
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2003-01-10 

HIV-1 Gene Expression: Transcriptional Regulation and RNA HIV-1 Gene Expression: Transcriptional Regulation and RNA 

Interference Studies: a Dissertation Interference Studies: a Dissertation 

Ya-Lin Chiu 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Amino Acids, Peptides, and Proteins Commons, Genetic Phenomena Commons, Immune 

System Diseases Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons, Virus Diseases 

Commons, and the Viruses Commons 

Repository Citation Repository Citation 
Chiu Y. (2003). HIV-1 Gene Expression: Transcriptional Regulation and RNA Interference Studies: a 
Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/by53-2r17. Retrieved from 
https://escholarship.umassmed.edu/gsbs_diss/118 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and 
Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/934?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/933?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/933?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/935?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/987?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/by53-2r17
https://escholarship.umassmed.edu/gsbs_diss/118?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


HIV-1 GENE EXPRESSION: TRANSCRIPTIONAL REGULATION

AND RNA INTERFERENCE STUDIES

A Dissertation Presented

Y A-UN CHIU

Submitted to the Faculty of the

University of Massachusetts Graduate School of Biomedical Sciences , Worcester

in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

JANUARY 10 , 2003

DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR PHARMACOLOGY



Approved as to style and content by:

Michael R. Green, Chair of Committee

Craig L. Peterson, Member of Committee

Joel D. Richter, Member of Committee

Stewart Shuman, Member of Committee

Mario Stevenson, Member of Committee

Tariq M. Rana, Dissertation Mentor

Anthony Carruthers, Dean of the 
Graduate School of Biomedical Sciences



DEDICA TION

This dissertation is dedicated to my parents

Wen-Shin Lai and Wen-Ling Chiu



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere thanks to my mentor

Dr. Tariq M. Rana for his guidance and continuous support. I am especially

grateful for his patience , allowing me to explore and develop my scientific abilities

at my own pace. From the bottom of my heart, I appreciated all his time and effort.

I would like to thank my research advisory committee members , Drs.

Michael R. Green , Craig L. Peterson , Joel D. Richter, Stewart Shuman and Mario

Stevenson for helping to clear my thoughts and providing constructive

comments.

I remain deeply grateful to my graduate (MS. degree) advisor, Dr. Guang-

Hsiung Kou and Chu-Fang Lo at National Taiwan University. Their
encouragement and support were my inspiration to continue my education and

begin PhD. studies in the United States.

I would like to thank the members of the Dr. Tariq M. Rana s Laboratory,

both past and present, for supporting me like a family.

I would also like to thank the members of Drs. Leroy F. Liu , Marc R.

Gartenberg, Michael Hamsey and Nancy Walworth' Laboratories at
UMDNJ/Rutgers for all their kindly help and friendship.

Lastly, I would like to thank my family and friends in Taiwan , especially

my parents my finance and his family for their love, understanding and
continuous support.



CONTRIBUTIONS

In vitro GST pull-down assay

Dr. Elizabeth Coronel (Member of Dr. Tariq M. Rana s Laboratory)

Purification of Mammalian capping enzyme (Mce1)

Dr. Stewart Shuman (Sloan-kettering Institute , New York)

Dr. C. Kiong Ho (Sloan-kettering Institute , New York)

Purification of Human mRNA cap methyltransferase (Hcm1)

Dr. Beate Schwer (Weill Medical College of Cornell University, New York)

Dr. Nayanendu Saha (Weill Medical College of Cornell University, New

York)

HIV infectivity assay

Dr. Mario Stevenson (UMass Center For AIDS Research)

Dr. Jean-Marc Jacque (UMass Center For AIDS Research)

Genechip hybridization , Staining, Washing, Scanning and Detection

Phyllis Spatrick (UMass Genomic Core Facility)

Genechip data analysis by using Affmetrix softare
Dr. Hong Cao (Member of Dr. Tariq M. Rana s Laboratory)



ABSTRACT

Gene expression of human immunodeficiency virus type-1 (HIV-1), which

causes Acquired Immunodeficiency Syndrome (AIDS), is regulated at the

transcriptional level where negative factors can block elongation that is

overcome by HIV Tat protein and P-TEFb. P-TEFb, a positive elongation

transcription factor with two subunits , CDK9 and Cyclin T1 (CycT1), catalyzes

Tat-dependent phosphorylation of Ser-5 in the Pol II C-terminal domain (CTD),

allowing production of longer mRNAs. Ser-5 phosphorylation enables the CTD to

recruit mammalian mRNA capping enzyme (Mce1) and stimulate its

guanylyltransferase activity. This dissertation demonstrates that stable binding of

Mce1 and cap methyltransferase to template-engaged Pol II depends on CTD

phosphorylation , but not on nascent RNA. Capping and methylation doesn

occur until nascent pre-mRNA become 19-22 nucleotides long. A second and

novel pathway for recruiting and activating Mce1 involved direct physical

interaction between the CTD, Tat and Mce1. Tat stimulated the

guanylyltransferase and triphosphatase activities of Mce1 , thereby enhancing the

otherwise low efficiency of cotranscriptional capping of HIV mRNA. These

findings imply that multiple mechanisms exist for coupling transcription

elongation and mRNA processing at a checkpoint critical to HIV gene expression.

To elucidate P-TEFb' s function in human (HeLa) cells , RNA interference

(RNAi) was used to degrade mRNA for hCycT1 or CDK9. Down-regulation of P-

TEFb expression by RNAi can be achieved without causing major toxic or lethal



effects and can control Tat transactivation and HIV replication in host cells. High-

density oligonucleotide arrays were used to determine the effect of P-TEFb

knockdown on global gene expression. Of 44 928 human genes analyzed , 25

were down-regulated and known or likely to be involved in cell proliferation and

differentiation. These results provide new insight into P-TEFb function , its potent

role in early embryonic development and strong evidence that P- TEFb is a new

target for developing AIDS and cancer therapies.

To fulfill the promise of RNAi for treating infectious and human genetic

diseases , structural and functional mechanisms underlying RNAi in human cells

were studied. The status of the 5' hydroxyl terminus of the antisense strand of

short interfering RNA (siRNA) duplexes determined RNAi activity, while a 3'

terminus block was tolerated in vivo. A perfect A-form helix in siRNA was not

required for RNAi , but was required for antisense-target RNA duplexes.

Strikingly, crosslinking siRNA duplexes with psoralen did not completely block

RNAi , indicating that complete unwinding of the siRNA helix is not necessary for

RNAi in vivo. These results suggest that RNA amplification by RNA-dependent

RNA polymerase is not essential for RNAi in human cells.

V11
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CHAPTER I

INTRODUCTION



Part I. Transcriptional Regulation of HIV-1 Gene Expression

1. Human immunodeficiency virus type-

Human immunodeficiency virus type- 1 (HIV-1), the etiological agent for

Acquired Immunodeficiency Syndrome (AIDS) (7 , 69 , 132), is a member of the

primate lineages of the lentivirus family of retroviruses. HIV- 1 contains two

identical copies of a linear single-stranded RNA genome of -9.2 kb (63 , 109).

The virion ,RNA genome is converted into a linear double-strand (ds) DNA by

viral reverse transcriptase in infected cells and then integrated into the host

genome as proviral DNA. This ds DNA genome encodes nine open reading

frames (63 236). Three of them are polyproteins named gag, pol and env , which

are subsequently proteolyzed into individual proteins. Gag and env encode the

structural proteins that build up the core and the envelope of the virion. Gag

(group specific antigen) precursor protein is cleaved into MA (matrix), CA

(capsid), NC (nucleocapsid) and p6. Env (envelope) precursor protein is cleaved

into SU (surface or gp120) and TM (transmembrane or gp41). Pol (Polymerase)

comprises three proteins , PR (protease), RT (reverse transcriptase), and 

(integrase) and possesses essential enzymatic activities. Net, vpu, vif and vpr

genes encode accessory proteins that are dispensable for viral growth in tissue

culture cells but appear to help virus infectivity and replication in vivo (63). Tat

and rev are two regulatory genes that can act in trans to control HIV-1 gene



expression and up-regulate virus replication through transactivating proteins (43

, 114).

2. Tat (I.rans- ctivator of Iranscription) and TAR (Irans- cting

esponsive) RNA

Tat , the HIV- trans-activator of transcription , is a small nuclear protein

encoded by two separate exons. Tat is essential for virus replication and is

conserved in all primate lentiviruses (107). Naturally occurring HIV- 1 Tat

comprises 101 amino acids (107). However, an 86-amino acids version of Tat

which arose from the 01-amino acid form as a consequence of laboratory tissue

culture passage , is commonly used for research and completely reflects

biological functions for full- length Tat. (163). The extreme C-terminus of native

Tat is apparently not needed for ex vivo propagation of HIV- , although these

amino acids remain conserved by viruses that replicate in vivo (183).

Tat protein is composed of several functional regions (Figure 1A)(183).

The first 72 amino acids encoded by the first exon are both necessary and

sufficient for TAR RNA binding (see below) and transcriptional activation. The

acidic N-terminal region has a periodic arrangement of acidic, polar, and

hydrophobic residues consistent with an amphipathic a-helix. A cysteine rich

region (amino acids 22 to 37) contains seven cysteine residues. Individual

mutations in six of the seven cysteines abolish Tat function. The "core" sequence

of Tat (amino acids 37 to 48) contains hydrophobic amino acids and is essential



for trans-activation and specific high affinity binding of TAR RNA. The basic

RNA-binding region (amino acids 48 to 59), adjacent to the core domain

contains six arginines and two Iysines. This domain has TAR RNA-binding

properties and mediates nuclear localization of Tat protein. A glutamine-rich

region at the carboxyl-terminus of the first exon contains several regularly spaced

glutamines. The second exon encodes a 14-amino-acid C-terminal sequence

that is not required for trans-activation but does contain an RGD (arginine-

glycine-aspartate) motif (amino aicds 78-80), which is used as a cell adhesion

signal for binding to cellular integrins (18). Based on mutational analysis , Tat also

can be divided into two functional domains. The first domain is the activation

domain (amino acid 1 to 47) that mediates interaction with other cellular proteins

required for Tat transactivation (204). The second functional domain , containing

a basic region , is required for RNA binding as well as nuclear localization

activities of Tat (52).

As a potent activator of HIV-1 long terminal repeat (L TR) region-specific

transcription , Tat protein acts by binding to a nascent RNA element named TAR

(trans-acting responsive element) (14 , 203). TAR RNA is a 59-base stem-bulge-

loop structure located at the 5' ends of all nascent HIV- 1 transcripts (14). TAR

RNA was originally localized to nucleotide +1 to +80 within the viral L TR (193).

Subsequent deletion studies have established that the region from +19 to +42

incorporates the minimal domain that is both necessary and sufficient to support

Tat transactivation in vivo (72 , 106 , 183 , 203). The functional domain of TAR



HNA contains a six-nucleotide loop and a three-nucleotide pyrimidine bulge that

separate two helical stem regions (Figure 1 B). Key elements required for TAR

RNA recognition by Tat have been defined by various approaches , such as

mutagenesis , chemical probing, and peptide binding studies (183). It has been

demonstrated that Tat interacts with U23 in the trinucleotide bulge domain. C24

and U25 function as spacers because they can be substituted by other

nucleotides or linkers (33 , 222). In addition to the trinucleotide bulge region , two

base-pairs (bp) above and below the bulge also contribute significantly to Tat

binding (33 , 251). By using a site-specific photocrosslinking, Tat has been shown

to interact with U23 , U38 , and U40 in the major groove of TAR RNA (246 , 247).

The loop region of TAR RNA is necessary for efficient transactivation , but not

required for Tat binding. Recently, a cellular loop-binding protein has been

identified and is required for Tat transactivation (252).

3. RNA polymerase II transcription complex

Transcription, copying the sequence of DNA template into a

complementary RNA transcript by the enzyme RNA polymerase , is the first step

of the central dogma. RNA polymerase , the enzyme that catalyzes DNA

transcription , is a complex molecule containing many polypeptide chains. In

eukaryotic cells there are three distinct RNA polymerase enzymes , designated

RNA polymerases I , II and III , The three eukaryotic RNA polymerase were

initially distinguished by their chromatographic property differences during



purification and by their sensitivity to a-amanitin. Sensitivity of RNA polymerase

to a-amanitin indicates that each RNA polymerase is responsible for the

transcription of a subclass of nuclear genes. Among them , RNA polymerase II

(RNA Pol II) mediates the synthesis of the mature and functional messenger

RNA (mRNA) that serves as a message for translation into protein.

Synthesis of mRNA by eukaryotic RNA Pol II can be divided into at least

four major steps , i.e. preinitiation or the assembly of transcription complexes on a

promoter, initiation , elongation , and termination and dissociation of Pol II from the

DNA template (39 , 60). In addition to RNA Pol II , a universal set of proteins

called general transcription factors (GTFs), including, TFIIA , TFIIB , TFIID , TFIIE

TFIIF and TFIIH , assemble at the core promoter of a gene and form the pre-

initiation complex (PIC)(168). Following PIC formation , DNA melting, initiation

and promoter clearance take place rapidly in an energy-dependent manner

(192). TFIIH plays a major role and may be the source of ATP dependence to

facilitate these events. The helicase activity of TFIIH melts the ds DNA template

through hydrolysis of the 
'Y bond of ATP (or dATP) at about 10 bp region , just

upstream of the transcription start site , to form an activated PIC. The kinase

activity of TFIIH can phosphorylate the RNA polymerase II to facilitate promoter

clearance and leads transcription complex into the elongation stage (142 , 223).

RNA pol II and the GTFs are sufficient to mediate basal level transcription.

However , highly ordered , gene-specific transcription requires the cooperative



action of many cellular proteins and is tightly regulated by transcription regulators

at many levels (240).

4. CTD ( arboxY-Ierminal omain) of RNA polymerase II

RNA Pol II is a large multisubunit enzyme complex. The largest subunit of

RNA Pol II from eukaryoties contains a unique feature at its C-terminus , the so

called CTD (carboxy-terminal domain) (45). Neither eukaryotic RNA polymerase

, III nor prokaryotic RNA polymerase contains a region resembling the CTD. In

eukaryotic cells , the CTD of RNA Pol II is composed of tandem repeats (52 in

vertebrates and 26 in budding yeast) of a heptapeptide with the conserved

consensus motif Tyr-Ser-Pro-Thr-Ser-Pro-Ser (YSPTSPS)(45). Each cycle of

transcription involves the dynamic phosphorylation and dephosphorylation of the

CTD on the serine residues 2 and 5 (Ser-2 and Ser-5) of each repeated unit. A

large number of CTD kinases including TFIIH , cdc2 , CTK1 and CDK9 , have been

implicated in the phosphorylation of the CTD at multiple sites in vitro and cause a

characteristic mobility shift in SDS-polyacrylamide gel electrophoresis (PAGE)

(12). A phosphatase responsible for dephosphorylation of the CTD has been

discovered (12 , 23 , 24). RNA Pol II with an unphosphorylated CTD is designated

RNA PolliA and polymerase with a highly phosphorylated CTD is designated

RNA PolliO. RNA PolliA is efficiently recruited to promoters during assembly of

a preinitiation complex '(110 , 141) whereas RNA PolliO is associated with the

elongation complex (46). The CTD of RNA Pol II is required for transcriptional



activation or repression and for controlling mRNA synthesis and maturation

events , such as capping, splicing and cleavage/polyadenylation (53 , 92 , 93 , 152

153 , 270). The CTD functions as a platform for the recruitment and assembly of

factors involved in pre-mRNA processing (13 , 182).

5. Transcriptional elongation regulators

After successful initiation of RNA synthesis , the RNA pol II transcription

complex enters the elongation stage. Transcriptional elongation by RNA Pol II is

controlled by a number of trans-acting factors called transcription elongation

factors (39 , 40). During mRNA synthesis , RNA Pol II frequently encounters

blocks to elongation; a primary cause of pause or arrest is thought to be the

secondary structure formed by nascent transcripts. Transcription factors such as

TFIIF , elongatin , ELL and TFIIS interact with RNA Pol II and thereby prevent it

from pausing or reactivating from arrest (185 207).

Recently, proteins involved in regulation of transcriptional elongation were

discovered during studies aimed at understanding the mechanism of transcription

inhibition by a nucleoside analog, 5 dichloro- 1-p-D-ribofuranosylbenzimidazole

(DRB). DRB was originally discovered as an inhibitor of hnRNA and mRNA

synthesis in HeLa cells (103 , 202 , 231 232). Treatment of mammalian cells with

DRB is lethal , but its initial effect is a dramatic reduction of mRNA (202). DRB

treatment has caused the production of shortened transcripts from a variety of

genes , suggesting that RNA pol II elongation was affected (232). However, DRB



had no effect on promoter- independent RNA pol II transcription and 

transcription reconstituted by purified general transcription factors and RNA pol II

(32 , 119). These studies suggested that cellular proteins other than RNA Pol II

and general transcription factors confer ORB sensitivity on elongation. The recent

discovery of this class of transcription elongation factors , which include DRB-

sensitivity inducing factor (DSIF), negative elongation factor (NELF), and positive

transcription elongation factor (P-TEFb), has shed new light on the control of

RNA Pol II elongation (40 , 181 243 262).

1. P-TEFb (J;ositive-Iranscriptional Iongation factor 

P- TEFb , the first and only known component of positive transcription

factor, was originally identified and purified from Drosophila melanogaster Kc cell

nuclear extract (147). P-TEFb is a factor required for the production of long

transcripts by Pol II in vitro and is required for the bypass of an early block to

elongation (147). P-TEFb consists of two subunits: the catalytic subunit cyclic-

dependent kinase CDK9 (previously named PITALRE) (76) and the regulatory

subunit Cyclin T1 (76 , 175 , 176 , 252). CDK9 is a cdc2-related serine/threonine

kinase (48 , 73) and can form a complex with several cyclin partners in human

cells: CyclinT1 , Cyclin T2a , Cyclin T2b , and Cyclin K (66 , 176). In HeLa cells

roughly 80% of CDK9 binds with Cyclin T1 and 10% with Cyclin T2a and Cyclin

T2b (176). The assembly of P-TEFb involves the sequential interactions of

Hsp70 and Hsp90/Cdc37 with CDK9. These two chaperone complexes



CDK9/Hsp70 and CDK9/Hsp90/Cdc37 , are important and essential precursors

for the generation of the mature and active CDK9/CyclinT1 complex (167).

CDK9 and its Cyclin T partners are expressed in a wide variety of tissues

, 49). In situ immunohistology and immunofluorescence studies of mouse

embryos have indicated that murine CDK9/PITALRE protein appears to be

expressed predominantly in tissues that are terminally differentiated , such as

developing brain and dorsal root ganglia , areas of skeletal muscle, cardic

muscle , and the lining of the developing intestinal epithelium (6). Analysis of the

expression pattern of murine CDK9/PITALRE protein in adult mouse tissues by

immunoblottng indicates that murine CDK9/PITALRE expression is ubiquitous

although steady-state protein levels are markedly higher in the brain , liver , lung,

spleen and kidney. Kinase activity of CDK9/PITALRE kinase has also been

detected in the same adult tissues and was highest in mouse brain , liver, spleen

and lung. Only minimal kinase activity was found in the heart , muscle , and

kidney. The expression pattern of CycT1 in adult human tissues was investigated

by immunohistochemistry (49). Tissues of mesenchymal origin , such as

cardiovascular and connective tissues , skeletal muscle cells , myocardial cells

adipocytes , chondrocytes and endothial cells , blood and lymphoid tissues

showed high immunoreactivity. Astrocytes , oligodendroglial and microglial cells

of brain tissue also showed high expression levels of Cyclin T1 , while endocrine

and reproductive systems showed low Cyclin T1 expression.
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Although P-TEFb is not involved in the cell cycle , it has been suggested

that P-TEFb may serve as a multifunctional cyclin-dependent kinase , which

regulates various cellular events (216). It has also been proposed that the P-

TEFb complex is required for global gene expression during embryonic

development of Caenorhabditis elegans (208). Knockdown of CDK9 or CycT1

genes by siRNA in C. elegans embryos inhibits transcription of embryonic genes.

It has been demonstrated that P-TEFb is a Tat-associated-kinase-complex

(TAK) and that the effect of Tat on transcription elongation depends on P-TEFb

(265 , 277). Studies of the general transcription elongation inhibitor , DRB , have

shown that it inhibits P-TEFb protein kinase activity, thereby blocking a step in

transcription elongation where P-TEFb is required. Pol II CTD and the Spt5

subunit of the DSIF complex have been identified as substrates for P-TEFb

activity and will be discussed later. Depletion of P- TEFb from HeLa nuclear

extracts greatly reduces the ability of RNA pol II to produce full-length transcripts

and eliminates the ORB sensitivity of nuclear extracts (144 , 146 , 147 , 175 , 277).

Moreover, in addition to ORB , P-TEFb is strongly inhibited by flavopiridol (L86-

8275 , HMR1275), a cyclin-dependent kinase (CDK) inhibitor being tested in

clinical trials as a potential anti-cancer drug (117 , 205). However, flavopiridol's

target and the mechanism for its antiproliferative effects are unknown. Recent

evidence indicates that flavopiridol inactivates P-TEFb and inhibits HIV-

transcription (25 , 26).



2. DSIF ( RB ,!ensitivity-lnducing factor) and NELF (negative ongation

factor)

DSIF and NELF are two negative transcription elongation factors (N- TEF)

that can impede RNA Pol II elongation (242 , 261). DSIF was primarily identified

for its ability to repress transcription in the presence of ORB (242). DSIF is a

heterodimer comprising mammalian homologues of Saccharomyces cerevisiae

Spt5 and Spt4 transcription factors. Spt4 possesses a putative zinc finger domain

and most likely interacts with Spt5 through mainly hydrophobic interactions (261).

Spt5 has several distinct domains including four KOW repeats and two C-

terminal elements , CTR1 ( -1erminal Iepeat 1) and CTR2 (103 , 261). KOW

domains , which are also found in Escherichia coli RNA polymerase-binding

protein NusG , playa role in binding to RNA Pol II and affecting transcriptional

termination and anti-termination (134). The CTR domains possess multiple

amino acid repeats that are rich in serine and threonine residues , a similar

composition to the C-terminal domain of RNA Pol II , which may provide

phosphorylation sites for cellular kinases (103 , 218).

Immunodepletion of DSIF p160 (hSpt5) from HeLa cell nuclear extract

results in DRB- insensitive transcription and adding back DSIF restores DRB-

sensitivity (242). Recent studies have shown that Spt4 and Spt5 function during

early transcription elongation process , which is regulated by P-TEFb (242 , 243).

Immunodepletion of DSIF and P-TEFb restored transcription to normal levels

and addition of recombinant DSIF was able to repress transcription in a dose-
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dependent manner (243). These results indicated that DSIF plays a role as a

negative regulator in transcription in the absence of P-TEFb (243). However, In

yeast , Spt4 , Spt5 , and Spt6 appear to have a positive effect on transcription

elongation through the modulation of chromatin structure (80 , 224 , 225). Results

from studies of Drosophila polytene chromosomes have shown that Spt5 and

Spt6 co- localize with phdsphorylated RNA Pol II and Cyclin T1 at a large number

of transcriptionally active sites (3 , 112). These findings provide support for the

closely related role of Spt5 and Spt6 in active transcription elongation in vivo.

Purified NELF is composed of five polypeptides , A to E (66 , 61 , 59 , 58

and 46 kDa , respectively) (261). NELF- , the largest subunit of NELF , is

encoded by Wolf-Hirschhorn syndrome (WHSC) 2 gene. A sequence analysis

showed limit homology (27% identity) between the N-terminal half of NELF-

AIHSC2 and hepatitis delta antigen (HDAg), the only protein encoded by

hepatitis delta virus (HDV) (260). NELF-E is the smallest subunit containing

repeats of the dipeptide arg-asp (RD repeats), an RNA recognition motif (RRM),

and a leucine zipper at the C-terminal end. RD is a putative RNA-binding protein

with unknown function (261). NELF and DSIF function to cooperatively repress

transcriptional elongation by RNA Pol II (261).

Unlike P-TEFb , neither DSIF nor NELF has protein kinase activity,

suggesting that they are not direct targets of ORB. The connection between ORB

and these three elongation factors was revealed by the finding that only active P-

TEFb can counteract the negative effects of DSIF and NELF in a transcription



extract (278). Immunodepletion and in vitro transcription studies suggest that the

main mechanism for P- TEFb control of RNA pol II transcription elongation in vitro

is to alleviate the inhibition effect of DSIF and NELF by phosphorylating the CTD

of RNA Pol" (263) and also the Spt5 subunit of DSIF (178 , 243). Furthermore

recent studies have demonstrated a chromatin-specific elongation factor , FACT

which removes the negative regulation of transcription imposed by DSIF and

NELF in cooperation with P-TEFb (241).

6. Coupling of transcription elongation and mRNA capping

mRNA processing plays an important role in the expression of eukaryotic

genes and is specifically targeted to transcripts made by RNA Pol II. Placing a

mammalian Pol II transcription unit under the control of a Pol III promoter results

in a failure to cap, splice , or polyadenylate transcripts (211). How is pre-mRNA

identity" established? Accumulated evidence indicates that the unique Pol II

CTD appears to occupy a central position as a platform for interacting with

macromolecular assemblies that regulate mRNA synthesis and processing (53

, 93, 152, 153 , 270). However, the CTD is more than a passive scaffold;

indeed , binding to the CTD can regulate the activity of protein partners (13).

Acquisition of the 5' terminal m7GpppN cap is the first modification event

in mRNA biogenesis and capping facilitates downstream transactions such as

splicing, polyadenylation , transport and translation. RNA capping is essential for

cell growth i. e. mutations of the triphosphatase , guanylyltransferase , or



methyltransferase components of the capping apparatus that abrogate their

catalytic activity are lethal in vivo (65 , 94 , 145 , 161 200 , 201 , 214 , 245).

Capping entails a series of three enzymatic reactions: (i) RNA

triphosphatase (RTP) removes the phosphate from the 5 triphosphate end of the

nascent mRNA to form a diphosphate terminus; (ii) RNA guanylyltransferase

(RGT) transfers GMP from GTP to the diphosphate RNA terminus to form

GpppRNA; and (iii) RNA (guanine-7)-methyltransferase (MT) adds a methyl

group to the N7 position of the cap guanine (213). The yeast S. cerevisiae

encodes three proteins , each possessing one activity (213) while the mammalian

capping apparatus consists of two components: a bifunctional triphosphatase-

guanylyltransferase (mammalian capping enzyme , Mce1) and a separate cap

methyltransferase (Hcm1) (94 , 177 , 195 269).

Capping occurs shortly after transcription initiation when the 5' -end of the

nascent RNA chain is extruded from the RNA-binding pocket of the elongating

RNA polymerase (41 , 81 , 184). Capping of cellular RNAs in vivo is specific to

transcripts synthesized by RNA polymerase II (Pol II) (79 , 139). It has been

suggested that this specific targeting is achieved through direct physical

interaction of one or more components of the capping apparatus with the

phosphorylated CTD of the largest subunit of Pol II (30 , 31 , 93 , 94 , 152 , 177

269). In the budding yeast S. cerevisiae the guanylyltransferase (Ceg1) and

methyltransferase (Abd 1) bind directly to the phosphorylated CTD (31 , 152). The

mammalian capping enzyme, Mce1 binds to the phosphorylated CTD but not to
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an unphosphorylated CTD (93 , 94 , 152 , 269). Binding to CTD phosphorylated at

Ser-5 of the YSPTSPS heptad stimulates the guanylyltransferase activity of

Mce1 (93 , 253). Recruitment of the capping apparatus to the yeast Pol 

elongation complex in vivo requires the action of the TFIIH-associated CTD

kinase Kin28 (equivalent to CDK7 in mammals), which phosphorylates Ser-5 of

the CTD (128 191 199).

There is a fascinating link between capping and transcription elongation

which may serve as a checkpoint to ensure that Pol II commits to productive

elongation only after transcript has been capped. For example , it was reported

that hSpt5 , the human homolog of yeast elongation factor Spt5 , which also plays

a role in Tat transactivation of HIV-1 gene expression at the level of transcription

elongation (123 , 256) interacts directly with the mammalian capping enzyme and

stimulates its guanylyltransferase activity (253).

What happens after the cap has been added? In vivo crosslinking

experiments In budding yeast showed that the complex of RNA triphosphatase

and guanylyltransferase is released early, in a step coupled with removal of Ser-

5 phosphorylation by the CTD phosphatase Fcp1 (199) or another phosphatase

(29). Methyltransferase remains associated with Pol II even at the 3' end of the

gene , indicating that the methyltransferase may travel with Pol II for the whole

length of the gene or it could be bound and released in a dynamic equilibrium

throughout elongation of the RNA chain (199). At present, no evidences in

mammalian systems has shown whether cellular capping enzymes remain



associated with the elongation RNA polymerase after the cap structure has been

formed or whether they are jettisoned to make room for other processing

assemblies.

7. Regulation of HIV-1 gene expression

In theory, each of transcription steps , Le , preinitiation , initiation , elongation

and termination (39 , 60) can be regulated , resulting in either overall stimulation or

repression of transcription. While it is widely accepted that the preinitiation step

plays a criticial role in transcriptional regulation , over the past several years

increasing attention has focused on the role of the elongation step. A number of

genes including c-myc , c-fos, c-myb , hsp70 and HIV long terminal repeat (L TR)

region , are potentially regulated at the elongation stage of transcription (109

129 , 194 , 268). Among them , the mechanism of HIV-1 gene expression is one

elegant example of transcription elongation control.

As described above , RNA synthesis from HIV proviral DNA is mediated by

host RNA polymerase II (RNA Pol II). Shortly after the initation of transcription

RNA Pol II is subjected to both negative and positive control by the transcription

regulators listed above. In the absence of HIV-1 Tat, the initiated transcripts

prematurely terminate within 100 nucleotides (nt) of the start site. In the presence

of Tat, elongation is very effective , and hyperphosphorylation of the CTD of RNA

Pol II has been suggested as the molecular event underlying Tat transactivation

(108 , 113). In addition to the binding of Tat with TAR RNA , other cellular factors



are also involved in the stimulation of RNA pol II elongation processivity by Tat. A

gene located at human chromosome 12 encodes a species-specific cofactor for

Tat (1). A cellular protein kinase complex called TAK (Iat- ssociated ,!inase) was

identified that specifically binds to the activation domain of Tat and can

phosphorylate the CTD of RNA Pol II (90 , 91). The kinase component of TAK

was then shown to be identical to a previously identified cdc2-related kinase

named PITALRE. PITALRE has also been identified as the kinase component of

an essential multiprotein complex , P- TEFb , which is involved in transcription

elongation in Drosophila and mammals (175 , 277). Furthermore , PITALRE

kinase was identified during an in vitro screening of drug inhibitors of Tat activity

(144). Moreover, Cyclin T was independently cloned as a Tat-associated protein

(252) .

The detailed interactions of Tat , TAR , and P-TEFb have been studied very

well (181 , 183). Although CDK9 can form a complex with various cyclin partners

it is clear that CDK9/Cyclin T1 is the only target of Tat. Human Cyclin T2a , Cyclin

T2b as well as Cyclin K do not support Tat transactivation (255). Rodent cells

can be made permissive for Tat transactivation by making them express human

Cyclin T1 or by making a single amino acid (A261 C) change in mouse Cyclin T1.

The cysteine residue at position 261 of Cyclin T1 is required for a zinc-dependent

interaction between Cyclin T1 and Tat (16 255).

Tat appears to contact residues in the carboxy-terminal boundary of

human Cyclin T1 ' s (hCycT1 's) cyclin domain that are not critical for binding of
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hCycT1 to CDK9 (16 104 255 276). The hCycT1 sequence containing

amino acids 1-272 is sufficient to form complexes with Tat-TAR , CDK9 , and to

activate transcription by Tat (16 , 68, 71 , 104 , 255 , 276). The sequence and

structural determinants for high affinity hCycT1-Tat-TAR RNA ternary complex

formation have been identified (188). Human Cyclin T1 residues 250-262

represent the Tat-TAR RNA recognition motif (TRM)(71) and have been shown

to interact with one side of the TAR RNA loop and enhance interaction of Tat

residue K50 with the other side of the loop (189). The binding of Cyclin T1 with

Tat increases the binding affinity of Tat for TAR (71 , 252 , 273). hCycT1 and Tat

binding to TAR RNA is highly cooperative , with a capacity of 85% , Hill coefficient

of 2. 7 and a dissociation constant (Ko) of 2.45 nM (188). All these results indicate

that TAR RNA provides a scaffold for two protein partners to bind and assemble

a regulatory switch in HIV replication.

Besides P-TEFb-Tat-TAR complex , Pol II CTD , Spt5 , and Tat are also

intimately connected to regulation of HIV gene expression (reviewed in 181).

Human Spt5 and its binding partner hSpt4 comprise the transcription elongation

regulatory factor DSIF (DRB sensitivity- inducing factor). DSIF binds to Pol II and

in concert with NELF (negative elongation factor), represses elongation at

promoter-proximal positions in the transcription unit. Escape from the repressive

effect of DSIF/NELF requires the action of P-TEFb , a DRB-sensitive protein

kinase that phosphorylates both the Pol II CTD and the Spt5 subunit of DSIF.

The interactions of these regulatory factors with Pol II at discrete functional



stages of transcription from the HIV-1 L TR promoter in vitro have been analyzed

(178 , 179). P-TEFb is a component of the Pol II preinitiation complex (PIC) and

travels with the transcription elongation complex (TEC) along the H 

transcription unit (179). In contrast , DSIF and NELF are not present in the PIC

but associate with the TEC at promoter proximal positions and then travel with

the TECs down the template (178). It has been demonstrated that the kinase

activity of P- TEFb is able to phosphorylate a number of cellular proteins

including the CTD of RNA Pol" and Spt5 in vitro (101 , 103 , 179 , 256 , 275 , 276).

Furthermore , P-TEFb functions to counteract negative elongation factors DSIF as

well as NELF (261). Although DSIF was discovered as a negative elongation

factor , Spt5 , the subunit of DSIF , was identified independently as a factor

involved in HIV- 1 Tat transactivation and functions as a positive elongation factor

(123 256). Taken together, the regulation of HIV-1 gene expression requires not

only Tat-TAR- TEFb interaction , but also the interactions between RNA Pol 

transcription complexes and the positive as well as negative transcriptional

elongation factors.

How does capping fit into the scheme of HIV transcription regulation? At

present , little is known about the dynamics of the interactions of mammalian

capping and methylating enzymes with mammalian Pol" during the transcription

cycle or about the efficiency and timing of the cap guanylylation and methylation

steps. It has been proposed that Tat expression would result in a marked

increase in the steady state level of the mRNA and stimulated the translation of
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mRNAs synthesized from the HIV transcription unit (44). Since Tat

transactivation and capping are both correlated with CTD phosphorylation at an

early stage of transcription elongation , it is conceivable that Tat may interact

physically or functionally with mammalian capping enzyme. Spt5- induced arrest

at promoter-proximal sites in the HIV transcription unit might ensure a temporal

window for recruitment of the capping enzymes and stimulate modification of the

S' end of the HIV pre-mRNA.
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Figure 1. (A) Functional domains of HIV-1 Tat protein. (B) Secondary

structure of wild-type TAR RNA. Wild-type TAR-RNA spans the minimal

sequences that are required for Tat trans-activation.
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Figure 2. Acquisition of the 5 terminal m7GpppN cap through a series 

three enzymatic reactions. Capping entails a series of three enzymatic

reactions: (i) RNA triphosphatase (RTP) removes the phosphate from the S'

triphosphate end of the nascent mRNAto form a diphosphate terminus; (ii) RNA

guanylyltransferase (RGT) transfers GMP from GTP to the diphosphate RNA

terminus to form GpppRNA; and (iii) RNA (guanine-7)-methyltransferase (MT)

adds a methyl group to the N7 position of the cap guanine.
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Part II. Structural and Functional Study of 
RNA Interference

1. RNA interference is broadly distributed in nature

RNAi interference (RNAi) is the process whereby ds RNA induces the

sequence-specific degradation of homologous mRNA. Fire and associates first

reported on RNA interference when they demonstrated potent and specific

genetic interference upon injecting dsRNA into C. elegans (62). However, the

underlying phenomenon, known as posttranscriptional gene silencing

phenomena (PTGS), had initially been described in transgenic plants (as PTGS

or cosuppression) and Neurospora crassa (as quelling) (reviewed in 84 , 206).

