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Cell-Free Networking for Integrated Data and
Energy Transfer: Digital Twin based Double

Parameterized DQN For Energy Sustainability
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Abstract—Cell-free networking enables full cooperation among
distributed access points (APs). This paper focuses on reducing
the long-term energy consumption of a cell-free network in the
downlink integrated data and energy transfer (IDET) for achiev-
ing energy sustainability. The resultant design includes both the
AP classification on a large time-scale and the beamforming of the
APs on a small time-scale in order to simultaneously satisfy the
IDET requirements of data users and energy users. For dealing
with binary integer actions (AP classification) and continuous
actions (beamforming) together, we innovatively propose a stable
double parameterized deep-Q-network (DP-DQN), which can
be enhanced by a digital twin (DT) running in the intelligent
core processor (ICP) so as to achieve faster and more stable
convergence. Therefore, the cell-free network may avoid suffering
from performance fluctuation during the training process. The
simulation results demonstrate that our DP-DQN exceeds in
convergence compared to other benchmarks while guaranteeing
an optimal solution.

Index Terms—Cell-free networking, integrated data and energy
transfer (IDET), mixed time-scale, beamforming, AP classifica-
tion, deep reinforcement learning (DRL), double parameterized
deep-Q-network (DP-DQN), digital twin (DT).

I. INTRODUCTION

A. Backgrounds and Motivations

As future communication systems go to higher frequency
bands, wireless networks will become denser than ever before
in order to maintain effective coverage. However, powering
these densely deployed access points (APs) may consume
huge energy. Moreover, miniature devices will be massively
deployed for realizing the vision of Internet of Everything
(IoE). However, limited battery capacities cannot support
their long-life operations [1]–[3]. In order to address these
two issues, we have to achieve energy sustainability 1) by
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providing integrated data and energy transfer (IDET) services
to miniature IoE devices and 2) by reducing network energy
consumption [4].

Apart from conventional wireless data transfer (WDT),
IDET can also provide on-demand wireless energy transfer
(WET) towards low-power IoE devices [5]–[7]. Therefore,
they may maintain long operational cycles. Traditional hetero-
geneous networks (HetNet) consist of base stations with dif-
ferent capabilities, which yields small-cells, pico-cells, macro-
cells and etc. However, all these base stations cannot be
coordinated together, which results in severe mutual interfer-
ence [8]–[10]. By contrast, cell-free networking is capable of
enabling full-cooperation among the densely deployed APs
[11]. Its inherent spatial diversity may significantly increase
the spectrum efficiency of the WDT [12], while compensating
the channel attenuation of the WET [13].

Unfortunately, transceiving design for IDET in cell-free
networks results in a large-scale optimization problem with
numerous variables. Conventional algorithms with high com-
plexity are not suitable in such fast-changing environment,
they cannot achieve long-term performance optimization [14].
Hence, many deep learning (DL) based solutions are relied
upon. Once well-trained, DL algorithms output optimal solu-
tions in a polynomial complexity.

Though a well-trained DL algorithm operates efficiently, the
time-consuming training process is frustrating. Thankfully as
a new infrastructure in 6G [15]–[17], digital twin (DT) can
be relied upon for speeding up the training process with the
virtual but accurate environmental data generated by itself.

B. Related Works

Cell-free networking has attracted great attention [18]–[22].
Attarifar et al. [18] proposed a modified conjugate beamform-
ing design, which effectively canceled the self-interference
among users that shared an identical pilot sequence. Therefore,
the signal-to-interference-ratio (SIR) was substantially im-
proved. In [19], a more fundamental power allocation problem
was solved by an iterative algorithm for maximizing the total
EE. In their scheme, a sum-power constraint indicating the
coordination cost of the distributed APs should not be violated
while quality-of-service (QoS) constraints of all the users were
satisfied. Apart from WDT, cell-free networking aided WET
and IDET also attracted much attention. Specifically, Zhang
et al. [20] firstly analyzed the performance of both WET and
WDT towards IoE devices in a cell-free network. Moreover, in
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[21], APs collaboratively offered IDET services to IoE devices.
Tractable mathematical expressions were derived for downlink
WET and uplink WDT performance. Moreover, optimal power
control was found to maximize weighted sum of all the
signal-to-interference-plus-noise ratios (SINRs) in the uplink.
Furthermore, in [22], APs were classified as transmit-APs for
providing IDET services in the downlink and as receive-APs
for receiving information from uplink users.

Unfortunately the papers cited above all considered con-
ventional algorithms. Their high complexity cannot cope with
the fast-changing environment and they cannot achieve long-
term performance optimization. Therefore, deep reinforcement
learning (DRL) was relied upon for cell-free networks [23]–
[25]. Specifically, Luo et al. [23] proposed a model-free
method to design a power allocation scheme for maximiz-
ing the minimum rate among all the users, where deep
deterministic policy gradient (DDPG) based algorithm was
adopted to avoid overfitting. Moreover, network clustering
and hybrid beamsteering were jointly designed by a DRL
algorithm [24]. Furthermore, a scalable uplink beamforming
scheme was investigated by exploiting a distributed distri-
butional deterministic policy gradients (D4PG) algorithm in
cell-free networks [25]. Nevertheless, in order to obtain good
performance, the training of DRL based algorithms may take a
very long time. During the training, the attainable performance
of cell-free networks may not be satisfactory until the DRL
based algorithms converges.

By invoking digital twin (DT) network, we may solve
the training dilemma. DT networks may exactly emulate the
operation of their physical twins, such as wireless channels and
network topologies, and these characteristic can be completely
reproduced in the DT network via state of the art tech-
niques, such as generative adversarial network (GAN) [26]–
[28]. Comprised of a generator network and a discriminator
network, GAN is widely used in image processing [26].
However, the idea that generator produces authentic data while
discriminator distinguishes is also suitable for channel predic-
tion. In [27], Ye et al. proposed a conditional GAN to estimate
instantaneous channel transfer function, and Xiao et al. [28]
designed a ChannelGAN generating fake channel based on
real counterpart. Many works deployed DRL algorithm in the
DT to learn from its generating data [29]–[31], but some
flaws are listed: 1) A perfect DT without estimation error
is considered, which is impractical; 2) The promising data-
generating capacity of DT is not expressed, which should have
been considered in data-driven DRL algorithm.

Some drawbacks in the existing works are summarized as
below: 1) Most of the works about cell-free networking only
focused on instantaneous performance optimization, such as
[19] and [20]. None of them considered long-term design ob-
jectives. 2) All the APs were assumed to have exactly the same
functions, either WDT or IDET. However, this setting imposed
heavy tele-traffic on the limited fronthaul, since data services
had to be delivered to all the APs for enabling full-cooperation.
Dynamic AP classification according to their WDT and WET
functions was not considered. 3) Although some pioneers
introduced DT [27], [28], none of them considered the DT
in cell-free networking. 4) The effect of the DT on the

system performance was always ignored, and the application
of DT was not illustrated clearly. Neither its advantages nor
disadvantages were demonstrated.

C. Novel Contributions

Against this background, our novel contributions are sum-
marized as follows:
• A cell-free network supporting both energy users (EUs)

and data users (DUs) is studied, which includes dis-
tributed APs and a central intelligent core processor
(ICP). In order to achieve the energy sustainability in
the cell-free network, the long-term network energy con-
sumption of the whole cell-free network for downlink
IDET is minimized by optimally classifying all the APs
either in a WDT set or in a WET set and by optimally
designing the transmit beamformers of all the APs.

• The long-term network energy consumption is comprised
of both the energy consumed for updating the cell-free
network and that for transmitting downlink signals, where
the mixed time-scale design is considered along with
long-term users’ requirements. A novel double param-
eterized deep-Q-network (DP-DQN) is proposed to solve
the above optimization problem with mixed integer and
continuous variables. Moreover, a double-DNN structure
is relied upon for improving the convergence.

