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A B S T R A C T   

In this paper, local search algorithms are proposed for the p-Center, α-Neighbour p-Center and p-Next Center 
facility location problems. The α-Neighbour p-Center and p-Next Center problems may be viewed as two fault- 
tolerant variants of the p-Center problem. The algorithm proposed for p-Center outperforms the most recent 
state-of-the-art metaheuristic for this problem using standard datasets. The proposed algorithm for p-Next Center 
also outperforms an existing, more complex, state-of-the-art metaheuristic for this problem. The algorithm 
proposed for α-Neighbour p-Center is the first metaheuristic for this problem, to the best of the author’s 
knowledge. The proposed algorithms share a common design, which is the integration of the first-improvement 
local search with strategies to exploit flat subspaces in the search space. The overall success of this design 
paradigm motivates further investigation about its properties and applications to similar NP-hard optimisation 
problems.   

1. Introduction 

One of the well-studied facility location problems is the p-Center (pC) 
problem, which is the problem of selecting a pre specified number of 
vertices in a graph as facility centers such that the maximum distance 
from a client vertex to its closest facility is minimised (Hakimi, 1964; 
Hakimi, 1965; Minieka, 1970). Because of its min–max property, it may 
be used to model real-world applications where the high service cost of a 
demand point is not compensated by the low service costs of other de-
mand points. It also has applications in solving location covering 
problems. Applications cited in the literature for such problems and 
their variants include locating emergency service points such as police 
stations, ambulances, and fire brigades in Çalık et al. (2019), television 
transmitters, warning sirens, and sprinkler systems in Suzuki and 
Drezner (1996), mobile base stations mounted on unmanned aerial ve-
hicles in Lyu et al. (2016), delivery drone battery depos in Liu (2022), 
and mobile sinks in wireless sensor networks in Solmaz et al. (2014), 
among others. Callaghan (2016) presents a brief review of the previous 
studies using real data, which include, among others, locating geriatric 
and diabetic health care clinics in Spain (Pacheco and Casado, 2005), 
emergency warning sirens in Dublin, Ohio (Murray et al., 2008), and 
urgent relief distribution centres for earthquake injured residents in 
Taiwan (Lu, 2013). Other studies using real data include cell phone 
towers in northern Orange County, California (Drezner and Drezner, 

2014) and emergency rescue stations in the high-speed railway network 
in China (Wang et al., 2022). 

Among numerous exact algorithms proposed for this problem are 
Daskin (1995, 2000), Elloumi et al. (2004), Al-Khedhairi and Salhi 
(2005), Chen and Chen (2009), Çalık and Tansel (2013) and Contardo 
et al. (2019). However, because of its NP-hardness (Kariv and Hakimi, 
1979), guaranteeing to find optimal solutions requires super-polynomial 
running time unless P = NP. Therefore, several inexact, mostly meta-
heuristic, algorithms have also been proposed to address the problem in 
affordable time but with no optimality guarantee. 

Mladenović et al. (2003) proposed Variable Neighbourhood Search 
(VNS) and Tabu Search (TS) for the problem. Hassin et al. (2003) pro-
posed a local search strategy where solutions are compared lexico-
graphically and applied this strategy to the pC problem. A Scatter Search 
(SS) metaheuristic was proposed by Pacheco and Casado (2005). Pullan 
(2008) devised a heuristic used in a Memetic Algorithm (MA). Davidović 
et al. (2011) introduced a variant of the Bee Colony Optimization (BCO) 
and showed its superiority to the standard BCO for the problem. Other 
bee colony metaheuristics were proposed by Yurtkuran and Emel (2014) 
and Jayalakshmi and Singh (2018). Ferone et al. (2017) proposed a 
Greedy Randomized Adaptive Search (GRASP) for the problem. Yin et al. 
(2017) used the local search devised in Pullan (2008) with a modified 
tabu strategy within a GRASP metaheuristic with Path Relinking (PR). 
Two more heuristics for the problem were evaluated by Yadav and 
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Prakash (2020). The problem may also be formulated as the Set 
Covering or Boolean Satisfiability problems (Caruso et al., 2003; Liu 
et al., 2020). 

A generalisation of the pC problem is the α-Neighbour p-Center 
(αNpC) problem, 1⩽α⩽p, whose objective is to minimize the maximum 
distance between a client and its α-closest facility center. The case α = 1 
is equivalent to pC, and the case α > 1 may be viewed as a fault-tolerant 
variant of pC (by catering for the potential failure of up to α – 1 facil-
ities). This problem was first introduced and shown NP-hard by Krumke 
(1995) and further explored by Chaudhuri et al. (1998), Khuller et al. 
(2000) and Chen and Chen (2013). Two variants of this problem 
(continuous and variable αNpC) were introduced by Chen and Chen 
(2013) and Callaghan et al. (2019). 

Recently, another NP-hard fault-tolerant variant of the pC problem, 
called p-Next Center (pNC), was introduced by Albareda-Sambola et al. 
(2015) where each client is assigned to two facility centers, a primary 
and a secondary, so that the latter can be used as the backup in case the 
former becomes unavailable, e.g. in natural disasters. The primary 
center is required to be a closest center to the client. A key assumption in 
this problem is that the potential failure of the primary center is not 
known in advance. That is, a client first pays the cost of reaching their 
primary center and, if unavailable, will pay the extra cost of reaching 
their backup center. Therefore, in case of failure, the total cost to the 
client will be the sum of these two costs. The goal is to locate the centers 
such that the maximum of these total costs is minimised. For discussion 
on the potential applications of this problem, the reader is referred to 
Albareda-Sambola et al. (2015). Two metaheuristics and their hybrid 
were proposed for this problem by López-Sánchez et al. (2019). 

Among other similar facility location problems are Probabilistic 
p-Center (Martínez-Merino et al., 2017), α-All-Neighbour p-Center 
(Khuller et al., 2000), Capacitated p-Center (Kramer et al., 2020), and 
p-Median (Mladenović et al., 2007) problems. 

To the best of the author’s knowledge, the current state-of-the-art 
metaheuristics for pC are those proposed by Pullan (2008) and Yin 
et al. (2017). No metaheuristic has yet been proposed for αNpC, to the 
best of the author’s knowledge, and the current state-of-the-art meta-
heuristic for pNC is the hybrid metaheuristic proposed by López-Sánchez 
et al. (2019). 

The main contributions of this paper are new state-of-the-art meta-
heuristics for the pC, αNpC, and pNC problems. More specifically, met-
aheuristics are proposed to outperform the state-of-the-art 
metaheuristics of Yin et al. (2017) and López-Sánchez et al. (2019) for 
pC and pNC, respectively, and another metaheuristic as the (first) state- 
of-the-art metaheuristic for αNpC. 

To that end, the first-improvement local search is used together with 
strategies to exploit the flat subspaces of the search space due to the 
max–min nature of these problems. Such strategies are not used in the 
current state-of-the-art metaheuristics for pC and pNC. 

In particular, two strategies are used to benefit from flat subspaces. 
The first strategy is to accept not only downhill moves but also flat 
moves that are ‘promising’ according to some heuristic function. Let f(.)
be the objective function and P and P1 be two neighbours in the search 
space with the same objective value f(P) = f(P1). This strategy is to 
replace the objective function f(.) with a more accurate heuristic func-
tion h(.) to evaluate these points and decide on the potential move from 
P to P1. To that end, a heuristic function is used to take into account 
properties additional to those already captured by the objective func-
tion. Therefore, P and P1, which have the same objective value, may now 
have different heuristic values h(P) ∕= h(P1 ). This means, while such 
neighbours are flat in the search space with respect to f(.), they may no 
longer be so with respect to h(.). For this reason, this strategy is called 
the unflattening strategy in this paper. Using this strategy, we can 
potentially distinguish between flat moves and accept those likely to be 
beneficial. That is, although the objective value is not immediately 
improved by such moves, it is likely to be improved in subsequent 
moves. More specifically, the intuition for using this strategy is to 

potentially reduce the expected running time needed to improve the 
objective value. However, it requires an effective, but not computa-
tionally expensive, heuristic function. This strategy was used in Mousavi 
et al. (2012) within the local search phase of a GRASP algorithm to 
address the Far From Most Strings problem. In Mousavi and Esfahani 
(2012), a similar approach was used in both the construction and the 
local search phases of a GRASP algorithm for the Closest String problem. 
This strategy was also reported useful in a stand-alone local search al-
gorithm and the local search phase of a GRASP algorithm proposed for 
the pC problem by Hassin et al. (2003) and Ferone et al. (2017), 
respectively, though neither of them is a recent state-of-the-art for the 
problem. 

The second strategy is to always accept flat moves (in addition to 
downward moves). That is, the move from P and P1 is accepted when P1 
has a better or the same objective value f(P1)⩽f(P). The intuition for 
accepting flat moves in the proposed algorithms is to increase diversi-
fication without sacrificing intensification. Intensification aims at uti-
lising the neighbourhood of the best solution discovered, whereas 
diversification aims at exploring other parts of the search space to 
potentially discover better solutions. In general, these two mechanisms 
are contradictory in the sense that diversification requires moving to a 
point whose objective value is (most likely) worse than that of the best 
point found so far. However, flat moves promote diversification without 
reducing the objective value. This strategy is known in the literature as 
the Improving and Equal (IE) (also, Improving or Equal) move-acceptance 
hyper-heuristic (Misir et al., 2009; Burke et al., 2013; Jackson et al. 
2018). This strategy is called the IE strategy in this paper. This strategy is 
also combined with the unflattening strategy in the proposed algorithms 
by accepting moves to neighbours with better or the same heuristic 
values. 

The current state-of-the-art metaheuristics for pC and pNC do not use 
these strategies. The state-of-the-art metaheuristic proposed by Yin et al. 
(2017) for the pC problem is a GRASP algorithm with the PR operator. 
The GRASP part consists of a construction and a local search phase. The 
local search is that proposed by Pullan (2008), in a memetic algorithm, 
but with a modified tabu strategy. This pair of construction and local 
search phases is run independently several times. The PR procedure is 
intended to keep a list of the best solutions found in these independent 
runs and use them to further improve the solutions obtained at each run. 
The adopted local search in this metaheuristic uses the best- 
improvement strategy. This means that the algorithm rejects all identi-
fied flat moves unless no better move can be found. That is, the IE 
strategy is not employed. The local search procedure does not use extra 
information to evaluate flat neighbours either. On the contrary, it uses 
even less information to determine the “best” move. More specifically, to 
evaluate the quality of the neighbours, it uses a heuristic function that is 
less accurate (hence faster to compute) than the objective function. That 
is, the heuristic function uses less information than that used by the 
objective function. This is in contrast to the strategy used in the pro-
posed metaheuristics, which is to use a heuristic function that is more 
accurate than the objective function by using extra information to 
distinguish between flat neighbours. 

The state-of-the-art metaheuristic of López-Sánchez et al. (2019) for 
pNC is a hybrid of GRASP and Basic VNS (BVNS). The local search 
procedure in this metaheuristic resides in its VNS component, which 
serves as the local search phase of GRASP. This local search procedure is 
the standard local search with the first-improvement strategy, which 
only accepts moves that improve the objective value. That is, no flat 
move is accepted. No heuristic is used in this metaheuristic to distin-
guish between flat neighbours either. 

As confirmed by the experimental results, these state-of-the-art 
metaheuristics are outperformed by the proposed algorithms. 

The rest of the paper is organised as follows. Section 2 provides basic 
notations and the formal definitions of the problems. The proposed al-
gorithms are described in Section 3. Section 4 reports the experimental 
results, and Section 5 concludes the paper. 
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2. Basic notations and formal definitions 

Let V = {v1,⋯, vn} be a set of vertices and dij⩾0 be the (shortest) 
distance between vertices vi and vj. Then, given a distance matrix D =

[dij]n×n and an integer p ∈ {2, ⋯, n − 1}, the p-Center, α-Neighbour 
p-Center, where α ∈ {1, ⋯, p}, and p-Next Center problems are the 
problems of finding a set P⊂V such that |P| = p and the objective value 
f(P) = max

1⩽i⩽n
{fi(P)} is minimised, where fi(P) is the cost of vertex vi defined 

differently for these problems as follows. For the p-Center problem, the 
cost of a vertex is its distance to a nearest vertex in P. For the α-Neigh-
bour p-Center problem, the cost of a vertex in P is zero and the cost of 
any other vertex is defined as its distance to an α-nearest member of P. 
Finally, for the p-Next Center problem, the cost of a vertex vi, i = 1,⋯, n,
is defined as the following. 

fi(P) = min
vj∈P

{
dij
}
+ min

j’∈argmin
vj∈P

{dij}

k∕=j’,vk∈P

{
dj’k

}

Let f (r)(P), r = 1,⋯, n, denote the rth largest value among fi(P),i = 1,
⋯,n. Then, the objective function f (for all these problems) is equal to 
f (1). For brevity, fi and f (r) are used to denote, respectively, fi(P) and 
f (r)(P), i, r = 1, ⋯, n, when no ambiguity arises. The set V\P is also 
denoted by Q. 

A candidate solution, or for short a solution, is a set P of p vertices 
which represent the facility centers. Such a vertex may simply be called a 
facility or a center. Other vertices (i.e. members of Q) are called clients. A 
candidate solution corresponds to a point in the search space, so these 
terms are used interchangeably. The optimal solution is a candidate 
solution with the minimum objective value. A neighbour P1 of a 
candidate solution P is a candidate solution obtained by replacing a 
member of P with a member of Q, which means |P ∩ P1| = p − 1 
(equivalently, |P ∪ P1| = p + 1). The set of the neighbours of P is 
denoted by N(P). A candidate solution P1 ∈ N(P) is a flat neighbour of P 
(with respect to f) if f(P) = f(P1). 

The p-Center and α-Neighbour p-Center problems are well-studied in 
the literature. To elaborate on the p-Next Center problem, an example is 

now presented which is derived from the first data file pmed1 used in the 
experimental results with a reduced number of vertices. 

Example 1. Assume we want to open 3 facility centers for which there 
are 7 candidate locations (vertices) labelled with 1 to 7. The shortest 
distances between all pairs of vertices are given in Fig. 1.a. 

For this problem instance, n = 7 and p = 3. Any set of 3 vertices is a 
candidate solution, e.g. P = {1,3,6}, for which Q = {2,4,5,7}. For this 
candidate solution, f1 to f7 are now calculated. For this purpose, the 
closest center to each vertex i = 1,⋯,7 is identified. Fig. 1.b displays the 
vertices in two rows. The top row presents the facility centers, i.e. the 
members of P, and the bottom row presents those in Q. An arrow from a 
node i ∈ Q to a facility node j ∈ P means that j is the primary center for i, 
i.e. a closest center to i. The weight of the arrow is the distance dij. For 
example, the arrow weighted 30 from 2 to 1 indicates that the primary 
center for 2 is 1, away by 30 units. In this example, the closest center to 
each node is unique, which is not always the case. An arc from a node i ∈
P to another node j ∈ P means that j is the secondary center for i; its 
primary center is itself. For example, the arc from 1 to 3 means that node 
3, away by 76 units, is the secondary center for node 1. In addition, it is 
the secondary center for node 2 whose primary center is 1. Similarly, the 
primary and the secondary centers for the nodes 4, 5 and 7 are the 
centers 3 and 6, respectively. 

The information provided in Fig. 1.b is now used to calculate the 
values f1 to f7. For each center i ∈ P, fi is simply the weight of its out-
going arc, i.e. the cost of reaching its secondary center. Therefore, f1 =

76 and f3 = f6 = 60. However, for a node i ∈ Q, fi is the sum of two costs, 
the weight of its outgoing arrow to a center j and the weight of the arc 
outgoing from j. For example,f2 = 30 + 76 = 106. Similarly, f4 = 1 +

60 = 61, f5 = 29 + 60 = 89, and f7 = 37 + 60 = 97. Fig. 1.c. sum-
marises the primary and the secondary centers and the fi value for each 
node i = 1,⋯,7. The objective value f(P) is the largest value among fi,i =

1,⋯,7, which is 106, shown in the last row. The second largest value in 
this example is f (2) = 97. An optimal solution for this problem instance 
(not shown in the figure) is P* = {2,3, 7} with objective value f(P*) =

76. 

Fig. 1. Analysis of the candidate solution P = {1,3, 6} in Example 1. (a) The shortest distance between each pair of vertices. Note the symmetry of the table. 
(b) Assignment of vertices to their closest centers. (c) The primary and secondary centers, their costs (inside parentheses), the fi values, and the final objective 
value f(P). 
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3. Proposed algorithms 

This section presents the algorithms proposed for the pNC, αNpC and 
pC problems. These algorithms are based on the first-improvement local 
search (Blum and Roli, 2003) integrated with the unflattening and IE 
strategies. 

