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Abstract—The need for repeated calibration and accounting
for inter-subject variability is a major challenge for the prac-
tical applications of a brain-computer interface. The problem
becomes more challenging while decoding the brain signals of
stroke patients due to altered neurodynamics caused by lesions.
Recently, several deep learning architectures came into the
picture although they often failed to produce superior accuracy
as compared to the traditional approaches and mostly do not
follow an end-to-end architecture as they depend on custom
features. However, a few of them have the promising ability
to create more generalizable features in an end-to-end fashion
such as the popular EEGNet architecture. Although EEGNet was
applied for decoding stroke patients’ motor imagery (MI) data
its performance was as good as the traditional methods. [1] In
this study, we have augmented the EEGNet-based decoding by
introducing a post-processing step called the longest consecutive
repetition (LCR) in a sliding window-based approach and named
it EEGNet+LCR. The proposed approach was tested on a dataset
of 10 hemiparetic stroke patients’ MI data set yielding superior
performance against the only EEGNet and a more traditional
approach such as common spatial pattern (CSP)+support vector
machine (SVM) for both within- and cross-subject decoding
of MI signals. We also observed comparable and satisfactory
performance of the EEGNet+LCR in both the within- and cross-
subject categories which are rarely found in literature making
it a promising candidate to realize practically feasible BCI for
stroke rehabilitation.

Index Terms—Brain-computer interface, EEG, motor-imagery,
EEGNet, Deep learning, CNN, neurorehabilitation.

I. INTRODUCTION

One of the first attempts to use deep convolutional neural
network (CNN) for motor imagery (MI) classification was
made by Sakhavi et al. [2] where they used parallel linear
convolution with dynamic energy features to classify Brain-
computer interface competition (BCIC) IV-2a dataset. This
approach achieved a significantly better average accuracy of
70.6% over support vector machine (SVM) with static energy
features although a comparison with the state-of-the-art filter
bank common spatial pattern (FBCSP) [3] was not given. L
Zheng et al. [4] proposed the PSPD method to improve the
classification performance of MI which achieves an average
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classification accuracy of 84.51%, 84.10%, and 73.21% in
BCI Competition IV Dataset Ila, Dataset IIb and OpenBMI
dataset, respectively. Another study, done by Lu et al. [S]] used
restricted Boltzmann machine (RBM) on frequency domain
features of EEG to classify MI dataset of BCI Competition
IV-2b which showed significant improvement over FBCSP
with an average classification accuracy of 84% although the
kappa values were not reported as in [3]. Qun He et al. [6]]
proposed M2NN and MTL model to improve the recognition
rate and generalization ability of MI with the fusion of EEG.
This approach achieved an average accuracy of 82.11% across
29 subjects. Tang and Sun [7] used an in-house MI EEG
dataset of only two subjects to evaluate their deep CNN
architecture and hence comparison with the existing state-of-
the-art was not possible. At the same time, another work was
done by Taber and Halici [8] where they used CNN with
stacked autoencoders (CNN-SAE) on the BCI Competition
IV-2b dataset to produce the results. The average kappa value
reported for 10-fold cross-validation on all sessions was 0.547
which was slightly higher than the state-of-the-art FBCSP
algorithm [3] with an average kappa value 0.502. However, the
session-to-session accuracy in the case of FBCSP increased to
0.6 (winner of the competition) while in the case of CNN-
SAE the performance was reported to be decreased from the
average accuracy of 77.6% in 10-fold cross-validation on all
sessions to 75.1% in session-to-session transfer. This makes
the superiority of CNN-SAE inconclusive over FBCSP. Unlike
these two works ([7], [8]) where the spatiotemporal features
were used as inputs, Schirrmeister et al. [9]] used deep (ACNN)
and shallow CNN (sCNN) architectures to learn the features
which led to some improvement over the existing results
on BCIC IV-2a and 2b datasets. Interestingly, the shallow
CNN performed better than deep CNN and FBCSP, achieving
average decoding accuracy of 73.7% (+5.7% than FBCSP;
P-value<0.05) in BCIC IV-2a dataset and average kappa of
0.629 (+0.03 than FBCSP) in BCIC IV-2b while deep CNN
could only match the results of FBCSP. Overall, this work
at least established CNNs as a promising choice for end-to-
end MI decoding without depending on hand-crafted features
such as spatio temporal images. Another work was done by
T Shi et al. [10] for EEG feature extraction algorithm based
on common spatial pattern (CSP) and adaptive auto-regressive
(AAR) used for motor imagery classification, the simulation
results show that when a certain kind of motor imagery is
performed, the probability of the corresponding characteristic
signal value is the smallest. The robustness of BCI decoding
has also been improved by the application of novel time
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filters applied for SSVEP classification [[11]]. Feature selection
methods are also proposed to handle the non-stationarity in
EEG signals [12]. Some researchers took the approach of
combining different modalities such as P300 and SSVEP in a
hybrid-BCI fashion to enhance performance [13]]. In another
study, done by Q Yao, H Gu et al. [14] to process the 3-D
features for EEG emotion recognition, participant-dependent
and Participant-independent protocols are conducted to evalu-
ate the performance which yielded accuracies of 89.67% and
79.45%. The next important development in deep learning-
based BCI was the creation of EEGNet architecture by
Lawhern et al. [15] which explored the possibility of a
generalized compact CNN architecture across different BCI
paradigms including MI on BCIC-2a dataset. For within-
subject classification, the proposed EEGNet-8,2 architecture
performed equally well as FBCSP although the accuracies
were reported on a 4-fold cross-validation and not session-
to-session transfer. The study also found similar observation
as in [9] where a shallow CNN performed better than deep
CNN in within-subject case. However, in the cross-subject
case, all the CNN architectures (DeepCNN, ShallowCNN,
and EEGNet-8,2) gave a comparable performance while only
a marginal (not significant) improvement over FBCSP was
observed. Moreover, as the session-to-session performance
was not reported in this study, a direct comparison with the
previous results on BCIC-2a dataset is not possible. Sakhavi
et al. [16] futher developed their CNN model to propose
channel-wise convolution with channel mixing (C2CM) which
led to significant improvement of around 7% over FBCSP on
BCIC I'V-2a dataset with average decoding accuracy of 74.46%
(kappa = 0.659). This was one of the first evidence where
a CNN-based approach comprehensively outperformed the
state-of-the-art. However, the effectiveness of a deep learning-
based approach for cross-subject or inter-subject decoding of
MI signals was still unknown as EEGNet-8,2 [[15]], the only
method that dealt with the problem till then, achieved limited
success. Cross-subject decoding is important to explore as
it is one of the potential options to realize calibration-free
BCI as existing BCI designs are heavy in recalibration needs
which ultimately hinders their way for practical uses. [17]]
presents a novel technique for the classification of motor
imagery (MI) electroencephalogram (EEG) signals employing
a multiplex weighted visibility graph (MW VG) algorithm with
an average classification accuracy of 99.92% and 99.96%
is obtained using the Random Forest classifier. Dagois et
al. [18] introduced a multimodal hybrid BCI based on elec-
troencephalography (EEG) and functional transcranial Doppler
ultrasound (fTCD) and present a TL approach to reduce the
calibration requirements. The first successful application of a
deep learning-based approach for cross-subject decoding was
done by Kwon et al. [19] who used a large MI dataset
of 54 subjects to show that their proposed CNN framework
with spectral-spatial input outperformed several existing cross-
subject decoding approaches including FBCSP. Motor Imagery
(MI) classification is one of the major contributions in BCI
which works on a segment of EEG signal within a particular
frequency band, S Mohidwale [20] introduced the Harmony
search algorithm of feature selection to obtain the optimal