PTGS was observed when the introduction of all or a portion of a transgene

occasionally resulted in the loss of expression from the corresponding

endogenous gene with no disruption in gene transcription. It has become clear

that dsRNA- induced silencing phenomena are present in evolutionarily diverse

organisms , e. , nematodes , plants , fungi , and trypanosomes (8 , 37 , 84 , 122

150, 206, 215, 238, 248). Although PTGS and RNAi were identified

independently, genetic and biochemical analyses suggest a strong evolutionary

link between these multi-step pathways (8-10).

2. RNA interference pathway

The discovery of RNAi was followed by studies of its mechanism. Work in

C. elegans indicated that RNAi had at least two important steps , the first of which

probably involved the generation of a sequence-specific silencing agent (78). A

.:\



strong candidate for this agent was a class of short RNAs originally reported by

Andrew Hamilton and David Baulcombe (82). They found that Arabidopsis plants

undergoing transgene- or virus- induced PTGS contained 21-25 nt RNAs that

were complementary to both strands of the silenced gene and that had been

processed from a long dsRNA precursor. An A TP-dependent, processive

cleavage of dsRNA into 21- to 23-nt short interfering RNAs (siRNAs) was

recapitulated in vitro using Drosophila embryo Iysates and S2 cell extracts (15

271). Accumulated evidence revealed that 21- to 23-nt RNAs were associated

with RNAi silencing in C. elegans and Drosophila (83, 171 264). Cloning and

sequencing of these native siRNA duplexes revealed a very specific structure:

21-to 23-nt dsRNAs with 2-nt 3' end overhangs (57). Cleavage of the dsRNA 

vitro and in cultured Drosophila cells requires the multidomain RNase III protein

Dicer, a member of the RNase III family of dsRNA-specific endonucleases (15).

Cleavage products containing 5' phosphate and 3' hydroxyl termini are then

incorporated into a protein complex called A-lnduced ilencing .Qomplex

(RISC) (83). ATP-dependent unwinding of the siRNA duplex generates an active

complex , RISC* (the asterisk indicates the active conformation of the complex)

(166). Guided by the antisense strand of siRNA, RISC* recognizes and cleaves

the corresponding mRNA (57 , 166).

Functional anatomy studies of synthetic siRNA in Drosophila cell Iysates

have demonstrated that each siRNA duplex cleaves its target RNA at a single

site (58). The 5' end of the guide siRNA sets the ruler for defining the position of
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target RNA cleavage (58). 5' phosphorylation of the antisense strand is required

for effective RNA interference in vitro (166). Mutation studies have shown that a

single mutation within the center of a siRNA duplex discriminates between

mismatched targets (58). However , none of these phenomena have been

demonstrated in vivo especially in mammalian systems.

A particularly fascinating aspect of RNAi is its extraordinary efficiency.

Conversion of the long trigger dsRNA into many 21- to 23-nt siRNA fragments

would , itself, provide some degree of amplification. Another plausible explanation

for the potency of interference is that the RISC* is a multiple-turnover enzyme

(98), which can catalytically perform the targeting and cleavage activity.

3. Enzymes of RNA interference

Several groups are actively pursuing the identification and characterization

of enzymes in RNAi and cosuppression. In C. elegans initial mutant screens

have generated -80 candidates, of which five have been specifically identified:

RDE- , RDE- , RDE- , RDE-4 and Mut-7 (78 , 121 , 122 , 226). Selection of

mutations after cosuppression in Arabidopsis have identified homologs of the

genes coding for the enzymes in C. 
elegans (47 , 59 , 160).

DCR- (the gene coding for Dicer) comprises an ATP-dependent RNA

helicase domain , a Piwi/Argonaute/Zwille (PAZ) domain , a tandem RNase III

domain , and a dsRNA-binding-domain. Deletion of the Dcr- in worms abrogates

RNAi and leads to misregulation of developmental timing (77 , 120). Dicer is
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required for cleavage of the dsRNA in vitro and in cultured Drosophila cells to

produce siRNAs with characteristic structure of 5' phosphate and 3' OH termini

with 2-nt overhangs. The presence of two RNase III domains suggests that Dicer

might cleave dsRNA as a monomer. The dsRNA-binding domain could position

the enzyme on the substrate , and the two catalytic domains could hydrolyze

bonds in both strands of the dsRNAs.

The involvement of RNA-dependent RNA polymerase (RdRP) in the

amplification process has recently been postulated since genetic screening has

identified the gene for RdRP as a requirement for gene silencing in plants , fungi

and worms (36 , 47 , 160 , 215). A random degradative PCR model has been

suggested (136 , 164 , 215), in which siRNA serves as the primer for the RdRP

reaction. The siRNA-primed RdRP converts target mRNA into dsRNA , which can

serve as Dicer substrates , initiating the RdRP chain reaction. Certain structural

features of siRNA , including the 3' hydroxyl group and 5' phosphate group, are

critical for the RdRP reaction and RNA ligation (136 , 215). Although RdRP

activity has been reported in Drosophila embryo Iysates (136), a homolog of

RdRP has not been identified in available mammalian genomic sequences.

Rde- which is important for RNAi in C. elegans is a member of a large

Piwi/STlNG/Argonaute/Zwile/eIF2C family. There are 23 related genes in C.

elegans (226), four family members in Drosophila and several in humans.

Arabidopsis encodes eight genes related to rde- 1. Mutation in two of these

genes ago- and zll/pnh results in developmental defects. Recently, EIF2C has



been identified as the major component of RISC complex isolated from HeLa

cytolasma extract by biotinylated double stranded RNA pull down assay (148).

Rde- encodes a dsRNA binding protein required for RNAi (227). The

stable interaction between RDE-4 and dsRNA requires rde- (+) activity in vivo.

RDE-4 protein also interacts in vivo with DCR- 1 proteins and with a conserved

DexH- box helicase that is required for RNAi in C. elegans (227). RNA sequences

bound to RDE-4 were restricted to regions found within the trigger dsRNA

suggesting that RDE-4 functions during the initial steps of RNAi to recognize

foreign dsRNA and to present this dsRNA to DCR-1 for processing (227).

Mut- , the putative C. elegans exonuclease , acts downstream in the RNAi

pathway, as well as in repressing transposition of mobile genetic elements (59).

Its homolog in Neurospora QDE- , which belongs to the RecQ DNAIRNA

helicase family (38), is essential for the post transcriptional gene silencing

phenomenon , quelling. However, WRN , BLM and RecQ1 are not involoved in

dsRNA- induced sequence-specific mRNA degradation in mammals , suggesting

potential differences with the mammalian RNAi pathway (220).

4. dsRNA- induced gene silencing in somatic mammalian cells

Tuschl and colleagues (55) have demonstrated that RNAi can be induced

in numerous mammalian cell lines by introducing synthetic 21-nt siRNAs. By

virtue of their small size , these siRNAs avoid provoking an interferon response

that activates the protein kinase PKR (219). The principal method used to
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introduce the small siRNAs was by co-transfection (using lipofectamine) with

plasmids expressing marker genes or control sequences. The 21- to 23-nt

dsRNAs consisted of chemically synthesized and annealed single-stranded

sense and antisense RNAs with 2-nt 3' overhangs. Several somatic mammalian

cell lines were tested , including murine , non-human primate and human-derived

cells. All theses cell lines showed evidence for sequence-specific inhibition of the

target gene when the appropriate small dsRNA was transfected. Ability of dsRNA

to down-regulate the expression of an endogenously expressed protein has been

investigated as well. dsRNAs corresponding to the nuclear envelope protein

lamin AIC induced -90% reduction in protein levels 40-45 hous after initiation of

transfection (55). More and more researchers are seizing siRNA technology to

elucidate mammalian gene function , and the types of genes that are being

knocked down vary widely, from structural to catalytic proteins (155).

5. Delivery vectors for siRNA

Synthetic siRNAs can be delivered into cells by cationic liposome

(lipofectamine) transfection as described above. However , these exogenously

added siRNAs have only a short-term silencing effect (4-5 days) (55). Several

strategies using recombinant DNA constructs to express siRNA duplexes within

cells have been explored to see if they might allow long-term target gene

suppression. Mammalian Pol III promoter system (U6 small nuclear RNA

(snRNA) promoter) has been reported to be capable of expressing functional ds



siRNAs (131 , 157 , 172 , 221 , 267). Transcriptional termination by RNA Pol III

occurs at runs of four consecutive T residues in the DNA template , providing a

mechanism to end a siRNA transcript at a sepecific sequence. The siRNA

corresponds to the sequence of the target gene (21 mer), and 5' 3' and 3'

orientations can be expressed in the same or separate constructs. Hairpin

siRNAs , driven by U6 snRNA promoter and expressed in cultured cells , can

inhibit expression of their target genes (131 , 157 , 172 , 221 , 267). Constructs

containing siRNA sequences under the control of the T7 promoter can also be

made into functional siRNAs when cotransfected into cells with a vector

expressing T7 RNA polymerase (105). It has been shown that animal cells

express a range of -22-nt noncoding RNAs termed micro RNA (miRNAs), which

can regulate gene expression at posttranscriptional or translational levels during

embryonic development. One common feature of miRNAs is that they are all

excised from a -70-nt precursor RNA stem-loop, probably by Dicer. By

substituting the stem sequences of the miRNA precursor with a designed miRNA

sequence , a vector under control of the RNA Pol II promoter can be constructed

and can be used to produce siRNAs that initiate RNAi against specific mRNA

targets in mammalian cells (272). When expressed by DNA vectors containing

polymerase III promoters , micro-RNA designed hairpin are also active on

silencing gene expression (154). Viral-mediated delivery mechanism can result in

specific silencing of targeted genes through expression of siRNA. Recombinant

adenoviruses harboring siRNA under RNA Pol II promoter transcription control



have been generated. Infection of HeLa cells by these recombinant adenoviruses

diminishes endogenous target gene expression. This recombinant adenovirus

vector delivery strategy holds promise in therapeutic applications , since such

vectors reduce the expression of genes targeted by the siRNAs injected into

transgenic mice. (258).

6. RNAi in reverse genetics and its potential as a therapeutic approach

Reverse genetics is a genetic analysis that proceeds from genotype to

phenotype by gene-manipulation techniques. The ability of siRNA technology to

knock down the expression of any given gene promises to revolutionize reverse

genetic approaches. In C. elegans the direct injection of dsRNA has been used

to establish or confirm the function of numerous genes and to assign phenotypic

effects to many genes that had previously been identified only as computer-

predicted open reading frames (64 , 75). The direct injection of dsRNA into

Drosophila embryos has been used to study the function of several genes

expressed during development (198) Reports using small dsRNA-triggered RNAi

in human cells to determine gene function have recently been published (56

155).

PTGS has been suggested to protect plant tissues from viral infection

(249). Initial studies to test the potential application of synthetic siRNAs to inhibit

virus infection in vertebrates have been promising (155). Decreased mRNA

expression by the respiratory syncytial virus (RSV), a negative-strand virus and



the causative agent of a severe respiratory disease , has been successfully

demonstrated by using RNAi technology (17). siRNA-mediated silencing of HIV

has also been seen in cultured cell lines and in human primary T cells (22 , 35

, 105 , 131 , 165). These studies show that siRNAs can inhibit viral replication at

several stages of infection. Infection can also be blocked by targeting either viral

genes (tat, rev, net, vit, p24) or host genes encoding CD4 and CCR5 receptors

that are involved in the viral life cycle. siRNA can also confer resistance to

poliovirus (74).

Recent data indicate that the in vivo delivery of siRNAs in mice is possible.

RNase III prepared siRNA , delivered by electroporation into postimplantation

mouse embryos , efficiently silenced reporter gene expression in different regions

of the neural tube or other cavities of the mouse embryo (21). Rapid injection of a

siRNA-containing physiological solution into the tail vein of a postnatal mice

inhibited reporter transgene expression (133 , 151). This RNAi effect depended

on the siRNA dose and persisted for -4 days after siRNA delivery (133). The

therapeutic potential of this technique has been demonstrated by effective

targeting of a sequence from hepatitis C virus (151). siRNA expressed from viral

vectors in transgenic mice specifically reduce neuronal levels of polyglutamine

protein with a corresponding decrease in disease protein aggregation , which is

the cause of at least nine inherited neurodegenerative diseases , providing

therapy for dominantly human diseases (258).
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It is certain that the ability of siRNAs to silence specific genes , either when

transfected directly as siRNAs or generated from DNA vectors , will make RNAi

technology a powerful method in functional studies of human genes. However, to

fulfil the promise of using RNAi technology as a therapeutic approach to treating

infectious disease and human genetic diseases , structural and functional studies

are needed to elucidate the basic mechanism underlying RNA interference in

human cells.



CHAPTER II

HIV-1 TAT PROTEIN INTERACTS WITH MAMMALIAN CAPPING

ENZYME AND STIMULATES CAPPING OF TAR RNA



ABSTRACT

HIV gene expression is subject to a transcriptional checkpoint , whereby

negative transcription elongation factors induce an elongation block that is

overcome by HIV Tat protein in conjunction with P-TEFb. P-TEFb is a cyclin-

dependent kinase that catalyzes Tat-dependent phosphorylation of Ser-5 of the

Pol II C-terminal domain (CTD). Ser-5 phosphorylation confers on the CTD the

ability to recruit the mammalian mRNA capping enzyme (Mce1) and stimulate its

guanylyltransferase activity. Here we show that Tat spearheads a second and

novel pathway of capping enzyme recruitment and activation via a direct physical

interaction between the C-terminal domain of Tat and Mce1. Tat stimulates the

guanylyltransferase and triphosphatase activities of Mce1 and thereby enhances

the otherwise low efficiency of cap formation on a TAR stem- loop RNA. Our

findings suggest that multiple mechanisms exist for coupling transcription

elongation and mRNA processing.



INTRODUCTION

mRNA processing plays an important role in the expression of eukaryotic

genes , and the earliest modification event is the formation of the 5' terminal

m7GpppN cap. Capping entails a series of three enzymatic reactions: (i) RNA

triphosphatase removes the phosphate from the 5 triphosphate end of the

nascent mRNA to form a diphosphate terminus; (ii) RNA guanylyltransferase

transfers GMP from GTP to the diphosphate RNA terminus to form GpppRNA;

and (iii) RNA (guanine-7)-methyltransferase adds a methyl group to the N7

position of the cap guanine (213). RNA capping is essential for cell growth

mutations of the triphosphatase, guanylyltransferase, or methyltransferase

components of the capping apparatus that abrogate their catalytic activity are

lethal in vivo (65 , 94 , 145 , 201 , 214 , 245). The m7G cap facilitates translation

initiation (161). Failure to cap pre-mRNAs results in their accelerated decay

through the agency of a 5 exoribonuclease (200).

Capping occurs shortly after transcription initiation when the 5 -end of the

nascent RNA chain is extruded from the RNA-binding pocket of the elongating

RNA polymerase (41 , 184). Capping of cellular RNAs in vivo is specific to

transcripts synthesized by RNA polymerase II (Pol II) (79 , 139). It has been

suggested that this specific targeting is achieved through direct physical

interaction of one or more components of the capping apparatus with the

phosphorylated CTD of the largest subunit of Pol II (30 , 31 , 93 , 94 , 152 , 177

269).
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. r The CTD is unique to Pol II and consists of a tandemly repeated

heptapeptide motif with the consensus sequence YSPTSPS that is differentially

phosphorylated during the transcription cycle (46). Phosphorylation of the CTD

correlates with the release of preinitiation complexes from the promoter and

recruitment of the capping enzyme to the transcription elongation complex. In the

budding yeast Saccharomyces cere visiae , the guanylyltransferase (Ceg1) and

methyltransferase (Abd 1) bind directly to the phosphorylated CTD (31 , 152). The

mammalian capping enzyme , Mce1 , a bifunctional 597-amino acid polypeptide

with both RNA triphosphatase and guanylyltransferase activities , binds to the

phosphorylated CTD but not to an unphosphorylated CTD (93 , 94 , 152 , 269).

Binding to CTD phosphorylated at Ser-5 of the YSPTSPS heptad stimulates the

guanylyltransferase activity of Mce1 (93 , 253). Although interaction between Pol

II and capping enzymes offers an elegant explanation of the specific targeting of

capping enzyme to nascent pre-mRNAs , it is conceivable that other factors are

also involved in linking capping to transcription. For example , it was reported that

hSpt5 , the human homolog of yeast elongation factor Spt5 , interacts directly with

the mammalian capping enzyme and stimulates its guanylyltransferase activity

(253). hSpt5 also plays a role in Tat transactivation of HIV- 1 gene expression at

the level of transcription elongation (123 , 256).

HIV-1 Tat is a small RNA-binding protein required for efficient transcription

of HIV genes. Tat binds specifically to a structured RNA element, TAR, located at

the 5 -end of the nascent HIV transcript. Tat contains two important functional



.. .

domains: an arginine-rich region that mediates the binding of Tat to TAR RNA

and an activation domain that mediates interactions with cellular factors. Tat

functions through TAR to control an early step in transcription elongation that is

sensitive to protein kinase inhibitors and requires the Pol II CTD (108). Tat

increases the processivity of RNA polymerase complexes that would otherwise

prematurely terminate. This function of Tat is predicated on its ability to enhance

the activity of a positive transcription elongation factor, P-TEFb (181).

Components of the P-TEFb complex required for its activity include a

catalytic protein kinase subunit Cdk9 (previously known as PITALRE) (144 , 277)

and regulatory subunits cyclin T1 , cyclin T2a , or cyclin T2b , which associate with

Cdk9 and increase its kinase activity (176 , 252 , 277). Cyclin T1 interacts directly

with the activation domain of Tat. When the proteins are bound to TAR RNA, Tat

interacts with the bulge region , whereas cyclin T1 binds to the loop segment

(252). Phosphorylation of the Poll! CTD by P-TEFb kinase is stimulated by Tat

and leads to the formation of processive transcription elongation complexes.

Because Tat transactivation and capping are both correlated with CTD

phosphorylation at an early stage of transcription elongation , it is conceivable

that Tat may interact physically or functionally with mammalian capping enzyme.

Here , we show a direct association between Tat and Mce1 in vitro. We find that

Tat stimulates mRNA capping in vitro by enhancing the triphosphatase and

guanylyltransferase activities of Mce1. Moreover, Tat stimulates the capping of

TAR mRNA, which is not guanylylated efficiently by Mce1 , presumably because
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the 5' terminus is encompassed within a stable RNA hairpin. We suggest a

model whereby Tat stimulation of TAR mRNA capping contributes to the

activation of HIV gene expression.



MATERIALS AND METHODS

Expression and purification of recombinant wild-type and mutant

Tat. Recombinant wild-type HIV-1 Tat , hemagglutinin (HA)-tagged Tat, and Tat

deletion mutants were expressed in Escherichia coli as glutathione S-transferase

(GST) fusion proteins. These fusion proteins consisted of an N-terminal GST

moiety followed by a thrombin cleavage site and variable C-terminal polypeptides

segments comprising wild-type Tat-(1-86) with or without HA tag; Tat2/36 (a

deletion from amino acids 2-36 in the transactivation domain); Tat48 (a deletion

of amino acids 49-86 including the RNA binding domain). Recombinant fusion

proteins were purified to apparent homogeneity from bacterial Iysates by

glutathione-Sepharose affinity chromatography. Briefly, Iysates were mixed with

a 1 ml slurry of glutathione-Sepharose beads (Amersham Pharmacia Biotech) for

1 hat 4 oc. The beads were then poured into a column and washed with 20 ml of

PBS (136 mM NaCI , 2.6 mM KCI , 10 mM Na HP04 , 1.76 mM KH2P04 , pH 7.4)

containing 1% Triton X- 100 , 1 mM EDTA, and 50 J.g/ml phenylmethylsulfonyl

fluoride. The immobilized GST-Tat beads were used in protein binding assays

described below. Alternatively, the Tat proteins were recovered from glutathione-

Sepharose beads by thrombin cleavage according to previously described

procedures (187). The eluted Tat proteins were stored in buffer containing 50

mM Tris-HCI , pH 8. , 150 mM NaCI , 5 mM DTT, and 2. 5 mM CaCb at 80 o

Recombinant capping enzymes. Full-length mouse capping enzyme

Mce1 , the N-terminal RNA triphosphatase domain Mce1-(1-210), and the C-



terminal RNA guanylyltransferase domain Mce1-(211-597) were produced in

bacteria as N-terminal His-tagged fusions and purified as described (94).

In vitro assay of the binding of GST.Tat to mammalian capping

enzyme. Reaction mixtures containing 3-5 /-g of the wild-type or mutant (2/36

48) GST.Tat proteins bound to glutathione-Sepharose beads and 1 /-g of the

wild-type or mutant Mce1 proteins in 300 /-l of binding buffer (20 mM Tris-HCI , pH

, 1 % Triton X-100 , 0.5% Nonidet P- , 5 mM DTT, 0.2 mM ZnCI2 , 0. 1 %

bovine serum albumin) supplemented with a protease inhibitor mixture (Roche

Molecular Biochemicals) were incubated at 4 C for 2 h. The beads were washed

four times in 600 /-l of washing buffer (30 mM Tris-HCI , pH 8. , 150 mM NaCI , 2

mM CaCb, 5 mM DTT) and then resuspended in 200 /-l of washing buffer and

split into two equal aliquots. One of the aliquots was treated with 10 units of

thrombin (Amersham Pharmacia Biotech) for 10 min at room temperature.

Thrombin digestion was then quenched by adding 20 /-g of phenylmethylsulfonyl

fluoride. The second aliquot was not treated with thrombin. The beads were then

separated from the supernatant by centrifugation. The supernatant fractions were

resolved by SDS-PAGE. The protein contents of the gel were transferred to a

polyvinylidene difluoride membrane that was then immunoblotted with rabbit

antiserum raised against the guanylyltransferase domain Mce1-(211-597).

Immune complexes were detected by using an ECL Western blotting kit

according to the instructions of the vendor (Amersham Pharmacia Biotech).



In vitro assay of the binding of HA.Tat to the triphosphatase and

guanylyltransferase domains of mammalian capping enzyme. 40 Jlg of His-

tagged Mce1-(1-210) or Mce1-(211-597)was adsorbed to 100 JlI of Ni2+-agarose

beads (Qiagen) during a 1-h incubation at 4 C in 500 JlI of Ni2+-binding buffer A

(50 mM Tris-HCI , pH 8. , 50 mM NaCI 10% glycerol) supplemented with

protease inhibitor mixture. The beads were washed four times with 1 ml of

binding buffer A and resuspended in 250 JlI of binding buffer A. The beads were

then incubated for 1 h at 4 C with 2 Jlg of purified HA-tagged Tat protein in

binding buffer A. The beads were washed six times with 1 ml of binding buffer A

and the bound proteins were then stripped from the beads by boiling in 25 JlI of

SDS-PAGE loading buffer (50 mM Tris-HCI , pH 6. 12% glycerol , 4% SDS , 100

mM DTT , and 0. 01 % Coomassie Blue G-250). Polypeptides were resolved on

8% polyacrylamide gels. The gel contents were transferred to a polyvinylidene

difluoride membrane , and Tat protein was detected by immunoblotting with a

biotin-conjugated antibody against the HA tag. The blot was developed using a

chemiluminescence kit.

Guanylyltransferase assay. Guanylyltransferase activity of capping

enzyme was assayed by the formation of the covalent enzyme-GMP

intermediate. Reaction mixtures (20 JlI) containing 50 mM Tris-HCI , pH 8. , 5 mM

DTT , 5 mM MgCb, 1.25 JlM eZp)GTP , and capping enzyme and Tat proteins as

specified were incubated for 15 min at 37 oC. The reaction was halted by addition

of SDS to 1 % final concentration. The reaction mixtures were analyzed by SDS-
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PAGE. Capping enzyme- PJGMP complexes were visualized by

autoradiography and quantified by scanning the gel with a phosphorimager.

RNA triphosphatase assay. RNA triphosphatase activity was assayed by

liberation of pi from e PJGTP- labeled poly(A) RNA synthesized by T7 RNA

polymerase transcription. The template strand encoded the sequence for poly(A)

RNA starting with G at position +1. In vitro transcription reactions were carried

out as described previously (97) in the presence of e pJGTP. 5' GTP-terminated

29-mer poly(A) was purified on a 15% polyacrylamide , 7 M urea denaturing gel.

RNA triphosphatase reaction mixtures (10 Ill) containing 50 mM Tris-HCI , pH 8.

5 mM DTT, 10 pmol of 5' GTP-terminated poly(A), and capping enzyme and Tat

proteins as specified were incubated for 15 min at 37 oC. The reaction was halted

by addition of 1 III of 88% formic acid. Aliquots of the mixtures were applied to a

polyethyleneimine-cellulose TLC plate , which was developed with 0.75 M

potassium phosphate (pH 4. 3). The release of pi was quantified by scanning

the TLC plate with a phosphorimager.

RNA capping assay. Triphosphate-terminated 17-mer RNA with no

apparent secondary structure and TAR RNA containing a bulge and loop region

(see Figure 7A) were prepared by in vitro 17 polymerase transcription and then

purified by electrophoresis through a 20% polyacrylamide , 7 M urea gel as

described previously (97). (32PJGMP was incorporated at internal positions in the

RNAs by including (32PJGTP in the transcription reactions. Capping reaction

mixtures (20 Ill) containing 50 mM Tris-HCI , pH 8. , 5 mM DTT , 50 11M GTP , 2.



mM MgCb 10 pmol of RNA , 20 units of RNase inhibitor (Promega), and capping

J m

enzyme and Tat proteins as specified were incubated for 15 min at 37 OC. The

reaction was quenched by adding 200 /-1 of stop solution (0. 3 M Tris-HCI , pH 7.

3 M sodium acetate , 0. 5% SDS , 2 mM EDTA). The mixtures were extracted

with phenol/chloroform/isoamyl alcohol (25:24:1) and then with chloroform. RNAs

were recovered by ethanol precipitation and then analyzed by electrophoresis

through a 15% polyacrylamide gel containing 7 M urea in Tris-Borate-EDTA.

Labeled RNA products were visualized by autoradiography. The internally

labeled capped RNA product migrated more slowly than the uncapped substrate

RNA. The extent of capping was quantitated by scanning the gel with a

phosphorimager.

, ,



RESUL TS

Tat directly interacts with mammalian capping enzyme in vitro.

To test for interaction between Tat and mammalian capping enzyme , a

purified GST-Tat fusion protein was linked to glutathione-Sepharose beads , and

the beads were incubated with purified recombinant full- length Mce1. After

washing the beads with buffer to remove unbound protein , the bound Mce1 was

recovered from the beads by treatment with thrombin , which cleaved the

GSTTat fusion protein between the GST and Tat domains (Figure 1A). Released

Mce1 was detected in the supernatant fraction by immunoblotting with antiserum

raised against the C-terminal guanylyltransferase domain (Figure 1 B , lane 3).

Mce1 was not detected in the supernatant when the thrombin cleavage step was

omitted (Figure 1 B , lane 2). Alanine mutations of the active site cysteine of the

RNA triphosphatase domain of Mce1 (C126A) or the active site lysine of the

guanylyltransferase domain of Mce1 (K294A) that abrogate the triphosphatase

and guanylyltransferase activities , respectively, did not interfere with the binding

of Mce1 to immobilized Tat (Figure 1 B , lanes 6 and 9). These results indicate

that mammalian capping enzyme can interact directly with Tat in vitro

independent of the competence of Mce1 to catalyze phosphoryl or nucleotidyl

transfer.

The C-terminal segment of Tat containing the RNA binding domain suffices

for binding to mammalian capping enzyme.
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Tat protein can be divided into two major functional domains (Figure 2A).

The transactivation domain (amino acids 1-48) is required for recruitment of

cyclin T1 by Tat to the HIV-1 long terminal repeat (L TR) promoter (252). The C-

terminal domain (amino acids 49-86) includes a basic region and is required for

both RNA binding and nuclear localization of Tat (52). Two truncated versions of

Tat, Tat2/36 and Tat48 , which are deleted in the transactivation domain and RNA

binding domain , respectively, were expressed as GST fusion proteins and tested

for binding to the guanylyltransferase domain of mammalian capping enzyme

Mce1-211-597). The guanylyltransferase bound to beads containing immobilized

wild-type Tat and Tat2/36 (Figure 2B , lanes 3 and 5), but not to Tat48 (Figure 2B

lane7). Similar results were obtained for binding of full- length Mce1 to the

truncated Tat proteins (data not shown). We conclude that the Tat segment from

amino acids 37-86 suffices for the binding of capping enzyme and that the

transactivation domain per se does not interact with capping enzyme or its

uanylyltransferase component.

Tat binding stimulates the activity of mammalian guanylyltransferase.

Are there functional consequences for the interaction of mammalian

capping enzyme with Tat? To address this question , we tested the effects of full-

length Tat and truncated Tat derivatives on the guanylyltransferase and

triphosphatase activities of Mce1. The 597-amino acid mammalian capping

enzyme consists of an N-terminal triphosphatase domain (amino acids 1-210)



and a C-terminal guanylyltransferase domain (amino acids 211-597). The

guanylyltransferase component of the enzyme catalyzes two sequential

nucleotidyl transfer reactions involving a covalent enzyme-guanylate intermediate

(212). In the first partial reaction , nucleophilic attack on the phosphate of GTP by

enzyme results in liberation of pyrophosphate and formation of a covalent adduct

in which GMP is linked via a phosphoamide bond to the -amino group of a Lys-

294 (94 , 269). The nucleotide is then transferred to the 5'-end of the RNA

acceptor to form an inverted (5')-(5' ) triphosphate bridge structure , GpppN.

The extent of Mce1. P)GMP complex formation during reaction with 1.

M GTP was proportional to input protein up to 0. 15 JlM Mce1 and leveled off as

Mce1 was increased to 0. 5 Jl M (Figure 3A). In the linear range of Mce1-

dependence , -9% of the input protein molecules were labeled with (32P)GMP.

Enzyme-(32P)GMP complex formation by 0. 05 JlM Mce1 was stimulated by Tat

and Tat2/36 , but Tat48 had no effect (Figure 3B). Optimal stimulation (4- fold)

was attained at a 2:1 molar ratio of Tat to Mce1 (Figure 3C). The activity of the

autonomous guanylyltransferase domain Mce1-(211-597) was similarly

stimulated by Tat and Tat2/36 , but not Tat48 (data not shown). Tat had no

stimulatory effect on enzyme-GMP formation by purified recombinant yeast

guanylyltransferase Ceg1 (data not shown). These results indicate that Tat

interaction with Mce1 stimulates the guanylyltransferase activity of mammalian

capping enzyme and the Tat domain from amino acids 37-86 suffices for this

function.



Tat stimulates the RNA triphosphatase activity of mammalian capping

enzyme.

The RNA triphosphatase domain of mammalian capping enzyme displays

extensive amino acid sequence similarity to protein tyrosine phosphatases and

dual-specificity protein phosphatases. By analogy to the protein phosphatases , it

is proposed that mammalian RNA triphosphatase executes a two-step

phosphoryl transfer reaction involving a covalent enzyme-(cysteinyl-S)-

phosphate intermediate (94 , 228 , 253). In the first partial reaction , nucleophilic

attack by a cysteine thiolate (Cys-126 in Mce1) on the -phosphate of RNA results

in release of diphosphate-terminated RNA and formation of a phosphoenzyme.

The phosphate is then transferred from Cys-126 to water to release Pi. RNA

triphosphatase activity is assayed by the release of pi from labeled

triphosphate-terminated RNA.

Hydrolysis of 1 M e p)GTP- labeled poly(A) by Mce1 increased linearly

from 2-8 nM enzyme and was nearly quantitative at 10 nM (Figure 4A). The

titration profile of the isolated triphosphatase domain Mce1-(1-210) was more

sigmoidal , but the slope of the curve in the linear range (4- 12 nM enzyme) was

similar to that of Mce1 (Figure 4A). RNA -phosphate hydrolysis by 3 nM Mce1

was stimulated 6- fold by the inclusion of 6-18 nM Tat (Figure 4B). Note that Tat

by itself had no detectable RNA triphosphatase activity at the highest level of

input Tat used in this experiment (data not shown). The remarkable finding was



that Tat did not stimulate RNA -phosphate hydrolysis by 5 nM of the N-terminal

RNA triphosphatase domain Mce1(1-210), which catalyzed a similar level of

basal RNA hydrolysis as 3 nM Mce1 (Figure 4B).

To investigate whether Tat interacts directly with the RNA triphosphatase

domain , we established an affinity chromatography assay using His-tagged

capping enzyme domains immobilized on Ni2+-agarose beads (Figure 5A). The

beads were incubated with HA-tagged Tat. After washing the beads with buffer to

remove unbound protein , the bead-bound material was stripped from the beads

with SDS , and the presence of HA-Tat in the SDS-eluate was detected by

immunoblotting with anti-HA antibody. As shown in Figure 5B , HA-Tat was

adsorbed to beads containing the immobilized RNA triphosphatase domain

Mce1-(1-210) (lane 3), whereas only a scant amount of HA-Tat was retained on

the control Ni2+-agarose beads (lane 1). HA-Tat also bound to beads containing

immobilized guanylyltransferase domain Mce1-(211-597) (lane 2). This

experiment reciprocates the finding that soluble guanylyltransferase domain was

bound to immobilized Tat (Figure 2).

The results presented thus far demonstrate that Tat interacts with the

isolated RNA triphosphatase and guanylyltransferase domains of mammalian

capping enzyme. Whereas Tat-binding stimulates the guanylyltransferase activity

of Mce1 and the C-terminal domain , Tat-stimulation of the RNA triphosphatase

reaction appears to occurs only in the context of the full- length Mce1.



Tat stimulates RNA cap formation by Mce1.

The enzymatic addition of an unlabeled cap guanylate to the 5 -end of an

internally labeled RNA molecule results in a characteristic slowing of the

electrophoretic mobility of the RNA , equivalent to about a 2-nucleotide increase

in apparent chain length (51). The change in mobility upon addition of capping

enzyme has been used to detect cap formation on RNAs as long as

78 nucleotides (50). Here we studied the complete capping reaction of Mce1

using a synthetic 17 -mer triphosphate-terminated RNA substrate that was

labeled internally with (32P)GMP (Figure 6A). Incubation of 0. 5 J-M RNA substrate

with Mce1 in the presence of 50 J-M cold GTP and magnesium chloride resulted

in transfer of GMP to the 5 -end , yielding a capped species that migrated more

slowly than the input substrate RNA (Figure 6B). Formation of the capped

species was dependent on inclusion of GTP in the reaction mixture (not shown).

The extent of capping was proportional to input Mce1 and saturated at 0.4 J-M

Mce1 with about 70% of the input RNA being capped (Figure 6C). In the linear

range of enzyme-dependence , 1 pmol of RNA was capped per pmol of the Mce1.