Definition. A function h from the set of candidate solutions to the set 
of real numbers is called f -consistent if for all candidate solutions P and 
P1, f(P) < f(P1)⇒h(P) < h(P1).

f-consistent heuristic functions are used to integrate the unflattening 
strategies with the local search algorithms for the pNC, αNpC and pC 
problems. The f-consistency of such a heuristic allows for the incorpo-
ration of the unflattening strategy in the local search by simply replacing 
the objective function f with the heuristic function h. 

The combination of the unflattening and IE strategies in the proposed 
algorithms is defined as the acceptance of moves to neighbours with the 
same objective value and the same heuristic value in addition to those 
accepted by the unflattening strategy alone. That is, a move from P to P1 
is accepted iff P1 has either a better objective value or the same objective 
value and a better or the same heuristic value, i.e. 

f (P1)< f (P) OR ( f (P1) = f (P) AND h(P1)⩽h(P) ).

However, by the f-consistency of h, this condition is simplified to 
h(P1)⩽h(P). 

The replacement of the “⩽” operator with “<” in these conditions 
would yield the acceptance criteria for the unflattening strategy alone. 

3.1. Proposed algorithm for pNC 

The algorithm proposed for pNC is the basic local search (BLS) in-
tegrated with the unflattening and IE strategies. Here, BLS is the classic 
first-improvement local search within a random-restart loop. At each 
iteration of the loop, it starts with a random solution and keeps moving 
to improved neighbours, on the first-improvement basis, until it reaches 
a local minima. Before presenting the proposed pseudocode, the 
unflattening heuristic function is described. 

Let c be an integer greater than 2 × dmax, where dmax = max
1⩽i,j⩽n

{
dij
}
. 

Then, the proposed heuristic function hK, 1⩽K⩽n, is defined as the 
following. 

hK(P) =
∑K

r=1
cK− r f (r)(P) (1) 

Recall that f (r)(P) is the rth largest value among fi(P),i = 1,⋯,n. Also 

note that h1(P) = f(P). Both the distinguishing power and the compu-
tational cost of hK(P) increase with K. 

In the following, for simplicity and without loss of generality, the 
distance values are assumed to be scaled (based on the desired accuracy) 
to integers. For example, for centimetre-level accuracy, if the distance 
between vertex i and vertex j is 2 meters, then dij = 200. As a result, the 
objective and the heuristic values will also be integers. 

Proposition 1. The heuristic function hK given in (1) is f -consistent. 

Proof. It is proved by induction on K. The base case holds trivially 
because h1 = f (1) = f . Assume hK is f-consistent for some K = k1, 
1⩽k1 < n. It is now proved so for K = k1 + 1. 

f (P)< f (P1) ⇒hk1 (P)< hk1 (P1) (bytheinductionhypothesis)
⇒(hk1 (P1)− hk1 (P))⩾1 (becauseheuristicvaluesareintegers)
⇒c(hk1 (P1)− hk1 (P))⩾c (becausec > 0)

(2) 

On the other hand, f (r)(P)⩽2× dmax, 1⩽r⩽n, which implies 
c > f (k1+1)(P). This in turn implies c > f (k1+1)(P)− f (k1+1)(P1) because 
f (k1+1)(P1) is nonnegative. Using this result together with (2) yields the 
following. 

f (P)<f (P1) ⇒c(hk1 (P1) − hk1 (P))>f (k1+1)(P) − f (k1+1)(P1)

⇒c hk1 (P)+ f (k1+1)(P) < c hk1 (P1)+ f (k1+1)(P1)

⇒hk1+1(P)<hk1+1(P1)
(
by the recursion hk1+1 = c hk1 + f (k1+1) )∎ 

The value hK(P) may be viewed as a number in radix c with K digits 
f (1) to f (K) because c is greater than f (r), 1⩽r⩽K. Therefore, if the most 
significant digit f (1)(P) of hK(P) is less than that of hK(P1), then the whole 
number hK(P) is less than hK(P1). If their f (1) digits are equal, their f (2)
digits determine which number is less, unless these digits are also equal 
in which case their f (3) digits matter, and so on. 

It is not hard to see that Proposition 1 also holds for decimal objective 
and heuristic values by appropriately scaling up the constant c. 

Let AK be the algorithm obtained by replacing the objective function 
f in BLS with hK, K > 1. The f-consistency of hK means that AK is 
consistent with BLS in accepting downhill and rejecting uphill moves. 
The only difference is that any move from P to P1 ∈ N(P) with the same 
objective value but a better heuristic value is rejected as a flat move in 
BLS but is accepted as a downhill move (with respect to hK) in AK. 

Example 2. Consider the problem instance and the candidate solution 
P = {1,3, 6} in Example 1. Consider the neighbour P1 = {1,3, 2} ob-
tained by replacing center 6 in P with center 2. It is now shown that the 

Fig. 2. Analysis of the candidate solution P1 = {1,3,2} for the problem instance in Example 1. This candidate solution is a neighbour of P = {1,3,6} analysed in 
Fig. 1. (a) Assignment of vertices to their closest centers. (b) The primary and secondary centers, their costs (inside parentheses), the fi values, and the final objective 
value f(P1). 
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move from P to P1 is rejected in BLS but is accepted in AK, K > 1. Fig. 2 
analyses P1. 

As can be seen in Fig. 2, f(P1) = 106 = f(P), which means P and P1 
are flat neighbours with respect to f . Therefore, BLS rejects the move 
from P to P1. Assume, for simplicity and without loss of generality, that 
the algorithm A2 is used, i.e. the heuristic function is h2 = cf (1) + f (2), 
where c is an integer greater than 2 × dmax. Here, dmax = 136 (please see 
the distance matrix in Fig. 1.a). So, c = 273 can be used. Then, although 
the f (1) values of P and P1 are the same (106), their heuristic values will 
be different because of their different f (2) values (97 and 83, respec-
tively). In particular, h2(P) = 273 × 106+97 = 29035 and h2(P1) =

273× 106 + 83 = 29021. Therefore, P1 has a better (smaller) heuristic 
value and A2 accepts the move from P to P1. 

Algorithm 1 presents the proposed pseudocode. It receives, as inputs, 
the matrix D of the shortest distances dij,1⩽i, j⩽n and the number p of 
facility centers. Its parameter K determines the unflattening heuristic 
function hK. It uses arrays to represent P and Q. Its main loop (line 1) 
repeats the same process (lines 2–17) until its termination condition is 
met. The termination condition could be based on a fixed number of 
iterations, fixed running time, target solution quality or any combina-
tion of these, among other options. At each iteration, it starts with a 
random initial solution P (line 2) and executes a while loop (lines 4–17) 
until no downward move is performed. At each iteration of the while 
loop, it first resets the improved flag. Then, it goes through every pair (i ∈
{1, ⋯, p}, j ∈ {1, ⋯, q}), where q = n − p, (lines 6–7) to generate a 
neighbour P1 of P obtained by replacing the facility center P[i] with Q[j]
(without changing P and Q) (line 8). Next, it compares the heuristic 
values of P1 and P (line 9). If P1 has a better value, it moves to P1 and sets 
the improved flag (line 11). If the heuristic values are equal, it also ac-
cepts the move (line 13) but does not set the flag. This means, while both 
downward and flat moves (with respect to hK) are accepted, they are 
treated differently. Because this flag is only set for the downward (not 
flat) moves and the while loop in line 4 stops if it is not set, the IE 
strategy does not result in infinite cycling. Eventually, the best solution 
found in all the iterations is returned (line 19). 

This algorithm is identical to BLS except that: 

(i) It incorporates the unflattening strategy by replacing the objec-
tive function f in BLS with the heuristic function hK in line 9.  

(ii) It incorporates the IE strategy by using the else branch in lines 
12–13. 

This algorithm is called BK, where parameter K determines the 
heuristic function hK, and AK is used to refer to the corresponding al-
gorithm without the IE strategy (i.e. without lines 12–13). Note that BLS 
is equivalent to A1. 

Algorithm 2 calculates the heuristic value hK(P) for a given candidate 
solution P and a value of the parameter K. It uses other data relevant to 
the problem instance, such as the distance matrix and the constant c, as 
global variables. The first for loop in lines 1–4 calculates fi for all facility 
centers vi ∈ P. Recall that such a center is its own primary center and 
only needs a backup center. The second for loop, lines 5–14, calculates fi 
for each client vertex vi ∈ Q. In line 15, the k largest values f (1) to f (K)
among fi, vi ∈ V, are identified, which are then used to calculate the 
heuristic value (hValue) in lines 16–19 by the following recursion. 

hK(P) =
{

c × hK− 1(P) + f (K)(P) K > 1
f (1)(P) K = 1 

This algorithm is efficient. The first for loop (lines 1–4) runs in O(p2). 
The second for loop (lines 5–14) runs in O(qp), so the calculation of all 
the fi values, i = 1, ⋯, n, (lines 1–14) takes O(np). It takes O(Kn) to 
calculate f (r), r = 1,⋯,K (line 15). These values are then used to calcu-
late hValue in O(K) (lines 16–19). Therefore, the whole running time is 
O(n(p + K) ) which is linear in each of the variables n, p and K. It is O(np)
for any fixed value of K. 

Algorithm 1 
Algorithm BK, which is BLS equipped with unflattening (for K>1) and IE stra-
tegies, proposed for pNC.  

Algorithm BK 

Inputs: Matrix D = [dij]n×n of shortest distances 
Integer p ∈ {2,⋯,n − 1}

Parameter: Integer K ∈ {1,⋯,n}
1 while Termination Condition not met do 
2 Initialise P with p random vertices and put the rest in Q 
3 improved = true 
4 while improved = true do 
5 improved = false 
6 for i = 1 to p do 
7 for j = 1 to n − p do 
8 P1 = solution obtained by replacing P[i] with Q[j]
9 if hK(P1)<hK(P) then //the use of hK implements unflattening strategy 
10 swap P[i] and Q[j] //move from P to P1 

11 improved = true 
12 else if hK(P1) = hK(P) then //the else branch implements IE strategy 
13 P = P1 and update Q 
14 end if 
15 end for 
16 end for 
17 end while 
18 end for 
19 return best solution found in all iterations  

Algorithm 2 
The algorithm used to calculate the heuristic value hK(P) for a given 
solution P and a value of K.  

Algorithm hK 

Input: Candidate solution P 
Parameter: Integer K ∈ {1,⋯,n}
1: for each vi ∈ P do 
2: //calculate fi 
3: fi = min

vk∈P
k∕=i

{dik}

4: end for 
5: for each vi ∈ Q do 
6: //calculate fi 
7: minPrimary = fi = ∞ 
8: for each vj ∈ P do 
9: if dij < minPrimary or (dij = minPrimary and dij + fj < fi) then 
10: minPrimary = dij 

11: fi = dij + fj 
12: end if 
13: end for 
14: end for 
15: f(1) to f(K) = the first to the kth largest values among fi,vi ∈ V 
16: hValue = f(1)

17: for r = 2 to K do 
18: hValue = c× hValue + f(r)

19: end for 
20: return hValue  
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Algorithm 3 
Algorithm BK-αNpC, with unflattening (forK>1) and IE strategies, pro-
posed for αNpC.  

Algorithm BK-αNpC 

Inputs: Matrix D = [dij ]n×n of shortest distances 
Integer p ∈ {2,⋯,n − 1}

Parameters: Integers α ∈ {1,⋯, p} and K ∈ {1,⋯,n}
1 while Termination Condition not met do 
2 Initialise P with p random vertices and update data structures accordingly 
3 TB = {} //initilaize the tabu list 
4 flg moved = true 
5 ls best h = hK-αNpC(P)
6 while flg moved = true do 
7 SCL = {} //SCL is the set of candidate pairs for swap 
8 vc = a random member of C 
9 w = Fα

vc 

10 inx = N− 1
vc ,w 

11 for each t ∈ {1,⋯, inx} do //in a random order 
12 vj = NVc ,t 

13 if dcj < Dα
vc 

then 
14 for vi ∈ P do //in a random order 
15 P1 = P ∪

{
vj
}
\{vi}

16 if hK-αNpC(P1) < hK-αNpC(P) or (hK-αNpC(P1) = hK-αNpC(P) and 
(vj, vi) ∕∈ TB) then 

17 P = P1 and update data structures //move 
18 if hK-αNpC(P) < ls best h then 
19 ls best h = hK-αNpC(P)
20 TB = {}

21 else 
22 TB = TB ∪ (vj, vi)

23 end if 
24 continue with next iteration of while loop (line 6) 
25 else 
26 update SCL with (vj, vi) if it is not tabued and there is no better 

candidate in SCL 
27 end if 
28 end for 
29 end if 
30 end for 
31 if SCL ∕= {} then 
32 (vj, vi) = select a pair from SCL randomly 
33 P = P ∪

{
vj
}
\{vi} and update data structures //move 

34 TB = TB ∪ (vj, vi)

35 else 
36 flg moved = false 
37 end if 
38 end while 
39 end while 
40 return best solution found in all iterations  

3.2. Proposed algorithm for αNpC 

Algorithm 3 presents the proposed metaheuristic for αNpC. It is 
called BK-αNpC, with two parameters α and K, and AK-αNpC is used to 
refer to the same algorithm but without the IE strategy. It uses similar 
(but not identical) notations used in the literature of the pC problem 
(Pullan, 2008; Mladenović et al., 2003). Nv, where v ∈ V, is the list of all 
vertices sorted ascendingly by their distances from v, with ties broken 
arbitrarily. Nv,i, i = 1,⋯,n, is the vertex at index i in Nv. Another list N− 1

v 
is used to keep the index of each vertex u in Nv, i.e. N− 1

v,u = i ⇔ Nv,i = u. 
These data structures are static, i.e. fixed for a given problem instance, 
whereas the following data structures are dynamic and change with 
solution P. F1

v is the first facility center (i.e. that with the smallest index) 
in Nv. Therefore, F1

v is a nearest facility to v. (Note that F1
v is defined for 

every vertex v ∈ V and not only clients). v is said to be assigned to F1
v as its 

designated facility and D1
v is used to denote their distance. These nota-

tions are generalised to Fr
v,r = 1,⋯,α, to denote the rth facility in Nv and 

Dr
v to denote its distance to v. The set of critical vertices, i.e. those whose 

costs are equal to the current objective value, is denoted by C. 
The algorithm uses the heuristic function given in (1), already used 

for the pNC problem. Recall from Section 2 that the vertex cost fi(P),i =

1,⋯,n, is defined differently for different problems. It is not hard to see 
that this heuristic function is also f -consistent for αNpC (even if a smaller 
coefficient c > dmax would be used). To avoid confusion with the func-
tion hK presented in Algorithm 2, a different name hK-αNpC is used to 
denote the function invoked in BK-αNpC to calculate heuristic values. 
They only differ in the calculation of the vertex costs fi, i = 1,⋯, n. In 
particular, hK-αNpC calculates the cost fi of a client vertex vi, i = 1,⋯,n, 
as its distance to the αth facility in Nvi . This calculation takes O(αn/p)
average time (because p out of n vertices in Nvi are facilities) and is 
performed for q = |Q| client vertices. Recall from Section 2 that the cost 
of a facility is 0 for αNpC. Because the calculation of the heuristic value 
from the cost values fi,i = 1,⋯,n, takes O(Kn) (as analysed in Section 3.1 
for Algorithms 3), the average time complexity of hK-αNpC is O(αqn/p +

Kn). 
As shown in Algorithm 3, BK-αNpC is a random restart first- 

improvement local search with possible upward moves. To avoid 
cycling in the search space, it also employs tabu strategies. The main 
while loop (lines 1–39) of the algorithm runs until its termination 
condition (in line 1) is met. Once it terminates, the best solution found 
will be returned (line 40). At each iteration, it starts with a random 
solution P (line 2), resets the tabu list denoted as TB (line 3), and ini-
tialises two temporary variables flg moved and ls best h (lines 4–5). The 
former is used in the condition of the main local search loop (line 6), 
which runs until no move is performed. The latter records the best 
(smallest) heuristic value obtained during the local search. At each 
iteration of the local search (lines 6–38), the algorithm creates an empty 
list SCL (for Swap Candidate List), which is used to keep the list of the 
“best” moves among those rejected (by the if condition in line 16) but 
not forbidden by the tabu mechanism. For such a move, it keeps the pair 
(vj, vi) ∈ Q × P in SCL (line 26), where vj and vi are the client and facility 
vertices, respectively, that will be swapped if the move is performed. If 
all the moves are rejected, then a pair (if any) in SCL will be selected 
randomly (line 32), the corresponding move is performed (line 33), and 
the swapped pair is marked as tabu (line 34). In case all the rejected 
moves are forbidden by the tabu mechanism, SCL will remain empty and 
flg moved will be reset (line 36) to terminate the local search loop. 

