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Abstract 

 

Understanding the complex mechanisms to assemble a functional brain 

demands sophisticated experimental designs. Drosophila melanogaster, a model 

organism equipped with powerful genetic tools and evolutionarily conserved 

developmental programs, is ideal for such mechanistic studies. Valuable insights 

were learned from research in Drosophila ventral nerve cord, such as spatial 

patterning, temporal coding, and lineage diversification. However, the blueprint of 

Drosophila cerebrum development remains largely unknown.  

Neural progenitor cells, called neuroblasts (NBs), serially and 

stereotypically produce neurons and glia in the Drosophila cerebrum. 

Neuroblasts inherit specific sets of early patterning genes, which likely determine 

their individual identities when neuroblasts delaminate from neuroectoderm. 

Unique neuroblasts may hence acquire the abilities to differentially interpret the 

temporal codes and deposit characteristic progeny lineages. We believe 

resolving this age-old speculation requires a tracing system that links patterning 

genes to neuroblasts and corresponding lineages, and further allows specific 

manipulations.  

Using modern transgenic systems, one can immortalize transient NB gene 

expressions into continual labeling of their offspring. Having a collection of knock-

in drivers that capture endogenous gene expression patterns would open the 

door for tracing specific NBs and their progenies based on the combinatorial 

expression of various early patterning genes. Anticipating the need for a high-
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throughput gene targeting system, we created Golic+ (gene targeting during 

oogenesis with lethality inhibitor and CRISPR/Cas “plus”), which features 

efficient homologous recombination in cystoblasts and a lethality selection for 

easy targeting candidate recovery. Using Golic+, we successfully generated T2A-

Gal4 knock-ins for 6 representative early patterning genes, including lab, unpg, 

hkb, vnd, ind, and msh. They faithfully recapitulated the expression patterns of 

the targeted genes. After preserving initial NB expressions by triggering 

irreversible genetic labeling, we revealed the lineages founded by the NBs 

expressing a particular early patterning gene. 

Identifying the neuroblasts and lineages that express a particular early 

patterning gene should elucidate the genetic origin of neuroblast diversity. We 

believe such an effort will lead to a deeper understanding of brain development 

and evolution. 
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CHAPTER I 

 

Introduction 

 

The brain is one of the most complex and fascinating organs of a living organism. 

It consists of numerous types of neurons and glia that support and communicate 

with each other to direct sophisticated and purposeful behavioral outputs. 

Currently, it remains largely a mystery how brain cells, each with their own 

characteristics, wire their fine processes together and further aggregate to form 

higher orders of functional structures. However, it has become clear that these 

diverse cells are serially deposited by their parental stem cells from 

embryogenesis to adulthood. Mapping individual neurons based on their 

developmental origins offers a straightforward strategy to resolve this complex 

structure and its development simultaneously. 

The spatiotemporal patterne of neurogenesis suggests three mechanisms 

by which a brain can acquire its full collection of diversified neurons and glia. 

First, each stem cell can be specified differently when it emerges from a 

neuroectoderm (Jessell 2000; Bertrand et al. 2002). Second, a temporal 

patterning system can further modify the properties of stem cells and their 

offspring throughout development (Wonders and Anderson 2006; Molyneaux et 

al. 2007; Franco et al. 2012). Third, post-mitotic neurons and glia can be further 

shaped by the environment to acquire their final identities (Hidalgo et al. 2005; da 
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Silva and Wang 2011). Overall, neurogenesis is plastic and coordinates well with 

organism growth (Zhao et al. 2008; Lin et al. 2013). These mechanisms, and 

likely others, jointly instruct the formation of functional neural and glial networks 

in a brain. 

The brain of fruit fly, Drosophila melanogaster, serves as an attractive 

model nervous system to study these intricate mechanisms in great depth. First, 

it has well-described compartments and relatively large but still manageable 

number of neurons (~22,000 neurons per cerebrum) (Rein et al. 2002; Jenett et 

al. 2012; Yu et al. 2013a). It is composed of distinct neuropil structures, such as 

the mushroom bodies, central complex, optic lobes, antennal lobes, and other 

specialized neuropils and fiber tracts, which have no counterparts in the ventral 

nerve cord (VNC), the posterior truncal part of the fly central nervous system 

(CNS). A significant amount of research has been done to understand how these 

structures are serially and stereotypically produced (Lin and Lee 2012). Their 

origin is of great interest because these neurons function together and generate 

versatile innate and acquired behaviors (Griffith 2012). Lastly, there exists a 

more than adequate set of genetic tools to target and manipulate fly neurons and 

their progenitors throughout development (Lee and Luo 1999; LaI and Lee 2006; 

Luan et al. 2006; Venken and Bellen 2007; Pfeiffer et al. 2008; Yu et al. 2009; 

Pfeiffer et al. 2010; Venken et al. 2011; Pfeiffer et al. 2012; Awasaki et al. 2014). 

However, directly studying fly cerebrum development remains a challenging task 

because of its hidden segmental organization and higher complexity than the 
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relatively simply structured VNC, where most of the insights into the spatial 

(Urbach and Technau 2004; Technau et al. 2006) and temporal (Jacob et al. 

2008; Kao and Lee 2010; Truman et al. 2010) mechanisms have been derived. 

 

Basic principles for Drosophila brain development 

Though structurally obscure, insect brains are traditionally subdivided into three 

parts: tritocerebrum, deutocerebrum, and protocerebrum (Bullock and Horridge 

1965), which originate from the intercalary, antennal and ocular/labral head 

segments, individually (Figure 1.1A) (Rempel 1975; Schmidt-Ott and Technau 

1992; Hirth et al. 1995; Younossi-Hartenstein et al. 1996). Major structural plans 

of the brain development are laid down during embryogenesis, but it is mostly 

unknown how CNS is built from stem cells in neuroectoderm to a fully functional 

neuronal network (Nassif et al. 1998; Kurusu et al. 2000; Noveen et al. 2000). 

To decipher these spatiotemporally intertwined developmental codes, it is 

reasonable to begin with investigating how Drosophila neuronal stem cells, 

termed neuroblasts (NBs), are first specified. The neurogenic regions of the 

ectoderm are determined in the blastoderm by early dorsal/ventral and 

anterior/posterior patterning genes (St Johnston and Nüsslein-Volhard 1992; 

Biehs et al. 1996). Then, proneural and neurogenic genes act in neuroectoderm 

to select and specify NBs (Artavanis-Tsakonas and Simpson 1991; Campos-

Ortega 1995). From embryonic stage 8 to 11, NBs of Drosophila CNS delaminate 

from the neuroectoderm (Hartenstein and Campos-Ortega 1984; Doe 1992; 
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Bossing et al. 1996), which is composed of the ventral neurogenic region (vNR) 

and the procephalic neurogenic region (pNR) (Figure 1.1A) (Hartenstein and 

Campos-Ortega 1985; Technau and Campos-Ortega 1985). With NBs giving 

birth to most of the adult neurons over the larval and into the pupal stages 

(Truman and Bate 1988; Ito and Hotta 1992), vNR and pNR, as a result, give rise 

to VNC and the brain, respectively. 

It is well known that a grid-like coordinate system exists in the vNR to 

specify repetitive sets of NBs in each segment of VNC (Figure 1.1A) (Doe 1992; 

Broadus et al. 1995). Proven by classic transplantation experiments, NB fates 

are specified by positional cues before the delamination occurs (Udolph et al. 

1995). However, such a clean and organized system disappears in the cerebral 

epithelium. The Technau group had put an epic effort to follow the formation of 

106 NBs in the pNR and survey the expression of a collection of “molecular 

markers” in each of them (Urbach et al. 2003; Urbach and Technau 2003b; 

Urbach and Technau 2003a).  

NBs in the brain are created in a stereotypical manner in time and space 

like their counterparts in VNC (Urbach et al. 2003). Distinct expression domains 

of segment polarity and dorsal-ventral patterning genes reveal the hidden 

segmental organization of the fly brain (Urbach and Technau 2003b). Further, 

each brain NBs is born expressing a specific combination of molecular markers, 

implying a distinct and unique identity for individual NBs (Urbach and Technau 
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2003a). Such a map provides the initial clues of possible determining factors in 

NB specification.  

Indeed, removing activities of vnd, a columnar gene expressed in the 

ventral domain of both VNC and brain neuroectoderm, leads to improper 

specification of ventral brain NBs, a phenotype analogous to the ones observed 

in the VNC (Urbach et al. 2006). Yet, the dorsal columnar gene msh is only 

required for dorsal NB specification in the posterior brain (tritocerebrum and 

deutocerebrum), not the ones in the prominent anterior brain (protocerebrum) 

(Urbach et al. 2006). Also, in total, less than 50% of the brain NBs express any of 

the three columnar genes (vnd, ind, and msh), which are heavily involved in VNC 

dorsal/ventral patterning (Urbach and Technau 2003b). Additionally, the fourth 

columnar gene DER does not seem to participate in brain NB development 

(Dumstrei et al. 1998). As for the anterior/posterior axis, roles of the majority of 

segment polarity genes remain to be explored, while two Antennapedia-Complex 

Hox genes, proboscipedia and labial (lab), have been demonstrated to be 

expressed in and required for posterior brain patterning (Hirth et al. 1998). All in 

all, we need a more sophisticated strategy to systematically and specifically 

identify and characterize essential factors for brain NB specification. 

 

Diverse NB lineages in a Drosophila brain 

Each NB with its uniquely specified identity in succession produces a 

corresponding discrete neuronal lineage (sequentially born neurons and glia from 
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a common progenitor) (Figure 1.1B). It undergoes continual asymmetric divisions 

to self-renew itself and deposits a series of intermediate progenitor cells named 

ganglion mother cells (GMCs). Most GMCs then divide once to generate two 

post-mitotic cells, which can either differentiate into neurons, glia, or die through 

apoptosis (Figure 1.1B) (Goodman and Doe 1993; Schmidt et al. 1997; Lee and 

Luo 1999; Schmid et al. 1999; Karcavich and Doe 2005; Truman et al. 2010). 

These two progeny cells of a GMC often adopt different identities through binary 

cell specification, a mechanisms mediated by the Notch/Numb signaling 

pathway. The Notch/Numb pathway is used in various developmental contexts 

across diverse species (Artavanis-Tsakonas and Muskavitch 2010; Pierfelice et 

al. 2011). Here, its role in binary cell fate decision is observed in embryonic CNS 

lineages (Spana et al. 1995; Spana and Doe 1996; Buescher et al. 1998; Skeath 

and Doe 1998; Lundell et al. 2003; Karcavich and Doe 2005), as well as post-

embryonic antennal lobe lineages (Lin et al. 2010; Lin et al. 2012), four other 

engrailed expressing brain lineages (Kumar et al. 2009), and most of the VNC 

lineages (Truman et al. 2010). 

Recently, a different proliferation pattern was discovered. 8 brain NBs can 

produce transient amplifying precursors (TAPs, or named as intermediate neural 

progenitors, INPs), which can self-renew for several rounds and generate a short 

series of GMCs to deposit neurons and glia (Bello et al. 2008; Boone and Doe 

2008; Bowman et al. 2008). They are named type II (in contrast to the general 

type I lineages) or PAN (posterior Asense-negative) lineages. The discovery of 
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this mammalian type of proliferation pattern in Drosophila brains makes studies 

of type II lineage an actively pursued subject for insights into CNS development 

in higher organisms (Izergina et al. 2009; Lui et al. 2011; Jiang and Reichert 

2012; Bayraktar and Doe 2013; Viktorin et al. 2013; Wang et al. 2014) 

Neurons of a specific NB lineage mostly do not migrate and reside 

together with their neurites bundling and extending through common tracts 

(Pereanu and Hartenstein 2006; Yu et al. 2013a), a feature that works as an 

advantage to study insect brains. Such elaborate and distinct morphologies of 

NB lineages are undoubtedly sensitive and faithful readouts of their own unique 

identities because structure, function, and cell fates are tightly linked in CNS 

development. Numerous genetic techniques have been developed to trace and 

study Drosophila nervous systems with valuable pedigree information (Lee and 

Luo 1999; Lai and Lee 2006; Yu et al. 2009; Awasaki et al. 2014). The effort to 

describe lineages in their original wild-type state will eventually pay off when new 

technologies allow us to further introduce perturbations for mechanistic cell 

fate/lineage identity studies. 

 

Studying brain development requires efficient gene targeting technologies 

Quite often, biology advances after acquiring valuable “drivers” to introduce 

reporters or effectors in certain cells of interests so that one can follow or 

manipulate them. To make use of Urbach and Technau’s embryonic NB map and 

correlate marker gene expression with succeeding NB development, I decided to 
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generate T2A-Gal4 knock-ins (KIs) for these molecular markers (Brand and 

Perrimon 1993; Szymczak et al. 2004; Diao and White 2012). Ideally, such 

drivers should capture the endogenous expression profiles of the targeted genes. 

Subsequently, with the help of a pan-NB specific deadpan (dpn) promoter plus 

several genetic designs, their expression can be further restricted to NBs that 

previously expressed the corresponding genes during development (Awasaki et 

al. 2014). When this intersection occurs in stem cells like NBs and triggers 

additional irreversible recombination events, all of the progeny cells can then be 

uniformly labeled by reporters or influenced by effectors (James Truman lab’s 

termed this genetic strategy as “immortalization” for easy reference, and we 

adopted it in Awasaki et al. 2014). 

Therefore, the possibilities exist to understand the cause-and-effect 

relationships between the molecular markers and their corresponding lineages 

once we immortalize and visualize them as a first step. However, to fully 

investigate the involvement of the surveyed 34 genes by the Technau group 

requires an efficient way to create related KI drivers, not to mention numerous 

other candidate genes that might play a role in this process. Hence, we 

recognized the urgent need to improve the current gene targeting (GT) 

technologies for D. melanogaster.  

 

Existing strategies for efficient gene targeting 
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Genome engineering was pioneered by Dr. Capecchi and others in the 1980s 

(Capecchi 2005). Several lessons were learned over years of trial-and-error 

experiments done with cultured mouse embryonic stem (ES) cells. By artificially 

introducing a DNA template to ES cells, microinjection or electroporation, there is 

an about ~1/1000 chance that the endogenous target locus is perfectly modified 

with the template through a DNA repair mechanism called homologous 

recombination (HR). HR efficiency is cell-cycle dependent, showing a peak of 

activity during early S-phase. Also, linear DNA template is the preferred substrate 

for HR, and injecting a single copy of it is sufficient for HR. While HR is 

achievable through arduous work, non-homologous recombination (random 

integration) hampers the effort by its much higher rate of occurrence (over 100 

fold). Fortunately, by implementing a negative selection module outside of the 

homology arms, such undesirable events can be easily removed.  

Despite the success of the mouse story, such a system is not readily 

applicable for many model organisms because of their lack of culturable stem cell 

or germ cell system, which allow easy manipulation and direct germline 

transmission. The relatively low efficiency of HR by mere DNA template 

introduction discouraged most researchers from adopting gene targeting for their 

favorite organisms. However, with the advent of sequence-specific nucleases, 

genome engineering has become a more approachable technology and hopefully 

will evolve into a routine practice (Kim and Kim 2014). These programmable 

nucleases can create targeted double-strand breaks (DSBs) that result in small 
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indels (insertions or deletions) by error-prone non-homologous end-joining 

(NHEJ) reactions. Otherwise, with an appropriate DNA template, these DSBs can 

boost HR efficiency by 2-3 orders of magnitude (Rouet et al. 1994; Jasin 1996). 

For Drosophila, such enhanced efficiency consequently makes direct embryo 

injection a feasible GT strategy to introduce essential targeting materials into 

embryonic pole cells and collect targeted flies with limited amounts of effort. 

Hence, tailored nucleases has critically revolutionized the Drosophila GT 

technologies ovr the past few years. 

The first nuclease of this kind is the Zinc-finger nuclease (ZFN) (Kim et al. 

1996). It has been introduced and heavily adopted in Drosophila by the Carroll 

group (Bibikova et al. 2002; Bibikova et al. 2003; Carroll et al. 2006; Beumer et 

al. 2008). ZFNs are hybrid proteins composed of a DNA-binding domain of 

Cys2His2 zinc finger proteins and a nonspecific cleavage domain of the type IIS 

restriction enzyme FokI. The cleavage domain must dimerize to cut DNA 

(Bitinaite et al. 1998; Smith et al. 2000). Such a prerequisite doubles the length of 

recognition sites, which substantially increases the specificity of ZFNs. Each zinc 

finger contacts three base pairs (bps) of DNA, and consecutive fingers bind 

continuous DNA triplets. To assemble a functional ZFN with proper specificity, 

each monomer contains 3-6 zinc fingers, which recognize 9-18 bps. Together, 

two monomers bind their own half sites that are separated by 5-7 bps (optimal 6 

bp) and make staggered breaks and leave four-nucleotide 5’ overhangs.  
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Although ZFN seemed a promising solution to genome engineering when 

proposed, there exist several major setbacks in practic (Kim et al. 2010). First, 

not all of the 64 possible DNA triplets have corresponding pre-characterized zinc 

fingers, with 5’-GNN-3’ being the most extensively tested set. This significantly 

hampers the design flexibility due to poor genome targeting density. Also, even 

though zinc finger-DNA interaction is believed to be modular in nature, not every 

combination of zinc fingers guarantees DNA targeting activity. Further, there is 

an imperfect correlation between ZFN activity in vitro and in vivo in Drosophila. 

Finally, the major disadvantage of ZFN is its possible off-target toxicity. This 

undesirable side effect likely comes from the fact that wild-type FokI nuclease 

domain can still form a functional homodimers to cleave DNA when only one of 

the dimers binds its recognition site. 

The enthusiasm for ZFN was gradually taken over by transcription 

activator-like effector nuclease (TALEN) (Boch et al. 2009; Moscou and 

Bogdanove 2009; Miller et al. 2011). TALEN is fundamentally similar to ZFN in 

terms of functional design, with both of them carrying the FokI nuclease domain 

at their carboxyl termini. However, for sequence recognition, TALEN uses 

transcription activator-like effectors (TALEs), which are DNA-binding domains 

derived from the plant pathogenic Xanthomonas spp. bacterium. These domains 

contain tandem arrays of 33-35 amino acid repeats that in turn recognize 

sequential base pairs in the major groove of the target DNA. The specificity of the 

repeats comes from adjacent amino acids at position 12 and 13, which are 
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termed as repeat variable di-residues (RVDs). Currently, the four widely used 

RVDs used to recognize adenine, guanine, cytosine and thymine are Asn-Asn, 

Asn-Ile, His-Asp and Asn-Gly, respectively.  

With the simple one-to-one correspondence between the RVDs and the 

four bases, one can easily design TALENs to target any DNA sequence, which is 

a significant advantage of TALEN over other tailored nucleases. Also, the easily 

increased specificity of TALENs leads to less off-target disruptions, and hence 

less cytotoxicity (Mussolino et al. 2014). However, constructing a DNA fragment 

for a TALEN is often challenging and time-consuming because the homologous 

sequences coding the repeats are prone to recombine with each other. Currently, 

researchers often outsource to companies or core facilities to acquire or design 

ZFNs and TALENs (Kim and Kim 2014).  

