73 2.26 
17588 hsa-miR-621 0.95 -0.07 77 82 6.17 
17493 hsa-miR-622 1.03 0.04 75 73 4.64 
17309 hsa-miR-623 1.09 0.12 1816 1692 2.39 
17635 hsa-miR-624 1.05 0.07 71 67 1.70 
17573 hsa-miR-625 0.87 -0.20 336 384 1.63 
17351 hsa-miR-626 1.02 0.03 67 67 4.35 
17625 hsa-miR-627 0.85 -0.23 99 113 12.44 
17471 hsa-miR-628 0.97 -0.04 220 228 3.86 
17566 hsa-miR-629 0.72 -0.48 81 114 3.01 
17327 hsa-miR-630 0.98 -0.03 196 200 3.72 
17633 hsa-miR-631 1.08 0.11 100 93 6.27 
17444 hsa-miR-632 1.00 0.00 81 81 3.70 
15475 hsa-miR-633 1.05 0.08 77 72 2.87 
17398 hsa-miR-634 1.26 0.33 133 107 2.09 
17391 hsa-miR-635 0.92 -0.12 74 81 2.71 
17479 hsa-miR-636 NA NA NA NA NA 
17354 hsa-miR-637 0.86 -0.22 102 115 13.80 
17550 hsa-miR-638 1.36 0.44 1228 905 8.04 
17627 hsa-miR-639 NA NA NA NA NA 
17579 hsa-miR-640 0.81 -0.31 71 88 7.25 
17530 hsa-miR-641 0.94 -0.08 68 72 0.31 
17305 hsa-miR-642 1.33 0.42 149 112 4.40 
17325 hsa-miR-643 0.96 -0.05 85 89 3.09 
17563 hsa-miR-644 1.10 0.14 73 66 3.41 
17613 hsa-miR-645 1.04 0.06 93 89 2.09 
17491 hsa-miR-646 0.94 -0.09 64 68 3.54 
17516 hsa-miR-647 1.02 0.03 70 68 1.26 
17441 hsa-miR-648 0.83 -0.27 106 130 2.54 
15619 hsa-miR-649 1.04 0.06 71 69 3.10 
17593 hsa-miR-650 NA NA NA NA NA 
17394 hsa-miR-651 1.09 0.12 80 75 5.95 
17281 hsa-miR-652 0.85 -0.24 122 143 2.94 
15700 hsa-miR-653 1.13 0.18 90 81 3.18 
17505 hsa-miR-654 0.92 -0.13 113 124 8.60 
17286 hsa-miR-655 1.13 0.18 77 69 6.83 
17356 hsa-miR-656 1.07 0.10 75 70 5.28 
17460 hsa-miR-657 0.87 -0.20 105 121 3.14 
17522 hsa-miR-658 0.89 -0.17 1643 1843 6.49 
17322 hsa-miR-659 0.95 -0.08 751 781 2.51 
17338 hsa-miR-660 0.88 -0.18 87 100 0.87 
17582 hsa-miR-661 NA NA NA NA NA 
17507 hsa-miR-662 0.89 -0.16 71 80 0.90 
17558 hsa-miR-663 1.50 0.58 3400 2237 8.46 
17939 hsa-miR-671 0.99 -0.02 2905 2984 5.69 
17809 hsa-miR-769-3p 1.10 0.14 1898 1650 11.09 
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7190 hsa-miR-9 1.24 0.31 96 77 0.65 
11185 hsa-miR-9* 1.11 0.16 76 68 4.37 
11179 hsa-miR-92 0.79 -0.35 80 102 2.90 
17718 hsa-miR-92b 0.69 -0.53 76 108 1.58 
11180 hsa-miR-93 1.11 0.15 79 71 6.20 
11181 hsa-miR-95 0.98 -0.02 120 123 3.87 
13147 hsa-miR-96 1.19 0.25 110 93 4.57 
11182 hsa-miR-98 1.12 0.16 284 254 4.13 
11183 hsa-miR-99a 0.98 -0.03 71 73 0.35 
11184 hsa-miR-99b 0.96 -0.05 70 73 3.48 
17347 miRPlus_17347 1.05 0.08 81 78 6.06 
17411 miRPlus_17411 1.10 0.14 90 82 1.13 
17653 miRPlus_17653 NA NA NA NA NA 
17808 miRPlus_17808 1.56 0.64 138 87 4.71 
17810 miRPlus_17810 0.87 -0.21 117 135 5.75 
17811 miRPlus_17811 1.00 0.01 72 72 3.34 
17812 miRPlus_17812 0.84 -0.25 76 89 5.08 
17813 miRPlus_17813 0.76 -0.40 74 99 1.59 
17814 miRPlus_17814 NA NA NA NA NA 
17815 miRPlus_17815 NA NA NA NA NA 
17816 miRPlus_17816 NA NA NA NA NA 
17817 miRPlus_17817 0.98 -0.02 74 76 4.69 
17818 miRPlus_17818 0.94 -0.10 76 81 7.27 
17819 miRPlus_17819 0.96 -0.06 69 74 2.76 
17820 miRPlus_17820 0.86 -0.21 72 83 7.21 
17821 miRPlus_17821 1.00 0.00 76 75 6.01 
14261 spike_control_a 1.00 0.00 162 161 2.77 
14263 spike_control_b 0.95 -0.07 211 219 3.62 
14264 spike_control_c 0.88 -0.18 798 882 3.53 
10904 spike_control_d 0.95 -0.08 5272 5472 5.30 
10906 spike_control_e 0.93 -0.11 980 1018 5.54 
14262 spike_control_f 0.89 -0.17 146 162 3.25 
10905 spike_control_g 0.99 -0.02 660 673 5.10 
10907 spike_control_h 0.90 -0.15 2888 3216 5.69 
14257 spike_control_i 0.95 -0.07 13074 13625 4.50 
10899 spike_control_j 1.00 0.00 17570 17232 6.24 
17822 miRPlus_17822 0.95 -0.08 75 77 6.50 
17823 miRPlus_17823 1.10 0.14 80 73 2.52 
17824 miRPlus_17824 0.96 -0.06 74 76 4.21 
17825 miRPlus_17825 0.96 -0.06 73 75 2.57 
17826 miRPlus_17826 1.00 0.00 68 67 1.27 
17827 miRPlus_17827 0.81 -0.30 75 91 3.23 
17828 miRPlus_17828 0.75 -0.42 86 115 4.77 
17829 miRPlus_17829 1.02 0.02 76 74 14.02 
17830 miRPlus_17830 0.87 -0.21 288 331 1.00 
17831 miRPlus_17831 1.03 0.04 74 71 1.62 
17832 miRPlus_17832 1.05 0.06 1279 1244 5.29 
17833 miRPlus_17833 0.86 -0.23 105 122 4.07 
17834 miRPlus_17834 0.96 -0.07 159 166 4.92 
17836 miRPlus_17836 0.94 -0.09 1151 1230 2.06 
17837 miRPlus_17837 0.99 -0.01 69 71 2.27 
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17838 miRPlus_17838 1.00 0.00 74 73 2.69 
17840 miRPlus_17840 0.87 -0.21 158 183 2.11 
17841 miRPlus_17841 1.05 0.08 88 84 2.03 
17842 miRPlus_17842 1.10 0.13 74 67 2.53 
17843 miRPlus_17843 1.06 0.09 72 67 2.61 
17844 miRPlus_17844 0.83 -0.27 76 94 3.76 
17845 miRPlus_17845 0.83 -0.27 102 125 5.04 
17847 miRPlus_17847 0.92 -0.11 82 89 2.91 
17848 miRPlus_17848 0.96 -0.06 81 85 2.81 
17849 miRPlus_17849 NA NA NA NA NA 
17850 miRPlus_17850 1.05 0.07 75 73 5.19 
17851 miRPlus_17851 0.87 -0.21 73 85 4.66 
17852 miRPlus_17852 NA NA NA NA NA 
17853 miRPlus_17853 0.99 -0.01 72 72 3.81 
17854 miRPlus_17854 0.82 -0.29 97 119 6.89 
17855 miRPlus_17855 1.10 0.14 103 94 3.67 
17856 miRPlus_17856 1.35 0.43 5126 3737 5.54 
17857 miRPlus_17857 1.15 0.20 104 89 4.23 
17858 miRPlus_17858 1.32 0.40 133 102 4.67 
17859 miRPlus_17859 0.95 -0.08 231 242 2.92 
17860 miRPlus_17860 1.09 0.12 106 98 1.84 
17861 miRPlus_17861 1.00 0.00 299 295 4.84 
17862 miRPlus_17862 1.05 0.07 75 70 5.76 
17863 miRPlus_17863 0.91 -0.14 125 135 2.39 
17864 miRPlus_17864 1.36 0.45 4939 3577 6.08 
17865 miRPlus_17865 1.21 0.27 1494 1205 4.83 
17866 miRPlus_17866 NA NA NA NA NA 
17867 miRPlus_17867 0.74 -0.44 76 106 5.94 
17868 miRPlus_17868 0.77 -0.38 135 176 1.76 
17869 miRPlus_17869 0.76 -0.39 8847 10655 9.06 
17870 miRPlus_17870 0.71 -0.49 78 108 1.65 
17871 miRPlus_17871 0.93 -0.10 2049 2192 4.63 
17872 miRPlus_17872 0.61 -0.72 66 109 3.35 
17873 miRPlus_17873 0.80 -0.32 73 91 8.92 
17874 miRPlus_17874 0.68 -0.55 77 114 3.50 
17875 miRPlus_17875 0.74 -0.43 77 107 5.12 
17876 miRPlus_17876 0.84 -0.26 69 83 5.56 
17877 miRPlus_17877 1.03 0.05 2507 2417 10.61 
17878 miRPlus_17878 1.11 0.15 1522 1367 5.40 
17879 miRPlus_17879 0.96 -0.06 77 80 3.91 
17880 miRPlus_17880 1.00 -0.01 65 66 0.58 
17881 miRPlus_17881 1.42 0.51 4484 3208 8.57 
17882 miRPlus_17882 1.00 0.00 134 135 6.17 
17883 miRPlus_17883 0.91 -0.14 73 80 1.41 
17884 miRPlus_17884 0.71 -0.49 71 100 7.42 
17885 miRPlus_17885 NA NA NA NA NA 
17886 miRPlus_17886 NA NA NA NA NA 
17887 miRPlus_17887 NA NA NA NA NA 
17888 miRPlus_17888 NA NA NA NA NA 
17889 miRPlus_17889 0.98 -0.02 66 67 4.31 
17890 miRPlus_17890 1.19 0.25 2974 2493 1.96 
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17891 miRPlus_17891 0.82 -0.28 76 93 1.20 
17892 miRPlus_17892 NA NA NA NA NA 
17893 miRPlus_17893 0.74 -0.43 71 95 14.50 
17894 miRPlus_17894 1.16 0.21 425 351 6.40 
17895 miRPlus_17895 0.92 -0.11 74 80 3.05 
17896 miRPlus_17896 2.82 1.50 612 217 5.46 
17897 miRPlus_17897 1.02 0.02 72 69 1.55 
17898 miRPlus_17898 0.93 -0.10 73 78 3.46 
17899 miRPlus_17899 0.84 -0.24 72 86 5.28 
17900 miRPlus_17900 0.88 -0.19 166 189 3.63 
17902 miRPlus_17902 NA NA NA NA NA 
17903 miRPlus_17903 1.23 0.29 172 139 2.19 
17904 miRPlus_17904 0.83 -0.27 220 262 3.67 
17905 miRPlus_17905 0.95 -0.07 89 94 1.66 
17906 miRPlus_17906 1.00 0.00 70 69 1.27 
17907 miRPlus_17907 0.97 -0.05 68 70 2.29 
17908 miRPlus_17908 NA NA NA NA NA 
17909 miRPlus_17909 1.01 0.01 74 74 7.01 
17910 miRPlus_17910 0.89 -0.17 71 79 0.28 
17911 miRPlus_17911 0.98 -0.03 69 71 2.96 
17912 miRPlus_17912 NA NA NA NA NA 
17913 miRPlus_17913 NA NA NA NA NA 
17914 miRPlus_17914 0.86 -0.22 71 83 2.99 
17915 miRPlus_17915 0.87 -0.20 1928 2218 4.98 
17916 miRPlus_17916 NA NA NA NA NA 
17917 miRPlus_17917 NA NA NA NA NA 
17918 miRPlus_17918 0.77 -0.38 96 126 4.92 
17919 miRPlus_17919 0.95 -0.07 69 73 0.77 
17920 miRPlus_17920 NA NA NA NA NA 
17921 miRPlus_17921 0.96 -0.06 243 245 3.45 
17922 miRPlus_17922 0.98 -0.04 70 72 0.89 
17923 miRPlus_17923 NA NA NA NA NA 
17924 miRPlus_17924 NA NA NA NA NA 
17925 miRPlus_17925 0.76 -0.39 71 92 1.78 
17926 miRPlus_17926 NA NA NA NA NA 
17927 miRPlus_17927 0.71 -0.49 301 435 6.21 
17928 miRPlus_17928 0.92 -0.12 74 80 3.43 
17929 miRPlus_17929 NA NA NA NA NA 
17930 miRPlus_17930 1.00 0.00 150 149 3.94 
17931 miRPlus_17931 NA NA NA NA NA 
17932 miRPlus_17932 1.04 0.06 67 64 2.06 
17933 miRPlus_17933 0.74 -0.44 74 101 1.39 
17934 miRPlus_17934 0.80 -0.33 71 89 7.01 
17935 miRPlus_17935 NA NA NA NA NA 
17936 miRPlus_17936 0.61 -0.72 73 120 1.82 
17937 miRPlus_17937 NA NA NA NA NA 
17938 miRPlus_17938 0.99 -0.02 68 69 1.97 
17940 miRPlus_17940 0.98 -0.03 68 70 1.93 
17941 miRPlus_17941 0.97 -0.04 69 71 2.21 
17942 miRPlus_17942 0.98 -0.02 117 119 6.66 
17943 miRPlus_17943 1.01 0.01 293 283 3.67 
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17944 miRPlus_17944 NA NA NA NA NA 
17945 miRPlus_17945 0.97 -0.04 195 200 3.47 
17946 miRPlus_17946 0.77 -0.38 94 123 5.04 
17948 miRPlus_17948 NA NA NA NA NA 
17949 miRPlus_17949 NA NA NA NA NA 
17950 miRPlus_17950 1.17 0.22 669 582 4.74 
17951 miRPlus_17951 NA NA NA NA NA 
17952 miRPlus_17952 1.32 0.40 1783 1350 3.29 
17953 miRPlus_17953 1.05 0.07 777 744 3.36 
17954 miRPlus_17954 0.67 -0.57 74 112 5.31 
17955 miRPlus_17955 0.72 -0.47 80 113 4.77 
17956 miRPlus_17956 0.80 -0.32 71 90 9.42 
17957 miRPlus_17957 1.02 0.03 79 76 2.01 
17958 miRPlus_17958 NA NA NA NA NA 
17959 miRPlus_17959 0.64 -0.63 78 121 1.67 
17960 miRPlus_17960 1.06 0.09 2441 2289 2.73 
17961 miRPlus_17961 0.80 -0.33 98 123 6.66 
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Table A.2 ❘  LNA miRNA microarray data for LIM 1863 cells treated with TGF-β . 
 