The local search does not explore all neighbours. It excludes neigh-
bours that cannot reduce the cost of a critical vertex. This requirement is 
implemented by selecting a (random) critical vertex vc (line 8) and 
choosing the new facility among clients vj such that dcj < Dα

vc 
(line 9–13). 

For such a client vj, every facility vi in P is considered for potential 
replacement (line 14). The move to the corresponding neighbour P1 
(constructed in line 15) will be accepted if it is either downward (with 
respect to hK-αNpC) or flat but not tabued (line 16). Furthermore, if the 
resulting heuristic value is better than the best one found so far during 
the local search (verified in line 18), the tabu list will be reset (line 20); 
otherwise, the swapped pair (vj, vi) will be added to the tabu list (line 
22). 

3.3. Proposed algorithm for pC 

Although the algorithm proposed in Section 3.2 for αNpC can readily 
be used for pC by setting its parameter α to 1, a more specialised algo-
rithm is presented in this section which outperforms the existing state- 
of-the-art metaheuristics for this problem. This algorithm is called Bh- 
pC and the name Ah-pC is reserved to mean the same algorithm without 
the IE strategy. B-pC and A-pC are also used, respectively, to refer to the 
same algorithms but without the unflattening strategy. 

Bh-pC uses the data structures C, Nv, N− 1
v , Fr

v and Dr
v, r = 1, 2, v ∈ V, 

already explained in Section 3.2. It uses additional data structures for 
more efficient implementation. For example, for each facility v, it keeps 
the sets Zr

v =
{
u ∈ V : Fr

u = v
}
, r = 1,2. It also differs from BK-αNpC in 

other aspects including its unflattening heuristic function and tabu 
strategy. For brevity, its high level pseudocode is presented in 
Appendix A and its main features are outlined in this section. 

S.R. Mousavi                                                                                                                                                                                                                                     



Computers and Operations Research 149 (2023) 106023

7

Bh-pC uses the unflattening function previously used in Ferone et al. 
(2017). However, its theoretical properties are further explored here and 
several propositions are established for its efficient calculation. In the 
following, nX, where X is a finite set, is the cardinality |X| of X. Bh-pC 
considers the number of critical vertices to compare flat neighbours, by 
using the following heuristic function. 

h(P) = n × f (P)+ nC (3)  

Proposition 2. The heuristic function given in (3) is f -consistent. 

The proof is similar to the proof of Proposition 1 and is omitted for 
brevity. 

Let P be the current solution and P1 = P ∪
{
vj
}
\{vi} be its neighbour 

obtained by swapping the pair (vj ∈ Q, vi ∈ P) of client and facility 
vertices. The acceptance criteria for the potential move from P to P1 
requires the verification of the conditions h(P1)<h(P) and h(P1) = h(P)
(in the same manner used in line 16 of Algorithm 3). A crucial idea in Bh- 
pC is to verify these conditions without calculating h(P1) and f(P1) by 
using the existing data structures and the current heuristic h(P) and 
objective f(P) values, which are only updated when a move is per-
formed. A method is now proposed to verify these conditions in 
O(n/p+nC) average time. Using this method, we do not need to iterate 
through all the clients, which would take Ω(n − p) time. 

Let C1 be the set of critical vertices corresponding to P1. By (3) and 
Proposition 2, we have: 

h(P1)<h(P) ⇔ f (P1)<f (P) ∨ (f (P1) = f (P) ∧ nC1 < nC) (4) 

and 

h(P1) = h(P)⇔ f (P1) = f (P)⋀nC1 = nC. (5) 

Using (4) and (5), we can verify the conditions h(P1)<h(P) and 
h(P1) = h(P) by verifying other conditions f(P1)<f(P) and f(P1) = f(P)
and calculating nC1 when f(P1) = f(P). Note that nC1 is not needed if 
f(P1) ∕= f(P). To illustrate how to verify the latter conditions without 
computing f(P1), the set of vertices is split into three disjoint sets V1, V2 

and V3. The first set V1 is the set of vertices currently assigned to vi as 
their closest facility, i.e. V1 = Z1

vi
. Recall that vi is the current facility that 

will be replaced with vj if the move to P1 is accepted. V2 is the set of 
critical vertices not assigned to vi, i.e. V2 = C\Z1

vi
. Finally, V3 contains 

the remaining vertices, i.e. V3 = V\(V1 ∪ V2). Some, but not all, of these 
sets may be empty. As a result of the potential move from P to P1, the 
only vertices whose costs may increase are members of V1. Inspired by 
Pullan (2008), let m be the maximum cost of the vertices in V1 if the 
move is accepted. Also, let A = {vk ∈ V1 : min{D2

vk
, dkj} = f(P)} and B =

{
vk ∈ V2 : dkj⩾f(P)

}
. 

Proposition 3. f(P1)>f(P) ⇔ m > f(P). 

Proposition 4. f(P1)<f(P) ⇔ m < f(P) ∧ nB = 0. 

The proofs of Propositions 3–4 are omitted for brevity and their 
simplicity. 

Proposition 5. f(P1) = f(P) ⇒ nc1 = nA + nB. 

Proof. By the assumption f(P1) = f(P) and the definition of V3, every 
vertex in C1 must be a member of V1 or V2. Therefore, C1 = Y1 ∪ Y2, 

where Y1 =
{

vk ∈ V1 : D1
vk
(P1) = f(P)

}
, Y2 = {vk ∈ V2 : D1

vk
(P1) =

f(P)}, and D1
vk
(P1) denotes the resulting cost of the node vk if the move to 

P1 is performed. However, if the move is performed, the new cost D1
vk
(P1)

of each vertex vk in V1 will be the minimum of its distances to its current 
secondary facility F2

vk 
and the new facility vj, hence Y1 = A. Similarly, 

the new cost of each vertex in V2 will be the minimum of its current cost 
f(P) and its distance dkj to the new facility vj, which means Y2 = B. 
Therefore, C1 = A ∪ B. Because A and B are disjoint, nC1 = nA + nB. ∎ 

Proposition 6. The conditions h(P1)〈h(P) and h(P1) = h(P) are verified 
in O(n/p+nC) average time. 

Proof. The average number of vertices assigned to a facility is 
O(n/p). Therefore, it takes O(n/p) average time to iterate through Zvi and 
calculate m and nA. Similarly, it takes O(nC) to iterate through C and 
calculate nB. Given m and nB, by Propositions 3–4, it takes O(1) to verify 
the conditions f(P1)>f(P) and f(P1)〈f(P). If neither of these conditions 
holds, then it takes another O(1) to calculate nC1 using Proposition 5. 
The proof is concluded by applying (4) and (5). ∎ 

The tabu mechanism in Bh-pC is different from that used in BK-αNpC. 
Inspired by Yin et al. (2017), it is dynamic, i.e. a prohibited move be-
comes eligible once a number tt (for tabu tenure) of other moves are 
performed. More specifically, when a flat or upward move (with respect 
to h-pC) is performed by replacing a facility vi with vj, then these vertices 
cannot be swapped again during the next tt

(
vi, vj

)
moves, where tt(vi, vj)

is initially 1 and is doubled every time they are swapped, capped by 0.1 
× (n − p)× p. The tabu tenure tt

(
vj, vi

)
is also set to tt

(
vi, vj

)
. In addition, 

for moves selected from SCL, the new facility vj cannot be replaced 
immediately in the next move by any vertex. 

The eligibility of potential moves is verified by the function promising 
(line 18 of Algorithm 4, Appendix A). It rejects moves that are tabued or 
are worse than those in SCL. In contrary to BK-αNpC, which always se-
lects a “best” candidate among the rejected moves, Bh-pC selects one of 
the best three candidates, stored in SCL, such that the selection proba-
bility of kth best candidate, k = 1,2, is twice as that of the (k + 1)th one. 

The maximum number of iterations of the local search’s while loop 
(line 8) is initially (n − p) × p but grows each time by 10 percent (by line 
47) to increase intensification (versus diversification) for more chal-
lenging instances, which require more local exploration. In addition, 
except for the first time, the initialisation of P (line 3) at each iteration of 
the main while loop (line 2) is not necessarily random. More specif-
ically, it is reset to either a random solution, the best solution found in 
the last round of the local search, or the best solution found since the 
beginning, equiprobably. 

Finally, it is important to note that properly implementing and 
updating the dynamic data structures used in Bh-pC is essential for it to 
achieve its best performance. 

4. Experimental results 

To observe the performance of the presented algorithms, they were 
implemented in Java. The source codes are available (as Supplementary 
materials). The experiments were performed on a laptop with Intel® 
Core(TM) i5-6200, 2.3 GHz CPU and 8 GB of RAM. The reported running 
times are CPU (not wall clock) times in seconds, rounded up to two 
decimal places. In this section, the proposed algorithms for pNC, αNpC, 
and pC refer to BK, BK-αNpC, and Bh-pC, α = 2, K = 3, respectively. 

4.1. Experimental results for pNC 

The same datasets as used in Albareda-Sambola et al. (2015) and 
López-Sánchez et al. (2019) were used in the experiments. That is, 132 
instances were obtained from the pmed1 to pmed8 data files. These data 
files, originally used for the purpose of the p-Median problem, are 
available in the OR-Library (Beasley, 1990a,b). Each data file includes a 
weighted graph G = (V, E, w). Such a graph was first converted to a 
complete graph Gc = (V,Ec,wc) such that wc(vi,vj) =dij for each edge (vi, 
vj) ∈Ec, where dij is the shortest distance between the vertices vi and vj in 
G. The Floyd–Warshall algorithm was used for this purpose. Then, for 
each pair (n, p) defined in Albareda-Sambola et al. (2015), the problem 
instance (Gn, p) was generated, where Gn is the subgraph of Gc induced 
by its first n vertices. Please see Albareda-Sambola et al. (2015) for more 
details on generating the instances. 

Three experiments were conducted. First, algorithms AK and BK, K =
1,3,5, were evaluated to assess the impact of the unflattening and IE 
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Table 1 
Impact of the unflattening and IE strategies on BLS.    

Without IE strategy With IE strategy 

Instance  BLS (A1) A3 A5 B1 B3 B5 

Filename n p BKOV tavg tstd ntimeout tavg tstd tavg tstd tavg tstd tavg tstd tavg tstd 

pmed1 10 5 84 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed1 20 5 120 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed1 20 10 95 0 0.01 0 0 0 0 0 0 0 0 0 0 0 
pmed1 30 5 126 0 0 0 0 0.01 0 0 0 0 0 0 0 0 
pmed1 30 10 95 0.01 0.02 0 0 0 0 0 0 0.01 0 0 0 0 
pmed1 40 5 144 0.14 0.11 0 1.68 1.53 1.34 0.78 0.94 0.9 1.21 1.11 1.08 0.94 
pmed1 40 10 111 0.16 0.21 0 0.08 0.03 0.07 0.03 0.15 0.14 0.06 0.06 0.08 0.06 
pmed1 40 20 89 0 0.01 0 0 0.01 0 0.01 0 0 0 0.01 0 0.01 
pmed1 50 10 110 5.01 4.51 0 4.71 3.56 4.58 2.81 40.39 42.17 28.34 35.05 5.63 2.9 
pmed1 50 20 89 1.37 1.32 0 0.06 0.03 0.06 0.05 0.11 0.09 0.02 0.02 0.06 0.06 
pmed2 10 5 121 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed2 20 5 147 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed2 20 10 99 0 0 0 0 0 0 0.01 0 0.01 0 0 0.01 0.01 
pmed2 30 5 169 0.01 0.01 0 0 0.01 0.01 0.01 0 0.01 0 0.01 0.01 0.01 
pmed2 30 10 110 0.02 0.01 0 0 0 0 0.01 0 0 0 0.01 0 0 
pmed2 40 5 164 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 
pmed2 40 10 112 0.06 0.04 0 0.02 0.01 0.03 0.02 0.05 0.05 0.01 0.01 0.03 0.03 
pmed2 40 20 96 0.05 0.04 0 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 
pmed2 50 10 140 0.05 0.06 0 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 
pmed2 50 20 99 0.35 0.28 0 0.03 0.03 0.03 0.02 0.04 0.04 0.02 0.01 0.02 0.02 
pmed3 10 5 77 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed3 20 5 145 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed3 20 10 77 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed3 30 5 157 0 0 0 0 0 0 0.01 0 0 0 0 0 0 
pmed3 30 10 122 0 0.01 0 0 0 0 0 0 0 0 0 0 0.01 
pmed3 40 5 157 0 0.01 0 0.01 0.01 0.01 0.01 0 0.01 0 0.01 0 0.01 
pmed3 40 10 105 0.1 0.06 0 0.01 0.01 0.02 0.01 0.08 0.06 0.02 0.02 0.02 0.02 
pmed3 40 20 77 0.09 0.07 0 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0.01 
pmed3 50 10 125 0.59 0.48 0 0.05 0.06 0.05 0.03 0.05 0.04 0.02 0.03 0.02 0.01 
pmed3 50 20 87 0.1 0.06 0 0.09 0.06 0.1 0.06 0.03 0.03 0.03 0.02 0.03 0.01 
pmed4 10 5 126 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed4 20 5 139 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed4 20 10 125 0 0 0 0 0.01 0 0 0 0.01 0 0.01 0.01 0.01 
pmed4 30 5 173 0 0 0 0 0 0 0 0 0 0 0 0 0 
pmed4 30 10 122 0 0 0 0 0.01 0 0.01 0 0 0 0 0 0.01 
pmed4 40 5 175 0 0 0 0 0 0 0.01 0 0 0 0 0 0 
pmed4 40 10 122 0.16 0.21 0 0.16 0.13 0.13 0.11 0.06 0.07 0.05 0.03 0.06 0.04 
pmed4 40 20 85 0.02 0.02 0 0 0.01 0 0.01 0.01 0.01 0.01 0.01 0 0.01 
pmed4 50 10 126 0.02 0.01 0 0.01 0.01 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01 
pmed4 50 20 91 0.91 0.72 0 0.06 0.04 0.03 0.02 0.04 0.04 0.02 0.02 0.02 0.01 
pmed1 60 10 112 0.51 0.33 0 0.13 0.1 0.18 0.2 0.2 0.15 0.09 0.06 0.14 0.17 
pmed1 60 20 91 1.3 1.01 0 0.05 0.03 0.03 0.02 0.11 0.06 0.03 0.02 0.02 0.01 
pmed1 60 30 89 0.09 0.07 0 0.02 0.01 0.03 0.02 0.03 0.01 0.02 0.01 0.02 0.01 
pmed1 70 10 119 7.07 5.45 0 2.15 1.63 1.51 1.01 0.75 0.52 1.47 1.2 1.73 1.58 
pmed1 70 20 99 0.96 0.74 0 0.14 0.14 0.07 0.05 0.07 0.07 0.09 0.06 0.08 0.07 
pmed1 70 30 73 31.33 21 0 0.12 0.11 0.07 0.03 0.1 0.06 0.08 0.04 0.07 0.03 
pmed1 80 10 133 1.45 1.66 0 0.25 0.15 0.21 0.16 0.11 0.09 0.2 0.2 0.11 0.09 
pmed1 80 20 105 26.15 14.34 0 0.4 0.37 0.36 0.24 0.53 0.48 0.1 0.07 0.17 0.16 
pmed1 80 30 91 11.85 7.76 0 0.17 0.12 0.1 0.07 0.22 0.18 0.08 0.03 0.1 0.05 
pmed1 90 10 133 3.2 5.96 0 0.52 0.36 0.5 0.58 0.28 0.21 0.21 0.14 0.29 0.21 
pmed1 90 20 108 80.62 38.78 8 2.13 0.97 2.04 2.24 0.97 0.95 0.34 0.23 0.2 0.12 
pmed1 90 30 91 92.83 21.52 9 0.99 1.28 0.45 0.53 2.83 2.64 0.21 0.12 0.26 0.19 
pmed1 90 50 70 88.13 29 8 0.15 0.07 0.09 0.02 0.51 0.51 0.15 0.08 0.15 0.11 
pmed1 100 10 133 1.51 1.82 0 0.43 0.39 0.29 0.26 0.88 0.69 0.28 0.24 0.24 0.21 
pmed1 100 20 108 83.1 34 8 1.99 1.19 0.93 0.87 1.47 1.44 0.31 0.25 0.22 0.11 
pmed1 100 30 97 88.07 26.82 7 0.3 0.2 0.29 0.24 1.14 0.84 0.15 0.07 0.21 0.12 
pmed1 100 50 74 100 0 10 0.51 0.32 0.28 0.13 0.98 0.59 0.4 0.18 0.31 0.14 
pmed2 60 10 140 0.15 0.04 0 0.07 0.04 0.08 0.09 0.05 0.05 0.04 0.03 0.08 0.05 
pmed2 60 20 99 31.22 25.79 0 0.43 0.23 0.23 0.14 0.5 0.42 0.07 0.04 0.06 0.04 
pmed2 60 30 96 0.2 0.14 0 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.01 0.02 0.02 
pmed2 70 10 138 0.5 0.41 0 0.17 0.15 0.15 0.1 0.06 0.05 0.08 0.08 0.05 0.05 
pmed2 70 20 102 1.54 2.04 0 0.06 0.03 0.02 0.01 0.04 0.03 0.04 0.02 0.03 0.02 
pmed2 70 30 96 0.49 0.43 0 0.04 0.03 0.04 0.01 0.04 0.02 0.05 0.02 0.04 0.03 
pmed2 80 10 138 9.02 7.05 0 1.62 1.42 1.43 1.17 1.99 1.34 0.89 0.96 0.98 0.71 
pmed2 80 20 109 55.32 37.85 4 0.91 1.11 0.43 0.34 0.96 1.07 0.12 0.06 0.21 0.2 
pmed2 80 30 97 85.8 27.26 7 1.69 1.34 1.31 1.01 1.05 1.92 0.21 0.16 0.51 0.35 
pmed2 90 10 140 0.8 0.99 0 0.13 0.15 0.06 0.04 0.3 0.28 0.11 0.07 0.12 0.09 
pmed2 90 20 109 83.3 33.98 8 2.97 2.72 0.36 0.23 1.4 1.19 0.47 0.49 0.45 0.24 
pmed2 90 30 97 87.24 17.84 5 0.36 0.28 0.26 0.19 0.23 0.21 0.14 0.07 0.2 0.12 
pmed2 90 50 96 0.14 0.07 0 0.06 0.02 0.08 0.02 0.06 0.01 0.09 0.02 0.11 0.04 
pmed2 100 10 135 7.75 6.55 0 0.52 0.64 0.47 0.52 0.08 0.09 0.17 0.09 0.19 0.13 

