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Abstract 
 

Evaluating our environment by deciding what is beneficial or harmful, pleasant or 

punishing is a part of our daily lives.  Seeking pleasure and avoiding pain is a 

common trait all mobile organisms exhibit and understanding how rewarding 

stimuli are represented in the brain remains a major goal of neuroscience.  

Studying reward learning in the fruit fly, Drosophila melanogaster has enabled us 

to better understand the complex neural circuit mechanisms involved in reward 

processing in the brain.  By conditioning flies with sugars of differing nutritional 

properties, we determined that flies trained with sweet but non-nutritive sugars 

formed robust short-term memory (STM), but not long-term memory (LTM).  

However, flies conditioned with a sweet and nutritious sugar or a sweet non-

nutritious sugar supplemented with a tasteless nutritious compound, formed 

robust 24 hour LTM.  These findings led us to propose a model of parallel 

reinforcement pathways for appetitive olfactory conditioning in the fly, in which 

both sweet taste and nutrient value contribute to appetitive long-term memory.  

We followed this line of research by examining the neural circuitry in the fly brain 

that represents these parallel reward pathways.  We found that the biogenic 

amine octopamine (OA) only represents the reinforcing effects of sweet taste. 

Stimulation of OA neurons could replace sugar in olfactory conditioning to form 

appetitive STM. Surprisingly, implanting memory with OA was dependent on 

dopamine (DA) signaling, which although being long associated with reward in 
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mammals, was previously linked with punishment in flies.  We found that OA-

reinforced memory functions through the α-adrenergic OAMB receptor in a novel 

subset of rewarding DA neurons that innervate the mushroom body (MB). The 

rewarding population of DA neurons is required for sweet and nutrient reinforced 

memory suggesting they may integrate both signals to drive appetitive LTM 

formation.  In addition, OA implanted memory requires concurrent modulation of 

negatively reinforcing DA neurons through the β-adrenergic OCTβ2R receptor. 

These data provide a new layered reward model in Drosophila in which OA 

modulates distinct populations of both positive and negative coding DA neurons. 

Therefore, the reinforcement system in flies is more similar to that of mammals 

than previously thought.    
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Preface to Chapter I 

…and in flies, you say? 
 

In the later years of working on a Ph.D., one gains a certain perspective that 

comes only with time in the lab.  The most fruitful example of this comes in 

describing one’s work to anyone outside of science. A bright and sprightly first or 

second year student might proudly reply to an inquisitive mind asking about their 

work (big breath): “my Ph.D. is on looking at novel roles for the biogenic amine 

octopamine functioning though a subset of mushroom body horizontal lobe-

innervating dopamine neurons via an α-adrenergic as well as β-adrenergic-like 

receptor in driving both short term and long term appetitive memory in Drosophila 

melanogaster, which, in case you were wondering is an excellent model 

organism to study this because……” After years of skeptical at best, disdainful at 

worst looks from my family members on holidays after describing what it was I 

did in lab, I found the gift of brevity to be a true ally in conversation: 

 
Relative 1:  So what is it that you do in school? 
Me:   I work on learning and memory 
Relative 2:  Wow, like remembering and Alzheimer’s and stuff? ‘Cause 

last week I totally forgot where my keys were. Are you 
working to help me with that? 

Me:   Sure. 
 

However, while not mentioning our little friend the fruit fly as the subject of our 

work lends itself to a much smoother conversation, it also does the Drosophila 
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model an injustice.  Throughout my thesis work and seen in numerous prior 

studies, every time we’ve challenged the fly with a new task to investigate just 

how complex its relatively small brain might be, every time we pushed what we 

thought the fly could learn or recall, it has stood up to the task and delivered with 

flying colors. Such a small brain is in fact, quite capable of complex memory 

tasks (Chittka & Niven, 2009), recalling the relative value of different reward 

signals (Burke & Waddell, 2011), punishment (Yin et al., 2009), and even is able 

to detect internal motivational states to gate expression of memory (Krashes et 

al., 2009). 

 

While primate and rodent models have long been used in the analysis of 

behavior, disease and the brain, the fruit fly Drosophila melanogaster is an 

excellent organism for the study of the genes and neural circuits underlying the 

complex processes of learning and memory.  Their cost effectiveness of 

maintenance, high fecundity, and ease of genomic manipulation has long made 

the fly an excellent model to investigate the genetics of development, 

immunology and neuroscience.  But the great advantage the fly has over other 

models is the wide arsenal of ever expanding genetic tools we have at our 

disposal to manipulate specific neural populations in the intact fly brain.  We have 

the power to selectively turn neurons of interest “on” or “off” with a pulse of light 

or burst of heat.  We can knockdown a gene in a single neuron to test what role it 

might play in learning and memory, then return that gene to restore its normal 
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function.  We can even image neural responses to external stimuli in an intact 

living fly brain, to create a functional road map of neuronal connections. 

 

For all these reasons and many more, I’ve found working with fruit flies, in 

contrast to many people’s reactions of “ew,” quite a pleasurable experience.  The 

fly has enabled me to explore questions underlying reward learning, how circuits 

are arranged in the brain and how an organism learns and remembers, 

endeavors difficult to investigate with such ease in any other system. For all that I 

believe I owe Drosophila and those who walked the path of the fly before me a 

debt of gratitude.   

 

Thanks, and I’ll remember to turns the lights off in the behavior rooms when I’m 

done.  

 

Christopher J. Burke 

May 10, 2013 
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Chapter I: An Introduction to Learning and 
Memory in the Fly 

 

At their most basic level, our memories are what make us who we are, direct our 

behavior, and allow us to plan for the future based on past experience. We exist 

in a present that is in a constant flux of becoming our past and as the future lies 

before us, we move forward with our remembered experience to help guide us.  

In the past it has been believed that while our physical selves and bodily actions 

rested in the physical world, our thoughts, emotions and memories resided in a 

more ethereal plane, inaccessible to us.  Only in recent years have we begun to 

explore the corporeal nature of “the mind” and how it fits into our current 

understanding of the human brain. 

 

But what are memories? How does a change in synaptic strength result in 

recalling the exact smell of a particular day at summer camp as a child? Is there 

really a physical representation in your brain for the words to your favorite song?  

While our progress in understanding the human brain has advanced by leaps 

and bounds, we are still left puzzled by some of the most basic questions of 

learning and memory.  As we sit on the precipice of a new era of neuroscience 

research, soon to be characterized by the potential merits of the new BRAIN 

Initiative, it’s tempting to wonder whether we’ll ever fully understand our own 

brains, or if there’s an aspect to us that really does lie outside our physical world. 
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Olfactory Learning and Memory in Drosophila 
 

The concept that one could study learning and memory in a fruit fly is not a novel 

one, and the use of Drosophila melanogaster as a genetic model dates back over 

a century. However, with the rise of molecular biology and molecular genetics 

throughout the 1950’s and 60’s, it was debated just how much of ourselves our 

genes control. For while it had been known for years that particular genes 

encode information for certain physical traits such as hair and eye color and even 

predisposition for certain diseases, whether our genes directed our behavior 

such as forming memories was a much more tenuous concept, and laden with 

controversy.  

 

Uncovering what genes might play a role in the processes of learning and 

memory seemed as much a daunting task as any endeavored in biology, yet 

there were some who weren’t dissuaded by the vastness of the topic nor the 

critics in the field.  From the hypothesis that genetics could be used to unravel 

the mystery of learning, scientists in the lab of Seymour Benzer began 

investigating new models for learning. 

 

It was the seminal work of Chip Quinn, William Harris and Seymour Benzer 

which established the fruit fly, Drosophila melanogaster as a model organism in 

which to explore learning and memory.  Employing what essentially amounted to 

operant conditioning, they were capable of training a fly to associate a neutral 
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odor (conditioned stimulus, CS) with the delivery of punishing electric shock 

(unconditioned stimulus, US) (Quinn et al., 1974).  The flies formed an aversive 

memory to the shock-associated odor that was able to persist up to one day, and 

could be extinguished by repeated CS presentation in the absence of US.  

