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Abstract

Stroke is the third most common cause of death and a leading cause of disability

in the United States. The existing treatments of acute ischemic stroke (AIS) involve

pharmaceutical thrombolytic therapy and/or mechanical thrombectomy. The Food and

Drug Administration (FDA)-approved recombinant tissue plasminogen activator (tPA)

administration for treatment of stroke is efficacious, but has a short treatment time

window and is associated with a risk of symptomatic hemorrhage. Other than tPA, the

Mechanical Embolus Removal in Cerebral Ischemia (MERCI) retriever system and the

Penumbra Aspiration system are both approved by the FDA for retrieval of

thromboemboli in AIS patients. However, the previous clinical studies have shown that

the recanalization rate of the MERCI system and the clinical outcome of the Penumbra

system are not optimal. To identify the variables which could affect the performance of

the thrombectomy devices, much effort has been devoted to evaluate thrombectomy

devices in model systems, both in vivo and in vitro, of vascular occlusion. The goal of

this study is to establish a physiologically realistic, in vitro model system for the

preclinical assessment of mechanical thrombectomy devices.

In this study, the model system of cerebrovascular occlusion was mainly

composed of a human vascular replica, an embolus analogue (EA), and a simulated

physiologic mock circulation system. The human vascular replica represents the

geometry of the internal carotid artery (ICA)/middle cerebral artery (MCA) that is

derived from image data in a population of patients. The features of the vasculature were
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characterized in terms of average curvature (AC), diameter, and length, and were used to

determine the representative model. A batch manufacturing was developed to prepare the

silicone replica.

The EA is a much neglected component of model systems currently. To address

this limitation, extensive mechanical characterization of commonly used EAs was

performed. Importantly, the properties of the EAs were compared to specimens extracted

from patients. In the preliminary tests of our model system, we selected a bovine EA with

stiffness similar to the thrombi retrieved from the atherosclerotic plaques. This EA was

used to create an occlusion in the aforesaid replica. The thrombectomy devices tested

included the MERCI L5 Retriever, Penumbra system 054, Enterprise stent, and an

ultrasound waveguide device. The primary efficacy endpoint was the amount of blood

flow restored, and the primary safety endpoint was an analysis of clot fragments

generated and their size distribution.

A physiologically realistic model system of cerebrovascular occlusion was

successfully built and applied for preclinical evaluation of thrombectomy devices. The

recanalization rate of the thrombectomy device was related to the ability of the device to

capture the EA during the removal of the device and the geometry of the

cerebrovasculature. The risk of the embolic shower was influenced by the mechanical

properties of the EA and the design of the thrombectomy device.
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Chapter I: Introduction

Brief Review: Anatomy of the Circle of Willis and Cerebral Blood Circulation

Cerebral blood flow is provided by two main pairs of arteries: the vertebral

arteries (VAs), and the internal carotid arteries (ICAs). The VAs arise from the

subclavian arteries and unite to form the basilar artery (BA). The posterior cerebral

arteries, which extend from the terminal bifurcation of the BA, connect to the ICA by

posterior communicating arteries at P1/P2 junction, and supply blood to the posterior

circulation of the brain (Figure 1-1).

Figure 1-1 3D reconstruction of human intracranial arteries that form the circle of Willis (ACoA:
anterior communicating artery, ICA: internal carotid artery, PCA: posterior cerebral
artery, BA: basilar artery, PCoA: posterior communicating artery, MCA: middle
cerebral artery, A1: A1 segment of the anterior cerebral artery, A2: A2 segment of the
anterior cerebral artery).

BA

PCA
PCoA

ICA

MCA

A1 ACoA
A2
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About 70% of the common carotid blood flow is diverted into the ICA1-3, and the

ICA bifurcates into the middle cerebral artery (MCA) at the level of the olfactory trigone

and anterior cerebral artery (ACA) opposite the olfactory trigone4. The left and right

ACA are connected by the anterior communicating artery to form the anterior circulation.

The arterial polygon which provides communication between the anterior and posterior

circuits, shown in Figure 1-1, is known as the circle of Willis (CoW)4-7. The CoW

represents a multiplexer and is regarded as the principal source of collateral flow in

patients with ischemic cerebrovascular disease8. The ability of the CoW to redistribute

blood flow is affected by the presence and diameter of the component vessels. Three-

dimensional time-of-flight was used to determine the morphologic differences of the

CoW among 150 healthy subjects, and the results show that only 42% of the subjects

presented a complete CoW9. The most common variants include absence of the anterior

communicating artery and one of the posterior communicating arteries. Typical variations

are presented in Figure 1-2. Apart from the CoW, small pial vessels may also provide

collateral flow in an acute ischemic event. A recent clinical study shows that stroke

patients with higher pial collateral scores have improved clinical outcomes and smaller

infarct volume as compared to those with lower pial collateral scores following intra-

arterial tissue plasminogen activator (IA-tPA) treatment10.

The brain requires continuous and sufficient blood perfusion that is approximately

15% of the cardiac output. The anterior circulation contributes 76-82% to the global

cerebral blood flow11, 12. The capability of brain to store energy is low, as demonstrated

by the finding that the adenosine triphosphate level quickly drops to zero in 7 minutes
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after the termination of the oxygen supply13. The shortage of the oxygen stops cell

growth; in addition, the deprivation of blood flow to the brain renders neurons unable to

maintain the physiological ion gradient14 that they need to function properly, and causes

neuronal dysfunction and subsequent death. In a typical acute ischemic stroke that is

caused by a large artery occlusion, 1.9 million neurons, 14 billion synapses and 7.5 miles

of myelinated fibers are lost each minute15 . Acute ischemic stroke is a major cause of

neurological deficiencies.

Figure 1-2 Common variations of the CoW16.
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Acute ischemic Stroke

Significance and Impact of AIS

Stroke is the second highest cause of mortality in the world17 . In the United

States, cardiovascular disease, principally heart disease and stroke, is the leading cause of

death18. The 2010 Heart Disease and Stroke Statistical Update from American Heart

Association19 reports that about 795,000 people experience a new or recurrent stroke each

year, and stroke accounted for about 1of every 18 deaths in the United States in 2006. On

average, a stroke occurs every 40 seconds, and someone dies of a stroke every 4 minutes.

The financial burden of stroke is high, with the estimated direct and indirect cost at 73.7

billion in 2010 (in US dollars).

According to the World Health Organization20, stroke is defined as, “rapidly

developing clinical signs of focal (at times global) disturbance of cerebral function,

lasting more than 24 hours or leading to death with no apparent cause other than that of

vascular origin.” Some modifiable risk factors for stroke include diabetes, hypertension,

elevated cholesterol, and smoking21. Nonmodifiable factors are age, race, gender and

family history.

Cerebral blood flow (CBF) is determined by the ratio of cerebral perfusion

pressure (CPP) and cerebrovascular resistance22, and the CPP is generally described as

the difference between mean arterial blood pressure and intracranial pressure13. The

regional CBF of the normal brain tissue is about 50-60 ml/100g/min23. When the cerebral

ischemia occurs, the cessation of blood flow results in varying gradients in hypoperfusion
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over the affected region24.  The central zone (CBF<12 ml/100g/min25) is termed

“ischemic core” which is composed of the irreversibly and severely damaged tissue26,

and is surrounded by presumably viable tissue, namely the ischemic penumbra. The

penumbra is a zone of tissue that receives insufficient blood flow (CBF:18-20

ml/100g/min25) to function properly and is at risk of irreversible damage should blood

flow not be restored.  The salvage of ischemic penumbra may be achieved when the

reperfusion is established within 6 to 8 hours27, and the penumbra is the target area to

preserve for prevention of further neuronal deterioration. It is important to note that the

evolution of the infarct and penumbral zone is dynamic and controlled by a number of

factors including spontaneous fibrinolysis and systemic blood pressure. The oligemic

tissue in the area between the unaffected brain and the ischemic penumbra is mildly

hypoperfused and presents no functional or morphological impairment23.

Frequent Locations of AIS and Clinical Symptoms

Of all strokes, 87% are ischemic and 13% are of hemorrhagic origin19. Five

subtypes of the ischemic stroke are denoted according to data from the National Institute

of Neurological Disorders and Stroke (NINDS) Stroke Data Bank. They are: 1. large-

artery stenosis occlusion/atherosclerosis (8.9%), 2. embolism from a commonly accepted

cardiac source (19.3%), 3. small-artery occlusion (lacune, 26.5%), 4. infarct with

undetermined cause (39.9%), and 5. infarction with associated extracranial arterial

pathology including embolism from a carotid source (5.4%)28-30.
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The origin of AIS can be attributed to local thrombosis, embolism from an

upstream source or hemodynamics (hypoperfusion)31, 32, with in situ thrombosis being the

most common33. Thrombosis is a cascade of platelet-mediated events that result in blood

coagulation with the presence of the dynamic shear stress, clotting factors, and other

proteins and cells, whereas clotting generally refers to the polymerization of fibrinogen to

fibrin in regions of stagnant blood flow34. Ischemia due to thrombosis is normally led by

the excessive thrombus developed over the atherosclerotic plaque or an abnormality of

blood clotting31. More frequently, thrombus forms at other locations, e.g. the common

carotid artery bifurcation, and the thrombus may eventually break away from the plaque

to form a cerebrovascular “embolus”-- meaning “plug” in Greek. The embolus is swept

downstream by the circulating blood and lodges within a cerebral vessel, often at

bifurcation sites, resulting in an artery-to-artery embolism. Aside from atherosclerotic

plaques, other common sources of cerebral emboli are of cardiac origin associated with

such diseases as atrial fibrillation (AF), infective endocarditis, mitral stenosis, myocardial

infarction, patent foramen ovale and prosthetic mechanical valves35-38. Although it is

difficult to estimate the origin of the embolus in stroke patients, cardioembolic stroke

accounts for approximately 20% of all ischemic strokes, and about 15-20% of ischemic

strokes occur in patients with AF36, 39, 40. Hemodynamically determined infarction

happens when the proximal blood supply to the brain is unavailable (e.g., cardiac arrest,

arterial dissection), and collateral compensatory blood flow is insufficient either due to

global hypoperfusion31 or normal anatomical variants.
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Stroke related disability varies depending on the location and extent of the

affected area. The most common site for large vessel occlusion is the MCA (Figure 1-

3)41-44. Clinical symptoms such as acute hemiparesis, hemisensory loss, hemianopia,

visuospatial neglect, and aphasia are attributed to infarction of the MCA territory45, 46.

Due to the fact that the MCA is the most common site of AIS, a model system mimicking

human MCA occlusion is developed in this study for thrombectomy device testing.

Figure 1-3 Angiogram of a typical stroke patient where the middle cerebral artery is occluded
(arrow).

AF and AIS

Embolic stroke due to AF is a common observation; and patients with AF account

for half of all patients with cardioembolic stroke47, 48. In AF, the disorganized electrical

signals in the atria cause independent depolarization of atrial muscle fibers, and the atria

quiver instead of beating effectively. The blood is not completely pumped out from the
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atrium to the ventricleresulting in a consequent tendency of thrombogenesis (the

pathogenesis of thrombus formation). The mechanism of thrombogenesis in AF may be

understood according to the Virchow triad49, in which three components including

abnormal changes of blood flow, blood constituents, and vessel wall are proposed 50.

Figure 1-4 Structural features of the blood vessels51.

The lining of the atrium, as with the entire circulatory system, is made of

endothelial cells (ECs), which are directly exposed to the blood flow and supported by

the internal elastic lamina (Figure 1-4). It has been noted that ECs do not act as a passive

barrier; on the contrary, via shear stress from the circulating blood flow they adjust

vascular tone by producing nitric oxide and play an important role in blood coagulation,

fibrinolysis, angiogenesis (formation of new blood vessel), inflammation by expressing

thrombomodulin, synthesizing von Willebrand factor (vWf), and releasing substances
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such as tissue-type plasminogen activator, P-selectin and tissue factors52, 53 54, 55. In AF,

blood stasis in the atrium, especially in the left atrial appendage (Figure 1-5), decreases

the antithrombotic activity of ECs, and allows thrombin and fibrinogen to settle at the

vessel wall, thereby facilitating thrombus formation54.

Turnover of extracellular matrix (ECM), endothelial dysfunction and denudation

occur as a consequence of AF (Figure 1-5). The abnormal changes in ECM induce

fibrosis and infiltration of the endocardium, and further promote thrombogenesis.

Damage of the ECs give rise to an elevated vWf level, which promotes platelet adhesion

and activation of blood coagulation56.

Figure 1-5 Thrombogenesis in atrial fibrillation: Virchow’s triad revisited50.
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A hypercoagulable state in AF induced by abnormal changes in blood constituents

such as fibrin D-dimer and platelets has been well-investigated57-59.  It is found that

patients with AF have increased amount of plasma D-dimer, a marker of the activation of

the coagulation system60, and β-thromboglobulin, a platelet-specific protein which is

released during platelet aggregation and thrombus formation50. If the thrombus formed in

the atrium is dislodged from the heart, an embolus can travel to an artery that supplies

blood to the brain producing a cardioembolic stroke.