• An imperfect digital twin (DT) of the physical cell-free
network is invoked to assist the DP-DQN. The well-
constructed DT generates virtual CSI with prediction
errors, which is considered in the signal model and the
problem formulation. The virtual CSI is relied upon for
training the DP-DQN. Although we suffer from some
performance degradation with the imperfect DT, it helps
the DP-DQN algorithm to achieve a faster and more
stable convergence.

The remainder of this paper is organized as follows. Section
II depicts the system model, while the optimization problem is
formulated in Section III. After introducing our DT based DP-
DQN solution in Section IV, we present the simulation results
in Section V. Finally, our paper is concluded in Section VI.

Notation: (·)∗ stands for the conjugate operation of a
matrix, Tr(·) stands for the trace operation of a matrix and
|·| represents the cardinality of a set.

II. SYSTEM MODEL

A. Network Model

In a cell-free network of Fig. 1, L APs constitute a set
of L = {APl | l = 1, · · · , L}. Every AP is equipped with
N antennas. All the APs are connected to a centralized
intellectual core processor (ICP) via the fronthaul with limited
capacity. The locations of APs are fixed. The ICP jointly
coordinates all the APs to support a data user (DU) set
K = {DUk | k = 1, · · · ,K} and an energy user (EU) set
M = {EUm | m = 1, · · · ,M}. All the DUs and EUs are
equipped wtih a single antenna. We ignore the mobility of DUs
and EUs and assume their static location as they are generally
some miniature sensors in our WDT and WET scenario [20].
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Fig. 1. A cell-free network empowered by Digital Twin based DP-DQN.

Given a transmission frame t, all the APs are dynamically
classified into two sets, namely a set LWDT (t) for downlink
WDT towards the DUs, and a set LWET (t) for downlink
WET towards the EUs. Note that AP classification should
not be instantaneously changed in every transmission frame
so as to avoid excessive computational burdens on the ICP.
After the AP classification, all the APs in the WDT set and
those in the WET set may carefully form downlink beams for
providing IDET towards both the DUs and the EUs. Note that
the beamforming design should be dynamically adjusted in
line with the instantaneous channel state information in every
transmission frame. The instantaneous CSI in the physical
network is collected at every transmission frame via the
fronthaul. As a result, the ICP responses with a real-time
transmission strategy. The APs in LWET (t) only need to
receive control signalling from the ICP for downlink WET,
but those in LWDT (t) further request for the data flows.

B. Time-Varying Channel

Let hl,k(t) ∈ C1×N denotes the channel between APl and
DUk for instance, we have

hl,k(t) =

√
1

PLl,k
gl,k(t) = λhl,k(t− 1) +

√
1− λ2

PLl,k
δ, (1)

which includes the path-loss PLl,k 1, the small-scale fading
gl,k(t) [11], the temporal correlation factor λ 2 and the random
difference δ ∼ CN (0, IN ) with an N×N identity matrix IN .
The same channel model hl,m(t) is applied for APl and EUm.
Moreover, we assume block fading for all the channels in the
cell-free network.

C. Digital Twin

A DT of the physical cell-free network is implemented at
the ICP, in which all the APs, DUs and EUs have their own

1Note that the movement of the users result in the dynamic distance between
APl and DUk , which can be captured by the path-loss PLl,k in our channel
model.

2The temporally correlated small-scale fading reflects the movement of the
users. The temporal correlation factor λ is determined by the Doppler shift.

Digital Twin Network

frames of real CSI

Real CSI collected 

are fed to DT 

Virtual CSI generated 

are fed to DP-DQN

          frames of real CSI 

Virtual CSI data generated 

for the future          frames 

can be used to train the 

DP-DQN algorithm. 

DP-DQN aided

transmission strategy

                     

Fig. 2. Operation of DT in enhancing DRL base algorithm.

digital versions as depicted in Fig. 1. Up-to-date real CSI
is collected and stored by the ICP at each frame. The ICP
utilizes the collected historical real CSI data to train the DT.
Therefore, the DT is capable of generating virtual CSI data
with high accuracy [32] to train the transmission strategy (DP-
DQN algorithm), which may quickly converge. If the virtual
CSI data generated by the DT becomes inaccurate, the latest
real CSI data stored at the ICP can be used to re-train the DT.
Moreover, when the ICP collects the instantaneous real CSI
data from the distributed APs, they are fed to the well-trained
DP-DQN algorithm, which returns us a timely transmission
strategy of the physical cell-free network.

Due to its imperfection, the virtual CSI generated by the
DT can be expressed as

ĥl,k(t) =
√

1− ζhl,k(t) +
√
ζδDTl,k , (2)

where
√
ζδDTl,k is the random error between the virtual CSI

ĥl,k(t) and the real CSI hl,k(t). Note that ζ is the normalized
error coefficient and δDTl,k ∼ CN (0,

√
1

PLl,k
IN ) is a complex

random vector. A well-constructed DT is capable of providing
abundant virtual CSI data to accelerate the training of our
DRL based algorithms (DP-DQN). The DT may generate TDT
frames of the virtual CSI data, when TR frames of the real
CSI data are uploaded from the physical cell-free network.
The operation of DT is specified in Fig. 2.

Note that given a specific value of TR, a longer TDT may
result in a higher ζ [33]. However, by exploiting the state of
the art technique of time-series data generation, the mismatch
between the real CSI and the virtual CSI can be controlled
[28]. For example, given TR = 200 frames of the real CSI
data, the DT may generate as high as TDT = 500 frames of
the virtual CSI data with a super low bias [28]. Having the
abundant virtual CSI data, the transmission strategy can be
quickly trained to converge, since we do not need to wait for
the collection of the real CSI data.
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III. PROBLEM FORMULATION

A. WDT and WET Performance

Given a certain transmission frame t, we define ωl,k(t) ∈
CN×1 as the beamformer from APl to DUk. APl may be
classified into either LWET (t) or LWDT (t). Therefore the
beamforming matrix Ωl(t) of APl to be designed is expressed
as

Ωl(t) =
(
ωl,1(t) , · · · , ωl,K(t)

)
, (3)

which includes the beamformers towards all the DUs. The
signal received by DUk is expressed as

yk(t) =
∑
l∈L

K∑
k′=1

ĥl,k(t)ωl,k′(t)xk′(t) + nk(t)

=
∑

l∈LWDT (t)

√
1− ζhl,k(t)ωl,k(t)xk(t)

︸ ︷︷ ︸
desired signal

+
∑

l∈LWDT (t)

K∑
k′ 6=k

√
1− ζhl,k(t)ωl,k′(t)xk′(t)︸ ︷︷ ︸

interference from WDT APs

+
∑

l∈LWET (t)

K∑
k′=1

√
1− ζhl,k(t)ωl,k′(t)x(t)

︸ ︷︷ ︸
interference from WET APs

+
∑

l∈LWDT (t)

K∑
k′=1

√
ζδDTl,k ωl,k′(t)xk′(t)︸ ︷︷ ︸

DT channel error from WDT APs

+
∑

l∈LWET (t)

K∑
k′=1

√
ζδDTl,k ωl,k′(t)x(t)

︸ ︷︷ ︸
DT channel error from WET APs

+nk(t),

(4)

where xk(t) ∼ CN (0, 1) is the modulated signal requested by
DUk, while x(t) ∼ CN (0, 1) denotes the dedicated downlink
WET signal. Moreover, nk(t) ∼ CN (0, σ2

k) represents the
additive noise. Based on Eq. (4), the SINR of DUk can be
derived as:

γk(t) =
(1− ζ)

∑
l∈LWDT

[
hl,k(t)ωl,k(t)ω∗l,k(t)h∗l,k(t)

]
Ik + Uk + σ2

k

,

(5)
where the signal interference Ik is expressed as

Ik = (1− ζ)
∑

l∈LWDT (t)

K∑
k′ 6=k

[
hl,k(t)ωl,k′(t)ω

∗
l,k′(t)h

∗
l,k(t)

]
+ (1− ζ)

∑
l∈LWET (t)

K∑
k′=1

[
hl,k(t)ωl,k′(t)ω

∗
l,k′(t)h

∗
l,k(t)

]
.