Furthermore, this learning was found to be a probabilistic phenomenon, as 

roughly only 30% of the trained flies learned to avoid the shock-paired odor.  Yet 

re-training that “smart” population of flies would result once again in only 30% of 

those flies making the correct odor choice (Quinn et al., 1974).  The 

establishment of this learning assay now enabled the group to test for genetic 

mutants defective in learning and memory. These early mutagenesis screens 

uncovered several key genes involved in the formation and consolidation of 

shock associated odor memory including dunce, a cAMP phosphodiesterase, 

rutabaga, a type 1 adenylyl cyclase and amnesiac, a putative neuropeptide 

required for the stability of memory (Dudai et al., 1976; Davis et al., 1989; 

Livingstone et al., 1984; Levin et al., 1992; Quinn et al., 1979; Feany & Quinn, 

1995). 

 

Future studies further refined this assay, yielding more reproducible and robust 

results through the use of a T-maze apparatus to test shock-associated memory 

performance (Tully & Quinn, 1985).  Studies from Tully et al. defined what are 

considered to be 3 distinct phases of shock-associated memory: labile short-term 

memory, intermediate middle-term memory, and fully consolidated long-term 
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memory (Tully et al., 1994). The formation of these phases required specific 

training protocols.  While STM could be formed with a single training trial pairing 

shock with odor, forming LTM required 6-10 spaced training trials with a 15 

minutes inter-trial interval. LTM was found to be at least partially dependent on 

the synthesis of new protein products, as administering cycloheximide (CXM) to 

flies before training significantly disrupted spaced-training conditioned 

performance (Tully et al., 1994).   

 

However, a key question still remained: could the flies learn just as well using a 

positive reward and might it involve the same genes and memory circuitry? While 

the electric shock conditioning paradigm is a robust assay in which to study the 

mechanics of associative learning, might a more ethologically relevant stimulus 

provide more insight into memory processes and integration of sensory 

information?  After all, how often do fruit flies encounter a copper-wire grid 

conducting 90V shocks out in nature? 

 

Appetitive	  Olfactory	  Conditioning	  

 

The studies of Tempel et al. suggested that hungry flies could associate odor 

with a sugar reward to form robust appetitive food reward memory (Tempel et al., 

1983). Not surprisingly perhaps, the appetitive memory observed when 
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conditioning with sucrose differed to aversive shock memory in several ways.  

First, although the performance of sucrose-trained flies tested 2 minutes after 

training was similar in strength to that of shock-trained flies, sucrose reinforced 

memory persisted to 24 hours, while shock reinforced memory faded by 3 hours.  

Furthermore, Tempel et al. noted that the flies needed to be food deprived for 19-

20 hours both prior to training as well as testing in order to see appetitive 

performance, whereas the internal hunger state did not effect shock based 

learning (Tempel et al., 1983).  Finally, as it was shown that flies were able to 

simultaneously retain both aversive shock and appetitive sugar memories, 

Tempel hypothesized that in the fly, separate pathways for positive and negative 

reinforcement must exist, mechanistically distinct from each other.  Yet it would 

be another two decades before a molecular and neural circuit model was 

proposed that accommodated the dichotomy between positive reward, and 

negative punishment-associated memory in the fly. 

 

In 2003, Schwaerzel et al. investigated a molecular basis for associative learning 

in the fly, covering both paradigms of sugar and shock reinforced olfactory 

conditioning.  Based on studies manipulating the modulatory amines octopamine 

(OA) and dopamine (DA) in the fly, it was concluded that sugar reward learning 

required octopamine, yet not dopamine signaling, while shock punishment 

learning required dopamine, but not octopamine (Schwaerzel et al., 2003).  From 

these results, Heisenberg proposed a model which became modern dogma in 
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the field of Drosophila learning: that unlike in mammalian systems, DA coded for 

aversive reinforcement, while OA, found only as a “trace amine” in mammals 

(Burchett & Hicks, 2006), mediated appetitive reinforcement (Heisenberg, 2003). 

My studies presented in Chapter III reveal a more nuanced and complex view of 

reinforcement that implicates both OA and DA in reward learning. 

 

Work form the Waddell lab refined the appetitive olfactory conditioning protocol 

from Schwaerzel et al, and further explored how appetitive memory relates to 

aversive shock reinforced memory.  Keene et al. showed that synaptic output 

from the amnesiac-expressing Dorsal Paired Medial (DPM) neurons was 

required between training and testing to maintain 3hr memory performance of 

both appetitive as well as aversive memory, suggesting a common circuit to 

consolidate labile STM to stable LTM in the fly (Keene et al., 2004; Keene et al., 

2006).  Furthermore, it was found that both aversive and appetitive olfactory 

memory required output from mushroom body (MB) neuron subsets in a similar 

sequential manner: output from the α’β’ neurons was essential during and 

immediately after training, while αβ neuronal output was only required for 

retrieval of both aversive and appetitive memory (Krashes et al., 2007).  

However, despite using similar cellular processes and machinery to form, 

consolidate and retrieve olfactory memory, the nature of appetitive sugar-reward 

memory significantly differs from aversive shock memory in many ways. 
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Krashes and Waddell refined the appetitive olfactory conditioning paradigm using 

a T-maze into the protocol routinely used in the Waddell lab today (Figure I-1).  

Here, about 100 flies food deprived for 18-20 hours are loaded into the training 

arm of a T-maze lined with filter paper and exposed to one odor for 2 minutes, 

followed by 30 seconds of clean air.  The flies are transferred into a second 

training tube lined with saturated sucrose dried on filter paper and exposed to a 

second odor for 2 minutes.  The flies are then moved into the elevator of the T-

maze to a choice point where they are given 2 minutes to choose between the 

two odors presented during conditioning (Krashes & Waddell, 2008).  In typical 

experiments, about 65% of the flies make the correct odor choice, approaching 

the odor previously paired with sucrose reward.  A numerical measurement of 

learning is then calculated as a performance index (PI) by subtracting the 

number of flies that chose incorrectly from the number choosing correctly and 

dividing by the total number of flies (Figure I-2). 

 

One of the remarkable features of appetitive memory seen in (Krashes & 

Waddell, 2008) and consistent with previous observations from (Tempel et al., 

1983) and (Schwaerzel et al., 2003) was that flies needed to be food deprived for 

at least 18 hours prior to conditioning with sucrose and also needed to be in a 

food deprived state at the time of testing to see memory performance.  Flies 

could be fed in between training and testing to keep them alive, showing 

performance days later as long as they were food deprived again for at least 18 



 11 

hours prior to testing (Krashes & Waddell, 2008).  This suggested that there 

exists a motivational component to appetitive memory performance based on the 

internal nutritional state (either satiated or fasted) of the fly.  A mechanism 

governing the state-dependence of appetitive memory retrieval was uncovered 

by (Krashes et al., 2009) and found to involve the fly equivalent of mammalian 

Neuropeptide Y (Neuropeptide F) inhibiting a subset of MB innervating dopamine 

neurons.  This finding demonstrated a novel inhibitory role for DA neurons in the 

fly in gating appetitive memory performance.  I will discuss the topic of the 

specific roles of dopamine in appetitive reward further in Chapter III. 

 

Another striking feature of appetitive memory formed in this paradigm is that, 

unlike shock conditioning in which multiple spaced training trials are required to 

form LTM, a single two minute pairing of odor with the sugar sucrose enabled 

genuine appetitive LTM formation that could last for days (Krashes & Waddell, 

2008).  This finding suggested that there was something intrinsically different 

about how reward memory is encoded in the brain, and lead us to question what 

made sucrose such a potent reinforcer of memory. This project was my first in 

the Waddell lab and will be discussed in the following chapter. 
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Figure I-1.  Appetitive Olfactory Conditioning Paradigm.  Food deprived flies 
are presented with odor A for 2 minutes in a T maze followed by 30 seconds of 
clean air.  The flies are then presented with odor B for 2 minutes now paired with 
a sugar reward.  Following training, the flies are transferred to the choice point of 
the T maze and given 2 minutes to choose between the 2 odors presented during 
conditioning 
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Figure I-2.  T-maze olfactory training machine and performance index (PI) 
calculation.  Flies are conditioned with sugar and odor in the top training tube, 
then transferred via the elevator to a choice point where they are given 2 minutes 
to choose between the conditioned odor (CS+) and a reference odor (CS-).  
Naïve flies will have formed no association with the odors and therefore show a 
50:50 distribution approaching either odor.  After conditioning, about 65% of the 
flies will approach the odor previously paired with sugar reward, yielding a PI 
score of 0.3.  
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Preface to Chapter II 
 

In nature we find not only that which is expedient, but also everything which is 

not so inexpedient as to endanger the existence of the species – Konrad Lorenz 

 

The work presented here was previously published in: 

 

Burke, C. J., Waddell, S. Remembering nutrient quality of sugars in 

Drosophila. (2011). Current Biology 21: 746-750. 