feature set for the classification of MI with an average accuracy
of 92.49%. Despite the success on cross-subject decoding
the method only gave a comparable performance for within-
subject decoding. Moreover, the results were only compared
with the traditional methods and not with the pre-existing deep
learning approaches such as EEGNet [[15]]. Continuous wavelet
transform (CWT) was also used to generate time-frequency
images as input to a simplified CNN (CWT-CNN) [21] which
is claimed to have achieved the highest average kappa value
of 0.651 so far on BCIC IV-2b dataset although the average
accuracy (83.2%) was slightly lower than RBM [5]] (84%). The
reported kappa value was also higher than the CNN approach
proposed in [9] (0.629). However, it is unclear whether they
reported the session-to-session performance as only the cross-
validation performances of other methods were considered
for comparison in the paper. Olivas-Padilla and Chacon-
Murguia [22] also claimed a very high average decoding
accuracy (80.03%, kappa = 0.61) for BCIC IV-2a dataset
by combining four expert CNNs into a modular network
which was even higher than Sakhavi et al. [16] in terms
of accuracy (74.46%) although the average kappa value was
lower by 0.05. Dai et al. [23] argued about the dynamic
change in the convolution scale which is often ignored in
CNN-based MI classification and proposed hybrid-scale CNN
(HS-CNN) to deal with this problem. This method argued
about outperforming all the other state-of-the-art techniques
(irrespective of traditional or deep learning-based methods)
to classify both BCIC IV-2a and 2b datasets achieving aver-
age decoding accuracies of 91.57% and 87.6% respectively.
However, it is worth noting that they reduced the problem
in BCIC IV-2a to 2-class whereas originally it was a 4-class
problem. So, the claim may not be verified at least for BCIC
IV-2a dataset. An end-to-end framework for MI decoding
was proposed by Li et al. [24] using channel project mixed-
scale CNN (CP-MixedNet) which gave comparable average
decoding accuracy (74.6%) to Sakhavi et al. [[16] although
the advantage is that CP-MixedNet uses raw EEG signals as
input while in [16] an additional temporal feature extraction
step is required using FBCSP. Similar performance (average
kappa 0.64) on BCIC IV-2a was also achieved by Zhao et
al. [25] by 3D representation of EEG signals in order to
preserve the spatial and temporal features before feeding it
to CNN. Tayeb et al. [26] proposed pragmatic CNN (pCNN)
to classify the BCIC IV-2b dataset and compared it with dCNN
and sCNN architectures given in [9]. Their study contradicted
the outcome of [9] as dCNN was shown to have achieved the
highest accuracy of 95.72% while sCNN (accuracy=78.22%)
was not even close to that. Notably, the proposed pCNN
achieved an accuracy of 91.63%. One of the few CNN models,
employed for subject independent classification of MI signals,
is a hybrid deep network combining CNN and long-term short-
term memory (LSTM) network which uses FBCSP for feature
extraction [27]. It achieved the highest performance so far in
BCIC IV-2a dataset in the cross-subject category with average
accuracy of 83% (kappa=0.80). In another approach involving
deep recurrent neural networks with gated recurrent units
(GRU-RNN) using the same FBCSP features Luo et al. [28]
achieved an accuracy of 82.75% and 73.56% for BCIC IV-2a
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and 2b datasets, respectively. Technical challenges, including
signal pre-processing, spectrum analysis, signal decomposi-
tion, spatial filtering in particular canonical correlation analysis
and its variations,and classification techniques for steady-state
visual evoked potential (SSVEP)-based BCI system which
uses multiple visual stimuli flickering at different frequen-
cies [29]. The authors [30] P Autthasan et al. developed an
integrated approach to simultaneously estimate the frequency
and contrast-related amplitude modulations of the SSVEP sig-
nal. LASSO(least absolute shrinkage and selection operator)
has achieved the highest average classification accuracy of
84.96% [31] a new EEG classification model implemented
by S Zhang et al. used to model the group sparsity of EEG
signals, the features of the same channel are assigned the
same weights. Despite many notable works in the area of deep
learning-based MI-BCI the application is mainly concentrated
in the within-subject category while the cross-subject decoding
is largely ignored in spite of being an important approach
for realizing calibration-free BCI designs essential practical
uses. Moreover, very few studies so far have addressed the
problem of classifying stroke patients’ MI data using deep
learning which cannot be ignored as the major application
area of MI-BCI is in rehabilitation. Therefore, in the current
study, we tried to address these two problems together by
testing the efficacy of deep learning in cross-subject decoding
of MI signals on a stroke patient’s dataset. We applied the
EEGNet framework with a sliding window-based approach
using the recently proposed longest consecutive repetition
(SW-LCR) and mode (SW Mode) [32]] based prediction named
it (SW-EEGNet-LCR/Mode). The reason behind the choice of
EEGNet architecture is that it is one of the most compact
openly available CNN networks applied for MI decoding
on healthy subjects, even for cross-subject category. Another
important reason for choosing EEGNet is that it can learn the
features directly from the raw data as we believe that one
of the crucial advantages of using deep learning should be
getting rid of the necessity of using hand-crafted features.
The paper describes the performance of the proposed SW-
EEGNet-LCR/Mode approach on an open-access stroke pa-
tient’s dataset called ’Clinical BCI Challenge 2020 (CBCIC
2020)’ [33]] and on popular BCI Competition IV-2b dataset
(for healthy subjects) to compares the results with the existing
benchmarks and between the two subject categories.