Lastly, since its potential for targeted mutagenesis was shown (Jinek et al. 

2012), the clustered regularly interspaced short palindromic repeats 

(CRISPR)/CRISPR-associated (Cas) system has drastically transformed our 

ability to edit genomes of a variety of organisms. It is an evolved bacterial and 

archaeal adaptive immune defense against invading phages or foreign nucleic 

acids. Among the three types of CRISPR/Cas systems, type II is the simplest one 

to be adopted because it only requires three components to execute a RNA-

guided cleavage: the target-specific CRISPR RNA (crRNA), the invariable target-

independent trans-activating crRNA (tracrRNA), and the CRISPR-associated 

protein 9 (Cas9). Together, crRNA, tracrRNA, and Cas9 forms an active DNA 
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nuclease that recognizes and cuts a 23-bp target DNA, which consists of a 20-bp 

target site (i.e. protospacer) and then a 5’-NGG-3’ sequence known as 

protospacer adjacent motif (PAM). 

The reason CRISPR/Cas has quickly gained in popularity is its simplicity. 

First of all, functional features of crRNA and tracrRNA can be combined and 

expressed as a single guide RNA (gRNA), which further simplify type II 

CRISPR/Cas as a two-component system. More importantly, the specificity of 

CRISPR/Cas comes from the 20-bp target site, which can be easily generated by 

annealing of two short primers, and cloning them into a vector containing a gRNA 

backbone. Concerns about off-targets can also be addressed by using Nickase 

with double nicking (Cong et al. 2013; Ran et al. 2013). However, the targetable 

sequences of CRISPR/Cas are restricted by the requirement of a PAM 

sequence; also, they can be further limited by the requirement of a guanine at the 

5’ end if gRNAs are transcribed under a U6 promoter.  

 

Golic+: an enhanced GT package for Drosophila CNS studies 

Gene targeting by HR in Drosophila was achieved by Rong and Golic in 2000 

(Rong and Golic 2000). However, this strategy has been deemed inefficient with 

few successful stories (Huang et al. 2008). To practice it, the template, termed 

donor DNA, is first inserted in the genome as a p-element, p{donor}. Then, linear 

donor DNA is provided stochastically in larval primordial germ cells through the 

actions of the heat shock induced flippase (FLP, circularization) and I-SceI 
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meganuclease (linearization). It is rare but possible that the released double-

strand DNA template is used by the endogenous DNA repair machinery to edit 

the target locus by HR. Afterwards, this rare event is recovered by screening for 

red-eyed candidate targeted flies for carrying a mini-white eye marker, residing 

between the HR homology arms. With the low efficiency of unassisted HR and 

the amount of sorting work to collect the few GT candidates, this heat shock 

strategy pioneered by the Golic group unfortunately never gained the popularity 

its designers had wished for. 

We intended to improve Golic GT technology by addressing the 

insufficiencies in its three major steps: generation of donor DNA, targeting, and 

screening. Briefly, a cystoblast-specific bam promoter was used to direct the 

expression of three proteins, FLP, I-SceI, and Cas9 in every cystoblast (CB) that 

are constantly produced in a female’s ovary. FLP and I-SceI are responsible for 

the release of a pre-integrated donor DNA, while Cas9 works together with a 

universally expressed gRNA to generate a DSB at the target locus, and hence a 

much enhanced targeting efficiency. Finally, a lethality selection scheme was 

implemented to help with the recovery of GT candidates by eliminating non-

targeted progeny. 

This new GT package we developed is named Golic+ (an abbreviation for 

gene targeting during oogenesis with lethality inhibitor and CRISPR/Cas “plus”) 

to honor the pioneering work of the Golic group with a “+” to indicate our 

significant improvements. Golic+ was built from scratch following insights from 
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the mouse system plus a few add-ons from the fly community (Capecchi 2005; 

Huang et al. 2008). We cautiously tested the ideas and assembled the 

components step by step: visualizing effective provision of donor DNA in CBs, 

targeted mutagenesis in CBs with CRISPR/Cas, and identifying a robust 

repressor (miRNA)/toxic protein pair to implement the lethality selection. In the 

end, we generally observed a 10-fold increase of targeting efficiency while 

comparing Golic+ to traditional Golic heat shock strategy under close to identical 

genetic settings. Using bam promoter and our lethality selection scheme also 

brings us huge savings in time and labor. Quite often, 50% of the founder 

females produced correct targetings using Golic+. 

Six molecular markers (vnd, ind, msh, lab, unpg, and hkb) were first 

selected to test our plan because of their characteristic concentrated expression 

in the relatively simpler tritocerebral and deutocerebral brain neuromeres. Six 

T2A-Gal4 KIs were hence generated, and they produced expression patterns 

that are identical to the ones of their corresponding genes. Through 

immortalization, we could follow the lineages made by NBs positive for a 

particular early patterning gene at larval and adult stages. Such information will 

guide our future molecular studies on NB lineage identities and their roles in 

neuronal diversification. Moreover, one can refine NB drivers using various 

intersection strategies based on the expression of early patterning genes, and 

thus target specific lineages for more detailed structure-functional and molecular 

studies. 
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Figure 1.1. Central nervous system development in Drosophila. 

(A) Neuroblast patterning at embryonic stage. The roles of positional cues in NB 

determination are well-studied in Drosophila ventral nerve cord. There are two 

neurogenic regions on the ventral side of a fly embryo, the ventral neurogenic 

region (vNR) and the pro-cephalic neurogenic region (pNR). vNR gives rise to 

the ventral nerve cord, while the pNR forms the adult brain. Insects are 

segmented. Within each vNR segment, there exist AP (wg, gsb, and en) and DV 

(msh, ind, vnd, and DER) patterning axes that together create a grid-like 

Cartesian coordinate system. And each NB arise from a certain coordinate 

acquire its own unique spatial coding and hence unique identity. LR: labral; OC: 

ocular; AN: antennal; IC: intercalary; MD: mandibular; MX; maxillary; LA: labial; 

P: protocerebrum; D: deutocerebrum; T: tritocerebrum. Illustration is adapted 

from Technau et al., 2006. (B) Most of the neuroblasts in the brain undergo this 

proliferation pattern. They continually perform asymmetric cell divisions to renew 

themselves and produce intermediate progenitor cells called ganglion mother 

cells, which in turn divide one more time to produce two progeny cells, mostly 

neurons and sometimes glia. Together, all of the progeny cells from a specific NB 

are called a lineage. 
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Figure 1.1. Central nervous system development in Drosophila. 
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CHAPTER II 

 

Developing a new efficient Drosophila gene 

targeting technology: Golic+. 

 

1) This chapter has been published: Chen, H. M., Huang, Y., Pfeiffer, B. D., Yao, 

X., & Lee, T. (2015). An Enhanced Gene Targeting Toolkit for Drosophila: 

Golic+. Genetics, 199: 683-694. Hui-Min Chen prepared the manuscript. 

Tzumin Lee wrote the paper. 

2) This chapter has been modified to fit the style of the dissertation. 

3) Tzumin Lee conceived the project. Yaling Huang, Barret Pfeiffer, and Xiaohao 

Yao provided molecular biology support for a subset of DNA constructs. Hui-

Min Chen designed and conducted the experiments, collected and analyzed 

the data. 
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Introduction 
 

 

Although the advent of genome sequencing has given us access to the code of 

diverse proteins, RNAs, and transcriptional regulatory elements, it gives no 

insight into how these sequences function. Unraveling the encrypted information 

requires a method to directly manipulate the genome in a controlled way. Ends-

out gene targeting (GT) supplies just such a method by allowing seamless 

replacement of endogenous sequences with engineered DNA fragments 

(Thomas and Capecchi 1987). One can therefore place designer ‘genes’ into 

their native loci or otherwise edit the nucleotide sequences in any genomic region 

of interest. 

GT depends on the occurrence of double-strand DNA crossing-over 

between the donor DNA and the genomic domain with which it shares extensive 

sequence homology. For ends-out GT, homologous recombination takes place 

between flanking homology arms of a linear donor DNA and a target genomic 

locus allowing insertion of an arbitrary DNA fragment into the endogenous target. 

However, homologous recombination occurs at low frequency and the linear 

donor DNA can be integrated into other genomic regions by non-specific 

insertion. Successful GT has therefore relied on effective strategies of recovering 

the rare GT events.  To accomplish such screening requires selection markers 

both within as well as outside the homologous arms of the donor DNA (Capecchi 

2005). However, false positives remain among those that have selectively 
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retained the internal marker. In mice where embryonic stem cells allow in-vitro 

GT, researchers can efficiently screen candidates to validate GT by DNA 

sequencing before proceeding through microinjection and the time-consuming 

labor-intensive mouse genetics (Capecchi 2005) 

In the genetically powerful Drosophila where cultivatable stem cells are 

unavailable, Rong and Golic have pioneered a transgene-based system for 

implementing GT in the female germline (Rong and Golic 2000; Gong and Golic 

2003) (Figure 2.1A). The Golic system avoids direct injection of the donor DNA 

into the embryonic primordial germ cells, which may be an untenable approach 

given the extremely low frequency of homologous recombination. Instead, it 

utilizes a P-element construct where donor DNA is flanked by FRT sites and 

contains a rare-cutting I-SceI site, which can therefore be transformed into a 

linear targeting molecule via the action of FLP and I-SceI. The linear donor DNA 

can be generated in the female germline by transient induction of hs-FLP and hs-

I-SceI during larval development. This transient ubiquitous supply of the donor 

DNA at the early stage of germline development elicits GT in about 1% of female 

founders in a limited number of known cases (Huang et al. 2008). Although not 

systematically reported, it is known in the community that at some loci the GT 

rate drops significantly below 1%.  

While the causes of reduced targeting efficiency are unknown, they may 

include inefficient release of the donor DNA (due to P element insertion site), 

FRT cassette size, characteristics of the homology arms, or the chromatin 
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‘context’ of the target loci. The challenges in scaling up the efforts to cope with 

rare GT events lie in both generating and screening for potential candidates. 

First, it requires heat-shock induction of FLP and I-SceI during the right stage of 

larval development to efficiently target the dynamic female germ (stem) cells. 

Second, it necessitates single-female crosses to ensure the independence of 

candidates as one adult female can yield multiple offspring with identical GT by 

the generation of multiple eggs from the same modified germline stem cell. Third, 

despite various improvements in the selection markers, it remains labor-intensive 

to screen out non-specific insertions from the large number of progeny generated 

in many independent crosses. 

Recent advances in Drosophila transgenesis, binary transgene induction, 

site-specific recombination, repressible markers, and sequence-specific 

endonucleases have drastically expanded the arsenal for further improving the 

classical Golic system of ends-out GT (Venken and Bellen 2007; Kim and Kim 

2014). For instance, transgenesis by phiC31-mediated site-specific integration 

can allow insertion of the donor DNA-containing construct at loci already proven 

to generate high-efficiency excision. With GAL4/UAS and LexA/lexAop (Brand 

and Perrimon 1993; Lai and Lee 2006; Pfeiffer et al. 2010), one can 

independently drive FLP/I-SceI to release the donor DNA in germ cells while 

executing the selection via targeted induction of other transgenes in different vital 

tissues. Therefore, a repressor can be incorporated into the donor DNA for 

recovering candidates based on suppression of toxic transgenes. 
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Moreover, the availability of programmable sequence-specific nucleases 

makes it possible to create DNA breaks at specific genomic loci of interest (e.g. 

use of zinc-finger nucleases in Bibikova et al. 2002, Bibikova et al. 2003, and 

Beumer et al. 2008). By provoking repair of the targeted locus, such methods can 

boost rates of gene disruption, editing, or addition by 2 to 3 orders of magnitude, 

levels that enable ready isolation of cells or organisms bearing a desired genetic 

change (Jasin 1996). The CRISPR/Cas system is particularly useful for various 

targeted genome modifications, as the Cas9 nuclease can be reliably directed by 

custom-made guide RNAs to make specific DNA cuts based on DNA-RNA base 

pairing (Jinek et al. 2012; Bassett et al. 2013; Cong et al. 2013; Gratz et al. 2013; 

Hwang et al. 2013; Kondo and Ueda 2013; Mali et al. 2013; Ren et al. 2013; 

Sebo et al. 2013; Yu et al. 2013b; Port et al. 2014). Within the last two years, 

CRISPR/Cas9 has been fruitfully applied in diverse species to create or correct 

mutations, insert transgenes at precise locations, and even generate knock-ins 

via targeted replacement of multi-kilobase genes (Harrison et al. 2014; Hsu et al. 

2014; Kim and Kim 2014). The efficiency of CRISPR/Cas9-mediated genome 

editing, including knock-ins, is high and often exceeds 10% without selection 

(e.g. Byrne et al. 2014).

Ends-out GT by direct embryo injection thus became much more feasible 

(Baena-Lopez et al. 2013; Gratz et al. 2013; Port et al. 2014; Xue et al. 2014; Yu 

et al. 2014), but to scale up the microinjection is costly and to recover 
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independent targeting events demands collection of no more than one candidate 

from an injected organism (Figure 2.1B). As GT efficiency could vary drastically, 

injection may need to be scaled up to prohibitive levels when dealing with large 

inserts or difficult loci. We were therefore interested in establishing a GT-

technology that is scalable and leverages the power of existing Drosophila tools 

to virtually guarantee targeting success, regardless of genomic loci or insert size. 

Here we establish Golic+ (gene targeting during oogenesis with lethality 

inhibitor and CRISPR/Cas) as an enhanced transgene-based GT toolkit (Figure 

2.1C). Multiple improvements are adopted to simplify, optimize, and ensure the 

independent production of the linear donor DNA in each serially derived 

cystoblast throughout female germline development. The assembly line of de-

novo GT allows us to pool unsynchronized organisms and breed them in groups, 

without concern about resampling the same GT events. Notably, the 

CRISPR/Cas system is needed to promote homologous recombination in 

cystoblasts and thus realize GT during active oogenesis. Moreover, we have 

engineered a repressor-based pupal lethality selection such that only the strong 

candidates can eclose for further breeding and PCR validation of GT. In sum, 

Golic+ is built upon the existing genetic/transgenic platforms, but made to be 

scalable such that one fly lab can perform multiple GTs simultaneously at ease 

and with stronger chances of success. 
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Results 

 

Producing donor DNAs in each cystoblast 

Existing GT systems employ the relatively limited numbers of embryonic and 

larval germline stem cells that may give rise to multiple identical targeting events 

due to clonal expansion (Figure 2.1A,B). Here we explored the possibility of 

inducing GT in the serially derived cystoblasts (CBs) of adult ovaries, which each 

develop into a female germ cell and thus guarantee independent GT events 

among individual offspring (Figure 2.1C). 

At the tip of each germarium in ovaries, there exist two to three germline 

stem cells (GSCs). These cells divide alternately, self-renewing themselves while 

generating a series of CBs (Spradling 1993). A CB-specific promoter has been 

isolated from bam, a gene essential for female germ cell differentiation (Chen 

and McKearin 2003). We tested the available bamP-GAL4 with UAS-GFP 

carrying p10 terminator (Chen and McKearin 2003; Pfeiffer et al. 2012) and 

confirmed its selective expression in newborn CBs but not the GSCs (Figure 

2.2A). 

We next examined the ability of bamP-GAL4 to drive UAS-FLP and 

mediate the excision of an FRT cassette from the genome of each CB, mimicking 

the process of donor DNA liberation. We made Pfife (p10-facilitated indicators of 

flip excision), a dual-reporter flip-out construct (Figure 2.2B). Pfife carries an FRT 

cassette, excision of which results in fusion of UAS with GFP on the residual 
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transgene and concomitantly reconstitutes UAS-tdTomato in the circularized FRT 

cassette. Thus we detect both the residual Pfife based on GFP expression and 

the derived extra-chromosomal cassette based on tdTomato expression. We 

induced flip-out using either bamP-GAL4 or nosP-GAL4 in adult ovaries (Figure 

2.2C). bamP-GAL4 elicited co-expression of GFP and tdTomato in newborn CBs 

of most, if not all, germaria. But nosP-GAL4 only led to GFP expression in both 

GSCs and CBs. The earlier onset of nosP-GAL4 in GSCs has apparently led to 

complete loss of FRT cassettes prior to adult oogenesis. By contrast, bamP-

GAL4 had maintained the FRT cassette in GSCs while promptly releasing it in 

newborn CBs, meeting our need for de-novo production of ‘donor DNA’ through 

adult oogenesis. 

We further explored the possibility of placing donor DNAs at specific attP 

sites using the phiC31 integration system, to facilitate the initial transgenesis and 

eliminate the uncertainties in the efficiency of flip-out that varies with insertion 

sites. To match future donor DNAs in size, we enlarged Pfife to create a version, 

BPfife, which carries a 9kb FRT cassette. We determined the flip-out efficiency of 

BPfife in CBs for various attP sites (Figure 2.2D). After comparison, attP40 on 

the second chromosome and VK00027 on the third chromosome were identified 

as ideal sites for donor DNA integration. 

 

Targeted mutagenesis by CRISPR/Cas in cystoblasts 



26

Homologous recombination frequency can be greatly increased by double-strand 

DNA breaks created at specific loci by sequence-specific DNA nuclease, such as 

the CRISPR/Cas system (Cong et al. 2013; Mali et al. 2013), which utilizes a 

guide RNA (gRNA) to specify Cas9’s cutting site. We next explored how to 

implement CRISPR/Cas in Drosophila CBs. 

We cloned two endogenous Drosophila U6 promoters, dU6-2 and dU6-3, 

to drive gRNAs as transgenes (Wakiyama et al. 2005; Hernandez et al. 2007). 

Two target sites within the yellow body color gene were selected. The 

corresponding primers were annealed and inserted in front of the gRNA scaffold 

(Figure 2.3A) (Jinek et al. 2012; Cong et al. 2013; Mali et al. 2013), to derive four 

gRNAs using either dU6-2 or dU6-3. To test the effectiveness of these gRNA 

transgenes inserted at the same attP site, we first crossed females with gRNAs 

against yellow to males carrying Cas9 expressed under the act5C promoter 

(act5C-Cas9) (Port et al. 2014). We assayed the change in offspring’s body color 

from brown to yellow and detected allele-dependent penetrance of yellow body 

color phenotypes (Figure 2.3B). dU6-3-driven #1 gRNA gave the strongest 

phenotype with nearly complete yellow body color in all offspring. dU6-2-driven 

#2 gRNA, by contrast, exerted no observable effect on wild-type body color. The 

other two combinations produced intermediate phenotypes with yellow patches in 

various mosaic patterns. These results indicate that dU6-3 is a stronger promoter 

than dU6-2 in the induction of gRNAs and that different target sequences vary in 

their efficiency of CRISPR/Cas-mediated mutagenesis. 
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Next we used bamP-GAL4 to drive expression of either wild type or D10A 

nickase Cas9 (Cong et al. 2013), to induce yellow mutations guided by the above 

four gRNAs in CBs. 10 founder y+ females of each genotype were crossed to y1 

males, and we scored the occurrence of F1 male yellow progeny (Figure 2.3C). 