The level of capping catalyzed by 50 nM Mce1 (1 pmol of input Mce1) was

increased 6-fold by Tat (Figure 6D). The stimulation was Tat concentration-

dependent and saturation was attained at a 4:1 molar ratio of Tat to Mce1. An

identical capping stimulation profile was observed for the deletion mutant Tat2/36

containing an intact RNA binding domain. Tat48 containing the activation domain

had no salutary effect on RNA capping (Figure 6D). The ability of Tat or its



component domains to stimulate cap formation by Mce1 correlated perfectly with

the capacity to bind to Mce1 (Figure 3).

Tat enhances TAR RNA capping.

Tat functions through TAR RNA to control an early step in transcription

elongation that depends on the Pol II CTD (43 , 108). In light of our findings that

Tat stimulates mammalian capping enzyme , we envisioned that Tat might

enhance the capping of its target TAR mRNA, which might otherwise be

inefficiently capped because the 5 -end is encompassed within a stable RNA

duplex (67). To test this hypothesis , we prepared internally labeled Non-TAR

RNA (17-mer) and TAR RNA (29-mer) substrates (Figure 7A) and tested them

for capping in the same reaction mixtures with limiting Mce1. Capping reactions

containing 75 nM Mce1 and 250 nM each of the Non-TAR and TAR substrates

were supplemented with increasing amounts of Tat protein and the labeled

products were resolved by PAGE (Fig. 78). In a competitive situation in the

absence of Tat (Figure 7B , lane 2), Mce1 favored the Non-TAR substrate (1 pmol

of cap formed) over the TAR substrate (0. 3 pmol of cap formed) (Figure 7C). Tat

enhanced capping of both Non-TAR and TAR RNA substrates at a 2:1 ratio of

Tat to Mce1 (Figure 7C). Yet, the relative Tat stimulation of capping of the TAR

RNA (5-fold) was greater than that of the Non-TAR substrate (2-fold).



DISCUSSION

Selective targeting of caps to Poll! transcripts 
in vivo is achieved , at least

in part, through direct physical interaction of the capping apparatus with the

phosphorylated CTD of Poll!. In addition to recruiting capping enzyme to the Pol

II elongation complex, the phosphorylated CTD stimulates the

guanylyltransferase activity of the mammalian capping enzyme (93). This simple

and appealing model for targeting and regulation of capping is belied by the

underlying complexity of CTD phosphorylation (and dephosphorylation) and by

mounting evidence that regulation of transcription elongation is a key facet of

cotranscriptional mRNA processing. The data presented here illuminate a new

pathway of capping enzyme recruitment and activation by the HIV Tat protein.

Our findings contribute to an emerging picture of how elongation and processing

are coupled , especially during HIV gene expression.

In mammalian cells, the timely acquisition of the cap may promote

subsequent mRNA-specific processing steps (splicing and polyadenylation) and

protect the nascent mRNA from exonucleolytic decay. A clear advantage would

accrue from a mechanism whereby capping is restricted to Pol II complexes that

are committed to productive elongation , insofar as the capping of short

transcripts that are subsequently aborted and released would generate a

population of non-coding capped RNAs that could compete with bona fide

mRNAs in cap-dependent transactions. CTD hyperphosphorylation has often

been correlated with the establishment of a stable elongation complex , but there



is little information as to the exact nature of the phosphorylation array at any

point in the transcription cycle and there is still uncertainty concerning the relative

contributions of different CTD kinases (TFIIH and P-TEFb) to the establishment

and remodeling of the CTD phosphorylation array. The timing during early

elongation of the critical CTD phosphorylation steps that permit capping enzyme

recruitment are not well defined and may even vary for different transcription

units. Although it is clear that short nascent transcripts (on the order of

30 nucleotides) can be capped , such results reflect the action of the capping

enzymes on arrested polymerase elongation complexes , where there is 

kinetic competition between ongoing elongation and capping. The RNA size

threshold for capping in this experimental setting simply reflects the steric

constraints on capping of RNA chains held within the RNA binding pocket of the

polymerase. The unimpeded rate of elongation by RNA polymerase (-20

nucleotides/s) is faster than estimates of the rates of the RNA triphosphatase

andguanylyltransferase reactions (reviewed in ref. (210)), which sets up a

situation in which RNA polymerase might "outrun" the capping enzyme. It is not

known whether capping enzyme has a narrow or wide window for action on

nascent 5' ends in vivo , i. e. whether capping enzyme would dissociate from the

elongation complex after polymerase has proceeded a certain distance down the

transcription unit.

Thus , there is advantage in imposing an elongation checkpoint to

maximize the opportunity for the capping apparatus to bind the elongation
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complex. This scenario has been studied most thoroughly for HIV transcription

where the negative elongation factor DSIF induces an elongation block that is

overcome by P- TEFb , a cyclin-dependent protein kinase that phosphorylates the

CTD (181) (Figure 8). One key function of the Tat-TAR RNA complex is to recruit

TEFb to the nascent HIV mRNA through an interaction of the cyclin T1 subunit

of P-TEFb with the activation domain of Tat. The CTD kinase function of P-TEFb

is essential for Tat-TAR stimulation of HIV transcription , whereas the CTD kinase

activity of TFIIH is apparently not critical for overriding the effects of DSIF (241

275). Indeed , although TFIIH and P-TEFb are both associated with very early

HIV elongation complexes halted at position +14 , TFIIH dissociates by the time

the polymerase moves to position +30 or +36 (prior to elaboration of the TAR site

in the nascent RNA), whereas P-TEFb remains associated with the elongation

complex at least up to position +79 when TAR is formed (179 , 275). The

presence of Tat triggers a new round of P-TEFb-catalyzed CTD phosphorylation

on elongation complexes at position +79 (275).

An exciting connection between Tat , P-TEFb , and cap formation emerges

from the recent report that Tat alters the phosphorylation site-specificity of P-

TEFb in the context of the HIV transcription complex. P-TEFb phosphorylates

Ser-2 of the CTD heptad in the absence of Tat , but it phosphorylates both Ser-

and Ser-5 when Tat is present (275). CTD phosphorylation on either Ser-2 or

Ser-5 suffices to bind mammalian capping enzyme , but CTD-stimulation of

capping activity is specific for the Ser- P04 CTD array (93). Thus , the



TatlAR/P-TEFb complex helps craft a CTD array that both recruits and activates

Mce1.

Here we have shown that Tat spearheads a second and novel pathway of

capping enzyme recruitment and activation via a direct physical interaction

between Tat and Mce1. Unlike , the Tat-P- TEFb interaction , which requires the N-

terminal transactivation domain of Tat , the binding of Tat to capping enzyme is

via the C-terminal domain that includes the TAR RNA binding site. The Tat-Mce1

interaction results in a significant stimulation of the guanylyltransferase and

triphosphatase activities of Mce1 and it thereby enhances the efficiency of cap

formation on defined RNA substrates. Tat is unique among the recently

discovered regulators of mammalian capping enzyme because as it is the only

factor that up-regulates the triphosphatase component of the bifunctional

enzyme. The effects of Ser- P04 CTD and hSpt5 on Mce1 are limited to

stimulation of the guanylyltransferase (93, 253). Tat-stimulation of Mce1

triphosphatase activity occurs in the context of the native two-domain enzyme

but not with the isolated N-terminal triphosphatase component, even though Tat

can bind to the isolated triphosphatase domain. Thus , it appears that contacts of

Tat to both domains of Mce1 are needed to elicit the increase in triphosphatase

activity. In contrast, Tat is equally capable of stimulating theguanylyltransferase

activity of the full-length Mce1 and its isolated C-terminal domain. Ser- P04

CTD can also up-regulate either Mce1 or the guanylyltransferase domain , but

hSpt5 (which is a subunit of DSIF) only affects the activity of full- length Mce1.



There are now 3 possible pathways of up-regulating HIV mRNA capping

involving factors that are known to be associated with the HIV transcription

complex: (i) direct Tat activation of Mce1; (ii) CTD-P04 activation of Mce1 , via

Tat-stimulation of the CTD kinase activity of P-TEFb; (iii) DSIF activation of Mce1

via its hSpt5 subunit (Figure 8). There is potential for cross-talk between these

pathways , insofar as P-TEFb phosphorylation of CTD clearly affects DSIF

function and P- TEFb is also capable of phosphorylating the hSpt5 subunit of

DSIF (103). Phosphorylation of hSpt5 by P-TEFb has been reported to block its

ability to elicit a transcription elongation block (103). The effects of hSpt5

phosphorylation on its interaction with the capping enzyme are unclear. The

attractive feature of the direct Tat-Mce1 activation pathway in HIV gene

expression is that it is independent of CTD phosphorylation status and provides a

means for direct and specific recruitment of Mce1 to the nascent HIV transcript

containing bound Tat.

Why might HIV go to such lengths to employ Tat to recruit and activate

Mce1? The formation of stable RNA secondary structures in which the 5' end of

the HIV transcript is encompassed within a duplex stem may limit access of the 5'

terminus to the active sites of the capping enzyme (67). Such a stem structure is

formed by nascent HIV mRNA even prior to the synthesis of the TAR sequence

and , although the secondary structure changes after TAR is formed , the 5' end

remains held within a duplex stem (170). We observed a structured TAR

substrate was capped less effectively by purified Mce1 than an RNA with no
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apparent secondary structure. Although Tat stimulated the capping of both Non-

TAR and TAR RNAs , the-fold-stimulation of the structured TAR substrate was

greater than that of the unstructured transcript. Thus regulation of capping by Tat

would have the most impact where capping is inherently weak. Finally, a Tat-

dependent enhancement of mRNA cap formation may account for the finding that

Tat stimulates the translation of mRNAs synthesized from the HIV transcription

unit (44).
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Figure 1. Tat interacts directly with Mce1 in vitro. A, experimental design to

test the interaction between Mce1 and Tat protein. Purified GST-Tat fusion

protein was linked to glutathione-Sepharose beads and incubated with purified

Mce1. After loading to the column and washing with buffer (30mM Tris-HCI , pH

, 150mM NaCI , 2mM CaCIz, 5mM DTT) , the sample was divided into two

aliquots. Bound Mce1 was released by thrombin treatment (supernatant phase

ST). Supernatant without thrombin treatment (S) shows the background. B, full-

length Mce1 (lane 1) and two active site mutants , Mce1(C126A) (lane 4) and

Mce1(K294A) (lane 7), were assayed for binding to GST-Tat. The input and

supernatant fractions were analyzed by SDS-PAGE; the wild-type and mutant

Mce1 polypeptides were detected by immunoblotting.
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Figure 2. The C-terminal segment of Tat containing the RNA binding

domain is sufficient for interaction with Mce1. A, schematic representation of

the domains of HIV-1 Tat protein and the Tat deletion mutants that were used in

this binding assay. B , purified GST-Tat , GST-Tat2/36 (transactivation domain

deletion) and GST-Tat48 (RNA binding domain deletion) were incubated with

purified Mce1-(211-597). Binding was assayed as shown in Figure 1. An

immunoblot of the input and supernatant fractions is shown.
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Figure 3. Tat enhances guanylylation of Mce1. A, guanylyltransferase activity

of purified Mce1 was assayed as described under "Experimental Procedures

Mce1.e P)GMP complex formation is plotted as a function of input Mce1. B

effect of Tat. Mce1 (1 pmol) was assayed for guanylyltransferase activity in the

presence of increasing amounts (0 , 1 , and 6 pmol) of wild-type Tat (lanes 1-

5), Tat2/36 (lanes 6- 10), and Tat48 (lanes 11- 15). The reaction products were

analyzed by SDS-PAGE, and Mce1. P)GMP complexes were detected by

autoradiography. C, Mce1.e P)GMP complex formation is plotted as a function of

the TatlMce1 ratio.
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Figure 4. Tat enhances the RNA triphosphatase activity of full-length Mce1

but not the isolated triphosphatase domain. A , RNA triphosphatase activity

was assayed as described under "Experimental Procedures. pi release 

plotted as function of input Mce1 or Mce1-(1-210). B , effect of Tat.

Triphosphatase reaction mixtures contained 30 fmol of Mce1 or 50 fmol of Mce1-

(1- 210) plus increasing concentrations of Tat. The extent of 
pi release from

p)GTP- labeled RNA is plotted as a function of the molar ratio of Tat to capping

enzyme.
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Figure 5. The RNA triphosphatase domain of mammalian capping enzyme

can bind to Tat. A, HA-Tat was reacted with Ni2+-agarose beads alone (1), with

beads containing His-tagged Mce1-(211-597) (2), and beads containing His-

tagged Mce1-(1-21 0) (3). The bound material was eluted with SDS and resolved

by SDS-PAGE. B, Tat protein in the input sample and the SDS eluates was

detected by immunoblotting using antibody directed against the HA tag.
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Figure 6. Tat enhances RNA cap formation. A , sequence of the 17-mer

substrate RNA used in capping reactions. B , capping reactions contained

10 pmol of internally labeled 17-mer RNA and Mce1 as specified. The

radiolabeled reaction products were analyzed by PAGE. An autoradiogram of the

gel is shown. The positions of capped and uncapped RNAs are indicated on the

left. C , the extent of cap formation in (B) is plotted as a function of input enzyme.

, effect of Tat on RNA capping. In these reactions , we used 10 pmol of RNA , 1

pmol of Mce1 , and increasing concentration of various Tat proteins. Quantitative

analysis of Mce1 capping activity in the presence of various Tat sequences.

''"
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Figure 7. Tat enhances capping of TAR RNA. A , sequence and secondary

structure of TAR RNA (29-mer) used in the RNA cap formation assay. B , capping

reaction mixtures (20 J.1) contained 50 J.M GTP , 75 nM Mce1 , 250 nM Non-TAR

and 250 nM TAR RNAs and increasing amounts of Tat (0 , 1. , 3 , 6 , and 9 pmol).

The radiolabeled reaction products were analyzed by PAGE. An autoradiogram

of the gel is shown. The positions of capped and uncapped TAR and Non-TAR

RNAs are indicated by arrows. , the extent of cap formation is plotted as a

function of the TaUMce1 molar ratio for Non-TAR RNA (right y axis) and TAR

RNA (left y axis).
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Figure 8. Emerging connections between CTD phosphorylation , capping,

and transcription elongation. See text for details.





CHAPTER III

TAT STIMULATES COTRANSCRIPTIONAL CAPPING OF

HIV MESSENGER RNA



ABSTRACT

Here we investigated how capping and methylation of HIV pre-mRNAs are

coupled to Pol \I elongation. Stable binding of the capping enzyme (Mce1) and

cap methyltransferase (Hcm1) to template-engaged Pol II depends on CTD

phosphorylation , but not on nascent RNA. Both Mce1 and Hcm1 travel with Pol II

during elongation. The capping and methylation reactions cannot occur until the

nascent pre-mRNA has attained a chain length of 19-22 nucleotides. HIV pre-

mRNAs are capped quantitatively when elongation complexes are halted at

promoter-proximal positions , but capping is much less effcient during unimpeded

Pol II elongation. Cotranscriptional capping of HIV mRNA is strongly stimulated

by Tat, and this stimulation requires the C-terminal segment of Tat that mediates

its direct binding to Mce1. Our findings implicate capping in an elongation

checkpoint critical to HIV gene expression.

- . . ---------



INTRODUCTION

mRNA capping occurs cotranscriptionally by a series of three enzymatic

reactions in which the 5' triphosphate terminus of the pre-mRNA is cleaved to a

diphosphate by RNA triphosphatase , then capped with GMP by RNA

guanylyltransferase , and methylated by RNA (guanine-N7) methyltransferase.

Targeting of cap formation to cellular transcripts made by RNA polymerase II (Pol

II) is achieved through physical interactions of the capping enzymes with the

phosphorylated carboxyl-terminal domain (CTD) of the largest subunit of Pol II

(31 152 173, 269). The CTD , which is composed of a tandemly repeated heptad

motif YSPTSPS, undergoes extensive serine phosphorylation and

dephosphorylation during the transcription cycle. Recruitment of the capping

apparatus to the yeast Pol II elongation complex 
in vivo requires the action of the

TFIIH-associated CTD kinase Kin28 (equivalent to Cdk7 in mammals), which

phosphorylates Ser5 of the CTD (128, 191 , 199). Other factors may also be

involved in coupling capping to Pol II transcription. For example , the Pol II

transcription elongation factor Spt5 interacts directly with the triphosphatase and

guanylyltransferase components of the capping apparatus in mammals and in

the fission yeast Schizosaccharomyces pombe 
(174 , 253). Many eukaryotic

viruses that replicate in the nucleus exploit the host's enzymes to transcribe and

cap their mRNAs. Human immunodeficiency virus (HIV) is of particular interest

because it appears to impose an additional mechanism to target the capping

enzyme to the viral transcription unit , whereby the HIV-encoded Tat protein binds



to the triphosphatase and guanylyltransferase domains of the mammalian

capping enzyme and upregulates both catalytic activities (27).

The Pol II CTD , Spt5 , and Tat are intimately connected to the regulation of

HIV gene expression (reviewed in 181). Human Spt5 and its binding partner

hSpt4 comprise the transcription elongation regulatory factor DSIF (DRB

sensitivity- inducing factor). DSIF binds to Pol II and , in concert with NELF

(negative elongation factor), represses elongation at promoter-proximal positions

in the transcription unit. Escape from the repressive effect of DSIF/NELF requires

the action of P-TEFb (positive transcription elongation factor b), a ORB-sensitive

protein kinase that phosphorylates both the Pol II CTD and the Spt5 subunit of

DSIF. P-TEFb is composed of two subunits , Cdk9 and cyclin T1 , and it binds to

the HIV Tat protein via the cyclin T1 subunit (181 , 252). In previous studies we

have analyzed the interactions of these regulatory factors with Pol II at discrete

functional stages of transcription from the HIV-1 L TR promoter in vitro. We found

that P-TEFb is a component of the Pol II preinitiation complex (PIC) and that it

travels with the transcription elongation complex (TEC) as in moves along the

HIV transcription unit (179). In contrast , DSIF and NELF are not present in the

PIC , but associate with the TEC at promoter proximal positions and then travel

with the TECs down the template (178).

How does capping fit into the scheme of HIV transcription regulation? The

mammalian capping apparatus consists of two components: a bifunctional

tri p hosp h atase-g uanylyltra nsferase (Mce1) and separate cap



methyltransferase (Hcm1) (94 , 177 , 195 269). Our finding that Tat enhances the

effciency of capping of isolated HIV mRNA by Mce1 in vitro led to the suggestion

that Spt5- induced arrest at promoter-proximal sites in the HIV transcription unit

might ensure a temporal window for recruitment of the capping enzymes and

stimulate modification of the 5' end of the HIV pre-mRNA (27).

At present , little is known about the dynamics of the interactions of

mammalian capping and methylating enzymes with mammalian Pol II during the

transcription cycle or about the efficiency and timing of the cap guanylylation and

methylation steps. To rectify these gaps in our knowledge , we monitored the

binding of Mce1 and Hcm1 to Pol II complexes arrested at discrete steps of the

initiation and elongation reactions on the HIV transcription unit. We report that

the capping enzymes are associated with TECs , but not PICs. Whereas Mce1

and Hcm1 are bound stably to TECs containing nascent .RNAs as short as 14

nucleotides , the capping and methylation reactions do not occur until the nascent

pre-mRNA has attained a chain length of 19-22 nucleotides , at which point an

-4-7 nucleotide 5' segment is extruded from Pol II. Mce1 and Hcm1 binding to

template-engaged Pol II does not require RNA synthesis , but does require CTD

phosphorylation. Both Mce1 and Hcm1 travel with Poll! during elongation down

the template and remain poised to quantitatively cap the nascent pre-mRNA

when elongation is halted. In contrast , capping of nascent HIV mRNA is much

less effcient during unimpeded Pol II elongation. Under such conditions

cotranscriptional capping of HIV mRNA is strongly stimulated by Tat , and this



stimulation of capping requires the C-terminal segment of Tat that mediates its

direct binding to Mce1. Our findings implicate cap formation as a component of a

transcription elongation checkpoint critical to HIV gene expression.



MATERIALS AND METHODS

Recombinant capping enzymes and Tat. The bifunctional mammalian

triphosphatase-guanylyltransferase Mce1 and the cap guanine N7-

methyltransferase Hcm1 were produced in E. coli as N-terminal His-tagged

fusions and purified by Ni-agarose affnity chromatography as described

previously (94 , 195). A new version of Hcm1 with an N-terminal hemagglutinin

(HA) tag and a His tag was produced and purified by the same procedure. HIV-

Tat was produced in E. coli as a glutathione S-transferase fusion and purified by

glutathione-Sepharose affinity chromatography (187).

DNA templates. The DNA templates used for preparing transcription

ternary complexes were generated by PCR amplification using the HIV- 1 L TR

promoter-containing plasmid p10SL T as a template (116) and primer pairs

corresponding to p1 OSL T plasmid sequences 5' ACCAGTTGAACCAGAGC and

CACACTGACTAAGGGT. The first primer contained a biotin at the 5' end

which was used to immobilize the DNA on beads. Gel-purified duplex PCR

products (0.25 Ilg of DNA) were adsorbed to 25 III of streptavidin-coated

magnetic beads (Dynal Inc.) by overnight incubation at 22 C in 10 mM Tris-HCI

(pH 8.0), 1 mM EDTA, and 1 M NaCI. The beads were washed with the same

buffer to remove any free DNA and then stored in 10 mM Tris-HCI , pH 8. , and 

mM EDT A.

Stepwise walking of Pol II. Stepwise transcriptions were performed as

described previously (178 , 179). Preinitiation complexes (PICs) were assembled



by incubating the immobilized DNA template (200 ng) in a volume of 25 III

containing 12 III of HeLa cell nuclear extract , 6 mM MgCI2, and 0. 5 Ilg of poly(dA-

dT) for 15 min at 30 C. PolliO complexes at the PIC stage were formed by

including 200 11M dATP during the incubation. To remove unbound materials , the

bead-bound PICs were pelleted and then washed with 25 III of buffer A (20 mM

HEPES , pH 7. , 100 mM KCI , 20% (v/v) glycerol , 0.2 mM EDTA, 0.5 mM

dithiothreitol , 0.5 mM phenylmethyl-sulfonyl fluoride , 6 mM MgCb). PIGs were

walked to template position +14U by incubation with 12. 5 mM phosphocreatine

20 11M CTP , GTP , UTP , and dATP for 5 min at room temperature. TECs stalled

at +14U were washed with 25 III of buffer B (buffer A containing 0. 05% Nonidet

40 and 0.015% Sarkosyl) and twice with 25 III of buffer C (buffer A containing

05% Nonidet P-40). The TECs were walked stepwise along the DNA template

by serial incubations with different combinations of NTPs (20 11M each). For all

experiments that required additional purified proteins (or cellular factors supplied

by nuclear extract), the TECs were incubated with the purified proteins (or

nuclear extract) at 30 C for 10 min and then washed three times with buffer C

before the next manipulation. For chase experiments , the stalled TECs were

incubated with 211M ATP , CTP , GTP , and UTP for 10 min at 30

Western blotting. For the isolation of ternary complexes on immobilized

DNA template , the PICs and TECs stalled at different steps were released by

restriction enzyme digestion at 30 C. The supernatant phase containing released

ternary complexes was resolved by 8% SDS-PAGE , and the gel contents were

-_._ -- ...



transferred to a polyvinylidene difluoride membrane (Bio-Rad), which was then

immunoblotted with antibodies raised against either the largest subunit of Pol II

or Mce1 or Hcm1. Immunoreactive polypeptides were visualized by

chemiluminescence using either an ECL kit from Amersham Pharmacia Biotech

or a BM chemiluminescence Blotting Kit from Roche Molecular Biochemicals. Pol

II antibodies were a gift of Dr. Michael Dahmus. Rabbit antibodies were raised

against the C-terminal domain of Mce1. Anti-GFP antibodies were purchased

from Clontech.

Capping of nascent RNAs in stalled transcription elongation

complexes. TECs stalled at different positions were formed by stepwise

transcription , and nascent RNAs were labeled internally by including (-32P)CTP

in the reaction mixture. TECs were incubated with 20 pmol of Mce1 at 30 C for

10 min and washed three times with 200 f.l of transcription buffer C (as described

in "Stepwise Walking of Pol II") to remove the unbound Mce1. Mce1-treated

TECs were incubated in capping reaction mixtures (20 f.l) containing 50 mM Tris-

HCI , pH 8. 5 mM DTT, 50 f.M GTP , and 2. 5 mM MgCI2 for 10 min at 30 C. The

reaction was quenched by adding 200 f.l of stop solution (0. 3 M Tris-HCI , pH 7.

3 M sodium acetate , 0.5% SDS , 2 mM EDTA). The mixtures were extracted

with phenol/chloroform/isoamyl alcohol (25:24:1) and then with chloroform. RNAs

were recovered by ethanol precipitation and then analyzed by electrophoresis

through a 15% polyacrylamide gel containing 7 M urea in Tris-borate , EDTA

buffer. Labeled RNA products were visualized with a phosphorimager.



Cap methylation of nascent RNAs in stalled transcription complexes.

Nascent unlabeled RNAs in TECs stalled at A22 were 5' 32P cap- labeled by

Mce1 in capping reaction mixtures as described above containing 1.25 J.M

p)GTP. The p cap- labeled A22 TECs were then incubated with 20 pmol of

Hcm1 for 10 min at 30 C. After removing the unbound Hcm1 , TECs were walked

to different positions , released from the beads by restriction digestion , and

incubated in a methyltransferase reaction mixture (20 J.1) containing 50 mM Tris-

HCI (pH 8. 0), 5 mM DTT , and 50 J.M AdoMet (Aldrich) for 10 min at 30 C. The

reaction was quenched by adding 200 J.1 of stop solution. RNAs were recovered

by phenol-extraction and ethanol precipitation and dissolved in nuclease S1

buffer (pH 5.5) (GIBCO-BRL). The samples were incubated with 20 U of

nuclease S1 (GIBCO-BRL) for 2 hr at 37 C. The digests were than spotted on

polyethyleneimine-cellulose TLC plates that were developed with 0.2 M

(NH4hS04' Cap dinucleotides were visualized by scanning the TLC plate with a

phosphorimager.

RNA capture assay. TECs containing CMP labeled nascent RNA

were stalled at +14U. The U14 TECs were incubated with 20 pmol of purified

Mce1 for 10 min at 30 C. The unbound proteins were removed by washing three

times with 200 J.1 of transcription buffer C. TECs were chased by the addition of 2

J.M NTPs for 90 s in the presence of 10 pmol of wild-type or mutant Tat proteins.

RNAs were recovered by phenol extraction and ethanol precipitation , then

treated with 50 pmol of purified Hcm1 for 1 hi" at 3rC. Hcm1 will only methylate



the 5' termini of RNAs that had been guanylylated during the transcription

elongation reaction. m G-capped RNAs were recovered by "Capture" affinity

chromatography, a method based on the selective binding of m GpppRNA to

immobilized cap binding protein e1F4E. The recombinant GST-eIF4E fusion

protein was expressed in bacteria (with an expression plasmid kindly provided by

Dr. J. Pelletier, McGill University), then purified and immobilized on glutathione-

Sepharose beads according to previously described procedures with minor

modifications (54 , 152). RNAs were preheated for 2 min at 95 C in 1 00 I of cap

binding buffer (17 mM Hepes , pH 7. , 85 mM NaCI , 80 M EDTA , 1 mM DTT

17% glycerol , 0.08% NP- , 1% polyvinyl alcohol , 200 g/ml calf liver tRNA) and

then cooled on ice. 6 mM DTT was added , followed by 2 U of RNase inhibitor

(Promega). The RNAs were mixed with immobilized GST-eIF4E in 300 I of cap

binding buffer for 1 hr at 4 C. The beads were washed six times with 600 I of

washing buffer (20 mM Hepes , pH 7. , 0. 1 M NaCI , 0. 1 mM EDTA , 1 mM DTT

20% glycerol , 0. 1 % NP40). The bound RNAs were eluted from the beads by

phenol extraction and recovered by ethanol precipitation and then analyzed by

12% polyacrylamidel7 M urea PAGE. Labeled RNAs were visualized by scanning

the gel with a phosphorimager.

Coimmunoprecipitation of Tat with Mce1. pEGFP-Mce1 expression

plasm ids were constructed by fusing the coding sequences for EGFP and Mce1

according to protocols provided by the pEGFP vendor (Clontech). HA-Tat-tagged

plasmids were kindly provided by Dr. Katherine Jones. In these plasmids



expression of the EGFP-Mce1 and HA-Tat proteins is driven by a CMV promoter.

The plasmids were cotransfected into HL3T1 cells with Lipofectamine (GIBCO-

BRL). After 48 hr, the cells were lysed with RIPA buffer (20 mM Tris-HCI , pH 8.

5% Nonidet P- , 1% Triton X-100 , and 150 mM KCI , 5 mM DTT). Ceillysates

(120 g of protein) were immunoprecipitated with anti-GFP or anti-Mce1

antibodies which had been adsorbed to protein G-Sepharose beads (Amersham

Pharmacia Biotech) in RIPA buffer during an overnight incubation at 4 C. The

beads were washed three times with 300 I of RIPA buffer containing 0. 015%

Sarkosyl and 1 M KCI and once with 300 I of RIPA buffer. The bead-bound

proteins were eluted with SDS , resolved by 8% SDS-PAGE , and probed by

Western blotting with anti-HA antibodies.



RESULTS

Capping enzyme is not a component of PICs formed at the HIV-1 L 

Promoter but is present in TECs

Pol II PICs were assembled on immobilized DNA templates containing the

HIV- 1 L TR promoter and then probed by Western blotting for the presence of Pol

II and Mce1. PICs were prepared by incubating the bead-bound DNA with NTP-

depleted HeLa cell nuclear extract and then released from the beads by cleaving

the template upstream of the promoter with the restriction enzyme 

BspE1 (Figure

1 B). Whereas Pol II was present in PICs , Mce1 was not , although Mce1 was

readily detected in the nuclear extract (Figure 1 C , lanes 1 and 2). Moreover

supplementation of the PIGs with purified recombinant Mce1 resulted in only

trace levels of binding of the capping enzyme to the PICs (Figure 
1 C , lane 3).

To determine if and when Mce1 associates stably with the Pol 

transcription complex , we converted the PICs into elongation complexes arrested

at discrete promoter-proximal sites by provision of only three NTPs for initiation

and elongation. The 5' sequence of the HIV- 1 pre-mRNA is shown in Figure 1A.

Elongation complexes starved for ATP were stalled at template position 
+14U.

After stripping the bead-bound TECs with sarkosyl to prevent further initiation

events , the U14 TECs were walked to +30C. The arrested TECs were

supplemented with recombinant Mce1 and then washed with transcription buffer

to remove unbound proteins. The TECs were released from the beads by

cleavage with Pvull and then probed by Western blotting for Pol II and Mce1.
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Capping enzyme was detected in the U14 and C30 TECs after incubation with

purified Mce1 ( Figure 1 C , lanes 5 and 7). There was no Mce1 present in TECs

that had not been supplemented ( Figure 1C , lanes 4 and 6). The PICs and TECs

contained similar amounts of the Pol II large subunit.

Nascent HIV- 1 Ttranscripts as short as 22 nucleotides are capped 
in vitro

by Mce1

To determine when nascent HIV transcripts acquire their caps , we

arrested TECs at templates positions +14U , +22A , +30C , and +46U , washed

them to remove nucleotides , supplemented them with Mce1 , and washed again

to remove unbound Mce1. These TECs were then incubated with GTP , the

substrate for the guanylyltransferase component of Mce1. The addition of an

unlabeled cap guanylate to the 5' end of an internally labeled RNA molecule

results in a characteristic slowing of the electrophoretic mobility of the RNA

equivalent to about a 1 nucleotide increase in apparent chain length (50). Here

we studied the capping reaction of Mce1 using stalled transcription complexes

containing RNA transcripts labeled internally with 32P-CMP during a stepwise

transcription-walk down the template (Figure 2).

We found that A22 , C30 , and U46 TECs catalyzed near-quantitative

addition of a cap guanylate to their nascent RNAs in a reaction that depended on

prior incubation with Mce1 and the provision of GTP (Figure 2B). However, the

nascent 14-mer RNA in the U14 TECs was refractory to guanylylation (Figure



2B), even though Mce1 is present in the U14 transcription complexes (Figure

1C). These data show that capping of HIV mRNA within paused elongation

complexes can occur during a defined interval between the synthesis of 14-mer

and 22-mer nascent transcripts. We infer that the 5' end of the U14 transcript is

inaccessible to the active site(s) of Mce1 because it is sequestered within the

nascent RNA binding pocket of Poll!. Thus , the window for capping on paused

TECs reflects a steric constraint on the minimum substrate size.

HIV-1 mRNA transcripts can be capped by the mammalian capping enzyme

traveling with the early transcription elongation complexes

To probe the window for cap formation , we asked whether Mce1 that was

recruited to stalled U 14 TECs is available to cap the nascent RNA at a later

stage during a stepwise transcription walk (Figure 2C). The size heterogeneity of

the RNAs contained in U14 TECs , being either 12 , 13 , or 14 nucleotides (Figure

, lanes 1 and 2), reflects the capacity of Pol II to initiate at any of the three G

residues at +1 to +3 of the transcription unit (the degree of heterogeneity varies

from one experiment to another). We incubated stalled U14 TECs with or without

purified Mce1 , removed the unbound Mce1 by washing, and allowed Pol II to

elongate to +30C. Whereas the original RNAs in the U14 complex were not

capped in response to Mce1 , they were capped nearly quantitatively by the time

Pol II had extended the chain to 30 nucleotides. Thus , the capping enzyme binds

to the TEC before the 5' end is extruded from the polymerase and remains
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poised during subsequent elongation steps to cap the nascent chain after it is

extruded from the polymerase.

Capping enzyme association with Pol II elongation complexes does not

require RNA

Our finding that Mce1 can load onto the U14 TECs , at a stage when the

nascent mRNA is not exposed to cap addition , suggested that the recruitment of

Mce1 to the Pol II elongation complexes may be RNA independent. To address

this question directly, we first treated A22 TECs with RNase A to remove the

segment of the nascent RNA that had been extruded from Pol II and then

examined the binding of Mce1 to the digested A22 TECs (designated A22' in

Figure 3). RNase A converted the 32P-labeled A22 transcript into a discrete

product of -15 nucleotides (Figure 3B). After washing to remove RNase A , the

A22' TECs remained competent to elongate the digested RNA during a

subsequent walk to +26G (Figure 3B). This result verifies that the RNase

digestion removed only the 5' end of the A22 RNA and left the 3' OH end of the

RNA intact at the polymerase active site. Neither the digested 15-mer RNA in the

A22' TEC nor the 19-mer RNA in the G26' TEC could be capped in vitro by

Mce1 , because the 5' OH generated by RNase A cleavage cannot serve as a

substrate for RNA guanylyltransferase (Figure 3B). Nonetheless , Mce1 bound to

the RNase-digested A22' TEC as well as it did to the intact A22 TEC , as gauged

by Western blotting of the TECs released from the beads by Pvull digestion of

the template (Figure 3C). Based on these results , we conclude that Mce1



association with Pol II elongation complexes does not require a direct interaction

between Mce1 and nascent RNA.