Atherosclerosis and AIS

The Northern Manhattan Stroke Study conducted between 1993 to1997 reveals

that the prevalence of the intracranial atherosclerotic disease (ICAD)-related ischemic

strokes is 3, 15, and 13 per 100,000 people for white, African American, and Hispanic

subjects, respectively61. ICAD-related strokes account for 9, 17, and 15% of all ischemic

strokes among white, African American, and Hispanic patients, respectively62. A higher

incident rate of ICAD-related stroke (33 to 37% of all ischemic strokes) is observed in

the Chinese population63. As mentioned earlier, expansion of the plaque and disruption of

the unstable atherosclerotic plaque are two risk factors responsible for the occurrence of

the AIS64. The plaque is morphologically characterized by a thin fibrous cap, a large

atheromatous core, lipid-laden macrophages and reduced number of smooth muscle cells

(Figure 1-6). There are two mechanisms by which intracranial plaques cause AIS, 1.

Acute plaque rupture with distal embolus or 2. In situ thrombosis leading to occlusion of

the vessel at the site of the plaque with or without plaque rupture.
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Atherosclerosis is the thickening and hardening of the arteries due to the build-up

of the fatty substances (“athero” means fatty, and “sclerosis” means scar). Risk factors

for atherosclerosis include aging, diet, hypertension, smoking, and family history. The

deposition, aggregation and oxidation of the low density lipoproteins (LDLs) are thought

to trigger the progression of the atherosclerotic lesion65, 66. Oxidized LDL injures the

endothelium and causes the endothelial cells to express endothelial leukocyte adhesion

molecule-167, which attracts certain kinds of white blood cells such as monocytes and T-

lymphocytes to the vessel wall57. With time, the monocytes transmigrate across the

endothelial cells to form the foam cells (macrophages filled with cholesterol esters), and

stimulate the growth of the smooth muscle cells (SMCs) from the media (Figure 1-6)51, 68.

The development of the plaque can be classified into two different types: diffuse dilative

atherosclerosis and focal stenotic atherosclerosis69.

Figure 1-6 Various components of the atherosclerotic lesion of the human carotid endarterectomy
specimen were identified by a color-coded image70.
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The diffuse dilative atherosclerosis is seen when smooth muscle cells and

collagen fibers are accumulated in a slow and continuous manner. The presence of a large

numbers of smooth muscle cells and collagen fibers increases the thickness of the fibrous

cap, and strengthens the plaque structure, resulting in a stable fibroatheroma. A

compensatory local dilation of the artery (vascular remodeling) is usually observed and

assumed to be the final stage of this type of disease progression71, 72.

The focal stenotic atherosclerosis is a rapid and unpredictable process.

Compositional changes of the plaque could happen as a result of a multi-factorial process

and make the plaque vulnerable. Vascular smooth muscle cells (VSMCs) synthesize

collagen type I and III, and the balance between the collagen synthesis and degradation

determines the stability of the fibrous cap73, 74. Previous studies have found that the

cytokine interferon gamma, a product of activated T-cells, inhibit the collagen synthesis

and induce VSMCs apoptosis75, 76. The inflammatory cells are found to be infiltrated and

cluster in the shoulder region of the plaque, where disruption usually takes place. In

addition, the foam cells die by necrosis or apoptosis, resulting in extracellular lipid

deposition77, and reduce the strength of the fibrous cap located between the lipid-rich

atheromatous core and the endothelial layer 78-80. The abovementioned determinants all

make the plaque prone to rupture, and lead to excessive thrombus formation (thrombosis)

over the ruptured plaque (Figure 1-7) 69, 81, 82.
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Figure 1-7 (Left) Thrombus is formed over a disrupted atherosclerotic plaque. 61 The close-up view
of the lipid core, where cholesterol crystals are seen82.

When the vessel wall is injured or the fibrous cap of the atherosclerotic plaque is

ruptured, vWf binds to the exposed connective tissue, followed by the adhesion of

platelet through the membrane-bound receptor glycoprotein Ib83. The injured

endothelium exposes tissue factor (TF) to factor VII (FVII), and the resulting product,

activated factor VII /TF complex is then able to enzymatically catalyze factor X,

initiating the extrinsic coagulation pathway shown in Figure 1-8 84-86. Activated factor X

combines with factor Va to form prothrombinase and further support thrombin generation.

Thrombin, coupled with adenosine diphosphate and thromboxane A2 secreted by

activated platelets, contribute to platelet aggregation and produce a stable fibrin

thrombus87.
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Figure 1-8 Mechanisms of clotting factor interactions88.

FDA-Approved Pharmacological Treatment of AIS

Intravenous fibrinolytic therapy with tissue plasminogen activator (IV-tPA) is the only

approved pharmacological treatment for acute ischemic stroke89. The product of the tPA-

mediated plasminogen activation, plasmin, cleaves and degrades fibrin90, 91. The NINDS

rt-PA Stroke trial, a randomized, double-blinded clinical trial, proved that a reperfusion

strategy with IV-tPA dramatically improves patient outcome92. Figure 1-9 demonstrates

that a greater proportion of patients left with minimal or no deficit 3 months after tPA

therapy as indicated by mRS 3 or less. As compared with the placebo treatment, tPA

therapy was not accompanied by an increase in severe disability and mortality. Mortality

at three months was 17% in the t-PA group and 21% in the placebo group.
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Figure 1-9 Clinical outcomes at 90 days by modified ranking scale (mRS) in the NINDS rt-PA Stroke
Trial. The outcome measure favors the t-PA group92.

However, this approach has severe limitations including short time window

(within 3 hours of onset)43, risk of symptomatic hemorrhage, and numerous

contraindications93. Ultimately, this results in a low percentage of patients, 1-3%94,

eligible to receive this therapy. Note, the modified Rankin Scale (mRS) indicates the

level of neurological disability on a 0-6 scale, where 0 is no neurological impairment and

6 is death. Importantly, a mRS score less than or equal to 2 signifies that the patient is

capable of independent living and this is a commonly used threshold for therapeutic

efficacy studies.
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FDA-Approved Mechanical Thrombectomy Devices for AIS

There are two FDA-approved endovascular devices for the treatment for acute

ischemic stroke, namely, the MERCI retriever system and the Penumbra System94-96. The

MERCI retriever system (Concentric Medical Inc, Mountain View CA) is a flexible

tapered nitinol wire with several helical loops that is deployed via a microcatheter and

embedded within the thrombus for retrieval. An improvement in neurological outcome

with the use of the X6 Merci Retriever (Figure 1-10 (a)) 8 hours after onset of ischemic

symptoms (beyond the traditional 6-hour window) was reported97. The final results of the

multi-MERCI trial published in 2008 shows an improvement in the recanalization rate by

using new generation L5 MERCI (Figure 1-10 (b)) to treat patients with large vessel

occlusion98.

Figure 1-10 (a) The Merci non-filamented (X6) and (b) filamented retriever (L5)
(Image source: Concentric Medical Inc, Mountain View CA)
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The recanalization rates of the old (X5/X6) and new (L5) MERCI devices without

adjunctive therapies are 46% and 57%, respectively. With adjunctive IA therapies (other

mechanical interventions or administration of tPA or glycoprotein IIB/IIIA inhibitors),

the recanalization rates of old (X5/X6) and new (L5) MERCI device are 64% and 70%,

respectively. The mortality at 90 days is 34%, and symptomatic intracranial hemorrhages

occurred in 10% of the patients. A final recanalization rate of 68% is reported, and

overall, 36% of patients have a mRS score ≤ 2 after 90 days. Importantly, almost half of

the patients (49%) in which recanalization is achieved have an independent lifestyle

(mRS ≤ 2) after 90 days, as compared to only 9.6% in those patients in whom the

intervention failed (Figure 1-11). More than half of the patients in whom

revascularization was not achieved die within 90 days after the MERCI treatment. These

data, which show an increase in independent living and a reduction in mortality when

mechanical revascularization is achieved, have been consistent across all of the MERCI

trials and provide a strong impetus for device mediated vessel recanalization.

Figure 1-11 Clinical outcomes at 90 days by mRS show an increase in independent living and a
reduction in mortality when mechanical revascularization is achieved98.
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Comparisons between the recanalization rate, functional status and mortality

reported in the multi-MERCI trial and the PROACT II study are available99. In the

PROACT II study, intra-arterial prourokinase recanalized 66% of the MCA occlusions,

whereas the MERCI retriever restored the blood flow in 68% of the patients with the

large vessel occlusions in the MCA, the carotid terminus or vertebrobasilar arteries. In

the PROACT II study, an overall mortality is 25%, and 40% of the patients show

favorable outcome (mRS≤ 2) at 3 month follow-up. Despite similar recanalization rates,

the mortality presented in the multi-MERCI trials is higher than that reported in the

PROACT II study, which could be due to the difference in the inclusion criteria as

described above. Recently, Merci and Multi Merci investigators parsed their data for

patients who would have been eligible for enrollment in PROACT II99. They were able to

conclude that mortality was indeed explained by baseline stroke characteristics and trial

design, and did not differ between the relevant patients in the MERCI trials and

PROACT II control arm. Moreover, embolectomy produced similar functional outcome

results in this subset of MERCI/multi-MERCI patients as compared to the PROACT II

treatment arm. It is important to mention that adjusted comparisons were hampered by

the failure to obtain access to the individual patient level data from PROACT II.
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The second, more recently FDA-approved thrombectomy device is the Penumbra

Aspiration System (Figure 1-12) consists of a reperfusion catheter, a separator, and a

vacuum pump that removes the thrombus through 2 mechanisms: maceration and

aspiration.

Figure 1-12 Reperfusion Catheter/Separator pairs are available in numerous sizes (left). The
Penumbra reperfusion suction pump is connected to the Penumbra reperfusion catheter
by an aspiration tubing and provides continuous suction when activated (right) (Courtesy
of Penumbra, Inc., Alameda, CA)

In a recent clinical trial100, the safety and effectiveness of the Penumbra system

were tested in the treatment of 125 acute stroke patients. Before treatment, the average

mRS of 125 patients was 4.5±0.8, and 96% had Thrombolysis in Myocardial Infarction

(TIMI) 0 flow (no perfusion). The target vessel locations included ICA (18%), MCA

(70%), vertebrobasilar (9%) and others (3%). The clinical outcome showed the Penumbra

system was effective in revascularization, and resulted in 82% achievement of TIMI 2

(partial perfusion of the artery with incomplete or slow distal branch filling) or TIMI 3

(complete perfusion of the artery) flow. At 30-day follow-up, 42% of patients had a good

clinical outcome, which was defined as a ≥ 4 points improvement in National Institutes of
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Health Stroke Scale (NIHSS) score or mRS score ≤ 2. The mortality rate was 26% and

the rate of symptomatic hemorrhage was 11%. Interestingly, in those patients in which

the primary lesion was recanalized, only 29% had an mRS ≤ 2 after 90 days. That is

nearly half the number of patients with an independent lifestyle than observed in the

multi-MERCI trial following successful recanalization. It is reasonable to hypothesize

that mitochondrial dysfunction triggered by the initial injury, inflammatory processes,

initiation of apoptosis, and the distal emboli from maceration of the occlusive embolus

may be potential explanation for this observation. Safety parameters, such as device

related serious adverse events and rate of intracerebral hemorrhage were found to be

comparable with historical controls.

Other Treatments for AIS

There are a variety of minimally-invasive treatments for acute ischemic events

such as endovascular snares101, balloon angioplasty42, 102, intracranial stenting103, and

selective intra-arterial infusion of thrombolytic agents. During balloon angioplasty, the

revascularization is achieved by inflating the balloon at the occlusion site to flatten or

compress the plaque or thrombus. Improved clinical outcome after balloon angioplasty in

patients who are resistant to intra-arterial thrombolysis has been documented104; however,

the drawbacks of the balloon dilation such as risks of elastic recoil and dissection limit

the applicability of this technique105. Favorable clinical outcomes (79% recanalization

rate) with another endovascular treatment, balloon expandable stent, are also observed in

previous studies106, 107. Balloon-assisted stenting provides higher radial force as compared
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to balloon angioplasty, but the overexpansion of the stent may cause vessel damage105. In

addition, the rigidity of the stent influences the deliverability in the tortuous intracranial

circulation during the treatments of the intracranial diseases.

The recently available self-expanding stent combines the advantages of balloon

angioplasty and balloon-assisted stenting, and is more suitable for the treatment of acute

cerebrovascular occlusions108.  The self-expanding stent is more flexible and applies less

radial outward force against the vessel wall. In a first FDA-approved prospective trial of

primary intracranial stenting for acute stroke109, the safety of the Wingspan intracranial

self-expanding stent system (Boston Scientific) was evaluated in 20 enrolled patients

with AIS. A 100% recanalization rate was reported (12 patients had TIMI 3 and 8

patients had TIMI 2), and at 1-month follow-up, mRS ≤3 was achieved in 12 patients and

mRS ≤1 was achieved in 9 patients. The promising results from this trial suggest the

potential utility of the self-expanding stent in the treatment of AIS. The one drawback of

the technique is the permanent implantation of a metallic endoprosthesis, which

necessitates proper anti-platelet therapy. The administration of antiplatelet medications

could complicate the risk of increased frequency or severity of intracranial bleeding. The

concept of using the stent as a retriever was also documented in the previous studies.

Wakhloo and Gounis first demonstrated the use of self-expanding stents for clot removal

in the laboratory110. This technique has been applied clinically where the Solitaire FR

(flow restoration) Revascularization Device (ev3, Irvine, California) successfully

recanalized 90% of cases where the MERCI retriever had previously failed111.
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Ultrasound refers to sound waves with frequencies above 20 kHz, and is

generated by a piezoelectric transducer. The transducer receives the electric input and

vibrates when the frequency of the voltage reaches the resonance frequency of the

piezoelectric material. The vibration is then transmitted as ultrasonic pressure waves.