We recovered in total only 10 y- male offspring, seven of which arose from the 

UAS-Cas9/dU6-3-gRNA-y#1 pair, indicating again that dU6-3 outperformed dU6-

2 and gRNA-y#1 was more efficient than gRNA-y#2. We further sequenced the 

genomic regions around the target site #1 and #2, to map the induced yellow 

mutations. We were surprised to observe double reads of yellow in eight of the 

ten y- males that supposedly carry only one yellow gene on X chromosome. We 

subsequently realized that the attP2 site used for integration of UAS-Cas9 and 

various gRNAs transgenes was marked with y+. Due to the presence of two 

yellow alleles that presumably differed due to insertions and/or deletions, the 

reads from these samples overlapped and were not clearly interpretable. We did, 

however, have two samples, presumably in cases where a large deletion in one 

copy of yellow removed the sequencing primer, where clean reads showed small 

deletions around the expected Cas9 cleavage sites. Taken together, the bamP-

GAL4-dependent induction of Cas9 can potently disrupt two copies of a wild-type 

gene in one generation, demonstrating the efficacy of CRISPR/Cas in 

manipulating CB genomes. But the need for mutating two copies of yellow at the 

same time may have prevented us from detecting the activity of the apparently 

weaker D10A nickase. In sum, we have established an effective strategy for 
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implementing CRISPR/Cas specifically in CBs also using the same bamP-GAL4 

driver such that it can be paired with production of donor DNA. 

 

Repressor-based lethality selection for efficient GT screening 

Having independent trials of GT among CBs that each form a mature oocyte 

allows group culture of many founder female flies in one bottle without concerns 

of redundantly sampling the same targeting event. Our next goal is to enrich for 

the correct targeting event with a crossover at each homology arm. We 

envisioned a repressor-based lethality selection to eliminate offspring that no 

longer carry the donor DNA or retain the entire donor DNA either at the original 

site or at a new site via non-specific insertion. This repressor or the co-induced 

toxic genes (see below) should be traceable during transgenesis and can replace 

the commonly used, but rather large mini-white marker. 

Fulfilling the above conditions requires a repressible toxic gene as well as 

a non-repressible toxic gene, which can be induced to give visible phenotypes or 

cause pupal lethality depending on drivers. We chose Rac1V12, encoding a 

constitutive active small GTPase, as the toxic gene (Luo et al. 1994). We made 

Rac1V12 repressible by inserting at its 5’ untranslated region the target sequences 

of a proven potent transgenic miRNA against rat rCD2, establishing the rCD2 

miRNA (rCD2i) as the repressor (Chen et al. 2007; Yu et al. 2009). We placed 

both the repressible riTS-Rac1V12 and non-repressible Rac1V12 transgenes as 

well as rCD2i under the control of lexAop promoters of various strengths (Lai and 
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Lee 2006; Pfeiffer et al. 2010). We explored the use of eye-specific GMR3-

LexA::GADd and pan-neuronal nSyb-LexA::p65 for inducing visible phenotypes 

and pupal lethality, respectively. We settled on the weakened 5XLexAop2 for the 

control of either repressible or non-repressible Rac1V12 while reserving the 

original lexAop (Lai and Lee 2006) to drive rCD2i strongly. In that combination, 

we could consistently elicit a rough bar eye phenotype with GMR>Rac1V12 and 

observe numerous dead pupae without escapers in the presence of 

nSyb>Rac1V12 (Figure 2.4A). Both phenotypes were completely suppressed 

when rCD2i was co-induced with repressible Rac1V12. 

We assembled a GT backbone (pTL1, targeting with lethality selection) 

from scratch by adding the above transgenes in specific orientations plus various 

features, including FRT/loxP sequences, I-SceI/I-CreI/I-CeuI cutting sites, an 

attPX integration site, and multiple cloning sites for 5’ & 3’ homology arms, into a 

basic plasmid (Figure 2.4B). Briefly, lexAop-rCD2i, flanked by direct repeats of 

loxP, resides between the multiple cloning sites for 5’ and 3’ homology arm 

insertion, and the non-repressible 5XLexAop2-Rac1V12 sits in an opposite 

orientation following the 3’ cloning sites. In addition, another 5XLexAop2 

promoter and the repressible Rac1V12 sequence lie before and after the first and 

second FRTs respectively such that upon flip-out, a 5XLexAop2-FRT-riTS-

Rac1V12 module is reconstituted to serve as the inducible and suppressible 

toxicity background.  Finally, the I-SceI cutting sites are positioned next to FRTs 

for linearizing circularized donor DNA, and two rare-cutting sites (I-CreI and I-
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CeuI sites) plus an attPX integration site are included for potential retargeting 

(Huang et al. 2011). 

Carrying a non-repressible 5XLexAop2-Rac1V12 in the FRT cassette 

outside the recombination region permits tracking of the original transgene based 

on the bar eye phenotype induced by GMR3-LexA::GADd. It further allows us to 

kill those GT offspring, which fail to lose the non-repressible RacV12 due to no 

excision or non-specific insertion, at the pupal stage with nSyb-LexA::p65. 

Among those that have lost the non-repressible Rac1V12 following excision of the 

FRT cassette, a repressible 5XLexAop2-riTS-Rac1V12 is automatically 

reconstituted and only the offspring with an insertion of the repressor, lexAop-

rCD2i, contained within the 5’ and 3’ homology arms could survive. Viable 

candidates likely represent correct GT given loss of the non-repressor Rac1V12 

and presence of the repressor transgene (Figure 2.4C). 

 

High-efficiency ends-out gene targeting in cystoblasts 

To validate our multifunctional GT backbone (pTL1), determine the stringency of 

the repressor-based lethality selection, and ultimately test GT in CBs, we went on 

and built a donor DNA construct for deleting HES-related (Her) by ends-out GT. 

Her resides on X chromosome and encodes a putative basic helix-loop-helix 

(bHLH) transcription factor with no reported function, possibly due to lack of null 

alleles. 
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Following integration of Her donor DNA at attP40 on second chromosome 

as revealed by rough bar eyes in the presence of GMR3-LexA::GADd, we first 

tried GT using hs-FLP and hs-I-SceI to excise the donor DNA during early or late 

larval development as in conventional Golic systems (Figure 2.5A). ~100 founder 

females were individually crossed with nSyb-LexA::p65 males per induction 

scheme with heat shocks at early or late larval stages (Table 2.1). All but eight 

pupae, derived from six founder females, died before eclosion. The survivors 

were subject to genetic mapping followed by genomic PCR confirmation (Figure 

2.6A and 2.9C). Correct GT with deletion of Her was confirmed in five of the eight 

candidates, but the rCD2i repressor was absent in the other three survivors, 

which lacked proper targeting. Those rare escapers showed various defects in 

the reconstitution of the repressible 5XLexAop2-FRT-Rac1V12 at attP40 during 

excision of the donor DNA FRT cassette, explaining why the repressor was 

dispensable for their survival (Figure 2.6C). These results validated our 

multifunctional GT backbone, including the built-in repressor-based pupal 

lethality selection. 

We next tried GT of Her in CBs by excising the same donor DNA from 

attP40 via bamP-GAL4-dependent induction of FLP and I-SceI (Figure 2.5B). We 

found survivors in 37 of the 180 single-female crosses, but failed to identify any 

correct GT events (Table 2.1). 24 crosses yielded escapers whose survival no 

longer depends on rCD2i. The remaining false positives recovered from 13 vials 

had lost the non-repressible 5XLexAop2-Rac1V12 but maintained lexAop-rCD2i 
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on the original second chromosome (Figure 2.6C). The recovery of many more 

escapers together with the first seen non-specific insertions indicates that despite 

generation of excised donor DNA, homologous recombination is less efficient in 

CBs than primordial germ cells. 

We have demonstrated above that the same bamP-GAL4-dependent CB-

specific induction of Cas9 could effectively disrupt the yellow gene at the gRNA 

recognition sites. Creating sequence-specific DNA breaks by CRISPR/Cas may 

promote homologous recombination and thus realize GT in CBs. To test this, we 

made various Her-specific gRNAs and introduced them with UAS-Cas9 into GT 

founder females (Figure 2.5C). We were excited to recover offspring with correct 

GT from over 10% of founder females that carried dU6-3-gRNA-Her#1 (Table 

2.1). Correct GT could be also found in about 4% of founder females with dU6-3-

gRNA-Her#2. We have even uncovered one correct GT utilizing the D10 nickase, 

which was less efficient in our previous experiments. Notably, CRISPR/Cas 

enabled GT in CBs without increasing incorrect targeting events. The 

CRISPR/Cas-mediated GT, like targeted mutagenesis by CRISPR/Cas, depends 

on the strength of both Cas9 and the gRNAs, as the wild-type Cas9 and dU6-3 

consistently outperform the D10 nickase Cas9 and dU6-2, respectively. In 

addition, CRISPR/Cas shows variable efficiency based on the gRNA target site. 

To extend the generality of the above conclusions, we performed a 

second ends-out GT using pTL1. We targeted the HLHm5 gene on third 

chromosome that, like Her, encodes a putative bHLH transcription factor and 
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lacks known mutations. A donor DNA for deleting HLHm5 by homologous 

recombination was inserted at attP40 (Figure 2.6B).  We further made two dU6-

3-gRNAs targeting different HLHm5 sequences. By conventional heat shock 

induction of GT in larval primordial germ cells, we obtained correct GT in about 

1% of founder females (Table 2.1). When the same donor DNA was released 

specifically in CBs where Cas9 was co-induced to act with HLHm5 gRNA, GT 

was strongly boosted: about 50% of founder females have yielded offspring with 

correct GT and multiple, supposedly independent, events could readily occur in 

one founder female (Table 2.1). Importantly, the percentage of false positives, 

including escapers and non-specific insertions, to founder females remained 

around 30% despite the high efficiency of GT. With these potent gRNAs, the D10 

nickase Cas9 could effectively elicit GT in CBs as well, though at about one-tenth 

of the frequency as compared to the wild-type Cas9. 

 

Golic+: a toolkit for D. melanogaster HR gene targeting 

In order to make “GT in CBs” readily applicable, we embarked on 

simplifying the genetic workflow and number of transgenes. First, we 

incorporated the gRNA backbone into the GT plasmid and made pTL2 that 

allows integration of donor DNA and gRNA into the same attP site via one 

transgenesis (Figure 2.4B). We also removed one of the two I-SceI cutting sites 

to reduce the chance of premature I-SceI cutting and hopefully prevent those 

genomic aberrations noted in escapers. Second, we adopted the 2A peptide 
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technology to express all three enzymes (Cas9, FLP, and I-SceI) in one 

transcript under the control of either UAS or two adequate bam promoters of 

different lengths, bamP198 and bamP898 (Chen and McKearin 2003; Szymczak 

et al. 2004; Diao and White 2012). To simplify the genetic crosses, all common 

transgenes required (Table 2.3) were purposefully pre-assembled in two of the 

three major chromosomes so that the target chromosome is left untouched 

(Table 2.4). 

To test these additional modifications, validate our design of Golic+, and 

demonstrate its efficiency in ends-out GT, we explored the possibility of knocking 

T2A-Gal4 into two spatial patterning genes: msh, the dorsal columnar gene in the 

ventral neuroectoderm (Isshiki et al. 1997), and runt, a pair-rule class 

segmentation gene (Kania et al. 1990). We engineered the msh-T2A-GAL4 and 

runt-T2A-Gal4 donors as well as corresponding gRNAs targeting the 3’ ends of 

msh and runt open reading frames (Figure 2.7A,C) (Diao and White 2012). The 

msh-T2A-GAL4 donor DNA contains 3kb homologous arms, while the runt-T2A-

GAL4 donor DNA carries 2kb ones.  They were both integrated at attP40 on the 

second chromosome, for targeting msh residing on the third and runt on the X 

chromosomes, respectively. Founder females inheriting bamP-Cas9-2A-FLP-2A-

I-SceI (abbreviated as bamP-CFI) or bamP-Gal4 + UAS-Cas9-2A-FLP-2A-I-SceI 

(abbreviated as UAS-CFI), plus a homozygous inducible and suppressible toxic 

background ({donor, gRNA}* / 5X-riTS-Rac1V12) were mated with male nSyb-

LexA::p65 for lethality selection (Figure 2.5D).  
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We could recover offspring with correct msh-T2A-Gal4 targetings from all 

three versions of Golic+, two kinds of direct induction of CFI (under bamP198 or 

bamP898) and one Gal4/UAS binary induction (Table 2.2). Both bamP898-CFI 

and “bamP-Gal4 + UAS-CFI” performed at high GT rates around 60% (18/30, 

and 53/90, respectively in terms of “# of correct GTs / # of founder females”). 

However, they also resulted in frequent occurrences of false positives. In the 

case of bamP198-CFI, its GT rate was reasonably high (38%, 36/95) with a lower 

rate of false positives. Additionally, we observe about 40 - 50% of founder 

females yielded unhealthy candidates that died within days after eclosion. 

Correct msh-T2A-Gal4 KIs were validated by sequencing of PCR products as 

well as visualization of GAL4 activity with GFP reporter in embryos (Figure 

2.7A,B). 

bamP198-CFI was chosen as the preferred Golic+ reagent to perform 

runt-T2A-Gal4 targeting because it resulted in higher proportion of correct msh-

T2A-Gal4 GTs among the candidates. We carried out a group culture for 50 

founder females and recovered 35 viable adults in total (Table 2.2). Subsequent 

genetic mapping revealed 12 candidates carrying lexAop-rCD2i on the targeted X 

chromosome. Genomic PCR and GAL4-induced embryonic expression 

confirmed all these 12 candidates were correct runt KIs (Figure 2.7C,D). Notably, 

all of the correct runt KIs were initially recovered as heterozygous females and 

later found the KI allele to be homozygous as well as hemizygous lethal. This 

phenomenon indicates that knocking in T2A-GAL4 somehow impairs 
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endogenous runt function or drives GAL4 expression in a toxic pattern or level. 

Moreover, it implies that a comparable number of hemizygous male candidates 

that carry correct runt knock-ins should have existed but died precociously during 

the initial lethality screen. Taking this into consideration, Golic+ has achieved a 

consistent efficiency in the ends-out GT at the success rate of about recovering 

50, likely independent, correct GTs from 100 founder females. 

Taken together, we have revolutionized the conventional Golic system of 

GT in three aspects that include automatic independent induction of GT in CBs, 

promotion of GT with CRISPR/Cas, and recovery of correct GT based on 

suppression of pupal lethality (Figure 2.8). We term this enhanced GT system as 

Golic+, abbreviated from ‘Gene targeting during oogenesis with lethality inhibitor 

and CRISPR/Cas’ as well as indicate our improvements to the pioneering Golic 

GT system. {donor, gRNA} transformants can be easily identified by the rough-

eyed phenotype induced by GMR3-LexA (Firgure 2.9A). All common transgenes 

necessary for Golic+ are pre-assembled on two of the three major chromosomes, 

leaving the target chromosome empty (Figure 2.9B; Table 2.4). 
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Discussion 

 

In the original and all previous modified Golic systems, the donor DNA is 

transiently released by heat shock and subsequently lost in most, if not all, cells 

at the mid-larval stage when the developing ovaries carry female germline stem 

cells plus a limited number of cystoblasts (CBs). By contrast, Golic+ ensures a 

continuous supply of the linear donor DNA to the serially derived CBs throughout 

female reproduction. This creates an assembly line with each newborn CB 

experiencing an independent trial of gene targeting (GT). Given the independent 

nature of GT occurring in CBs, we can further pool unsynchronized Golic+ 

founder females and breed them together in one bottle per GT. Golic+ thus 

converts the once highly involved and often unpredictable GT process into 

standard straightforward genetic crosses, such that one can perform multiple GT 

experiments simultaneously. If needed, one can scale crosses up indefinitely to 

recover targeting events even at loci with significantly lower targeting efficiency. 

Fortunately, the bam promoter permits appropriately timed induction of 

transgenes selectively in newborn CBs. We can therefore maintain the resident 

donor DNA in the female germline stem cells and then excise it only in the 

serially derived CBs. Using a reporter construct mimicking the donor DNA in both 

length and the arrangement of FRTs and I-SceI site, we have identified the attP 

sites where donor DNA can be efficiently flipped out. We have further optimized 
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the bam promoter-dependent induction to maximize the percentage of CBs that 

have received the linear donor DNA during active oogenesis. 

Golic+ further employs a repressor-based pupal lethality selection to 

facilitate the recovery of potential GT events. Our optimization in the supply of 

linear donor DNAs to CBs has led to the recovery of many more false-positive 

offspring, as compared to the conventional mid-larval pulse induction. False 

positives appeared at a rather constant level with rates compared to founder 

females being around 30%, but the frequencies of correct GT could be drastically 

increased with potent Cas9 and gRNA transgenes. The promotion of correct GT 

by CRISPR/Cas did not reduce false positives, suggesting independent sources 

of escapers, non-specific insertion, and correct GT. We suspect that non-specific 

insertion, which all reside on the original chromosome, arose by a common 

mechanism involving local rearrangement or hopping (Figure 2.6C). This would 

imply that the correct GT events enabled by CRISPR/Cas are derived through 

recruitment of an otherwise lost pool of liberated donor DNAs. To achieve GT in 

CBs absolutely requires CRISPR/Cas9, but comparable efforts could accomplish 

GT using mid-larval pulse induction without CRISPR/Cas. This phenomenon 

further suggests that the efficiency in capture of the liberated donor DNAs by 

homologous recombination is cell type or cell cycle-dependent. 

The recent introduction of CRISPR/Cas has made GT via direct injection 

of donor DNAs plus supporting reagents (e.g. guide RNA) into early embryos 

possible in Drosophila (Baena-Lopez et al. 2013; Gratz et al. 2013; Bassett and 
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Liu 2014; Port et al. 2014; Xue et al. 2014; YU et al. 2014). In addition to rapid 

turnover, direct embryo injection allows easy adoption of diverse GT strategies.  

Can Golic+ secure the female germline as the preferred site for GT in Drosophila 

melanogaster? First, it is more efficient and scalable to generate independent 

trials of genome modification in the continually generated CBs than within the 

fixed/small pool of embryonic primordial germ cells. Second, the reliability of 

direct injection remains unclear. Can one consistently recover correct GT from an 

affordable scale of embryo injection? As large inserts or difficult loci may reduce 

GT efficiency by orders of magnitude, injection may need to be scaled up to 

prohibitive levels. To repeat microinjections with freshly prepared DNAs and 

RNAs is further costly, labor-intensive, and time-consuming. In addition, the great 

scalability of Golic+ may allow further reduction in the length of homology arms 

required for efficient GT (Beumer et al. 2013). 

Despite the current success in Golic+, several issues remain to be 

addressed. First, to eliminate escapers, we have deliberately labeled 5X-riTS-

Rac1V12 with 3xP3-RFP, hoping that we can pre-select for red-fluorescent-eyed 

candidates that must carry the repressor, lexAop-rCD2i. Yet, candidates with 

3xP3-RFP were a minority among correctly targeted candidates, possibly 

because residual donor (5X-FRT-riTS-Rac1V12) is less toxic than 5X-riTS-Rac1V12 

with the extra FRT sequence, and hence the bias. To reduce this bias, we will 

lessen the selection toxicity from 5XLexAop2- to 3XLexAop2-riTS-Rac1V12. 