CTD phosphorylation Is required for capping enzyme association with Poll!

at the HIV-1 L TR promoter

Mce1 is likely to interact with the Pol II elongation complex through direct

protein-protein contacts. Mce1 binds in vitro to the phosphorylated Pol II CTD

but not to the unphosphorylated CTD; the CTD interaction is mediated by the C-

terminal guanylyltransferase domain of Mce1. Binding of Mce1 to a CTD peptide

phosphorylated at position Ser5 stimulates Mce1 guanylyltransferase activity

(93). To determine whether CTD phosphorylation is required for recruitment of

Mce1 to the HIV L TR promoter, we prepared PICs containing either the

hypophosphorylated IIA or the phosphorylated 110 forms of Pol II by incubating

the PICs with or without dATP (which serves as a substrate for the TFIIH-

associated CTD kinase , but not for RNA synthesis by Pol II) (Figure 3D). The

PICs were then incubated with purified Mce1 and washed to remove unbound

protein. The PICs were released from the beads by digestion with BspEI , and

their associated polypeptides were resolved by electrophoresis through a 5%

polyacrylamide gel containing SDS. Western blotting with Pol II antibody showed

that the PICs not exposed to dA TP contained only the IIA form , whereas

inclusion of dATP elicited its conversion to the 110 form (Figure 3E). Mce1 was

associated exclusively with PICs that had undergone CTD phosphorylation in the

presence of dATP (Figure 3E). We conclude that Pol II CTD phosphorylation is



necessary for recruitment of mammalian capping enzyme to the transcription

machinery at the HIV L TR promoter.

Mce1 release from the Pol II complex during transcription elongation

requires a factor present in nuclear extract

To determine the fate of Mce1 after cap guanylylation , TECs stalled at

+22A with capped nascent transcripts were prepared and then incubated with or

without nuclear extract (Figure 4A). After washing to remove unbound proteins

the NE-treated and control TECs were chased for 10 min to the end of the

template. TECs were released by restriction enzyme digestion , and the

associated proteins were detected by immunoblotting. RNA transcript analysis

showed that the stalled A22 TECs with capped nascent RNAs had elongated to

produce an -168 nucleotide transcript (Figure 4B). Most of the Mce1 that had

been associated with the arrested A22 TECs remained bound to the transcription

complexes after elongation to the 3' end of the template (Figure 4C). However

the transient exposure of the A22 TECs to nuclear extract resulted in the release

of the majority of the Mce1 from the transcription complex (Figure 4C). We

conclude that Mce1 can dissociate from Pol II during later stages of transcription

elongation and that nuclear extract contains a factor (or factors) that stimulate

this dissociation step.

Cap methyltransferase Hcm1 associates stably with the transcription

complex and methylates the caps of nascent mRNAs



The enzyme RNA (guanine-N7) methyltransferase (referred to hereafter

as cap methyltransferase) catalyzes the transfer of a methyl group from AdoMet

to the GpppRNA terminus to produce m7GpppRNA and AdoHcy. To determine

when the cap structure of nascent HIV-1 transcripts becomes methylated , we

incubated stalled A22 TECs with purified Mce1 and (a- P)GTP so that the

nascent A22 RNA will be 5' cap labeled with 32P-GMP. After removing the

unbound protein and free (a- P)GTP by washing with transcription buffer, the

cap- labeled A22 TECs were incubated with purified human cap

methyltransferase (Hcm1) for short periods of time. After washing away the

unbound Hcm1 , the A22 TECs were walked stepwise down the template by

incubation with different sets of three NTPs. Stalled TECs were released from the

beads by restriction enzyme digestion. At this point , the released transcription

complexes were incubated in the presence of AdoMet , and the labeled RNAs

were recovered by phenol extraction and ethanol precipitation. An electrophoretic

analysis of the labeled RNAs recovered from A22 , U46 , and C61 TECs and

complexes chased to near the 3' end of the template is shown in Figure 5B. To

analyze the cap structures present on the nascent transcripts , the isolated RNAs

were digested to cap dinucleotides with nuclease S1 and then analyzed by

polyethyleneimine-cellulose thin layer chromatography, which resolves the

GpppG cap from the methylated cap m7GpppG (Figure 5C). The TLC analysis

shows that the caps found in A22 complexes that had not been exposed to

exogenous Hcm1 were exclusively unmethylated , but that transient exposure to



J;.

Hcm1 resulted in stable binding of the cap methyltransferase to the A22 TEC

such that 25% of the caps were methylated during a subsequent incubation of

the A22 TECs with AdoMet (Figures 5C and 5D). The effciency of cap

methylation increased steadily as the elongation complex progressed down the

template , implying that (i) access of Hcm1 to the 5' GpppRNA end may increase

as more RNA is extruded from the polymerase or (ii) other protein factors that

impede such access may dissociate from the 5' end as the polymerase

elongates. By the time Pol II had approached the 3' margin of the 168 nucleotide

transcription unit, nearly 90% of the caps could be methylated by Hcm1

associated with the TEC (Figures 5C and 5D). Cap methylation by Hcm1

depended on the inclusion of AdoMet in the reaction mixture (data not shown).

The binding of Hcm1 to template-engaged Pol II was gauged by

incubating polliA PICs , polliO PICs , and TECs with HA-tagged Hcm1 , followed

by washing to remove unbound protein , release of the Pol II complexes by

restriction endonuclease digestion , and probing their protein content by Western

blotting with antibodies against Pol 1\ and the HA-tag of HA-Hcm1 (Figure 5E).

We found that the cap methyltransferase is excluded from the PIC containing Pol

IIA , but present at similar levels (relative to Pol II) in PICs containing polliO and

in TECs paused at promoter proximal (U14 , U22 , U46) and promoter distal

(+168) positions on the template. That the methyltransferase remains physically

associated with the elongating polymerase complex confirms the functional

analysis of cap methylation by TECs paused at proximal and distal template
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sites. An instructive finding was that transient exposure of the U46 TECs to

nuclear extract after they had been incubated with Hcm1 did not diminish the

amount of Hcm1 present in TECs that were subsequently chased to the end of

the template (Figure 5E , lane 6). Thus , Hcm1 is not susceptible to dissociation by

the factor(s) in the nuclear extract that triggers release of Mce1 during elongation

(compare Figures 4C and 5E ).

Tat stimulates the capping of nascent HIV-1 RNA

Although our experiments show that short nascent Pol II transcripts (on

the order of 22 nucleotides) can be capped and methylated , such results reflect

the action of the mammalian capping enzymes on arrested polymerase

elongation complexes , where there is no kinetic competition between ongoing

elongation and capping. The unimpeded rate of elongation by RNA polymerases

(-20 nucleotides/s) is faster than the rate of the overall RNA capping reaction

(94). Thus , it is not clear when (or how efficiently) capping would occur during

reactions in which elongation is ongoing. To address this issue for transcription

directed by the HIV-1 L TR promoter , we analyzed the abundance of capped

RNAs via "Capture" affinity chromatography with immobilized elF4E (Figure 6A)

(54).

TECs containing internally CMP- labeled nascent RNAs were stalled at

position +14U and then incubated with purified Mce1. As shown above , Mce1

can associate with TECs at this stage , but cannot cap the nascent transcript. The



U14 TECs were then chased by the addition of 2 M concentration of all four

NTPs for 90 s. The labeled nascent RNAs were isolated and then reacted with

Hcm1 and AdoMet in order to methylate any RNAs that had been guanylylated

by Mce1 during the chase phase. The m7G-capped nascent transcripts were

isolated by elF4E affinity chromatography, and the bound material (" ) was

analyzed by denaturing PAGE in parallel with a sample of the unfractionated

input nascent RNA population (" ) and the supernatant phase containing

uncapped RNA (li ). The specificity and efficiency of this assay is demonstrated

in Figure 6B (lanes 2-6), whereby CMP labeled RNAs in A22 TECs that were

guanylylated by Mce1 (compare lanes 2 and 3 and note the mobility shift

resulting from cap guanylylation) and split into two portions , one of which was

treated with Hcm1 and AdoMet. Whereas -:5% of the unmethylated GpppRNA

was retained on the elF4E affinity column , the input Hcm1-treated RNA was

retained nearly quantitatively (95% bound) (lane 4 versus lane 6).

In contrast to the high effciency of cap guanylylation observed for arrested

TECs (nearly 100%), we found that when U14 TECs were chased for 90 s

(yielding a heterogeneous population of transcripts from -19 to 70 nucleotides 

length), only 25% of the nascent chains had 5' GpppN caps that could be

converted into m7G caps by Hcm1 and thus bind to elF4E (Figures 6B and 6C).

This result raised an important question of whether additional factors might be

required to more tightly couple capping of HIV mRNAs to early transcription

elongation.



Previously, we showed that the HIV Tat protein , which activates gene

expression from the H IV-1 L TR at the early elongation phase of the transcription

1 -

cycle , interacts directly with Mce1 in vitro and stimulates the activity of both the

RNA triphosphatase and RNA guanylyltransferase components (27). We also

found that Tat stimulated the capping of isolated HIV TAR mRNA , which is

inefficiently guanylylated by Mce1. To analyze the effect of Tat on mRNA capping

during HIV-1 transcription elongation , we loaded Mce1 on stalled U14 TECs and

included recombinant Tat during the chase phase. More than 80% of the nascent

RNAs chased in the presence of Tat were bound to the elF4E beads after

reaction with Hcm1 (Figures 6B , lane 11 , and 6C). The size distribution of the

capped RNA population was indistinguishable from that of the input RNA. Thus

Tat significantly increased the effciency of cotranscriptional capping.

Tat is composed of two major functional domains: an N-terminal

transactivation domain (amino acids 1-48) that interacts with the cyclin T1

subunit of P- TEFb , and a C-terminal domain (amino acids 49-86) that mediates

RNA binding and nuclear localization. Two truncated versions of Tat- Tat2/36

and Tat48-which are deleted for the transactivation domain and RNA binding

domain , respectively, were tested for their effects on cotranscriptional cap

formation. Tat48 did not significantly enhance cap guanylylation (29% of nascent

RNAs "captured") compared to the basal level of 25% in the absence of Tat.

However , Tat2/36 did stimulate capping to an extent of 52% (Figures 6B and

6C). We showed previously that Mce1 binds in vitro to either wild-type Tat or

I ...



Tat2/36 (but not to Tat48) and that the interactions with Tat or Tat2/36 stimulate

the Mce1 guanylyltransferase activity (27). Thus , the ability of Tat to stimulate

capping of nascent RNA during transcription elongation correlates with its

capacity to bind and activate the isolated mammalian capping enzyme.

Interaction of Tat and mammalian capping enzyme 
in vivo

Direct association of Tat and Mce1 has been demonstrated by protein-

affinity chromatography in vitro (27). To analyze the interaction of Tat and 
Mce1

in vivo , we contransfected human HL3T1 cells with plasm ids expressing GFP-

Mce1 and HA-Tat fusion proteins. Immune precipitates of cell Iysates were

prepared using anti-GFP antibodies and then probed by Western blotting as

shown in Figure 7. IP with anti-GFP antibody coprecipitated HA-Tat from cells

that had been transfected to produce GFP fused to either full- length Mce1 or to

the guanylyltransferase domain Mce1 (211-597), but not from cells producing

GFP alone. Similar results were obtained when the IP step was performed using

anti-Mce1 antibody (data not shown). Control immunoblots of the unfractionated

Iysates confirmed that each of the expected proteins was produced in the

transfected cells (Figure 7). We conclude that Tat can interact with mammalian

capping enzyme in vivo in mammalian cells.
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DISCUSSION

Freeze-frame analysis of cap formation and capping enzyme recruitment

during transcription by human Pol"

Here we investigated how capping and methylation of HIV pre-mRNAs is

coupled to Pol II elongation under both static and dynamic conditions. The static

or "freeze-frame" approach entails arresting RNA polymerase stepwise at

discrete template positions and then querying whether nascent chains within the

arrested TECs can be modified when purified capping enzymes are added (81).

Because the 5' end of the substrate RNA is a "sitting target" within the arrested

TECs , the freeze-frame analysis focuses on the steric constraints on access of

the 5' RNA end to the active site(s) of the various cap-forming enzymes. We

found that cotranscriptional cap guanylylation of HIV pre-mRNA occurred with

virtually 100% efficiency on nascent RNAs 22 nucleotides long, whereas RNAs

14 nucleotides long could not be capped , implying that the 5' end of the growing

RNA is accessible to the active site of Mce1 only after a critical chain length is

extruded from Pol II. RNase footprinting showed that Pol II protects a 

nucleotide RNA segment extending back from the 3' growing point of the chain.

Our findings about the timing of cap formation under static conditions agree with

earlier studies showing that: (i) 6- to 17 -mer nascent RNAs synthesized in vitro

by Pol II from the adenovirus major late promoter were uncapped (41) and (ii)

nascent RNA within TECs stalled in vivo at promoter-proximal positions on the



101

Drosophila heat shock genes were capped only after attaining a minimal chain

length of 20 nucleotides (184). The efficiency of capping of Hsp70 nascent

transcripts increased within a narrow window from 50% for 20-mer RNAs to

nearly 100% for 30-mer RNAs.

To our knowledge , there have been no prior studies comparing the timing of the

cap guanylylation and guanine-N7 methylation steps during transcription

elongation. The analysis of nascent heat shock transcripts within arrested TECs

relied on removal of the cap with tobacco acid pyrophosphatase and did not

discriminate GpppRNA and m7GpppRNA caps (184). Whereas it is obvious that

guanylylation is a prerequisite for methylation , it was not clear if the two reactions

occur in rapid succession during elongation. Here we demonstrated a distinct lag

between guanylylation and methylation. Mce1 readily guanylylated the 22-

nucleotide nascent HIV RNA , but only 25% of the caps were methylated by

Hcm 1. The extent of cap methylation increased to 65% as the TEC was walked

stepwise to +46 and to 85% by the time Pol II reached -+168. Conceivably,

Hcm1 may require the extrusion of a longer 5' segment of RNA from the

polymerase than does Mce1 , or the Hcm1 may be impeded by (or compete with)

another factor that interacts with the 5' cap guanylate (Mce1 itself may be such a

competing factor).

Mce1 and Hcm1 bind stably to the TEC prior to the extrusion of the 5' end

of the nascent RNA out of the RNA polymerase. Indeed , Mce1 binding to the

TEC is unaffected by RNase digestion of any 5' RNA segment that is extruded.



102

Mce1 and Hcm1 can be recruited to the Pol II complex even prior to the initiation

of chain elongation , provided that CTD phosphorylation has already occurred.

Neither Mce1 nor Hcm1 binds to PICs containing Pol liA. Thus CTD

phosphorylation is required (and perhaps sufficient) for recruitment of both

components of the mammalian capping apparatus.

A key finding is that both Mce1 and Hcm1 remain bound to the Pol II TEC

even after the cap guanylylation and N7 methylation reactions have been

executed. Transient exposure of TECs to nuclear extract stimulated the

dissociation of Mce1 from the TEC during a subsequent chase down the

template , but Hcm1 was refractory to dissociation by nuclear extract and traveled

with the TEC to the end of the template (near +168). We infer the existence of

factor(s) in the extract that trigger the release and recycling of Mce1 after it

modifies the 5' RNA end. Our findings concerning the dynamic association of

mammalian capping enzymes with the TEC in a reconstituted in vitro

elongation/processing system echo recent in vivo findings in S. cere visiae , where

physical association of the triphosphatase and guanylyltransferase enzymes with

actively transcribed genes is maximal at the 5' end of the transcription unit and

decays incrementally toward the 3' end of the gene whereas the cap

methyltransferase remains on the template DNA across the full length of the

gene (128 , 199). Our in vitro experiments show that dissociation of the

guanylyltransferase is an active process that depends on a factor extrinsic to the

TEC. Candidates for such a role include: (i) phosphatases and kinases that
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remodel the CTD phosphorylation array and thereby affect CTD interaction with

Mce1 (29 , 88 , 93) or (ii) factors that interact with Mce1 and regulate its affinity for

the CTD. Although it remains unclear why the cap methyltransferase would travel

with the yeast and human Pol II TECs after the cap is methylated, it is worth

considering that this enzyme might play additional roles in transcription or mRNA

maturation.

Cap formation during continuous Poll! elongation

The freeze-frame view of capping enlightens us with respect to the earliest

step at which capping enzymes can associate with template-engaged Pol II and

the window in elongation during which the 5' modifications can first be executed

by mammalian capping enzymes. But this analysis does not address whether

capping actually occurs at these early stages when Pol II elongation is ongoing

or whether cotranscriptional capping is subject to regulation by trans-acting

factors. The present study provides answers to both of these key questions.

The timing of cap guanylylation under dynamic transcription conditions is

determined by a kinetic balance between the rate of Mce1 binding to the TEC

the rates of the serial triphosphatase and guanylyltransferase reactions
, the rate

of polymerase movement , and the rate of premature dissociation of Mce1 from

the TEC. Our experimental strategy entailed preloading Mce1 on TECs prior to

extrusion of the 5' end and then gauging the overall efficiency of 
guanylylation

during a brief chase in the presence of all four NTPs. Because we showed that
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Mce1 remains bound and travels with the TEC under these reaction conditions

the experiment focuses exclusively on the kinetic balance between cap formation

and polymerase movement. The instructive finding was that capping of nascent

HIV transcripts under dynamic conditions was much less efficient (25% overall)

than capping in the context of an arrested Pol II TEC (nearly 100%).

The inherently low efficiency of cotranscriptional capping of nascent H 

mRNA under dynamic conditions provides a rationale for the elongation

checkpoint that regulates HIV gene expression. We hypothesize that

DSIF/NELF-induced arrest of Pol II at promoter-proximal sites on the HIV

transcription unit expands the kinetic window during which Mce1 can bind to the

TEC and catalyze cap guanylylation (in essence providing a "sitting target" for

the capping enzyme so that short nascent chains can be more efficiently

capped). The cap promotes downstream mRNA processing steps , especially the

splicing of the 5' proximal intron , and it protects mRNA from exonucleolytic

decay. If Pol II commits prematurely to traversing the entire transcription unit

without the benefit of a cap, it runs a risk of failing to excise the first intron in a

timely fashion , or perhaps at all , a process that would yield a nonfunctional or

misfunctional transcript. Accelerated 5' to 3' decay of unguanylated nascent

RNAs would also result in a wasteful round of transcription.

Tat stimulates cotranscriptional capping of HIV mRNA
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Our earlier findings that Tat binds directly to Mce1 in vitro and stimulates

its triphosphatase and guanylyltransferase activity raised the prospect that Tat

may regulate cap formation during HIV transcription. Here we showed that

recombinant Tat protein stimulates cotranscriptional cap guanylylation during

ongoing Pol II elongation. Whereas only 25% of the nascent HIV mRNAs were

capped during a chase in the absence of Tat , more than 80% were guanylylated

in the presence of Tat. Thus , our results provide an instance in which the

efficiency of cotranscriptional capping is demonstrated to be regulated by a 
trans-

acting factor.

A highly instructive point about the Tat-mediated stimulation of HIV RNA

guanylylation is that it applies to nascent RNAs ranging from 19 to 70 nucleotides

in length (Figure 6). The majority of the transcripts whose capping is enhanced

by Tat are shorter than the 45 nucleotides of nascent 5' RNA that would be

required to form the minimal TAR secondary structure. Thus , we conclude that

the salutary effect of Tat on cotranscriptional capping precedes , and 

independent of, its interaction with TAR. The C-terminal domain of Tat that

suffices for binding and stimulation of isolated Mce1 and for stimulation of

cotranscriptional capping includes the segment required for Tat binding to TAR.

Thus , it is sensible that Tat stimulation of capping is temporally unlinked from

TAR binding, given the likelihood that the two binding events (to Mce1 or TAR)

are mutually exclusive for a given molecule of Tat protein. A second key point

about the Tat effect on capping is that it occurs on TECs that have already been
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loaded with Mce1 , Le. , the effect is directly on cap formation rather than on the

recruitment of Mce1 to the TECs.

Because Tat binds directly to Mce1 in solution , it is conceivable that Tat

T--. joins the TEC at a stage prior to TAR formation , using Mce1 as a bridge.

Alternatively, Tat may interact with the TEC via a parallel pathway that is

independent of Mce1. By applying the freeze-frame approach to gauge the

association of Tat with Poll! TECs on the HIV transcription unit, we have found

that Tat is not present in PICs , but is present in U14 TECs formed in the absence

of Mce1 (274). Thus , Tat requires neither TAR nor capping enzyme to bind to the

Pol II complex. Nonetheless , it is likely that the functional status of Tat and its

macromolecular interactions are subject to change as Mce1 and TAR are

elaborated as components of the TEC.

A revised view of Tat function in HIV transcription

A dominant paradigm for Tat upregulation of HIV gene expression at the

level of transcription elongation revolves around the ability of the Tat-TAR

complex to bind P- TEFb , stimulate its phosphorylation of the CTD and Spt5 , and

thereby override the elongation arrest elicited by DSIF and NELF. Here we show

that Tat plays a TAR- independent role in stimulating cotranscriptional capping of

nascent HIV mRNAs. This function rationalizes elongation arrest and restart as a

means to ensure a temporal window for efficient cap formation. In this revised

regulatory axis , Tat elicits a stimulation of capping (in concert perhaps with Spt5
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and CTD-P04) and triggers the release from elongation arrest in concert with P-

TEFb.

;",
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Figure 1. Mammalian capping enzyme is not a component of PICs but can

associate with TECs on the HIV- 1 transcription unit. (A) RNA sequence of the

early transcribed region (+1 to +70) in the HIV-1 promoter. TAR RNA secondary

j .

structure and various positions of transcription arrest are shown. (B) PICs were

prepared by incubating an immobilized DNA template containing the HIV- 1 L TR

promoter with HeLa nuclear extract. TECs were formed by stepwise transcription.

PICs and stalled TECs were incubated with purified Mce1; then , unbound

proteins were removed by washing with buffer. To isolate PICs , DNA was

cleaved at the indicated BspE1 restriction site. For isolating TECs , RNA Pol II

complexes were released from the beads by cleavage at the indicated Pvull

restriction site. (C) Protein contents of PICs (lanes 2 and 3) or TECs stalled at

U14 (lanes 4 and 5) and C30 (lanes 6 and 7) were resolved by SDS-PAGE

followed by immunoblottng with antibodies against RNA Pol II and Mce1.

Complexes were isolated without (lanes 2 , 4 , and 6) and with Mce1

supplementation (lanes 3 , 5 and 7). Lane 1 contains 10% of the nuclear extract

used in the PIC assembly reaction.
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Figure 2. HIV-1 mRNA capping during transcription elongation. (A) 32

CMP- Iabeled TECs stalled at different positions on the template were prepared

by stepwise transcription and then incubated with or without Mce1. After

removing the unbound Mce1 by washing with transcription buffer , the TECs were

incubated with or without 50 M GTP in reaction mixtures (20 I) containing 50

mM Tris-HCI , pH 8. , 5 mM DTT , and 2. 5 mM MgCh. (B) PAGE analysis of

radiolabeled RNAs isolated from U14 (lanes 1-4), A22 (lanes 5-8), C30 (lanes

12), or U46 (lanes 13-16) TECs after reaction with Mce1 and GTP as

indicated above the lanes. Capped and uncapped species are indicated by

arrows. Lane M contains radiolabeled 18- , 33- , and 43-mer DNA oligonucleotide

size markers. (C and D) Stalled 32P-CMP- labeled U14 TECs were incubated

with (lane 2) or without Mce1 (lane 1), washed , and then walked to +30C (lanes 3

and 4). Labeled RNAs recovered from the U14 , and C30 TECs were analyzed by

PAGE.
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Figure 3. Mce1 binding to Pol II transcription complexes requires CTD

phosphorylation but does not require nascent RNA. (A) Stalled A22 TECs

were treated with 1 0 g of RNase A for 5 min at 30 C to digest the extruded 5'

end of the RNA (A22' ) and then walked to position +26G (G26'). (8) PAGE

analysis of radiolabeled RNAs isolated from TECs at U14 (lanes 1 and 2), at A22

before (lanes 3 and 4) and after (lanes 7 and 8) RNase A treatment , and after

walking from +22A to +26G without (lanes 5 and 6) or after (lanes 9 and 10)

RNase treatment. The A22 and A22' TECs had been incubated with or without

Mce1 prior to walking to +26G as indicated above the lanes. (C) A22 and A22'

(RNase treated) TECs that were incubated with or without Mce1 were isolated

and probed by Western blottng for Pol II and Mce1. PICs were analyzed in

parallel as controls (lanes 1 and 2). (D) PICs were prepared as described in

Figure 1. Incubation of the PICs with dATP converted Pollia to Pollio by the

action of the TFIIH-associated CTD kinase. (E) PICs that had been incubated

with or without Mce1 were released by BspE1 digestion and the protein contents

were resolved by 5% SDS-PAGE and probed by Western blotting for the Pol 

largest subunit and Mce1.
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Figure 4. Dissociation of Mce1 from the transcription complex during

elongation is stimulated by a factor in nuclear extract. (A) Stalled A22 TECs

were incubated for 10 min in a capping reaction mixture containing 20 pmol of

Mce1 , 50 J.M GTP , 50 mM Tris-HCI , pH 8. , 5 mM DTT , and 2. 5 mM MgCI2.

After washing to remove Mce1 and GTP , the TECs were incubated with or

without nuclear extract (NE; 20 J.1). After removing the unbound proteins by

washing with transcription buffer, all four NTPs were added to chase the TECs to

the +168 position. (B) PAGE analysis of radiolabeled RNAs isolated from the A22

TECs and TECs chased to the end of the template after exposure to Mce1 and

nuclear extract as indicated. (C) The presence of Poll! and Mce1 in the A22 and

chased TECs was probed by Western blotting. PICs were analyzed in parallel as

controls.
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Figure 5. Hcm1 associates with transcription elongation complexes and

methylates the 5' Cap of nascent RNAs. (A) Stalled A22 TECs were 5' P-cap

labeled by Mce1 , washed , and then incubated with Hcm1. After washing to

remove unbound Hcm1 , TECs were walked to distal template positions , released

from the beads , and then incubated in methylation reaction mixtures containing

50 mM Tris-HCI (pH 8. 0), 5 mM DTT , and 50 I-M AdoMet. (B) Radiolabeled

RNAs isolated from the stalled TECs were analyzed by PAGE. (C) The cap

structures of the RNAs isolated from the indicated TECs were analyzed by 

nuclease digestion followed by polyethyleneimine-cellulose TLC (lanes 5-9). The

chromatographic origin (lane 2) and the positions of e PIGTP (lane 1) and 32

labeled cap dinucleotide GpppG (lane 3) or m7GpppG (lane 4) markers prepared

by in vitro guanylylation and methylation of isolated 17 -mer RNA using Mce1 and

Hcm1 are indicated on the left. (D) The extent of cap methylation of the nascent

cap- labeled RNAs by the indicated TECs was quantitated by scanning the TLC

plate with a phosphorimager. (E) PICs (lanes 1 and 2) and stalled U 14 TECs

(lane 3) were incubated with 20 pmol of HA-tagged Hcm1 for 10 min at 30

The U14 TECs were walked to A22 (lane 4) or U46 (lane 5). Nuclear extract was

added to TECs stalled at U46 , washed to remove unbound proteins , and the

TECs were chased to +168 (lane 6). The presence of Pol II and HA-Hcm1 in the

PICs and TECs was probed by Western blotting.
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Figure 6. Tat stimulates cotranscriptional capping by Mce1. (A) Nascent

RNAs were labeled internally with 
CMP during stepwise transcription. TECs

stalled at U14 were incubated with Mce1. After washing to removing unbound

Mce1 , TECs were chased for 90s in the absence or presence of the Tat proteins

(10 pmol) as indicated above the lanes in (B). RNAs isolated from TECs were

incubated with Hcm1 as described in Figure 5. m7G-capped RNAs were isolated

by elF4E affinity chromatography. (B) PAGE analysis of the input RNA (I), the

RNAs bound by the G8T-eIF4E fusion proteins (B), and the uncapped RNAs in

the supernatant phase (8). To evaluate the specificity and efficiency of the

capture assay, G-capped transcripts were isolated from stalled A22 TECs treated

with Mce1 and analyzed by elF4E affinity chromatography (lanes 3 and 4) in

parallel with m7G-capped transcripts isolated from stalled A22 TECs treated with

Mce1 and Hcm1 plus AdoMet (lanes 5 and 6). Other samples are as follows:

transcripts isolated from stalled U14 and A22 TECs (lanes 1 and 2); transcripts

isolated from U14 TECs after a chase with 4 NTPs in the absence (lanes 7-9) or

presence of Tat (lanes 10-12), Tat2/36 (lanes 13-15), or Tat48 (lanes 16-18).

(C) The percent of the input RNA sample that bound to elF4E was quantitated by

scanning the gel in (B) with a phosphorimager.
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Figure 7. Interaction of Tat and Mce1 in vivo. HL3T1 cells were transfected

with plasmids expressing HA-Tat and either GFP or the indicated GFP-Mce1

fusion proteins. Cells were lysed with RIPA buffer at 48 hr posttransfection. (I)

The cell Iysates were immunoprecipitated (IP) with anti-GFP antibody, the

precipitates were analyzed by SDS-PAGE , and the gel contents were probed by

Western blotting (WB) with anti-HA antibody. (II-IV) Unfractionated lysate (60 -

of protein) was resolved by SDS-PAGE and probed by Western blotting using

antibodies against HA (II), Mce1 (III), and GFP (IV). The identities of the

immunoreactive polypeptides are indicated by arrowheads on the right. The

asterisk (*) in (III) indicates the endogenous untagged Mce1 polypeptide.
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CHAPTER IV

HUMAN TRANSCRIPTION ELONGATION FACTOR

J _

(CDK9/CYCLINT1): A NEW THERAPEUTIC TARGET FOR

AIDS AND CANCER?
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ABSTRACT

Regulation of mRNA transcription plays a central role in mammalian cell

growth and development. A large number of genes in human and other

eukaryotic cells , as well as their viruses , are specifically regulated at the level of

transcription elongation. P-TEFb , a positive elongation factor composed of two

subunits , CDK9 and Cyclin T1 (CycT1), allows the transition to productive

elongation , producing longer mRNAs. Replication of human immunodeficiency

virus type 1 (HIV- 1) requires Tat protein , which activates elongation of RNA

polymerase II transcription at the HIV-1 promoter by interacting with human

CycT1 (hCycT1). The trans-activation domain of Tat binds directly to the hCycT1

subunit of P- TEFb and induces loop sequence-specific binding of P- TEFb onto

nascent HIV-1 trans-activation responsive (TAR) RNA. Using RNA interference

to specifically degrade mRNA for hCycT1 or CDK9 , we show here that down

regulation of P- TEFb expression in HeLa cells achieved without causing major

toxic or lethal effects and can control Tat transactivation and HIV replication in

host cells. In addition , we have used high-density oligonucleotide arrays to

determine the effect of P-TEFb knockdown on global gene expression. Of 44 928

human genes analyzed , 25 were down-regulated and known or likely to be

involved in controllng and mediating cell proliferation and differentiation. Our

results provide new insight into P- TEFb function , its potent role in early

embryonic development and strong evidence that P- TEFb is a new target for

developing AIDS and cancer therapies.
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INTRODUCTION

Regulation of mRNA transcription plays a central role in mammalian cell

growth and development. A large number of genes in human and other

eukaryotic cells , as well as their viruses , are specifically regulated at the level of

transcription elongation. Among these genes are several protooncogenes (c-

myc, c-myb, c-fos) , the gene for adenosine deaminase , a collection of stress

response genes , and HIV-1 and HIV-2. During elongation , RNA polymerase II

(RNA pol II) can pause , get arrested , pass through terminator sequences , or

terminate transcription. Recent studies have uncovered that shortly after

initiation , RNA pol II faces a barrier of negative transcription elongation factors

(N-TEF) and enters abortive elongation (181). Positive transcription elongation

factors (P-TEF) lower the barrier of N-TEF and help RNA pol II escape from this

transition phase , which could lead to premature termination of transcription (181).

A positive elongation factor, P-TEFb , which is composed of two subunits (CDK9

and Cyclin T1 (71)) allows the transition to productive elongation , producing

longer mRNA transcripts (181).

One elegant example of transcription elongation control is the mechanism

of HIV-1 gene expression (reviewed in 43 , 108 , 233). HIV-1 encodes a small

regulatory protein , Tat, which is required for efficient transcription of viral genes.

Tat enhances the processivity of RNA pol II elongation complexes that initiate in

the HIV long terminal repeat (L TR) region. Tat activates transcription by binding

....

to a highly structured RNA element, trans-activation responsive (TAR) RNA

/ 1
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which is located at the 5' -end of nascent viral transcripts (183). Tat functions

through TAR RNA to control an early transcription elongation step that is

sensitive to protein kinase inhibitors and requires the carboxyl-terminal domain

(CTD) of the large subunit of RNA pol II (108). Tat interacts with the human

Cyclin T1 (hCycT1) subunit of P-TEFb and recruits the kinase complex to the pol

II elongation complex (43 , 181 233 252).

Recruitment of P-TEFb to TAR RNA has been proposed to be both

necessary and sufficient to activate transcription elongation from the HIV- 1 L TR

promoter (16). Neither hCycT1 nor the P-TEFb complex bind TAR RNA in the

absence of Tat, indicating that binding to RNA is highly co operative for both Tat

and P-TEFb (70 , 252). Tat appears to contact residues in the carboxy-terminal

boundary of hCycT1 ' s cyclin domain that are not critical for binding of hCycT1 to

CDK9 (16 , 68 , 71 , 104 , 255 , 276). Mutagenesis studies have shown that the

hCycT1 sequence containing amino acids 1-272 is sufficient to form complexes

with Tat-TAR , CDK9 , and to activate transcription by Tat (16 , 104 255

276). Human Cyclin T1 residues 250-262 represent the Tat-TAR RNA

recognition motif (TRM)(71). TRM is required but not sufficient to form the

hCycT1-Tat-TAR RNA ternary complex. N-terminal residues in the cyclin box are

also necessary. We have recently identified the sequence and structural

determinants for high affinity hCycT1-Tat-TAR RNA ternary complex formation

(188). Our results show that hCycT1 and Tat binding to TAR RNA is highly

cooperative , with a capacity of 85% , Hill coefficient of 2.7 and a dissociation
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constant (Ko) of 2.45 nM (188). In another study, we showed that residues 252-

260 of hCycT1 interact with one side of the TAR RNA loop and enhance

interaction of Tat residue K50 with the other side of the loop (189). Our results

show that TAR RNA provides a scaffold for two protein partners to bind and

assemble a regulatory switch in HIV replication.

The pol II CTD, Spt5 and Tat are intimately connected to the regulation of HIV

gene expression. Human Spt5 and its binding partner hSpt4 comprise the

transcription elongation regulatory factor DSIF (DRB sensitivity inducing

factor)(242). DSIF binds to pol II and , in concert with NELF (negative elongation

factor), represses elongation at promoter-proximal positions in the transcription

unit (186 , 261). Escape from the repressive effect of DSIF/NELF requires the

action of P-TEFb , a DRB-sensitive protein kinase that phosphorylates both the

pol II CTD and the Spt5 subunit of DSIF (103 123 178 243). In previous studies

we have analyzed the in vitro interactions of the CDK9 and hCycT1 subunits of

TEFb and the HIV Tat protein with pol II at discrete functional stages of

transcription from the HIV- 1 L TR promoter. We found that P-TEFb is a

component of the pol II preinitiation complex (PIC) and that it travels with the

transcription elongation complex (TEC) as it moves along the HIV transcription

unit unit (179). In contrast , DSIF and NELF are not present in the PIC , but

associate with the TEC at promoter proximal positions and then travel with the

TECs down the template (178). Our current model for understanding HIV-1 gene

regulation is depicted in Figure 1A.