II. MATERIALS AND METHODS
A. Experimental design

The experiment follows a typical paradigm of a MI BCI
based rehabilitation of stroke patients with two stages. The
first stage is to acquire data without providing any feedback
and was used to train a classifier with data obtained from this
stage. In the second stage, online neurofeedback was provided
based on the classifier’s performance. The neurofeedback was
concomitant and multimodal where both visual and propri-
oceptive feedback was provided. The visual feedback was a
stop motion video on a computer screen showing a hand grasp
action and concurrently the same motion was replicated on a
hand-exoskeleton robot where the participant’s impaired hand

was attached. None of the stroke patients who participated in
the experiment had prior experience using a BCI device. Data
acquisition has two runs of 40 trials during the first stage i.e.
the calibration stage while the online feedback consisted of one
run of 40 trials. It takes about 7 minutes and 30 seconds to
complete each run. The 40 trials within each run were equally
divided between left and right-hand classes i.e. 20 right-hand
class trials and 20 left-hand class trials. The gap between the
calibration and online feedback stage was only 16 minutes,
which was used to check the data and generate the classifier.
This time gap is reasonable enough in a rehabilitation setting
to assure that the patients do not lose focus during the
experimentation. In the original experiment, the CSP features
were used to train an SVM classifier for discriminating the two
classes. The timing diagram of a particular trial in the online
feedback stage can be found in Fig. [I] (a). The 40 trials in
each run are equally divided between left and right-hand tasks
to keep the chance level of prediction at 50%. The first 3 s
after the start of the trial is the preparation phase where a ’Get
Ready’ cue is shown on the computer screen. Next, the cue for
initiating the task appears on the screen which could be either
left or right-hand imagery. This lasts for 5s till the end, if the
trial during the training runs. The ‘get ready’ cue is provided
as a text displayed on the computer screen for 3 s after a trial
starts. The cues for the tasks are provided by showing pictures
of a human hand with a curled-up posture to indicate that they
need to make a grasp attempt. The task cues appeared either
on the left or right of the screen depending on the left and
right-hand classes. During the feedback stage, the task cue
is replaced by the neurofeedback after 5s (from the start of
the trial) to show a stop-motion video of a human hand, the
aperture of which is controlled by the predicted labels issued
every 0.5s until the end of the trial. The corresponding physical
motion of the hand is provided with the exoskeleton. The time
gap between the two consecutive trials can be between 2s to
3s. The EEG data was sampled at 512 Hz with a bandpass
filter between 0.1-100 Hz cutoff frequencies while there was
a notch filter to prevent the data affected by power supply
noise of 50 Hz.