Second, we notice that non-specific insertion was not reported with direct embryo 
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injection. We suspect that using circular versus linear donor DNA might underlie 

this stunning difference. Additionally, it has been argued that circular donor DNA 

outperforms the linearized form in the targeting efficiency (Beumer et al. 2008; 

Gratz et al. 2014). Hence, we will generate and explore the effectiveness of 

bamP-Cas9-2A-FLP in eliciting GT in CBs. Finally, while several features (I-CreI, 

I-CeuI, and attPX) have been built in for re-targeting, recombinase-mediated 

cassette exchange (RMCE; Schlake and Bode 1994) appears to be a superior 

approach. We will therefore add the ability for RMCE (recombinase-mediated 

cassette exchage) into our next version of Golic+. 

In sum, using the widely available phiC31 integration system one can 

reliably insert donor DNA and corresponding guide RNA, in one construct, into 

pre-tested attP sites. The remaining transgenes are then supplied via common fly 

stocks support (Table 2.4): (i) detecting and balancing the initial transformants 

(GMR3-LexA::GADd), (ii) conducting cystoblast-specific GT (bamP-Cas9-2A-

FLP-2A-I-SceI and 5XLexAop2-riTS-Rac1V12), and (iii) implementing the pupal-

lethal selection (nSyb-LexA::p65). Only strong candidates can eclose and be 

PCR validated immediately after breeding. The entire procedure will take just two 

rounds of en-masse crosses after the establishment of the starter line carrying 

donor DNA and guide RNA (Figure 2.9B). Using only well-established 

genetic/transgenic techniques, the relatively effortless Golic+ should empower all 

fly labs to perform sophisticated ends-out GT. 
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Materials and Methods 

 

DNA constructs 

The constitutively active Drosophila Rac1V12 was created by amplifying the wild 

type Rac1 coding sequence (CDS, gift of Julian Ng) with a forward PCR primer 

containing the GGA to GTG mutation. Following rules in previous studies (Chen 

et al. 2007; Yu et al. 2009), 6 different rCD2 miRNAs were created and 

compared for their effectiveness in suppression. Here are their rCD2 target 

sequences: 

#1: CATGGCATCAACCTGAACATCC / ACAAATGGGACACGTATCCTGG; 
#2: GGTTGCCGAGTTTAAAAGGAAG / GCACTGGACTTGAGGATTCTAG; 
#3: ACAGATGTTGAACTAAAGCTGT / GAAATCGGGAGCATTTGAGATC; 
#4: GGAGACTTGAAGATAAAGAATC / CGTCAGAAGACCATGAGTTACC; 
#5: GATGACAGTGGCACCTATAATG / TCAACTGTCCAGAGAAAGGTCT; 
#6: GTAACGGTATACAGCACAAATG / GATAAAAGCTTCCAGAATGAGC; 
 
rCD2 miRNA #4 and #6 had indistinguishable full suppression performance, and 

#6 was selected for it being the Chinese lucky number. 8XLexAop2-ri6TS-

Rac1V12-hsp70 was created by cloning ri6TS-Rac1V12 into pJFRC18 (NotI/XbaI) 

(Pfeiffer et al. 2010) and replacing the original SV40 terminator (SV40T) with 

hsp70 terminator (hsp70T, XbaI/FseI). 5XLexAop2-ri6TS-Rac1V12–hsp70T was 

generated subsequently by removing the 3XLexAop2 between the AvrII and NheI 

sites of 8XLexAop2-ri6TS-Rac1V12-hsp70T (self-ligation with the AvrII/NheI 

compatible ends). We further created a 3xP3-RFP (instead of mini-white) version 

of the 5XLexAop2-ri6TS-Rac1V12-hsp70T transgene by replacing the original 

mini-white marker (AscI, filled-in) with a 3xP3-RFP-SV40 fragment (Horn et al. 
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2000). Additionally, to reduce similarity and chances of recombination between 

sequences, we ordered a Drosophila codon-optimized coding sequence of 

Rac1V12 (GeneArt, invitrogen), and created the non-repressible 5XLexAop2-

opRac1V12–hsp70T (NotI/XbaI). rCD2 miRNA #6 was cloned into pMLH 

(NotI/XhoI) (Awasaki et al. 2014) to make lexAop-rCD2i. 

pTL1, pTL2, Pfife, and BPfife were constructed following traditional 

molecular cloning and assembled from smaller DNA fragments. Their sequences 

and detailed annotations can be found on Addgene (https://www.addgene.org/) 

once deposited. To assemble pTL1, smaller DNA modules were added 

sequentially by attaching them either on forward or reverse PCR primers. First, a 

starting cassette (5XLexaop2-FRT-ISceI-FRT-ri6TS-Rac1V12-hsp70T) was 

assembled from a triple ligation of two PCR fragments (HindIII-5XLexaop2-FRT-

I-SceI, I-SceI-FRT-ri6TS-Rac1V12-hsp70T-EcoRI), and a HindIII/EcoRI digested 

pBluescript II KS(+) plasmid. Secondly, after digesting this starting cassette with 

I-SceI, two more PCR fragments (I-SceI-5’MCS-I-CreI-attPX-loxP-SpeI and SpeI-

hsp70T-opRac1V12-5XLexAop2-I-SceI) were added in to create a bigger 

intermediate cassette (5XLexAop2-FRT-I-SceI-5’MCS-I-CreI-attPX-loxP-SpeI-

hsp70T-opRac1V12-5XLexAop2-I-SceI-FRT-ri6TS-Rac1V12-hsp70T). This 

intermediate cassette was then transferred (EcoRI and partial HindIII digestion) 

to pJFRC-MUH (HindIII/EcoRI) (Pfeiffer et al. 2010) after removing the mini-

White marker in pJFRC-MUH with AscI cutting and self-ligation. Lastly, pTL1 is 

finished by adding into the SpeI site the final PCR fragment SpeI-lexAop-rCD2i-
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loxP-I-CeuI-3’MCS-XbaI (SpeI and partial XbaI digestion), which was assembled 

from two smaller PCR fragments, SpeI-lexAop-rCD2i-PacI and PacI-loxP-I-CeuI-

3’MCS-XbaI.  

To create pTL2, we first removed the I-SceI site downstream of the 3’ 

MCS of pTL1. pTL1 was partially digested with I-SceI and re-circularized using 

Gibson assembly (New England BioLabs, Inc., Gibson Assembly Master Mix, 

E2611L) with a small PCR fragment containing one AvrII site at each end. This 

fragment was later removed by AvrII digestion and self-ligation so that the 

original I-SceI site (TAGGGATAACAGGGTAAT) became TAGGGATAA-

CCTAGG-ATAACAGGGTAAT. To add gRNA backbone, the plasmid was 

digested with EcoRI, filled-in, and then ligated with a HindIII/EcoRI-digested, 

filled-in dU6-3-gRNA fragment (see below and Figure 2.3A).  The orientation with 

the dU6-3 promoter lying adjacent to the suppressible ri6TS-Rac1V12 was 

selected in pTL2. 

To assemble Pfife, a new FRT cassette (NotI-FRT-BglII-HindIII-FseI-

BamHI-FRT-XhoI) was first created by annealing two partially overlapping 

primers, filling in both strands with PCR, and cloning it into pBluescript II KS(+) 

(NotI/XhoI). Afterwards, DNA fragments (HindIII-10XUAS-BglII, HindIII-BPStop-

FseI, and BamHI-tdTomato-XbaI-p10-NgoMIV) were sequentially added in to 

generate a FRT-10XUAS-BPStop-p10-tdTomato-FRT cassette. BPStop is a DNA 

module that by design should effectively repress/eliminate read-through of 

transcription and translation from nearby promoters (Sauer 1993; Zinyk et al. 
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1998). Finally, this larger FRT cassette was excised (NotI/XhoI) and put into 

pJFRC28 (Pfeiffer et al. 2012) to create Pfife. To further generate Bfife, we first 

inserted a ~5kb DNA fragment (from plasmid KB700, HindIII/NotI-digested, filled-

in) into the pBluescript II KS(+)-FRT-10XUAS-BPStop-p10-tdTomato-FRT 

plasmid (SpeI digested, filled-in). Then, this ~9kb FRT cassette was put into 

pJFRC28 to generate BPfife (NotI/XhoI). 

To create UASt-FLP in this study, we first assembled pJFRC-MUH-IVS-

WPRE-hsp70T by replacing the original SV40T of pJFRC-MUH with hsp70T 

(XbaI/NgoMIV) and further inserted BamHI-IVS-BglII-NotI-XhoI-KpnI-XbaI-

WPRE-SpeI into the BglII/XbaI-digested pJFRC-MUH-hsp70T. Then, a BglII-

FLP-XhoI PCR fragment was created using pBPopFLP(1GtoD)Uw as the 

template. Afterwards, XhoI-3XGST-securin N50 a.a.-XbaI was added on to the 

fragment with primers and PCR amplification. Finally, the whole BglII-FLP-XhoI-

3XGST-securin N50 a.a.-XbaI fragment was inserted into pJFRC-MUH-IVS-

WPRE-hsp70T (BglII/XbaI) to create UASt-FLP (UAS-IVS-

opFLP(1GtoD)::3XGST::securing N50 a.a.-WPRE-hsp70T). The UASp-FLP used 

in this study actually contains UASp-FLP and UASp-I-SceI separated by an 

insulated spacer cassette (Pfeiffer et al. 2010). To assemble it, a blunt 

end/EcoRI-digested PCR product (AvrII-UASp promoter-MCS-K10 terminator-

FseI-PmeI-NheI-EcoRI) (Rørth 1998) was first inserted into pJFRC-MUH (HindIII, 

filled-in/EcoRI) to make pUASp-attB. Second, the KpnI/HindIII filled-in fragment 

from pBPopFLP(1GtoD)Uw was inserted into pUASp-attB (KpnI/XbaI filled-in) to 



45

make pUASp-attB-FLP. Third, a synthetic Drosophila codon optimized I-SceI 

(GeneArt, invitrogen) was inserted into pUASp-attB (KpnI/XbaI) to make pUASp-

attB-I-SceI. Fourth, the insulated spacer cassette flanking with NgoMIV sites was 

inserted into pUAS-pattB-I-SceI (NgoMIV) to make pUASp-attB-I-SceI-insulator. 

Finally, the AvrII/PmeI fragment from pUASp-attB-FLP is inserted into NheI/PmeI 

site of pUASp-attB-I-SceI-insulator to make UASp-FLP (pUASp-attB-I-SceI-

insulator-UASp-FLP). 

To recover {donor} transgenes, we generated an eye-specific LexA driver, 

GMR3-LexA::GADd, which contains three copies of a truncated glass-binding 

site (Ellis et al. 1993; HAY et al. 1994) to drive LexA::p65 (Pfeiffer et al. 2010). 

nSyb-LexA::p65 is a neuronal synaptobrevin promoter-fusion LexA::p65 (Pfeiffer 

et al. 2010; Awasaki et al. 2014) construct created as the essential (neuronal) 

driver to implement the larval/pupal lethal selection of Golic+. Drosophila codon-

optimized CDSs of FLP (opFLP(1GtoD), XhoI/XbaI), I-SceI (GeneArt, invitrogen, 

KpnI/XbaI), and Cas9 (gift of Justin Crocker, Kpn/XbaI) were cloned into 

pJFRC28 for enhanced ovary expression (Pfeiffer et al. 2012). Additionally, 

Syn21 was added before start codons of optimized FLP and I-SceI to enhance 

their expression (Pfeiffer et al. 2012). For Cas9, we further added in its N-

terminus a nuclear localization signal (CCAAAGAAAAAGAGAAAGGTT) in the 

hope of increasing its effectiveness. Cas9 D10A mutation was introduced by 

amplifying Cas9 with a forward primer containing a GAC to GCC codon change 

(Cong et al. 2013). To create bamP198-CFI and bamP898-CFI, bam 3’UTR was 
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cloned from BACR06L08 into pJFRC28 (KpnI/EcoRI) with primers 

(GGGGTACCTCTAGACTAATGCTGTGCACATCGATAAAAG and  

GGAATTCAGTCCAAACACAAATCGTAAATATTTATTTG). bamP198 and 

bamP898 5’UTRs were then cloned (BACR10P10; primers: bamP198 forward: 

CCAAATCAGTGTGTATAATTGTAGTTAAAATG; bamP898 forward: 

AGATCTAACCATTGATTAACTTCACAAC;  and common bam 5’UTR reverse: 

GCTCTAGAGGTACCTAAGTTAAATCACACAAATCACTCGATTTTTG) and 

added into the bam 3’UTR-carrying vector, respectively (SphI digestion, 

blunt/XbaI). Finally, Cas9-P2A-FLP-E2A-I-SceI was assembled and added into 

the previous vector (KpnI/XbaI) using Gibson Assembly. P2A and E2A were 

chosen among 2As for their higher cleavage efficiency (Kim et al. 2011). Also, 

Gly-Ser-Gly linkers were put in front of these 2As as suggested for improved 

cleavage efficiency (addendum to Szymczak et al. 2004). 

dU6-2 and dU6-3 promoters were cloned from BAC clone BACR47D16. 

Two SapI sites were put between U6 promters and gRNA scaffold for easy gRNA 

target site insertion. Target sites were identified using the web-based ZiFiT 

Targeter program (Hwang et al. 2013) or DRSC CRISPR (Ren et al. 2013). The 

following Target sites were used to target yellow, Her, HLHm5, msh, and runt: 

y#1 GCGATATAGTTGGAGCCAGC; 
y#2 GTGCACTGTTCCAGGACAAA; 
Her#1 GCCGTTGTGTTGCAGAAATT; 
Her#2 GGTGGTGAACTGCCAATTCC; 
HLHm5#1 GCCATTCTTGAAGCTATCCA; 
HLHm5#2 GGGATACCACAGCGATAACG; 
msh#1 GGGATAAGTGGCGGCCCAGT; 
runt#1 GGGGATCAGATGCCCTAGTA.  
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UAS-GFP::Dbox was  created by a three fragment ligation of pUASt-attB 

(EcoRI/XbaI), GFP (EcoRI/XhoI, with pUASt-mCD8::GFP as its template)(Lee 

and Luo 1999), and Drosophila securin N50 a.a., covering the KEN-box and D-

box (XhoI/XbaI; self-amplification from two primers) (Leismann and Lehner 

2003). 

 

Fly Strains 

Fly strains used in this study were: (1) bamP-GAL4::VP16 (gift of Dennis M 

Mckearin); bamP-Gal4 in attP2 (gift of Jon-Michael Knapp); (2) 10XUAS-IVS-

GFP-p10 in attP2 (pJFRC28) (Pfeiffer et al. 2012); (3) nos.UTR-GAL4::VP16 

(Bloomington Drosophila Stock Center, BDSC, #4937); (4) UASt-FLP in 

su(HW)attP8; (5) UASp-FLP in su(HW)attP8; (6) Pfife in attP40; (7) BPfife in 

attP40, su(Hw)attP6, VK00002, su(Hw)attP5, attP2, VK00005, su(Hw)attP1, 

VK00027, VK00020, and VK00040; (8) act5C-Cas9 in attP2A (Port et al. 2014); 

(9) dU6-gRNAs against yellow, Her, and HLHm5 in attP2; (10) UAS-Cas9WT-

p10 in attP2; (11) UAS-CasD10A-p10 in attP2; (12) GMR3-LexA::GADd in attP40 

and attP2; (13) nSyb-LexA::p65 in attP16 and VK00027; (14) y1 w*/Dp(2;Y)G, 

P{hs-hid}Y; P{70FLP}23 P{70I-SceI}4A/TM3, P{hs-hid}14, Sb1 (BDSC, #25679) 

(15) y1 w*/Dp(2;Y)G, P{hs-hid}Y; P{70FLP}11 P{70I-SceI}2B snaSco/CyO, P{hs-

hid}4 (BDSC, #25679) (16) 5X-ri6TS-Rac1V12 and 5X-ri6TS-Rac1V12(3xP3-RFP) 

in attP40 and VK00027; (17) UAS-FLP-p10 in attP18; (18) UAS-I-SceI-p10 in 

su(Hw)attP8; (19) bamP-Cas9-2A-FLP-2A-I-SceI in su(Hw)attP8 and attP2; (20) 
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{donor} and {donor, gRNA} for all targetings in attP40; (21) y1w67c23P{Crey}1b; 

snaSco/CyO (BDSC, #766). (22) UAS-GFP::Dbox in attP2. 

 

Fly genetics 

To recover donor transgenic flies, we raised donor injected larvae (GENETIC 

SERVICES, INC. or Rainbow Transgenic Flies, Inc.) at room temperature, 

crossed the eclosed adults with GMR3-LexA::GADd, and searched for rough-

eyed progeny as successful donor transformants. 

Traditional Golic Heat Shock (Figure 2.5A): using Her targeting as an 

example, virgin {donor} females were first crossed to male +/Y, hs-hid; 5X-ri6TS-

Rac1V12; hs-FLP, hs-I-SceI/TM3, Sb (created by combining fly strains #14 and 

#16). Their eggs were collected in vials every 12 hours. For HS 1.5-3D scheme, 

vials were heat shocked at 37 °C for 1 hour, 1.5 days after the vial flipping 

(organisms aged 1.5-2Days), and again on day 2.5 (organisms aged 2.5-3Days). 

For HS 3.5-5D, vials were first heat shocked on day 3.5 (organisms aged 3.5-

4Days) and then on day 4.5 (organism aged 4.5-5Days). The resulting founder 

females were crossed to nSyb-LexA::p65 for lethality selection. Finally, eclosing 

candidates were subject to chromosome mapping and genomic PCR for 

confirmation. 

Cystoblast Induction (Figure 2.5B): founder females were generated by 

crossing male UAS-FLP-p10, UAS-I-SceI-p10/Y; 5X-ri6TS-Rac1V12 to female 

bamP-GAL4; {donor}, and then collecting their virgin progeny with the correct 
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genotype. They were then crossed to nSyb-LexA::p65 for lethality selection; the 

survivors were further subject to chromosome mapping and genomic PCR 

confirmation. 

Cystoblast induction plus CRISPR/Cas9 & gRNA (Figure 2.5C): 

Additionally, two more transgenes (UAS-Cas9 and dU6-gRNA, both in attP2) 

were added to the previous cystoblast induction setup. Crosses with nSyb-

LexA::p65 were performed for lethality selection, and surviving candidates further 

went through mapping and PCR  confirmation. 

Golic+ Crosses (Figure 2.5D): founder females were generated by 

crossing {donor, gRNA} to 5X-riTS-Rac1V12 in attP40; bamP198-CFI (or 

bamP898-CFI) in attP2 or 5X-riTS-Rac1V12 in attP40; bamP-Gal4 in attP2, UAS-

CFI in VK00027. Their virgin progeny were then crossed to nSyb-LexA::p65 for 

lethality selection. The survivors were further subject to chromosome mapping 

and genomic PCR confirmation. 