(6)
Moreover, the uncertainty Uk between the virtual and the real
CSI is expressed as

Uk =
∑
l∈L

ζ

PLl,k

K∑
k′=1

[
ωl,k′(t)ω

∗
l,k′(t)

]
. (7)

Hence, given a bandwidth B, the throughput of DUk is
obtained as

Rk(t) = B log2 (1 + γk) . (8)

With a noise nm(t) ∼ CN (0, σ2
m), the signal received by

EUm is expressed as

ym(t) =
∑

l∈LWET (t)

K∑
k=1

ĥl,m(t)ωl,k(t)x(t)

︸ ︷︷ ︸
signal from WET APs

+
∑

l∈LWDT (t)

K∑
k=1

ĥl,m(t)ωl,k(t)xk(t)

︸ ︷︷ ︸
signal from WDT APs

+nm(t).

(9)

Moreover, given a single transmission frame with a length
of τs and a linear energy conversion efficiency µe [34],
the amount of energy harvested by EUm during the t-th
transmission frame is given by 3

Em(t) = τsµe

{∑
l∈L

K∑
k=1

[
ĥl,m(t)ωl,k(t)ω∗l,k(t)ĥ∗l,m(t)

]
+ σ2

m

}
.

(10)
The energy harvested by the EUs can be used for data sensing
and data transmission [36], [37].

There are two types of information flows in the fronthaul.
The first one is the data flow requested by all the DUs. The
other one is the control signalling flow for notifying the APs
about the AP classification and the beamforming scheme,
which is negligibly small compared to the data flow. Note
that data information flows requested by all the DUs may
be delivered to all the APs in the set of LWDT . Their total
throughput in the fronthaul is expressed as [38]

Rf (t) = |LWDT (t)|
K∑
k=1

Rk(t). (11)

Note that Rf (t) should not exceed the maximum capacity
Rmaxf .

B. Energy Consumption

The energy consumption of the cell-free network is consti-
tuted by signal transmissions and network updates. Note that
the energy consumption of all the APs for signal transmissions
in a single frame is formulated as

EAP (t) = τs

{∑
l∈L

K∑
k=1

Tr
[
ωl,k(t)ω∗l,k(t)

]}
. (12)

When the AP classification and the beamforming are
changed, energy is consumed for the corresponding network
updates. As exemplified in Fig. 3, we first define a binary

3In line with [35], we reasonably assume that the impact of the inaccurate
virtual CSI in the DT on the energy harvesting performance can be incorpo-
rated into the energy conversion efficiency µe.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3258143

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on May 04,2023 at 11:43:43 UTC from IEEE Xplore.  Restrictions apply. 



5

Transmission Frame = t

WDT AP

AP1

WDT AP

AP1

WDT AP

AP2

WDT AP

AP2

WDT AP

AP3

WDT AP

AP3

WET AP

AP4

WET AP

AP4

WDT AP

AP1

WDT AP

AP2

WDT AP

AP3

WET AP

AP4

Transmission Frame = t

WDT AP

AP1

WDT AP

AP2

WDT AP

AP3

WET AP

AP4

Transmission Frame = t-1

WDT AP

AP1

WDT AP

AP1

WDT AP

AP2

WDT AP

AP2

WET AP

AP3

WET AP

AP3

WDT AP

AP4

WDT AP

AP4

WDT AP

AP1

WDT AP

AP2

WET AP

AP3

WDT AP

AP4

Transmission Frame = t-1

WDT AP

AP1

WDT AP

AP2

WET AP

AP3

WDT AP

AP4

Transmission Frame = t

WDT AP

AP1

WDT AP

AP1

WDT AP

AP2

WDT AP

AP2

WET AP

AP3

WET AP

AP3

WDT AP

AP4

WDT AP

AP4

WDT AP

AP1

WDT AP

AP2

WET AP

AP3

WDT AP

AP4

Transmission Frame = t

WDT AP

AP1

WDT AP

AP2

WET AP

AP3

WDT AP

AP4

( )

( )

( ) 1, 2, 3

( ) 4

WDT

WET

t AP AP AP

t AP

=

=

(( ) (WDWDWDWDWDT
)) (

(( ) (WEWEWEWEWET
)) (

( )

( )

( 1) 1, 2, 4

( 1) 3

WDT

WET

t AP AP AP

t AP

- =

- =

( 1)
WDWDWDWDWDT

1)1)1)

( 1)
WEWEWEWET

1)1)1)

( ) 0tu =

( )

( )

( ) 1, 2, 4

( ) 3

WDT

WET

t AP AP AP

t AP

=

=

(( ) (WDWDWDWDT
)) (

(( ) (WEWEWEWET
)) (

( )

( )

( 1) 1, 2, 4

( 1) 3

WDT

WET

t AP AP AP

t AP

- =

- =

( 1)
WDWDWDWDWDT

1)1)1)

( 1)
WEWEWEWEWET

1)1)1)

( ) 1tu =

Transmission Frame = t-1

WDT AP

AP1

WDT AP

AP1

WDT AP

AP2

WDT AP

AP2

WET AP

AP3

WET AP

AP3

WDT AP

AP4

WDT AP

AP4

Transmission Frame = t-1

WDT AP

AP1

WDT AP

AP2

WET AP

AP3

WDT AP

AP4

Transmission Frame = t

WDT AP

AP1

WDT AP

AP1

WDT AP

AP2

WDT AP

AP2

WDT AP

AP3

WDT AP

AP3

WET AP

AP4

WET AP

AP4

WDT AP

AP1

WDT AP

AP2

WDT AP

AP3

WET AP

AP4

Transmission Frame = t

WDT AP

AP1

WDT AP

AP2

WDT AP

AP3

WET AP

AP4( )

( )

( ) 1, 2, 3

( ) 4

WDT

WET

t AP AP AP

t AP

=

=

(( ) (WDWDWDWDWDT
)) (

(( ) (WEWEWEWEWET
) (

Transmission Frame = t-1

WDT AP

AP1

WDT AP

AP1

WET AP

AP2

WET AP

AP2

WET AP

AP3

WET AP

AP3

WDT AP

AP4

WDT AP

AP4

Transmission Frame = t-1

WDT AP

AP1

WET AP

AP2

WET AP

AP3

WDT AP

AP4

( )

( )

( 1) 1, 4

( 1) 2, 3

WDT

WET

t AP AP

t AP AP

- =

- =

( 1)
WDWDWDWDWDT

1)1)1)

( 1)
WEWEWEWEWET

1)1)1)

( ) 0tu =

No update

Update case Update case

Fig. 3. AP classification and its updating.

indicator υ(t) to represent whether the AP classification is
changed or not, which is expressed as

υ(t) =

1,
LWDT (t) = LWDT (t− 1)

and LWET (t) = LWET (t− 1),

0, otherwise.
(13)

Generally, we adopt a novel two-dimensional correlation
coefficient [39] r [A(t),A(t− 1)] to evaluate the correlation
between matrices A(t) and A(t− 1), which is defined as Eq.
(14) shown at the bottom of this page, where A(t) and A(t−1)
have the same size and (·)tmn represents the element in the m-
th row and the n-th column of the corresponding matrix at t-th
frame, whereas A(t) and A(t−1) represent the average of all
the elements in the corresponding matrices. Based on Eqs. (3)
and (14), we define the correlation coefficient µl(t) between
the beamforming matrices Ωl(t− 1) and Ωl(t) of the l-th AP
as

µl(t) =
r [Ωl(t− 1),Ωl(t)] + 1

2
,∀l ∈ L. (15)