The exoskeleton used in this study is a lightweight, 3D
printable, fully portable, and wearable exoskeleton with two
degrees of freedom. The index and the middle fingers are
driven in a coupled manner with a four-bar mechanism ac-
tuated by a servo motor. The thumb is driven separately by
another four-bar mechanism with another servo motor. There
are finger mounting caps at the end-effector of each of the
arms of the exoskeleton to attach the fingertips. The forehand
is supported by an armrest for gravity compensation and
mounted on a tabletop during the experiment. The exoskeleton
used in the experiment is shown in Fig. 2|

B. Dataset description

There are a total of 10 participants in the patient dataset
(it is referred to as CBCIC2020 dataset in the rest of the
paper). Each of them has a training file and a testing/evaluation
file. These files contain information about the sampling rate
(512 Hz), cue timing, the class labels corresponding to each
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Fig. 2. Physical model of the two-degrees of freedom 3D printable exoskele-
ton used for the experiment.

trial, and the raw data across various trials and channels. For
training, the raw data has 80 trials and for evaluation, it has 40
trials. There are altogether 12 EEG channels for both training
and evaluation which are F3, FC3, C3, CP3, P3, FCz, CPz,
F4, FC4, C4, CP4, and P4. Each trial contains 4096 samples
(8s trial length x 512 Hz = 4096 samples).

We have also used a healthy subjects’ dataset called BCI
Competition IV-2b dataset[35] which is popular in the field of
motor imagery BCI. This dataset is similar in configuration
to the CBCIC2020 dataset as it also has two classes, left and
right-hand imagery, and a trial length of 7.5 s. The sampling
rate in this case is 250 Hz. There are 9 subjects in this dataset
with several sessions of recording. We have used the first two
sessions for training and the third session for testing just to
keep parity with the CBCIC2020 dataset while comparing the
results between the two.

C. EEGNet Architecture

EEGNet is one of the most popular deep learning architec-
tures successfully used in BCI applications. EEGNet utilizes
separable and depthwise convolutions for developing an EEG
explicit model which confines well-known EEG feature extrac-
tion concepts for BCI. The number of trainable parameters are

(b)

Fig. 1. (a) Timing diagram of the experimental paradigm involved in the dataset, (b) The EEG electrode placements. [34].

also very less in EEGNet for model prediction as compared to
other commonly used deep learning architectures used in BCI
classification. EEGNet is quite robust to learn a wide range of
interpretable features over various tasks of BCI [13]]. The data
given was prone to overfitting therefore the EEGNet model has
slightly been modified to suit the requirements of the dataset.
For EEG trials, a 512 Hz sampling rate was used to collect
the data over 12 channels. The description of the model can
be defined in the following way [36]:

In the Block 1 there are two convolution steps starting with
the input layer combining Conv2D and DepthwiseConv2D. In
the first and second stages, each batch normalization is added
after the 2D convolution and depthwise convolution accord-
ingly. One of the advantages of using Depth wise convolution
is that it can decrease the requirement of trainable parameters
for fitting a deep predictive model. All the previous feature
maps and depth-wise convolution are not fully connected. The
spatial features can be learned from the combined Conv2D
and depthwise Conv2D which directly corresponds to each
temporal filter. This approach is influenced by the filter-
bank standard spatial algorithm (FBCSP) technique while the
number of spatial filters is regulated by the use of a depth
parameter although, for each feature map, this parameter is to
be learned.

Block 2 is related to separable convolution. In this block, a
point-wise convolution is added after a depth-wise convolution
to process the outputs from block-1. By using separable
convolutions it is possible to further decrease the requirement
of the parameters to fit the model. This method helps in
summarizing the individual feature maps while point-wise
convolution and depth-wise convolution helps in optimally
combine the feature maps . This process also contributes to
the representation of the feature maps according to the time
scales.

In Block 3 a softmax function is used to process the features
from the previous block to classify them into the left and right
MI classes. Although EEGNet is capable of doing multiclass
classification in the current scenario we have used it for
binary classification only due to the nature of the dataset.
This function is utilized here because EEGNet is a multi-class
classification model.
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Fig. 3. Block diagram for the proposed method.

D. Sliding Window Process

As stated earlier in the experimental paradigm the trials are
8s long while the cue appeared 3s after the start of the trial,
the time between 4s to 8s is considered for the windowing
purpose. The timeline for the sliding windows started from 0.5
s after the cue (cue presented at 3s after the start of the trial).
Each window is 2s and the shift between the two consecutive
windows is 0.5s. Thus there are 6 windows in the timeline
of the sliding windows which are as follows: 3.5s-5.5s, 4s-6s,
4.55-6.5s, 5s-7s, 5.5s-7.5s, 6s-8s. The EEGNet was trained
for each of these windows to generate 6 different models
using the training dataset. While predicting the evaluation data
with models corresponding to each of these windows are used
to generate predicted labels. Then these predicted labels are
passed into the longest consecutive repetition (LCR) function
(described in section II.G) to decide the overall label of that
particular trial; hence the single trial prediction is done. We
also observed that the highest accuracy for the training data
only was found at 4.5s-6.5s and 5s-7s. This information can
be used to further reduce the computational complexity if
someone wants to use only one EEGNet model to predict the
labels of all the sliding windows in the evaluation data rather
than using six different models for the corresponding windows.
The number of time windows is chosen experimentally by
keeping in mind its practical utility of it in case we need
continuous feedback. In an earlier study, we issued continuous
feedback with a shift of 0.5s between the two successive
windows. Again, in order to extract meaningful features and
bandpass filtering the window size should be long enough
typically 1.5s to 2s long. Thus we fixed the shift as 0.5s and
window size 2s. Then we started the windowing from 3.5s as