127

To understand the cellular functions of P-TEFb and to test the notion that

HIV infectivity can be modulated by targeting host proteins such as P-TEFb

without causing major toxic or lethal effects , we used RNA interference (RNAi) to

specifically degrade mRNA for hCycT1 or CDK9. RNAi is a remarkably efficient

process whereby double-stranded RNA (dsRNA) induces the sequence-specific

degradation of homologous mRNA in animals and plant cells (99 , 206). In

mammalian cells , RNAi can be triggered by 21-nucleotide (nt) duplexes of small

interfering RNA (siRNA)(28 , 55). Our results show that specific down-regulation

of P- TEFb expression in human cells can be achieved without causing major

toxic or lethal effects and can be used to control Tat transactivation and HIV

replication in host cells. To determine the effect of P-TEFb knockdown on global

gene expression , we used high-density oligonucleotide arrays to analyze the

expression of 44 928 human genes. We observed down-regulation of genes that

are known or likely to be involved in controlling and mediating cell proliferation

and differentiation. The data presented in this chapter provide new insight into P-

TEFb function and its role in early embryonic development and offer strong

evidence that P- TEFb is a new target for developing AIDS and cancer therapies.
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MATERIALS AND METHODS

siRNA preparation. 21-nt ds RNAs were chemically synthesized as 2'

bis(acetoxyethoxy)-methyl ether-protected oligos by Dharmacon (Lafayette , CO).

Synthetic oligonucleotides were deprotected , annealed and purified according to

the manufacturer s recommendation. Successful duplex formation was confirmed

by 20% non-denaturing polyacrylamide gel electrophoresis (PAGE). All siRNAs

were stored in DEPC (0. 1 % diethyl pyrocarbonate)-treated water at -

Sequences of siRNA duplexes were designed according to the manufacturer

recommendation and subjected to a BLAST search against the NCBI EST library

to ensure that they targeted only the desired genes. siRNA sequences used in

our experiments were: hCycT1 ds (5' UCCCUUCCUGAUACUAGAAdTdT-

hCycT1 mm (5' UCCCUUCCGUAUACUAGAAdTdT-

CDK9 ds (5' CCAAGCUUCCCCCUAUAAdTdT-

CDK9 mm (5' CCAAGCU CCCCUAUAAdTdT-

CDK7 ds (5' UUGGUCUCCUUGAUGCUUUdTdT-

Tat ds (5' GAACGUAGACAGCGCAGAdTdT-

GFP ds (5' GCAGCACGACUUCUUCAAGdTdT- ); and

RFP ds (5' GUGGGAGCGCGUGAUGAACdTdT-

Underlined residues represent the mismatched sequence to their targets.

Culture and transfection of cells. HeLa cells were maintained at 37 C in

Dulbecco s modified Eagle s medium (DMEM , Invitrogen) supplemented with

10% fetal bovine serum (FBS), 100 unitlml penicillin and 100 J.g/ml streptomycin
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(Invitrogen). Magi ( ultinucleate g,ctivation of galactosidase indicator) cells

harboring the endogenous HIV L TR- gal gene were maintained at 37 C in

DMEM , supplemented with 10% FBS , 0.2 mg/ml Geneticin (G418) and 0. 1 mg/ml

hygromycin B (Roche Molecular Biochemicals). Cells were regularly passaged at

sub-confluence and plated at 70% confluency 16 h before transfection.

Lipofectamine (Invitrogen)-mediated transient cotransfections of reporter

plasm ids and siRNAs were performed in duplicate 6-well plates (Falcon) as

described by the manufacturer for adherent cell lines. A standard transfection

mixture containing 100 nM siRNA and 1 0 llipofectamine in 1 ml serum-reduced

OPTI-MEM (Invitrogen) was added to each well. Cells were incubated in

transfection mixture for 6 h and further cultured in antibiotic-free DMEM. For

Western blot analysis at various time intervals , the transfected cells were washed

twice with phosphate buffered saline (PBS , Invitrogen), flash frozen in liquid

nitrogen , and stored at - C for analysis. For in vivo assays of Tat-mediated

transactivation at 48 h post transfection , Magi cells were subjected to gal

staining directly or flash frozen in liquid nitrogen and stored at - C for 

galactosidase assay as described below.

Western blotting. Cells treated with siRNA were harvested as described

above and lysed in ice-cold reporter lysis buffer (Promega) containing protease

inhibitor (complete, EDTA-free, 1 tablet/10 ml buffer, Roche Molecular

Biochemicals). After clearing the resulting Iysates by centrifugation , protein in

clear Iysates was quantified by Dc protein assay kit (Bio- Rad). Proteins in 60 
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of total cell lysate were resolved by 10% SDS-PAGE , transferred onto a

polyvinylidene difluoride membrane (PVDF , Bio-Rad), and immuno-blotted withJ;:

antibodies against hCycT1 and CDK9 (Santa Cruz). Protein content was

visualized with a BM Chemiluminescence Blotting Kit (Roche Molecular

Biochemicals). The blots were exposed to x-ray film (Kodak MR-1) for various

times (30 s to 5 min).

RT-PCR for amplification of hCycT1 and CDK9 mRNA. Total cellular

mRNA was prepared from HeLa cells with or without hCycT1/CDK9 siRNA

treatment using a Qiagen RNA mini kit , followed by an oligotex mRNA mini kit

(Qiagen). RT-PCR was performed using a SuperScript One-Step RT-PCR kit

with platinum Taq (Invitrogen) and 40 cycles of amplification. Each RT-PCR

reaction included 100 ng total cellular mRNA , gene-specific primer sets for

hCycT1 and CDK9 amplification (0.5 J-M for each primer), 200 J-M dNTP , 1.2 mM

MgS04 and 1 U of RT/platinum Taq mix. Primer sets for hCycT1 produced 2178

bp products , while CDK9 primer sets produced 1116 bp products. RT -PCR

products were resolved in 1 % agarose gel and viewed by ethidium bromide

staining.

Plasm ids harboring the HIV- 1 Tat sequence. pTat-RFP plasmids were

constructed by fusing the DNA sequence of HIV-1 Tat with DNA sequences of

DsRed1- , harboring coral (Oiscosoma spp. derived red fluorescent protein

(RFP), per the manufacturer s recommendation (Clontech). Cytomegalovirus

promoter control drove the expression of Tat-RFP fusion proteins , which were
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easily visualized in living cells by fluorescence microscopy (Zeiss). Expression 

Tat-RFP fusion proteins was also quantified by directly exciting the RPF

fluorophore in clear ceillysates and measuring fluorescence , as described below.

galactosidase staining of cells. Magi cells were transfected with Tat-

containing plasmids in the absence or presence of siRNAs. At 48h post

transfection , cells were washed twice with PBS and fixed 5 min in fixative (1 %

formaldehyde and 0.2% glutaraldehyde in PBS) at room temperature. After

washing twice with PBS , cells were covered with staining solution (PBS

containing 4 mM potassium ferrocyanide , 4mM potassium ferricyanide , 2 mM

MgCb and 0.4 mg/ml X-gal (PromegaD and incubated at 37 C for exactly 50 min.

Plates were washed twice with PBS. Cell counts represent number of gal

positive (blue) cells per 1 OO-power field.

Galactosidase enzyme assay. Magi cells were transfected with Tat-

containing plasmids in the absence or presence of siRNAs. At 48 h post

transfection , cells were harvested and clear cell Iysates were prepared and

quantified as described above. Total cell lysate (120 f.g) in reporter lysis buffer

(150 f.1) was subjected to standard galactosidase assay by adding 150 f.1 2X 

galactosidase assay buffer (Promega) and incubating at 37 C for 30 min. The

reactions were stopped by adding 500 f.1 1 M sodium carbonate and briefly

vortexing. Absorbance was read immediately at 420nm. The same amount of cell

lysate was subjected to fluorescence measurements on a PTI (Photon

Technology International) fluorescence spectrophotometer, with slit widths set at
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4 nm for both excitation and emission wavelengths. All experiments were carried

out at room temperature. Fluorescence of Tat-RFP in the cell lysate was

detected by exciting at 568 nm and recording the emission spectrum from 588

nm to 650 nm; the spectrum peak at 583 nm represents the maximum

fluorescence intensity of Tat-RFP. Tat transactivation was determined by

calculating the ratio of galactosidase activity (absorbance at 420 nm) of the

pTat-RFP transfected cells to that of cells without pTat-RFP plasmid treatment.

The inhibitory effect of siRNA treatment was determined by normalizing Tat-

transactivation activity to the amount of Tat-RFP protein (represented by RFP

fluorescence intensity) in the presence and absence of siRNA.

In vivo fluorescence analysis. pEGFP-C1 reporter plasmids (1 /lg) and

siRNA (100 nM) were cotransfected into HeLa cells by lipofectamine as

described above , except that cells were cultured on 35 mm plates with glass

bottoms (MatTek Corporation , Ashland MA) instead of standard 6-well plates.

Fluorescence in living cells was visualized 50 h post transfection by conventional

fluorescence microscopy (Zeiss). For GFP fluorescence detection , FITC filter

was used.

GeneChipCI experiments. HeLa cells were transfected with

hCycT1/CDK9 ds siRNA. For comparison , cells treated with non related ds siRNA

(RFP ds) were used as control. At 48 h post transcription , total cellular mRNA

was prepared from HeLa cells with or without hCycT1/CDK9 ds siRNA treatment

using a Qiagen RNA mini kit followed by oligotex mRNA mini kit. Double-

-- ---_. -_.
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stranded cDNAs were synthesized from 2 f.g total mRNA using the Superscript

Choice System for cDNA synthesis (Invitrogen) with the T7-(dT)24 primer

following the manufacturer s recommendations. cDNAs were cleaned up by

-r.
phase lock gel (PLG) (Brinkman Instrument)-phenollchloroform extraction and

concentrated by ethanol precipitation. Biotin- labeled cRNA was synthesized from

cDNA by in vitro transcription using the Bioarray HighYield RNA transcript

Labeling Kit (Affmetrix) following vendor s recommendation. In vitro transcription

products were cleaned up using RNeasy spin columns (Qiagen) and fragmented

into 35-200 base units by metal- induced hydrolysis in fragmentation buffer

(40mM Tris-acetate , pH 8. , 100mM KOAc , 30mM MgOAc). Fragmented cRNA

was then subjected to Affymetrix Human Genome U133A and U133B

GeneChipCI sets in hybridization buffer (100mM MES , 1M NaCI , 20mM EDTA

01 % Tween-20). All hybridization , washing, staining and scanning procedures

were performed in the UMASS Medical School Genomics Core Facility following

the manufacturer s protocols. GeneChipCI images were analyzed with Affymetrix

Microarray Suite V5. 0 and Affmetrix Data Mining Tool V3.0. The HG-U133

GeneChipCI includes HG-133A and HG-133B sets of arrays containing 22 283

and 22 645 genes , respectively. Each gene was represented by a probe set

containing 11 probe pairs. 100 human maintenance genes on both arrays serve

as a tool to normalize and scale the data prior to making comparisons. Signal

intensities of all probe sets were scaled to a target value of 150. Results of

Detection Call , Change Call and Signal Log Ratio were obtained by applying the

Ii:.
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default parameters to statistical algorithms for both absolute and comparison

analyses. For comparison analysis , data from cells treated with nonrelated ds

siRNA (RFP ds) were used as baseline array. Each probe pair in a probe set is

. .

considered as having a potential vote in determining whether the measured

transcript is detected (Present) or not detected (Absent). The Detection algorithm

uses probe pair intensities to generate a Detection p-value and assign a Present

Marginal or Absent call. Only probe pairs in the baseline array assigned a

Present call were considered for further analysis. The comparison analysis

compares the difference values of each probe pair in the baseline array to its

matching probe pair on the experiment array. A Change p-value is calculated

indicating an increase , decrease or no change in gene expression. The Signal

Log Ratio (base on 2) estimates the magnitude and direction of change of a

transcript when two arrays are compared. Log ratio larger than 1 indicating more

than 2 fold up-regulation while log ratio smaller than 1 indicating more than 2 fold

down-regulation.

Magi infectivity assay. HeLa-CD4- TR/ gal indicator (Magi) cells (124)

were plated in 24-well plates (7. 5x10 cells per well) and transfected with siRNAs

as previously described (105). siRNA (60 pmol) was transfected into cells using

oligofectamine (2\.1 , Invitrogen) for 3 h in serum-free DMEM (GIBCO). Cells were

rinsed twice and top- layered in 500 \.I of DMEM-10% FBS. Sixteen hours after

transfection , cells were trypsinized and seeded in 96-well microtiter plates (4x10



: . c

135

cells per well), incubated 3 h and infected. HIV-1 virions (normalized to RT

activity in cpm) were added in doubling dilutions to duplicate wells. Thirty-six

hours post infection , cells were harvested to quantify 
galactosidase activity.
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RESULTS AND DISCUSSION

Specific knockdown of P- TEFb expression by siRNA in HeLa cells

We used RNAi to inhibit hCycT1 and CDK9 expression in cultured human

(HeLa) cell lines. The short interfering RNA (siRNA) sequence targeting hCycT1

was from position 351 to 371 relative to the start codon , and the CDK9 siRNA

sequence was from position 258 to 278 relative to the start codon. Using

lipofectamine , we transfected HeLa cells with hCycT1 or CDK9 siRNA duplex

targeting either hCycT1 or CDK9. To analyze RNAi effects , we prepared Iysates

from siRNA duplex-treated cells at various times after transfection. Western blot

experiments were carried out (Figure 1 B) using anti-hCycT1 and anti-CDK9

antibodies. Analysis of immunoblotting experiments reveals that the siRNA

targeting hCycT1 inhibited hCycT1 expression (Figure 1 B , lanes 8- , upper

panel). siRNA targeting CDK9 was similarly specific against CDK9 expression

(Figure 1 B , lanes 15- , lower panel). This RNAi effect depended on the

presence of a 21-nt duplex siRNA harboring a sequence complementary to the

target mRNA, but not on the antisense strand siRNA (data not shown) nor on an

irrelevant control siRNA, which targeted a coral 
(Oiscosoma spp. derived red

fluorescent protein (RFP) (Figure 1B , lanes 1-7). As a specificity control , cells

were also transfected with mutant siRNAs (mismatched siRNA) of hCycT1 or

CDK9 , which have two nucleotide mismatches between the target mRNA and the

antisense strand of siRNA at the putative cleavage site of the mRNA. Mutant
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siRNAs showed no interference activity (Figure 1 B , lanes 22-28 and 29-35),

indicating the specificity of the RNAi effect.

Kinetics of P- TEFb mRNA interference in HeLa cells

RNA interference is a highly efficient process because a few dsRNA

molecules are sufficient to inactivate a continuously transcribed target mRNA for

long periods of time. Experiments have shown in plants and worms (38 , 47 , 78)

that this inactivation can spread throughout the organism and is often heritable to

the next generation. Mutations in genes encoding proteins related to RNA-

dependent RNA polymerase (RdRP) affect RNAi-type processes in Neurospora

Caenorhabdits elegans and plants (38 , 47 , 136 , 160 217), and the involvement

of RdRP in amplifying RNAi has been postulated (136).

Western blot experiments (Figure 1 B) using anti-hCycT1 and anti-CDK9

antibodies also revealed the kinetics of gene suppression and persistence of

. I

RNAi in HeLa cells. Although RNAi can suppress expression of hCycT1 and

CDK9 proteins up to 66 h post transfection , maximum activities were observed at

42-54 h , and inhibition by siRNAs did not persist. After reaching maximal activity

at 42-54 h post transfection , RNA interference started to decrease at 54 h , with

protein amount showing gradual recovery to normal levels between 66 to 90 h (3

to 4 days) post transfection (Figure 2). Similar phenomena were demonstrated in

293T cells , a human T lymphocyte cell line (data not shown). The recovery of

target gene expression indicates that RNAi by exogenous siRNA duplexes does

not last forever in mammalian cells. These findings suggest that the amplification
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system driven by RdRP in plants and nematodes may not exist or has very little

effect on siRNA-mediated gene silencing in mammalian cells.

Another intriguing finding revealed by this Western analysis is that treating

cells with hCycT1 siRNA also down-regulated the level of CDK9 protein. The

kinetics of CDK9 knockdown by hCycT1 siRNA shows a pattern similar to

hCycT1 knockdown (Figure 1 B , lanes 8- , lower panel). No homologous

sequence has been found between the CDK9 mRNA and hCycT1 siRNA used in

this assay, suggesting that CDK9 knockdown by hCycT1 siRNA was not due to

cleavage of CDK9 mRNA by the RNAi pathway. Two possibilities could explain

this unexpected down-regulation. First hCycT1 knockdown may affect the

stability of CDK9 , the kinase component of the P-TEFb complex. Second , since

P- TEFb is a positive transcription factor , it is possible that the P- TEFb complex is

required for transcription of the CDK9 gene. Thus , the down-regulation of

hCycT1 by hCycT1 siRNA would also down-regulate intracellular CDK9 levels.

Specific down-regulation of P- TEFb by siRNA at the mRNA level and

stabilty of CDK9

To determine the specificity of P-TEFb knockdown by siRNA at the mRNA

level and to distinguish the two hypotheses proposed above , we performed RT-

PCR to reveal the effect of siRNA on the level of mRNA involved in P- TEFb

expression. As shown in Figure 1 C , transfection of cells with siRNA duplex

targeting hCycT1 (hCycT1 ds) significantly reduced hCycT1 expression (Figure
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, lanes 1- , upper panel), but had no effect on CDK9 mRNA (Figure 1C , lanes

, lower panel). On the other hand , transfection of cells with siRNA duplex

targeted to CDK9 (CDK9 ds) significantly interfered with the expression of CDK9

but not hCycT1 (Figure 1 C , lanes 8-14). The siRNA duplex started to cause an

RNAi effect as early as 6-18 h post transfection and gradually increased with

time , peaking at 30 h , and decreased between 54-66 h. The time-dependent

effect of siRNA indicates that siRNAs need to be processed or assembled into an

active complex with cellular factors for effective RNA interference. A time lag was

also seen between the degradation of target mRNA (starting at 6 h post siRNA

transfection , as shown by semi-quantitative RT-PCR in Figure 1C) and the half-

life of the existing protein expressed by the target gene , because protein levels

didn t show any down-regulation until 18-30 h post siRNA transfection (Figure

1 B). Combined with Western blot analysis (Figure 1 B), semi-quantitative RT-PCR

(Figure 1C) not only confirms the specific knockdown of P-TEFb by siRNA at the

mRNA level , but also suggests that forming a complex with hCycT1 is a

prerequisite for maintaining the stability of CDK9 proteins in living cells. Thus

hCycT1 siRNA down-regulated hCycT1 levels by the RNAi pathway, while down-

regulating CDK9 levels by promoting its degradation without affecting its gene

expression at the mRNA level.

hCycT1 and CDK9 knockdown can be achieved without causing major toxic

or lethal effects
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To analyze cell viability in vivo under siRNA treatment , pEGFP-

'--

reporter plasmid (harboring enhanced green fluorescent protein (GFP)) and

siRNAs were cotransfected into HeLa cells using lipofectamine. Reporter gene

(GFP) expression , driven by cytomegalovirus (CMV) immediate early promoter

was monitored in living cells (Figure 3A , upper panels). Cellular morphology and

density were monitored by phase contrast microscopy (Figure 3A , lower panels).

GFP expression was not affected by hCycT1 or CDK9 knockdown (Figure 3A

compare panels a-c). Cells with P-TEFb knockdown had normal shape and

growth rate. At 50 h post transfection , cell density reached -90% to 100%

confluency (Figure 3A, compare panels e-

g).

For comparison , we transfected cells with siRNA targeting CDK7 , a well-

characterized kinase required for TFIIH , an essential transcription factor , to

phosphorylate the CTD of RNA pol II at the step of promoter clearance during

initiation of transcription. Kin28 , a protein in Saccharomyces cerevisiae that is

equivalent to CDK7 in mammals , is an essential gene product that

phosphorylates Ser5 of the CTD YSPTSPS repeat region (128 , 191 , 199) and is

required to recruit the mRNA capping enzyme to the transcription machinery (31

152 , 153 , 269). CDK7 is a bifunctional enzyme in larger eukaryotes , promoting

both CDK activation and transcription (86). Reduction of CDK7 levels by RNAi

led to a lower reporter (GFP) expression and an arrest in cellular growth (Figure

, panel d). CDK7 knockdown cells were smaller than control cells and showed

blebbing (Figure 3A , panel h).
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We also analyzed cellular viability under various siRNA treatments. At

various times after transfection , cell viability was assessed by trypan blue

exclusion (see Experimental Procedures). Over a 66 h time course experiment

the rate of cell death in P-TEFb (hCycT1 or CDK9) knockdown cells was

comparable to that in control cells with unrelated siRNA treatment , while CDK7

knockdown cells showed a significant increase in cell death (Figure 3B). These

results indicate that transient P-TEFb knockdown can be achieved without

causing major toxic or lethal effects to human cells , while a much more stringent

threshold for CDK7 is required to maintain cell viability and growth.

hCycT1 and CDK9 RNAi inhibit HIV-1 Tat transactivation in human cells

A dominant paradigm for Tat up-regulation of HIV gene expression at the

level of transcription elongation revolves around the ability of the Tat-TAR RNA

complex to bind P- TEFb and stimulate phosphorylation of the CTD and Spt5

thereby overriding the elongation arrest elicited by DSIF and NELF (178 , 181).

To test whether siRNAs that targeted sequence elements of P-TEFb would

specifically block Tat transactivation , we cotransfected Magi cells with the Tat

expression construct pTat-RFP and hCycT1 or CDK9 ds siRNA or as controls

antisense RNA strands or mutant siRNAs. Magi , a HeLa cell line harboring a

single copy of persistently transfected HIV-1 L TR- galactosidase gene , is

programmed to express the CD4 receptor and the CCR5 coreceptor for HIV-

(124). We confirmed that the HIV- 1 Tat-RFP fusion protein was expressed under
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control of the CMV early promoter by Western blot , using anti-RFP antibody

(data not shown).

Tat-RFP strongly enhanced gene expression , which is under control of the

HIV- 1 L TR promoter in transfected Magi cells. Tat transactivation was

determined by calculating the ratio of gal activity in pTat-RFP transfected cells

to the activity in cells without pTat-RFP treatment. Inhibitory activity was

determined by normalizing Tat-transactivation activity to the amount of Tat-RFP

protein (represented by RFP fluorescence intensity as described in Experimental

Procedures) in the presence and absence of siRNA. Under standard

experimental conditions , Tat-RFP enhanced gene transactivation 20- to 25-fold

(Figure 4C , lane 1). This activation was strongly inhibited by cotransfecting host

Magi cells with the specific ds siRNAs targeting hCycT1 and CDK9 (Figure 4C

lanes 4 and 5), but notwith antisense (as) RNA strands (Figure 4C , lanes 2 and

3), mutant (mm) siRNAs (Figure 4C , lanes 6 and 7), or an unrelated control

siRNA (Figure 4C , lane 8). Specific RNA interference with hCycT1 and CDK9

expression in Magi cells was demonstrated by Western blot analysis (Figure 4A

lanes 3 and 4), and the inhibition of Tat transactivation correlated well with the

knockdown of hCycT1 and CDK9 protein levels by the hCycT1 and CDK9

siRNAs (compare Figure 4C , lanes 4 and 5 to Figure 4A , lanes 3 and 4). As

shown in Figure 4B , syncytia formation and L TR activation (represented by cells

with blue gal staining) were reduced in hCycT1 ds siRNA-treated cells (Figure

, compare panels d to hand b to f). From these results , we conclude that
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siRNA targeting P-TEFb can inhibit Tat-transactivation in human cells without

causing major toxic or lethal effects.

hCycT1 and CDK9 RNAi inhibit HIV-1 infectivity

Can we inhibit HIV replication by targeting the human P-TEFb complex?

To investigate this question , we transfected HeLa-CD4- TR/ gal (Magi) cells

with homologous and mismatched siRNAs directed against hCycT1 or CDK9 and

16 h later infected the Magi cells with NL-GFP , an infectious molecular clone of

HIV-1. HIV-1 Tat-mediated transactivation of the L TR led to gal production that

was quantified 36 h post- infection. As shown in Figure 5 , ds siRNA directed

against hCycT1 or CDK9 inhibited viral infectivity. Doubling dilutions of the

inoculums are consistent with an 8-fold decrease in viral infectivity. Control

experiments using siRNA duplexes containing mismatched sequences (see

Experimental Procedures) and an unrelated ds siRNA against the RFP sequence

showed no antiviral activities. Consistent with publised studies (105), siRNA

targeting GFP-Nef and Tat led to an 8-fold decrease in viral infectivity. No

significant toxicity or cell death was observed during these experiments. These

results demonstrate that HIV infectivity can be modulated by siRNAs targeting

CycT1 or CDK9 , both components of P-TEFb.

Genomewide analysis of gene expression in P- TEFb knockdown HeLa cells

. ,
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To investigate the effects of P-TEFb knockdown on global gene

expression , we isolated total mRNA from HeLa cells treated with and without

siRNA directed against hCycT1 or CDK9 at 48h post transfection and analyzed

the expression of various genes using the GeneChip(I Human Genome U 133

(HG-U133) from Affmetrix. The HG-U133 includes HG- 133A and HG- 133B sets

of arrays containing 22 283 and 22 645 genes , respectively. Each gene was

represented by a probe set containing 11 probe pairs. Another 100 human

maintenance genes on both arrays serve as a tool to normalize and scale the

data prior to making comparisons. For comparison analysis , data from cells

treated with nonrelated ds siRNA (RFP ds) were used as baseline. The

comparison analysis compares the difference values of each probe pair in the

baseline array to its matching probe pair on the experiment array. A Change 

value is calculated indicating an increase , decrease or no change in gene

expression. The Signal Log Ratio (base on 2) estimates the magnitude and

direction of change of a transcript when two arrays are compared. Log ratio larger

than 1 indicating more than 2 fold up-regulation while log ratio smaller than 1

indicating more than 2 fold down regulation (see Material and Methods for detail).

Genomewide analysis of the gene expression profile of P- TEFb

knockdown cells revealed that 202 genes out of 44 928 were down-regulated. A

complete list of down- and up-regulated genes with names and accession

numbers is listed in Appendix (see Appendix Table 1). Of those 202 genes , 53

are known and were classified according to their function or protein product
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activity (Figure 6A). It is widely accepted that P-TEFb is a positive transcription

factor during RNA pol II elongation. Down-regulated genes in the P-TEFb

knockdown background are presumably those required by P-TEFb for normal

levels of expression , especially at the transcription elongation level.

p- TEFb regulates gene involved in controllng and mediating cell

proliferation and differentiation

Broadly speaking, about 50% (25 out of 53) of the down-regulated genes

are known or likely to be involved in controlling and mediating cell proliferation

and differentiation. These genes can be further divided into three classes (Figure

, I - III). The first class (Figure 6A, I) includes genes directly linked to cellular

proliferation and differentiation. Most of these genes belong to the protein

tyrosine kinase (PTK) superfamily. PTKs catalyze phosphate transfer from A TP

to tyrosine residues on protein substrates , activating numerous signaling

pathways leading to cell proliferation , differentiation , migration , or metabolic

changes and playing a prominent role in the control of a variety of cellular

processes during embryonic development (96). Two classes of PTKs are

affected by P-TEFb knockdown: transmembrane receptor protein tyrosine

kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). AXL receptor

tyrosine kinase (AXL) , discoidin domain receptor 1 (DDR1), epidermal growth

factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) belong to

the RTKs , while cell adhesion kinase (CAK) belongs to the NRTKs. AXL , DDR1
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and EGFR are required for the epithelial-mesenchymal transition during

embryonic development , which allows multicellular organisms to get past the

blastula stage (234).

Transforming growth factor beta (TGF-beta), also down-regulated by P-

TEFb knockdown (Figure 6A, I), binds to another membrane receptor family with

diverse functions during embryonic development and adult tissue homeostasis

, 149). The genes for pre-T/NK cell-associated proteins (fasciculation and

elongation protein zeta 2) are preferentially expressed in early stages of human

T/NK cells and brain , suggesting that they playa role in early development (102

254). Brain-derived neurotrophic factor (BDNF) has been implicated in activity-

dependent plasticity of neuronal function and network arrangement (259).

A second class of genes affected by P- TEFb knockdown is functionally

linked to the cell membrane and extracellular matrix (Figure 6A , II). Junction

plakoglobulin (JUP) cooperates with beta-catenin and promotes epithelial growth

and morphogenesis (87). Moesin (MSN), a plasma membrane protein associated

with the underlying cytoskeleton , determines cell shape and participates in

adhesion , motility and signal transduction pathways (19). This class of genes is

also required for embryonic development , especially for angiogenesis and

neuronal development. For example , integrin functions in epithelial cell

organization and synaptogenesis during development of the CNS (100 , 156).

Epithelial membrane protein 1 (EMP1), which is highly expressed by immature
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neurons in the embryonic stage , functions in neuronal differentiation and neurite

. .
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outgrowth (257).

A third class of genes is involved in signal transduction (Figure 6A, III), the

events downstream of membrane receptor activation. The inositol 1,4,

triphosphate receptor (ITPR1) responds to G-protein-coupled receptor activation

(115), while mitogen-activated protein kinase 6 (MAPK6) propagates cell

proliferation/differentiation signals from receptor tyrosine kinase activation (96

115). Non-receptor type protein tyrosine phosphatase regulates phosphotyrosine

signalling events during complex ectodermal-mesenchymal interactions that

regulate mammalian limb development (4 , 196). Protein phosphatase 

(PPP1 CB) regulates the phosphorylation status of anti-apoptotic and pro-

apoptotic proteins and their cellular activity in the apoptosis cascade (127). Dual

specificity phosphatase 2 (DUSP2) participates in the regulation of intracellular

signal transduction mediated by MAP kinases (266).

There is cross talk among these three gene classes (Figure 6A , I , II , and

III). For example , collagen (type III , alpha 1), an extracellular matrix membrane

protein can be a direct ligand for tyrosine kinase receptors (class I) and integrin

(class 11)(209). Coordinated regulation of PTK (class I) and protein phosphatase

(class II) also acts at different steps in a common signal transduction process

(11). Non-receptor type protein tyrosine phosphatase (class III) positively

regulates BDNF-promoted (class I) survival of ventral mesencephalic

dopaminergic neurons (229). FGFR (class I), EMP1 (class II), pre-T/NKcell-
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associated protein (fasciculation and elongation protein zeta 2; class I) and

integrin (class II) all participate in neuronal development. Nedasin (S form , class

X), which is predominantly expressed in the brain , plays a role in the formation

1== and structural changes of synapses during neuronal development by modifying

clustering of neurotransmitter receptors at synaptic sites (130). Down-regulation

of the genes coding for these last five proteins by P-TEFb knockdown indicates

an important role for P- TEFb during neuronal development.

From the expression profile of these three classes of genes , we conclude

that P-TEFb regulates expression of genes involved in controllng and mediating

cell proliferation and differentiation. We suggested that P-TEFb is essential for

embryonic gene expression and development, while knockdown of its subunits

(hCycT1 and CDK9) may not cause major toxic or lethal effects at the adult

stage. Although P-TEFb knockdown or knockout has never been explored in

mammalian embryonic tissue , it has been proposed that the P- TEFb complex is

required for global gene expression during embryonic development of C. elegans

(208). Knockdown of CDK9 or CycT1 siRNA in C. elegans embryos inhibits

transcription of embryonic genes , including the MAP kinase pathway and cell

cycle-related genes (208).

The role of P- TEFb in human cancers

An intriguing finding is that genes linked to embryonic development and

showing down-regulation in P-TEFb knockdown cells (as described above) also
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participate in tumorogenesis and metastasis. Dysfunction of protein tyrosine

kinases (Figure 6A , I) or aberrations in key components of the signaling

pathways they activate can lead to severe pathologies such as cancer, diabetes

and cardiovascular disease. For example , overexpression of EGFR (Figure 6A , I)

has been implicated in mammary carcinomas , squamous carcinomas and

glioblastomas (197). AXL , another receptor tyrosine kinase (Figure 6A , I), was

originally identified with oncogenic potential and transforming activity in myeloid

leukemia cells (20). Elevated TGF-beta levels can contribute to tumor

progression and metastasis (149). Lysyl oxidase (LOX class II), an extracellular

matrix remodeling enzyme , is up-regulated in prostatic tumor, cutaneous and

uveal cell lines (126). Down-regulating these genes by P-TEFb knockdown could

become a new therapeutic strategy for inhibiting tumorogenesis and metastasis.

Genes involved in mediating progression through the cell cycle and as

checkpoints in cancer were regulated by P-TEFb (Figure 6A , IV). Cyclin G1 is the

downstream target of the P53 pathway and plays a role in G2/M arrest , damage

recovery and growth promotion after cellular stress (125). Cyclin D , a cell-cycle

requlatory protein essential for G1/S transition , has been identified as a potential

transforming gene in lymphoma (159). Misregulation of the activity of its partner

CDK4/6 , by overexpression of Cyclin D leads to hyperproliferative defects and

tumor progression (169). Several marker genes in cancer cells (class V) are also

regulated by P-TEFb. For example , breast cancer-specific protein 1 (BCSG1) is

overexpressed in advanced , infiltrating breast cancer and colorectal tumors
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(140). Another example is soluble urokinase plasminogen activator receptor

(SUPAR), which is present in high concentrations in cystic fluid form ovarian

cancer , tumor tissue of primary breast cancer , and gynecological cancer (190

244). Although the functions of these marker genes are still unknown , their high

correlation with cancer has been used for prognosis in cancer therapy. The

down-regulation of cyclin D and cancer marker genes by P- TEFb knockdown

offer more encouraging evidence to support our proposal that P- TEFb could

become a new and potent target for cancer therapy.

Another strong line of evidence in support of P- TEFb's role in cellular

proliferation comes from clinical studies. Flavopiridol (L86-8275 , HMR1275) is a

cyclin-dependent kinase (CDK) inhibitor being tested in clinical trials as a

potential anti-cancer drug (117 , 205) but its target and the mechanism for its

antiproliferative effects are unknown. Recent evidence indicates that flavopiridol

inactivates P-TEFb and inhibits HIV-1 transcription (25 , 26). Based on our results

showing that P-TEFb knockdown in human cells down-regulates genes involved

in controlling proliferation and differentiation , we propose that the antiproliferative

effects of flavopiridol are due to P-TEFb inhibition.

Links between P- TEFb and stress responses

Another interesting group of genes down-regulated by P-TEFb are those

involved in responding to stress or oxidant-mediated regulation (Figure 6A , VII).

There are three known major redox signaling systems in eukaryotic cells , namely

L",
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glutathione/glutathione reductase , thioredoxin/thioredoxin reductase and

glutaredoxin (GLRX , thioltransferase)(180). SH3 domain-binding glutamine-rich

like protein (SH3BGRL3) also belongs to the thioredoxin family. Glutathione S-

transferase M4 (GSTM4) is involved in detoxifying reactive electrophiles , such as

drug or foreign compounds, by catalyzing their reaction with glutathione

(GSH)(42). Oxidant-mediated regulation by GSH systems plays a direct role in

cellular signaling through thiol-disulfide exchange reactions with membrane-

bound receptor proteins , transcription factors , and regulatory proteins in the cell

(42). During stress responses , redox regulation has an important function in

biological events such as DNA synthesis , enzyme activation , gene expression

and cell cycle regulation. Down-regulation of genes involved in these events by

p- TEFb knockdown in cells indicates an important role for P- TEFb in stress

responses , especially oxidant-mediated regulation of cell proliferation. Moreover

glutathione (GSH) has been linked to multi-drug resistance (42), promising

evidence for P- TEFb as a therapeutic target in cancer research.