(continued on next page) 
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Table 1 (continued )   

Without IE strategy With IE strategy 

Instance  BLS (A1) A3 A5 B1 B3 B5 

Filename n p BKOV tavg tstd ntimeout tavg tstd tavg tstd tavg tstd tavg tstd tavg tstd 

pmed2 100 20 109 77.58 31.61 6 1.68 1.56 1.18 0.77 1.53 1.05 0.71 0.43 0.64 0.5 
pmed2 100 30 96 93.01 14.94 8 0.66 0.46 0.93 1.12 1.11 0.89 0.15 0.1 0.16 0.09 
pmed2 100 50 96 0.37 0.27 0 0.08 0.02 0.1 0.03 0.09 0.02 0.11 0.03 0.15 0.05 
pmed3 60 10 124 11.16 11.95 0 0.61  0.57  0.73  0.65  0.71 0.52  0.55  0.46  0.43  0.56 
pmed3 60 20 97 0.58 0.6 0 0.13  0.16  0.06  0.03  0.07 0.05  0.09  0.1  0.05  0.03 
pmed3 60 30 73 10.03 8.36 0 0.11  0.11  0.1  0.06  0.15 0.09  0.04  0.02  0.06  0.04 
pmed3 70 10 121 46.56 36.33 3 18.8  17.6  21.93  20.53  24.09 23.42  18.32  14.65  11.32  8.64 
pmed3 70 20 97 4.86 4.63 0 0.17  0.1  0.08  0.05  0.1 0.06  0.05  0.04  0.05  0.03 
pmed3 70 30 82 70.75 32.72 4 0.52  0.49  0.25  0.22  1.3 1.15  0.09  0.06  0.07  0.05 
pmed3 80 10 121 78.08 21.58 4 25.78  23.58  34.39  31.53  34.43 22.96  27.19  16.9  28.3  31.5 
pmed3 80 20 93 39.69 24.84 1 0.49  0.47  0.5  0.41  0.64 0.32  0.09  0.05  0.09  0.04 
pmed3 80 30 86 38.43 26.94 1 0.16  0.08  0.07  0.03  0.35 0.36  0.08  0.04  0.07  0.02 
pmed3 90 10 148 0.81 0.91 0 0.31  0.24  0.18  0.22  0.11 0.08  0.13  0.1  0.13  0.08 
pmed3 90 20 105 38.88 38.31 1 1.28  0.8  0.38  0.23  1.51 1.25  0.47  0.44  0.23  0.11 
pmed3 90 30 93 33.74 35.23 1 0.22  0.22  0.17  0.1  0.25 0.16  0.09  0.03  0.1  0.04 
pmed3 90 50 93 0.12 0.06 0 0.06  0.03  0.08  0.03  0.06 0.01  0.1  0.03  0.08  0.01 
pmed3 100 10 151 1.18 0.92 0 0.7  0.81  0.76  0.87  2.13 2.33  0.81  0.75  0.68  0.74 
pmed3 100 20 113 54.56 37.28 2 5.28  4.2  4.88  5.48  2.57 1.72  1.04  1.18  0.95  1.01 
pmed3 100 30 93 92.7 21.9 9 0.27  0.17  0.12  0.05  0.21 0.09  0.15  0.08  0.09  0.04 
pmed3 100 50 93 0.25 0.24 0 0.08  0.04  0.11  0.04  0.09 0.03  0.15  0.05  0.17  0.05 
pmed4 60 10 135 0.04 0.05 0 0.02  0.02  0.02  0.03  0.02 0.02  0.01  0.01  0.03  0.02 
pmed4 60 20 93 0.69 0.39 0 0.03  0.02  0.05  0.04  0.06 0.04  0.02  0.01  0.03  0.02 
pmed4 60 30 79 31.82 25.03 0 0.05  0.04  0.06  0.05  0.44 0.41  0.05  0.02  0.04  0.03 
pmed4 70 10 146 0.44 0.33 0 0.22  0.22  0.09  0.08  0.27 0.18  0.12  0.14  0.11  0.15 
pmed4 70 20 102 2.94 2.28 0 0.18  0.1  0.1  0.07  0.09 0.08  0.06  0.05  0.06  0.05 
pmed4 70 30 85 1.01 0.84 0 0.04  0.02  0.04  0.01  0.14 0.07  0.06  0.04  0.04  0.03 
pmed4 80 10 146 1.12 1.14 0 0.28  0.3  0.14  0.12  0.61 0.62  0.24  0.16  0.14  0.08 
pmed4 80 20 114 61.29 35.85 3 10  8.76  9.46  10.66  19.51 21.51  9.49  9.51  5.08  3.68 
pmed4 80 30 91 21.21 14.98 0 0.22  0.15  0.14  0.1  0.48 0.46  0.08  0.05  0.1  0.05 
pmed4 90 10 147 1.09 0.89 0 0.11  0.14  0.13  0.13  0.17 0.18  0.05  0.03  0.07  0.04 
pmed4 90 20 112 89.72 20.57 8 12.73  12.16  10.52  9.19  4.16 2.39  1.86  1.52  0.84  0.61 
pmed4 90 30 92 100 0 10 2.01  1.37  1.44  0.73  1.66 2.36  1.03  1.15  0.52  0.2 
pmed4 90 50 82 7.06 5.79 0 0.11  0.08  0.16  0.08  0.24 0.22  0.11  0.04  0.2  0.15 
pmed4 100 10 147 3.38 1.81 0 0.4  0.33  0.17  0.21  0.2 0.25  0.23  0.37  0.16  0.1 
pmed4 100 20 119 12.44 11.63 0 0.22  0.29  0.38  0.46  0.85 0.62  0.49  0.41  0.22  0.16 
pmed4 100 30 96 100 0 10 3.95  2.84  1.35  0.88  2.62 2.03  0.83  0.74  0.53  0.33 
pmed4 100 50 82 94.72 15.84 9 0.34  0.26  0.3  0.19  1.02 1.14  0.34  0.19  0.28  0.13 
pmed6 150 20 79 100 0 10 2.16  1.47  1.78  1.43  3.54 3.95  0.95  0.66  0.86  0.64 
pmed6 150 30 71 100 0 10 3.7  3.04  3.3  2.07  2.32 1.44  0.84  0.4  0.73  0.51 
pmed6 150 50 62 78.91 38.53 7 0.7  0.28  0.43  0.12  0.97 0.56  0.48  0.1  0.34  0.05 
pmed6 150 80 56 2.83 2.39 0 0.45  0.14  0.4  0.01  0.48 0.09  0.45  0.03  0.41  0.06 
pmed6 200 20 79 100 0 10 9.32  6.26  4.43  5.23  39.68 20.66  3.1  2.22  4.02  3.22 
pmed6 200 30 72 100 0 10 5.98  9.28  2.39  2.31  6.88 5.46  1.99  1.5  2.63  1.65 
pmed6 200 50 68 100 0 10 2.81  1.67  2.44  2.21  1.98 0.92  2.24  1.14  2.2  0.94 
pmed6 200 80 54 91.47 25.6 9 2.88  1.53  1.96  1.01  2.67 0.8  1.61  0.77  2.03  1.68 
pmed7 150 20 69 71.58 39.03 6 0.24  0.16  0.27  0.12  0.35 0.2  0.2  0.1  0.15  0.07 
pmed7 150 30 62 100 0 10 3.08  2.91  0.86  0.5  3.25 1.82  0.7  0.43  0.66  0.27 
pmed7 150 50 59 63.56 41.52 5 0.43  0.16  0.51  0.26  0.4 0.11  0.49  0.21  0.82  0.3 
pmed7 150 80 59 1.05 0.51 0 0.5  0.16  0.44  0.03  0.43 0.07  0.48  0.08  0.79  0.28 
pmed7 200 20 73 100 0 10 1.46  1.01  0.95  0.66  14.41 19.79  0.93  0.68  0.72  0.53 
pmed7 200 30 68 100 0 10 1.17  0.74  0.89  0.47  3.43 2.74  0.79  0.48  0.69  0.31 
pmed7 200 50 63 100 0 10 2.09  1.45  1.46  0.51  2.16 0.78  1.68  0.64  1.63  0.52 
pmed7 200 80 52 100 0 10 3.08  2.42  1.6  0.81  5.02 2.26  1.57  0.6  1.83  0.82 
pmed8 150 20 74 100 0 10 7.24  4.32  3.68  4.01  14.12 9.12  1.19  1.38  1.4  1.4 
pmed8 150 30 61 100 0 10 4.37  2.04  1.3  0.9  5.17 3.29  0.88  0.47  0.92  0.63 
pmed8 150 50 58 86.81 27.07 8 0.68  0.46  0.6  0.32  0.66 0.24  0.58  0.16  0.77  0.39 
pmed8 150 80 58 0.96 0.62 0 0.46  0.13  0.48  0.11  0.45 0.08  0.67  0.16  0.66  0.19 
pmed8 200 20 84 100 0 10 1.82  1.55  1.26  0.74  8.24 6  0.56  0.29  0.85  0.49 
pmed8 200 30 77 100 0 10 1.8  1.39  0.95  1.08  4.25 2.64  0.98  0.59  1.1  0.39 
pmed8 200 50 68 100 0 10 2.1  1.79  1.69  0.88  2.14 1.05  1.96  0.98  1.7  0.49 
pmed8 200 80 68 7.91 9.03 0 1.21  0.5  1.4  0.61  1.08 0.19  1.38  0.3  1.85  1.02 
Avg.   103.01 31.20 7.96 2.57 1.32  1.10  1.11  0.96  2.18 1.77  0.98  0.80  0.73  0.58  
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strategies on BLS. Then, B3 was compared with the state-of-the-art 
GRASP-VNS in López-Sánchez et al. (2019). Finally, an experiment 
was conducted to observe the variability of the solution quality in 
different iterations of the local search of B3. 

4.1.1. Evaluation of the unflattening and IE strategies on BLS 
The first experiment was conducted to compare the time required by 

algorithms AK and BK, K = 1,3,5, to achieve solutions with better or the 
same objective values as the Best Known Objective Values (BKOVs) 
previously obtained by Albareda-Sambola et al. (2015) or López- 
Sánchez et al. (2019). More specifically, each of these algorithms was 
run 10 times on each instance and for each of them but A1 (BLS), the 
time spent to reach/exceed BKOV was recorded. Because A1, as a naïve 
metaheuristic, required hours to achieve such an objective value for 
some (usually large) instances, a lower bound on its actual time was 
considered by applying a time limit of 100 s at each run. This lower 
bound was, on average, still sufficiently large to confirm the superiority 
of the other algorithms to BLS, as reported in Table 1. The reason for 
applying this time limit was to avoid (approximately) weeks of unnec-
essarily running of BLS. 

The first three columns in Table 1 show the name of the data file 
(used to generate the instance) and the numbers of vertices n and centers 
p, respectively. The fourth column displays BKOV. For the first 40 in-
stances, BKOVs are optimal, obtained by exact algorithms (Albareda- 
Sambola et al., 2015). For the remaining instances, these values were 
obtained by GRASP-VNS (López-Sánchez et al., 2019), which does not 
guarantee optimal values. Columns 5–6 calculate the average and 
standard deviation of the running time of BLS. Column 7 reports the 
number of times out of 10 where BLS failed to reach/exceed BKOV 
within the time limit. The subsequent columns present the average and 
standard deviation of the running times of the other algorithms. The last 
row calculates the average values over all the instances. 

As can be seen in Table 1, on average, every algorithm performs 
significantly better than BLS. This means that the application of the 
unflattening and/or IE strategies to BLS has been successful. On average 
(shown in the last row), the lower bound on the actual running time of 
BLS (31.20 s) is more than the actual running times of the other algo-
rithms by an order of magnitude. 

The results also show that the joint application of both strategies has 
been more useful than their individual applications in reducing the 
average running time of BLS. The average running times of A3 and B1 are 
1.32 and 2.18 s, respectively, which are reduced to 0.98 s by B3. Simi-
larly, the average running times of A5 (1.11) and B1 (2.18) are further 
reduced by B5 (0.73). As depicted in Fig. 3, the average running time is 

reduced by applying the unflattening strategy to A1 and B1 (Fig. 3.a) and 
by applying the IE strategy to AK, K = 1,2,3 (Fig. 3.b). 

It was observed in the experiments (not reported in Table 1) that BLS, 
when run without a time limit, did not reach/exceed BKOV even after an 
hour, for several instances, e.g. pmed6 with n = 150, p = 20, while B3 
and B5 did so within a few second. Obviously, such a basic local search is 
not expected to perform satisfactorily for NP-hard optimisation prob-
lems. However, the important observation is that the application of the 
unflattening and/or IE strategies significantly improves it without much 
modifications (via lines 9 and/or 12 in Algorithm 1). The following 
section shows that these small modifications convert the naïve BLS to an 
algorithm, B3, that outperforms the state-of-the-art hybrid GRASP-VNS 
metaheuristic. 

4.1.2. Comparison of the proposed algorithm with the state-of-the-art 
GRASP-VNS 

Algorithm B3 was run on each instance for the same amount of 
(scaled) time as reported for GRASP-VNS in López-Sánchez et al. (2019). 
For each run, the best objective value and the time spent to find it were 
recorded. It was run 10 times per instance and the average and the 
standard deviation of these values were calculated, reported in Table 2. 

The first four columns in Table 2 are the same as those in Table 1. 
Columns 5–6 present the results of GRASP-VNS, which was run once per 
instance in López-Sánchez et al. (2019). In particular, Column 5 presents 
the objective values obtained by GRASP-VNS as reported in López- 
Sánchez et al. (2019). These objective values equal BKOVs (Column 4) 
except for two instances, namely pmed1, n = 50, p = 10 and pmed2, n =
10, p = 5. For these instances, BKOVs, obtained by exact algorithms of 
Albareda-Sambola et al. (2015), are 110 and 121, but those obtained by 
GRASP-VNS of López-Sánchez et al. (2019) are 111 and 128, respec-
tively. Column 6 presents the running times of GRASP-VNS reported in 
López-Sánchez et al. (2019) divided by 2.60, which is the ratio of the 
average mark of the CPU used here to that used in López-Sánchez et al. 
(2019), obtained from CPU Benchmarks (2022). The remaining columns 
report the results for B3. In particular, the next four columns report the 
average and standard deviation of the objective values obtained and the 
times spent to find them. The subsequent column reports the number of 
runs (out of 10) where the obtained objective value was better or the 
same as that reported in Column 5 for GRASP-VNS. The last column 
reports the best objective value found in all 10 runs. 