 

Targeting designs and molecular characterization of target loci 

Homologous arms of about  2 - 3 kb each were designed to completely knock-out 

Her and HLHm5 and knock-in msh-T2A-Gal4 and runt-T2A-Gal4 (Figure 2.6A,B 

and 2.7A,C). The following primers were used for amplifying these arms and 

cloning them into pTL1 or pTL2. 

Her_55NgoMIV: TACGGCCGGCTTATAAAATGGGCTTTTATTTCTTTAGTG; 
Her_53SacI: TACGGAGCTCGACCATACAATCCCTGTATGC; 
Her_35BamHI: CGGGATCCGCACAAGTAAAATACAAATGGGGAC; 
Her_33MluI: TACGACGCGTCCTCTCGCTATCTCCCTTCG; 
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HLHm5_55AgeI: TACGACCGGTGTTTTGTAGCGTTCCTCATGTTGC; 
HLHm5_53SacI: TACGGAGCTCGTCCCTTCACCATCATCGCTG; 
HLHm5_35PmeI: TACGGTTTAAACGGTCCAAGTAGGAGGTCCTCTG; 
HLHm5_33MluI: TACGACGCGTCTGATGGCACACAATTAGCAGGG. 
msh_55NgoMIV: TAATTGCCAGCAATTTGCACCG; 
msh_53AgeI: TACGACCGGTTCCCAGGTGCATCAGGC; 
msh_35BamHI: CGGGATCCTAAGTGGCGGCCCAGTTG; 
msh_33PmeI: AACAAATGCCCGCAATCAGCG; 
runt_55AgeI: ACGTACCGGTAAGTGACCCCCGATAAAGTGAAGTGCATACCGAG; 
runt_53StuI: ACGTAGGCCTGTAGGGCCGCCACACGGTCTTCTGC; 
runt_35BamHI: ACGTGGATCCTAGGGCATCTGATCCCCAAAAATCTGGAGGAATGAAG; 
runt_33MluI: ACGTACGCGTTCTCAACCGCTTGTAGTCACCATTTAAGTTTTGGAC. 
 

The following BAC clones were used: BACR48L05 for Her; BACR13F13 

for HLHm5; BACR10L12 for msh; BACR50G05 for runt. T2A-Gal4 was 

generated by cloning Gal4 from pBPGAL4.2Uw-2 (Pfeiffer et al. 2010) into pTL2 

(StuI/SacI) with a forward primer containing T2A coding sequence. The following 

primers were used in genomic PCR for Her and HLHm5 knock-out and msh-T2A-

Gal4 and runt-T2A-Gal4 knock-in candidate confirmation: 

Her_g5: GTGATTGAGATATAGGCATACAGGG; 
Her_m5: CATTCAGTCGCTTAAGATCCGAAG; 
Her_m3: AATGTGCAGTTTTATTTCATGCCTC; 
HLHm5_m5: CCCATGGATAGCTTCAAGAATGG; 
HLHm5_m3: GGTGGAAGACAGGATTCAATGTC; 
lexAop: GCAGTCGAGGTAAGATTAGACTAG; 
HLHm5_g5: GTGGCTGAATGAGACTGGTGTCGAC; 
Gal4-1: CACACGCTTGTTCAATACTACTCAG; 
Gal4-2: GATACTCCACCGAACCCAAAGAAG; 
msh_g1: CATCCACTGCATCCAATCCTAGTG; 
msh_g2: GGCGTTAATATCAAGCTGTGATTTCG; 
runt_g1: AATGGTGGTTGCTCGATATACCGATATATAC; 
runt_g2: CGGATTCGGATTGGACGAGTTAAATTC. 
 

Immunostaining and fluorescence microscopy 
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Ovaries were dissected in 1X Grace’s Insect Medium, supplemented (GIBCO, 

Life Technology) and fixed for 10 min in 4% paraformaldehyde fixation solution. 

Fixation solution was prepared by mixing 20% w/v paraformaldehyde solution 

(Electron Microscopy Sciences) 1:4 to 1X PBS solution. After fixation, ovaries 

were first rinsed 3 times, then washed 3 times (5, 15, 30 min) in PBST (0.2% 

Triton X-100 in 1X PBS), and finally incubated with primary antibodies (diluted in 

PBST + 5% normal goat serum) overnight at 4℃. Afterwards, samples were 

further incubated at room temperature for 1 hr before rinsed 3 times and washed 

3 times (20 min each) in PBST. Ovaries were then incubated with Secondary 

antibodies (diluted in PBST + 5% normal goat serum) for 3 hr at room 

temperature, rinsed 3 times and washed 3 times in an hour. For mounting, 

ovaries were transferred on glass slides, separated into ovariole strings, rinsed 1 

time with 1X PBS, rinsed again in SlowFade Gold antifade reagent (invitrogen) 

and soaked in SlowFade for fluorescence imaging. 

Washed, collected embryos were dechorionated in 50% bleach for 3 min. 

Then, they were thoroughly rinsed with water, dried, and transferred into 4% 

paraformaldehyde fixative (1 ml) plus equal volume of heptane for 30 min fixation 

on a shaker. Afterwards, the bottom aqueous phase was replaced with 1 ml of 

methanol, and embryos were devitellinized on a shaker for 1 min. The top 

heptane phase was aspirated away followed by 3 rinses of the bottom phase 

embryos in gradually diluted methanol/PBS solution (3:1, 1:1, and 1:3; v/v). 

These embryos went through an additional round of 4% paraformaldehyde 
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fixation. Next, they were rinsed 3 times, further washed in PBST for 30 min, and 

finally incubated with anti-GFP primary antibody overnight at 4℃. The next day, 

they were rinsed and washed through the same procedures, and incubated with 

secondary bodies overnight at 4℃ before being rinsed, washed, stained with 

Hoechst 33342 for 10 min and mounted in SlowFade. Fluorescent signals of 

ovarioles and embryos were collected by confocal serial scanning using Carl 

Zeiss LSM710 microscope. Images were processed with Fiji then rotated and 

cropped with Keynote.  

The following primary antibodies were used in this study: rat monoclonal 

anti-GFP, 1:100 (MBL International Corporation, D153-3) in Figure 2.2A; rat 

monoclonal anti-GFP, 1:1000 (NACALAI TESQUE, INC. 04404-84) in Figure 

2.2C,D; rabbit polyclonal anti-GFP, 1:1500 (Molecular Probes, A11122) in Figure 

2.7B,D, different anti-GFP antibodies were used because of availability; mouse 

monoclonal anti-Fasciclin III, 1:50 (Developmental Studies Hybridoma Bank, 

DSHB, antibody 7G10); rabbit polyclonal anti-DsRed, 1:1000 (Clontech, Living 

Colors, 632496); mouse anti-α-spectrin, 1:25 (DSHB, antibody 3A9). Secondary 

antibodies from Molecular Probes were used in 1:200 dilution: Alexa Fluor 488 

goat anti-rat IgG (H+L); Alexa Fluor 568 goat anti-rabbit IgG (H+L); Alexa Fluor 

647 goat anti-mouse IgG (H+L). For embryos, Cy3-conjugated goat anti-rabbit 

(1:200; Jackson ImmunoResearch, 111-165-144) and Hoechst 33342 (1:1000; 

InVitrogen) were used. 

 



53

Table 2.1.  Golic / Cystoblast induction / Cystoblast induction + 

CRISPR/Cas 

 {Her KO} in attP40 {HLHm5 KO} in attP40 

Targeting Method # of 
FFa 

Correct 
GT 

Non-
Specific 
Insertion 

Escapers # of 
FF 

Correct 
GT 

Non-
Specific 
Insertion 

Escapers 

HS1.5-3D 115 5(3)b 0 1(1) 150 9(2) 0 0 

HS3.5-5D 95 0 0 2(2) 700 10(7) 7(2) 14(11) 

bamP-Gal4 + 
UAS-FLP&I-SceI 180 0 17(13) 38(24) ー ー ー ー 

dU6-3-gRNA-
Her(HLHm5)#1 94 14(12) 15(15) 24(19) 90 66(47) 10(8) 21(17) 

dU6-3-gRNA-
He(HLHm5)r#2 98 4(4) 11(11) 18(14) 90 59(45) 13(8) 24(23) 

dU6-2-gRNA-
Her(HLHm5)#1 32 0 3(3) 9(9) ー ー ー ー 

ba
m

-G
al

4 
+ 
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dU6-2-gRNA-
Her(HLHm5)#2 40 0 2(2) 6(6) ー ー ー ー 

dU6-3-gRNA-
Her(HLHm5)#1 90 1(1) 12(11) 18(17) 90 2(2) 11(11) 19(18) 

dU6-3-gRNA-
Her(HLHm5)#2 92 0 23(21) 22(20) 90 4(4) 15(14) 16(15) 

dU6-2-gRNA-
Her(HLHm5)#1 30 0 1(1) 5(5) ー ー ー ー 
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m
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4 
+ 
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-
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&
I-S
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I&

C
as

9D
10

A
 

dU6-2-gRNA-
Her(HLHm5)#2 59 0 11(10) 9(9) ー ー ー ー 

 

Various strategies were utilized to delete Her or HLHm5 with the same 

corresponding transgenic {donor}. Since one FF could sometimes yield multiple 

candidates, the number of candidates may exceed the number of candidate-

producing FF. 

a: FF: Founder Females; 

b: # of candidate (# of candidate-producing FF) in the specific category
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Table 2.2 Targeting msh and runt with different versions of Golic+ 

 

 {msh-T2A-Gal4 KI, gRNA} in attP40 {runt-T2A-Gal4 KI, gRNA} in attP40 

Targeting Method # of 
FF 

Correct 
GT 

Non-
Specific 
Insertion 

Escapers # of 
FF 

Correct 
GT 

Non-
Specific 
Insertion 

Escapers 

bamP198-CFI 95 47(36)a 8(8) 15(14) 50 12 3 20 

bamP898-CFI 30 37(18) 53(25) 5(4) ー ー ー ー 

bamP-Gal4 +  
UAS-CFI 90 82(53) 27(22) 45(33) ー ー ー ー 

 

Golic+ was used to knock-in T2A-Gal4 in both msh and runt. The first available 

Golic+ set with transgenes on II and III chromosomes was used although not 

ideal for targeting msh on III chromosome.  

a: # of candidates (# of candidate-producing FF) in the specific category 
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Table 2.3. List of transgenic lines required for implementing Golic+ 

 

Full Name Abbreviation Integration Site Note 
donor DNA plus gRNA in pTL 
 

{donor, gRNA} attP40, VK00027  

GMR3-LexA::GADd GMR3-LexA attP40, attP2 Cross with {donor, 
gRNA} injected adults to 
create rough eyes for 
{donor} transformant 
screening. 
 

bamP198-Cas9-P2A-FLP-E2A-
I-SceI; bamP898-Cas9-P2A-
FLP-E2A-I-SceI 

bamP198-CFI; 
bamP898-CFI 

su(Hw)attP8, 
attP2 

Expressing Cas9, FLP 
and I-SceI under the 
bamP control to release 
donor DNA and 
introduce DSB at the 
target locus in every 
cystoblast. 
 

5XLexAop2-rCD2miRNATS#6-
Rac1V12 (3xP3-RFP) 

5X-riTS-Rac1V12 attP40, VK00027 Together with {donor, 
gRNA}*, providing a 
homozygous 
suppressible “Toxic” 
background. 
 

Residual {donor, gRNA} {donor, gRNA}*  After donor release, it 
will reconstitute as a 
suppressible toxic 
module, 5X-FRT-riTS-
Rac1V12. 
 

nSyb-LexA::p65 nSyb-LexA attP16, VK00027 Larval/pupal lethality 
selection 
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Table 2.4. Quick reference for using Golic+ 

 

 Targeting 
Transgenes set X Chromosome 2nd Chromosome 3rd Chromosome 
{donor, gRNA} in attP40 VK00027 attP40 
5X-riTS-Rac1V12 in attP40 VK00027 attP40 
nSyb-LexA in attP16 VK00027 attP16 
bam198-CFI in attP2 su(Hw)attP8 su(Hw)attP8 
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Figure 2.1. Comparison between different gene targeting strategies. 

Ends-out GT steps: generation of linear donor DNA, homologous recombination 

between donor DNA and targeted sequences, and recovery of correct GT. (A) 

For the Golic heat-shock strategy, donor is first inserted in the genome as a P-

element transgene, and then released (flip-out and linearization) in larval 

primordial germ cells by heat shock-induced expression of FLP and I-SceI. 

Targeting occurs rarely through endogenous homologous recombination 

machinery. Candidates, possibly carrying the same GT event due to later clonal 

expansion, are recovered based on the mini-white eye marker in-between the 5’ 

and 3’ homology arms. (B) For embryo microinjection, donor DNA is injected 

together with the corresponding sequence-specific nuclease to boost GT in 

embryonic pole cells. Clonal expansion can again lead to multiple offspring 

carrying identical GT. (C) In Golic+, donor DNA is not released from the 

transgene until the birth of each cystoblast (CB) from the ovarian germline stem 

cells, guaranteeing independent GT among candidates. Ends-out GT in CBs 

requires DNA double strand breaks made by CRISPR/Cas, and recovery of 

correct GT is facilitated by a repressor-based lethality selection. The CB-specific 

induction of FLP, I-Sce1, and Cas9 depends on bamP-Gal4; guide RNA for 

CRISPR/Cas is broadly expressed with the dU6 promoter; strong candidates are 

recovered based on inheritance of a repressor, miRNA against rCD2, to rescue 

the pupal lethality caused by nSyb-driven riTS-Rac1V12. 
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Figure 2.1. Comparison between different gene targeting strategies. 
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Figure 2.2. Optimizing cystoblast-specific excision of FRT cassettes. 

(A) bamP-GAL4::VP16 drives GFP expression in newborn CBs, but not in the 

preceding GSCs located at the tip of the germarium outlined with anti-FasIII 

immuostaining (red). TF: terminal filament; GSC: germline stem cell; CB: 

cystoblast; CpC: cap cells; IGC: inner germarium sheath cell (B) Pfife carries two 

interrupted UAS-reporters that are reconstituted based on FLP based 

recombination at the FRT sites. Upon flip-out, UAS-GFP is expressed by the 

residual Pfife and UAS-tdTomato is expressed by the circularized FRT cassette. 

Co-expression of GFP and tdTomato indicates persistence of the excised 

cassette following flip-out, while GFP alone reports older flip-out events where 

the circularized FRT cassette has been lost through cell division. (C) Induction of 

flip-out in ovarioles using bamP-GAL4::VP16 versus nosP-GAL4::VP16. bamP 

elicited flip-out occurs specifically in cystoblasts that were persistently labeled 

with GFP plus tdTomato, while the nosP-mediated flip-out occurred in GSCs prior 

to adult oogenesis as indicated by expression of GFP alone throughout the 

female germline.  (D) The larger BPfife placed at various attP sites on second 

and third chromosomes was assayed for flip-out mediated by bamP-

GAL4::VP16-driven UASp- versus UASt-FLP. As summarized in the table below, 

flip-out efficiency varied drastically with the insertion site, and UASp-FLP 

outperformed UASt-FLP. Note: 0% flip-out in su(Hw)attP1 versus almost 100% in 

VK2 on a per ovariole basis . Scale bars: 50 µm. 



60

Figure 2.2. Optimizing cystoblast-specific excision of FRT cassettes. 
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Figure 2.3. Transgenic CRISPR/Cas system. 

(A) Sequence arrangements of the dU6-gRNA scaffolds are shown on top. dU6-

gRNA backbone was cloned into pJFRC28 using HindIII and EcoRI sites. Two 

SapI sites were put in-between dU6 promoter and the gRNA scaffold for easy 

target site cloning. gRNA scaffold is the same as the published one (Cong et al. 

2013; Mali et al. 2013). After annealing two corresponding target site primers, the 

target site can be directly ligated with the SapI-digested empty dU6-gRNA with its 

TCG and AAG 5’ overhangs to constitute a functional dU6-gRNA. (B) Females 

carrying various U6-gRNAs against yellow were crossed to males with 

act5C>Cas9. Their female progeny showed allele-dependent yellow body color 

mosaicism, with dU6-3-gRNA-y#1 causing a yellow phenotype throughout almost 

the whole body whereas dU6-2-gRNA-y#2 affected few, if any, cells. (C) 

Summary of yellow mutations in the female germline using bamP-GAL4 driven 

Cas9 or Cas9D10A, plus four kinds of dU6-gRNAs against yellow. Two yellow 

mutants show small deletions around the cleavage sites of target site #1 and #2. 
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Figure 2.3. Transgenic CRISPR/Cas system. 
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Figure 2.4. Repressor-based selection and GT plasmids. 

(A) Rough to bar eye and dead pupa phenotypes were elicited by GMR>Rac1V12 

and nSyb>Rac1V12, respectively. (B) pTL1 has a similar organization to pRK1. 

Note the presence of lexAop-rCD2i, instead of hsp70::white, as the marker 

residing between the 5’ and 3’ multiple cloning sites (MCS), and use of LexAop2-

opRac1V12, rather than UAS::Rpr, for eliminating non-specific insertions. Two 

more modules, LexAop2 and riTS-Rac1V12, are separated by the FRT cassette 

for reconstitution of a suppressible LexAop2-riTS-Rac1V12 following flip-out. pTL2 

is pTL1 plus a dU6-3 promoter driven gRNA. Two SapI sites were included for 

easy gRNA target site cloning.  In pTL2, a second I-SceI site, which is 

unnecessary for linearization and may have increased the frequency of incorrect 

excisions events, was also removed. (C) {donor} is first integrated at attP sites on 

either second or third chromosome. To enrich for correct GT following induction 

of donor DNA flip-out, three scenarios of “unwanted” events are eliminated by 

lethality selection. Non-suppressible Rac1V12 is expressed under syb-LexA::p65 

to kill organisms experiencing “no excision” or “non-specific insertion”. In the 

case of “no targeting”, the reconstituted LexAop2-riTS-Rac1V12 drives lethality. By 

design, only after ends-out GT leading to loss of the non-suppressible LexAop2-

opRac1V12 can the organism overcome the suppressible LexAop2-riTS-Rac1V12 

with lexAop-rCD2i and survive the selection.  
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Figure 2.4. Repressor-based selection and GT plasmids. 
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Figure 2.5. Crossing schemes for different GT strategies. 

All targeting strategies in this study consist of two major crosses and three steps 

(donor release & targeting, lethality selection, and chromosomal mapping and 

genomic PCR). The first cross is to generate linear {donor} with FLP and I-SceI 

(and additionally bring in Cas9 and gRNA), and hence create the founder 

females. The second cross is to perform the lethality selection by mating founder 

females to male nSyb-LexA::p65. Eclosed candidates are collected for genetic 

mapping and PCR confirmation. (A, B, C) In these three schemes, real targeting 

at Her is denoted as Her*. Gene targeting for HLHm5 underwent the same 

genetic crosses, only that HLHm5* would have been indicated at the third 

chromosome. (D) Knocking T2A-Gal4 into msh with Golic+. The first available 

Golic+ set with transgenes on II and III chromosomes was used although not 

ideal for targeting msh on III chromosome. 
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Figure 2.5. Crossing schemes for different GT strategies. 
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Figure 2.6. Characterization of GT candidates. 