As a result, we define the energy consumption for changing
the AP classification as ρv in a signal transmission frame.
Note that classifying distributed APs into either LWET (t) or
LWDT (t) sets always results in an NP-hard integer-variable
optimization problem. It may totally alter user association,
beamforming design and fronthaul transmission for all the
APs. Therefore, changing the AP classification consumes more
energy in computing the optimization problem, in updating
beamforming and delivering data content to APs. By contrast,
only updating the beamforming design of an AP without any
change on the AP classification thus consume less energy,
which is defined as ρµ,l. This energy consumption is for
computing a low-complexity continuous-variable optimization
problem, and for updating circuit components, such as convert-
ers, mixers and filters [40]. Then, the total energy consumption

for the network update in the t-th transmission frame is
formulated as

Eupdate(t) = ρυ [1− υ(t)] +

L∑
l=1

ρµ,l [1− µl(t)] . (16)

Note that in a cell-free network, all the instantaneous real
CSI data are uploaded to the ICP for central coordination and
stored for training the DT to generate accurate virtual CSI data.
If the virtual CSI data generated by the DT become inaccurate,
the historical real CSI data stored at the ICP can be used to
re-train the DT. Since the DT is also implemented at the ICP,
there is actually no extra cost of transferring the historical
CSI data to the DT. Moreover, compared to the data flows
requested by the DUs in the fronthaul, the instantaneous real
CSI data is negligibly small. As a result, we ignore the cost
of uploading real CSI data in the fronthaul [25], [41].

Finally, the network energy consumption is Enet(t) =
EAP (t) + Eupdate(t).

C. Optimization Problem

We aim for minimizing the long-term network energy con-
sumption by optimizing the AP classification and their beam-
forming design in every transmission frame, while satisfying
the DUs’ WDT requirements and the EUs’ WET requirements.
Moreover, tele-traffic in the fronthaul should not exceed its
maximum capacity. The optimization problem is formulated
as

(P1): minLWDT (t),LWET (t),W(t),
∀t = {1, · · · , T}


lim
T→∞

1

T

T∑
t=1

Enet(t)

(17)

s.t. lim
T→∞

1

T

T∑
t=1

Rk(t) ≥ Rmink ,∀k ∈ K, (17a)

lim
T→∞

1

T

T∑
t=1

Em(t) ≥ Eminm ,∀m ∈M, (17b)

{LWDT (t) ∩ LWET (t) = ∅}
∩ {LWDT (t) ∪ LWET (t) = L}, t = {1, · · · , T} ,

(17c)
Rf (t) ≤ Rmaxf , t = {1, · · · , T} , (17d)
K∑
k=1

Tr
[
ωl,k(t)ω∗l,k(t)

]
≤ P (l)

max,∀l ∈ L, t = {1, · · · , T} ,

(17e)

where we have W(t) = [Ω1(t), · · · ,ΩL(t)] as an integrated
matrix of size N × KL. In (P1), Eqs. (17a) and (17b)
represent the long-term average constraints on DUs’ WDT
requirements and EUs’ WET requirements, respectively. Eq.

r [A(t),A(t− 1)] =

∑
m

∑
n

(
At
mn −A(t)

) (
At−1
mn −A(t− 1)

)√(∑
m

∑
n

(
At
mn −A(t)

)2)(∑
m

∑
n

(
At−1
mn −A(t− 1)

)2) , (14)
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(17c) represents that all the APs are classified into either the
WDT set LWDT (t) or the WET set LWET (t), while these two
sets have no intersection. Eq. (17d) represents the throughput
constraint on the fronthaul, while Eq. (17e) represents the
instantaneous transmit power constraints on all the APs.

D. Problem Reformulation
According to Section III-C, we focused on energy con-

sumption {Enet(t)} in the long run, while guaranteeing the
DUs’ and EUs’ long-term requirements, namely {Rmink } and
{Eminm }. Sequential decisions on the beamforming design
{W(t)} and the AP classification {LWDT (t),LWET (t)} are
made according to the temporally correlated channel {hl,k(t)}
in Eq. (1). Specifically, when the CSI {hl,k(t− 1)} at the
(t − 1)-th transmission frame is given, {hl,k(t)} at the t-th
time-slot is only determined by {hl,k(t− 1)}. This inherent
Markov property enables us to formulate our optimization
problem as a Markov decision process (MDP) [14] through
state, action and reward design 4. Therefore, a DRL based
algorithm can be invoked as a solution. The specific state,
action and reward design according to (P1) is given as follow:

1) State: Both the SINRs of K DUs and energy harvested
by M EUs in the (t− 1)-th frame are invoked to model the
environmental state in the t-th frame, which is expressed as

st =

[
γ1(t− 1), · · · , γK(t− 1),
E1(t− 1), · · · , EM (t− 1)

]
∈ S, (18)

where S represents the state space.
2) Action: In the optimization variables of (P1), namely

[{LWDT (t),LWET (t)} ,W(t)], the AP classification
{LWDT (t),LWET (t)} can be encoded as a binary vector
c(t) = [c1(t), · · · , cL(t)], where cl(t) = 0 represents that
APl is classified into the WET set LWET (t), otherwise,
it is classified into the WDT set LWDT (t). Moreover, the
indicator variable v (t) equals to 1 when c(t− 1) = c(t) and
0 otherwise. A hybrid action then is obtained as

at = [{LWDT (t),LWET (t)} ,W(t)] = [c(t),W(t)] ∈ A,
(19)

where A represents the hybrid action space. In a practical
system, the beamformers W(t) are selected from a pre-
designed discrete codebook. Our DP-DQN can degenerate to
a traditional DQN to output discrete beamformers. However,
the optimality of the performance is inevitably degraded.

3) Reward: The objective of (P1) is to minimize the long-
term network energy consumption. However, predicting the
long-term performance is difficult and unreliable. Therefore, a
new metric replaces the original objective in the reward design,
which is expressed as

∆Enet(t) = Enet(t)−
1

T0

t−1∑
t′=t−T0

Enet(t
′), (20)

4A MDP can be represented by a tuple (S,A,P,R, γ), where S is the
state space, A is the action space, R : S × A → R is the expected reward
of performing action a at state s, and P is the transition probability function.
Note that P (s′|s, a) ∈ [0, 1] is the probability that state s transits to state
s′ by selecting action a [25]. γ is the discount factor used for accumulating
expected rewards, which aims at a long-term return. Markov property defined
as P (st+1 = s′|st, at, st−1, at−1, · · · , s0, a0) = P (st+1 = s′|st, at) is
satisfied in our state, action and reward design.

where T0 is the length of a number of observation frames.
Considering the network energy consumption Enet(t) at frame
t, it is compared to the average 1

T0

∑t−1
t′=t−T0

Enet(t
′) over the

past T0 transmission frames, which yields the following reward
function:

φo(t) =

{
ψ+
o |∆Enet(t)| , ∆Enet(t) ≤ 0,

−ψ−o |∆Enet(t)| , otherwise.
(21)

As shown in Eq. (21), the cell-free network is encouraged to
reduce the energy consumption Enet(t) in the current frame
t, which may return a positive reward. Therefore, we may
heuristically reduce the long-term energy consumption.

Besides, we have to satisfy the series of constraints Eqs.
(17a) - (17e) in (P1). We similarly define the reward related
to the WDT performance of DUk as

φWDT,k(t) =

{
ψ+
WDT,k

∣∣Rk(t)−Rmink

∣∣ , (17a) holds,
−ψ−WDT,k

∣∣Rk(t)−Rmink

∣∣ , otherwise,
(22)

while that related to the WET performance of EUm is defined
as

φWET,m(t) =

{
ψ+
WET,m

∣∣Em(t)− Eminm

∣∣ , (17b) holds,
−ψ−WET,m

∣∣Em(t)− Eminm

∣∣ , otherwise.
(23)

Note that a specific action may win a reward, if it contributes
to the long-term objective and constraints, as shown in the first
lines of Eqs. (21), (22) and (23), while it may also receive a
penalty (negative reward), when temporarily violating these
objective and constraints, as shown in the second lines of
Eqs. (21), (22) and (23). Note that actions incurring penalties
are also acceptable, since temporarily violating the long-term
objective and constraints in the current transmission frame can
be compensated in the following frames.

