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ABSTRACT 

 

Huntington’s disease (HD) is a fatal neurodegenerative disease caused by a CAG 

repeat expansion in exon 1 of the huntingtin gene, resulting in an expanded 

polyglutamine (polyQ) repeat in the huntingtin protein. Patients receive symptomatic 

treatment for motor, emotional, and cognitive impairments; however, there is no 

treatment to slow the progression of the disease, with death occurring 15-20 years after 

diagnosis. Mutant huntingtin protein interferes with multiple cellular processes leading to 

cellular dysfunction and neuronal loss. Due to the complexity of mutant huntingtin 

toxicity, many approaches to treating each effect are being investigated. Unfortunately, 

addressing one cause of toxicity might not result in protection from other toxic insults, 

necessitating a combination of treatments for HD patients. Ideally, single therapy 

targeting the mutant mRNA or protein could prevent all downstream toxicities caused by 

mutant huntingtin. In this work, I used animal models to investigate a potential 

therapeutic target for decreasing mutant huntingtin protein, and I apply bioluminescent 

imaging to investigate RNA interference to silence mutant huntingtin target sites. 

The enzyme puromycin sensitive aminopeptidase (PSA) has the unique property 

of degrading polyQ peptides and been implicated in the degradation of huntingtin. In this 

study, we looked for an effect of decreased PSA on the pathology and behavior in a 

mouse model of Huntington’s disease.  To achieve this, we crossed HD mice with mice 

with one functional PSA allele and one inactivated PSA allele. We found that PSA 

heterozygous HD mice develop a greater number of pathological inclusion bodies, 

representing an accumulation of mutant huntingtin in neurons. PSA heterozygous HD 
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mice also exhibit worsened performance on the raised-beam test, a test for balance and 

coordination indicating that the PSA heterozygosity impairs the function of neurons with 

mutant huntingtin. In order to test whether increasing PSA expression ameliorates the HD 

phenotype in mice we created an adeno-associated virus (AAV) expressing the human 

form of PSA (AAV-hPSA). Unexpectedly, testing of AAV-hPSA in non-HD mice 

resulted in widespread toxicity at high doses. These findings suggest that overexpression 

of PSA is toxic to neurons in the conditions tested. 

In the second part of my dissertation work, I designed a model for following the 

silencing of huntingtin sequences in the brain. Firefly luciferase is a bioluminescent 

enzyme that is extensively used as a reporter molecule to follow biological processes in 

vivo using bioluminescent imaging (BLI). I created an AAV expressing the luciferase 

gene containing huntingtin sequences in the 3'-untranslated region (AAV-Luc-Htt). After 

co-injection of AAV-Luc-Htt with RNA-silencing molecules (RNAi) into the brain, we 

followed luciferase activity. Using this method, we tested cholesterol-conjugated siRNA, 

un-conjugated siRNA, and hairpin RNA targeting both luciferase and huntingtin 

sequences. Despite being able to detect silencing on isolated days, we were unable to 

detect sustained silencing, which had been reported in similar studies in tissues other than 

the brain. We observed an interesting finding that co-injection of cholesterol-conjugated 

siRNA with AAV-Luc-Htt increased luminescence, findings that were verified in cell 

culture to be independent of serotype, siRNA sequence, and cell type. That cc-siRNA 

affects the expression of AAV-Luc-Htt reveals an interesting interaction possibly 

resulting in increased delivery of AAV into cells or an increase in luciferase expression 
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within the cell. My work presents a method to follow gene silencing of huntingtin targets 

in the brain, which needs further optimization in order to detect sustained silencing. 

Finally, in this dissertation I continue the study of bioluminescent imaging in the 

brain. We use mice that have been injected in the brain with AAV-Luciferase (AAV-Luc) 

to screen 34 luciferase substrate solutions to identify the greatest light-emitting substrate 

in the brain. We identify two substrates, CycLuc1 and iPr-amide as substrates with 

enhanced light-emitting properties compared with D-luciferin, the standard, 

commercially available substrate. CycLuc1 and iPr-amide were tested in transgenic mice 

expressing luciferase in dopaminergic neurons. These novel substrates produced 

luminescence unlike the standard substrate, D-luciferin which was undetectable. This 

demonstrates that CycLuc1 and iPr-amide improve the sensitivity of BLI in low 

expression models. We then used CycLuc1 to test silencing of luciferase in the brain 

using AAV-shRNA (AAV-shLuc). We were unable to detect silencing in treated mice, 

despite a 50% reduction of luciferase mRNA. The results from this experiment identify 

luciferase substrates that can be used to image transgenic mice expressing luciferase in 

dopaminergic neurons.  

My work contributes new data on the study of PSA as a modifier of Huntington’s 

disease in a knock-in mouse model of Huntington’s disease. My work also makes 

contributions to the field of bioluminescent imaging by identifying and testing luciferase 

substrates in the brain to detect low level of luciferase expression. 
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CHAPTER I 

 

INTRODUCTION 

  

The goal of this dissertation is to investigate methods to modify levels of mutant 

huntingtin protein, the cause of Huntington’s disease. Huntington’s disease is an inherited 

neurodegenerative disease caused by a mutation in the huntingtin gene. The mutation is an 

expanded CAG repeat in exon 1 of the huntingtin gene that encodes a polyglutamine expansion 

in the huntingtin protein, conferring it with many toxic properties resulting in neuron dysfunction 

and cell death. There is currently no cure for Huntington’s disease. The studies in the following 

chapters focus on how to decrease the amount of mutant huntingtin protein. For this dissertation, 

it is helpful to understand the molecular mechanisms of the disease, especially the process by 

which mutant huntingtin is handled by the cell. One essential question in the study of HD 

remains how mutant huntingtin is degraded. Mutant huntingtin accumulates in neurons, forming 

intracellular aggregates and inclusion bodies. Neurons eventually succumb to the toxic effects of 

mutant huntingtin and undergo cell death. Together, neuronal dysfunction and cell death result in 

declining mental and physical functioning and death in Huntington’s disease patients. 

I focus on two strategies that can be applied to treat Huntington’s disease. The first study 

is of puromycin sensitive aminopeptidase (PSA), a potential modifier of the degradation of 

mutant huntingtin. Mutant huntingtin is misfolded and marked for degradation; however it 

accumulates resulting in cellular dysfunction. An increase in the degradation of mutant 
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huntingtin could clear the mutant protein and avoid the disruption of cellular processes. This 

mechanism would ideally prevent the onset and slow the progression of the disease.  

A second approach is to slow or stop the production of mutant huntingtin protein. RNA 

interference (RNAi) is currently being studied as a method to reduce the amount of mutant 

huntingtin mRNA, resulting in lower levels of mutant huntingtin protein. A decrease of mutant 

huntingtin mRNA and protein would prevent downstream toxicity and cell death. A challenge of 

optimizing the design and delivery of RNAi has been the lack of an efficient way to evaluate, in 

vivo, the effectiveness of each sequence, structure, and delivery system. This work examines an 

in vivo system that can be used to screen silencing molecules in the brain. We present a 

luciferase reporter molecule containing human huntingtin sequences that can be used to test and 

compare RNAi approaches in the brain of mice. This method allows screening of silencing 

molecules and delivery systems in live animals. One benefit of this system is that silencing can 

be followed over time in the same mouse, preventing the need to collect mRNA and protein from 

multiple endpoints. RNAi molecules vary in terms of sequence, secondary structure, nucleotide 

and linkage modifications and delivery systems, making it imperative to methodically screen 

candidate molecules. A comparison of different RNAi strategies in the brain will provide an 

optimal design for RNAi therapy to treat Huntington’s disease.  

Chapter I provides an overview of Huntington’s disease, including the molecular 

functions of normal huntingtin, the toxicities of mutant huntingtin, and a discussion of the 

current strategies for treating Huntington’s disease. Chapter I also introduces published research 

which provides the rationale for my research. 
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A. Huntington’s disease 

 

1. What is Huntington’s disease? 

Huntington’s disease (HD) is a neurodegenerative disease caused by an autosomal 

dominant mutation in the huntingtin gene [1]. The mutant allele contains an expansion of a CAG 

trinucleotide repeat in exon 1 encoding a poly glutamine (polyQ) repeat in the mutant huntingtin 

protein [2]. The expanded polyQ region of mutant huntingtin results in protein misfolding, 

aggregation, and confers upon it toxic properties, such as accumulation of mutant huntingtin, 

disruptions in mitochondrial function, and vesicle trafficking and recycling resulting in cellular 

dysfunction and ultimately, neuronal cell death [2]. Huntington’s disease is a complex disease 

because of the multiple functions that huntingtin performs and the many toxicities that are caused 

by the mutant protein. Currently, there is no cure for HD.  

Huntington’s disease is inherited in an autosomal dominant manner. Typically, an 

affected parent carries one mutant allele so there is a 50% chance of passing on the disease. A 

normal huntingtin gene contains 6-36 CAG repeats. Persons with repeat numbers of 37 or above 

are considered to have Huntington’s disease and will develop symptoms and signs as they age 

[2]. An inverse correlation exists between the numbers of repeats with the age of onset of the 

disease, the longer the number of repeats, the earlier the onset of symptoms. The trinucleotide 

repeat is unstable and prone to expansion, especially in spermatogenesis [3]. In homozygous 

patients, the onset of disease is dependent upon the length of the expansion rather than the 

presence of two mutant alleles  The prevalence of HD in populations of Western European 



4 
 

descent is 4-10 cases per 100,000 [2].  10% of HD patients are young people under the age of 20 

years old, whose disease results from having 60 or more CAG repeats [2].  

 

2. Clinical presentation and disease progression 

In adult cases of HD, the earliest symptoms are changes in mood, including personality 

changes, depression, anxiety, irritability and obsessive compulsive disorder [4]. Apathy increases 

in severity with disease progression, and psychotic symptoms may develop concurrently with the 

onset of motor symptoms [4]. Sleep disturbances are common in Huntington’s disease, including 

insomnia, daytime somnolence, and reduced total sleep time [5]. Motor symptoms typically 

begin with incoordination and chorea, a quick involuntary movement of the hands and feet. 

Motor symptoms progress to rigidity and dystonia, which refers to sustained muscle contractions 

causing twisting and stiff postures [6].  As the disease progresses, there is cognitive decline, 

difficulty talking, dysphagia, and weight loss. Fatality is often a result of falls, dysphagia, or 

aspiration [6]. Average age of onset is 40 years of age with death occurring within 15-20 years 

[7]. 

Juvenile HD is defined as onset of illness in children younger than 21 years of age and 

represents about 5% of all HD cases [8]. Juvenile cases are characterized by rigidity and 

akinesia, a reduction in movement. The most common presenting symptoms are cognitive 

decline and dysphagia, and as the disease progresses, symptoms include dystonia, seizures, 

chorea, rigidity and akinesia [9]. 
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3. Nigrostriatal system and the function of the basal ganglia. 

 Huntington’s disease is considered a neurodegenerative disease involving the cerebral 

cortex and basal ganglia.The basal ganglia are defined as a collection of  nuclei consisting of the 

caudate nucleus, putamen, globus pallidus, subthalamic nucleus, and substantia nigra. It is best 

known for functioning in the initiation of movement, but recent insights have been made into the 

roles of the basal ganglia in learning-related plasticity, eye movements, as well as cognitive and 

emotional functions [10-13]. Disruptions of all of these functions likely contribute to the clinical 

presentation of HD. In post-mortem evaluation, 80% of HD brains showing atrophy of the frontal 

lobes  and 95% showing atrophy of the caudate nucleus and putamen, collectively known as the 

striatum [14]. Here we focus on the basic organization of the basal ganglia and effect of striatal 

dysfunction as it contributes to the motor symptoms of HD. Information from the cortex projects 

to the striatum (caudate nucleus and putamen) activating medium spiny neurons (MSNs) [15]. 

There are two populations of MSNs: neurons expressing D1 dopamine receptors, substance P, 

and dynorphin, and neurons expressing D2 dopamine receptors and met-enkephalin [16, 17]. D1-

expressing MSNs are part of the direct pathway to initiate movement, whereas D2-expressing 

MSNs are part of the indirect pathway that inhibits movement. To initiate movement, 

glutamatergic cortical input excites D1-expressing MSNs which project to the globus pallidus 

internal segment (GPi). Neurons in the GPi then project to the thalamus. The final connection is 

excitatory from the thalamus back to the cortex, completing the direct pathway [18] (Fig. 1-1 B). 

The indirect pathway begins with input from the cortex to D2-expressing MSNs (Fig. 1-1 A). 

These neurons project to the globus pallidus external segment (GPe) inhibiting neurons that 

project to the subthalamic nucleus (STN) [18]. Neurons from the STN project to the substantia 

nigra pars reticulata (SNr) which projects to the thalamus. The final connection is from the 
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thalamus to the cortex. Normally, the thalamus is inhibited by the GPi/SNr, resulting in no 

involuntary movements. Neurons of the cortex, STN, and thalamus release glutamate and are 

excitatory while neurons of the striatum, GPe, GPi, and SNr release the inhibitory 

neurotransmitter, GABA. Neurons from the substantia nigra pars compacta (SNc) project to 

MSNs in the striatum and release dopamine (DA). D1 and D2 receptors respond differently to 

DA: MSNs with D1 receptors are stimulated by DA and MSNs with D2 receptors are inhibited 

by DA. 

To appreciate the function of the basal ganglia, it is useful to compare and contrast 

Huntington’s disease with Parkinson’s disease. These two diseases affect different cell 

populations within the basal ganglia, resulting in very different clinical pictures. In HD, early 

motor symptoms primarily consist of involuntary movements of the hand and feet, manifesting 

as chorea and incoordination [6]. The neurons most susceptible to the toxic effects of mutant 

huntingtin are the met-enkephalin-expressing D2 medium spiny neurons in the striatum that 

project to the GPe [19, 20]. Loss of these cells results in disinhibition of the thalamus and a 

decrease in activity of the indirect pathway, resulting in involuntary movements such as chorea 

[21]. As HD progresses, D1 MSNs are also lost, decreasing activity of the direct pathway. In late 

stage HD, patients may display hypokinesia or hyperkinesia depending on the balance of direct 

versus indirect pathway activation [21]. 

Parkinson’s disease (PD) is a neurodegenerative disease caused by a loss of dopaminergic 

cells from the substantia nigra pars compacta [22]. Whereas HD patients display increased 

involuntary movements, the clinical characteristics of PD include rigidity, akinesia, postural 

instability, a flexed posture, and a tremor at rest [23]. Two theories exist to describe the 
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pathophysiology of PD: the GPi rate theory and the oscillator theory.  The GPi theory postulates 

that a loss of excitatory SNc input of striatal D1 MSNs result in a decreased activity of the striatal 

input to the GPi. This increases GPi inhibitory effect on the thalamus and therefore also the motor 

cortex to impede the initiation of movement. This reduction in activity of the direct pathway and 

imbalance with the indirect pathway is opposite of the pattern seen in HD.  The second theory of 

basal ganglia dysfunction in PD involves synchronized firing of neurons between the basal 

ganglia nuclei and cortex, so-called oscillations. Studies in PD patients with deep brain 

stimulation implants have revealed different oscillating patterns between the treated and 

untreated states [24, 25]. However, it remains unclear whether oscillations in the basal ganglia 

occur in the non-diseased state. The presence of pathologic changes in oscillations could also 

play a role in other movement disorders of the basal ganglia including HD. In fact, a difference 

in oscillations between normal and R6/1 mice (a mouse model of HD) have been described [26]. 

Regardless of the mechanism behind the basal ganglia dysfunction in movement disorders, it is 

clear that differential activity of D1 and D2 MSNs result in contrasting diseases. Decreased 

activity of D2 MSNs projecting to the GPe results in the increased motor activity seen in HD, 

while decreased activity of D1 MSNs and increased activity of D2 neurons results in impeded 

motor initiation seen in PD. 

 

4. The impact of Huntington’s disease 

HD patients face additional hardships coping with their disease. There is significant 

impact on their families and loved ones. As symptoms increase in severity, HD patients become 

unable to work or participate in activities they enjoy, resulting in a dramatic change in lifestyle. 
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Unable to drive, patients become increasingly dependent on caregivers for transport to frequent 

physician visits. The children of HD patients are faced with the decision of whether to undergo 

genetic testing to determine if they have inherited the incurable disease. Near the end of the 

disease, HD patients require full time care provided by nursing home facilities with an average 

cost for a semi-private room of $75,405 annually according to the 2013 Genworth Cost of Care 

Survey [27]. This value represents a fraction of the financial impact of HD when taking into 

account lost years of employment, the cost of medication, health care visits, and medical 

complications. The prevalence of HD is 4-10 per 100,000 people in the western world [7]. Many 

more are at risk for developing the disease. HD touches millions of people each year. 

 

5. Current treatments 

There is neither a cure for HD nor is there a way to slow its progression. The current 

treatments are based on symptom management. For chorea, there are benzodiazepines and 

dopamine depleting agents. Myoclonus, which is described as sudden involuntary muscle 

contractions, is treated with benzodiazepines and [7]. In Juvenile HD, patients receive levodopa 

for rigidity, muscle relaxants for spasticity, and antipsychotics for psychosis, irritability and 

chorea. To treat depression, anxiety, and obsessive compulsive behavior patients are often 

prescribed selective serotonin reuptake inhibitors (SSRIs), and for manic symptoms patients can 

take mood stabilizers and anticonvulsants [7]. Patients are often given hypnotics to improve 

sleep wake cycles. Clearly, the medication list can become quite long and with that 

organizational and financial challenges.  Patients and their providers must seek balance between 



9 
 

benefit gain from a given medication and the side effect profile. Furthermore, none of these 

medications have the ability to alter the course of the disease.  

A number of dietary supplements have demonstrated neuroprotective properties in cell 

culture or animal models. These include Coenzyme Q10, nicotinamide, and creatine [28-32]. 

These supplements are thought to delay the onset and slow progression of the disease by 

increasing the ability for neurons to withstand toxic insults. Although these have shown benefit 

in the laboratory, their effectiveness in human patients has yet to be determined. Creatine is 

currently in clinical trials for Parkinson’s disease and Huntington’s disease [32]. 

 

B. The functions of huntingtin 

1. Huntingtin is a conserved gene that is essential for development 

Since the discovery of the huntingtin gene in 1993, much has been uncovered about its 

evolution and function [1]. The huntingtin gene is an ancient and highly conserved gene, tracing 

back to the amoeba and sea urchin [33]. The NH2-terminal portion of the protein, containing the 

polyQ region, is the most recently evolved. In humans, huntingtin is expressed in all tissues with 

highest levels in the brain. The function of the polyQ repeat and the relationship between length 

and function is unclear. A wide variety of polyQ lengths are seen across different organisms. 

Drosophila melanogaster and Ciona intestinalis, both invertebrate organisms, do not have a 

glutamine repeat, whereas mice have a short repeat of 7Q [33].  
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One vital role of the huntingtin gene is in brain development.  Mouse embryos null for 

huntingtin are nonviable, terminating at embryonic day 8.5 before the formation of the nervous 

system [34-36]. These embryos exhibit a shortened primitive streak and lack of head folds, 

indicating a failure of head development [37]. Several studies show that a minimum of 50% 

huntingtin protein expression is required for proper development. Mice expressing 

approximately one third the total amount of huntingtin are born with brain structure 

abnormalities and die shortly after birth [38]. Three independent groups created mice with 

“inactivated” huntingtin genes [34-36]. Two of the three groups found that mice with a single 

copy of huntingtin develop normally and were indistinguishable from their wild type (WT) 

littermates [34, 35]. Mice in the third study expressed one full length huntingtin and one 

truncated huntingtin protein and were found to exhibit behavioral and cognitive abnormalities 

[36]. The discrepancy in results could be related to the presence of a 20kDa truncated huntingtin 

protein in the latter study whereas the first two studies did not express truncated proteins. The 

implication from the first two studies is that in mice, having one functioning huntingtin allele is 

sufficient for normal anatomical development meaning that HD is caused not by a loss of 

function, but by the mutant allele’s gain-of-function toxicity. Interestingly, this theory is 

supported by the third study which found that by leaving a 20kDA truncated huntingtin protein, 

the mice were found to possess behavioral abnormalities indicating a functional deficit. 

Findings in human patients support this conclusion as patients with a single mutant 

huntingtin allele are born and develop normally compared with their siblings and peers until the 

onset of the disease as determined by the CAG repeat length. Furthermore, patients homozygous 

for mutant huntingtin (e.g. containing two mutant huntingtin alleles and completely lacking a 

normal huntingtin allele) are initially indistinguishable from patients heterozygous for the mutant 
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allele or those unaffected by the disease[39, 40]. This indicates that either huntingtin in humans 

is completely different from mouse and is not necessary for development or, more likely, that the 

mutant form of huntingtin retains its normal function in development. Caution should be used in 

describing development in HD patients as “normal” as there is preliminary evidence that 

presymptomatic children (ages 7-18) with a single HD gene containing a moderate expansion 

number (<60) may have slight changes in brain structure as measured by functional MRI [41]. In 

general, the accepted theory is that the CAG expansion confers upon huntingtin a deleterious 

gain-of-function mutation, but the effect of moderate or mild loss of function remains an 

important factor in the treatment of the disease. 

 

2. Huntingtin has several protein binding domains 

Huntingtin is a large protein of 348 kDa found predominantly in the cytoplasm [42]. It 

contains conserved domains that are important for interactions with other proteins, known as 

HEAT repeats (named for four of the proteins that it is found in: huntingtin, elongation factor 3 

(EF3), protein phosphatase 2A (PP2A), and mammalian target of rapamycin 1 (mTOR1)) [43]. 

The polyQ region is also important for allowing huntingtin proteins to form homodimers via a 

polar zipper structure [44]. Not only does this enable huntingtin to bind to itself, but also allows 

it to bind other proteins with polyQ regions including transcription factors such as CREB-

binding protein (CBP), TBP-associated factor 4 (TAF4), tumor protein 53 (TP53), and 

specificity protein 1 (Sp1) [43]. The polyQ stretch confers a degree of flexibility to the structure 

of huntingtin which has been shown to adopt multiple conformations by crystal structure [45]. 
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The flexibility and presence of multiple protein binding domains presents the possibility that 

huntingtin is a mediator or scaffold that brings proteins closer together and facilitate interactions.  

Although most huntingtin protein is found in the cytoplasm, there is evidence that 

huntingtin could play a role in the nucleus as well. The COOH-terminal portion of huntingtin 

contains a nuclear localization signal and a nuclear export signal, and the first 17 amino acids in 

the NH2-terminal part of the protein, N17 region, bind to the nuclear pore protein, TPR 

(translocated promoter region) [2, 46]. These properties enable normal huntingtin to enter and 

exit the nucleus, potentially transporting bound molecules across the nuclear membrane. In 

contrast to normal huntingtin, after entering the nucleus, the mutant protein loses its ability to 

exit the nucleus causing an imbalance of import versus export of mutant huntingtin [46]. This 

results in its accumulation in the nuclear compartment [46]. In addition to binding TPR, the N17 

region also binds to mitochondria and is co-localized with the Golgi and endoplasmic reticulum 

[47, 48].  

 

3. Huntingtin is a neuroprotective protein 

Huntingtin has several neuroprotective properties. Overexpression of normal huntingtin 

in cell culture increases survival following toxic insults, and in mouse models, huntingtin 

overexpression prevents apoptosis from excitotoxic chemicals [49, 50]. Inactivation of normal 

huntingtin in adult mice results in apoptotic cell death, an increase in severely abnormal 

behaviors characteristic of HD mice, and decreased lifespan [51]. Overexpression of normal 

huntingtin decreases the toxic effects of mutant huntingtin in cell culture [52]. One way in which 
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it might be neuroprotective is through the regulation and transport of brain derived neurotrophic 

factor (BDNF). BDNF is important for the survival of striatal neurons [53]. In cortical neurons, 

normal huntingtin facilitates the expression of BDNF [54]. In contrast, mutant huntingtin results 

in decreased BDNF transcription. There is reduced BDNF vesicle transport in medium spiny 

neurons (MSNs) (Fig. 1-2 J) [55]. In the striatum, huntingtin acts as a scaffold, binding vesicles 

containing BDNF to HAP1 (huntingtin associated protein 1), which interacts with dynactin to 

transport BDNF vesicles [55]. In neurons, huntingtin overexpression increases BDNF gene 

transcription by inhibiting the neuron restrictive silencing element (NRSE) and improves the 

transport of BDNF [56]. It is possible that a loss of normal huntingtin function could result in 

increased susceptibility to toxic events. Transgenic mice express the human huntingtin mutant 

gene with 128 CAG repeats (YAC128) expressed on a null background (no mouse huntingtin), 

have a more severe behavioral phenotype and shortened lifespan compared with YAC128 mice 

with normal mouse huntingtin [57]. In Drosophila expressing human huntingtin exon1 with 93 

CAG repeats, removing the endogenous huntingtin gene accelerates neurodegeneration [58].  In 

summary, BDNF is critical for neuronal health and huntingtin plays direct roles in regulating its 

expression and transport. 

 In addition to roles in intracellular transport, huntingtin regulates synaptic activity 

through exocytosis and endocytosis at synaptic terminals. Endocytic recycling is important for 

cell health and membrane homeostasis. It is the process by which internalized receptors are 

returned to the cell surface for reuse. Huntingtin co-localized with Rab11, a protein that regulates 

vesicle formation, and decreases Rab11 activation, and mutant huntingtin binding to Rab11 

results in endosomes with abnormal morphology and slowed recycling [59]. 
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What is the role of the polyQ repeat? There is an inverse relationship between length of 

the polyQ in huntingtin and the amount of ATP in the cell, which reflects the energy status of the 

cell [60]. Mice with a deletion of the polyQ stretch develop normally with no gross abnormalities 

[61]. However, there are transient deficits on tests of learning and memory and a very subtle 

effect on motor skill on the accelerating rotarod test. Fibroblasts from these mice indicate an 

increased ATP energy status [61]. In addition, brain tissues from these mice have increased 

levels of microtubule-associated protein 1 light chain 3-II (MAP1 LC3-II also known as LC3-II), 

a marker for increased activation of the autophagy degradation pathway. Mice homozygous for 

the polyQ deletion live longer than WT mice [61]. This last finding suggests that the polyQ 

region in huntingtin plays a role in the regulation of a basal level of autophagy possibly through 

its interaction with autophagic vesicles [62]. 

 

C. Pathways of cell damage caused by mutant huntingtin 

 

1. Mutant huntingtin mediates excitotoxic damage to neurons 

In addition to the loss of neuroprotective BDNF, there is evidence for increased 

excitotoxicity caused by dysfunction at the corticostriatal synapse. Excitotoxicity is defined as 

excessive activation of glutamate and N-methyl-D-aspartate (NMDA) receptors leading to cell 

death. Injection of glutamate agonists into rat striatum results in the same pattern of cell loss as 

in HD [63]. Mouse models with full length human huntingtin have increased glutamate release 

and increased susceptibility to excitotoxicity [64]. There are electrophysiological findings that 
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indicate increased NMDAR sensitivity to NMDA and increased NMDA currents in striatal 

neurons of mutant huntingtin mice with 100Q [65, 66].  

In addition to increased activation of glutamate receptors, in human HD post-mortem 

tissue, there is a reduced uptake of [3H]glutamate compared with controls [67]. Glutamate uptake 

is mediated by the involvement of glial cells in regulating sensitivity to excitotoxicity revealing a 

non-cell autonomous contribution to HD pathogenesis. Expression of mutant huntingtin in 

astrocytes resulted in decreased expression of glutamate transporters and caused neuronal 

dysfunction, demonstrating the importance of glia in protection against excitotoxic damage to 

neurons [68]. 

 

2. Aberrant binding by mutant huntingtin results in transcriptional dysregulation 

Mutant huntingtin disrupts the function of several transcription factors (Fig. 1-2 B, H). 

Specifically, mutant huntingtin binds transcriptional activators Sp1 and TATA binding 

associated factor 130 (TAFII130) and the transcriptional coactivator CBP resulting in general 

transcriptional repression [43]. Affected genes include those for neurotransmitter receptors, 

synaptic transmission, cytoskeletal proteins, intracellular signaling and calcium homeostasis. 

Mutant huntingtin also binds the transcription machinery, which may globally reduce 

transcription [69]. By binding to CBP, mutant huntingtin decreases histone acetyltransferase 

(HAT) activities globally, causing a reduction in histone acetylation, a modification that opens 

chromatin structure allowing genes to be more easily accessed for transcription with the end 

result of decreasing transcription [70]. In addition to changing transcription and chromatin 
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structure, mutant huntingtin interacts with argonaute 2 (Ago2) resulting in fewer P-bodies 

compared with normal huntingtin [71]. Destabilization of P-bodies could increase the level of 

miRNAs in the cells and act to repress gene expression. 

Aggregation of mutant huntingtin could reduce its ability to bind transcriptional 

activators and machinery proteins, and aggregate formation could thus protect cells from 

transcriptional dysregulation [72]. In cell culture, modification of mutant huntingtin exon 1 by 

small ubiquitin-like modifier (SUMO) decreases aggregation of mutant huntingtin and increases 

transcriptional repression, suggesting that sequestration of mutant huntingtin in aggregates can 

reverse its effect on transcription [73].  

 

3. Mutant huntingtin and mitochondrial dysfunction 

Mitochondrial dysfunction plays several roles in the toxicity of HD (Fig. 1-2 I). Mutant 

huntingtin impairs energy metabolism, increases the generation of free radicals, and disrupts 

calcium handling [74-76]. Mutant huntingtin binds to mitochondria, thereby impairing the 

transport of mitochondria in primary neuron cultures and altering the ultrastructure of the 

organelle [77]. Transport of mitochondria to cell processes is important in providing adenosine 

triphosphate (ATP) throughout the cell. Mitochondrial dysfunction can be seen in various 

imaging techniques in the brains of HD patients, specifically in the basal ganglia, cortex and 

thalamus [74]. Mitochondrial activity may be especially important for striatal cells. Mice with 

impaired mitochondrial function exhibit striatal degeneration and hyperkinetic movements [78, 

79]. Mitochondrial impairment is not specific to neurons, although neurons might be more 
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susceptible to it. Altered mitochondrial calcium handling is seen in lymphoblasts from HD 

patients and skeletal muscle in a mouse model of HD [76].  

 

4. Mutant huntingtin forms intracellular aggregates and inclusion bodies 

In HD, huntingtin-containing aggregates are present in the medium spiny neurons of the 

striatum and neurons of all cortical layers [80]. There are two forms of aggregates 

distinguishable by light microscopy. One form is the neuronal intranuclear inclusion body, 

subsequently referred to as an inclusion body, which is spherical, ovoid, or elliptical in shape and 

found in the nucleus (Fig. 1-2 G). The majority of cells contain only one inclusion body per 

nucleus, but occasionally 2 or 3 can be found. The second form is cytoplasmic aggregates, which 

are spherical or oblong in shape, sometimes with extensions and within dystrophic neurites (Fig. 

1-2 E, F) [80]. These two types of aggregates are found in different distribution in juvenile and 

adult HD.  Inclusion bodies are found with greater frequency in juvenile HD than in adult HD 

and are distributed in the cortex [80]. Cytoplasmic aggregates are the prominent feature in adult 

HD, and these are also primarily distributed in the cortex.  

Cleavage of huntingtin is an important process for the development of aggregates (Fig. 1-

2 A). Both inclusion bodies and cytoplasmic aggregates contain NH2-terminal fragments and do 

not stain with an antibody to an internal epitope used to detect larger fragments or full-length 

huntingtin [80]. Both normal and mutant huntingtin are cleaved by caspases and other unknown 

enzymes into multiple fragments [81]. Different fragments have different effects on the 
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formation of aggregates. For example, in cell culture, cleavage at arginine 167, creating a 

fragment known as cp-2, which decreases aggregation and increases toxicity [82]. 

