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ABSTRACT 

 Maternal infection during pregnancy is associated with increased risk 

of both schizophrenia and autism in offspring.  Based on this observation, the 

maternal immune activation mouse model was developed, in which pregnant 

rodents are treated with immune-activating agents and the brains and 

behavior of the adult offspring studied.  This model has been found to 

recapitulate a variety of molecular, cellular, and behavioral abnormalities 

observed in both schizophrenia and autism.  However, despite the abundant 

evidence provided by these studies that prenatal exposure to inflammation 

alters brain development and function later in life, the molecular mechanisms 

by which inflammation mediates these effects remains unclear. 

 It has been suggested that other prenatal risk factors for 

neuropsychiatric disease may alter brain development, in part, via epigenetic 

mechanisms such as DNA methylation and histone modification.  However, a 

link between inflammation and epigenetic modification in brain has not been 

established.  Therefore, the focus of my thesis was to examine the effect of 

inflammation on the histone modification, trimethylated histone H3 lysine 4 

(H3K4me3), which has been implicated in both normal brain development and 

in schizophrenia. 

 In Chapter II, I describe experiments examining the effect of a specific, 

cytokine, interleukin-6 (IL-6), on H3K4me3 in rat forebrain culture.  I show that 

IL-6 treatment results in altered levels of H3K4me3 at multiple gene 
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promoters, frequently in conjunction with altered mRNA expression levels, 

and demonstrate that a subset of these alterations appear to be dependent 

on signaling via the signal transducer and activator of transcription 3 (Stat3) 

pathway.  Furthermore, some of the genes affected by IL-6 also showed 

altered H3K4me3 levels in autism postmortem brain.  Though a direct link still 

remains to be established, this observation suggests that epigenetic changes 

observed in neuropsychiatric disease may have been induced by prenatal 

exposure to inflammation.  In Chapter III, I describe in vivo experiments 

employing the maternal immune activation (MIA) mouse model to examine 

the effects of prenatal inflammation on H3K4me3 in the brain of the offspring, 

at both fetal and adult stages.  I found that immune activation resulted in 

increased levels of IL-6 protein in fetal brain, working memory deficits in the 

adult offspring, and subtle changes in H3K4me3 levels in fetal and adult 

brain.   

 Taken together, these findings demonstrate that an environmental risk 

factor for schizophrenia and autism—namely, inflammation—is capable of 

inducing robust and widespread histone modifications in a model of the 

central nervous system and smaller changes in vivo.  This suggests that 

prenatal exposure to inflammation in human populations may lead to 

increased susceptibility for neuropsychiatric disorders, in part, by altering 

chromatin modifications in developing brain.             
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CHAPTER I: Introduction 

 

Schizophrenia and Autism: An Overview 

 Schizophrenia and autism are both complex psychiatric disorders 

classified as neurodevelopmental in nature.  Schizophrenia is characterized 

by positive symptoms, including hallucinations and delusions, negative 

symptoms, such as flat affect and social withdrawal, and cognitive symptoms, 

which include deficits in working memory, attention, and language.  Due to 

the debilitating nature of this disease, there is a high rate of both 

homelessness and suicide in this patient population.  The term “autism” was 

first used by Eugen Bleuler to describe the social withdrawal observed in 

schizophrenia patients [1].  Since this time autism, or autism spectrum 

disorder (ASD), has been classified as a distinct neuropsychiatric disorder, 

characterized by impaired social interaction, verbal and nonverbal 

communication skills, and repetitive or stereotyped behaviors [2].  Neither 

schizophrenia nor autism demonstrates a defining neuropathology or genetic 

risk architecture, and there is very little definitive evidence regarding specific 

mechanisms underlying their pathogenesis.   

 A role for genetics in the pathoetiology of schizophrenia and autism is 

well-established, based on twin studies which demonstrated that the risk for 

these disorders is positively correlated with degree of relatedness [3].  

However, the concordance rate in monozygotic twins is less than 100% for 



2 

both disorders—approximately 50% for schizophrenia and 60% for autism—

indicating that environmental factors must also be involved in disease 

pathogenesis [4, 5].  Moreover, it has been shown that the concordance rate 

of schizophrenia in monozygotic twins who share a placenta is higher than 

that for twins with separate placentas, who have rates similar to dizygotic 

twins [6].  These findings highlight the importance of the intrauterine 

environment in the development of neuropsychiatric disease. 

 Disease with onset in adulthood induced by prenatal and early 

postnatal exposure to environmental factors is referred to as “fetal 

reprogramming.”  This concept was first developed by studies demonstrating 

that prenatal malnutrition was associated with an increased risk for a variety 

of medical complications in adulthood, including cardiovascular disease, 

metabolic syndrome, and endocrine disturbances [7, 8].  A number of 

environmental factors have been associated with schizophrenia and autism, 

including maternal diet and stress, advanced paternal age, birth in later 

winter/early spring, and urban environment [9]. 

 It has been proposed that such early environmental factors induce 

disease phenotypes via epigenetic mechanisms, such as DNA methylation 

and histone modifications.  In the next section, I will provide an overview of 

the field of epigenetics.  Then, I will provide specific examples of how 

environmental factors have been shown to alter epigenetic modifications and 

impact physiology in both animal models and humans, with an emphasis on 
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the brain.  Subsequently, I will focus on one environmental factor associated 

with increased risk of both schizophrenia and autism: maternal infection 

during pregnancy.  I hypothesize that this particular environmental factor 

alters brain development, in part, by inducing changes in the fetal epigenome 

and precipitates neuropsychiatric disease later in life.    

  

Epigenetics: 

 The literal translation of the term epigenetics is “over” or “above 

genetics” and is typically defined as a heritable modification that impacts gene 

expression without alteration of the DNA sequence.  Epigenetic information is 

encoded in chemical modifications of both DNA, in the form of DNA 

methylation, as well as modification of its associated histone proteins; 

together, this complex of DNA and protein is known as chromatin.  The 

fundamental unit of chromatin is the nucleosome, which consists of 146 base-

pairs (bp) of DNA wrapped around an octamer of the four core histones: H2A, 

H2B, H3, and H4 [10].   

 The amino-terminal tails of these histones are subject to a variety of 

post-translational modifications, including acetylation, methylation, 

phosphorylation, ubiquination, and SUMOylation, and these modifications—

individually or in concert—recruit effector proteins, through which they exert 

their effects on chromatin structure and function, namely, transcription [10].  

Though the relationship can be complex, specific histone modifications have 
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been associated with either increases or decreases in transcription.  For 

example, levels of trimethylated histone H3 lysine 4 (H3K4me3) and 

acetylation of H3K9 and H3K14 tend to be positively correlated with 

transcription, while trimethylatation of H3K9 and H3K27 tends to be 

associated with decreased transcription.  Multiple histone modifications acting 

together to bring about a particular effect is referred to as the “histone code” 

[11].  With the advent of next generation sequencing, it has become possible 

to generate of genome-wide histone modification maps through the use of 

chromatin immunoprecipitation following by deep-sequencing  

(ChIP-Seq) [12].      

 

Epigenetics in Neuropsychiatric Disease 

 Evidence suggests that epigenetic marks are altered in adult brain in 

neuropsychiatric disorders such as schizophrenia.  For example, H3K4me3 

and DNA methylation are altered at the glutamate decarboxylase 1 (GAD1) 

and reelin (RELN) promoters, respectively, and these variations are 

associated with corresponding decreases in mRNA [13-15].  Altered 

expression of two chromatin-modifying enzymes—histone deacetylase 1 

(HDAC1) and DNA methyltransferase 1 (DNMT1)—has also been reported in 

schizophrenia [16, 17].  These findings suggest that changes in histone 

modifications and DNA methylation in mature brain in patients with 

schizophrenia—and other complex neuropsychiatric disorders—can result in 
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ongoing changes in gene expression that may underlie some of the cognitive 

deficits and mood symptoms observed in these disorders.  While the timing 

and origin of these aberrant marks is unclear, evidence from animal models 

(described below) suggests that they may occur during fetal and postnatal 

development. 

 A role for epigenetics in autism has also been described, though the 

evidence is derived primarily from genetic studies rather than identification of 

altered chromatin modifications in postmortem brain.  Specifically, mutations 

in chromatin-modifying enzymes—including methyl CpG binding protein 2 

(MECP2), histone acetyltransferase 4 (HDAC4), and the H3K4 demethylase 

JARID1C/KDM5C/SMCX—have all been identified in ASD patients [18-20]. 

 

Environment and Epigenetics    

 Gene expression programs in the developing fetus are under exquisite 

control by epigenetic machinery, including in the brain.  The brain—arguably 

the most complex organ in mammals—requires highly regulated control of 

gene expression in a timing-, region-, and cell-specific manner in order to 

coordinate the myriad processes required to produce a fully-functioning 

central nervous system, capable of higher cognitive processes.  Changes to 

the epigenome in utero have the potential to impact early 

neurodevelopmental processes, including differentiation of neurons and glial 

cells, neuronal migration, axon pathfinding, and dendritic arborization; 
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disruption of any of these processes is expected to negatively impact brain 

function throughout life. 

 Data from animal models provides evidence that exposure to 

environmental factors during prenatal and early postnatal life impact 

chromatin modifications in the brain.  In a seminal study, maternal care in rats 

was found to alter DNA methylation and H3K9 acetylation of the 

glucocorticoid receptor gene (Nr3c1) in hippocampus as well as anxiety-like 

behavior in offspring [21].  Further studies demonstrated that reversal of these 

chromatin modifications with the histone deacetylase (HDAC) inhibitor, 

trichostatin A, or the methyl donor, L-methionine, also reversed the effects of 

early maternal on the stress response in adult offspring [22, 23].  Maternal 

care has also been shown to modulate DNA methylation and H3K9 

acetylation of the Gad1 gene in rodent brain [24].  A study by Murgatroyd et. 

al. (2009) revealed that early life stress in mice resulted in sustained 

hypomethylation of the arginine vasopressin (Avp) promoter accompanied by 

increased mRNA, hyperactivity of the hypothalamic-pituitary-adrenal (HPA)-

axis, and a depressive-like phenotype in adult animals [25].  Exposure to 

early enrichment, in the form of communal nesting, was found to increase 

levels of histone H3 acetylation at the brain-derived neurotrophic factor (Bdnf) 

promoter in hippocampus in mouse [26].  Interestingly, adult mice exposed to 

early enrichment only displayed elevated Bdnf protein following a stressor, 

indicating the histone modification did not affect basal levels. 
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 Animal models have also demonstrated that exposure to 

environmental stimuli in utero can induce alterations in epigenetic 

modifications detectable in brain postnatally.  Cocaine administration to 

pregnant rats on embryonic days 18 and 19 resulted in global 

hypomethylation, as well as both hyper- and hypomethylation at specific gene 

loci, in hippocampal neurons of neonatal and adolescent offspring [27].  

Intrauterine growth retardation in rats led to increased levels of H3K4me3 and 

H3K9ac at the glucocorticoid receptor gene (Nr3c1), in conjunction with 

increased mRNA, in hippocampus that was detectable during early postnatal 

and adolescent time points [28].   

 While there is some evidence that early environment influences 

chromatin modifications in human brain as well, most studies conducted in 

human populations utilize blood samples for epigenetic analyses.  One study 

of suicide victims with a history of childhood abuse were found to have 

increased DNA methylation in the promoter region of a neuron-specific 

glucocorticoid receptor (NR3C1) in hippocampus [29].  The same gene 

demonstrated increased DNA methylation in cord blood mononuclear cells 

from infants born to mothers with depression; while this study did not examine 

the methylation status of this gene in brain, these infants were found to have 

increased salivary cortisol following exposure to a stressor, indicating altered 

HPA-axis function [30].  
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Maternal Infection, Schizophrenia, and Autism 

 A variety of environmental factors have been linked to increased risk of 

schizophrenia and autism, including maternal diet and stress, advanced 

paternal age, birth in later winter/early spring, and urban environment [9].  

Perhaps one of the most well-replicated environmental factors associated 

with increased risk of schizophrenia and autism is maternal infection during 

pregnancy.  This link was first established by a study which found that 

individuals who were in their 2nd trimester in utero during the 1957 influenza 

epidemic were more likely to be diagnosed with schizophrenia [31].  This 

finding was further substantiated by more recent work showing elevated 

levels of influenza antibody and interleukin-8 (IL-8) in banked serum from 

mothers of schizophrenia patients [32].  It has since been reported that an 

estimated 30% of schizophrenia cases could be eliminated through the 

prevention of viral (influenza, rubella, herpes simplex virus), bacterial, and 

parasitic (toxoplasma) infection in pregnant women [33].  Maternal infection 

during pregnancy has been associated with increased risk of autism in 

offspring as well.  Early studies in the 1960’s linked rubella epidemics with 

increased rates of autism and a recent study of over 10,000 autism cases 

from the Danish Medical Registrar found an association with maternal viral 

infection [34-36]. 

 It has been suggested that prenatal exposure to infection may only 

increase risk of psychosis in genetically susceptible individuals.  For example, 
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a recent study found that fetal exposure to maternal pyelonephritis was only 

associated with increased incidence of schizophrenia in individuals with a 

family history of a psychotic disorder [37].  Additionally, it was found that 

seropositivity for herpes simplex virus 1 (HSV1) and the rs1051788 SNP of 

the MHC Class I polypeptide-related sequence B (MICB) gene exerted a 

significant joint effect on gray matter volume reduction in prefrontal cortex, 

and this effect was more pronounced in the schizophrenia group compared to 

controls [38].  

 That a variety of viral and bacterial infections have been linked to 

increased risk of schizophrenia suggests that it is the maternal immune 

response—rather than the infectious agent itself—that precipitates 

development of psychiatric disease.  In further support of this theory, other 

conditions that give rise to inflammation have also been associated with 

increased rates of schizophrenia in the offspring, including diabetes mellitus—

offspring of diabetic mothers have an estimated 7 times greater risk of 

developing schizophrenia [39].  In obese women, the placenta produces 

significantly more pro-inflammatory cytokines [40].  Maternal immune 

activation in the absence of a pathogen has been modeled in rodents through 

the administration of inflammation-inducing agents, including poly(I:C), LPS, 

and turpentine, to pregnant females.  The offspring of these animals display a 

number of behavioral, histological, and molecular alterations in brain 
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reminiscent of symptoms and neuropathology observed in schizophrenia and 

autism.  This animal model will be further reviewed in Chapter III.  

  

Immune Dysregulation in Schizophrenia and Autism 

 Several lines of evidence suggest that ongoing inflammation or 

immune dyregulation may be present in schizophrenia and autism.  For 

example, there exists a large body of literature on altered cytokine levels in 

schizophrenia patients, in both serum and cerebral spinal fluid (CSF).  

Increased levels of IL-6, interleukin 1 receptor (IL-1R), and IL-2R have been 

reported in serum in schizophrenia, while altered IL-6, IL-2, and tumor 

necrosis factor α (TNFα), have been reported in CSF or brain [41-44].  

Cytokines, including IL-6, TNFα, granulocyte macrophage colony-stimulating 

factor (GM-CSF), IL-8, and interferon γ (IFNγ), have also been reported to be 

elevated in autism brain [45, 46].  IL-1β, IL-6, IL-8, and IL-12 were found to be 

elevated in serum of children between 2 and 5 years of age [47].    

 Some studies have shown that cytokine profiles are affected by the 

phase of the illness.  For example, increased levels of cytokines in CSF have 

been reported to precede psychotic episodes [48].  Another study 

demonstrated that the cyclooxygenase (COX) byproducts, 15d-prostaglandin 

J(2) and prostaglandin E(2), were found to be increased and decreased, 

respectively, in serum of schizophrenia patients experiencing an acute 

exacerbation of their illness [49]. 
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 Altered immune cell profiles have also been reported in schizophrenia 

and autism patients.  For example, mitogen-induced upregulation of IL-6 and 

TNFα, and downregulation of IL-2, IL-4, and IFNγ, by peripheral blood 

monocytes from schizophrenia patients has been reported [50].  T cells from 

ASD children were also found to have aberrant cytokine responses to 

stimulation in vitro—T cells treated with phytohemagglutinin (PHA) produced 

significantly higher levels of GM-CSF, TNFα, and IL-13 [47].  Peripheral blood 

monocytes from ASD children stimulated various toll-like receptor agonists 

produced significantly more cytokines, including IL-1β, IL-6, and TNFα [51].   

 Studies on schizophrenia and autism postmortem brain have also 

yielded evidence for immune activation in central nervous system in these 

disorders.  For example, increased microglial activation has been observed in 

postmortem autism brain [46, 52].  Additionally, microarray studies of 

schizophrenia and autism postmortem brain have revealed altered expression 

of a wide variety of immune transcripts, including upregulation of heat shock 

protein genes HSPA6, HSPB8, HSBP1, and HSPA1B as well as two 

interferon-induced transmembrane proteins, IFITM3 and IFITM1 [53-56].  

 Genetic studies demonstrating the presence of single nucleotide 

polymorphisms (SNPs) in a variety of immune molecule genes in 

schizophrenia suggests that there may be an underlying immune system 

deficit in this psychiatric disorder.  SNPs within the IL-1 gene complex have 

been associated with schizophrenia; the same group later found that 
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schizophrenia risk was 10 times higher in individuals with the IL-1β 2.2 allele 

who also possessed the neuregulin 1 (NRG1) CC genotype [57, 58].  A recent 

meta analysis also found significant association of the rs16944 SNP in the IL-

1β with schizophrenia [38].  And one study reported an association between 

the integrin-β 3 gene (ITGB3) and autism [59]. 

 Of note, several clinical trials have explored the efficacy of anti-

inflammatory medications as an adjuvant therapy in schizophrenia.  

Akhondzadeh et. al. (2007) found that the cyclooxygenase-2 (COX-2) 

inhibitor, celecoxib, when administered in combination with the antipsychotic 

medication, risperidone, significantly improved psychotic symptoms in 

schizophrenia over the group given risperidone alone [60].  Additionally, it has 

been reported that chronic use of steroidal anti-inflammatory drugs decrease 

risk of schizophrenia [61].  Anti-inflammatory medications have also shown 

promise in the treatment of autism—a pilot study in 25 children diagnosed 

with an ASD found improvement of symptoms following treatment with the 

PPARγ agonist pioglitazone [62].  Also of note, antipsychotic medications 

appear to possess anti-inflammatory properties. For example, haloperidol was 

found to inhibit lipopolysaccharide (LPS)-induced release of IL-1β and TNFα 

by whole blood cultures and the promonocyte cell line, THP-1 [63].  

Additionally, antipsychotics have been shown to inhibit microglial activation 

and release of cytokines in vitro [64, 65]. 
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 Taken together, these data provide strong evidence for immune 

activation in both the precipitation—and maintenance—of symptoms in 

schizophrenia and autism.  Immune molecules—including cytokines, 

chemokines, complement cascades, and MHC—play a critical role during 

development of the central nervous system.  Such molecules have been 

implicated in a diverse array of developmental processes, including cellular 

differentiation, neuronal migration, axonal pathfinding, and dendritic 

arborization [66-68].  Given the essential role of the immune system in normal 

CNS development, it is not surprising that alteration of these molecules during 

critical periods can profoundly impact brain function.  However, the precise 

molecular mechanisms by which prenatal exposure to inflammation alters 

brain development remain unclear.  As has been suggested for fetal 

reprogramming by other environmental factors, it is possible that inflammation 

alters neurodevelopment via epigenetic mechanisms. 

 

Inflammation and epigenetics 

 A direct role for inflammation in the regulation of epigenetic 

mechanisms during brain development and in neuropsychiatric disease has 

not been established. Inflammation has long been linked to other diseases, 

including cancer and atherosclerosis; more recently, it has been discovered 

that chronic inflammation may be involved in the “reprogramming” of the 

epigenome.  Data from other cell types provides clues as to how immune 
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molecules—pro-inflammatory cytokines in particular—induce chromatin 

modifications.  For example, LPS-induced pro-inflammatory cytokines were 

found to upregulate the H3K27-specific demethylase, Jumonji C (JmjC) 

domain-containing protein, Jmjd3, in macrophages [69].  And treatment of 

mouse embryonic stem (ES) cells with the IL-6 family cytokine member, 

leukemia inhibitory factor (LIF), resulted in phosphorylation of histone H3 at 

tyrosine 41 via JAK2 [70].  Finally, there is a single report that a cytokine, IL-

1β, alters H3K9me3 at the NeuroD promoter in mouse neural stem cells [71]. 

 

 In this thesis, I sought to determine whether immune activation was 

capable of inducing chromatin modifications, and accompanying gene 

expression changes, in the central nervous system.  In Chapter II, I describe 

experiments in which I examine the effect of a specific cytokine, IL-6, on 

levels of H3K4me3 in a rat forebrain culture system.  In Chapter III, I describe 

experiments in which I explored the impact of prenatal exposure to 

inflammation on H3K4me3 in brain in vivo, employing the maternal immune 

activation (MIA) mouse model of schizophrenia and autism.  Finally, in 

Chapter IV, I discuss the outlook for the future of epigenetic research in 

neuropsychiatric disease.    
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Chapter II: 

Interleukin-6 Alters Histone H3 Lysine 4 Trimethylation in Rat Forebrain 

Culture: Implications for Neuropsychiatric Disease 

 

 

H3K4me3 ChIP-Seq on autism postmortem brain was performed by Iris 

Cheung and the data analyzed by Hennady Shulha and Zhiping Weng.
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Introduction 

 Maternal infection during pregnancy has been shown to increase risk 

of both schizophrenia and autism in offspring [72].  Because multiple 

infectious agents have been linked to the development of these disorders, it is 

believed that it is the maternal response to infection—rather than the 

pathogen itself—that alters fetal brain development and precipitates the onset 

of neuropsychiatric disease later in life.  Several lines of evidence have 

implicated the pro-inflammatory cytokine, interleukin-6 (IL-6), in the 

pathoetiology of both schizophrenia and autism.  Prior to discussing these 

studies, I will provide a brief overview of this cytokine.  

 IL-6 is a pro-inflammatory cytokine first identified as a B-cell maturation 

factor [73].  It has since been implicated in a wide variety of normal 

physiological processes, including hematopoiesis, the acute phase response, 

liver regeneration, and gliogenesis and it is dysregulated in multiple diseases, 

such as atherosclerosis, autoimmune disease, neoplasm, stroke, and 

neurological disorders, including multiple sclerosis, Alzheimer’s disease, and 

Parkinson’s disease [74].  The IL-6 cytokine family, which includes IL-11, IL-

27, IL-31, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), 

oncostatin M (OSM), cardiotrophin-1 (CT-1), and cardiotrophin-like cytokine 

(CLC), are grouped together because they all signal via glycoprotein 130 

(gp130) [75].  When IL-6 binds to its cognate receptor, IL-6R, 

homodimerization with two gp130 subunits is induced.  Associated janus 
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kinase (JAK) proteins phosphorylate gp130 tyrosine residues, leading to the 

activation of several signaling pathways: signal transducer and activator of 

transcription (STAT), ras-raf-MAPK (ERK1/2), and PI3K/Akt [76].  The specific 

pathways activated depend upon the particular cell type. 

  

 

  

 

Figure 1: Signaling pathways activated by IL-6 binding to IL-6R.  IL-6 
binds to IL-6R and induces homodimerization of the signal-transducing 
subunit, gp130.  Subsequently, levels of phosphorylated Stat (pStat), pErk1/2, 
and pAkt are elevated and have downstream effects on gene expression.    
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 IL-6, IL-6R, and soluble IL-6R (sIL-6R) are expressed in both rodent 

and human brain.  Transcripts of genes were noted to increase during 

postnatal development in rat and have been detected in neurons of the 

hippocampus, cortex, striatum, and cerebellum in mature rat [77-79].  In 

human brain, IL-6R immunoreactivity has been reported in both 

undifferentiated neurons during earlier stages of pregnancy as well as in 

cortical pyramidal neurons at later stages of pregnancy and in the adult [80].  

Additionally, gp130 protein is expressed in both neurons and glia in rat brain; 

mRNA has been demonstrated in human cortex [81, 82].  In addition to its 

more well-known role in the orchestration of neuroinflammation and fever in 

response to trauma or infection, IL-6 is involved in a number of normal 

physiological processes in brain, including neurogenesis, astrogliogenesis, 

and oligodendrogenesis; neurotransmitter release; neuronal survival following 

insult; and maintenance of the blood-brain barrier [74].   

 Recently, it has been suggested that IL-6 plays a role in the 

pathogenesis of both schizophrenia and autism.  IL-6 is reportedly increased 

in schizophrenia and autism patients, in both serum and CSF [42, 46].  

Additionally, data from preclinical animal models suggest that prenatal 

exposure to IL-6 alters brain development and function in the offspring.  An 

elegant study conducted by Smith et. al. (2007) [83] demonstrated that 

blockade of IL-6 with a neutralizing antibody prevented the effects of maternal 

immune activation (MIA) with the viral mimic, poly(I:C), on the offspring.  
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Likewise, poly(I:C) had no effects on IL-6 knockout mice.  Furthermore, 

treatment with IL-6 alone recapitulated the behavioral deficits in adult 

offspring caused by poly(I:C).  Importantly, blockade of other cytokines 

upregulated by poly(I:C)— IL-1α, TNFα, and IFNγ—did not prevent the effects 

of MIA on behavior.  Another group demonstrated that IL-6 administration to 

pregnant rodents resulted in increased levels of phosphorylated Stat3 in brain 

of neonatal and adult offspring and, furthermore, that co-administration of 

Stat3 inhibitors with [84].   

 However, it remains unclear how, precisely, IL-6 might be altering brain 

development in the fetus.  Cytokines, in addition to other immune molecules, 

are known to play critical roles in a variety of neurodevelopmental processes, 

including neuro- and gliogenesis, neuronal migration, axon pathfinding, and 

dendritic aborization; therefore, exposure to abnormal levels of these 

substances is expected to have a deleterious effect on proper brain 

development.  Indeed, this has been shown by multiple transgenic and 

knockout mouse models reviewed in [66].  However, the molecular 

mechanisms by which IL-6 regulates these neurodevelopmental processes is 

currently unclear.  

 I hypothesize that exposure to IL-6 during fetal brain development may 

result in both transient and long-lasting chromatin modifications, which result 

in aberrant gene expression and, ultimately, neuropsychiatric disease.  

Though this cytokine could potentially impact a wide range of chromatin 
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modifications, I chose to focus on the histone mark, trimethylated histone H3 

lysine 4 (H3K4me3), because it is well-characterized, in terms of function and 

genomic localization, is important for brain development, and appears to be 

altered in schizophrenia [12, 85-87].  To examine whether IL-6 was capable of 

modulating H3K4me3 on an acute time-scale in a model of the central 

nervous system, I exposed primary culture of rat forebrain to IL-6 (and its 

cognate receptor, IL-6R) and measured levels of H3K4me3 genome-wide 

employing ChIP-Seq. 

 

Materials and Methods 

 

Cell culture:  Cells were prepared from forebrain of embryonic day 14.5 

(E14.5) SASCO SD rat embryos (Charles River Laboratories; Wilmington, 

MA).  Live cells were plated at 1.2 – 1.4 × 106 cells per 100 mm polystyrene 

Petri dish (VWR; West Chester, PA) coated with poly-L-lysine (Sigma; St. 

Louis, MO), 15 µg/ml poly-L-ornithine (Sigma), and 1 µg/ml fibronectin (R&D 

Systems; Minneapolis, MN), and treated daily with 1 µg/ml fibroblast growth 

factor 2 (FGF2) (R&D Systems).  At 6 days in vitro (DIV), cells were passaged 

and stored in dimethyl sulfoxide (DMSO) in liquid nitrogen.  