Two commonly used frequency ranges in medicine are assigned as low (20-400 kHz) and

high (0.5-3 MHz) frequency112. Low frequency, high power ultrasound has better tissue

penetration, and is utilized therapeutically. Currently, there are three different approaches

to execute ultrasound thrombolysis: transcranial ultrasound thrombolysis113, catheter-

delivered transducer tipped ultrasound thrombolysis114, and catheter-delivered external

transducer ultrasound thrombolysis115, 116. One of the main mechanisms by which

ultrasound thrombolysis occurs is called “cavitation”. Cavitation happens when a fluid is

violently agitated, and it involves creation, growth, oscillation, and collapse of bubbles in

the medium. During negative phase of the ultrasound wave, the microbubbles form in the

thrombus. These bubbles collapse and give rise to a series shock waves causing thrombus

fragmentation112. Other forces produced from the bubble dynamics such as shear stress

and liquid jets also contribute to the clot ablation117.

Hong et al. employed a flexible titanium wire probe to disrupt the whole blood

clot and cell-free fibrin clot in test tubes118. A continuous ultrasound wave was generated

and delivered by an ultrasonic lithotripsy generator at a frequency of 20 kHz. It was

observed that a 56 cm wire probe broke a 1.2 g whole blood clot in 45 seconds, and clot

age had no effect on the time required for disruption. Debris as large as 80 μm was

detected in the disrupted whole blood clot solution, while the size of the disrupted cell-
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free fibrin clots was around 40 μm. Halkin et al. illustrated the ultrasound thrombolytic

effect on cardiac vessel patency112. In coronary arteries, ultrasound wave decreased the

degree of stenosis and increased the coronary blood flow. The safety and efficacy of the

coronary ultrasound thrombolysis by using catheter-delivered external transducer

ultrasound system were also documented in the previous animal data and clinical results.

In this thesis work, the application of waveguide ultrasound technique is expanded to the

ablation of the clot in cerebral arteries where the vessel geometry is more complex and

tortuous. The waveguides are different than the EKOS ultrasound device (EKOS

Corporation, Bothell, Washington, USA). The EKOS ultrasound device is delivery

concurrently with infusion of a thrombolytic agent through the microcatheter. The

acoustic pressure gradient generated by the ultrasound moves the drug into the clot and

accelerates its dissolution. On the other hand, the waveguide ultrasound technique

disrupts the clot by cavitation with a waveguide due to its mechanical motion (vibration)

induced by the ultrasound energy. The success of this design may provide another option

for physicians to treat patients with acute ischemic stroke.

Specific Aims

There is an incomplete understanding of the anatomy and physiology leading to

stroke. Therefore, I hypothesize that AN ANATOMICALLY AND

PHYSIOLOGICALLY REPRESENTATIVE MODEL SYSTEM OF

CEREBROVASCULAR OCCLUSION IS REQUIRED AND CAN BE BUILT FOR
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EVALUATION OF MECHANICAL THROMBECTOMY DEVICES IN-VITRO. To

test this hypothesis, I propose the following specific aims:

Specific Aim I: To create a representative in-vitro model of human focal, vascular

occlusion

a. To build realistic models of human intracranial vasculature and a flow loop to

simulate human cerebral circulation. Brain magnetic resonance angiography (MRA) data

sets from normal patients are collected for the geometric analysis, and the results from

the vessel characterization are used to determine the best matching vasculature to build

replicas with representative anatomical features by using a novel batch manufacturing

process. A transparent replica with uniform wall thickness is connected to a flow loop

which consists of a computer-controlled cardiac pulse duplicator, flow probes, pressure

transducers, and data acquisition system to simulate and monitor human intracranial

hemodynamics for testing of the thrombectomy devices.

b. To prepare and characterize EAs. EAs will be created to occlude the silicone

replica mimicking the acute arterial occlusion in human. Impacts of species, thrombin

and barium sulfate concentration on the mechanical properties of the EAs will be

investigated. Moreover, the structural and mechanical characteristics of the EAs will be

compared with those of the human sources of emboli.

Specific Aim II: To evaluate the efficacy of the mechanical thrombectomy device in the

abovementioned model
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The MERCI retrieval system, the Penumbra aspiration system, a self-expanding

stent, and an ultrasonic endovascular system comprising an ultrasonic energy source,

transducer and ultra thin wire are activated to mechanically interact with the embolus

analogues in the flow loop. The flow restoration and particulate size analysis are critical

indicators to determine the efficacy and safety of each device.
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Chapter II: Neurovascular Modeling: Small-Batch Manufacturing of Silicone

Vascular Replicas

Abstract

The objective of this work is to develop an efficient methodology for

manufacturing realistic cerebrovascular replicas. Brain MRA data from 20 patients were

acquired. The centerline of the vasculature was calculated and geometric parameters

measured to quantitatively describe the ICA siphon. A representative model was created

based on the quantitative measurements. Using this virtual model, a mold with core-shell

structure was designed and converted into a physical object by fused deposit

manufacturing. Vascular replicas were created by injection molding of different silicones.

Mechanical properties, including the stiffness and luminal coefficient of friction, were

measured.

The AC, length and curvature of the ICA siphon were 4.15±0.09 mm, 22.60±

0.79 mm and 0.34±0.02 mm-1 (average ± standard error of the mean), respectively. From

these image datasets, a median virtual model was created and this virtual model was

transformed into a physical replica by an efficient batch manufacturing process. The

coefficient of friction of the luminal surface of the replica was reduced by up to 55%

using liquid silicone rubber coatings. Depending on the material used to make the replica,

the modulus ranged from 0.67 to 1.15 MPa compared to 0.42 MPa for a cerebral artery

from human autopsy studies. A population-representative, smooth, and true-to-scale
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silicone arterial replicas with uniform thickness were successfully built for in-vitro

neurointerventional device testing using a batch manufacturing process.
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Introduction

Recent advances in minimally invasive neuroendovascular interventions such as

aneurysm coiling, clot retrieval, balloon angioplasty and stenting have been applied in the

treatment of cerebrovascular diseases103, 119, 120. For the successful development of new

devices designed for the intracranial circulation, in vitro evaluation in realistic vascular

replicas is an important part of the design phase121-124. Of particular importance is the

ICA siphon, which offers challenging tortuosity for endovascular access. Several

different manufacturing processes for fabrication of vascular replicas have been described

previously. Physical 3D vasculature models have been obtained either by injecting

methylmethacrylate into human cadavers to get vascular lumen casts125-132 or by rapid

prototyping based on imaging data129, 130, 132. Different methods, including repeated

painting125, 131, dip-spin processing126, and lost-wax technique128 have been applied to the

casts to form the elastomeric replicas. The procedures mentioned above successfully

fabricated a variety of vascular replicas; however, some limitations of these

manufacturing processes cannot be ignored. First, the high friction resistance on the

surface of silicone impeded the deliverability and deployment of endovascular devices in

the silicone replicas133. Secondly, achieving desired wall thickness by repeated painting

or dip-spin steps was time-consuming and not precise. Importantly, each model was

essentially made by hand, and therefore with limited reproducibility and large time

expenditure.
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The goal of the earlier studies was to make patient-specific silicone models

instead of a model capable of representing the geometry of a population of patients. To

prepare the latter model, vessel characterization is essential. The morphology of

intracranial arteries varies not only from location to location, and patient to patient but

also as a result of a number of diseases134, 135. Therefore, vessel characterization provides

the necessary data upon which to base a population averaged vascular replica. Various

methods are available for vessel characterization in 2D or 3D space136-138, and among

them, tortuosity evaluation is widely discussed. To date, tortuosity lacks a universal

definition137, but is generally used to summarize curvature information along the

centerline of a blood vessel139. Curvature at a point of the space centerline represents the

rate of change of the tangent with respect to the arc length and can be calculated by using

standard formulae from the Frenet-Serret theory of differential geometry140, 141. By

collecting a set of curvature data, the total and average curvature of a vessel segment can

be obtained.

During neuroendovascular therapy, access of neurovascular devices to the anterior

intracranial circulation requires navigation through a relatively tortuous ICA siphon,

where the anatomy can make access difficult142.  In this study, the median AC, length,

and diameter of the ICA siphon from 20 patients were used to build a true-to-scale, batch-

manufactured, transparent silicone replica of a population representative model.

Furthermore, the inner wall of silicone replica was modified by the LSR topcoat to

provide lubricity for the delivery of endovascular devices.
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Materials and Methods

Patient Selection and MR Imaging

Twenty anonymized brain magnetic resonance angiography (MRA) data sets were

acquired from a retrospective review between December 30, 2007 and January 23, 2008

of patients (10 men and 10 women with a mean age 60.4 and 42.1 years old, respectively)

having no pathological findings.  MR imaging was performed using a 1.5T system (GE

Signa Excite, Waukesha, WI) and a receiving 8-channel head coil. Brain 3D time of

flight MRA (TOF MRA) data were acquired (TR, 33.3 ms; TE 6.9 ms; FA, 20º; FOV,

200 x 200mm; matrix 512 x 512; section thickness, 1.4mm with 0.7mm gap).

Vessel Segmentation and Centerline Generation

MRA images were imported slice-by-slice into Mimics (Materialise, Leuven,

Belgium) and stacked to formulate a 3D model (Figure 2-1). The target vasculature was

extracted from the neighboring tissue by thresholding. To generate a segmentation mask,

minimum and maximum threshold values were set and segmentation was further

restricted by cropping the mask. The selected pixels (highlighted in yellow in Figure 2-1)

in each slice were connected, resulting in a clean mask for the use of 3D model

construction. The 3D segmentation object was fixed to assure that there were no shells,

holes, noise or bad edges, and smoothed before skeletonizing. The resulting centerline

was composed of control points equally spaced at a constant 0.4 mm interval.
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Figure 2-1 Mimics displayed the image data in several ways: (upper left) the coronal view, (upper
right) the axial view, (bottom left) the sagittal view, and (bottom right) the 3D view.

Vessel Characterization and Model Selection

The path length of extracted centerline and the diameter of the best fit circle to the

vessel cross-section at each control point were recorded and averaged. The results were

presented as average ± standard deviation.

The AC of left and right ICA siphons of 20 patients was calculated. The vessel

centerline r(s) = [x(s), y(s), z(s)] was first parameterized by arc length, and then fitted
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with a 10th-order polynomial for smoothing. To evaluate the goodness of fit, the degree of

polynomial varying from 2 to 22 was applied to the original data set, respectively, and the

root mean square error (RMSE) was calculated143.

The smoothed centerline was re-sampled to give control points at constant 0.05

mm intervals for curvature evaluation. The curvature (k) at each control point and the AC

were given by140, 141:
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where r’(s) and r”(s) denoted the first and second derivatives of the centerline, and

n indicated the total number of points.

The nonparametric Wilcoxon signed rank test was performed (GraphPad Prism 5,

La Jolla CA) to compare the median of each vessel feature against a hypothetical median,

which was every single geometric parameter for the left and right ICA siphons in each

patient . In this test, p value greater than 0.05 concluded that there was no statistically

significant difference between the median of a group of samples and the hypothesized

median.

Generation of the Vascular Replica

A mold with a core-shell structure was created for silicone injection (Magics,

Materialise, Leuven, Belgium). The inner core, representing the geometry of the
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vasculature was encapsulated by the outer shell which was created based on the geometry

of the core. The distance between the core and shell was the thickness of the silicone

replica, which can be precisely controlled. In this study, the wall thickness was 1 mm.

The virtual design was transformed into a physical object (Prodigy Plus, Stratasys,

Eden Prairie MN) using fused deposit manufacturing to build the model in a layer-by-

layer manner, with a layer thickness of 0.178 mm (Figure 2-2). The extrusion head in the

build envelop was heated to melt both the mold and support materials and was moved in

both horizontal and vertical directions by a numerically controlled mechanism. The

production capacity per batch was determined by the size of the target vasculature. For

instance, 6 ICA-MCA core-shell models with a dimension of 47×41×81 mm3 each can

be built in one batch, and completed in 30 hours.  The dual build heads in the heated

build envelop extruded the model (co-polymer of acrylonitrile, butadiene, and styrene)

and support materials along the designated tool path. Both materials fused together to

form a solid model. The soluble support material was removed in the sodium hydroxide

solution at 70 ºC, which required approximately 24 hours.
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Figure 2-2 Cross-sectional view of the vascular model during the build process

Xylene and 2-propanol were infused into the mold alternately to smooth the core

and the inner wall of the shell. It was found that repeating the alternate rinse procedure

for 5 times, each time for 1 minute, achieved an adequate smoothing result. The rinsed

mold was dried in the ventilation system before silicone infusion.

Sylgard 184 silicone kit (Dow Corning, Midland MI) and an injection molding

grade silicone, LIM 6030 pail kit (Momentive, New Milford CT), were infused into the

core-shell mold. Sylgard 184 replica was found to be optically clear, and had higher

Shore A hardness. Compared to Sylgard 184, LIM 6030 had higher elongation at break,

tensile strength, and viscosity. The amount of thinner SF 96-5 (GES Waterford Plant,

Waterford, NY) added to the LIM 6030 mixture accounted for 7% of total mixture weight.

The silicone solution was mixed and degassed at room temperature under 76 cmHg

vacuum. Higher injection pressure, at least 1200 mmHg, was required for the delivery of

the viscous LIM 6030 as compared to 55 mmHg to infuse the Sylgard 184 into the mold.
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The silicones were cured at 60 oC for 12 hours. The whole mold was immersed in xylene

for mold dissolution overnight.