As can be seen in Table 2, the average objective values obtained by B3 
are better than those obtained by GRASP-VNS in 35 cases and worse in 
11 cases (shown in bold). It can also be seen that the relative perfor-
mance of B3 is usually better for larger instances in Table 2, which 

Fig. 3. (a) Impact of the unflattening strategy on the average running times of A1 and B1. (b) Impact of the IE strategy on the average running times of AK, K = 1,2,3.  

S.R. Mousavi                                                                                                                                                                                                                                     



Computers and Operations Research 149 (2023) 106023

11

Table 2 
Comparison of B3 and the hybrid GRASP-VNS metaheuristic.  

Instance  GRASP-VNS B3 

Filename n p BKOV OV tscaled OVavg OVstd tavg tstd nachieved OVbest 

pmed1 10 5 84 84  0.01 84 0 0 0 10 84 
pmed1 20 5 120 120  0.02 120 0 0 0 10 120 
pmed1 20 10 95 95  0.05 95 0 0 0 10 95 
pmed1 30 5 126 126  0.03 126 0 0 0 10 126 
pmed1 30 10 95 95  0.11 95 0 0 0 10 95 
pmed1 40 5 144 144  0.09 147.1 2.022 0.02 0.02 2 144 
pmed1 40 10 111 111  0.22 111.4 0.8 0.04 0.03 8 111 
pmed1 40 20 89 89  0.64 89 0 0 0 10 89 
pmed1 50 10 110 111  0.36 111 0 0.03 0.03 10 111 
pmed1 50 20 89 89  1.24 89 0 0.04 0.03 10 89 
pmed2 10 5 121 128  0.00 121 0 0 0 10 121 
pmed2 20 5 147 147  0.02 147 0 0 0 10 147 
pmed2 20 10 99 99  0.04 99 0 0 0 10 99 
pmed2 30 5 169 169  0.04 169 0 0 0 10 169 
pmed2 30 10 110 110  0.14 110 0 0 0 10 110 
pmed2 40 5 164 164  0.08 164 0 0 0 10 164 
pmed2 40 10 112 112  0.22 112 0 0.01 0.01 10 112 
pmed2 40 20 96 96  0.65 96 0 0.01 0.01 10 96 
pmed2 50 10 140 140  0.32 140 0 0 0.01 10 140 
pmed2 50 20 99 99  1.26 99 0 0.01 0.01 10 99 
pmed3 10 5 77 77  0.00 77 0 0 0 10 77 
pmed3 20 5 145 145  0.02 145 0 0 0 10 145 
pmed3 20 10 77 77  0.04 77 0 0 0 10 77 
pmed3 30 5 157 157  0.04 157 0 0 0 10 157 
pmed3 30 10 122 122  0.12 122 0 0 0 10 122 
pmed3 40 5 157 157  0.08 157 0 0 0 10 157 
pmed3 40 10 105 105  0.22 105 0 0.02 0.02 10 105 
pmed3 40 20 77 77  0.65 77 0 0.01 0.01 10 77 
pmed3 50 10 125 125  0.33 125 0 0.02 0.02 10 125 
pmed3 50 20 87 87  1.07 87 0 0.04 0.05 10 87 
pmed4 10 5 126 126  0.00 126 0 0 0 10 126 
pmed4 20 5 139 139  0.02 139 0 0 0 10 139 
pmed4 20 10 125 125  0.04 125 0 0 0 10 125 
pmed4 30 5 173 173  0.03 173 0 0 0 10 173 
pmed4 30 10 122 122  0.11 122 0 0 0 10 122 
pmed4 40 5 175 175  0.07 175 0 0 0 10 175 
pmed4 40 10 122 122  0.21 122.1 0.3 0.07 0.05 9 122 
pmed4 40 20 85 85  0.67 85 0 0 0 10 85 
pmed4 50 10 126 126  0.36 126 0 0 0.01 10 126 
pmed4 50 20 91 91  1.31 91 0 0.02 0.02 10 91             

pmed1 60 10 112 112  0.48 112 0 0.11 0.09 10 112 
pmed1 60 20 91 91  1.95 89 0 0.13 0.14 10 89* 
pmed1 60 30 89 89  4.42 89 0 0 0 10 89 
pmed1 70 10 119 119  0.71 124 5 0.28 0.21 5 119 
pmed1 70 20 99 99  2.98 99 0 0.07 0.05 10 99 
pmed1 70 30 73 73  7.25 73 0 0.06 0.05 10 73 
pmed1 80 10 133 133  0.94 131.4 1.96 0.25 0.25 10 129* 
pmed1 80 20 105 105  4.48 102 0 1.63 1.21 10 102* 
pmed1 80 30 91 91  11.22 85 0 0.72 0.71 10 85* 
pmed1 90 10 133 133  1.28 133 0 0.21 0.13 10 133 
pmed1 90 20 108 108  5.79 107 0 1.03 1.15 10 107* 
pmed1 90 30 91 91  14.73 87 0 0.53 0.35 10 87* 
pmed1 90 50 70 70  39.89 70 0 0.06 0.05 10 70 
pmed1 100 10 133 133  1.68 133 0 0.13 0.12 10 133 
pmed1 100 20 108 108  7.43 108 0 0.33 0.21 10 108 
pmed1 100 30 97 97  19.81 93.6 0.663 9.7 6.33 10 93* 
pmed1 100 50 74 74  55.12 70 0 0.53 0.36 10 70* 
pmed2 60 10 140 140  0.55 140 0 0.03 0.02 10 140 
pmed2 60 20 99 99  2.35 99 0 0.06 0.04 10 99 
pmed2 60 30 96 96  5.23 96 0 0.01 0.01 10 96 
pmed2 70 10 138 138  0.76 138 0 0.06 0.06 10 138 
pmed2 70 20 102 102  3.40 102 0 0.04 0.04 10 102 
pmed2 70 30 96 96  7.94 96 0 0.02 0.02 10 96 
pmed2 80 10 138 138  1.07 140 2.449 0.37 0.24 6 138 
pmed2 80 20 109 109  4.77 109 0 0.17 0.1 10 109 
pmed2 80 30 97 97  11.86 97 0 0.24 0.15 10 97 
pmed2 90 10 140 140  1.37 138.8 0.98 0.27 0.22 10 138* 
pmed2 90 20 109 109  6.35 108.7 0.458 1.15 0.94 10 108* 
pmed2 90 30 97 97  15.97 96 0 0.1 0.07 10 96* 
pmed2 90 50 96 96  40.22 96 0 0.01 0.01 10 96 
pmed2 100 10 135 135  1.53 135 0 0.08 0.05 10 135 
pmed2 100 20 109 109  7.23 107.3 0.458 2.27 2.15 10 107* 

(continued on next page) 
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suggests that it is more scalable than GRASP-VNS. Using one-tailed 
paired t-test, the null hypothesis that the average objective value ob-
tained by B3 (Column 6) is not better than that of GRASP-VNS (Column 
5) is rejected with a p-value < 0.0003. 

During the experiment, B3 found objective values better than BKOVs 
for 34 instances, indicated by asterisks in the last column of Table 2. 

4.1.3. Solution quality in different iterations 
This section reports the results of an experiment conducted to 

observe the quality of solutions found in different iterations of the 
proposed algorithm, B3. 

First, the termination condition of its main loop (line 1 of Algorithm 
1) was adjusted to iterate 40 times. Then, it was run on each instance 
with probability 0.3 (so, approximately 30 % of the instances were 

Table 2 (continued ) 

Instance  GRASP-VNS B3 

Filename n p BKOV OV tscaled OVavg OVstd tavg tstd nachieved OVbest 

pmed2 100 30 96 96  19.33 96 0 0.2 0.24 10 96 
pmed2 100 50 96 96  55.82 96 0 0.02 0.03 10 96 
pmed3 60 10 124 124  0.57 124.3 0.458  0.22  0.19 7 124 
pmed3 60 20 97 97  1.98 97 0  0.04  0.06 10 97 
pmed3 60 30 73 73  4.17 73 0  0.05  0.03 10 73 
pmed3 70 10 121 121  0.83 127 0  0.04  0.04 0 121 
pmed3 70 20 97 97  3.33 97 0  0.08  0.06 10 97 
pmed3 70 30 82 82  7.53 82 0  0.11  0.08 10 82 
pmed3 80 10 121 121  1.11 125.8 1.99  0.22  0.25 1 121 
pmed3 80 20 93 93  4.63 93 0  0.13  0.08 10 93 
pmed3 80 30 86 86  11.51 84 0  0.25  0.26 10 84* 
pmed3 90 10 148 148  1.08 148 0  0.15  0.07 10 148 
pmed3 90 20 105 105  4.85 105 0  0.48  0.53 10 105 
pmed3 90 30 93 93  12.89 93 0  0.05  0.03 10 93 
pmed3 90 50 93 93  34.58 93 0  0.02  0.01 10 93 
pmed3 100 10 151 151  1.37 151.3 0.458  0.58  0.34 7 151 
pmed3 100 20 113 113  6.59 111.1 1.814  1.5  1.44 10 109* 
pmed3 100 30 93 93  17.28 93 0  0.09  0.05 10 93 
pmed3 100 50 93 93  47.99 93 0  0.01  0.01 10 93 
pmed4 60 10 135 135  0.56 134.5 0.5  0.13  0.16 10 134* 
pmed4 60 20 93 93  2.09 93 0  0.02  0.02 10 93 
pmed4 60 30 79 79  5.34 79 0  0.02  0.02 10 79 
pmed4 70 10 146 146  0.78 146 0  0.1  0.08 10 146 
pmed4 70 20 102 102  3.24 102 0  0.05  0.03 10 102 
pmed4 70 30 85 85  7.37 85 0  0.03  0.03 10 85 
pmed4 80 10 146 146  1.08 146.1 0.3  0.12  0.11 9 146 
pmed4 80 20 114 114  4.63 114.5 0.5  1.69  1.77 5 114 
pmed4 80 30 91 91  11.30 90 0  0.27  0.26 10 90* 
pmed4 90 10 147 147  1.40 147 0  0.09  0.08 10 147 
pmed4 90 20 112 112  6.33 112 0  1.8  1.3 10 112 
pmed4 90 30 92 92  16.74 92 0  0.7  0.75 10 92 
pmed4 90 50 82 82  39.59 82 0  0.1  0.11 10 82 
pmed4 100 10 147 147  1.81 147 0  0.2  0.13 10 147 
pmed4 100 20 119 119  8.42 118 0  0.52  0.38 10 118* 
pmed4 100 30 96 96  22.24 96 0  0.5  0.34 10 96 
pmed4 100 50 82 82  59.30 82 0  0.15  0.09 10 82 
pmed6 150 20 79 79  13.02 77 0  4.18  3.74 10 77* 
pmed6 150 30 71 71  29.69 65.9 0.3  11.56  5.6 10 65* 
pmed6 150 50 62 62  76.99 56 0  0.51  0.38 10 56* 
pmed6 150 80 56 56  184.23 56 0  0.16  0.29 10 56 
pmed6 200 20 79 79  19.15 77.1 0.3  6.63  3.68 10 77* 
pmed6 200 30 72 72  57.80 66.9 0.539  30.12  15.92 10 66* 
pmed6 200 50 68 68  189.83 49.2 0.4  77.89  46.24 10 49* 
pmed6 200 80 54 54  442.74 49 0  0.57  0.49 10 49* 
pmed7 150 20 69 69  8.81 67.4 0.49  2.09  2.24 10 67* 
pmed7 150 30 62 62  25.42 59 0  0.78  0.89 10 59* 
pmed7 150 50 59 59  79.36 59 0  0.13  0.09 10 59 
pmed7 150 80 59 59  159.63 59 0  0.03  0.01 10 59 
pmed7 200 20 73 73  16.94 68 0  5.14  4.52 10 68* 
pmed7 200 30 68 68  49.71 60.9 0.943  18.85  11.07 10 60* 
pmed7 200 50 63 63  194.24 50 0  5.04  5.25 10 50* 
pmed7 200 80 52 52  466.79 46 0  1.33  0.96 10 46* 
pmed8 150 20 74 74  9.14 73.1 0.7  2.42  2.38 10 72* 
pmed8 150 30 61 61  24.94 58 0  1.71  0.8 10 58* 
pmed8 150 50 58 58  74.84 58 0  0.23  0.17 10 58 
pmed8 150 80 58 58  165.50 58 0  0.05  0.04 10 58 
pmed8 200 20 84 84  15.85 82.5 1.285  5.88  5.8 10 81* 
pmed8 200 30 77 77  46.98 70 0.632  15.96  13.62 10 69* 
pmed8 200 50 68 68  151.90 68 0  0.79  0.94 10 68 
pmed8 200 80 68 68  438.48 68 0  0.16  0.17 10 68 
Avg.   103.01 103.07  27.83 102.22 0.20  1.70  1.14 9.61 101.94  
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used). The objective value obtained at each iteration and the best 
objective value (BOV) among them were recorded. Then, he number of 
iterations out of 40 where BOV was found was counted and the average 
deviation percentage was calculated as 1

40
∑40

i=1
( OVi − BOV

BOV
)
× 100, where 

OVi is the objective value obtained in iteration i. The results are pre-
sented in Table 3. 

Table 3 indicates that the number of iterations where BOV is found 
and the average deviation of the solution quality from BOV can vary 
significantly from one instance to another. The minimum deviation (0) is 
observed for instance no. 8 and 26, where BOV was found in all 40 it-
erations. The maximum deviation (29.70) is reported for instance no. 41 
where BOV was found in 6 iterations. The minimum number of itera-
tions BOV was found is 1 (for three instances). As shown in the last row, 
the average deviation percentage over all the instances is 7.49 %, and 
the average number of iterations that obtained BOV is 15.64, i.e. 39 %. 

4.2. Experimental results for αNpC 

The algorithms AK-αNpC and BK-αNpC, for α = 2 and K = 1, 3, were 
run on the standard pmed1 to pmed40 instances in the OR-Library 
(Beasley, 1990a,b). Each pmed data file includes a weighted graph 
and the (default) number of required facility centers p. Each graph was 

converted to a complete graph using the Floyd–Warshall algorithm, and 
the resulting distance matrix together with the specified number of 
centers p was used as the input instance. 

Because of no known prior objective values for these instances of the 
αNpC problem, initial experiments were performed using the algorithms 
with various settings and longer running time to obtain relatively high 
quality BKOVs. The conditions of the while loops (lines 1 and 6 in Al-
gorithm 3) were adjusted such that each algorithm terminated upon 
achieving/exceeding BKOV or exceeding a time limit of 10,000 s (which 
did not happen). The algorithms were run 10 times per instance and the 
average and standard deviation of the objective value were observed. 

The results are presented in Table 4. The first three columns show the 
instance filename and the numbers of vertices and facilities. Column 4 
presents the target value. The subsequent columns report the average 
(tavg) and the standard deviation (tstd) of the running times of the 
algorithms. 

As indicated by Table 4, both the unflattening and IE strategies 
improved the base algorithm A1-αNpC. The average running time 
(shown in the last row) for algorithms A3-αNpC and B1-αNpC are 37.98 
and 28.47 s, respectively, whereas it is 70.55 s for A1-αNpC. The algo-
rithm B3-αNpC further reduces the average running time to 5.09 s, while 
its standard deviation (6.07) is less than those of the other three 
algorithms. 

4.3. Experimental results for pC 

Finally, experiments were performed to evaluate the algorithms A- 
pC, Ah-pC, B-pC, Bh-pC, and the GRASP-PR state-of-the-art metaheuristic 
of Yin et al. (2017). Because the CPU used in Yin et al. (2017) was not 
specified (except its clock speed of 3.4 GHz), the running time reported 
in Yin et al. (2017) could not be scaled (using CPU benchmarks) to 
compare with the running time of the proposed algorithm which was run 
on a different CPU (Intel® Core(TM) i5-6200, 2.3 GHz). The source code 
of GRASP-PR used in Yin et al. (2017) was not available either. There-
fore, GRASP-PR was implemented (in Java), and it was further opti-
mised, improving its speed by an order of magnitude. However, the 
running time of this optimized implementation of GRASP-PR was 
observed to be, on average, significantly longer than that reported in Yin 
et al. (2017), which could be explained by the difference in the CPUs 
used here and there. Therefore, to show that the superiority of the 
proposed algorithm to GRASP-PR is not because of using a different 
implementation, the running times reported in Yin et al. (2017) are still 
used in this section as the baseline to evaluate the proposed algorithm. 