There are opposing views on the role of mutant huntingtin aggregates regarding whether 

they are protective or toxic to neurons. For this discussion, we will consider aggregates and 

inclusion bodies to be equivalent as intracellular structures containing mutant huntingtin protein 

as well as other proteins. The first case holds that aggregates are protective against cellular 

damage by binding and removing toxic huntingtin monomers or oligomers from distribution in 

the cytosol. In HD post-mortem tissue, the neurons that are initially spared are those containing 

inclusion bodies and aggregates, and conversely, MSNs, the cells most susceptible to toxic 

effects of mutant huntingtin, do not show aggregates [83, 84]. One study followed the survival of 

cultured neurons expressing huntingtin exon1 fused with GFP and found a correlation between 

huntingtin inclusion formation and increased survival of neurons [85]. Additionally, it was found 

that sumoylation of huntingtin which decreases aggregation also increases cytotoxicity [86]. 

Alternatively, aggregates may contribute to cellular dysfunction by sequestering important 

cellular proteins out of the cytoplasm including transcription factors, motor proteins, proteasomal 

subunits and chaperone proteins [87-90]. Loss of these proteins and complexes could potentially 

deplete the neurons of their vital functions. Proteasome and transcriptional impairment occurs 

independent of aggregate formation [91-93]. Several studies found that silencing of molecular 

chaperones such as prefoldin or cytosolic chaperonin (CCT/TriC) result in increased aggregate 

formation and cell death [94-96].  

Strict definitions for aggregates and inclusion bodies have yet to be adopted and it is 

possible that all aggregates are not equal [97]. The aggregate population in the striatum of R6/2 
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displayed more cytotoxicity than aggregates from the hippocampus and cerebellum [97]. The 

possibility of multiple conformations and contents of aggregates conferring differing toxicities 

could explain seemingly contradictory findings regarding the properties of huntingtin aggregates. 

As was previously discussed, huntingtin contains nuclear import and export signals and the 

polyQ expansion impairs its ability to export from the nucleus, and a potential distinction exists 

between nuclear and cytoplasmic aggregates/inclusions [46]. Whether aggregates are protective 

or detrimental or whether different aggregate conformations affect disease progression has yet to 

be determined. Once it is clear what role aggregates play, a potential therapy could be to alter 

aggregation and inclusion body formation. 

 

5. Is the damage caused by mutant huntingtin permanent or reversible? 

There is evidence supporting that the cellular damage inflicted by mutant huntingtin is 

reversible. In 2000, a conditional mouse model of HD was created with mutant huntingtin 

expression under tetracycline-regulated control [51]. After 18 weeks of transgene expression, a 

point at which neuropathology and motor dysfunction was evident, the mutant huntingtin 

transgene expression was repressed. After having the mutant transgene repressed for 16 weeks, 

the mice demonstrating less clasping behavior, there was reversal of reactive astrocyte gliosis, 

increased size of the striatum, and decreased nuclear huntingtin staining [51]. The observation 

that the HD phenotype and pathology are reversible in mice demonstrates that cell damage 

incurred from mutant huntingtin toxicity, if reversed prior to neuronal death, is not permanent.  
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D. The processing and degradation of mutant huntingtin 

1. Post-translational modifications and cleavage alter toxicity of mutant huntingtin 

There are many post-translational modifications that alter the toxicity and activity of 

huntingtin including palmitoylation, phosphorylation, ubiquitination, and sumoylation [7]. 

Palmitoylation of cysteine 214 in huntingtin aids its association with membranes for vesicle 

transport, and this modification is impaired by the polyQ expansion leading to decreased 

membrane binding [98]. Phosphorylation occurs at several different positions, mostly in the 

NH2-terminal 17 amino acids and they are generally protective [99-101].  

Rhes (Ras homolog enriched in the striatum) is a small G protein highly expressed in the 

striatum that functions in the sumoylation of huntingtin [102, 103]. Sumoylation of mutant 

huntingtin decreases aggregation and increases the concentration of soluble mutant huntingtin 

[86]. This modification and the down-stream effects result in an increase in toxicity and 

transcriptional dysregulation [73, 86]. 

Acetylation occurs on one site, lysine 444 of mutant huntingtin [104]. In Caenorhabditis 

elegans, increasing acetylation at this site targets mutant huntingtin to the autophagy-lysosomal 

system, while in experiments using mice injected with lentiviral expressed human huntingtin 

fragment with 72Q repeats, blocking acetylation resulted in accumulation of mutant huntingtin 

protein [104]. 

Caspases are proteases well-known for their apoptotic role in programmed cell death, 

however they are also implicated in non-cell death pathways such as synaptic plasticity and 

learning [105]. There are five predicted caspase cleavage sites in huntingtin, 3 sites cleaved by 
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caspases -2, -3, and -6, and two silent sites [81]. NH2-terminal mutant huntingtin fragments have 

been linked to increased toxicity as they are preferentially found in affected neurons and increase 

susceptibility cells to death compared with full-length huntingtin [106, 107]. Preventing the 

cleavage of mutant huntingtin is a potential strategy for modifying disease progression. 

Completely blocking caspase cleavage was found to be protective in cells which could also have 

the effect of blocking cell death pathway [108]. Many studies have investigated the role of 

caspase cleavage using various mouse models and methods for inactivating either the caspase or 

the caspase cleavage site. R6/2 mice expressing dominant negative caspase-1 resulted in delayed 

onset of disease and extended survival [109]. In a YAC72 mice, dominant negative caspases -2, -

6, and -7 were found to be protective while -3, -8, and -9 had no effect [110]. Another study 

inactivated the cleavage sites for caspase -3 and -6 in YAC 128 mice and came to consistent 

conclusion that blocking caspase 6 cleavage is protective, while caspase-3 had no effect [111]. 

However, a third study looked at 150Q huntingtin knock-in mice null for caspase-6 which did 

not exhibit protection from disease phenotype [112]. In summary, there is evidence for a role of 

caspases -1, -2, -6, and -7 in the progression of neuropathology especially caspases -2 and -6 

which have known cleavage sites within the huntingtin gene. 

Similar to caspases, increased levels of calpain are found in HD brains [113]. Calpain 

activation is caused by disturbances in Ca2+ homeostasis resulting from excitotoxicity or 

mitochondrial dysfunction. Calpains preferentially cleave mutant huntingtin over normal 

huntingtin and cleave in the same amino-terminal region as the caspase cleavage sites [81]. 

Aspartic endopeptidases are other enzymes that cleave huntingtin producing two different NH2-

terminal fragments, cp-A (cleaved between amino acids 101-124) and cp-B (cleaved between 

amino acids 146-214) [114].  
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2.  The role of the ubiquitin-proteasome system in the degradation of mutant huntingtin 

 The first line of defense in degrading misfolded proteins is the ubiquitin-proteasome 

system (UPS) (Fig. 1-3 A). The proteasome functions in cells to degrade short lived proteins and 

damaged or misfolded proteins [115]. E3 ubiquitin ligases add ubiquitin molecules to lysine 

residues of the protein to target it for delivery to the proteasome. The proteasome is a multi-unit 

structure in the cytoplasm that unfolds and degrades proteins using a series of proteases and 

peptidases. When the peptides are released, they are further degraded by aminopeptidases into 

single amino acids. Not only is the UPS important for degrading damaged proteins, but it plays 

an important role in cell homeostasis [115]. The UPS may play a role in synapse function and 

plasticity and may also regulate cell signaling by degrading short lived proteins [116]. 

The expanded polyQ present in mutant huntingtin causes it to misfold and interact with 

E3 ubiquitin ligases, including Hrd1, E6-AP, E2-25K, Ube3a, and CHIP (C terminus of Hsp70-

interacting protein) to ubiquitinate lysine residues 6, 9, and 15, thereby targeting it to the 

proteasome [73, 117-120]. Normal and mutant huntingtin can also be targeted to the proteasome 

and lysosome by phosphorylation by the inflammatory kinase, IKK, on serines 13 and 16 [99]. 

The proteasome can only degrade unfolded proteins, rendering it unable to degrade the fibrillar 

or aggregated forms of huntingtin. The proteasome is also inefficient at degrading polyQ tracts 

and in vitro studies show that the proteasome releases them intact [121].  This potentially results 

in expanded polyQ peptides that are free in the cytoplasm, able to contribute to aggregation and 

binding of other polyQ containing proteins. A single aminopeptidase, puromycin sensitive 

aminopeptidase (PSA) is the only identified aminopeptidase able to efficiently degrade polyQ 
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peptides [122]. Through its function of degrading polyQ peptides it could play a role in the 

degradation of both normal and mutant huntingtin and be a potential disease modifier. In fact, 

PSA overexpression reduces inclusion formation in cells transfected with mutant 

huntingtin[123]. Operating on the theory that inclusion bodies represent an accumulation of 

misfolded mutant proteins toxic to the cell, a reduction in inclusion number would represent 

decreased disease burden within the cell. 

Not only does the proteasome fail to effectively degrade mutant huntingtin, but its 

function is impaired by the mutant protein (Fig. 1-2 D) [124]. It has been proposed that 

proteasomal dysfunction is caused by mutant huntingtin before the appearance of inclusion 

bodies. From this perspective, inclusion bodies may offer protection to the cell by removing the 

toxic fibrillar huntingtin products that interfere with proteasomal degradation. 

In addition to impairment of proteasome function, mutant huntingtin aggregates sequester 

the proteasome in vitro [125]. There are two interpretations of this. One is that co-localization of 

proteasomal subunits with aggregates represents aberrant binding of proteasomal subunits which 

could alter their ability to function normally by altering their cell localization and distribution. 

Another interpretation is that the bound proteasomes are attempting to degrade aggregated 

protein. Primary neuronal cell cultures from a conditional mouse model of Huntington’s disease 

have been used to study inclusion body formation and dissolution [126]. These cells develop 

inclusions within two days when the mutant allele is expressed and they disappear five days after 

the allele is suppressed [126]. In primary neuronal cell culture, this dissolution of aggregates is 

abolished with the administration of a proteasomal inhibitor, suggesting that the proteasome is 

functioning in some degree to degrade proteins from the aggregates [126].  
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3. The role of the autophagy-lysosome system in the degradation of mutant huntingtin   

Autophagy is the process by which organelles and the majority of proteins from the 

cytosol are targeted for degradation (Fig. 1-3 B) [127]. A portion of cytosol is enclosed by a 

double membrane called an autophagosome [127]. This structure fuses with a lysosome for the 

degradation of the proteins by acidic hydrolases. Mice that lack Atg7, a gene essential for 

autophagy in neurons, develop ubiquitin-positive aggregates [128]. Thus, autophagy is vitally 

important for the prevention of inclusion bodies. 

In HD patients, aggregates of mutant huntingtin bind and sequester mTOR (mammalian 

target of rapamycin), a negative regulator of autophagy [129]. Removal of mTOR activity in the 

cell increases general autophagy [130]. Mice with one huntingtin allele containing 200 CAG 

repeats have increased markers for autophagy early in the course of the disease [131]. Even 

though there may be increased activation of autophagic vacuoles, this does not necessarily mean 

that autophagosomes are able to complete the process of degradation. Mutant huntingtin has been 

shown to interact with autophagolysosome membrane resulting in a failure to enclose cytosolic 

components for degradation [132]. Regardless of the status of autophagy in Huntington’s 

disease, its importance in degradation of mutant huntingtin is indisputable. In cell culture, 

blocking autophagy increases soluble huntingtin, aggregates, and toxicity [133]. Increasing 

autophagy decreases accumulation of mutant huntingtin in cell culture and decreases aggregates 

and improves behavior in mice [129, 134-136].  
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E. Mammalian models of Huntington’s disease 

1. Chemical models of Huntington’s disease 

 The initial animal models of Huntington’s disease were chemical models that involved 

injections of neurotoxins into the striatum. The result is a model of excitotoxic cell death. Kainic 

and quinolinic acids are glutamate agonists that result in striatal-specific neurodegeneration [2]. 

Injection of 3-nitropropionic acid and malonic acid are mitochondrial toxins, and mice injected 

with these agents have striatal neuron loss and replicate behavioral aspects of HD [137]. These 

models represent Huntington’s disease because they affect the striatum more than other 

structures; however, they are not useful in the study the mechanism of mutant huntingtin toxicity. 

Chemical models of HD can be used to study modulators that may be neuroprotective.  

 

2. Transgenic mouse models with a human huntingtin fragment. 

Table 1-1 is a comparison of commonly used transgenic and knock-in mouse models of 

HD. The first transgenic mouse model of Huntington’s disease was the R6/2 line. R6/2 mice 

contain a fragment of human huntingtin consisting of a single copy of exon 1 with 141-157 CAG 

repeats including the human huntingtin promoter, and it is expressed at 75% of the endogenous 

level of huntingtin mRNA [138]. The onset of HD symptoms is early and the progression rapid. 

In R6/2 mice, by five to six weeks of age there are abnormalities on the raised-beam test and 

rotarod test and decreases in brain size and volume [138]. Inclusions increase in size and number 

with the progression of the disease. There are decreases in D1 and D2 dopamine receptors in the 

striatum at 8 weeks, and by 12 weeks of age there is cell death of medium spiny neurons [138]. 
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R6/2 mice die between 12-15 weeks of age [138]. The R6/2 mouse model exhibits a rapid 

progression of disease and is useful in screening potential therapeutics and modifiers of disease 

because the outcomes can be quickly measured. Development of disease is too rapid for a careful 

analysis of the progression of pathology and avenues of cellular dysfunction. Another drawback 

to this model for studying mechanism of huntingtin toxicity is that it expresses a fragment of 

huntingtin, and it is expressed in addition to the endogenous mouse huntingtin. 

A second type of transgenic mouse expresses the first 171 amino acids of the huntingtin 

protein with 82Q or 18Q  repeats, known as N171-82Q and N171-18Q [139]. It is driven by the 

mouse prion promoter that is only expressed in neurons with expression level that is less than 

endogenous huntingtin [139]. N171-18Q mice were indistinguishable from WT mice, however 

N171-82Q mice develop clasping and rotarod deficits at 15 weeks [139]. N171-82Q mice display 

nuclear inclusions in the cortex, hippocampus, amygdala and striatum, and decrease brain size 

(due to atrophy), and their lifespan is 10-24 weeks of age [139]. With a later onset compared 

with the R6/2 line, the benefit of N171-82Q mice is that the progression of HD can be studied, 

and similar to the R6/2 model demonstrates that the NH2-terminal fragment of mutant huntingtin 

is sufficient to replicate many aspects of the disease. A limitation of this model is that, like R6/2 

mice, the expression of mutant huntingtin fragment results in an increase in total huntingtin 

combined with endogenous mouse huntingtin. 

 

3. Transgenic mouse models with full length human huntingtin 
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 Several transgenic HD mouse lines have been made using yeast artificial chromosome 

(YAC) constructs containing a full length human huntingtin gene. The huntingtin transgene 

includes upstream and downstream sequences and all regulatory elements. Four strains of YAC 

mice were created with different CAG repeat lengths: 18, 46, 72, and 128 repeats [140]. The 

YAC18 construct represents the normal version of human huntingtin and were indistinguishable 

from WT mice. All four lines have increased total amount of huntingtin, with the transgene 

expressing approximately 33% -50% compared with endogenous huntingtin. YAC46 mice 

exhibit eletrophysiological abnormalities compared with YAC18 mice, but lack an increase in 

nuclear staining or other behavioral or pathological findings. YAC72 mice display hyperactivity 

at 7 months, and an increased number of nuclear staining cells [140]. YAC72 mice have 

microaggregates and a few macroaggregates, striatal-specific neuronal degeneration by 12 

months of age, but lack the development of nuclear inclusion bodies [140]. YAC128 are the most 

commonly used YAC HD model. These mice display increased locomotor activity and rotarod 

deficits at 3 months, and then decreased activity at 12 months. In YAC128 mice, there is nuclear 

staining for mutant huntingtin throughout the striatum by 12 months of age, but no inclusions are 

apparent until 18 months of age [64]. YAC128 mice show age-dependent striatal 

neurodegeneration beginning at 9 months, however their lifespan is comparable to WT mice 

[64]. Benefits of this model are that human huntingtin expression is regulated by the human 

promoter, however a limitation of this model is that the total huntingtin level in these mice is 

increased. That YAC72 and YAC128 mice develop neurodegeneration prior to the development 

of inclusion bodies suggests that the inclusion bodies are not the cause of neuronal dysfunction 

and death in this model of HD. The observation that YAC46 mice do not develop the disease, 
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despite the electrophysiological differences from WT, could suggest that mice require a longer 

polyQ length to develop toxicity, or that development of HD is limited by their short lifespan. 

 A second full length human huntingtin transgenic approach uses a bacterial artificial 

chromosome (BAC). BACHD mice contain the whole human huntingtin gene, containing 97 

mixed CAG and CAA repeats, encoding polyQ, and 20 kb flanking sequences at the 5ʹ and 3ʹ 

ends [141]. The BACHD transgene also has two lox P sites to excise exon 1 for conditional 

inactivation. The transgene is integrated five times into the genome, and is overexpressed, 

producing three times the endogenous amount of mRNA and about twice the endogenous 

protein. BACHD mice have progressive deficits on the rotarod and by 12 months a 32% decrease 

in striatal volume is present due to decreased cell volume, rather than from a change in neuron 

number [141]. Huntingtin aggregates can be found starting at 12 months of age, and unlike other 

mouse models of HD where the majority of aggregates and inclusions are found in the striatum, 

BACHD mice form aggregates primarily within the cortex [141]. This pattern of aggregate 

distribution is consistent with adult human HD where the aggregates are primarily cytoplasmic 

and located within cortical neurons. The importance of using transgenic mice expressing full-

length human huntingtin is for studies of RNAi targeting the human gene. 

 

4. Knock-in models of Huntington’s disease 

 Knock-in mice have CAG repeats inserted into the endogenous mouse huntingtin gene 

(Hdh). These animals express endogenous levels of huntingtin unlike transgenic mouse models 

which contain additional copies of mutant huntingtin gene. Another benefit of this model over 



29 
 

transgenic models is that it eliminates the possibility of altering other genes by the insertion of 

DNA elsewhere in the mouse genome. Knock-in mice with 48Q repeats did not result in an HD 

phenotype, but repeat lengths of 90Q and 109Q resulted in inclusion and aggregate formation 

after 68 weeks without behavioral abnormalities [142, 143]. Mice with 140Q and 150Q show 

characteristics of HD and behavior and pathology with an earlier onset than the 90Q and 109Q 

mice, and these are commonly used as mouse models to study HD [144, 145]. 

One knock-in model with 150 CAG repeats exhibits a late onset and slowly progressing 

phenotype [146]. Homozygous 150Q mice display aggregates beginning at 9 months of age, and 

at 2 years of age display weight loss, decreased activity, rotarod deficits, and clasping [146]. 

Heterozygous mice were tested alongside the homozygous mice and displayed a more moderate 

phenotype [146]. 

 Another widely used knock-in mouse model contains 140Q repeats and part of the human 

huntingtin first intron to replace the corresponding mouse sequences [145]. 140Q knock-in mice 

demonstrate early and progressive behavioral defects, with an increase in rearing behavior at 1 

month and decrease in rearing behavior from 2 months onward [145]. Locomotor activity is also 

decreased and gait analysis reveals smaller stride length at one year [145]. Intranuclear 

inclusions are first noted in the striatum at four months and progressively grow in size and 

number [145]. 140Q mice display a slow progression of disease with moderate behavioral 

findings, notably an absence of tremor, clasping, or weight loss after one year [145]. One benefit 

of having a slow onset of disease is that 140Q mice can be used to study early disease 

pathogenesis and to test pre-symptomatic interventions [145, 147].  
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In mouse models, as in patients, disease onset is dependent on the length of the CAG 

repeat [148]. Unlike humans, mice tolerate much higher repeat number before manifesting 

behavioral and pathological findings. Knock-in mice with 50 CAG repeats, a length that would 

result in HD in patients, exhibit no detectable behavioral or pathological abnormalities [38]. 

While it is reassuring that in general, greater number of CAG repeats result in earlier disease 

onset in humans and murine models, the threshold for disease onset is dramatically different 

between mice and human. One possible explanation for this discrepancy is that there is 

insufficient time for the mutant gene products to accumulate within neurons of mice due to their 

short lifetime. It is also possible that differences in the sequences surrounding the repeat 

expansion, i.e. the first exon, modify the toxicity of the protein through conformation or stability. 

In knock-in mouse models, the Hdh140Q knock-in mice contain a portion of the human exon 1 

and exhibit an earlier onset of both behavioral abnormalities and neuropathology than the 

Hdh150Q knock-in mice which has a completely murine exon 1 [145, 146]. The value in a 

slower progressing mouse model of HD is that it is believed to more closely represent the 

pathophysiology relevant to understanding the disease process. 

 

5.  Other animal models of HD  

 Rat models have several benefits over mouse models of disease. More behavioral and 

imaging tests are available for rats. One rat model of HD is a lentiviral delivered NH2-terminal 

huntingtin fragment with 18, 44, 66, or 82 CAG repeats [149]. The expression of the huntingtin 

fragment is controlled by either the CMV (cytomegalovirus) or PGK (phosphoglycerate kinase) 

ubiquitous promoters [149]. Mice injected with vectors containing 44-82 repeats develop 
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aggregates and loss of DARPP-32 staining in a repeat length-dependent manner. Huntingtin 

expressed by the CMV promoter (a lower expressing promoter) results in fewer aggregates than 

with the PGK promoter. The second model is a transgenic rat that contains a 1.9kb fragment with 

51Q repeats regulated by the rat huntingtin promoter [150]. At two months of age, these rats 

exhibit anxiety and cognitive decline compared with WT rats, and have motor deficits on the 

rotarod at 10 months, and striatal aggregates and inclusion bodies at 12 months of age [150]. The 

third rat model of HD contains a bacterial artificial chromosome (BAC) insertion of human 

huntingtin with 97 CAA/CAG repeats, the same BAC used to make the BAC97 mouse model 

[141, 151]. BAC97 rats have a single insertion site, with 2.5-4.5 higher expression of the mutant 

human huntingtin compared to endogenous rat huntingtin. By one month of age, BAC97 rats 

show deficits on the rotarod, have decreased anxiety and initial hypoactivity [151]. Beginning at 

3 months aggregates are found in the cortex, amygdala and hippocampus, with few in the 

striatum, and aggregates are seen in the neuropil except for the outer layers of the cortex and 

striatum, where they are located in the nucleus [151]. 

 Larger animals such as pigs, sheep, and non-human primates make good models for HD 

because the size and anatomy of their brains resemble that of humans. Several large animal 

models for HD are being characterized. A pig model was created that expressed NH2-terminal 

huntingtin fragment (208 amino acids) with 105 glutamine repeats [152]. There was a very low 

rate of successful embryo transfer (<1-2%) and of four of five live births resulted in early death 

(1-2 days) with the longest survival greater than 4 months [152]. Unlike murine models, 

transgenic HD pigs contained apoptotic neurons with the greatest number within the striatum, 

which recapitulates one aspect human neuropathology and suggests that the pig model share 

similarities with human disease not found in smaller mammals [152]. A transgenic rhesus 
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monkey model for HD was created using human exon 1 fragment of huntingtin with 84Q repeats. 

These monkeys exhibit nuclear and neuropil aggregates, chorea, and dystonia, however these 

animals survived for less than one month of age [153]. A sheep model expressing full length 

human huntingtin with 73Q repeats show decreased staining for medium spiny neurons at 7 

months of age [154]. While the large size, brain anatomy, and potential lifespan make these 

large-animal models attractive, their usefulness has been limited by unexpectedly poor viability 

of the animals. 

 

F. Therapeutic approaches to treating Huntington’s disease 

1. Strategies to counteract excitotoxicity and increase neuroprotection 

One therapeutic approach to treating HD is to reduce excitotoxicity that contributes to 

cell death. In R6/2 mice, Riluzole, a glutamate antagonist, resulted in an increase in body weight 

and an increase in survival compared with vehicle-treated R6/2 mice [155]. Riluzole did not 

show any beneficial effects in HD clinical trials [156]. Lamotrigine, a glutamate antagonist that 

reversibly inhibits vesicular monoamine transporter type 2 (VMAT2), also showed no positive 

results in clinical trials [157]. Tetrabenazine is a dopamine pathway inhibitor which is approved 

to control chorea and has promise in improving function in other areas as well [158]. In YAC128 

HD mice, tetrabenazine decreased striatal cell death [159].  

Neurons affected by HD have mitochondrial impairment leading to oxidative stress 

making these cells susceptible to excitotoxicity. Creatine is a potential therapeutic found to be 

neuroprotective in R6/2 and N171-82Q mouse models of HD possibly by maintaining energy 
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stability in neurons [30]. In HD patients, creatine prevented some weight loss and increased 

some scores on cognitive tests [160]. Coenzyme Q10 is a cofactor in the electron transport chain 

within the mitochondria and an antioxidant that has been shown to ameliorate the early 

behavioral effects of HD in a 140Q knock-in mouse model of HD although no effect was seen in 

the R6/2 mice [29, 161, 162]. Eicosapentaenoic acid (EPA) is an n-3 fatty acid with antioxidant 

and anti-inflammatory properties [163]. However, the clinical trials thus far have shown no 

benefit with either coenzyme Q10 or EPA [164-166].  

Neuroprotection is another approach to help cells function despite the damaging effects 

of mutant huntingtin, and an approach to improve neuroprotection is to increase BDNF. One 

method of increasing BDNF is to give an infusion of the protein directly into the cerebrospinal 

fluid (CSF), by osmotic mini-pump. This was shown to increase the number of enkephalin-

positive neurons in R6/1 transgenic mice (similar to R6/2 mice) [167]. Drawbacks for humans 

include that this delivery system would require permanent access to the CSF that would be prone 

to infection and inflammation, and the protein has a short half-life, therefore it would have to be 

given on a frequent or constant basis. A second method to increase BDNF is by viral gene 

delivery. Adenoviral delivery of BDNF to the striatum of R6/2 mice expressed by a glial-specific 

promoter, gfa2, delayed the behavioral impairment including clasping [168]. The drawbacks to 

viral delivery of BDNF gene depend on the virus utilized, but could include regulating gene 

expression, potential inflammation and integration into the genome disrupting expression of 

other genes. Other methods of increasing BDNF include implantations of mesenchymal stem 

cells that stably release BDNF and small molecules that can stimulate transcription of BDNF and 

BDNF receptors [28, 169-171]. BDNF mimetics and small molecule drugs, including SSRIs, 

memantine, and ampakines are being tested to increase BDNF [2]. 
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2. Strategies to block proteolysis of huntingtin into toxic fragments 

As described earlier, the NH2-terminal huntingtin fragment has been linked to increased 

toxicity, and blocking caspase cleavage improves cell survival and disease progression in mouse 

models [106-110]. Minocycline, an antibiotic that inhibits caspase 1 and 3, was shown to 

improve disease phenotype in R6/2 mice, however the behavioral benefit could not be replicated 

by another research group [162, 172]. The discrepancies in results from these studies could be 

influenced by different behavioral procedures, mouse husbandry practices or chow formulation, 

however a phase II futility study of 114 HD patients found no benefit with minocycline [173]. 

 

3. Treatment by increasing gene transcription 

 Changes in gene transcription are one of the early events in Huntington’s disease [174]. 

Decreased transcription leading to deficits in protein levels of important genes such as D1 and 

D2 dopamine receptors could contribute to neurodegeneration [175]. Histone deacetylase 

(HDAC) inhibitors block the de-acetylation of histones, leading to more histone acetylation 

opening chromatin for increased transcription. There have been mixed findings with HDAC 

inhibitors in mouse models, and a phase II clinical trial (PHEND-HD) has been completed 

testing sodium phenylbutyrate, a non-selective HDAC inhibitor, for safety and tolerability in HD 

patients [176-179]. While HDAC inhibitors alter transcription indirectly by binding an enzyme, 

another approach is to use compounds that interact with DNA directly. Anthracycline antibiotics 

bind DNA and were found to normalize nucleosome arrangement and correct chromatin changes 
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in HD mice in addition to increasing volume of the striatum, increasing survival in R6/2 mice, 

and increasing distance traveled in open field test (also R6/2 mice), however there are no clinical 

trials for anthracycline at this time [180].  

 

4. Strategies to disrupt aggregates and increase clearance of mutant protein 

Despite the debate over the relative harm or benefit of huntingtin aggregation, several 

aggregate blockers have been investigated. In animal models, Congo red, a chemical dye, 

decreased aggregation by blocking polyQ oligomerization. In one study, Congo red improved 

HD phenotype, but these results could not be replicated [181, 182]. Trehalose blocks inclusion 

formation to improve R6/2 mice disease phenotype, and Riluzole blocks aggregation in HD 

animal models [155, 183]. Increasing clearance of misfolded proteins is important for removing 

the toxic molecules from the cell, and there is evidence that both the ubiquitin-proteasome and 

autophagy-lysosomal pathways are impaired in HD [121, 124, 132]. In animal models of HD, 

increasing autophagy by treatment with the antibiotic rapamycin has shown great promise [127]. 

However this drug is not feasible in humans due to the major side effect of immunosuppression 

[184].  

 

5. Strategies to reduce mutant huntingtin mRNA 

Many possibilities exist to reduce huntingtin mRNA, such as interfering with 

transcription factor binding to the huntingtin promoter and the use of zinc-finger nucleases to 
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knock-out the huntingtin gene [185]. Here we focus on the post-transcriptional modulation of 

huntingtin mRNA levels, specifically gene silencing. There are two main approaches to gene 

silencing, RNA interference and the use of antisense oligonucleotides. The first approach is to 

administer double-stranded, short interfering RNA (siRNA) or short hairpin RNAs (shRNA) 

molecules that utilize the RNAi pathway. These small RNAs specifically target the huntingtin 

mRNA sequences in the cytoplasm as part of the RNA-induced silencing complex (RISC) [186]. 

The second method is to administer short DNA molecules known as antisense oligonucleotides 

(ASOs) to target and cleave mRNA in the nucleus and cytoplasm. The single-stranded ASOs 

bind to complementary sequences in the nucleus and cytoplasm then the complexes are degraded 

by the endogenous RNaseH enzyme to cleave target mRNA [187]. The drawbacks of using gene 

silencing include potential off-target effects and the challenge of delivering to the brain [188, 

189].  

siRNA has been tested in many animal models by intraparenchymal injection into 

affected regions of the brain or by intracerebroventriclular (ICV) infusion. In mice, 

intraparenchymal co-injection of adeno-associated virus (AAV) expressing mutant (100 CAG) 

exon 1 with cholesterol-conjugated siRNA (cc-siRNA) targeting huntingtin resulted in improved 

neuropathology and an improved behavior phenotype compared to mice injected with control cc-

siRNA [190]. ASOs have been tested by intraparenchymal or ICV infusion as well. After ICV 

infusion, ASO spreads throughout many brain structures, but does not penetrate dense regions of 

white matter [191]. There is no immune activation and the effect of one treatment in mice can 

last up to 3 months [191]. However, like siRNAs, ASOs must be delivered repeatedly on a long 

term basis. 
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To avoid the need for repeated administration of silencing agent, several groups are 

working on using viral delivery of shRNAs to target huntingtin in mouse models. AAV is a non-

replicating virus that does not integrate into the cell’s genome. AAV-shRNAs have been tested 

in animal models of HD. shRNA reduced mutant huntingtin mRNA in the striatum of N171-82Q 

mice by 51-55% compared with control, resulting in improved gait and rotarod ability [192]. 

Another group used AAV to express shRNA in the striatum of the R6/2 mice, finding a reduction 

in mutant huntingtin mRNA (75%) and protein (60%), a decrease in size and number of 

intranuclear inclusions and normalization of gene expression in neurons [193]. The treatment had 

no effect on rotarod ability but delayed onset of clasping [193]. This approach would only 

require a single administration of the AAV-shRNA for long term expression of the silencing 

molecule. One challenge of this system is controlling the expression level. 