Moreover, the instantaneous constraints, such as Eqs. (17d)
and (17e), have to be strictly obeyed. Therefore, the reward
related to the fronthaul capacity constraint Eq. (17d) is ex-
pressed as

φf (t) =

{
0, (17d) holds,

−ψ−f
∣∣∣Rf (t)−Rmaxf

∣∣∣ , otherwise.
(24)

Moreover, the reward φAP,l(t) related to the transmit power
constraint Eq. (17e) is expressed as

φAP,l(t) =


0, (17e) holds,

−ψ−AP,l

∣∣∣∣∣
∑K
k=1 Tr

[
ωl,k(t)ω∗l,k(t)

]
−P (l)

max

∣∣∣∣∣ , otherwise.

(25)
To sum up, given a specific action at = [c(t),W(t)] at the
t-th transmission frame, the total reward is formulated as

rt =

K∑
k=1

φWDT,k(t) +

M∑
m=1

φWET,m(t)

+

L∑
l=1

φAP,l(t) + φo(t) + φf (t).

(26)

As a part of the total reward function in Eq. (26), Eq.
(21) encourage the cell-free network to pursue a minimum
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long-term energy consumption of (P1), while the other parts
in Eqs. (22)-(25) enforce the transmission strategy to sat-
isfy all the constraints of (P1). A total reward comprehen-
sively considers both the objective function and the con-
straints of the original optimization problem (P1). Note
that all the reward coefficients {ψ+

o , ψ
+
WDT,k, ψ

+
WET,m} and

{ψ−o , ψ−WDT,k, ψ
−
WET,m, ψ

−
f , ψ

−
AP,l} in Eqs. (21)-(25) are

positive values.

IV. DT BASED DRL ALGORITHM

Classic DQN and DDPG can not directly be adopted in our
problem since both discrete actions {c(t)} and continuous ac-
tions {W(t)} are considered. A novel DRL algorithm named
as parameterized-deep-Q-network (P-DQN) is then designed,
but it suffers a lot in stability and convergence. Therefore, an
enhanced double-parameterized-deep-Q-network (DP-DQN) is
further proposed by invoking the double network structure
and soft replace method. The application of DT in our DRL
algorithm improves the convergence in speed and stability.

A. Basic Principles of DQN and DDPG

Q-leaning is a value based reinforcement learning algorithm,
which chooses actions in a greedy manner by estimating the
Q-values in advance. Given a state s and an action a at
transmission frame t, the corresponding Q-value is defined as
the average discounted total reward rγt =

∑∞
k=t γ

k−tr (sk, ak)
so far, i.e., Q (s, a) = E [rγt | s1 = s, a1 = a], where r (sk, ak)
is the instantaneous reward and γ ∈ [0, 1] is the discount factor.
Moreover, Bellman equation is widely exploited for iteratively
calculating the Q-value, which is expressed as

Q (st, at) = E
st+1

[
r (s, a) + γ max

a′∈A
Q (st+1, a

′) | s = st, a = at

]
.

(27)
Optimal action is found for maximizing the Q-value in Eq.

(27). When the size of the state space S and that of the action
spaceA is very large, a deep-neural-network (DNN) is invoked
for approximating the Q-value as Q(s, a;θ) ≈ Q(s, a), where
a vector θ includes all weights in the DNN. This is known
as deep-Q-network (DQN) [42]. The vector θt at the t-th
transmission frame is updated by minimizing a loss function
expressed as

Lt(θ) =

{
r (st, at) + γmaxa′∈AQ (st+1, a

′;θt−1)
−Q (st, at;θ)

}2

.

(28)
As shown in Eqs. (27) and (28), in order to minimize

Lt(θ) for updating the weight vector θ in the DNN and to
maximize Q-value for finding the optimal action, we need to
exhaustively go through the entire discrete action space. When
a continuous action space is conceived, Q-function of Eq. (27)
is usually non-convex with respect to the action a. Finding its
maximum is an NP-hard problem. Therefore, DQN for Q-value
maximization cannot deal with a continuous action space.

By contrast, a policy gradient based method is invoked for
a continuous action space. A policy function π : S → P(A)
maps an input state to specific probability density function
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Fig. 4. DT enhanced P-DQN algorithm.

of continuous actions [43]. Let us define πθ (a | s) as the
probability density of action a conditioned on state s, when a
weight vector θ of the DNN is given. The objective function
J(πθ) = E [rγ1 | πθ] can be formulated as [44]

J (πθ) =

∫
S
ρπθ (s)

∫
A
πθ (a | s) r(s, a)dads

= Es∼ρπθ ,a∼πθ
[r(s, a)].

(29)

Note that Es∼ρπθ [·] denotes the expected value with respect
to discounted state distribution ρπθ expressed as ρπθ (s′) =∫
S
∑∞
t=1 γ

t−1p0(s)p (s′ | s, t, πθ) ds, where p0(s) represents
initial state probability density and p (s′ | s, t, πθ) represents
the probability density of a state transition from s to s′ in t
transmission frames with policy πθ.

If we invoke the deterministic policy gradient (DPG) the-
orem, the policy µθ : S → A directly returns the action
a ∈ A given state s ∈ S with a weight vector θ of the DNN.
Similarly, J (µθ) of a policy µθ is expressed as

J (µθ) =

∫
S
ρµθ (s)r (s, µθ(s)) ds = Es∼ρµθ [r (s, µθ(s))] ,

(30)
where ρµθ =

∫
S
∑∞
t=1 γ

t−1p0(s)p (s′ | s, t, µθ) ds is
the discounted state distribution. We then adjust θ in
the descent direction of the gradient ∇θJ (µθ) =

E
s∼ρµθ

[
∇θµθ(s)∇aQµθ (s, a)|a=µθ(s)

]
, where the Q-value

function is defined as Qµθ (s, a) = E [rγ1 | s1 = s, a1 = a;µθ].
The detailed proof can be found in [44]. In the gradient
∇θJ (µθ), Q-value function is invoked, which naturally com-
bines policy gradient method and value based method together,
leading to the well known DDPG [43].

B. Parameterized-DQN for Hybrid Action

By jointly considering the classic DQN and DDPG algo-
rithms, the framework of parameterized DQN (P-DQN) [45]
to solve (P1) with a hybrid action space is illustrated in Fig.
4. Moreover, the application of DT is also depicted.

The Q-value is reformulated as Q(s, a) = Q (s, c,W),
where the discrete action c ∈ C represents the AP classification
scheme and the continuous action W ∈ W represents the
transmit beamforming matrices of all the APs. The Bellman
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Algorithm 1 Parameterized Deep Q-Network (P-DQN) En-
hanced by DT
1: Initialize mini-batch size Bs, replay buffer R, learning rate lrQ and lrP , learn

frame length x and discount factor γ.
2: Set DT generating frame length TDT and corresponding normalized error coefficient
ζ.

3: Set greedy threshold ε, exploration policy ξc and ξW .
4: Randomly initialize Q-value network Q

(
s, c,W; θQ

)
and deterministic policy

network WQ
(
s, c; θP

)
with weights θQ0 and θP0 .

5: Generate a random action [c(0),W(0)] and a random virtual CSI leading to initial
state s1.

6: for episode = 1 to Max-episode do
7: Send TR real CSI to DT and obtain the following TDT virtual CSI.
8: for frame t = 1 to TDT do
9: Choose continuous action Wc ← WQ

(
st, c; θ

P
t−1

)
for each discrete

action c ∈ C.
10: Select discrete action c∗ ← argmaxc∈C Q

(
st, c,Wc; θ

Q
t−1

)
with

corresponding Wc∗ .
11: Determine action at referring to the ε-greedy policy

at ←
{
[c∗ + ξc,Wc∗ + ξW] with probability ε,
[c∗,Wc∗ ] with probability 1− ε.