 

 

Burke CJ performed all experiments 

Burke CJ and Waddell S designed the experiments 

Waddell S and Burke CJ wrote the manuscript 
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Chapter II: Remembering Nutrient Quality 
of Sugars in Drosophila 

 

Nutrient: It’s what’s for dinner 
 

Food selection based on memories of past experience is a critical component of 

survival, as recalling a bitter tasting food that made you sick in the past might 

help prevent you from ingesting toxic substances in the future.  On a more 

positive note, remembering the taste of a particularly good and nutritious food 

source is highly beneficial as well, enabling quicker and more efficient food 

selection and reducing vulnerability to predation.  While there has been a great 

amount of progress in recent years uncovering the molecular and neuronal basis 

of taste detection in both mammals and insects (Yarmolinsky et al., 2009), the 

means and mechanisms by which nutrient value is encoded in the brain has 

remained more elusive. 

 

The study of food selection and preference behaviors in a diverse cohort of 

organisms from humans to insects has shed light on how reward is processed in 

the brain.  This work has lead to our current understanding of what makes 

nutritious and highly caloric food sources so highly desirable, and how nutrient 

content differs from sweet taste to act as potent reward. Functional magnetic 

resonance imaging (fMRI) studies in humans have revealed differential activity in 
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the upper hypothalamus in response to ingestion of a sweet and caloric versus a 

sweet but non caloric drink (Smeets et al., 2005).  Whereas consumption of a 

nutritious glucose solution elicited a decrease in upper and lower posterior 

hypothalamic activity, consumption of highly sweet aspartame or nutritious but 

tasteless maltodextrin alone failed to have similar effect, suggesting the presence 

of both sweetness and nutrient value are required to drive changes in 

hypothalamic activity (Smeets et al., 2005), suggestive of differential reward 

value for hedonic sweetness and nutrient. 

 

Furthermore, a more recent fMRI study found that patients given only a taste 

(without ingestion) of a solution of either the sweet and nutritious sugar glucose 

or a non-sweet carbohydrate maltodextrin showed preferential activation of the 

dorsolateral prefrontal cortex, striatum and singulate cortex, areas of the human 

brain associated with sugar reward, while those fed a saccharin solution of equal 

sweetness and taste did not (Chambers et al., 2009).  The same study found that 

a mouth rinse of either nutritious solution (glucose or non sweet maltodextrin) 

was sufficient to significantly increase mean power output for patients in a cycling 

time trial exercise performance task, whereas a mouth rinse of saccharine 

solution did not (Chambers et al., 2009).  These results suggest that in addition 

to the well characterized detection of sweet taste, there also may exist a specific 

nutrient sensor present in the human mouth which can rapidly evaluate nutritional 

value and weigh metabolic gain.   
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Food discrimination and taste preference studies performed in rats and mice 

showed similar results and advanced the theory of nutrient sensing independent 

of taste.  It was shown in rats that intra-gastric injection of a nutritious 

carbohydrate could be used to form positive food reward association with various 

flavor compounds (Sclafani, 2001; Ackroff et al., 2009). In addition, mice that lack 

the transient receptor potential M5 (TRPM5) channel are considered to be “taste 

blind,” and show no preference for a sweet solution (of either sucrose, glucose or 

non-caloric sucralose) over water across short time periods (de Araujo et al., 

2008; de Araujo et al., 2010).  However, if given access to nutritious sucrose over 

time, the TRPM5 knockout mice will develop a strong preference for a sucrose 

solution over water in a similar manner as wild-type mice.  This preference was 

not observed when mice were exposed to non-nutritive but highly sweet 

sucralose, suggesting that the knockout mice were forming their preference 

based solely on the nutritive content of sugar solutions (de Araujo et al., 2008).  

Furthermore, it was found that the TRPM5 knockout mice showed normal 

changes in blood glucose levels and showed a significant increase in the level of 

dopamine release in the nucleus accumbens (NAc) in response to ingestion of 

sucrose, but not sucralose (de Araujo et al., 2008).  Of important note is that 

increases in NAc dopamine levels were also observed in wild-type mice in 

response to ingestion of sweet sucralose alone, suggesting a role for dopamine 

in mediating the rewarding aspects of both sweet taste and post-ingestive 

nutrient content.  While the concept of nutrient detection independent of taste 
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sounds rather complex, post oral sensing of nutrition content is not limited to 

vertebrates. 

 

Experiments performed in locusts showed that complex mechanisms for specific 

internal nutrient detection also exist in insects.  By depriving locusts of the 

marconutrients carbohydrate or protein, Simpson and White found that locusts 

showed a strong preference for a food source which could replenish protein over 

isocaloric food sources (Simpson & White, 1990).  Furthermore, locusts can be 

trained to associate either visual or olfactory cues with presentation of nutrient-

replenishing foods suggesting that not only is the insect able to internally sense 

specific nutrient deficiencies, but that consumption of those nutrients was 

sufficient to drive reward learning (Simpson & White, 1990; Raubenheimer & 

Tucker, 1997).  

 

Analysis of Drosophila feeding behaviors, food preference and nutrition have a 

long history dating back to the 1940’s and continue today.  A recent study found 

that flies reared on certified organic foods showed significantly increased 

lifespan, fertility and stress resistance to those reared on conventional produce 

(Chhabra et al., 2013).  Early on, Hassett (1948) determined the ability for fruit 

flies to survive on various sugars, carbohydrates, alcohols, proteins and other 

substances as the sole source of food, also observing the effects on egg laying 

ability and larval development (Hassett, 1948). The studies of Wigglesworth went 
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a step further, analyzing the ability of various sugars to re-initiate flight in an 

energy-depleted fly.  He discovered that nutrient content, rather than just 

palatability of the sugar is critical for the fly’s rapid use of energy to fuel flight 

(Wigglesworth, 1949).  Furthermore, both proboscis extension reflex (PER) and 

ingestion experiments found that flies showed strong appetitive responses to 

natural nutritional sugars such as sucrose and fructose as well as artificial 

sweeteners like aspartame and sucralose, suggesting that flies prefer sweet 

tasting compounds like mammals (Gordesky-Gold et al., 2008).  

How does a fly taste? 
 

It is believed that the fly tastes its environment through a family of gustatory 

receptors (GRs) first found via structural prediction algorithms and characterized 

by in situ hybridization analysis of taste organs (Clyne et al., 2000; Scott et al., 

2001).  These putative 7 transmembrane receptors are found in gustatory 

receptor neurons (GRNs) housed in the hair-like sensillia present on the fly’s 

forelegs, wing margins, genitalia, maxillary palps, tip of the proboscis and internal 

mouthparts (Wang et al., 2004; Thorne et al., 2004). In addition a select few are 

expressed more internally (Miyamoto et al., 2012) and have been hypothesized 

to play various roles involved with sugar sensing.  The GRNs can be categorized 

based on the GRs they express, being mostly sensitive to sweet compounds, 

bitter, salt, or water with minimal overlap of modality (Wang et al., 2004; Thorne 

et al., 2004; Marella et al., 2006; Cameron et al., 2010; Dahanukar et al., 2007; 
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Slone et al., 2007).  Gr5a and Gr64a were identified as the receptors primarily 

responsible for mediating response to various sweet compounds and are present 

in nearly all GRNs responsive to sugars (Dahanukar et al., 2001; Dahanukar et 

al., 2007). Conversely, Gr66a was identified as critical to mediating response to 

bitter compounds (Wang et al., 2004; Thorne et al., 2004).  Furthermore, these 

differing modalities of sweet and bitter taste are represented in distinct non-

overlapping sets of neurons, defined by their expression of Gr5a/ Gr64a and 

Gr66a, and project to discrete regions of the subesophageal ganglion (SOG) in 

the base of the brain (Wang 2004, Thorne 2004). The GRs were shown to be 

essential in mediating both electrophysiological (Dahanukar et al., 2007) and 

behavioral (Wang et al., 2004; Thorne et al., 2004; Slone et al., 2007) responses 

to sweet and bitter compounds.  Additionally, artificial stimulation of sweet or 

bitter sensing GRNs was sufficient to drive appetitive or aversive behavior in a 

quadrant preference plate assay (Marella et al., 2006).  