LSR Topcoat Modification

LSR topcoat (Momentive Performance Materials, Albany NY), a two-component

translucent matte coating with a Brookfield viscosity of 1600 centipoise, was infused into

smoothed, open-ended, straight silicone tubes (11 cm in length, and 4 mm in diameter)

using a peristaltic pump, and then cured at 110oC in a ventilated oven for 30 min. This

procedure was repeated from 0 to 3 times. The effect of multiple coatings on the COF

was evaluated by using a customized friction rig (TA-265A, Texture Technologies Corp,

Hamilton, MA) which was designed according to ASTM D1894. The schematic

illustration of the friction rig was shown in Figure 2-3 (a), and a cone-ring structure was

design to mount the silicone material (Figure 2-3 (b and c)).
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Figure 2-3 (a) The schematic illustration of the friction rig (b) The ring and cone were used to hold
silicone tube material. The tube material was placed against the cone and the slid over it
until a snug fit was achieved (c) A vessel sample (blue arrow) was mounted.

During the friction test, the inner lumen of the replica slid 20 mm over a flat

surface at a sliding speed of 5 mm/sec for 25 times. A 200g weight was placed on the far

end of D to create a higher normal force between the target surfaces. All tribological tests

were conducted under ambient condition with a constant temperature of 21 oC.  Five

specimens were tested for each silicone material, and the average force was obtained to

determine the static and dynamic COF of silicone material before and after LSR coating.

The static COF was obtained from the averaged maximum force initiating motion

between test material and surface, whereas, the dynamic COF was from the average force
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measured for the duration of sliding. The free body diagram of the friction rig system was

presented in Figure 2-4.

Figure 2-4 The friction rig system and its corresponding free body diagram.

The Student’s t-test was performed to determine the statistical difference in

friction before and after surface modification.
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Tensile Test for Silicone Stripes

The stress-stretch relationship (S-S relationship) was obtained by using an Instron

machine (model 5542) equipped with 0.5 kN load cell, having 651 mm vertical test space.

The 5 mm wide, 50 mm long Sylgard 184 and LIM 6030 silicone strips with average

thickness of 0.5± 0.06 and 0.5± 0.02 mm, respectively, were prepared for the tensile test.

All the specimens (three specimens for each group) were subjected to the test at a cross-

speed rate of 30 mm/min, and the S-S relationship of the silicone stripes were compared

with that of the human MCA from autopsy which was performed quasi-statically at a

strain rate of about 0.05 s-1 144.
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Results

The anatomy of the three cerebral vessels from patient 1 (PA1), patient 2 (PA2)

and patient 3 (PA3) were shown in Figure 2-5 (a) through (c) having siphons with an AC

ranging from 0.23 to 0.64 mm-1. PA1, PA2 and PA3 were selected to illustrate mild,

moderate and severe curvature, respectively, of the ICA siphon in our patient population.

Figure 2-5 Virtual cerebrovascular models showed ICA siphons with low (a), medium (b), and high (c)
curvature.

In the vessel characterization, the best-fit polynomial to smooth the original

centerline data was determined by minimizing the error between of the polynomial curve

and original centerline. Figure 2-6 showed that the total error decreases significantly up

to the tenth-order polynomial fit, followed by a more gradual decline. The smoothed

centerline was re-sampled before curvature calculation.
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Figure 2-6 The total error decreased significantly up to the tenth-order polynomial fit, followed by a
more gradual decline.

It was observed that the AC tended to increase with the decrease of the distance

between control points, and became stable when the distance was less than 0.1 mm. This

change was significant in the measurement of ICA siphon with severe tortuosity, whose

AC increased from 0.45 to 0.65 mm-1 when the distance decreased from 0.4 to 0.01 mm.

In this study, the polynomial curve was re-sampled to have points at constant 0.05 mm

intervals for curvature calculation. By using the 10th-order polynomial to smooth the

original centerline and giving control points with constant 0.05 mm intervals, the AC, arc

length and diameter from 20 patients were 0.34±0.12 mm-1, 21.86±4.24 mm and

4.17±0.64 mm for the left ICA siphon, respectively. For the right siphon, the AC, arc

length and diameter were 0.34±0.13 mm-1, 23.31±5.72 mm, and 4.12±0.44 mm,
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respectively. In patient 18 (PA18),  the p values resulted from the Wilcoxon signed rank

test for comparisons in AC, length, and diameter were all greater than 0.05, indicating

each measured parameter of PA18 had no significant difference to the corresponding

median. The p-values were 0.24, 0.37, and 0.96 for the comparisons in AC, arc length

and diameter, respectively, of the left ICA siphon, and 0.72, 0.29, and 0.49, respectively,

for those of the right ICA siphon. This finding was only observed in PA18, and led us to

select PA18 as a representative model of the chosen patient population in this study. The

results of vessel characterization were shown in Figure 2-7.

Figure 2-7 (a) AC and (b) length and diameter of the left and right ICA siphons from 20 patients.

A computer mold consisting of a core-shell structure for silicone injection was

shown in Figure 2-8 (a). Silicone was infused into a mold (Fig 2-8 (b)), which contained

the vasculature of circle of Willis (CoW) from PA2 as the core (Fig 2-8 (c)). Removal of

the side braches and dissociation of artifactually fused vessels from the image

reconstruction was done in Mimics. Figure 2-8 (d) and (e) showed silicone replicas of the
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CoW from PA2 and the representative right ICA from PA18, respectively. Using this

batch manufacturing process, 6 vascular replicas were made from the virtual model in 92

hours at a material cost of $250. The capital equipment and software used in this study

were quite expensive; however, these tools were available at most universities and

medical device companies.

Figure 2-8 The virtual core-shell structure (a) was designed for the preparation of the physical ABS
model (b) which contained the CoW (c) as the core. After silicone was cured, the ABS
model (b) was dissolved in xylene, resulting in a transparent CoW silicone replica (d). By
using the same manufacturing process, a representative right ICA siphon was built from
PA18 (e).

The static and dynamic COF of Sylgard 184 and LIM 6030 with various number

of LSR coatings were given in Table 2-1. The best values were obtained with a single
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coating for Sylgard 184: COF reduces by 55%, with a minimum static COF of 0.334±

0.169, and dynamic COF of 0.312±0.174. For LIM 6030, a 47% reduction in COF was

achieved with 3 layers of LSR topcoat, resulting in a static COF of 0.719±0.121, and

dynamic COF of 0.683±0.120.

Table 2-1 Static and dynamic friction coefficients of Sylgard 184 and LIM 6030 samples for different
number of coatings

0 0.738±0.093 0.707±0.089 1.346±0.113 1.298±0.113

1
0.334±0.169
(p=0.0016)

0.312±0.174
(p=0.0019)

1.052±0.216
(p=0.0273)

1.026±0.222
(p=0.0435)

2
0.366±0.114
(p=0.0005)

0.312±0.108
(p=0.0002)

0.815±0.114
(p<0.0001)

0.765±0.098
(p<0.0001)

3
0.471±0.091
(p=0.0018)

0.416±0.090
(p=0.0009)

0.719±0.121
(p<0.0001)

0.683±0.120
(p<0.0001)

The friction coefficient was presented as mean ± standard deviation. The Student’s t-test was performed to compare
the mean friction coefficient of coated and uncoated groups.  The two-tailed p-value <0.05 indicated a significantly
statistical difference.

Static COF Dynamic COF

LIM 6030Sylgard 184

Static COF Dynamic COF

Silicone Type

Coating Number

The S-S relationship of LIM 6030 and Sylgard 184 were shown and compared

with that of the human MCA from autopsy obtained from the quasi-static test conducted

by Monson 144 in Figure 2-9. It was found that as human blood vessel, silicone rubber

exhibited a nonlinear S-S relationship. Moreover, at low stretch, the slope of the S-S

curve of LIM6030 was 0.67 MPa, similar to that of the MCA from autopsy (0.41 MPa).



44

Figure 2-9 The S-S curves of Sylgard 184, LIM 6030, and human MCA from autopsy were compared.
At low stretch, the elastic property of LIM6030 was closer to that of MCA from autopsy.
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Discussion

A great deal of effort has been made on creating polymeric vascular models for

surgical simulation, interventional practice, and hemodynamic research in vitro.

Quantitating anatomic features of the arterial structures for disease or lesion prediction

and diagnosis has also been widely investigated. To our knowledge, no studies have yet

to apply the vessel characterization results to the replica manufacturing process. In this

work, the disclosed manufacturing process of replicas was developed based on a model

extracted from a characterized population of imaging datasets. This could be an even

more powerful technique in the future as image databases grow, allowing an investigator

to search for anatomy specific to a precise patient population for whom a given

endovascular device is intended.

The image editing flexibility during the post-processing not only refines the

vascular mesh, but also expands the applications of the silicone replicas. For instance,

small vessel branches such as ophthalmic arteries can be removed resulting in a clean

vasculature which contains only the interested structure like the CoW or ICA before

centerline construction. To smooth the centerline, the RMSE describes how well the

fitted curve matches the original data set. During the smoothing process, a high

polynomial order does not guarantee better fitting results and can lead to oscillations

between the data points. The tenth order polynomial had a RMSE of 0.1 for PA1 and PA2,

and 0.16 for PA3 and was chosen as a smoothed centerline. To take minor changes along

the vessel centerline into consideration, the curvature of every 0.05 mm segment was
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measured and averaged.  The median of each vascular feature was used to select a

representative model in this study. The nonparameteric Wilcoxon signed rank test was

eligible to be applied to this small case series (20 patients), and had fewer assumptions

about the population distribution.

Arterial lumen replicas can be obtained from human cadavers127, 131. Postmortem

alterations, including the shrinkage of arterial trees, produced dimensional errors of the

in-vitro model. Using MRA data to acquire the geometry of the target vessels in our

proposed manufacturing method avoided this problem and provided flexibility during the

post-processing. It was mentioned in Ghazali’s study145 that the noninvasive, non-contrast

enhanced 3D TOF MRA was highly accurate in depicting the arterial segments of the

circle of Willis except the posterior communicating arteries, and the same observation

also applied to this study. The poor depiction of posterior communicating arteries could

be attributed to the saturation effect of slow flow and the flow parallel to the acquired

section plane in addition to the normal anatomical variations in which these vessels were

not present.

Other methods of replica construction have been used, such as that described by

Knox et al.128 where they created a reusable master mold of lumen replica based on the

computed tomography scan data from a live patient to reproduce wax lumen models. The

major difficulty of this technique was the fabrication of the master mold which required

an experienced mold maker, was a time-consuming and expensive process, and the

resulting mold was not easily modifiable to change the replica anatomy. Compared to
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Knox’s method, the construction of our core-shell structure was straightforward and

efficient. On average, a virtual core-shell mold can be completed in 20 minutes after

receiving the scan data, enabling reproducible manufacturing of replicas of any selected

configuration.

In Sugiu’s study131 , 4 to 6 thin layers of silicone liquid were manually painted

onto the wax lumen cast to simulate the vessel wall, however, the thickness and

uniformity of the coating were not stated. Seong et al. 130 fabricated rabbit aneurysm

replicas by using dip-spin method. The lumen cast polished by sand papers was dipped

into the silicone mixture, and then mounted on a spinning shaft to obtain a layer of

uniform silicone coating. The repeated coating procedure was time consuming and not

reproducible. The described methodology, involving batch construction of an infusion

mold and batch dissolution of the mold leaving behind an elastomeric vascular replica,

served to improve these limitations. The core-shell mold kept the consistency of the

replica dimensions, and saved time via the batch manufacturing. Due to the structural

constraint, hand polishing was not applicable to our core-shell mold. To smooth the

lumen surface, the mold was rinsed with xylene and 2-propanol alternately. This

procedure allowed xylene to gradually dissolve model material and effectively prevented

the core-shell structure from collapse.

Besides the soft replica described above, the rigid block model provided another

option for in vitro use. Wetzel et al. used the 3D printer with the resolution of the build

layer of 0.076 mm to form the wax copies of the vascular trees based on rotational
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angiography data. The wax model was embedded in clear silicone which was then cured

to form a solid block. The holes drilled in the silicone block drained the melted wax.

After evacuation of the wax, a transparent rigid model containing the vascular lumen

inside was prepared.  The major concern of this lost-wax technique was the fragility of

the wax which resulted in the breakage of the vessel branches smaller than 1 mm. By

using the method reported here, silicone vascular replicas with branches smaller than 0.5

mm were made.

A common concern for selecting silicone as a material for vascular replica

fabrication was its high friction. Surprisingly few attempts have been made to minimize

the resistance between silicone replicas and medical devices. So far, an alternative

material used to prepare vascular replica in the application of neurovascular modeling

was poly-vinyl alcohol (PVA)133. The high water content of PVA hydrogel gave the

vascular replica a naturally lubricated surface; however, the life of PVA replicas was

limited, depending on the rate of water evaporation. Aside from using PVA in

substitution for silicone, Parylene coating successfully reduced the COF of elastomers by

forming a thin layer of Parylene film which closely conformed to the substrate146. The

restriction of this coating method was the requirement of the coating system for vapor

deposition during the process which may increase the cost and restrain the popularity of

this technique. As compared to the aforesaid methods, LSR topcoat offered an easy and

efficient option for smoothing inner wall of silicone vascular model. The low viscosity

allowed LSR topcoat to easily flow through the long and tortuous model; furthermore, it

only took 10-30 minutes to cure one layer of coating.