Gene 

Id Annotation 
Median 
Ratios 

Log Median 
Ratios 

Median 
Hy3 

Median 
Hy5 CV 

17748 hsa-let-7a 1.08 0.11 2838 2648 0.87 
17749 hsa-let-7b 1.17 0.23 1168 1006 1.29 
19004 hsa-let-7c 0.98 -0.02 2996 3042 3.49 
17750 hsa-let-7d 0.93 -0.10 188 204 2.69 
17751 hsa-let-7e 0.88 -0.19 114 131 2.74 
17752 hsa-let-7f 0.79 -0.34 82 105 1.94 
19602 hsa-let-7g 0.99 -0.01 155 154 1.89 
19580 hsa-let-7i 1.06 0.09 386 363 0.29 
10916 hsa-miR-1 1.38 0.46 105 76 2.77 
19581 hsa-miR-100 NA NA NA NA NA 
17615 hsa-miR-101 0.99 -0.02 86 87 2.59 
10919 hsa-miR-103 1.02 0.03 650 628 1.84 
10920 hsa-miR-105 NA NA NA NA NA 
19582 hsa-miR-106b 0.85 -0.23 203 238 0.87 
10923 hsa-miR-107 1.26 0.33 773 614 1.82 
13485 hsa-miR-10a 1.07 0.10 1068 993 1.62 
10925 hsa-miR-10b 0.86 -0.22 86 100 3.92 
19583 hsa-miR-122a 1.09 0.13 67 61 0.22 
14328 hsa-miR-124a 1.23 0.30 97 78 4.99 
10928 hsa-miR-125a 0.93 -0.11 611 671 4.33 
10929 hsa-miR-125b 0.92 -0.12 121 130 17.48 

4610 hsa-miR-126 0.98 -0.03 69 71 2.11 
10930 hsa-miR-126* NA NA NA NA NA 
10931 hsa-miR-127 0.80 -0.33 67 86 2.63 
10932 hsa-miR-128a 1.06 0.08 87 83 3.19 
19584 hsa-miR-128b 1.00 0.00 70 70 7.01 
10934 hsa-miR-129 1.29 0.37 311 240 0.93 
10935 hsa-miR-130a NA NA NA NA NA 
10936 hsa-miR-130b 1.05 0.07 166 158 0.75 
10937 hsa-miR-132 NA NA NA NA NA 

10938 
hsa-miR-133a-
133b 0.94 -0.09 88 94 3.80 

10940 hsa-miR-134 0.88 -0.18 79 89 0.89 
10941 hsa-miR-135a 1.63 0.70 124 76 2.28 
10942 hsa-miR-135b 1.24 0.31 102 82 5.85 
10943 hsa-miR-136 1.14 0.19 92 81 3.34 
10944 hsa-miR-137 1.45 0.54 111 78 2.83 
13140 hsa-miR-138 1.19 0.25 96 81 4.64 
10945 hsa-miR-139 1.13 0.17 77 67 4.30 

4700 hsa-miR-140 1.13 0.17 79 70 2.65 
10946 hsa-miR-141 1.09 0.12 151 139 3.11 
10947 hsa-miR-142-3p 0.95 -0.07 1181 1248 2.24 
19015 hsa-miR-142-5p 0.96 -0.06 377 403 3.25 
13177 hsa-miR-143 NA NA NA NA NA 
10950 hsa-miR-144 1.09 0.13 75 69 6.44 
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10951 hsa-miR-145 1.07 0.10 79 74 2.31 
10952 hsa-miR-146a 1.05 0.06 80 76 1.51 
10306 hsa-miR-146b 0.98 -0.03 73 75 2.49 
10954 hsa-miR-147 1.20 0.27 79 65 3.46 
10955 hsa-miR-148a 1.22 0.29 129 104 3.54 
19585 hsa-miR-148b 1.05 0.07 123 116 1.00 
19586 hsa-miR-149 NA NA NA NA NA 
19587 hsa-miR-150 0.91 -0.13 72 79 4.08 
17463 hsa-miR-151 1.02 0.03 117 115 1.91 
17676 hsa-miR-152 0.94 -0.09 75 79 3.35 
10961 hsa-miR-153 NA NA NA NA NA 
10962 hsa-miR-154 1.18 0.24 102 85 3.42 
10963 hsa-miR-154* 0.99 -0.01 70 71 2.84 
10964 hsa-miR-155 1.16 0.21 94 81 3.97 
10965 hsa-miR-15a 0.96 -0.06 106 109 1.27 
17280 hsa-miR-15b 0.88 -0.19 331 380 1.27 
10967 hsa-miR-16 1.08 0.12 590 547 1.92 
19588 hsa-miR-17-3p 1.03 0.04 215 205 2.45 

17605 
hsa-miR-17-5p-
106a 0.91 -0.14 834 925 2.54 

10971 hsa-miR-181a 1.05 0.07 72 68 3.34 
11013 hsa-miR-181a* NA NA NA NA NA 
10972 hsa-miR-181b 1.14 0.19 83 73 5.41 
10973 hsa-miR-181c 1.91 0.93 145 75 2.02 
10974 hsa-miR-181d 1.16 0.21 78 67 2.71 
10975 hsa-miR-182 1.14 0.19 169 150 1.39 
10976 hsa-miR-182* 1.16 0.22 101 87 1.03 
10977 hsa-miR-183 0.91 -0.14 182 204 2.45 
10978 hsa-miR-184 1.19 0.26 257 213 3.09 

5560 hsa-miR-185 0.93 -0.10 1828 1964 0.44 
10979 hsa-miR-186 1.18 0.23 107 91 4.05 
17643 hsa-miR-187 NA NA NA NA NA 
19589 hsa-miR-188 1.09 0.12 69 63 1.58 
10982 hsa-miR-189 0.95 -0.07 69 74 3.45 
10983 hsa-miR-18a 0.99 -0.02 368 374 2.00 
13178 hsa-miR-18a* 0.78 -0.35 72 91 0.49 
13141 hsa-miR-18b 1.00 0.00 350 351 1.24 
10984 hsa-miR-190 1.31 0.39 92 70 1.15 
10985 hsa-miR-191 0.98 -0.03 532 550 2.53 
13126 hsa-miR-191* 1.13 0.18 85 75 2.21 
17732 hsa-miR-192 1.04 0.05 465 453 2.10 
13172 hsa-miR-192 0.92 -0.12 69 74 4.51 
10986 hsa-miR-193a 1.10 0.14 1618 1468 1.13 
10987 hsa-miR-193b 0.88 -0.19 85 97 2.59 
10988 hsa-miR-194 1.04 0.05 210 201 1.84 
13148 hsa-miR-195 0.78 -0.36 70 89 1.18 
10990 hsa-miR-196a 1.15 0.21 129 112 2.66 
10991 hsa-miR-196b 1.35 0.44 116 85 2.69 
10992 hsa-miR-197 1.11 0.15 140 125 3.73 
10993 hsa-miR-198 0.96 -0.06 420 439 2.41 
19590 hsa-miR-199a 0.83 -0.26 67 85 30.41 
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10995 hsa-miR-199a* 1.07 0.10 66 61 1.62 
19591 hsa-miR-199b NA NA NA NA NA 
10997 hsa-miR-19a 1.09 0.13 187 170 2.22 
10998 hsa-miR-19b 0.98 -0.04 130 133 0.55 
11000 hsa-miR-200a 1.23 0.30 2277 1850 0.72 
13127 hsa-miR-200a* 0.95 -0.08 68 73 13.09 

9578 hsa-miR-200b 1.02 0.02 639 632 2.02 
17427 hsa-miR-200c 1.15 0.20 643 560 2.42 
11003 hsa-miR-202 0.94 -0.08 847 897 1.14 
10314 hsa-miR-202* 1.92 0.94 133 72 8.23 
11004 hsa-miR-203 1.27 0.34 215 169 2.16 
11005 hsa-miR-204 1.14 0.19 88 78 2.89 
11006 hsa-miR-205 0.91 -0.13 69 77 5.03 
11007 hsa-miR-206 1.01 0.01 87 87 4.94 

5730 hsa-miR-208 0.99 -0.02 110 117 6.28 
11008 hsa-miR-20a 0.92 -0.11 932 1002 2.97 
10999 hsa-miR-20a 0.97 -0.05 790 818 2.08 
11009 hsa-miR-20b 0.92 -0.12 136 148 1.54 

5740 hsa-miR-21 1.75 0.81 1082 627 1.88 
13511 hsa-miR-210 1.09 0.12 944 869 5.04 
11011 hsa-miR-211 1.16 0.22 89 78 2.47 
19592 hsa-miR-212 0.76 -0.41 149 197 3.09 
11014 hsa-miR-214 0.91 -0.13 1654 1811 2.16 
11015 hsa-miR-215 1.02 0.02 323 310 2.48 
11016 hsa-miR-216 1.03 0.05 70 68 4.73 
19016 hsa-miR-217 1.03 0.04 67 65 2.34 
11018 hsa-miR-218 1.05 0.08 75 72 1.85 
11019 hsa-miR-219 NA NA NA NA NA 
11020 hsa-miR-22 1.15 0.21 117 102 3.14 
11021 hsa-miR-220 1.11 0.15 72 65 1.03 
11022 hsa-miR-221 1.17 0.22 313 268 2.29 
11023 hsa-miR-222 1.17 0.23 1897 1619 1.79 
11024 hsa-miR-223 1.09 0.12 104 96 5.50 
11025 hsa-miR-224 1.05 0.07 71 68 5.29 
11026 hsa-miR-23a 1.37 0.46 639 467 0.54 
11027 hsa-miR-23b 1.12 0.17 386 342 1.68 
17506 hsa-miR-24 1.29 0.37 278 215 2.63 
11029 hsa-miR-25 1.20 0.27 97 79 4.77 
11030 hsa-miR-26a 1.33 0.41 319 240 0.93 
11031 hsa-miR-26b 1.32 0.40 322 242 3.78 
19593 hsa-miR-27a 1.17 0.23 135 115 2.15 
13175 hsa-miR-27b 1.18 0.24 139 117 2.25 
11034 hsa-miR-28 0.93 -0.11 71 78 3.76 
19594 hsa-miR-296 1.23 0.30 212 173 1.38 
11037 hsa-miR-299-3p NA NA NA NA NA 
11038 hsa-miR-299-5p 0.92 -0.11 75 81 4.27 
11039 hsa-miR-29a 1.08 0.12 3376 3135 0.83 
11040 hsa-miR-29b 1.21 0.27 268 223 0.97 
11041 hsa-miR-29c 1.08 0.11 175 162 1.73 
13143 hsa-miR-301 0.62 -0.68 64 103 3.20 
11222 hsa-miR-302a 1.16 0.21 81 71 3.54 
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11042 hsa-miR-302a* 0.99 -0.01 81 82 1.15 
11043 hsa-miR-302b NA NA NA NA NA 