 

In contrast to the well characterized projection neurons present in the fly olfactory 

system, second order taste neurons have yet to be identified, and despite our 

detailed knowledge of sweet taste perception in the fly, only recently have we 

begun to unravel mechanisms and neural circuits underlying nutrient sensing.   
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Introduction 
 

Taste is an early stage in food and drink selection for most animals (Yarmolinsky 

et al., 2009; Dethier, 1976). Detecting sweetness indicates the presence of sugar 

and possible caloric content. However, sweet taste can be an unreliable predictor 

of nutrient value because some sugars cannot be metabolized. In addition, 

discrete sugars are detected by the same sensory neurons in the mammalian 

(Zhao et al., 2003) and insect gustatory systems (Wang et al., 2004; Thorne et 

al., 2004), making it difficult for animals to readily distinguish the identity of 

different sugars using taste alone (Breslin et al., 1994; Dotson & Spector, 2007; 

Masek & Scott, 2010). Here we used an appetitive memory assay in Drosophila 

(Tempel et al., 1983; Krashes & Waddell, 2008; Colomb et al., 2009) to 

investigate the contribution of palatability and relative nutritional value of sugars 

to memory formation. We show that palatability and nutrient value both contribute 

to reinforcement of appetitive memory. Non-nutritious sugars formed less robust 

memory that could be augmented by supplementing with a tasteless but 

nutritious substance. Nutrient information is conveyed to the brain within minutes 

of training when it can be used to guide expression of a sugar-preference 

memory. Therefore we propose that flies can rapidly learn to discriminate 

between sugars using a post-ingestive reward evaluation system and they 

preferentially remember nutritious sugars. 
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Appetitive olfactory memory formation in hungry adult Drosophila is very efficient 

with a single two minute pairing of odorant and sucrose being sufficient to form 

memory lasting for days (Krashes & Waddell, 2008; Colomb et al., 2009). 

Although there is evidence that other insects can learn to associate visual and 

olfactory cues with specific nutrients, carbohydrates or proteins (Simpson & 

White, 1990; Raubenheimer & Tucker, 1997; Bitterman et al., 1983; Zhang et al., 

2005) it is unclear how taste and the respective nutrient value of these 

components contributes to the processes of learning and memory. Here we 

investigated whether nutrient value of sugar contributes to the reinforcement of 

appetitive olfactory memory in fruit flies. 

 

Adult Drosophila feed on soft rotting fruits that are rich in sucrose, fructose and 

glucose, eg. apples, peaches, grapes and pears. In a classic series of 

experiments, Wigglesworth (1949) determined that these sugars provide energy 

for adult flight. Flies that were depleted of muscle glycogen by flying them to 

exhaustion, resumed flight within two minutes when fed glucose, sucrose, 

fructose, mannose, maltose or trehalose. In contrast, some sugars such as 

arabinose were completely ineffective. A similar relative value of sugars was 

established by Hassett (1948) who evaluated survival when flies were provided 

with these sugars as the sole food source. Sucrose, glucose and fructose 

supported survival whereas arabinose and xylose were very poor. 
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Results 

Fruit	   flies	   conditioned	   with	   palatable	   and	   nutritious	   sugars	   form	   robust	  

persistent	  memory	  

 

Led by these prior studies (Wigglesworth, 1949; Hassett, 1948) we chose D-

sucrose and D-fructose as nutritious sugars and D-arabinose and D-xylose, 

which are both abundant in fruits containing large amounts of pectin, as less 

nutritious sugars. We verified the relative nutritional value of each sugar for our 

wild-type Canton-S fly strain (Figure II-1A) by housing flies in food vials with 

either 1% agarose (as a source of water) or 1% agarose containing 3M sucrose, 

fructose, arabinose or xylose as their sole source of food. Consistent with 

previous studies (Wigglesworth, 1949; Hassett, 1948), the majority of flies 

housed on either sucrose or fructose remained alive for 4 days whereas most 

flies housed on water, arabinose or xylose were dead within 4 days. We also 

noted, as did Hassett (Hassett, 1948), that flies housed on arabinose died even 

quicker than those on water or xylose, suggesting that prolonged arabinose 

feeding may be detrimental to flies. We conclude that sucrose and fructose 

provide nutritional benefit in that they are capable of sustaining life, whereas 

arabinose and xylose do not. 

 

Drosophila primarily sense sugars using gustatory receptor neurons (GRNs) on 

their tarsae and mouthparts (Amrein & Thorne, 2005). Tarsal contact with 
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desirable sugars drives proboscis extension whereas stimulation of sweet-

sensing gustatory neurons on the labellum of the proboscis promotes food 

acceptance and ingestion. The physiological response of labellar gustatory 

receptor neurons to some of these sugars has been reported. 

Electrophysiological recordings from the L1 sensilla on the proboscis showed 

that sucrose more strongly activated sweet-sensing neurons than fructose and 

arabinose whereas xylose did not evoke a response (Dahanukar et al., 2007). 

Using Ca2+ imaging, sucrose, fructose and arabinose were shown to evoke 

similarly strong responses in sweet-sensing Gr5a-expressing neurons (Wang et 

al., 2004; Thorne et al., 2004) whereas xylose was not tested (Marella et al., 

2006). We tested whether each sugar was detected as favorable using a 

proboscis extension reflex (PER) assay (Wang et al., 2004; Masek & Scott, 2010; 

Dahanukar et al., 2007; Shiraiwa & Carlson, 2007) (Figure II-1B). We applied 

sugar solutions to the front leg of restrained flies and determined the frequency of 

the PER. Whereas sucrose, fructose and arabinose elicited high levels of PER 

that were statistically indistinguishable, xylose-evoked PER was significantly 

lower. Sugars applied directly to the labellum evoked a very similar PER profile 

(Figure II-4). Therefore, published data (Wigglesworth, 1949; Hassett, 1948; 

Dahanukar et al., 2007; Marella et al., 2006) and those presented here suggest 

that sucrose and fructose are nutritionally beneficial sugars that strongly activate 

sweet-sensing GRNs whereas arabinose, and to a lesser extent xylose are 

detected as sweet but provide no obvious nutritional benefit. 
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We next used each of these sugars as reinforcement in an olfactory conditioning 

assay (Krashes & Waddell, 2008) and measured appetitive olfactory memory 

formation and persistence. Memory tested immediately after training revealed 

clear differences in performance between flies reinforced with the different 

sugars (Figure II-1C). Performance followed a similar rank order to the 

robustness of PER evoked by each sugar. Immediate memory performance of 

flies conditioned with sucrose was indistinguishable from those trained with 

fructose but was statistically greater than those trained with arabinose or xylose. 

The performance of arabinose conditioned flies was statistically indistinguishable 

from flies conditioned with fructose but was statistically different from those 

trained with xylose. Therefore short-term memory can be formed with non-

nutritious sugars suggesting that sensation of sweetness is sufficient for memory 

formation. We also tested whether memory persisted 24hr after training. 