Unlike the covalent modifications in redox regulation described above , the

BAG family of modulating proteins (Figure 6A, VII) functions through alterations

in conformation and influences signal transduction through non-covalent post-

translational modifications (230). The BAG family molecular chaperone regulator-

2 (BAG-2) belongs to this family, which contains an evolutionarily conserved

BAG domain" that allows its members to interact with and regulate the Hsp 70

(heat shock protein 70) family of molecular chaperones (230). Like Hsp 70 , BAG-

, .
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family proteins have been reported to mediate the physiological stress signaling

pathway that regulates cell division , death , migration and differentiation (230). p-

TEFb has been shown to be recruited to heat shock loci in Drosophila

melongaster and to co- localize with Hsp 70 and Hsp 90 upon heat shock stress

(138). Down-regulation of the BAG-2 gene in P-TEFb knockdown cells indicates

an important role for P-TEFb in regulating Hsp70 molecular chaperones in

human cells. CDK9 itself has been proposed to form complexes with Hsp 70 and

Hsp90/cdc37 , thereby involving this chaperone-dependent pathway in the

stablization/folding of CDK9 as well as the assembly of an active CDK9/CycT1

complex (167).

Role of P- TEFb in Metabolism and Biosynthesis

Several genes involved in metabolism and biosynthesis are also regulated

by P-TEFb (Figure 6A, IX). Human iron-sulfur protein or ferredoxin (FDX1)

serves as an electron transport intermediary for mitochondrial cytochrome P450

involved in steroid , vitamin D , and bile acid metabolism (135). Low-density

lipoprotein receptor-related protein 5 (LRP5) contains conserved modules

characteristic of the low-density lipoprotein (LDL) receptor family, genetically

associated with Type 1 diabetes (61). Because alterations in LRP5 expression

may be responsible for susceptibility to diabetes , LRP5 may therefore be a

potential target for therapeutic intervention. The vacuolar (H+)-ATPases (or V-

A TPases) function in the acidification of intracellular compartments in eukaryotic
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cells. Eukaryotic translation elongation factor 1 , alpha 2 isoform (EEF1A2), a key

factor in protein synthesis , has been shown to have oncogenic properties: it

I -

enhances focus formation , allows anchorage- independent growth and decreases

doubling time of fibroblasts (2). EEF1A2 is amplified in 25% of primary ovarian

tumors , its expression makes NIH3T3 fibroblasts tumorogenic and it increases

the growth rate of ovarian carcinoma cells (2).

Role of P- TEFb in Cell Cycle Regulation

Also affected by P-TEFb knockdown were genes involved in cell cycle

regulation (Figure 6A, VI), which in turn controls proliferation and differentiation.

The retinoblastoma (RB) protein regulates both the cell cycle and tissue-specific

transcription by modulating the activity of its associated factors (143). Efforts to

identify such cellular targets have led to the isolation of two novel proteins , RB-

associated protein (RBP21) and RB- and p300-binding protein EID-1 (an E1A-

like inhibitor of differentiation)(143). Although its cellular function is still unclear

RBP21 is widely expressed in various human tissues and cancer cell lines. EID-

is a potent inhibitor of differentiation , an activity that has been linked to its ability

to inhibit p300 (and the highly related molecule , CREB-binding protein , or CBP)

acetylation of histones (158). EID- , which is rapidly degraded by the

proteasome as cells exit the cell cycle , may act at a nodal point that couples exit

from the cell cycle to transcriptional activation of genes required for differentiation

(158). Regulation of EID-1 expression by P-TEFb knockdown provides evidence
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that P-TEFb is also involved in cell cycle regulation , especially RB- linked

regulation of proliferation and differentiation.

Up-regulated genes

Four major classes of up-regulated genes were observed , including those

involved in signal transduction (Figure 6B , I), transcription regulation (Figure 6B

II), cell cycle regulation (Figure 6B , IV) and metabolism and biosynthesis (Figure

, VI). This up-regulation may not be a direct effect of P-TEFb knockdown but

rather a secondary or correlated effect , to which the cell responds by

overexpressing certain genes to compensate the loss of function of genes

modulated by P-TEFb. The up-regulation of genes involved in signal

transduction , transcription and cell cycle regulation (Figure 6B , I , II , and IV)

suggests that these genes could complement cellular functions in P-TEFb

knockdown cells or playa role in overcoming effects of down-regulated genes.

An interesting correlation was observed between up-regulation and the functions

of two classes genes i.e. , transcription regulation and

metabolism/biosynthesis (Figure 6B , III and VI). Translation regulator gene eIF-

which controls a signaling pathway to activate genes involved in amino acid

biosynthesis (85) was up-regulated.

CONCLUSIONS
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Our results raise new and intriguing questions for P-TEFb function and its

role in regulating gene expression. First , is P-TEFb required for cellular viability?

Recent evidence indicates that P- TEFb is essential for transcription in C. elegans

embryos (208). P-TEFb may also be essential during mammalian embryonic

development to control transcription elongation and ensure fidelity of mRNA

production. This requirement for P- TEFb could explain why it has been difficult to

create P-TEFb knockout mice. At later stages in the life cycle , knockdown of P-

TEFb may be achieved without causing major toxic or lethal effects. Second

does P-TEFb regulate expression of genes involved in proliferation and cancer?

Our results support this notion because ds siRNA directed against hCycT1 or

CDK9 lowered levels of proliferation and cancer genes , indicating that expression

of these genes is regulated by P- TEFb and negative elongation factors. It is

tempting to postulate that HIV has evolved a mechanism of gene expression

similar to the expression of genes involved in human cancers. Identifying how

these genes and signaling pathways are regulated by P- TEFb function presents

a significant and exciting future challenge.

.w,
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Figure 1. Specific down-regulation of P-TEFb expression by RNAi. (A)

Model for HIV Tat transactivation involving the human P- TEFb

(CyclinT1/CDK9) complex. Human RNA pol II initiates transcription from HIV

promoter DNA, and TFIIH kinase assists in promoter clearance steps. TFIIH

leaves the elongation complex when 30-36 nt mRNA is transcribed. Elongation is

inefficient in the absence of Tat protein. Tat recruits the P-TEFb kinase complex

to TAR RNA by contacting he RNA and CycT1 components of the complex.

CDK9 kinase then phosphorylates RNA pol II and Spt5 , a component of negative

elongation factor (N-TEF) in the elongation complex , which leads to processive

transcription elongation. (B) Analysis of specific hCycT1 and CDK9 RNAi

activities by Western blotting. HeLa cells were transfected with double-

stranded (ds) siRNAs targeting RFP (control , lanes 1-7), hCycT1 (lanes 8-14), or

CDK9 (lanes 15-21). Cells were also transfected with mutant siRNAs (hCycT1

mismatch (lanes 22-28) or CDK9 mismatch (lanes 29-35)) having 2 nucleotide

mismatches between the target mRNA and the antisense strand of siRNA at the

hypothetical cleavage site of the mRNA. Cells were harvested at various times

post transfection , their protein content resolved on 10% SDS-PAGE , transferred

onto PVDF membranes , and immunoblotted with antibodies against hCycT1 and

CDK9. (C) Analysis of specific hCycT1 and CDK9 RNAi activities by RT-

PCR. HeLa cells were transfected with hCycT1 ds siRNA (lanes 1-7) and CDK9

ds siRNA (lanes 8-14), harvested at various times after transfection and mRNAs

extracted. One-step RT-PCR was performed , setting the specific primer for



157

hCycT1 and CDK9 amplification (see Experimental Procedure for details). RT-

r=-

PCR products were resolved in 1 % agarose gel and viewed by ethidium bromide

staining.
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Figure 2. Kinetics of hCycT1 and CDK9 silencing by siRNA. ds siRNAs were

transfected into HeLa cells as described in Experimental Procedures. Cells were

harvested at various times and protein contents were resolved on 10% SDS-

PAGE , transferred onto PVDF membranes , and immunoblotted with antibodies

against hCycT1 and CDK9. Western Blotting of hCycT1 and CDK9 over a 90-

hour time course are shown.
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Figure 3. P- TEFb down-regulation can be achieved without causing major

toxic or lethal effects to HeLa cells. (A) Analysis of cell viability by in vivo

fluorescence analysis. HeLa cells were cotransfected by lipofectamine with

pEGFP-C1 reporter (GFP) plasmid and siRNAs (see Experimental Procedures).

Four siRNA duplexes , including a control duplex targeting RFP (panels a and e)

and three duplexes targeting hCycT1 (panels b and f), CDK9 (panels c and g),

and CDK7 (panels d and h), were used in these experiments. Reporter gene

expression was monitored at 50 h post transfection by fluorescence imaging in

living cells (upper panels). Cellular shape and density were recorded by phase

contrast microscopy (lower panels). (B) Analysis of cell viability by counting

trypan blue-stained cells. HeLa cells were cotransfected by lipofectamine with

pEGFP-C1 reporter (GFP) plasmid and siRNAs (see Experimental Procedures).

Four siRNA duplexes , including a control unrelated duplex (light blue) and three

duplexes targeting hCycT1 (green), CDK9 (dark blue), and CDK7 (red), were

used in these experiments. At various times after transfection , cells floating in

the medium were collected and counted in the presence of 0.2% trypan blue (see

Experimental Procedures). Cells that took up dye (stained blue) were not viable.
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Figure 4. hCycT1 and CDK9 duplex siRNAs inhibit HIV-1 Tat transactivation

in Magi cells. (A) Analysis of hCycT1 and CDK9 RNAi activities in Magi cells

by Western blotting. Magi cells were co-transfected with pTat-RFP plasmid

and various siRNAs. Cells were harvested at 48 h post transfection , resolved on

10% SDS-PAGE , transferred onto PVDF membranes , and immunoblotted with

antibodies against hCycT1 (upper panel) and CDK9 (lower panel). RNAi activities

in Magi cells treated with antisense (as) strands of hCycT1 and CDK9 siRNAs

are shown in lanes 1 and 2 , while those of cells treated with ds siRNA targeting

hCycT1 and CDK9 are shown in lanes 3 and 4. RNAi activities in cells treated

with mutant hCycT1 siRNA (hCycT1 mm) or mutant CDK9 siRNA (CDK9 mm)

are shown in panels 5 and 6. GFP ds siRNA was used as an unrelated control

(lane 7), while Tat ds RNAi was used to target mRNA encoding Tat (lane 8). (B)

Photomicograph of p-gal stained Magi cells. Magi cells were either

untransfected (panels a , c , e and g) or transfected (panels b , d , f and h) with

pTat-RFP in the presence of mismatched hCycT1 siRNA (mm) (panels band 

or hCycT1 ds siRNA (panels d and h). Syncytia formation and L TR activation

(represented by blue p-gal-staining cells) were reduced in the hCycT1 ds siRNA-

treated cells (panels d and h). (C) Effect of P- TEFb knockdown by RNAi on

Tat transactivation in Magi cells. Twenty-four hours after pre-treating Magi

cells with siRNA , they were cotransfected with pTat-RFP plasmid and various

siRNAs. Cells were harvested 48h post pTat-RFP transfection , and activity of p-

galactosidase in clear ceillysates was measured (see Experimental Procedures).
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Tat transactivation was determined by the ratio of galactosidase activity in

pTat-RFP-transfected cells to that of cells without pTat-RFP treatment. Inhibitory

1 ..

activity was determined by normalizing Tat transactivation activity to the amount

of Tat RFP protein (see Experimental Procedures) in the presence or absence of

siRNA treatment. Tat-RFP transfection (mock) is shown in lane 1. Magi cells

were cotransfected with ds siRNAs targeting hCycT1 and CDK9 (lanes 4 and 5),

with antisense (as) RNA strands (lanes 2 and 3), or mutant (mm) siRNAs (lanes

6 and 7). GFP ds siRNA was used as an unrelated control siRNA (lane 8), while

Tat ds siRNA , targeting the mRNA encoding Tat sequence , was used as a

positive control (lane 9). MeanS:l SD of two experiments are shown.
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Figure 5. Small interfering RNAs targeting Cyclin T1 or CDK9 modulate HIV-

1 infectivity. HeLa-CD4- TR/ galactosidase (Magi) cells were transfected with

homologous (ds , lanes 3 and 4) and mismatched (mm , lanes 5 and 6) siRNAs

directed against CycT1 or CDK9. Cells were also mock transfected without

siRNA (lane 2) or transfected with an unrelated ds siRNA against the RFP

sequence (lane 7). Sixteen hours later, cells were infected with NL-GFP , an

infectious molecular clone of HIV-1. Cells infected with virus and not treated with

oligofectamine are shown in lane 1. HIV-1 Tat-mediated transactivation of the

L TR led to gal production , which was quantified 36 h post-infection. Cells

treated with ds siRNA targeting GFP-Nef (lane 8) and targeting the mRNA

encoding Tat sequence (lane 9) served as positive controls. Serial double

dilutions of the viral inoculum (in cpm of RT activity) are consistent with 8-fold

decreases in viral infectivity.
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Figure 6. Genomewide analysis of gene expression in P- TEFb knockdown

HeLa cells. HeLa cells were treated with and without ds siRNA directed against

hCycT1 or CDK9 , and total mRNA was isolated. Total mRNA was used to

synthesize ds cDNAs , from which biotin- labeled cRNA was synthesized and

fragmented. Fragmented cRNA was then subjected to high-density

oligonucleotide microarray hybridization (GeneChip(8) using Human Genome

U133 from Affymetrix (see Experimental Procedures). Of the 44 928 genes

expressed , 90 are displayed by class , based on their putative functions. Each

row represents one gene. Column 1 indicates hCycT1 ds siRNA treatment and

column 2 indicates CDK9 ds siRNA treatment. The down- (A) and up- (B)

regulated genes are represented by green and red , respectively. The brightness

of each color reflects the magnitude of the gene expression level (Signal Log

Ratio). See Experimental Procedure for details of analysis.
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CHAPTER V

RNA INTERFERENCE IN HUMAN CELLS: BASIC

STRUCTURAL AND FUNCTIONAL FEATURES OF

SMALL INTERFERING RNA
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ABSTRACT

We investigated the mechanism of RNA interference (RNAi) in human

cells. Here we demonstrate that the status of the 5' hydroxyl terminus of the

antisense strand of a siRNA determines RNAi activity, while a 3' terminus block is

tolerated in vivo. 5' hydroxyl termini of antisense strands isolated from human

cells were phosphorylated , and 3' end biotin groups were not efficiently removed.

We found no requirement for a perfect A-form helix in siRNA for interference

effects , but an A-form structure was required for antisense-target RNA duplexes.

Strikingly, crosslin king of the siRNA duplex by psoralen did not completely block

RNA interference , indicating that complete unwinding of the siRNA helix is not

necessary for RNAi activity in vivo. These results suggest that RNA amplification

by RNA-dependent RNA polymerase is not essential for RNAi in human cells.
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INTRODUCTION

RNAi interference (RNAi) is the process whereby double-stranded RNA

(dsRNA) induces the sequence-specific degradation of homologous mRNA.

Although RNAi was first discovered in Caenorhabditis elegans (62), similar

phenomena had been reported in plants (posttranscriptional gene silencing

(PTGS)) and in Neurospora crassa (quelling) (reviewed in 84 , 206). It has

become clear that dsRNA- induced silencing phenomena are present in

evolutionarily diverse organisms , e. , nematodes , plants , fungi, and

trypanosomes (8 , 122 , 150 206 215 238 248). Biochemical studies

in Drosophila embryo Iysates and S2 cell extracts have begun to unravel the

mechanisms by which RNAi works (15 239 271).

RNAi is initiated by an A TP-dependent , processive cleavage of dsRNA

into 21 to 23 nucleotide (nt) short interfering RNAs (siRNAs) (82 , 83 , 271) by the

enzyme Dicer, a member of the RNase III family of dsRNA-specific

endonucleases (15). These native siRNA duplexes containing 5' phosphate and

3' hydroxyl termini are then incorporated into a protein complex called RNA-

induced silencing complex (RISC) (83). ATP-dependent unwinding of the siRNA

duplex generates an active complex , RISC* (the asterisk indicates the active

conformation of the complex) (166). Guided by the antisense strand of siRNA

RISC* recognizes and cleaves the corresponding mRNA (57 , 166).

Recently, Tuschl and colleagues (55) have demonstrated that RNAi can

be induced in numerous mammalian cell lines by introducing synthetic 21 nt
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siRNAs. By virtue of their small size , these siRNAs avoid provoking an interferon

response that activates the protein kinase PKR (219). Functional anatomy

studies of synthetic siRNA in Drosophila cell Iysates have demonstrated that

each siRNA duplex cleaves its target RNA at a single site (58). The 5' end of the

guide siRNA sets the ruler for defining the position of target RNA cleavage (58).

5' phosphorylation of the antisense strand is required for effective RNA

interference in vitro (166). Mutation studies have shown that a single mutation

within the center of a siRNA duplex discriminates between mismatched targets

(58). These experiments showed a more stringent requirement for the antisense

strand of the trigger dsRNA as compared to the sense strand (78 , 171).

However , none of these phenomena have been demonstrated in vivo especially

in mammalian systems.

A particularly fascinating aspect of RNAi is its extraordinary efficiency. It

has been estimated that in Drosophila embryos , -35 molecules of dsRNA can

silence a target mRNA thought to be present at ::1000 copies per cell (118).

Conversion of the long trigger dsRNA into many 21 to 23 nt siRNA fragments

would , itself, provide some degree of amplification. Another plausible explanation

for the potency of interference is that the RISC* is a multiple-turnover enzyme

which can catalytically perform the targeting and cleavage activity. The

involvement of RNA-dependent RNA polymerase (RdRP) in the amplification

process has recently been postulated since genetic screening has identified the

gene for RdRP as a requirement for gene silencing in plants , fungi , and worms
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(36 , 160 215). A random degradative PCR model has been suggested (136

164 , 215), in which siRNA serves as the primer for the RdRP reaction. The

siRNA-primed RdRP converts target mRNA into dsRNA , which can serve as

Dicer substrates , initiating the RdRP chain reaction. The polarity of the RdRP

reaction limits the synthesis of secondary siRNAs to the region upstream of the

trigger sequence. Certain structural features of siRNA, including the 3' hydroxyl

group and 5' phosphate group, are critical for the RdRP reaction and RNA

ligation (136 , 215). A number of apparent constraints on the role of Rd RP activity

in RNAi , however, severely limit models in which RdRP carries out a multiround

replication of a double-stranded trigger. Experiments using siRNA with two

differentially modified strands (171 , 264) have shown a more stringent

requirement for the antisense strand of the original trigger as compared to the

sense strand. Multiround replication of a double-stranded trigger by RdRP would

result in loss of memory of the difference between the original two strands and

thus be incompatible with the observed effects of strand-specific modification.

Although RdRP activity has been reported in Drosophila embryo Iysates (136), a

homolog of RdRP has not been identified in available mammalian genomic

sequences.

A number of basic questions remain to be answered regarding RNA

interference in human cells. (1) What is the kinetics of RNAi? (2) Is 5' 

required for kinase activity and is it phosphorylated in vivo? (3) Is 3' OH required

for RNA-dependent RNA polymerase- like activity? (4) Is an A-form helix of
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dsRNA required for RNAi? If yes , at which stage during the pathway? (5) Is

complete unwinding of the dsRNA helix necessary to cause RNAi effects? This

chapter addresses these issues.
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MATERIALS AND METHODS

siRNA preparation. Twenty-one nucleotide RNAs were chemically

synthesized as 2' bis(acetoxyethoxy)-methyl ether-protected oligos by

I . Dharmacon (Lafayette , CO). Synthetic oligonucleotides were deprotected

annealed , and purified as described by the manufacturer. Successful duplex

formation was confirmed by 20% nondenaturing polyacrylamide gel

electrophoresis (PAGE). All siRNAs were stored in DEPC (0. 1 % diethyl

pyrocarbonate)-treated water at - C. The sequences of GFP or RFP target-

specific siRNA duplexes were designed according to the manufacturer

recommendation and subjected to a BLAST search against the human genome

sequence to ensure that no endogenous genes of the genome were targeted.

Culture and transfection of cells. HeLa cells were maintained at 3rC 

Dulbecco s modified Eagle s medium (DMEM , Invitrogen) supplemented with

10% fetal bovine serum (FBS), 100 units/ml penicillin , and 100 

/-g/

streptomycin (Invitrogen). Cells were regularly passaged at subconfluence and

plated 16 h before transfection at 70% confluency. Lipofectamine (Invitrogen)-

mediated transient cotransfections of reporter plasmids and siRNAs were

performed in duplicate 6-well plates as described by the manufacturer for

adherent cell lines. A transfection mixture containing 0.66 /-g pEGFP-C1 and

33 /-g pDsRed1-N1 reporter plasm ids (Clontech), 50 nM siRNA, and 10 /-1

lipofectamine in 1 ml serum-reduced OPTI-MEM (Invitrogen) was added to each

well. Cells were incubated in transfection mixture for 6 h and further cultured in

.. ,
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antibiotic-free DMEM. Cells were treated under the same conditions without

siRNA for mock experiments. At various time intervals , the transfected cells were

washed twice with phosphate-buffered saline (PBS, Invitrogen), flash frozen in

liquid nitrogen , and stored at - C for reporter gene assays.

In vivo fluorescence analysis. pEGFP- , pDsRed1-N1 reporter

plasmids and 50 nM siRNA were cotransfected into HeLa cells by lipofectamine

as described above except that cells were cultured on 35 mm plates with glass

bottoms (MatTek Corporation , Ashland , MA) instead of standard 6-well plates.

Fluorescence in living cells was visualized 48 hr posttransfection by conventional

fluorescence microscopy (Zeiss). For GFP and RFP fluorescence detection

FITC and CY3 filters were used , respectively.

Dual fluorescence reporter gene assays. pEGFP- , pDsRed1-

reporter plasmids and 50 nM siRNA were cotransfected into HeLa cells. EGFP-

C1 encoded enhanced green fluorescence protein (GFP), while DsRed1-

encoded red fluorescence protein (RFP). Cells were harvested as described

above and lysed in ice-cold reporter lysis buffer (Promega) containing protease

inhibitor (complete, EDTA-free, 1 tablet/10 ml buffer, Roche Molecular

Biochemicals). After clearing the resulting Iysates by centrifugation , protein in the

clear lysate was quantified by Dc protein assay kit (Bio-Rad). One hundred

twenty micrograms of total cell lysate in 160 III reporter lysis buffer was

measured by fluorescence spectroscopy (Photon Technology International). The

slit widths were set at 4 nm for both excitation and emission. All experiments
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were carried out at room temperature. Fluorescence of GFP in cell Iysates was

detected by exciting at 488 nm and recording from 498-650 nm. The spectrum

peak at 507 nm represents the fluorescence intensity of GFP. Fluorescence of

RFP in the same cell Iysates was detected by exciting at 568 nm and recording

from 588-650 nm; the spectrum peak at 583 nm represents the fluorescence

intensity of RFP. The fluorescence intensity ratio of target (GFP) to control (RFP)

fluorophore was determined in the presence of siRNA duplex and normalized to

that observed in the presence of antisense strand siRNA. Normalized ratios less

than 1. 0 indicate specific interference.

Western blotting. Cell Iysates were prepared from siRNA-treated cells

and analyzed as described above. Proteins in 30 g of total cell lysate were

resolved by 10% SDS-PAGE , transferred onto a polyvinylidene difluoride

membrane (PVDF membrane, Bio-Rad), and immunoblotted with antibodies

against EGFP and DsRed1-N1 (Clontech). For loading control , the same

membrane was also blotted with anti-actin actibody (Santa Cruz). Protein content

was visualized with a BMChemiluminescence Blotting Kit (Roche Molecular

Biochemicals). The blots were exposed to X-ray film (Kodak MR- 1) for various

times (between 30 sand 5 min).

Psoralen photocrosslink of siRNA duplex. Forty micrograms of siRNA

duplex was incubated with 132 M of a psoralen derivative , 4' hydroxymethyl-

trimethylpsoralen (HMT) in 200 I DEPC-treated water at 30 C for 30 min.

Mixtures of siRNA duplex and HMT were exposed to UV 360 nm at 4 C for 20
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min , then denatured by mixing with 400 JlI formamide/formaldehyde (12. 5:4.

RNA loading buffer and heating at 95 C for 15 min. Crosslinked siRNA duplex

and noncrosslinked siRNA were resolved by 20% PAGE containing 7 M urea in

Tris-borate-EDTA. Crosslinked siRNA duplexes appeared as a population with

retarded electrophoretic mobility compared to the noncrosslinked species. RNAs

were cut from the gel and purified by C18 reverse-phase column chromatography

(Waters). Purified crosslinked dsRNA and noncrosslinked dsRNA were used in

dual fluorescence reporter assays as described above , except that all procedures

were performed in the dark to avoid light effects on psoralen. To ensure that the

crosslink depended on the presence of psoralen , part of the UV 360 nm treated

mixture was also subjected to UV 254 nm at 4 C for 20 min. Photoreverse-

crosslinked siRNA migrated in 20% polyacrylamide-7 M urea gels with similar

mobility to the siRNA duplex without HMT treatment.

Biotin pull-out assay for siRNA isolation from human cells. Antisense

strands of the siRNA duplex were chemically synthesized and biotin-conjugated

at the 3' end (Dharmacon , Lafayette , CO). Synthetic oligonucleotides were

deprotected and annealed with the unmodified sense strand RNA to form duplex

siRNA (ss/as3' Biotin). HeLa cells , which had been plated at 70% confluency in

100 mm dishes , were cotransfected with duplex siRNA (-600 pmole) and EGFP-

C1 plasmid (1 Jlg) by a lipofectamine-mediated method as described above. At

various times , the transfected cells were washed twice with PBS (Invitrogen) and

flash frozen in liquid nitrogen. Low molecular weight RNA was isolated from the
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cells using a Qiagen RNAIDNA Mini Kit. Biotinylated siRNA was pulled out by

incubating purified RNA with streptavidin-magnetic beads (60 j.l) in TE buffer (10

mM Tris-HCI (pH 8. 0), 1 mM EDTA) containing 1 M NaCI at room temperature for

3 hr. The beads were washed four times with 200 j.l TE buffer , resuspended in

100 j.l TE buffer, and split into two equal aliquots. To one aliquot (50 j.l), we

added 50 units of shrimp alkaline phosphatase (SAP , Roche Molecular

Biochemicals) in 1X SAP buffer and incubated at 3rC for 1 hr. The SAP reaction

was then stopped by heating at 65 C for 15 min and washed four times with 200

j.l TE buffer. The other aliquot was not treated with SAP. Aliquots of beads with

or without SAP treatment were incubated with 30 units T4 polynucleotide kinase

(T4 PNK , Roche Molecular Biochemicals) in 30 j.l 1X PNK buffer containing 0.

mCi -32P ATP at 3rC for 1 hr. RNA products were resolved on 20%

polyacrylamide-7 M urea gels and 32P- labeled RNAs were detected by

phosphorimaging.
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RESUL TS

Dual fluorescence reporter system for RNAi analysis in mammalian cells

To explore the functional anatomy of siRNA in mammalian cells , we

established a dual fluorescence reporter system , using HeLa cells as a model

system. Two reporter plasmids were used: pEGFP-C1 and pDsRed1-

harboring enhanced green fluorescent protein (GFP) or coral (Oiscosoma spp.

derived red fluorescent protein (RFP), respectively. The expression of these

reporter genes was under cytomegalovirus promoter control and could be easily

visualized by fluorescence microscopy in living cells. The siRNA sequence

targeting GFP was from position 238-258 relative to the start codon , and the

RFP siRNA sequence was from position 277-297 relative to the start codon

(Figure 1A). Using lipofectamine , we cotransfected HeLa cells with pEGFP-

and pDsRed1-N1 expression plasmids and siRNA duplex , targeting either GFP

or RFP. Fluorescence imaging was used to monitor GFP and RFP expression

levels. As shown in Figures 1 Ba and 1 Bb , mock treatment (without siRNA)

allowed efficient expression of both GFP and RFP in living cells. Transfection of

cells with siRNA duplex targeting GFP (GFP ds) significantly reduced GFP

expression (Figure 1 Bc) but had no effect on RFP expression (Figure 1 Bd)

compared with mock-treated cells (Figures 1 Ba and 1 Bb). On the other hand

transfection of cells with siRNA duplex targeted to RFP (RFP ds) significantly

interfered with the expression of RFP but not GFP (Figures 1 Be and 1 Bf).
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To quantify RNAi effects , we prepared Iysates from siRNA duplex-treated

cells at 42 hr posttransfection. GFP and RFP fluorescence in clear Iysates was

measured on a fluorescence spectrophotometer. The peak at 507 nm (Figure 1 C

left panel) represents the fluorescence intensity of GFP , and the peak at 583 nm

(Figure 1 C , right panel) represents the fluorescence intensity of RFP. GFP

fluorescence intensity of GFP ds-treated cells (Figure 1 C , left panel , green line)

was only 5% of mock-treated (black line) or RFP ds-treated cells (cyan line). In

contrast to GFP fluorescence , RFP fluorescence intensity (Figure 1 C , right panel)

significantly decreased only in cells treated with RFP ds (red line), indicating the

specificity of the RNAi effect.

To confirm these findings on RNAi effects in living mammalian cells , we

carried out Western blotting experiments (Figure 2) using anti-GFP and anti-RFP

antibodies. Analysis of immunoblots revealed that the siRNA targeting GFP

inhibited only GFP expression without affecting RFP levels (Figure 2A , lanes

14); siRNA targeting RFP was similarly specific against RFP expression

(Figure 2B , lanes 9-14). This RNA interference effect depended on the presence

of 21 nucleotide duplex siRNA but not of the antisense strand siRNA (Figures 2A

and 2B , compare right and left panels). These results demonstrate that we have

established a reliable and quantitative system for studying specific RNA

interference in HeLa cells.

Kinetics of RNA interference in HeLa cells
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One of the many intriguing features of gene silencing by RNA interference

is its unusually high efficiency-a few dsRNA molecules suffice to inactivate a

continuously transcribed target mRNA for long periods of time. It has been

demonstrated in plants (36 , 47) and worms (78) that this inactivation can spread

throughout the organism and is often heritable to the next generation. Mutations

in genes encoding a protein related to RdRP affect RNAi-type processes in

Neurospora (QDE- 1; 36), C. elegans (EGO- 1; 217), and plants ((SGS2; 160) and

(SDE- 1; 47)). The involvement of RdRP in amplifying RNAi has been postulated

(136).

To understand the kinetics of gene suppression and persistence of RNA

interference in HeLa cells , we prepared Iysates from cells cotransfected with

GFP siRNA and dual fluorescence reporter plasmids , pEGFP-C1 and pDsRed1-

N 1. In this experiment, GFP was the target of the duplex siRNA , while RFP was

used as a control for transfection efficiency and specificity of RNA interference.

Emission spectra of GFP in ceillysates at various times after transfection (Figure

3) show that siRNA duplex caused an RNA interference effect as early as 6 hr

posttransfection. This effect gradually increased with time , peaking at 42 hr , then

started to decrease at 66 hr (Figure 3 , green lines). As a control experiment , GFP

expression in the presence of antisense strand was also monitored and showed

no RNAi effects (Figure 3 , blue lines). Thus , RNA interference can last for at

least 66 hr in HeLa cells (Figure 3 , green lines).
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To quantify the kinetics of RNA interference , we measured the

fluorescence intensity ratio of target (GFP) to control (RFP) fluorophore in the

presence of siRNA duplex (ds) and normalized it to the ratio observed in the

presence of antisense strand siRNA (as). Normalized ratios less than 1. 0 indicate

specific interference. As shown in Figure 1 D , at 6 hr posttransfection GFP duplex

siRNA (green bars) inhibits 60% of GFP expression compared to antisense

strand siRNA (blue bars). RNA interference reached its maximum (92%

inhibition) at 42 hr posttransfection; only 8% of normal GFP expression was

observed in duplex siRNA-treated cells. These results show that RNA

interference can suppress target protein expression up to 66 hr, although

maximum activities were observed at 42-54 hr posttransfection.

Free 5' OH groups on the antisense strand of the siRNA duplex are required

for RNA interference in vivo

Synthetic 21 nucleotide siRNA duplexes with 5' hydroxyl termini and 3'

overhang have been shown to specifically suppress expression of endogenous

and heterologous genes in Drosophila extracts (57) and mammalian cell lines

(55). Nonetheless , native siRNA, processed by Dicer cleavage of dsRNA

contains 5' phosphate ends (57). It has been demonstrated in vitro that

Drosophila embryo Iysates contain a potent kinase activity that phosphorylates

the 5' hydroxyl termini of synthetic siRNAs (166). The 5' phosphate is required on

the siRNA strand that guides target cleavage in RNA interference (166).



185

To examine the importance of 5' termini of siRNA in RNA interference in

human cells , we modified synthetic siRNAs targeting GFP by using an amino

group with a 3-carbon linker (5' N3 , Figure 4A) to block their 5' termini. Synthetic

siRNAs with this modification lacked a hydroxyl group to be phosphorylated by

kinases in vivo. This modification could also block access to siRNA by cellular

factors that might require recognizing the 5' OH termini. We annealed unmodified

siRNA strands with 5' modified strands , producing siRNA duplexes with 

modification at only the sense strand (5' N3ss/as), at only the antisense strand

(ss/5' N3as), or at both strands (5' N3ss/5' N3as) (Figure 4B). RNAi effects of

these siRNA duplexes were analyzed in our dual fluorescence reporter system

as described in Figure 1. 5' modification of the sense strand had no effect on

RNAi activity (Figures 5b and 5c), whereas 5' modification of the antisense strand

completely abolished the RNAi effect (Figures 5d and 5e; Figures 6A and 6B

upper panels). HeLa cells transfected with antisense strand (as) siRNA as control

showed no RNAi activity (Figure 5a). These results demonstrate that the 5' OH in

the antisense strand of the siRNA duplex is an important determinant of RNAi

activity in human cells.

Blocking the 3' nd oef siRNAs has little effect on RNA interference 
in vivo

To determine the effect of 3' OH groups on RNAi activity, we synthesized

siRNA duplexes containing a 3' end blocked with 3' puromycin (3' Pmn , Figure

4A) or biotin instead of 3' OH groups on the overhang deoxythymidine (Figure
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4B). These 3' end modifications would block any processing of the siRNA duplex

that required a free 3' hydroxyl group. We prepared three combinations of siRNA

duplexes containing 3' puromycin: 3' blocked at only the sense strand (ss3'

Pmn/as), at only the antisense strand (ss/as3' Pmn), or at both strands (ss3'

Pmn/as3' Pmn) (Figure 4B). We also prepared a siRNA duplex containing biotin

at the 3' end of antisense strand (ss/as3' Biotin). The RNAi activities of these

siRNA duplexes were analyzed in our dual fluorescence reporter system. Results

of these experiments indicate that a 3' block at either the sense or antisense

strand of siRNA duplex had little effect on its RNA interference activity (Figures

5f-5i; Figures 6A and 6B , middle panels). Furthermore , biotin pull-out

experiments showed that the 3' end biotin groups on the antisense strand were

not effciently removed during RNAi activities in HeLa cells (Figure 7 , see below).

Modifications could be introduced in the 3' overhangs without affecting siRNA

efficacy, suggesting that RNA interference in mammalian cells does not occur

through the recently reported RdRP-dependent degradative PCR mechanism

(Lipardi et aI. , 2001; Sijen et aI. , 2001), which requires a free 3' hydroxyl group.

Form helix of siRNA is absolutely required for effective RNA interference

in vivo

Synthetic and native siRNAs , generated from ATP-dependent cleavage of

double-strand RNA , have been proposed to act as "guide RNAs" that target an

associated nuclease complex , the RISC (RNA-induced silencing complex), to the



187

corresponding mRNA through strand complementarity (83 , 166). How are these

siRNA duplexes recognized and incorporated into the RISC protein complex?

siRNA duplexes are readily characterized by their A-form helix , which can be

distinguished from the structures of B-form helix DNA and single-stranded RNA

in the cell. A single mismatch between a target mRNA and its guide strand siRNA

completely prevents target RNA cleavage in Drosophila embryo Iysates (58).