For experiments intended for RNA and protein extraction, cells were 

removed from liquid nitrogen, re-suspended in media with D-MEM/F-12 

(Invitrogen; San Diego, CA) with 2 µg/mL FGF2, plated on pre-coated 
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polystyrene 6-well plates (BD Biosciences; Franklin Lakes, NJ) at 0.27 – 0.28 

× 106 cells per well, and grown until approximately 95% confluent (for 

experiments with undifferentiated cultures).  Alternatively, for experiments 

with differentiated cultures, cells were plated more densely (0.69 – 1.0 × 106 

cells per well) and expanded for 1-3 days, at which point FGF2 was 

withdrawn and the cells were allowed to differentiate for 3 days before 

treatment with IL-6 and IL-6R.  For immunofluorescence experiments, cells 

were plated on pre-coated polystyrene 2-chamber slides (Thermo Fisher 

Scientific; Rochester, NY) at 0.24 × 106 cells per 4 cm2 well, FGF2 withdrawn 

after 1 DIV, and allowed to differentiate for 3 days prior to treatment.  

 

IL-6 / IL-6R treatment:  For dose-response experiments, the six wells of each 

6-well plate were treated with 0, 5, 10, 50, 100, or 150 ng/ml of recombinant 

human interleukin-6 (IL-6; Peprotech; Rocky Hill, NJ) and recombinant human 

soluble interleukin-6 receptor (IL-6R; Peprotech) for 12 hours.  As an 

additional control, some plates were co-treated with the above doses of IL-6 

and IL-6R plus 1.5 µg of IL-6 neutralizing antibody (#CBL2117; Millipore).  

Cells intended for RNA extraction were harvested as follows.  Following IL-6 / 

IL-6R treatment, cells were rinsed with PBS, incubated in 1× Hank’s Balanced 

Salt Solution (HBSS; Invitrogen) for 5 min at 37°C, and detached by forcefully 

pipetting the HBSS over the cells with a fine-tipped pipette.  The cell 

suspension was transferred to a 1.5 ml tube, centrifuged for 10 min at 8000 
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rpm, and the cell pellet frozen at -80°C.  Plates containing cells for protein 

extraction were rinsed with PBS and stored at -80°C. 

 For time-course experiments for protein extraction, four 6-well plates of 

differentiated cultures were treated with 100 ng/ml IL-6 and IL-6R for 5, 10, 

15, or 30 min; a fifth plate was treated with media only as control.  Each time-

point was conducted in triplicate, with cells derived from fetal rats of 3 

independent litters.  For time-course experiments for immunofluorescence, 

each well of 2-chamber slides containing differentiated cultures was treated 

with either 100 ng/ml IL-6 and IL-6R or media only for 5, 10, 15, 60, 90, or 

120 min.  Subsequently, the cells were rinsed with PBS, fixed in ice-cold 

methanol for 10 min at -20°C, rinsed with PBS, and stored at 4°C. 

 

RT-PCR: 

 To determine which doses of IL-6 and IL-6R had an effect on 

transcription in this cell culture system, the mRNA of a gene known to be 

affected by IL-6—glial fibrillary acidic protein (Gfap)—was examined following 

treatment with 5-150 ng/ml IL-6 and IL-6R for 12 hours.  RNA was extracted 

from cell pellets with the RNaqueous kit (Ambion).  Gfap mRNA levels were 

measured using the One-Step RT-PCR kit (Applied Biosystems; Foster City, 

CA) with intron-spanning primers designed to target the Gfap gene (forward: 

cagcggctctgagagagatt; reverse: ggaagcaacgtctgtgaggt).  Amplification 

reactions were performed in triplicate on an ABI PRISM 7500 Real Time 
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Polymerase Chain Reaction (PCR) System (Applied Biosystems).  Data were 

analyzed using the ΔΔCt method; values were normalized to 18S ribosomal 

RNA (rRNA) levels. 

 

Western blots: 

 Protein was extracted by adding 200 µl 1x Laemmli Buffer to each well 

and scraping the cells from the plate with the back of a pipette tip.  The cell 

solution was transferred to a 1.5 ml tube and DNA digested by incubating with 

2 µl of DNase I (Roche Diagnostics) at 37°C for 1 hour.  Samples were then 

centrifuged 10 min at 13,000 rpm at 4°C, denatured at 95°C for 5 min, and 

stored at -80°C.  

To determine if an IL-6-responsive gene was also affected at the 

protein level, Gfap protein was measured by Western blot.  Proteins from 

differentiated cells treated with 5-150 ng/ml IL-6 and IL-6R were 

electrophoresed on a 10-20% linear gradient Tris-HCl polyacrylamide gel 

(Bio-Rad Laboratories; Hercules, CA) and transferred to a polyvinylidene 

difluoride (PVDF) membrane.  Membranes were incubated in rabbit anti-Gfap 

antibody (#AB5804; Millipore) diluted 1:2000 in tris-buffered saline with 

Tween 20 (TBS-T) with 5% milk overnight at 4°C and rabbit anti-panH3 

(Millipore) diluted 1:100,000 for 4 hours as loading control.  Immunoreactivity 

was developed by the sequential addition of peroxidase-conjugated 

secondary antibody (Amersham Bioscience; Piscataway, NJ) and Super 



24 

Signal West Dura Extend Reagent (Pierce; Rockford, IL) and signal was 

detected with chemiluminescence-based film autoradiography. 

 To determine which of the IL-6 signaling pathways were upregulated 

by IL-6 and IL-6R treatment in this cell culture system, the phosphorylated 

(active) forms of Stat3 (pStat3), Akt, and Erk1/2 proteins were measured in 

differentiated cultures treated for 5, 10, 15, or 30 min with 100 ng/ml IL-6 and 

IL-6R.  Proteins were electrophoresed and transferred to PVDF membrane, 

as described above, and the membrane was incubated in rabbit anti-pStat3 

(#9131; Cell Signaling Technology; Danvers, MA) diluted 1:1000, rabbit anti-

pAkt (#4058; Cell Signaling Technology) diluted 1:5000, and rabbit anti-

pErk1/2 (#4370; Cell Signaling Technology) diluted 1:5000 overnight at 4°C.  

H4 (1:5000; 06-760; Millipore) was used as a loading control.   

 

Immunofluorescence: 

 To examine the cellular expression pattern of pStat3 following IL-6 and 

IL-6R treatment, double-immunofluorescence experiments were performed on 

differentiated cultures treated for 15, 30, 60, 90, and 120 min with 100 ng/ml 

IL-6 and IL-6R, or media only as control.  Methanol-fixed cells were 

permeabilized by incubating in 0.1 M PBS with 0.2% Triton-X100 for 10 min at 

room temperature, blocked in 10% normal goat serum (NGS; Vector 

Laboratories) and 0.2% Triton-X100 in PBS for 20 min, and incubated in 

rabbit anti-pStat3 antibody (1:100) and mouse anti-neuron-specific class III β-
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tubulin (Tuj1) (#MMS-435P; Covance; Princeton, NJ) diluted 1:500 in PBS 

with 0.2% Triton-X100 overnight at 4°C.  The next day, cells were rinsed in 

PBS 3× 5 min and incubated in anti-mouse AlexaFluor 488 (Invitrogen) 

diluted 1:5000 and anti-rabbit AlexaFluor 594 (Invitrogen) diluted 1:10,000 in 

PBS with 0.2% Triton-X100 for 20 min at room temperature.  Subsequently, 

cells were again washed in PBS, the plastic chambers removed, and the 

slides coverslipped with DAPI (Vector Laboratories). Additionally, pStat3 

protein levels were examined in astrocytes following 15 min IL-6 and IL-6R 

treatment by double-labeling with pStat3 and mouse anti-Gfap antibody 

(#MAB3402; Millipore) diluted 1:1000. 

 

Microarray: 

 Differentiated cultures were treated for 1 or 12 hrs with 100 ng/mL IL-6 

/ IL-6R (n = 3 per time point) or media only (n = 3) and harvested with 1× 

HBSS as described above.  RNA extracted with the RNaqueous kit (Ambion) 

and RNA integrity (RIN) assessed with a 2100 Bioanalyzer (Agilent; Santa 

Clara, CA).  cDNA was prepared from RNA employing the Whole Transcript 

Expression kit (Ambion; Austin, TX).  Briefly, 200 ng RNA was mixed with 2 µl 

poly-A spike control RNA from the GeneChip Whole Transcript Terminal 

Labeling and Controls kit (Affymetrix; Santa Clara, CA) and first strand cDNA 

synthesized.  Subsequently, second strand cDNA was prepared and used for 

cRNA synthesis.  cRNA was purified with Nucleic Acid Binding Beads and 
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Wash Solution and then second cycle cDNA synthesized.  Second cycle 

cDNA was hydrolyzed with RNase H and purified.  The purified, single-

stranded cDNA was fragmented and labeled with the GeneChip Whole 

Transcript Terminal Labeling and Controls kit, and then submitted to the 

Genomics Core Facility at University of Massachusetts Medical School for 

hybridization to Affymetrix GeneChIP Rat Gene 1.0 ST arrays, washing, and 

scanning with an Affymetrix GeneChip Scanner 3000 7G. 

 

Microarray data analysis:  Quality of microarray data was assessed 

employing the Bioconductor package, arrayQualityMetrics [88].  Microarray 

data was then uploaded to MicroArray Computational Environment 2.0 

(MACE), which employs Robust Multiarray Average (RMA) to preprocess raw 

oligonucleotide microarray data. The preprocessed data were stored as base 

2 log transformed real signal numbers and used for fold-change calculations 

and statistical tests.  Mean signal values and standard deviations were first 

computed for each gene across samples and the fold-change of expression of 

a gene between treatment groups was calculated by taking the ratio of these 

mean signal values.  To determine differential expression of genes, MACE 

internally conducts a Student t-test with the expression signal values of the 

two hybridizations for all genes in the set.  
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H3K4me3 ChIP and deep sequencing: Differentiated cultures were treated 

for 1 or 12 hrs with 100 ng/mL IL-6 and IL-6R (n = 3 per time point) or saline 

(n = 4) and harvested with 1× HBSS as described above. 

 

Nuclei extraction: in 5 ml Lysis Buffer (0.32 M sucrose, 10 mM Tris-HCl, 5 

mM CaCl2, 3 mM Mg(Ace)2, 0.1 mM EDTA, 1 mM DTT, and 0.1% Triton-

X100; pH 8.0) for 1 min on ice.  The solution was transferred to a 15 ml 

ultracentrifuge tube and 9 ml of Sucrose Solution (1.8 M sucrose, 10 mM Tris-

HCl, 3 mM Mg(Ace)2, and 1 mM DTT; pH 8.0) was pipetted beneath the 

lysate.  Samples were ultracentrifuged for 2.5 hours at 24,400 rpm at 4°C, the 

buffers and debris discarded, and the pelleted nuclei re-suspended in 200 µl 

Dounce Buffer for Native ChIP (10 mM Tris-base, 4 mM MgCl2, and 1 mM 

CaCl2; pH 7.5).  Nuclei were freeze-thawed 2× prior to beginning chromatin 

immunoprecipitation.   

 

Chromatin immunoprecipitation (ChIP):  Chromatin was digested with 

micrococcal nuclease (4 U/ml) for 5 min at 37°C and the reaction was 

stopped by the addition of 0.5 M EDTA, pH 8 (1:10).  Subsequently, 350 µl of 

Hypotonic Solution (0.2 mM EDTA, PMSF 1:1000, DTT 1:3000, and 

benzamidin 1:2000; pH 8.0) was added to each sample, and samples were 

pre-cleared by rotating for 30 minutes with 45 µl of protein G agarose beads 

(Millipore; Billerica, MA) re-suspended in 1× Frozen Storage Buffer (FSB; 20 
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mM Tris-base; 5 mM EDTA, and 50 mM NaCl; pH 7.5).  Samples were then 

centrifuged for 5 min at 3000 rpm at 4°C and the supernatant transferred to a 

new tube; 500 µl of H3K4me3 antibody solution (4 µg rabbit anti-H3K4me3 

antibody [#07-473; Millipore] and 15 µg H3K4me2 peptide [Abcam; 

Cambridge, MA] pre-incubated for 1 hour in 1× FSB with 0.2 mM EDTA, pH 8) 

and 50 µl of 10× FSB were added and samples were rotated overnight at 4°C.  

The next day, samples were incubated with 90 µl protein G agarose beads re-

suspended in 1× FSB for 1 hour at 4 °C and then centrifuged for 1 min at 

3000 rpm and the supernatant discarded.  Beads were rotated for 3 min with 

1 ml Low Salt Buffer (20 mM Tris-base, 150 mM NaCl, 2 mM EDTA, 1% 

Triton-X100, and 0.1% SDS; pH 8.0), centrifuged for 1 min at 3000 rpm, and 

the supernatant discarded; beads were then sequentially washed with 1 ml 

each High Salt Buffer (20 mM Tris-base, 500 mM NaCl, 2 mM EDTA, 1% 

Triton-X100, and 0.1% SDS; pH 8.0), Lithium Chloride Buffer (250 mM LiCl, 

10 mM Tris-base, 1 mM EDTA, 1% Igepal CA-630, and 1% deoxycholic acid; 

pH 8.0), and TE Buffer (10 mM Tris-base and 1 mM EDTA; pH 8.0).  

Chromatin was eluted from beads by rotating for 15 min in 250 µl Elution 

Buffer (100 mM NaHCO3 and 1% SDS) and then centrifuging for 1 min at 

3000 rpm; the supernatant was transferred to a separate tube and set aside.  

An additional 250 µl Elution Buffer was added to the beads and vortexed for 

15 min; samples were centrifuged for 5 min at 13,000 rpm and the 

supernatant combined with the first 250 µl.  Proteins were digested by 
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incubating samples with 2.5 µl proteinase K (10 µg/ml), 10 µl of 0.5 M EDTA 

(pH 8.0), and 25 µl Tris-HCl (pH 6.5) for 3 hours at 52°C. After protein 

digestion, 500 µl of phenol-chloroform (pH 8.0) was added, the samples 

vortexed, and centrifuged for 5 min at 13,000 rpm; the aqueous phase 

(approximately 500 µl) was transferred to a new tube and DNA precipitated by 

the addition of 50 µl 3M sodium acetate (1:10; pH 5.2), 1.375 ml 100% 

ethanol (2.75× volume), and 2 µl glycogen, and incubated at -80°C overnight.  

The next day samples were centrifuged at 13,000 rpm for 10 min at 4°C, the 

supernatant discarded, and the DNA pellets gently washed with ice-cold 75% 

ethanol.  Subsequently, samples were centrifuged for 5 min at 14,000 rpm, 

the supernatant discarded, and the DNA pellets air-dried.  DNA was re-

suspended in 36 µl 4 mM Tris-HCl (pH 8.0) and 2 µl used for measuring DNA 

concentration; the remaining 34 µl was used for preparation of libraries for 

deep sequencing.  

 

Deep sequencing: Immunoprecipitated DNA was processed for deep 

sequencing as follows.  The ends of the DNA fragments were blunted using 

the End-it DNA Repair kit (Epicentre; Madison, WI), the reaction cleaned with 

the QIAquick Gel Extraction kit (Qiagen; Valencia, CA), and the fragments A-

tailed by incubating with 0.2 mM dATP and 0.8 U/µl Exo-minus Klenow DNA 

polymerase in 1× Klenow Buffer for 1 hour at room temperature.  

Subsequently, the reaction was again cleaned with the QIAquick Gel 
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Extraction kit and the Genomic Adaptor Oligo Mix (Illumina; San Diego, CA) 

was ligated to fragments overnight at 16°C employing the Fast Link kit 

(Epicentre).  The next day, fragments were PCR-amplified with Illumina 

single-read primers, the reaction cleaned with the QIAquick kit, and fragments 

around 250 base pairs gel-purified.  The H3K4me3 ChIP libraries were deep 

sequenced by an Illumina Genome Analyzer (GA II).  

 

ChIP-Seq Data analysis:  Raw sequence reads were aligned to the rat 

reference genome (version rn4) using Bowtie [89] to determine the total 

number of reads per library, as well as the number of uniquely-mappable, 

multi-mappable, and non-mappable reads.  Only uniquely aligned reads with 

up to 1 mismatch were considered in this analysis and reads mapping to 

forward and reverse strands were pooled.  The aligned sequence data was 

converted to ELAND format and, concurrently, normalized for sequencing 

depth by randomly sampling the same number of reads from each library (the 

lowest number of uniquely-mappable reads).  Genomic regions significantly 

enriched for reads—called peaks—were detected with the model-based 

analysis for ChIP-Seq (MACS) program [90] and the percentage of proximal 

(< 2 kb from a transcription start site, or TSS), medial (2-10 kb from TSS), and 

distal (> 10 kb from TSS) peaks were determined.  Data from normalized 

libraries was uploaded to the University of California Santa Cruz (UCSC) 
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Genome Browser, which allows visualization of H3K4me3 levels in each 

sample genome-wide. 

 After confirming that each library was of good quality (i.e., possessing 

both a high percent of uniquely-mappable reads and proximal peaks), group 

differences in H3K4me3 levels within TSS (0 bp) and +500 bp were measured 

employing the DESeq Bioconductor package [91, 92].  Read counts per gene 

region were calculated using the Genominator package [93] from 

Bioconductor 2.7, the count tables annotated, and differential H3K4me3 was 

inferred using the DESeq.  Comparing treatment groups with DESeq offers an 

advantage over MACS, because it measures all reads within defined genomic 

intervals.  Thus, it is possible to detect regions with H3K4me3 levels 

significantly altered by treatment that do not necessarily contain a statistically 

significant peak as called by MACS. 

 

Stat3 inhibitor treatment: To determine the role of the Stat3 pathway in 

mediating the effects of IL-6 on both gene expression and H3K4me3 in rat 

forebrain culture, cells were pre-incubated with 100 µM S31-201, a small 

molecule pStat3-specific inhibitor [94] and then treated with the standard dose 

of 100 ng/mL IL-6 / IL-6R for 1 hour in the presence of inhibitor.  The 100 µM 

dose was selected based on a dose-response experiment in which cells were 

pre-incubated with 50, 100, or 200 µM S31-201 for 2 hrs and then stimulated 

with IL-6 / IL-6R for 15 min.  Protein was extracted, electrophoresed, 
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transferred to a PVDF membrane, and immunoblotted with pStat3 antibody as 

described above.  Additionally, pAkt and pErk1/2 immunoblots were 

performed to confirm that S31-201 was indeed pStat3-specific.  Following 

S31-201 + IL-6 / IL-6R co-treatment, cells were prepared for microarray or 

H3K4me3 ChIP-Seq, as described above.  

 

Comparison of IL-6 microarray and ChIP-Seq data sets with autism 

H3K4me3 ChIP-Seq: 

 To examine whether an in vitro “model” of autism reproduces 

alterations in H3K4me3 observed in postmortem brain in this disorder, the 12 

hr IL-6 forebrain culture ChIP-Seq and microarray data sets were compared 

to data from human disease.  H3K4me3 ChIP-Seq was performed on 

neuronal nuclei isolated from cortex of 16 autism subjects and 14 controls. 

The autism H3K4me3 ChIP-Seq experiment reported 480 human genes as 

differentially expressed (DE) from all annotated genes in the Ensembl 

database (53630).  In the 12 hr microarray experiment of IL-6 treated rat 

forebrain culture, 604 rat genes were found to be DE out of the total number 

assayed on the rat Affymetrix GeneChip (28826).  Seventeen genes were 

altered in both data sets.  This experimental number of overlapping genes 

was compared with the number of genes that are in common when 480 genes 

are randomly selected from the Ensembl gene set and 604 genes randomly 

selected from the microarray set.  Random sampling without replacement was 
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repeated 10,000 times.  The random rat gene sets were converted to human 

genes using the Homologene database (http://www.ncbi.nlm.nih.gov/) and the 

number of genes occurring in rat and human samples determined for all 

10,000 sampling events. 

 

Results 

 

IL-6 / IL-6R treatment exerts a concentration-dependent effect on Gfap 

mRNA and protein:  

 To establish the dose range of IL-6 and IL-6R that has an effect on 

transcription in the rat forebrain culture system, cells were treated with 5, 10, 

50, 100, or 150 ng/mL IL-6 and IL-6R for 12 hours and the mRNA of a 

positive control gene—Gfap—measured with qRT-PCR.  Transcript levels 

demonstrated a concentration-dependent increase in both undifferentiated 

(Figure 2A) and differentiated cells (Figure 2B) compared to control.  Fold-

changes of Gfap mRNA in undifferentiated cells ranged from 6 to 245-fold 

and from 0.49 to 8-fold in differentiated cells.  Co-treatment with a constant 

dose of IL-6 neutralizing antibody completely blocked the IL-6/IL-6R-induced 

increase of Gfap mRNA levels at lower doses and partially blocked the 

increase at the higher doses.  Additionally, Gfap protein also demonstrated a 

concentration-dependent increase, with protein first visible by Western blot at 

50 ng/mL (Figure 2C).  The 12 hr treatment had no discernable effect on cell 
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viability at any dose.  Based on these findings, the 100 ng/mL dose was 

selected for use in further experiments. 

 

IL-6 / IL-6R treatment exerts a time-dependent effect on pStat3, pAkt, 

and pErk1/2 protein:  

 In order to determine which signaling pathways known to be activated 

by IL-6 in other cell types are induced in the rat forebrain culture system, 

differentiated cultures were treated with 100 ng/mL IL-6 / IL-6R for 5, 10, 15, 

or 30 minutes and the phosphorylated forms of Stat3, Akt, and Erk1/2 protein 

measured by Western blot.  All three phospho-proteins demonstrated a time-

dependent increase relative to control, with the highest levels apparent at the 

30 min time point (Figure 3).   

 Next, in order to determine which cell types are activated by IL-6 / IL-

6R in this system, cultures were treated for 5, 10, 15, 30, 60, or 90 minutes 

and then processed for Gfap/pStat3, pAkt, or Erk1/2 (astrocytes) or Tuj1/ 

pStat3, pAkt, or Erk1/2 double-immunofluorescence (neurons).  As shown by 

Western blot, pStat3 immunoreactivity increased in a time-dependent 

manner, with immunoreative nuclei first visible at 5 min and lasting 

approximately 60 min (Figure 4A).  However, as shown in Figure 4A, none of 

the pStat3-IR nuclei colocalized with the Tuj1-IR neurons.  The majority of 

pStat3-IR nuclei were observed in the Gfap-IR astrocytes (Figure 4B) and a 

smaller proportion did not overlap with either neurons or astrocytes.  
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Immunoreactivity for pAkt and pErk1/2 was not observed in control or IL-6 / 

IL-6R treated cultures, despite detection by Western blot (data not shown), 

and may represent limited utility of the particular antibodies employed.  

 

IL-6 / IL-6R treatment alters gene expression in rat forebrain culture:  

 In order to obtain a global overview of the effects of IL-6 on the 

transcriptome in rat forebrain culture, microarrays were employed to measure 

mRNA changes in cells treated for either 1 or 12 hrs with 100 ng/mL IL-6 / IL-

6R (Figures 5 and 6).  Additionally, a set of cultures at the 1 hr time-point 

were treated with IL-6 / IL-6R in combination with the Stat3 inhibitor, S31-201, 

to determine the proportion of IL-6-responsive genes regulated by this 

pathway. 

 Pre-treatment of cell culture with 50, 100, and 200 µM S31-201 for 2 

hrs prior to the addition of IL-6 / IL-6R for 15 min resulted in a concentration-

dependent attenuation of pStat3 protein (Fig. 5A); based on this experiment, 

the 100 µM dose was selected for microarray and ChIP-Seq experiments. 

Treatment with IL-6 / IL-6R for 1 hr resulted upregulation of 1386 genes ≥ 1.5-

fold and downregulation of 792 genes ≤ -1.5-fold.  As expected, a wide variety 

of genes with immune function were altered by cytokine stimulation, including 

suppressor of cytokine signaling (Socs3), leukemia inhibitory factor receptor 

alpha (Lifr), heat shock protein 1 (Hspb1), interleukin 1 receptor type I (Il1r1), 

and interferon induced transmembrane protein 3 (Ifitm3).  Interestingly, some 
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of these genes—including Ifitm3, Hspb1, and growth arrest and DNA-damage 

inducible beta (Gadd45b)—show altered expression levels in schizophrenia 

and autism postmortem brain [53, 54, 56].  Additionally, a number of non-

immune genes implicated in schizophrenia and autism were also altered by 

IL-6 exposure, including glutamate decarboxylase 1 (Gad1), metabotropic 

glutamate receptor 5 (Grm5), neuropeptide Y (Npy), and gamma-

aminobutyric acid (GABA) A receptor alpha 3 (Gabra3) [95-97]. 

 Due to the large numbers of transcripts altered by IL-6 / IL-6R 

treatment, only those genes showing maximal blockade by Stat3 inhibitor 

treatment are shown in the heatmap in Fig. 5C.  When the groups were 

analyzed by non-hierarchical clustering for this set of genes, the saline and 

Stat3 inhibitor groups clustered together and their similarity in signal intensity 

can be observed.  Of the 1386 genes increased ≥ 1.5-fold by IL-6 / IL-6R 

relative to saline, 98 (7.1%) were also increased by IL-6 / IL-6R relative to IL-

6 / IL-6R + S31-201 (also ≥ 1.5-fold), indicating that the effect of IL-6 was 

attenuated for these genes by Stat3 inhibition.  If all genes increased ≥ 1.2-

fold by IL-6 / IL-6R relative to IL-6 / IL-6R + S31-201 are included, 383 genes 

(29.8%) were blocked by Stat3 inhibitor treatment.  Of the 792 genes 

decreased ≤ -1.5-fold, 43 (5.4%) were attenuated by S31-201 at the -1.5-fold 

level and 136 (17.2%) were attenuated at the -1.2-fold level.  

 Consistent with the knowledge that the Jak2/Stat3 pathway plays a 

central role in inflammatory signaling—including in the central nervous 
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system—many of the genes blocked by the Stat3 inhibitor have immune 

function, including the above-mentioned Ifitm1, Ifitm3, Hspb1, Il1r1, Socs3, in 

addition to oncostatin M receptor (Osm), tumor necrosis factor receptor 

superfamily 21 (Tnfrsf21), and chemokine (C-C) motif ligand 2 (Ccl2).  

 Additionally, there were several non-immune genes with potential 

relevance for schizophrenia and autism whose IL-6-induced upregulation was 

attenuated by Stat3 inhibition.  For example, growth associated protein 43 

(GAP43) was recently identified as an autism susceptibility gene and 

Gap43+/- mice display an autism-like phenotype in several behavioral tests, 

including decreased social interaction and stress-induced anxiety [98, 99].  

The glutamate receptor-like protein 1a (GRIN1A) is located on chromosome 

15q22.1, an autism susceptibility locus [100].  Multiple glutathione-S-

transferase genes have been associated with schizophrenia and autism; the 

alpha 4 variant (Gsta4) was upregulated by IL-6 in this study [101-105].  

Thus, it is possible that Parker-Athill and colleagues observed that 

administration of Stat3 inhibitors in pregnant mice ameliorated the behavioral 

effects of maternal IL-6 treatment on offspring, in part, by preventing the 

expression changes in these genes.    

 Treatment with IL-6 / IL-6R for 12 hr resulted in markedly fewer 

changes in mRNA levels than at the 1 hr time-point: 77 genes were 

upregulated ≥ 1.5-fold, while 37 genes were downregulated ≤ -1.5-fold.  