(A, B). Homologous arms (~3kb each) were cloned into pTL1 to knock out Her 

and HLHm5. Frq2 is a gene adjacent to Her. Target sites against Her and 

HLHm5 are indicated as short lines above the genes. To confirm Her knock-outs, 

three primers (Her_g5, Her_m5, and Her_m3) were used for genomic PCR. With 

successful targeting, these primer pairs (g5m3, m5m3) should yield no PCR 

fragments. The same idea applied to the HLHm5_m5 and HLHm5_m3 primer 

pair. Meanwhile, we design two primers (lexAop, located within the lexAop-rCD2i 

suppressor; HLHm5_g5, located upstream of the 5’arm for HLHm5) to examine 

the HLHm5 locus before removing the suppressor loxP cassette. Amplification of 

the HLHm5 g5/loxAop PCR fragment (~3.9kb) is only possible when the 

suppressor is integrated in the HLHm5 locus through HR. (C) Local integrations 

refer to those retaining the repressor yet losing the non-repressible toxic module 

and hence surviving the lethality selection, possibly due to local hopping given 

their presence on the chromosome where {donor} originates from. By contrast, 

escapers have eclosed without the repressor-marked GT DNA due to failure in 

the reconstitution of a functional repressible toxic module at the {donor} residual 

site, apparently because of imprecise flip-out or premature I-SceI cutting. 
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Figure 2.6. Characterization of GT candidates. 
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Figure 2.7. Targeting msh and runt with Golic+. 

(A, C) Donor designs and PCR confirmation for generating msh-T2A-Gal4 and 

runt-T2A-Gal4 knock-ins. Genomic sequences (2-3kb) right upstream and 

downstream of the msh or runt stop codons were used as homology arms (TAA 

was included in the 3’arm). Coding sequence of T2A-Gal4 was placed in 

between so that GAL4 and Msh (or GAL4 and Runt) can be translated from the 

same mRNA transcript. gRNA target sites sitting around the stop codons were 

selected. For each gene, two sets of primers (msh_g1 and Gal4-1; msh_g2 and 

Gal4-2; runt_g1 and Gal4-1; runt_g2 and Gal4-2) were chosen to confirm T2A-

Gal4 knock-ins at both ends. g1 and g2 primers were chosen further upstream or 

downstream of the homology arms so that PCR amplicons (3.1, 3.2kb for msh; 

2.5, 2.4 for runt) were only possible when T2A-Gal4 is correctly situated at the 

msh or runt locus. The g2/Gal4-2 PCRs were performed after Cre removed the 

lexAop-rCD2i loxP cassette. (B, D) Bi-lateral patterned GFP expression seen in 

embryos of msh-T2A-Gal4 and runt-T2A-Gal4 knock-ins matches msh and runt 

BDGP in-situ data (http://insitu.fruitfly.org/cgi-

bin/ex/report.pl?ftype=1&ftext=CG1897 and http://insitu.fruitfly.org/cgi-

bin/ex/report.pl?ftype=1&ftext=CG1849) (Hammonds et al. 2013). Nuclear DNA 

was revealed by Hoechst 33342 staining. Scale bars: 50 µm. In all panels 

illustrations are not to scale. 
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Figure 2.7. Targeting msh and runt with Golic+. 
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Figure 2.8. Golic+. 

Golic+ founder females can be raised en masse in bottles because the linear 

donor DNA is released in each cystoblast for independent GT trials. Ends-out GT 

is greatly boosted by CRISPR/Cas and candidates are selectively recovered via 

suppression of nSyb-LexA::p65-mediated pupal lethality.  
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Figure 2.8. Golic+. 
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Figure 2.9. Crossing schemes for applying Golic+. 

(A) {donor, gRNA} injected embryos were raised and then mated with GMR3-

LexA. Transformants with obvious rough bar eye phenotype were identified and 

maintained as balanced stocks. (B) Schemes for targeting a 2nd or a X 

chromosome gene are depicted here. Targeting a 3rd chromosome gene can be 

deduced from referencing Table 2. Golic+ consists of two major crosses and 

three steps (donor release & targeting, lethality selection, and candidate 

collection). The first cross is to generate linear {donor} with FLP and I-SceI (and 

additionally express Cas9 and gRNA), and hence create the founder females. 

The second cross is to perform the lethality selection by mating founder females 

to male nSyb-LexA::p65. Eclosed candidates are collected for genetic mapping 

and PCR confirmation. (C) A flowchart to characterize GT candidates. Crossing 

candidates to GMR>riTS-Rac1V12 allows deduction of the presence and location 

of the rCD2i repressor. Candidates with the repressor relocating to the target 

chromosome likely carry correct GTs. Those with the repressor remaining on the 

original chromosome are categorized as local integrations. Escapers, by 

contrast, carry a defective 5XLexAop2-FRT-riTS-Rac1V12 and have therefore 

escaped the lethality selection.  The escapers without the rCD2i repressor show 

no suppression of the rough-eyed phenotype in their progeny.  
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Figure 2.9. Crossing schemes for applying Golic+. 
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CHAPTER III 

 

Tracing specific NB lineages based on early 

patterning genes. 

 

1) This chapter is unpublished. Likely authors: Hui-Min Chen, Ching-Po Yang, 

Haluk Lacin, Josephine Chang, and Tzumin Lee. Hui-Min Chen wrote this 

chapter. 

2) Tzumin Lee conceived the project. Hui-Min Chen designed and generated the 

T2A-Gal4 knock-ins. Josephine Chang made the donor constructs. Ching-Po 

Yang characterized T2A-Gal4 knock-in expression at the embryonic, larval 

stages. Haluk Lacin characterized T2A-Gal4 knock-in expression in 

embryonic ventral neurogenic region. Ching-Po Yang performed the 

immortalization experiments, and Hui-Min Chen mapped the hit lineages by 

stochastic clonal labeling. 

3) Embryonic in situ images of lab, unpg, hkb, vnd, ind, msh were modified from 

BDGP insitu database (http://insitu.fruitfly.org) 
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Introduction 

 

The Drosophila CNS develops from a strictly patterned two-dimensional sheet of 

cells, the neuroectoderm, into a massively integrated three-dimensional structure 

consisting of the supraesophageal ganglion (SPG), the subesophageal ganglion 

(SEG), and the truncal ventral nerve cord (VNC). The cerebral part of SPG can 

be divided into three segmental neuromeres: protocerebrum, deutocerebrum, 

and tritocrebrum, which come from the pregnathal segments: labral/ocular, 

antennal, and intercalary respectively. As for the VNC, it is made up of 3 gnathal 

(mandibular, maxillary, and labial), 3 thoracic, and 8 abdominal neuromeres 

(Schmidt-Ott et al. 1994). 

These CNS neuromeres are composed of numerous diverse and distinct 

neurons deposited by around 1000 NBs from embryonic to pupal stages. Each fly 

body segment can be split into two left-right mirrored hemisegments that 

generally contain 30 NBs each. However, in the anterior cerebral segments, NB 

numbers deviate from the common standard drastically. The most anterior labral 

neuromere comprises about 10 NBs, while the much larger ocular neuromere 

has more than 60 NBs. The antennal and intercalary neuromeres contain 21 and 

13 NBs, respectively (Urbach et al. 2003).  

Amazingly, owing to the repetitive nature of the insect body plan, NBs 

positioned at corresponding spots in different VNC segments, termed serially 

homologous NBs, have relatively similar identities (Doe 1992). Within each 
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classic VNC segment, anterior/posterior (AP) and dorsal/ventral (DV) patterning 

genes are differentially expressed in the neuroectoderm. On the AP axis, cell 

fates are continually defined and resolved by the classic cascade actions of gap 

genes, pair-rule genes, and finally segment polarity genes, such as wingless, 

hedgehog, patched, gooseberry, engrailed, mirror, and invected (Akam 1987; 

Skeath and Thor 2003; Technau et al. 2006). As a result, every segment can be 

distinctly subdivided into four parallel rows by different combinations of segment 

polarity genes (Bhat 1999; Skeath 1999; Technau et al. 2006). On the other 

hand, along the DV dimension, three instructive signals, nuclear factor NF-κB, 

bone morphogenetic protein (BMP), and epidermal growth factor receptor 

(EGFR) signaling pathways, pattern the expression of columnar genes, including 

ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), 

muscle segment homeobox (msh), and Drosophila EGF receptor (DER), which in 

turn divide the neuroectoderm into three longitudinal columns (Skeath 1998; Bhat 

1999; Von Ohlen and Doe 2000; Skeath and Thor 2003; Technau et al. 2006). 

Together, segment polarity genes and columnar genes neatly establish a 

repetitive orthogonal Cartesian coordinating system in every VNC hemisegment. 

Nevertheless, each hemisegment does have its own characteristics. This comes 

from the effects of different homeotic genes (or called Hox genes) acting along 

the body length (Hiromi and Gehring 1987; Carroll 1995). The segment-specific 

expressions of Hox genes consequently further diversify the serially homologous 
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NBs and provide them each with a unique identity (Hirth et al. 1998; Rogulja-

Ortmann and Technau 2008). 

Lessons learned from the VNC studies helped the Technau group initiate 

their effort to survey expression of known important “molecular markers” in the 

pregnathal neuromeres (Urbach et al. 2003; Urbach and Technau 2003b; Urbach 

and Technau 2003a). However, the orderly AP/DV patterning principles are 

mostly lost in the abstract pregnathal segments, likely the result of an evolving 

process to support their higher computational functions (Bally-Cuif and Wassef 

1995; Urbach and Technau 2004; Urbach 2007; Pani et al. 2012). Generally 

speaking, the orthogonal expression of segment polarity and dorsal/ventral 

patterning genes is roughly conserved in the posterior region, but it gradually 

becomes obscure towards the anterior end (Urbach and Technau 2003b). The 

tritocerebrum behaves like a “reduced” trunk neuromere; the deutocerebrum has 

a less conserved expression profile of patterning genes; the protocerebrum 

seems to abolish most of the rules and hence coordinates. Expectably, NBs 

within the pregnathal neuromeres do not arise in a readily comprehensible 

manner. 

Meanwhile, the distinct and elaborate morphologies of the cerebral 

lineages are one of the responsive end results of the original intricate NB 

patterning (Pereanu and Hartenstein 2006; Yu et al. 2013a). While systematically 

grouping and cataloging cerebral lineages by their characteristic cell body 

locations and neurite trajectories, it is observed that neighboring lineages often 
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coinnervate the same neuropil or neuropils and project to restricted set of distant 

neuropils. One obvious example is the five antennal lobe (AL) lineages. Even 

though complex and distinguishable themselves, they all have dendritic 

elaborations in the AL region while extending their axonal trajectories to lateral 

horn (LH), mushroom body (MB) calyx, and other neuropils. Such phenomena 

immediately suggest the existence of common factors among lineages to direct 

shared morphological features, plus unique determinants to produce specialized 

morphologies.  

Inspired by Technau group’s effort, we embarked on our journey to study 

the hidden logic behind the Drosophila brain development. Though complicated 

at first glance, Urbach and Technau’s NB “fate” map is extremely valuable as the 

fundamental framework for investigating tissue patterning and cell diversification 

in the Drosophila brain, and also for studying the differentiation of the brain from 

its truncal counterpart. We intend to utilize this map by linking the molecular 

markers’ expression to the adult lineages that previously expressed them at the 

early embryonic stage when NBs delaminate. These links have previously been 

difficult to establish due to the lack of a simple and faithful strategy to continually 

follow the corresponding progenitors and their progeny. Thanks to the recent 

efforts by Awasaki et al., we now have the capacity to convert drivers that 

transiently express in NBs into drivers that express in all of their subsequent 

progeny, a process termed immortalization (Awasaki et al. 2014). Briefly, 

immortalization involves intersection of the activities of a pan-NB specific dpn 
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promoter and a candidate driver transiently expressing in NB. This overlap in turn 

generates an irreversible recombination event in the progenitor and makes all of 

its progeny uniformly labeled or influenced, hence targeting specific lineages.  

Equipped with the immortalization technology, we simultaneously 

developed our own efficient gene targeting (GT) strategy to generate a good 

collection of “molecular marker” drivers for specific lineage targeting. Additionally, 

the discovery of the 2A peptide modules, which promote ribosomal skipping 

during translation, makes it possible to piggyback a foreign coding sequence 

(CDS) to an endogenous gene and hijack its expression profile (Szymczak et al. 

2004; Diao and White 2012). Combining these two technologies and 

immortalization together, we hope to create numerous T2A-Gal4 KIs and 

extrapolate Urbach and Technau’s map to a molecular marker/cerebral lineage 

correspondence table. Describing such a link is the first step to deeper 

appreciation of their cause-and-effect relationships. In addition, with more 

advanced genetic intersection, we believe targeting specific NB/lineage is 

achievable for informed mechanistic developmental studies. 
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Results 

 

Generating T2A-Gal4 Knock-ins for genetic fate mapping 

The mystery remains in how the Drosophila brain discards the seemingly logical 

orthogonal VNC blueprint and yet manages to assemble a much more 

sophisticated structure. We started with analyzing the developmental logic of the 

two relatively organized posterior pregnathal neuromeres, tritocerebrum and 

deutocerebrum to assess the practicability of our proposal. Six molecular 

markers (lab, unpg, hkb, vnd, ind, and msh) were accordingly selected for their 

enriched expression in tritocerebral and deutocerebral NBs (Urbach and 

Technau 2003a). 

lab is expressed in all 13 tritocerebral NBs in Urbach and Technau’s table. 

We are interested in knowing the adult identities of these tritocerebral lineages 

because they might be positioned along the SPG/SEG border, which has never 

been strictly defined before owing to the mingling of neuromeres during 

metamorphosis.  Two other genes, huckebein (hkb), and unplugged (unpg) were 

selected for their concentrated expressions in NBs of the adjacent 

deutocerebrum. Lastly, vnd, ind, and msh were obvious choices because of their 

preserved differential DV distribution in both tritocerebrum and deutocerebrum. 

Donors to knock in T2A-Gal4 in each of the endogenous genes were 

created with lengths of both of the homology arms set at about 3kb. Due to our 

initial lack of experience, long arms were chosen to improve the chance of 
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correct targeting. Five KIs (unpg-, hkb-, lab-, ind-, and vnd-T2A-Gal4) were 

generated before Golic+ was mature, and hence they are products of traditional 

heat shock strategy with pTL1 as their donor backbone. We successfully 

recovered correct targeting for all five KIs, and observed efficiencies of roughly 1 

correct targeting per 100 founder females. Only msh-T2A-Gal4 was created by 

Golic+ with an amazing recovery rate of 1/2 (correct targeting/founder female) 

due to the effect of CRISPR/Cas induced target-specific DSB (see Chapter II). 

The success of all 6 GT cases also indicates the robustness of the lethality 

selection design.  

Correct targetings were immediately confirmed by chromosomal mapping 

and generation of correct genomic PCR amplicons. We used UAS-GFP::Dbox to 

evaluate their Gal4 activities and found they faithfully generated expression 

patterns that matched up with the in situ data from BDGP (Hammonds et al. 

2013), with a beautiful ventral to dorsal progression of expression of the three 

columnar genes, vnd, ind, and msh (Figure 3.1). These molecular markers also 

continue to be selectively expressed in several NBs through larval stages (Figure 

3.1), which suggests continual requirements of these genes in the development 

of certain lineages beside initial NB fate determination. 

To further validate our KI drivers, we inspected expression produced by 

vnd-, ind-, and msh-T2A-Gal4 in the well-studied embryonic vNR. As expected, 

vnd-, ind-, and msh-T2A-Gal4 drive reporter expression in medial, intermediate, 

and lateral NB columns of stage 11 embryonic vNR, respectively (Figure 3.2A-C). 
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At earlier stage 9, when only three distinct columns of NBs appear, vnd- and ind-

T2A-Gal4 promote expression in medial and intermediate column NBs (Figure 

3.2D,E). Surprisingly, msh-T2A-Gal4 does not induce obvious expression in the 

lateral NB columns at this stage (data not shown). Lateral expression by msh-

T2A-Gal4 only becomes detectable later, and overlaps well with the Msh 

antibody staining in several NBs (Figure 3.2F). 

Despite the usefulness of these KI drivers, we were surprised to observe 

that some of the knock-in Gal4s lost their activities during routine stock 

maintenance. Most of the T2A-Gal4 KIs do not behave as fully wild-type alleles 

from the fact that they are often maintained as heterozygotes over balancer 

chromosomes. We suspect the T2A module might not promote 100% ribosomal 

skipping, and the hybrid proteins possibly cause unexpected ectopic toxicity for 

the organisms. Because the expression of a T2A-Gal4 is contingent upon an 

intact continuous CDS starting from its target gene, its translation can be easily 

disrupted by small indels or missense mutations. Additionally, a truncated CDS is 

likely still more beneficial than an ectopic hybrid transcription factor, so the 

further mutated population gradually compete out the original knock-in 

population, though still appear heterozygous and balanced. Preliminary genomic 

sequencing data does support this hypothesis with the discoveries of small 

deletions in several T2A-Gal4 KIs that lost their binary induction abilities.  

 

Lineage tracing by immortalizing NB expressions 



84

First, we intended to describe the overall lineage coverage from each of our 6 

T2A-Gal4 KIs. The following immortalization strategies were achieved owing to 

the discovery of a pan-NB specific dpn promoter that is active in every NB 

outside of the optic lobes and silent in GMC and post-mitotic neurons (Awasaki et 

al. 2014). To capture and maintain the early NB expressions of these KIs, we first 

relayed their Gal4 activity to UAS-FLP, which subsequently removes a stop 

cassette (>FRT-stop-FRT>) between a dpn promoter and a secondary driver, 

LexA::p65 (Figure 3.3A). Then, the reconstituted dpn-FRT-lexA::p65 could turn 

on LexAop2-myr::GFP to label specific NBs that correspond to the original knock-

in T2A-Gal4 activities. Noticeably, neurite tracts of adjacent progeny cells from 

these NBs were also visible due to the perdurance of reporter expression (Figure 

3.3B-G). 

We were surprised to see only 2 NBs that ever express lab (denoted lab+ 

NBs) under this genetic intersection (Figure 3.3B), which suggests the majority of 

tritocerebral NBs do not survive into wandering (WD) larval stage. Also, we 

found, instead of covering almost all of the deutocerebral NBs as originally 

reported (Urbach and Technau 2003a), there are only 2 unpg+ NBs immortalized 

(Figure 3.3C), which is in consistent with Urbach’s following corrected annotation 

(NB Dv7 and Dd1) (Urbach 2007). hkb-T2A-Gal4 resulted in a much broader 

coverage than expected, possibly due to its early regional gap gene expression 

(Figure 3.3D). Finally, vnd-, ind-, and msh-T2A-Gal4 have immortalized 14, 14-

15, and 8-9 NBs each (Figure 3.3E-G). Interestingly, the original D/V gradient of 
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the three columnar genes is now transformed into a medial/lateral NB 

distribution. 