12: Take action at, observe reward rt = r(st, at) and the next state st+1.
13: Store the transition pair [st, at, rt, st+1] into R.

14: if b
t

x
c ∈ N and R is full then

15: Sample Bs transitions pair [sb, ab, rb, sb+1] randomly from R and
separate [c(b),W(b)] from ab.

16: Define yb ← rb +

γmaxc′∈C Q
[
sb+1, c

′,WQ
(
sb+1, c

′; θPt−1

)
; θQt−1

]
according

to Eq. (35).
17: Compute ∇

θQ
`Qt (θQ) and update weights by θQt ← θQt−1 +

lrQ∇θQ
`Qt (θQ) according to Eq. (34).

18: Compute ∇θP `
P
t (θP ) and update weights by θPt ← θPt−1 +

lrP∇θP `
P
t (θP ) according to Eq. (36).

19: Eliminate exploration by adjusting greedy threshold ε and exploration
policy ξc and ξW .

20: else
21: θQt ← θQt−1 and θPt ← θPt−1.
22: end if
23: end for
24: end for

equation of Eq. (27) is reformulated as Eq. (31) shown at
the bottom of this page. In Eq. (31), given a certain AP
classification scheme ci ∈ C, we try to find the transmit
beamforming matrices Wi that maximizes Q (st+1, ci,W

′)
as supW′∈W Q (st+1, ci,W

′) = Q (st+1, ci,Wi). Since the
cardinality |C| of the discrete action space is limited, we may
have Q(st+1, c

∗,W∗) maximizing {Q(st+1, ci,Wi) | ∀i =
1, · · · , |C|}, with its corresponding AP classification scheme
c∗ and the beamforming matrices W∗.

Now we focus on finding the optimal beamforming ma-
trix Wi for an AP classification scheme ci, when the
environmental state is s. This is expressed as Wi =
arg supW′∈W Q (s, ci,W

′). The resultant optimal beamform-
ing matrix can be regarded as a function WQ (s, ci) : S ×

C → W . Therefore, Eq. (31) can be further reformulated as
Eq. (32) shown at the bottom of this page. Note that Eq.
(32) is equivalent to Eq. (27), if the discrete action space
C is equivalent to A. Moreover, a DNN Q

(
s, c,W;θQ

)
with a weights vector θQ is invoked to approximate Eq.
(32) as Q

(
s, c,W;θQ

)
≈ Q (s, c,W). Furthermore, a

DNN WQ
(
s, c′;θP

)
with a weights vector θP is also

invoked to approximate the beamforming matrix that leads
to the supremum of the Q-function, which is expressed as
WQ

(
s, c;θP

)
≈ WQ (s, c). Therefore, Eq. (32) can be

reformulated as Eq. (33) shown at the bottom of this page.
Note that Q

(
s, c,W;θQ

)
is a Q-value based DNN, while

WQ
(
s, c;θP

)
is a deterministic policy based DNN. As a

result, they are effectively combined in the P-DQN. We then
inherit the principles of DQN and DDPG for updating the net-
work weights θQt and θPt at transmission frame t, respectively.
Similarly to Eq. (28), we update θQt by minimizing the loss
function as

θQt = arg min
θQ

`Qt (θQ) = arg min
θQ

{
Q
(
s, c,W;θQ

)
− yt

}2

,

(34)
where we have

yt = r (s, a) + γmax
c′∈C

Q
(
s′, c′,WQ

(
s′, c′;θPt−1

)
;θQt−1

)
.

(35)
Note that θPt−1 in Eq. (35) is fixed. Then, in order to maximize
the output of Q-value DNN Q

[
s, c,WQ

(
s, c;θPt−1

)
;θQt

]
with fixed weights θQt , the weights θP of the deterministic
policy DNN WQ

(
s, c;θP

)
are sequentially updated by min-

imizing its loss function as

θPt = arg min
θP

`Pt (θP )

= arg min
θP

{
−
∑
c∈C

Q
[
s, c,WQ

(
s, c;θP

)
;θQt

]}
.

(36)

By exploiting Eqs. (35) and (36), we can fix the weights in one
DNN and update the other via any gradient descent methods.
The training process of the P-DQN algorithm is detailed in
Algorithm 1.

C. Enhanced Double P-DQN

As portrayed in Fig. 4, the P-DQN has a deterministic policy
DNN WQ

(
s, c;θP

)
as an actor network for outputting the

Q (st, c,W) = E
st+1

[
r (s, a) + γmax

c′∈C
sup

W′∈W
Q (st+1, c

′,W′) | s = st, a = (c,W)

]
(31)

Q (st, c,W) = E
st+1

[
r (s, a) + γmax

c′∈C
Q
(
st+1, c

′,WQ (st+1, c
′)
)
| s = st, a = (c,W)

]
(32)

Q
(
st, c,W;θQ

)
= E
st+1

[
r (s, a) + γmax

c′∈C
Q
(
st+1, c

′,WQ
(
st+1, c

′;θP
)

;θQ
)
| s = st, a = (c,W)

]
(33)
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Fig. 5. Digital twin enabled DP-DQN algorithm. For simplicity, the double
DNNs structure is highlighted while other part the same as P-DQN is omitted.

action (partially though), while it also has a Q-value DNN
Q
(
s, c,W;θQ

)
outputting the judgment criteria in form of

Q-value as a critic network. Therefore, the P-DQN has a
natural actor-critic structure.

The weights θP and θQ in these two coupled DNNs
WQ

(
s, c;θP

)
and Q

(
s, c,W;θQ

)
are highly correlated as

shown in Algorithm 1, which leads to a poor convergence
performance during the iterative weights updating. In order
to improve the convergence, we further implement a target-
evaluate structure in the P-DQN. The original Q-value DNN
Q
(
s, c,W;θQ

)
operates as an evaluate network cooperat-

ing with a target peer Q′
(
s, c,W;θQ

′)
, while the original

policy DNN WQ
(
s, c;θP

)
also cooperates with a target

peer WQ′
(
s, c;θP

′)
. Specifically, these two evaluate DNNs

Q
(
s, c,W;θQ

)
and WQ

(
s, c;θP

)
calculate the Q-values

of the input actions and determine the optimal actions by
maximizing the Q-values. Moreover, the two target DNNs
Q′
(
s, c,W;θQ

′
)

and WQ′
(
s, c;θP

′
)

estimate the Q-values
at the next transmission frame. Note that we do not need to
train these two target DNNs, since they can be replaced by
their evaluate counterparts. Furthermore, the target DNNs are
partially substituted by the evaluate counterparts in an episode
of the training process, which is called soft target update.
The cooperation between evaluate DNNs and its target peer
greatly reduces over-estimations, resulting in more stable and
reliable learning [46]. The training process of the double-DNN
structure is depicted in Fig. 5 and the resultant DP-DQN is
detailed in Algorithm 2.

Compared to other classic DRL algorithms, such as the
DQN with a discrete action space and the DDPG with a
continuous action space, our DP-DQN is capable of solving

Algorithm 2 Double Parameterized Deep Q-Network (DP-
DQN) with Experience Replay
1: Initialize mini-batch size Bs, replay buffer R, learning rate lrQ and lrP , learning

interval x, discount factor γ and soft target update factor τ .
2: Set DT generating frame length TDT and corresponding normalized error coefficient
ζ.

3: Set greedy threshold ε, exploration policy ξc and ξW .
4: Randomly initialize Q-value network Q

(
s, c,W; θQ

)
and deterministic policy

network WQ
(
s, c; θP

)
with weights θQ0 and θP0 .

5: Assign target network Q′
(
s, c,W; θQ

′)
and WQ′

(
s, c; θP

′)
with θQ

′
←

θQ0 and θP
′
← θP0 .