Strikingly, the nutritious sugars, sucrose and fructose, formed robust 24hr 

memory whereas the non-nutritious sugars, arabinose and xylose, did not (Figure 

II-1D). Memory formed with sucrose and fructose was statistically different from 

that formed with arabinose and xylose whereas memory formed with arabinose 

was statistically indistinguishable from xylose conditioned memory. 

 

Published data from functional Ca2+ imaging registered a significant response for 

arabinose in bitter-sensing Gr66a-expressing neurons as well as in sweet- 

sensing Gr5a-expressing neurons (Marella et al., 2006). We therefore tested 
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whether the poor 24hr memory observed following conditioning with arabinose 

resulted from an integration of bitter and sweet signals. We arabinose-

conditioned flies in which output from the Gr66a-expressing neurons (Wang et 

al., 2004; Thorne et al., 2004) was blocked prior to and during training with the 

dominant temperature-sensitive uas-shibirets1 (shits1) transgene (Kitamoto, 2001). 

shits1 blocks membrane recycling and thus synaptic vesicle release at the 

restrictive temperature of 31 ˚C. The 24hr memory performance of these flies 

was statistically indistinguishable from wild-type and all control genotype flies 

(Figure II-5A). Therefore, activation of bitter-sensing neurons is unlikely to be 

responsible for poor 24hr memory performance observed following conditioning 

with arabinose reinforcement. In addition, although prolonged exposure of flies to 

arabinose appears to be detrimental (Figure II-1A and (Hassett, 1948)), the 

exposure during the 2min training session does not impair short-term memory 

performance when compared to fructose (Figure II-1C), or alter longevity (Figure 

II-5B). 

 

A reduced amount of sugar ingested during conditioning could also determine the 

strength of memory formation. To address this possibility, we added tasteless 

dye to each sugar and measured dye uptake using spectrophotometry (Figure II-

1E). Flies were deprived of food as if to prepare them for conditioning, and given 

a mock 5min training session with each of the dyed sugars (the amounts 

ingested during the usual 2min training session were beyond the limits of 
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detection). Importantly, ingested material takes more than 5min to pass through 

the fly (Edgecomb et al., 1994). Despite differences in PER evoked by each 

sugar, the amount of dye ingested with each sugar in 5 minutes was statistically 

indistinguishable. These data suggest that arabinose is not aversive and that the 

amount of each sugar ingested during training is unlikely to account for 

differences in memory performance. We concluded that differences could result 

from an additional reinforcing effect of nutritional value with sucrose and fructose. 

 

Conditioning	   with	   arabinose	   or	   xylose	   supplemented	   with	   nutritious	   sorbitol	  

forms	  robust	  24hr	  memory	  

 

To further test a role for nutritional value in memory reinforcement we trained 

flies with supplemented arabinose or xylose. Hassett (1948) reported that the 

polyhydric alcohol sorbitol and polysaccharides such as starch/maltodextrin were 

nutritionally valuable to Drosophila. He also demonstrated phagostimulation of 

these compounds by mixing them with low doses of simple sugars (Hassett, 

1948). We therefore verified the nutritional value of these supplements and 

assayed their palatability using the PER. Survival on medium containing sorbitol 

or maltodextrin was statistically indistinguishable to survival on sucrose across 

four days (with the exception of a single time point, Figure II-2A). PER 

experiments revealed that flies respond significantly to maltodextrin but they 
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respond very rarely to sorbitol (Figure II-2B). We suspect strong maltodextrin 

driven PER results from the 10% contaminating simple sugars in maltodextrin 

that come from partial hydrolyzation of this polymer of glucose. We therefore 

favored the use of ‘tasteless’ sorbitol as a supplement in our memory 

experiments. 

 

We conditioned flies using odorants and sucrose, arabinose, xylose or sorbitol 

alone or with arabinose or xylose mixed with sorbitol, as reinforcement. Training 

with arabinose, xylose or sorbitol formed little to no 24hr memory (Figure II-2C & 

D). Memory performance was statistically different to that formed with sucrose 

reinforcement. However, 24hr memory formed with sorbitol supplemented 

arabinose or xylose was very robust and was statistically indistinguishable from 

flies trained with sucrose. We also trained flies with maltodextrin supplemented 

arabinose (Figure II-6). As in previous experiments, training with arabinose alone 

did not form robust 24hr memory whereas arabinose supplemented with 

maltodextrin, exhibited 24hr memory that was indistinguishable from sucrose 

conditioned flies. We also tested the amount of dyed sorbitol ingested in 5min 

when either presented alone, or mixed with arabinose or xylose. Flies ingested 

significantly more dye mixed with arabinose+sorbitol or xylose+sorbitol than with 

sorbitol alone (Figure II-2E). These data are consistent with previous results 

(Hassett, 1948) and with the notion that flies ingest insufficient amounts of 

sorbitol to form 24hr memory when sorbitol is presented alone for 2min. 
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However, using non-nutritious sugars to stimulate sorbitol (or maltodextrin) 

ingestion apparently provides sufficient reinforcement to form robust 24hr 

memory. Therefore these data support a role for nutrient value in the 

reinforcement of persistent long term appetitive memory. 

 

Nutrient	   information	   is	   rapidly	   coded	   and	   can	   be	   used	   to	   guide	   preference	  

behavior	  immediately	  after	  training	  

 

Conditioned taste aversion learning in mammals is noteworthy for the long delay 

(up to 12hr) between the presentation of the tastant and the induction of nausea 

(Garcia et al., 1955). One might imagine a post-ingestive nutritive affect would 

also develop slowly. However, data from both rats and flies suggest otherwise.  

Intra-gastric injection of either glucose or fructose was sufficient to drive strong 

associative flavor preference in rats within 60 minutes (Ackroff et al., 2004).  In 

the flying to exhaustion studies, Wigglesworth (Wigglesworth, 1949) observed 

that flies resumed flight 30-45sec after feeding with glucose and 60-90sec after 

feeding with sucrose. This work suggests that energy resources might be 

internalized and utilized extremely fast.  

 

We therefore assessed the speed of nutrient detection in our memory assay by 

immediately testing flies for discrimination between odors following a differential 
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conditioning protocol pairing one odor with a nutritious sugar and the other odor 

paired with a non-nutritious sugar (Figure II-3). We first trained flies with sucrose 

versus arabinose as reinforcement, or sucrose versus fructose for comparison. 

Flies showed an immediate preference for the odor previously paired with 

sucrose rather than arabinose. However flies showed no preference when 

differentially trained with the two nutritious sugars, sucrose and fructose. We next 

trained flies with odor paired with arabinose versus arabinose plus sorbitol or with 

odors paired with arabinose plus sorbitol versus sucrose. Flies showed 

immediate preference for the odor previously paired with sorbitol-supplemented 

arabinose over arabinose alone. 

 

Strikingly, flies showed no preference for either odor when trained with arabinose 

plus sorbitol versus sucrose. We therefore propose that nutrient value is very 

quickly assigned to memory processing so that flies can exhibit preference 

behavior to the nutrient associated odorant less than two minutes after training. 

These experiments also suggest that nutrient content contributes to immediate 

memory performance in this behavioral choice assay. 
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Discussion 
 

In conclusion, we believe our work shows that efficient appetitive memory 

formation in Drosophila involves signals representing nutrient value. Whereas 

sweet taste is sufficient to form short-term memory, persistent memory appears 

to be preferentially formed with sugars that also provide some nutrient benefit. 

Strikingly, supplementing inadequate sugars with nutritious but tasteless sorbitol 

forms stronger 24hr memory suggesting that nutrition is a key element for 

memory persistence. This model is supported by a previous study in which bees 

only formed persistent memory if they were allowed to ingest sugar during 

conditioning (Wright et al., 2007). Using a post-ingestive mechanism overcomes 

the shortcomings of the gustatory system to discriminate between sugars (Masek 

& Scott, 2010) and of potentially being fooled by certain sweet- tasting 

substances that an animal may not be able to usefully metabolize. 