v

(" Left hand motor |

imagery )

the event-related desynchronization requires roughly 0.5s to
hit the bottom (the cue was given at 3s; so, 3s+0.5s=3.5s).
Hence, only 6 windows are possible with such constraints as
the trial ends at 8s. It is to be noted that the validation set
was 25% of the training data which means for each individual
subject 20 out of 80 trials were used for validation (total trials
in the training set was 80). The test data was a separate run
of 40 trials; so it was unseen by the classifier.

E. Preprocessing

For passing the data into the EEGNet architecture the data
is formatted into a 3D matrix format where (N, C, T) are three
dimensions which are number of samples, number of channels,
and number of trials accordingly. The lower and upper cutoff
frequencies for the bandpass filtering was found by doing a
grid search between 8 Hz-30 Hz and finally decided to be
between 8 Hz and 24 Hz for optimal performance.

F. Model Parameters

A filter-size (kernel length) of 32 was used for the 2D
convolution later in block 1 while the batch size was set to
16. The loss function was selected to be ’categorical cross-
entropy’ while the optimizer used in the process was ’adam’.
For model building, the Keras and Tensorflow framework
was used. We used Google colab with K80 Tesla GPU for
generating the results.

G. SW-LCR

The sliding window-based longest consecutive repetition
(SW-LCR) was used for post-processing the predictions from
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EEGNet. The LCR is based on a sliding window-based ap-
proach where the EEG data from each window is classified
by the classifier such as EEGNet and then we see the longest
sequence of predicted labels in that series. For example,
suppose there are 9 such EEG data windows within a trial
and the EEGNet prediction for this sequence of windows is
122221122. Now out of these two predicted labels (right-
hand class=1, left-hand class=2) the LCR is found for left-
hand class=2 where 2 appeared consecutively 4 times. So,
while classifying this particular trial into left or right-hand
class, we will choose left-hand class=2. In case of a tie, i.e.
both the classes has the same length of consecutive repetition,
we choose the one which is observed first. For example,
consider the prediction sequence 111122221. Here, both 1 and
2 have the same length of consecutive repetiton=4. Now, we
can observe that the repetition of 1 occurred first and then
2. So, the predicted class for this trial would be right-hand
class=1. The signal processing and machine learning pipeline
along with the LCR-based post-processing of the single trial
prediction is shown in Fig. [3] In this block diagram, we can
see that both in the training and evaluation cases the EEG
signal is band pass filtered between 8-30 Hz which signifies
the sensory motor rhythm (SMR). This bandpass filtered signal
is then used to train the EEGNet classifier in the training case
which is then used in the evaluation case for predicting the
sliding windows within the trial and then post-processing was
done using the LCR technique for single trial prediction. There
were altogether 9 successive data windows within the trial
which started after 2s from the task initiation cue. This time
gap is necessary for event-related desynchronization (ERD)
to occur in the motor cortex which is the signature of the
initiation of high-level motor command in the brain. Then
these data windows run towards the end of the trial with a
window length of 2s and overlap of 75%, i.e the shift between
the two successive windows is 0.5s.

The SW-LCR operates as a post-processing step on the
predictions by a classifier which makes it independent of the
signal processing and machine learning pipeline before it.
Because of this different feature extraction algorithms can be
used in combination with SW-LCR. However, the advantage
of using EEGNet+LCR is that it is an end-to-end process
without the requirement of custom-made features. From the
neurophysiological aspect the optimum time window within a
trial varies significantly among the participants and also within
a session. Therefore, many previous techniques of EEG decod-
ing focused on finding the personalized time window of feature
extraction. In contrast, LCR considers all the different time
windows before making an overall judgment. This technique
accounts for the variability within the session and across the
participants in order to make a robust prediction. Moreover,
when it comes to the question of stroke patients’ EEG data the
variability is much more due to altered neurodynamics caused
by the lesion. Hence, EEGNet+LCR is especially relevant in
this case as the EEGNet has the capacity to generate the
features in a more personalized way as compared to hand-
crafted features while the LCR manages the variability in the
brain activation time window within a trial.

III. RESULTS

The results from the CBCIC2020 dataset are obtained in
two categories. The first one is the within-subject category
where the EEGNet is trained using the same subject’s training
session and tested on the evaluation session of that subject
only. The second one is the cross-subject category where a
leave-one-out approach is adopted where the training sessions
of all the other subjects are used to train EEGNet and then
tested on the evaluation session of the left-out subject. It
is worth mentioning that for single-trial-based prediction in
the evaluation trials, LCR approach is used as mentioned in
Section Additionally, we have provided the results on
a popular healthy subjects’ dataset called BCI Competition
IV-2b for comparison purposes.