These changes are illustrated in heatmap in Fig. 6A.  Of the 77 genes 
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increased ≥ 1.5-fold, 47 (61%) were also increased ≥ 1.5-fold at the 1 hr time 

point (Fig. 6B).  Of the 37 genes decreased ≤ -1.5-fold, 9 (24.3%) were 

decreased at 1 hr.  It should be noted that some of the genes showing smaller 

fold-changes (1.2 to 1.5) at 12 hrs had robust fold-changes at 1 hr, such as 

Ifitm1, Anxa5, and Trib1, all of which were increased ≥ 3-fold at the earlier 

time point.  Conversely, several genes upregulated ≥ 3-fold at 12 hrs—Il17rb, 

A2m, and Chdh—were not altered at 1 hr.  In total, 22 genes increased ≥ 1.5-

fold at 12 hrs were not altered at 1 hr (230 ≥ 1.2-fold), while 27 genes 

decreased ≤ -1.5-fold were not changed at the earlier time point (133 ≤ -1.2-

fold).  

 

IL-6 / IL-6R treatment alters H3K4me3 levels in rat forebrain culture: 

 Alignment of each deep-sequenced H3K4me3 library with rat genome 

revealed library sizes ranging from 2.1 × 106 to 19.5 × 106 total reads (Fig. 7).  

Importantly, a high percent of these total reads (72-78%) were uniquely 

mappable to rat genome, indicating good library quality.  A smaller 

percentage (13-17%) of reads mapped to multiple locations and 9-11% of 

reads were not mappable.  Neither multi-mappable nor non-mappable reads 

were included in subsequent analyses.  Following normalization of all rat 

H3K4me3 libraries to the lowest number of unique reads obtained (2.1 × 106), 

MACS software was used to identify peaks, or regions of the genome 

significantly enriched for H3K4me3.  This analysis revealed a high percent 
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(68-69%) of proximal peaks—peaks within 2 kb of a gene TSS—for all 

groups, which is consistent with studies showing that H3K4me3 is primarily 

enriched at the 5’ end of genes [12].  A smaller percentage of peaks (6%) 

were medial (2-10 kb from TSS) and 24-27% were distal (> 10 kb).  Medial 

and distal peaks could represent enhancer elements or transcription start 

sites of currently unidentified genes. 

 Treatment for 1 hr with IL-6 / IL-6R resulted in increased H3K4me3 

levels at 235 genes ≥ 1.5-fold and decreased levels at 259 genes ≤ -1.5-fold 

(Fig. 8).  The heatmap in Fig. 8A represents all genes with ≥ 2-fold change in 

H3K4me3 in either direction for IL-6 / IL-6R treated cultures relative to saline.  

The heatmap in Fig. 8B represents the genes whose IL-6-induced H3K4me3 

alterations were maximally attenuated by the Stat3 inhibitor, S31-201.  In 

total, Stat3 inhibition resulted in attenuation of IL-6-induced H3K4me3 

changes at 25 of the 235 genes increased ≥ 1.5-fold and 5/259 genes ≤ -1.5-

fold.  Thus, while Stat3 signaling appears to play a critical role in the 

modulation of H3K4me3 at specific gene promoters, it is clear from the 

number of H3K4me3 changes not affected by S31-201 treatment that IL-6 

regulates this histone modification via multiple pathways in this CNS model 

system.  Of note, of 21 genes whose increased in H3K4me3 appears Stat3-

dependent, 13 also had their mRNA changes blocked by S31-201, suggesting 

that the H3K4me3 alterations at these gene promoters are important for 

transcription. 
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 A subset of genes with altered H3K4me3 levels exhibited 

corresponding changes in mRNA levels.  Of the 235 genes with increased 

H3K4me3 ≥ 1.5-fold, 67 also had increased mRNA (≥ 1.5-fold); of the 259 

genes with decreased H3K4me3 ≤ -1.5-fold, 9 genes had decreased mRNA 

(Fig. 8C).  

 Treatment for 12 hrs with IL-6 / IL-6R resulted in increased H3K4me3 

levels at 33 genes ≥ 1.5-fold (149 genes ≥ 1.2-fold), while 38 genes had 

decreased H3K4me3 ≤ -1.5-fold (60 genes ≤ -1.2-fold) (Fig. 9).  The heatmap 

in Fig. 9A depicts all genes with fold-changes of 1.5 or greater in either 

direction.  The H3K4me3 profile from the UCSC Genome Browser is shown 

for the suppressor of cytokine signaling 3 (Socs3) gene in Fig. 9B, which 

demonstrated the greatest increase in H3K4me3 at this time-point (3.2-fold; p 

= 1.94-20).  Interestingly, Socs3, and two other immediate-early genes, Fos 

and Junb, all exhibited a highly unusual histone methylation pattern—rather 

than being confined to the region immediately proximal to the TSS, as is 

typical for this mark, H3K4me3 was observed to encompass the entire gene 

and surrounding regions; this effect was more pronounced in the IL-6 / IL-6R-

treated samples.  This may represent an important feature of immediate-early 

genes, which must be capable of transcriptional activation within minutes.   

 As with the 1 hr time-point, there was some overlap between 

H3K4me3 and mRNA levels after 12 hrs treatment; however, the majority of 

genes demonstrate either altered histone methylation or mRNA, not both.   
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For the 33 genes increased ≥ 1.5-fold, 7 had corresponding increases in 

mRNA (also at the 1.5-fold level); for the 38 genes decreased ≤ -1.5-fold, 3 

had corresponding decreases in mRNA (Fig. 9C).   

 The overlap between H3K4me3 changes at 1 and 12 hrs was smaller 

than that observed for gene expression changes: 5 of the 77 genes increased 

≥ 1.5-fold at 12 hrs were also increased at 1 hr, while 3 of the 37 genes 

decreased at 12 hrs were also decreased at 1 hr (Fig. 9D).  Another group of 

genes showed opposing changes at the two time-points.  Four genes that 

were increased ≥ 1.5-fold at 1 hr (Dlx2, Glrx1, Gsta4, and Hopx) were 

decreased at 12 hrs; similarly, 21 genes decreased ≤ -1.5-fold at 1 hr were 

increased at 12 hrs (between 1.27 and 1.62-fold).  Finally, some genes 

changed at only one time-point: 225 genes were increased ≥ 1.5-fold and 238 

genes were decreased ≤ -1.5-fold at 1 hr but not at 12 hrs.  Conversely, 22 

genes were increased ≥ 1.5-fold and 32 were decreased ≤ -1.5-fold at 12 hrs 

but not at 1 hr.  

 

Genes with altered H3K4me3 peaks in autism brain are affected by IL-6 / 

IL-6R treatment in rat forebrain culture: 

 Due to the observation that some of the genes affected by 12 hr IL-6 

treatment—at either the mRNA or H3K4me3 levels, or both—also 

demonstrated altered H3K4me3 levels in autism postmortem brain in a study 

conducted by our laboratory, I sought to determine if this overlap was 
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significant employing random sampling.  The number of experimentally 

determined overlapping genes (17) was significantly higher than 95% of 

overlaps derived from random sampling (mean = 2.7).  Likewise, the overlap 

of 4 genes (SOCS3, FOS, KCNJ10, and KCNT1) altered in autism ChIP-Seq, 

rat culture microarray, and rat culture ChIP-Seq is also significant, as random 

sampling produces virtually no overlaps. 

 Interestingly, Socs3 mRNA and H3K4me3 were significantly increased 

following IL-6 treatment in rat forebrain culture and also revealed a 

significantly higher H3K4me3 peak in two autism postmortem samples 

relative to controls.  Also of note, the few autism samples with altered 

H3K4me3 appear to have many changes at other immune genes, including 

interferon, alpha-inducible 6 (IFI6), NFκB activating protein-like (NKAPL), 

interferon regulatory factor 9 (IRF9), heat shock 70kDa protein 2 (HSPA2), 

janus kinase 3 (JAK3), transforming growth factor family members TGFB1 

and TGFBR1, and multiple major histocompatibility complex loci, including 

HLA-F, HLA-B, HLA-E, and HLA-F.  In a study by another group, two of these 

same postmortem samples revealed significant increases in microglial 

activation [52].  While prenatal exposure to maternal infection in these cases 

cannot be unequivocally proven, it is interesting that they show altered 

H3K4me3 methylation profiles at genes that have a central role in 

inflammatory signaling, some of which are affected by IL-6 treatment in cell 

culture. 
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Discussion 

 This is the first report that IL-6, a cytokine implicated in a variety of 

neuropsychiatric disorders, is capable of altering H3K4me3 in a model of the 

central nervous system.  Very little is known regarding the regulation of 

specific chromatin modifications in developing and mature brain; what causes 

them to become altered in disorders like schizophrenia and autism is also not 

known.  Clearly, such epigenetic modifications must be capable of responding 

to a diverse array of environmental stimuli in order to regulate cellular 

response; however, links between specific stimuli and specific histone 

modifications in brain remain enigmatic.  In the current study, I sought to 

examine a specific environmental factor known to increase risk for 

schizophrenia and autism and investigate its role in the modulation of 

chromatin.  Specifically, I demonstrated: (1) IL-6 alters H3K4me3 levels at 

multiple gene promoters in rat forebrain culture (2) many of these genes have 

corresponding mRNA changes and have been implicated in neuropsychiatric 

disease (3) a subset of H3K4me3 and mRNA changes are Stat3-dependent 

(4) pStat3 immunoreactivity is confined to astrocytes, suggesting that Stat3-

dependent H3K4me3 and mRNA changes are driven by astrocyte activation, 

and (5) some genes affected by IL-6 also demonstrate altered H3K4me3 

levels in postmortem autism brain. 

 Interestingly, there were many more genes demonstrating IL-6 induced 

H3K4me3 and mRNA changes at the 1 hr time point versus 12 hour.  That 
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many alterations disappear at the later time point suggests that IL-6 signaling 

is under strict regulation in central nervous system and is reflective of the 

transient nature of the cytokine stimulus.  Attenuation of IL-6 signaling over 

time can be explained, in part, by the increased expression of Socs3 gene, 

which remained highly enriched for the H3K4me3 mark at 12 hours.  

However, this observation raises the question: if IL-6 signaling is under such 

tight control in brain, how might H3K4me3 changes that occur in utero escape 

regulation in a disorder such as schizophrenia or autism? 

 There has been recent interest in uncovering the specific signaling 

pathways through which IL-6 mediates its effects on neurodevelopment.  This 

has been motivated by a report showing complete blockade of IL-6 resulted in 

maternal death of pregnant mice following infection with influenza virus [83].  

This emphasizes the dual nature of IL-6 in both attenuating and propagating 

inflammation.  Preventing the deleterious effects of IL-6 on fetal brain 

development, while preserving its beneficial effects, may require the blockade 

of one pathway while leaving other pathways intact.  This knowledge will aid 

in the development of novel therapeutics for the treatment of infection during 

pregnancy to protect both the mother and her offspring.  The need for such 

treatment is emphasized by the finding that an estimated 30% of 

schizophrenia cases could be eliminated through the prevention of maternal 

infection during pregnancy [106].   
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 Recent work suggests that the Stat3 pathway plays a critical role in 

mediating the effects of maternal cytokines on fetal brain development and 

adult behavior in mice [84].  This study showed that injection of pregnant mice 

with IL-6 resulted in behavioral abnormalities in the adult offspring, and that 

Stat3 inhibition ameliorated these effects.  Based on this study, I was 

interested to: (1) examine the role of the Stat3 pathway in regulating IL-6-

induced H3K4me3 and gene expression changes in rat forebrain culture, and 

(2) identify genes that might explain the deleterious effects of IL-6-mediated 

Stat3 signaling. 

 I found that Stat3 inhibition resulted in the blockade of multiple gene 

expression changes induced by IL-6.  As described in the Results section, 

many of these genes have immune function, and include cytokines and 

cytokine receptors, heat shock factors, chemokines, and interferon-induced 

proteins.  Importantly, many of these genes have been reported to be altered 

in schizophrenia and autism postmortem brain [53, 54, 56].  Additionally, non-

immune genes implicated in schizophrenia or autism also appear to be 

regulated by Stat3 including, Gap43, Grinl1a, and Gsta4 [98-105].   

 However, in contrast to the large number of transcripts regulated by 

the Stat3 pathway, far fewer H3K4me3 changes appear to be Stat3-

dependent in the forebrain culture system.  The genes whose H3K4me3 

levels were most affected by Stat3 inhibition are depicted in Figure 7B.  

Though few are established schizophrenia or autism susceptibility genes, 
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several have been implicated in neurodevelopment and brain function.  For 

example, epithelial membrane protein 1 (Emp1) is highly expressed by young 

neurons in developing mouse brain and has been implicated in neurite 

extension [107].  Additionally, GS homeobox 2 (Gsx2) is a transcription factor 

expressed very early in development and is required for differentiation of 

interneurons fated for striatum and olfactory bulb [108, 109].  Finally, one 

gene—GTP binding protein overexpressed in skeletal muscle (Gem)—is 

reportedly increased in autism postmortem brain [56].  While a role for Gem in 

brain has not been established, this Ras-related GTP protein is known to be 

upregulated in T cells following cytokine stimulation, suggesting an immune 

function [110].  From these findings, I conclude that IL-6 regulates H3K4me3 

at a number of gene promoters; however, these changes can only be partially 

attributed to Stat3 signaling.  This highlights the importance of investigating 

the roles of other signaling pathways involved in IL-6-mediated H3K4me3 in 

brain. 

 It is of interest that a variety of genes affected by IL-6 at both the 

mRNA and H3K4me3 levels also have altered H3K4me3 peaks in neurons in 

a subset of autism cases.  While it is not possible to prove that these aberrant 

methylation peaks in autism brain were caused by an early exposure to an 

immune stimulus, the fact that IL-6 was shown to alter this same histone 

modification in forebrain culture strengthens the link between inflammation, 

chromatin modification, and neuropsychiatric disease. 
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 Medical records available from brain tissue banks are often lacking in 

basic information regarding course of illness and medication history, in 

addition to details such as maternal infection during pregnancy or other early 

environmental exposures.  Prospective studies examining the link between 

maternal infection and the development of schizophrenia and autism have 

been conducted, and have confirmed that infection does indeed elevate risk 

for development of schizophrenia later in life [36, 72].  The brains from such 

study subjects would provide valuable resources for the field of neurobiology 

as specific molecular and cellular changes observed in the disease cohort 

could be correlated with environmental variables. 

 Important future experiments will include the clarification of cellular 

specificity of IL-6 on H3K4me3.  Though the current study observed 

increased pStat3 protein primarily in astrocytes, two points must be kept in 

mind.  First, not all H3K4me3 and mRNA changes were Stat3-dependent. 

Secondly, even for those changes that appear Stat3-dependent, a 

mechanism whereby astrocytes induce downstream modifications in neurons 

cannot be ruled out.  Thus, from the current data, we can only conclude that 

some IL-6 induced alterations of H3K4me3 and mRNA are likely initiated by 

astrocytes, but not necessarily confined to this cell population.  Pure astrocyte 

and neuron culture experiments could be employed to delineate which 

histone methylation changes are contributed by each cell type.  However, it 

may be important to preserve neuron-astrocyte cross-talk during IL-6 
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stimulation in order to more closely recapitulate what is occurring in the mixed 

forebrain culture system and in the brain.  To perform this experiment, fetal 

mice could be exposed to increased levels of IL-6 protein and the neurons 

and astrocytes then sorted using cell-specific antibodies and magnetic beads.  

 Additionally, it would be of interest to further explore the mechanisms 

by which pStat3 regulates H3K4me3 in brain.  This could be examined by 

pStat3 immunoprecipitation following IL-6 stimulation and analysis of the 

protein complex via mass spectrometry to determine potential interacting 

proteins such as histone methyltransferases and demethylases.  Indirect 

evidence for pStat3 interaction with a histone methyltransferase is derived 

from two independent immunoprecipitation studies.  The first reported an IL-6 

induced interaction of pStat3 with Ctr9, a component of the PAF transcription 

complex, in mouse liver; Ctr9 depletion resulted in decreased Stat3 promoter 

binding in conjunction with decreased H3K4me3 levels [111].  Importantly, 

Ctr9 knockdown only abrogated expression of IL-6-responsive genes and not 

those induced by INFβ, IL-1β, or TNFα, suggesting that different cytokines 

modulate chromatin via distinct mechanisms.  The second study reported 

interaction of the human histone methyltransferase, mixed-lineage leukemia 1 

(MLL1), with the PAF complex protein, PAF1, at the Hox9a locus in mouse 

embryonic fibroblasts [112].  Together, these studies suggest that Stat3 

regulates H3K4me3, in part, via MLL1. 
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 Recently, it was shown that IL-6 induces dimethylation of STAT3 at 

K140 via the H3K4 methyltransferase, SET9, in human A4 cells [113].  

Mutation of K140 resulted in enhanced STAT3 phosphorylation, DNA binding 

activity, and transcription of the STAT3-target gene, SOCS3, suggesting that 

methylation of this lysine residue negatively regulates STAT3 activity.  

Moreover, STAT3 was also shown to directly interact with the histone 

demethylase, lysine-specific demethylase, LSD1.  That STAT3 is capable of 

recruiting histone-modifying enzymes to specific gene promoters suggests 

another mechanism whereby IL-6 might regulate H3K4me3. 

 It must be noted that other signaling pathways activated by IL-6—

namely, PI3K/Akt and Erk1/2—likely play a critical role in modulation of 

H3K4me3 and gene expression in the brain.  This is highlighted by the 

observation in the current study that Stat3 inhibition only blocked a subset of 

IL-6 induced H3K4me3 and mRNA changes.  Therefore, future studies 

examining H3K4me3 modulation by pAkt and pErk1/2 through the use of 

inhibitors is warranted.  

 Exposure to environmental factors during prenatal and early postnatal 

development is linked to increased risk of schizophrenia and autism.  It has 

been suggested that these stimuli may alter neurodevelopment, in part, via 

epigenetic mechanisms.  However, a direct link between inflammation and 

histone modifications in brain has not been established.  My findings support 

a role for the pro-inflammatory cytokine, IL-6, in the regulation of the 
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chromatin modification, H3K4me3, in central nervous system.  Moreover, a 

number of genes affected by IL-6 in vitro display altered H3K4me3 in autism 

postmortem brain.  Though indirect, these data provide evidence suggesting 

that aberrant chromatin modifications observed in schizophrenia and autism 

postmortem brain may have been caused by early exposure to inflammation. 
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Figure 2: Gfap mRNA and protein demonstrate a dose-dependent 
upregulation in rat forebrain culture following IL-6 and IL-6R treatment.  
(A) Gfap mRNA increases in undifferentiated E14.5 forebrain culture following 
12 hour treatment with 5, 10, 50, 100, and 150 ng/mL IL-6 and IL-6R 
compared to control culture (n = 3).  This increase was prevented by the 
addition of 1.5 µg IL-6 neutralizing antibody.  Data are expressed as mean ± 
standard error of the mean (SEM).  (B) Gfap mRNA also increases in 
differentiated E14.5 forebrain culture (3 DIV following withdrawal of FGF) 
following 12 hr treatment with 5-150 ng/mL IL-6 and IL-6R (n = 3).  (C) Gfap 
protein also increased in differentiated forebrain cultures following 12 hr 
treatment with IL-6 and IL-6R, with protein first detectable by Western blot at 
a dose of 50 ng/mL.  Western blot is representative of 3 experiments. 
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Figure 3: Phosphorylated Stat3 (pStat3), pAkt, and pErk1/2 protein 
demonstrate a time-dependent upregulation in rat forebrain culture 
following IL-6 and IL-6R treatment.  Levels of phosphorylated Stat3, Akt, 
and Erk1/2 protein increase in differentiated rat forebrain culture following 5, 
10, 15, and 30 minutes treatment with 100 ng/mL IL-6 and IL-6R relative to 
control culture (indicated as C in figure).  Each time point was conducted in 
triplicate.    
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Figure 4: pStat3 protein is upregulated in astrocytes, but not in neurons, 
in rat forebrain culture following IL-6 and IL-6R treatment.  (A) pStat3-
immunoreactive nuclei (red) are visible in differentiated rat forebrain culture 
after 15, 30, and 60 minutes treatment with 100 ng/mL IL-6 and IL-6R.  
Immunoreactivity returns to control levels by 90 min. Note that none of the 
pStat3-immunoreactive nuclei overlap with Tuj1-immunoreactive cells (green). 
(B) An astrocyte labeled with anti-Gfap antibody (green) with a pStat3-
immunoreactive nucleus.  The majority of pStat3 protein appears to be 
localized to the nuclei of astrocytes. 
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(Figure 5C continued.) 
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Figure 5: 1 hour IL-6 treatment alters gene expression in rat forebrain 
culture, in part via the pStat3 pathway.  (A) Treatment with 50, 100, and 
150 µM S31-201, a Stat3 inhibitor, results in a dose-dependent 
downregulation of pStat3 protein induced by 15 min exposure to IL-6 / IL-6R.  
(B) Cells were pre-treated with 100 µM S31-201 (or saline + DMSO) for 2 hrs; 
subsequently, 100 ng/mL IL-6 / IL-6R was added to media and cells were 
incubated for 1 hr prior to harvesting for microarray and ChIP-Seq studies.  
Control cultures were treated with saline + DMSO only.  (C) Treatment with 
100 ng/mL IL-6 and IL-6R for 1 hr upregulated 451 genes ≥ 2-fold (1386 
genes ≥ 1.5-fold) and downregulated 104 genes ≤ -2-fold (792 genes ≤ -1.5-
fold).  The heatmap depicts the genes that were maximally blocked by Stat3 
inhibitor treatment (red = increase relative to saline; blue = decrease).  Of 
1386 genes upregulated by IL-6 ≥ 1.5-fold, 98 genes (7.1%) were blocked by 
pStat3 inhibitor treatment at the 1.5-fold level. Of 792 genes downregulated ≤ 
-1.5-fold, 43 genes (5.43%) were blocked by pStat3 inhibitor treatment.  
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Figure 6: 12 hour IL-6 treatment alters gene expression in rat forebrain 
culture.  (A) An additional set of cultures were treated for 12 hrs with IL-6 / 
IL-6R.  Treatment for 12 hrs upregulated 77 genes ≥ 1.5-fold (366 ≥ 1.2-fold), 
while 37 genes were downregulated ≤ -1.5-fold (238 genes ≤ -1.2-fold).  The 
heatmap depicts all genes changed ≥ 1.5-fold (red = increase relative to 
saline; blue = decrease).  (B) Of the 77 genes upregulated ≥ 1.5-fold by 12 hr 
IL-6 treatment, 47 (61%) were also upregulated at 1 hr at the 1.5-fold level.  
Of the 37 genes downregulated ≤ -1.5-fold, 9 (24.3%) were also 
downregulated at 1 hr. 
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Figure 7: H3K4me3 ChIP-Seq of rat forebrain culture yields a high 
percentage of uniquely mappable reads and proximal peaks. 
(A) A high percentage (72-78%) of reads are uniquely mappable to rat 
genome for all 4 treatment groups (Saline, 12 hr IL-6, 1 hr IL-6, and 1 hr IL-6 
+ S31-201).  A smaller percentage (13-17%) map to multiple locations in rat 
genome and 9-11% were not mappable. (B) The majority of peaks (68-69%) 
are proximal (< 2 kb) to annotated transcription start sites (TSS); additionally, 
6% of peaks are medial (2-10 kb) and 24-27% are distal (> 10 kb) to TSS. 
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Figure 8: 1 hour IL-6 treatment alters H3K4me3 levels at many gene 
transcription start sites in rat forebrain culture, in part via the pStat3 
pathway.  (A) Following 1 hr treatment with IL-6, 90 genes demonstrated a ≥ 
2-fold increase in H3K4me3 levels within 500 bp of gene TSS (235 ≥ 1.5-fold) 
and 27 genes decreased ≤ -2-fold (259 ≤ -1.5-fold).  The heatmap shows 
genes with ≥ 2-fold change in H3K4me3 (red = increase relative to saline; 
blue = decrease).  (B) Co-treatment with 100 µM of the Stat3 inhibitor, S31-
201, attenuated IL-6-induced H3K4me3 changes at 17/91 (18.7%) genes 
increased ≥ 2-fold and 2/27 (7.4%) of genes ≤ -2-fold.  The heatmap depicts 
the genes whose IL-6-induced expression change was maximally blocked by 
S31-201.  (C) A subset of genes with altered H3K4me3 have corresponding 
changes in mRNA level.  Of the 235 genes with a ≥ 1.5-fold increase in 
H3K4me3, 67 have increased mRNA ≥ 1.5-fold at 1 hr.  Of the 259 genes 
with ≤ -1.5-fold decrease in H3K4me3, 9 have decreased mRNA. 
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Figure 9: 12 hour IL-6 treatment alters H3K4me3 levels at many gene 
transcription start sites in rat forebrain culture. 
(A) Following 12 hrs of IL-6 treatment, 33 genes demonstrated increased 
H3K4me3 levels ≥ 1.5-fold (149 ≥ 1.2-fold); 38 genes showed decreased 
levels ≤ -1.5-fold (60 ≤ -1.2-fold).  The heatmap illustrates all IL-6 induced 
histone methylation changes ≥ 1.5-fold (red = increase relative to saline; blue 
= decrease).  (B) The H3K4me3 profile from the UCSC genome browser for 
the Socs3 gene, which demonstrated the most robust and significant increase 
in methylation following 12 hrs of IL-6 treatment (fold-change = 3.2; p = 1.94-

20).  Note the atypical pattern of H3K4me3, which encompasses the entire 
Socs3 gene and surrounding region.  (C) A subset of genes with altered 
H3K4me3 have corresponding changes in mRNA levels.  Of the 33 genes 
with H3K4me3 increased ≥ 1.5-fold, 7 also have increased mRNA ≥ 1.5-fold, 
while 3/38 genes with ≤ -1.5-fold H3K4me3 had decreased mRNA.  (D) Of the 
genes with increased H3K4me3 ≥ 1.5-fold at 12 hrs, 5 were also increased at 
1 hr; of the genes with decreased H3K4me3 ≤ -1.5-fold, 3 were also 
decreased at 1 hr. 
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Figure 10: Genes which show altered mRNA and H3K4me3 following IL-
6 treatment have altered H3K4me3 in a subset of autism cases. 
The genes marked in red demonstrated both altered H3K4me3 and mRNA in 
cell culture following IL-6 treatment.  
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Chapter III: 

Maternal Immune Activation Induces Subtle Alterations in Histone H3 

Lysine 4 Trimethylation in Fetal and Adult Mouse Brain 
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Introduction 

 Maternal infection during pregnancy with a variety of infectious 

agents—including virus (influenza, rubella, herpes simplex virus), bacteria, 

and parasite (toxoplasma)—has been shown to increase risk of both 

schizophrenia and autism in offspring [106].  Based on this observation, 

Fatemi and colleagues developed the maternal immune activation (MIA) 

mouse model, in which they subjected pregnant rats to influenza infection and 

examined cellular changes in the brains of offspring [114, 115].  They found 

altered expression of synaptosome-associated protein 25 (SNAP25) and a 

reduction of reelin-immunoreactive cells, in addition to decreased cortical and 

hippocampal thickness, in postnatal animals, suggesting a neuronal migration 

deficit.  Since its initial development, this model has been widely utilized and 

has been found to recapitulate a variety of molecular, cellular, and behavioral 

abnormalities observed in both schizophrenia and autism. 

 In addition to pathogens such as influenza, non-infectious agents of 

immune-stimulation have been employed to induce immune activation in 

pregnant rodents.  These include the viral mimic and toll-like receptor 3 

(TLR3) activator, polyriboinosinic-polyribocytidilic acid, or poly(I:C), as well as 

lipopolysaccaride (LPS), a bacterial endotoxin that signals via TLR4 [116].  

Injection of these substances into mice or rats induces fever and elevated 

serum cytokines, closely mimicking the effects of actual infection.  That 

inflammation in the absence of a pathogen is capable of producing behavioral 
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deficits and neuropathology in offspring suggests that it is the maternal 

immune response, rather than the infectious agent itself, that impacts fetal 

brain development.  This claim has been substantiated by studies 

demonstrating no detectable virus in fetal brain following maternal infection 

with influenza [117].  Cytokines from maternal circulation have been shown to 

cross the placenta and gain access to the fetus, including the brain, and thus 

represent a means by which immune activation may impact 

neurodevelopment [118-120]. 