 

The ability to assign nutrient information to sources of food, and remember them, 

seems very valuable for an animal to forage effectively. Our data suggest that 

nutrient information can be very rapidly and accurately assigned to a particular 

food source. This rapidity contrasts to conditioned taste aversion memory 

formation in mammals (Garcia et al., 1955) and the honeybee (Wright et al., 

2010), both of which involve a post-ingestive mechanism that is delayed and 

appears to be less accurately assigned to food sources to be avoided. Although 

conditioned taste aversion has not yet been demonstrated in fruit flies, it seems 
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logical that an animal might benefit from accurately learning nutritious food 

sources while being more conservative in learning to avoid sources that are 

potentially dangerous. 

 

Taste defective mice can develop preference for nutritious liquids and calorie 

content activates the dopaminergic reward system (de Araujo et al., 2008). 

Furthermore, fMRI studies in human subjects administered sucrose, saccharin or 

maltodextrin concluded a central brain response for the caloric content of 

carbohydrate that was independent of sweet taste (Chambers et al., 2009). 

Therefore, a system of post-ingestive sensing of the nutrient content of 

carbohydrate may be conserved. Finding that taste and nutrient value of sugar 

contribute to appetitive memory formation suggests there may exist parallel 

reinforcement pathways for appetitive memory in the fly. Strikingly, bitter taste 

and post-ingestive effects of toxin provide parallel reinforcement signals for 

aversive learning in honeybees (Wright et al., 2010). It will be important to 

identify the molecular nature of post-ingestive nutrient detection and the 

mechanisms through which it is broadcast to the brain. Our work here suggests 

that the neural circuits of reinforcement and perhaps memory consolidation in the 

fruit fly brain contain neurons that are receptive to the nutrient signals, or 

alternatively, receive signal input from the periphery conveying nutrient status of 

ingested foods. 
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Materials and Methods 
 

Fly strains 

Fly stocks were raised on standard cornmeal food at 25°C and 60% relative 

humidity. Mixed sex populations of wild-type Canton-S flies that were housed 

together were used throughout. To disrupt neurotransmission from bitter-sensing 

neurons (Figure II-5A) we crossed Gr66aGAL4 (Thorne et al., 2004) male flies to 

females harboring a double insertion of uas-shibirets1 (Kitamoto, 2001). 

Heterozygous transgenic control flies were from crosses of each transgenic line 

to wild-type Canton-S flies. 

 

Appetitive Olfactory Conditioning 

All flies were food deprived before training by storing them for 16-20hr in glass 

milk bottles containing water dampened 3MM filter paper to prevent desiccation. 

The olfactory appetitive paradigm was performed essentially as described 

(Krashes & Waddell, 2008) with the following modifications. Sugars were 

prepared as 3M solutions and 2.5ml was pipetted onto a 2.25 inch X 3 inch piece 

of 3MM paper and allowed to dry. Following training, flies were either tested 

immediately or stored in vials with standard fly food for 3hr, then transferred into 

vials containing 1% agar until testing 21 hours later. The performance index (PI) 

was calculated according to (Krashes & Waddell, 2008). The odors used were 3-

octanol and 4-methylcyclohexanol. Statistical analyses were performed using 
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KaleidaGraph (Synergy Software). Overall analyses of variance (ANOVA) were 

followed by planned pairwise comparisons between the relevant groups with a 

Tukey HSD post-hoc test. Unless stated otherwise, all data points in each 

conditioning experiments represent n≥14. 

 

Survival Assays 

Groups of 20 (10 male, 10 female) 24hr old wild-type flies were housed in vials 

containing either a 3M solution of each substance (sucrose, fructose, arabinose, 

xylose, sorbitol) or 1.25M maltodextrin in 1% agar or 1% agar alone as a water 

control. The number of flies still alive in each vial was counted every 12hr. Each 

data point represents the mean of 10 separate vials per condition. 

 

Proboscis Extension Reflex (PER) Assay 

PER was performed similarly to as described in (Wang et al., 2004; Dahanukar et 

al., 2007; Shiraiwa & Carlson, 2007; Slone et al., 2007) with the following 

modifications. Groups of 3-7 day old wild-type flies were food deprived as 

described above for 24hr. The flies were then anesthetized for 1min by placing 

them in a cold test tube immersed in a 4 ˚C ice bath. Flies were stuck back-down 

onto non-toxic adhesive fly paper and left to recover for 1.5hr at 25 ˚C/ 60% 

relative humidity. To assay PER each fly was either presented to the fore-leg or 

labellum with the following regimen on a rolled Kim-wipe wick: water (negative 

control), test compound, 3M sucrose (positive control). Test compounds were 
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presented 3 times per fly and each fly was exposed to only one of the test 

substances flanked by the water and sucrose controls on either side. Data are 

presented as the percentage of presentations that elicited PER from the total 

number of presentations. Flies that extended their proboscis to water alone or 

that failed to extend to 3M sucrose at the end, were discounted from the analysis. 

Data were analyzed using the Yates’ chi-square test. 

 