5930 hsa-miR-302b* 1.03 0.04 76 74 18.72 
11044 hsa-miR-302c 1.06 0.09 80 75 0.37 
11045 hsa-miR-302c* 1.00 0.00 120 120 2.72 
11046 hsa-miR-302d 1.11 0.15 78 70 3.75 
19595 hsa-miR-30a-3p 1.04 0.06 64 61 1.30 
11048 hsa-miR-30a-5p 0.99 -0.01 109 111 3.51 
17565 hsa-miR-30b 1.11 0.15 373 342 4.78 
17502 hsa-miR-30c 1.10 0.13 230 210 0.57 
19596 hsa-miR-30d 0.97 -0.04 107 109 1.63 
11224 hsa-miR-30e-3p 0.94 -0.09 72 77 3.05 
13174 hsa-miR-30e-5p 1.03 0.05 82 79 2.54 
11052 hsa-miR-31 1.08 0.10 136 127 0.88 
11053 hsa-miR-32 0.87 -0.20 77 89 3.03 
11054 hsa-miR-320 1.15 0.20 2858 2501 2.38 
11055 hsa-miR-323 1.11 0.16 74 66 1.69 
11056 hsa-miR-324-3p 0.98 -0.03 179 182 1.00 
11057 hsa-miR-324-5p 0.96 -0.06 83 87 2.08 
11058 hsa-miR-325 1.14 0.18 73 64 2.30 
11059 hsa-miR-326 1.23 0.30 375 309 3.36 
11060 hsa-miR-328 0.98 -0.03 69 70 0.83 
11061 hsa-miR-329 NA NA NA NA NA 
11062 hsa-miR-33 0.98 -0.03 76 84 7.64 
11063 hsa-miR-330 0.90 -0.15 68 76 2.08 
11064 hsa-miR-331 0.91 -0.14 90 99 2.24 
11065 hsa-miR-335 0.94 -0.09 92 98 5.53 
11066 hsa-miR-337 1.13 0.18 76 67 2.35 
11067 hsa-miR-338 1.39 0.47 183 132 1.74 
19597 hsa-miR-339 0.87 -0.21 72 82 2.24 
17294 hsa-miR-33b 1.20 0.26 89 75 0.96 
13144 hsa-miR-340 0.99 -0.02 84 85 2.36 
11069 hsa-miR-342 NA NA NA NA NA 
11070 hsa-miR-345 0.97 -0.05 102 106 2.70 
19018 hsa-miR-346 0.92 -0.13 242 264 4.35 
11072 hsa-miR-34a 1.27 0.34 97 77 1.02 
11073 hsa-miR-34b NA NA NA NA NA 
11074 hsa-miR-34c NA NA NA NA NA 
14301 hsa-miR-361 0.80 -0.32 96 121 2.74 
14279 hsa-miR-362 1.13 0.17 68 61 0.67 
11077 hsa-miR-363 NA NA NA NA NA 
11078 hsa-miR-365 0.99 -0.01 130 131 0.54 
14280 hsa-miR-367 1.12 0.16 68 61 17.13 
19598 hsa-miR-368 NA NA NA NA NA 
11081 hsa-miR-369-3p 1.55 0.63 117 76 6.21 
13145 hsa-miR-369-5p 1.09 0.12 70 65 2.51 
11082 hsa-miR-370 1.08 0.11 250 236 2.20 
11083 hsa-miR-371 1.11 0.15 76 69 3.34 
11084 hsa-miR-372 1.12 0.16 71 64 5.37 
11085 hsa-miR-373 1.18 0.24 71 60 4.21 
11086 hsa-miR-373* 1.36 0.45 690 506 1.34 
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11087 hsa-miR-374 1.05 0.07 75 71 1.27 
11088 hsa-miR-375 1.12 0.16 106 95 1.27 
11089 hsa-miR-376a 1.04 0.06 65 62 3.17 
14268 hsa-miR-376a* 0.97 -0.04 68 70 6.81 
11090 hsa-miR-376b 1.11 0.15 76 68 6.34 
11091 hsa-miR-377 1.11 0.15 81 73 5.72 
11092 hsa-miR-378 1.00 -0.01 72 73 3.95 
11093 hsa-miR-379 1.24 0.31 94 77 2.29 
11094 hsa-miR-380-3p 1.11 0.15 67 60 2.15 
13170 hsa-miR-380-5p NA NA NA NA NA 
14306 hsa-miR-381 0.96 -0.06 473 493 1.88 
11097 hsa-miR-382 1.02 0.02 179 178 1.80 
11098 hsa-miR-383 1.02 0.03 69 68 1.40 
11099 hsa-miR-384 1.12 0.16 77 69 5.71 
11240 hsa-miR-409-3p 0.96 -0.06 71 74 0.83 
14310 hsa-miR-409-5p 0.86 -0.22 74 88 2.16 
11102 hsa-miR-410 NA NA NA NA NA 
17482 hsa-miR-411 NA NA NA NA NA 
11103 hsa-miR-412 1.00 0.01 71 72 14.32 
17474 hsa-miR-421 0.92 -0.12 98 107 2.76 
11104 hsa-miR-422a 1.12 0.16 77 69 3.29 
11105 hsa-miR-422b 0.91 -0.13 193 212 1.31 
11106 hsa-miR-423 0.93 -0.11 151 162 2.76 
11107 hsa-miR-424 0.88 -0.18 73 84 2.27 
11108 hsa-miR-425-3p NA NA NA NA NA 
17608 hsa-miR-425-5p 1.12 0.17 123 110 3.65 
13171 hsa-miR-429 0.97 -0.04 120 124 0.88 
11110 hsa-miR-431 NA NA NA NA NA 
11111 hsa-miR-432 1.22 0.29 81 66 1.45 
13128 hsa-miR-432* 0.83 -0.26 85 104 3.38 
11112 hsa-miR-433 1.01 0.02 73 72 2.87 
11113 hsa-miR-448 1.11 0.15 72 65 2.27 
11114 hsa-miR-449 1.08 0.11 86 79 6.10 
17706 hsa-miR-449b 1.00 -0.01 69 69 2.03 
17835 hsa-miR-450 0.98 -0.03 74 74 13.03 

8538 hsa-miR-450 NA NA NA NA NA 
11248 hsa-miR-451 0.83 -0.27 80 97 1.45 
11116 hsa-miR-452 0.88 -0.19 350 404 1.73 
13129 hsa-miR-452* NA NA NA NA NA 
11117 hsa-miR-453 1.11 0.15 77 69 12.91 
17450 hsa-miR-454-3p 1.12 0.16 67 60 1.47 
13179 hsa-miR-455 1.02 0.03 69 67 9.35 
13180 hsa-miR-483 2.16 1.11 299 137 3.88 
13181 hsa-miR-484 1.67 0.74 172 102 3.07 
11118 hsa-miR-485-3p 1.03 0.04 88 86 2.80 
11119 hsa-miR-485-5p 1.12 0.16 70 63 0.74 
13182 hsa-miR-486 1.57 0.65 137 87 1.13 
13183 hsa-miR-487a 0.95 -0.08 76 80 4.00 
14285 hsa-miR-487b 0.57 -0.81 138 240 5.88 
11120 hsa-miR-488 NA NA NA NA NA 
11121 hsa-miR-489 0.84 -0.25 69 80 8.91 



 172 

11122 hsa-miR-490 0.90 -0.15 120 135 2.25 
11123 hsa-miR-491 1.00 0.00 78 78 2.96 
11124 hsa-miR-492 1.33 0.41 2945 2257 2.61 
14270 hsa-miR-493-3p NA NA NA NA NA 
11125 hsa-miR-493-5p 1.45 0.54 112 78 3.93 
14287 hsa-miR-494 0.66 -0.60 1619 2457 2.30 
17348 hsa-miR-495 0.97 -0.04 82 85 7.69 
11128 hsa-miR-496 1.12 0.16 68 61 0.73 
11129 hsa-miR-497 1.21 0.27 83 69 1.26 
11130 hsa-miR-498 1.16 0.21 1926 1674 1.90 
14313 hsa-miR-499 1.09 0.12 71 66 2.37 
11132 hsa-miR-500 1.15 0.21 169 147 3.23 
11133 hsa-miR-501 0.94 -0.10 69 74 4.58 
11134 hsa-miR-502 1.11 0.15 82 76 2.99 
11135 hsa-miR-503 1.00 -0.01 1108 1121 0.98 
11136 hsa-miR-504 0.97 -0.04 72 75 8.45 
14314 hsa-miR-505 NA NA NA NA NA 
11138 hsa-miR-506 1.07 0.10 80 74 2.56 
11139 hsa-miR-507 1.16 0.21 86 72 2.48 
11140 hsa-miR-508 1.43 0.52 107 75 18.66 
11141 hsa-miR-509 1.17 0.22 77 66 20.45 
11142 hsa-miR-510 0.97 -0.05 164 169 1.28 
11143 hsa-miR-511 1.04 0.05 71 68 3.37 
11144 hsa-miR-512-3p 1.09 0.12 73 68 12.72 
11145 hsa-miR-512-5p 0.94 -0.09 583 620 1.83 
11146 hsa-miR-513 0.88 -0.19 1870 2135 2.64 
11147 hsa-miR-514 1.11 0.15 75 66 2.56 
11148 hsa-miR-515-3p NA NA NA NA NA 
11149 hsa-miR-515-5p 1.05 0.07 69 66 1.41 
11150 hsa-miR-516-3p 1.07 0.10 74 70 4.07 
11151 hsa-miR-516-5p 0.85 -0.24 98 115 3.52 
13130 hsa-miR-517* 1.81 0.85 144 78 3.23 

11153 
hsa-miR-517a-
517b 1.14 0.19 80 71 3.66 

11154 hsa-miR-517c 1.16 0.21 84 73 2.59 
11155 hsa-miR-518a 1.12 0.16 77 69 1.72 
11156 hsa-miR-518b 1.14 0.20 106 93 4.03 
11157 hsa-miR-518c 1.11 0.16 73 67 3.91 
13131 hsa-miR-518c* 0.92 -0.12 1044 1140 2.54 
11158 hsa-miR-518d 1.07 0.10 76 72 10.92 
11159 hsa-miR-518e NA NA NA NA NA 
11160 hsa-miR-518f 1.02 0.03 72 71 2.39 

10586 
hsa-miR-518f*-
526a 1.01 0.02 237 234 1.93 

11161 hsa-miR-519a NA NA NA NA NA 
11162 hsa-miR-519b 1.12 0.16 70 62 3.88 
10482 hsa-miR-519c 1.06 0.09 65 60 6.30 
11163 hsa-miR-519d 0.80 -0.32 112 139 1.91 
11164 hsa-miR-519e 0.79 -0.34 75 95 3.21 
13132 hsa-miR-519e* 1.00 0.00 209 211 1.97 
11165 hsa-miR-520a NA NA NA NA NA 
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13133 hsa-miR-520a* 0.85 -0.23 76 89 1.59 

11166 
hsa-miR-520c-
520b 1.07 0.10 66 62 3.18 

11168 hsa-miR-520d 1.16 0.21 72 62 1.70 
13134 hsa-miR-520d* 0.80 -0.32 86 108 3.84 
11169 hsa-miR-520e 1.56 0.64 117 75 4.90 

11167 
hsa-miR-520f-
520c 1.18 0.24 73 62 2.85 

13146 
hsa-miR-520g-
520h NA NA NA NA NA 

11171 hsa-miR-521 1.07 0.10 75 70 3.94 
11172 hsa-miR-522 1.21 0.28 78 64 2.92 
11173 hsa-miR-523 1.07 0.10 74 68 3.49 
10618 hsa-miR-524* 0.79 -0.33 71 89 0.96 
11175 hsa-miR-525 0.80 -0.33 169 214 3.55 