 While it is not possible to induce psychosis in a rodent in the truest 

sense of the word, various behavioral tests can be used to model aspects of 

symptoms observed in schizophrenia and autism.  Behavioral abnormalities 

observed in the offspring in the MIA model include impaired sensory motor-

gating, including pre-pulse inhibition (PPI) and latent inhibition (LI), working 

memory deficits, increased anxiety, decreased social interaction, and 

increased sensitivity to the psychomimetics, amphetamine and MK-801 [83, 

119, 121-126].  Additionally, some of these behaviors, including PPI, can be 

rescued by the administration of antipsychotic drugs [123, 126].  Importantly, 

the majority of these behaviors do not appear until the adolescent period, 

mirroring the timing of disease-onset typical in schizophrenia. 

 In addition to behavioral changes, cellular and molecular alterations 

have been noted in the brains of rodents prenatally exposed to inflammation.  

These include pyramidal cell atrophy, decreased Purkinje cells in cerebellum, 
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increased GABAA receptor expression in hippocampus, decreased reelin- and 

parvalbumin-immunoreactive cells in cortex and hippocampus, altered 

dopamine metabolism, increased microglia, and increased GFAP, all of which 

reflect the neuropathology of schizophrenia and autism [119, 127-131].  

Structural changes, including ventricular enlargement and decreased 

thickness of the cortex and hippocampus, have also been reported ([114].  

The particular alterations induced differ depending upon the specific MIA 

paradigm, including immune-activating agent employed and the embryonic 

day on which it is administered.  

 Despite the large number of studies describing abnormalities in rodent 

brain following exposure to a prenatal immune stimulus, the precise molecular 

mechanisms by which pro-inflammatory cytokines mediate their effects on the 

developing CNS remain unclear.  Moreover, it has not been shown that MIA 

can reproduce chromatin modifications in brain observed in neuropsychiatric 

disorders such as schizophrenia and autism.  In the present study, I sought to 

determine whether prenatal exposure to an immune stimulus in mice could 

alter H3K4me3 in brain.  I hypothesize that exposure to inflammation in utero 

alters brain development, in part, via chromatin modifications such as 

H3K4me3 and that some of these changes may be detectable in mature 

brain.    
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Materials and Methods 

 

Animals:  C57BL/6J mice 10-12 weeks of age were obtained from Jackson 

Laboratories (Bar Harbor, ME) and housed in a temperature and humidity-

controlled environment and maintained on a 12 hour light-dark cycle, with 

food and water provided ad libitum.  Mice were allowed to acclimate for at 

least one week prior to breeding.  Mice were mated overnight and the 

presence of a vaginal plug constituted embryonic day 0.5 (E0.5). 

 

Poly(I:C) injections:  On E12.5 or E17.5, pregnant females received an 

injection of 5 mg/kg poly(I:C) (potassium salt; Sigma, St. Louis, MO) freshly 

reconstituted in sterile 0.9% sodium chloride via the tail vein route under mild 

physical constraint.  The injection volume was 5 ml/kg.  Control females 

received an injection of saline solution.  Pups were weaned on postnatal day 

21 and housed by gender.   

 

Maternal Serum Cytokine ELISA:  A subset of females (n = 3 per group) 

was sacrificed three hours following poly(I:C) or saline injection and blood 

was collected via cardiac puncture.  Blood was allowed to clot at room 

temperature for 1 hour, centrifuged at 12,000 rpm at 4°C, and the serum 

aliquoted and stored at -20°C until the cytokine analysis was performed. 
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 Levels of four cytokines (interleukin-6 [IL-6], tumor necrosis factor 

alpha [TNFα], interleukin 1 beta, [IL-1β], and interferon gamma [IFNγ]) were 

measured in maternal serum using a SearchLight® Proteome Array (Aushon 

BioSystems; Billerica, MA), a quantitative multiplexed sandwich enzyme-

linked immunosorbent assay (ELISA) containing capture antibodies spotted 

on the bottom of a 96-well polystyrene microtiter plate.  The bound proteins 

were detected by the subsequent addition of a biotinylated detection antibody, 

streptavidin-horseradish peroxidase (HRP), and chemiluminescent substrate; 

chemiluminescent signal was measured with the SearchLight Imaging 

System’s cooled charge-coupled device (CCD) camera. 

  

Fetal Brain Cytokine ELISA:  Another group of pregnant females were 

injected with poly(I:C) at E12.5 or E17.5, sacrificed 3 or 6 hours later, the fetal 

pups removed, and the brains dissected and frozen at -80°C.  Fetal brain 

tissue was prepared for cytokine ELISA by dounce-homogenizing 3 whole 

brains per litter in 400 µl 0.1 M phosphate-buffered saline (PBS), pH 7.4, 

containing 24 µl/ml Complete Protease Inhibitor Cocktail (Roche Diagnostics; 

Indianapolis, IN) for 1 min on ice.  Tissue homogenate was transferred to a 

1.5 ml tube, centrifuged for 5 min at 13,000 rpm at 4°C, and the supernatant 

transferred to a new tube.  IL-6 protein was measured as described above.  
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Behavior:  Working memory was assessed in 10-week old offspring 

employing the T-maze.  Mice tend to alternate between the two arms of the 

maze because they prefer to explore the more “novel” environment, a 

behavior known as spontaneous alternation, and this behavior is dependent 

upon an intact working memory [132].  The apparatus was constructed from 

white plexiglass and consisted of a “home” arm and a perpendicular arm.  

The mouse was placed in the home arm and allowed to choose between the 

left and right arms, at which point the opposite arm was blocked off, forcing 

the mouse to return to the beginning; the blocked arm was then opened and 

the mouse was then allowed to make another choice.  Mice were given 15 

choices for a total of 14 possible alternations; the same test was administered 

on two consecutive days.  A total of 78 10-week old E12.5 offspring were 

tested (saline n = 51, 33♂ and 18♀ [9 litters]; poly(I:C) n = 27, 10♂ and 17♀ 

[8 litters]) and 62 E17.5 offspring were tested (saline n = 28, 16♂ and 17♀ 

[10 litters]; poly(I:C) n = 34, 17♂ and 12♀ [12 litters]).    

 

Microarray:  Cortex was dissected from 10 fresh frozen E17.5 brains of mice 

sacrificed at 12 weeks of age (poly(I:C) = 5, 3♂ and 2♀; saline = 5, 3♂ and 

2♀) and six E12.5 brains (poly(I:C) = 3, 2♂ and 1♀; saline = 3, 2♂ and 1♀) 

and the RNA extracted and processed for Affymetrix GeneChIP Mouse Gene 

1.0 ST arrays.  Total RNA was extracted employing the RNeasy Lipid Tissue 
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Mini Kit (Qiagen; Valencia, CA).  Following dissection, right cortex from each 

mouse was frozen at -80°C, dounced in 1 mL QIAzol Lysis Reagent and RNA 

isolated according to the manufacturer’s instructions.  RNA integrity (RIN) 

assessed with a 2100 Bioanalyzer (Agilent; Santa Clara, CA).  Labeled, 

fragmented single-stranded cDNA was prepared and submitted to the 

Genomics Core Facility for hybridization to Affymetrix GeneChIP Mouse Gene 

1.0 ST arrays, washing, and scanning as described in the Materials and 

Methods in Chapter II.  

 

Microarray data analysis: Quality of microarray data was assessed with the 

Bioconductor package, arrayQualityMetrics, and treatment groups compared 

with MACE as described in Chapter II. 

  

H3K4me3 ChIP-Seq: Nuclei were extracted from cortex of 6 twelve-week old 

E17.5 poly(I:C) offspring and 6 saline offspring; mice were derived from 6 

independent litters with n = 3 males and 3 females per group.  Whole cortex 

was dissected, frozen at -80°C, dounced in 5 mL Lysis Buffer, and nuclei 

collected by ultracentrifugation as previously described.  Nuclei were 

resuspended in 200 µl Dounce Buffer for NChIP and processed for H3K4me3 

ChIP, library preparation, and deep sequencing as described for rat forebrain 

culture.  In addition, three E12.5 fetal poly(I:C) brain samples and three saline 
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samples—collected 3 hrs following injection—were processed for H3K4me3 

ChIP-Seq. 

 

ChIP-Seq data analysis: As described in Chapter II, raw sequence reads 

were aligned to mouse genome (version mm9) with Bowtie, the libraries 

normalized for lowest number of unique reads, and peaks called by MACS.  

Data were uploaded to the UCSC Genome Browser for visualization and 

differences in H3K4me3 levels between poly(I:C) and saline  measured with 

DESeq. 

 

Results  

 

Poly(I:C) upregulates IL-6 protein in maternal serum:  

 In order to determine whether poly(I:C) injections were capable of 

inducing a measurable immune response in pregnant mice, levels of four 

cytokines (IL-6, TNFα, IL-1β, and IFNγ) were determined in maternal serum 3 

hrs after treatment.  As shown in Fig. 1, IL-6 protein was upregulated in 

poly(I:C)-treated mice at both the E12.5 (mean poly(I:C) = 11,426.7±5425 

pg/mL; mean saline = 119.6±15.9; p = 0.2 ) and E17.5 time-points (mean 

poly(I:C) = 3528.9±426.1 pg/mL; mean saline = 4.2±1.5; p = 0.002).  An 

outlier in the E12.5 poly(I:C) group with 22,202.4 pg/mL IL-6 precluded 

detection of statistical significance, even when a non-parametric test was 
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employed.  Additionally, levels of TNFα protein were significantly upregulated 

in poly(I:C) mice at E12.5 (mean poly(I:C) = 54.2±12.4 pg/mL; mean saline = 

2.5±0.44; p = 0.01), but not at E17.5 (mean poly(I:C) = 31.1±9.9 pg/mL; mean 

saline = 16.9±15.8; p = 0.049).  IFNγ and IL-1β were not significantly altered 

at either time-point by poly(I:C).   

 It is important to note that, for some cytokines, some mice showed 

highly variable responses to the poly(I:C) injections.  For example, one of the 

E12.5 poly(I:C) mice showed a dramatic upregulation of IFNγ protein (1597.1 

pg/mL) while the other two in this group had levels of 64.2 and 0.8 pg/mL.  

Additionally, though IL-6 was robustly increased in all poly(I:C)-treated mice, 

one of the E12.5 mice had much higher levels—22,022 pg/mL versus 7128.5 

and 4949.2 pg/mL.  In one instance, a saline injection appeared to upregulate 

a cytokine: for TNFα, two of the three E17.5 saline mice had almost 

undetectable levels while the third had 48.6 pg/mL (the three poly(I:C) treated 

mice all had between 20.0 and 50.8 pg/mL).  It is not known why saline 

injection in this particular mouse resulted in upregulation of a pro-

inflammatory cytokine, but it could be due to stress induced during tail vein 

injection, since stress has been shown to result in upregulation of TNFα, IL-

1β, and corticosterone in rat [133].  These findings emphasize the variable 

nature of this mouse model.  Ideally, only litters obtained from those poly(I:C) 

mice showing robust upregulation of cytokines would be included in future 

studies.  However, it is not possible to sample cytokine levels in the pregnant 
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mice through non-invasive means, and it is critical that stressful procedures 

be kept to a minimum as this could exert additional effects on fetal brain 

development.  In the future, measurement of maternal temperature with Mini 

Mitter E-Mitters—implanted intraperitoneally or subcutaneously prior to 

breeding—could potentially provide a suitable proxy for measurement of 

cytokine levels.   

     

Poly(I:C) upregulates IL-6 protein in a subset of fetal brains:   

 In order to determine whether maternal immune activation in pregnant 

mice results in increased levels of proinflammatory cytokines in fetal brain, we 

also measured IL-6 protein in fetal brains obtained from pregnant females 

sacrificed 3 or 6 hrs following injection.  Of four E12.5 litters sampled, two had 

highly upregulated levels of IL-6 (720.0 and 343.5 pg/mL), one had 

moderately increased Ievels (43.1 pg/mL), and the fourth (9.8 pg/mL) was not 

increased relative to saline (mean 5.5±0 pg/mL) (Fig. 2).  The E12.5 poly(I:C) 

mean (279.1 pg/mL) was significantly higher when compared to saline (5.5 

pg/mL) employing a Mann-Whitney U test (p = 0.0436).  Of three E17.5 litters 

sampled, one had increased IL-6 (163.4 pg/mL) relative to saline (mean = 

29.6±7.3).  No differences in IL-6 levels were observed at the 6 hr time-point 

in either E12.5 or E17.5 litters.   

 The variability in IL-6 levels in fetal brains following maternal poly(I:C) 

injections could be due to several factors.  First, differences in maternal 
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immune system and/or efficacy of the injection itself could result in differences 

in strength of immune activation between mice, and, subsequently, differing 

levels of cytokines that reach the fetal brain.  Second, the IL-6 levels may not 

have peaked in fetal brain during the two time-windows selected for cytokine 

analysis in some mice. 

 

Adult E17.5 poly(I:C) offspring demonstrate impaired working memory:  

 To assess the effects of prenatal exposure to inflammation on brain 

function in the adult offspring, working memory was assessed in 10 week old 

mice from E12.5 and E17.5 litters employing the T-maze.  As shown in Fig. 3, 

the E17.5 poly(I:C) offspring demonstrated significantly fewer alternations on 

both days one and two of testing (Day 1: mean E17.5 poly(I:C) = 6.3±0.4, 

mean E17.5 saline = 8.2±0.5, p = 0.002; Day 2: mean E17.5 poly(I:C) = 

7.5±0.4, mean E17.5 saline = 8.9, p = 0.008).  Though the average percent of 

alterations in wildtype mice varies, a mean score of 8.9 alternations on day 2 

of testing is consistent with what we have previously observed in our 

laboratory.  Additionally, it is important to note that fewer E17.5 poly(I:C) 

offspring performed above “chance level” (7/14 alternations, or 50%) 

compared to saline: only 35.3% had a score > 7 on day 1 and 55.9% on day 

2, versus 64.3% and 75.0% of saline mice.  Moreover, those poly(I:C) mice 

with a score > 7 on day 2, fewer had a score of 9 or 10 (63.2% and 26.3%) 

compared to saline (95.2% and 57.1%). 
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 In contrast to the E17.5 offspring, there was no significant difference 

between E12.5 poly(I:C) and saline mice on either day of testing (Day 1: 

mean E12.5 poly(I:C) = 6.8±0.05, mean E12.5 saline = 7.5±0.3, p = 0.178; 

Day 2: mean E12.5 poly(I:C) = 7.9±0.2, mean E12.5 saline = 8.3±0.3, p = 

0.393).  It should be pointed out that the E12.5 saline mice had somewhat 

lower numbers of alternations compared to E17.5 saline mice: 7.5 on day 1 

(versus 8.2) and 8.3 on day 2 (versus 8.9), and, though this difference is not 

significant (p = 0.25; p = 0.24), it may have precluded detection of significantly 

impaired performance in the E12.5 mice.  Interestingly, the pregnant mice 

treated with saline at E12.5 had slightly elevated IL-6 protein in serum (mean 

= 119.6±15.9) compared to the E17.5 saline group (mean = 4.2±1.5)—it is 

possible the E12.5 mothers had increased IL-6 due to an increased sensitivity 

of the immune system to stress earlier in gestation, and that this had a 

modest effect on the offspring.   

 

Adult E12.5 and E17.5 poly(I:C) offspring display few mRNA changes in 

cortex:  

 Next, in order to assess whether prenatal exposure to inflammation 

resulted in lasting alterations in gene expression in brains of adult offspring, 

we employed microarrays to measure mRNAs in cortex of E12.5 and E17.5 

offspring (Fig. 4).  Only small changes were observed in poly(I:C) mice 
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relative to saline, the most significant of which are depicted in the heatmaps 

in Fig. 4A and Fig. 4B.   

 Some genes of interest in the E12.5 poly(I:C) mice include interleukin-

1 receptor-associated kinase 3 (Irak3), which was increased 1.34-fold (p = 

0.039); this gene was also found to be increased 1.49-fold following 1 hr IL-6 

treatment (see Chapter II).  Additionally, interleukin 17 receptor E (Il17re) 

demonstrated a small decrease (-1.31-fold; p =0.012) at this time point.  And 

in the E17.5 poly(I:C) offspring, heat shock protein 1 was modestly increased 

(Hspd1; 1.32-fold; p = 0.20).  However, given the low signals on microarray 

(generally < 100) and the marginal significance (p-value range mostly 0.01 to 

0.049 prior to correction for multiple comparison), it is unclear whether these 

represent real changes. 

 

Adult E17.5 poly(I:C) offspring display subtle alterations in H3K4me3 in 

cortex: 

 To determine whether prenatal exposure to inflammation was capable 

of inducing long-lasting changes in H3K4me3 in brain, H3K4me3 ChIP-Seq 

was performed on cortex of 12 week old E17.5 poly(I:C) and saline mice.  We 

chose to focus on the E17.5 offspring, because these mice displayed 

significantly impaired working memory as assessed by T-maze. 

 Alignment of raw reads to mouse genome revealed total library sizes 

ranging from 2.4 × 106 to 23.0 × 106 total reads (Fig. 5).  A high percentage of 
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total reads were uniquely mappable to mouse genome (87% for both saline 

and poly(I:C) mice), while smaller percentages were multi-mappable or non-

mappable (8.5% and 4.0%, respectively) (Fig. 5A).  Following normalization 

to the lowest number of uniquely-mappable reads (1.94 × 106), analysis with 

MACS determined similar numbers of total peaks in poly(I:C) and saline mice 

(14,907 and 14,847, respectively), a high percentage of which were proximal 

to annotated TSS (79% in both treatment groups), demonstrating the 

H3K4me3 immunoprecipitation worked efficiently (Fig. 5B). 

 Comparison of H3K4me3 levels (TSS to +500 bp) in poly(I:C) cortex to 

saline revealed a small number of subtle fold-changes (Fig. 6).  In total, 17 

genes demonstrated increased H3K4me3 levels between 1.25 and 1.61-fold, 

while 6 genes were decreased between -1.26 and -2.47-fold.  While there 

were several potentially interesting genes affected—such as disrupted in 

schizophrenia 1 (Disc1), which was decreased -1.34-fold in the poly(I:C) 

mice—these results must be interpreted with caution due to the small fold-

changes and marginally significant p-values, which were all in the 0.01 to 

0.049 range.  The variability in mouse-to-mouse tag number for these genes, 

which can be observed in the heatmap in Fig. 6, may have precluded 

detection of higher significance. 

 Comparison of poly(I:C) versus saline according to gender revealed 

more differences in H3K4me3 than the combined analysis.  In the male mice, 

3 genes demonstrated H3K4me3 increases ≥ 2-fold (109 ≥ 1.5-fold) and 14 
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genes were decreased ≤ -2-fold (58 ≤ -1.5-fold) (Fig. 7A).  Several of the 

genes which showed altered H3K4me3 in the combined gender analysis—

including nuclear receptor subfamily 2, group C, member 2 (Nr2c2), Sp1 

transcription factor (Sp1), fragile X mental retardation gene 1, autosomal 

homolog (Fxr1), and Disc1—were also found to be altered in male mice.  

Furthermore, fold-changes of these genes were more pronounced in the 

males, suggesting that pooled gender analysis may have diluted sex-specific 

effects of prenatal inflammation on H3K4me3.  This is consistent with 

literature demonstrating gender differences in schizophrenia.  For example, 

one study reported decreased levels of H3K4me3 at the GAD1 gene in 

female patients, but not in males [86]. 

 In the female mice, 16 genes were increased ≥ 2-fold (78 ≥ 1.5-fold) in 

the poly(I:C) offspring and 3 genes were decreased ≤ -2-fold (33 ≤ -1.5-fold).  

However, these differences are not immediately evident when viewing the 

heatmap in Fig. 7B due to greater variability in signal between female mice 

compared to male.  Alternatively, though the raw reads for each gene were 

normalized to the geometric mean of all gene signals for each mouse, the 

normalization protocol may not have been sufficient to reveal group 

differences when visualized by the heatmap.    

  

Fetal (E12.5) mice display subtle changes in H3K4me3 in brain following 

maternal poly(I:C) treatment: 
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 Next, in order to determine whether prenatal inflammation is capable of 

inducing transient alterations in H3K4me3 in mouse brain, which may not be 

detectable in the adult, H3K4me3 ChIP-Seq was performed on brain tissue 

from E12.5 poly(I:C) and saline mice collected 3 hrs following injections.  In 

this experiment we chose to focus on the E12.5 time-point, as these litters 

demonstrated the most robust increase in IL-6 protein in brain following 

poly(I:C) treatment (Fig. 2).  

 As with the adult mouse H3K4me3 ChIP-Seq libraries, a high 

percentage of total reads were uniquely mappable (83-84%) to mouse 

genome in both saline and poly(I:C) mice, while smaller fractions were multi-

mappable or non-mappable (13% and 3-4%, respectively).  Additionally, a 

high percentage of total peaks (79%) were proximal to gene TSS; 5% of 

peaks were medial and 16% were distal (Fig. 8). 

 Similar to the adult mice, alterations in H3K4me3 in fetal mouse brain 

following maternal poly(I:C) treatment were relatively subtle.  Four genes 

demonstrated H3K4me3 increased ≥ 2-fold (23 ≥ 1.5-fold), while 12 genes 

were decreased ≤ -2-fold (27 ≤ -1.5-fold) (Fig. 9).  Though the observed 

changes were small, there were several interesting candidate genes 

suggestive of immune activation.  For example, interferon regulatory factor 8 

(Irf8) was upregulated 1.57-fold and BCL2-associated athanogene 3 (Bag3) 

was upregulated 1.39-fold.  The latter gene is a member of BAG family of co-

chaperones that interacts with heat shock protein 70 (Hsp70) and 
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increased H3K4me3 was observed at the BAG3 locus in two autism 

postmortem brains in our laboratory (unpublished data; ChIP-Seq 

performed by Iris Cheung and data analyses done by Hennady Shulha and 

Zhiping Weng). 

 

Global H3K4me3 levels undergo massive changes in brain between 

fetus and adult: 

 Comparison of H3K4me3 patterns from the saline fetal brain samples 

to adult saline mice revealed a large number of highly significant changes, as 

expected.  In total, 163 genes had H3K4me3 levels increased ≥ 2-fold in fetal 

brain compared to adult (571 ≥ 1.5-fold), and 322 genes were decreased ≤ -2-

fold (426 ≤ -1.5-fold). 

 

Discussion 

 In the present study, I demonstrated measurable immune activation in 

pregnant mice following poly(I:C) treatment, elevation of IL-6 protein in fetal 

brain, and significantly impaired working memory in the adult offspring 

exposed of E17.5 poly(I:C) mice.  In contrast, changes in the brain on a 

molecular level were more subtle.  Specifically, small differences were 

observed in H3K4me3 levels in both fetal and adult mouse brain, and these 

differences were more pronounced in adult mice when analyzed according 

gender.  
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 It is a limitation of the field that it is not possible to unequivocally 

confirm whether a small fold-change in histone methylation levels have 

functional consequences.  Evidence from my experiments in rat forebrain 

culture suggests that small changes in H3K4me3 levels are associated with 

similarly small changes on mRNA levels.  However, there were no significant 

changes in gene expression in adult brain of the poly(I:C) offspring; 

furthermore, the small changes that do occur did not correlate with the 

H3K4me3 changes.  It is possible that such small changes in H3K4me3 do 

not exert changes in basal mRNA levels but only come into play when 

exposed to an external stimulus, whether a novel environment or a drug of 

abuse.  In such a situation, a small difference in H3K4me3 levels could 

influence the way transcriptional machinery is able to modulate gene 

expression on an acute time scale.  Such an example is provided by the study 

by Branchi and colleagues described in Chapter I that demonstrated adult 

mice exposed to early environmental enrichment had increased acetylation of 

histone H3 at the Bdnf in hippocampus, but only displayed elevated Bdnf 

protein following a stressor [26]. 

 Why did poly(I:C) not reproduce the robust alterations in H3K4me3 and 

gene expression observed in cell culture?  One explanation is that the 

immune stimulus may not have been strong or prolonged enough to induce 

large changes—multiple injections, a higher dose of poly(I:C), or a different 

immune activation model entirely, such as infection with the influenza virus, 
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may be necessary to cause chromatin modification in vivo.  H3K4me3 may be 

under even tighter control in the intact brain than in vitro, such that the levels 

of IL-6 achieved in fetal brain were insufficient to alter this histone 

modification.  Alternatively, an underlying genetic abnormality may be 

required to increase susceptibility of the mice to inflammation, as has been 

suggested by a recent report showing a combined effect of prenatal 

inflammation with mutant Disc1 protein on behavior and neuropathology in 

adult offspring [134].  This idea is also supported by data from human studies 

showing that prenatal exposure to infection may only increase risk of 

psychosis in genetically susceptible individuals [37]. 

 Variability in maternal immune response must also be taken into 

consideration.  The cytokine ELISA demonstrates inconsistency in the ability 

of maternal poly(I:C) injections to result in upregulation of IL-6 protein in fetal 

brain—only 2/3 E12.5 litters demonstrated a robust increase in IL-6 at 3 hours 

post-injection and only 1/3 E17.5 litters showed increased IL-6 compared to 

saline.  A recent study reporting variability of maternal immune response and 

its impact on the offspring highlights the complexity of this rodent model [135].  

Specifically, this group demonstrated that a subset of pregnant rats lost 

weight following poly(I:C) treatment on E14, and that this had a significant 

impact on locomotor abnormalities induced by MK-801 and amphetamine in 

the adult offspring. 
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 It is also possible that H3K4me3 changes in vivo are more short-lived 

or confined to a specific window of time following IL-6 stimulus that the 

current study was unable to capture—the only time points following poly(I:C) 

administration examined were 3 hours or 12 weeks following exposure to 

inflammation.  Another possibility is that H3K4me3 alterations may be 

confined to another brain region, such as hippocampus, not sampled in the 

present study. 

 The importance of H3K4me3 in brain development has been 

highlighted in recent literature.  For example, Mll1 plays a critical role in 

neurogenesis in the subventricular zone in mouse [87].  Furthermore, 

H3K4me3 peaks in neuronal chromatin were recently shown to undergo 

massive, genome-wide shifts between fetal and adult brain in human, 

reiterating the critical role that this histone mark plays in brain development 

[85].  Although lacking the cellular resolution of the former study, my work 

replicates this finding of developmental changes in H3K4me3 and provides 

validity for examining the response of this histone modification to 

environmental stimuli in utero. 

 Due to the inconclusive nature of my findings in mouse brain following 

prenatal exposure to inflammation, it is difficult to draw parallels to findings 

from schizophrenia and autism postmortem brain.  My data emphasize the 

limitations of the maternal immune activation model and suggest that 

paradigms employed by one lab to elicit a particular neuropathology may not 
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always be reproducible.  For example, I did not observe significant gene 

expression changes in adult brain as has been reported in the literature 

following poly(I:C) treatment [83].  Furthermore, such paradigms may not be 

optimized for the investigation of yet-unstudied molecular effects, such as 

chromatin modifications.  Still, such preclinical animal models represent a 

powerful tool in understanding the role that environmental risk factors play in 

the pathoetiology of neuropsychiatric disease.  
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Figure 1: IL-6 is elevated in maternal serum following poly(I:C) injection. 
(A) IL-6 protein is upregulated in maternal serum 3 hours following poly(I:C) 
injection on embryonic day 12.5 (E12.5) and E17.5 (n = 3 mice per group).  
Variation in the E12.5 poly(I:C) mice precluded detection of statistical 
significance.  (B) TNFα protein is significantly upregulated in maternal serum 
on E12.5 but not E17.5.  (C) IFNγ is not altered in maternal serum on E12.5 or 
E17.5.  (D) IL-1β is not altered in maternal serum on E12.5 or E17.5. 
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Figure 2: IL-6 is elevated in a subset of fetal brains following poly(I:C) 
injection.  IL-6 protein was elevated in fetal brain in 3/4 E12.5 litters 3 hours 
following poly(I:C) injection and in 1/3 E17.5 litters.  This increase was 
significant at the E12.5 time point (p = 0.044). 
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Figure 3: Working memory is impaired in adult E17.5 poly(I:C) mice.    
(A) Adult mice from mothers injected with poly(I:C) on E12.5 do not 
demonstrate a significantly different number of alternation on day 1 or day 2 
of T-maze (saline n = 51 [9 litters]; poly(I:C) n = 27 [8 litters]).  (B) Adult mice 
from mothers injected with poly(I:C) on E17.5 demonstrate significantly fewer 
numbers of alterations compared to saline on both days 1 and 2 of testing 
(saline n = 28 [10 litters]; poly(I:C) n = 34 [12 litters]). 