49

Rubber, like silicone, is generally amorphous, with few strong interactions

between molecules. When the tensile force is applied, the tangled molecules are pulled to

become stretched. In order to maintain the constant strain rate, additional force is needed

on the stretched, oriented molecules. When a vessel is subjected to a tensile force, the

elastin and collagen fibers significantly contribute to the low and high stiffness in the S-S

curve147.  The results from the tensile test in this study showed that the S-S relationship of

LIM 6030 was similar to that of human MCA from autopsy at low stretch. To make this

conclusion, it was necessary to clarify and discuss the potential differences between in

vivo and in vitro test condition.  The blood vessel wall is an anisotropic composite

material in general, and receives multi-directional stress in the physiological environment.

All specimens described herein were subjected to uniaxial tensile strength, and stretched

longitudinally until breakage. Therefore, the results may not be able to represent the

mechanical response in vivo.  Furthermore, the contribution from the surrounding tissue

to the mechanical response of the vessels to the load was not taken into consideration in

the in-vitro and ex-vivo study. Lastly, factors such as age, sex and disease history of

donor, type of vessel and strain rate may cause large variation in the S-S behavior for

biological materials. It is noteworthy that the cerebral arteries are significantly stiffer and

less stretchable before failure as compared to systemic arteries148.

The described technique provides an efficient method for representative replica

construction. However, there are technical difficulties which might be encountered while

preparing the silicone models. Bubble formation during silicone injection may cause

defects of the silicone replicas. High pressure required to infuse silicone liquid with high
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viscosity into the mold may cause core structure motion, resulting in variation in wall

thickness. Finally, more imaging data will need to be reviewed to create a more realistic

environment for medical device testing, endovascular training and in vitro hemodynamic

studies.

Conclusion

A small batch manufacturing process was introduced in this study to generate

smooth, transparent, population based, anatomically accurate silicone cerebrovascular

replicas.  Importantly, this batch process allowed for reproducible replica generation. The

manufacturing process for each silicone replica required 15.5 hours.
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Chapter III: Ex-Vivo Modeling of Cerebral Emboli-Mimicking Clots

Abstract

Mechanical behavior of the embolus is one of the key factors that determine the

efficacy of thrombectomy devices. The goal of this study is to characterize the

mechanical properties and composition of thromboemboli from clinical cases as

compared to commonly used EAs.

Clinical thromboemboli were obtained from patients with AIS by using aspiration

devices and from carotid atherosclerotic plaques harvested during endarterectomy. On the

bench, EAs commonly described in the literature were created from various blood donor

species (human, porcine and bovine) with and without the addition of thrombin and

barium sulfate. Stiffness and elasticity of the specimens were monitored with dynamic

mechanical analyzer (DMA). Scanning electron microscopy (SEM) and histological

analyses were performed to investigate the ultrastructure and composition of the

specimens.

Of the clinical specimens, calcified thromboemboli showed the highest stiffness

followed by those containing cholesterol crystals. The softest clot material was obtained

from AIS patients and was found to be mainly composed of fibrin and erythrocytes. Of

the EAs created in the lab, bovine EAs presented the highest stiffness. Addition of

thrombin resulted in increases in stiffness and elasticity of human and porcine EAs. The

presence of barium sulfate significantly reduced the elasticity of EAs. The stiffness and

elasticity of the cerebral emboli analyzed in this study showed no significant differences
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with those of the recalcified porcine EAs and thrombin-induced (5 NIHU/ml blood)

human EAs. Stiffness of the carotid endarterectomies (CEA) specimens was similar with

that of the bovine EAs and thrombin induced porcine EAs.
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Introduction

With growing experience of penumbral imaging for patient selection and newer

more effective mechanical recanalization devices, alternative endovascular therapy for

AIS has become a viable treatment option149. There are presently two devices available in

the United States for thrombectomy in acute ischemic stroke and many other technologies

under evaluation. These devices produce recanalization, defined using the thrombolysis

in myocardial infarction (TIMI) score applied to catheter angiography studies98, 100, from

50% to 82% of cases. Currently, it is poorly understood what variables predict successful

recanalization. Characterization of the embolus may be helpful in device selection and

development.

In preclinical characterization of thrombectomy device technology, efficacy  and

safety are measured in large animal or in vitro vascular occlusion models150-153 with

endpoints such as number of thrombectomy attempts, the amount of EA removed from

the occlusion site, and the risk of distal embolic shower150, 151, 154-156. All of these

parameters are significantly affected by the mechanical properties of the EAs, an often

overlooked component of the testing system.  In the literature, many protocols to

manufacture EAs exist and common variables include the donor species, concentration of

thrombin and radiopaque additive such as barium sulfate118, 151, 155-158. Species differences

in blood chemical composition, hematological values159-162, thrombin effects on

coagulation profile163, functional structure of coagulation proteins164, 165,166, 167, blood

coagulation mechanism168 and pH and ionic strength of the clotting environment169,170-
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173influence the structure (diameter, length and branch point density of the fibrin fibers174)

and mechanical properties of the clotting materials in-vitro160, 172, 175-177. The mechanical

properties of EAs formed in-vitro are normally investigated by using rheometry178-180,

thrombelastography181, 182, and atomic force microscopy/fluorescence microscopy183.

The aforesaid findings lead to the hypothesis that commonly employed EAs have

different mechanical properties, and currently we do not know how they relate to human

sources of thromboemboli that cause stroke. Human sources of thromboemboli are

normally classified into three different types: white, red thrombus, and disseminated

fibrin deposit184. The composition of all three varies in the relative amounts of fibrin,

platelets and erythrocytes. The platelet and fibrin-rich white thrombus usually forms at

injured vessel wall, particularly in areas where blood flow is fast, whereas the fibrin and

erythrocyte-rich red thrombus may form in the venous system where the blood flow is

retarded. Fibrin clots, containing some white and red blood cells but no platelets, can be

found in small cerebral arteries of approximately one third of the patients with recent

embolic infarcts165. The highly variable nature of these thrombi creates a challenge to the

study of revascularization devices and drugs. Two recent studies analyzed the

composition of emboli retrieved from the stroke patients. Marder et al. first

systematically analyzed thrombi retrieved from ICA and MCA of patients with AIS, and

discovered that 75 % of thromboemboli had random fibrin and platelet deposits

interspersed with nucleated cells and confined erythrocyte-rich regions185. Another

histological analysis was performed on thrombi extracted from 5 patients with AIS by

using the MERCI retriever186 and the results showed that most thrombi had a variable
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composition of fibrin and red blood cells. Moreover, different degrees of calcification

were seen in 2 thrombi. The abovementioned studies substantiated the structural and

compositional variations between the in-vivo emboli and in-vitro EAs; however, no

attempts have been made to characterize the mechanical properties of EAs and relate

them to thromboemboli from patients.

The goal of this study is to explore the impact of the aforesaid variables on the

mechanical properties of the EAs commonly used in the lab; namely, 1. Stiffness --

ability to deform the EA and 2. Elasticity -- ability of the EA to return to its original

shape after deformation. Thereafter, mechanical properties of the EAs are compared with

those of the thromboemboli retrieved from patients.

Materials and Methods

Preparation of Embolus Analogues

Our literature review showed that human, porcine and bovine blood donors are

commonly used for EA preparation. EAs were generated by spontaneous coagulation (no

thrombin added)156 or created by thrombin-induced clotting151. The anticoagulant citrate

dextrose solution (ACD)-containing blood was either recalcified by adding calcium150, 155

or clotted with addition of thrombin (2.5 NIHU/ml blood) and barium sulfate (1g/10 ml

blood)158. Barium sulfate is commonly added to the clot matrix to make the EA visible

under X-ray187-189. In this study, the effects of thrombin (0, 2.5, and 5 NIHU/ml blood)

and barium sulfate (0 and 1g/10 ml blood) on the stiffness and elasticity of the bovine,

porcine and human EAs were studied.
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Without the presence of thrombin, spontaneous coagulation was initiated by

mixing bovine, porcine or human whole blood/ACD mixture (10:1) and calcium chloride

(97 mmol/L) at a 5:1 ratio. Based on the species divergence of structure and function in

fibrinogen177 and specificity of the thrombin-fibrinogen interaction176, bovine thrombin

(Sigma T-7513) was used to initiate fibrin formation in bovine and porcine EAs; whereas,

human thrombin (Sigma T-6884) was employed in human blood samples. Thrombin-

induced clotting was conducted by simultaneously injecting whole blood/ACD mixture

(10:1) and calcium chloride (97 mmol/L)/thrombin solution (1NIHU thrombin/4 µl

solution) into silicone tubing (I.D. 6.35 mm) to give blood mixtures with final thrombin

concentration of 5 and 2.5 NIHU/ml blood. Before injection, silicone tubing was rinsed

with 70% alcohol followed by 0.9% saline. The radio-opaque EA was created by adding

1g barium sulfate into the 10 ml blood mixture which had a thrombin concentration of 2.5

NIHU/ml blood158. All EAs were aged in saline at room temperature for one day prior to

characterization.

Collection of Thrombi from Patients

All human specimens were collected with approval from our Institutional Review

Board. Nine emboli were obtained by aspiration from the ICA or MCA of 4 stroke

patients (Figure 3-1 (a) to (c)).



57

Figure 3-1 Patient presented with an AIS due to MCA occlusion (a, arrow). The embolus was
aspirated from the MCA with the Penumbra system and successful recanalization was
achieved (b). Examples of material extracted from stroke patients by aspiration (c).

Due to the fact that debris from atherosclerotic plaques and atrial fibrillation are

well-documented as important sources of emboli to cause AIS190,191, 26 atherosclerotic

plaques removed during CEA and 1 atrial appendage were collected. Materials which

were loosely attached to the lumen of the plaques and red thrombi which were removed

from under the fibrous cap were considered as the potential sources of cerebral emboli.

The materials were harvested from the plaques for analysis. After careful examination

under the microscope, a total of 13 potential sources of emboli were extracted from 7

asymptomatic and 1 symptomatic plaques (8 patients). No thromboemboli were

recovered from the atrial appendage. Clinical data of 12 patients and details of emboli are

provided in Table 3-1, where the tested emboli were numbered by the procedure type (C:

carotid endarterectomy, A: aspiration in acute ischemic stroke) followed by an integer

denoting the order in which the embolus was obtained. In order to avoid confusion, the

term “thromboemboli” henceforth refers to emboli obtained from this patient population.
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Mechanical Characterization

DMA (Q800, TA Instruments, New Castle, DE) which had a force resolution of

0.00001 N, and a strain resolution of 1 nanometer was used to explore the stiffness and

elasticity of the emboli and EAs. All the mechanical examinations were conducted using

a submersion compression clamp within saline at 37oC. The EAs were cut to have a

height of 2 mm, and a caliper having a resolution of 0.1 mm was used to measure the

diameter of the EA. The emboli retrieved from patients had an irregular shape and were

carefully trimmed using micro-scissors and double-edged razor blades under the light

microscope to have a height between 1 and 2 mm. To prevent test material (emboli or

EAs) from slipping, 220-grit sandpaper was adhered to the compression disk.

In the controlled force mode, the test materials were first subjected to a preload

force of 0.0001N, followed by a compression force ramp from 0.0001 N to 15 N at a rate

of 0.5 N/min. The deformation of the test material caused by the compression stress was

used to produce an engineering S-S curve. Onset point, the intersection of the initial and

final tangent lines, was recorded to determined the strain at which a change in the slope

of the S-S curve occurred. Stress was defined as force over surface area, and strain was

referred to deformation in height over original height. To quantitatively describe the

deformation of the test material under the compression force which simulated the large

strain induced by the thrombectomy devices during treatment, stress variation over a

range of strain (the slope of the S-S curve) was calculated. The secant modulus (E intitial

strain-end strain) is the slope of a line formed by connecting the point on the S-S curve from
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defined initial to end strains. As such, E intitial strain-end strain is an indication of the stiffness of

the material. The area under the S-S curve, which represents the energy required to

deform the material, was also calculated.

In the stress-relaxation mode, the test materials were subjected to an initial strain

of 60 % for 5 min, followed by a recovery period of 15 min. The strain recovery (%), a

measure of material elasticity, was acquired.

Histological Assessment

Emboli and EAs were fixed in a 10 % buffered formalin solution for 48 hours.

Specimens were then embedded in paraffin wax and cut into 5μm sections. Sections were

dewaxed and hydrated to distilled water in preparation for a modified version of the

Martius Scarlet Blue (MSB) method for staining fibrin, collagen and erythrocytes192.

Alternating sections were stained with Hematoxylin and Eosin (H&E).

SEM

Emboli and EAs were fixed with 2.5% glutaraldehyde, and dehydrated in series of

ethanol concentrations up to 100 %. To observe the interior of the emboli and EAs,

samples were frozen in liquid nitrogen and fractured. Samples were critical-point-dried,

mounted, and sputter-coated with iridium for SEM observation. Energy dispersive X-ray

spectroscopy (EDS) was performed on two samples.
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Statistical Analysis

Data were presented as mean ± standard error. Unpaired t-test was performed to

compare the means of the non-calcified plaque materials and cerebral emboli retrieved

from the AIS patients. One-way analysis of variance followed by Dunnett's or Tukey's

post test was used to determine significance between patients’ emboli (control) and EAs

or between the EAs, respectively. Statistical significance was set at p<0.05. Statistical

analysis was performed using GraphPad Prism (GraphPad Software Inc., San Diego, CA).