Ingestion Assay 

This assay was inspired by previous work (Tanimura et al., 1982). All flies were 

food deprived before testing by storing them for 16-20hr in glass milk bottles 

containing water dampened 3MM filter paper to prevent desiccation. Sugars were 

prepared as 3M solutions with 0.4% FD & C Blue No. 1 food dye (Spectrum 

Chemical) and 2.5ml was pipetted onto a 2.25 inch X 3 inch piece of 3MM paper 

and allowed to dry. The papers were inserted in the training chamber of the 

olfactory appetitive conditioning paradigm (Krashes & Waddell, 2008). 100 flies 

were loaded and given 5min to feed in the presence of airflow. Flies were then 

removed from the training chamber, immediately chilled to prevent excretion and 

homogenized in 1ml of Phosphate Buffered Saline (PBS; 1.86mM NaH2PO4, 

8.41mM Na2HPO4 and 175mM NaCl). Following clearance of debris by 

centrifugation the dye in the supernatant was quantified by measuring the 

absorbance at 625nm. All n≥8. 
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Figure II-1. Fruit flies conditioned with palatable and nutritious sugars form 
robust persistent memory.  
(A) Sucrose and fructose support fruit fly survival for several days but xylose and 
arabinose do not. Survival on fructose or sucrose was statistically different from 
water (1% agar) at all time points after 24hr. Xylose was not statistically different 
to water (all p>0.13) except at 84hr (p=0.04). Arabinose was statistically different 
to water at all time points after 24hr (all p<0.0001, T-test). All sugars were 3M in 
1% agar. Data are mean ± standard error of the mean (SEM). n=10 for each data 
point. 
(B) Sucrose, fructose, arabinose and to a lesser extent xylose, elicit proboscis 
extension behavior. Flies were presented with all sugars as 3M solutions to the 
front leg. Performance of xylose exposed flies is statistically different from all 
other groups (all p<0.0001, chi-squared test, marked by asterisk). n≥20 flies for 
each sugar. 
(C) Short-term appetitive memory following conditioning with sucrose, fructose, 
arabinose and xylose. Performance of sucrose conditioned flies is statistically 
different from arabinose and xylose conditioned flies (p<0.01 and p<0.005 
respectively). Arabinose performance is also statistically different to xylose 
(p<0.04, ANOVA). Data are mean ± SEM. n≥14 except xylose n=6. 
(D) Sucrose and fructose form robust 24hr memory but arabinose and xylose do 
not. Asterisks denote significant difference between marked groups and all 
others (all p<0.01). There is no statistical difference between arabinose and 
xylose performance (p=0.6, ANOVA). Data are mean ± SEM. n≥16.  
(E) A similar amount of each dyed sugar is consumed during a 5min mock 
training session. Each sugar was mixed with dye and presented dried on filter 
paper in the conditioning apparatus. No statistical differences were observed 
between sugars (all p>0.05, ANOVA) although all were statistically different to 
dye alone (water, p<0.001). Data are mean ± SEM. n≥8. 
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Figure 2!
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Figure II-2. Olfactory conditioning with arabinose or xylose supplemented 
with nutritious sorbitol forms robust 24hr memory.  
(A) Sorbitol, maltodextrin and sucrose support fruit fly survival for several days. 
The number of flies alive on sorbitol or maltodextrin was statistically 
indistinguishable to those on sucrose at all time points (p>0.07) except at 84hr 
where maltodextrin was different to sucrose (p=0.03, asterisk). Survival on 
sorbitol, maltodextrin and sucrose was statistically different to on water at all time 
points (all p<0.001). Data are mean ± SEM. n=10 for each data point. 
(B) Sucrose and maltodextrin elicit robust proboscis extension behavior but 
sorbitol does not. Flies were presented with 3M solutions of sucrose or sorbitol or 
1.25M maltodextrin to the front leg. Performance of sorbitol exposed flies is 
statistically different from other groups (p<0.0001, chi-squared test, marked by 
asterisk). n≥20 flies for each sugar.  
(C) Training with sorbitol supplemented arabinose forms persistent memory. 24hr 
appetitive memory performance of flies trained with sorbitol supplemented 
arabinose is not significantly different to flies trained with sucrose (p>0.6). 
Asterisks denote significant difference between marked groups and others (p< 
0.05, arabinose; p<0.001 sorbitol, ANOVA). Data are mean ± SEM. n≥14.  
(D) Training with sorbitol supplemented xylose forms persistent memory. 24hr 
appetitive memory performance of flies trained with sorbitol supplemented xylose 
is not significantly different to flies trained with sucrose (p>0.6). Asterisks denote 
significant difference between marked groups and others (p <0.05, xylose; 
p<0.001 sorbitol, ANOVA). Data are mean ± SEM. n≥14. 
(E) More dyed sorbitol is consumed in 5min when mixed with arabinose or 
xylose. Each substance or combination was mixed with dye and presented dried 
on filter paper in the conditioning apparatus. The amount ingested with 
arabinose+sorbitol or xylose+sorbitol was statistically different to sorbitol (p<0.05 
and p<0.001 respectively) or water alone (both p<0.001, ANOVA). Consumption 
of dye with sorbitol was not statistically different from dye with water (p>0.05). 
Data are mean ± SEM. n≥8. 
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Figure II-3. Nutrient information is rapidly coded and can be used to guide 
preference behavior immediately after training.   
Flies were differentially conditioned by pairing one odor with one sugar and the 
other odor with a different sugar, or supplemented sugar. They were then 
immediately tested for olfactory preference. Flies always exhibited preference for 
the odor that had been previously paired with a substance with nutrient value – 
sucrose over arabinose; arabinose+sorbitol over arabinose alone. They showed 
no preference when both odors were paired with nutritious substance – sucrose 
versus fructose; sucrose versus arabinose+sorbitol. Both of these scores were 
not statistically different from zero (both p>0.6, Mann Whitney U test). Data are 
mean ± SEM. n≥10. 
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Figure II-4. Proboscis extension evoked by either tarsal or labellar contact. 
(A) Flies were presented with all substances as 3M solutions to the tarsus of the 
front leg. Performance of xylose and sorbitol exposed flies is statistically different 
from all other groups (all p<0.001, chi-squared test). n=16-48 flies for each sugar. 
(B) Flies were presented with all substances as 3M solutions to the labellum of 
the proboscis. Performance of xylose and sorbitol exposed flies is statistically 
different from all other groups (all p<0.001, chi-squared test). n=16-48 flies for 
each sugar. 
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Figure II-5. Arabinose memory is not improved by blocking bitter taste 
neurons and brief arabinose exposure is unlikely to be detrimental. 
(A) The temperature shift protocol is shown pictographically above the graph. 
Blocking bitter sensing neurons (Gr66aGAL4/uas-shi) before and during training 
does not impact 24hr appetitive memory formed by arabinose. Flies were 
incubated at 31 ̊C for 30min prior to and during training. Immediately after 
training they were returned to 23 ̊C and tested for 24hr memory. There were no 
statistically significant differences between the groups (p>0.4, ANOVA). Data are 
mean ± SEM. n≥6. 
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(B) A two-minute exposure to arabinose does not compromise viability. Food-
deprived flies were kept for 2min in training tubes containing 3M sucrose or 
arabinose dried on a filter paper, or a blank filter paper; similar to during training. 
Each group was then split in two and maintained in vials containing either 
standard molasses fly food (left graph) or 1% agar for hydration (right graph). 
Survival was monitored daily and no differences were apparent between the 3 
groups in the ‘on food’ (all p>0.1 on food) or between arabinose and water ‘on 
water’ (all p>0.5). Arabinose ‘on water’ is statistically different to sucrose at 24hr 
(P<0.01) and 48 hr (p<0.004, T-test). Data are mean ± SEM. n=5 experiments 
with 20 flies per group per experiment. 
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Figure II-6. Olfactory conditioning with arabinose supplemented with 
nutritious maltodextrin forms persistent memory. 
Training with maltodextrin supplemented arabinose forms robust memory. 24hr 
appetitive memory performance of flies trained with maltodextrin supplemented 
arabinose is similar to flies trained with sucrose. Asterisks denote significant 
difference between marked groups and others. (all p<0.01, ANOVA). Data are 
mean ± SEM. n≥9. 
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Preface to Chapter III 
 

Now I only told you that story so I could tell you this one – Bill Cosby 

 
The work presented here was previously published in: 

 

Burke, C. J.*, Huetteroth, W.*, Owald, D., Perisse, E., Krashes, M. J., Das, G., 

Gohl, D., Silies, M., Certel, S., Waddell, S. (2012). Layered reward signaling 

through octopamine and dopamine in Drosophila. Nature 492: 433-437. 

 

Burke, C. J. performed all behavior experiments with exception to Fig III-1a 

performed by Krashes, M. J. and groups in Fig. III-2I which was performed by 

Perisse, E. 

Huetteroth, W. did all imaging and performed all anatomical analysis with the 

exception of Fig III-5 by Burke, C. J. 

Owald, D. and Huetteroth, W. performed all live imaging experiments  

Das, G. constructed the lexAop-dTrpA1 flies 

Gohl, D. and Silies, M. generated and initially characterized the 0104-, 0273-, 

0665-and 0891-GAL4 lines within the framework of the InSite collection. 

Certel, S. generated and initially characterized the Tdc2-LexA flies 

Burke, C. J., Huetteroth, W. and Waddell, S. designed the experiments 

Waddell, S., Burke, C. J., and Huetteroth, W. wrote the manuscript 
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Chapter III: Layered Reward Signaling 

Through Octopamine and Dopamine in 
Drosophila 

 

Biology can be considered the study of observing a phenomenon in nature and 

wondering how and why it is happening.  While my observations explained in 

Chapter II revealed that flies process both sweet taste and nutrient value as 

rewarding stimuli, we wanted to better understand the molecular nature of these 

parallel pathways of appetitive memory reinforcement. 

 

Systems of reward in mammals and insects 
 

The neurotransmitter dopamine (DA) has long been linked with reward in 

mammals (Dayan & Balleine, 2002; Wise, 2004).  Early studies in mice and rats 

found that pharmacological blockade of DA receptors greatly attenuates reward 

driven behaviors such as lever pressing for either food (Wise & Schwartz, 1981) 

or electrical stimulation of the lateral hypothalamus (Gallistel et al., 1974).  

Likewise, other associative reward tasks such as conditioned place preference 

(CPP) to either food reward or injection of cocaine (Spyraki et al., 1982; Spyraki 

et al., 1987) are also dependent on dopamine.  Furthermore, studies have 

suggested that dopaminergic neurons in the ventral tegmental area (VTA) of the 

mammalian brain provide error-prediction in reward-based learning (Schultz et 

al., 1997).  However, recent work in primates from Matsumoto and Hikosaka 
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showed that there exist distinct populations of midbrain DA neurons which are 

responsive to either appetitive or aversive cues during associative conditioning, 

revealing a more complex role for dopamine in valuation of varied stimuli 

(Matsumoto & Hikosaka, 2009b). When it comes to reward in the fly however, 

until very recently the prevailing thought in the field had been that evolution had 

taken quite a different turn. 