The same problem instances as used in Yin et al. (2017) were used, 
namely 40 pmed instances (Beasley, 1990a,b) and 84 TSP instances 
(Reinelt, 1991; Universität Heidelberg, 2018). The pmed instances are 
pmed1 to pmed40 already used in Section 4.2, and the TSP instances are 
pr226, pr264, pr299, pr439, pcb442, kroA200, kroB200, lin318, gr202, 
d493, d657, u1060, rl1323, and u1817 used with various numbers of 
facilities p. Following the convention in Yin et al. (2017), these instances 
are split into two groups of 44 (small) and 40 (large) instances. 

The algorithms were adjusted to run until finding solutions with 
better or the same objective values as BKOVs (Elloumi et al., 2004; 
Pullan, 2008; Yin et al., 2017; Liu et al., 2020) or exceeding a time limit 
of 10,000 s (which did not happen except for the last large TSP instance). 
The reason for terminating the algorithms upon achieving BKOVs is that 
these values are either optimum or very challenging to improve. In 
particular, these values are known optimum for all 40 pmed instances 
and 30 large (u1060 and ul817) TSP instances (Elloumi et al., 2004; Liu 
et al., 2020). For the remaining (44 small and 10 large TSP) instances, 
their rounded values are also optimum (Pullan, 2008; Yin et al., 2017), 
but the actual decimal values have not (yet) been proved so, though 
challenging to improve. 

Some experimental settings not explicitly specified in Yin et al. 
(2017) are based on Pullan (2008), because Yin et al. (2017) used the 
results in Pullan (2008) to evaluate the GRASP-PR algorithm. In 

Table 3 
Solution quality in different iterations.  

No. Filename n p BOV #Iterations 
BOV found 

%Average deviation 

1 pmed1 20 5 120 27 4.90 
2 pmed1 40 20 89 39 0.31 
3 pmed1 50 10 111 9 9.91 
4 pmed1 50 20 89 8 5.65 
5 pmed2 20 5 147 18 7.98 
6 pmed2 30 5 171 16 3.27 
7 pmed2 40 10 112 5 21.23 
8 pmed3 10 5 77 40 0 
9 pmed3 30 5 157 10 5.56 
10 pmed3 30 10 122 17 7.56 
11 pmed3 40 5 157 4 8.68 
12 pmed3 40 20 77 15 19.38 
13 pmed4 30 5 173 7 7.47 
14 pmed4 30 10 122 22 2.01 
15 pmed4 40 20 85 34 4.09 
16 pmed4 50 20 91 20 7.66 
17 pmed1 60 20 89 5 8.06 
18 pmed1 60 30 89 31 3.71 
19 pmed1 70 20 99 15 6.52 
20 pmed1 90 50 70 23 15.68 
21 pmed1 100 30 94 1 8.16 
22 pmed2 60 10 140 3 5.36 
23 pmed2 70 30 96 29 1.17 
24 pmed2 80 10 143 2 6.43 
25 pmed2 90 30 96 17 2.76 
26 pmed2 90 50 96 40 0 
27 pmed2 100 10 135 4 7.07 
28 pmed3 60 10 124 1 13.99 
29 pmed3 60 20 97 9 13.76 
30 pmed3 70 20 97 19 4.12 
31 pmed3 80 20 93 14 8.20 
32 pmed3 100 10 152 4 7.93 
33 pmed3 100 30 93 31 2.18 
34 pmed4 60 10 135 15 3.50 
35 pmed4 80 10 147 7 5.80 
36 pmed4 100 30 96 5 11.43 
37 pmed4 100 50 82 14 3.69 
38 pmed6 150 20 77 2 7.60 
39 pmed6 200 20 78 3 5.38 
40 pmed6 200 30 67 1 15.41 
41 pmed6 200 50 50 6 29.70 
42 pmed8 150 50 58 35 4.35 
43 pmed8 150 80 58 36 3.62 
44 pmed8 200 30 72 11 10.28 
45 pmed8 200 50 68 30 5.74 
Avg.     15.64 7.49  
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particular, the reported running time excludes the time needed to read 
the input file and populate the static data structures and, if BKOV is not 
achieved in a run, the reported time is that at which the smallest 
objective value was found. The number of runs per instance is also 
adopted from Pullan (2008), which is 100 for pmed and small TSP in-
stances and 10 for large TSP instances. This is because, the latter in-
stances require, on average, much more time. 

Table 5 presents the results for the pmed instances. The first three 
columns show the instance filename and the numbers of vertices and 
facilities. The next column shows the target objective values (OPT), 
which are optimum (Pullan, 2008; Yin et al., 2017). Columns 5–6 pre-
sent the average (tavg) and the standard deviation (tstd) of the running 
time of GRASP-PR as reported in Yin et al. (2017). The subsequent 
columns report these statistics for the implemented GRASP-PR 
(ImpGRASP-PR) and the other algorithms. 

Table 5 indicates that the application of the IE and unflattening 
strategies are useful because all three algorithms Ah-pC, B-pC, and Bh-pC 
are faster, on average, than A-pC. The average running times of these 
three algorithms are 0.16, 0.21 and 0.13 s, respectively, whereas it is 
0.25 s for A-pC. The results also suggest that the application of both 
strategies is better than the application of each of them individually for 
this dataset. Compared to GRASP-PR, all four algorithms perform worse, 
on average. However, the performance of the proposed algorithm Bh-pC, 
with both the IE and unflattening strategies, is competitive to that of 
GRASP-PR. In particular, Bh-pC has a slightly worse average running 
time (0.13 versus 0.12) but a better average standard deviation (0.15 

versus 0.24). The average running time of the implemented GRASP-PR is 
0.37 s, which is longer than that of GRASP-PR in Yin et al. (2017) by 
approximately-three times.. 

Similarly, Table 6 presents the results for the small TSP dataset. The 
results indicate no significant difference among A-pC, Ah-pC, B-pC and 
Bh-pC, while all of them outperform the GRASP-PR state-of-the-art. The 
average running times of all three algorithms Ah-pC, B-pC and Bh-pC, 
which use IE and/or unflattening strategies, are the same (0.23) but are 
better than those of A-pC (0.26) and GRASP-PR (1.02) by 12 % and 77 %, 
respectively. The average running time of the implemented GRASP-PR is 
7.49 s, which is longer than that of GRASP-PR in Yin et al. (2017) by 
more than seven times. 

The results for large TSP instances are reported in Table 7. Because 
some of these instances require significantly more running time, only Bh- 
pC, with both IE and unflattening strategies, was run on these instances. 
The first three columns show the instance filename and the numbers of 
vertices and facilities. The fourth column is the target value BKOV. The 
subsequent four columns report the results obtained by GRASP-PR, 
namely the best objective value, the average and the standard devia-
tion of the running time and the average deviation percentage. The last 
four columns present the same information for Bh-pC. 

Table 7 shows that Bh-pC outperforms the GRASP-PR state-of-the-art 
with respect to both solution quality and average running time. How-
ever, GRASP-PR has a better average standard deviation. Bh-pC finds 
solutions of higher quality for two instances of u1817 (with p = 80, 
150). The average running time of Bh-pC is less than that of GRASP-PR by 

Table 4 
Comparison of the algorithms for the αNpC problem on the pmed instances.  

Instance  A1-αNpC A3-αNpC B1-αNpC B3-αNpC 

Filename n p BKOV tavg tstd tavg tstd tavg tstd tavg tstd 

pmed1 100 5 150  0.01  0.01  0.01  0.01  0.02  0.01  0.01  0.01 
pmed2 100 10 121  0.23  0.13  0.12  0.06  0.14  0.11  0.20  0.15 
pmed3 100 10 121  0.30  0.18  0.50  0.58  0.29  0.21  0.26  0.35 
pmed4 100 20 97  13.91  11.67  5.09  4.30  7.91  5.91  8.19  8.90 
pmed5 100 33 63  0.05  0.03  0.03  0.03  0.02  0.01  0.02  0.02 
pmed6 200 5 99  0.07  0.04  0.03  0.03  0.05  0.04  0.03  0.03 
pmed7 200 10 80  0.12  0.10  0.09  0.09  0.04  0.02  0.09  0.07 
pmed8 200 20 70  0.09  0.09  0.15  0.16  0.03  0.03  0.03  0.03 
pmed9 200 40 49  1.47  1.07  0.57  0.42  0.20  0.13  0.73  0.71 
pmed10 200 67 28  0.81  0.80  0.69  0.36  0.22  0.13  0.62  0.36 
pmed11 300 5 68  0.01  0.01  0.01  0.01  0.00  0.01  0.00  0.01 
pmed12 300 10 60  1.54  1.18  0.95  0.82  0.50  0.67  0.27  0.32 
pmed13 300 30 43  7.85  6.78  1.38  1.29  1.60  1.54  2.07  1.72 
pmed14 300 60 34  2.85  3.34  1.72  1.66  1.17  1.26  0.93  1.35 
pmed15 300 100 23  28.21  28.80  15.05  6.92  7.54  4.23  6.86  7.12 
pmed16 400 5 52  0.47  0.51  0.27  0.26  0.31  0.24  0.24  0.27 
pmed17 400 10 45  0.14  0.04  0.07  0.05  0.04  0.03  0.04  0.03 
pmed18 400 40 34  271.85  315.90  63.81  57.36  81.64  62.22  17.76  33.81 
pmed19 400 80 25  2.50  1.11  2.11  0.82  0.13  0.10  0.17  0.09 
pmed20 400 133 19  7.99  3.12  10.76  6.96  1.48  1.60  1.24  1.35 
pmed21 500 5 45  14.97  20.71  8.58  6.80  6.78  8.31  1.20  1.09 
pmed22 500 10 44  2.22  1.96  0.60  0.51  0.75  0.61  0.42  0.43 
pmed23 500 50 27  206.68  291.96  44.48  19.73  95.31  88.62  11.18  8.77 
pmed24 500 100 20  6.83  2.52  6.80  2.26  0.29  0.21  0.54  0.59 
pmed25 500 167 15  410.91  236.79  217.29  251.20  474.10  504.19  33.68  40.18 
pmed26 600 5 43  0.52  0.30  0.73  0.64  0.45  0.21  0.24  0.19 
pmed27 600 10 36  0.84  0.50  0.30  0.32  0.14  0.09  0.09  0.06 
pmed28 600 60 22  55.78  41.25  15.78  9.16  1.26  0.79  0.59  0.27 
pmed29 600 120 17  10.49  2.81  13.97  7.61  0.21  0.08  0.32  0.09 
pmed30 600 200 13  57.23  28.83  118.54  78.51  4.42  3.28  2.89  2.13 
pmed31 700 5 34  0.32  0.16  0.10  0.06  0.10  0.06  0.05  0.03 
pmed32 700 10 33  6.27  4.84  0.99  0.81  0.32  0.26  0.21  0.17 
pmed33 700 70 19  444.58  676.33  236.96  129.34  89.58  117.77  10.28  11.14 
pmed34 700 140 14  913.70  1014.86  484.27  552.41  355.59  419.45  97.77  117.88 
pmed35 800 5 34  2.92  2.70  0.52  0.60  0.43  0.27  0.54  0.82 
pmed36 800 10 31  5.82  9.45  1.67  1.54  1.47  0.77  0.25  0.12 
pmed37 800 80 19  23.47  7.57  20.99  7.34  0.14  0.06  0.12  0.07 
pmed38 900 5 33  0.22  0.18  0.07  0.10  0.07  0.06  0.09  0.09 
pmed39 900 10 26  4.45  3.27  0.97  0.94  0.44  0.36  0.18  0.18 
pmed40 900 90 16  313.36  209.11  242.25  167.38  3.72  1.82  3.04  1.64 
Avg.     70.55  73.28  37.98  32.99  28.47  30.64  5.09  6.07  
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over 3 times. Its standard deviation is more than that of GRASP-PR by 
40 %, approximately. The average deviation percentage of Bh-pC is 0.15 
which is significantly more than that of GRASP-PR (0.01). Indeed, Bh-pC 
has zero deviation for all but the last instance. However, Bh-pC achieved 
the optimal objective value (91.6) for that instance, whereas GRASP-PR 
failed to do so. GRASP-PR could not achieve a zero deviation for another 
instance, rl1323 with p = 80, for which Bh-pC achieved zero deviation. 
The average running time of GRASP-PR is better than that of Bh-pC for 10 
instances and worse for 30. The implemented GRASP-PR was not run on 
these instances as it would require several weeks of continuous running. 

The average running time of the proposed algorithm, Bh-pC, over all 
the 124 instances was 81.41 s whereas it was 320.06 for GRASP-PR in 
Yin et al. (2017). Using one-tailed paired t-test, over all 124 instances, 
the null hypothesis that the average running time of the proposed al-
gorithm (Column 15 in Tables 5–6 and Column 10 in Table 7) is not less 
than that of GRASP-PR (Column 5 in Tables 5–6 and Column 6 in 
Table 7) is rejected with a p-value < 0.01. 

Further experiments were conducted to compare the performance of 
A-pC, Ah-pC, B-pC and Bh-pC on the large TSP instances but with a shorter 
time limit of 60 s (not reported). However, as was the case for the small 
TSP instances, no significant difference was observed among them. 

Overall, the unflattening and IE strategies were observed to be 
influential on pmed but not on TSP instances. A hypothesis to explain 
this difference is that the percentage of the flat neighbours is relatively 
low for the TSP dataset. Recall that the whole purpose of the unflat-
tening and IE strategies is to exploit the flat subspaces. 

To test this hypothesis, another experiment was performed. The 
rationale behind this experiment was the observation that no flat move 
would ever be performed in the algorithms (with or without the 
unflattening and IE strategies) if all the distance values dij, i, j = 1,⋯, n,
were distinct. This is because the algorithm always selects, as the new 
facility, a client vertex that reduces the cost of a critical vertex. There-
fore, the percentage of duplicate distance values should be related to the 
percentage of the flat neighbours in the search space. Based on this 
observation, the percentage of duplicate distance values for an instance 
was used as an indication of its flat subspace size. In particular, for each 
instance, 1000 pairs of distance values (di1 j1 , di2 j2 ) were randomly 
selected and the percentage of cases where di1 j1 = di2 j2 was calculated. 
Then, the average percentage values for the pmed, small TSP and large 
TSP datasets were calculated. The results were 2.31 %, 0.05 % and 0.02 
%, respectively. These figures suggest that the relative number of po-
tential flat moves for the pmed dataset is significantly greater than that 
of the TSP dataset, which is an explanation for the different levels of 
impact of the unflattening and IE strategies on these datasets. 

4.4. Impact of the IE strategy on diversification 

The algorithms A-pC and B-pC were applied to the first (pmed1, n =

100, p = 5) and the last (pmed40, n = 900, p = 90) instances of the 
pmed dataset to compare the diversity of the points they visited during 
their search. A visited point is a neighbour of the current point in the 

Table 5 
Comparison of the algorithms for the pC problem on pmed instances.  