To visualize the corresponding progeny of these NBs into the adult stage, 

the initial T2A-Gal4 KI/dpn intersection has to be preserved further, intuitively by 

triggering an additional irreversible event.  Two new recombinases and their 

recombination targets, KD/KDRT and CRE/loxP, were hence introduced for 

sequential excisions of stop cassettes for finer transfer of activities (Siegal and 

Hartl 1996; Nern et al. 2011), and FLP/FRT was intentionally saved for future 

stochastic sampling (see below). In this new immortalization scheme, a T2A-Gal4 

KI first removes the KDRT stop cassette between a dpn promoter and a CRE 

recombinase by expressing UAS-KD. CRE in turn removes the loxP stop 

cassette between an actin promoter and a LexA::p65 driver to create a 

permanent driver, act-loxP-LexA::p65. As a result, by restricting the original T2A-

Gal4 activity through the dpn promoter to certain NBs, and preserving it further 

through the actin promoter, a lineage-restricted driver is created to present all of 

the adult lineages derived from a specific molecular marker of interest (Figure 

3.4A).  

The adult lineage coverage is consistent with the one made at WD larval 

stage for each of the six markers (Figure 3.4B-G). lab and unpg both correspond 

to two cerebral lineages, while hkb+ lineages continue to be a massive collection. 

The three columnar genes generate about 10 lineages each; however, the 

original larval medial/lateral NB distribution becomes obscure in the adult brain. 
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Additionally, it is noteworthy that msh+ lineages densely innervate the AL, a 

known deutocerebral neuropil, which agrees with the major expression of msh in 

deutocerebral NBs (Figure 3.4G) (Urbach and Technau 2003b).  

 

Mapping individual lab+, unpg+, vnd+, ind+, and msh+ lineages 

After acquiring the rudimentary knowledge of the adult lineage coverage derived 

from each of the six molecular markers, we were enthusiastic to know their 

individual identities. Therefore, an extra sampling strategy is necessary under the 

general immortalization scheme. This was achieved by bringing in hs-FLP and 

LexAop2>FRT-stop-FRT>myr::tdTomato. Heat shock induced expression of FLP 

at early embryonic stage could stochastically flip-out the FRT stop cassette in 

random NBs. Afterwards, the lineage-restricted act-loxP-LexA::p65 driver can 

turn on lexAop-FRT-myr::tdTomato and label lineages that experienced such flip-

out events with an additional reporter, tdTomato (Figure 3.5A). 

Both lab and unpg cover their own one unique AL lineage, ALlv1 and ALv1 

respectively (Figure 3.5B). Also, they both contain the WEDa1 lineage (Figure 

3.5B), suggesting co-expression of these two markers in the corresponding 

embryonic NB. The lack of appearance of lab+ lineages along the SPG and SEG 

border again indicated the demise of the majority of tritocerebral lineages during 

development. We did not pursue the sampling of hkb+ lineages because hkb as 

a gap gene apparently has a much broader expression before NB delamination, 

during which Urbach and Technau performed their survey. Immortalization with 
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hkb-T2A-Gal4 consequently produced a huge collection of adult lineages. Hence, 

we expected there exist no straightforward correspondence between our 

immortalization strategy and their hkb+ NB mapping in this specific case. 

vnd+ lineages are exhaustively sampled. There are 16 of them: SMPad1, 

SMPp&v1, VLPa2, CREa1, CREa2, AOTUv1, AOTUv3, AOTUv4, ALv1 (unpg+), 

LALv1, VESa1, VESa2, FLAa1, FLAa2, FLAa3, and WEDd1 (Figure 3.6). This 

coverage is identical to an independent parallel analysis made by our lineage 

team with the same vnd-T2A-Gal4 driver (Ying-Jou Lee, unpublished data). 

We currently have identified 13 ind+ lineages: LHa1, LHl2, SLPal5, 

SLPav1, SLPav3, SLPpl1, VLPd1, VLPp1, VPNp1, ALv1 (unpg+ and vnd+), 

LALv1 (vnd+), VESa1 (vnd+), WEDa1 (lab+ and unpg+). The large collection of 

LH and SLP lineages contributes to the prominent labeling of dorsal neuropils 

under general immortalization, a feature consistent with the fact that ind is largely 

expressed in protocerebrum. We expect to discover several additional ind+ 

lineages after continual sampling because there are 14-15 NBs immortalized at 

the WD larval stage (Figure 3.3F). 

There are 11 msh+ lineages: LHl1, SLPal1, VLPl4, VLPp1, VPNp1 (ind+), 

ALad1, ALl1, ALlv1 (lab+), ALv2, VESa1 (vnd+ and ind+), and PSa1 (Figure 3.8). 

Amazingly, 4 out of 5 AL lineages are included in the msh+ lineages. Since AL is 

an important olfactory information processing and relaying neuropil, we believe 

knocking-in different effectors in msh will be a desirable means of sophisticated 

genetic intersection for functional AL studies in the future.  
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We summarize the lineage coverage of each of the six T2A-Gal4s we 

created (Table 3.1). Interestingly, the three columnar genes together only cover 

one third of the cerebral lineages (34/106), which again suggests DV pattering 

does not play a major role in cerebrum development as in VNC. vnd+, ind+, and 

msh+ lineages are broadly distributed over the cerebrum (Figure 3.6, 3.7, 3.8). 

Therefore, the spatial organization becomes more obscure even though the initial 

DV patterning is roughly preserved in tritocerebrum and deutocerebrum. 

 Also, with proper intersection design, we have clues to target 7 lineages 

(VESa1, WEDa1, VLPp1, ALlv1, ALv1, LALv1, and VPNp1) individually. Being 

the intermediate columnar gene, ind corresponds to lineages that overlap with 

vnd+ lineages (VESa1, ALv1, and LALv1) and msh+ lineages (VESa1, VLPp1, 

and VPNp1), while vnd and msh only produce one common lineage, VESa1, 

which is also covered by ind. The significance of the overlap remains to be 

addressed since the three columnar genes are mostly mutually exclusive in both 

pNR and vNR. Other than co-existing in the same NB, sequential expression of 

the columnar genes can be the reason for the overlapping in immortalization 

coverage. Our studies thus revealed new aspects of the interplay between early 

patterning genes for future mechanistic studies. 
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Discussion 

 

In general, we are pleased with the fruitful lineage analyses made only possible 

by our valuable T2A-Gal KI drivers and the insights provided by Urbach and 

Technau’s NB map. Our irreversible immortalization design revealed the fact that 

early patterning genes are rigidly regulated and their expression possibly 

becomes more and more restricted within their own initial NB coverage. 

Otherwise, we would have obtained a bigger collection of lineages for each of the 

molecular markers with recovery of small lineage clones that come from 

immortalization at later developmental stages. Nevertheless, there exists obvious 

inconsistency between these two works that we need to mention and discuss its 

possible sources. 

First, the tritocerebral lineages remain mysterious. Our major attempt to 

reveal them by generating lab-T2A-Gal4 led us to believe that most of them do 

not survive to WD larval and adult stages. Also, lab and unpg possibly have 

overlapping activities in the NB that produces the WEDa1 lineage, a candidate of 

tritocerebral lineages; yet, unpg does not have expression in tritocerebral NBs in 

the earlier reports. One possible explanation is our dpn promoter does not cover 

the tritocerebral NB expressions, and immortalization failed accordingly. We will 

address this issue in follow-up studies by direct examination of dpn promoter 

activities in tritocerebrum and immortalization with a parallel NB-specific 

promoter (asense promoter). On the other hand, it is believed that three 
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columnar genes roughly subdivide the tritocerebrum and its NBs into three 

groups. We did recover lineages situated right above SEG from immortalization 

of vnd-T2A-Gal4 (VESa1, VESa2, FLAa1, FLAa2, FLAa3, and WEDd1), ind-T2A-

Gal4 (VESa1 and WEDa1) and msh-T2A-Gal4 (VESa1 and PSa1). They may be 

candidates for the tritocerebral lineages.  

Second, our lineage coverage does not match up well with Urbach and 

Technau’s NB annotations. We are curious to know the identities of the five NBs 

that correspond to the five AL lineages. ALv1 is included in unpg+, vnd+, and 

ind+ lineages. However, unpg and vnd do not have common NB expression in 

deutocerebrum, with the closest candidates being Dd1/Dd5 or Dv7/Dv8. Because 

NB Dd1 is additionally covered by ind, we suspect Dd1 produces the adult ALv1 

lineage. Also, ALlv1 was discovered in both lab+ and msh+ lineages, but there is 

no shared NB in deutocerebrum between lab+ (Dv2 and Dv4) and msh+ NBs 

(Dd2 to Dd13). NB Dd5 expresses both vnd and msh. The only common adult 

lineage of vnd+ and msh+ is VESa1, which is also included in ind+ lineages; 

unfortunately, NB Dd5 does not express ind. There is no overlap between vnd+ 

and ind+ NBs to explain common vnd+ and ind+ coverage of LALv1; also, there 

is no overlap between ind+ and msh+ NBs to predict VLPp1 and VPNp1 either. 

Lastly, LHl1 and SLPal1 from the msh+ lineages are located well in the 

protocerebrum region, but msh does not seem to be expressed in protocerebral 

NBs.  
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One other significant discrepancy is the mismatch of NB/Lineage 

numbers. Leaving tritocerebral NBs aside, there are 12 annotated deutocerebral 

msh+ NBs; yet, we only recovered 11 msh+ adult lineages in total after 

immortalization. Similarly, Urbach and Technau found 17 vnd+ deuto- and 

protocerebral NBs at the embryonic stage, while we recognized 16 lineages in 

the whole brain after exhaustive sampling. Currently, there are 13 ind+ lineages 

in our collection, but there are only 6 ind+ deuto- and protocerebral NBs. 

There are several ready explanations for such disagreement between 

these two studies. First, the endogenous embryonic expression of these 

molecular markers might be too transient or weak to trigger the first stop cassette 

excision of the cascade of immortalization; hence, lower numbers of our lineages 

than their NBs. Second, not all of the embryonic NBs produce lineages that 

survive into the adult stage, notably the tritocerebral NBs. Third, the Technau 

group’s NB map might not be 100% correct at all times because of the difficulties 

in consistent embryo sample preparation and precise NB annotation without rigid 

landmarks. We have this reasonable doubt owing to the conclusion that the likely 

NB candidates for ALv1 are Dd1/Dd5 and Dv7/Dv8, which arise in proximity in 

neuroectoderm. Finally, either our T2A-Gal4 KIs or their antibody/reporter 

mapping does not 100% faithfully represent the endogenous expressions of 

these molecular markers. In Urbach and Technau’s map, we noticed that among 

the three columnar genes, ind was the only one with its expression annotated 

based on in situ hybridization. It is understandable that a gene’s expression can 
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differ significantly over transcription, translation, and post-translation, not to 

mention we access it through binary induction. 

Despite the variance, these T2A-Gal4 KIs are nonetheless invaluable for 

lineage analyses. With a proper intersection design, we will have the ability to 

target certain lineages of interests, examples: VESa1, WEDa1, VLPp1, ALlv1, 

ALv1, LALv1, and VPNp1. As mentioned earlier, the AL lineages are one of the 

obvious entry materials for detailed mechanistic studies. We are eager to 

discover the major determinants for their shared features as well as distinct 

characteristics. Thanks to this study, we realized the three columnar genes are 

great candidates to initiate this investigation. In a parallel effort led by Zhiyong 

Liu and Rosa Miyares in the lab, we can specifically target and differentially label 

four of the five AL lineages (ALad1, ALl1, ALlv1, and ALv2). I will first use publicly 

available fly reagents to knock-down (UAS-RNAi) or ectopically express 

columnar genes (UAS-ORF) in AL lineages and evaluate the effects on their 

elaborate and sensitive morphologies.   

One striking observation over comprehensive lineage analyses is the 

potential discovery of lineage duplication. CREa1 and CREa2 are two vnd+ 

lineages of such a character. Ying-Jou Lee revealed their similar developmental 

profiles while performing in-depth birth dating analyses (unpublished data).  In 

short, half of the CREa1 lineage is composed of neurons of similar morphological 

characteristics and temporal birth order to one half of the CREa2 neurons, while 

both CREa1 and CREa2 produce distinct other halves that separate them from 
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each other. We are interested in revealing the determining factors among the 

combinatory codes that lead to the diversification of CREa1 and CREa2. 

Interestingly, we suspect there is another example pair of lineages carrying such 

properties: AOTUv3 and AOTUv4. A constantly growing collection of KIs of early 

patterning genes will allow us to obtain intersections that lead to lineage-specific 

drivers, which are essential for cell fate studies. 

Finally, we want to address one of the shortcomings of these T2A-Gal4 

KIs. Unfortunately, some of them accumulate mutations that lead to loss of Gal4 

expression over time. We have no way to prevent such naturally occurring 

undesirable events right now. However, by our continual effort to improve Golic+ 

with RMCE ability, we hope to gain the flexibility to generate KIs with different 

modules whenever necessary; hence, it is possible to circumvent this issue in the 

future.  
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Materials and Methods 

 

 

Generating T2A-Gal4 KIs 

Homology arms of about 3 kb each were cloned into pTL1 for knocking-in T2A-

Gal4 in lab, unpg, hkb, vnd, and ind. T2A-Gal4 CDS was inserted right after the 

second last amino acid codon for each of these five genes. Details of msh-T2A-

Gal4 KI cloning can be found in Material and Methods, Chapter II. The following 

primers were used to amplify the homology arms: 

lab_55AgeI: TACGACCGGTGGACAAGACTTGGGGTTTTACG; 
lab_53StuI: AAGGCCTACTTTGCTTGCTCGTGGG; 
lab_35EcoNI: TACGCCTTTCGAAGGTGAAGGGCTTTCTTCGATGTTG; 
lab_33MluI: TACGACGCGTGACCAAAAAGGACATTGTGGG; 
unpg_55AgeI: TACGACCGGTGATGGCTAACATTCGTTGTTGC; 
unpg_53StuI: AAGGCCTATAGATGCTCCTGGCGAGG; 
unpg_35EcoNI: TACGCCTTTCGAAGGTGATGGAGTTGGGCTCCT; 
unpg_33MluI: TACGACGCGTCAAATTGTTCAAATGACTCCCGC; 
hkb_55NgoMIV: TACGGCCGGCCTGCGGAATGCACCTTC; 
hkb_53StuI: AAGGCCTGTAGCCATAAAGGTATGAGTACATGG; 
hkb_35BamHI: CGGGATCCTGAGAGGGAAATCCTGGCG; 
hkb_33EcoNI: TACGCCTTTCGAAGGCGCATTATGGCCAGGAAAGC; 
vnd_55AgeI: TACGACCGGTGATCAAGGAGAACGAGCTATACG; 
vnd_53StuI: AAGGCCTGGGCCACCAGGCGG; 
vnd_35PmeI: TACGGTTTAAACTAATATTGCTAGGAACTGGCATTCAC; 
vnd_33MluI: AAGTACGCGTAACTGGAATAAGTTC; 
ind_55AgeI: TACGACCGGTGAAGTCTAAGTCAATAGCACGATC; 
ind_53StuI: AAGGCCTCGCCTCAACCTTCAATTCGTG 
ind_35PmeI: TACGGTTTAAACTAGAATCAATCACCTATTAAACCATAAGA; 
ind_33MluI: TACGACGCGTGCGGGACACTCGAAAGTTG. 
 

Donors were integrated in either attP40 (lab, hkb, vnd, ind) or VK00027 

(unpg), depending on the locations of the endogenous genes. We used 

traditional Golic heat shock strategy for donor release; however, lethality 
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selection was implemented for easy candidate recovery. For details, refer to 

“Traditional Golic Heat Shock”, Material and Methods, Chapter II. 

The following BAC clones were used: BACR69M19 for lab; BACR82N17 

for unpg; BACR30G03 for hkb; BACR16G06 for vnd; BACR42C08 for ind. These 

primers were used in genomic PCR for T2A-Gal4 KI confirmation: 

Gal4-1: CACACGCTTGTTCAATACTACTCAG; 
Gal4-2: GATACTCCACCGAACCCAAAGAAG; 
unpg_g1: TTGGTTAGACGTTCGACAATCCTTAG; 
unpg_g2: CACTTTGTTCGCTGAACGCTCC; 
lab_g1: GTGGAAGCGATCCCCGATAATG; 
lab_g2: TTCCTTTTGGTTTGGTTTGGTCCC; 
hkb_g1: TCGAACAATGCAGTTGGACGTAATC; 
hkb_g2: GCCAGGAAAGCACGTTACCATT; 
vnd_g1: CTTTGGCGACGAGATGTCCTC; 
vnd_g2: GCTGCAGATATGCGAGCATAAGC; 
ind_g1: GAAGCCGATGCTATCTTGGAGATAAG; 
ind_g2: CTTTAAACTGAAGAGGTTCTGCACTTC. 

 

Fly Strains 

Transgenes constructs were inserted into various attP sites in Drosophila 

genome. The T2A-Gal4s, generated by gene targeting, used in this study 

include: lab-T2A-Gal4, unpg-T2A-Gal4, hkb-T2A-Gal4, vnd-T2A-Gal4, ind-T2A-

Gal4, and msh-T2A-Gal4. Transgene used for characterizing the dynamics of 

various T2A-Gal4 activities at different developmental stages was UAS-

GFP::Dbox in VK00027. Transgenes used for immortalization of the T2A-Gal4 

activities through a dpn NB enhancer during larvae development include: UAS-

FLP in attP18, dpn>FRT-stop-FRT>LexA::p65 in su(Hw)attP8, LexAop2-

myr::GFP in attP40 plus su(Hw)attP5. Transgenes used for immortalizing T2A-
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Gal4 pattern through a dpn NB enhancer to lineage-restricted activity include: 

dpn<KDRT-stop-KDRT<Cre::PEST in su(Hw)attP8, act^loxP-stop-

loxP^LexA::p65 in attP40, LexAop2-myr:GFP in su(Hw)attP5, UAS-KD in 

VK00027. Transgenes used for sampling the immortalized T2A-Gal4 pattern 

through a dpn NB enhancer to lineage-restricted activity include: hs-opFLP in 

attP18, dpn<KDRT-stop-KDRT<Cre::PEST in su(Hw)attP8, act^loxP-stop-

loxP^LexA::p65 in attP40, LexAop2-myr:GFP in su(Hw)attP5, UAS-KD in 

VK00027, LexAop2>FRT-stop-FRT>mry::tdTomato in su(Hw)attP5 plus attP2. 

 

Lineage immortalization and sampling 

Larvae and adults with the genotype for lineage immortalization were raised in 

standard conditions and dissected at corresponding stages. For sampling, eggs 

were collected every three hours, aged for another three hours, and underwent 

heat shock in 37℃ water bath for different periods of time (20 min for lab and 

unpg; 15 min for msh; 10-12 min for vnd and ind) owing to the number of 

immortalized lineages they contained. 

 

Immunohistochemistry and confocal microscopy 

Procedures for embryo preparation, fixation, and staining can be found in 

Materials and Methods, Chapter II. For embryonic vNR studies, overnight-

collected embryos were fixed and stained as previously described (Lacin et al. 