11174 
hsa-miR-525*-
524 1.03 0.05 74 71 5.65 

11176 hsa-miR-526b 0.86 -0.22 86 100 10.52 
13136 hsa-miR-526b* 1.54 0.62 116 76 2.97 
13137 hsa-miR-526c 1.16 0.22 132 113 1.31 
11177 hsa-miR-527 0.92 -0.12 205 224 1.11 
17624 hsa-miR-532 0.92 -0.12 85 91 2.09 
14271 hsa-miR-539 1.18 0.24 68 59 4.82 
14315 hsa-miR-542-3p 1.10 0.13 72 65 8.50 
14273 hsa-miR-542-5p 1.02 0.03 70 70 1.71 
13712 hsa-miR-544 1.08 0.11 65 60 1.31 
17846 hsa-miR-545 1.07 0.09 80 75 0.99 
13721 hsa-miR-545 0.99 -0.01 68 69 11.82 
17535 hsa-miR-548a 1.06 0.09 74 69 3.50 
17298 hsa-miR-548b 1.18 0.24 84 71 2.12 
15313 hsa-miR-548c 1.08 0.11 72 67 6.68 
17533 hsa-miR-548d 0.90 -0.16 70 78 8.60 
17370 hsa-miR-549 0.98 -0.03 70 73 2.84 
17660 hsa-miR-550 0.87 -0.20 89 102 2.19 
17272 hsa-miR-551a 1.04 0.06 303 296 2.76 
17500 hsa-miR-551b 1.00 0.00 71 70 5.39 
17668 hsa-miR-552 0.89 -0.16 79 88 1.18 
17271 hsa-miR-553 1.09 0.13 72 66 3.41 
17640 hsa-miR-554 1.01 0.01 78 77 3.20 
17612 hsa-miR-555 0.98 -0.02 70 71 2.74 
17426 hsa-miR-556 1.08 0.10 75 69 2.38 
17376 hsa-miR-557 1.13 0.18 805 717 0.73 
17652 hsa-miR-558 NA NA NA NA NA 
14755 hsa-miR-559 0.99 -0.02 69 68 4.07 
17456 hsa-miR-560 NA NA NA NA NA 
14773 hsa-miR-561 1.16 0.21 83 71 3.20 
17536 hsa-miR-562 NA NA NA NA NA 
17569 hsa-miR-563 NA NA NA NA NA 
17645 hsa-miR-564 1.23 0.29 99 80 2.21 
17413 hsa-miR-565 0.94 -0.09 122 129 1.96 
17634 hsa-miR-567 0.95 -0.08 64 69 13.27 



 174 

17661 hsa-miR-568 0.97 -0.04 73 76 2.92 
14854 hsa-miR-569 1.06 0.09 72 68 3.77 
14863 hsa-miR-570 NA NA NA NA NA 
17490 hsa-miR-571 NA NA NA NA NA 
17551 hsa-miR-572 1.44 0.52 2285 1596 1.24 
17641 hsa-miR-573 1.06 0.09 84 79 1.61 
17662 hsa-miR-574 0.79 -0.34 71 91 14.68 
17626 hsa-miR-575 1.40 0.49 118 83 6.98 
17396 hsa-miR-576 0.90 -0.15 77 84 5.80 
17420 hsa-miR-577 NA NA NA NA NA 
17302 hsa-miR-578 1.05 0.08 72 69 2.08 
17628 hsa-miR-579 1.04 0.06 67 65 2.27 
17459 hsa-miR-580 1.07 0.10 71 65 3.67 
14962 hsa-miR-581 1.24 0.31 92 74 1.96 
17380 hsa-miR-582 1.11 0.15 70 63 1.76 
17295 hsa-miR-583 0.91 -0.13 1125 1216 2.79 
17423 hsa-miR-584 0.58 -0.78 522 878 4.12 
17546 hsa-miR-585 1.11 0.15 95 85 8.05 
17572 hsa-miR-586 0.56 -0.85 60 111 6.62 
17594 hsa-miR-587 NA NA NA NA NA 
17630 hsa-miR-588 1.05 0.07 77 74 4.31 
17570 hsa-miR-589 NA NA NA NA NA 
17503 hsa-miR-590 0.80 -0.33 78 97 4.51 
17404 hsa-miR-591 0.96 -0.06 72 76 14.88 
17312 hsa-miR-592 1.15 0.20 80 71 4.52 
17564 hsa-miR-593 NA NA NA NA NA 
17349 hsa-miR-595 1.07 0.10 77 72 2.79 
17449 hsa-miR-596 0.83 -0.26 73 87 0.93 
17424 hsa-miR-597 NA NA NA NA NA 
17637 hsa-miR-598 NA NA NA NA NA 
17600 hsa-miR-599 1.09 0.13 79 72 4.07 
17377 hsa-miR-600 1.01 0.02 138 136 2.41 
17498 hsa-miR-601 0.78 -0.36 72 93 3.32 
17510 hsa-miR-602 1.04 0.05 2236 2137 3.83 
17393 hsa-miR-603 1.06 0.09 76 73 6.65 
17592 hsa-miR-604 1.01 0.02 72 70 3.85 
17374 hsa-miR-605 1.03 0.05 68 66 2.92 
17387 hsa-miR-606 NA NA NA NA NA 
17598 hsa-miR-607 NA NA NA NA NA 
17443 hsa-miR-608 0.82 -0.28 73 90 3.28 
17353 hsa-miR-609 1.11 0.15 71 64 1.91 
17445 hsa-miR-610 1.07 0.10 67 62 2.41 
17611 hsa-miR-611 0.86 -0.22 78 91 1.27 
17346 hsa-miR-612 1.19 0.25 3329 2767 1.35 
17577 hsa-miR-613 NA NA NA NA NA 
17326 hsa-miR-614 1.03 0.04 83 81 2.12 
17574 hsa-miR-615 0.54 -0.89 118 220 15.50 
17289 hsa-miR-616 0.98 -0.02 80 81 4.15 
17552 hsa-miR-617 0.96 -0.06 560 588 3.42 
17336 hsa-miR-618 1.15 0.21 86 73 1.71 
17405 hsa-miR-619 1.07 0.10 72 68 2.14 
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15349 hsa-miR-620 1.12 0.16 75 67 2.81 
17588 hsa-miR-621 0.99 -0.02 72 75 3.78 
17493 hsa-miR-622 1.02 0.02 69 68 1.22 
17309 hsa-miR-623 1.13 0.18 2292 2053 3.21 
17635 hsa-miR-624 0.87 -0.21 67 81 30.57 
17573 hsa-miR-625 0.89 -0.17 350 405 4.31 
17351 hsa-miR-626 NA NA NA NA NA 
17625 hsa-miR-627 1.04 0.06 90 91 5.58 
17471 hsa-miR-628 0.93 -0.11 544 580 3.93 
17566 hsa-miR-629 0.81 -0.31 89 112 6.51 
17327 hsa-miR-630 0.99 -0.02 405 416 1.55 
17633 hsa-miR-631 1.11 0.16 92 81 5.04 
17444 hsa-miR-632 1.03 0.04 77 75 4.92 
15475 hsa-miR-633 0.98 -0.04 72 75 5.34 
17398 hsa-miR-634 1.19 0.25 118 99 2.73 
17391 hsa-miR-635 0.92 -0.12 67 74 23.57 
17479 hsa-miR-636 NA NA NA NA NA 
17354 hsa-miR-637 0.88 -0.19 91 103 2.92 
17550 hsa-miR-638 1.21 0.28 1743 1438 3.37 
17627 hsa-miR-639 NA NA NA NA NA 
17579 hsa-miR-640 0.80 -0.32 68 83 6.59 
17530 hsa-miR-641 NA NA NA NA NA 
17305 hsa-miR-642 1.28 0.36 135 104 44.46 
17325 hsa-miR-643 0.97 -0.05 79 82 3.39 
17563 hsa-miR-644 1.10 0.13 70 63 3.81 
17613 hsa-miR-645 1.05 0.06 84 80 1.78 
17491 hsa-miR-646 NA NA NA NA NA 
17516 hsa-miR-647 1.07 0.09 66 62 1.44 
17441 hsa-miR-648 0.84 -0.25 99 118 2.69 
15619 hsa-miR-649 1.04 0.06 66 64 0.49 
17593 hsa-miR-650 NA NA NA NA NA 
17394 hsa-miR-651 1.13 0.17 73 65 22.80 
17281 hsa-miR-652 0.86 -0.22 111 129 2.62 
15700 hsa-miR-653 1.11 0.15 83 76 4.00 
17505 hsa-miR-654 0.94 -0.08 109 116 5.36 
17286 hsa-miR-655 1.09 0.13 69 63 2.66 
17356 hsa-miR-656 NA NA NA NA NA 
17460 hsa-miR-657 0.83 -0.28 86 104 2.04 
17522 hsa-miR-658 0.92 -0.12 2413 2614 0.60 
17322 hsa-miR-659 0.92 -0.12 860 934 2.08 
17338 hsa-miR-660 0.92 -0.11 83 90 1.56 
17582 hsa-miR-661 NA NA NA NA NA 
17507 hsa-miR-662 NA NA NA NA NA 
17558 hsa-miR-663 1.67 0.74 4227 2561 2.41 
17939 hsa-miR-671 1.06 0.08 3488 3230 3.19 
17809 hsa-miR-769-3p 1.07 0.10 2415 2233 2.66 