Instance  GRASP-PR ImpGRASP-PR A-pC Ah-pC B-pC Bh-pC 

Filename n p OPT tavg tstd tavg tstd tavg tstd tavg tstd tavg tstd tavg tstd 

pmed1 100 5 127  0.00  0.00  0.01  0.07  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00 
pmed2 100 10 98  0.00  0.00  0.01  0.01  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.01 
pmed3 100 10 93  0.01  0.02  0.34  0.34  0.02  0.02  0.02  0.02  0.03  0.03  0.02  0.02 
pmed4 100 20 74  0.00  0.01  0.05  0.07  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
pmed5 100 33 48  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
pmed6 200 5 84  0.00  0.00  0.01  0.01  0.00  0.01  0.00  0.01  0.01  0.01  0.00  0.01 
pmed7 200 10 64  0.00  0.00  0.04  0.11  0.00  0.00  0.00  0.00  0.00  0.01  0.00  0.01 
pmed8 200 20 55  0.00  0.01  0.02  0.03  0.00  0.01  0.00  0.01  0.01  0.01  0.00  0.01 
pmed9 200 40 37  0.00  0.00  0.01  0.01  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.01 
pmed10 200 67 20  0.00  0.00  0.00  0.01  0.01  0.01  0.00  0.01  0.01  0.01  0.01  0.01 
pmed11 300 5 59  0.01  0.03  1.85  2.46  0.00  0.01  0.00  0.01  0.09  0.13  0.08  0.10 
pmed12 300 10 51  0.00  0.00  0.01  0.01  0.00  0.01  0.00  0.01  0.01  0.01  0.01  0.01 
pmed13 300 30 36  0.00  0.02  0.12  0.19  0.05  0.08  0.03  0.03  0.05  0.05  0.03  0.03 
pmed14 300 60 26  0.00  0.00  0.01  0.02  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
pmed15 300 100 18  0.00  0.00  0.00  0.00  0.00  0.01  0.00  0.01  0.00  0.00  0.00  0.01 
pmed16 400 5 47  0.00  0.00  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.01  0.00  0.01 
pmed17 400 10 39  0.00  0.02  0.01  0.01  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.01 
pmed18 400 40 28  0.01  0.07  0.23  0.43  0.05  0.05  0.04  0.06  0.05  0.05  0.07  0.07 
pmed19 400 80 18  0.57  0.93  1.07  1.20  0.85  1.06  0.53  0.46  0.55  0.79  0.61  0.49 
pmed20 400 133 13  0.03  0.07  0.95  1.17  0.77  1.06  1.02  1.58  0.53  0.78  0.92  1.44 
pmed21 500 5 40  0.01  0.01  0.01  0.01  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.01 
pmed22 500 10 38  0.24  1.02  0.42  0.68  0.07  0.06  0.03  0.03  0.05  0.05  0.03  0.03 
pmed23 500 50 22  0.14  1.43  1.89  1.87  0.49  0.66  0.40  0.44  0.39  0.38  0.40  0.41 
pmed24 500 100 15  0.04  0.03  0.09  0.10  0.14  0.11  0.09  0.09  0.06  0.04  0.06  0.04 
pmed25 500 167 11  0.02  0.02  0.24  0.58  0.17  0.25  0.30  0.46  0.10  0.13  0.08  0.08 
pmed26 600 5 38  0.00  0.00  0.02  0.02  0.01  0.01  0.01  0.01  0.01  0.01  0.00  0.01 
pmed27 600 10 32  0.00  0.04  0.04  0.18  0.01  0.01  0.00  0.01  0.01  0.01  0.00  0.01 
pmed28 600 60 18  0.04  0.05  0.11  0.17  0.14  0.13  0.06  0.06  0.11  0.09  0.13  0.17 
pmed29 600 120 13  0.03  0.01  0.03  0.06  0.08  0.04  0.04  0.07  0.03  0.02  0.04  0.05 
pmed30 600 200 9  0.35  0.23  1.73  1.78  1.05  1.00  2.62  2.48  0.55  0.58  0.94  1.03 
pmed31 700 5 30  0.00  0.00  0.02  0.01  0.01  0.01  0.00  0.01  0.01  0.01  0.00  0.01 
pmed32 700 10 29  0.05  0.31  0.08  0.08  0.06  0.05  0.01  0.01  0.09  0.08  0.02  0.02 
pmed33 700 70 15  1.56  2.56  2.80  2.69  3.37  3.73  0.77  0.85  2.64  2.61  0.80  0.98 
pmed34 700 140 11  0.04  0.01  0.02  0.01  0.09  0.03  0.01  0.01  0.02  0.01  0.02  0.02 
pmed35 800 5 30  0.04  0.10  0.09  0.10  0.01  0.01  0.01  0.01  0.02  0.01  0.01  0.01 
pmed36 800 10 27  0.55  0.68  1.29  2.22  0.11  0.10  0.03  0.03  0.14  0.13  0.05  0.06 
pmed37 800 80 15  0.08  0.13  0.15  0.24  0.33  0.22  0.12  0.18  0.13  0.11  0.18  0.19 
pmed38 900 5 29  0.03  0.00  0.02  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
pmed39 900 10 23  0.77  1.44  0.63  0.62  1.75  1.88  0.08  0.07  2.28  2.38  0.25  0.25 
pmed40 900 90 13  0.25  0.27  0.24  0.34  0.52  0.24  0.25  0.25  0.23  0.14  0.34  0.34 
Avg.     0.12  0.24  0.37  0.45  0.25  0.27  0.16  0.18  0.21  0.22  0.13  0.15  
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search space examined as the destination of the next potential move, 
irrespective of whether the move is accepted. 

To measure the diversity of the visited points, their average Ham-
ming distance was used, where the Hamming distance of two points is 
defined here as their symmetric difference. The minimum Hamming 
distance is 0, when the points are identical, and the maximum is p, when 
they are disjoint. 

Example 3. Let S = {P1,P2,P3} be a multiset of visited points, where 
P1 = {1,2, 3}, P2 = {1,2, 4}, and P3 = {2,4, 5} and HD(., .) be the 
Hamming distance function. Then the diversity of S is calculated as 
Diversity(S) = 1

3 (HD(P1,P2)+HD(P1,P3)+HD(P2,P3) ) = 1
3 (2+4+2) ≈

2.67.

Several metrics (including a slightly different Hamming distance 
function) were used in the literature to measure the diversity of nu-
merical solutions (Morrison and De Jong, 2001; Salleh et al., 2018; 
Morales-Castañeda et al., 2020). However, the solutions here are cate-
gorical (not numerical) because a number in a solution P here (e.g. in 
Example 3) represents a vertex. A slightly different Hamming distance 
function was also used in Pinheiro et al. (2005) to compare genome 
sequences, among categorical applications to name. 

Before running the algorithms, line 3 of Algorithm 4 (Appendix A) 

was changed from stochastic (randomised) to deterministic so that both 
algorithms would start with the same initial solution (which was simply 
the set of the first p vertices as the facility centers). Please note that, even 
starting with the same initial solution, the algorithms may still traverse 
different paths in the search space because of using the IE strategy in B- 
pC and other stochastic parts of the algorithm (lines 14, 17, 39 in Al-
gorithm 4). 

First, for each instance, B-pC was run until it found BKOV and, at 
each visited point Pi, the diversity of the visited points (from the 
beginning) was calculated. In addition, the total number of visited points 
n1 was recorded. Then, A-pC was run until it terminated (finding BKOV) 
or visited n1 points and the diversity values were calculated in the same 
way. If it terminated earlier, visiting n2 < n1 points, then only the first n2 
diversity values calculated for B-pC were kept. 

Fig. 4.a to 4.c show the results of three independent runs of the al-
gorithms on the first instance. These results indicate no significant dif-
ference between the diversity of the points visited by these algorithms. 
In all three cases, the diversity values for both algorithms start from 
0 and end at 5 ± 1. This means the IE strategy has not been effective in 
diversifying the visited pints for the algorithm B-pC. A potential expla-
nation could be that the algorithm did not find enough number of flat 
neighbours to move to along its search path in the search space. This 

Table 6 
Comparison of the algorithms for the pC problem on small TSP instances.  

Instance  GRASP-PR ImpGRASP-PR A-pC Ah-pC B-pC Bh-pC 

Filename n p BKOV tavg tstd tavg tstd tavg tstd tavg tstd tavg tstd tavg tstd 

pr226 226 40  650.00  0.00  0.00  0.01  0.01  0.02  0.02  0.01  0.01  0.01  0.01  0.01  0.01 
pr226 226 20  1365.65  0.00  0.00  0.01  0.01  0.00  0.00  0.00  0.01  0.00  0.01  0.00  0.01 
pr226 226 10  2326.48  0.01  0.02  0.57  0.74  0.24  0.38  0.24  0.37  0.28  0.52  0.37  0.75 
pr226 226 5  3720.55  0.00  0.02  0.73  1.24  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00 
pr264 264 40  316.23  0.00  0.01  0.00  0.01  0.01  0.02  0.00  0.01  0.00  0.01  0.00  0.01 
pr264 264 20  514.78  0.00  0.01  0.10  0.26  0.01  0.01  0.00  0.01  0.01  0.02  0.01  0.01 
pr264 264 10  850.00  0.00  0.00  0.15  0.41  0.00  0.00  0.00  0.00  0.00  0.01  0.01  0.02 
pr264 264 5  1610.12  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
pr299 299 40  355.32  0.05  0.08  0.27  0.28  0.21  0.23  0.20  0.21  0.18  0.19  0.21  0.18 
pr299 299 20  559.02  0.14  0.15  1.39  1.68  0.02  0.02  0.02  0.02  0.04  0.04  0.03  0.04 
pr299 299 10  888.84  0.30  0.33  4.10  4.78  0.03  0.04  0.02  0.03  0.02  0.03  0.03  0.03 
pr299 299 5  1336.27  0.05  0.02  1.73  2.55  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
pr439 439 40  671.75  0.27  0.34  2.62  3.08  0.55  1.07  0.42  1.28  0.68  1.83  0.35  0.51 
pr439 439 20  1185.59  0.02  0.05  0.26  0.61  0.02  0.07  0.01  0.02  0.01  0.02  0.01  0.01 
pr439 439 10  1971.83  0.01  0.09  0.51  1.78  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.01 
pr439 439 5  3196.58  0.04  0.06  0.51  2.04  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
pcb442 442 40  316.23  0.02  0.04  0.06  0.22  0.02  0.04  0.01  0.02  0.01  0.01  0.01  0.03 
pcb442 442 20  447.21  0.23  0.11  0.39  0.50  0.09  0.07  0.06  0.05  0.09  0.10  0.08  0.07 
pcb442 442 10  670.82  0.06  0.26  1.22  2.28  0.02  0.02  0.01  0.01  0.01  0.02  0.01  0.01 
pcb442 442 5  1024.74  0.08  0.18  5.91  7.96  0.02  0.02  0.02  0.02  0.02  0.02  0.02  0.03 
kroA200 200 40  258.26  0.61  0.09  0.79  0.93  0.75  0.86  0.66  0.64  0.80  0.85  0.71  0.70 
kroA200 200 20  389.31  0.05  0.09  0.50  0.66  0.03  0.03  0.02  0.03  0.02  0.02  0.03  0.08 
kroA200 200 10  598.82  0.11  0.23  1.83  1.60  0.02  0.02  0.02  0.02  0.02  0.02  0.02  0.01 
kroA203 200 5  911.41  0.02  0.11  1.45  1.67  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
kroB200 200 40  253.24  0.01  0.01  0.42  0.47  1.68  1.92  1.76  1.84  1.73  2.03  1.36  1.46 
kroB200 200 20  382.28  0.00  0.00  0.24  0.35  0.02  0.03  0.02  0.02  0.02  0.04  0.01  0.03 
kroB200 200 10  582.10  0.00  0.03  0.17  0.27  0.01  0.01  0.00  0.01  0.01  0.01  0.00  0.01 
kroB200 200 5  897.67  0.00  0.00  0.04  0.19  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00 
lin318 318 40  315.92  0.00  0.00  0.05  0.10  0.05  0.12  0.05  0.11  0.03  0.06  0.04  0.07 
lin318 318 20  496.45  0.86  1.34  47.25  48.09  0.14  0.14  0.15  0.11  0.16  0.15  0.18  0.15 
lin318 318 10  743.21  0.06  0.38  7.98  9.35  0.07  0.06  0.05  0.05  0.07  0.06  0.05  0.05 
lin318 318 5  1101.34  0.05  0.12  2.82  3.83  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.01 
gr202 202 40  2.97  0.00  0.02  0.05  0.06  0.03  0.02  0.02  0.02  0.02  0.02  0.02  0.02 
gr202 202 20  5.57  0.00  0.00  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
gr202 202 10  9.33  0.00  0.00  0.03  0.03  0.00  0.01  0.00  0.01  0.00  0.01  0.00  0.01 
gr202 202 5  19.38  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
d493 493 40  206.02  6.95  5.96  34.30  33.15  1.83  1.64  1.80  1.51  1.46  1.39  1.71  1.63 
d493 493 20  312.74  2.58  8.23  24.79  23.93  0.66  0.90  0.61  0.54  0.46  0.37  0.53  0.56 
d493 493 10  458.30  1.27  1.21  13.29  16.77  0.07  0.07  0.06  0.06  0.06  0.05  0.05  0.06 
d493 493 5  752.91  3.49  2.74  4.88  8.78  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
d657 657 40  249.52  22.34  7.36  138.43  118.24  4.38  4.30  3.30  3.39  3.17  2.86  3.71  3.81 
d657 657 20  374.70  0.46  4.55  4.02  4.10  0.13  0.10  0.16  0.16  0.15  0.10  0.13  0.11 
d657 657 10  574.74  4.03  3.31  25.67  35.10  0.27  0.33  0.26  0.24  0.34  0.35  0.30  0.30 
d657 657 5  880.91  0.61  1.27  0.16  0.42  0.01  0.01  0.01  0.01  0.01  0.01  0.02  0.01 
Avg.     1.02  0.88  7.49  7.69  0.26  0.29  0.23  0.25  0.23  0.26  0.23  0.25  
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explanation is consistent with the observation of the number of flat 
moves made by B-pC, which were 2, 0, and 0, for Fig. 4.a–c, respectively. 

Similarly, the results of three independent runs of the algorithm on 
the last instance are presented in Fig. 4.d–f. In contrary to the previous 
results for the first instance, significant increase in the diversity of the 
points visited by B-pC is now evident. The diversity value for B-pC in-
creases sharply at the beginning and stays well above that of A-pC 
steadily. The number of flat moves performed by B-pC were 1270, 2179 
and 2986, respectively, for Fig. 4.d–f. This means the search space 
corresponding to the last pmed instance has significantly more flat 
neighbours than that of the first instance. 

Overall, these results suggest that the IE strategy can be beneficial in 
diversifying the visited subspace, but its impact also depends on the 
structure of the search space, among other potential factors. 

4.5. Impact of the unflattening strategy on lengths of paths to improved 
solutions 

To observe how the unflattening strategy can potentially reduce the 
expected length of the path to an improved solution in the search space, 
the algorithms A-pC and Ah-pC were applied to the pmed40 instance 
with n = 900 and p = 90. Recall that Ah-pC is the same as A-pC except 
that it also uses the unflattening strategy. The Reset() function (line 3 in 
Algorithm 4, Appendix A) was modified to yield the same initial point 
for both algorithms. The initial point was simply the set of the first p 
vertices as the facility centers. 

Fig. 5.a shows the objective values of the first 1000 points visited by 
the algorithms. Both algorithms start with the same initial point with 
objective value 33. However, Ah-pC performs more downward moves, 
improving the objective value more frequently, than A-pC. Fig. 5.b fo-
cuses on point no. 3–7, where both algorithms visit points of the same 
objective values at point no. 3–5 but Ah-pC takes over and achieves an 
improved objective value at point no. 6. 

The question here is why Ah-pC takes over and achieves an improved 
objective value (not solely an improved heuristic value) while both al-
gorithms behave the same with respect to downward moves. That is, 
their only difference lies in the acceptance of flat moves (with improved 
heuristic values), which do not change the objective values, so what is 
the relation between such flat moves and downward moves? 

To answer this question, let us first look at Fig. 5.c, which further 
focuses on point no. 4–6. To better understand what is happening, the 
vertical axis does not show the objective values but the normalised 
heuristic values, defined as ĥ(P) = h(P)/n = f(n) + nC(P)/n, where 
nC(P) is the number of critical vertices for a point P. The reason for 
showing normalised heuristic values in Fig. 5.c, as opposed to the 
objective values, is that such a value encodes both the objective value as 
its integer part and the number of critical vertices as its decimal part 
product n. This is because the objective value is an integer (for any pmed 
instance) hence the decimal part is only due to the term nC/n. The 
decimal parts shown in Fig. 5.c are approximate, using three decimal 
places. 

Table 7 
Comparison of Bh-pC and GRASP-PR for the pC problem on large TSP instances.  