A significant concern about gene silencing is the potential harm of silencing both alleles, 

as 50% reduction of huntingtin may cause behavioral abnormalities and complete absence of 

huntingtin leads to neuronal cell death [36, 194, 195]. Therefore, it is important to monitor the 

amount of silencing that is achieved. A benefit of these strategies is that they are sequence 

specific and can be targeted to single nucleotide polymorphisms (SNPs) that are different 

between the normal and mutant allele in each individual patient. There is a linkage between at 

least one SNP that makes it a target in approximately 50% of HD patients [196]. Approaches that 

focus on allele-specific silencing will decrease the probability of loss of normal huntingtin 

function as a consequence of treatment, while specifically targeting the disease-causing product. 
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G. Summary 

This introduction provides an overview of the impact of the disease, the role of huntingtin 

in the brain, and the pathological features and mechanisms that are known about huntingtin 

protein. Huntingtin has many functions including an essential role in development. In adulthood, 

huntingtin is implicated in several areas of the cell. It has roles in vesicle recycling, regulation of 

transcription, maintaining the energy state of the cell, and has neuroprotective functions 

involving BDNF. When huntingtin is mutated with an expanded CAG repeat, not only does the 

protein partially lose its ability to function normally, it interacts with other proteins resulting in 

cellular dysfunction and death. A hallmark of the disease is the formation of aggregates and 

nuclear inclusion bodies. Whether these aggregates are protective or harmful has yet to be 

established. However, the formation of aggregates may indicate the accumulation of mutant 

protein and the cell’s inability to rid itself of the toxic protein. This introduction summarizes the 

two pathways by which mutant huntingtin can be degraded: the ubiquitin-proteasome system and 

the autophagy-lysosome system. I introduced a protein called puromycin sensitive 

aminopeptidase, which is the subject of Chapter 2. This enzyme has been implicated in the 

activation of autophagy and the accumulation of inclusion bodies in cells expressing mutant 

huntingtin exon 1 fragment [123].  

Lastly, in this introduction, I discussed the current and potential therapies aimed at 

preventing the onset of HD and/or slowing its progression. The majority of therapeutic strategies 

address only one downstream effect of mutant huntingtin such as change in gene transcription or 

neuroprotection. Decreasing mutant huntingtin is a single method to prevent all downstream 

toxicities. Approaches include targeting the mutant huntingtin protein or mRNA by increasing 

degradation, decreasing transcription or decreasing translation. A promising way to impede 
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translation is to degrade mutant huntingtin mRNA by RNAi. One challenge is in selecting the 

best structure, modifications and delivery systems for the silencing agent. In Chapter 3, I discuss 

the optimization of a system for screening silencing molecules in the brain using in vivo 

bioluminescent imaging. 
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Figure 1-1: Circuitry of the direct and indirect pathways of the basal ganglia. Schematic 

depicting the pathways through the basal ganglia: cortical input enters either the direct or indirect 

pathway by synapsing with medium spiny neurons in the striatum. A.) In the indirect pathway, 

dopamine receptor-containing medium spiny neurons (D2) project to the globus pallidus external 

segment (GPe), connecting to the subthalamic nucleus (STN). The subthalamic nucleus connects 

with the substantia nigra pars reticulate (SNr), which then synapses on the thalamus. B.) In the 

direct pathway, dopamine receptor-expressing medium spiny neurons (D1) project to the globus 

pallidus internal segment (GPi), which projects to the thalamus. Substantia nigra pars compacta 

(SNc) provides dopaminergic input to the striatum. Excitatory glutamate (GLUT) releasing 

connections are red. Inhibitory GABA releasing pathways are blue. The excitatory dopamine 

(DA) pathway is purple with “+”, and the inhibitory dopamine connection is purple with “-“.
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Figure 1-2: Mutant huntingtin negatively affects many cellular processes. A.) Cleavage of 

huntingtin generates NH2-terminal fragments of mutant huntingtin that are more toxic than the 

intact protein. Abnormal protein interactions disrupt intracellular processes. B.) Mutant 

huntingtin binds dynactin and other polyQ containing proteins in addition to binding to itself 

forming oligomers and fibrillar intermediates. C.) NH2-terminal fragments form soluble fibrils 

that interact and more severely impair huntingtin function. D.) Mutant huntingtin is targeted to 

the proteasome by ubiquitin modifications, but it cannot be degraded. E.) Dystrophic neurites are 

a pathological finding in neurons that contain full length and NH2-terminal fragments. F.) 

Cytoplasmic aggregates are a pathological finding located in the cytoplasm of neurons. These 

also contain full length and NH2-terminal fragments and are ubiquitinated. These aggregates are 

known to bind and sequester proteasomal subunits. G.) Neuronal intranuclear inclusion bodies 

are a pathological finding that consists of aggregated mutant huntingtin fragments in the nucleus. 

These inclusion bodies bind transcription factors and contribute to transcriptional dysregulation. 

H.) Transcriptional dysregulation is also caused by soluble mutant huntingtin that binds to 

transcription machinery and transcription activators to result in general transcriptional reduction. 

I.) Mitochondrial dysfunction is caused by mutant huntingtin binding to mitochondria to alter 

movement, structure and calcium handling. J.) Impaired vesicle trafficking and endosomal 

recycling results when mutant huntingtin binds Rab11 thereby altering endosome morphology 

and slowing endosome recycling. 
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Figure 1-3: Diagram of huntingtin degradation pathways. A.) Ubiquitin-proteasome system:  

Proteins labeled with ubiquitin chains are targeted to the proteasome for degradation. Proteins 

are unfolded before they enter the proteasome. Multiple proteasomal endopeptidases cleave the 

proteins, and peptides released into the cytosol are further degraded by aminopeptidases. B.) 

Autophagy-lysosome system: A double membrane forms around proteins or organelles to be 

degraded, forming a structure called an autophagosome. The autophagosome fuses with the 

lysosome to create an autophagolysosome where the proteins are degraded by acidic lysosomal 

hydrolases.
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Table 1-1: Comparison of commonly used mouse models of Huntington’s disease 
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CHAPTER II 

 

 

 

THE EFFECT OF REDUCED LEVELS OF PUROMYCIN SENSITIVE 

AMINOPEPTIDASE ON INCLUSION FORMATION AND BEHAVIOR IN A KNOCK-

IN MOUSE MODEL OF HUNTINGTON’S DISEASE 

 

 

 

 This chapter provides evidence that a decrease in puromycin sensitive aminopeptidase 

(PSA) influences behavior and inclusion formation in Huntington’s disease model mice. We also 

demonstrate the sensitivity of neurons to overexpression of PSA. I designed, carried out, and 

analyzed the majority of the experiments under the supervision of Neil Aronin. Ellen Sapp 

quantified the open field assay. Ken Rock provided the PSA knock-out mice. Miguel Esteves 

provided the AAV-hPSA-HA. A version of this chapter is currently being prepared as a 

manuscript for publication.  
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A.  Abstract 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused 

by an expanded CAG repeat in the huntingtin gene encoding for a polyglutamine (polyQ) region 

in the protein [1, 2]. Mutant huntingtin accumulates in neurons, forming cytoplasmic aggregates 

and nuclear inclusion bodies. Both the ubiquitin-proteasome system and the autophagy-

lysosomal system have contributing roles in degrading mutant huntingtin, but the primary 

mechanism of degrading mutant huntingtin remains unknown. Puromycin sensitive 

aminopeptidase (PSA), an enzyme previously implicated in MHC class I presentation and 

degradation of enkephalin, is highly expressed in the brain and has the unique ability to degrade 

polyQ peptides [197-199]. PSA expression reduces mutant huntingtin aggregates in several cell 

types and has a neuroprotective effect in mouse models of tau-induced neurodegeneration [123, 

200].  

The aim of this study was to investigate the role of PSA in the progression of 

Huntington’s disease using a 140Q knock-in mouse model of HD [145]. Since PSA degrades 

polyQ regions and reduces inclusions in cells, we hypothesized that a decrease in PSA would 

worsen behavioral abnormalities and increase the number of inclusion bodies in neurons of 

knock-in mice. In this study we used Psa+/- Hdh140Q/140Q mice to test the effect of a PSA 

deficiency on HD phenotype. We found that reduced PSA resulted in impaired performance on 

the raised beam test and an increased number of intranuclear inclusion bodies. These findings 

demonstrate that a reduction in PSA expression worsens behavioral progression and alters 

inclusion formation in the HD mouse model. To test over-expression of PSA, we created an 

AAV vector expressing the human homolog of PSA (hPSA). Unexpectedly, over-expression of 



50 
 

hPSA in the brain of wild type mice resulted in dosage-dependent astrocyte activation and 

neuron death. The toxicity due to high expression levels of hPSA reveals the potency of the 

enzyme and the sensitivity of neurons to increased amount of PSA.  

B. Introduction 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused 

by an expanded CAG nucleotide repeat within the mutant allele of the huntingtin gene [1]. This 

trinucleotide repeat is part of the coding region of the gene, resulting in a protein with an 

expanded polyglutamine (polyQ) region [2]. Mutant huntingtin accumulates in medium spiny 

neurons of the striatum forming insoluble cytoplasmic aggregates and nuclear inclusions 

resulting in cellular dysfunction and neuron loss [2, 80]. HD affects 4-10 in 100,000 people of 

European descent and is characterized by early motor and psychiatric symptoms followed by 

cognitive decline and death [2].  

HD is one of nine neurological diseases caused by polyglutamine expansions, including 

dentatorubral-pollidoluysian atrophy (DRPLA), spinal and bulbal muscular atrophy (SBMA), 

several types of spinocerebellar ataxias (SCAs), all of which result in misfolding, accumulation, 

and aggregation of the polyQ containing protein [201]. Each disease affects a different subset of 

neurons [201]. In Huntington’s disease, onset is inversely proportional to the length of the polyQ 

expansion [202]. This suggests that the length of the polyQ stretch confers toxicity, perhaps by a 

greater resistance to degradation by the cell. One approach to treating Huntington’s disease is to 

decrease the amount of mutant protein in order to alleviate the cytotoxic burden of mutant 

huntingtin. 
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Huntingtin is degraded by both the ubiquitin-proteasome system (UPS) and the 

autophagy-lysosomal system [127]. Huntingtin is targeted to the proteasome by poly-

ubiquitination on lysine residues [118]. Huntingtin is also phosphorylated on serines 13 and 16 

by the IKK (inhibitor of kappa B kinase) that targets it for degradation by the proteasome and the 

lysosome [99]. Interestingly, the presence of an expanded polyQ region reduces the efficiency of 

phosphorylation, possibly contributing to the accumulation of mutant huntingtin [99]. In human 

HD tissue and HD transgenic mice, huntingtin-containing inclusion bodies and aggregates stain 

positive for ubiquitin [81].  

In post-mortem brain tissue from HD patients, there is decreased proteasome activity 

suggesting that mutant huntingtin impairs its function [203]. The proteasome is only able to 

degrade soluble proteins prior to the formation of aggregates, therefore the role of the UPS 

would be most important early in the disease [124, 204-207]. In HD model neuronal cell culture, 

proteasome activators improve proteasome function and improve viability against toxic insult 

[208]. Treatment with proteasome inhibitors results in accumulation of mutant huntingtin protein 

and inclusion formation cell models and 140Q knock-in mouse model, although few mice were 

examined (n=2) [126, 209].  

Autophagy is also a pathway for the degradation of huntingtin [62, 131, 210-212]. Mutant 

huntingtin aggregates sequester the mammalian target of rapamycin (mTOR), and the loss of 

mTOR activates autophagy [129]. Treatment with activators of autophagy reduces inclusion 

number and cell death in mutant huntingtin-expressing cells, decreases neurodegeneration in a 

fly model of HD, and improves behavior in a mouse model of HD [213, 214]. 
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The mechanism by which the proteasome degrades polyQ repeats in mutant huntingtin is 

not known. In vitro experiments reveal that eukaryotic proteasomes digest polyglutamine 

polypeptides slowly, sometimes expelling polyglutamine stretches intact [121]. Similarly, the 

proteasome is unable to degrade NH2-terminal mutant huntingtin, releasing incompletely 

digested fragments [125]. An insight into the degradation of polyQ repeats has been the 

identification of puromycin sensitive aminopeptidase (PSA), an enzyme with the ability to digest 

polyQ peptides [122]. In cell extracts, PSA has the ability to degrade polyQ stretches up to 30 

amino acids in length [122]. Longer polyQ lengths were unable to be studied due to aggregation 

under the experimental conditions. Nevertheless, the authors concluded that PSA is the only 

enzyme identified with the ability to degrade polyQ peptides, a property that may be critical for 

degradation of the toxic NH2-terminal fragments of mutant huntingtin [122]. 

PSA is a 99 kDa zinc metallopeptidase ubiquitously expressed enzyme with highest 

levels in skeletal muscle, heart, brain, kidney, liver and testes. In the brain, PSA is the most 

highly expressed aminopeptidase [199, 215]. PSA exists as membrane bound and soluble forms, 

implicated in enkephalin degradation, polyQ peptide degradation, and in processing peptides for 

MHC class I presentation [122, 197, 216, 217]. PSA also associates with the spindle apparatus in 

G2/M phase, suggesting that it could be involved in the cell cycle [218]. Reduction of PSA 

results in decreased migration, proliferation, and invasion of PC-3 cells, a prostate cancer cell 

line [219]. PSA knockout mice exhibit increased anxiety, decreased pain response, male 

reproductive abnormalities and female maternal behavior deficits [220-222]. 

Several studies show effects of PSA on the degradation and processing of proteins 

relevant to neurodegenerative diseases. Cu, Zn-superoxide dismutase-1 (SOD1) is a protein that 

is frequently misfolded in both familial and sporadic cases of amyotrophic lateral sclerosis 
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(ALS) [223]. In cell culture experiments, protein levels of SOD1 were inversely related to 

protein levels of PSA, and in a cell-free system SOD1 was shown to be a target of PSA 

proteolysis [223]. Tau is a protein that aggregates in both frontotemporal dementia (FTD) and 

Alzheimer’s disease. Silencing PSA in cell culture results in accumulation of tau, however, the 

effects of PSA on tau are indirect as PSA was not shown to directly cleave tau [224, 225]. 

Another group found that PSA does degrade tau from extracts of brain from FTD and 

Alzheimer’s patients’ brains [226, 227]. PSA is up-regulated in the cerebellum of FTD model 

mice and FTD patients [226]. A Drosophila model of FTD with decreased PSA exhibit increased 

neurodegeneration and increased aggregation of tau [228]. An increase in PSA prevents 

neurodegeneration in FTD mice [226].  

PSA expression has also been shown to affect the accumulation of mutant huntingtin. In 

transfected cell culture and muscle tissue expressing mutant huntingtin, reducing PSA resulted in 

a greater number of aggregates and cell death, while overexpressing PSA resulted in fewer 

aggregates and cell death [123]. The beneficial effects of PSA overexpression on huntingtin-

expressing cells may be the result of an increase in autophagy, as chemically blocking autophagy 

negated the effects of PSA [123]. These findings in cell culture seem to suggest that the 

mechanism of huntingtin degradation by PSA is indirect, through the activation of autophagy 

rather than by increasing the rate of polyQ degradation. However, these experiments were 

performed in cell culture experiments with very high overexpression of PSA, which warrants 

caution in extrapolating this conclusion to the physiologic function of PSA in the brain.  

The aim of this study is to investigate whether PSA level influences the phenotype in a 

knock-in mouse model of Huntington’s disease. Previous studies have been limited to studying 

the interaction of a huntingtin fragment in cell culture and in the muscle tissue of PSA 
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heterozygous animals. Here, we use PSA heterozygous mice crossed with HD 140Q knock-in 

mice to investigate the effect of PSA reduction on disease-related phenotypes in a mouse model 

of Huntington’s disease. The advantage to using a mouse model of HD is that mice can be tested 

for behavioral changes as well as pathological changes. To interpret the effect of PSA on HD, it 

is crucial to examine tissues and cells most affected by the disease.  

Our study showed that at 12 months, the PSA heterozygous HD mice (Psa+/-Hdh140Q/140Q) 

had a worsening of balance and coordination on the raised beam test, and the number of nuclear 

inclusions was significantly increased. The results demonstrated that Psa+/-Hdh140Q/140Q mice 

exhibit a more severe phenotype than Psa+/+Hdh140Q/140Q mice. If a reduction in PSA worsens 

symptoms and increases inclusion number in a mouse model of HD, we wanted to explore 

whether an increase in PSA would delay the onset or reverse behavioral and pathologic 

outcomes. To test this, we created a gene therapy approach to deliver hPSA to the striatum. In 

testing the virus in wild type mice, we found that the virus caused toxicity in a dose dependent 

manner. The observed cell death and glial activation suggest that neurons are sensitive to over-

expression of hPSA at the dose given. 

C. Results 

1. PSA knock-out animals do not breed well and are smaller than littermates. 
 

The study of PSA knock-out animals (PSA-/-) is a challenge for several reasons. In 

agreement with previous studies, we found that PSA knock-out mice do not breed well, 

producing very few litters [197]. For example, one would expect Psa+/- breeding pairs to produce 

Psa+/+: Psa+/-: Psa-/- at a 0.25:0.5:0.25 frequency. In our experience, the average litter size from a 
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representative sample of 15 litters was 4.73± 1.5 pups with a frequency of 0.42: 0.5: 0.083 

(Table 2-2). A second reason discouraging the use of PSA knockout animals is that they are 

smaller compared with age and sex-matched heterozygous or wild type littermates [197]. PSA 

knock-out mice weigh about 65% as much as age-matched heterozygous littermates at one and 

six months of age (Fig. 2-1, unpaired t-test p=0.003 at 1 month, p=0.0247 at 6 months). 

Complete data on weight for each mouse is also shown in Table 2-1. This concurs with findings 

reported for a different line of PSA deficient mice, Psagoku/goku, using the gene-trap method to 

disrupt PSA expression [222]. Psagoku/goku mice display body weight <70% of WT mice [222]. 

The difference in size precluded us from using Psa-/- mice in tests on the raised beam because 

their decreased size and weight could affect their performance in comparison with larger 

animals. The difference in size raises the possibility that developmental differences might exist 

which could affect the comparison between wild type and PSA knock-out HD animals. Since 

heterozygous animals breed normally, are born at expected frequency, and are equal in size to 

wild type littermates, we chose to use heterozygous mice to investigate the impact of a reduction 

in PSA in HD animals. 

 

2. PSA mRNA and protein are expressed in a gene dosage-dependent manner. 

In order to use Psa+/- animals to represent a reduction in PSA, we first assessed whether 

there is a gene dosage effect of the PSA gene. We looked at the relative mRNA and protein 

levels in Psa-/-, Psa+/- and wild type striatum and cortex. Quantitative PCR (qPCR) from striatal 

tissue of PSA mice showed that heterozygous mice express about 50% the amount of PSA 

mRNA as wild type mice (Fig. 2-2 A, Tukey’s pairwise comparison p=0.008). Western Blot 
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analysis of tissues from the cortex shows that heterozygous mice express about 50% as much 

protein as control mice (Fig. 2-2 B, Tukey’s pairwise comparison p=0.0055). In the striatum, 

PSA protein levels in heterozygous mice were 60% of wild type levels, but this did not quite 

reach statistical significance. There was no detectable PSA mRNA or protein in the knock-out 

animals (Fig. 2-2 A, B, C, D). The significant reduction of PSA mRNA from the striatum and 

PSA protein from the cortex (and a non-significant reduction of protein in the striatum) in Psa+/- 

mice suggests that there is gene dosage effect; however there are few animals per group, 

resulting in low experimental power. 

 

3. Psa-/- and Psa+/- mice do not display a locomotor defect on the raised beam test and do 

not form ubiquitin positive nuclear inclusion bodies. 

In a previous study, some Psa-/- mice were observed to have a locomotor defect in their 

hind legs [197]. It was found that Psagoku/goku mice do not have abnormalities on the raised beam 

test, however in this study heterozygous mice were not tested [222]. The raised beam test 

evaluates the balance and coordination of a mouse as it crosses a narrow beam. To confirm the 

raised beam test finding in Psagoku/goku mice and to test Psa heterozygous mice, we tested Psa-/- 

and Psa+/- mice for behavioral defects on the raised beam test. We found no difference in either 

group compared with wild type mice at 6, 8 and 10 months of age (Fig. 2-3 A). Psagoku/goku mice 

have reduced activity in the open field test and reduced rearing compared with wild type mice 

[222]. In our observations regarding general activity, we found the opposite effect in our Psa-/- 

mice. Psa-/- mice exhibited an increase in home cage activity and an abnormal behavior of 

jumping off of the beam.  
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Inclusion bodies and visible aggregates of many mutant aggregating proteins can be 

detected by immunohistochemistry (IHC) with antibodies specific for ubiquitin. In sections from 

Psa-/- mice (9 and 22 months old), there was no staining for ubiquitin positive inclusion bodies or 

aggregates in the striatum (Fig. 2-3 B). There was cytoplasmic staining for ubiquitin but no more 

than in the wild type control. Psa-/- sections (from mice 9, 17, and 22 months old) were also 

stained for huntingtin aggregates to be certain that there is not impairment in degrading normal 

huntingtin. No staining for huntingtin inclusions was seen (Fig. 2-3 C). Psa+/- animals were also 

negative for huntingtin inclusion formation (assessed directly in subsequent experiments).  The 

findings that Psa-/- and Psa+/- mice do not have a locomotor phenotype and Psa-/- mice do not 

have nuclear inclusions or cytoplasmic aggregates, allow us to use these measures as endpoints 

in our study of the effects of reduced PSA on HD mice.  

 

4. PSA reduction does not accelerate the onset of locomotor deficits or reduce activity in 

PSA+/- Hdh7Q/140Q. 

A measure of progression of disease in the knock-in mice is the development of 

behavioral and locomotor abnormalities. Hypoactivity appears in heterozygous (Hdh7Q/140Q) 

knock-in mice at around 4 months of age, and gait abnormalities appear at 1 year of age [145]. 

To test for an early effect of PSA heterozygosity on raised-beam behavior, we analyzed Psa+/- 

Hdh7Q/140Q and compared them with Psa+/- Hdh7Q/7Q and wild type mice (Psa+/+ Hdh7Q/7Q). We 

used the raised beam test to look for early interaction of PSA heterozygosity on heterozygous 

knock-in HD mice beginning at 3 months of age, continuing to 10 months of age (Fig 2-4 A). 

These mice were initially tested every week for the first month (no difference between the 
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groups, data not shown). Over time, mice in all groups became increasingly resistant to crossing 

the beam, therefore time points after 10 months were not tested. Because heterozygous knock-in 

HD mice with Psa+/- versus Psa+/+ showed no difference on the raised beam test by 10 months of 

age, we conclude that there is no effect of the Psa+/- genotype on locomotor abilities of 

Hdh7Q/140Q mice at early time points.  

We also tested these same mice in an open field test at 13 months of age. Psa+/+ 

Hdh7Q/140Q mice showed reduced activity compared with all other groups, including Psa+/- mice, 

the latter of which showed no difference from wild type mice (Fig. 2-4 B). These results show 

that a PSA reduction unexpectedly improves activity in Hdh7Q/140Q mice (Tukey’s multiple 

comparison p=0.00569). The increase in activity of Psa+/- Hdh7Q/140 mice compared with Psa+/+ 

Hdh7Q/140Q mice suggest that PSA heterozygosity might increase general activity in HD animals.  

 

5. PSA deficiency in Hdh7Q/140Q mice does not affect the number of inclusion bodies 

 Inclusion body formation can be used to follow disease progression in knock-in mice. 

Inclusion bodies begin forming at four months of age and continue to increase in size and 

number as the mice age and the disease progresses [145]. At 1.5 years of age, there was no 

difference in the number of inclusion bodies in either the striatum or the cortex of Psa+/- 

Hdh7Q/140Q compared with Psa+/+Hdh7Q140Q mice (Fig. 2-4 C). We did not test Psa+/-Hdh7Q/7Q mice 

because in previous studies they did not exhibit huntingtin inclusion formation (Fig. 2-3).This 

demonstrates that the formation of inclusion bodies in Hdh7Q/140Q mice is not altered by a 

reduction in PSA. 
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6. PSA deficiency worsens locomotor deficits in 12 month old Hdh140Q/140Q mice 

In our experience, Hdh7Q/140Q mice have a less severe phenotype than do Hdh140Q/140Q 

mice, so next we tested the effect of PSA reduction on homozygous knock-in mice (Hdh140Q/140Q) 

to see if there was a change in a more severe disease model. In Psa+/- Hdh140Q/140Q mice, the 

relative decrease in the amount of PSA protein is similar to previous findings, although this 

difference is not statistically significant due to the large variation within each group (Fig. 2-5 A, 

B).  

Previously, in the raised beam test, mice became resistant to crossing the raised beam, 

therefore, in order to preserve accuracy of the test we chose a single time point to test Psa+/-

Hdh140Q/140Q mice for locomotor deficits. We chose to test these mice at one year of age, a time 

point where the animals are more advanced in their disease.  Psa+/-Hdh140Q/140Q mice took longer 

to cross the raised beam than Psa+/+Hdh140Q/140Q mice (n.s.), and were significantly slower in 

beam crossing than wild type mice (Fig. 2-5 C). Psa+/- HD140Q/140Q mice had a significantly 

greater number of foot slips than the Psa+/+ HD140Q/140Q mice and an increase compared with wild 

type mice. Findings that Psa+/- HD140Q/140Q mice performed worse on the raised beam test, in 

terms of footslips, than Psa+/+ HD140Q/140Q mice suggest that PSA heterozygosity increases the 

progression or severity of the HD phenotype in the Hdh140Q/140Q mice at one year of age. This 

contradicts previous findings using Hdh7Q/140Q mice, possible due to an increased polyQ burden 

from twice the amount of mutant Hdh protein. 
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7. PSA reduction increases the number of nuclear inclusions in 12 month old Hdh140Q/140Q 

mice 

 We then looked at the formation of inclusion bodies in 12 month old Psa+/-Hdh140Q/140Q 

mice. Since the number of inclusions correlates with the severity of the disease in knock-in HD 

mice, we predicted that a decrease in PSA will increase the number of inclusion bodies [145]. By 

stereological quantification, there was a significant increase in the number of intranuclear 

inclusion bodies in the Psa+/-Hdh140Q/140Q mice (Fig. 2-6 A-C). No difference in the number of 

neurons was observed between the Psa+/-Hdh140Q/140Q mice and the Psa+/+Hdh140Q/140Q mice (Fig. 

2-6 F). Interestingly, the Psa+/-Hdh140Q/140Q mice had slightly smaller size of inclusions compared 

with Psa+/+Hdh140Q/140Q mice; however this difference was not statistically significant (Fig. 2-6 

D) (Unpaired t-test, p=0.1981).  

Stereological quantification of cytoplasmic aggregates was also performed. These were 

differentiated from nuclear inclusion bodies as they are smaller and irregular in shape and are 

outside of the nucleus. The difference in the number of aggregates was not statistically 

significant, but the average number of cytoplasmic aggregates in the Psa+/-Hdh140Q/140Q was less 

than the Psa+/+Hdh140Q/140Q (Fig. 2-6 E) (Mann-Whitney U test, p=0.1388).  The observations that 

the inclusion bodies are smaller and fewer aggregates are observed could point to a role of PSA 

in the distribution of mutant huntingtin between the nucleus and the cytoplasm.  

 

8. PSA deficiency has no effect on soluble huntingtin and autophagy 

 To test whether the increased number of inclusion bodies represents a reduction in 

soluble huntingtin, we performed western blot analysis on cell extract from the striatum using 
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antibodies generated from amino acids 1-17 of human huntingtin (AB1 antibody [229]). We 

found no change in huntingtin levels among the groups (Fig. 2-7 A).  

  We tested whether a decrease of PSA in HD mice would result in a decrease in autophagy 

[123]. LC3-I is converted to LC3-II representing an increase in autophagy. We could not detect 

LC3-II, a marker of autophagy activation, and we did not find any change in the amount of LC3-

I (Fig. 2-7 B). 

  

9. AAV-hPSA-HA injection in wild type mice leads to hPSA expression in the brain. 

 To investigate the effect of an increase in PSA on behavior and pathology in HD mice, 

we created an AAV vector expressing human PSA (hPSA) tagged with the hemagglutinin (HA) 

epitope, for this study we will refer to it as AAV-hPSA-HA. Human PSA is 98% identical to 

mouse PSA at the amino acid level [199]. To test that the AAV-hPSA-HA virus expresses hPSA 

in the brain, we injected a series of doses, all 3µL in volume, into the striatum of wild type mice 

(Fig. 2-8 A). hPSA can be detected in brain extracts three weeks after intraparenchymal injection 

at concentrations as low as 1e10 GC (genome copies) using HA antibodies. These results 

demonstrate that AAV-hPSA-HA is expressed and can be detected using HA antibodies.  

 

10. Overexpression of hPSA in wild type mice is toxic at high concentrations. 

 In AAV-hPSA-HA-injected wild type mice, we found extensive toxicity demonstrated 

both by the loss of neurons and by glial activation. In order to test whether PSA toxicity in 

mouse neurons is dose dependent, we injected 10-fold dilutions (1e12 GC, 1e11 GC, 1e10 GC, 

and 1e9 GC) of AAV-hPSA-HA, all 3µL in volume, into the striatum and looked for HA, GFAP, 

and DARPP-32 reactivity after three weeks. At 1e11 GC there was spread of hPSA-HA 
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throughout many sections of the striatum, but at ten-fold dilution (1e10 GC) the spread was 

limited to a few sections (Fig. 2-9 A). Doses of 1e10 and 1e9 GC resulted in very few HA 

positive cells (not shown). Staining for glial fibrillary acidic protein (GFAP) revealed a 

widespread activation of astrocytes in the 1e11 GC concentration and limited activation in the 

1e10 GC and control injection sections (Fig. 2-9 B). In the 1e11GC concentration there was a 

complete loss of DARPP-32 staining for medium spiny neurons corresponding with the site of 

injection (Fig. 2-9 C). We confirmed that the cells expressing PSA are neurons by double 

immunofluorescence labeling of HA and DARPP-32 (Fig. 2-9 D). In summary, the extent of 

spread is greatest at the highest dose (1e11 GC) with the adverse effect of eliciting significant 

glial activation. At 1e10 GC concentration, the spread is limited, but there is minimal glial 

activation.  

 To test whether there were contaminants in the viral preparation which could account for 

the observed toxicity, we did a time course experiment to assess whether cell death and astrocyte 

activation corresponds with the expression of hPSA-HA. HA reactivity was detectable at one 

week after injection and preceded the activation of astrocytes and loss of DARPP-32 positive 

cells (Fig. 2-10). That HA reactivity is found before toxicity suggests that there are no 

contaminants in the virus preparation and that expression of hPSA-HA is toxic to cells at the 

measured level. To confirm that the virus was not contaminated, new preparations can be made 

parallel to a control virus to compare toxicities. 
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D. Discussion 

 

We are the first to show that heterozygosity for the PSA gene affects the behavior and 

inclusion formation in a knock-in mouse model of Huntington’s disease. On the raised beam test, 

the Psa+/- Hdh140Q/140Q mice had a greater number of foot slips compared with Psa+/+ Hdh140Q/140Q 

mice (Fig. 2-5 C). Since there was worsened performance on the raised beam test, a test for 

balance and coordination, we conclude that there is functional impairment resulting from PSA 

heterozygosity. 

We measured huntingtin protein from striatal cell lysates and did not detect a difference 

in the amount of full-length mutant huntingtin between the Psa+/- Hdh140/140 and Psa+/+ Hdh140/140 

groups (Fig. 2-7 A). Cell lysates for Western analysis were prepared by performing a low speed 

spin to remove mitochondria, lysosomes, and the nuclei. The fraction of mutant huntingtin 

measured consisted of the soluble, cytoplasmic, full-length mutant huntingtin (Fig. 2-11 A, B). 