7190 hsa-miR-9 1.20 0.27 89 76 2.59 
11185 hsa-miR-9* 1.04 0.05 72 69 4.33 
11179 hsa-miR-92 0.79 -0.34 75 93 2.46 
17718 hsa-miR-92b 0.73 -0.46 71 99 2.58 
11180 hsa-miR-93 0.95 -0.08 73 77 12.70 
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11181 hsa-miR-95 1.05 0.07 113 107 1.91 
13147 hsa-miR-96 1.13 0.18 98 86 3.07 
11182 hsa-miR-98 1.06 0.08 238 226 2.01 
11183 hsa-miR-99a NA NA NA NA NA 
11184 hsa-miR-99b NA NA NA NA NA 
17347 miRPlus_17347 1.05 0.07 76 72 2.62 
17411 miRPlus_17411 1.03 0.04 74 72 2.59 
17653 miRPlus_17653 NA NA NA NA NA 
17808 miRPlus_17808 1.60 0.67 124 78 2.31 
17810 miRPlus_17810 0.88 -0.18 116 131 2.45 
17811 miRPlus_17811 0.92 -0.12 68 74 15.12 
17812 miRPlus_17812 0.91 -0.13 72 79 4.38 
17813 miRPlus_17813 0.82 -0.29 70 86 1.36 
17814 miRPlus_17814 NA NA NA NA NA 
17815 miRPlus_17815 NA NA NA NA NA 
17816 miRPlus_17816 NA NA NA NA NA 
17817 miRPlus_17817 NA NA NA NA NA 
17818 miRPlus_17818 0.92 -0.12 69 75 4.19 
17819 miRPlus_17819 NA NA NA NA NA 
17820 miRPlus_17820 0.90 -0.15 67 74 2.75 
17821 miRPlus_17821 0.97 -0.05 72 73 6.52 
14261 spike_control_a 0.98 -0.04 152 155 1.75 
14263 spike_control_b 0.90 -0.15 182 204 2.66 
14264 spike_control_c 0.85 -0.24 708 827 2.03 
10904 spike_control_d 0.99 -0.02 5826 5829 3.05 
10906 spike_control_e 0.93 -0.11 908 972 2.28 
14262 spike_control_f 0.87 -0.20 124 142 1.61 
10905 spike_control_g 0.97 -0.04 559 577 4.26 
10907 spike_control_h 0.89 -0.17 2506 2753 3.42 
14257 spike_control_i 0.93 -0.11 11857 12861 2.61 
10899 spike_control_j 0.99 -0.02 17164 16971 4.72 
17822 miRPlus_17822 0.99 -0.01 70 70 3.81 
17823 miRPlus_17823 1.06 0.09 73 68 7.05 
17824 miRPlus_17824 0.97 -0.04 69 70 5.59 
17825 miRPlus_17825 NA NA NA NA NA 
17826 miRPlus_17826 1.04 0.05 66 63 0.35 
17827 miRPlus_17827 0.80 -0.32 77 97 4.10 
17828 miRPlus_17828 0.99 -0.02 99 101 1.78 
17829 miRPlus_17829 1.01 0.02 72 71 7.88 
17830 miRPlus_17830 0.88 -0.18 321 364 1.72 
17831 miRPlus_17831 NA NA NA NA NA 
17832 miRPlus_17832 1.00 0.00 1397 1362 3.49 
17833 miRPlus_17833 0.87 -0.21 97 112 4.22 
17834 miRPlus_17834 0.88 -0.18 113 128 5.38 
17836 miRPlus_17836 0.93 -0.11 1555 1669 3.08 
17837 miRPlus_17837 NA NA NA NA NA 
17838 miRPlus_17838 NA NA NA NA NA 
17840 miRPlus_17840 0.87 -0.19 137 159 1.71 
17841 miRPlus_17841 1.05 0.07 79 76 1.76 
17842 miRPlus_17842 1.12 0.17 71 64 1.20 
17843 miRPlus_17843 NA NA NA NA NA 
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17844 miRPlus_17844 0.92 -0.12 72 79 1.52 
17845 miRPlus_17845 0.79 -0.35 78 102 5.06 
17847 miRPlus_17847 0.94 -0.10 76 82 1.76 
17848 miRPlus_17848 0.96 -0.06 76 79 2.06 
17849 miRPlus_17849 NA NA NA NA NA 
17850 miRPlus_17850 1.03 0.04 71 70 5.15 
17851 miRPlus_17851 0.76 -0.40 73 98 11.80 
17852 miRPlus_17852 0.94 -0.08 69 73 1.10 
17853 miRPlus_17853 NA NA NA NA NA 
17854 miRPlus_17854 0.80 -0.32 86 107 1.43 
17855 miRPlus_17855 1.10 0.14 95 85 2.99 
17856 miRPlus_17856 1.47 0.56 6031 4093 1.55 
17857 miRPlus_17857 1.17 0.23 95 81 5.22 
17858 miRPlus_17858 1.29 0.37 123 95 3.95 
17859 miRPlus_17859 0.96 -0.05 305 323 2.79 
17860 miRPlus_17860 1.16 0.21 98 85 3.62 
17861 miRPlus_17861 0.89 -0.16 239 261 2.89 
17862 miRPlus_17862 1.04 0.06 69 66 1.97 
17863 miRPlus_17863 0.82 -0.28 94 113 0.97 
17864 miRPlus_17864 1.57 0.65 5832 3728 1.23 
17865 miRPlus_17865 1.24 0.31 1346 1087 0.37 
17866 miRPlus_17866 NA NA NA NA NA 
17867 miRPlus_17867 NA NA NA NA NA 
17868 miRPlus_17868 0.80 -0.32 119 150 1.40 
17869 miRPlus_17869 0.96 -0.06 10006 10308 2.42 
17870 miRPlus_17870 0.77 -0.38 75 98 2.45 
17871 miRPlus_17871 0.93 -0.10 2395 2586 1.53 
17872 miRPlus_17872 0.72 -0.47 66 92 3.21 
17873 miRPlus_17873 0.85 -0.24 70 83 3.44 
17874 miRPlus_17874 0.72 -0.48 72 100 1.41 
17875 miRPlus_17875 0.79 -0.35 76 98 2.21 
17876 miRPlus_17876 0.80 -0.32 66 82 5.27 
17877 miRPlus_17877 0.96 -0.06 2679 2789 1.22 
17878 miRPlus_17878 1.15 0.20 2118 1850 1.89 
17879 miRPlus_17879 0.99 -0.01 72 73 4.34 
17880 miRPlus_17880 NA NA NA NA NA 
17881 miRPlus_17881 1.49 0.58 5448 3626 1.48 
17882 miRPlus_17882 1.10 0.13 138 126 3.89 
17883 miRPlus_17883 0.94 -0.09 70 75 7.73 
17884 miRPlus_17884 0.80 -0.32 66 82 4.76 
17885 miRPlus_17885 NA NA NA NA NA 
17886 miRPlus_17886 NA NA NA NA NA 
17887 miRPlus_17887 NA NA NA NA NA 
17888 miRPlus_17888 0.89 -0.17 67 76 2.05 
17889 miRPlus_17889 NA NA NA NA NA 
17890 miRPlus_17890 1.11 0.15 3001 2702 1.52 
17891 miRPlus_17891 0.81 -0.30 72 87 3.48 
17892 miRPlus_17892 0.91 -0.13 66 72 4.64 
17893 miRPlus_17893 0.81 -0.30 68 84 3.20 
17894 miRPlus_17894 0.97 -0.04 693 708 1.96 
17895 miRPlus_17895 0.89 -0.16 69 77 3.82 
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17896 miRPlus_17896 1.56 0.64 333 211 2.77 
17897 miRPlus_17897 NA NA NA NA NA 
17898 miRPlus_17898 NA NA NA NA NA 
17899 miRPlus_17899 0.84 -0.26 67 80 4.47 
17900 miRPlus_17900 0.91 -0.14 160 176 1.19 
17902 miRPlus_17902 NA NA NA NA NA 
17903 miRPlus_17903 1.20 0.27 169 142 1.96 
17904 miRPlus_17904 0.86 -0.22 185 217 1.58 
17905 miRPlus_17905 1.01 0.01 91 92 3.78 
17906 miRPlus_17906 NA NA NA NA NA 
17907 miRPlus_17907 NA NA NA NA NA 
17908 miRPlus_17908 NA NA NA NA NA 
17909 miRPlus_17909 0.99 -0.02 68 69 3.35 
17910 miRPlus_17910 NA NA NA NA NA 
17911 miRPlus_17911 0.88 -0.19 66 77 22.88 
17912 miRPlus_17912 NA NA NA NA NA 
17913 miRPlus_17913 NA NA NA NA NA 
17914 miRPlus_17914 0.90 -0.15 68 75 7.30 
17915 miRPlus_17915 1.03 0.05 2303 2204 2.09 
17916 miRPlus_17916 NA NA NA NA NA 
17917 miRPlus_17917 NA NA NA NA NA 
17918 miRPlus_17918 0.85 -0.23 98 115 1.85 
17919 miRPlus_17919 NA NA NA NA NA 
17920 miRPlus_17920 NA NA NA NA NA 
17921 miRPlus_17921 0.93 -0.10 860 906 1.98 
17922 miRPlus_17922 NA NA NA NA NA 
17923 miRPlus_17923 NA NA NA NA NA 
17924 miRPlus_17924 NA NA NA NA NA 
17925 miRPlus_17925 NA NA NA NA NA 
17926 miRPlus_17926 NA NA NA NA NA 
17927 miRPlus_17927 0.77 -0.38 309 399 1.15 
17928 miRPlus_17928 NA NA NA NA NA 
17929 miRPlus_17929 NA NA NA NA NA 
17930 miRPlus_17930 0.99 -0.01 188 190 2.86 
17931 miRPlus_17931 NA NA NA NA NA 
17932 miRPlus_17932 1.05 0.07 64 61 1.54 
17933 miRPlus_17933 0.75 -0.41 70 94 1.60 
17934 miRPlus_17934 0.81 -0.30 66 83 6.06 
17935 miRPlus_17935 NA NA NA NA NA 
17936 miRPlus_17936 0.70 -0.51 75 109 4.24 
17937 miRPlus_17937 NA NA NA NA NA 
17938 miRPlus_17938 NA NA NA NA NA 
17940 miRPlus_17940 NA NA NA NA NA 
17941 miRPlus_17941 0.71 -0.49 66 94 15.78 
17942 miRPlus_17942 1.04 0.05 112 108 2.72 
17943 miRPlus_17943 0.94 -0.09 358 375 2.88 
17944 miRPlus_17944 NA NA NA NA NA 
17945 miRPlus_17945 0.99 -0.01 180 184 2.41 
17946 miRPlus_17946 0.85 -0.24 90 106 4.53 
17948 miRPlus_17948 NA NA NA NA NA 
17949 miRPlus_17949 NA NA NA NA NA 
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17950 miRPlus_17950 1.08 0.11 893 828 2.09 
17951 miRPlus_17951 NA NA NA NA NA 
17952 miRPlus_17952 1.55 0.63 2610 1674 1.74 
17953 miRPlus_17953 0.93 -0.10 1350 1449 1.64 
17954 miRPlus_17954 0.69 -0.53 71 101 1.48 
17955 miRPlus_17955 0.76 -0.40 69 91 1.41 
17956 miRPlus_17956 0.85 -0.23 72 83 0.97 
17957 miRPlus_17957 NA NA NA NA NA 
17958 miRPlus_17958 NA NA NA NA NA 
17959 miRPlus_17959 0.82 -0.29 90 111 3.18 
17960 miRPlus_17960 0.98 -0.03 2479 2558 1.26 
17961 miRPlus_17961 0.87 -0.20 103 117 3.42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 180 

 
Table A.3 ❘  LNA miRNA microarray data for LIM 1863 cells treated with TNF-α . 

 
Gene 

Id Annotation 
Median 
Ratios 

Log Median 
Ratios 

Median 
Hy3 

Median 
Hy5 CV 

17748 hsa-let-7a 0.92 -0.12 2215 2407 4.20 
17749 hsa-let-7b 0.97 -0.04 953 984 2.51 
19004 hsa-let-7c 0.92 -0.12 2091 2262 1.01 
17750 hsa-let-7d 0.83 -0.27 172 211 2.93 
17751 hsa-let-7e 0.92 -0.12 130 138 4.18 
17752 hsa-let-7f 0.77 -0.37 83 107 3.43 
19602 hsa-let-7g 0.90 -0.15 140 156 0.45 
19580 hsa-let-7i 1.00 0.01 365 367 2.52 
10916 hsa-miR-1 1.40 0.48 107 76 6.05 
19581 hsa-miR-100 NA NA NA NA NA 
17615 hsa-miR-101 0.99 -0.02 88 89 3.58 
10919 hsa-miR-103 0.99 -0.01 586 587 1.01 
10920 hsa-miR-105 NA NA NA NA NA 
19582 hsa-miR-106b 0.94 -0.10 221 235 1.44 
10923 hsa-miR-107 1.07 0.09 646 600 1.41 
13485 hsa-miR-10a 0.78 -0.35 782 996 1.29 
10925 hsa-miR-10b 0.80 -0.32 80 101 2.00 
19583 hsa-miR-122a 1.11 0.15 68 62 6.50 
14328 hsa-miR-124a 1.26 0.33 96 77 3.85 
10928 hsa-miR-125a 0.91 -0.14 304 333 4.24 
10929 hsa-miR-125b 1.02 0.03 136 133 4.15 

4610 hsa-miR-126 0.99 -0.02 70 71 2.08 
10930 hsa-miR-126* NA NA NA NA NA 
10931 hsa-miR-127 0.83 -0.27 70 84 5.04 
10932 hsa-miR-128a 1.07 0.09 88 82 2.59 
19584 hsa-miR-128b 1.07 0.09 70 65 17.25 
10934 hsa-miR-129 1.19 0.25 254 219 2.67 
10935 hsa-miR-130a 1.03 0.05 68 66 2.09 
10936 hsa-miR-130b 1.01 0.01 161 162 1.13 
10937 hsa-miR-132 NA NA NA NA NA 

10938 
hsa-miR-133a-
133b 0.93 -0.10 88 95 3.87 

10940 hsa-miR-134 0.91 -0.14 78 86 1.89 
10941 hsa-miR-135a 1.70 0.77 130 77 2.91 
10942 hsa-miR-135b 1.32 0.40 112 82 6.38 
10943 hsa-miR-136 1.20 0.27 98 81 2.42 
10944 hsa-miR-137 1.50 0.58 116 77 3.29 
13140 hsa-miR-138 1.24 0.31 102 83 5.17 
10945 hsa-miR-139 1.02 0.03 78 75 6.36 

4700 hsa-miR-140 1.13 0.17 82 73 2.25 
10946 hsa-miR-141 1.04 0.06 148 140 2.58 
10947 hsa-miR-142-3p 1.01 0.01 1209 1205 1.99 
19015 hsa-miR-142-5p 1.10 0.13 446 413 2.73 
13177 hsa-miR-143 NA NA NA NA NA 
10950 hsa-miR-144 1.18 0.23 77 66 11.97 
10951 hsa-miR-145 1.11 0.15 79 71 3.20 
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10952 hsa-miR-146a 1.14 0.19 88 79 3.29 
10306 hsa-miR-146b 0.99 -0.01 74 75 6.21 
10954 hsa-miR-147 1.19 0.25 81 69 5.21 
10955 hsa-miR-148a 1.16 0.22 121 103 3.35 
19585 hsa-miR-148b 0.97 -0.04 115 118 2.54 
19586 hsa-miR-149 NA NA NA NA NA 
19587 hsa-miR-150 0.92 -0.12 74 80 2.81 
17463 hsa-miR-151 0.98 -0.03 113 115 3.01 
17676 hsa-miR-152 0.95 -0.07 77 81 5.78 
10961 hsa-miR-153 1.00 0.00 72 73 15.69 
10962 hsa-miR-154 1.19 0.25 102 85 3.22 
10963 hsa-miR-154* 0.90 -0.14 70 79 10.28 
10964 hsa-miR-155 1.18 0.24 95 81 3.98 
10965 hsa-miR-15a 0.93 -0.10 101 109 0.26 
17280 hsa-miR-15b 0.93 -0.11 324 353 4.77 
10967 hsa-miR-16 1.02 0.02 563 551 1.48 
19588 hsa-miR-17-3p 1.12 0.16 247 214 3.47 

17605 
hsa-miR-17-5p-
106a 0.92 -0.13 826 894 2.03 

10971 hsa-miR-181a 1.09 0.12 74 68 11.08 
11013 hsa-miR-181a* NA NA NA NA NA 
10972 hsa-miR-181b 1.19 0.25 84 70 3.23 
10973 hsa-miR-181c 1.99 1.00 146 74 5.78 
10974 hsa-miR-181d 1.20 0.26 80 66 5.11 
10975 hsa-miR-182 1.10 0.14 158 144 1.07 
10976 hsa-miR-182* 1.17 0.22 104 89 3.54 
10977 hsa-miR-183 1.08 0.11 209 194 1.11 
10978 hsa-miR-184 1.24 0.32 210 169 5.15 