Results

The histology findings revealed that the EAs were mainly composed of

homogeneously dispersed erythrocytes with several interspersed fibrin bands (Figure 3-2

(a)); moreover, a layer of dense fibrin mesh was formed on the outer surface of the EA

that was against the silicone tubing (Figure 3-2(b)). The average onset point of these

erythrocyte-rich EAs analyzed under DMA controlled force mode (n=65) was 89.11±0.55

%. In this study, two secant moduli, E0-75% and E75-95%, were calculated to describe

stiffness of EA.
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Figure 3-2 (a) The EA was mainly composed of erythrocytes (shown in yellow) with fibrin clumps
dispersed in it (arrows, bar=10 microns). (b) A layer of fibrin was formed on the surface
of the EA against the silicone tubing (asterisk, bar=10 microns).

Overall, bovine EAs showed the highest stiffness followed by porcine and human

EAs (Figure 3-3 (a-b) and (e-f)). Without addition of thrombin, E0-75% and E75-95% of

bovine EAs were statistically higher than those of porcine and human EAs (p< 0.05).

However, there was no significant difference in stiffness between EAs made from porcine

and human. Increases in stiffness and elasticity of human and porcine EAs were found

when thrombin was present at a concentration of 5 NIHU/ ml blood (p<0.05). In the

absence of thrombin and barium sulfate, the bovine EAs had strain recovery of 30.28

±2.48 %, whereas strain recovery in human blood derived EAs was unmeasurable due to

their fragile nature. Elasticity of the thrombin-induced porcine EAs was higher than that

of the thrombin-induced human EAs (p<0.05) (Figure 3-3 (c)). As compared to the

counterparts of the bovine and human EAs, thrombin-induced porcine EAs retracted the

most (Figure 3-3 (d)). A significant decrease in elasticity (p<0.05) were found in all EAs

containing barium sulfate (Figure 3-3 (g), Figure 3-4 (a) and (b)). With the presence of
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barium sulfate, the area between initial to 95 % strain under the S-S curve tended to

increase (Figure 3-3 (h)).
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Figure 3-3 Impacts of thrombin and barium sulfate on the stiffness (E0-75% and E75-95%), strain
recovery and diameter of the EAs were shown in (a) to (g).  An increase in area under the
stress-strain curve was observed with the presence of barium sulfate (h).
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Figure 3-4 (a) A secondary electron image of the bovine EA with barium sulfate (x 20,000) (b) a
mixed secondary and backscattered electron image of barium sulfate agglomerates (x
20,000).

From September 2009 to May 2010, 26 atherosclerotic plaques, 1 atrial

appendage and cerebral emboli (from 4 AIS patients) were collected from 31 patients.

With careful examination under microscope, 13 thrombi were harvested from 8 plaques

collected at CEA and no emboli were found in the atrial appendage. Along with 9

cerebral emboli from the AIS patients, a total of 22 specimens from 12 patients (mean

age, 70 years) with an average thickness of 1.43±0.11 mm and surface area of 6.22 ±0.97

mm2 were characterized (Table 3-1).
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Table 3-1 Demographic data of 12 patients and characteristics of 22 emboli.

No.† Site Source Appearance & Composition

C1 ICA excessive hrombus removed
 from he plaque red, ery hrocyte-rich

C2 ICA off-white, partially calcified and fibrin-rich
C3 ICA pink, platelet and fibrin-rich
C4 ICA pink, platelet and fibrin-rich
C5 ICA red, platelet and fibrin-rich
C6 ICA off-white, fibrin-rich wi h cholesterol crystals

4 M 64
high grade stenosis of he right ICA origin

 with intraluminal hrombus of he entire right ICA, M1,
and proximal M2 divisions of he right MCA

aspiration A1 MCA
artery-artery embolus associated wi h ipsilateral carotid

disease red, fibrin, erythrocyte, platelet and leukocyte-rich

5 M 65
right ICA origin >90% segmental stenosis with

intraluminal thrombi at the proximal end and distal
end of the lesion. Occlusion of he right MCA

aspiration A2 ICA cardiocembolic red, fibrin, erythrocyte, platelet and leukocyte-rich

6 M 79 asymptoma ic right ICA stenosis CEA C7 ICA yellow-white, calcium phosphates

C8 ICA
C9 ICA
C10 ICA red, fibrin, erythrocyte and platelet-rich
C11 ICA red, fibrin, erythrocyte and platelet-rich

9 F 78 MCA occlusion aspiration A3 MCA cardiocembolic red, fibrin, erythrocyte, platelet and leukocyte-rich

11 M 53 symptoma ic ICA stenosis CEA C12 ICA hrombi (1cm in leng h) loosely attached to fatty streak red, fibrin, ery hrocyte and leukocyte-rich

12 M 81 asymptoma ic ICA stenosis CEA C13 ICA hrombi loosely attached to luminal surface dark red, lipid-rich

M MCAA4-A9

CEA

CEA

CEA

74 asymptoma ic right ICA stenosis

F

red, fibrin, erythrocyte, platelet and leukocyte-richMCA occlusion

asymptoma ic left ICA stenosis

54

ProcedurePretreatment Diagnosis

hrombi loosely attached to luminal surface dark red, lipid, packed fibrin, fibronec in and cells

† The sample number (No.) is determined by the procedure type (C: caro id endarterectomy; A: aspiration in acute ischemic stroke) followed by an integer denoting he order in which it was obtained.

77 asymptoma ic left ICA stenosis

3 M 68 asymptoma ic ICA stenosis

CEA

CEA

aspiration

1 M 79 asymptoma ic left ICA stenosis

Pa ient Sex Age

10

7 M

2

cardiocembolic

8 M 72

Specimen
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Emboli obtained from the patients can be classified into three categories; (1)

calcified emboli (Figure 3-5 (a)) (2) aged emboli (Figure 3-5 (b)) and (3) red emboli

(Figure 3-5 (c)), according to their composition and mechanical properties.

Figure 3-5 Thrombi containing calcified materials (a), cholesterol-rich materials (b) and fibrin and
erythrocyte materials (c) were found in the atherosclerotic plaques.

The calcified emboli (C2 and C7, Table 3-1) had large amounts of Ca/P apatite

(Figure 3-6 (a)). In Figure 3-6 (b) and (c), the SEM and histology results showed that the

aged emboli had highly compacted structure, and consisted of old fibrin, adhesive

proteins, connective tissue and other cells such as erythrocytes and platelets. The features

of red emboli are presented in Figure 3-6 (d) to (f). Aggregation of erythrocytes (yellow

in Figure 3-6 (d)) was trapped in the fibrin network. Leukocytes were dispersed

throughout the embolus (Figure 3-6 (e)). At higher magnification, the histology findings

further indicated that the cellular elements found in the cerebral emboli retrieved from the

AIS patients were arranged in a specific layer-by-layer pattern (Figure 3-6 (f)).
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Figure 3-6 Morphological features and composition of a variety of emboli from patients. (a) A
calcified embolus. Ca/P apatite was detected by the EDS scan (inset) (b) An aged embolus
had a compact structure with fissures which were occupied by the cholesterol crystals
(arrows) and fibrin at the edge of the specimen (asterisk). The SEM findings were related
to the MSB result (x20, bar=100 microns) shown in (c). (d) MSB results showed that a
red embolus was mainly composed of fibrin and erythrocytes (old fibrin in blue,
erythrocytes in yellow and erythrocyte/fibrin mixture in red) (x2, bar=1mm). (e)
Photomicrograph of a red embolus retrieved from the stroke patient (H&E x10, bar= 200
microns) revealed that the leucocytes were distributed throughout the embolus. (f) At x10,
it was found that erythrocytes and fibrin strands were arranged in a layer-by-layer
manner in the red embolus (MSB, bar= 200 microns).

The high stiffness of the calcified emboli was identified in Figure 3-7. The S-S

curves of the calcified emboli (black curves) showed early onset point (42.90±8.03 %)

and smaller strain under a 15 N force (the end of the test), and demonstrated that higher

stress was required to cause 45 % strain (e.g., C7 in Figure 3-7) on calcified emboli as

compared to other emboli. To achieve a fair comparison, E0-45% was used to make

comparisons between calcified and non-calcified materials; on the other hand, for

comparisons made between non-calcified emboli with high strain, E0-75% and E75-95% were
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applied. Late onset point (85.39±0.85 %) and large strain under a 15 N force were seen

on the aged emboli (purple curves) collected during CEA, which were loosely attached to

the vessel lumen and had a dark reddish-brown color. The stiffness of the aged emboli

(E0-45%= 0.17±0.039 MPa) fell between that of the calcified emboli (E0-45%= 0.63±0.38

MPa) and red emboli (E0-45%= 0.026±0.0026 MPa). The red emboli had the latest onset

point (91.29±0.82 %) and largest strain upon loading with 15 N.

Figure 3-7 The engineering S-S curves show that at the end of the test, a 15 N force causes a 45.7 %
strain to a highly calcified embolus (black solid line) and a 64.4 % strain to a partially
calcified embolus (black dashed line). It is noted that the same compression force can
result in a higher strain (> 80%) on the other emboli.
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The average E0-75% and E75-95% of the emboli retrieved from the AIS patients were

0.04±0.01 MPa and 0.43±0.06 MPa, respectively, whereas those of  the potential sources

of non-calcified emboli obtained from the CEA plaques were 0.11±0.037 MPa and

1.60±0.50 MPa, respectively. It should be noted that large variations in E0-75% and E75-95%

were seen in the CEA emboli due to the high variability in the composition as previously

described (Figure 3-8). Stress relaxation tests revealed an average strain recovery of

32.86±2.33 %.

Figure 3-8 Comparisons of potential sources of emboli (CEA) and emboli those caused AIS in terms
of E0-75% and E75-95%. Large variations were observed in the CEA groups.

A series of comparisons between different types of EAs and emboli obtained

showed recalcified porcine EAs , thrombin-induced (5 NIHU/ml blood) human EAs are

similar to cerebral emboli retrieved from the AIS patients in terms of stiffness and

elasticity (p>0.05) (Figure 3-9 (a) to (c)). The potential sources of the emboli collected at
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CEA, bovine EAs and thrombin induced porcine EAs had no significant differences in

stiffness (Figure 3-9 (d) and (e)).
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Figure3-9 A series of comparisons in terms of stiffness and elasticity between different types of EAs
and emboli obtained from AIS ((a) to (c)) and during CEA ((d) and (e)).
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Discussion

Embolus characteristics in terms of mechanical properties, composition and

structure are important in the endovascular treatment of AIS. In prior research, EA

stiffness was considered as a variable to create embolic occlusion in canine models for

evaluation of recanalization via stent implantation193. In a more recent investigation,

manual elongation tests were performed using forceps to stretch EAs153. In this present

work, stiffness and elasticity of the EAs and emboli were quantitatively measured and

compared to the clinical thromboemboli they are intended to represent. DMA

compression test is ideal for characterization of soft viscoelastic materials, such as emboli

and their analogues. As the name indicates, the mechanical responses of the viscoelastic

materials are a mixture of viscous and elastic behavior. A complete strain recovery of an

elastic material, like a spring, can be observed after removing the applied stress. On the

contrary, viscous deformation is nonrecoverable (permanent). In the thrombectomy

treatments, strain recovery (as an indication of elasticity) and stiffness of the emboli are

important material characteristics to predict the safety and efficacy of the devices and

procedure.

EAs prepared by using blood from different species produced different stiffness

and elasticity, and these variations can be explained from the following considerations.

Fibrin is the product formed after fibrinogen polymerization, and the major constituent of

emboli and EAs. Fibrin fiber diameter and branchpoint densities increase as the

fibrinogen concentration increases from 0.3 to 0.6 g/dl 175, and the stiffness of the EAs is
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proportional to the starting fibrinogen concentration. The results of the mechanical

characterizations in this study are consistent with the abovementioned findings. The

average fibrinogen concentration in bovine plasma is between 0.5-0.7 g/dl, which is

higher than that in pig (0.1-0.5 g/dl) and human (0.2-0.4 g/dl) plasma. Consequently, the

bovine EAs showed higher E0-75% and E75-95% as compared to the porcine and human EAs.

Significant increases (p<0.05) in stiffness and strain recovery of porcine EAs induced by

adding 5NIHU/ml thrombin (Figure 3-3) were attributed to the reactive blood coagulation

mechanism of the porcine blood as well as the presence of large amount of platelets in

porcine plasma (250-500 103/mm3 for porcine versus 150-450 103/mm for human).

Thrombin-activated platelets are known to be essential contributors to the EA elasticity

and retraction180.

Aggregation of barium sulfate was observed under SEM (Figure 3-4), indicating

its low solubility in blood. Use of thrombin is suggested in the preparation of barium

sulfate impregnated EAs to enable rapid formation of the fibrin matrix that traps the

particles of barium sulfate enabling a more homogenous distribution. Influences of

barium sulfate aggregations on the fibrin network structure such as pore size, density and

branch points were not studied in this work; however, the inelastic nature of the barium

sulfate led to a significant decrease in the strain recovery of EAs. As compared to the

recalcified EAs, it was found that the S-S curves of the barium sulfate-containing EAs

showed a gradual change in slope, and had a higher elongation. Additionally, the area

between initial to 95 % strain under the S-S curve of the barium sulfate-containing EAs

tended to increase, indicating that these materials became tougher (higher energy to
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break). In the work by Gralla et al, barium sulfate containing EAs were used to  evaluate

the efficacy of the Catch device (Balt, Montmorency, France) in the occluded extracranial

vessels of swine158. The authors describe 20 unsuccessful recanalization attempts

performed with the Catch device where the applied force from the aspiration system

initially elongated the EA, but was not sufficient to retrieve or fragment the EAs. The

results from our present study show that barium sulfate doped porcine EAs are “elastic

and tough” as compared to the emboli observed clinically, which may be in part

responsible for the failure of the Catch device in these experiments.