A. Within-subject decoding

The within-subject accuracies for individual subjects are
reported in Table|ll} There are three different epochs for which
the results are computed using different kernel lengths, while
the bandpass frequency range ([8-24 Hz]) and dropout (0.25)
are fixed. The kernel length for 100 epochs of training was
64 while it was 32 for both 300 epochs and 500 epochs
of training. The highest average accuracy was observed for
500 epochs of training with 76.94% while the lowest average
accuracy was in the case of 100 epochs of training with
69.26%. The standard deviation was also found to be the
lowest at 13.5% in the case of 500 epochs. In the case of 300
epochs of training the performance was in the middle with an
average accuracy of 72+14.47%. In 500 epochs case, 7 out of
10 subjects crossed the 70% accuracy mark which is often
considered as a threshold for acceptable BCI performance
while two of the subjects (SO7 and S10) obtained more than
90% accuracy (92.5% and 94.5% respectively) and three more
(S01, S02, and S08) achieved more than 80% accuracy (85%,
85%, and 82.5% respectively). It was also observed that for
500 epoch case, the accuracies of some of the low-performing
subjects (S03 and S04) improved considerably.

The within-subject decoding performance for BCI Competi-
tion IV-2b dataset is presented in Fig.[5] The average accuracy
for this dataset is found to be 77.71%. The highest accuracy
was observed for subject B04 (98.75%), while 6 out of 9 of
them achieved an accuracy of more than 75%.

B. Cross subject decoding

The cross-subject decoding was conducted following a
leave-one-out methodology. This means we used the training
data from all other subjects within the group leaving one
of them from that group and then the trained classifier was
used for testing the evaluation data from left out participant.
For example, for calculating the cross-subject accuracy for
participant S01, the training data from S02 to S10 was used
for training the EEGNet and then it is used to decode the
evaluation data for SO1. The drop-out rate in this case is
set to be 0.25. The average accuracies for different epoch
sizes are shown in Table From the table, we can see
that the average accuracy for 100 epochs is 67.5%, while for
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300 and 500 epoch sizes they are 69.75% and 74.49%. The
standard deviation of all these results varied between £10.8%
to £14.33%.

A comparison between the classification accuracies of the
proposed approach with the previous approaches on the same
dataset is shown in Fig. [4] for both within- and cross-subject
categories. This comparison has been discussed in detail in the
discussion section.

We have also shown the variation in classification accuracy
across all the subjects related to the choice of the number of
windows for calculating the LCR in Table [V] As the number
of windows is varied from 3 to 7 the accuracies are also varied
for different subjects. For example, a significant improvement
in accuracy is found for BO9 when the number of windows
is changed from 4 to 5 or more. A gradual improvement in
accuracy is also found for BO5 and BO8 when the number of
windows is incremented from 3 to 7. For BO7 also the accuracy
peaked when the number of windows is 5 or 6 although it
dropped to 7. However, there is only moderate improvement
in the accuracies when the number of windows is changed as
seen by the mean and median scores at the bottom of Table [[V]
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Fig. 4. Comparison of classification accuracies between different algorithms
for the two categories: within-subject and cross-subject.

IV. DISCUSSION

In the current study, our focus was to emphasize on two
major attributes to evaluate a deep learning framework for
BCI applications which are largely ignored. The attributes
of cross-subject decoding and validating it on stroke patients
are particularly important as the major application area of
BCI is in rehabilitation and the practical usability of a BCI
device is often suffered by repeated calibration. Hence, the
validity of an algorithm in cross-subject decoding paves the
way for calibration-free BCI systems and it becomes especially
effective if it gives a sufficient performance in stroke patients’
data.

The proposed method, EEGNET with LCR, was tested for
within-subject category with a 2-second window in Table I.
The 2-second window is divided into multiple sliding time
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Fig. 5. Classification accuracies of all the subjects in BCI Competition IV-2b
dataset using the proposed method with a kernel length of 32 for 100 epochs.
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Fig. 6. A comparison of the performance of the proposed method between
healthy subjects’ and stroke patients’ datasets.

windows. The classifier was trained to examine the predictions
for each sliding time window with different kernel lengths
and three distinct epochs were evaluated using the proposed
method. Individual participant accuracies are reported in Table
I. The highest average accuracy was observed for 500 epochs
of training with 66.90%. In this 500 epochs case, seven out of
ten participants surpassed the 60% accuracy mark. To achieve
the best results, we computed the accuracies by selecting the
best sliding time window with an accuracy level exceeding
70%, resulting in an improved accuracy of 76.94% for within-
subject classification as reported in Table II and cross-subject
classification accuracy of 74.5% as reported in Table III.

In this study, if we look at the cross-subject with the
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TABLE I
FREQUENCY RANGE [8-24 HZ],WINDOW SIZE = 2SEC, DROPOUT: 0.25,
KERNEL LENGTH = 64 FOR 100 EPOCHS OF TRAINING, KERNEL LENGTH
= 32 FOR 300 AND 500 EPOCHS OF TRAINING.

TABLE III
CROSS-SUBJECT CLASSIFICATION ACCURACY WITH THE FOLLOWING
PARAMETERS: FREQUENCY RANGE [8-24 Hz], DROPOUT: 0.25, KERNEL
LENGTH = 32 FOR 100 EPOCHS OF TRAINING, KERNEL LENGTH = 128
FOR 300, AND KERNEL LENGTH = 32 FOR 500 EPOCHS OF TRAINING.