This measurement did not include full-length huntingtin associated with aggregates and inclusion 

bodies, NH2-terminal fragments or fibrillar forms of mutant huntingtin. Using stereological 

techniques, we show that decreased PSA results in a greater number of inclusions in neurons of 

the striatum (Fig. 2-6 C). This is consistent with previous findings in the muscle tissue of Psa+/- 

mice transfected with huntingtin exon 1 containing 74Q, in which the number of inclusions was 

increased [123]. The number and size of nuclear inclusions largely represent the insoluble NH2-

terminal fragment of mutant huntingtin. Our interpretation of these results is that PSA 

heterozygosity contributes to an accumulation of insoluble mutant huntingtin. In this 

interpretation there is no increase in full-length mutant huntingtin, but there is an increase of the 
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NH2-terminal fragment of mutant huntingtin as measured by the number and size of cytoplasmic 

aggregates and intranuclear inclusion bodies. In addition to mHtt lost in insoluble fragments, it is 

preferentially membrane bound, and, hypothetically, could bind to any membrane after cell lysis 

[230]. There are several challenges in measuring the content of mutant huntingtin as it is 

distributed throughout multiple compartments, soluble and insoluble conformations, and 

preferentially membrane bound. 

A caveat to our results in Psa+/- Hdh140Q/140Q mice is that we were unable to demonstrate 

that PSA protein was significantly reduced compared with PSA wild type animals in the striatum 

in two experiments, each with groups of 4 or less animals (Figs. 2-2, 2-5). Using groups of three 

mice we show that Psa mRNA is significantly reduced by 45% in striatum of Psa+/- mice. In the 

cortex, also n=3, PSA protein was reduced in Psa+/- mice by 55%. One reason for inconsistencies 

in showing a decrease in PSA protein may be that the sample size, and thus power of the 

experiment was too low to detect the differences. Examination of tissue from additional animals 

is needed to confirm that there is a difference in PSA expression level in Psa+/- mice. 

Since the effect of Psa haploinsufficiency resulted in a greater number of inclusion bodies 

and an earlier deficit on the raised beam test, we sought to overexpress PSA in HD mice to 

determine if there was a therapeutic effect on inclusion formation and behavior. To overexpress 

PSA we created an AAV expressing human PSA tagged with the HA epitope. Upon testing this 

construct in wild type mice, we observed widespread cell loss and astrocyte activation three 

weeks after injection. Potential sources of toxicity include contaminants in the preparation of the 

virus, immunogenicity of the HA tag, expression of a foreign gene, and peptidase activity. The 

expression of hPSA-HA occurs before the astrocyte activation and cell death, suggesting that 

hPSA-HA expression is causing the toxicity rather than contaminants in the viral prep. There 
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were no problems reported in other viral preps performed at the same time in the same facility. 

The HA tag has previously been used to follow AAV-delivered protein expression in the mouse 

brain with no immunogenic result [231]. It is unlikely that hPSA would be identified as a foreign 

protein because it has a sequence consensus with the mouse PSA of 98% [199]. At lower doses 

of AAV-hPSA-HA, there is less glial activation while maintaining detectable HA reactivity three 

weeks after injection, suggestive of a dose response for toxicity. It was reported that high 

overexpression of PSA in Drosophila resulted in toxicity that was not found at lower expression 

levels of PSA [123]. Toxicity was not described in cell culture or in muscle cells overexpressing 

high levels of PSA [123].  Without details on the toxicity in Drosophila that was not published, 

there are several explanations, one being that neurons could be more sensitive to PSA or that all 

cells are sensitive to very high overexpression of PSA. There is a line of transgenic mice 

expressing human PSA at levels two to three fold higher than endogenous PSA without signs of 

developmental abnormality or glial activation [200]. As a transgenic model, these mice have had 

the opportunity to compensate for overexpression of PSA whereas mice injected with AAV-

hPSA-HA are fully developed animals. This does not exclude the possibility that 2-3 fold 

overexpression of PSA is not toxic if suddenly expressed in adult neurons. It would be 

particularly informative to cross the transgenic PSA overexpressing mouse model with knock-in 

huntingtin mice in order to investigate the effect of low PSA overexpression on the progression 

of HD. A reduction in disease severity or a delay in onset in these mice would support our 

hypothesis that PSA is protective in HD. Our view is that suddenly increasing PSA expression in 

neurons to high levels is toxic in the adult mouse brain. We could test the effect of adult onset of 

PSA overexpression by creating a tetracycline-regulated expression system. In this way, the gene 
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can be turned on and off intermittently to avoid toxicity. It would be ideal to identify a small 

molecule enhancer that can increase expression or activity of the endogenous gene. 

 The mechanism of degradation of huntingtin is largely unknown. Understanding the 

degradation of huntingtin is important because it represents possible therapeutic interventions in 

the treatment of Huntington’s disease. PSA is the only identified aminopeptidase able to degrade 

polyQ peptides efficiently making it a likely participant in the degradation of mutant huntingtin 

[121, 122]. PSA is a versatile aminopeptidase, able to cleave bonds between a wide range of 

amino acids at the NH2-terminus of proteins, including huntingtin. This property is especially 

important for huntingtin as the first 17 amino acids of huntingtin, known as N17, is highly 

aggregate-prone; it binds to itself and to the polyQ region of other fragments, full mutant 

huntingtin, and normal huntingtin proteins to promote aggregate formation [232, 233]. It was 

found that deletion of the N17 decreased aggregation of mutant huntingtin [232]. It is possible 

that a reduction in PSA results in reduced degradation of the NH2-terminal residues of huntingtin 

and a greater number of molecules subject to N17-mediated aggregation. This would increase the 

number of inclusions in Psa+/- HD mice. There might be more nuclear inclusions because 

huntingtin aggregates are trapped in the nucleus. This mechanism was proposed in diseases 

where tau protein accumulates and forms aggregates, (so-called tauopathies) including 

frontotemporal dementia (FTD) and Alzheimer’s disease [227]. There are conflicting results of 

whether PSA acts directly on tau protein. One in vitro study using mass-spectroscopy to analyze 

cleavage products found that PSA purified by multiple methods does not result in tau 

degradation products [224]. Another in vitro study using NH2-terminal tau antibodies found that 

purified hPSA cleaved tau in vitro [227]. These conflicting results point to two different 
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mechanisms: a mechanism of direct degradation of tau by PSA or indirect degradation of tau 

possibly by autophagy or the ubiquitin-proteasome system. 

A second mechanism of PSA degradation of huntingtin is through the induction of 

autophagy. In cell culture models expressing an expanded huntingtin fragment, over-expressing 

PSA induces autophagy [123]. In our examination of markers of autophagy in the striatum, we 

could not detect the LC3-II band on western blot from HD mice, so we could not test the 

hypothesis that in PSA+/- mice autophagy would be decreased. In a transgenic mouse expressing 

human PSA resulting in a 2-3 fold increase in PSA activity and total PSA expression, there was 

no increase in autophagy [200]. More evidence for an indirect method of action is that PSA 

expression modifies other diseases that do not contain polyQ regions, such as mutant tau protein 

and mutant SOD1 [123, 200, 223] .  

We assessed expression of PSA in the striatum of Hdh140Q/140Q mice and found no 

difference in expression compared with wild type mice, contradicting the finding in PC-12 cells 

that expression of HD exon 1-74Q induced expression of PSA [234]. The difference between the 

results in cell culture with that in mice and human disease is not unprecedented [234].  In 

neuroblastoma cells, SOD1 overexpression increased expression of PSA whereas in transgenic 

mutant SOD1 mice the expression of PSA in the brain was decreased [223]. The expression of 

PSA in frontotemporal dementia (FTD) patients was not altered except for in the cerebellum 

where it was increased significantly [228]. The cerebellum is a region of the brain unaffected by 

FTD (as in HD) and it is possible that increased PSA is protective in those tissues that are 

unaffected by the mutant protein. 

One limitation is that our study does not uncover any clues to the mechanism by which 

PSA acts on mutant huntingtin. We were able to detect LC3-I, but not LC3-II by Western 
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analysis in all samples tested. LC3-I represents soluble protein, while LC3-II is conjugated with 

the phospholipid phosphatidylethanolamine and correlates with the number of 

autophagolysosomes [235]. LC3-I alone cannot be used to draw any conclusions about the 

upregulation of autophagy, therefore this data is not informative in terms of supporting or 

refuting a change in autophagy status among the mice examined. Supernatant fraction from brain 

lysate is expected to have an abundance of LC3-I, however LC3-II can be detectable at low 

levels even in wild type animals with increased LC3-II detected with polyQ expansion of 

huntingtin [61, 129, 236]. The next step to analyze autophagy in brain lysates would be to test 

the pellet fraction for enriched LC3-II protein. The protein extraction procedure in this study 

employed one high speed spin to isolate the supernatant fraction, and an alternative approach 

would be to use differential centrifugation, two slow speed spins, to first remove nuclei before 

separating cytoplasmic from membrane organelles [236]. It is possible that Western blot 

conditions must be adjusted to detect more subtle bands. In this experiment, the positive control 

would be the Hdh140Q/140Q group of mice, which should induce autophagy, while if Psa operates 

through augmentation of autophagy, we hypothesize that the Psa deficiency would reduce that 

increase [129]. 

Future experiments to extend the results found in this study would use viral delivery 

system to express hPSA at a lower level, by using a weaker promoter. The goal would be to test 

these constructs in an HD mouse model to look for an amelioration of the disease that could 

become gene therapy for HD patients. It is important to analyze the number of cells expressing 

AAV-hPSA and the spread of the virus throughout the brain. Alternatively, the HD knock-in 

mice could be bred with PSA overexpressing mice creating a mouse line that stably expresses 

both human PSA and mutant mouse huntingtin [200]. It is also important to show that PSA 
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degrades the NH2-terminus using purified huntingtin and PSA in an in vitro assay to elucidate 

the mechanism of PSA degradation (direct degradation or indirect through autophagy). Mass 

spectrometry would be particularly useful in determining the fragments created by the 

degradation and to show NH2-terminal degradation. 

 In this study, we find that Psa+/- Hdh140Q/140Q mice have a more severe locomotor 

phenotype and a greater number of intranuclear inclusions compared with HD mice. Assuming 

that there is a significant reduction in PSA protein, the behavioral and neuropathological findings 

support our hypothesis that a reduction in PSA would worsen HD in a knock-in mouse model. 

Our study is significant for using a knock-in model of HD which expresses full length huntingtin 

at endogenous levels rather than an overexpressed fragment of mutant huntingtin in cell culture 

or muscle tissue. HD knock-in mice recapitulate aspects of the human disease and can be used to 

examine changes in the context of the brain as well as changes in behavioral measurements. 

Based on our results with AAV-mediated overexpression of PSA, we conclude that neurons may 

be particularly sensitive to acute PSA overexpression in adulthood. This may limit the utility of 

AAV-based methods for overexpression and gene therapy using PSA. 

 

E. Materials and Methods 

1. Mouse lines and genotyping 

 FVB mice (female, 3-6 months old, FVB/NJ from Jackson Laboratory, Bar Harbor, ME) 

were injected with 3 µL volumes of AAV9-CMV-hPSA-HA with various doses (1e12 GC/mL, 

1e11 GC/mL, 1e10 GC/mL or 1e12 GC/mL AAV9-CMV-Luc-Htt (control virus expressing 

firefly luciferase with huntingtin target sequences in the 3'-UTR). 
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PSA knock-out mice were obtained from Ken Rock (University of Massachusetts 

Medical School, Worcester, MA) [197]. DNA extracted from tail biopsies was used for 

genotyping by PCR. Primers for PSA were PSA.Ex5.L2 5'-

GACAGGAAACCATATCCTGATGA-3', and PSA.Ex5.R2 5'-CTTTCCTTGCTCTGCTTTGC-

3' and primers for the knock-out allele were LacZ.L2 5'-GACGTCTCGTTGCTGCATAA-3', and  

LacZ.L2 5'-CAGCAGCAGACCATTTTCAA-3'. Amplification products are 400bp for the 

knock-out allele and 180bp for the wild type allele. We use HotStarTaq Master Mix Kit 

(Qiagen). The program for PSA is 1) 95C for 15 min, 2) 95C for 30 sec, 3) 55C for 30 sec, 4) 

72C for 90 sec 5) repeat steps 2-4 34 times, 6) 72C for 5 min.  

Huntingtin knock-in mice were obtained from Scott Zeitlin (University of Virginia 

School of Medicine, Charlottesville, VA) [145].The primers for Hdh140Q are CAG140For 5'-

CTGCACCGACCGTGAGTCC-3', CAG140Rev 5'-GAAGGCACTGGAGTCGTGAC-3'. These 

primers span a region of mouse huntingtin that is deleted in the knock-in allele. Knock-in allele 

is represented by a 156bp band and the wild type allele is represented by a 235bp band. The 

program for Hdh140Q/140Q is 1) 95C for 5 min, 2) 94C for 20 sec, 3) 67C for 30 sec, 4) 72C for 15 

sec, 5) repeat steps 2-4 for 40 times, 6) 72C for 5 min. PCR products were separated by agarose 

gel electrophoresis and visualized by ethidium bromide staining and UV-transillumination. 

Mouse housing and procedures were approved by the University of Massachusetts Medical 

School animal protocol A-978-12. 

2. Stereotactic injection  

FVB mice (female, 3-6 months old, FVB/NJ from Jackson Laboratory, Bar Harbor, ME) 

were anesthetized with 250 mg/kg tribromoethanol (2.5 g 2, 2, 2, tribromoethanol dissolved in 
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5mL amylene hydrate into 200mL PBS). Anesthetized mice were placed on a heated pad in a 

stereotactic frame. Superglue (Loctite) was applied to the surface of the fur between the ears, 

avoiding eyes and exposed skin. After 10-20 seconds, the glue is gently pulled off to remove fur. 

The exposed skin is cleaned with betadine and an incision is made posterior to anterior. The skin 

is pulled aside and the needle is placed over the bregma. Unless otherwise stated, measurements 

for drilling the hole and placing the needle are: anterior 1mm, lateral 2mm and ventral 3mm from 

the bregma. Once the needle is lowered, it rests there for 2 minutes before infusion of 3µL at a 

rate of 125nl per minute (NanoFil syringe, World Precision Instruments). After infusion the 

mouse rests for 2 minutes before the needle is withdrawn. The incision is closed with clear, 

undyed suture (monocryl undyed monofilament) and the animals are allowed to recover on a 

heated pad at 37C. 

3. Behavior 

General materials and procedure for the raised beam test: Mice were placed on a 

platform with a bright light shining in the direction of travel. The there was another platform 

connected by a rod with a diameter of 1.5cm, 40cm above the table, and 63cm in length between 

the marks for quantification. At the opposite end of the beam was a dark box. Since mice prefer 

dark conditions, they were motivated to walk across the beam from the light to the dark box. The 

animals were housed 1-2 mice per cage and were identified by number so the experimenter was 

blinded to the genotype. The animals crossed the beam 3 times and were trained on the beam one 

week prior to testing. On the testing date, the time it took to cross the beam and the number of 

foot slips off of the beam were recorded for the third trial for each mouse. The handler was the 
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same for all testing days and blind to genotype. Frequency of testing varied by experiment as 

outlined below. 

 

Raised beam test of Psa-/-, Psa+/-, and Psa+/+ in Figure 2-3 A: Mice in each group were 

tested on different days and their data collected at 6, 8 and 10 months of age are shown.  

 

Raised beam test of Psa+/- Hdh7Q/140Q,Psa+/- Hdh7Q/7Q, and controls in Figure 2-4 A: 

In our testing procedure, animals were tested for three trials at each of the following ages: 3, 4, 5, 

6, 7, 8.5, 10 months of age.  

Raised beam test of PSA+/- Hdh140Q/140Q and controls in Figure 2-5 C and D: mice 

were tested at 12 months of age.  

Open field behavior: Mice were recorded for five minutes in a novel empty cage (16 cm 

x 27 cm). The motion of the mouse was traced on a video screen and scanned into image files. 

Distance traveled was quantified for each minute using imageJ software and converted into 

centimeters traveled. The values for the first minute were used for statistical analysis. 

 

4. RNA extraction and real-time QPCR 

 PSA+/- mice: RNA isolation from striatum and cortex of PSA mice was performed using 

the MAXWELL16 automated nucleotide and protein extraction system (Promega). We followed 

manufacturer’s protocol for tissue homogenization and lysate preparation, and reverse 

transcription was performed according to the protocol for Superscript III Reverse transcriptase 
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(Invitrogen). Sybr green RT-PCR kit (Qiagen) was used with the following program: 1) 95C for 

15 minutes, 2) 95C for 15 sec, 3) 55C for 30 sec, 4) 68C for 30 sec, 5) repeat steps 2-4 40 times. 

Results were normalized to β-actin. Primers amplify a region from exon 23 that is present on 

both wild type and mutant (knock-out) alleles. Primer sequences are: PSA_forward: 5'- 

GCACCATCCAGCAGTGTTGTGAAA-3', PSA_reverse: 5'-

AGCTGTTTGGTAGCTCCACCTCAT-3', Beta_actin_sense, 5'-

CGAGGCCCAGAGCAAGAGAG-3', Beta_actin_antisense, 5'-

CGGTTGGCCTTAGGGTTCAG-3'. 

 

5. Western blot  

The striatum was dissected and homogenized in NP-40 lysis buffer (Boston BioProducts 

Cat BP-119) with complete protease inhibitor. Samples were spun at 4C for 10 min at 16,000 x 

g. Supernatant aliquots were stored at -20C. 30ug of crude lysates were loaded onto gels (3-8% 

acetate for huntingtin and PSA, 12% Bis-Tris for LC-3). Dry transfer was performed using the 

iBlot system (7 minutes for huntingtin and PSA, 5 minutes for LC3). Primary antibodies and 

dilutions are: 1:500 Goat anti-Rat PSA (Chemicon ab3258), 1.0 µg/mL AB1 antibody 

(huntingtin) [229], 1:1000 rabbit anti-ubiquitin,1:10,000 mouse monoclonal anti-α-tubulin 

(Sigma), 1:1000 mouse monoclonal HA antibody (Covance, HA.11 clone 16B12), 2µg/mL LC3 

(Novus Biologicals, NB100-2220). Secondary antibodies are: 1:5000 donkey HRP-conjugated 

anti-goat IgG (Promega V805A) and 1:100,000 rabbit anti-mouse IgG HRP-conjugated (Sigma 

A9044). 
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6. Immunohistochemistry  

Mice were perfused transcardially with 20 mL of PBS followed by 15 mL of 4% 

paraformaldehyde in PBS. Brains were post-fixed at 4C in 4% PFA for 4 hours, then in 2% PFA 

overnight, and then stored in PBS. Coronal sections were cut on a vibratome at thickness of 40 

microns and collected as serial sections. Sections were treated with 30% hydrogen peroxide 

solution diluted 1:10 in PBS. For blocking and antibody binding we followed the Rabbit IgG or 

M.O.M. peroxidase kit protocols (Vector Laboratories). Primary antibodies were incubated 

overnight at 4C. Antibodies were GFAP 1:1000 (rabbit polyclonal, Abcam ab7260), DARPP-32 

1:1000 (rabbit monoclonal, Abcam ab40801), MW8 serum 1:10 (mouse monoclonal, 

Developmental Studies Hybridoma Bank from the University of Iowa), EM48 1:2000 (from 

Steven Hersch, Massachusetts General Hospital), HA monoclonal 1:1000 (Covance, HA.11 

clone 16B12). Sections were developed for 2 minutes with 3, 3’-Diaminobenzidine (DAB) from 

Thermo Scientific, dehydrated and coverslipped. 

7. Stereology 

 Sections were analyzed with a 60x oil immersion objective. Quantification began at the 

center of the mid-dorsal portion of the striatum just below the corpus callosum. The numbers of 

inclusions was counted using an Olympus BX51 microscope with a Nikon DS-Qi1MC camera. 

The nuclear inclusion bodies and cytoplasmic aggregates were counted for each field of view 

using the NIS-Elements RR 3.10 computer program while focusing up and down on the slide. 

Then the objective was moved to the adjacent field of view. Aggregates and inclusions from 35 
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fields of view were quantified and an average was taken for each mouse.  There were no 

differences among sections or dependent on the distance from the corpus callosum, so the 

average number of inclusions per field of view was used for subsequent analysis. 

8. Statistical analysis 

 SAS version 9.2 was used to calculate mixed method ANOVA. Other tests were done 

using IBM SPS statistics version 20 and GraphPad Prism version 6.00 for Windows. 

Figure 2-4 A: Raised beam test of Psa+/- Hdh7Q/140Q, Psa+/- Hdh7Q/7Q, and controls. 

Mixed method ANOVA was used to analyze difference between the groups. This test was 

chosen because there are missing data for some of the time points. 

Figure 2-5 C: Raised beam test of Psa+/- Hdh140Q/140Q and controls- latency to cross 

the beam. Natural log transformation was performed to achieve normal distribution and the 

transformed data passed the Leven’s test for homogeneity of variances. A one-way ANOVA was 

used followed by Tukey’s post-test for multiple comparison.  

Figure 2-5 D: Raised beam test of Psa+/- Hdh140Q/140Q and controls- foot slips off of 

beam. These data are not normally distributed, and no transformation normalized the data. 

Therefore, the non-parametric Kruskall-Wallis test and Dunn’s multiple comparisons test were 

used to analyze the differences between the three groups. Three outliers were included in the 

analysis. 
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Figure 2-4 B: Open field test. The distance traveled in the first minute after introduction 

to a novel cage was used for analysis. Distances were compared using one-way ANOVA with 

Tukey’s multiple comparisons post-test. 

Western blot: Data was tested for outliers using Grubb’s test 

(http://www.graphpad.com/quickcalcs/Grubbs1.cfm) and significant outliers were removed. 

One-way ANOVA was used to test an effect of genotype and unpaired T-test was used for 

pairwise comparisons. 

Measurements of inclusions and aggregates: Data sets were tested for normal 

distribution. Normally distributed data were analyzed by unpaired t-test. Data that were not 

normally distributed were analyzed by Mann-Whitney U test.
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Figure 2-1: PSA homozygous knock-out mice are smaller in size than heterozygous mice. 

Psa-/- mice are smaller than Psa+/- mice at 1 and 6 months of age (unpaired t-test, 1 month 

p=0.0030 n=3 for Psa+/-, n=2 for Psa-/-; for 6 month p=0.0247 n=4 for Psa+/-, n=2 for Psa-/-). Mice 

are combined male and female as depicted individually in Table 2-1. *p<0.05, ** p<0.01. Data is 

presented as mean ± SD. 
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Figure 2-2: PSA mRNA and protein are expressed in a gene dosage-dependent manner. A.) 

q PCR was done on striatal extracts of Psa-/-, Psa+/-, and Psa+/+ mice. In the striatum, genotype of 

PSA mice affected PSA mRNA levels (One-way ANOVA p=0.0004). By pairwise comparison, 

mRNA levels for heterozygous mice is 49.8% of wild type mice (Tukey’s pairwise comparison, 

mean difference between +/+ and +/- 0.6280 (95% CI 0.1632 to 1.093, p=0.00811), mean 

difference between +/+ and -/- 1.162 (95% CI 0.6253 to 1.699, p<0.001), n=5 for Psa+/+ and 

Psa+/-, n=3 for Psa-/-). B.) Western blot of protein extracts from cortex of PSA-/-, PSA+/-, and 

PSA+/+ mice were labeled with antibodies to mouse PSA and tubulin. Values for PSA protein are 

expressed relative to tubulin. In the cortex, the PSA genotype affected PSA protein levels (One-

way ANOVA p=0.0005).  By pairwise comparison, heterozygous mice have 47.5% PSA of wild 

type mice (Tukey’s pairwise comparison mean difference between +/+ and. +/- 0.5007 (95% CI 

0.1473 to 0.8540, p=0.00552), mean difference between +/- and -/- 0.4467 (95% CI 0.09334 to 

0.8000, p= 0.01315), mean difference between +/+ and -/- 0.9473 (95% CI 0.594 to 1.301, 

p<0.001), n=3 per genotype). C) Western blot of protein extracts from striatum of PSA-/-, PSA+/-, 

and PSA+/+ mice were probed with antibodies to mouse PSA and tubulin. Values for PSA protein 

are expressed relative to tubulin. In the striatum, PSA genotype affects PSA protein levels (One-

way ANOVA p=0.0014). By pairwise comparison, protein extracts from striatum of 

heterozygous mice have 57.8% PSA as wild type (Tukey’s pairwise comparison, mean 

difference between +/- and -/- 0.5840 (95% CI 0.1192 to 1.049, p=0.0137), mean difference 

between +/+ and -/- 1.047 (95% CI 0.5824 to 1.512, p<0.001), n=3 per genotype). D) 

Representative blot of striatal protein extracts for one mouse in each group done in triplicate. For 

all graphs * p<0.05, **p<0.01, ***p<0.001, data is presented as mean ± SD. 
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Figure 2-3: There is no abnormal locomotor behavior or inclusion formation in PSA 

knock-out mice. Psa-/-, Psa+/-, and Psa+/+ mice were tested on the raised beam for locomotor 

abnormality. A.) The left graph in panel A is a comparison of the time in seconds that it took the 

mice to cross the raised beam. The right graph shows the number of foot slips off the beam in the 

same groups of mice. There were no differences between the three groups at 6 months, 10 

months and 14 months of age. For each graph two-way ANOVA was performed and found to be 

not significant (p>0.05). Data is presented as mean ± S.E.M., number of mice in each group is 

shown in the within the bars. B.) Fixed brains from a HD knock-in mouse (Hdh7Q/140Q, 13 month 

old), PSA knock-out mice (Psa-/-, 9 month old (n=1), 22 month old (n=1, not shown)), and wild 

type mice (9 month old (n=3), 22 month old (n=3, not shown) were labeled with an antibody that 

recognizes ubiquitin. Inclusion bodies can be seen in the HD knock-in mouse (arrows). There are 

no ubiquitin positive inclusion bodies in the PSA-/- mice or wild type mice examined. C.) 

Sections from HD knock-in mouse (13 months old), PSA-/- mice (17 months old; 9 and 22 month 

old not shown, n=1 for each age), and wild type mouse were labeled with EM48 for huntingtin 

aggregates (9 month n=3). There are no EM48 positive inclusions in the PSA knock-out mouse 

or the wild type mouse.  
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Figure 2-4: Psa heterozygosity corrects huntingtin-related reduction in open field activity, 

however there are no differences observed on raised beam test or in the number of 

inclusion bodies.  A.) Four groups of mice were tested on the raised beam test. Psa+/+ Hdh7Q/140Q 

(n=7) have an increased latency to cross and in foot slips compared with Psa+/+ Hdh7Q/7Q (n=14) 

(Mixed models ANOVA, p=0.0172 and p=0.0196, respectively. There were no differences 

among the other groups for latency to cross and footslips. Psa+/-Hdh7Q/7Q n=9, for Psa+/-

Hdh7Q/140Q n=4. Tukey’s multiple comparison revealed no significant differences at any age). 

Data is presented as mean ± SEM. B.) At 13 months of age, the same groups of mice were tested 

for activity using the open field test. Each mouse was video recorded once for 5 minutes in the 

open field box and distances traveled in the first minute were used for comparison (see methods 

section). Psa+/+Hdh7Q/140Q mice traveled less distance than the other groups, and Psa+/-Hdh7Q/140Q  

genotype corrected this difference in distance traveled (One-way ANOVA between all groups, 

p=0.0010, Tukey’s multiple comparison test, for Psa+/-Hdh7Q/140Q vs. Psa+/+Hdh7Q/140Q mean diff. 

65.03cm (95% CI 18.98 to 111.1, p=0.0057), for Psa+/-Hdh7Q/7Q vs. Psa+/+Hdh7Q/140Q mean diff. 

45.71cm (95% CI 8.68 to 82.73, p=0.0154), for Psa+/+Hdh7Q/140Q vs. Psa+/+ Hdh7Q/7Q mean diff. -

51.22cm (95% CI -85.67 to -16.78, p=0.00361). Data is presented as mean ± S.D.). C.) We 

performed immunohistochemistry for mutant huntingtin aggregates in brain sections of Psa+/- 

Hdh7Q/140Q and Psa+/+ Hdh7Q/140Q using EM48 antibody. There was no difference in the number of 

inclusion bodies in the striatum or in the cortex at 1.5 years of age (unpaired t-test, cortex 

p=0.1425, striatum p=0.6802, Psa+/- Hdh7Q/140Q n=3, Psa+/+ Hdh7Q/140Q n=5). Data is presented as 

mean ± S.E.M. inclusions per field of view. For all graphs *p<0.05, **p<0.01. 
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Figure 2-5: Psa+/- Hdh140Q/140Q mice exhibit deficits on the raised beam test. A.) Psa+/- 

Hdh140Q/140Q mice appear to express less PSA protein than Psa+/+ Hdh140Q/140Q, however the 

difference is not statistically significant due to large variation within the groups (t-test p=0.0654, 

n=4). B.) Representative blot of one sample from each group in triplicate. C.) Psa+/- and Psa+/+ 

Hdh140Q/140Q mice were tested on the raised beam test at 1 year of age and compared with wild 

type (Psa+/+ Hdh7Q/7Q, n=11) mice. Psa+/- Hdh140Q/140Q mice (n=16) had a greater latency to cross 

the beam compared with wild type mice (Tukey’s multiple comparisons, mean diff. 0.7886 

(95%CI 0.1363 to 1.441, p=0.0177). There was no difference between the Psa+/+ HD140Q/140Q 

mice (n=20) compared with the other groups. Psa+/-Hdh140Q/140Q mice also had significantly 

greater foot slips off of the beam compared with the other two groups. (Tamhane’s Post Hoc test 

Psa+/- Hdh140Q/140Q vs Psa+/+ Hdh 140Q/140Q, mean diff. 7.76 (95% CI 1.3835 to 14.1415, p=0.017) 

Psa+/- Hdh140Q/140Q vs Psa+/+ Hdh 7Q/7Q, mean diff. 9.426 (95% CI 3.2362 to 15.6161, p=0.00289). 

The majority of wild type mice had no foot slips at all. *p<0.05, **p<0.01 Data is presented as 

mean ± SD. 
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Figure 2-6: There is increased inclusion body formation in Psa+/- Hdh140Q/140Q mice. A.) 

Fixed brains from 12 month old Psa+/- Hdh140Q/140Q and Psa+/+ Hdh140Q/140Q mice were labeled 

with MW8, an antibody that labels mutant huntingtin inclusion bodies and aggregates. Nuclear 

inclusion bodies are circular and regular in size within a section. Inclusion bodies are indicated 

with arrows in the enlarged image. Cytoplasmic aggregates are smaller and irregularly shaped. 

Aggregates are indicated with arrowheads in the enlarged image. B.) Sections from Hdh140Q/140Q 

mice were labeled with MW8 (red) and DAPI (blue) stained to show co-localization of inclusion 

bodies with the nucleus. C.) Inclusion bodies were stereologically quantified throughout the 

striatum, and an average per field of view for each mouse was used for comparison. There are a 

greater number of inclusion bodies in the Psa+/-Hdh140Q/140Q (n=9) compared with 

Psa+/+Hdh140Q/140Q (n=8) (unpaired t-test, p=0.0154). D.) Psa+/- HD mice (n=9) have smaller 

inclusion bodies than Psa+/+ HD mice (n=8) on average, although this difference was not 

statistically significant (unpaired t-test, p=0.1981). E.) Psa+/-  Hdh140Q/140Q mice (n=9) have a 

greater number of cytoplasmic aggregates than Psa+/+ Hdh140Q/140Q mice (n=8), although this 

difference is not statistically significant. (Mann-Whitney U-test, p=0.1388). F.) There was no 

difference in the number of neurons as quantified by Nissl staining (unpaired t-test, p=0.4605). 

*p<0.05  Data is presented as mean ± SD. 
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Figure 2-7: Psa+/- Hdh140Q/140Q mice display no change in soluble huntingtin or LC3-I levels. 

A.) Western analysis was performed on protein extract from striatal tissue of 16 month old mice. 

There was no difference in soluble huntingtin levels between the groups (One-way ANOVA, p= 

0.2095, n=5 for each group, each sample was done in triplicate). Representative western blot of 

triplicates of one mouse per genotype. B.)  Antibodies recognizing LC3 were used to detect 

conversion of LC3-I to LC3-II. LC3-II could not be detected in our samples with our conditions. 