The elasticity of the calcified emboli was not available in this study. The force

required to cause 60 % strain on the calcified emboli exceeded the limitation of our

equipment due to the high stiffness of the calcified emboli. The aged emboli had highly

compact structure and the dark reddish-brown color. When these samples were prepared

for DMA sample preparation, a lack of elasticity was observed, which could be

associated with the protein degradation of these aged materials. This experience was

concordant with the previous findings that the aged thrombi provided little resistant to

mechanical thrombectomy194. As with recalcified porcine EAs and thrombin-induced

human EAs, the red emboli showed higher elasticity with an average strain recovery of

32.86±2.33 %.

Our study was limited by a unidirectional compression test to explore the material

properties anisotropic specimens. However, the small size of the thrombi makes it

difficult to measure the hardness and elasticity in different directions. It is important to
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note: (1) the modulus presented in this study is only for comparison due to the use of the

sandpaper, and (2) unlike polymer and other synthetic materials, the stiffness of the

biological tissue may depend on strain. Despite these limitations, we were able to fully

characterize common EAs used in the laboratory and compare them with the

thromboemboli they are intended to represent. Precise characterization of EAs is an

important element to proper preclinical evaluation of thrombectomy devices.

Summary

Differences in structure and composition were observed between EAs and human

thromboemboli. Recalcified porcine EAs and thrombin-induced (5 NIHU/ml blood)

human EAs were similar with cerebral emboli retrieved from patients with AIS in terms

of stiffness and elasticity. There was no significant variation between the stiffness of the

material collected at CEA and bovine or thrombin induced procine EAs. Addition of

barium sulfate for radioopacity in the EAs dramatically reduces the elasticity. Fully

characterized EAs with known mechanical properties are now available for preclinical

evaluation of thrombectomy devices.
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Chapter IV: A Novel Model System of Cerebrovascular Occlusion for Preclinical

Assessment of Mechanical Endovascular Treatment of Acute Ischemic Stroke

Abstract

The purpose of this study was to design an in vitro model system of

cerebrovascular occlusion that allows realistic testing of mechanical thrombectomy

devices.

The proposed model system was composed of a human vascular replica, an

embolus analogue, and physiological hemodynamic conditions. The MERCI L5 Retriever,

Penumbra system 054, Enterprise stent, and ultrasound waveguide device were evaluated

in terms of the efficacy and safety. The primary efficacy endpoint was the amount of

blood flow restored, and the secondary endpoint was the ability to achieve recanalization.

The primary safety endpoint was an analysis of clot fragments and their size distribution.

The Penumbra system achieved the highest recanalization rate (80%) followed by

the MERCI L5 Retriever (67%), Enterprise stent (17%) and ultrasound waveguide device

(0%). Temporary flow restoration (29.28% ±6.42%) was recorded when the stent was

self-expanded during the procedure. No EA fragments had dimension greater than

1000µm, and mean size of the small and large particles were between 32 to 40 µm and

219 to 273 µm, respectively, depending on the device used. The recanalization rate of the

thrombectomy device was related to the ability of the device to capture the EA during

removal of the device and the geometry of the vascular replica. The risk of the embolic
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shower was influenced by the mechanical properties of the EA and the mechanism of

action for the thrombectomy device.

Introduction

A model system of cerebrovascular occlusion is essential for evaluation of the

mechanical thrombectomy devices. The models built for device testing in the previous

studies were mostly composed of a straight-tubing system154, 155, 195, 196 filled with

water197 or saline151, 195, and occlusion sites created by using different kinds of EAs. Prior

work focused on the consistency of the EA models156, or laid emphasis on the geometry

of the vascular replica150, while other investigators stressed the hemodynamic

simulation154. What seems to be lacking; however, is a reproducible and physiologically

realistic model system that enlists all the aforesaid elements.

Mechanical removal of thromboembolic materials from cerebral arteries by using

FDA-approved devices, the MERCI and Penumbra systems, has been widely-investigated

in extracranial vascular occlusion animal models and in the clinical arena. The results

showed that ,without adjunctive therapies, the recanalization rate (57.3% for MERCI L5

Retriever98) and clinical outcome (29% mRS ≤ 2 after 90 days with the Penumbra

treatment100) of these devices still could be improved. Testing these devices in an

experimental model not only provides information on EA-device interaction during the

procedure but also helps device selection in different clinical scenarios.

Unlike balloon expandable stents, the flexible self-expanding nitinol stents are

easier to be navigated in the tortuous cerebrovasculature, and deployed at lower radial
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force108, 198, 199. The favorable outcome presented in the first FDA-approved prospective

trial of primary intracranial stenting for acute stroke109 suggested the potential utility of

the self-expanding stent in the treatment of AIS. Ultrasonically driven waveguide has

been shown to break thrombus into micro particles by cavitation and is currently FDA

approved for thrombus ablation applications in the peripheral vasculature155. The

application of waveguide ultrasound technique has tended to expand to the ablation of the

thrombotic materials in cerebral arteries where the vessel geometry is more complex and

tortuous. The success of this design may provide another option for physicians to treat

patients with acute ischemic stroke.

The goal of this study is to build a reproducible occlusion model system

incorporating human ICA/MCA vascular replica, blood- mimicking solution,

physiological hemodynamic conditions, and a clinically relevant embolus analogue for

evaluation of the aforesaid 4 endovascular devices.

Materials and Methods

Construction of Silicone Replica

The silicone ICA/MCA replica with a representative ICA siphon in terms of

curvature, diameter, and length was selected from 20 patients and built by using a small-

batch manufacturing process, as described in Chapter 2200. The AC, diameter, and length

of the ICA siphon were 0.36 mm-1, 4.21 mm, and 20.62 mm, respectively. The MRA

dataset provided the geometry of the vasculature, and the image post-processing was

performed in Mimics (Materialise, Leuven, Belgium). The virtual model was modified to
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include only the ICA, M1 and M2 divisions. The two M2 divisions were artificially

designed to rejoin distally having a fenestrated appearance to produce a single output that

simplifies the flow rig. This simplified model was restricted to the critical vascular

anatomy relevant to thrombectomy testing in an MCA occlusion by removal of branches

such as the ophthalmic and anterior cerebral arteries. A core-shell mold was created in

Magics (Materialise, Leuven, Belgium) based on the geometry of the vasculature

reconstructed in Mimics for silicone (Sylgard 184, Dow Corning, Midland MI) infusion.

A transparent and flexible silicone replica was obtained by dissolving the core-shell mold

in xylene after curing. To reduce the friction between the device and the silicone replica,

the inner wall of the resulting replica was lubricated by coating a layer of LSR topcoat

(Momentive Performance Materials, Albany NY).

Flow Loop Design

The ICA/MCA replica was set in an acrylic box (20 cm × 13 cm × 10 cm), and

the orientation of the replica was adjusted and maintained by rotating and sliding the

connecting tubes (inner diameter = 4.8 mm) that served as the inlet and outlets to the

vascular replica. The acrylic box containing the silicone replica was connected to a flow

loop which contained a programmable piston pump (Shelley Medical Imaging

Technologies, Ontario, Toronto, Canada), blood-mimicking fluid (60/40 water/glycerin)

reservoir, and starling resistor chambers. A filter funnel employing a filter with a pore

size of 54 microns was attached to the blood-mimicking fluid reservoir in an effort to

reduce particle introduction into the system. A physiologically realistic pressure
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waveform was generated by the pump to produce fluid velocities similar to those

observed in the human carotid arteries. The Starling resistor adjusted the resistance so

that the pressure was controlled. The data acquisition system (Dewetron Inc, Charlestown,

RI) was equipped with an analog-to-digital converter, and incorporated the synchronized

video captured by a digital camcorder. Analog channels were displayed in raw voltage,

and the math channels were be used to calculate items such as corrected flow and

pressure.

The schematic illustration of the flow loop is presented in Figure 4-1. The flow of

the filtered blood-mimicking fluid pumped out from the reservoir simulated the CCA

flow. The mock CCA divided to mimic the external and internal carotid arteries, and the

latter was connected to the silicone ICA/MCA replica. Collateral flow derived from the

ECA joined distal to the ICA/MCA model to maintain a realistic pressure gradient. The

flow sensors (Transonic Systems Inc., Ithaca, NY) measured the CCA and MCA flow,

and pressure transducers (Validyne Engineering, Northridge, CA) which have a good

dynamic response, were used to record the proximal (P1 in Figure 4-1) and distal MCA

(P2 in Figure 4-1) pressure. The blood-mimicking fluid travelled through the ECA was

directed to a filtration system before re-entering the blood-mimicking fluid reservoir; on

the other hand, fluid travelled through the ICA was collected in an empty container for

particle analysis.
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Figure 4-1 The schematic illustration of the flow loop. CCA was connected to the flow pump, and
divided to form ICA and ECA. Collateral flow was diverted from the ECA region to
distal MCA.

Preparation of Emboli and Creation of Occlusion

The radio-opaque bovine EA, mimicking the thrombi extracted from the

atherosclerotic plaques, was prepared by thrombin-induced clotting for device testing as

described in Chapter 3. Briefly, the EA was created by mixing thrombin/CaCl2 solution

and barium sulfate/ bovine blood mixture (1g barium sulfate/10 ml blood) at a thrombin

concentration of 2.5 NIHU/ml blood. The concentrations of the thrombin and barium

P1

P2
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sulfate used for EA preparation in this work were also commonly used in in-vitro

modeling of EAs to create the vascular occlusion in animal models for thrombectomy

device testing153, 157.

Bovine EA was formed in silicone tubing with an inner diameter of 4.76 mm one

day prior to the experiment, and it was cut by a scalpel to have a length of 1cm for

creation of in-vitro occlusion. Weight of the bovine EA was measured by a scale with a

resolution of 0.1 mg. EA was injected into the flow loop via a separate entry close to the

silicone replica, and the pressure and flow changes caused by the occlusion were

recorded.

Thrombectomy Devices and Procedures

All procedures were performed under x-ray guidance (Allura FD20, Philips

Healthcare, Best the Netherlands).

The self-expandable stents, (Enterprise Vascular Reconstruction Device™

Codman Neurovascular, Raynham MA), with unconstrained stent length either of 28 or

37 mm and outer diameter of 4.5 mm were evaluated in this study (Figure 4-2). A 6Fr

guide catheter was placed proximal to the occlusion in the ICA, and delivered the

guidewire which was then softly advanced through the EA.  A microcatheter (Prowler

Plus, Codman Neurovascular) was navigated over the wire to the distal end of the

occlusive EA. The guidewire was withdrawn followed by stent deployment for EA

retrieval. The stent was deployed across the embolus and the expanded system was

slowly withdrawn in an effort to retrieve the EA.
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Figure 4-2 The Enterprise stent. The highly flexible stent is made of nitinol, and has a closed-cell
design which makes the stent partially retractable and allows repositioning201 (Courtesy
of Codman Neurovascular Inc., Miami, FL).

To deliver the MERCI Retriever L5, a 9 Fr balloon guide catheter was inserted

and positioned in the ICA. Navigation of the MERCI microcatheter 18L through the EA

was performed over the wire with fluoroscopic navigation. The guidewire was exchanged

for the MERCI Retriever L5, which was deployed beyond the occlusive EA. The

corkscrew-shaped retriever engaged the EA, and was pulled back into the guide catheter

with the microcatheter with proximal temporary balloon occlusion of the ICA. Vigorous

aspiration to the balloon guide catheter was applied by using a syringe.

The Penumbra system consisting of a reperfusion catheter 054, separator 054,

aspiration tubing and suction pump was set up for EA removal. An 8 Fr guide catheter

was positioned in the proximal ICA and the reperfusion catheter was advanced through it

to the proximal aspect of the bovine EA. The vacuum pump was operated and the

separator 054 was inserted into the reperfusion catheter. The side port of the rotating

hemostasis valve was connected to the aspiration tubing. During aspiration, the separator

was advanced and retracted to assist with EA removal.
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The ultrasonic endovascular system comprising an ultrasonic energy source,

transducer and ultra thin wire developed by OmniSonics Medical Technologies

(Wilmington, MA) was tested. A 6Fr guidecatheter was positioned in the ICA and

through this a 0.028” Hypertransit microcatheter (Codman Neurovascular) was

positioned across the occlusive embolus. The thrombectomy wire was delivered through

the microcatheter which was then withdrawn to expose the active section of the wire. The

ultrasonic transducer was coupled on the proximal end to the wire, which causes high-

frequency vibration to the distal active section. The mechanical motion of the active

section produced cavitation streaming that is necessary to fracture the fibrin matrix of the

embolus. The system was activated at a frequency of 150 kHz and a voltage of 300 mV

for 20 min.

Evaluation of Thrombectomy Treatments

A minimum of 5 experiments were carried out for each of 4 thrombectomy

devices.  To investigate the efficacy (ability to restore blood flow) of the tested devices

the location where the device was deployed, percentage of the remaining clot by weight

after the treatment, and percentage of flow restored were recorded. On the other hand, to

assess the safety (embolic shower protection) of the thrombectomy devices, particle size

analysis of the effluent following EA disruption was evaluated by using the Coulter

Principle (Multisizer 4 Coulter counter, Beckman Coulter, Inc., Brea, CA). After catheter

deployment, 400 mL blood-mimicking solution was collected as blank for particle

analysis, and the results were subtracted from the following tests. A 2000 µm aperture
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with a sensitivity range between 200 to 1600 µm and a 400 µm aperture which had a

sensitivity range between 8 to 320 µm were used to measure the size and size distribution

of the disrupted EAs. Large volume of blood-mimicking solution (400 mL) was required

for each analysis with the use of 2000 µm aperture. The number of particle analysis tests

was determined depending on the volume of solution collected during each experiment.