Instance  GRASP-PR Bh-pC 

Filename n p BKOV OVbest tavg tstd OVdev OVbest tavg tstd OVdev 

u1060 1060 10 2273.08 2273.08  1.31  24.11 0  2273.08  0.13  0.10 0 
u1060 1060 20 1580.8 1580.8  14.88  85.67 0  1580.80  1.30  0.80 0 
u1060 1060 30 1207.77 1207.77  3.19  30.43 0  1207.77  0.32  0.15 0 
u1060 1060 40 1020.56 1020.56  3.26  41.32 0  1020.56  0.32  0.28 0 
u1060 1060 50 904.92 904.92  218.85  104.87 0  904.92  16.74  7.80 0 
u1060 1060 60 781.17 781.17  7.75  89.55 0  781.17  5.17  5.54 0 
u1060 1060 70 710.75 710.75  116.91  12.4 0  710.75  169.85  265.21 0 
u1060 1060 80 652.16 652.16  316.57  38.53 0  652.16  105.68  73.58 0 
u1060 1060 90 607.87 607.87  7.09  20.78 0  607.87  13.17  12.06 0 
u1060 1060 100 570.01 570.01  19.04  8.29 0  570.01  26.20  39.68 0 
u1060 1060 110 538.84 538.84  66.46  57.33 0  538.84  59.99  43.92 0 
u1060 1060 120 510.27 510.27  397.85  18.7 0  510.27  203.01  210.82 0 
u1060 1060 130 499.65 499.65  58.18  83.08 0  499.65  78.50  65.82 0 
u1060 1060 140 452.46 452.46  127.39  55.86 0  452.46  40.16  26.90 0 
u1060 1060 150 447.01 447.01  4.37  11.5 0  447.01  32.39  27.88 0 
rl1323 1323 10 3077.3 3077.3  38.02  342.59 0  3077.30  0.66  0.69 0 
rl1323 1323 20 2016.4 2016.4  104.89  129.04 0  2016.40  2.69  1.88 0 
rl1323 1323 30 1631.5 1631.5  169.47  473.51 0  1631.50  36.09  25.12 0 
rl1323 1323 40 1352.36 1352.36  21.9  184.9 0  1352.36  3.62  2.65 0 
rl1323 1323 50 1187.27 1187.27  119.63  110.75 0  1187.27  5.97  4.19 0 
rl1323 1323 60 1063.01 1063.01  4190.92  394.07 0  1063.01  182.66  160.52 0 
rl1323 1323 70 971.93 971.93  6287.04  129.23 0  971.93  2022.28  1406.41 0 
rl1323 1323 80 895.06 895.06  5265.81  384.5 0.09  895.06  800.70  537.44 0 
rl1323 1323 90 832 832  776.23  453.29 0  832.00  39.58  47.85 0 
rl1323 1323 100 787 789.7  2010.67  225.68 0  789.70  1180.79  940.54 0 
ul817 1817 10 457.91 457.91  604.53  87.25 0  457.91  2.75  2.46 0 
ul817 1817 20 309.01 309.01  4068.06  398.87 0  309.01  29.64  28.64 0 
ul817 1817 30 240.99 240.99  1239.97  20.43 0  240.99  32.74  27.69 0 
ul817 1817 40 209.45 209.45  308.29  67.34 0  209.45  51.68  47.06 0 
ul817 1817 50 184.91 184.91  471.94  234.9 0  184.91  24.74  34.13 0 
ul817 1817 60 162.64 162.64  469.43  55.98 0  162.64  8.89  8.77 0 
ul817 1817 70 148.11 148.11  19.66  87.36 0  148.11  4.37  3.90 0 
ul817 1817 80 136.77 136.8  12.42  110.4 0  136.78  176.87  132.62 0 
ul817 1817 90 129.51 129.51  3859.05  287.61 0  129.51  65.53  49.77 0 
ul817 1817 100 126.99 126.99  2.35  39.51 0  126.99  7.70  7.14 0 
ul817 1817 110 109.25 109.25  6954.89  434.03 0  109.25  1777.02  2495.07 0 
ul817 1817 120 107.76 107.76  5.25  19.34 0  107.76  4.94  3.75 0 
ul817 1817 130 104.73 107.75  7.04  13.45 0  107.75  10.49  7.67 0 
ul817 1817 140 101.6 101.6  30.95  137.31 0  101.60  177.20  175.45 0 
ul817 1817 150 91.6 92.44  1236.55  23.97 0.16  91.60  2677.31  2619.35 6.1 
Avg.   729.81 729.97  990.95  138.19 0.01  729.95  252.00  238.78 0.15  
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Fig. 5.c shows that, at point no. 4, the algorithms visit point(s) with 
the same normalised heuristic value 23.002. This implies that, for both 
algorithms, the objective value is 23 and the number of critical vertices 
is nC ≈ n× 0.002 ≈ 2. Recall that n = 900 and the decimal values 
shown in Fig. 5.c are approximate. Next, at point no. 5, the algorithms 
visit different points still with the same objective value 23 but with 
different heuristic values. More specifically, the number of critical 
vertices for Ah-pC is now 1 whereas it is still 2 for A-pC. The flat move 
performed by Ah-pC has not (yet) been useful with respect to the 
objective value, although it has reduced the number of critical vertices. 
However, in the next point (point no. 6), Ah-pC achieves an improved 
objective value 22 (shown in Fig. 5.b but not in Fig. 5.c because of its 
vertical axis’ scale) whereas Ah-pC stays with the same objective value 
23. This scenario illustrates a case where a flat move that improves the 
heuristic value results in a subsequent downward move. But, is this by 
chance or because of the unflattening strategy? 

Another experiment was performed to help with this question. A 
number of random points, called basepoints, were selected to examine 

their neighbours. More specifically, the algorithm A-pC was run on this 
pmed instance until 1000 basepoints were selected. To avoid selecting 
the first 1000 visited points only, each visited point was selected by 
probability 0.001 (so the algorithm visited, approximately, one million 
points). For each selected basepoint, the number of critical vertices, the 
number of neighbours with the same objective value and the number of 
neighbours with the same objective value but a better heuristic value 
were recorded. Fig. 6 presents the total number of neighbours with 
improved objective value and the total number of neighbours with the 
same objective but improved heuristic values grouped by the number of 
critical vertices nC of the basepoints for 2⩽nC⩽10. The full results are 
presented in Table 8. 

As can be seen in Fig. 6, for basepoints with >4 critical vertices, there 
is no neighbour with a better objective value, i.e. there is no downward 
move, whereas there are numerous flat moves that reduce the number of 
critical vertices. This mean, when at a point with nC > 4, the algorithm 
Ah-pC uses available flat moves to reduce the number of critical vertices 
whereas A-pC iterates through all the neighbours and founds no 

Fig. 4. Diversity of the visited points by algorithms A-pC and B-pC during their three runs on the first (a-c) and the last (d-f) pmed instances. At each point no. i on the 
horizontal axis, the diversity of the points from the beginning to point no. i is shown for each algorithm. 
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Fig. 5. (a)The objective values of the first 1000 points visited by the algorithm without the unflattening strategy (A-pC) and with it (Ah-pC) during their execution on 
pmed40 with n = 900 and p = 90. (b) The objective values for point no. 3–7. (c) The normalised heuristic values for point no. 4–5. The normalised heuristic value of 
point no. 6 is shown for A-pC but not for Ah-pC because of the small vertical axis’ scale. 

Fig. 6. The total numbers of the neighbours with improved objective values and the neighbours with the same objective but improved heuristic values shown by the 
number of critical vertices nC of 1000 basepoints randomly selected during the execution of A-pC on pmed40 with n = 900 and p = 90. The results are only shown for 
2⩽nC⩽10. Full results are presented in Table 8. 
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downward move. Then, it accepts a previously rejected (flat) move. 
Even for 2⩽nC⩽4, the number of flat moves that reduce the number of 
critical vertices is significantly greater than the number of downward 
moves. Only when at a basepoint with nC = 1 (shown in Table 8), the 
number of downward moves is greater. In this case, no flat neighbour 
with an improved heuristic value exists because nC is at least 1 by 
definition. 

5. Conclusions 

This paper proposed new state-of-the-art metaheuristics for the 
p-Center, α-Neighbour p-Center and p-Next Center problems. The pro-
posed algorithms share the same design, which is the integration of the 
first-improvement local search with two strategies to exploit flat sub-
spaces in the search space. The local search used for these problems were 
different with respect to their design sophistication, from a basic local 
search for p-Next Center to a relatively sophisticated local search for 
p-Center. 

The strategies integrated with the local search algorithms are the 
unflattening and the IE strategies. The unflattening strategy is to employ 
a heuristic function to predict which of the two flat neighbours is more 
promising based on properties not captured by the objective function. 
For the α-Neighbour p-Center and p-Next Center problems, while the 
objective function f is equal to f (1), the proposed heuristic function hK 

uses the extra information f (2) to f (K) to distinguish between neighbours 
with the same f (1) value. It is still consistent with f in the sense that it 
prioritises solutions with better f (1) values. As a result, the search space 
that corresponds to hK contains fewer flat neighbours than the original 

search space corresponding to f . In general, the number of flat neigh-
bours decreases as K increases. Similarly, for the p-Center problem, extra 
information was used as the secondary criteria to compare flat neigh-
bours. This extra information is the number of critical vertices. How-
ever, a method was presented to compare the heuristic values of the 
current candidate solution and its neighbour without calculating the 
heuristic value of the neighbour. The IE strategy is to accept flat moves 
(unless forbidden by tabu restriction). This simple strategy improves 
diversification without compromising the objective value. This and the 
unflattening strategies are combined by accepting flat moves in the 
search space that are downward or flat with respect to the heuristic 
function. 

It is important to note that, although these strategies are promising 
for many cases, their integration with a local search algorithm for a 
given problem is not necessarily beneficial, and its impact may depend 
on the base local search algorithm, the way the integration is performed, 
the underlying problem and even the datasets used. 

A second potential benefit of the unflattening strategy is to replace 
the objective function f with an unflattening heuristic function h which 
takes into account more information than that considered in the original 
objective function f . As a result, the final solution could be of more value 
to the end user. For example, for the p-Center problem, the final solution 
minimises not only the distance of the farthest client (to its nearest 
center) but also the number of clients with this maximum distance, 
which potentially adds further value to the solution. Similarly, for the 
α-Neighbour p-Center and p-Next Center problems, the final solution 
minimises not only f = f (1) but also f (2) to f (K) (while preserving their 
priorities) and is potentially more useful. The unflattening heuristic 
function may be further improved by considering more information (as 
long as its computational cost does not outweigh its benefit). 

There are several potential avenues for future work. An interesting 
possibility is to study the case where the f-consistency condition of 
heuristic functions is relaxed. This could be achieved for α-Neighbour 
p-Center, for example, by using a constant c no more than (and possibly 
much less than) dmax in the heuristic function hK-αNpC. The value of c 
may change dynamically during the search. Another possible future 
work is to extend the unflattening strategy from complete solutions in 
perturbative procedures such as local search to partial solutions in 
constructive procedures such as the construction phase of GRASP. 
Finally, an avenue for future work is the application of the unflattening 
and IE strategies to existing metaheuristics for other NP-hard optimi-
sation problems. Such problems are countless and exist in variety of real- 
word domains. Indeed, the main motivation for this work was not to 
propose improved algorithms for the problems addressed here but to 
showcase and motivate further research on exploiting the potential of 
flat subspaces. There are numerous problems for which this potential has 
not yet been explored in the literature. This potential is higher for cases 
where a higher portion of the search space is flat. For example, it is more 
promising for the p-Center problem (as a max–min problem) whose 
objective function is the maximum of the fi values, i = 1,⋯,n, than the 
p-Median problem whose objective function is the average of these 
values. In general, it is more useful for problems where the number nf of 
the distinct objective values is polynomial in input size. In such a 
problem, on average, there are |S|/nf points in the search space S with 
the same objective value, where the size |S| of the search space is super 
polynomial because of the NP-hardness of the problem. Among such 
problems are the standard Maximum Satisfiability, Minimum Vertex 
Cover, Longest Common Subsequence, Minimum Cardinality Set Cover, 
Minimum Graph Colouring, Maximum Clique, and Minimum Domi-
nating Set problems, to name a few. Each of these problems has various 
real-world applications and is a potential future work opportunity. 
Furthermore, the extension of the unflattening strategy to partial solu-
tions, mentioned above as a potential future work, can further expand its 
potential applications. 

Table 8 
The number of basepoints and three types of neighbours by the number of 
critical vertices of the basepoints.  

nC #Base #Same f better h #Better f #Rest 

1 706 0 615,763 5E + 07 
2 98 104,752 19,613 7E + 06 
3 23 33,271 824 2E + 06 
4 8 17,476 12 565,712 
5 8 22,057 0 561,143 
6 22 37,653 0 2E + 06 
7 19 41,809 0 1E + 06 
8 17 35,239 0 1E + 06 
9 8 39,983 0 543,217 
10 18 53,414 0 1E + 06 
11 18 74,508 0 1E + 06 
12 6 14,136 0 423,264 
13 7 31,488 0 478,812 
14 1 3511 0 69,389 
15 2 7382 0 138,418 
16 5 28,873 0 335,627 
17 2 4704 0 141,096 
18 3 12,705 0 205,995 
19 1 632 0 72,268 
20 6 17,359 0 420,041 
21 2 6318 0 139,482 
22 1 141 0 72,759 
23 3 6855 0 211,845 
24 2 5764 0 140,036 
25 5 8143 0 356,357 
26 1 1278 0 71,622 
27 2 506 0 145,294 
28 1 119 0 72,781 
29 0 0 0 0 
30 0 0 0 0 
31 0 0 0 0 
32 1 197 0 72,703 
33 1 149 0 72,751 
34 0 0 0 0 
35 0 0 0 0 
36 1 2915 0 69,985 
37 2 3147 0 142,653 
>38 0 0 0 0  
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Appendix A. The pseudocode of the algorithm Bh-pC  

Algorithm 4 
Algorithm Bh-pC, with unflattening and IE strategies, proposed for pC.  

Algorithm Bh-pC 
Inputs: Matrix D = [dij ]n×n of shortest distances 

Integer p ∈ {2,⋯,n − 1}

1 ls while itr coeff = 1 
2 while Termination Condition not met do 
3 Reset(P) 
4 TB1 = TB2 = {} //initilaize the tabu lists 
5 flg moved = true 
6 ls best h = h-pC(P)
7 ls while itr = 0 
8 while flg moved = true and ls while itr < ls while itr coeff × (n − p) × p do 
9 ls while itr = ls while itr + 1 
10 SCL = [ ] //SCL holds at most the best 3 swap candidates 
11 vc = a random member of C 
12 w = F1

vc 

13 inx = N− 1
vc ,w 

14 for each t ∈ {1,⋯, inx} do //in a random order 
15 vj = NVc ,t 

16 if dcj < D1
vc 

then 
17 for vi ∈ P do //in a random order 
18 if promising(vj , vi, SCL) then //if it is not tabued and there is no better candidate in SCL 
19 P1 = P ∪

{
vj
}
\{vi}

20 if h-pC(P1) ≤ h-pC(P) then 
21 if h-pC(P1) = h-pC(P) then 
22 TB2 = TB2 ∪ (vj,vi)

23 end if 
24 P = P1 and update data structures //move 
25 if h-pC(P) < ls best h then 
26 ls best h = h-pC(P)
27 ls while itr = 0 
28 TB1 = TB2 = {}

29 end if 
30 continue with next iteration of while loop (line 8) 
31 else 
32 update SCL with (vj ,vi)

33 end if 
34 end if 
35 end for 
36 end if 
37 end for 
38 if SCL ∕= [ ] then 
39 (vj ,vi) = select move(SCL) //in a prioritised random fashion 
40 P = P ∪

{
vj
}
\{vi} and update data structures //move 

41 TB2 = TB2 ∪ (vj, vi)

42 TB1 = TB1 ∪ (vj)

43 else 
44 flg moved = false 
45 end if 
46 end while 
47 ls while itr coeff = ls while itr coeff × 1.1 
48 end while 
49 return best solution found in all runs  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cor.2022.106023. 
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López-Sánchez, A.D., Sánchez-Oro, J., Hernández-Díaz, A.G., 2019. GRASP and VNS for 
solving the p-next center problem. Comput. Oper. Res. 104, 295–303. 

Lu, C.C., 2013. Robust weighted vertex p-center model considering uncertain data: an 
application to emergency management. Eur. J. Oper. Res. 230 (1), 113–121. 

Lyu, J., Zeng, Y., Zhang, R., Lim, T.J., 2016. Placement optimization of UAV-mounted 
mobile base stations. IEEE Commun. Lett. 21 (3), 604–607. 

Martínez-Merino, L.I., Albareda-Sambola, M., Rodríguez-Chía, A.M., 2017. The 
probabilistic p-center problem: planning service for potential customers. Eur. J. 
Oper. Res. 262 (2), 509–520. 

Minieka, E., 1970. The m-center problem. SIAM Rev. 12 (1), 138–139. 
Misir, M., Wauters, T., Verbeeck, K. and Vanden Berghe, G., 2009. A new learning hyper- 

heuristic for the traveling tournament problem. In the 8th Metaheuristic International 
Conference (MIC’09), Date: 2009/07/13-2009/07/16, Location: Hamburg, Germany. 
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Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A., 2007. The p-median 
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