There was no difference in LC3-I levels among the groups (One-way ANOVA, p=0.9682, n=5 

for each group, each sample was done in triplicate). Each lane was normalized to tubulin and 

then normalized to a wild type sample on the same blot. Data are represented as average fold-

difference from wild type ± SD. Representative western blot of triplicates of one mouse per 

genotype. 
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Figure 2-8: Dosage-dependent hPSA expression from AAV-hPSA-HA injected striatal 

tissue. Western blot for hPSA-HA using antibodies that recognize HA epitope show a decrease 

in expression of hPSA protein across the dilutions of AAV-hPSA-HA injected striatal extracts. 

There is no detectable expression in 1e9 GC dose or control injection samples (n=3 for all 

groups, control injection is AAV-GFP, NI is no injection, all injections 3µL in volume, samples 

processed 3 weeks after injection. All samples were processed 3 weeks after injection). Data is 

presented as mean ± SD. 



92 
 

 

 

Figure 2-8: Dosage-dependent hPSA expression from AAV-hPSA-HA injected striatal 

tissue.  
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Figure 2-9: Dilution of AAV-hPSA-HA shows dosage-dependent toxicity. A.) Coronal 

sections were taken 3 weeks after injection of AAV-hPSA-HA and labeled with HA antibody. 

There is HA positive staining for the hPSA-HA transgene that can be seen at 1e11 GC and 1e10 

GC doses. HA positive staining areas are delineated by the dashed line. B.) 1e11 GC dose of 

AAV-hPSA-HA shows widespread astrocyte activation (delineated by dashed line) at 4X and 

60X oil immersion magnifications. Dose of 1e10 GC showed astrocyte activation only at the 

injection site. Control injection of 1e12 GC AAV-luciferase (control injection) elicited a small 

amount of GFAP activation around the injection site. The 60X magnification column shows 

representative images within astrocyte activation area. C.) There is decreased staining for 

DARPP-32 positive medium spiny neurons in the 1e11 GC dose of AAV-hPSA-HA. There does 

not appear to be a change in staining for the 1e10 GC dose compared with control injection. D.) 

HA double labeling with DARPP-32 shows co-localization of hPSA-HA with medium spiny 

neurons as well as cells that are negative for DARPP-32 staining. (n=3 for all doses, images are 

from representative samples). 
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Figure 2-10: AAV-hPSA-HA is toxic to cells. A time course experiment was performed 

examining brain sections 1, 2, and 3 weeks after injection of AAV-hPSA-HA (1e12 GC) into the 

striatum (n=3 for each group, representative images shown). The first row shows that HA 

staining is detectable at one week (compared with no injection in the last column), becomes 

darker at two weeks, and then disappears at week three. The second row shows that GFAP 

staining is intense and very concentrated at weeks 2 and 3. In the third row are images staining 

for DARPP-32 positive neurons. These images show a reduction of DARPP-32 staining by the 

second week, and then a loss of reactivity by the third week indicating a complete loss of 

DARPP-32 positive neurons. 
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Figure 2-11: Mutant huntingtin protein is distributed among cytosolic and nuclear 

compartments in soluble and insoluble forms. A.) Full-length mutant huntingtin protein is 

found in its soluble state in the cytoplasm and nucleus and it is also found to be associated with 

cytoplasmic aggregates and intranuclear inclusion bodies. Full-length huntingtin can be cleaved 

into NH2-terminal and COOH-terminal fragments. The NH2-terminal mutant huntingtin 

fragments oligomerize into fibrillar huntingtin that accumulates and results in formation of 

cytoplasmic aggregates and intranuclear inclusion bodies. B.) Estimated distribution of full-

length mutant huntingtin and NH2-terminal mutant huntingtin fragments. The majority of full-

length mutant huntingtin is localized in the cytosolic compartment. The majority of NH2-

terminal mutant huntingtin is estimated to be in an aggregated form, either as cytoplasmic 

aggregates or intranuclear inclusion bodies.
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Table 2-1: Weight of Psa+/+, Psa+/-, and Psa-/- mice at 1 and 6 months of age. 
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Age 
Sex 

  
Mouse 

ID 
Parent 

ID 
DOB 

Psa 
Genotype 

Weight 
(g) 

Average 
bodyweight 
of +/- & +/+ 

(g) 

-/- weight as 
percentage of 

+/- and +/+ 

1 month 
 

Female 

363 339x343 3/8/09 +/- 17.3 

17.30 64.16 364 339x343 3/8/09 +/+ 17.3 

365 339x343 3/8/09 -/- 11.1 

Male 

366 339x343 3/8/09 +/+ 19.9 

20.40 68.63 
367 339x343 3/8/09 +/- 21.4 

368 339x343 3/8/09 +/- 19.9 

369 339x343 3/8/09 -/- 14 

6 months 

Female 
 

326 114x174 9/8/08 +/+ 24.6 

25.35 61.93 

327 114x174 9/8/08 +/- 27.2 

337 224x214 10/31/08 +/- 23.4 

347 294X305 11/15/08 +/+ 26.2 

338 224x214 10/31/08 -/- 15.7 

Male 

339 224x214 10/31/08 +/- 34.7 

30.03 65.59 
361 213X166 9/28/08 +/+ 27.2 

331 265x266 9/12/08 +/- 28.2 

360 213X166 9/28/08 -/- 19.7 

 

Table 2-1: Weight of Psa+/+, Psa+/-, and Psa-/- mice at 1 and 6 months of age. 
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Table 2-2: Genotype frequency of offspring from Psa+/- breeding pairs. Data from three 

mating pairs of Psa+/- mice reveal a less than expected frequency of Psa-/- progeny and a more 

than expected frequency of Psa+/+ progeny. According to Mendelian inheritance pattern, the 

expected frequency for Psa+/- crossed with Psa+/- is 25%, 50%, and 25% for genotypes WT, HET, 

and KO respectively. WT, Psa+/+; HET, Psa+/-; KO, Psa-/-. Average litter size is 4.73 ±1.5 pups. 
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Parent ID DOB WT HET KO 

85, 88 1/20/2008 4     

85, 88 2/15/2008   2   

85, 88 3/14/2008 2 1 3 

85, 88 4/9/2008 2 2   

85, 88 5/1/2008 2 5   

F10a, F10b 4/13/2007   5   

F10a, F10b 5/22/2007   5   

F10a, F10b 8/10/2007 4 2   

F10a, F10b 9/10/2007 2 1   

F10a, F10b 10/17/2007 2   2 

F10a, F10b 11/13/2007   5   

71, 91 1/27/2008 2 2   

71, 91 2/15/2008 2 2   

71, 91 3/15/2008 4 3 1 

71, 91 5/28/2008 4 1   

Sum 30 36 6 

% total 41.67 50.00 8.33 

 

Table 2-2: Genotype frequency of offspring from Psa+/- breeding pairs.
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CHAPTER III 

 

 

 

 

THE OPTIMIZATION OF IN VIVO IMAGING FOR MEASURING GENE SILENCING 

OF HUNTINGTIN TARGET SEQUENCES 

  
 

 

 This chapter describes work I have performed optimizing an in vivo system for following 

RNA interference in the brain. This work was conducted under the guidance of Neil Aronin. Phil 

Zamore provided the initial concept. I planned and executed the majority of the experiments 

presented in this chapter. Edith Pfister designed and cloned the miRNA constructs. AAV 

constructs were packaged by Guangping Gao and Beverly Davidson. 
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A. Abstract 
 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused 

by a CAG trinucleotide repeat expansion in the huntingtin gene. Several types of RNAi 

constructs have been used to silence huntingtin in mice, including siRNA, shRNA, and miRNA. 

Screens to identify the best candidate sequences for silencing are done in cell culture which 

many not bear any resemblance to cells of the target tissue. No method exists to quickly screen 

RNAi molecules in the brain, preventing the identification and comparison of RNAi that could 

be optimal in the brain rather than in cell culture. The lack of techniques for in vivo screening 

impedes identification of the optimal RNAi designs for neurodegenerative diseases. We propose 

using an in vivo reporter system to rapidly compare miRNA and siRNA in the mouse brain. 

For this study, two adeno-associated viruses (AAVs) expressing firefly luciferase with six 

huntingtin target sites in the 3'-untranslated region (UTR) were generated (AAV-Luc-Htt). These 

two vectors represent huntingtin alleles with single nucleotide polymorphisms (SNP) that differ 

between the two vectors. Measurement of in vivo luminescence allows for comparison of the 

silencing efficiencies of RNAi against these two vectors, indicating the degree of allele-specific 

silencing. Allele-specific silencing refers to the knockdown of a mutant allele by targeting a SNP 

that differs from the normal allele. Using allele-specific silencing, expression of the mutant allele 

can be reduced without affecting expression of the normal allele.  

In this study, several methods of in vivo luciferase gene expression in the brain were 

tested. Bilateral co-injection of AAV-Luc-Htt was found to be the most sensitive method for 

detecting silencing of luciferase activity. Using the AAV-Luc-Htt system, silencing of luciferase 

activity in was shown with cholesterol conjugated siRNA, AAV-shRNA and AAV-miRNA. 



108 
 

These results are promising, but more work must be done to use the AAV-Luc-Htt co-injection 

method to assess allele-specific huntingtin silencing in the brain. 

 

B. Introduction 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused 

by a CAG trinucleotide repeat expansion in the huntingtin gene [1]. CAG repeats of less than 36 

result in a normal phenotype whereas 37 or greater repeats results in Huntington’s disease. HD 

patients suffer from psychiatric symptoms, motor symptoms, and cognitive decline before 

neurodegeneration of the cortex and basal ganglia results in death. There is no treatment to slow 

the progression of the disease, and current therapies only ameliorate symptoms [7].  

In HD, the mutant huntingtin protein is misfolded, imparting it with toxic functions. 

Mutant huntingtin binds to other proteins resulting in transcriptional dysregulation, it impedes 

vesicle recycling and transport, and causes proteasomal dysfunction [2]. Mutant huntingtin 

mRNA can also be toxic, as it can form foci in the nucleus that co-localize with muscleblind, a 

protein implicated in trinucleotide repeat toxicity, and to induce RNA interference (RNAi) [237].  

RNAi is a candidate strategy for treating Huntington’s disease and other dominant 

neurodegenerative diseases. The benefit of this approach is that degradation of mRNA prevents 

the transcript from being translated, mitigating mRNA toxicity as well as all downstream toxic 

effects of the mutant protein. RNAi was discovered in 1998, as a pathway by which short RNA 

duplexes mediate degradation of complementary mRNA in Caenorhabditis elegans [238]. There 

are two pathways by which RNAi operates in differentiated cells: the short interfering RNA 
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(siRNA) pathway and the microRNA (miRNA) pathway [186]. In the siRNA pathway, short 19-

21 nucleotide double strand RNAs in the cytoplasm are processed by the enzyme Dicer and 

loaded into the RNA-induced silencing complex (RISC), which binds and cleaves the 

complementary mRNA. In the miRNA pathway, miRNA is transcribed in the nucleus where it 

folds into a secondary structure that is cleaved by the enzyme Drosha into a short hairpin RNA 

(shRNA). The shRNA exits the nucleus and is processed by Dicer and loaded into RISC. 

Endogenous miRNAs generally contains mismatches to the target sequence that result in 

translational repression of the mRNA, however, miRNAs engineered to be fully complementary 

to their target result in RISC cleaving the mRNA target [239].  

RNAi constructs are described as allele-specific when they preferentially degrade one 

allele. Allele-specific RNAi can be designed to target any sequence difference between two 

alleles such as single nucleotide polymorphisms (SNPs) or a microdeletion associated with the 

mutant allele [240-242]. Targeting the CAG repeat with a miRNA also shows allele-specific 

silencing, however the same results were not seen with siRNA [196, 243-245]. Reduced levels of 

huntingtin may have adverse effects, especially if the total knockdown of huntingtin is greater 

than 50% [49, 194, 195, 246]. One way to avoid excessive silencing of huntingtin is to use allele-

specific silencing. In a study examining 109 HD patients and 116 non-HD controls for SNPs in 

the huntingtin gene, it was found that by targeting 5 sequences 75% of HD patients could be 

treated with allele-specific silencing [196]. The use of allele-specific silencing is the most 

specific way to treat HD, yet no one has shown SNP-directed silencing in vivo using RNAi.  

RNAi is particularly well-suited for treating dominantly inherited genetic diseases such 

as Huntington’s disease. Several groups tested siRNA in rodent models of HD. Cholesterol 
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conjugated siRNA (cc-siRNA) has been used to silence huntingtin in rodent models of 

Huntington’s disease resulting in fewer inclusions and ameliorated behavioral abnormalities 

[247, 248]. Unconjugated siRNA against huntingtin was delivered by intraventricular injection 

into newborn R6/2 mice [249]. Viral delivery of shRNA and miRNA is also being extensively 

studied in mice resulting in improved behavior and decrease in size and number of nuclear 

inclusions [250-252]. Work is also being done in rhesus macaques using shRNA targeting 

huntingtin [253]. Of note, there is potential toxicity associated with using a shRNA structure 

thought to be due to high expression level leading to oversaturation of RNAi machinery [254, 

255]. This toxicity is eliminated by using a miRNA-based design [255]. Each of these studies 

utilizes different sequences, structures, and promoters thereby preventing a direct comparison 

between them, and none of these studies used silencing strategies that are allele-specific. 

In vivo bioluminescent imaging (BLI) is a method by which expression of luciferase is 

imaged using a light sensitive camera [256]. This method enables gene expression to be followed 

over time without sacrificing the animal. The BLI technique is fast, convenient, low cost, has the 

potential for medium throughput screening and can be performed longitudinally within each 

animal. BLI has been used for detecting tumor location and growth, gene therapy spread, 

clearance of pathogens, and the migration of adoptively transferred cells [256, 257]. BLI has also 

been used to follow the silencing of genes using siRNA and shRNA in the liver and in tumors 

[257-264]. Studies of RNAi targeting luciferase have been useful for describing the dynamics of 

siRNA silencing in vivo and have shown that luminescence correlates with mRNA and protein 

levels in treated tissues [258, 265]. BLI has also been used to study the brain including 

measuring brain tumor growth, gene transfer in rats, biodistribution of stem cells after strokes, 

and to monitor rhythmic gene expression in the olfactory bulbs of SCN lesioned rats [266-268]. 
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Lentiviral  injection of luciferase gene in mice shows that BLI can be detected in the striatum, 

olfactory bulb, substantia nigra and globus pallidus [265]. One study used luciferase to follow 

silencing in the brain by packaging luciferase plasmid DNA with siRNA in different lipid-

mediated delivery strategies [269]. However, no group has compared the dynamics of silencing 

or systematic comparison of siRNA and miRNA sequences in the brain. Here, we present results 

from an initial investigation into the use of viral-delivered luciferase and bioluminescent imaging 

to follow gene silencing in the brain. 

In this study we created two AAV expressing firefly luciferase reporter genes each with 

six huntingtin target sequences in the 3'-untranslated region (UTR). Using these reporters we can 

test the silencing of huntingtin-targeting RNAi with therapeutic potential. Silencing of luciferase 

activity was detected using cc-siRNA and AAV-shRNA targeting luciferase, and AAV-miRNA 

targeting human huntingtin. Allele-specific silencing was demonstrated by comparing the 

efficiency of an AAV-miRNA to silence a matching SNP target versus a mismatched target. We 

conclude that using AAV-Luc-Htt as a reporter molecule is a promising method for testing 

silencing, especially for studying allele-specific silencing of huntingtin target sites in vivo, 

however it needs further optimization to improve sensitivity to fully function as a way to detect 

gene-silencing dynamics in the brain. 

 

C. Results 

1. Adeno-associated virus delivery of luciferase with human huntingtin SNP sites can be 

detected in the mouse striatum. 
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In order to express luciferase in the brain, we generated two adeno-associated viruses 

(AAV) encoding luciferase mRNA, each with six huntingtin RNAi target sites in the 3'-UTR 

(AAV-Luc-Htt) (Fig. 3-1 B). We used a recombinant AAV2/9 vector, expressing serotype 2 

inverted terminal repeats (ITRs) and serotype 9 capsid proteins with luciferase expression driven 

by the cytomegalovirus (CMV) promoter. Serotype 9 was chosen because it has shown good 

tissue distribution in the brain and specific tropism for neurons in mice [270]. A summary of 

viruses used in this chapter can be found in Table 3-2. Each virus represents an allele of the 

huntingtin gene with six SNP-containing target sequences (Fig. 3-1 B). Since each virus has 

matching target sites that differ only by one single nucleotide, the SNP site, we can potentially 

use these vectors to evaluate allele-specific silencing in vivo. The first four target sequences are 

from human huntingtin and the last two are found in mouse huntingtin.  

Luminescence from AAV-Luc-Htt was detected in vivo following intracranial injections 

into the striatum. A trial of five 10-fold diluted doses identified 1e9GC as the lowest detectable 

dose by BLI, with 1e10GC producing a level significantly above background (Fig. 3-1 C). There 

appeared to be a large degree of variation within each dose, with standard deviation values up to 

50% of the mean. To study the variability at a single dose, a group of 9 mice, injected with 

5e9GC AAV-Luc-Htt, were imaged repeatedly for 28 days (Fig. 3-2 A). Luminescence was 

detected 24 hours after injection and reached stable baseline luminescence by day 10. A 95% 

confidence interval (CI) was calculated for each day and the lower interval was used to 

determine the percent silencing that would be necessary for detection among this group of mice. 

The percent silencing needed to detect silencing on any given day ranged from 26% to 46% with 

an average of 37% silencing minimum needed to detect silencing. To look at variation using 

values from a stably expressing baseline, we looked at three days, 15, 19, and 21, comparing the 
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variability in one week for each mouse (Fig. 3-2 B). From these three days, the 95% CI was 

calculated and individual mice would require silencing of 5-46%with an average of 28% 

silencing to achieve statistically significant decrease in luminescence. One experimental 

approach could be to test silencing for each mouse after establishing a stable baseline. A source 

of variation could be due to differences in luciferin absorption and distribution. Luciferin is the 

substrate that interacts with luciferase to produce luminescence. It is most commonly delivered at 

150mg/kg by intraperitoneal (ip) injection 10 minutes before imaging, in concordance with the 

vast majority of published BLI studies and the manufacturer recommendations for imaging. As a 

large fraction of luciferin is absorbed into the gut after ip injection, variations may arise from the 

animal’s diet prior to injection or by slight positioning differences of the needle within the ip 

space. If differences in luciferin distribution result in intramouse variation, then normalizing 

luminescence within the same animal would reduce variations.    

We propose an experimental design using bilateral intracranial AAV-Luc-Htt injections 

in which one side of the brain acts as a control for the contralateral side (Fig. 3-3 A).  In this 

method, AAV-Luc-Htt is co-injected with RNAi molecules into the striatum on one side of the 

brain and co-injected with control RNAi molecules on the contralateral side. We expect that 

groups without silencing will have a ratio of luminescence close to 1.0 and groups with 

successful targeting of luciferase will have an active RNAi/control RNAi ratio less than 1.0. To 

test this design we injected two groups of mice, either unilaterally or bilaterally, and followed 

luminescence for one week (Fig. 3-3 B). First, we analyzed the unilateral injection group to 

compare luminescence between the injected and un-injected side. Although the luminescence is 

statistically different between the AAV-Luc-Htt injected and un-injected hemispheres, there 

were no significant differences between the sides on any given day (Mixed methods ANOVA 
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p<0.0001, Tukey’s multiple comparisons). These results confirm that although a difference was 

detected overall, the system is not sensitive enough to detect the equivalent of 100% silencing on 

any specific time point due to increased variation seen by analyzing flux. This lack of sensitivity 

could be a result of crossover of luminescence from the injected hemisphere, either from light 

scatter through the tissue or spread of the virus. It could also be due to the sensitivity of the assay 

resulting from a combination of factors including a low concentration of AAV-Luc-Htt and high 

baseline variation in luciferase expression. We then calculated the left- to right-side ratio of both 

groups. The ratio for the bilaterally injected group was approximately 1.0 as expected from 

identical injections without RNAi. The ratio of luminescence from the un-injected side was 

slightly higher than expected at 0.25 illustrating that there is a spread of light or virus to the 

contralateral side. If we consider the unilaterally injected group to represent complete silencing 

and the bilateral group to represent no silencing, there is a difference between the groups, 

significant at each time point (Mixed methods ANOVA p<0.0001, Tukey’s multiple 

comparisons). The 95% CI was calculated from the average ratio for each day (mean ratio 1.164 

95% CI 0.7595-1.569). From this confidence interval, we would need a 35% decrease in 

luminescence on any given day to detect silencing. By analyzing the same data as luminescent 

flux, the minimal detectable silencing would be 40%, which is higher than the variation 

calculated for the mice in Figure 3-2 which only required 37%.We conclude that normalizing 

luminescence within each mouse by calculating a left to right side ratio, results in a more 

sensitive assay, able to detect smaller differences in silencing than comparing left side to right 

side luminescence. 

One caveat to the bilateral injection experimental design is the potential for crossover of 

luminescence from light-scattering or spread of virus through diffusion, or transport. AAV 



115 
 

serotype 9 have been shown to undergo retrograde transport after a single 1µL injection to the 

striatum, with viral mRNA detected in retrograde projection targets including the ventral 

tegmental area, thalamus, substantia nigra pars compacta, amygdala, and hippocampus, including 

the contralateral hippocampus [271]. Through diffusion from the injection site there can also be 

extensive spread of the AAV9 gene and gene product into midline structures including 

subventricular zone, septal nuclei [270, 271]. In addition to the spread of virus or viral products 

within the brain, one must also consider the light scattering effect of tissue. The D-Luciferin 

substrate emits short wavelength light, 560nm, resulting in high light scattering properties 

through all tissues, including the brain [272, 273]. The effects of viral diffusion, retrograde 

transport, and light scattering are important factors in the study design, which could limit the 

sensitivity of the assay.    

 

2. RNAi constructs targeting firefly luciferase and human huntingtin SNP sites are 

functional in cell culture. 

 RNAi constructs were tested in cell culture for their ability to silence luciferase and 

huntingtin target sites. Structures and sequences are summarized in Table 3-1. We tested 6 

different siRNA preparations, four experimental siRNA and two control siRNA (Fig. 3-4 A). 

Two of the siRNAs, cc-siLuc and cc-siCon, contain a cholesterol modification that improves 

siRNA transport into cells and enhances resistance to exo- and endonucleases [274]. 

Paradoxically, cholesterol conjugated siRNA (cc-siRNA) were noted to have much higher IC50 

compared with un-conjugated siRNA, approximately 8 nmol compared with 0.13 nmol for firefly 

luciferase siRNA.  
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We also tested AAV-miRNA silencing constructs to verify silencing of the corresponding 

target site in cell culture. AAV-miR2307T and AAV-miR2273G were tested at three different 

concentrations and compared with cells not infected with virus (Fig. 3-4 B). At the highest dose 

tested (100,000 MOI), there was 37% silencing by AAV-miR2273 (Tukey’s multiple 

comparison p<0.0001) and 56% silencing by AAV-miR2307 (Tukey’s multiple comparison 

p<0.0001) compared with the lowest dose tested (10,000 MOI) that showed no silencing. All 

siRNA, cc-siRNA, and AAV-miRNA tested silenced expression of luciferase in cell culture.  

 

3. Cholesterol-conjugated siRNA reduced luminescence 24 hours after injection  

To test silencing of luciferase activity in vivo, we used cc-siRNA targeting luciferase 

mRNA (cc-siLuc). The left side of the brain was co-injected with AAV-Luc-Htt and cc-siLuc 

and the right side was injected with AAV-Luc-Htt and control cc-siRNA (cc-siCon). A second 

set of mice were bilaterally injected with AAV-Luc-Htt in phosphate buffered saline (PBS). The 

resulting luminescence was compared between left and right sides as flux (photons /second), and 

as the ratio between the left and right sides of each mouse (Fig. 3-5 A, B). There was no 

difference between the luminescent flux from cc-siLuc or cc-siCon injections, however when we 

compared the ratio between the left and right sides of each mouse there was a 52.6% decrease in 

luminescent ratio of the cc-siRNA treated mice compared with the PBS control mice 24 hours 

after injection (Repeated measures one-way ANOVA p<0.0010, Sidak’s multiple comparisons 

test mean diff. 0.4847, 95% CI 0.4051 to 0.5644, p<0.0001) (Fig. 3-5 B). This experiment 

demonstrates an instance where by comparing luminescence, there was no detectable silencing, 
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however by normalizing the ratio within each mouse, silencing was detected 24 hours after 

injection.  

 

4. Cholesterol-conjugated siRNA increased luminescence in brain and in cell culture. 

An unexpected result was seen in the cc-siRNA injected group. We observed that co-

injections of cc-siRNA and AAV-Luc-Htt resulted in greater luminescence than injections of 

virus with PBS and this enhancement persisted for at least 12 days after injection (Fig. 3-5 A). 

After 168 days, the difference in luminescence significantly decreased 10-fold in the cc-siRNA 

mice, however luminescence remained stable in the PBS injected mice. There remained a 

statistically significant 1.9fold difference when comparing the cc-siRNA and PBS injected 

groups (cc-siLuc vs PBS, Unpaired t-test p=0.0017; cc-siCon vs PBS, Unpaired t-test p=0.0007, 

Fig. 3-5 C). In order to compare cc-siRNA with PBS within the same mouse, we injected a group 

of mice on the right side with AAV-Luc-Htt and cc-siCon and the left side with AAV-Luc-Htt 

and PBS (Fig. 3-5 D). In a comparison between sides of the same mouse, there was a 2.35 fold 

increase in luminescence on days 5 and 12 after injection (2-way ANOVA, p=0.0015), but we 

found no difference after about six months (Fig. 3-5 D). These results suggest that cholesterol 

conjugation transiently increases luminescence when co-injected with AAV-Luc-Htt by an 

unknown mechanism. 

To explore this effect, we tested the combination of cc-siRNA and AAV-Luc-Htt in cell 

culture. HeLa cells were incubated with AAV-Luc-Htt and either cc-siCon, non-conjugated 

siCon, or no siRNA (Fig. 3-6 A). We also tested cc-siCon and siCon without AAV-Luc-Htt to 
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show that the siRNA were not contaminated with AAV-Luc-Htt. We found that there is a 1.5-

fold increase in luminescence with cc-siCon relative to no siRNA treated cells (Unpaired t-test, 

p=0.0091, p=0.0001 respectively) (Fig. 3-6 A). We did a series of dilutions of AAV-Luc-Htt 

with the same amount of cc-siCon and found 2.6-fold difference in luminescence in the 1e5 MOI 

incubated cells (2-way ANOVA, p<0.0001) (Fig. 3-6 B). There was no difference in cells 

incubated with AAV-Luc-Htt and cholesterol without siRNA (Fig. 3-6 C). To test whether the 

effect of cc-siRNA to increase BLI from AAV-Luc was serotype specific, we tested serotype 2 

(AAV2-Luc) and found a similar 1.8 fold increase (Unpaired t-test p=0.0045) (Fig. 3-6 D). A 

different sequence of cc-siRNA targeting GFP (cc-siGFP) resulted in a 1.2 fold increase, and in a 

different cell type (Neuro2A cells) cc-siCon led to a 1.4 fold increase in luminescence (Unpaired 

t-test, p=0.0062 and p=0.0242 respectively) (Fig. 3-6 E, F). In summary, we found that the 

combination of cc-siRNA and AAV-Luc increased luminescence in cell culture independent of 

siRNA sequence, serotype of virus, or cell type. 

 

5. siRNA targeting luciferase reduces luminescence in vivo. 

To test siRNA that was not conjugated with cholesterol, we co-injected mice with siRNA 

and AAV-Luc-Htt then measured luminescence. We tested siRNA targeting luciferase target 

sequences (siLuc) as well as huntingtin SNP target sequences, 2307 and 2273 (si2307, si2273), 

and a control siRNA (siCon). Due to concerns that luciferase out-expressed siRNA, we used a 

very high dose, 14nmol. Unexpectedly, on day 1, siLuc injected mice showed an increase in 

luminescence on the siLuc injected side, which disappeared on day 2. We detected a significant 

difference in luminescent flux of the siLuc side overall (Fig. 3-7 A, Mixed method ANOVA 
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p=0.0064). The ratio of luminescence from siRNA injected side to PBS injected side was 

compared with the ratio at one year after injection as a reference time point. A significant 

difference was detected in the ratio of luminescence in the siLuc group on the third day after 

injection resulting in a 43% decrease in luminescence. The fact that both methods of analyzing 

data, luminescence and ratio, agree lend support to the conclusion of silencing by siLuc. 

However, a difference was also detected in the siCon injected group suggesting possible 

variation in the injection technique or solution preparation, making it difficult to draw firm 

conclusions from these experiments (Fig. 3-7 D). No differences were observed in groups 

injected with si2307 or si2273 (Fig. 3-7 B, C). The 2307 and 2273 target sites and RNAi 

sequences were chosen for this study because they feature a human SNP site that shows allele-

discriminating properties in cell culture assays and have therapeutic potential [196]. Despite 

having a low IC50 values, neither si2307 nor si2273 demonstrated robust silencing in cell culture 

experiments, achieving a maximum of only 40-50% silencing (Figure 3-4 A). It is possible that 

this assay is not sensitive enough to detect silencing by si2307 and si2273.   

 

6. AAV-Luc-Htt co-injection with AAV-shLuc results in reduction of luciferase activity. 

We next tested the ability of AAV-delivered short hairpin RNA (shRNA) targeting 

luciferase to silence AAV-Luc-Htt. The AAV-shRNA targeting luciferase (AAV-shLuc) differs 

from AAV-Luc-Htt in that it is packaged in AAV serotype 8 and employs the U6 promoter for 

transcription (Table 3-2). U6 is a polymerase III promoter that is specifically used to express 

small RNAs, and AAV-Luc-Htt uses the polymerase II CMV promoter to express luciferase. The 

U6 promoter functions to transcribe small RNAs at a higher level than the CMV promoter (Edith 
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Pfister, unpublished data). The AAV-shLuc virus had been prepared for use in a different study 

(unpublished) and was chosen for this study because it was readily available and because 

serotypes 8and 9 share many characteristics. AAV8 and AA9 both are predominantly found in 

neurons, however AAV8 can also be found in oligodendrocytes and astrocytes whereas AAV9 is 

highly specific for neurons [270, 275]. In a comparison of AAV serotypes after intrastriatal 

injections, AAV8 spread into the striatum while AAV9 distributed along the corpus callosum, 

transducing slightly more neurons  compared with AAV8 [270]. These differences are important 

to consider when interpreting results in experiments using mixture of AAV serotypes. In the 

current study, the left side was co-injected with AAV-Luc-Htt and AAV-shLuc while the right 

side was co-injected with AAV-Luc-Htt and PBS (Fig. 3-8). The side injected with AAV-shLuc 

was significantly decreased 23% compared with PBS control (Mixed model ANOVA, 

p=0.0002). This difference demonstrates that it is possible to detect luciferase silencing by co-

injection of AAV-Luc-Htt and AAV-shRNA. 

 

7. AAV-miRNA targeting SNP site 2273 does not silence luciferase activity in vivo. 

 We next wanted to test vectors targeting huntingtin SNP sites. For this experiment we 

created two viruses, one targeting the SNP site 2273 G and the other targeting SNP site 2273 A 

(AAV-miR2273G or –miR2273A, Table 3-2). These viruses have the same serotype as the 

AAV-Luc-Htt (serotype 9), however there are two differences. The AAV-miR2273 viruses 

contain the chicken β-actin promoter with CMV enhancer (CBA promoter) rather than a CMV 

promoter because it results in a 6.4-fold greater expression [276]. The silencing vectors were also 

designed to have a self-complementary AAV (scAAV) genome rather than the single stranded 
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AAV (ssAAV) genome of the AAV-Luc-Htt. Self-complementary genomes confer increased 

transduction into host cells, resulting in greater saturation within the expected distribution for 

AAV serotype [277]. It is our intention that the scAAV9 vectors would match or exceed the 

distribution of the ssAAV9 and have a greater degree of expression and probability of co-

transducing neurons. On the left side of the brain we co-injected AAV-Luc-Htt with AAV-

miR2273G) matching the target SNP, 2273. On the right side we co-injected AAV-Luc-Htt with 

AAV-miR2273A, which contains a mismatch to the SNP site. We used a 1:1 ratio between 

AAV-miR2273 and AAV-Luc-Htt viruses. We saw no significant difference in the luminescence 

between the sides of the brain (Fig. 3-9 A). In previous experiments, AAV-miR2273G was 

shown to silence the SNP site in cultured cells; however, a high MOI only resulted in modest 

silencing (Fig. 3-4 B). This lack of result in vivo may be due to it not being a very robust 

silencing structure. 