91 

 



92 

Figure 4: Gene expression is not significantly altered in cortex of E17.5 
or E12.5 poly(I:C) mice.  (A) The heatmap represents the top 50 
differentially expressed genes in E12.5 offspring (red = increase relative to 
saline; blue = decrease).  Note that none of these changes were significant 
following correction for multiple comparisons.  (B) The heatmap represents 
the top 50 differentially expressed genes in E17.5 offspring.  As with the 
E12.5 mice, none of these changes were significant. 
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Figure 5: H3K4me3 ChIP-Seq of adult mouse cortex yields a high 
percentage of uniquely mappable reads and proximal peaks.  (A) A high 
percentage (87%) of reads from H3K4me3 libraries generated from cortex of 
adult mice are uniquely mappable to mouse genome (version mm9) for both 
saline and poly(I:C).  A smaller percentage (9%) map to multiple locations 
and 4% are not mappable.  (B) The majority of peaks called by MACS (79%) 
are proximal to TSS; additionally, 5% of peaks are medial and 16-17% are 
distal. 
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Figure 6: Adult E17.5 poly(I:C) offspring demonstrate subtle H3K4me3 
alterations in cortex.  Adult poly(I:C) mice show few differences in H3K4me3 
levels within 500 bp of gene TSS.  The heatmap depicts the 23 genes for 
which DESeq detected significantly different numbers of tags between 
groups; however, the fold-changes are all relatively subtle (17 genes were 
increased 1.25 to 1.61-fold and 6 genes were decreased -1.26 to -2.47-fold).  
The genes with the most consistent group differences are marked with 
asterisks. 
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Figure 7: Adult E17.5 poly(I:C) offspring demonstrate differential 
H3K4me3 alterations by gender.  (A) Comparison of male poly(I:C) to male 
saline mice yielded more differences in H3K4me3 levels compared to the 
pooled gender analysis.  In this analysis, 3 genes were increased ≥ 2-fold 
(109 ≥ 1.5-fold) and 14 genes were decreased ≤ -2-fold (58 ≤ -1.5-fold). The 
heatmap on the left shows all genes with ≥ 1.5-fold (or ≤ -1.5-fold) change, 
while the one on the right depicts genes altered ≥ 2-fold.  The genes with the 
most consistent changes (i.e., same direction of change for all 3 mice per 
group) are marked with asterisks.   (B) Comparison of female poly(I:C) to 
female saline mice also yielded more differences in H3K4me3 levels, with 16 
genes increased ≥ 2-fold (78 ≥ 1.5-fold) and 3 genes decreased ≤ -2-fold (33 
≤ -1.5-fold).  The heatmap on the left shows all genes with ≥ 1.5-fold (or ≤ -
1.5-fold) change, while the one on the right depicts genes altered ≥ 2-fold.  
Note the variability in signal within both poly(I:C) and saline groups. 
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Figure 8: H3K4me3 ChIP-Seq of fetal mouse brain yields a high 
percentage of uniquely mappable reads and proximal peaks. 
(A) H3K4me3 libraries generated from fetal (E12.5) mouse brain yield 
primarily unique reads (83-84%). A smaller percentage (13%) map to multiple 
locations and 3-4% are not mappable.  (B) The majority of peaks in E12.5 
mouse brain are proximal (79%) and a smaller percent are medial (5%) or 
distal (16%). 
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Figure 9: There are subtle alterations in H3K4me3 levels in fetal (E12.5) 
mouse brain.  As with adult, fetal (E12.5) mice show relatively subtle 
differences in H3K4me3 levels within 500 bp of gene TSS following poly(I:C) 
treatment.  Four genes were increased ≥ 2-fold (23 ≥ 1.5-fold) and 12 genes 
were decreased ≤ -2-fold (27 ≤ -1.5-fold).  The heatmap shows all genes 
altered ≥ 1.2-fold between treatment groups.    
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Figure 10: H3K4me3 levels undergo massive developmental changes in 
mouse brain.  Fetal (E12.5) saline mice demonstrated a large number of 
robust changes in H3K4me3 levels compared to adult saline mice.  Overall, 
163 genes were increased ≥ 2-fold in fetal brain compared to adult (571 ≥ 1.5-
fold) and 322 genes were decreased ≤ -2-fold (426 ≤ -1.5-fold). 
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CHAPTER 4: General Discussion 
 
 Chromatin modifications, such as DNA methylation and histone 

modifications, have been suggested to play a role in the pathoetiology of a 

variety of neuropsychiatric diseases, including schizophrenia and autism.  

This hypothesis is based upon several lines of evidence, including direct 

evidence from human postmortem brain tissue and the presence of mutations 

in genes encoding epigenetic enzymes in the case of autism [13-20].  A role 

for epigenetics in neuropsychiatric disease has also been emphasized based 

on knowledge that these disorders are only partially caused by direct genetic 

mutation and are therefore likely to be caused by environmental factors as 

well.  Recent animal studies demonstrate that exposure to environmental 

factors during prenatal and early postnatal development can alter chromatin 

modifications detectable in the brain of adult offspring, sometimes in 

association with behavioral changes, providing validity to the notion that early 

environment is capable of changing brain function via epigenetic mechanisms 

[21, 24, 26-28].  There is also some evidence to suggest that this occurs in 

human brain as well [29]. 

 In the present thesis I sought to determine whether an environmental 

factor associated with both schizophrenia and autism—namely, prenatal 

exposure to inflammation—was capable of inducing changes in the 

trimethylated form of histone H3 at lysine 4 (H3K4me3) in central nervous 

system.  In Chapter II, I describe experiments demonstrating that IL-6—a pro-
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inflammatory cytokine implicated in both schizophrenia and autism—is 

capable of altering levels of H3K4me3 at a variety of gene loci in rat forebrain 

culture, providing proof-of-principle for the idea that inflammation can alter a 

histone modification in a model of the central nervous system.  In Chapter III, 

I describe experiments utilizing the maternal immune activation mouse model 

of schizophrenia and autism and show that prenatal exposure to inflammation 

results increased IL-6 in fetal brain tissue, decreased working memory in 

adult offspring, and subtle changes in H3K4me3 in both fetal and adult brain. 

These findings suggest that cytokines produced by maternal infection have 

the potential to alter fetal brain development and adult brain function, in part, 

by changing gene expression programs through modification of chromatin.  

Taken together, the results presented in this thesis underscore the 

importance of environmental stimuli in the regulation of histone modifications 

in brain.  

 

 In the future, association of specific environmental and epigenetic 

factors with neuropsychiatric disorders will require expansion of medical 

history information provided by brain banks.  There is frequently very little 

information available for brain donors, including medication history, onset and 

course of illness, family history of neuropsychiatric disease, and exposure to 

environmental factors.  Some brain banks, such as Mount Sinai School of 

Medicine Alzheimer’s Disease and Schizophrenia Brain Bank, are beginning 
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to use prospective characterization of brain donors, which includes 

assessment of neurological, cognitive, and psychiatric status through 

extensive and structured medical record reviews [136].  Such information will 

allow more careful correlation between environmental variables and specific 

cellular and molecular changes—including chromatin modifications—

observed in postmortem brain tissue.   

 Additionally, birth cohort studies, such as the Child Health and 

Development study (CHDS), provide valuable resources for the investigation 

of neuropsychiatric disease, including detailed information on prenatal 

environmental factors and archived maternal serum samples collected 

throughout pregnancy [137].  This particular birth cohort was utilized by the 

Prenatal Determinants of Schizophrenia Study (PSD) to show that maternal 

influenza infection was associated with significantly increased risk of 

schizophrenia in the offspring [138].  Further investigation of the PSD cohort 

by the same group demonstrated an association between influenza 

antibodies in maternal serum during pregnancy and diagnosis of 

schizophrenia later in life [32].  Such well-characterized birth cohorts provide 

valuable information on environmental exposures during pregnancy, maternal 

serum samples, and detailed follow-up of offspring over the course of many 

years.  Thus, collaboration between the investigators leading these studies 

and brain banks could prove fruitful.  Additionally, study participants and their 

family members may be more amenable to the concept of brain donation, 
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because they have shown that they are invested in the study of 

neuropsychiatric disease.   

 Further complicating the study of chromatin modifications in these 

diseases, schizophrenia and autism are both characterized by enormous 

complexity and heterogeneity, in terms of presenting symptoms, genetic 

susceptibility, and molecular and cellular neuropathology.  In addition, they 

are associated with multiple environmental risk factors.  These characteristics 

suggest that disease in individual patients may have different etiology, 

though—ultimately—similar signaling pathways, cell types, and neural circuits 

are affected, producing a recognizable disease phenotype.  This 

heterogeneity makes these disorders particularly challenging to study, 

because alterations in a cell population, expression of a gene, or epigenetic 

mark may only be present in a subset of patients, making it difficult for 

researchers to (1) detect the abnormality in the first place and (2) determine 

whether the change represents part of the underlying neuropathology or 

simply a stochastic event.  Coupled with the fact that most postmortem 

studies use relatively small numbers of samples, detection of statistical 

significance is frequently challenging.  

 In the future, large-scale studies, including thousands of patient 

samples, will aid researchers in better understanding this heterogeneity.  For 

example, the genome-wide association studies (GWAS) currently underway 

are identifying rare single nucleotide polymorphisms (SNPs) and copy 
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number variations (CNVs) associated with schizophrenia and autism by 

employing this large-scale study approach [139].  Taking a similar approach 

with epigenetic modifications may uncover subsets of patient populations 

affected by a particular alteration.  Data from our own laboratory suggests 

that H3K4me3 marks are altered at specific loci in one or two autism cases 

compared to all control cases; increasing the subject number in such studies 

may reveal a larger—and more accurate—percentage of individuals with an 

autism spectrum disorder affected by these changes.   

 However, such an undertaking is met with enormous challenges, which 

should not be underestimated.  First, postmortem brain tissue is subject to 

more limited availability compared to blood samples utilized by GWAS; thus, it 

will likely take years to amass the number of samples required for such large-

scale studies.  Secondly, there are a wide variety of chromatin modifications 

that could potentially be associated with schizophrenia or autism, particularly 

histone modifications, for which greater than 100 have been identified [140].  

Currently, examination of all known histone modifications in postmortem brain 

samples is not tenable, given the high cost of current technologies such as 

ChIP-Seq and the amount of tissue this would require.  Application of more 

high-throughput technologies, such as mass spectrometry, could potentially 

facilitate examination of multiple histone modifications in limited tissue 

samples by identifying altered marks [141].  Subsequently, these could be 

selected for further analysis with ChIP-Seq to pinpoint the specific genomic 
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locations of these changes.  Finally, epigenetic research is met with a further 

complication not faced by genetic studies: each cell population in mammalian 

organs, including the brain, possesses a unique epigenome.  How could an 

alteration occurring in a specific cell population within a specific brain region 

possibly be identified?  In this case, clues provided by histological studies 

may point researchers in the right direction.  For example, white matter 

neurons are reportedly increased in multiple subcortical regions in 

schizophrenia postmortem brain [142].  Additionally, GABAergic interneurons 

in a variety of brain regions—including cortex, hippocampus, and amygdala—

appear to be affected by altered density or changes in mRNA and protein 

expression, including calcium binding proteins and neurotransmitter receptors 

[96, 143-145].  And in autism postmortem brain, several studies have 

reported decreases in numbers of Purkinje neurons in cerebellum [129].  

Focusing on specific cell populations known to be affected in schizophrenia or 

autism may aid in the identification of altered chromatin modifications.   

 Still, it must be kept in mind that it is also possible for an apparently 

normal population of cells to possess an aberrant epigenetic signature that 

influences cell function in the absence of changes in cell density or structure 

or basal changes in mRNA and protein expression.  For example, early 

exposure to environmental enrichment results in increased acetylation of 

histone H3 at the brain-derived neurotrophic factor (Bdnf) gene in rat 

hippocampus, but Bdnf protein levels were only observed to be altered in 
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these animals following exposure to stress [26].  Additionally, it is possible 

that altered chromatin modifications influence transient changes in gene 

expression required for cellular function in brain, such as synaptic plasticity 

and neural oscillations, both of which are required for cognitive processes; the 

latter demonstrate abnormalities in schizophrenia and autism patients [146-

148].  In this case, this population of cells would not necessarily be identified 

as possessing altered mRNA or protein levels in postmortem brain tissue, 

because their abnormal expression is only present within a specified window 

of time in the living patient.  These examples highlight the importance of 

measuring chromatin modifications in multiple cell populations in 

schizophrenia and autism brain, not just those currently associated with the 

disease. 

 Even if specific chromatin modifications can be associated with specific 

cell types within subsets of patient populations, there remains the problem of 

cause-and-effect.  For an epigenetic alteration identified in adult postmortem 

brain, we cannot currently determine: (1) when during the individual’s lifespan 

this aberrant mark was incurred, and (2) whether this alteration plays a role in 

causing disease or whether it is simply a byproduct of the disease process.  

At present, answering these questions is not possible, given that this would 

require sampling of brain tissue from living individuals during fetal and 

childhood stages, prior to disease onset, which cannot as of yet be predicted 

based on biomarkers or genetic testing.  In addition, it is possible that a 
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transient epigenetic change during the fetal period could instigate a cascade 

of events leading to altered brain development and postnatal disease onset; 

in this instance, this change would not be identified by studying postmortem 

brain tissue from child or adult cases. 

 Thus, at least for the time being, researchers are forced to turn to 

animal models in order to study how a particular alteration in an epigenetic 

mark occurring at a specific developmental stage influences phenotype.  For 

example, a recent study demonstrated that conditional deletion of mixed-

lineage leukemia 1 (Mll1)—an H3K4-specific methyltransferase—in neural 

progenitor cells on embryonic day 13 in mouse brain resulted in decreased 

neurogenesis, growth retardation and ataxia, and death by postnatal day 30 

[87].  It was found that decreased neurogenesis was caused by decreased 

expression of distal-less homeobox 2 (Dlx2)—a transcription factor critical for 

neuron fate specification—as a consequence of increased levels of 

H3K27me3 at the promoter region.  Another study showed that conditional 

deletion of DNA methyltransferase 1 (Dnmt1) in neuroblasts during the 

embryonic period resulted in global DNA hypomethylation in forebrain 

neurons in the postnatal animal, and these cells were eliminated by 3 weeks 

of age, emphasizing the importance of epigenetics in appropriate 

neurodevelopment [149].  In contrast, deletion in postmitotic neurons had no 

effect on DNA methylation levels or cell function.  Thus, knockout and 

transgenic mice provide the means to study how altered chromatin 
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modifications incurred at specific developmental time-points in specific cell 

populations impact brain development and function.    

 In addition to manipulation of chromatin modifications through genetic 

techniques, researchers have also shown that exposure to specific 

environmental stimuli during prenatal and early postnatal periods result in 

altered chromatin modifications in mature brain; moreover, some of these 

epigenetic changes have functional consequences, at both molecular and 

behavioral levels [21, 24, 26-28].  These animal models offer a powerful tool 

to examine how environmental factors associated with neuropsychiatric 

disease influence chromatin modification in brain and, in turn, influence 

phenotype in the adult.  However, the majority of these studies are limited by 

the fact that they only examined chromatin in mature brain, long after the 

environmental stimulus was applied.  Thus, these models are susceptible to 

one of the major limitations of postmortem studies: it is not known whether 

abnormal chromatin modifications in adult brain are directly caused by the 

environmental factor during early development or represent a byproduct of 

other changes.  In order to more firmly establish the link between specific 

stimuli and chromatin modifications, it will be critical to sample brain tissue at 

multiple time points following the exposure—such experiments will reveal 

both transient epigenetic changes in fetal brain as well as those that persist 

throughout the lifespan.  Additionally, experiments in which reversal of the 

chromatin modification induced by environmental exposure also reversed 
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molecular and behavioral changes, such as those conducted by Weaver and 

colleagues, provide further evidence that the environmentally-induced 

epigenetic changes have direct functional consequences [22, 23].       

 In the future, how could we potentially study chromatin modifications in 

brain in vivo in human populations?  Currently, imaging with positron emission 

tomography (PET) and single-photon emission computed tomography 

(SPECT) is employed to measure proteins, such as neurotransmitter 

receptors and transporters, in brains of living patients [150, 151].  Positron-

emitting radiotracers have also been developed that bind non-receptor 

proteins, such as β-amyloid protein [152].  While clearly lacking the fine 

resolution of methods such as ChIP-Seq, development of molecular imaging 

technology for measurement of histone modifications in brain of living patients 

offers a potential means for assessment of how epigenetic marks change 

over time or whether they are associated with specific phases of illness, such 

as during a psychotic episode.    

 In the face of seemingly insurmountable challenges, why should 

neurobiologists continue to pursue the underlying causes of complex 

neuropsychiatric disease?  Such pessimism can be tempered by bearing in 

mind the vast scientific achievements that have transpired over the past 

century.  A short 60 years ago, the structure and function of DNA had not yet 

been identified.  And an even shorter time ago, the roots of schizophrenia and 

autism were ascribed to lack of maternal warmth—anatomical and molecular 
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changes in the brain had not even been considered.  Further elucidation of 

the mechanisms underlying the onset of neuropsychiatric disease will require 

extreme dedication, passion, and collaboration by both current and future 

generations of scientists.  The motivation and perseverance necessary for 

such an undertaking can be derived, in part, from knowledge of—and 

sympathy for—the extreme suffering caused to patients and their families by 

these diseases.  Also, it will require a more visceral, innate enthusiasm 

summarized by James Watson: “Understanding the brain is the next great 

scientific objective…there are real big things out there that seem impossible 

to explain.  But you just want to prove you can do it.  You can’t think of 

anything else.  It’s in your blood.” 



114 

Appendix I: 

A Simple Method for Improving the Specificity of Anti-Methyl  

Histone Antibodies 

 

 

Caroline Connor1, Iris Cheung1, Andrew Simon1, Mira Jakovcevski1, Zhiping 

Weng2,3, and Schahram Akbarian1* 

 

1Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 2Program 

in Bioinformatics and Integrative Biology, and 3Department of Biochemistry and 

Molecular Pharmacology,  

University of Massachusetts Medical School, Worcester, MA 

 

 

Epigenetics 5(5):392-5 July 2010 

 

 

 

 

 



115 

 Abstract 

Antibodies differentiating between the mono-, di- and trimethylated forms of 

specific histone lysine residues are a critical tool in epigenome research, but show 

variable specificity, potentially limiting comparisons across studies and between 

samples.  Using trimethyl histone H3 lysine 4 (H3K4me3)—a mark enriched at 

transcription start sites (TSS) of active genes—as an example, we describe how 

simple co-incubation with synthetic peptide of the K4me2 modification leads to 

increased specificity for K4me3 and a much sharper peak distribution proximal to 

TSS following chromatin immunoprecipitation and massively parallel sequencing 

(ChIP-Seq).  

 

Chromatin-immunoprecipitation (ChIP) with site- and modification-specific 

anti-histone antibodies is a key approach in the field of epigenetics.  Enrichment of 

a given histone modification can subsequently be measured at a defined gene 

locus with PCR (ChIP-PCR) or, more recently, on a genome-wide scale with 

massively parallel sequencing (ChIP-Seq) [153].  In particular, methylation of 

specific histone lysine residues—including H3K4, H3K36, H3K79; H3K9, H3K27, 

and H4K20—represents one of the most highly regulated types of chromatin 

modifications [10].  Importantly, these lysine side chains can carry up to three 

methyl groups, and their mono-, di- and trimethylated forms are differentially 

localized within the genome and exert distinct effects on transcription.  In the case 

of H3K4, the trimethylated form (H3K4me3) is primarily associated with 
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transcription start sites, while the monomethylated form, H3K4me1, defines 

enhancer sequences and other regulatory elements further removed from proximal 

promoters [12, 154].  Finally, the dimethyl mark, H3K4me2, appears to be more 

broadly distributed with open chromatin primarily around the 5’ portion of genes 

[12, 154].  Given that the functional effects of each of the three marks is very 

different, it is critical to perform ChIP with antibodies with selective recognition for 

either the mono, di, or trimethylated forms. 

 Many of the commercially available modification-specific antibodies are 

polyclonal, reflecting a perception of the field that these preparations provide better 

signal-to-noise as compared to monoclonals.  However, we noticed that—while 

most antibodies are highly selective for a specific histone lysine residue—there can 

be considerable lot-to-lot variability in me1/2/3 specificity.  In particular, cross-

reactivity for the H3K4me2 mark was frequently detected with anti-H3K4me3 

antibodies (Figure 1A, B).  This represents a serious problem, as each of the 

different methylation marks confers specific effects on gene transcription [10, 155].  

Here, we describe a simple, but effective, procedure for improving antibody 

specificity for the H3K4me3 mark. 

We describe two slightly different, equally effective protocols for 

improvement of antibody specificity, both of which include pre-incubation of 

antibody with peptide of the histone modification for which the antibody 

demonstrates non-specific immunoreactivity.  In the first method, 4 µg rabbit 

polyclonal antibody against trimethylated histone H3 lysine 4 (H3K4me3; 
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Millipore, 07-473) was incubated with 9 µg of dimethylated H3K4 peptide 

(H3K4me2; Abcam, ab7768) spotted onto a 0.5 cm2 piece of nitrocellulose 

membrane in 500 µl 1× FSB for 1 hour at room temperature.  In the second 

method, the H3K4me2 peptide was pipetted directly into the antibody solution, 

incubated for 1 hr at room temperature, and the resulting antibody-peptide 

solution used for ChIP.  To assess the immunoreactivity of anti-H3K4me3 

antibody for the mono-, di-, and trimethylated forms of H3K4, we performed dot 

blots in which peptide for each of the three forms of H3K4 were spotted onto a 

membrane and allowed to dry; subsequently, membranes were incubated with 

anti-H3K4me3 antibody.  As shown in Figure 1A, B, the untreated anti-H3K4me3 

antibody demonstrates significant non-specific immunoreactivity for the dimethyl 

H3K4 peptide.  However, pre-incubation of the antibody with H3K4me2 peptide 

visibly decreases this nonspecific immunoreactivity without altering 

immunoreactivity for its intended antigen. 

To test whether this increased specificity in immunoreactivity translated to 

improved specificity of DNA sequences pulled down during chromatin 

immunoprecipitation, we performed ChIP on human and mouse chromatin isolated 

from brain tissue using untreated or pre-incubated anti-H3K4me3 antibody using a 

standard protocol for native ChIP [156].  Subsequently, immunoprecipitated DNA 

was processed for deep sequencing by ligating the Genomic Adaptor Oligo Mix 

(Illumina) to fragments, PCR-amplified, and fragments around 250 base pairs gel-

purified. 
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As an initial assessment of the DNA immunoprecipitated by treated versus 

untreated antibody, a fraction of the library was subcloned into the pDrive vector 

(Qiagen) and transformed into DH5α cells (Invitrogen).  Twenty clones were 

sequenced, aligned with the mouse or human genome, and their proximity to TSS 

determined.  As shown in Figure 1C, anti-H3K4me3 antibody pre-incubated with 

H3K4me2 peptide pulled down significantly more sequences less than 1 kb from 

annotated TSS as compared to untreated antibody (41% versus 20%; p = 0.031).  

This is consistent with the literature showing that trimethylated H3K4 is highly 

localized around TSS of actively transcribed genes [12].   

Extending the relationship between specificity of immunoreactivity on dot blot 

to performance of antibody during ChIP, we compared sequences from human brain 

immunoprecipitated with two commercially available anti-H3K4me3 antibodies: one 

of which demonstrated significant non-specific immunoreactivity for H3K4me2 

peptide on dot blot (“Antibody 1”) and the other of which exhibited fairly specific 

immunoreactivity for H3K4me3 (“Antibody 2”).  Figure 1D, E show that Antibody 2 

pulled down significantly more sequences < 1 kb from TSS (55% versus 27%; p = 

0.0018) and < 2 kb from TSS (60% versus 31%; p = 0.001). 

Next, we asked whether pre-incubation of anti-H3K4me3 antibody with 

H3K4me2 peptide led to increased percentage of sequences in close proximity to 

annotated TSS genome-wide.  Four H3K4me3 ChIP libraries were deep sequenced 

by an Illumina Genome Analyzer (GA II) and genomic regions containing a 

significantly large number of reads—called peaks—were detected with the MACS 
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software [157].  Data from each sample were normalized for sequencing depth and 

the distribution of H3K4me3 peaks relative to TSS was determined.  The 

percentages of proximal (< 2 kb from TSS), medial (2-5 kb), and distal (> 10 kb) 

peaks are shown in Figure 2A; it is apparent that the two samples prepared with 

H3K4me3 antibody pre-incubated with 15 µg H3K4me2 peptide in solution contain a 

higher percentage of proximal peaks (~85%) compared to samples prepared with 

untreated antibody (~72%).  The distribution of peaks relative to TSS is shown in 

Figure 2B.  We performed Wilcoxan rank sum tests on the distances of the peaks to 

the nearest TSS between samples.  Peaks in the two samples prepared with peptide 

(ChIP 3 and 4) were significantly closer to a TSS than peaks in the two samples 

prepared without peptide (ChIP 1 and 2): p-value < 8.9 × 10-36 for all four pair-wise 

comparisons.  Next, in order to characterize the detailed distribution of sequence 

tags around TSS, we used the GSA software [158] to produce an aggregation plot, 

shown in Figure 2C.  The two samples prepared with pre-incubated antibody have 

much higher numbers of tags immediately downstream from the TSS, while a faster 

decline further downstream, compared with the two samples prepared with untreated 

antibody.  As previously reported [12] [158], the periodic behavior of the aggregation 

plot indicates well-positioned nucleosomes.  

In summary, we show that pre-incubation of commercially available anti-

H3K4me3 antibody with a peptide of the H3K4me2 epitope results in significant 

improvement in antibody specificity, and much sharper peaks around TSS genome-

wide.  These clean-up procedures are particularly important given that the three 
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forms of methylated H3K4 possess different functions with regards to regulation of 

transcription.    
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Figure 1: Preincubation of anti-H3K4me3 antibody with H3K4me2 peptide 

reduces nonspecific immunoreactivity and improves performance during 

ChIP.  (A, B) Preincubation of anti-H3K4me3 antibody with increasing amounts of 

H3K4me2 peptide on membrane (A) or in solution (B) decreases immunoreactivity 

of the antibody for this modification on dot blot.  (C, D) ChIP performed with anti-

H3K3me3 antibody pre-incubated with 15 µg H3K4me2 peptide in solution results 

in significantly more sequences < 1 kb from TSS compared to untreated antibody 

(C).  There was no significant difference at < 2 kb from TSS (D).  (E, F) An anti-

H3K4me3 antibody which demonstrates low immunoreactivity for H3K4me2 

peptide on dot blot (“Antibody 2”) results in significantly more sequences < 1 kb (E) 

and < 2 kb (F) from TSS post-ChIP compared to an anti-H3K4me3 antibody with 

high immunoreactivity for H3K4me2 peptide on dot blot (“Antibody 1”). 