2009). Larval brains at corresponding stages and adult brains from 3- to 4-day-
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old flies were dissected in 1X PBS and fixed for 20 min in 4% paraformaldehyde 

fixation solution. After fixation, brains were first rinsed 3 times, then washed 3 

times (10, 20, 30 min) in PBST (0.5% Triton X-100 in 1X PBS), and finally 

incubated with primary antibodies (diluted in PBST + 5% normal goat serum) 

overnight at 4℃. Next day, samples were incubated at room temperature for an 

additional hour before rinsed 3 times and washed 3 times (10, 20, 30 min) in 

PBST. Brains were then incubated with secondary antibodies (diluted in PBST + 

5% normal goat serum) overnight at 4℃.  Finally, they were placed in room 

temperature for an hour before rinsed 3 times and washed 3 times in an hour. 

For mounting, brains were transferred on glass slides rinsed 2 times with 1X 

PBS, rinsed again in SlowFade Gold antifade reagent (InVitrogen) and soaked in 

SlowFade for fluorescence imaging. Embryo samples were collected, fixed, and 

stained in the same procedures as the ones in Chapter II. 

The following primary antibodies were used in this study: guinea pig anti-

Deadpan, 1:1000 (kindly provided by James B. Skeath); rabbit anti-Msh, 1:500 

(kindly provided by Chris Q. Doe; ISSHIKI et al. 1997); rat monoclonal anti-GFP, 

1:1000 (NACALAI TESQUE, INC. 04404-84); rabbit polyclonal anti-GFP, 1:1500 

(Invitrogen #A-11122); rabbit polyclonal anti-DsRed, 1:500 (Clontech, Living 

Colors, 632496); mouse anti-Bruchpilot, nc82 mAb, 1:100 (DSHB). Secondary 

antibodies used include Alexa Fluor 488 goat anti-rat IgG, 1:500 (Invitrogen #A-

11006), Cy3-conjugated goat anti-rabbit antibody, 1:200 (Jackson 

ImmunoResearch #111-165-144), and Cy5-conjugated goat anti-mouse 
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antibody, 1:200 (Jackson ImmunoResearch #115-605-146). For embryos, Cy3-

conjugated goat anti-rabbit (1:200; Jackson ImmunoResearch, 111-165-144) and 

Hoechst 33342 (1:1000; invitrogen) were used. 

Fluorescent signals of whole mount embryos, larval and adult brains were 

collected by confocal serial scanning using Carl Zeiss LSM710 microscope.  

Images were processed with Fiji then rotated and cropped with Keynote.  
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Table 3.1. Summary of lineage immortalization. 

 

Lineages lab unpg vnd ind msh 

Unique Lineages for 
a certain molecular 

marker 

  SMPad1 
SMPp&v1 

VLPa2 
CREa1 
CREa2 

AOTUv1 
AOTUv3 
AOTUv4 
VESa2 
FLAa1 
FLAa2 
FLAa3 
WEDd1 

LHa1 
LHl2 

SLPal5 
SLPav1 
SLPav3 
SLPpl1 
VLPd1 

 

LHl1 
SLPal1 
VLPl4 
ALad1 
ALl1 
Alv2 
PSa1 

VESa1   ν ν ν 
WEDa1 ν ν  ν  
VLPp1    ν ν 
ALlv1 ν    ν 
ALv1  ν ν ν  

LALv1   ν ν  
VPNp1    ν ν 
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Figure 3.1. Expressions of T2A-Gal4 KIs at embryonic and larval stages. 

We used UAS-GFP::Dbox to evaluate our T2A-Gal4 GT designs. All 6 T2A-Gal4 

KIs faithfully capture and represent the endogenous expressions of their 

corresponding targeted genes as compared to the publicly available in situ data 

from BDGP (http://insitu.fruitfly.org). Interestingly, we also noticed that these 

genes continue to be selectively expressed in certain NBs (cells with significant 

larger sizes) through larval stages. Magenta: GFP::Dbox; blue: DNA, Hoechst 

33342 staining. 
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Figure 3.1. Expressions of T2A-Gal4 KIs at embryonic and larval stages. 
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Figure 3.2. vnd-T2A-Gal4, ind-T2A-Gal4, and msh-T2A-Gal4 drive reporter 

expression in medial, intermediate, and lateral NB columns, respectively.  

(A-C) Reporter expression (green) and Dpn labeled NBs in abdominal segments 

of stage 11 embryonic nerve cord are shown. (A) vnd-T2A-Gal4 drives the 

reporter expression in the medially located ventral NBs; (B) ind-T2A-Gal4 drives 

the reporter in the intermediate columns of NBs; (C) msh-T2A-Gal4 drives the 

reporter expression in the lateral column of NBs. (D-E) Three columns of NBs are 

visible on each side of the midline of early stage 9 embryonic nerve cords that 

are stained against Msh protein (red). (D) GFP expression driven by vnd-T2A-

Gal4 is detected in medial column NBs (1-1, MP2, 5-2, and 7-1; arrows). (E) GFP 

expression driven by ind-T2A-Gal4 is detected in intermediate column NBs (3-2, 

4-2, and5-3; arrows). (F) At late stage 11 embryos, msh-T2A-Gal4 labels NBs 2-

4, 4-3, 5-4, and 7-4 (arrows) in addition to several others (not visible at this local 

plane) White bar marks the midline. Dashed lines mark the segment boundaries. 

 



103

Figure 3.2. vnd-T2A-Gal4, ind-T2A-Gal4, and msh-T2A-Gal4 drive reporter 

expression in medial, intermediate, and lateral NB columns, respectively. 

 



104

Figure 3.3. Immortalization at the WD larval stage. 

(A) An illustration to depict the genetic strategy to immortalize transient 

expression of molecular markers in NBs into irreversible NB labeling at larval 

stages. Expressions of a T2A-Gal4 KI in certain NBs result in the removal of a 

stop cassette between a dpn promoter and a LexA::p65 driver. The reconstituted 

dpn-FRT-LexA::p65 driver can then turn on myr::GFP to label these NBs 

continually, plus their immediate progeny cells. (B-G) NBs that express certain 

molecular markers were revealed accordingly by immortalization at the WD larval 

stage. Magenta: myr::GFP; blue: neuropil, nc82 staining. 
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Figure 3.3. Immortalization at the WD larval stage. 
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Figure 3.4. Adult lineages of NBs positive for certain molecular markers. 

(A) The genetic strategy to reveal lineages produced by NBs that express a 

certain molecular marker. Two recombinases (KD and Cre) work sequentially to 

remove two stop cassettes and consequently immortalize early NB expression of 

a specific molecular marker into irreversible labeling of subsequent progeny cells 

of the corresponding NBs. (B-G) Lineages of NBs that express certain molecular 

markers were uncovered by immortalization at the adult stage. Magenta: 

myr::GFP; blue: neuropil, nc82 staining. 
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Figure 3.4. Adult lineages of NBs positive for certain molecular markers. 
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Figure 3.5. Uncovering individual lineages after immortalization. 

(A) Lineage sampling was achieved by stochastic removal of an FRT-flanked 

stop cassette in LexAop2>FRT-stop-FRT>myr::tdTomato by hs-FLP. Once such 

random events occur in the immortalized NBs, they will be additionally labeled by 

myr::tdTomato. (B) lab+ lineages (ALlv1 and WEDa1) and unpg+ lineages (ALv1 

and WEDa1) are distinctly presented with lineage sampling. Magenta: myr::GFP; 

blue: neuropil, nc82 staining; red: general immortalization, myr::GFP; green: 

lineage sampling, myr::tdTomato; grey: neuropil, nc82 staining. 
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Figure 3.5. Uncovering individual lineages after immortalization. 
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Figure 3.6. vnd+ lineages. 

(A-P) Representative images of 16 vnd+ lineages are presented here after 

exhaustive sampling. In cases of multiple lineage hits in a single brain, the target 

lineages are circled with white dashed lines. Red: general immortalization, 

myr::GFP; green: lineage sampling, myr::tdTomato; grey: neuropil, nc82 staining. 
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Figure 3.6. vnd+ lineages. 
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Figure 3.7. ind+ lineages. 

(A-M) Representative images of 13 ind+ lineages are presented here. In cases of 

multiple lineage hits in a single brain, the target lineages are circled with white 

dashed lines. Red: general immortalization, myr::GFP; green: lineage sampling, 

myr::tdTomato; grey: neuropil, nc82 staining. 
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Figure 3.7. ind+ lineages. 
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Figure 3.8. msh+ lineages. 

(A) Representative images of 11 msh+ lineages are presented here after 

exhaustive sampling. In cases of multiple lineage hits in a single brain, the target 

lineages are circled with white dashed lines. Red: general immortalization, 

myr::GFP; green: lineage sampling, myr::tdTomato; grey: neuropil, nc82 staining. 
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Figure 3.8. msh+ lineages. 
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CHAPTER IV 

 

Conclusion 

 

Dissecting the mechanisms of brain development remains one of the most 

challenging and attractive topics in developmental biology. It never stops 

amazing me how a number of cells specified from a two dimensional layer 

produce a huge collection of diversified progeny that in turn elaborate and 

intertwine to form a structurally complex and functionally sophisticated brain.  

Drosophila melanogaster serves as one of the most useful and popular 

model organisms for development studies due to numerous historical and 

economical reasons. Mostly, its biology is relatively simple yet complex enough 

for us to obtain valuable insights for mechanisms evolutionally conserved across 

species. Also, what comes with it is an almost unmatchable set of genetic tools 

that help us introduce precise and effective manipulations that are essential for 

deducing cause-and-effect relationships. Furthermore, its famous stereotypic 

brain lineages and neuronal elaborations further facilitate the characterization 

and analyses of individual lineages and corresponding neurons in different 

experimental settings. 

But, still, why do we bother to continually invest significant energy in 

studying this seemingly distant relative? If the famous discovery of embryonic 

body plan by Edward Lewis, Christiane Nüsslein-Volhard and Eric Wieschaus is 
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not convincing enough, how about the amazing similarity in our olfactory 

systems, thanks to the beautiful work pioneered by Richard Axel and Linda B. 

Buck? Not to mention a variety of behaviors a little fly can demonstrate: learning 

and memory, courtship, sleep circadian rhythms, aggression, addiction, and 

other social behaviors. Studying them did and will continue to provide insights 

that couldn’t be easily acquired in “higher” organisms.  

As for the fly brain development, just recently a mammalian type 

proliferation pattern was discovered in fly, which produces the type II (or PAN) 

lineages. By depositing a series of transient amplifying precursors that proliferate 

like short-lived NBs, this new proliferation strategy significantly increases the 

number of progeny cells a NB can produce. More importantly, all 8 of the type II 

lineages generate neurons that together innervate more broadly in an adult brain, 

much different from the relatively regional type I lineages. 

Additionally, there are 4 MB lineages standing out among the type I 

lineages with the longest proliferation windows and without dormancy during 

embryo/larva transition. They produce fairly large number of neurons yet with 

fewer morphologically distinguishable types. It was further found that MB 

lineages have intrinsic and plastic developmental programs. They can uncouple 

their NB cycling from temporal fate transitions that are closely linked to extrinsic 

cues directed by overall organismal growth and development. Therefore, external 

perturbations, such as starvation, can lead to drastic changes in the numbers of 

MB neurons. 
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It remains to be seen what are the determining factors for the creation of 

such novelties among the brain lineages. What is transforming type II lineages to 

deposit more progeny with more diversity and broader coverage in roughly the 

same amount of time? Is there a reason for MB, an information processor, to be 

released from the common developmental constraints? Understanding the 

sources of their divergence should provide us new perspectives on how 

complexity and plasticity contribute to possibly higher brain functions in parallel to 

the general rigid development and likely basal activities. Additionally, we hope to 

find the patterning cues that uniquely belong to either one of the NBs of the 

CREa1/CREa2 or the AOTUv3/AOTUv4 lineages. Each NB pair might have their 

NBs situated so close that only few patterning cues are differential. Identifying 

such cues will be significant breakthrough of both developmental and 

evolutionary biology.  

We plan to unveil the mystery of fly brain development by a bottom-up 

approach, step by step, tracing the process from its origin and making sense of 

this beautiful interplay of molecules, cells, and network. Generally, owing to 

fruitful lessons learned from VNC studies, we believe Drosophila CNS is laid out 

by three fundamental mechanisms: (i) NBs are first specified by early positional 

cues and acquire their own identities, (ii) each NB then deposits a series of 

unique progeny cells that are patterned mostly by intrinsic temporal codes, (iii) 

environmental factors and organismal experiences can further bring in plasticity 

in brain development. 
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However, much less is understood about the development of Drosophila 

cerebrum because of its higher complexity and obscure organization. Although 

vNR has a more comprehensible grid-like patterning logic, it only gives flies a 

simpler and repetitive VNC structure. Regarding the fly brain, divergence from 

the original developmental plans again leads to complexity that achieves a more 

sophisticated organization during evolution. Obscure patterning is not illogical. 

Though challenging, it simply is a logic we yet understand and desperately need 

to study to comprehend how a real complex structure for advanced functions is 

built from delicate variations in the beginning.  

Mechanistic studies in fly brain are often hindered by the lack of 

systematical ways to introduce effective manipulations in cells with common 

pedigrees. In fact, other than the distinct MB lineages, thorough and 

unambiguous tracking of lineages from embryonic to adult stages has never 

been achieved before. Without continual tracing, it is unreasonable to make 

convincing and substantial interpretations of any perturbations introduced. 

Recognizing the necessity to break through such a bottleneck and make 

the embryo/adult connections, we embarked on developing novel strategies to 

generate new “drivers” that can help us follow and manipulate lineages. Our work 

was inspired by Urbach and Technau’s effort to annotate expression of 

numerous “molecular markers” in all of the 106 cerebral NBs. Their molecular 

marker/NB map is the first clue to finding the determinants of NBs’ individual 

identities. What we need next is a way to perform reverse genetics based on this 
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information and systematically address molecular markers’ roles in the NB 

specification. 

Luckily, Awasaki et al. pioneered the method to immortalize cerebral 

lineages from the embryonic stage with the help of a pan-NB dpn promoter. 

Accordingly, we decided to create T2A-Gal4 KIs for these molecular markers so 

that we can link molecular markers, NBs, and lineages together using the 

immortalization technology. Unfortunately, genome editing in fly wasn’t efficient 

enough for large-scale studies when we initiated our project. Hence, we patiently 

started with improving the traditional Golic gene targeting. 

Abandoning the traditional Golic heat shock induction at larval stage, our 

proposal was to hijack adult ovaries to continually provide donor DNA in each CB 

so that the laborious effort of heat shock incubation or embryo microinjection can 

be bypassed with simple fly breeding. We identified and characterized the CB-

specific bamP promoters for this purpose. Additionally, we implemented a 

lethality selection to further help us save the energy for candidate screening. 

However, we found that HR does not occur naturally in CB, or happens in a 

much lower rate than HR in the larval primordial germ cells. Only after we further 

introduced sequence-specific DSBs by the CRISPR/Cas technology, the adult 

ovaries became a feasible tissue for GT. We named our GT package Golic+ 

(gene targeting during oogenesis with lethality inhibitor and CRISPR/Cas plus) to 

indicate its various features and to honor the pioneering work of the Golic group 

(Rong and Golic 2000; Gong and Golic 2003). 
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In general, Golic+ performs at a comparable efficiency for HR as the 

currently established direct embryonic injection strategy. However, Golic+ does 

require more time for its requirement of a starting {donor, gRNA} transformant if 

one round of task of either strategy is enough for recovering sufficient numbers of 

GT candidates. Also, direct injection provides flexibility that the transgene-based 

Golic+ can not match, such as multiple gRNAs, double nicking, large deletion, 

single-stranded oligonucleotide for small modification, etc. On the other hand, 

when it comes to low-efficiency target loci, we believe Golic+ surpasses direct 

injection by effortlessly providing unlimited trials from basic breeding because it 

extensively employs fly genetic designs to save us the labor of microinjection and 

screening. We believe it remains to be seen which strategy will win out, but 

Golic+ is a well-thought alternative that has great potentials. Researchers shall 

choose a strategy based on the scale of their projects and the nature of GT 

alleles they intend to create. 

In any case, we will continue to improve Golic+ in multiple directions to 

make it more appealing for the fly community. First, we are interested in 

investigating the high GT efficiency and low rate or complete absence of false-

positives resulting from using circular donor DNA. We have generated bamP-CF 

that will ideally release uncut donor plus CRISPR/Cas-induced DSB in every CB. 

Second, we wish to exclude escapers from further chromosomal mapping by pre-

selecting red-fluorescent-eyed candidates (3X-riTS-Rac1V12 with 3xP3-RFP) that 

must carry the repressor, lexAop-rCD2i. Third, by incorporating an additional 
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integration system (BxbI/attPX) we intend to adopt the RMCE concept for 

versatile and economical retargeting. Finally, we are eager to explore the 

possibility of assembling a screening platform with a constant supply of targeted 

mutants by exploiting CRISPR/Cas in cystoblast. Using bamP-Cas9 and other 

necessary transgenes, we wish to fully exploit adult ovaries as mutagenesis 

pipelines. 

We generated 6 molecular marker T2A-Gal4 KIs accordingly with our own 

GT strategies. They faithfully captured the endogenous expression of the target 

genes and resulted in insightful lineage immortalizations. Also, each T2A-Gal4 KI 

brought us either comparable or slightly smaller number of immortalized lineages 

compared to Urbach and Techanu’s initial NB annotations. We believe that these 

patterning genes are restrictively expressed within their initial coverage, possibly 

in fewer and fewer NBs judging from our direct T2A-Gal4 expression data (Figure 

3.1). This conclusion is also supported by our constant recovery of full lineage 

clones, which means immortalization at the embryonic stage, and no clone 

induction was triggered by these KIs afterwards outside of the original coverage. 

There exists significant inconsistency between the results of our study and 

Urbach and Technau’s annotation that, we believe, comes from the limitations of 

both strategies. Neither expression at the mRNA nor the protein level, 

determined by in situ hybridization or antibody staining, can fully represent a 

gene’s expression, let alone reporting with a secondary reporter through binary 

induction. T2A-Gal4 definitely bears the inherent flaws of a temporal delay and 
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amplification in magnitude while representing a gene’s expression. However, it is 

one of the most ideal tools we can generate to transform information into real 

handles on a cell population of our interest. One resolution to the incompatibility 

is to annotate our T2A-Gal4s in the same embryo flat preparation, possibly 

through collaboration considering the skill, experience, and knowledge involved. 

Yet, we believe the current coarse correspondence is a sufficient starting point 

because immortalization initiated by the T2A-Gal4s most likely captures the 

prominent core expression profiles. All in all, the continual intersection of these 

two work will surly lead to better understandings of the NB fate determination, 

neuron identity acquisition, and full lineage development. 

We hope, equipped with our own efficient and soon-to-be versatile Golic+, 

the sophisticated immortalization technology, and Urbach and Technau’s NB 

map, we just initiated a new chapter of mechanistic studies in Drosophila 

cerebrum development. Drivers we create down the road can also benefit other 

functional and behavioral studies. We are determined to reach finer and finer 

dissection of the neuronal network, and hopefully, one day, come to a better 

appreciation of this structurally complex and temporally prolonged process of 

constructing a delicate functioning brain.  
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