To test an increased dose of AAV-miR2273, we co-injected mice with 9:1 ratio of AAV-

miR2273 to AAV-Luc-Htt. One group received the matching vector, a second group received the 

mismatching vector, and a third group received a control vector (AAV-miRCon). The right side 

of all mice was injected with AAV-Luc-Htt and PBS. The matching vector did not differ in 

luminescence compared with PBS. Unexpectedly, there was an increase in luminescence in the 

injections with mismatching and control vectors (ANOVA p=0.0496, p=0.0076 respectively) 

(Fig. 3-9 B). No difference was found between the left to right ratio of luminescence between the 

groups (Fig. 3-9 C). The lack of silencing luciferase activity upon co-injection with AAV-

miR2273 matching the target site shows that it is inefficient at silencing luciferase to a level that 

is detectable by this in vivo imaging method. As mentioned previously, the siRNA did not show 

robust silencing in cell culture experiments, even at high concentrations (Figure 3-4 A). 
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Similarly, silencing experiments in cell culture using AAV-miR2273 did not reach 50% 

reduction of luminescence even at high MOI (Figure 3-4 B). Silencing in vivo would likely be 

difficult and possibly out of the sensitivity of this study’s design. The increased luminescence in 

the control injection suggests that could be internal error in creating the AAV injection solution 

in this experiment. One possible interpretation is that miR mismatch and miRCon co-injection 

increased luminescence while PBS had no effect and miR match displayed mild silencing. In 

summary, these results are inconclusive, and the system may not be sensitive enough to describe 

subtle silencing without a large number of animals or an improvement in the sensitivity. 

 

8. AAV-miRNA targeting huntingtin SNP site 2307 resulted in silencing of luminescence in 

an allele-specific manner. 

In order to test silencing of a different human huntingtin target site, we used a miRNA 

complementary to the target sequence containing SNP site 2307 (AAV-mir2307, Table 3-2). 

This virus was previously created for a different project and differs from AAV-Luc-Htt in that is 

was packaged using AAV serotype 1 and also uses the polymerase III promoter U6 rather than 

the polymerase II CMV promoter. As stated previously, different serotypes confer different 

properties in terms of tissue distribution and transduction capabilities. Serotype 1 is known to 

have tropism predominantly for neurons, but is also able to transduce microglia and astrocytes at 

a significantly higher rate than serotype 9 [275, 278]. In previous experiments this vector was 

shown to silence luciferase in cell culture (Fig. 3-4 B). We tested a 1:1 ratio of AAV-Luc-Htt 

and AAV-miR2307 compared with PBS. There was no significant difference between the 

luminescence on either side (Fig. 3-10 A). We increased the amount of AAV-miR2307 to five 
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times that of AAV-Luc-Htt and repeated the experiment. In a second group of mice, the same 

AAV-miR2307 was co-injected with the reporter virus that has the alternative, mismatching, 

SNP site. The right side of each mouse was injected with reporter virus and PBS (Fig. 3-10 B). 

Results show that mice with the matching reporter construct had a reduced amount of 

luminescence overall compared with the contralateral side injected with PBS (Mixed model 

ANOVA, p=0.0051). The second group with the mismatching reporter construct had no 

difference in luminescence between each side of the mouse. Surprisingly, although the 

luminescence differed significantly in the matching group, the ratio of left to right side did not 

differ significantly compared to the ratio of the mismatched group (Fig. 3-10 C). This 

discrepancy limits the conclusions that can be drawn from the results. Although we proposed the 

ratio calculation as a method to reduce variation from luciferin absorption, it is possible that it 

may introduce other sources of variation including spread of viruses to midline/contralateral 

structures which is compounded by the use of different serotypes. For this experiment, the 

decrease in luminescence with AAV-miR2307 co-injection suggests that this vector is functional 

against the human huntingtin target sequence containing the 2307 SNP site. Reduction in 

luminescence was not seen with the mismatching vector, suggesting that the matching vector 

may demonstrate allele-specific specificity. This experiment should be repeated using matching 

serotypes as well as comparing luminescence in unilateral injection groups to strengthen 

conclusions. 
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9. A re-injection approach is not sensitive enough for detection of decreases in 

luminescence. 

 In order to compare silencing to a stable baseline of luminescence, we established stable 

expression of AAV-Luc-Htt luminescence before re-injecting the same location with AAV-

miR2307. Mice were injected with AAV-Luc-Htt and imaged after 7-14 days. Using a 5:1 ratio 

of AAV-miR2307 to AAV-Luc-Htt or the same volume of PBS, we injected the AAV-miR2307 

at the same location and followed the luminescence over time. We found no decrease in 

luminescence in either group (Fig. 3-11 A, B). The PBS control injection led to a transient 

increase of luminescence compared to no injection, indicating that re-injection may disturb what 

should be a stable bioluminescence (Fig. 3-11 B). This experiment were repeated in three 

different cohorts (n=4 for each), and each time there was no detectable inhibition of 

luminescence by AAV-miR2307.  

 

C. Discussion 

In this study, we created two AAV-luciferase reporter vectors with huntingtin sequences 

in the 3'-UTR to follow gene silencing in vivo. These vectors present a method for testing gene 

silencing over time as mice can be measured repeatedly by bioluminescent imaging. This is a 

pilot study, meant to guide the optimization of the luciferase silencing system for application in a 

systematic comparison of RNAi in the brain. We co-administered the reporter virus with 

silencing molecules and viruses to study silencing dynamics in the brain. 
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We found that in animals with stable AAV-luciferase expression, luminescence varied 

greatly between animals and between the same animal on consecutive days. We hypothesize that 

this is due to the variable rate of luciferin absorption the intraperitoneal space. We tried several 

methods of delivering luciferin including tail vein injections and implanted pump delivery of 

luciferin. Tail vein injections deliver a reliable dose directly into the circulation, avoiding the 

absorption through gut, subcutaneous fat or intraperitoneal tissue, however the veins become 

damaged upon repeated access, making it impractical for daily injections. We considered using 

an intraperitoneal-implanted pump, such as an Alzet® osmotic pump, however the volume 

constraints require using dramatically less luciferin than the standard dose recommended by 

Xenogen for use with their in vivo imaging system. Less luciferin would result in 

correspondingly lower light output possibly affecting the sensitivity of the assay. However, this 

method has been used successfully in imaging the olfactory bulbs in rats [268]. An alternative is 

to implant a central port for each mouse. This would add another procedure reducing the 

system’s convenience and speed. The bilateral injection method was our solution to correct for 

the daily variation. We present data both as absolute values of luminescence as well as a ratio of 

luminescence from the treated side versus control side. For experiments with siRNA, we 

compared luminescence to a time point representing stable AAV expression that is well past the 

duration of silencing observed for siRNA, approximately 25 days in non-dividing cells [260]. 

While providing an internal control, this method presents additional issues. We found that 

luminescence from one side of the brain crosses over to the other side as illustrated in Figure 3-2 

C. This is likely a combination of light scattering through the tissue and spread of the virus to 

midline or contralateral structures of the brain. While correcting for one source of variation, the 

spread of luminescence across the midline presents its own limitation, reducing the sensitivity of 
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the assay. We also found discrepancies between results seen by analyzing luminescence but were 

not significant when comparing ratios, such as in experiments with AAV-miR2307 (Fig. 3-10 B, 

C). We found that in a single group of animals, if we calculate the ratio of the left to right side 

injection, the minimum silencing that can be detected is improved from 40% to 35%. This 

highlights the limitations of this method to robustly identify silencing of luciferase. Throughout 

this study presented both the luminescent data and results presented as a ratio in order to evaluate 

the system for such inconsistencies. 

Injections with 0.9nmol cc-siRNA targeting firefly luciferase resulted in an initial 52% 

decrease in luminescence on day one that was not sustained over time. This difference was seen 

by the ratio method and not by the comparison of flux. The duration of silencing may be limited 

by the increasing level of expression from the AAV-Luc-Htt vector, which begins low and 

increases over several weeks until reaching a stable plateau. The amount of cc-siRNA remains 

fixed or begins to diminish as molecules not incorporated into RISC are degraded by the cell,  

leading to a fundamental imbalance between the amount of siRNA and luciferase transcript 

within the cell. While silencing was observed with cc-siRNA, it may need a higher dose to 

demonstrate a sustained decrease in luminescence. Several studies have used cc-siRNA to 

silence huntingtin in mice and rat models, one of which uses intravenous injection and another 

uses neonatal intraventricular injections [247-249]. In one study, 0.5nmol of huntingtin-targeting 

cc-siRNA was co-injected with AAV-Htt100Q. Treated mice developed smaller intranuclear 

inclusions, fewer neuropil aggregates, with greater survival of neurons, and improved behavioral 

phenotype. Huntingtin protein was reduced by 56-66% after 3 days [248]. In this study, we used 

a higher dose of cc-siRNA, nearly twice as much, and showed 52% silencing of luciferase 
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activity one day after injection, however we did not see a difference on the second or third days 

after injection.  

For testing siRNA without cholesterol conjugation, we increased the dose to 14nmol to 

favor silencing of luciferase. At this dose, we detected a 43% decrease in luminescence three 

days after injection with siLuc. The difference in silencing dynamics compared with cc-siRNA 

may be due to the absence of a cholesterol moiety which may facilitate transmembrane transport 

of cc-siRNA. Several groups who have measured silencing of luciferase in the liver by siRNA 

observe silencing to peak 2-3 days after injection which would correspond with the timing 

observed in this experiment [258-260]. The single day of silencing likely represents the peak 

knockdown further highlighting the limited sensitivity of this assay. Testing of huntingtin 

specific siRNA did not result in silencing of luminescence. One factor may be that the 

huntingtin-specific siRNA was not as robust at silencing as the siLuc siRNA, as depicted in the 

dual luciferase assays shown in Figure 3-4. The maximal silencing achieved in cell culture, under 

highly efficient transfection conditions is a modest 40-50% reduction in luciferase activity. Even 

if we were able to achieve this maximal silencing efficiency in vivo, the BLI assay may currently 

have adequate sensitivity for detection. Another limitation is the single injection. There are many 

studies following single intravenous injections of naked siRNA to silence genes in the liver, 

which readily takes up siRNA into hepatocytes. Studies of unconjugated siRNA in the brain 

predominantly use convection delivery, repeated injection, or infusion into the lateral ventricles 

[279-282]. A continuous, high-dose, delivery methods may be necessary to achieve detectable 

silencing in the brain. 
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We proceeded to test the silencing properties of two AAV-miRNAs targeting huntingtin 

sequences as well as one AAV-shRNA targeting luciferase. AAV-shLuc and AAV-miR2307 

decreased luminescence, globally, by 23% and 42% respectively. Interestingly, there was no 

difference in silencing when AAV-miR2307 was used with the mismatching construct, 

suggesting preferential silencing of the match target sequence. AAV-miR2273G did not result in 

any silencing.  Differences in luminescence were not significant at any individual day for any of 

these vectors reflecting limitation in sensitivity of this assay. These vectors differed from each 

other in many different ways including promoter, serotype, and genome structure as summarized 

in Table 3-2. Due to these inconsistencies, the trends identified in these experiments cannot be 

used to directly compare silencing vectors. Nevertheless, there are several notable observations. 

The two viruses effective in silencing luciferase used the U6 promoter to express the silencing 

hairpin RNA. The U6 promoter is an RNA polymerase III promoter that expresses short RNA at 

a high level compared with polymerase II promoters such as CMV and CBA promoters (E. L. 

Pfister, unpublished data). Also, AAV-miR2307 was effective when used at a higher, 5:1 ratio, 

compared with an equal ratio of silencing virus to reporter virus. Based on these observations, 

future experiments should employ the U6 promoter and 2:1 (or greater) ratio of silencing virus to 

luciferase virus. An additional discrepancy between the silencing constructs includes the design 

of the hairpins, each of which differed in their stem and loop length, sequence, and 

complementarity. The nomenclature to identify the hairpin as short hairpin RNA (shRNA) or 

microRNA (miRNA) reflects the predicted method of RNA processing. These differences could 

impact the validity of processing, which could alter the silencing efficacy (E. L. Pfister, 

unpublished data). Future experiments should compare viral hairpin RNA constructs with 

identical promoters, serotype, and hairpin structure.  
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Several groups have used viral delivery of shRNAs to target huntingtin in mouse models. 

AAV-delivery of shRNA expressed under the U6 promoter in a different transgenic mouse 

model, N171-82Q HD mice, reduced levels of the human huntingtin transgene mRNA in the 

striatum by 51-55% two weeks after injection [192]. This resulted in improved gait and rotarod 

performance [192]. Another group used AAV and the U6 promoter to express shRNA in the 

striatum of a transgenic mouse model, finding a reduction in mutant huntingtin mRNA (75%) 

and protein (60%) 10 weeks after injection [193]. There was a decrease in size and number of 

intranuclear inclusions and normalization of gene expression in neurons. The treatment had no 

effect on rotarod ability but delayed onset of clasping [251]. A study was done to test RNAi as a 

post-symptomatic therapy for HD by injecting AAV-expressing shRNA under control of the U6 

promoter into the striatum of mice with a mutant huntingtin transgene after the onset of 

symptoms. shRNA therapy decreased aggregates and restored dopamine releasing protein 

(DARP) expression, a gene that is down-regulated in affected striatum [252].  In another study, 

normal rhesus macaques were injected with AAV-U6-miRNA targeting huntingtin. They found a 

45% reduction in huntingtin mRNA 6 weeks after injection [253]. Huntingtin silencing from 

AAV-shRNA was also shown using a rat model of HD. First, rats were injected with AAV-U6-

shHtt, and after 2 weeks they were injected with AAV-NH2-terminal Htt70Q. They found no 

toxicity from the shRNA expression and observed silencing of huntingtin two weeks after 

injection of AAV-Htt70Q [283]. These previous studies employ the U6 promoter, which is the 

same promoter used in the two vectors in this study that successfully decreased luminescence.  

Bioluminescent imaging is a valuable tool for following reporter gene expression in vivo, 

primarily as it is noninvasive and allows for repeated measurements. BLI has been used in 

several studies of gene silencing. One group used liposomal siRNA directed at luciferase in mice 
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expressing ROSA26-SLS-luciferase in tissues expressing Cre-recominase from the ubiquitous 

probasin promoter [259]. Since the animals expressed luciferase ubiquitously, they measured 

luminescence in ex vivo tissues and saw knockdown only in the liver 4, 8 and 16 days after IV 

injection, with the greatest silencing on day 4 at 75% [259]. They did not find silencing in 

spleen, heart, lung, kidney, or adrenals and did not examine the brain [259]. Another group used 

siRNA targeting luciferase in lipid nanoparticles delivered by IV injection resulting in a 

maximum inhibition of bioluminescence in the liver 3 days after injection [258]. At the highest 

dose they saw nearly complete silencing for 2 weeks. Using high pressure tail vein injection 

(HPTV) of luciferase plasmid and siRNA polyplexes, silencing was observed for 3 weeks with 

silencing greatest on day 3 [260]. Using naked siRNA and luciferase plasmid in a HPTV 

injection there was 81% silencing of luciferase in liver after 3 days [284]. In this study we 

detected silencing on day 3 with siRNA and day 1 with cc-siRNA. These studies found silencing 

to be the greatest 3-4 days after treatment, which confirms what we saw with unconjugated siLuc 

where silencing was the greatest 3 days after injection.  In this study, we chose to focus primarily 

on “naked” unconjugated siRNA which has limited ability to cross cell membranes, but with the 

advantage of a lower risk of toxicity in the brain. The drawback to using unconjugated siRNA is 

that due to a low efficiency of uptake into cells it requires high concentrations to be effective.  

The use of different AAV serotypes limits the conclusions that can be made as each 

serotype have slightly different properties of spread and transduction into cells. All viruses used 

in this dissertation are recombinant adeno-associated viruses (rAAVs), meaning that they share 

the inverted terminal repeats (ITRs) of serotype 2, but express a different gene for the capsid 

protein. The capsid protein binds the virus to the cell surface receptors, thus defining the tropism 

for that virus. Recombinant AAV expressing capsid proteins from serotype 1, 8, or 9, are notated 
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as rAAV2/1, rAAV2/8, and rAAV2/9 or simply as AAV1, AAV8, and AAV9. Each serotype 

binds to one or more specific cell surface molecules: sialic acid for AAV1, heparin sulfate 

proteoglycan for AAV2, laminin receptor for AAV8, and galactose for AAV9 [285-288]. There 

are many published comparisons of tissue spread among serotypes, however no single study to 

date compares serotypes 1, 8 and 9 that were used in mouse injection experiments. Several 

studies report equal spread of AAV1, 5, 7 and 8 throughout the mouse and rat striatum [289-

291]. One study found serotypes spread differently depending on their concentration, and that all 

serotypes spread equally well at high doses, however a low dose, AAV5 and 7 were superior to 

AAV8 [289]. AAV9 and rh10 have been shown to have a far greater spread than AAV7, 8, 9, 

and rh10 [270]. Although the total spread was impressive in the AAV9-injected animals, the 

variation among the three animals was very large, with the number of transduced cells ranging 

from 12 to 1,282 within the striatum [270]. In a second study, the same group showed single 

injection into the striatum of AAV9 filling the medial aspect of the striatum and diffusing to 

nearby structures, including septal nuclei [271]. To summarize the published findings, no groups 

has compared the spread from single injections of AAV1, 8, and 9, however serotypes 1 and 8 

spread through the striatum equally well and there is a possibility that AAV9 shows superior 

spread to AAV8. The concentration of the virus may play a role, with lower concentrations 

limiting spread. The co-injection experiments in this chapter employ lower concentrations of the 

AAV9 reporter virus compared with the AAV1, 8, or 9 silencing virus. Taken together, although 

the reporter virus is packaged in the high potency and high spread serotype, the low 

concentration may limit its spread relative to the silencing constructs. 

AAV can also spread by diffusion and anterograde/retrograde transport to distant 

anatomical locations in the brain. This has been shown in serotypes 1, 5, 8 and 9, possibly by a 
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serotype –independent mechanism [271, 291, 292].  Viral mRNA from injections of AAV9 into 

the striatum have been detected in the substantia nigra pars compacta, hippocampus, amygdala 

and thalamus [271]. There is the possibility that virus can cross to the contralateral side of the 

brain, in one study, a small degree of positive cells were found on the contralateral side, up to 

15% in some sections [271].  

A valuable addition to this study would be a comparison of viral spread and the degree of 

overlap of the reporter virus and silencing virus. A mismatch in distribution of the co-injected 

viruses could underrepresent the effectiveness of the silencing vectors. This can be evaluated by 

fluorescently labeling cells transduced by each virus and assessing the degree of co-labeling. A 

gene for a fluorescent protein marker, such as green fluorescent protein (GFP), can be included 

in the silencing virus, and thus cells expressing the silencing hairpin RNA would also express a 

fluorescent protein. Fluorescent proteins cannot be used in the luciferase reporter construct, as 

including two genes would exceed the DNA packaging limits of the AAV. However, 

immunofluorescent staining can be performed with fluorescently labeled antibodies against the 

luciferase protein, or by tagging the luciferase with an easily labeled tag, such as hemagglutinin. 

One could also use fluorescent in situ hybridization (FISH) to evaluate spread and co-

localization of the luciferase mRNA with a fluorescent protein in the silencing virus. siRNA can 

also be labeled with fluorescent tags such as Cy5 or Cy3 and co-localized with fluorescently 

labeled luciferase mRNA or protein. In this way, one could assess the degree of co-transduction 

and determine whether the lack of silencing is due to inefficiency of RNAi or due to inefficient 

co-transduction of cells.  
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Other limitations of this study are that in many experiments there were fewer animals 

than were required to achieve reasonable experimental power. This was due to the unexpectedly 

high variation. For most experiments, there was only one independent experiment for each 

reported result, and aspects of each experiment differed in various ways, including viral 

components, doses, and injection sites.  

In our experiments with cc-siRNA, we observed an unexpected result that co-injection of 

cc-siRNA with AAV-Luc-Htt initially increased luminescence ten-fold compared with PBS. 

After six months the increase was attenuated to a two-fold difference in luminescence in one 

experiment and the effect was eliminated in a second experiment (Fig. 3-5 A, C). A similar 

increase in luminescence was observed in cell culture co-transfections of cc-siRNA and AAV 

where the effect was independent of siRNA sequence, AAV serotype, or cell type. There are 

several possible explanations: cc-siRNA could alter AAV transduction efficiency, it could 

increase viral gene expression, or cc-siRNA could increase the delivery of AAV from the pipet 

tip, resulting in increased delivery of AAV.  

An experiment to test whether the cc-siRNA improves the viral transduction into cells 

can be done by labeling the viral capsid with Cy5 fluorescent dye. By exposing cultured cells to 

Cy5-labeled virions with and without cc-siRNA, the degree of transfected viral particles can be 

quantified [293]. This experiment would reflect cellular transport of the capsid rather than the 

expression of a fluorescent or luminescent protein. Cy5 labeled virus can also be used in vivo to 

study the effect on cell tropism and anatomical spread. Comparing Cy5 labeled AAV with and 

without cc-siRNA could reveal differences in the number of cells, area of transduction, and cell-

type specificity, through co-labeling with cell-type specific antibodies. In order to study if the 
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effect is related to enhanced transcription or translation, cells (or mice) stably expressing AAV-

Luciferase could be transfected (or re-injected) with cc-siRNA. Increased luminescence would 

be observed with an increase in transcription or translation, and Western analysis and 

quantitative PCR could be used to detect relative increases in protein and mRNA, respectively. 

This is one way to discern whether the interaction is independent of AAV transduction into cells 

and whether there is enhancement of transcription or translation. Improvement in AAV 

transduction efficiency would present an advance to gene therapeutics and the effect of cc-

siRNA warrants further study. While this thesis was being edited, these experiments were 

repeated by a different member of the lab using different reagents. Unfortunately, they were 

unable to replicate these results.  

The present study demonstrates the possibilities and limitations in using AAV-Luc-Htt 

and BLI to follow gene silencing in the brain. There is a large variation within experimental 

groups which contributed to our inability to detect modest decrease in luminescence. If this 

model requires large numbers of mice in order to achieve statistical significance, then would not 

be a reasonable tool for screening applications. There is the potential that with stronger RNAi 

potency, new luciferase substrate with left-shifted spectrum that AAV-Luc-Htt can be used to 

compare sequences, hairpin structures, promoters, and delivery of RNAi and potentially validate 

allele-specific silencing of huntingtin sequences in the mouse brain.  

 

E. Materials and Methods 

1. Stereotactic injection  
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FVB mice (female, 3-6 months old, FVB/NJ from Jackson Laboratory, Bar Harbor, ME) 

were anesthetized with 250 mg/kg tribromoethanol (2.5 g 2, 2, 2, tribromoethanol dissolved in 

5mL amylene hydrate into 200mL PBS). Anesthetized mice were placed on a heated pad in a 

stereotactic frame. Superglue (Loctite) was applied to the surface of the fur between the ears, 

avoiding eyes and exposed skin. After 10-20 seconds, the glue is gently pulled off to remove fur. 

The exposed skin is cleaned with betadine and an incision is made posterior to anterior. The skin 

is pulled aside and the needle is placed over the bregma. Unless otherwise stated, measurements 

for injection location are: anterior 1mm, lateral 3mm and ventral 2mm from the bregma. Once 

the needle is lowered, it rests there for 2 minutes before infusion begins by micropump syringe 

(NanoFil syringe, World Precision Instruments). Injections were performed at a rate of 125nl per 

minute, for values see below. After infusion the mouse rests for 2 minutes before the needle is 

withdrawn. The incision is closed with clear, undyed suture (monocryl undyed monofilament) 

and the animals are allowed to recover on a heated pad at 37C. 

AAV dilution series (Figure 3-1 C): Mice were injected unilaterally with 1µl of AAV9-CMV-

Luc-Htt (AAV-Luc-Htt) at each concentration: 1e13 GC/mL, 1e12 GC/mL, 1e11 GC/mL, 1e10 

GC/mL, 1e9 GC/mL; n=3-5 mice per concentration. 

Unilateral control injection (Figure 3-2 A, B): Mice were injected with 5e9GC AAV-Luc-Htt 

on the right side cortex (coordinates: at the bregma (anterior 0.0) lateral 2mm, ventral 2mm), 

volume of injection is 0.67µL, n=9 mice. 

Injection of cholesterol conjugated siRNA (Figure 3-5): Mice were co-injected on the left side 

with 2e10GC AAV-Luc-Htt and 0.9nmol cc-siRNA targeting luciferase from Photinus pyralis 

(firefly luciferase, siLuc, Table 3-1). The same mice were co-injected on the right side with 
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2e10GC AAV-Luc-Htt and 0.9nmol control cc-siRNA targeting luciferase from Renilla 

reniformis (renilla luciferase, siCon, Table 3-1). A second group of mice were injected bilaterally 

with 2e10 GC AAV-Luc-Htt and PBS.  A third group of mice were injected with 2e10 GC AAV-

Luc-Htt and 0.9nmol cc-siCon on the right side and with 2e10GC AAV-Luc-Htt and PBS on the 

left side. The total volume of each injection was 4µL, n=5 per group. 

Injection of siRNA (Figure 3-7): For each siRNA, groups of mice were co-injected on the left 

side of the brain with 5e9GC AAV-Luc-Htt and 14nmol siRNA. The right side was injected with 

5e9GC AAV-Luc-Htt and of PBS. Total injection volume is 3.75µL, n=4-8 per group 

Injection of AAV-shRNA targeting firefly luciferase (Figure 3-8): Mice were injected with 

5e9GC AAV-Luc-Htt and 1.15x10GC AAV-shLuc (Table 3-1), at a 1:2 GC ratio of AAV-Luc-

Htt and AAV-shLuc. On the right side, each mouse was injected with 5e9GC AAV-Luc-Htt and 

1.65µL PBS. Total volume of injection was 1.9µL, n=9 mice per group. 

Injection of AAV-shRNA targeting SNP site 2273 (Figure 3-9): For results shown in Figure 3-

9 A, mice were injected into the cortex at measurements from the bregma: anterior: 0mm, lateral 

3mm, ventral 1mm. The left side was injected with 5e9GC AAV-Luc-Htt and 5e9GC AAV-

miR2273G (Table 3-1). The right side was injected with the same amount of AAV-Luc-Htt and 

5e9GC AAV-miR2273A (Table 3-1). Total volume of injection was 0.6 µL at a ratio of 1:1 GC 

between the AAV-Luc-Htt and AAV-miRNA, n=8 mice per group. For results shown in Figure 

3-9 B, C, groups of mice were injected on the left side with 5e9GC AAV-Luc-Htt and 4.5e10GC 

of either AAV-miR2273G, AAV-miR2273A, or AAV-miRCon (Table 3-1). Each mouse was 

injected on the right side with 5e9GC AAV-Luc-Htt and PBS. Total volume of each injection 

was 3.71µL at a ratio of 9:1 GC between AAV-Luc-Htt and AAV-miRNA, n=5 mice per group. 
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Injection of AAV-miRNA targeting SNP site 2307 (Figure 3-10): For results shown in Figure 

3-10 A (n=5) the left side was injected with 5e9GC AAV-Luc-Htt, 5e9GC AAV-miR2307 

(Table 3-1), and PBS. The right side was injected with the same amount of AAV-Luc-Htt and of 

PBS. Total volume of injection was1.5µL at a ratio of 1:1 between the AAV-Luc-Htt and AAV-

miRNA. For results shown in Figure 3-10 B, C, one group of mice (n=11) was injected on the 

left side with 5e9GC AAV-Luc-Htt and 2.5e10GC AAV-miR2307 (Table 3-1). The right side 

was injected with the same amount of AAVLuc-Htt and PBS. A second group of mice (n=8) 

were injected on the left side with 5e9GC AAV-Luc-Htt with the 2307C SNP site and 2.5e10GC 

AAV-miR2307 and on the right with PBS. All injections were 1.9µL in volume at a ratio of 1:5 

between the AAV-Luc-Htt and AAV-shRNA. 

AAV-miR2307 re-injection (Figure 3-11 A, B): Mice were injected with 5e9GC AAV-Luc-

Htt. After 7-12 days, mice were re-injected 2.5e10 GC AAV-miR2307. All injections were 

1.9µL in volume, n= 4 mice per group. 

2. Imaging mice 

Mice were anesthetized with 5% isofluorane and placed into the Xenogen (now Caliper) 

in vivo imaging system (IVIS 100). 10 minutes prior to imaging, mice are injected with 

150mg/kg D-luciferin into the intraperitoneal (ip) space (from a 30mg/mL stock solution 

dissolved in sterile water). Luminescent measurements were taken by 1 minute exposure. A 

region of interest is drawn over each injection site to quantify luminescence from the injected 

area. Data was collected as flux (photons / second).  

3. Cell culture experiments 
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Testing of AAV-Luc-Htt and cc-siRNA: HeLa cells were grown to confluence in 24 well 

plates. Cells were incubated with dilutions of AAV-Luc-Htt with 0.9nmol of control cc-siRNA 

(targeting Renilla luciferase or GFP) per well. Doses of virus were 1000 MOI, 10,000 MOI, 

100,000 MOI. AAV-Luc-Htt at 100,000 MOI was also incubated with 0.9nmol of cholesterol. 

Cells were lysed after 24 hours by adding 100uL passive lysis buffer (Promega Dual-Luciferase 

Reporter Assay System) and placed on a shaker for 20 minutes at room temperature. Cell lysates 

were measured for luminescence in a Glomax luminometer.  

Dual luciferase assay: HeLa cells were grown to confluence in 24-well plates. Different 

concentrations of siRNA were made in serum-free media with either 0.025 µg/well pSiCheck 

with the target sequences or a combination of 0.025µg/well pAAV-Luc-Htt and 0.05µg/well 

pRLTK.  The siRNA and vector mixture was combined with lipofectamineLTX (Invitrogen) and 

400µL was placed into each well. Concentrations of siRNA were: 20 nmol, 10 nmol, 2 nmol, 1 

nmol, 0.5 nmol, 0.2 nmol, 0.05 nmol, 0.02 nmol, 0.005 nmol, 0.002 nmol, and 0.0005 nmol. 

Doses for cc-siRNA were: 80 nmol, 60 nmol, 40 nmol, 20 nmol, 10 nmol, 6 nmol, 2 nmol, 1 

nmol, 0.6 nmol, and 0.2 nmol. Each concentration was performed in triplicate. After 24 hours the 

cells were lysed with 100uL of passive lysis buffer and measured for luminescence using the 

Promega Dual Luciferase Reporter Assay System and Glomax luminometer. Data were graphed 

and the IC50 was calculated using Igor Pro software (WaveMetrics, Portland, OR). 

Testing of AAV-miRNA silencing: HeLa cells were grown to confluence in 24 well plates. 

Each dilution of AAV-miRNA was made in serum-free media (OptiMEM) and 200uL containing 

the designated MOI of virus was added to each well of cells. The cells were incubated with virus 

overnight and checked for GFP activity. Then they were transfected with 0.025ug/well pSiCheck 
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vector (Promega) containing the target sequence using Lipofectamine LTX (Invitrogen). 

pSiCheck vectors express both Firefly and Renilla luciferases. The target sequence is inserted 

into the 3'-UTR of Firefly luciferase and silencing of firefly luciferase is normalized to the 

constant expression of Renilla luciferase. Cells were lysed after 24 hours and measured for 

Firefly and Renilla luciferase activity. All concentrations were performed in triplicate. 