 

Figure 2: ChIP-Seq performed with pre-incubated anti-H3K4me3 antibody 

results in a greater percentage of proximal peaks. 

(A) ChIP performed with pre-incubated anti-H3K4me3 antibody results in a greater 

percentage of proximal peaks (~85% of total peaks) compared to untreated 

antibody (~72% of total peaks).  (B) The two ChIP samples prepared with pre-

incubated anti-H3K4me3 antibody show a higher proportion of peaks in close 

proximity to TSS and a proportional decrease in those distal to TSS.   (C) The two 

ChIP samples prepared with pre-incubated anti-H3K4me3 antibody demonstrate a 

higher proportion of sequence tags directly downstream from TSS compared to 
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samples prepared with untreated antibody.  In addition, the number of tags in the 

pre-incubated samples decline more quickly with increasing distance from TSS.  



123 

 

 
 
 
 



124 

 



125 

Appendix II: 

Cingulate White Matter Neurons in Schizophrenia and Bipolar Disorder 

 

Caroline M. Connor1, 2#, MA, Yin Guo2#, MD, and Schahram Akbarian2*, MD, 

PhD 

 

1 Program in Neuroscience, Graduate School of Biomedical Sciences, 2 

Department of Psychiatry, University of Massachusetts Medical School, 

Worcester MA 01604 

 

# The two first authors made an equal contribution to this study. 

 

Biological Psychiatry 66(5):486-93 September, 2009



126 

ABSTRACT 

Objective: Increased neuronal density in prefrontal, parietal and temporal 

white matter of schizophrenia subjects is thought to reflect disordered 

neurodevelopment; however, it is not known if this cellular alteration affects 

the cingulate cortex and whether similar changes exist in bipolar disorder.  

Method: 82 postmortem specimens (bipolar 15, schizophrenia 22, control 45) 

were included in this clinical study.  Densities for two neuronal markers, 

neuron-specific nuclear protein (NeuN) and neuregulin 1 alpha (NRG), were 

determined in white matter up to 2.5 mm beneath the anterior cingulate 

cortex; NeuN+ density was also determined for a subset of cases in prefrontal 

cortex.  Changes during normal development were monitored in a separate 

cohort of 14 brains.   

Results:  Both the schizophrenia and bipolar cohorts demonstrated a two-fold 

increase in NeuN+ density in cingulate white matter; this effect could be 

attributed to ~25% of cases that exceeded the second standard deviation 

from controls.  Similar changes were observed in prefrontal cortex.  In 

contrast, NRG+ neuronal density was unaltered. Cases with increased 

NeuN+ densities in 2-dimensional (2D) counts also showed a pronounced, > 

5-fold elevation in NeuN+ nuclei/mm3.  Additionally, the developmental cohort 

demonstrated a 75% decline in NeuN+ neuronal density during the first 

postnatal year, but was stable thereafter.   
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Conclusions: Increased neuronal density in white matter of cingulate cortex 

in schizophrenia provides further evidence that this alteration occurs in 

multiple cortical areas. Similar changes in some cases with bipolar illness 

suggests that the two disorders may share a common underlying defect in 

late prenatal or early postnatal neurodevelopment. 

 

INTRODUCTION 

 Alterations of subcortical white matter in schizophrenia are thought to reflect 

the neurodevelopmental origins of this disorder.  For example, recent neuroimaging 

studies describe changes in morphology and integrity of white matter tracts that are 

present from the earliest stages of these disorders [159, 160].  There is also 

progressive reduction of frontal lobe white matter [161] and—in striking contrast to 

overlying cortex—a relative glucose hypermetabolism in unmedicated schizophrenia 

subjects [162].  Of note, the 22q11.2 deletion syndrome (22qDS)—one of the 

strongest genetic risk factors for bipolar disorder and schizophrenia [163]—was 

associated with  heterotopias and numerous ectopic neurons scattered throughout 

the white matter of the frontal lobe [164].  While heterotopias and other markers of 

more severe migration defects are not known to be characteristic of schizophrenia, 

these changes observed in some cases may be indicative of a more subtle 

developmental defect that is present in a larger proportion of the patient population.   

 In support of this idea, increased densities, or altered distribution, of 

white matter neurons have been reported in 11 out of 13 studies on 
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schizophrenia postmortem brain [165-178]. Some of these cells are thought to 

be derived from the embryonic subplate, a transient structure during pre- and 

early postnatal development that plays a pivotal role in orderly development 

of cortical connectivity [179, 180].  The majority of studies reported either a 

generalized increase of neurons [165, 167, 168, 171-174, 178], or 

redistribution towards deeper white matter space [165, 177].  However, there 

is little consensus as to which regions of subcortical white matter are 

definitively affected. This lack of agreement is not unexpected due to 

methodological differences between studies—even those studies which 

focused on the same brain region vary in terms of sulcogyral position 

sampled, neuronal markers employed, tissue processing, and characteristics 

of the clinical cohort.  Furthermore, there is evidence that a robust increase in 

white matter neuron density is not a uniform feature in psychosis, but limited 

to approximately one third of cases diagnosed with schizophrenia [166].  

Therefore, while it is difficult to reach a firm conclusion regarding white matter 

neuron changes in schizophrenia, the studies—when taken together—

strongly suggest that this cell population is affected and may reflect defective 

brain development during the second half of gestation, when neurons are 

migrating through the interstitial zone, or, alternatively, during early postnatal 

life, when the majority of these cells undergo apoptosis [181].  

 The goal of the present study was: (1) to determine whether or not 

white matter neuron abnormalities extend beyond the diagnosis of 
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schizophrenia and also occur in bipolar disorder; (2) to estimate the 

proportion of schizophrenia or bipolar cases affected by this alteration; (3) to 

find out whether these alterations affect widespread portions of the frontal 

lobe, including the white matter space beneath the cingulate cortex, a region 

strongly implicated in the pathophysiology of both bipolar disorder and 

schizophrenia [182, 183]; (4) to monitor white matter neuron densities during 

the course of normal development and aging.  We chose NeuN (neuron-

specific nuclear antigen) [184], because neurons immunoreactive for this 

protein were previously reported to be elevated in frontal lobe white matter in 

schizophrenia [171, 172], and the alpha splice form of neuregulin 1, a  

schizophrenia risk gene implicated in neuronal migration [185-187].  (5) 

Finally, because microglial activation appears to be associated with increased 

NeuN-immunoreactive neurons in white matter in multiple sclerosis, we also 

assessed immunoreactivity for Iba1 (ionized calcium-binding adaptor 

molecule 1), a ubiquitous marker for microglia that is upregulated upon 

activation [188, 189].  

 

METHODS 

Brain Tissue: 82 postmortem brain specimens (22 schizophrenia, 15 bipolar, 

and 45 controls) (Table 1) were obtained from the Harvard Brain Tissue 

Resource Center (HBTRC, Belmont, MA).  A prospective design was chosen 

to ensure that each specimen that newly arrived at the brain bank would be 
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processed in a similar manner.  Tissue blocks (~1.5 – 2 cm3) were resected 

from each case from cingulum at an anterior-posterior level immediately 

rostral to the central sulcus, corresponding to the caudal sector of Brodmann 

area (BA) 24 (Fig. 1A).  Care was taken to include portions of the adjacent 

corpus callosum and cingulate gyrus in each resected block.  Immediately 

after resection, blocks were immersion-fixed in 10% phosphate-buffered 

formalin for a period of 4 days, then cryoprotected for 1 week in phosphate-

buffered 30% sucrose; subsequently, tissue was frozen and 25 µm coronal 

sections cut on a cryostat.  In addition, for a select group of clinical cases with 

elevated white matter neuron densities in cingulate (and controls matched for 

age, gender and autolysis time), additional sections were obtained from 

paraffin-embedded superior frontal gyrus (BA 9) (Table 1).  Furthermore, 

fresh frozen cingulate tissue was also obtained for such cases for counting 

nuclei (see below) (Table 1). 

 For the developmental study, unfixed frozen tissue blocks from the 

pole of the frontal lobe were obtained for 14 additional subjects ranging in age 

from 40 weeks of gestation to 51 years of age.  None of these subjects had 

been diagnosed with neurological or psychiatric disease.  We chose the pole 

of the frontal lobe, instead of the anterior cingulate, as this region can be 

identified unambiguously in both young and old brain.  These samples were 

obtained from the Brain and Tissue Bank for Developmental Disorders, 

University of Maryland (National Institute of Child Health and Human 
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Development Contract NO1-HD-8-3284) and the University of California, 

Davis (Center for Neuroscience) (Table 1).  Tissue blocks were fixed in 4% 

formaldehyde for 20 hours, after which 25 µm coronal sections were cut and 

directly mounted on glass slides; subsequently, tissue was fixed again for 5 

minutes in 100% acetone and re-hydrated prior to immunostaining. This 

additional acetone-based fixation was necessary due to the fragility of some 

of the younger samples.    

See Supplementary Methods for details on immunohistochemistry, microscopy 

(including both 2D and 3D-like counting procedures), and statistics. 

 

RESULTS 

In all cases and controls, the massive callosal fiber tracts were readily discernable 

from bordering cingulum bundle and subcortical white matter (Fig. 1A,B). The 

ventral portion of the cingulate cortex in cases and controls showed the expected 

bipartition with the six-layered cortex of BA24, bordering upon the less laminated 

BA33, which is defined by “merging” of prominent pyramidal cell laminae of lower 

layer III and layer V [190] (Fig. 1B, C).  

 

NeuN+ neuronal density is increased in cingulate white matter in 

schizophrenia and bipolar disorder 

 In sections immunostained for NeuN, the gray/white matter border was readily 

discernable, particularly at low magnification (Fig. 1B, C).  The NeuN+ neurons were 
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defined by robust immunoreactivity in the nucleus and more lightly stained 

cytoplasm and processes, which were overall more readily discernable in gray 

matter than in white matter (Fig. 1D). In the gray matter, a large majority of neurons 

were NeuN+, resulting in a Nissl-type staining patterns (Fig. 1B,C).   

In controls, NeuN+ neuronal density was highest in the most superficial white 

matter (4.25 cells/mm2), and subsequently declined in the deeper white 

matter to densities of 0.794 cells/mm2 (Fig. 3A).  Both schizophrenia and 

bipolar groups were observed to have greater overall mean NeuN+ neuronal 

densities compared to controls (2.87 ± 0.50 and 2.29 ± 0.44 cells/mm2 versus 

1.28 ± 0.13 cells/mm2; mean ± standard error).  Diagnosis had a significant 

effect on overall mean NeuN+ density (K = 14.0; p = 0.001).  The increased 

NeuN+ densities observed in schizophrenia and bipolar groups were both 

significantly different from control density (Q = 13.6, p < 0.01 and Q = 7.24, p 

< 0.01), but the two patient groups were not significantly different from one 

another (Q = -2.51, p > 0.05).  When each compartment was analyzed 

individually, diagnosis was found to have a significant effect on NeuN+ 

density in all five compartments (K = 6.32, p = 0.042; K = 10.5, p = 0.005; K = 

6.83, p = 0.033; K = 11.8, p = 0.003; K = 12.4, p = 0.002), with fold increases 

ranging from 1.17 to 3.75 (Fig. 3A, B).  The increased NeuN+ densities 

observed in schizophrenia were significantly different from controls in all 

compartments (Q = 8.83, p < 0.01; Q 7.93, p < 0.01; Q = 8.43, p < 0.01; Q = 

10.8, p < 0.01; and Q = 9.90, p < 0.01).  NeuN+ densities in the bipolar cohort 
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were significantly different from controls in compartments II-V (Q = 8.90, p < 

0.01; Q = 4.42, p < 0.01; Q = 6.87, p < 0.01; and Q = 9.66, p < 0.01).   

 Notably, 7 out of 22 schizophrenia subjects and 3 of 15 bipolar 

subjects demonstrated overall NeuN+ densities more than two standard 

deviations above the control mean (Fig. 3C); this increased proportion of 

cases exceeding the 95th percentile of control mean was significant for both 

schizophrenia (χ2 = 12.3, p < 0.0001) and bipolar groups (χ2 = 5.7, p = 0.017).  

We conclude that approximately 25% of cases diagnosed with bipolar 

disorder or schizophrenia show a more robust increase in cingulate white 

matter neuron densities.  Importantly, when these 10 clinical cases were 

removed from the analyses, differences between the remaining 

schizophrenia, bipolar and the control subjects for each of the five 

compartments were not significant when corrected for multiple comparisons.  

No demographic or other factor was identifiable that could distinguish 

between the 10 cases with white matter neuron density above the 95th 

percentile of controls and the remaining patients.  For example, 3/7 (4/7) 

affected schizophrenia subjects were male (female), while all 3 affected 

bipolar subjects were female.  Approximately one half of these cases were 

from the left and from the right hemisphere, and ages were not significantly 

different from the cohort means.  

 Also of note, NeuN+ neurons were present in the deeper white matter 

in only 24/45 of control subjects, but were found in 12/15 of bipolar subjects 
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and in 20/22 schizophrenia subjects. These differences in distribution were 

significant for both schizophrenia (χ2 = 10.3, p = 0.001) and bipolar groups (χ2 

= 8.4, p = 0.004). These findings also resonate with several previous reports 

suggesting elevated neuronal numbers in deeper white matter [166, 177, 

178].  Among the 4 cases that were not on antipsychotic medication prior to 

death, 3 cases (75%) were found to harbor NeuN+ neurons in white 

compartments III-V.  Therefore, the much higher proportion of subjects with 

NeuN+ neurons in deeper white matter in the two disease cohorts is unlikely 

to be due to antipsychotic medication.  No association was observed between 

NeuN+ densities and age (r = 0.050) or PMI (r = -0.029); additionally, there 

was no significant difference in NeuN+ density between left and right 

hemispheres (U = 154.5; p = 0.480).  Furthermore, there were no significant 

differences between genders within the 3 diagnostic categories (control: U = 

65.5, p = 0.552; schizophrenia: U = 36.0, p = 0.335; bipolar: U = 18.0, p = 

0.087).  Finally, among 5 factors tested by ANCOVA (diagnosis, hemisphere, 

PMI, age, gender) only diagnosis had a significant effect on overall NeuN 

density (F = 8, p = 0.0007). Therefore, the observed increases in white matter 

NeuN+ neuronal density in the clinical samples of our cohort are most likely 

related to the disease itself and not due to other factors. 
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NRG+ neuronal density is unaltered in cingulate white matter in schizophrenia 

and bipolar disorder 

 Next, we wanted to study additional white matter neuron populations. 

To this end, we noticed that while immunostaining with the anti-Neuregulin α 

(NRG) antibody (see Methods) resulted in robust labeling of a subpopulation 

of bi- or multipolar neurons residing in cortex and white matter (Fig. 2C), none 

of the NeuN+ neurons in white matter (Fig. 2A, B) expressed NRG.  

Therefore, the white matter neuronal population expressing NeuN does not 

overlap with NRG+ cells, which is consistent with previous reports that NeuN 

is expressed in some—but not all—subpopulations of neurons [191, 192].   

 We determined the density of NRG+ neurons in both gray and white 

matter in a subset of 10 bipolar, 16 schizophrenia, and 26 control subjects.  

(We had previously observed increased NeuN+ white matter neurons in these 

clinical cases, similar to the ones reported above for the larger cohorts (data 

not shown).)  For each of the 3 diagnostic groups, NRG+ density was lower in 

the cortical gray matter of cingulate as compared to the white matter (Fig.3C), 

which is consistent with a previous report demonstrating that NRG+ neurons 

are less common in gray matter compared to white in adult human brain 

[185].  In white matter, both schizophrenia and bipolar groups demonstrated 

similar mean NRG+ densities compared to controls (1.34 ± 0.099 and 1.31 ± 

0.18 cells/mm2 versus 1.26 ± 0.13 cells/mm2), and there was no significant 

effect of diagnosis on overall, or compartment-specific, NRG+ density (K = 
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1.8, p = 0.406) (Fig. 3E, F).  These findings further confirm that the observed 

increase in NeuN+ density in cingulate white matter bipolar disorder and 

schizophrenia is specific for that neuronal population. 

 

NeuN+ neuronal density in cingulate gray matter is unaltered in schizophrenia 

and bipolar disorder  

 NeuN+ densities in gray matter were typically 50-150 fold higher than in white 

matter, but there was no significant correlation between the two (bipolar r = 0.0005; 

schizophrenia r = 0.004; control r = 0.0319; all subjects r = 0.0013) (Supplemental 

Figure 1). We conclude that the variation in neuronal densities in cingulate white 

matter is dissociated from any density changes of the overlying cortex. 

 

Size of NeuN+ neurons in cingulate white matter is unaltered in schizophrenia 

and bipolar disorder  

 To rule out that the observed increase in NeuN+ density in bipolar disorder 

and schizophrenia could be an artifact due to a larger size of the NeuN-

immunoreactive cells, we determined the average area of these cells in bipolar, 

schizophrenia, and control subjects, and no significant differences between 

diagnostic groups were found (0.092 ± 0.006; 0.099 ± 0.003; and 0.101 ± 0.003 

mm2) (F = 1.09; p = 0.367).  
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NeuN+ neuronal density is also increased in dorsolateral prefrontal cortex 

(BA9) white matter in schizophrenia 

 In the control subjects of the current study, the average density of 

NeuN+ neurons in cingulate white matter near the sulcal bottom ranged from 

0.79 to 4.31 cells/mm2.  This contrasts with a previous study conducted on 

the middle banks of dorsolateral prefrontal cortex that reported NeuN+ 

densities of up to 40 cells/mm2 in sections of similar thickness [172]. These 

differences are not unexpected, because the number of interstitial white 

matter neurons tend to decline towards sulcal fundi and, moreover, the 

thickness of the neuronal layer in the  embryonic interstitial zone (future white 

matter), is thinner underneath the cingulate in comparison to the lateral cortex 

[181].  

 Therefore, we wanted to determine whether neuronal densities show 

regional differences in frontal lobe white matter and whether increased 

NeuN+ densities in the cingulate could be extrapolated to other areas.  

Indeed, NeuN+ densities in white matter beneath the sulcal bottom of the 

superior frontal gyrus (BA9) of 5 µm thick sections (see Methods) ranged from 

0.21–2.48 cells/mm2 in control subjects.  If adjusted for differences in section 

thickness, NeuN+ neuron density in BA9 is 5-fold higher when compared to 

the cingulate.  NeuN+ densities in the 6 schizophrenia cases showed a 

significant increase in BA9, compared to controls matched for age, gender 

and autolysis time (Fig. 3D); these same 6 subjects also demonstrated 
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increased NeuN+ densities in cingulate cortex as compared to the 6 controls 

(mean = 4.01 cells/mm2 versus 1.28 cells/mm2).  Therefore, altered NeuN+ 

densities in psychosis potentially affect widespread portions of the frontal 

lobes. 

 

NeuN+ nuclei are increased in cingulate white matter in schizophrenia 

 Next, we wanted to confirm that the elevated two-dimensional (2D) 

NeuN+ cell density can be replicated with a three-dimensional counting 

method.  However, optical dissectors are not ideal for white matter neuron 

quantifications because neuronal numbers are low overall and unevenly 

distributed [144].  To bypass these limitations, we calculated the total number 

of NeuN+ and NeuN- nuclei extracted from a standardized column of white 

matter tissue from frozen, unfixed anterior cingulate (see Methods) (Fig. 4A-

C).  These additional studies were conducted on 6 schizophrenia cases 

that—in comparison to 5 matched controls—showed a 6.6-fold increase in 

overall NeuN+ densities as determined by the 2D approach (schizophrenia: 

3.59 ± 0.70 cells/mm2; controls: 0.55 ± 0.41 cells/mm2, Mann-Whitney U = 31, 

p < 0.05).  As shown in Fig. 4D, these 6 schizophrenia cases also showed a 

significant, 7.4-fold increase in NeuN+ nuclei per mm3 white matter tissue 

(schizophrenia: 376 ± 253 nuclei/mm3; controls: 51 ± 38 cells/mm3; Mann-

Whitney U = 0, p = 0.006).  Across the 11 subjects, there was a good linear 

correlation between the 2D and 3D counts (R = + 0.72).  In contrast to the 
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observed increase in NeuN+ nuclei, the schizophrenia group did not show 

increased numbers of overall nuclei (neuronal and non-neuronal) (Fig. 4B, E).  

This increase in NeuN+ nuclei—in the absence of an increase in DAPI+ 

nuclei—makes sense given that less than 4% of the white matter nuclei 

population is neuronal (Fig. 4D-F), and, thus, an increase in neuronal nuclei 

will not necessarily be reflected by an increase in all nuclei.  From these 

findings, we draw two conclusions: First, increased numbers and densities of 

NeuN+ white matter neurons in our clinical cases are apparent when 

employing two different methodologies.  Second, this alteration is highly 

specific, because overall numbers of cells in the white matter remained 

unaltered.  

 

Iba1 immunoreactivity is unaltered in cingulate white matter in 

schizophrenia and bipolar disorder 

 Next, we wanted to explore whether the observed alterations in NeuN+ 

density in white matter were related to a change in the microglia population, 

because a recent study in multiple sclerosis suggests a potential link between 

microglial activation—a hallmark of the inflammatory response in brain—and 

increased white matter neuron densities [188].  To this end, we graded 

immunoreactivity for the microglial marker, Iba1 (see Methods), on a scale of 

0-4 in all schizophrenia and bipolar subjects, together with a subset of 

controls (Supplemental Figure 2A).  We found no significant difference in 
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Iba1 immunoreactivity between groups, nor was it associated with NeuN+ 

density in white matter (Supplementary Figure 2B,C).  We conclude that 

increased presence of NeuN+ neurons in white matter of a subset of 

schizophrenia and bipolar subjects is not associated with microglial activation. 

NeuN+ neuronal density in white matter decreases during development  

 Interstitial white matter neurons of adult brain are thought to be vestiges of 

the subplate, a transient structure of the developing brain that shows a progressive 

involution starting in the 3rd trimester [193].  Previous studies utilized Nissl, Golgi and 

acetylcholinesterase staining to determine developmental changes in subplate 

neuronal densities subjacent to visual, somatosensory, motor, and prefrontal 

cortices [181, 194].  While there is general consensus that neuronal density in 

subcortical white matter declines during the first year of postnatal life, the specific 

timing of this event varied depending upon the cell markers used. 

Presently, it is not known whether NeuN-immunoreactive white matter 

neurons undergo changes in numbers or densities during development. 

Therefore, we monitored the temporal course of NeuN+ neuronal density in 

postmortem specimens of a new postmortem cohort ranging in age from 40 

weeks of gestation to 51 years of age (Table 1).  To avoid variability of frontal 

lobe anatomy as potential confound, we focused on white matter space 

underneath the lobe’s rostral pole, which is unambiguously identifiable in both 

young and old brain.  There was a steep decline in NeuN+ densities during 

the first year of life, after which the density plateaued and remained relatively 
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constant throughout childhood, adolescence, and adulthood (Fig. 5).  The 

mean NeuN+ density for the 10 subjects > 1 year (14.6 ± 6.42 cells/mm2) 

demonstrated a 76.7% decrease as compared to the mean density of 4 

subjects < 1 year (62.7 ± 29.6 cells/mm2); this difference was significant (U = 

0, p = 0.005; 1 degree of freedom).  

 

DISCUSSION 

 We report that approximately 25% of subjects diagnosed with bipolar 

disorder or schizophrenia show an elevated density of NeuN-immunoreactive 

cells in cingulate white matter.  These changes were observed both by 2- and 

3-dimensional counting techniques.  The alteration was specific, because (i) 

no association between NeuN+ densities in gray and white matter was 

observed and (ii) the density of a different population of white matter neurons, 

immunoreactive for NRG, in the disease cohorts was not significantly different 

from controls.  Increased NeuN+ density in cingulate white matter was 

paralleled by a similar increase in dorsolateral prefrontal white matter, 

suggesting that these cellular alterations affect widespread portions of the 

frontal lobe.  Additionally, the density of NeuN+ neurons in white matter 

during normal development was found to decline during the first year of 

postnatal life, but remained stable thereafter, suggesting that the observed 

alterations in the schizophrenia and bipolar cohorts may reflect a disturbance 

during the late prenatal or early postnatal period. In multiple sclerosis, chronic 
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lesions within subcortical white matter harbor increased numbers of neurons 

[188] in conjunction with increased microglia, but, in the present study, there 

was no association between these two white matter cell populations.  

 The fact that NeuN+ neuronal density was increased in cingulate white matter 

not only in schizophrenia, but also in bipolar disorder, was unexpected because two 

earlier studies on the dorsolateral prefrontal cortex had reported negative findings 

[169, 175].  However, the overall smaller sample sizes in those studies may have 

precluded the recognition of a subgroup of approximately 20-30% of affected 

subjects that, according to the present study, show a robust elevation in white matter 

neuron numbers.  In either case, the findings presented here add to the emerging 

evidence that neurodevelopmental mechanisms play a role in some cases with 

bipolar illness [195] and, moreover, that such mechanisms may represent a common 

underlying pathophysiology of psychotic spectrum disorders. 

 The mechanism by which this increase in white matter neurons in psychosis 

occurs is unclear, but failure of neuronal migration or decreased cell death could be 

involved [165-178]; the latter hypothesis adds to the notion of faulty apoptosis in 

some cases with psychosis [196].  It is unlikely that the increase in NeuN+ cells in 

white matter of clinical cases is due to newly generated neurons later in life, 

because—thus far—evidence for neurogenesis in postnatal human cerebral cortex is 

lacking [197].   

 Strikingly, a number of the emerging susceptibility genes and pathways 

for schizophrenia and bipolar disorder—including Disrupted-in-schizophrenia 
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1 (DISC1) and the Neuregulin 1 (NRG1)-erbB4 tyrosine kinase—are 

important regulators of migration, positioning, and formation of functional 

circuits of immature neurons during the development of cerebral cortex and 

other forebrain structures [198, 199].  As mentioned above, the 22q11.2 

deletion syndrome (22qDS), a genetic cause for bipolar disorder and 

schizophrenia [163]—is associated with  heterotopias and numerous ectopic 

neurons scattered throughout the white matter of the frontal lobe [164]. 

Therefore, further study of these risk genes and genetic syndromes may 

provide important insights into the mechanisms underlying white matter 

abnormalities in psychotic disorders.  