5560 hsa-miR-185 1.02 0.03 1164 1138 2.54 
10979 hsa-miR-186 1.19 0.25 108 92 3.58 
17643 hsa-miR-187 NA NA NA NA NA 
19589 hsa-miR-188 1.10 0.14 68 63 0.61 
10982 hsa-miR-189 0.97 -0.04 69 71 5.82 
10983 hsa-miR-18a 0.97 -0.05 365 375 1.72 
13178 hsa-miR-18a* 0.81 -0.31 75 92 1.56 
13141 hsa-miR-18b 0.97 -0.04 338 344 3.19 
10984 hsa-miR-190 1.29 0.37 93 72 2.47 
10985 hsa-miR-191 0.97 -0.05 494 508 2.87 
13126 hsa-miR-191* 1.16 0.21 88 76 2.55 
17732 hsa-miR-192 0.92 -0.12 407 445 2.22 
13172 hsa-miR-192 0.91 -0.14 69 78 5.60 
10986 hsa-miR-193a 1.28 0.36 1891 1473 1.00 
10987 hsa-miR-193b 0.82 -0.29 80 100 5.62 
10988 hsa-miR-194 1.01 0.02 198 195 1.69 
13148 hsa-miR-195 0.80 -0.32 70 88 3.16 
10990 hsa-miR-196a 1.15 0.20 128 112 2.30 
10991 hsa-miR-196b 1.17 0.23 103 88 2.75 
10992 hsa-miR-197 1.07 0.10 132 123 7.80 
10993 hsa-miR-198 0.98 -0.03 336 340 2.96 
19590 hsa-miR-199a 0.96 -0.06 68 71 6.55 
10995 hsa-miR-199a* 1.05 0.07 65 62 0.84 
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19591 hsa-miR-199b NA NA NA NA NA 
10997 hsa-miR-19a 1.13 0.17 193 171 1.00 
10998 hsa-miR-19b 1.01 0.01 137 136 1.59 
11000 hsa-miR-200a 1.14 0.19 2159 1876 0.80 
13127 hsa-miR-200a* 1.03 0.05 72 69 0.29 

9578 hsa-miR-200b 0.99 -0.01 627 629 0.38 
17427 hsa-miR-200c 1.05 0.07 548 520 0.97 
11003 hsa-miR-202 1.00 0.00 535 535 1.16 
10314 hsa-miR-202* 1.97 0.98 142 72 2.52 
11004 hsa-miR-203 1.12 0.16 179 161 1.45 
11005 hsa-miR-204 1.21 0.27 92 76 2.24 
11006 hsa-miR-205 0.96 -0.06 70 73 0.32 
11007 hsa-miR-206 1.01 0.02 89 85 3.74 

5730 hsa-miR-208 0.99 -0.02 94 95 2.34 
11008 hsa-miR-20a 0.93 -0.10 905 970 2.88 
10999 hsa-miR-20a 0.91 -0.13 761 831 0.71 
11009 hsa-miR-20b 0.89 -0.16 137 154 1.03 

5740 hsa-miR-21 1.58 0.66 970 625 2.31 
13511 hsa-miR-210 0.99 -0.01 580 594 2.81 
11011 hsa-miR-211 1.20 0.26 91 76 8.66 
19592 hsa-miR-212 0.78 -0.36 150 194 3.97 
11014 hsa-miR-214 0.95 -0.08 917 959 3.52 
11015 hsa-miR-215 0.92 -0.12 294 318 2.92 
11016 hsa-miR-216 1.07 0.09 71 67 9.50 
19016 hsa-miR-217 1.04 0.05 68 66 2.08 
11018 hsa-miR-218 1.06 0.08 76 72 6.43 
11019 hsa-miR-219 1.04 0.05 68 65 2.32 
11020 hsa-miR-22 1.17 0.22 118 100 4.37 
11021 hsa-miR-220 1.14 0.18 73 64 4.07 
11022 hsa-miR-221 1.03 0.05 306 297 2.51 
11023 hsa-miR-222 1.04 0.05 1661 1610 1.27 
11024 hsa-miR-223 1.18 0.24 109 93 7.24 
11025 hsa-miR-224 0.97 -0.04 70 73 8.60 
11026 hsa-miR-23a 1.19 0.26 535 448 1.73 
11027 hsa-miR-23b 0.93 -0.10 315 338 1.97 
17506 hsa-miR-24 1.14 0.19 248 218 0.75 
11029 hsa-miR-25 1.25 0.33 98 79 5.24 
11030 hsa-miR-26a 1.20 0.27 274 232 3.84 
11031 hsa-miR-26b 1.27 0.35 294 233 2.87 
19593 hsa-miR-27a 1.09 0.12 128 118 1.66 
13175 hsa-miR-27b 1.11 0.15 129 118 3.06 
11034 hsa-miR-28 0.95 -0.07 73 77 4.19 
19594 hsa-miR-296 1.08 0.11 187 175 0.59 
11037 hsa-miR-299-3p NA NA NA NA NA 
11038 hsa-miR-299-5p 0.96 -0.05 75 78 1.78 
11039 hsa-miR-29a 1.07 0.09 3237 3067 3.36 
11040 hsa-miR-29b 1.22 0.28 265 217 2.85 
11041 hsa-miR-29c 1.02 0.03 162 161 1.16 
13143 hsa-miR-301 0.64 -0.64 66 105 4.28 
11222 hsa-miR-302a 1.15 0.20 82 72 8.65 
11042 hsa-miR-302a* 1.06 0.08 83 80 2.41 
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11043 hsa-miR-302b 0.99 -0.01 72 74 20.27 
5930 hsa-miR-302b* 1.09 0.12 79 73 6.72 

11044 hsa-miR-302c 1.18 0.24 83 71 2.60 
11045 hsa-miR-302c* 1.05 0.06 122 116 2.09 
11046 hsa-miR-302d 1.07 0.10 78 73 6.97 
19595 hsa-miR-30a-3p 1.04 0.06 65 62 0.77 
11048 hsa-miR-30a-5p 0.90 -0.15 101 111 0.92 
17565 hsa-miR-30b 0.93 -0.10 315 336 0.98 
17502 hsa-miR-30c 0.96 -0.05 198 207 3.08 
19596 hsa-miR-30d 0.90 -0.15 97 108 1.50 
11224 hsa-miR-30e-3p 0.97 -0.04 73 75 5.43 
13174 hsa-miR-30e-5p 1.04 0.05 82 81 2.36 
11052 hsa-miR-31 1.12 0.17 139 123 1.84 
11053 hsa-miR-32 0.88 -0.18 79 91 3.39 
11054 hsa-miR-320 1.02 0.03 2161 2138 1.64 
11055 hsa-miR-323 1.09 0.13 74 67 2.08 
11056 hsa-miR-324-3p 1.00 0.00 149 148 2.42 
11057 hsa-miR-324-5p 0.99 -0.02 86 86 4.53 
11058 hsa-miR-325 1.19 0.25 73 63 2.90 
11059 hsa-miR-326 1.15 0.20 343 300 1.77 
11060 hsa-miR-328 1.00 -0.01 70 72 3.43 
11061 hsa-miR-329 NA NA NA NA NA 
11062 hsa-miR-33 0.97 -0.05 77 80 5.73 
11063 hsa-miR-330 0.89 -0.16 69 77 2.65 
11064 hsa-miR-331 0.89 -0.16 88 99 2.34 
11065 hsa-miR-335 0.93 -0.11 92 97 5.47 
11066 hsa-miR-337 1.15 0.21 79 68 5.14 
11067 hsa-miR-338 1.26 0.33 165 131 0.84 
19597 hsa-miR-339 0.88 -0.18 71 81 2.58 
17294 hsa-miR-33b 1.20 0.27 89 74 1.65 
13144 hsa-miR-340 0.99 -0.01 84 84 1.06 
11069 hsa-miR-342 NA NA NA NA NA 
11070 hsa-miR-345 1.01 0.01 106 106 4.21 
19018 hsa-miR-346 0.89 -0.17 158 180 1.55 
11072 hsa-miR-34a 1.27 0.35 97 76 3.77 
11073 hsa-miR-34b 1.04 0.06 65 62 0.68 
11074 hsa-miR-34c 1.10 0.14 73 67 4.48 
14301 hsa-miR-361 0.80 -0.32 101 122 3.76 
14279 hsa-miR-362 1.11 0.15 68 61 3.20 
11077 hsa-miR-363 1.05 0.07 73 70 7.08 
11078 hsa-miR-365 0.99 -0.01 132 132 0.72 
14280 hsa-miR-367 1.12 0.16 68 61 1.18 
19598 hsa-miR-368 NA NA NA NA NA 
11081 hsa-miR-369-3p 1.63 0.70 128 77 10.14 
13145 hsa-miR-369-5p 1.06 0.08 73 69 3.54 
11082 hsa-miR-370 1.17 0.23 249 211 3.32 
11083 hsa-miR-371 1.13 0.17 78 68 3.43 
11084 hsa-miR-372 1.03 0.04 73 72 11.67 
11085 hsa-miR-373 1.17 0.23 71 60 1.28 
11086 hsa-miR-373* 1.06 0.09 485 463 3.59 
11087 hsa-miR-374 1.07 0.10 76 70 2.38 
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11088 hsa-miR-375 1.13 0.17 106 93 2.19 
11089 hsa-miR-376a NA NA NA NA NA 
14268 hsa-miR-376a* 0.93 -0.11 71 77 10.42 
11090 hsa-miR-376b 1.16 0.22 78 67 6.98 
11091 hsa-miR-377 1.17 0.23 82 70 0.71 
11092 hsa-miR-378 0.99 -0.01 74 75 2.69 
11093 hsa-miR-379 1.25 0.32 97 78 5.79 
11094 hsa-miR-380-3p 1.12 0.17 70 62 18.10 
13170 hsa-miR-380-5p 1.02 0.03 66 65 1.31 
14306 hsa-miR-381 0.94 -0.09 323 348 2.04 
11097 hsa-miR-382 1.04 0.05 167 161 1.58 
11098 hsa-miR-383 1.09 0.12 70 64 6.70 
11099 hsa-miR-384 1.13 0.18 80 69 2.33 
11240 hsa-miR-409-3p 1.02 0.02 75 75 2.24 
14310 hsa-miR-409-5p 0.89 -0.17 74 83 2.73 
11102 hsa-miR-410 1.01 0.02 69 68 3.91 
17482 hsa-miR-411 NA NA NA NA NA 
11103 hsa-miR-412 0.95 -0.08 72 77 8.35 
17474 hsa-miR-421 0.87 -0.20 96 110 3.35 
11104 hsa-miR-422a 1.09 0.12 78 73 5.92 
11105 hsa-miR-422b 0.86 -0.22 195 225 1.58 
11106 hsa-miR-423 0.87 -0.21 113 130 1.94 
11107 hsa-miR-424 0.94 -0.08 77 80 2.10 
11108 hsa-miR-425-3p 0.80 -0.33 67 85 1.05 
17608 hsa-miR-425-5p 1.13 0.17 124 110 2.99 
13171 hsa-miR-429 1.02 0.02 126 123 1.97 
11110 hsa-miR-431 NA NA NA NA NA 
11111 hsa-miR-432 1.26 0.34 84 67 4.16 
13128 hsa-miR-432* 0.86 -0.22 87 102 3.33 
11112 hsa-miR-433 0.92 -0.12 73 80 7.99 
11113 hsa-miR-448 1.06 0.08 71 67 6.18 
11114 hsa-miR-449 1.17 0.23 87 74 4.72 
17706 hsa-miR-449b 1.03 0.04 72 70 1.13 
17835 hsa-miR-450 0.97 -0.05 73 76 4.64 