4. Cloning 

Target sites were synthesized as ultramer oligos with 15nt of sequence flanking each SNP 

site. We created two ultramers with each SNP site. Ultramer C1 has one variation of each SNP 

nucleotide, and ultramer C2 has an alternate SNP nucleotide. The sequences are C1: 3'-

CTAGAGCCTTTGGAAGTCTGCGCCCTTGTGCCCTGCCGAGAAGCTGCTGCTGCAGA

TCAACCCCGAGGAGATGGGGACAGTAATTCAACGCTAGAAGAGCCTGCTCCCTCAT

CCACTGTGTGCACTTCAGTCTCAGTGCCGAGCTCAGCGCCTTGGCTCTGCTGTCTGA

GCAGCTATCTCGGCTAGACACAT-5' and C2: 3'-

CTAGAGCCTTTGGAAGTCTGTGCCCTTGTGCCCTGCCGAGAAGCTGCTGCTACAGAT

CAACCCCGAGGAGATGGGGACAGTACTTCAACGCTAGAAGAGCCTGCTCCCTCATC

TACTGTGTGCACTTCAGTCTCAGTGCCGAGCACAGCGCCTTGGCTCTGCTGTCTGAG

CAGCTCTCTCGGCTAGACACAT-5'. SNP sites are underlined. Xba1 sites were added before 

and after each ultramer for insertion into the 3'-UTR of pGL3-control vector and we sequenced 

the resulting clones to check for correct insertion. The luciferase genes with ultramers were 

amplified with a SalI site, the PCR product was digested with EcoRI and SalI, and inserted into 

pAAV-CMV backbone. 
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Figure 3-1: Allele-specific gene silencing, AAV-Luc-Htt design and in vivo testing. (A) 

Allele-specific RNAi is designed to discriminate between single nucleotide polymorphisms 

(SNPs), preferentially cleaving the matching SNP site over the mismatching SNP site. In 

Huntington’s disease, allele-specific RNAi is designed to target the SNP variation present on the 

CAG expanded allele. (B) We have created two luciferase reporter constructs containing 

huntingtin target sequences in the 3'-UTR. Each colored bar is a 30bp fragment of sequence 

surrounding the indicated SNP site. Each SNP is identified by a four digit code and the letter 

representing the SNP nucleotide. The first four sites are human huntingtin SNP sites and the last 

two sites are found in mouse huntingtin. C.) Mice were unilaterally injected with 10-fold 

dilutions of AAV-Luc-Htt and imaged after two weeks. The 1e10GC injected mice emit more 

light than all other groups (One-way ANOVA p<0.0001, Tukey’s multiple comparison test, all 

groups n=5). BG, background. Data is presented as mean ± SEM, **p<0.01, ***p<0.001. 
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Figure 3-2: Variation in luminescence of AAV-Luc-Htt injected mice.  A.) Mice (n=9) were 

injected with 5e9GC AAV-Luc-Htt on the right side and imaged over 28 days. Stable baseline is 

achieved starting at day 10. B.) Three days within the stable baseline are selected for comparison 

(15, 19, and 21), and data points are plotted as luminescence (flux, photon/second) for each 

mouse. Each mouse displays different degree of variability, with standard deviations ranging 

from 5-40% of its total flux. All data is presented as mean ± SD. 
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Figure 3-2: Variation in luminescence of AAV-Luc-Htt injected mice. 
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Figure 3-3: Experimental design for in vivo measurement of RNAi gene silencing. A.) 

Luciferase reporter constructs with the huntingtin target SNP sites are packaged in AAV capsid 

(AAV-Luc-Htt). AAV-Luc-Htt virus is co-injected into the left side of the brain with 

experimental RNAi molecules. The right side is co-injected with the reporter construct and either 

control RNAi molecules or PBS. Beginning 24 hours after injection, the mice are anesthetized, 

injected into the ip space with the luciferase substrate and imaged to measure luminescence. A 

region of interest, ROI, is drawn over each side of the brain, then quantified and analyzed both as 

luminescence (flux, photons/second) and as a ratio of experimental / control injected side. B.) 

Mice were injected with 5e9GC AAV-Luc-Htt in the right striatum (unilateral injection, n=5) or 

into each hemisphere (bilateral injection, n=7) and imaged for seven days. The ratio is calculated 

as the flux from the left hemisphere divided by the flux from the right hemisphere. The ratios 

from each day were compared at each time point (Mixed method ANOVA for ratio group, 

p<0.0001; for unilateral injection group, p< 0.0001, Tukey’s multiple comparisons). Both groups 

showed a difference between the left and right sides, however only the ratio group showed 

differences between sides on each day. All data is presented as mean ± SD. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001.   
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Figure 3-4: RNAi constructs silence luciferase and huntingtin targets in cell culture. (A) 

siRNA and cc-siRNA molecules were tested against their target sequences in dual luciferase 

assays. siRNA are tested at 11 doses and cc-siRNA are tested at 10 doses, each dose is done in 

triplicate. Data is presented as luminescence of target normalized to control luciferase for each 

dose. IC50 values were calculated from the curve using Igor Pro wave-fitting software 

(WaveMetrics, Portland, OR). (B) Cells were infected with the AAV-miRNA and then 

transfected with the matching reporter construct to measure silencing of huntingtin target sites. 

Luminescence was normalized to cells transfected with reporter construct and no AAV. At 

100,000 MOI of AAV-miR2273, there was a 32% silencing compared with 10,000 MOI/well 

(mean diff. 0.5854 (95% CI 0.5030 to 0.6679, p<0.0001)) for 30,000 MOI there was 10% 

silencing (mean diff. 0.2798 (95% CI 0.1400 to 0.4197, p=0.0001)). For AAV-miR2307 there 

was a 55% silencing compared with 10,000 MOI (mean diff. 0.3910 (95% CI 0.2511 to 0.5309, 

p<0.0001)) and for 30,000 MOI 12% silencing (mean diff. 0.4560 (95% CI 0.3736 to 0.5385, 

p<0.0001)). Data is presented as mean ± SD. *** p<0.001, ****p<0.0001 
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Figure 3-4: RNAi constructs silence luciferase and huntingtin targets in cell culture.
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Figure 3-5: Cholesterol-conjugated siRNA silences luciferase activity in the brain 24 hours 

after injection. (A) To test silencing by cholesterol-conjugated siRNA, mice were co-injected 

with AAV-Luc-Htt and cc-siRNA. In one set of mice, the left side of the brain was co-injected 

with AAV-Luc-Htt and cc-siLuc, and the right side was co-injected with AAV-Luc-Htt and cc-

siCon. There was no difference in the luminescence from either injection over time. In a second 

set of mice, both sides were injected with AAV-Luc-Htt and PBS alone. There was no difference 

in either of the injections over time. (B) For the same experiment, results were calculated using 

each mouse as its own control. The luminescence from the left was divided by luminescence on 

the right side. One day after injection, there was a difference between the ratio in the cc-siRNA 

treated group compared with the PBS treated group. There was a decrease of 52.6% (Sidak’s 

multiple comparisons test, mean diff. 0.4847 (95% CI 0.4051 to 0.5644, p<0.0001, n=5 for both 

groups). There were no differences at the other time points. (C)  To investigate the effect of cc-

siRNA on long-term luciferase activity in the same mice, we compared luminescent flux at 168 

days. Comparison of left side injections and right side injections show a 1.9- and 1.7-fold 

differences respectively (Unpaired t-test p=0.0017 and p=0.0007, respectively) (D) To compare 

the effect of cholesterol-conjugated siRNA on AAV-Luc-Htt, mice were co-injected on the left 

side with PBS and on the right side with cc-siCon. We found a significant increase in 

luminescence on the cc-siCon side at 5 and 12 days after injection (2-Way ANOVA p=0.0015, 

Tukey’s multiple comparison test, n=5). After 6 months, there was no difference in luminescence 

between the sides of the brain. Data is presented as mean ± SEM. ***p<0.001, ****p<0.0001 
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Figure 3-6: Cholesterol-conjugated siRNA increases luminescence in AAV-Luc-Htt treated 

cells. (A) HeLa cells were incubated with 10,000 MOI AAV-Luc-Htt and either control cc-

siRNA (cc-siCon), unconjugated control siRNA (siCon), no siRNA. Cells were also incubated 

with only cc-siCon or siCon to ensure no contamination with AAV-Luc-Htt. There was a 

significant increase in the luminescence with a mixture of AAV-Luc-Htt and cc-siCon compared 

with both no siRNA and siCon treated groups (T-test, p=0.0091 and p=0.0001 respectively). (B) 

Different concentrations of AAV-Luc-Htt were combined with cc-siCon or no siRNA. Overall, 

there was an increase in luminescence in the cells treated with cc-siRNA (2-way ANOVA 

p<0.001). At 100,000 MOI there was a 2.62-fold increase in luminescence in cc-siRNA treated 

cells (Bonferroni posttest, mean diff. 11570 (95% CI 9531 to 13600, p<0.0001)). (C) 100,000 

MOI AAV-Luc-Htt was tested with cholesterol and there was no difference from the untreated 

group. (D) AAV2-Luciferase was incubated with either cc-siCon or no siRNA. There was a 

1.81-fold increase in luminescence in the cc-siRNA treated cells (T-test p=0.0045). (E) Cells 

were incubated with 1000 MOI AAV-Luc-Htt and cc-siRNA targeting GFP (cc-siGFP). There 

was a 1.22-fold increase in luciferase in the cc-siGFP group (T-test, p=0.0062). (F) Neuro2A 

cells were incubated with 1,000 MOI AAV-Luc-Htt and cc-siGFP and there was a 1.45-fold 

increase in luminescence in the cc-siGFP treated group (T-test, p=0.0242). Data is presented as 

mean ± SD. *p<0.05, **p<0.01, ***p<0.001 
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Figure 3-7: siRNA silences luciferase activity in the brain. A-D.) Mice were injected on the 

left side with 14nmol siRNA and AAV9-Luc-Htt and on the right side with PBS and AAV9-Luc-

Htt. (A) Co-injection with 14nmol siLuc resulted in an overall decrease in luminescence over 

time compared with the injections of PBS (n=8, 2-way mixed methods ANOVA p=0.0064). The 

ratio of left side to right side luminescence shows a 43% silencing of luciferase activity day 3 

after injection compared with ratio one year after injection (One-way ANOVA p=0.0008, 

Dunnett’s multiple comparisons test, mean diff 0.5174 (95% CI 0.05767 to 0.9771, p=0.027). B, 

C.) Groups of mice were co-injected with 14nmol siRNA targeting SNP site 2307 (n=5), and 

2273 (n=6). There were no differences in luminescence between sides or any difference in the 

left to right ratio compared with one year later. D.) Mice were co-injected with AAV-Luc-Htt 

with control siRNA on the left side and PBS on the right side. There was a decrease in the 

luminescence on the siCon side overall (2-way mixed methods ANOVA, p=0.0369, n=4). 

However, there was no difference in the ratio of left to right side luminescence compared with 

one year. Data is presented as mean ± SEM. *p<0.05
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Figure 3-8: AAV-shRNA targeting luciferase reduces luminescence in the brain. A.) Mice 

were co-injected with AAV-shLuc and AAV-Luc-Htt (2:1 ratio of AAV-shLuc to AAV-Luc-Htt) 

on the left side and PBS and AAV-Luc-Htt on the right. Luminescence was decreased on the 

AAV-shLuc side compared with the contralateral PBS injection (Mixed model ANOVA, 

p=0.0002, n=9). The average difference between the two sides is 23%. B.) Ratio of luminescence 

from the left side (AAV-shLuc) to the right side (PBS). Average ratio is less than 1.0 for most 

time points. C.) Representative mouse two days after injection. Data is presented as mean ± 

SEM. 
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Figure 3-9: AAV-miRNA targeting human huntingtin SNP site 2273 does not decrease 

luminescence in the brain. (A) We tested a 1:1 ratio of AAV-Luc-Htt to AAV-shRNA targeting 

human huntingtin SNP site 2273. The left side was injected the AAV-Luc-Htt virus and AAV-

miR2273G matching the target sequence. On the right side we injected AAV-Luc-Htt and AAV-

sh2273A containing a mismatch at the SNP site. There was no significant difference in the flux 

between the two sides (2-way ANOVA, n.s. n=8). (B) We then increased the dose of AAV-

miR2273 to a 9:1 ratio of AAV-Luc-Htt to AAV-miRNA. One group was co-injected on the left 

side with AAV-Luc-Htt and AAV-miR2273G matching the target and the right side injected 

with AAV-Luc-Htt and PBS (n=5). A second group was co-injected with AAV-Luc-Htt and 

AAV-miR2273A, which has a mismatch to the target sequence (n=5). There was a significant 

1.7 fold increase in the AAV-miR2273A injected side (2-way ANOVA p<0.0496). The last 

group was co-injected on the left side with AAV-miRCon that does not match the target at all 

(n=5). There was a 1.33 fold increase in the AAV-miRCon side (2-way ANOVA p=0.076). The 

right side of all mice was injected with the same amount of AAV-Luc-Htt and PBS. (C) We 

calculated a ratio of left side to right side for each mouse, and comparing the averages for all 

groups. There was no difference between the ratios for each group. Data is presented as mean ± 

SEM. *p<0.05, **p<0.01, ***p<0.001
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Figure 3-10: AAV-miRNA targeting huntingtin SNP 2307 results in allele-specific silencing 

in the brain. (A) We tested a 1:1 ratio of AAV-miRNA targeting the huntingtin 2307 SNP. In a 

group of mice, the left side was injected with AAV-Luc-Htt with AAV-miR2307 that matches 

the target. On the right side, AAV-Luc-Htt was injected with PBS in the same volume. There 

was no significant difference (n=5 for both groups). (B) We tested a 5:1 ratio of AAV-Luc-Htt to 

AAV-miRNA targeting the human SNP site 2307 (AAV-miR2307). In one set of animals, the 

left side was injected with AAV-Luc-Htt and AAV-miR2307 matching the target sequence, and 

the right side was injected with AAV-Luc-Htt and PBS. In another set of animals the left side 

was injected with AAV-Luc-Htt containing the alternate SNP site with the same AAV-miR2307 

resulting in a mismatch of the shRNA and target sequence. There is a significant difference in 

the luminescence between the two sides of the match injected animals, the AAV-miR2307 side is 

42% less than the control side (Mixed methods ANOVA, p=0.0051). There is no significant 

difference between the right and left luminescence of the mismatch injected animals. (C) The 

ratio of matched vector injected side to control side is 0.8834±0.1287 and the ratio between the 

mismatch side compared with control side is 1.0665±0.1503. The difference between the means 

is not statistically significant. (match n =11, mismatch n=8, error bars are SEM). (D) 

Representative image of mice co-injected with AAV-Luc-Htt and matching AAV-miRNA, 

mismatching AAV-miRNA, or PBS. 
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Figure 3-11: Re-injection strategy to assess silencing of luciferase in the brain. (A) We 

tested a re-injection strategy to compare silencing with a baseline measurement of luminescence. 

One set of mice was bilaterally injected with AAV-Luc-Htt and after 14 days a baseline 

luminescence was measured. The same mice were then injected on the left side with AAV-

miR2307. There was no injection on the right side. In a second group of mice, the left side was 

re-injected with PBS and the right side was not injected. (B) The left to right ratio for each 

mouse was calculated. There was no difference in the AAV-miR2307 injected group overall. 

There was a significant difference in the PBS injected group with an increase one day after PBS 

injection compared with baseline measurement (One-way ANOVA, p=0.0157, Dunnett’s 

multiple comparisons, mean diff. -1.308 (95% CI -2.312 to -0.3029, p=0.0107). n=4 per group. 

Data is presented as mean ± SEM. *p<0.05 
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Table 3-1: Sequences, structures and modifications of siRNA and RNA hairpins. Each 

silencing construct is listed by its full descriptive name, sequence with modifications and/ or 

hairpin structure, and IC50 value if applicable. IC50 values were determined as the amount of 

siRNA needed to decrease luminescence by 50% using a dual luciferase cell culture assay. (* 

represents phosphorothioate linkage; p represents phosphate group; m represents 2’O-methyl 

linkage) 
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Sequence of siRNA or miRNA IC50 (nmol)

Cholesterol conjugated 
firefly luciferase siRNA

(cc-siLuc)

3’-chol*mU*mU*AAAGCUUCAUGAGUCGCAC-5’

5’-pUUUCGAAGUACUCAGCGUG*mA*mG-3’

8.27 � 0.115

Cholesterol conjugated 
renilla luciferase siRNA

(cc-siCon)

3’-chol*mU*mU*GAUCGAUAUUACUUUACGG-5’

5’pAUAGCUAUAAUGAAAUGCC *mU*mU-3’

8.47 � 0.149

Firefly luciferase siRNA
(siLuc)

3’-mU*mU*AAAGCUUCAUGAGUCGCAC-5’

5’-pUUUCGAAGUACUCAGCGUG*mA*mG-3’

0.1336 � 0.082

Renilla luciferase siRNA
(siCon)

3’-mU*mU*GAUCGAUAUUACUUUACGG-5’

5’-pAUAGCUAUAAUGAAAUGCC*mU*mU-3’

0.326 � 0.09

Huntingtin SNP site 2307T
(si2307)

3’-mU*mU*CUGUUACCGUGUCUGAAGG-5’

5’-pUACAAUGGCACAGACUUCC*mU*mU-3’

0.923 � 0.046

Huntingtin SNP site 2273G
(si2273)

3’-mC*mC*CAACGAGACGUCGUCGUCG-5’

5’-pUUUGCUCUGCAGCAGCAGC*mU*mU-3’

0.0336 � 0.014

AAV2-U6-miR2307T-CMV-
eGFP

(AAV-miR2307)

. . . GGAU  A  GA   C                       GUAAAGC

CC GU  GCG AGGAAGUCUGUGCCAUUGUAUCA       C

GG CA  CGC UCCUUCAGACACGGUAACAUAGU        A

. . . UGGG  G  UC   U                        GUAGAC

scAAV8-CB.PI.egfp-U6-
shLuc

(AAV-shLuc)

CAA

. . . GAUCCCGCUUACGCUGAGUACUUCGAUU    A

. . . UUUUUUGAAUGCGACUCATGAAGCUA      A

G AC

scAAV9-CB/CMV-
miR2273A-GFP

(AAV-miR2273A)

GC    UUGGCC

. . . UGCUGUUUGCUCUGUA  AGTAGCTTGUU A

. . . AAACGAGACAU  UCAUCGAACAG       C

UCAGU  

scAAV9-CB/CMV-
miR2273G-GFP

(AAV-miR2273G)

GC           UUGGCC

. . . UGCUGUUUGCUCUGCA  AGUAGCUUGUU      A

. . . AAACGAGACGU  UCAUCGAACAG C

UCAGU

scAAV9-CB/CMV-
miREmpty-GFP
(AAV-miRCon)

CU           UUGGCC

. . . UGCUGUUUCUCGCCCU  UCGCUCUUGUU      A

. . . AAAGAGCGGGA  AGCGAGAACAG       C

UCAGU

 

 

Table 3-1: Sequences, structures and modifications of siRNA and RNA hairpins.



164 
 

Table 3-2: Summary of AAV constructs and results. Each virus used in this study is listed by 

the name used to identify it in the text. The table summarizes the serotype, genotype structure, 

promoter, site of injection, concentration, and effectiveness for each virus with the corresponding 

figure number. For all experiments, AAV-Luc-Htt was co-injected with one of the silencing 

constructs. The concentration of the viruses refers to the ratio of silencing vector to AAV-Luc-

Htt. For all experiments, the concentration of AAV-Luc-Htt is 5e9GC. N/A, not applicable; 

CMV, cytomegalovirus (RNA polymerase II); ssDNA, single-strand DNA; scDNA, self-

complementary DNA; CBA, chicken beta actin promoter with cytomegalovirus enhancer (RNA 

polymerase II); U6 an RNA polymerase III promoter for transcribing short hairpin RNA. 
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Construct Serotype 
Genome 
structure 

Promoter 
Injection 

Site 
Ratio 

Effective at 
silencing 

luciferase in 

vivo? 

AAV-Luc-Htt AAV 9 ssDNA CMV 
Striatum 

and cortex 
N/A N/A 

AAV-shLuc AAV 8 ssDNA U6 Striatum 2:1 Yes (Fig. 3-8) 

AAV-miR2307T AAV 1 ssDNA U6 Striatum 

1:1 No (Fig. 3-10A) 

5:1 
Yes  

(Fig. 3-10 B-D) 

AAV-miR2237A 
AAV-miR2237G 

AAV 9 scDNA CBA Cortex 

1:1 No (Fig. 3-9A) 

9:1 
Inconclusive  

(Fig. 3-9 B-C) 

 

Table 3-2: Summary of AAV constructs and results.
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CHAPTER IV 

 

 

THE USE OF NOVEL LUCIFERASE SUBSTRATES TO DETECT LUCIFERASE 

ACTIVITY IN THE BRAIN 

 

 

 

This chapter describes work I performed using novel luminescent substrates to detect low 

levels of luciferase activity and silencing of luciferase in vivo. This work was conducted under 

the guidance of Neil Aronin. I planned and executed the majority of the experiment presented in 

this chapter. Wanzhao Liu performed the quantitative real-time PCR. The AAV construct was 

provided by Guangping Gao. Dr. Stephen Miller designed and synthesized the luminescent 

substrates. Results from this chapter are included in the published work:  

Melanie S. Evans, Joanna P. Chaurette, Spencer T. Adams Jr, Gadarla R. Reddy, Miranda A. 

Paley, Neil Aronin, Jennifer A. Prescher, and Stephen C. Miller, A synthetic luciferin 

improves bioluminescence imaging in live mice. Nature Methods 11: 393-395, 2014. 
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A. Abstract 

Bioluminescent imaging (BLI) has emerged as a powerful tool for in vivo visualization of 

biological processes. In mice, BLI has been used to study infection spread, tumor growth and 

metastasis, and gene silencing. The benefits of using BLI are that it is sensitive, low cost, high 

throughput, and can be used for longitudinal analysis in individual animals. There are 

limitations: absorbance by hemoglobin and melanin and the depth of tissue affect the detection of 

luminescence. Ways to improve detection of luciferase reporter activity are to increase luciferase 

activity or increase light output from the substrate. Our objective in this study is to identify 

substrates resulting in improved light output from the brain.  

To screen luciferase substrates, we used mice expressing AAV-delivered firefly 

luciferase in the brain. We tested 34 substrate solutions and identified 19 that exhibited increased 

light output compared with 100mM D-luciferin. From this screen we identified the luciferase 

substrate, CycLuc1, as the highest light-emitting substrate, finding CycLuc1 to be 120 times 

more potent than D-luciferin. We next tested CycLuc1 and another potent substrate, iPr-amide, 

in mice expressing luciferase in dopaminergic neurons (DAT-LUC mice). We were able to detect 

luminescence from CycLuc1 and iPr-amide but not from D-Luciferin. We also tested iPr-amide, 

in AAV-luciferase injected mice with or without fatty acid amide hydrolase (FAAH) inhibitor. 

We found that activation of iPr-amide is dependent upon the activity of FAAH in the brain. 

With potent luciferase substrates, in vivo bioluminescence can be detected at lower levels 

with less luminescent substrate. Improved sensitivity of BLI advances the application to the 

study of fewer cells, deeper structures, and models in which there is a lower level of luciferase 

expression.  
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B. Introduction 

 

Reporter molecules are valuable tools for the study of biological processes in living cells 

and organisms. Following the activity of a reporter molecule in vivo requires the expression of a 

luminescent molecule that can be detected by a cooled charge-coupled device (CCD) camera. 

Detection of fluorescence requires an excitation light reaching the molecule, which upon 

activation emits light at a shifted wavelength detected by a CCD camera [294]. Fluorescent 

reporter molecules can be visualized in living tissue as well as fixed tissue, however 

autofluorescence impairs the sensitivity of fluorescent imaging [294]. Luminescent reporter 

molecules are enzymes that react with a chemical substrate to emit light [256]. One benefit of 

luminescence is that there is little background signal from tissue, so low levels of luminescence 

can be detected [294]. Drawbacks to both fluorescent and luminescent are that signal detection is 

limited by the depth of the tissue [294]. For in vivo studies using mice and rats, bioluminescent 

imaging is widely used due to its high sensitivity, efficiency, and relatively low cost [256].  

The luciferase gene from the firefly, Photinus pyralis, is commonly used in 

bioluminescence imaging. Firefly luciferase reacts with its substrate, D-luciferin, in the presence 

of adenosine triphosphate (ATP) and oxygen to create an excited-state oxyluciferin molecule 

[295]. The coding region of firefly luciferase is 1.633 kb and the gene has been cloned into 

lentiviral, adenoviral and adeno-associated viral delivery systems as well as delivered in a 

plasmid form by high pressure tail vein injection [260, 265, 296-298]. Many transgenic mouse 
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lines expressing firefly luciferase controlled by a variety of promoters also exist. Emission 

wavelength for firefly luciferase is 560 nm, in the yellow-green spectrum of visible light [273].  

D-luciferin analogs have been created by modifying the chemical structure, resulting in 

brighter light emission, red-shifted light emission, and extended decay kinetics [299-301]. So-

called caged analogs of luciferin have also been created. Caged luciferin analogs are inactive 

until enzymatic cleavage that occurs under specific biological conditions such as caspase-3/7 

activation, caspase-8 activation or elevated levels of H2O2 [302-304]. Caged luciferin molecules 

allow luciferin to act as an in vivo biosensor for identification and imaging of a specific process. 

Luciferase mutants have also been characterized that result in prolonged and red-shifted light 

emission [305, 306]. Each improvement in the luciferase-substrate reaction provides a greater 

variety of tools for use in bioluminescent imaging. 

The light emission properties from luciferase are dependent on the structure of the 

substrate on which it acts [301]. By modifying the substrate one can engineer reactions with 

longer duration, greater intensity, and red-shifted emission [301]. Luciferase substrates with 

enhanced properties could be used to study luciferase as a reporter gene in deeper tissues and 

fewer cells, expanding the utility of BLI. One objective of this study was to screen a panel of 

luciferase substrates identifying those with the highest light emission in the brain. To test the 

utility of these substrates, they were examined in a low-expressing transgenic luciferase mouse, 

which expresses luciferase in dopaminergic expressing cells in the brain (DAT-LUC mice). 
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C. Results 

 

1. A screen of modified luciferase substrates identifies molecules with improved light 

output compared with D-luciferin. 

 27 luciferase substrates were tested in this study, 14 synthetic cyclic alkaminoluciferins 

and 13 luciferin derivatives (chemical names and abbreviations listed in Table 4-1). We 

performed a screen to compare luminescence among the substrates using mice previously 

injected with AAV-Luciferase (AAV-Luc) in the striatum (Fig. 4-1, Table 4-2). Each mouse was 

injected with a novel substrate and imaged after 10 minutes, 1 hour, and 2 hours. After 24 hours, 

a point when previous signal has completely diminished, the same mice were injected with 

100mM of D-luciferin and imaged after 10 minutes. For each mouse, the light output relative to 

100mM of D-luciferin at the 10 minutes time point was calculated. 18 solutions resulted in 

greater light output compared with D-luciferin. One substrate was imaged twice, 0.5mM iPr-

Amide, which is the same as 0.5mM iPrNH-Amide, both in 1% DMSO. Both substrates 

demonstrate increased luminescence compared with D-luciferin of 12.7-fold and 6.45-fold, 

respectively. The difference between two measurements of the same substrate seems relatively 

substantial, however, we have previously noted a large degree of variation within this in vivo 

imaging system. CycLuc1 was identified to have the greatest light output relative to D-luciferin.  

To further investigate the difference between CycLuc1 with D-luciferin, we used groups 

of AAV-Luc injected FVB mice. We measured the luminescence of 5mM CycLuc1 and 100mM 

D-luciferin in the same mouse. There was a 6-fold increase in light output from CycLuc1 
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compared with D-luciferin (Fig. 4-2 B). Equal concentrations of the substrates could not be 

tested due to CycLuc1 insolubility above 5mM in concentration. This experiment demonstrates 

that the luciferase substrate CycLuc1 emits more light than D-luciferin and could increase the 

sensitivity in BLI applications. The 6-fold difference from D-luciferin is substantially less than 

the 15-fold difference that was initially detected in the screen, possibly reflecting variability of 

this system. 

 

2. Novel luciferase substrates enable the detection of luminescence in transgenic mice 

expressing luciferase in dopaminergic neurons. 

We wanted to test CycLuc1 and another strong light-emitting substrate, iPr-amide, in a 

transgenic model of luciferase expression in the brain. We bred transgenic mice to express 

luciferase in dopaminergic neurons by crossing mice transgenic for Cre-recombinase inserted 

into the dopamine transporter locus behind an internal ribosome entry site (IRES) (DatIREScre/wt) 

with mice transgenic a conditional luciferase gene whose activity is dependent upon excision by 

Cre-recombinase (Rosa26-Fluc) (Fig. 4-3 A) [307, 308]. DatIREScre/wt mice had black fur and 

Rosa26-Fluc mice had white fur, therefore the original offspring all displayed black fur (all mice 

obtained from Jackson Laboratories, Bar Harbor, ME; see methods section for full description). 

Since luminescence does not cross through black fur, we crossed DatIREScre offspring with white 

Rosa26-Fluc to obtain a line of DatIREScre+ Fluc+ progeny with white fur. The resulting offspring 

express luciferase in all dopaminergic cells of the substantia nigra (SN), ventral tegmental area 

(VTA), and retrorubal field, and we will refer to them as DAT-LUC mice [307, 308]. 
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We were unable to detect any luminescence in DAT-LUC mice with the standard dose of 

D-luciferin (100mM). The two top light-emitting substrates, CycLuc1 and iPr-amide, in DAT-

LUC mice produced detectable luminescence (Fig. 4-3 B). To increase luciferase expression, we 

bred DAT-LUC mice to homozygosity for the conditional luciferase gene, Rosa26-Fluc+/+. In a 

preliminary test of two mice, the Rosa26-Fluc+/+ mouse emitted twice as much light as the 

Rosa26-Fluc+/- mouse (Fig. 4-3 C). 

 

3.) FAAH-dependent activation of iPr-amide is required for reaction with luciferase.  

Fatty acid amide hydrolase (FAAH) is an enzyme expressed in many tissues that 

functions to hydrolyze the endocannabinoid, N-arachidonoyl ethanolamide, and other amides 

[309]. The luciferase substrate iPr-amide is inactive until hydrolyzed by an amidase such as 

FAAH. To test the sensitivity of iPr-amide to FAAH inhibition in vivo we injected 10mg/kg of 

the selective FAAH inhibitor, PF-3845, in AAV-Luciferase injected mice as previously 

described [310]. Another set of mice were injected with vehicle and for each group, one mouse 

was not injected with the inhibitor to demonstrate that the iPr-amide was functional. 30 minutes 

after PF-3845 administration, iPr-amide was injected and the mice were imaged. Results show 

that FAAH inhibitor blocked luminescence of iPr-amide (Fig. 4-4 A, B) (unpaired t-test, 

p=0.0028, n=3 per group). This demonstrates that FAAH inhibition affects the activation of iPr-

amide into an active substrate of luciferase.  
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D. Discussion 

In this study we identify CycLuc1 in a screen of 34 test solutions as a luciferase substrate 

that resulted in greater light emission than D-luciferin in the brain. We tested the two highest 

light emitters identified in the screen, CycLuc1 and iPr-amide, in DAT-LUC mice. With both 

CycLuc1 and iPr-amide at 5mM we could detect luminescence in DAT-LUC mice but not with 

100mM D-luciferin. These findings demonstrate that luciferase substrates with improved light 

emission properties result in greater detection of luciferase activity, meaning that lower levels of 

luciferase expression can be detected with improved substrates. Improved substrates can be used 

to increase the sensitivity of bioluminescent imaging.  