Although the mechanism of target recognition has not been experimentally

demonstrated , this finding indicates that recognition requires exact

complementarity between the guide strand and target mRNA.

These observations raise two fundamental questions regarding RNAi

effects in vivo. (1) Is an A-form RNA helix required in the siRNA structure? (2) Is

an A-form helix recognized by proteins after the antisense strand of siRNA

duplex is hybridized with the target mRNA? To address these questions , we

designed three siRNA duplexes containing internal bulge structures in the RNA

helices (Figure 4B). The A-form RNA helix has a deep, narrow major groove and

a shallow, wide minor groove. More than one nucleotide bulge has been shown

to distort RNA helical structures , widening the major groove and enhancing

accessibility to its functional groups (162 , 250 , 251) . We decided to use 2 nt

bulges to generate distorted A-form helices in siRNAs. We synthesized mutant

siRNA by introducing two extra nucleotides into the sense or antisense strand of

siRNA duplexes. Combining these mutant siRNA strands with original siRNA

sequences produced three siRNA duplexes with an internal bulge at only the
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sense strand (ss-bulge/as), at only the antisense strand (ss/as-bulge), or at both

strands (ss-bulge/as-bulge) (Figure 4B). This design of bulge-containing siRNAs

could dissect the requirement for the A-form helix at two different steps of RNA

interference: (1) siRNA recognition by RISC and (2) RISC targeting of mRNA via

the guiding siRNA. siRNA duplexes with an internal bulge at only the sense

strand (ss-bulge/as) caused a structural change in the siRNA duplex (an

imperfect A-form) without affecting the complementarity between target mRNA

and the antisense strand , which acts as the guiding strand in the RNA

interference pathway. RNA interference by these siRNA duplexes was analyzed

and quantified in our dual fluorescence reporter system as described above.

Surprisingly, the siRNA duplex containing a bulge in its sense strand

retained most of its RNA interference activity (compare Figures 5b and 5j;

Figures 6A and 6B , lower panels , green line and bars), indicating that an A-form

siRNA helix is not essential for effective RNA interference in vivo. However

bulges in the antisense strand or both strands of duplex siRNA completely

abolished RNA interference ability (Figures 5k and 51; Figures 6A and 6B , lower

panels , dark and light blue line and bars), indicating that effective RNA

interference in vivo absolutely requires A-form helix formation between target

mRNA and its guiding antisense strand.

5' OH groups on the antisense strand of the siRNA duplex are

phosphorylated in vivo
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To analyze the phosphorylation status of the 5' termini of siRNA and to

probe the participation of siRNA 3' termini in the RNA interference pathway in

vivo, we transfected HeLa cells with 21 nt RNAs containing biotin at the 3'

terminal of the antisense strand (ss/as3' Biotin) and isolated the biotinylated

siRNA at various times after transfection (see Experimental Procedures). In brief

streptavidin magnetic beads were used to pull out biotinylated siRNAs from

transfected cells , washed to remove unbound RNA, and split into two aliquots.

One aliquot was dephosphorylated with shrimp alkaline phosphatase (SAP), and

the RNA 5' ends were labeled with 32P by T4 polynucleotide kinase (PNK)

reaction. The other aliquot was subjected to 5' end radiolabeling with

polynucleotide kinase without prior dephosphorylation reaction with SAP. RNA

was resolved on 20% polyacrylamide-7 M urea gels and visualized by

phosphorimager analysis. Cells without siRNA treatment showed no detectable

signal after biotin pull-out assay (Figure 7 , lane 4), indicating the absence of

nonspecific RNA-bead interactions. Efficient 5' end radiolabeling was observed

only when RNA was pretreated with phosphatase (compare lanes 5-9 and

10-14), indicating that the 5' termini of siRNA did not contain free OH groups in

vivo. Although phosphorylating with SAP and quenching the phosphatase

reaction by heating resulted in some RNA degradation , the efficiency of the

kinase reaction after SAP treatment is obvious. These results indicate that 5' OH

groups are phosphorylated in vivo for RNAi activities.
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These experiments demonstrate three key findings. First, biotinylated-

siRNA can be isolated from HeLa cells at 6 to 54 hr posttransfection (Figure 7

lanes 5-9). The amount of isolated siRNA decreased in a time-dependent

manner , indicating the degradation of siRNA in vivo. Our dual fluorescence

assays showed that RNA interference mediated by 3' end biotinylated siRNA was

as effective as unmodified siRNA (Figures 5f and 5b; Figures 6A and 6B , middle

panel). RNA interference is seen as early as 6 hr post-siRNA transfection and

can be maintained for 42 hr posttransfection. Our ability to isolate biotin-RNA

from cells after RNA interference had been initiated indicates that biotin was not

removed from the RNA and rules out the possibility of siRNA 3' OH termini

involvement in the RNA interference pathway in human cells.

Second , in this biotin pull-out assay, only siRNA with 5' OH ends can be

32P- labeled by T4 PNK. As shown in Figure 7 , the siRNA without SAP treatment

was not efficiently labeled by T4 PNK (e. , compare lane 10 to lane 5 and lane

11 to lane 6), indicating that the 5' termini of siRNA did not contain free 

groups in vivo. These 5' terminal groups can be removed by alkaline

phosphatase treatment for subsequent radiolabeling (Figure 7 , lanes 5-9),

indicating that the 5' termini of the siRNA had been phosphorylated in vivo.

Third , only the antisense strand is recovered by biotin pull-out assays.

siRNA duplexes were 5' end labeled with 32P by T4 PNK, heat denatured (10

min at 95 C), and analyzed on a polyacrylamide-7 M urea denaturing gel. As

shown in Figure 7 (lane 3), two single-stranded RNA species corresponding to
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the sense and biotinylated-antisense strands were observed , indicating that the

siRNA duplexes were fully denatured under these conditions. Denatured siRNA

duplexes contained approximately equal molar amounts of the sense and the

antisense strands of RNA (Figure 7 , lane 3). The cells were transfected with

duplex siRNA, but the major products of the isolated siRNA (Figure 7 , lanes 5-

by biotin pull-out assay exhibited electrophoretic moblities identical to the

antisense strand (lane 3), indicating that only biotinylated antisense strands were

being recovered. These results suggest that RISC melts the duplex siRNA and

separates the antisense from the sense strand during RNA interference in vivo.

Complete unwinding of siRNA duplex is not necessary for RNA

interference pathway in vivo

ATP-dependent unwinding of the siRNA duplex in the RISC has been

proposed to activate the complex to generate RISC* , which is competent to

mediate RNAi (166). Although unwinding of siRNA in Drosophila embryo Iysates

has been demonstrated in the presence of A TP , the efficiency of unwinding

seems low since only 5% of unwound siRNA was detected (166).

To examine whether or not the siRNA duplex in human cells is completely

unwound , we performed RNA interference experiments with siRNA duplexes

covalently crosslinked by psoralen photochemistry. Psoralens are bifunctional

furocoumarins that intercalate between the base pairs of double-stranded nucleic

acids and can photoreact with pyrimidine bases to form monoadducts and
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crosslinks (for review see 34). The structure of the psoralen derivative , 4'

(hydroxymethyl)- trimethylpsoralen (HMT) used in this study is shown in

Figure 8A. Psoralen crosslinking involves two successive photochemical

reactions that take place at the 3,4 or 4' 5' double bonds of psoralen (34). Upon

long-wave UV irradiation (320-400 nm), the intercalated psoralen can photoreact

with adjacent pyrimidine bases to form either furan-side or pyrone-side

monoadducts , which are linked to only one strand of the helix (34). By absorbing

a second photon , the furan-side monoadducts can be driven into diadducts

which are covalently linked to both strands of the helix (89 , 111). Psoralen

crosslink formation occurs only when psoralen adds to adjacent and opposite

pyrimidine bases in the double helix. The reaction is primarily with uracil in native

RNAs, but reactions with cytidine have also been reported (137 , 235, 237).

Based on psoralen photoreactivity, three possible psoralen crosslink sites in the

GFP siRNA duplex are shown in Figure 88. Note that there is no chance for all

three sites to be crosslinked in one RNA.

Unlike the noncrosslinked ds siRNA , the two strands of the crosslinked

siRNA duplex could not separate from each other under denaturing conditions so

that the crosslinked siRNA duplex showed characteristically retarded mobility in

polyacryalmide gel electrophoresis (PAGE) containing 7 M urea (Figure 8C).

Crosslinking efficiency depended on the psoralen concentration (Figure 8C

lanes 2 and 3). To further verify the presence of crosslinks in the RNA helix and

rule out the possibility of only monoadduct formation , the psoralen crosslinks

,,-
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were irradiated with short wave UV (254 nm), which showed photoreversal of the

crosslinked bonds (Figure 8C , lane 4). The crosslinked siRNA duplex (Figure 8C

lane 3 , upper band) was excised from the gel and purified. As control , the
noncrosslinked siRNA that was irradiated with long wave UV (360 nm) (Figure

, lane 3 , lower band) was also purified by the same method. The structures of

the purified noncrosslinked and psoralen crosslinked siRNA duplexes were

confirmed by PAGE containing 7 M urea (Figure 8C , lanes 5 and 6).

Fluorescence imaging of living cells treated with crosslinked siRNA duplex

showed that the siRNA duplex s inability to separate on PAGE did not completely

abolish its RNA interference activity (Figure 8D , ds-XL). Quantitative analysis of

GFP fluorescence intensity indicated that crosslinked siRNA retained 30% of its

RNAi activity (Figure 8E , blue line). These results demonstrate that a complete

unwinding of the siRNA duplex is not required for gene silencing in vivo (see

Discussion).

There is a possibility that the psoralen crosslink of RNA can be
photoreversed during transfection, repaired or removed by some unknown

mechanism inside the cells , which might cause the partial RNA interference

effect in vivo observed in Figures 8D and 8E. To rule out this possibility, we

carried out a psoralen crosslinking experiment with siRNA duplex containing

biotin at the 3' end of the antisense strand. The crosslinked duplex (ss/as3'

Biotin-XL) was isolated and purified as described above and transfected into

HeLa cells by lipofectamine. Biotinylated siRNA was isolated from the cells 30 hr
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posttransfection by biotin pull-out assay, SAP treated , and 32P- labeled by T4

PNK as described above. The biotinylated siRNA was still crosslinked (Figure 9

lane 7) at 30 hr posttransfection. When UV irradiated (254 nm), this higher

molecular weight siRNA species was converted into two RNA species

corresponding to sense and antisense strands (Figure 9 , lane 8), indicating the

reversibility of the psoralen crosslink. These results show that crosslinked siRNA

duplexes can enter the RNAi pathway.



195

DISCUSSION

By using a quantitative dual fluorescence-based system , we have

dissected the kinetics and a number of important parameters involved in the

RNAi pathway in cultured human cells. Our results highlight the role of free 5' end

hydroxyl groups and the requirement of an A-form helical structure between the

antisense strand and the target mRNA. We also found that a complete unwinding

of the siRNA helix is not necessary to cause RNAi effects in vivo.

The time-dependent effect of siRNA may reflect a time lag between target

mRNA degradation and the half- life of the existing protein expressed from the

target gene. This time dependence may also indicate that the siRNAs need to be

processed or assembled into an active complex with cellular factors for effective

RNA interference.

Although RNA interference lasted at least 66 hr in HeLa cells , quantitative

analysis indicated that inhibition by siRNAs did not persist. After reaching

maximal activity at 42 hr posttransfection , RNA interference started to decrease

at 54 hr, with only 70% inhibition activity at 66 hr. We also found that 5%-10%

protein expressed from the genes targeted by siRNA remained at 42 hr

posttransfection , but protein amount showed gradual recovery to normal levels

between 66 to 90 hr (3 to 4 days) posttransfection (Y. L.C. and T.M.

unpublished data). The recovery of target gene expression also indicates that

RNA interference by exogenous siRNA duplex does not exist forever 

mammalian cells. These findings suggest that the proposed amplification system
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driven by RdRP and present in plants and nematodes may not exist or has very

little effect on siRNA-mediated gene silencing in mammalian cells.

Recent studies have shown that synthetic siRNAs containing 5' OH termini

can successfully induce RNAi effects in Drosophila embryo Iysates (58 , 166) and

cultured mammalian cells (55). A model involving a 5' end kinase activity

necessary for RNA interference has been proposed (166). To our knowledge

however, there is no evidence that the 5' end hydroxyl is required for in vivo

interference activity. Our results show that replacing the 5' OH , a kinase target

site , with amino groups inhibited RNAi activity. Further isolation of siRNA by

biotin pull-out experiments revealed that prior phosphatase activity was required

for in vitro 5' end radiolabeling by a polynucleotide kinase. Taken together , these

results provide strong evidence for the requirement of 5' end kinase activity for

RNA interference effects in vivo.

What about a free 3' end for RNAi effects in vivo? An RNA-directed RNA

polymerase (RdRP) chain reaction , primed by siRNA , has recently been

proposed to amplify the interference effects of a small amount of trigger RNA

(reviewed in 164). Lipardi et al. (2001) have shown siRNA-primed RNA synthesis

in Drosophila embryo Iysates and suggested that RNAi in Drosophila involves an

RdRP where siRNA primes the conversion of target RNA to dsRNA. Further

evidence of RdRP involvement in the RNAi pathway in C. elegans has been

provided in studies (215) showing target RNA-templated synthesis of new

dsRNA. These studies highlight the importance of a 3' hydroxyl in priming
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subsequent RdRP reactions. An RdRP homolog has not yet been identified in the

human genome , suggesting the presence of a separate enzyme that can carry

out primer-dependent replication of an RNA template. Our results demonstrate

that blocking the 3' position did not significantly affect RNAi activity of siRNA in

human cells. Results of our kinetic experiments show that the interference effect

lasted only -4 days , indicating the absence of an amplification mechanism in

human cells. In addition , our biotin pull-out experiments show that the 3' end

biotin groups on the antisense strand were not efficiently removed during RNAi

activities in HeLa cells. Based on these studies , we suggest a model where RNA

amplification by RNA-dependent RNA polymerase is not essential for RNA

interference in mammalian cell lines.

It is interesting to note that we found no requirement for a perfect A-form

helix in siRNA for interference effects in HeLa cells , but an A-form structure was

required for antisense-target RNA duplexes. These results suggest an RNAi

mechanism where RISC formation does not involve perfect RNA helix

recognition , but RISC* assembly requires an A-form helical structure.

The most intriguing results were obtained by crosslinking siRNAs and

testing their interference activities in HeLa cells. Psoralen crosslinked siRNA

duplexes retained 30% of RNA interference activity. This result can be explained

by psoralen photocrosslinking chemistry. There are three possible sites in the

GFP siRNA duplex where psoralen can crosslink , yet the crosslinking reaction is

not efficient enough to create multiple crosslinks in a single given siRNA duplex
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(34 , 235). Thus , in the purified crosslinked siRNA duplex population , about one-

third had crosslinking at the site near the 5' end of the antisense strand , about

one-third had crosslin king in the middle region , and the rest had crosslin king near

the 3' end of the antisense strand.

We already showed that accessibility to the 5' termini of the antisense

strand is required for efficient RNA interference in vivo. 5' phosphorylation of the

antisense strand is also required for RNA interference in vitro (166). The

cleavage site on target mRNA has been shown to be determined by the 5' end

position of the target-recognizing siRNA (58). Based on these findings , we

suggest that unwinding of the siRNA duplex would start from the 5' end of the

antisense strand , which sets the ruler for target mRNA cleavage. If crosslinking

occurred near the 5' end of the antisense strand , it would completely prohibit the

unwinding of the siRNA duplex and block access to the 5' termini of the antisense

strand , which would completely abolish the RNAi effect. If crosslinking occurred

in the middle of the siRNA duplex , near the cleavage site of mRNA, we suggest

that , although the siRNA duplex could still undergo some unwinding, this

crosslink might interfere with the pairing between target mRNA and the guiding

siRNA, thus also blocking the RNAi effect. If crosslinking occurred near the 3'

end of the antisense strand , the duplex RNA could unwind , not completely but

sufficient for the antisense strand to hybridize to the target mRNA. We have

already shown that blocking either the 3' end of the antisense strand or the 5' end

of the sense strand has no significant effect on its RNAi activity. It would thus be
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reasonable to believe that a siRNA duplex with crosslinking near the 3' end of the

antisense strand may stil be competent in RNA interference. This hypothesis

also explains the remaining 30% RNAi activity in the psoralen-crosslinked siRNA

duplex.

These results suggest a possible model for the RNAi pathway in human

cells. An RNA-protein complex containing siRNA (RISC) is assembled without

the requirement for an A-form RNA helix and/or a free 3' OH. The 5' OH of the

siRNA duplex is phophorylated by a kinase. During activation of RISC to RISC*

a 5'3' helicase unwinds the RNA duplex to allow hybridization between the

antisense strand of siRNA and the target RNA. The requirement of a perfect A-

form helix at this stage strongly suggests that another protein (or protein

complex) binds this RNA duplex , either in a structural role and/or assisting in the

cleavage of mRNA. A complete unwinding of the siRNA duplex is not required for

this process , nor can this interference activity be amplified via the 3' end.

However, unwinding of the duplex up to the cleavage site may be necessary so

that the antisense strand can form an A-form helix with the target strand for

further protein interactions. These results also argue against the involvement of

RNA amplification mechanism(s) for RNA interference in human cells.

In summary, our results provide new insight into the mechanism of RNAi

in mammalian cells , and these results could guide the design of siRNA structures

useful in probing biological questions and in functional genomic studies.
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Figure 1. Dual fluorescence reporter assay system for RNAi analysis in

HeLa cells. (A) Graphical representation of dsRNAs used for targeting GFP

mRNA and RFP mRNA. GFP and RFP were encoded by the pEGFP-C1 and

pDsRed1-N1 reporter plasmid , respectively. siRNAs were synthesized with 2 nt

deoxythymidine overhangs at the 3' end. The position of the first nucleotide of the

mRNA target site is indicated relative to the start codon of GFP mRNA or RFP

mRNA. The sequence of the antisense strand of siRNA is exactly complementary

to the mRNA target site. (B) Fluorescence images showing specific RNA

interference effects in living HeLa cells. Fluorescence in living cells was

visualized by fluorescence microscopy at 48 hr posttransfection. (a) and (b),

images of mock-treated cells (no siRNA added); (c) and (d), images of GFP

siRNA-treated cells; (e) and (f), images of RFP siRNA-treated cells. (C)

Quantitative analysis of RNAi effects in HeLa cells. Fluorescence emission

spectra of GFP and RFP in total ceillysates were detected by exciting at 488 and

568 nm , respectively. (D) Kinetics of RNAi effects in HeLa cells. Ratios of

normalized GFP to RFP fluorescence intensity over a 66 hr time course. The

fluorescence intensity ratio of target (GFP) to control (RFP) protein was

determined in the presence of double-strand (ds) RNA (green bars) and

normalized to the ratio observed in the presence of antisense strand (as) RNA

(blue bars). Normalized ratios less than 1.0 indicate specific RNA interference.

Maximal RNAi effect occurred at 42 hr posttransfection.
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Figure 2. Analysis of specific RNAi activities by western blotting. Antisense

and double-strand RNA are indicated as as and ds , respectively. GFP as ((A), left

panel), GFP ds ((A), right panel), RFP as ((B), left panel), or RFP ds ((B), right

panel) were cotransfected with pEGFP-C 1 and pDsRed 1-N 1 reporter plasm ids

into HeLa cells. Cells were harvested at various times , resolved on 10% SDS-

PAGE , transferred onto PVDF membranes , and immunoblotted with antibodies

against EGFP and DsRed1-N1. The membrane was stripped and reprobed with

anti-actin antibody to check for equal loading of total proteins.
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Figure 3. Expression of GFP in HeLa cells treated with antisense or double-

stranded siRNA targeting GFP. Transfected cells were harvested at various

times after transfection and total cell Iysates were analyzed by fluorescence

spectroscopy. Fluorescence emission spectra of GFP and RFP were detected by

exciting at 488 and 568 nm , respectively.
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Figure 4. Modification of GFP siRNA duplexes. (A) Structure of 5' N3 (amino

group with 3-carbon linker, red) and 3' Pmn (puromycin , blue) modifications. (B)

Classification and nomenclature of the modified siRNAs. Sense (top row , purple)

and antisense (bottom row , black) strands of siRNA species are shown with their

N3 (red) and 3' Pmn or biotin (blue) modifications. A dinucleotide internal

bulge structure (green) was introduced in sense , antisense , or duplex RNAs.
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Figure 5. Fluorescence images showing RNA interference effects in living

HeLa cells transfected with modified siRNA duplexes. HeLa cells were

cotransfected by lipofectamine with pEGFP- , pDsRed1-N1 reporter plasmids

and siRNA with a 5' modification (c-e) , 3' modification (f- i) , or internal bulge U-I).

Fluorescence in living cells was visualized at 48 hr posttransfection. GFP

fluorescence (left panels) and phase contrast images (right panels) are shown.

RNA used in each experiment is indicated on the left of each pair of panels.
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Figure 6. Quantitative analysis of RNAi effects in HeLa cells transfected

with modified siRNAs. pEGFP-C1 (as reporter), pDsRed1-N1 (as control)

plasmids and 50 nM siRNA were cotransfected into HeLa cells by lipofectamine.

Cells were harvested at various times after transfection. Fluorescence emission

spectra of GFP and RFP in total ceillysates were detected by exciting at 488 and

568 nm , respectively. (A) GFP emission spectra of modified siRNA-treated cells.

Emission spectra of GFP in Iysates from cells transfected with 5'-modified GFP

siRNAs (upper panel), 3' -modified GFP siRNAs (middle panel), and bulge-

containing GFP siRNAs (lower panel). For comparison , results from antisense-

(as , red line) and unmodified duplex siRNA- (ds , black line) treated cells are

included in each panel. (B) Ratios of normalized GFP to RFP fluorescence

intensity in Iysates from modified siRNA-treated HeLa cells over 66 hr. The

fluorescence intensity ratio of target (GFP) to control (RFP) fluorophore was

determined in the presence of 5' -modified GFP siRNAs (upper panel), 3'-modified

GFP siRNAs (middle panel), and bulge-containing GFP siRNAs (lower panel)

and normalized to the ratio observed in the presence of antisense strand siRNA.

Normalized ratios less than 1.0 indicate specific RNA interference effects. For

comparison , results from antisense RNA and duplex siRNA-treated cells are

included in each panel (as , orange bars; ds , yellow bars).
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Figure 7. Isolation of 5' end phosphorylated and 3' end biotinylated siRNA

from HeLa cells. HeLa cells were cotransfected with biotinylated GFP duplex

siRNA (ss/as3' Biotin) and pEGFP-C1 plasmid as described in the Experimental

Procedures. The siRNA was isolated by pull-out assay and subjected to

phosphatase and kinase reactions (see Experimental Procedures). In brief

streptavidin magnetic beads were used to pull out biotinylated siRNAs from

transfected cells , washed to remove unbound RNA , and split into two aliquots.

One aliquot was dephosphorylated with shrimp alkaline phosphatase (SAP), and

the RNA 5' ends were labeled with 32P by T4 polynucleotide kinase (PNK)

reaction. The other aliquot was not dephosphorylated. RNA was resolved on

20% polyacrylamide-7 M Urea gels and visualized by phosphorimager analysis.

Lanes 1-3 (marker lanes) contain 5' end-labeled RNA: lane 1 , sense strand (ss);

lane 2 , 3' biotinylated antisense strand (as3' Biotin); lane 3 , heat denatured (10

min at 95 C) siRNA duplex (ss/as3' Biotin). Lanes 5- , isolated biotinylated

siRNA with SAP treatment (lanes 5-9) or without (lanes 10-14). Lane 4 , RNA

isolated as above from HeLa cells without siRNA transfection.
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Figure 8. RNA interference activities of covalently photocrosslinked duplex

RNA in HeLa cells. (A) Structure of a psoralen derivative , 4' hydroxymethyl-

trimethylpsoralen (HMT), used to crosslink the duplex RNA. (B)

Photocrosslinking sites in GFP siRNA. Three preferred sites for psoralen addition

to a duplex RNA are shown by cyan letters with red bars indicating the C-

crosslinks formed by UV irradiation in the presence of HMT. (C) Psoralen

photocrosslinking of siRNA duplexes. Mixtures of siRNA duplex and psoralen

were exposed to UV 360 nm and denatured. Crosslinked and noncrosslinked

siRNAs were resolved on 20% PAGE containing 7 M urea (lanes 2 and 3). UV-

irradiated RNA bands were excised from the gel and purified. Purified crosslinked

dsRNA (ds-XL) and noncrosslinked dsRNA (ds ) are shown in lanes 6 and 5

respectively. To confirm the nature and purity of the crosslink , a portion of the

360 nm UV- irradiated sample (lane 3) was UV irradiated at 254 nm.

Photoreversal of psoralen crosslinked siRNA resulted in products with similar

electrophoretic mobility to the siRNA duplex without HMT treatment (lane 4). (D)

Fluorescence images showing RNA interference effects of psoralen

photocrosslinked siRNAs in living HeLa cells. Purified crosslinked ds siRNA (ds-

, bottom panels) was cotransfected with reporter pEGFP-C1 and control

pDsRed1-N1 plasmids into HeLa cells for dual fluorescence reporter assays.

Fluorescence (left panels) and phase contrast (right panels) images of living cells

were taken 48 hr posttransfection. For comparison , images from noncrosslinked

ds siRNA (ds , middle panels) and antisense siRNA (as , top panels) are also
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shown. (E) GFP emission spectra of psoralen photocrosslinked siRNA duplex-

treated cells. Cell Iysates were prepared from HeLa cells treated with antisense

siRNA (as), unmodified UV- irradiated duplex siRNA (ds ), and crosslinked ds

siRNA (ds-XL) and analyzed by fluorescence spectroscopy. Fluorescence

emission spectra of GFP and RFP were detected by exciting at 488 and 568 nm

respectively. GFP emission spectra are shown normalized to RFP expression.
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Figure 9. Isolation of psoralen-crosslinked siRNA from human cells. siRNA

duplexes were conjugated with 3' biotin (ss/as3' Biotin), psoralen crosslinked

and purified as described in Figure 6 and in the Experimental Procedures. HeLa

cells were cotransfected by lipofectamine with crosslinked siRNA (ss/as3' Biotin-

XL) and pEGFP-C1 plasmid , and siRNAs were isolated by biotin pull-out assay at

30 hr posttransfection as described in the Experimental Procedures. In brief

streptavidin-magnetic beads with biotinylated siRNA were subjected to

phosphatase treatment and 5' end labeled with 32P. RNA was resolved on 20%

polyacrylamide-7 M urea gels and visualized by phosphorimager analysis. Lane

RNA from HeLa cells without siRNA transfection. Lane 2 , 32P- labeled

noncrosslinked siRNA duplex (ss/as3' Biotin). Lane 3 , 32P- labeled 3' biotinylated

antisense strand siRNA (as3' Biotin). Lane 4 , 32P- labeled sense strand RNA

(ss). Lane 5 , 32P- labeled crosslinked siRNA duplex (ss/as3' Biotin-XL). Lanes 7

and 8 , siRNA isolated from HeLa cells treated with crosslinked siRNA duplex

(ss/as3' Biotin-XL). Lanes 6 and 8 , UV irradiation (254 nm) of crosslinked siRNA

to photoreverse the psoralen crosslinks.
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Table 1. Genomewide analysis of gene expression in P- TEFb knockdown

HeLa cells. Total mRNA from HeLa cells treated with and without siRNA directed

against hCycT1 (Cyclin T i1) or CDK9 (CDK9 i1) at 48h post transfection and the

expression of various genes were analyzed by using the GeneChip(I Human

Genome U133 (HG-U133) from Affmetrix. For comparison analysis , data from

cells treated with nonrelated ds siRNA (RFP ds) were used as baseline. A

Change p-value is calculated indicating an increase (I), decrease (D) or no

change in gene expression. The Signal Log Ratio (base on 2) estimates the

magnitude and direction of change of a transcript when two arrays are compared.

A complete list of down- and up-regulated genes with names and accession

numbers is shown here.
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Table 1.
ID# CyclinT.. CDK9.. Description

Signal Change Signal Change
ratio ratio

230465 -4. D Consensus includes gb:AI806674/FEA=EST
/DB XREF=gi:5393240
IDB - XRE F =estwf35d02.
ICLONE=IMAGE:2357571/UG=Hs. 121898 ESTs

204379 D gb:NM 000142.2/DEF=Homo sapiens fibroblast
growth factor receptor 3 (achondroplasia
thanatophoric dwarfsm) (FGFR3), transcript
variant 1 , mRNA. IFEA=mRNA IGEN=FGFR3
IPROD=fibroblast growth factor receptor 3
isoform 1 precursor IDB XREF=gi:13112046
IUG=Hs. 1420 fibroblast growth factor receptor 3
(achondroplasia, thanatophoric dwarfsm)
IFL= b:NM 000142. b:M58051.

234986

229256

225710

203650
226625

203153 2.49 D gb:NM 001548. 1/DEF=Homo sapiens interferon-
induced protein with tetratricopeptide repeats 
(IFIT1), mRNA. IFEA=mRNA IGEN=IFIT1
IPROD=interferon- induced protein
withtetratricopeptide repeats 1

IDB XREF=gi:4504584/UG=Hs.20315 interferon-
induced protein with tetratricopeptide repeats 
IFL= b:M24594. b:NM 001548.

201940 1.4

201324 D gb:NM 001423. 1/DEF=Homo sapiens epithelial
membrane protein 1 (EMP1), mRNA.
IFEA=mRNA IGEN=EMP1/PROD=epithelial
membrane protein 1 IDB XREF=gi:4503558
IUG=Hs. 79368 epithelial membrane protein 
IFL= b:U77085. b:U43916. b:NM 001423.

224893

204731

204396

203646 D gb:NM 004109.2/DEF=Homo sapiens ferredoxin
1 (FDX1), nuclear gene encoding mitochondrial
protein , mRNA. IFEA=mRNA IGEN=FDX1
IPROD=ferredoxin 1 precursor
/DB XREF=gi:13677224/UG=Hs.744 ferredoxin 1
IFL=gb:NM 0041 09.2 gb:J03548. 1 gb:M 18003.

b:M34788.
35148 D Cluster Incl. AC005954:Homo sapiens

chromosome 19 , cosmid R28784/cds=(0,2858)
Igb=AC005954/gi=3851201/ug=Hs.25527
Ilen=2859

222692

225847 _
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200600 D gb:NM 002444. 1/DEF=Homo sapiens moesin
(MSN), mRNA. /FEA=mRNA /GEN=MSN
/PROD=moesin /DB XREF=gi:4505256
/UG=Hs. 170328 moesin /FL=gb:M69066.

b:NM 002444.
238417 _

214121

225479 1.45

201941

225032

202686 D gb:NM 021913. 1/DEF=Homo sapiens AXL
receptor tyrosine kinase (AXL), transcript variant

, mRNA. /FEA=mRNA /GEN=AXL /PROD=AXL
receptor tyrosine kinase isoform 1 precursor
/DB XREF=gi:11863122/UG=Hs.83341 AXL
rece tor rosine kinase /FL= b:NM 021913.

212993 1.4

225179
218618 D gb:NM 022763. 1/DEF=Homo sapiens

hypothetical protein FLJ23399 (FLJ23399),
mRNA. /FEA=mRNA /GEN=FLJ23399
/PROD=hypothetical protein FLJ23399
/DB XREF=gi:12232434/UG=Hs.299883
hypothetical protein FLJ23399
/FL= b:NM 022763.

224989 D Consensus includes gb:A1824013 /FEA=EST
/DB XREF=gi:5444684
/DB XREF=estwj2ge07.
ICLONE=IMAGE:2404260 IUG=Hs. 122489 Homo
sapiens cDNA FLJ13289 fis , clone
OVARC1001170

209877 _ gb:AF010126. 1/DEF=Homo sapiens breast
cancer-specific protein 1 (BCSG1) mRNA
complete cds. /FEA=mRNA /GEN=BCSG1
/PROD=BCSG1 protein IDB XREF=gi:2281473
/UG=Hs.63236 synuclein , gamma (breast cancer-
specific protein 1) /FL=gb:AF01 0126.

I Qb:AF017256. 1 Qb:NM 003087.
228745

200831

229553

205619 1.4

212731

213372

201490

207357 _

238320 Consensus includes gb:AV659198/FEA-EST
IDB XREF=gi:9880212
/DB XREF=estA V659198 /CLONE=GLCFUE07
/UG=Hs. 11367 ESTs

211162 x at
226685 1.41
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202342 D gb:NM 015271. 1/DEF=Homo sapiens tripartite
motif protein TRIM2 (KIAA0517), mRNA.
/FEA=mRNA /GEN=KIAA0517 /PROD=tripartite
motif protein TRIM2/DB XREF=gi:13446226
/UG=Hs. 12372 tripartite motif protein TRIM2
/FL= b:AF220018. b:NM 015271.

236262

226785

213012

225319

201943

232125

208867 _

225266

208051

227052

226982

212919

201389 D gb:NM 002205. 1/DEF=Homo sapiens integrin
alpha 5 (fibronectin receptor , alpha polypeptide)
(ITGA5), mRNA. /FEA=mRNA /GEN=ITGA5
/PROD=integrin alpha 5 precursor
/DB XREF=gi:4504750 /UG=Hs. 149609 integrin
alpha 5 (fibronectin receptor, alpha polypeptide)
/FL= b:NM 002205.

203231

209406 at 1 67 098 D gb'AF095192 1 /DEF=Homo sapiens BAG-family
molecular chaperone regulator-2 mRNA , complete
cds. /FEA=mRNA /PROD=BAG-family molecular
chaperone regulator-2/DB XREF=gi:4322819
/UG=Hs.55220 BCL2-associated athanogene 2
/FL=gb:AF095192. 1 gb:AL050287.

I gb:NM 004282.
201681

227112

201971 gb:NM 001690. 1/DEF=Homo sapiens ATPase
H+ transporting, lysosomal (vacuolar proton
pump), alpha polypeptide , 70kD , isoform 1
(ATP6A1), mRNA. /FEA=mRNA /GEN=ATP6A1
/PROD=ATPase , H+ transporting, lysosomal
(vacuolarproton pump), alpha polypeptide , 70kD
isoform 1/DB XREF=gi:4502304/UG=Hs.281866
ATPase, H+ transporting, lysosomal (vacuolar
proton pump), alpha polypeptide , 70kD , isoform 1
/FL=gb:L09235. 1 gb:NM 001690.

IQb:AF113129.
218196

225750 Consensus includes gb:BE966748 /FEA=EST
/DB XREF=gi:11772486
/DB XREF=est:60166124 7R 
/CLONE=IMAGE:3916235/UG=Hs. 10949 Homo
sapiens cDNA FLJ14162 fis , clone
NT2RM4002504
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225242

241879

201149 D gb:U67195. 1/DEF=Human tissue inhibitor of
metalloproteinase-3 mRNA, complete cds.
/FEA=mRNA /PROD=tissue inhibitor of
metalioproteinase-3/DB XREF=gi:1519557
/UG=Hs.245188 tissue inhibitor of
metalloproteinase 3 (Sorsby fundus dystrophy,

pseudoinflammatory) /FL=gb:U67195.
b:U02571. b:U14394. b:NM 000362.