8538 hsa-miR-450 1.07 0.10 72 66 7.45 
11248 hsa-miR-451 0.79 -0.33 78 99 3.97 
11116 hsa-miR-452 0.96 -0.06 277 284 2.83 
13129 hsa-miR-452* 0.87 -0.20 72 86 25.36 
11117 hsa-miR-453 1.20 0.27 80 66 8.09 
17450 hsa-miR-454-3p 1.11 0.15 67 61 1.67 
13179 hsa-miR-455 1.03 0.05 69 66 1.48 
13180 hsa-miR-483 2.17 1.11 279 129 3.74 
13181 hsa-miR-484 1.68 0.75 170 99 6.86 
11118 hsa-miR-485-3p 1.05 0.06 86 83 3.97 
11119 hsa-miR-485-5p NA NA NA NA NA 
13182 hsa-miR-486 1.60 0.68 140 87 3.47 
13183 hsa-miR-487a 0.97 -0.05 78 80 3.71 
14285 hsa-miR-487b 0.58 -0.78 139 233 7.28 
11120 hsa-miR-488 NA NA NA NA NA 
11121 hsa-miR-489 0.84 -0.25 72 89 9.37 
11122 hsa-miR-490 0.89 -0.18 112 128 2.27 
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11123 hsa-miR-491 1.02 0.03 81 80 1.38 
11124 hsa-miR-492 1.14 0.19 1759 1541 2.77 
14270 hsa-miR-493-3p NA NA NA NA NA 
11125 hsa-miR-493-5p 1.46 0.55 113 77 2.04 
14287 hsa-miR-494 0.65 -0.62 1432 2162 5.89 
17348 hsa-miR-495 1.02 0.03 78 76 12.96 
11128 hsa-miR-496 NA NA NA NA NA 
11129 hsa-miR-497 1.22 0.29 86 71 4.04 
11130 hsa-miR-498 0.99 -0.01 1469 1497 4.76 
14313 hsa-miR-499 1.08 0.11 73 70 5.14 
11132 hsa-miR-500 1.14 0.18 159 140 4.26 
11133 hsa-miR-501 0.98 -0.03 70 71 0.71 
11134 hsa-miR-502 1.15 0.21 85 74 0.63 
11135 hsa-miR-503 0.96 -0.05 901 936 1.64 
11136 hsa-miR-504 1.07 0.10 72 68 4.58 
14314 hsa-miR-505 NA NA NA NA NA 
11138 hsa-miR-506 1.09 0.12 81 73 3.75 
11139 hsa-miR-507 1.18 0.24 89 76 3.21 
11140 hsa-miR-508 1.48 0.57 111 75 5.36 
11141 hsa-miR-509 1.10 0.14 76 68 15.69 
11142 hsa-miR-510 1.00 0.00 137 136 1.55 
11143 hsa-miR-511 1.05 0.07 73 69 11.14 
11144 hsa-miR-512-3p 1.09 0.13 76 70 3.55 
11145 hsa-miR-512-5p 0.98 -0.02 437 444 4.72 
11146 hsa-miR-513 0.89 -0.16 1781 1965 2.32 
11147 hsa-miR-514 1.10 0.14 76 69 4.56 
11148 hsa-miR-515-3p NA NA NA NA NA 
11149 hsa-miR-515-5p 1.05 0.07 72 68 10.25 
11150 hsa-miR-516-3p 1.05 0.06 76 70 4.78 
11151 hsa-miR-516-5p 0.96 -0.05 113 121 7.00 
13130 hsa-miR-517* 1.92 0.94 147 77 4.44 

11153 
hsa-miR-517a-
517b 1.17 0.23 83 71 4.17 

11154 hsa-miR-517c 1.23 0.30 85 69 1.60 
11155 hsa-miR-518a 1.14 0.19 78 68 7.87 
11156 hsa-miR-518b 1.17 0.23 111 93 4.41 
11157 hsa-miR-518c 1.10 0.14 75 67 3.87 
13131 hsa-miR-518c* 1.05 0.06 865 828 1.98 
11158 hsa-miR-518d 1.06 0.09 77 73 7.61 
11159 hsa-miR-518e 1.12 0.17 71 63 0.74 
11160 hsa-miR-518f 0.97 -0.05 74 75 1.81 

10586 
hsa-miR-518f*-
526a 1.06 0.09 251 233 2.10 

11161 hsa-miR-519a 1.05 0.08 67 64 1.18 
11162 hsa-miR-519b 1.14 0.19 71 62 1.17 
10482 hsa-miR-519c 1.06 0.09 64 61 2.77 
11163 hsa-miR-519d 0.81 -0.31 111 139 2.37 
11164 hsa-miR-519e 0.78 -0.37 80 103 6.87 
13132 hsa-miR-519e* 1.00 0.01 204 209 4.89 
11165 hsa-miR-520a 1.03 0.04 71 69 4.64 
13133 hsa-miR-520a* 0.88 -0.19 81 91 3.30 
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11166 
hsa-miR-520c-
520b 1.07 0.10 67 63 0.71 

11168 hsa-miR-520d 1.16 0.21 74 64 4.10 
13134 hsa-miR-520d* 0.95 -0.08 94 99 3.84 
11169 hsa-miR-520e 1.63 0.70 119 73 5.69 

11167 
hsa-miR-520f-
520c 1.18 0.24 74 61 6.51 

13146 
hsa-miR-520g-
520h 1.10 0.14 67 61 2.09 

11171 hsa-miR-521 1.04 0.06 76 71 12.70 
11172 hsa-miR-522 1.15 0.20 79 67 5.48 
11173 hsa-miR-523 0.98 -0.03 74 76 4.45 
10618 hsa-miR-524* 0.80 -0.33 75 92 6.88 
11175 hsa-miR-525 0.81 -0.30 165 203 4.25 

11174 
hsa-miR-525*-
524 1.04 0.05 77 74 12.33 

11176 hsa-miR-526b 0.89 -0.17 89 99 1.88 
13136 hsa-miR-526b* 1.52 0.60 112 75 3.20 
13137 hsa-miR-526c 1.13 0.18 125 109 2.72 
11177 hsa-miR-527 0.98 -0.03 302 309 1.76 
17624 hsa-miR-532 0.91 -0.14 82 90 3.28 
14271 hsa-miR-539 1.16 0.21 69 59 5.31 
14315 hsa-miR-542-3p 1.12 0.16 72 64 5.80 
14273 hsa-miR-542-5p 1.07 0.10 70 66 0.87 
13712 hsa-miR-544 1.08 0.11 65 60 2.84 
17846 hsa-miR-545 1.12 0.16 82 73 2.16 
13721 hsa-miR-545 1.03 0.05 69 66 2.33 
17535 hsa-miR-548a 1.06 0.09 76 71 3.26 
17298 hsa-miR-548b 1.19 0.25 84 71 1.84 
15313 hsa-miR-548c 1.01 0.02 75 74 10.23 
17533 hsa-miR-548d 0.95 -0.07 71 74 8.09 
17370 hsa-miR-549 1.01 0.02 71 70 10.59 
17660 hsa-miR-550 0.85 -0.24 90 104 5.12 
17272 hsa-miR-551a 1.12 0.16 193 172 5.76 
17500 hsa-miR-551b 1.11 0.15 74 66 2.80 
17668 hsa-miR-552 0.78 -0.35 69 88 2.82 
17271 hsa-miR-553 1.00 0.00 73 73 6.88 
17640 hsa-miR-554 1.02 0.03 79 77 0.82 
17612 hsa-miR-555 0.97 -0.05 77 81 10.40 
17426 hsa-miR-556 1.06 0.09 77 73 7.48 
17376 hsa-miR-557 1.09 0.12 440 405 3.75 
17652 hsa-miR-558 1.00 0.00 71 71 4.84 
14755 hsa-miR-559 1.06 0.08 69 66 2.26 
17456 hsa-miR-560 NA NA NA NA NA 
14773 hsa-miR-561 1.16 0.22 84 72 3.88 
17536 hsa-miR-562 0.98 -0.03 70 71 6.06 
17569 hsa-miR-563 1.05 0.07 67 64 6.15 
17645 hsa-miR-564 1.25 0.32 101 80 3.06 
17413 hsa-miR-565 1.04 0.06 138 130 2.20 
17634 hsa-miR-567 NA NA NA NA NA 
17661 hsa-miR-568 1.04 0.05 75 73 3.72 
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14854 hsa-miR-569 1.10 0.13 73 67 12.39 
14863 hsa-miR-570 NA NA NA NA NA 
17490 hsa-miR-571 NA NA NA NA NA 
17551 hsa-miR-572 1.12 0.17 1533 1365 0.29 
17641 hsa-miR-573 1.08 0.11 87 82 1.96 
17662 hsa-miR-574 NA NA NA NA NA 
17626 hsa-miR-575 1.50 0.59 125 84 5.99 
17396 hsa-miR-576 0.93 -0.10 78 83 1.81 
17420 hsa-miR-577 NA NA NA NA NA 
17302 hsa-miR-578 1.06 0.09 74 68 5.44 
17628 hsa-miR-579 1.03 0.04 67 66 0.34 
17459 hsa-miR-580 1.06 0.09 72 69 6.17 
14962 hsa-miR-581 1.28 0.36 94 74 3.18 
17380 hsa-miR-582 1.08 0.11 70 64 17.59 
17295 hsa-miR-583 1.04 0.06 1109 1061 1.68 
17423 hsa-miR-584 0.51 -0.97 409 806 1.01 
17546 hsa-miR-585 1.08 0.11 94 87 6.05 
17572 hsa-miR-586 0.55 -0.86 62 112 4.90 
17594 hsa-miR-587 NA NA NA NA NA 
17630 hsa-miR-588 1.08 0.11 80 75 3.54 
17570 hsa-miR-589 NA NA NA NA NA 
17503 hsa-miR-590 0.81 -0.30 78 97 5.89 
17404 hsa-miR-591 1.01 0.01 73 72 6.66 
17312 hsa-miR-592 1.12 0.16 81 71 3.58 
17564 hsa-miR-593 NA NA NA NA NA 
17349 hsa-miR-595 1.08 0.10 80 74 2.36 
17449 hsa-miR-596 0.85 -0.23 74 86 3.30 
17424 hsa-miR-597 NA NA NA NA NA 
17637 hsa-miR-598 NA NA NA NA NA 
17600 hsa-miR-599 1.09 0.12 80 74 1.35 
17377 hsa-miR-600 0.90 -0.14 119 132 1.65 
17498 hsa-miR-601 0.82 -0.29 78 95 0.96 
17510 hsa-miR-602 0.94 -0.08 1366 1466 1.60 
17393 hsa-miR-603 1.05 0.07 80 77 18.42 
17592 hsa-miR-604 0.99 -0.01 71 73 7.12 
17374 hsa-miR-605 1.02 0.04 69 67 4.67 
17387 hsa-miR-606 NA NA NA NA NA 
17598 hsa-miR-607 NA NA NA NA NA 
17443 hsa-miR-608 0.88 -0.19 82 93 5.39 
17353 hsa-miR-609 1.12 0.16 72 64 0.40 
17445 hsa-miR-610 1.03 0.04 66 63 5.86 
17611 hsa-miR-611 0.89 -0.17 90 109 21.84 
17346 hsa-miR-612 1.03 0.04 2973 2877 1.70 
17577 hsa-miR-613 NA NA NA NA NA 
17326 hsa-miR-614 1.06 0.09 87 82 1.09 
17574 hsa-miR-615 0.62 -0.68 178 302 5.57 
17289 hsa-miR-616 1.01 0.02 81 79 0.68 
17552 hsa-miR-617 0.96 -0.06 332 357 3.14 
17336 hsa-miR-618 1.19 0.25 86 72 1.85 
17405 hsa-miR-619 1.02 0.03 75 73 3.88 
15349 hsa-miR-620 1.11 0.15 76 68 2.02 
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17588 hsa-miR-621 0.98 -0.02 71 73 5.97 
17493 hsa-miR-622 0.96 -0.06 72 75 7.89 
17309 hsa-miR-623 1.01 0.01 1702 1686 1.08 
17635 hsa-miR-624 NA NA NA NA NA 
17573 hsa-miR-625 0.89 -0.17 316 354 1.37 
17351 hsa-miR-626 NA NA NA NA NA 
17625 hsa-miR-627 1.03 0.05 105 96 6.84 
17471 hsa-miR-628 0.92 -0.12 319 346 2.67 
17566 hsa-miR-629 0.87 -0.20 106 121 5.23 
17327 hsa-miR-630 1.02 0.03 365 353 2.03 
17633 hsa-miR-631 1.12 0.16 93 83 5.55 
17444 hsa-miR-632 1.07 0.09 79 74 2.55 
15475 hsa-miR-633 1.10 0.13 72 68 8.26 
17398 hsa-miR-634 1.20 0.27 121 99 3.64 
17391 hsa-miR-635 0.81 -0.31 71 90 11.53 
17479 hsa-miR-636 NA NA NA NA NA 
17354 hsa-miR-637 0.83 -0.26 88 106 4.01 
17550 hsa-miR-638 1.12 0.16 1210 1074 3.14 
17627 hsa-miR-639 NA NA NA NA NA 
17579 hsa-miR-640 0.81 -0.30 67 83 10.81 
17530 hsa-miR-641 NA NA NA NA NA 
17305 hsa-miR-642 1.31 0.39 133 100 1.58 
17325 hsa-miR-643 0.96 -0.06 79 81 2.42 
17563 hsa-miR-644 1.11 0.15 68 61 1.49 
17613 hsa-miR-645 1.06 0.09 88 83 3.86 
17491 hsa-miR-646 NA NA NA NA NA 
17516 hsa-miR-647 1.04 0.06 65 63 1.64 
17441 hsa-miR-648 0.88 -0.19 101 116 1.52 
15619 hsa-miR-649 NA NA NA NA NA 
17593 hsa-miR-650 NA NA NA NA NA 
17394 hsa-miR-651 0.86 -0.21 83 97 6.22 
17281 hsa-miR-652 0.89 -0.17 109 123 5.83 
15700 hsa-miR-653 1.15 0.20 84 73 0.88 
17505 hsa-miR-654 0.82 -0.28 91 111 2.02 
17286 hsa-miR-655 1.11 0.16 68 61 2.14 
17356 hsa-miR-656 NA NA NA NA NA 
17460 hsa-miR-657 0.85 -0.23 85 100 1.66 
17522 hsa-miR-658 0.94 -0.09 1621 1706 1.35 
17322 hsa-miR-659 1.00 0.01 598 590 1.14 
17338 hsa-miR-660 0.90 -0.15 81 90 3.25 
17582 hsa-miR-661 NA NA NA NA NA 
17507 hsa-miR-662 NA NA NA NA NA 
17558 hsa-miR-663 1.19 0.25 3040 2599 3.04 
17939 hsa-miR-671 0.97 -0.04 2670 2765 2.30 
17809 hsa-miR-769-3p 0.99 -0.02 1642 1674 1.76 