Subject Id | Test Acc(%) | Test Acc(%) | Test Ace(%)
Epochs 100 300 500 Sub ID | Test Acc(%) | Test Acc(%) | Test Acc(%)
So01 85 80 60 Epochs 100 300 500
S02 47 50 48 S01 50 50 52.5
S03 57 60 52 S02 72.5 72.5 82.5
S04 57 70 62 S03 72.5 85 85
S05 70 57.5 50 S04 55 60 575
506 35 67.5 65 S05 65 70 69.9
S07 65 67.5 85 506 75 55 875
S08 50 67.5 75 S07 625 75 90
S09 60 65 87 S08 725 775 %0
S10 70 70 85
Mean 61.6 65.5 66.9 S09 62.5 60 70
. : : S10 87.5 92.5 90
Mean 67.5 69.75 74.5
WITHIN-SUBJECT CLASSIFICATION ACCURACY WITH THE FOLLOWING
PARAMETERS: FREQUENCY RANGE [8-24 Hz], DROPOUT: 0.25, KERNEL TABLE IV

LENGTH = 64 FOR 100 EPOCHS OF TRAINING, KERNEL LENGTH = 32 FOR
300 AND 500 EPOCHS OF TRAINING.

VARIATION OF CLASSIFICATION ACCURACY CORRESPONDING TO THE

NUMBER OF SLIDING WINDOWS FOR LCR COMPUTATION

Subject ID | Test Acc(%) | Test Acc(%) | Test Ace(%)
Epochs 100 300 500 Number of Windows
So1 75 775 85 SubID | 3 4 5 6 7
S02 72.5 82.5 85 B01 75.63 | 75.63 | 76.25 | 75.63 | 76.88
S03 50 50 77.49 B02 60.00 | 60.00 | 60.00 | 59.38 | 57.50
S04 60 575 72.5 B03 56.25 | 56.25 | 5437 | 5437 | 56.25
ggg 2;2 gg gg B04 98.13 | 98.13 | 98.75 | 98.75 | 98.75
S07 92:5 30 935 B05 84.38 | 84.38 | 86.88 | 86.88 | 87.50
S08 375 30 825 B06 7438 | 7438 | 72.50 | 72.50 | 72.50
S09 35 65 55 B07 76.88 | 76.88 | 79.38 | 79.38 | 76.88
S10 85 92.5 94.5 B08 84.38 | 84.38 | 85.00 | 84.38 | 86.25
Mean 69.26 72 76.94 B09 80.00 | 80.00 | 86.88 | 86.88 | 86.88
Std 15.44 14.47 13.5
Mean 76.67 | 76.67 | 7778 | 77.57 | 77.71
Std 12.71 | 12.71 13.94 | 14.01 | 14.11
best sliding window selection results for stroke patients we Median | 76.88 | 76.88 | 79.38 | 79.38 | 76.88

can see that the average decoding accuracy of 74.5% was
beyond the threshold of 70% while 40% of the participants
achieved a very high accuracy beyond 80%. This is a good
indicator of how well it performed for cross-subject decoding
on stroke patients. Of course, we calculated the within-subject
accuracies with the best sliding window selection for the
participants and it was higher (76.94%) than the cross-subject
accuracy for obvious reasons that the classifier was trained on
the same participant’s data on whom it was tested where the
variability was much less than the cross-subject case. Here
the number of participants performing beyond 80% was at
50% (more than the cross-subject case) while 20% of the par-
ticipants achieved accuracies beyond 90%. Most importantly,
we observed no statistically significant (p—value = 0.7812)
difference between the within-subject performance and cross-
subject performance measured by Wilcoxon signed rank test.
This is an interesting observation as most often it was observed
that the same algorithm do not perform equally well in both
within-subject and cross-subject cases as evident in ’CBCIC
2020’ [33]]. In the *CBCIC 2020° competition we have seen

that the winning algorithm (Riemmanian manifold+functional
connectivity+ensemble learning) in the within-subject category
didn’t perform sufficiently well in the cross-subject category
while the winning algorithm (FBCSP + single electrode energy
features (SEE)+ evolutionary optimization) in cross-subject
category gave only moderate performance in the within-subject
case. Therefore, the augmentation of EEGNet using LCR is a
promising candidate for a decoding technique that can cover
both categories.

Moreover, if we consider the proposed technique with its
predecessor i.e. only EEGNet without LCR, we can see that
it outperformed the accuracy reported in [36] in both within-
and cross-subject categories (Fig. @) For the within-subject
case we got a performance improvement of +6.69% while in
cross-subject case the performance improvement is at +10%.
The effect size in the case of within-subject performance
improvement was medium (Cohen’s d = 0.44) while in the
case of cross-subject, the performance improvement of a large
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effect size (Cohen’s d = 0.74) is observed. This shows that
the technique of LCR-based augmentation of EEGNet is an
effective way to improve its performance. In comparison to
the traditional method of CSP+support vector machine (SVM)
based classification as reported in [34] the average decoding
accuracy improved by +6.69% with a large effect size (Cohen’s
d = 0.68). The cross-subject accuracy for CSP+SVM was
also computed to be 70.25% which is 4.24% lower than the
proposed approach although the effect size is found to be
moderate (Cohen’s d = 0.38).