 The pathophysiological consequences of increased white matter 

neuron density in cingulate and prefrontal cortices remain unknown.  Notably, 

white matter neurons surviving preprogrammed cell death during 

development are known to become functionally integrated with the circuitry of 

the mature cortex [200] and, furthermore, remain interconnected with the 

thalamus [201], suggesting that any excess of white matter neurons in 

schizophrenia and bipolar disorder could indeed impair cortical and 

subcortical circuitries.  It is intriguing to speculate that elevated neuronal 

numbers in adult white matter reflect a defect present from the prenatal period 

onwards, because a subset of the neurons residing beneath the developing 

cortical plate in the fetal brain are essential for orderly development of the 

GABAergic circuitry in the overlying cortex [202]. Therefore, the dysfunction of 
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inhibitory interneurons—a core component in the pathophysiology of some 

types of psychosis [203, 204]—ultimately may have its roots in a 

neurodevelopmental defect of the future white matter.  
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Figure 1: Gray and white matter structures surrounding cingulate 
cortex.  (A) Representative coronal slab of a hemisphere (postmortem), 
rectangle outlines approximate position and size of tissue block destined for 
present study.  (Image  courtesy of Mr. L. Fernandez, Harvard Brain and 
Tissue Resource Center.)  (B) Parallel sections stained for NeuN 
immunoreactivity or Nissl (insert) showing cingulate cortex with dorsal BA24 
and ventral BA33, transition marked by arrow.  See text for details.  The 
border between the cingulate white matter (including cingulum bundle) and 
the fiber tracts of bordering corpus callosum (cc) is demarcated by 
arrowheads.  (C) Digitized image from region-of-interest, including the 
position of counting frame and white matter compartments I-V each 500 
micron deep and 2000 microns wide (see Methods). * in B,C marks dorsal 
line of corpus callosum with induseum griseum.  (D) Higher resolution image 
from superficial white matter bordering cingulate cortex, showing several 
NeuN+ neurons (marked by dotted circles), including two cells completely 
surrounded by WM tissue (bottom). Size bars (in µm), (B) 500, (C) 1000 and 
(D) 100.  
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Figure 2: NeuN and NRG1α  (NRG) immunoreactivity define two non-
overlapping neuronal subpopulations.  (A, B) Digitized images from 
cingulate white matter sections triple-stained with the nucleophilic dye, DAPI 
(blue), and anti-NeuN (green) and anti-NRG (red) antibodies, showing both 
NeuN+ and NRG + neurons, but no double-labeled cells.  (C) Representative 
image from white matter of section processed for NRG immunoreactivity with 
DAB/peroxidase labeling (brown), showing neurons with robust staining of 
cytoplasm and dendrites.  Size bars: (A,B) 20 µm, and (C) 50 µm. 
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Figure 3: Increased NeuN+ neuronal density in white matter in 
schizophrenia and bipolar disorder.  (A) NeuN+ neuronal density 
(presented as cells/mm2, y-axis) in white matter compartments I-V (x-axis) 
beneath cingulate cortex of controls (N = 45, black), schizophrenia (N = 22, 
light gray), and bipolar disorder (N = 15, dark gray).  Notice decline in NeuN+ 
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neuronal density in white matter > 500 micron apart from overlying cortex 
(compartments II-V).  Also notice higher overall densities in the two disease 
groups, as compared to controls.  (B) Fold-change in NeuN+ neuronal 
densities in white matter compartments of schizophrenia (black) and bipolar 
subjects (gray), relative to control cohort.  A -2-fold change is equivalent to a 
50% decrease.  (C) Frequency distribution of NeuN+ cell densities in 
cingulate white matter of the 3 cohorts, as indicated. Dotted line demarcates 
second standard deviations above the mean from controls.  (D) NeuN+ 
neuronal density in the superior frontal gyrus white matter of 6 schizophrenia 
and 6 control subjects; the 6 clinical cases also showed increased NeuN+ 
density in the cingulate (see Results).  (E) NRG+ cell densities, including (F) 
fold-change from controls, in cingulate cortex and white matter beneath BA33 
of schizophrenia and bipolar subjects, as indicated (control N = 26; 
schizophrenia N = 16; bipolar N = 10).  Notice that fold-changes in NRG+ 
neuronal densities in the clinical cohorts are < 2 from controls.  
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Figure 4: Isolation and quantification of nuclei from cells residing in 
white matter.  (A-C) Representative digitized photomicographs from purified 
nuclei extracted from cingulate white matter (see Methods).  (A) Differential 
Interference Contrast (DIC), (B) DAPI nucleophilic dye counterstain, and (C) 
NeuN immunoreactivity.  Arrow demarcates nucleus of NeuN+ white matter 
neuron, notice comparatively larger size and the prominent nucleolus.  Bar in 
(C) = 20 µm.  (D-F) Bar graphs showing numbers of (D) NeuN+ and (E) DAPI 
stained nuclei per mm3 white matter, and (F) proportion of NeuN+ nuclei in 6 
schizophrenia and 5 control subjects (see Results).  Data expressed as mean 
± S.E.M. 
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Figure 5: White matter NeuN+ neuronal density demonstrates an age-
associated decline during development.  Age (in years) was plotted 
against overall NeuN+ density (cells/mm2) for each of the 14 subjects in the 
developmental cohort.  Notice the steep decline in density during the first 
postnatal year. 
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Supplemental Figure 1: NeuN+ neuronal density is unaltered in gray 
matter in schizophrenia and bipolar disorder. (A) NeuN+ neuronal density 
(presented as cells/mm2, y-axis) in BA33 gray matter of controls (N = 5, 
black), schizophrenia (N = 5, light gray), and bipolar disorder (N = 5, dark 
gray) subjects.  There was no significant difference in NeuN+ neuronal 
density between diagnostic groups. (B) Correlation between NeuN+ neuronal 
densities in gray matter (x-axis) versus white matter (y-axis) for control, 
schizophrenia, and bipolar subjects. Notice that there was no appreciable 
correlation between gray and white matter NeuN+ neuronal densities (r = 
0.0013). 
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Supplemental Figure 2: Iba1 immunoreactivity is unaltered in cingulate 
white matter in schizophrenia and bipolar disorder. (A) Digitized images 
from cingulate white matter processed for Iba1 immunoreactivity with 
DAB/peroxidase labeling, depicting the grading scale used for assessment of 
microglia. 0 = indistinguishable from background; 1 = occasional fiber 
staining; 2 = numerous fibers and occasional cell bodies; 3 = numerous fibers 
and cell bodies; 4 = intensely stained fibers and cell bodies. (B) Frequency 
distribution of Iba1 immunoreactivity levels for control (N = 21), schizophrenia 
(N = 22), and bipolar disorder (N = 15) subjects.  Note that the mean Iba1 
immunoreactivity levels were not significantly different between the 3 
diagnostic groups. (C) Correlation between Iba1 immunoreactivity levels and 
NeuN+ neuronal densities in white matter. There was no appreciable 
correlation between these two cell populations. 
 
 
 
 
 
 



154 



155 

 
 
 
 
 
Supplemental Table 1: Overview on previous studies of white matter 
neurons in schizophrenia and affective disorder subjects. Red shading 
demarcates studies demonstrating significant increases in the clinical cohorts. 
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Supplemental Methods 

Immunohistochemistry: Given the large number of specimens included in 

this study (N = 96), it was not possible to process the entire cohort 

simultaneously; however, to reduce inter-assay variability, multiple sets of 

randomly mixed cases and controls were processed in parallel, using the 

same antibodies and reagents.  Incubation times were kept constant across 

the entire study.  Adjacent sections were stained for (i) Nissl, or 

immunoreactivity for (ii) Neuron-specific nuclear protein (NeuN), (iii) 

Neuregulin 1 alpha (NRG), (iv) Ionized calcium-binding adaptor molecule 1 

(Iba1).  Sections were incubated in mouse anti-NeuN antibody (Upstate; 

Billerica, MA) diluted 1:500, rabbit anti-NRG antibody (Lab Vision; Fremont, 

CA) diluted 1:200, or mouse anti-Iba1 antibody 1:500 (a generous gift from 

Dr. A. Chang and Dr. B.D. Trapp) overnight and processed using a standard 

protocol for immunoperoxidase-based labeling (Vector Laboratories; 

Burlingame, CA).  For two subjects, double-immunofluorescence was 

performed for NeuN and NRG in conjunction with AlexaFluor 488 and 594-

conjugated secondary antibodies (Invitrogen; Carlsbad, CA).  For a subset of 

6 cases and 6 controls, NeuN immunohistochemistry was conducted for the 

superior frontal gyrus (BA9), using 5 µm thick sections from paraffin-

embedded blocks.  

Microscopy: Two-dimensional (2D) cell counts for NeuN or NRG 

immunostained sections were conducted under 1.25x and 20x objectives, 
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using an Olympus BX51 upright microscope in conjunction with a motorized 

stage and BIOQUANT Life Science software version 8.00.20.  Under the 

1.25x objective, the gray/white matter border along BA33 was demarcated, 

and the white matter space (subcortical white matter and cingulum bundle but 

excluding the corpus callosum) was divided into compartments each 500 

microns deep and 2000 microns wide (Fig. 1C).  After compartments were 

drawn, the NeuN+ neurons were counted using the 20x objective.  A cell was 

defined as NeuN+ if immunoreactivity was detectable in the nucleus with 

weaker stained neuron-like cytoplasm or processes visible (Fig. 1D).  A cell 

was defined as NRG+ if cut through the level of nucleus with robust staining 

confined to cytoplasm and processes (Fig. 2D).  For each specimen, NeuN+ 

and NRG+ cells were counted in each of the 5 white matter compartments in 

two tissue sections per marker by a counter blind to diagnosis. In BA9, 

sampling was limited to the upper 3 white matter compartments, because we 

could not rule out what white matter greater than 1500 micron from overlying 

cortex was potentially in closer proximity to surrounding cortex not present in 

the plane of the section.  To assess potential differences in cell size between 

diagnostic groups, average somal area of NeuN+ neurons in cingulate white 

matter was estimated by tracing 5 cells per subject using Bioquant software 

and 20x magnification (n = 5 per group).  All NeuN counts were performed by 

Y.G.  NRG-counts and microglial ratings (see below) were done by C.C. and 

S.A., and no significant differences between raters were observed.  For the 
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NeuN counts, intra-rater reliability (counting the same subject, but not 

necessarily the same section, twice) approached 90%.   

 In addition, NRG+ cells were counted in the gray matter of BA33; 

NeuN+ cells were counted in BA33 gray matter for a subset of subjects (n = 5 

for each of the 3 cohorts).  For the NeuN counts, the clinical cases were 

chosen randomly, and then matched to controls with similar age and 

postmortem interval, and same sex.  As in the white matter, a two-

dimensional counting method was used. For each section, a rectangular box 

2000 microns wide was placed across the full vertical thickness of BA33 and 

the numbers and density of NeuN+ or NRG+ neurons were calculated per 

mm2.  

 Finally, all cases (bipolar = 15; schizophrenia = 22) and a subset of 

controls (n = 21) were immunostained with the anti-microglial antibody, Iba1, 

and blindly graded as 0 (staining indistinguishable from background), 1 

(occasional fiber staining), 2 (numerous fibers and occasional cell bodies), 3 

(numerous fibers and cell bodies), and 4 (intensely stained fibers and cell 

bodies) (Supplemental Figure 2).  

 Isolation and quantification of nuclei in cingulate white matter: For 

a subset of subjects (Table 1), a column of white matter adjacent to the 

gray/white border of the ventral portion of BA24 from frozen cingulate was 

isolated with a metal borer with a diameter of 3.15 mm and the length 

measured with calipers.  The borer was placed perpendicular to the 
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gray/white matter border after visual inspection ensured that the border had 

not shifted on the opposite of the block.  Subsequently, tissue was dounced in 

lysis buffer [205], layered onto a sucrose cushion, and ultracentrifuged at 

28,000 rpm at 4°C for 2.5 hrs.  The nuclei pellet was dissolved in 500 µl PBS, 

incubated with 200 µl antibody solution (anti-NeuN, 1:500; anti-mouse 

AlexaFluor 488) for 45 min at 4°C, and fixed with 70 µl 10% formalin. A 5 µl 

aliquot was removed, diluted with 495 µl PBS, and ten 5 µl aliquots from this 

solution applied to 10 separate slides and coverslipped with Vectashield 

Mounting Medium with the nucleophilic dye, DAPI. 

The total number of NeuN+ and DAPI+ nuclei was counted for each the 10 

slides and then averaged.  The following formula was used to estimate the 

total number of NeuN+ and DAPI+ nuclei per tissue column: 

 

[(# NeuN+ or DAPI+ nuclei counted / 5 µl) (500 µl) / 5 µl] × 770 µl 

 

To determine the number of nuclei per mm tissue cubed (mm3), the estimated 

total number of nuclei was divided by the volume of tissue for that particular 

sample. 

Statistics:  For each subject, NeuN+ and NRG+ cell densities were 

calculated for each white matter compartment as cells per square millimeter 

and the densities from the two slides per subject averaged.  A Kruskal-Wallis 

one-way ANOVA was used to compare NeuN+ or NRG+ cell densities 
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between bipolar, schizophrenia, and control groups.  The Dunn’s test was 

utilized to conduct post-hoc comparisons between diagnostic categories.  

Additionally, presence or absence of NeuN+ cells in deeper white matter 

(compartments III-V) were determined for each subject and each patient 

group was compared to the control group with Pearson chi-square.  Effects of 

potential confounds on overall white matter NeuN density— including 

postmortem interval (PMI), subject age, gender, hemisphere, and medication 

status—were examined by Pearson correlation, Mann-Whitney U-test, and 

also with ANCOVA for a mixed model by REML (restricted estimation by 

maximal likelihood).   
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Abstract 

 The etiology of the major psychotic disorders, including schizophrenia and 

bipolar disorder, remains poorly understood. Postmortem brain studies have 

revealed altered expression of multiple mRNAs, affecting neurotransmission, 

metabolism, myelination and other functions.  Epigenetic mechanisms could be 

involved, because for a limited number of genes, the alterations on the mRNA 

level were linked to inverse DNA methylation changes at sites of the 

corresponding promoters. However, results from independent studies have been 

inconsistent, and when expressed in quantitative terms, disease-related 

methylation changes appeared to be comparatively subtle. A recent study 

identified approximately 100 loci with altered CpG methylation in schizophrenia or 

bipolar disorder, the majority of which were gender-specific. Additional work will 

be necessary to clarify the origin and timing of these methylation changes in 

psychosis, and to determine the specific cell types affected in CNS. 

 

 Aberrations in DNA methylation have been implicated in a wide variety of 

brain disorders.  Examples include (1) mental retardation syndromes resulting 

from certain imprinting disorders (example: Angelman and Prader-Willi 

syndromes), [206, 207] triplet repeat expansions (Fragile X syndrome), [208, 209] 

mutations in DNA methyltransferase encoding genes (ICF syndrome) [210] and 

(2) a subset of gliomas [211-214] and neuroectodermal [211, 215, 216] tumors 

which show promoter hypermethylation of tumor suppressor genes.  More 
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recently, however, DNA methylation has been studied in the context of a very 

different category of brain malady: the major psychotic disorders, including 

schizophrenia and bipolar disorder, which are defined by delusions, 

hallucinations, and mood alterations.  While a variety of radiological, histological, 

and molecular alterations have been observed in schizophrenic [217] and bipolar 

brain [218], a definitive diagnostic neuropathology or molecular phenotype is 

lacking.  The etiologies of these disorders are complex, demonstrating 

concordance rates of less than 70% in monozygotic twins, non-Mendelian 

inheritance patterns, and sexual dimorphism [219]; these features, obviously, 

provide fertile ground for “epigenetic” disease models.  Of note, the molecular 

pathology of the major psychotic disorders is thought to involve alterations in gene 

expression, including a down-regulation of transcripts involved in cellular 

metabolism [220-222], inhibitory neurotransmission [96], and myelination and 

other oligodendrocyte functions [223, 224].  Therefore, it is tempting to speculate 

that at least some of these transcriptional defects could be due to aberrant 

increases in CpG methylation and repressive chromatin remodeling at 5’ 

regulatory sequences.  However, to date, DNA methylation has only been 

assayed for a small number of genes (namely, REELIN [15, 225-227], COMT 

[228-230], DRD2 [231], and SOX10 [232]) in postmortem brain of subjects 

diagnosed with schizophrenia or other major psychoses.  

 Recently, Mill and colleagues published the first comprehensive 

methylation study of major psychosis [233] in which they assayed methylation at 
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approximately 7800 loci — primarily within CpG islands of gene promoter regions 

— in frontal cortex of a comparatively large set of postmortem brain samples (35 

schizophrenia, 35 bipolar, and 35 control subjects).  Based on figure 2 of Mill et 

al., approximately 100 loci demonstrated significant disease-related methylation 

changes.  Interestingly, a subset of the loci that were hypermethylated showed 

altered gene expression in previous studies employing some of the same brain 

samples studied by Mill et al., with approximately an equal portion of up- and 

down-regulated transcripts.  That schizophrenia and bipolar disorder showed 

methylation changes of similar magnitude and direction for a number of loci 

resonates with some of the clinical, genetic, and neurochemical features common 

to both disorders [234].  Strikingly, the list of genes showing altered methylation in 

Mill et. al. includes at least one locus, DYSBINDIN, which confers genetic risk for 

psychosis [235-237].  This is interesting, because information regarding 

interactions between sequence polymorphisms and epigenetic modifications in 

human brain is available only for very few psychosis genes, including BDNF [233], 

GAD1 [86], and 5-HT2A [238].    

 Perhaps one of the most intriguing discoveries by Mill et al. [233] was the 

finding that the vast majority of disease-related DNA methylation changes 

differentially affected male and female patients.  At present, straightforward 

explanations for this puzzling phenomenon are lacking because the genes 

involved are located on autosomes and, until now, not known to show sex-specific 

regulation.  It remains to be determined whether or not these loci are differentially 
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methylated or show monoallelic expression in normal brain, and which, if any, of 

the corresponding gene transcripts are differentially expressed in female and male 

brain.  Sex steroids may play a role; estrogen, for example, is an important 

modulator of frontal lobe function in females [239, 240], and there is ample 

evidence that the hormone is involved in the regulation of chromatin structures, 

including DNA and histone methylation, at a number of gene promoters [219, 241, 

242].  Furthermore, gender-specific chromatin alterations in schizophrenia may 

extend beyond the level of DNA methylation —both androgens and estrogens are 

known to interact with chromatin remodeling complexes [219, 243-245] and recent 

evidence suggests that promoter-associated histone methylation changes at 

select GABAergic gene loci may be more prominent in female schizophrenia 

subjects, compared to their male counterparts [13].  Given the sexual dimorphism 

of schizophrenia and bipolar disorder — including differences in rate of 

occurrence, symptoms, and time course — the differential methylation changes 

observed in male and female patients should not come as a surprise.    

 It is noteworthy that absolute methylation differences between psychosis 

and control samples were relatively small in the Mill et al. study [233], even for 

some of the more significant loci (for example, 17% vs. 25% for WDR18).  

Therefore, DNA methylation changes in psychosis appear to be more subtle 

compared to those observed in brain neoplasia or some of the above-mentioned 

mental retardation syndromes.  These features emphasize that DNA methylation 

analysis in psychosis samples is best approached by quantitative methodology, 
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for which bisulfite sequencing remains the gold standard [246].  Given this lack of 

dramatic methylation changes in schizophrenia or bipolar brain, it comes as no 

surprise that earlier studies reporting positive findings (REELIN [15, 225], COMT 

[228]) were not consistently replicated in subsequent work [226, 227, 229, 230, 

233].  Some of these inconsistencies may be due differences in methodology, 

specific CpG dinucleotides assayed, brain regions examined, and clinical 

populations from which the postmortem specimens were obtained.  Furthermore, 

it must be noted that for these genes, the degree of DNA methylation may not 

necessarily correlate with functional consequences (i.e., decrease in mRNA 

transcript levels); rather, the specific location of the methylated CpG dinucleotide 

— for example, within a transcription factor binding site — may be more critical for 

mediating transcriptional repression.    

 In addition to the overall subtle nature of these psychosis-related 

alterations, the interpretation of DNA methylation studies on postmortem brain is 

complicated by additional factors:  

 (1) To date, most methylation studies in brain have utilized DNA extracted 

from whole tissue homogenates.  This represents a major confound, as different 

cell types are known to possess unique methylation patterns and brain tissue is 

comprised of multiple types of neurons, glia, and other cells.  Moreover, specific 

sub-populations of cells within specific brain regions are thought to be affected in 

the psychotic disorders, such as parvalbumin-immunoreactive neurons [140, 247-

250], oligodendrocytes [251-254], and astrocytes [182, 255, 256].  Thus, if 
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alterations in DNA methylation within specific cell populations do indeed play a 

role in the pathoetiology of psychosis, some methylation changes may be “diluted” 

— or even undetectable — due to the averaging of methylation signals from a 

heterogeneous pool of cells.  Furthermore, neuron-to-glia ratios show 

considerable variation during the course of normal maturation and aging [257].  

This is not a trivial point, because there is evidence that, for select gene loci, the 

DNA methylation signal from postmitotic neurons differs considerably from tissue 

homogenate.  Specifically, when DNA methylation was selectively assayed for 

neuronal nuclei obtained from postmortem human brain, 4/10 loci showed age-

related methylation changes similar to DNA from tissue homogenate, but 6/10 loci 

did not [258].  

 (2) Furthermore, in vitro studies in cell culture suggest that DNA 

methylation is dynamically regulated—on the scale of minutes to hours—in 

response to DNA methyltransferase inhibitors [259, 260] and depolarization [146].  

Thus, it will be important to more fully elucidate how diverse environmental stimuli 

impact the regulation of DNA methylation in human brain, as these factors could 

potentially result in methylation changes unrelated to disease etiology.  Indeed, 

recent studies have demonstrated that the DNA methyltransferases and 

methylation patterns in a variety of tissues, including CNS, are influenced by a 

variety of factors, including social environment [21, 261], ischemia [262], 

environmental toxins [263-265], nicotine [266], alcohol [267], psychostimulants 

[268, 269], and antipsychotic drugs [233, 270, 271].  
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 However, the above-mentioned factors could also play a role in the 

pathogenesis of schizophrenia and bipolar disorder.  Thus, it will be important to 

explore both the origin and timing of DNA methylation changes in schizophrenia 

and bipolar disorder: whether they arise from stochastic events during 

embryogenesis, are secondary effects of psychosis in the patient (or even in an 

affected parent), or reflect exposure to different environmental stimuli during 

subsequent development, maturation, and aging remains to be determined.  The 

latter hypothesis gains credence from work by Fraga et. al. (2005) [272] which 

shows that methylation patterns of monozygotic twins become increasingly 

different with age; furthermore, twins who were raised apart demonstrated greater 

differences in DNA methylation patterns than those raised together.  In addition to 

environmental influences, accumulating evidence suggests that epigenetic marks 

can be inherited across multiple generations [273-275], providing an alternative 

explanation for the aggregation of schizophrenia and bipolar disorder in families. 

However, to date, evidence for DNA methylation changes in germ cells of 

individuals diagnosed with major psychosis is lacking [233].  

 Therefore, while important issues remain to be resolved, including the 

origin of methylation changes in schizophrenia and bipolar disorder, ante- and 

postmortem confounds, and cellular heterogeneity of brain tissue, one can expect 

that epigenetic studies on human brain, such as the one undertaken by Mill et al. 

[233] will significantly advance our understanding of the molecular pathology 

underlying complex psychiatric disorders. 
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ABSTRACT 

The role of DNA cytosine methylation, an epigenetic regulator of chromatin 

structure and function, during normal and pathological brain development and 

aging remains unclear. Here, we examined by MethyLight PCR the DNA 

methylation status at 50 loci, encompassing primarily 5’ CpG islands of genes 

related to CNS growth and development, in temporal neocortex of 125 

subjects ranging in age from 17 weeks of gestation to 104 years old. Two 

psychiatric disease cohorts—defined by chronic neurodegeneration  

(Alzheimer’s) or lack thereof  (schizophrenia)—were included. A robust and 

progressive rise in DNA methylation levels across the lifespan was observed 

for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, 

STK11, SYK) typically in conjunction with declining levels of the 

corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA 

methylation levels within the first few months or years after birth. Disease-

associated changes were limited to 2/50 loci in the Alzheimer’s cohort, which 

appeared to reflect an acceleration of the age-related change in normal brain. 

Additionally, methylation studies on sorted nuclei provided evidence for 

bidirectional methylation events in cortical neurons during the transition from 

childhood to advanced age, as reflected by significant increases at 3, and a 

decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-

transferase was expressed across all ages, including a subset of neurons 

residing in layers III and V of the mature cortex. Therefore, DNA methylation 
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is dynamically regulated in the human cerebral cortex throughout the lifespan, 

involves differentiated neurons, and affects a substantial portion of genes 

predominantly by an age-related increase. 
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INTRODUCTION 

Epigenetic modification of chromatin, including DNA methylation at the sites 

of CpG dinucleotides, is a key regulator of gene expression, growth and 

differentiation in virtually all tissues, including brain [276-279]. Dysregulated 

DNA methylation, or methyl-CpG-dependent chromatin remodeling, is thought 

to underlie ICF syndrome (Immunodeficiency, Centromere instability and 

Facial anomalies), Rett’s disorder and other mental retardation syndromes 

[280, 281]. Furthermore, changes in methylation status at selected genomic 

loci may affect social cognition [282], learning and memory [283] and stress-

related behaviors [21] and is believed to contribute to dysregulated gene 

expression in a range of adult-onset neuropsychiatric disorders, including 

autism, schizophrenia, depression and Alzheimer’s disease [15, 225, 238, 

284, 285]. Finally, there is strong evidence that aberrant methylation of tumor 

suppressor genes contributes to the molecular pathology of a subset of 

astrogliomas and other types of brain cancers [212, 286].  

However, despite its clinical importance, the regulation of DNA 

cytosine methylation, particularly in the human brain, remains poorly 

understood. To date, there are no comprehensive studies which have 

monitored methylation at multiple loci during the course of brain development 

and aging, or in chronic psychiatric disease. Furthermore, all previous studies 

of DNA methylation in human or animal brain utilized tissue homogenates 

comprised of a highly heterogeneous mixture of neurons and glia [21, 225, 
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283, 287], or examined DNA methylation in subfractions of chromatin defined 

by site-specific histone modifications [13] and therefore it remains to be 

determined whether or not DNA methylation is dynamically regulated in 

terminally differentiated neurons.  

 Given this background, the present study was undertaken to provide 

a first insight into the dynamics of DNA methylation in the human cerebral 

cortex. Altogether, we examined 50 loci, mostly CpG islands within the 5’ end 

of genes, during the course of development, maturation and aging. 

Additionally, we assessed the methylation status for these same loci in 

Alzheimer’s disease and schizophrenia; the former condition is characterized 

by chronic neurodegeneration and the latter by widespread transcriptional 

and metabolic perturbations [288-290] in the absence of large scale loss of 

neurons. While disease-associated alterations were limited to 2/50 sequences 

in the Alzheimer’s cohort of the present study, the majority of genomic loci, 

including genes implicated in neural development and CNS tumors, showed a 

striking age-associated increase in methylated CpGs. Furthermore, we show 

that DNA methylation is dynamically regulated in differentiated neurons during 

the transition from childhood to advanced age. Collectively, our results 

suggest that DNA methylation in the human cerebral cortex, including its 

neuronal constituents, is dynamically regulated across the full lifespan and 

potentially affects a substantial portion of the genome. 
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RESULTS 

Four types of age-related DNA methylation profiles in the human 

cerebral cortex  

Using a real-time PCR-based technique called MethyLight [291, 292], we 

analyzed DNA methylation at 50 loci, most of them representing promoter 

CpG islands of genes expressed in the cerebral cortex; a portion of these 

genes is also implicated in cancer biology (Supplemental Tables 1, 2). Most 

of the cancer-related genes included in this study show aberrant methylation 

in various types of neoplasia, including CNS tumors (Supplemental Table 1), 

and hence we were interested to monitor potential methylation changes within 

these genes during the course of normal brain development and aging. Other 

genes included in this study play a role in the molecular pathology of some 

cases diagnosed with schizophrenia and other psychiatric illness (e.g., BDNF, 

DRD2, GABRA2, GAD1, HOXA1, NTF3) or are linked to chronic 

neurodegeneration (LDLR, PSEN1, S100A2). We screened altogether 125 

pre- and postnatal, child and adult samples of rostro-lateral temporal cortex, 

yielding 7,500 quantitative measurements (Fig. 1). Two of the CpG islands 

(AR and FAM127A) are from X-linked genes, which become methylated only 

on the inactive X-chromosome in females, and were included as internal 

controls to validate the DNA methylation measurements (Fig.1). For 124 (out 

of 125) samples, AR and FAM127A methylation levels were in agreement 

with the gender information provided by the brain bank, and for the remaining 
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one case, the discrepancy was resolved upon re-review of the chart on file 

with the bank. Therefore, all of the female postmortem samples, but none of 

the males, showed substantial DNA methylation of both of these X-linked 

genes, as expected. 