214895

226962

204298 D gb:NM 002317. 1/DEF=Homo sapiens Iysyl
oxidase (LOX), mRNA./FEA=mRNA /GEN=LOX
/PROD=lysyl oxidase /DB XREF=gi:4505008
/UG=Hs. 102267 Iysyl oxidase /FL=gb:M94054.

b:AF039291. b:NM 002317.
215177

232079
231550

201942 D gb:D85390. 1/DEF=Homo sapiens mRNA for
gp180-carboxypeptidase D- like enzyme , complete
cds. /FEA=mRNA /PROD=gp180-
carboxypeptidase D- like enzyme
/DB XREF=gi:3641620 /UG=Hs.5057
carboxypeptidase D /FL=gb:U65090.

b:D85390. b:NM 001304.
208712 1.49 D gb:M73554.1/DEF=Human bcl-1 mRNA

complete CDS. /FEA=mRNA /GEN=bcl-
/PROD=bcl- 1 /DB XREF= gi: 179364
/UG=Hs.82932 cyclin D1 (PRAD1: parathyroid
adenomatosis 1) /FL=gb:BC000076.

b:M73554.
227062 1.49

201409 1.48 I gb:NM 002709. 1/DEF=Homo sapiens protein
phosphatase 1 , catalytic subunit, beta isoform
(PPP1 CB), mRNA. /FEA=mRNA /GEN=PPP1 CB
/PROD=protein phosphatase 1 , catalytic subunit
betaisoform /DB XREF=gi:4506004
/UG=Hs.21537 protein phosphatase 1 , catalytic
subunit, beta isoform /FL=gb:NM 002709.

b:AF092905.
201015 1.47 D gb:NM 021991. 1/DEF=Homo sapiens junction

plakoglobin (JUP), transcript variant 2 , mRNA.
/FEA=mRNA /GEN=JUP /PROD=junction
plakoglobin , isoform 1/DB XREF=gi:12056467
/UG=Hs.2340 junction plakoglobin
/FL= b:NM 021991. b: BC000441.

224874 1.47

201617 _ 1.45 D gb:NM 004342.2/DEF-Homo sapiens caldesmon
1 (CALD1), mRNA. /FEA=mRNA /GEN=CALD1
/PROD=caldesmon 1/DB XREF=gi:11091984
/UG=Hs.325474 caldesmon 1
/FL= b:NM 004342. b:M64110.

224691 1.45
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228418 1.44

224597 _ 1.44

206584 1.43

235198 1.43

208779 1.42 D gb:L20817. 1/DEF=Homo sapiens tyrosine protein
kinase (CAK) gene , complete cds. IFEA=mRNA
IGEN=CAK IPROD=tyrosine protein kinase
IDB XREF=gi:306474/UG=Hs.75562 discoidin
domain receptor family, member 1
IFL= b:L20817.

228220 1.42

209748 1.41

211985 1.41

239503 1.41 1 .42 D Consensus includes gb:A180301 0 IFEA=EST
IDB XREF=gi:5368482/DB XREF=esttj60c11.
ICLONE=IMAGE:2145908/UG=Hs. 126877 ESTs

224702 1.4 D Consensus includes gb:BG501219/FEA=EST
/DB XREF=gi:13462747
IDB _XRE F =est602546289F 1
ICLONE=IMAGE:4668574/UG=Hs. 10248 Homo
sa iens cDNA FLJ20167 tis , clone COL09512

228708

32502 D Cluster Incl. AL041124:DKFZp434D0316
Homo sapiens cDNA , 3 end
Iclone=DKFZp434D0316/c1one end=3
Igb=AL041124 Igi=541 0060 lug=Hs.6748
lIen=719

223571 D gb:AF329842. 1 /DEF=Homo sapiens
complement-c1 q tumor necrosis factor-related
protein (CTRP6) mRNA , complete cds.
IFEA=mRNA IGEN=CTRP6 IPROD=complement-
c1 q tumor necrosis factor-relatedprotein
IDB XREF=gi:13274530 /UG=Hs.22011 Homo
sapiens complement-c1q tumor necrosis factor-
related protein (CTRP6) mRNA, complete cds
IFL= b:AF329842.

202351

213552 1.44

211708 D gb:BC005807.1/DEF=Homo sapiens , clone
MGC:10264 , mRNA, complete cds. /FEA=mRNA
IPROD=Unknown (protein for MGC:10264)
/DB XREF= i:13543283/FL= b:BC005807.

217887 _ D gb:NM 001981. 1/DEF=Homo sapiens epidermal
growth factor receptor pathway substrate 15
(EPS15), mRNA. IFEA=mRNA /GEN=EPS15
IPROD=epidermal growth factor receptor
pathwaysubstrate 15/DB XREF=gi:4503592
IUG=Hs.79095 epidermal growth factor receptor
pathway substrate 15/FL=gb:NM 001981.

b:U07707.
219023

243495 D Consensus includes gb:AL036450 /FEA-EST
IDB XREF=gi:5406002
/DB XREF=estDKFZ 564D1062 
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ICLONE=DKFZp564D1 062/UG=Hs. 1 03238 ESTs

209064 D gb:AL 136920. 1 IDEF=Homo sapiens mRNA;
cDNA DKFZp586C051 (from clone
DKFZp586C051); complete cds. IFEA=mRNA
IGEN=DKFZp586C051/PROD=hypothetical
protein IDB XREF=gi:12053334/UG=Hs. 1 09643
polyadenylate binding protein-interacting protein 1
IFL= b:AL 136920.

214975

229461

227312

225522

226390

226254 D Consensus includes gb:AI912523/FEA=EST
IDB XREF=gi:5632378
IDB XRE F =esttz25f09 .
ICLONE=IMAGE:2289641 IUG=Hs. 126914
KIM 1430 rotein

224618 1.43

226633

204855 D gb:NM 002639. 1/DEF=Homo sapiens serine (or
cysteine) proteinase inhibitor, clade B (ovalbumin),
member 5 (SERPINB5), mRNA. IFEA=mRNA
IGEN=SERPINB5/PROD=serine (or cysteine)
proteinase inhibitor, cladeB (ovalbumin), member
5 IDBjREF=gi:4505788IUG=Hs.55279 serine
(or cysteine) proteinase inhibitor, clade B
(ovalbumin), member 5/FL=gb:NM 002639.

b:U04313.
221568

208796 D gb:BC000196.1/DEF=Homo sapiens, cyclin G1
clone MGC:643, mRNA, complete cds.
IFEA=mRNA IPROD=cyclin G1
IDB XREF=gi:12652880 IUG=Hs. 79101 cyclin G1
IFL=gb:L49504. 1 gb:U47413. 1 gb:BC000196.

b:D78341. b:NM 004060.
225366

226817 _

219594

230788 D Consensus includes gb:BF059748/FEA=EST
IDB XREF=gi:10813644
IDB XREF=est7k65h01.
ICLONE=IMAGE:3480432/UG=Hs. 116346 ESTs
Highly similar to A46297 beta- 1 ,

acet I lucosamin Itransferase H.sa iens

226310

224800

1007 _ D U48705/FEATURE=mRNA
IDEFINITION=HSU48705 Human receptor

rosine kinase DDR ene , com lete cds
206315

212690
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218706

201469

238587 _

226051 1.24

225405

201602

209380

239269

227740 D Consensus includes gb:AW173222 /FEA=EST
IDB XREF=gi:6439170
IDB XREF=estxj84g11.
/CLONE=IMAGE:2663972/UG=Hs. 127310 ESTs

225575

212488 1.22 1.4

227853 1.22

224617 _ 1.22 1.47

205905

223441 D Consensus includes gb:AK026921. 1/DEF=Homo
sapiens cDNA: FLJ23268 fis , clone COL08932
highly similar to HSA387747 Homo sapiens
mRNA for sialin. /FEA=mRNA
/DB XREF=gi:10439893/UG=Hs. 117865 solute
carrier family 17 (anionsugar transporter), member
5/FL= b:AF244577.

205552

21 0749 D gb:L 11315. 1/DEF=Homo sapiens receptor
tyrosine kinase mRNA, complete cds.
/FEA=mRNA /PROD=receptor tyrosine kinase
/DB XREF=gi:403386/UG=Hs.75562 discoidin
domain receptor family, member 
/FL= b:L11315.

235258

235125

228531

204794 D gb:NM 004418.2/DEF=Homo sapiens dual
specificity phosphatase 2 (DUSP2), mRNA.
/FEA=mRNA /GEN=DUSP2 /PROD=dual
specificity phosphatase 2
/DB XREF=gi: 12707563 /UG=Hs. 1183 dual
specificity phosphatase 2/FL=gb:NM 004418.

b:L11329.
207169

202893

209468 D gb:AB017498.1/DEF=Homo sapiens LRP5
mRNA for Lipoprotein Receptor Related Protein 5
complete cds. /FEA=mRNA /GEN=LRP5
/PROD=Lipoprotein Receptor Related Protein 5
IDB XREF=gi:3582144/UG=Hs.6347 low density
lipoprotein receptor-related protein 5
/FL=gb:AB017498. 1 gb:AF064548.

b:AF077820. b:NM 002335.
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227685 1.48

201506

203679

206382 D gb:NM 001709. 1/DEF=Homo sapiens brain-
derived neurotrophic factor (BDNF), mRNA.
IFEA=mRNA IGEN=BDNF IPROD=brain-derived
neurotrophic factor IDB XREF=gi:4502392
IUG=Hs. 56023 brain-derived neurotrophic factor
IFL= b:NM 001709.

213623 1.46

228611

213151

213805 1.44

225571

202502

214443

223006

202067 _

205808

212589

64883 Cluster Incl. AI744083:wc36b04.x1 Homo sapiens
cDNA, 3 end Iclone=IMAGE-2317231
Iclone end=3 Igb=AI744083/gi=5112371
lu =Hs.65406/Ien=608

226671

225813

212340

229450 at
227771

204364

207147

212489

226045
221269 gb:NM 031286. 1/DEF=Homo sapiens

SH3BGRL3-like protein (SH3BGRL3), mRNA.
IFEA=mRNA IGEN=SH3BGRL3
IPROD=SH3BGRL3- like protein
IDB XREF=oi:13775197/FL=Ob:NM 031286.

228479

226115

222996 gb:BC002490. 1/DEF=Homo sapiens , hypothetical
protein , clone MGC:915, mRNA, complete cds.
IFEA=mRNA IPROD=hypothetical protein
IDB XREF=gi:12803342/UG=Hs. 15093
hypothetical protein IFL=gb:BC002490.
ab:AF151029. 1 ob:NM 016463.

203071

231716 Consensus includes gb:AF255304. 1 IDEF=Homo
sapiens membrane-associated nucleic acid
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binding protein mRNA, complete cds.
/FEA=mRNA /PROD=membrane-associated
nucleic acid bindingprotein
/DB XREF=gi:9837126/UG=Hs. 112227
membrane-associated nucleic acid binding protein
/FL= b:AF255304.

225607 _

225912

205594

211161 D gb:AF130082. 1/DEF=Homo sapiens clone
FLC1492 PR03121 mRNA, complete cds.
/FEA=mRNA /PROD=PR03121
/DB XREF=gi:11493468/UG=Hs. 119571
collagen , type III , alpha 1 (Ehlers-Danlos
syndrome type IV , autosomal dominant)
/FL= b:AF130082.

203203

210797

215489y_
201852y_
202667 _

203325

219297

243357 _

225725

224209 D gb:AF019638. 1 /DEF=Homo sapiens nedasin s-
form mRNA, complete cds. /FEA=mRNA
/PROD=nedasin s-form /DB XREF=gi:6469319
/UG=Hs.239147 guanine deaminase
/FL= b:AF019638.

213508

229399

225192

242931 1.41

203743
205383

226711 D Consensus includes gb:BF590117 /FEA=EST
/DB XREF=gi: 11682441
IDB XREF=estnab19b11.
/CLONE=IMAGE:3266253/UG=Hs. 106131 ESTs

226312

226237 _

225950

204540 gb:NM 001958. 1/DEF=Homo sapiens eukaryotic
translation elongation factor 1 alpha 2 (EEF1A2),
mRNA. /FEA=mRNA /GEN=EEF1A2

217738

217765

229010

227082 at



220178

229075

209849

212483
218294

218542

218585

209154

231094

223039

203563

212943

218945

221802

203150 at

1.43
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/PROD=eukaryotic translation elongation factor 
alpha2/DB XREF=gi:4503474/UG=Hs.2642
eukaryotic translation elongation factor 1 alpha 2
/FL= b:BC000432.1 b:NM 001958.

I gb:NM 021731. 1/DEF=Homo sapiens
hypothetical protein PP3501 (PP3501), mRNA.
/FEA=mRNA /GEN=PP3501 /PROD=hypothetical
protein PP3501/DB XREF=gi:11119425
/UG=Hs.301406 hypothetical protein PP3501
/FL= b:NM 021731.

I Consensus includes gb:A1754871 /FEA=EST
/DB XREF=gi:5133135
/DB XREF=estcr31 g04.
/CLONE=HBMSC cr31 04/UG=Hs. 111207 ESTs

I gb:AF029669. 1/DEF=Homo sapiens Rad51 
(RAD51 C) mRNA , complete cds. /FEA=mRNA
/GEN=RAD51 C /PROD=Rad51 C
/DB XREF=gi:2909800 /UG=Hs. 11393 RAD51
S. cerevisiae homolo C /FL= b:AF029669.

I gb:AF267865. 1 /DEF=Homo sapiens DC41
mRNA , complete cds. /FEA=mRNA /PROD=DC41
/DBjREF=gi:12006056/UG=Hs.271623
nucleoporin 50kD /FL=gb:AF267865.

b:AF107840. 1 b:NM 007172. 1 b:AF116624.

I gb:AF234997. 1/DEF=Homo sapiens glutaminase-
interacting protein 3 mRNA, complete cds.
/FEA=mRNA /PROD=glutaminase-interacting
protein 3/DB XREF=gi:12005281/UG=Hs. 12956
Tax interaction protein 1/FL=gb:AF028823.

b:NM 014604. 1 b:AF234997.

I gb:BC004144. 1/DEF=Homo sapiens , Similar to
PR01992 protein , clone MGC:1842 , mRNA
complete cds. /FEA=mRNA /PROD=Similar to
PR01992 protein /DB XREF=gi:13278734
/UG=Hs.9850 Homo sapiens cDNA: FLJ21589 fis,
clone COL06960 /FL= b:BC004144.

I gb:NM 021638. 1/DEF=Homo sapiens actin
fiament associated protein (AFAP), mRNA.
/FEA=mRNA /GEN=AFAP /PROD=actin filament
associated protein /DB XREF=gi:11056013
/UG=Hs.80306 actin fiament associated protein
/FL= b:AF188700.1 b:NM 021638.

I gb:NM 024109. 1/DEF=Homo sapiens
hypothetical protein MGC2654 (MGC2654),
mRNA. /FEA=mRNA /GEN=MGC2654
/PROD=hypothetical protein MGC2654
/DB XREF=gi:13129121/UG=Hs. 165428
hypothetical protein MGC2654
/FL= b:BC001908. 1 b:NM 024109.
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208709 I gb:U64898. 1/DEF=Homo sapiens NRD
convertase mRNA , complete cds. IFEA=mRNA
IPROD=NRD convertase IDB XREF=gi:2897866
IUG=Hs.4099 nardilysin (N-arginine dibasic
convertase IFL= b:U64898.

228867 _ I Consensus includes gb:BE541548/FEA=EST
IDB XREF=gi:9770193
IDB XREF=est601 067822F1
ICLONE=IMAGE:3454205/UG=Hs. 123386 ESTs

225836

201292

204228

211114

201536

219204 I gb:NM 021947. 1/DEF=Homo sapiens serine
racemase (SRR), mRNA IFEA=mRNA
IGEN=SRR IPROD=serine racemase
IDB XREF=gi:11345491/UG=Hs.27335 serine
racemase IFL= b:AF169974. b:NM 021947.

224824

206364

201675 1.43 I gb:NM 003488. 1/DEF=Homo sapiens A kinase
(PRKA) anchor protein 1 (AKAP1), mRNA
IFEA=mRNA IGEN=AKAP1/PROD=A kinase
(PRKA) anchor protein 1/DB XREF=gi:4502014
IUG=Hs. 78921 A kinase (PRKA) anchor protein 
IFL= b:BC000729. b:NM 003488.

241453 I Consensus includes gb:AA912743/FEA=EST
IDB XREF=gi:3052135
IDB XREF=estoI41 d04.
ICLONE=IMAGE: 1526023/UG=Hs.126421 ESTs
Highly similar to FAK1 HUMAN FOCAL
ADHESION KINASE 1 H.sa iens

223024

202533 I gb:BC003584. 1 IDEF=Homo sapiens
dihydrofolate reductase , clone MGC:3153, mRNA
complete cds. IFEA=mRNA IPROD=dihydrofolate
reductase IDB XREF=gi: 13097773
IUG=Hs.83765 dihydrofolate reductase
IFL=gb:BC000192. 1 gb:BC003584.

b:NM 000791.
208653

218979 I gb:NM 024945. 1/DEF=Homo sapiens
hypothetical protein FLJ12888 (FLJ12888),
mRNA/FEA=mRNA IGEN=FLJ12888
IPROD=hypothetical protein FLJ12888
IDB XREF=gi:13376426/UG=Hs.284137
hypothetical protein FLJ12888
IFL= b:NM 024945.

226181

223513 I gb:AF139625. 1 IDEF=Homo sapiens centrosomal
P4. 1-associated protein (CPAP) mRNA, complete
cds. IFEA=mRNA IGEN=CPAP
IPROD=centrosomal P4. 1-associated protein
IDB XREF= i:10643591/UG=Hs.283077
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centrosomal P4.1-associated protein;
uncharacterized bone marrow protein BM032
IFL= b:AF139625.

203740

219306 1.48

238756

228577 _

218755

219148

225456 I Consensus includes gb:AI708776 IFEA=EST
IDB XREF=gi:4998552
IDB XREF=estas35f01.
ICLONE=IMAGE:2319193/UG=Hs. 1 0130 ESTs

205063 I gb:NM 003616. 1/DEF=Homo sapiens survival of
motor neuron protein interacting protein 1 (SIP1),
mRNA. IFEA=mRNA IGEN=SIP1
IPROD=survival of motor neuron protein
interactingprotein 1/DB XREF=gi:4506960
IUG=Hs. 102456 survival of motor neuron protein
interacting protein 1 IFL=gb:AF027150.
b:NM 003616.

225549

225125 I Consensus includes gb:BF978280 IFEA=EST
IDB XREF=gi:12345495
IDB _XREF=est602148240F1
ICLONE=IMAGE:4307192/UG=Hs. 110702 Homo
sapiens mRNA; cDNA DKFZp761E212 (from
clone DKFZ 761E212

201185 I gb:NM 002775. 1 IDEF=Homo sapiens protease
serine, 11 (IGF binding) (PRSS11), mRNA.
IFEA=mRNA IGEN=PRSS11/PROD=protease
serine, 11 (IGF binding) IDB XREF=gi:4506140
IUG=Hs. 75111 protease, serine , 11 (IGF binding)
IFL= b:D87258. b:NM 002775.

211115

213761

219162

236641 I Consensus includes gb:AW183154/FEA=EST
IDB XREF=gi:6451630
IDB _XREF=estxj67b12.
ICLONE=IMAGE:2662271 IUG=Hs. 116649 ESTs

227356

225837 _

202536

225060

202399

211595 I gb:AB049944. 1 IDEF=Homo sapiens MRPS11
mRNA for mitochondrial ribosomal protein S11
complete cds. IFEA=mRNA IGEN=MRPS11
IPROD=mitochondrial ribosomal protein S11
IDB XREF= i:13620888/FL= b:AB049944.

219045
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200975 I gb:NM 00031 0. 1/DEF::Homo sapiens palmitoyl-
protein thioesterase 1 (ceroid-lipofuscinosis
neuronal 1 , infantile) (PPT1), mRNA.
IFEA::mRNA IGEN::PPT1 /PROD::palmitoyl-
protein thioesterase 1 (ceroid-lipofuscinosis
neuronal 1 , infantile) IDB XREF::gi:4506030
IUG::Hs.3873 palmitoyl-protein thioesterase 1
(ceroid-lipofuscinosis , neuronal 1 , infantile)
IFL:: b:U44772. b:NM 000310.

208931 1.48

229603

201555

202569 I gb:NM 002376. 1/DEF::Homo sapiens
MAPmicrotubule affnity-regulating kinase 3
(MARK3), mRNA. IFEA::mRNA IGEN::MARK3
IPROD::MAPmicrotubule affnity-regulating kinase
3 IDB XREF::gi:45051 02 IUG::Hs. 172766 

MAPmicrotubule affnity-regulating kinase 3
IFL:: b:M80359. b:NM 002376.

203905 I gb:NM 002582. 1/DEF::Homo sapiens poly(A)-
specific ribonuclease (deadenylation nuclease)
(PARN) , mRNA. IFEA::mRNA IGEN::PARN
IPROD::poly(A)-specific ribonuclease
(deadenylation nuclease) /D B - XRE F::g i :450561 0
IUG::Hs.43445 poly(A)-specific ribonuclease
deaden lation nuclease IFL:: b:NM 002582.

242617

227249 1.45

213007

218460

204622

207165

52164 I Cluster Incl. AA065185:zm50e09.s1 Homo
sapiens eDNA, 3 end Iclone::IMAGE-529096
/clone end::3 /gb::AA065185/gi::1559080

lu ::Hs.47008/Ien::605

203790

200639

206085 I gb:NM 001902. 1 IDEF::Homo sapiens
cystathionase (cystathionine gamma-lyase)
(CTH), mRNA. IFEA::mRNA IGEN::CTH
IPROD::cystathionase (cystathionine gamma-
lyase) IDB XREF::gi:4503124/UG::Hs. 19904
cystathionase (cystathionine gamma-lyase)
IFL:: b:NM 001902.

1.1 212651

221521 I gb:BC003186. 1/DEF::Homo sapiens, HSPC037
protein , clone MGC:673 , mRNA, complete cds.
IFEA::mRNA IPROD::HSPC037 protein
IDB XREF::gi:13112024/UG::Hs. 108196
HSPC037 protein IFL::gb:BC003186.

b:AF201939.
221931



201513

222000

201306

222103

225834

218875

207181

225195

204203

212815

222431

219502

223307 _

217127

222425

224626

201707 _

203494

208079

208808

1.44

1.4

1.47
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I gb:NM 001227. 1/DEF=Homo sapiens caspase 7
apoptosis-related cysteine protease (CASP7),
mRNA. /FEA=mRNA /GEN=CASP7
/PROD=caspase 7 , apoptosis-related cysteine
protease /DB XREF=gi:4502580 /UG=Hs.9216
caspase 7 , apoptosis-related cysteine protease
/FL=gb:U37448. 1 gb:U40281. 1 gb:U67319.

b:U67320.1 b:NM 001227.

I gb:NM 001806. 1/DEF=Homo sapiens
CCMTenhancer binding protein (CEBP), gamma
(CEBPG), mRNA. /FEA=mRNA /GEN=CEBPG
/PROD=CCMTenhancer binding protein gamma
/DB XREF=gi:4502768 /UG=Hs.2227
CCMTenhancer binding protein (CEBP), gamma
/FL= b:NM 001806.1 b:U20240.

I gb:AL 136719.1 /DEF=Homo sapiens mRNA;
cDNA DKFZp566G0346 (from clone
DKFZp566G0346); complete cds. /FEA=mRNA
/GEN=DKFZp566G0346 /PROD=hypothetical
protein /DB XREF=gi:12052956/UG=Hs.289043
spindlin /FL=gb:AL 136719. 1 gb:AF087864.

b:AF317228.2 b:AF106682. 1 b:NM 006717.

I gb:BC002551. 1/DEF=Homo sapiens, Similar to
gene rich cluster, C8 gene , clone MGC:2577
mRNA, complete cds. /FEA=mRNA
/PROD=Similar to gene rich cluster, C8 gene
/DB XREF=gi:12803452/UG=Hs.30114 Homo
sapiens , Similar to gene rich cluster, C8 gene
clone MGC:2577 , mRNA, complete cds
/FL= b:BC002551.

I gb:NM 002857. 1/DEF=Homo sapiens
peroxisomal farnesylated protein (PXF), mRNA.
/FEA=mRNA /GEN=PXF /PROD=peroxisomal
farnesylated protein /DB XREF=gi:4506338
/UG=Hs. 168670 peroxisomal farnesylated protein
/FL=gb:BC000496. 1 gb:NM 002857.

b:AB018541.

I gb:BC000903. 1 /DEF=Homo sapiens , high-
mobilt rou nonhistone chromosomal rote in
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, clone MGC:5234 , mRNA, complete cds.
IFEA=mRNA IPROD=high-mobility group
(nonhistone chromosomal)protein 2
IDB XREF=gi:12654170 IUG=Hs. 80684 high-
mobilty group (nonhistone chromosomal) protein
2/FL= b:BC000903. b:BC001063.

209714 I gb:AF213033.1/DEF=Homo sapiens isolate BX-
01 cyclin-dependent kinase associated protein
phosphatase mRNA, complete cds. IFEA=mRNA
IPROD=cyclin-dependent kinase associated
proteinphosphatase IDB XREF=gi: 12734643
IUG=Hs. 84113 cyclin-dependent kinase inhibitor 3
(CDK2-associated dual specificity phosphatase)
IFL=gb:AF213033. 1 gb:AF213034.
gb:AF213035. 1 gb:AF213036. 1 gb:AF213037.
gb:AF213038. 1 gb:AF213039. 1 gb:AF213040.
gb:AF213041. 1 gb:AF213042. 1 gb:AF213044.
gb:AF213046. 1 gb:AF213047. 1 gb:AF213048.
gb:AF213049. 1 gb:AF213050. 1 gb:AF213051.
gb:AF213052. 1 gb:AF213053. 1 gb:U02681.

b:L25876. b:NM 005192. b:L27711.
227157 _

218886

225649 1.49 I Consensus includes gb:AA001414/FEA=EST
IDB XREF=gi:1436899
lOB XREF=estze45d08. s 1

ICLONE=IMAGE:361935/UG=Hs. 1 00057 Homo
sa iens cDNA: FLJ22902 fis, clone KAT05581

200631 I gb:NM 003011. 1 IDEF=Homo sapiens SET
translocation (myeloid leukemia-associated)
(SET), mRNA. IFEA=mRNA IGEN=SET
IPROD=SET translocation (myeloid leukemia-
associated) IDB XREF=gi:4506890
IUG=Hs. 145279 SET translocation (myeloid
leukemia-associated) IFL=gb:U51924.

b:M93651. b:NM 003011.
201515 1.46

212297 _

213047
218602

231855

223700 I gb:AY028916.1/DEF=Homo sapiens GAJ (GAJ)
mRNA, complete cds. IFEA=mRNA IGEN=GAJ
IPROD=GAJ IDB XREF=gi:13488608
IUG=Hs.294088 Homo sapiens GAJ (GAJ)
mRNA, com lete cds IFL= b:AY028916.

222416 I gb:U76542. 1/DEF=Human pyrroline-
carboxylate synthase long form (P5CSL) mRNA
complete cds. IFEA=mRNA IGEN=P5CSL
IPROD=pyrroline-5-carboxylate synthase long
form IDB XREF=gi:4335784/UG=Hs. 114366
pyrroline-5-carboxylate synthetase (glutamate
gamma-semialdehyde synthetase)
IFL= b:U68758. b:U76542. b:NM 002860.

228812 at
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224601

204616

218883 I gb:NM 024629. 1/DEF=Homo sapiens
hypothetical protein FLJ23468 (FLJ23468),
mRNA. /FEA=mRNA /GEN=FLJ23468
/PROD=hypothetical protein FLJ23468
/DB XREF=gi:13375855/UG=Hs.38178
hypothetical protein FLJ23468
/FL= b:NM 024629.

200629

218545

200640

217791 gb:NM 002860. 1/DEF=Homo sapiens pyrroline-
5-carboxylate synthetase (glutamate gamma-
semialdehyde synthetase) (PYCS), mRNA.
/FEA=mRNA /GEN=PYCS /PROD=pyrroline-
carboxylate synthetase (glutamategamma-
semialdehyde synthetase) /DB XREF=gi:4506348
/UG=Hs. 114366 pyrroline-5-carboxylate
synthetase (glutamate gamma-semialdehyde
synthetase) /FL=gb:U68758. 1 gb:U76542.

b:NM 002860.
201328

232235 I Consensus includes gb:AK021539. 1/DEF=Homo
sapiens cDNA FLJ11477 fis , clone
HEMBA1001746 , weakly similar to Homo sapiens
squamous cell carcinoma antigen recognized by T
cell (SART -2) mRNA. IFEA=mRNA
/DB XREF=gi:1 0432739 IUG=Hs. 124673 Homo
sapiens cDNA FLJ11477 fis, clone
HEMBA1001746 , weakly similar to Homo sapiens
squamous cell carcinoma antigen recognized by T
cell SART-2 mRNA

208654

212367 _

212444

236300

228507 _

212688

218373 I gb:NM 022476. 1/DEF=Homo sapiens
hypothetical protein FLJ13258 similar to fused
toes (FLJ13258), mRNA. /FEA=mRNA
/GEN=FLJ13258/PROD=hypothetical protein
FLJ13258 similar to fusedtoes
/DB XREF=gi:11968026/UG=Hs.288929
hypothetical protein FLJ 13258 similar to fused
toes /FL= b:NM 022476.

204962 1.4

213682 1.4

210821 1.41



262

/UG=Hs. 1594 centromere protein A (17kD)
/FL= b:BC002703.

218458 1.42 I gb:NM 022471. 1/DEF=Homo sapiens
hypothetical protein FLJ 13057 similar to germ cell-
less (FLJ13057), mRNA. /FEA=mRNA
/GEN=FLJ13057 /PROD=hypothetical protein
FLJ 13057 similar to germcell-Iess
/DB XREF=gi: 11968020 /UG=Hs.243122
hypothetical protein FLJ13057 similar to germ cell-
less /FL= b:NM 022471.

40189 1.42 I Cluster Incl. M93651 :Human set gene, complete
cds /cds=(3 836) /gb=M93651/gi=338038
/u =Hs. 145279 lIen=2562

225006 1.42

217958 1.43

224560 1.43

222889 1.43 I Consensus includes gb:A1703304 /FEA=EST
/DB XREF=gi:4991204
/DB XREF=estwd82f11.
/CLONE=IMAGE:2338125/UG=Hs. 115660
hypothetical protein FLJ 1281 0

/FL= b:NM 022836.
213359 1.44

231579 1.46

228597 _ 1.46

200896 1.48 1.45
203341 1.49

213523 1.49

214949 1.49

201001 1.49
205053 I gb:NM 000946. 1/DEF=Homo sapiens primase

polypeptide 1 (49kD) (PRIM1), mRNA.
/FEA=mRNA /GEN=PRIM1/PROD=primase
polypeptide 1 (49kD) /DB XREF=gi:4506050
/UG=Hs.82741 primase , polypeptide 1 (49kD)
/FL= b:BC005266. b:NM 000946.

225865

213322

217736 I gb:NM 014413.2/DEF=Homo sapiens heme-
regulated initiation factor 2-alpha kinase (HRI),
mRNA. /FEA=mRNA /GEN=HRI/PROD=heme-
regulated initiation factor 2-alpha kinase
/DB XREF=gi:11125767 /UG=Hs.258730 heme-
regulated initiation factor 2-alpha kinase
/FL=gb:NM 014413.2 gb:AL 136563.
gb:AF147094. 1 gb:AF255050. 1 gb:AF116634.

b:AF183414.
48808 I Cluster Incl. AI144299:qb59h06.x1 Homo sapiens

cDNA, 3 end /clone=IMAGE-1704443
/clone end=3 /gb=AI144299/gi=3666108
/u =Hs. 1 06843 lIen=765

218131

220607 x at 1.43
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229700

229299

203745

203126

216484

213959

208405

212021

225343

224819

214948

222844 I gb:AF169974. 1 /DEF=Homo sapiens serine
racemase mRNA, complete cds. /FEA=mRNA
/PROD=serine racemase
/DB XREF=gi:11 034784/UG=Hs.27335 serine
racemase /FL=gb:AF169974. 1 gb:NM 021947.

225261

205417

209513 I gb:BC004331.1/DEF=Homo sapiens , Similar to
RIKEN cDNA 2610207116 gene, clone
MGC:10940 , mRNA, complete cds. /FEA=mRNA
/PROD=Simiiar to RIKEN cDNA 2610207116 gene
/DB XREF=gi:13279253/UG=Hs.47986 Homo
sapiens , Similar to RIKEN cDNA 2610207116
gene , clone MGC:10940, mRNA , complete cds
/FL=gb:BC004331.

202402 I gb:NM 001751. 1/DEF=Homo sapiens cysteinyl-
tRNA synthetase (CARS), mRNA./FEA=mRNA
/GEN=CARS /PROD=cysteinyl-tRNA synthetase
/DB XREF=gi: 1 0835050 /UG=Hs. 159604
cysteinyl-tRNA synthetase /FL=gb:NM 001751.
gb:BC002880. 1 gb:AF288206. 1 gb:AF288207.

202534

217959

224715

222843

212474

217794

226546

209512 gb:BC004331. 1/DEF=Homo sapiens, Similar to
RIKEN cDNA 2610207116 gene, clone
MGC:10940 , mRNA, complete cds. /FEA=mRNA
/PROD=Similar to RIKEN cDNA 2610207116 gene
/DB XREF=gi:13279253/UG=Hs.47986 Homo
sapiens , Similar to RIKEN cDNA 2610207116
gene , clone MGC:10940, mRNA , complete cds
/FL=gb:BC004331.

212020

218563

228992
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213310

204634

240983

202580 I gb:NM 021953. 1/DEF=Homo sapiens forkhead
box M1 (FOXM1), mRNA./FEA=mRNA
/GEN=FOXM1/PROD=forkhead box M1
IDBJ(REF=gi:11386144/UG=Hs.239 forkhead
box M1/FL=gb:NM 021953. 1 gb:U83113.

b:L 16783.
203324

202370 I gb:NM 001755. 1/DEF=Homo sapiens core-
binding factor, beta subunit (CBFB), transcript
variant 2 , mRNA. /FEA=mRNA /GEN=CBFB
/PROD=core-binding factor, beta subunit, isoform
2/DB XREF=gi:13124872/UG=Hs. 179881 core-
bindin factor, beta subunitlFL= b:NM 001755.

221739

230251

200779 I gb:NM 001675. 1/DEF=Homo sapiens activating
transcription factor 4 (tax-responsive enhancer
element B67) (ATF4), mRNA. /FEA=mRNA
/GEN=ATF4/PROD=activating transcription factor
4/DBJ(REF=gi:4502264/UG=Hs. 181243
activating transcription factor 4 (tax-responsive
enhancer element B67) /FL=gb:M86842.

b:NM 001675.
209096

202209 2.48

216483

200749

205047 _ I gb:NM 001673. 1/DEF=Homo sapiens
asparagine synthetase (ASNS), mRNA.
/FEA=mRNA /GEN=ASNS /PROD=asparagine
synthetase IDB XREF=gi:4502258
/UG=Hs.75692 asparagine synthetase
/FL= b:M27396. b:NM 001673.

209452 I gb:AF035824.1 /DEF=Homo sapiens vesicle
soluble NSF attachment protein receptor (VTI1)
mRNA, complete cds. /FEA=mRNA /GEN=VTI1
/PROD=vesicle soluble NSF attachment protein
receptor /DB XREF=gi:2687399/UG=Hs. 169206
vesicle-associated soluble NSF attachment
protein receptor (v-SNARE; homolog of S.
cerevisiae VT11) /FL=gb:BC003142.

b:AF035824. b:AF060902. b:NM 006370.
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