There are also some non-traditional techniques of MI de-
coding such as the Riemannian geometry (RG) based ap-
proach which was used in conjunction to EEGNet in *CB-
CIC 2020°. The technique of RG+EEGNet achieved 73.75%
average decoding accuracy which is 3.19% less than the
proposed EEGNet+LCR technique. In addition to that, the
implementation LCR is much simpler than RG and less
time-consuming which makes the former a better choice for
augmenting EEGNet performance. The EEGNet+LCR also
performed better than CSP+LCR reported in [32] with +3.44%
improvement in average accuracy. We have compared our
results of the BCI competition IV-2b dataset with other deep
learning architectures on the same dataset. For example, Roy
et al. [37] presented results on BCI Competition IV-2b dataset
using a Mega-Block based CNN architecture using Adam and
SGDM training methods which yielded an average accuracy of
72.63% and 73.13% accordingly, while the proposed method
performed with a significantly (p—value<0.05) higher accu-
racy at 77.71%. This result is also +2.71% higher than the
CNN architecture proposed in [8] which resulted in an average
accuracy of 75%. As compared to SVM on time-frequency
features (average accuracy = 72.4% [8]]) the proposed method
achieved an improvement of 5.3%. Moreover, the advantage
of using the proposed method it does not require customized
features as in [8]] and [37]] as the features can be learned from
the raw data only.

A comparison between the healthy subjects’ and stroke
patients’ performance can be seen in Fig. [ in the form
of a box plot. The average accuracy for stroke patients is
76.94% and for healthy subjects, it is 77.71%, while no
significant difference in performance was seen between the
two. This shows the robustness of the proposed method to
be a generalized solution for both healthy and stroke patients
which is rarely found in the literature.

Apart from these encouraging results we also kept some es-
sential elements in our approach so that the current benchmark
can be tested further when new data on stroke patients’ MI is
available or some new methods emerge. For example, unlike
some previous studies which were focused on cross-validation
accuracies on the same session ( [8], [15]], [21]) our focus was
on session-to-session transfer. The issue of generalizability is
perhaps the most ignored issue in the MI-BCI literature except
a few [19], [15l], [27]]. Hence, we emphasised on cross-subject
decoding to establish the generalizability of the proposed
technique. Additionally, the literature is really scarce when
it comes to cross-subject decoding on stroke patients which
can be the most challenging as the inter-subject variability is
significantly higher in the case of stroke patients due to altered

neurodynamics after stroke. Hence, while choosing the vali-
dation criteria for the proposed technique we went to testing
its performance on cross-subject decoding of stroke patients’
data. Because our approach includes a deep learning network
we believed that the best way to make use of this emerging
technique is to go for automated feature extraction by the
network rather than going for deep learning networks using
handcrafted features [25[, [8], [21]. This was the reasoning
behind the choice of EEGNet which is an end-to-end deep
learning framework specially tested for its generalizability. The
performance of EEGNet+LCR was also compared against both
conventional and non-conventional techniques on both within-
and cross-subject categories which should serve as a solid
benchmark for future reference as a majority of the previous
studies only reported only a subset of these aspects.

The fact that the dataset used in this paper is generated
out of an actual neurorehabilitation paradigm with the mod-
ern technique of using hand-exoskeleton makes the results
especially relevant for robotic control. This is because to
the best of the authors’ knowledge, it is for the first time
that a EEGNet-based MI decoding is tested on a robotic
rehabilitation paradigm on stroke patients. As the proposed
technique takes a sliding window-based approach in a single
trial framework the paradigm can be redesigned for continuous
control of the robotic exoskeleton using the same technique of
decoding which can be a scope for future research. Another
direction of further improvement can be the adaptation of
the classifier trained on other subjects’ data when fresh data
from a new subject is available online. The future work can
also include a study of the proposed EEGNet+LCR technique
on the magnetoencephalography (MEG) dataset to see its
applicability across different brain signal modalities other
than EEGNet. This is particularly important as it is a big
challenge to apply deep learning-based architectures on very
high-dimensional datasets such as MEG where more than 300
channels are available.

In this paper the proposed method is applied only to stroke
patients. However, there is a large similarity between the
signals of stroke patients and some other neurological diseases
such as traumatic brain injuries (TBI) which indicates that the
proposed method should work in those cases too. As such
datasets are very rare to find related to BCI experiments we
have future plans to conduct similar studies on TBI patients
to acquire new data.

V. CONCLUSION

In this paper, we have introduced a new technique for
augmenting the performance of EEGNet architecture using
LCR. The proposed EEGNet+LCR based technique was tested
for the first time for cross-subject decoding on stroke patients
dataset involving BCI-based hand-exoskeleton as a rehabilita-
tion paradigm. The results have outperformed many of the
competitive algorithms ranging from conventional to non-
conventional used in BCI-based neurorehabilitation paradigms
which paved the way for realizing calibration-free BCI designs
in practical scenarios. It was also encouraging to observe that
it performed equally well not only in both within- and cross-
subject decoding frameworks but also for both healthy and
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stroke patients’ datasets which is rarely found in the literature.
Overall, the study shows a promising way to leverage the
performance of a generalizable deep learning architecture that
could enhance the usability of BCI-based robotic rehabilita-
tion.
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