At least 5 runs were performed with the 400 µm aperture due to the small amount of

solution which was needed for each run. Average particle size (mean± standard error),

particle number, and size distribution were recorded.



86

Results

Enterprise stent and MERCI Retriever were applied in 6 vessel occlusions each,

and with Penumbra aspiration and ultrasonic endovascular system, 5 procedures were

performed. A total of 22 experiments were conducted. Before occlusion, CCA and MCA

flow were 367.4±1.37ml/min and 130.40± 1.71 ml/min (mean± standard error),

respectively. Peak and minimal pressure of the MCA waveform were 116 and 81 mmHg,

respectively, mimicking the systolic and diastolic blood pressure.  The pressure gradient

between the inlet and outlet of the vascular replica was 21.96 mmHg. After occlusion,

MCA flow dropped to 0 ml/min, and an increase in pressure gradient between the

proximal and distal MCA was observed (Figure 4-3).

Figure 4-3 Variations of the hemodynamic variables before and after EA injection.
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The average diameter of the ICA siphon was 4.21 mm, and the ICA had a

maximum diameter of 5.7 mm (Figure 4-4 (a)). As a result of diameter differences

between the bovine EA and vascular replica, it was found the vascular occlusion was

formed at the MCA bifurcation (Figure 4-4 (b)). The nominal diameter of the MCA was

2.2 mm.

Figure 4-4 (a) The dimension and geometry of the ICA/MCA model (b) bovine EA with a diameter of
4.76 mm stopped before the MCA bifurcation.

Injection of EA and deployment of the device sometimes caused EA

fragmentation and distal dislocation. Figure 4-5 (a) showed that fragmented EAs were

seen in a test with the Enterprise stent. The stent was deployed distal to the EA, and

compressed the EA during EA retrieval (Figure 4-5 (a)-(c)). No significant amount of

visible EA particulates was generated due to the compression of the EA. Figure 4-5 (d)-(f)

illustrated that the EA slipped through the stent when passing the ICA siphon, and

resulted in an unsuccessful EA removal. This phenomenon was frequently observed in

other 5 Enterprise stent tests. It should be noted that temporary flow restoration (29.28%

±6.42%) was measured when the stent was self-expanded during the procedure. In 6
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experiments performed with the Enterprise stent, partial flow restoration (86.57%) was

achieved in 1 experiment when part of the EA was removed by the device (Figure 4-6).

The recanalization rate of the Enterprise stent in this study was 17%.

Figure 4-5 (a) to (c) Bovine EA was captured and compressed by the pulling maneuver. (d) to (f) The
stent-EA contact was lost during the EA retrival. Only the stent was withdrawn into the
guide catheter.

Figure 4-6 Bovine EA was successfully removed by the Enterprise stent.
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With the assistance of aspiration, MERCI L5 Retriever achieved a 67% of

recanalization rate (100% flow restoration was obtained). Like Enterprise stent, MERCI

L5 Retriever was navigated to the distal end of the EA (Figure 4-7 (a)); moreover, EA

was broken into few large pieces during the test (Figure 4-7 (b)). Successful EA

mobilization by the MERCI L5 Retriever was demonstrated in (Figure 4-7 (c)-(f)).

Bovine EA removed by the MERCI L5 Retriever was shown in Figure 4-8.

Figure 4-7 (a) and (b) MERCI L5 Retriever was deployed and ensnared the EA. (c) and (e) EA was
slowly travelled through the ICA and aspirated into the guild catheter, resulting in a
100% flow restoration (f).
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Figure 4-8 Bovine EA was removed by the MERCI L5 Retriever.

In the procedure with the use of Penumbra aspiration system, the reperfusion

catheter reached the proximal end of EA, and the separator moved back and forth to

disrupt the EA (Figure 4-9 (a)-(b)). The continuous aspiration-debulking process

provided by the Penumbra system produced some visible EA particulates (Figure 4-9 (b)).

After 2-3 passages of aspiration through the occluded area, 100% flow restoration was

seen in 1 test, partial flow restoration (Figure 4-9 (c)) was measured in 3 tests, and no

flow restoration was recorded in 1 test. Overall, the recanalization rate of Penumbra

aspiration system was 80%.
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Figure 4-9 Partial revascularization of the MCA using the Penumbra aspiration system. (a)The
reperfusion catheter was placed at the proximal end of the EA. (b) the separator
ruptured the EA, and generated particles with an average size of 238.8 µm.

No flow restoration and pressure change were seen in all ultrasound waveguide

treatments (Figure 4-10). The system was activated for 20 min in each occlusion. The

wire was in good shape after each test, without any evidence of wire fracture. To ensure

that the ultrasound waveguide system worked properly, the wire was embedded and

activated in the EA formed in the straight tube. The EA disruption was seen in 20

seconds after the device activation.
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Figure 4-10 No flow was restored after a 20-min treatment by using the ultrasound waveguide wire.

The weight of the EA residues showed that the MERCI retriever and Penumbra

aspiration device removed most of the EA (86% and 92%, respectively) as compared to

the Enterprise stent (58%) and ultrasound waveguide (54%). Thousands of small particles

with size smaller than 250 µm were analyzed in each device testing by using the 400µm

aperture, and a large proportion of particulates had size fell between 13.5 to 50 µm

(Figure 4-11(a)). Figure 4-11 (b) demonstrated that most large particles had size between

200 to 450 µm. By using the 2000µ aperture, it was found that the mean number and size

of the particles in the blank was 2.65±1.04 and 131.3±27.54 µm, respectively (Figure 4-

12 (a)). Figure 4-12 (b) showed that the Penumbra system generated more particles as

compared to the Enterprise stent, MERCI retriever and ultrasound-based device
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(MERCI:1.5±0.69; Penumbra:15.53±8.24; Enterprise:6.69±2.09; ultrasound:1.53±0.62).

In addition, large variations in quantity of large particles were seen with the use of the

Penumbra system. No significant difference in particle size was observed before and after

the experiments Figure 4-12 (c). The mean particle size was 169.4±37.94, 248.4±47.44,

200.3±34.02 and 101.9±29.29 for the MERCI retriever, Penumbra system, Enterprise

stent and ultrasound waveguide, respectively.

Figure 4-11 Size distribution of the particles generated by the thrombectomy devices.
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Figure 4-12 Number and size of the particles from the blank (a) and procedures conducted
with Enterprise stent, MERCI retriever, Penumbra aspiration device and ultrasound
waveguide (b-c). The measurements were performed with the use of the 2000 µm aperture.

Discussion

The in-vitro occlusion model system offers an alternative and convenient

approach for pre-clinical evaluation of mechanical thrombectomy devices, and has

advantages over the in-vivo animal model in terms of lower cost, high degree of

reproducibility, quantitative analysis and no ethical considerations. In this study, a

physiologically realistic model of cerebral occlusion was proposed and used to evaluate

the efficacy and safety of 4 mechanical thrombectomy devices.

Factors such as anatomy of the human carotid arteries, similarities between

embolus analogues and human sources of emboli, and hemodynamic variables were taken

into consideration in the development of the occlusion model. The transparent vascular

replica and the data acquisition system which incorporates the synchronized video

captured by a digital camcorder provide real time EA-device interaction. In the previous

work, to study the risk of emboli, the EA particulates were filtered by several meshes of

different size and weighed by a scale155, 195, 202. Instead of sieving, the dimension of the
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EA particulates was characterized by the Coulter principle. The disrupted EAs were

stored in the blood-mimicking solution (water/glycerol mixture) which was the perfect

solution for large apertures (400 and 2000µm) used in our application. During the

analysis, the EA particulates were drawn through the aperture, resulting in an impedance

change of the aperture. The change created a current fluctuation which was then

converted into a voltage pulse. The volume of the EA particulates was proportional to the

amplitude of the voltage pulse.

The Penumbra pivotal stroke trial completed in 2007 showed a racanalization

(TIMI 2 or 3) rate of 81.6% 100, which was similar to our finding (80%). In addition, the

observed recanalization rate of the MERCI L5 Retriever (67%), was also close to the

number disclosed in clinical studies (57.3%)98. The Enterprise stent tested in this study

had an unconstrained outer diameter of 4.5 mm which was smaller than the proximal

diameter of the ICA replica. Thus the EA became disengaged from the stent during the

retrieval process that explains the low recanalization rate of the Enterprise stent (17%).

Further, this observation demonstrates the need for proximal aspiration through a balloon

guidecatheter when using a stent system as a clot retriever. In a recent study, 90%

recanalization was attained in patients using a similar stent-retriever device, the Solitaire

system111. This device was deployed in AIS patients in whom the MERCI system failed

to restore blood flow. It is likely that the high success rate reported and not reproduced in

our model system may be attributed to two factors: 1. Our vascular replica had a focal

ectatic dilation in the cavernous segment that exceeds the unconstrained diameter of the

stent, and 2. Castaño et al. used a proximal temporary occlusion system (not approved
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with the Solitaire thrombectomy system) that combined with aspiration may be the

optimal adjunct technique for stent based thrombectomy technologies. EA fragmentation

caused by the ultrasound waveguide wire was seen in the occlusion formed in straight

tubing. However, no flow restoration was seen when activating this device in the

ICA/MCA occlusion model. The unsuccessful recanalization may be attributed to the

tortuosity of the cerebrovasculature which could impede the ultrasonic wave propagation.

To investigate the efficacy of the thrombectomy devices, the EA weight was

measured pre- and post-treatment. During the measurement, the EA weight was affected

by the amount of water/glycerol on the EA surface. To minimize the error, the excess

water/ glycerol was removed. Less remaining EA was found in the groups with higher

recanalization rate (the Penumbra and MERCI), which made it reasonable to suggest that

the more EA removed, the higher recanlization rate could be achieved.

The dimension of the largest particulates produced by the thrombectomy device

was between 700-950 µm, which was smaller than that of the particulates found in the

earlier in-vitro studies (>1000 µm)155, 195. This finding was due to the barium sulfate

effect on the mechanical properties of the EA. Barium sulfate reduced the elasticity and

increased the toughness of the EA. With the presence of barium sulfate, the EA was less

prone to break. More details regarding the mechanical properties of the EAs were stated

in the previous chapter. The results of the blank tests showed that thousands of particles

had dimension smaller than 100 µm, and the quantities varied in each blank test. Based

on this observation, it was postulated that the small particulates measured by the 400 µm
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aperture may include not only EA fragments but the small particles from the working

environment.

Conclusion

A physiologically realistic model system of MCA occlusion was created for

evaluation of the MERCI L5 Retriever, Penumbra aspiration system 054, self-expanding

Enterprise stent and ultrasound waveguide wire. The recanalization rate of the

thrombectomy device was related to the ability of the device to capture the EA during

removal of the device and the geometry of the cerebrovasculature. The risk of the

embolic shower was influenced by the mechanism of action for the thrombectomy device.
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Final Summary and Conclusions

Currently, there are no standardized or validated cerebrovascular occlusion model

systems with which to systematically evaluate and characterize mechanical

thrombectomy devices. Further, development of said model system could be extrapolated

to improve neurointerventional training of endovascular treatment in acute ischemic

stroke. This thesis rigorously addresses each component of a cerebrovascular occlusion

model system.

The 2D TOF MRA datasets were processed and edited to construct 3D vascular

models for vessel characterization in terms of AC, length and diameter. Based on the

results from the vessel characterization, a population averaged vasculature was

determined from 20 patients and used to create the core-shell mold for preparation of the

transparent and true-to-scale silicone replica. A simplified vascular replica consisting of

the ICA and MCA to the MCA bifurcation was used for vascular occlusion simulation.

Mechanical properties of various types of EAs commonly used in the lab were

explored and compared to those of the thromboemboli retrieved from AIS patients and

atherosclerotic plaques. In the preliminary tests of our model system, a radio-opaque

bovine EA with stiffness similar to the thrombi retrieved from the atherosclerotic plaques

was selected to form an occlusion in the aforesaid replica for thrombectomy device

testing. A computer-controlled pump was incorporated to generate a physiologically

realistic carotid waveform, and pumped blood-mimicking fluid through the replica.
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The MERCI L5 Retriever, Penumbra aspiration 054 system, Enterprise stent, and

ultrasound driven waveguide were evaluated by using the occlusion model system. The

flow restoration, the ability to achieve recanalization, size and size distribution of the EA

fragments were analyzed to assess the efficacy and safety of the testing devices. The

MERCI L5 Retriever and the Penumbra aspiration 054 system showed a 67 % and 80 %

recanalization rate, respectively, which were similar to the numbers reported in the

previous clinical studies, 57.3 % and 81.6 %, respectively. The Enterprise stent reliably

restored blood flow but was only successful at thrombectomy in one experiment. The

Penumbra system generated the most large clot fragments.

In conclusion, an anatomically and physiologically representative model system

of cerebrovascular occlusion was successfully built for evaluation of mechanical

thrombectomy devices in-vitro. Future work will include testing of thrombectomy

devices in more tortutous vascular replicas with various EA models. Our eventual goal is

to catalog a device performance envelop based on the mechanical properties of the

thromboemboli. Ultimately, advanced imaging algorithms may become available to

discern the composition of the embolus that when combined with the aforesaid catalog

could guide device selection. As more devices become available, this information would

be used to make the thrombectomy procedure more efficacious and cost-effective. The

research described herein provides the fundamental framework for attainment of this

challenging yet important goal.
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