Lastly, we tested whether iPr-amide is being hydrolyzed by FAAH using a selective 

inhibitor of FAAH. In mice previously injected into the striatum with AAV-Luc, we found that 

the specific FAAH inhibitor PF-3845 blocked activation of iPr-amide into an active luciferase 

substrate [310]. This suggests that FAAH is the hydrolase that converts iPr-amide into its active 

form in the brain. This is significant for several reasons. Using iPr-amide as a luciferase 

substrate, it might be possible to study the silencing of FAAH. This would be more relevant to 

the study of gene silencing in the brain than silencing luciferase because it is not an 

overexpressed transgene. The second use for iPr-amide and luciferase is to study the inhibition of 

FAAH, a hydrolase that is responsible for cleaving the endogenous cannabinoid, N-arachidonoyl 

ethanolamide, as a strategy for the treatment of chronic pain [311]. One additional control that 

would be helpful in strengthening the conclusion is to test the FAAH inhibitor with D-luciferin 

or another luciferase substrate that does not require FAAH cleavage for activation. This would 

demonstrate that the inhibitor is not interfering with a luminescent or transport process unrelated 

to blocking the hydrolase activity of FAAH. 
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In conclusion, we used mice injected with AAV-Luc in the striatum to screen 34 

luciferase substrate solutions and identified CycLuc1 as a substrate with improved light-emitting 

properties compared with D-luciferin, confirming other studies done in vitro and in cell culture 

[301]. Improved light-emitting substrates can be applied to studies involving BLI to improve 

their sensitivity. BLI has been used in a variety of studies measuring and inhibiting growth of 

tumor cells, studying spread and replication of infectious diseases, and following gene silencing 

[257, 260, 263, 264, 312, 313]. BLI is a widespread tool for following biological processes in 

vivo and a promising tool for drug discovery applications [314]. With improved substrate for 

detection of low levels of luciferase, BLI applications can be expanded to study structures in 

deeper tissues or when luciferase is expressed in fewer numbers of cells. 

 

E. Materials and Methods 

1. Mouse lines and genotyping  

14 FVB mice (female, 3-6 months old, FVB/NJ from Jackson Laboratory, Bar Harbor, 

ME) were injected with 5e9GC AAV-Luc-Htt (described in Chapter III). Experiments in AAV-

injected mice were performed one year after injection. Each mouse was used 1 or 2 times to test 

luciferase substrates. 

Mice homozygous for the Rosa26-Fluc transgene (male and female, 3-6 months old, 

129S-Gt(ROSA)26Sor
tm3(CAG-luc)Tyj/J, stock number 009043 from Jackson Laboratory, Bar Harbor, 

ME) were mated with mice heterozygous for the DatIREScre allele (male and female, 3-6 months 

old, B6.SJL-Slc6a3
tm1.1(cre)Bkmn/J, stock number 006660 from Jackson Laboratory, Bar Harbor, 
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ME) [307, 308]. Genotyping for Rosa26-Fluc and DatIREScre mice was performed according to 

protocols found on the Jackson Laboratory website. Primers for presence of Cre-recombinase: 

oIMR6625 5'-TGGCTGTTGGTGTAAAGTGG-3' “Common”, oIMR6626 5'-

GGACAGGGACATGGTTGACT-3' “Wild type Reverse”, oIMR8292 5'-

CCAAAAGACGGCAATATGGT-3' “Mutant Reverse”; mutant band =152 bp, 

heterozygote=152 bp and 264 bp, and wild type band= 264 bp. Primers for GtRosa-Luciferase: 

oIMR8038 5'-TAAGCC TGCCCAGAAGACTC-3', oIMR8545 5'-

AAAGTCGCTCTGAGTTGTTAT-3', oIMR9493 5'-AAATCAGAGAGATCCTCATAAAGG-

3';  mutant band 190 bp, heterozygote bands 235 bp an 190 bp, wild type band 235 bp. 

 

2. Stereotactic injection  

Mice were anesthetized with 250 mg/kg tribromoethanol (2.5 g 2, 2, 2, tribromoethanol 

dissolved in 5mL amylene hydrate into 200mL PBS). Anesthetized mice were placed on a heated 

pad in a stereotactic frame. Superglue (Loctite) was applied to the surface of the fur between the 

ears, avoiding eyes and exposed skin. After 10-20 seconds, the glue is gently pulled off to 

remove fur. The exposed skin is cleaned with betadine and an incision is made posterior to 

anterior. The skin is pulled aside and the needle is placed over the bregma. Measurements for 

drilling the hole and placing the needle are: anterior 1mm, lateral 3mm and ventral 2mm from 

the bregma. Once the needle is lowered, it rests there for 2 minutes before infusion begins. After 

infusion the mouse rests for 2 minutes before the needle is withdrawn. The incision is closed 

with clear, undyed suture (monocryl undyed monofilament) and the animals are allowed to 

recover on a heated pad at 37C. 
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3. Imaging mice 

Mice were anesthetized with 5% isoflurane and placed into the Xenogen (now Caliper) in 

vivo imaging system (IVIS 100). In mice with black fur, the fur was removed with glue as 

previously described in the stereotactic injection methods.10 minutes prior to imaging, mice are 

injected with 100mM D-luciferin into the ip space (from a 30mg/mL stock solution dissolved in 

sterile water). Luminescence measurements were taken by 1 minute exposure. In AAV-injected 

mice, a region of interest (ROI) is drawn over each injection site to quantify luminescence from 

the injected area. In transgenic mice, ROI were generated over the entire head for the albino mice 

or over the exposed skin in the black mice. Data were collected as flux (photons / second) or 

radiance (p/s/cm2/sr).  

 

4. FAAH inhibition 

Eight mice were pre-treated with either 10mg/kg FAAH inhibitor by ip injection (PF-

3845, n=3), vehicle by ip injection (n=3), or not injected with inhibitor (no inj. mice) as a 

negative control. 30 minutes later, all mice received 0.5mM iPr-Amide by ip injection. Mice 

were imaged 10 minutes after iPr-Amide injection. FAAH inhibition was achieved using PF-

3845 dissolved in 18:1:1 v/v/v saline:emulphor:ethanol [310]. 
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Figure 4-2: 5mM CycLuc1 results in 6-fold greater luminescence than 100mM D-luciferin. 

A.) Structures of D-luciferin and CycLuc 1. B.) Mice injected with AAV-Luc-Htt were imaged 

using 100mM D-luciferin. The same mice were imaged the next day with 5mM CycLuc1. There 

was a 6-fold increase in luminescence due to the CycLuc1 substrate (paired t-test p=0.0006, 

n=6). Data are reported as mean luminescence ± SD.
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Figure 4-3: Luminescence can be detected with a novel luminescent luciferase substrate but 

not with D-luciferin. A.) We crossed transgenic mice with the gene for Cre recombinase under 

control of the dopamine transporter promoter (DAT) with mice expressing the gene for firefly 

luciferase under control of the GtRosa promoter. Offspring are referred to as DAT-LUC mice 

and express luciferase in dopaminergic neurons. B.) Luminescence from DAT-LUC mice (black 

mice with fur removed from the head) is not detectable using D-luciferin as a substrate, but is 

detectable using two new luciferase substrates. C.) Two DAT-LUC mice were compared for 

luciferase activity. One mouse was homozygous for luciferase, the other hemizygous for 

luciferase.
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Figure 4-4: FAAH inhibition prevents activation of iPr-Amide resulting in decreased 

luminescence in the brain. Eight mice were pre-treated with either injection of FAAH inhibitor, 

vehicle, or no injection (no inj.) 30 minutes prior to ip administration of 0.5mM iPr-Amide. Mice 

were imaged 10 minutes after iPr-Amide injection. There was significantly less luminescence 

with the FAAH inhibitor (unpaired t-test, p=0.0028, n=3 per group). ** p<0.01.
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Table 4-1: Luciferase substrate names and abbreviations. 27 luciferase substrates were used 

in this study. 14 substrates are synthetic cyclic alkylaminolucferins, and 13 substrates are 

derivatives of luciferin. The chemical names have been abbreviated for use in figures and text, 

and are listed in the right column. 
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Table 4-1: Luciferase substrate names and abbreviations. 

Substrate name Abbreviation 

CycLuc1 CycLuc1 

CycLuc1 amide CycLuc1-Amide 

CycLuc2 CycLuc2 

CycLuc2 amide CycLuc2-Amide 

CycLuc2 potassium salt CycLuc2 K-Salt 

D-Luciferin amide D-Luciferin-Amide 

CycLuc3 CycLuc3 

CycLuc4 CycLuc4 

CycLuc6 CycLuc6 

CycLuc7 CycLuc7 

CycLuc9 CycLuc9 

CycLuc9 potassium salt CycLuc9 K-Salt 

CycLuc10 CycLuc10 

CycLuc11 CycLuc11 

CycLuc12 CycLuc12 

6'-methylamino luciferin or 6'-MeNHLH2 Monomethyl 

6'-dimethylamino luciferin or 6'-Me2NLH2 Dimethyl 

6'-isopropylamino luciferin amide iPr-Amide, iPrNH-Amide 

6'-methylamino luciferin amide MeNH-Amide 

6'-ethylamino luciferin amide EtNH-Amide 

6'-isobutylamino luciferin amide iBuNH-Amide 

6'-propanolamino luciferin Propanol 

6'-propanolamino luciferin amide Propanol-Amide 

6'-dimethylamino luciferin methyl ester Me2N-methyl ester 

6'-ethylamino luciferin methyl amide EtNH-Monomethylamide 

6'-aminoluciferin or 6'-NH2LH2 Amino 

6'-isobutylmethylamino luciferin or 6'-
iBuNMeLH2 

iBuNMe 
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Table 4-2: Luciferase substrates tested in mice injected with AAV-Luciferase in the brain. 

Luciferase substrates were ip-injected in mice expressing AAV-delivered Luciferase in the 

striatum. Mice were imaged 10 minutes, 1 hour, and two hours after injection. On the following 

day, mice were imaged 10 minutes after ip administration of 100mM D-luciferin. All injections 

were 100µL. The concentration of luciferase substrate is noted before the name of the substrate, 

and following the name of the substrate is the concentration of dimethyl sulfoxide (DMSO) if 

present in the solution. The final column is the ratio between the average radiance-background 

radiance of substrate injection and D-luciferin for the same mouse. Each value represents one 

mouse tested.
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Table 4-2: Luciferase substrates tested in mice injected with AAV-Luciferase in the brain. 
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CHAPTER V 

 

 

SUMMARY AND CONCLUSIONS 

 

 

There is no cure for Huntington’s disease, and designing a single therapy is a challenge 

due to the multiple toxic effects mutant huntingtin has on neuronal function [2]. Several 

approaches exist for designing treatments for Huntington’s disease (HD). One approach attempts 

to correct the toxic effects of mutant huntingtin, including strategies to increase global 

transcription, enhance general neuroprotection, and inhibit cleavage of mutant huntingtin into 

toxic fragments. These strategies often address only a single downstream effect of mutant 

huntingtin, and a comprehensive treatment based on this approach would require multiple 

therapies to counteract the toxicities due to mutant huntingtin. A second approach is to decrease 

the amount of mutant huntingtin either through suppression of transcription or translation or by 

augmenting its degradation. Through this approach, a single therapeutic agent could prevent all 

downstream toxicities. This dissertation examines two strategies for reducing mutant huntingtin 

in the cell: by increasing the degradation of huntingtin protein and silencing mutant huntingtin 

mRNA.  

In Chapter II, I used a transgenic mouse model to explore the effect of a decrease in 

puromycin sensitive aminopeptidase (PSA) in the progression of HD. To test the effect of 

decreased PSA on HD-related behavior and pathologies, we bred mice that were heterozygous 

for the PSA allele and homozygous for the knock-in 140Q huntingtin gene. PSA heterozygosity 
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in the HD background resulted in mice with a greater number of inclusion bodies and worsened 

performance on the raised beam test, both of which are markers for the accumulation of mutant 

protein and the progression of HD. The importance of these results within the field of HD 

research is in the evaluation of PSA’s effect within the brain in a mouse model of Huntington’s 

disease, advancing the work done in studies using cultured cells or transfected muscle tissue. 

These findings are consistent with what has been seen in other experimental systems and support 

the hypothesis that normal PSA expression contributes to the defense of neurons against mutant 

huntingtin.  

The mechanism of PSA degradation of huntingtin remains unknown, with reports 

differing on whether PSA functions directly to degrade huntingtin or indirectly by increase 

autophagic clearance of aggregated proteins. Alternatively, as studies demonstrate the benefits of 

PSA-overexpression in other neurodegenerative diseases, it might act by a general 

neuroprotective mechanism. The ubiquitin-proteasome system represents the primary pathway 

for degradation of damaged or misfolded proteins where they are digested by endopeptidases 

into peptides from 3 to 22 residues in length [115, 315]. Peptides exit the proteasome for further 

degradation by exopeptidases in the cytosol [127]. PSA is one such exopeptidase, able to cleave 

all amino acid sequences while also possessing the unique ability to cleave polyQ [122]. The 

mechanism of PSA protection in HD may be in digesting polyglutamine-containing peptides 

released by the proteasome, especially as mutant huntingtin can lead to ejection of long polyQ 

peptides, increasing the importance of PSA in clearing the aggregate-prone polyQ peptides  

[125][121]. 

The autophagy-lysosomal pathway degrades misfolded and aggregated mutant 

huntingtin, and differing opinions exist regarding the effect of PSA on autophagy. In cell culture 
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experiments grossly over-expressing PSA, markers of autophagy were increased [123]. 

However, in transgenic mice that over-express PSA three-fold in the brain, there was no detected 

increase in markers for autophagosome formation [200]. It is difficult to compare these findings 

as they are performed under vastly different conditions, however, it is possible that the observed 

increase in autophagy in cells may be a response to an acute increase in PSA expression or a 

response to massive overexpression of PSA (10-100-fold). As PSA is a proteolytic enzyme, 

increasing expression could result in a toxic insult to the cells, influencing autophagy activation, 

which would incidentally also increase mutant huntingtin clearance. We observed gliosis and 

neuron loss in mice expressing the human form of PSA from a viral vector, possibly indicating 

that the peptidase activity is damaging to neurons at high and unregulated levels. In transgenic 

animals overexpressing PSA, cells have had the time to adapt and possibly compensate for 

increased PSA expression, these animals show no toxicity and no increase in autophagy. We 

looked for a decrease in autophagy in the PSA heterozygous HD mice, however were unable to 

detect LC3-II under the conditions tested. LC3-II is present at a small amount in wild type 

animals and slightly increased in HD animals, which we were not able to detect. The debate 

remains open as to mechanism for PSA in HD and other neurodegenerative diseases. 

If PSA is protective against mutant huntingtin, then an increase in PSA activity would 

ameliorate the disease, representing a therapeutic strategy for the treatment of Huntington’s 

disease. There are several ways to increase PSA activity including gene therapy to increase gene 

expression and small drug modifiers to enhance its endogenous activity. In this study, we created 

an AAV expressing the human PSA gene under a CMV promoter. As mentioned previously, it 

resulted in gliosis and neuronal cell loss, raising many questions about the effect of PSA 

overexpression in neurons. The majority of published studies overexpressing PSA have shown it 
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to be tolerated in different cell-types and organisms, however there was mention of toxicity when 

expressed in Drosophila photoreceptors [123, 200]. Our results draw into question the benefit 

versus risks related to increased PSA activity in the brain, especially if neurons are particularly 

sensitive to increased expression of PSA. One important question to be answered in future 

experiments is whether there is a threshold for neurons above which PSA expression becomes 

toxic.  

Future study is needed in the design of AAV-PSA, to test weaker promoters for a low 

level of constitutive expression, or conditional promoters, such as tetracycline-regulated 

promoter systems, to control the timing of expression. Aside from viral expression, another 

approach to study the effect of increased PSA expression on HD in vivo is to cross the transgenic 

PSA overexpressing mouse with an HD mouse to see if ameliorates the disease [200].  These are 

methods to test in an experimental manner the interaction of PSA and mutant huntingtin. These 

approaches do not translate easily into therapeutic application, as gene therapy for neurologic 

diseases is still being tested in large animal studies for viral spread and toxicity.  

Another approach is to identify small molecule enhancers of PSA. This would require 

performing a small molecular screen to identify modifiers of PSA activity in a cell culture or in 

vitro assay. Candidate compounds would be further characterized in cell culture experiments and 

then ultimately tested HD animal models to look for modification of disease markers such as 

performance on the raised beam test, rotarod test, or inclusion body formation. A small molecule 

drug would be therapeutically applicable and less invasive than a gene therapy approach. One 

drawback to this approach is that a small molecule modifier could be nonspecific, potentially 

altering other enzymes in the cell or other tissues resulting in adverse effects. Off-target effects 
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could result in toxicity or create confounding variables in interpreting results, especially in 

addressing the mechanism of action.  

Further research must be done to understand the role of PSA in the brain and other 

tissues. PSA knockout animals exhibit interesting phenotype as they are smaller than their 

littermates and behave differently than heterozygous and homozygous littermates during 

handling and on behavioral tests. These knockout animals are difficult to study because they do 

not survive at the same rate as their littermates, often dying shortly after birth. It would be 

fascinating to see the effect of a conditional (brain-specific) knockout of PSA to evaluate the 

differences in behavior in adult mice.  

There were also lessons in experimental design gleaned from performing extensive 

behavioral tests. Initially, without knowing how severely the PSA deficiency would affect the 

HD mice, they were tested on the beam at a young age and followed every 2-4 weeks. This 

presented challenges, as with repeated testing, the mice behaved differently, losing their fear of 

the open beam, which is thought to be a motivating factor to cross to the platform. Mice would 

sit in the middle of the raised beam for 15-20 seconds or until prodded gently. From these 

observations, we chose not to use repeated testing in the later experiments as it interferes with 

the ability to assess locomotion using the raised beam test. This potentially interfered with the 

ability to detect differences in the genotypes that were tested repeatedly because when mice walk 

slowly, inching their way down the beam or refuse to walk altogether, then their locomotor 

ability is not being accurately evaluated. We found that the raised beam test is most effective 

when animals are trained once and then tested once before becoming accustomed to the handler 

and the apparatus. 
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In addition to investigating ways to reduce mutant huntingtin protein, I examined RNAi 

as a way to degrade mutant huntingtin mRNA. In chapter III, I described a method for in vivo 

measurement of gene silencing in the brain. Currently, there is no way to screen RNAi constructs 

in the brain. The general procedure for identifying optimal silencing constructs is to test siRNA 

and miRNA in cell culture after which the best candidates are chosen for in vivo testing. One 

limitation is that a certain sequence, promoter, or structure may be highly efficient in an 

immortalized cell line with transfection reagent, but is less effective in neurons of the brain. The 

goal was to create a model by which gene silencing could be followed in the brain of living mice 

and to apply the system to test RNAi against therapeutically relevant mutant huntingtin 

sequences. This model is based on bioluminescent imaging (BLI) using firefly luciferase as a 

reporter molecule. I created two adeno-associated viruses (AAV) expressing firefly luciferase 

with six huntingtin RNAi target sites in the 3'-UTR. Furthermore, each huntingtin target site 

contained a SNP site that can be used to specifically target the mutant huntingtin allele. With a 

validated system, these two vectors can be used to describe the time course of siRNA, to 

compare structures, sequences, and delivery strategies, and to study the effectiveness of allele-

specific silencing in the brain.  

Several challenges arose in the validation of the silencing system. There was significant 

variation in luminescence between groups of AAV-Luc-Htt injected mice (intermouse variation) 

as well as between measurements of the same mouse on different days (intramouse variation). 

We hypothesized that the intramouse variation was due to inconsistent absorption of luciferin 

from the intraperitoneal space. A comparison of intraperitoneal (ip) and intravenous (iv) 

injections found that there was less variation in the intravenous injected group, supporting our 

hypothesis [316]. They also note poor distribution to the brain, compared to other organs, after 
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both ip and iv injections [316]. To minimize this variation, we injected mice bilaterally and 

calculated luminescence as a ratio of left side flux divided by right side flux. We compared the 

variation between just the flux values on one side in that same group. The amount of silencing to 

achieve silencing when calculating results as a ratio was 35% compared to 40% needed when 

just looking at the flux. Although both methods resulted in highly variable measurements, the 

ratio system provided a slightly more sensitive assay to detect silencing. There was significant 

intermouse variation as well. This has been observed in other experiments within our lab, and 

described in published studies [270]. Intermouse variation could be due to differences in 

measurement and placement of the needle during injection, which can affect slightly different 

anatomical structures within the brain, affecting diffusion and transport of the virus. Meticulous 

measurement and surgical technique was employed to minimize the variation of luciferase 

activity between mice. The large variability, even among mice stably expressing luciferase, 

presents a major limitation of this method and the ability to detect silencing in this study. 

To test this BLI silencing system, I targeted silencing of luciferase using three different 

constructs: cc-siRNA, unconjugated siRNA, and AAV-shRNA. Decreased luminescence was 

detected with all three RNAi agents. These proof-of-principle experiments show that RNA 

silencing can be detected in the brain and pave the way for a comparison of huntingtin specific 

silencing constructs. These luciferase-targeting RNAi molecules demonstrated strong silencing 

properties in vitro, with >80-90% silencing at maximum concentrations in vitro. However, 

despite the strength in cell culture, silencing in vivo was not robust. This draws into question the 

sensitivity of the assay, especially when evaluating RNAi compounds with weak activity under 

optimal in vitro conditions.  
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Although cc-siRNA targeting luciferase decreased luminescence compared with control 

cc-siRNA, an unexpected finding was that both groups of cc-siRNA increased luminescence 

compared with PBS, and co-transfection in cell culture also increased luminescence independent 

of serotype, cc-siRNA sequence, and cell type. Two possible mechanisms exist by which this is 

possible: cc-siRNA could increase the activity of luciferase or improve the transduction of AAV-

Luc-Htt in cells and in the brain. The finding that cholesterol conjugated siRNA interacts with 

AAV raises the possibility that there could be a synergistic effect of co-administering AAV and 

cc-siRNA. One initial method to test this hypothesis is to label AAV capsid with Cy5 fluorescent 

dye and mixing it with control (non-silencing) cc-siRNA or non-cholesterol-conjugated siRNA 

or control solution. The degree of spread and transduction efficiency can be compared between 

the two groups to evaluate the effect of cc-siRNA on viral uptake. Subsequent to the defense of 

this dissertation, the experiments with in vivo co-injection of AAV-Luciferase and cc-siRNA and 

the cell culture experiments were repeated by a different member of the lab who could not 

replicate the findings presented in this dissertation. One possibility is that there was something in 

the purification of the cc-siRNA from the manufacturer that was subsequently not used in the 

purification several years later that may have influenced luminescence or viral transduction or 

expression. 

Since siRNA and AAV-shRNA against luciferase demonstrated silencing using this 

assay, we tested silencing of two huntingtin-specific sequences, containing either SNP site 2273 

or 2307. High dose (14nmol) single injections of siRNA targeting these sites did not show 

silencing in vivo with our assay, and neither did AAV-miR2273 co-injected with AAV-Luc-Htt 

at a high dose.  AAV-miR2307 showed some silencing effects when analyzed by luminescence, 

(but not by the ratio system) compared with the mismatching target. One limitation of this 
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experiment was that these RNAi sequences were not very effective in vitro, reducing their 

potential effectiveness in vivo. The siRNA and AAV-miRNA showed weak activity in cell 

culture studies, only reaching about 50% silencing at maximal siRNA concentration, whereas the 

siRNA against luciferase approached 100% silencing at the same concentration. It is likely that 

the in vivo system is not sensitive enough to detect silencing by weak siRNA as it is barely able 

to detect silencing from siRNA that demonstrate robust silencing cell culture. 

Is this system feasible? No, under these conditions, the in vivo AAV-Luc-Htt system was 

not able to adequately detect silencing of a range of RNAi constructs. The goal was for this 

method to be sensitive enough to compare RNAi compounds and describe their time course of 

silencing. From my experiments, it appears the system can detect silencing only if it exceeds the 

variation within the system. While the AAV-Luc-Htt BLI system may have shown positive 

results with strong silencing RNA constructs, the results do not demonstrate the sensitivity 

necessary for broad application to a range of RNAi targets as intended. There are several 

experimental changes that could improve the success of the assay. To overcome the variation in 

the system, one could increase the potency of the RNAi by increasing dose, frequency of 

administration, and using silencing sequences demonstrating high efficacy in vitro. Published 

studies using naked siRNA to silence in the brain rely on infusion or pump-delivery system 

rather than single injection [279, 281, 282]. Using a pump-delivery system could increase the 

dose and the distribution of siRNA resulting in a higher likelihood of detecting silencing over 

time. AAV-shLuc at a 2:1 ratio with AAV-Luc-Htt was shown to decrease luminescence, and 

this dose was increased in subsequent experiments with other silencing vectors. A dose curve of 

AAV-shLuc would have been useful to identify the range of effective doses. Other methods of 

increasing potency would be to target multiple binding sites in the 3'-UTR, either repeating the 
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same sequence or targeting two or more different sequences, and by creating silencing vectors 

that express multiple hairpin RNAs. To improve siRNA potency, there are numerous 

conjugations or nanoparticles that may improve diffusion or transport across cell membranes in 

order to improve delivery of siRNA [274, 280, 317]. 

It is imperative that future studies with in vivo BLI use standardized viral constructs that 

employ identical serotypes, promoters, and structures, which influence the distribution, 

transduction efficiency, and potency. The differences in the viruses used in this study are 

described in Table 3-2. The luciferase virus was the same in all experiments, however the 

silencing viruses differed in structure (self-complementary or single-stranded), serotype (1, 8, 9), 

and promoter (CMV, CBA, U6). The results from these experiments cannot be directly 

compared, however they can provide trends that are useful in guiding future experiments. For 

example, both successful viral silencing constructs used the U6 promoter, which may provide the 

strongest miRNA expression able to match the expression from the CMV promoter-driven 

luciferase.  

One limitation in this study is that the serotypes of silencing and reporting vectors were 

often different, which can affect their relative distribution within the brain. Co-localization of the 

viruses is vital to the sensitivity of the assay. There are varying reports comparing the spread of 

different serotypes in the brain, as summarized in Chapter III. In this study, we did not 

investigate the co-localization of the reporter and silencing vectors. I recommend that this be 

done in future studies to improve interpretation of results. Several methods exist, including 

labeling the silencing virus with a fluorescent protein such as GFP and using 

immunofluorescence against luciferase or FISH for luciferase mRNA to calculate the co-

transduction of cells. Fluorescent dyes such can be conjugated to the cc-siRNA to evaluate 
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spread shortly after injection. These labeling experiments should be done using control AAV 

silencing vectors because if the hairpin or siRNA degrades the luciferase protein or mRNA, then 

it will appear as if there is no co-localization. One experimental method that would ensure co-

localization of luciferase and hairpin RNA is to use a Cre/ LoxP recombination system. Stop-

floxed luciferase gene-containing mice would be injected with a silencing vector expressing both 

the Cre-recombinase gene and the silencing hairpin RNA. In this case all cells that have the 

silencing RNA will also express luciferase. 

Another limitation of this system is the high level of luciferase expression by the CMV 

promoter. A lower-expressing promoter would provide more favorable conditions for siRNA-

mediated silencing, necessitating lower siRNA concentrations that are more similar to what 

would be needed to silence an endogenous target. Since it is not practical to use endogenous 

promoters with the AAV-delivery system due to the size constraints and complexity of 

regulatory sequences, an alternative approach is to target insertion of the luciferase gene into the 

genome in a position that it is regulated by a specific promoter. Transgenic mice would express 

luciferase by the same promoter and at the same level as an endogenous gene, such as huntingtin. 

One could also target genes specific to the brain, so that luciferase is only expressed in the brain 

or the striatum using promoters for preproenkephalin, or dopamine 1 receptor [318, 319]. 

Developments in genome editing make this a possibility using the recently characterized system 

known as CRISPR for Clustered Regularly Interspaced Short Palindromic Repeats [320, 321]. 

Somewhat similar to RNAi but targeting double-stranded DNA (dsDNA), CRISPR RNA 

(crRNA) directs sequence-specific cleavage of dsDNA by Cas (CRISPR-associated) 

endonucleases [320]. Although it is a system unique to Bacteria and Archaea, the CRISPR-Cas9 

complex has been engineered to function in eukaryotic cells, correcting mutant genes in human 



200 
 

and mouse cells, creating targeted knockouts and conditional alleles [322-327]. Two studies have 

produced targeted knock-in alleles using the CRISPR-Cas9 system, by co-injecting Cas9 mRNA, 

single guide RNAs, and DNA oligos that incorporate into the nicked or cut dsDNA by 

homology-directed repair [328, 329]. To target the luciferase gene to a specific promoter, the 

Cas9 mRNA, CRISPR guide RNA, and luciferase DNA oligos must be injected into a single cell 

embryo where the Cas9 would introduce a sequence-specific cut to the genome of one or both 

alleles. Homology-directed repair would insert the luciferase DNA into the genome. Potential 

drawbacks include that the endogenous gene would likely be disrupted resulting in a total or 

partial knockout of that gene. Careful gene targeting or use of an internal ribosomal entry site or 

2A peptide sequence would be necessary to insert the luciferase gene within a correct reading 

frame. Off-target effects are also possible, where luciferase would be inserted into other genomic 

sites, thereby disrupting other genes and possibly expressing more luciferase than intended. 

Creating a mouse that expresses luciferase at a lower level would be more amenable to silencing 

but low luminescence could limit detection using D-luciferin. In Chapter IV we test new 

luciferin substrates in vivo that would enable detection of low levels of luminescence. 

The experimental design using bilateral injections was intended to decrease variation, 

however we found that luminescence from one side of the mouse spread across the midline, 

reducing the ability to detect changes in luminescence. This is likely the result of both virus 

diffusion to the midline and light-scattering through the tissue. This method was tested with D-

luciferin, which emits short wavelength light resulting in high light-scattering. Due to these 

challenges, I do not recommend that the bilateral injection design to study RNA silencing in 

vivo.  
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This method could be improved with substrates, such as those tested in Chapter IV, that 

are red-shifted resulting in less light scattering through tissue. In Chapter IV, we demonstrated 

that two compounds, CycLuc1 and iPr-amide, have greater activity than D-luciferin and 

improved sensitivity in luciferase-expressing mice. This capability to detect low luminescence 

from deep brain structures advances the application of BLI to test more subtle findings in mice or 

even larger animals. Newer generations of BLI instruments with three dimensional imaging 

capabilities are now being used with microCT scanning to create three dimensional 

quantification of luminescence [312, 330]. Renilla luciferase and improved luminescent enzymes 

are being used for detection of viral expression and for normalization of firefly luciferase 

expression [313, 331]. A drawback to the viral vectors expressing shRNA in this study is that 

expression by constitutive promoters cannot be turned off. One advance that could be made is to 

employ promoters regulated by small molecules enabling control of shRNA expression [332, 

333]. This would enable differences in luminescence to be compared with and without shRNA in 

the same animal, similar to the studies with siRNA.  

Taken together these studies employ in vivo approaches for testing potential therapeutic 

agents relevant to Huntington’s disease.  Neuronal loss following overexpression of PSA raises 

concerns over the safety and tolerability of this protein in neurons. The implication of this 

observation is that, although a therapy may be tolerated in cell culture or non-neural tissues, it is 

imperative to study overexpression in tissue that manifests the disease for safety and toxicity. To 

a similar extent, this dissertation explores using BLI to follow silencing of luciferase in the brain, 

proposing a method of tagging luciferase with huntingtin target sequences to test potential 

therapeutics in vivo to identify the most effective design. This system requires further 

optimization in order to achieve the sensitivity necessary to detect subtle changes in 



202 
 

luminescence for meaningful comparisons. There remain many hurdles to the application of 

RNAi in the treatment of HD, including delivery and design of structures. Bioluminescent 

imaging has the potential to provide valuable information, especially with advances in imaging 

and luminescent substrate design. 
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