6: Generate a random action [c(0),W(0)] and a random virtual CSI leading to initial
state s1.

7: for episode = 1 to Max-episode do
8: Send TR real CSI to DT and obtain the following TDT virtual CSI.
9: for frame t = 1 to TDT do

10: Choose continuous action Wc ← WQ
(
st, c; θ

P
t−1

)
for each discrete

action c ∈ C.
11: Select discrete action c∗ ← argmaxc∈C Q

(
st, c,Wc; θ

Q
t−1

)
with

corresponding Wc∗ .
12: Determine action at referring to the ε-greedy policy

at ←
{
[c∗ + ξc,Wc∗ + ξW] with probability ε,
[c∗,Wc∗ ] with probability 1− ε.

13: Take action at, observe reward rt = r(st, at) and the next state st+1.
14: Store the transition pair [st, at, rt, st+1] into R.

15: if b
t

x
c ∈ N then

16: Sample Bs transitions pair [sb, ab, rb, sb+1] randomly from R and
separate [c(b),W(b)] from ab.

17: Define yb ← rb +

γmaxc′∈C Q
′
[
sb+1, c

′,WQ′
(
sb+1, c

′; θP
′

t−1

)
; θQ

′
t−1

]
according to Eq. (35).

18: Compute ∇
θQ
`Qt (θQ) and update weights by θQt ← θQt−1 +

lrQ∇θQ
`Qt (θQ) according to Eq. (34).

19: Compute ∇θP `
P
t (θP ) and update weights by θPt ← θPt−1 +

lrP∇θP `
P
t (θP ) according to Eq. (36).

20: Soft target update by θQ
′

t = τθQt−1 + (1 − τ)θQ
′

t−1 and θP
′

t =

τθPt−1 + (1− τ)θP
′

t−1.
21: Eliminate exploration by adjusting greedy threshold ε and exploration

policy ξc and ξW .
22: else
23: θQt ← θQt−1, θPt ← θPt−1 and θQ

′
t ← θQ

′
t−1, θP

′
t ← θP

′
t−1.

24: end if
25: end for
26: end for

TABLE I
COMPARISON OF DRL ALGORITHMS

Action
space

DNNs
structure

DNNs
design Convergence

DQN Discrete Single Simple Fast but unstable
DDPG Continuous Double Moderate Slow but stable
P-DQN Mixed Single Complex Slow and unstable

DP-DQN Mixed Double Complex Slow but stable

the optimization with mixed action space. Moreover, by con-
sidering both the evaluate and the target DNNs, our DP-DQN
achieves more stable convergence than the P-DQN without
affecting the optimal performance. However, the discount
factor γ should be selected carefully, since it may affect the
efficiency of the double-DNN structure. We compare DQN,
DDPG, P-DQN and DP-DQN in TABLE I. Moreover, the slow
convergence of our DP-DQN can be effectively improved by
invoking the DT.

D. Complexity of DP-DQN

As a DRL based algorithm, the complexity of our DP-
DQN should be analyzed from two aspects, i.e., executing
complexity and training complexity. First, it should be noted
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that all DNNs in our algorithms are composed of basic
fully connected layers, and their complexities are determined
by the size of the input and output layers. Therefore, the
complexities of operating our policy DNN and value DNN
are O

(
KNL3

)
and O

(
K + L2 + LN

)
respectively. In the

execution, the policy DNN is operated L2 times to find the
maximum Q value as shown in Eq. (35), and in Line 10 of
Algorithm 2. The executing complexity of our DP-DQN is
then obtained as O

(
KNL5

)
. Training complexity is obtained

similarly, except that one more gradient-descent algorithm is
needed. As a typical gradient-descent algorithm, when the
interior-point method is invoked to train our DP-DQN [47],
the training complexity is O

(
(KNL3)3.5

)
in the worst case.

Note that the DP-DQN can be trained in the digital twin of
the cell-free network, which results in a quick convergence. In
practice, the well-trained DP-DQN only has a computational
complexity of O

(
KNL5

)
for outputting the optimal solution,

which is far lower than O
(
K3.5N3.5L5.5

)
of the conventional

mathematical optimization methods in [47] and [48].

V. SIMULATION RESULTS
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Fig. 6. Topology of the cell-free network in the simulation.

Geographic positions of three APs, two DUs and two EUs
in our simulation are portrayed in Fig. 6. All the APs are
equipped with three antennas, while DUs and EUs only have
a single antenna. The path loss model between APl and DUk
is expressed as

PLl,k = 32.45 + 20 lg f + 20 lg dl,k (dB) ,

where f is the carrier frequency and dl,k denotes the trans-
mission distance. The path-loss PLl,m between APl and EUm
obeys the same model. All the system parameters are provided
in TABLE II [11], [20], [36], [49].

Our DP-DQN is deployed in TensorFlow 1.0. All the results
are averaged in an episode, which contains TDT transmission
frames and is used for performance evaluation. We set the
observation frame length in Eq. (20) as T0 = TDT . Deter-
ministic policy DNNs have dense layers of 256 × 128 and
Q-value DNNs have dense layers of 256 × 128 × 64. More
parameters and all the reward coefficients can be found in
TABLE III. If not stated, all parameters are set according to

TABLE II
SYSTEM PARAMETERS

Parameter Value
Temporal correlation factor , λ 0.98
Carrier frequency, f 5GHz
System bandwidth, B 30MHz
Transmission frame length, τs 1ms
Fronthaul capacity, Rmaxf 25 Mbps
Energy consumption for updating AP classification, ρυ 2 mJ
Energy consumption for beamforming update of APl, ρµ,l 0.2 mJ, ∀l
Max Tx power of APs, P (l)

max 400 mW, ∀l
WDT requirement of DUs, Rmink 5 Mbps, ∀k
WET requirement of EUs, Eminm −27 dbm, ∀m
Noise power of DUs / UEs, σ2

k / σ2
m −90 dbm, ∀k,m

Energy conversion efficiency, µe 0.8
Collecting frame length, TR 200 frames
Generating frame length, TDT 400 frames
Normalized error coefficient, ζ 0.1

TABLE II and TABLE III. In all figures, the grey curves stand
for the exact performance in every episode, while the colorful
ones are obtained by invoking Savitzky-Golay (SG) filter [50].

A. Algorithm Comparison
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Fig. 7. Algorithm performance on network energy consumption and average
reward.

We first compare our DP-DQN algorithm with the following
three benchmarks: 1) P-DQN. 2) FIXED + CB: AP classifica-
tion is fixed, with one WDT AP and two WET AP, while the
conjugate beamforming is adopted in the downlink IDET [20].
3) RAND + CB: AP classification is random and associated
with conjugate beamforming as well [20]. Note that DT is not
applied in this comparison, so as to focus on the performance
of algorithms themselves. All four algorithms interact with the
same wireless environment.

The performance of the four algorithms is shown in Fig.
7. Observe from Fig. 7(a) that both P-DQN and the DP-
DQN based algorithms experience a learning progress and
intelligently adapt to the time-varying channel. Both of them
consume 0.5 mJ less energy than the other two static algo-
rithms, namely FIXED + CB and RAND + CB. Moreover, our
DP-DQN algorithm converges to the optimal strategy faster
than the P-DQN counterpart. By contrast, the FIXED + CB
and RAND + CB algorithms do not have training processes.
Their energy consumption is much higher than our DP-DQN
algorithm. We also evaluate their average reward in Fig. 7(b).
Except from the RAND + CB, all the other algorithms reach
satisfactory average reward, which indicates that these three
algorithms all satisfy the constraints on the fronthaul, the
DUs’ and EUs’ requirements. Fig. 7 demonstrates that, our
DP-DQN algorithm outperforms the P-DQN in convergence
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TABLE III
DRL PARAMETERS

Reward Parameter Value DRL Hyper Parameter Value
Network Energy consumption,

(
ψ+
o , ψ

−
o

)
(0.2, 2) Replay buffer size, R 2e4

WDT requirement,
(
ψ+
k , ψ

−
k

)
(1.5, 15), ∀k Mini-batch size, Bs 32

WET requirement,
(
ψ+
m, ψ

−
m

)
(0.5, 5), ∀m Discount factor, γ 0.5

Tx power of APs, ψ−AP,l 2, ∀l Soft target update factor, τ 5e−2

Fronthaul capacity, ψ−f 20 Q-value DNN learning rate, lrQ 5e−4

Policy DNN learning rate, lrP 5e−4

Learning interval, x 20
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Fig. 8. Algorithm performance on fronthaul throughput, update of beamform-
ing and AP classification.

and stability, since for a double-DNN structure is invoked.
Moreover, it consumes much less energy than both the FIXED
+ CB and the RAND + CB, given its advantage in long-term
objective optimization in dynamic environments.