7190 hsa-miR-9 1.24 0.31 93 74 2.42 
11185 hsa-miR-9* 1.09 0.12 73 67 10.05 
11179 hsa-miR-92 0.82 -0.29 78 95 1.60 
17718 hsa-miR-92b 0.75 -0.42 72 98 4.71 
11180 hsa-miR-93 1.07 0.09 74 69 8.67 
11181 hsa-miR-95 0.88 -0.18 97 111 2.76 
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13147 hsa-miR-96 1.21 0.28 104 86 5.21 
11182 hsa-miR-98 1.05 0.07 253 243 1.19 
11183 hsa-miR-99a NA NA NA NA NA 
11184 hsa-miR-99b NA NA NA NA NA 
17347 miRPlus_17347 1.07 0.10 78 73 2.06 
17411 miRPlus_17411 0.93 -0.10 73 78 3.74 
17653 miRPlus_17653 NA NA NA NA NA 
17808 miRPlus_17808 1.64 0.72 127 78 5.55 
17810 miRPlus_17810 0.91 -0.14 116 127 3.20 
17811 miRPlus_17811 NA NA NA NA NA 
17812 miRPlus_17812 0.86 -0.22 72 84 4.30 
17813 miRPlus_17813 0.82 -0.28 72 88 4.08 
17814 miRPlus_17814 NA NA NA NA NA 
17815 miRPlus_17815 NA NA NA NA NA 
17816 miRPlus_17816 NA NA NA NA NA 
17817 miRPlus_17817 NA NA NA NA NA 
17818 miRPlus_17818 0.91 -0.13 69 77 10.88 
17819 miRPlus_17819 0.89 -0.16 68 77 15.46 
17820 miRPlus_17820 0.93 -0.10 69 74 4.99 
17821 miRPlus_17821 0.96 -0.06 73 77 2.84 
14261 spike_control_a 1.00 -0.01 151 153 1.93 
14263 spike_control_b 0.92 -0.12 189 203 1.50 
14264 spike_control_c 0.89 -0.17 691 770 2.13 
10904 spike_control_d 1.04 0.05 5465 5311 2.32 
10906 spike_control_e 0.94 -0.09 866 924 3.56 
14262 spike_control_f 0.91 -0.14 128 140 2.16 
10905 spike_control_g 1.04 0.06 564 551 2.89 
10907 spike_control_h 0.95 -0.08 2448 2687 3.19 
14257 spike_control_i 0.98 -0.02 12353 12502 2.31 
10899 spike_control_j 1.01 0.02 16600 16551 2.99 
17822 miRPlus_17822 NA NA NA NA NA 
17823 miRPlus_17823 1.14 0.19 74 64 2.82 
17824 miRPlus_17824 0.99 -0.01 70 71 5.75 
17825 miRPlus_17825 0.95 -0.07 69 72 0.67 
17826 miRPlus_17826 1.03 0.05 66 63 1.77 
17827 miRPlus_17827 0.88 -0.18 73 85 6.35 
17828 miRPlus_17828 0.85 -0.23 87 103 2.78 
17829 miRPlus_17829 1.01 0.01 73 71 5.40 
17830 miRPlus_17830 1.00 0.00 239 234 2.79 
17831 miRPlus_17831 0.87 -0.20 69 80 23.91 
17832 miRPlus_17832 1.01 0.02 1008 997 2.41 
17833 miRPlus_17833 0.96 -0.06 113 117 6.82 
17834 miRPlus_17834 0.89 -0.16 104 116 2.75 
17836 miRPlus_17836 0.99 -0.01 1024 1026 1.71 
17837 miRPlus_17837 0.98 -0.02 69 70 7.81 
17838 miRPlus_17838 0.92 -0.12 73 80 9.35 
17840 miRPlus_17840 0.92 -0.12 141 153 1.45 
17841 miRPlus_17841 1.06 0.09 80 76 3.87 
17842 miRPlus_17842 1.08 0.11 72 66 4.24 
17843 miRPlus_17843 1.06 0.09 69 65 4.61 
17844 miRPlus_17844 0.92 -0.12 73 80 1.36 
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17845 miRPlus_17845 0.89 -0.17 92 104 4.67 
17847 miRPlus_17847 0.97 -0.05 78 80 1.42 
17848 miRPlus_17848 0.98 -0.02 78 79 4.37 
17849 miRPlus_17849 NA NA NA NA NA 
17850 miRPlus_17850 1.01 0.02 72 70 3.34 
17851 miRPlus_17851 0.92 -0.12 70 77 0.75 
17852 miRPlus_17852 0.93 -0.10 70 75 3.62 
17853 miRPlus_17853 0.99 -0.02 70 74 19.29 
17854 miRPlus_17854 0.83 -0.26 85 104 1.53 
17855 miRPlus_17855 1.08 0.12 91 84 5.00 
17856 miRPlus_17856 1.12 0.16 3981 3655 3.32 
17857 miRPlus_17857 1.20 0.27 97 81 6.98 
17858 miRPlus_17858 1.33 0.41 125 94 4.17 
17859 miRPlus_17859 1.01 0.01 254 257 2.20 
17860 miRPlus_17860 1.13 0.17 95 84 4.56 
17861 miRPlus_17861 1.06 0.09 272 262 2.29 
17862 miRPlus_17862 1.08 0.11 71 65 1.64 
17863 miRPlus_17863 0.90 -0.15 98 109 1.51 
17864 miRPlus_17864 1.14 0.19 4006 3516 1.36 
17865 miRPlus_17865 1.06 0.08 1195 1144 1.97 
17866 miRPlus_17866 NA NA NA NA NA 
17867 miRPlus_17867 NA NA NA NA NA 
17868 miRPlus_17868 0.84 -0.24 125 147 0.35 
17869 miRPlus_17869 0.90 -0.15 10412 11420 2.30 
17870 miRPlus_17870 0.72 -0.48 85 120 9.27 
17871 miRPlus_17871 0.94 -0.09 1964 2075 2.17 
17872 miRPlus_17872 0.73 -0.46 66 91 3.96 
17873 miRPlus_17873 0.89 -0.17 72 81 7.62 
17874 miRPlus_17874 0.75 -0.42 75 100 10.15 
17875 miRPlus_17875 0.77 -0.38 74 97 2.73 
17876 miRPlus_17876 NA NA NA NA NA 
17877 miRPlus_17877 1.01 0.01 2496 2465 2.37 
17878 miRPlus_17878 1.03 0.04 1332 1300 1.13 
17879 miRPlus_17879 0.99 -0.02 74 76 3.64 
17880 miRPlus_17880 NA NA NA NA NA 
17881 miRPlus_17881 1.15 0.20 4619 4021 4.61 
17882 miRPlus_17882 0.94 -0.09 131 136 3.62 
17883 miRPlus_17883 0.86 -0.22 69 81 10.89 
17884 miRPlus_17884 0.82 -0.29 67 82 0.88 
17885 miRPlus_17885 NA NA NA NA NA 
17886 miRPlus_17886 NA NA NA NA NA 
17887 miRPlus_17887 NA NA NA NA NA 
17888 miRPlus_17888 NA NA NA NA NA 
17889 miRPlus_17889 NA NA NA NA NA 
17890 miRPlus_17890 0.96 -0.06 2284 2404 1.73 
17891 miRPlus_17891 0.82 -0.29 71 90 9.12 
17892 miRPlus_17892 NA NA NA NA NA 
17893 miRPlus_17893 0.78 -0.37 68 88 4.28 
17894 miRPlus_17894 0.96 -0.07 355 371 2.61 
17895 miRPlus_17895 0.92 -0.12 69 75 6.62 
17896 miRPlus_17896 1.54 0.62 303 197 1.15 
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17897 miRPlus_17897 NA NA NA NA NA 
17898 miRPlus_17898 NA NA NA NA NA 
17899 miRPlus_17899 NA NA NA NA NA 
17900 miRPlus_17900 0.92 -0.13 156 172 2.23 
17902 miRPlus_17902 NA NA NA NA NA 
17903 miRPlus_17903 1.05 0.08 150 142 4.36 
17904 miRPlus_17904 0.87 -0.19 181 207 1.95 
17905 miRPlus_17905 1.02 0.02 92 90 4.69 
17906 miRPlus_17906 1.01 0.02 68 67 1.18 
17907 miRPlus_17907 NA NA NA NA NA 
17908 miRPlus_17908 NA NA NA NA NA 
17909 miRPlus_17909 1.07 0.10 71 66 2.21 
17910 miRPlus_17910 NA NA NA NA NA 
17911 miRPlus_17911 1.00 0.00 66 65 2.61 
17912 miRPlus_17912 NA NA NA NA NA 
17913 miRPlus_17913 NA NA NA NA NA 
17914 miRPlus_17914 0.81 -0.30 67 83 11.33 
17915 miRPlus_17915 0.97 -0.04 1791 1845 2.33 
17916 miRPlus_17916 NA NA NA NA NA 
17917 miRPlus_17917 NA NA NA NA NA 
17918 miRPlus_17918 0.89 -0.17 101 113 1.37 
17919 miRPlus_17919 NA NA NA NA NA 
17920 miRPlus_17920 NA NA NA NA NA 
17921 miRPlus_17921 0.94 -0.09 633 669 1.29 
17922 miRPlus_17922 NA NA NA NA NA 
17923 miRPlus_17923 NA NA NA NA NA 
17924 miRPlus_17924 NA NA NA NA NA 
17925 miRPlus_17925 NA NA NA NA NA 
17926 miRPlus_17926 NA NA NA NA NA 
17927 miRPlus_17927 0.75 -0.42 273 369 1.03 
17928 miRPlus_17928 NA NA NA NA NA 
17929 miRPlus_17929 NA NA NA NA NA 
17930 miRPlus_17930 0.88 -0.18 150 170 2.12 
17931 miRPlus_17931 NA NA NA NA NA 
17932 miRPlus_17932 1.05 0.07 64 61 0.66 
17933 miRPlus_17933 0.77 -0.39 71 92 4.90 
17934 miRPlus_17934 NA NA NA NA NA 
17935 miRPlus_17935 NA NA NA NA NA 
17936 miRPlus_17936 0.77 -0.38 82 107 5.75 
17937 miRPlus_17937 NA NA NA NA NA 
17938 miRPlus_17938 NA NA NA NA NA 
17940 miRPlus_17940 0.73 -0.46 73 101 7.24 
17941 miRPlus_17941 0.71 -0.50 72 102 11.14 
17942 miRPlus_17942 0.93 -0.10 98 105 2.75 
17943 miRPlus_17943 0.94 -0.09 348 370 1.72 
17944 miRPlus_17944 NA NA NA NA NA 
17945 miRPlus_17945 0.89 -0.18 149 169 1.29 
17946 miRPlus_17946 0.84 -0.25 89 107 1.35 
17948 miRPlus_17948 NA NA NA NA NA 
17949 miRPlus_17949 NA NA NA NA NA 
17950 miRPlus_17950 0.95 -0.08 575 598 3.52 
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17951 miRPlus_17951 0.83 -0.28 68 83 1.24 
17952 miRPlus_17952 1.23 0.30 1594 1306 0.80 
17953 miRPlus_17953 0.91 -0.14 749 820 0.93 
17954 miRPlus_17954 0.72 -0.46 70 95 2.23 
17955 miRPlus_17955 0.72 -0.47 73 101 2.25 
17956 miRPlus_17956 NA NA NA NA NA 
17957 miRPlus_17957 NA NA NA NA NA 
17958 miRPlus_17958 NA NA NA NA NA 
17959 miRPlus_17959 0.73 -0.45 83 113 2.37 
17960 miRPlus_17960 0.99 -0.02 1959 1995 2.51 
17961 miRPlus_17961 0.83 -0.28 95 115 2.40 
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