 Unsupervised hierarchical clustering of the remaining 48 gene loci, 

excluding the X-linked genes, revealed a strong age association (Fig. 1). All 

prenatal samples were contained in a single cluster, shown at the top of Fig. 

1 (blue cluster). The subjects over 40 years of age were divided into two other 

major clusters with either moderate amounts (red cluster at bottom) or high 

density of CpG island methylation (black cluster in middle). The majority of 

loci showed a statistically significant increase of DNA methylation associated 

with age, adjusted for diagnosis, but the chronology of these age-associated 

changes varied remarkably among different loci. Altogether, four different 

types of age-related methylation changes were discernible: (1) Eight of the 50 

gene loci showed a linear increase of DNA methylation with age, as 

exemplified by HOXA1 (Fig. 2 and Supplemental Figure). (2) Half of the 

genomic loci showed a statistically significant biphasic age distribution 

(Supplemental Figure). Among these, 18 genes revealed a sharp shift in 

slope at some time-point within the first decade of life, mostly in the newborn 

period, as indicated by PAX8 (Fig. 2 and Supplemental Figure). (3) One locus 

(MGMT) showed a highly unusual, non-linear stochastic accumulation of 

hypermethylation starting at about age 50 (Fig. 2 and Supplemental Figure). 
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The stochastic nature of this hypermethylation event is of particular interest, 

since variation in MGMT CpG island hypermethylation in gliomas is 

associated with clinical response to alkylating agents [293]. Interestingly, the 

incidence of malignant gliomas peaks around age 40-50 [294, 295], which is 

the same age period when MGMT hypermethylation emerged in the samples 

of the present study. (4) Finally, in striking contrast to the age-related 

progressive increase in DNA methylation at single copy genes (described 

above under type 1,2,3), ALU and other repetitive elements either showed a 

significant decrease in DNA methylation during the first decade of life, 

followed by relatively little change during subsequent maturation and aging 

(1/5 repetitive sequences) (Fig. 2), or showed relatively little change across 

the lifespan (4/5 repetitive sequences) (Supplemental Figure). For the 

majority of loci showing an age-related increase in DNA methylation, the 

effect was extremely robust (p < 0.0001) (Fig. 2 and Supplemental Figure). 

 While it was beyond the scope of this study to assess the relationship 

between the observed age-related methylation pattern and corresponding 

changes in gene expression for all loci, we hypothesized that genes showing 

a linear and robustly progressive increase in methylation throughout the 

lifespan (“type 1” genes, see above and Fig. 2) would show a decline in 

mRNA levels at advanced age. To examine this, we profiled temporal cortex 

mRNA levels by qRT-PCR for 4 of the “type 1” genes listed in Fig.2 (SYK, 

NEUROD2, GABRA2, GAD1) in a cohort of six child brains (range: 1.3-11.5 
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years) and 11 adults (range: 32-87 years), carefully matched for RNA quality 

(see Methods) and normalized to 18S rRNA levels (data not shown). Indeed, 

all four genes showed an inverse correlation between mRNA levels and age, 

to a moderate degree (R2 = 0.29-0.42 for SYK, NEUROD2, GAD1 and 

GABRA2). In contrast, mRNA levels of B2M and GUSB, two housekeeping 

genes commonly used to assess RNA quality in human postmortem 

specimens [296], and of MGMT–a gene with a highly unusual age-related 

methylation profile (Fig.2)–did not show a correlation with age (R2 = 0.02 for 

MGMT, and < 0.002 for B2M and GUSB). Therefore, the age-related decline 

in mRNA levels observed for a subset of the “type 1” genes is not explained 

by generalized RNA deficit or decay in the older specimens. We conclude that 

the progressive, age-related increases in DNA methylation at the 5’ 

sequences of these genes could contribute to the observed age-related 

decline in corresponding mRNA levels. 

 

Disease-associated alterations 

Taking a false discovery rate into account, Alzheimer’s cases showed 

a statistically significant difference in DNA methylation for SORBS3 and 

S100A2. In both cases, the Alzheimer patients tend to show an acceleration 

of the age-associated changes in DNA methylation (Fig. 3). SORBS3 (also 

known as vinexin, SCAM-1 or SH3D4), which encodes a cell adhesion 

molecule expressed in neurons and glia [297], becomes progressively more 
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likely to be methylated with age, and is methylated to a greater degree in 

Alzheimer patients (median PMR = 38.5, N = 18) than in all other cases 

(schizophrenia, controls) older than 60 years (median PMR = 16.9, N = 39, 

P=0.00081). S100A2, a member of the S100 family of calcium binding 

proteins, displays a complex chronology, with a rapid prenatal increase, 

followed by an infrequent stochastic decrease in DNA methylation later in life, 

particularly among Alzheimer patients (median PMR = 12.9, N = 18) versus 

all other subjects older than 60 years (median PMR = 20.5, N = 39, 

P=0.00197). The age- and disease-associated loss of S100A2 DNA 

methylation in Alzheimer’s disease is consistent with the observation of 

S100A2 protein in corpora amylacea, or polyglucosan bodies, which 

accumulate in aging human brains [298]. Therefore, the significant DNA 

methylation changes in Alzheimer’s disease, including the decrease of 

S100A2 and increase in SORBS3 CpG methylation, appear to represent 

accelerations of the normal, age-associated DNA methylation changes in 

these genes. Notably, previous in vitro studies provided evidence that DNA 

methylation is involved in transcriptional regulation of PSEN1 [284] an 

Alzheimer’s disease-associated gene and regulator of amyloid precursor 

protein and Notch signaling pathways [299]. However, PSEN1 showed only 

very low levels of methylation in our samples, and we did not find age- or 

disease-associated changes (Supplemental Table 3a). This lack of consistent 

change in PSEN1 methylation in diseased or aging tissue, however, may not 
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be surprising given that this gene exhibits significant variability in 

interindividual methylation, according to a study in male germ cells [300].   

The methylation of PAX8, a gene encoding a paired box-containing 

transcription factor important for CNS and thyroid development [301], was 

higher in schizophrenics than in controls (P=0.0025) (Supplemental Table 

3b), but this was not considered statistically significant after adjusting for 

multiple comparisons by controlling the false discovery rate (set at 0.05)[302]. 

We conclude that schizophrenia is not accompanied by consistent DNA 

methylation changes at the 50 gene loci included in this study. 

 

The de novo DNA methyltransferase, DNMT3a, is expressed in 

developing and aging cerebral cortex 

The DNA methylation data described above strongly suggest that DNA 

methylation events in the cerebral cortex are ongoing across a wide age 

range, extending beyond the developmental period and continuing into old 

age. If this hypothesis is correct, then one would expect expression of the de 

novo DNA methyltransferase enzymes, DNMT3a and/or DNMT3b [303, 304], 

at all ages. In mouse cerebral cortex, Dnmt3a expression remains detectable 

in adults, albeit at lower levels than observed during earlier periods of 

postnatal development; in contrast, Dnmt3b is found in murine CNS only 

during a narrow period of prenatal development [305]. To find out when 

DNMT3a protein is expressed in the human cerebral cortex, we employed 



181 

immunoblotting on cortical homogenates from fetal, child and adult samples. 

We observed, across all ages, an immunoreactive band of approximately 120 

kDa, corresponding to full-length form of DNMT3a [306, 307] (Fig. 4A). 

Immunolabeling of intact nuclei from child and adult cortex revealed that the 

bulk of the DNMT3a-like immunoreactivity is derived from neuronal nuclei 

(Fig. 4B-E). Expression of DNMT3a in neurons was confirmed by in situ 

hybridization studies with full length DNMT3a cRNA (Fig. 4F-H); a subset of 

neurons, including some with pyramidal neuron-like morphology (Fig. 4G) 

residing in layers III and V of the adult cortex expressed DNMT3a mRNA.  We 

conclude that DNMT3a in human cerebral cortex is expressed primarily in 

neurons, which is in agreement with similar findings in mice [305] and, 

furthermore, is expressed across the lifespan from the 2nd trimester of 

pregnancy through old age. 

 

Age-related DNA methylation changes in nuclei of differentiated 

neurons 

Notably, studies in rat and mouse identified a number of stimuli or 

environmental conditions that alter expression of selected mRNAs in 

immature, or mature brain, in conjunction with–often bidirectional–changes in 

CpG methylation of the corresponding promoters [21, 146, 260, 283]. The 

conclusion drawn by these studies, either explicitly or implicitly, is that 

neuronal gene expression is subject to epigenetic regulation. However, most 
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CNS tissues, including cerebral cortex, are comprised of a highly 

heterogeneous mixture of various dividing and postmitotic cell populations, 

which are likely to show important differences in the methyl-CpG patterning of 

their genomes. This uncertainty regarding the cellular specificity of any DNA 

methylation signal obtained from brain homogenates places limitations on the 

interpretation of the age-related changes in methylation as described above. 

Nonetheless, the presence of DNMT3a in cortical neurons across a wide age 

range (Fig 4), in conjunction with the robust, age-related methylation changes 

at >50% of the gene loci (Fig. 1, 2), strongly suggests an ongoing 

modification of the neuronal DNA long after the exit from the cell cycle, which 

in primate cerebral cortex occurs during fetal mid-development [308]. To find 

out whether DNA methylation is dynamically regulated in postmitotic neurons 

and to rule out the potential confound of changes in glia numbers during the 

course of development [309, 310], we isolated nuclei of differentiated neurons 

from child and adolescent (1-16 years) and aged (>60 years) cortex using 

NeuN immunolabeling in conjunction with fluorescence-activated cell sorting 

(FACS) (Fig. 5A,B). Then, the methylation levels for 10 gene loci were 

analyzed in the neuronal DNA by MethyLight PCR. When compared to child 

and adolescent specimens, DNA from aged neuronal nuclei showed a 

significant increase in methylation at 3/10 loci (HOXA1, PGR, SYK), and a 

significant decrease in 1/10 loci (S100A2) (Fig. 5C). Therefore, during the 
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transition from childhood to old age, differentiated cortical neurons undergo 

bidirectional changes in DNA methylation. 

 

SUMMARY AND DISCUSSION 

The present study examined DNA methylation changes for 50 genomic loci 

during the course of development, maturation and aging of the human 

cerebral cortex. The majority of loci showed significant age effects: eight loci 

showed a progressive increase in methylation that continued across the entire 

lifespan and another 18 loci were defined by a sharp rise within the first 

months or years after birth. We present direct evidence that, for a subset of 

loci, genomic DNA from differentiated cortical neurons undergoes methylation 

changes during the course of maturation and aging. In addition, one locus, 

MGMT, showed a stochastic accumulation in methylation starting around age 

50, with potential implications for the tumor biology of astrogliomas, as 

discussed above. While DNA methylation changes related to development or 

aging were extremely robust in the present study, disease-associated 

changes, on the other hand, were surprisingly limited. Schizophrenia, a 

chronic psychiatric disease condition associated with psychosis and 

widespread cortical dysfunction in the absence of large-scale loss of neurons 

[311-313], was not associated with significant methylation changes in the 

present study. On the other hand, cases diagnosed with Alzheimer’s disease, 

which is defined by a neurodegenerative process in cerebral cortex and other 



184 

brain regions, showed significant methylation changes in 2/50 loci. One locus 

(S100A2), which is methylated in neurons (Fig. 5C) was significantly less 

methylated in the DNA from Alzheimer cases compared to age-matched 

controls (Fig.3), possibly due to large-scale loss of neurons associated with 

that disease. In addition, methylation of another locus (SORBS3) was higher 

in the Alzheimer samples than in controls. Thus, the DNA methylation 

alterations in both genes appear to reflect an enhancement, or acceleration, 

of the age-associated changes that we observed in normal brain (Fig. 3).  

 It is noteworthy that the overwhelming majority of loci analyzed in the 

present study demonstrated age-related increases in DNA methylation in 

cerebral cortex (26/50 loci), and only one gene–S100A2--showed a change in 

the opposite direction; this decrease was even more pronounced in the 

Alzheimer’s cohort.  Likewise, in DNA samples derived selectively from 

differentiated neurons of controls, only S100A2 showed an age-related loss of 

methylation, while significant increases were found for 3/10 genes (Fig. 5C). 

Collectively, these findings support the notion that DNA methylation levels 

progressively increase in the cerebral cortex at many genomic loci during the 

course of maturation and aging. On the other hand, according to the findings 

presented here, DNA de-methylation events appear to play a less prominent 

role. Therefore, it remains to be clarified whether or not there is active de-

methylation in brain, and if DNA repair-related mechanisms are involved 

similar to those recently reported for dividing cells and Xenopus oocytes 
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[314]. Additionally, further studies will be required in order to determine 

whether or not DNA methylation/demethylation in human brain is subject to 

more acute alterations—on the scale of hours or days—as has been 

previously demonstrated in cell cultures and animal models [146, 259, 260].  

It is important to realize that our study had several limitations, including 

the focus on one area of the cerebral cortex, i.e. the neocortex of the anterior 

and lateral temporal lobe. Therefore, additional studies will be necessary to 

confirm that the developmental DNA methylation changes as observed in this 

study are a generalized feature operating throughout all areas of the human 

cerebral cortex. Furthermore, we monitored DNA methylation changes at a 

limited number of genomic sequences, hence it will be necessary to confirm 

the findings reported here on a more comprehensive, genome-wide scale. 

Such studies will be necessary in order to find out (i) whether or not the 

developmental DNA methylation changes reported here represent a more 

generalized, age-dependent drift towards increased methylaton levels and (ii) 

whether or not schizophrenia or Alzheimer’s disease are associated with DNA 

methylation changes affecting wide-spread portions of the genome. Finally, 

while our study presents some of the first and direct evidence for methylation 

changes in the DNA of terminally differentiated neurons, our analyses was 

limited to samples obtained from children and adults, because isolation of 

neuronal nuclei from fetal specimens via FACS was not feasible for technical 

reasons. Hence, it remains to be determined whether or not neurons, or 
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various types of glia and other non-neuronal cells, contribute to the observed 

sharp rise in DNA methylation during the perinatal and early childhood period 

that was observed at 18/50 loci in this study. These highly dynamic 

methylation increases postnatally could either be related to the relatively high 

levels of neuronal DNMT3a methyl-transferase in the immature brain [305] or 

, alternatively, result from developmental shifts in cell composition of the 

postnatal cortex, including a rise in the number of oligodendrocytes and other 

glia-related changes [257]. In light of these findings, it is tempting to speculate 

that certain nurturing, feeding and other “environmental” conditions could 

potentially result in sustained DNA methylation and gene expression changes 

affecting many parts of the genome. Indeed, emerging evidence from animal 

models is in support of this hypothesis [21, 315]. Based on the results of the 

present study, we predict that approximately one half of genes encoded in the 

genome will show age-related DNA methylation changes in the human brain, 

many of which will directly, or indirectly, affect neuronal gene expression and 

thus cognition and behavior.  

 

MATERIAL AND METHODS 

Human brain tissue 

Fresh frozen, postmortem brain tissue from fetuses, newborns and children 

were obtained through the Brain and Tissue Banks for Developmental 

Disorders, University of Maryland and University of Miami (NICHD contract # 
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NO1-HD-8-3284). Adult tissue samples were obtained from three brain banks 

(i) the Center for Neuroscience, University of California at Davis, CA, (ii) the 

Harvard Brain Tissue Resource Center at McLean Hospital, Belmont, MA, 

and (iii) the Massachusetts General Hospital, Boston, MA. All brain banks 

provided tissue to us without personal identifiers, and all collection and written 

consent procedures (donors or family members) were approved by the 

institutional review boards of the brain banks’ institution. Small blocks of 

frozen, unfixed tissue were dissected from the developing cortical plate (fetus) 

or cerebral cortex (children, adults) of the anterior lateral temporal lobe. 

Altogether, 17 fetal, 15 child and 93 adult specimens were included in the 

present study.  Among the adult samples, there were 18 cases meeting 

CERAD criteria of definite Alzheimer’s disease and 30 cases meeting DSM-IV 

based criteria for schizophrenia (Supplemental Table 4).  

 

Methylation and mRNA analyses 

From all specimens, DNA was extracted from the cortical plate (fetus) or gray 

matter (children, adults) using a standard procedure, with modifications [316] 

and analyzed by MethyLight PCR after bisulfite conversion [291, 292, 317] 

(for primer sequences, see Supplemental Table 2). In addition, RNA was 

extracted from cortical gray matter of child and adult samples with the 

RNeasy Lipid Tissue Mini Kit (Qiagen, Valencia, CA) and treated with DNAse 

I. RNA quality for all samples was assessed using high-resolution capillary 
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electrophoresis on the Agilent Bioanalyzer 2100 (Agilent Technologies, Palo 

Alto, CA). Samples with a RIN < 4.0 were discarded [296]. RNA was reverse-

transcribed and amplified with TaqMan One-Step RT-PCR Master Mix 

Reagent in 7500 Real Time PCR System machine (Applied Biosystems, 

Foster City, CA, U.S.A.), in conjunction with unlabeled primers and SYBR 

Green (GAD1) or FAM-labeled primer sets purchased from Applied 

Biosystems (all other genes). Quantifications were performed by positioning 

the cycle threshold within the linear range of amplification curve. Each value 

of mRNA was calculated with the equation V = (1+E)Ct (E: amplification 

efficiency) and normalized to 18S ribosomal RNA. 

 

DNMT3a expression studies 

For western blotting, 100 mg aliquots of cortical tissue were homogenized in 

1x Laemmli buffer for SDS-PAGE, then processed for anti-DNMT3a 

immunoreactivity (rabbit polyclonal, Abcam Inc., Cambridge, MA) at a final 

dilution of 1:250; or, for loading control, mouse anti-β-actin (Sigma, St. Louis, 

MO), final dilution 1:10,000. 

 To extract nuclei for DNMT3a-like immunolabeling, cortical tissue was 

homogenized in 2mL 1× RSB buffer (100mM NaCl, 30mM MgCl2, 100mM 

Tris-HCl, pH 7.5) with 1% NP-40, mixed with 8mL 1× RSB, and centrifuged in 

a swing-bucket rotor at 1000 x g for 10 min at 4°C. Subsequently, the pellet 

was dissolved in 4mL 4% phosphate-buffered paraformaldehyde (PFA) and 
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incubated for 10 min at room temperature. This homogenate was layered 

onto a 30% sucrose cushion, centrifuged, and the resulting pellet dissolved in 

0.1% Triton X-100/ 0.32M sucrose/5mM CaCl2/ 0.1mM EDTA/ 10mM Tris-

HCl, pH 8.0, mixed with 1mL 1.8 M sucrose, and centrifuged at 1500 x g  at 

4°C for 10 min on a 1mL 1.2 M sucrose cushion. Nuclei pellets were 

dissolved in 1x PBS, and then dried on glass slides and blocked with 

1xPBS/10% normal goat serum/0.2% Triton X-100 for 1 hour. For double 

immunolabeling, primary antibodies (anti-DNMT3a and anti-NeuN as a 

neuron-specific marker [191, 192]) were labeled with the Zenon Alexa Fluor 

594 Rabbit IgG Labeling Kit or the Enhanced Zenon® (Alexa 488) Mouse IgG 

Labeling Kit  (Invitrogen, Carlsbad, CA) and applied at 1:500 final dilution to 

the slides for 4 hrs. Following incubation, slides were rinsed repeatedly, 

incubated in tyramide solution according to the manufacturer’s instructions, 

washed, counterstained with DAPI and coverslipped. 

 To prepare for in situ hybridization histochemistry, tissue blocks were 

allowed to thaw, then immersion-fixed with 4% phosphate-buffered PFA for 

up to 4 days, and then cryoprotected in 30% phosphate-buffered sucrose; 20 

µm sections were cut on a cryostat, mounted on glass slides, and stored at -

80o C until use. Sense and antisense digoxigenin (DIG)-labeled DNMT3a 

cRNA probes were generated from full-length human DNMT3a cDNA 

(Genbank BC043617) in the presence of DIG-11-UTP (Roche Applied 

Science, Indianapolis, IN), according to the manufacturer’s instructions. 
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Templates were digested with DNase I and the cRNA purified by LiCl 

precipitation. Sections were treated with 0.2 M HCl and then acetylated with 

0.25% acetic anhydrate in 0.1 M triethanolamine, and prehybridized with 

hybridization buffer (50% formamide, 2X SSC, 10% dextran sulfate, 0.5 

mg/ml sperm DNA, 0.25 mg/ml yeast tRNA, 0.2 mg/ml BSA, 50 ug/ml 

Heparin, 2.5 mM EDTA and 0.1% Tween-20) at 60oC for 1 hr. Sections were 

then hybridized with DIG-labeled probes diluted 1:50 in hybridization buffer 

(50 µl/section) at 60o C overnight. Sections were washed with 2X SSC at 

R.T., 1XSSC at 37oC and then treated with RNase A at the same 

temperature. After RNase A digestion, sections were washed sequentially 

with 1X SSC at 37oC, 1X SSC: 50% formamide at 52oC, 0.1X SSC at 52oC 

and then developed with the DIG Nucleic Acid Detection kit (Roche Applied 

Science, Indianapolis, IN), in conjunction with sheep anti-digoxigenin-alkaline 

phosphate conjugated antibody (1:1000) (Roche) and NBT/BCIP chromogen 

(1:50) (Roche) according to the manufacturer’s instructions. Sections were 

mounted with mounting medium (VetctaMountTM AQ, Vector Laboratories, 

Burlingame, CA) and coverslipped with glass. 

 

Flow cytometry 

Intact nuclei were prepared from up to 3 gram of frozen-thawed tissue as 

described above, with the exception of the fixation step, and further purified 

by ultracentrifugation through a sucrose cushion at 25,000 x g for 2.5 hrs at 
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4°C. The pelleted nuclei were dissolved in 1 mL 1× PBS, centrifuged for 5 min 

at 14,000 x g , and the nuclei pellets stored at -80°C until further processed. 

Nuclei were immunolabeled with anti-NeuN antibody (see above) and sorted 

using a FACSVantage DiVa system (BD Biosciences), the DNA extracted and 

processed by Methylight PCR as described above.  
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Figure 1: DNA methylation changes at 50 loci in temporal neocortex 
across the lifespan. Two dimensional hierarchical cluster analysis using 
Manhattan distance and average linkage (N=48 regions, 125 subjects). DNA 
(rostro-lateral temporal neocortex) was extracted and analyzed by MethyLight 
for the genes indicted as described (see Methods). Each gene is grouped into 
quartiles (Dark Light Blue =1 low, Dark Blue =2 medium-low, Red=3 medium 
high, Black=4 high extent of methylation). The larger the number of samples 
with no detectable methylation, the fewer the number of observations coded 
dark blue and red. Gender (Blue squares = Male, Pink circles = Female), Age 
(White circles = Prenatal (PRE); Gray circles = 0-40 years old; Black circles = 
older than 40 years), and Diagnosis (Green circles = controls; Blue triangles = 
Schizophrenia cases; Red squares = Alzheimer’s cases) are indicated with 
symbols explained below each variable. AR and FAM127A are two additional 
X-linked genes with DNA methylation occurring on the inactive X-
chromosome in females, and are dichotomized at a PMR value of 20, as 
indicated. PMR = Percent of Methylated Reference [292, 318]. Three major 
sample clusters are indicated on the right hand side in blue (consisting mostly 
of prenatal and young adult samples), black, consisting mostly of subjects 
over 40 years old with high density CpG island methylation, and red, mostly 
subjects over 40 years old with lower density CpG island methylation. 
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Figure 2. Four developmental profiles for cortical DNA methylation. (A) 
Associations of log-transformed PMR values (ln(PMR+1); y-axis) with age (x-
axis) for several representative genes. Trends are studied using linear 
regression. HOXA1 shows a linear association. MGMT-M2B shows a non-
linear shift, with the P-value referring to a T-test of the difference in mean 
methylation value for subjects under or over 50 years of age. For the biphasic 
linear trends of PAX8 and the ALU sequence ALU-M1B (Supplemental Table 
2)  the P-values refer to a test of change of slope. Green dots = controls, blue 
triangles = schizophrenia and red squares = Alzheimer’s subjects. (B) 
Schematic summary of the four different types (1-4, see text for details) of 
developmental methylation profiles in human temporal cortex across the 
lifespan (x-axis, B = birth), as illustrated by the representative examples in 
(A). (C) Listings and proportion of gene loci (total = 48; excluding AR and 
FAM127A which showed gender-specific methylation) that show significant 
age-dependent methylation changes: colors refer to the scheme in (B). Gray 
sector refers to the subset of loci without a significant age effect. N= 125 
subjects. All p-values are adjusted for diagnosis; *** p < 0.0001, ** p < 0.001, 
* p < 0.05. 
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Figure 3: Acceleration of age-associated DNA methylation changes in 
Alzheimer’s disease. Scatter plots showing age-associated methylation 
changes for SORBS3 and S100A2 across all ages. N = 125 subjects, 
including Alzheimer subjects (red squares), schizophrenics (blue triangles) 
and controls (green dots). P-values refer to T-tests for comparison of 
Alzheimer subjects versus all other subjects older than 60 years. One outlier 
(ID 2763, 104 years old, Suppl. Table 4) was omitted from the age-associated 
analyses. 
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Figure 4: Developmental and cellular expression pattern of DNMT3a in 
the cerebral cortex. (A) Representative immunoblotting of temporal cortex 
homogenates with anti-DNMT3a antibody (top) and β-actin as loading control 
(bottom). Left, fetal samples (gw = gestational week); right, child and adult 
brains (yrs = years) and, as positive control, murine embryonic carcinoma, 
“P19” cells. Notice expression of DNMT3a—indicated by a ~ 120 kDa band—
across  all ages. (B, C) Digitized images of temporal cortex nuclei from 1 year 
old infant, processed for DNMT3a (red) and NeuN (green) immunoreactivity 
and counterstained with DAPI. Notice numerous neuronal nuclei expressing 
both markers, including representative example marked by arrowhead. 
Occasional non-neuronal DNMT3a+ nucleus is marked by arrow. (D,E) show 
weak background staining and formalin fixation-related autofluorescence in 
negative controls processed without primary antibodies. (F-H) Images from 
layers III, IV and V of parallel sections from adult temporal cortex, stained for 
Nissl (F) or hybridized with digoxigenin-labeled DNMT3a antisense (G) or 
sense riboprobe (H). Notice in (G) robust expression of DNMT3a mRNA in a 
subset of layer III and V neurons. Images in B-E taken at with 20x objective. 
Bar (F-H) in H = 100 µm.  
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Figure 5: Age-related DNA methylation changes in differentiated 
neurons.  (A) Examples of nuclei stained with anti-NeuN (green) and 
counterstained with DAPI; arrowhead marks double-labeled cell. Notice 
absence of detectable background and autofluorescence in these samples 
that were processed without prior fixation (B) Representative FACS of unfixed 
NeuN labeled material similar to the one shown in (A) (top) and of negative 
control (bottom); blue dots mark sorted neuronal nuclei (NeuN+). (C) 
Heatmap showing methylation levels of neuronal DNA isolates for 10 different 
genes across the lifespan (range: 0.6 – 97 years). Each gene is grouped into 
quartiles (blue = 1 low, green = 2 medium-low, yellow = 3 medium high, red = 
4 high extent of methylation). The larger the number of samples with no 
detectable methylation, the fewer the number of observations coded green 
and yellow. White space = no data. * = p < 0.05 , Mann-Whitney U 
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permutation based on comparison of immature/young (0.6 – 16 years) to old 
(62 + years) samples. Notice that neuronal DNA from advanced age group 
shows significant increase in DNA methylation for 3/10 gene loci (PGR, SYK, 
HOXA1), but decreased levels at S100A2 locus.  
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