Moreover, we evaluate on the fronthaul throughput and the
update of AP classification and beamforming strategies in Fig.
8. As shown in Fig. 8(a), only the DP-DQN algorithms ef-
fectively control the fronthaul throughput under its maximum
capacity by learning from experience and dynamically adjust-
ing their strategies, while the other three algorithms cannot
satisfy the fronthaul constraint. Then we investigate how the
AP classification and beamforming are updated with both the
P-DQN and DP-DQN in Fig. 8(b) and 8(c). Observe from Fig.
8(b), both of the P-DQN and the DP-DQN algorithms dynam-
ically adjust their beamforming strategies as the environment
dynamically change in the cell-free network. Our DP-DQN
chooses less correlated beamforming strategies in adjacent
transmission frames compared to P-DQN as both of them
converge after 300 epochs. Observe from Fig. 8(c) that DP-
DQN prefers to change the AP classification less frequently
than P-DQN. Therefore, our DP-DQN prefers to keep the
AP classification unchanged, but to dynamically update the
beamforming strategy, since changing the AP classification
consumes more energy. Moreover, observe from Fig. 8(c) that
the P-DQN converges more slowly than the DP-DQN, which
results in more energy consumption.
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Fig. 9. Performance of APs, DUs and EUs with DP-DQN.

B. DP-DQN Performance

Then we investigate the performance of APs, DUs and EUs
directed by the strategy of DP-DQN. Observe from Fig. 9(a)
that the average transmit power in each episode converges
after the training of the DP-DQN in 300 episodes and this
metric stays almost unchanged. Observe from Fig. 9(b) that
violations on the maximum transmit power constraint of every
AP occasionally appear during the training process, since the
DP-DQN explores all possible actions to find a better strategy.
These constraint violations are avoided after the training of 100
episodes. Observe from Fig. 9(c) and Fig. 9(d) that both the
WDT requirements of DUs and WET requirements of EUs are
generally satisfied in most of cases, although the constraints
are occasionally violated, as shown in the gray curves. The
reason is that ideal long-term metrics in constraints Eqs. (17a)
and (17b) are considered, but it is hard to evaluate them in
practice thus a compromise is made as in the reward design of
section IV-B. Moreover, the geographic distributions of DUs
and EUs also have impact on their individual performance,
when compared to constraints. In a practical deployment,
we can appropriately tighten these long-term constraints to
provide flexibility and robustness.

We also investigate the impact of different numbers of
APs, DUs and EUs on our DP-DQN algorithm. The network
consumption from 250-th to 350-th episodes are averaged as
in Fig. 10. Observe from Fig. 10 that when we only have 2
APs, the network energy consumption keeps unchanged as we
have more DUs and EUs. This is because both of the APs
have already operated with full-load. They do not have more
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Fig. 11. The impact of DT on the performance of DP-DQN.

power resources allocated for satisfying the requirements of
more DUs and EUs in the network. When we have more than
3 APs, more power resources can be allocated to satisfy the
requirements of more DUs and EUs. Therefore, the energy
consumption of the cell-free network increases, as we have
more DUs and EUs.

C. DT Application

We now investigate how the DT improves our DP-DQN
algorithm by evaluating the performance in the following three
settings:
• Perfect DT: In every actual time-slot, the perfect DT

generates virtual CSI data for the future TDT = 400
time-slots. There is no error at all between the virtual CSI
generated by the DT and the actual CSI, namely ζ = 0.
Our DP-DQN is trained with these additional virtual CSI
data in every actual time-slot.

• Imperfect DT: The imperfect DT generates the same
amount of virtual CSI data as the perfect one. However,
the error between the virtual CSI and the actual CSI
is considered, illustrated by ζ = 0.1. Our DP-DQN is
trained with these additional erroneous virtual CSI data
in every actual time-slot.

• Without DT: The DP-DQN is only trained on actual CSI
data fed back from the physical network in a single time-
slot. No additional virtual CSI data can be relied upon for
training.

Observe from Fig. 11(a) that both of the DP-DQN trained
in the perfect DT and imperfect DT converge faster than
that without the DT. Specifically, the DP-DQN with the DT
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Fig. 12. Effect of different discount factor γ in DP-DQN.

converges at the 50-th episode, while the counterpart without
the DT only converges at the 125-th episode. However, the the
DP-DQN trained in an imperfect DT consumes much more
energy than the others. This is because that extra energy is
consumed for compensating the influence brought by the error
in an imperfect DT. Moreover, Fig. 11(b) also demonstrates
the advantage of the DT in the rapid convergence. However
the DP-DQN trained in an imperfect DT obtained lower
reward, also indicating that the error in an imperfect DT bring
degradation in system performance in a comprehensive way.

D. Hyper parameter

Finally, we investigate the impact of the hyper parameters on
both the network energy consumption and the average reward.
In Fig. 12, all the other hyper parameters are identical except
the soft target update factor τ , which represents the percentage
of the weights in the evaluate DNN to be substituted by those
in the target DNN. Note that when τ → 1, the DP-DQN
gradually degrades into the P-DQN. Hence, a large τ may
bring fluctuation and bad convergence, since the prediction
relied upon the target DNNs is not stable for a frequent
substitutions. Moreover, reducing τ may not always result in
a better performance. This is because a very small τ greatly
eliminates the training effects and delays the convergence. A
carefully selected τ in the DP-DQN may generate the best
performance. Observe from Fig. 12(a) and Fig. 12(b) that when
we have τ = {0.05, 0.2}, the resultant system performance are
better than τ = {0.001, 0.8}.

VI. CONCLUSION AND FUTURE WORK

We aimed for minimizing the long-term energy consumption
of a cell-free network for providing integrated data and energy
transfer services by jointly designing the AP classification
and the transmit beamforming of all the APs. Based on both
the classic DQN and DDPG, an enhanced DP-DQN was
proposed to achieve more stable convergence. Moreover, an
imperfect DT generating virtual CSI with error was relied
upon for accelerating the convergence. Thorough simulation
results showed that in order to minimize the network energy
consumption, the DP-DQN updates the transmit beamforming
in a small time-scale, while updating the AP classification
in a large time-scale. Moreover, the advantage of the DP-
DQN over the P-DQN is demonstrated, in terms of the
attainable system performance and average reward. As an
important hyper parameter, the soft target update factor τ
was carefully selected. Furthermore, a more stable and faster
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convergence was achieve by our DT based DP-DQN with
subtle performance degradation.

There are still some open issues in digital twin aided
cell free networking. First of all, we need to establish an
accurate digital twin for a physical cell-free network. This
digital twin should be able to generate virtual CSI data with
a high accuracy by capturing multi-dimensional correlation of
actual CSI. Second, a digital twin should be able to regularly
interact with its physical counterpart in order to capture actual
dynamic of a physical cell-free network. Third, multi-agent
DRL may be invoked to form a distributed system for reducing
algorithmic complexity. Heavy tele-traffic in the fronthaul can
thus be substantially reduced.
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