 

Our understanding of reward in insects is dominated by seminal work performed 

in the honeybee by Hammer (1993).  Through an anatomical analysis of neurons 

hypothesized to mediate the unconditioned stimulus (US) in classical 

conditioning, Hammer found that the Ventral Unpaired Medial (VUM) mx1 neuron 

in the SOG fired numerous action potentials in response to presentation of sugar 

to the proboscis or antenna of the bee (Hammer, 1993), suggesting it might play 

a role in mediating appetitive reward.  He further showed that electrical 

stimulation of VUMmx1 could replace the presentation of sucrose during olfactory 

conditioning of the bee proboscis extension reflex (PER) (Hammer, 1993).  This 

single neuron which projects to both the antennal lobes and MB calyces (sites 

essential in the formation of associative olfactory memories in bees and flies) 

was later found to contain the modulatory neurotransmitter octopamine (OA) 

(Hammer & Menzel, 1995). Further studies found that microinjection of OA into 

either the antennal lobe or MB calyx could replace presentation of sugar reward 

in olfactory conditioning (Hammer & Menzel, 1998).   
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Octopamine is believed to be the insect analog of mammalian norepinephrine, 

and has been found to play roles in a diverse set of behaviors in Drosophila 

ranging from aggression (Certel et al., 2007), to sleep and arousal states 

(Crocker & Sehgal, 2008; Crocker et al., 2010), to ovulation (Lee et al., 2003) 

and even synaptic plasticity at the neuromuscular junction (Koon et al., 2011).   

But it was the work of Schwaerzel et al. (2003) that first found a role for 

octopamine in mediating appetitive reward signals in the fly. 

 

The approach taken by Schwaerzel et al. (2003) to investigate the roles of 

octopamine and dopamine in fly learning was a combination of behavioral 

analysis of genetic mutants and also the relatively new approach of functional 

neuronal circuit analysis.  Behavioral analysis of the Tβh mutant defective in the 

production of octopamine (Monastirioti et al., 1996), revealed that flies which lack 

OA are unable to form sugar-conditioned memory, yet appeared to be normal for 

shock learning (Schwaerzel et al., 2003).  Furthermore, temporal rescue of Tβh 

expression during acquisition or feeding OA to Tβh mutants directly prior to sugar 

training fully rescued this appetitive learning defect (Schwaerzel et al., 2003).  

Anatomical analysis of octopamine neurons in Drosophila revealed widespread 

innervation across the brain. Though despite OA’s role in mediating reward 

signals in appetitive learning, innervation of the mushroom body is relatively 

sparse (Sinakevitch & Strausfeld, 2006; Busch et al., 2009) with only 4 classes of 

OA neurons projecting from cell bodies in the SOG to the γ lobe, calyx and heel 
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regions (Busch et al., 2009).  While these OA neuron subsets may allow us to 

identify the relevant circuits in reward signaling, a second approach analyzing the 

roles of OA receptors would give us even greater resolution. 

 

To date, four octopamine specific receptors have been identified in the fly. A 

single α-adrenergic-like type whose activation gates Ca2+ release from 

intracellular stores is encoded by the oamb gene (Han et al., 1998; Balfanz et al., 

2005). Three β-adrenergic-like receptors linked to cAMP production are encoded 

by the octβ1R, octβ2R and octβ3R genes (Maqueira et al., 2005).  Roles for 

these receptors in appetitive learning in the fly has been only speculative to date, 

as it was shown that OAMB, as its name implies (octopamine receptor in 

mushroom bodies) appears to be preferentially expressed in the MB (Han et al., 

1998). 

 

Dopamine:	  Say	  goodnight	  to	  the	  bad	  fly	  

 

In addition to finding octopamine as critical to appetitive reward, Schwaerzel et al 

(2003) also analyzed dopamine signaling in learning using a temporally 

controlled block of neurotransmission approach.  The host of genetic tools 

available in the fly allows one to identify functionally relevant neural circuitry by 
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selectively turning neurons “off” or “on” and assaying changes in behavior in 

transgenic flies.   

 

We can assay the necessity of a particular set of neurons by expressing the 

dominant temperature-sensitive dynamin encoded by the uas-shibirets1 (shits1) 

transgene (Kitamoto, 2001), and testing sugar and shock learning in the fly at the 

restrictive temperature of 31 ˚C.  At temperatures above 29 ˚C, shibirets1 prevents 

vesicle recycling and it is believed to block transmission from neurons in which it 

is expressed.  Importantly, this neuronal blockade is both fast acting and 

reversible by returning the flies to the permissive temperature of 23 ˚C, thus 

providing temporal control over neuronal function.  Under spatial control using 

the GAL4/uas or LexA/ lexAop binary transcriptional systems (Brand & Perrimon, 

1993; Lee and Luo, 2006), shits1 has been widely used in the Drosophila 

neurobiology field.  It has been employed with great success in the Waddell lab 

to identify functional and temporal requirements for synaptic output from various 

neuronal circuits during distinct phases of learning and memory (Waddell et al., 

2000; Keene et al., 2004; Keene et al., 2006; Krashes et al., 2008; Krashes et al., 

2009; Pitman et al., 2011). 

 

By expressing uas-shits1 in DA neurons using the tyrosine hydroxylase promoter 

TH-GAL4 transgene (Friggi-Grelin et al., 2003), Schwaerzel et al found that 

unlike in mammalian systems, output from dopamine neurons was not required 
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for the flies to form sugar reward memory, yet was critical for the formation of 

aversive shock memory at acquisition (Schwaerzel et al., 2003).  A critical point 

to make however, is that the TH-GAL4 line expresses in most dopaminergic 

neurons throughout the fly brain, but not all, leaving the Protocerebral Anterior 

Medial (PAM) cluster of DA neurons which sends projections in the mushroom 

body horizontal lobes largely unlabeled (Mao & Davis, 2009).  

 

Further studies identified specific subsets of dopamine neurons innervating the 

MB that convey negative value and whose direct activation can replace shock in 

olfactory conditioning (Claridge-Chang et al., 2009; Krashes et al., 2009; Aso et 

al., 2010; Aso et al., 2012).  Together these findings comprised dogma in the 

field of olfactory learning in Drosophila in which appetitive reward is mediated by 

OA signaling, while aversive shock punishment signals through DA neurons. 

 

Cracks	  in	  the	  pavement	  

 

Studies in recent years have begun to question the strict dichotomy of 

octopamine and dopamine.  Led by the finding that the dDA1 dopamine receptor 

is enriched in the mushroom bodies (Kim et al., 2003), it was found that dumb1 

flies mutant for dDA1 were defective in aversive shock and surprisingly, were 

also moderately but significantly impaired in appetitive sugar learning (Kim et al., 
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2007).  This defect could be rescued by re-establishing expression of the 

receptor in the nervous system using the pan neuronal driver elav-GAL4 or 

specifically in the mushroom bodies using the MB247-GAL4 line (Kim et al., 

2007). These data suggested that dopamine might be involved in coding 

appetitive reward.  

 

The first work demonstrating a role for specific DA neurons in appetitive memory 

came from Krashes et al. (2009) who established a role for dopamine in 

mediating the state-dependence of appetitive memory retrieval.  Dopaminergic 

mushroom body-innervating MB-MP1 neurons from the PPL1 cluster were found 

to provide the inhibitory control of satiety. They proposed that tonic dopamine 

released on the mushroom body while the fly was in a state of satiety prevented 

expression of appetitive memory (Krashes et al., 2009).  This inhibition could be 

released by food depriving the fly (as shown in (Krashes & Waddell, 2008) or by 

stimulating neuropeptide F (dNPF) releasing neurons.  dNPF inhibits MB-MP1 

neurons through its receptor dNPFR1, blocking tonic inhibition and permitting 

retrieval of appetitive memory (Krashes et al., 2009).  This finding revealed a 

more nuanced role for dopamine in gating the expression of reward memory. 

 

Additionally, studies from Kaun et al. 2011 suggested that dopamine signaling 

may be necessary for the expression of rewarding ethanol reinforced memory 

(Kaun et al., 2011).  It was also shown that dopamine modulates a fly’s 
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acceptance of sucrose dependent on internal state (Marella et al., 2012).  Here, 

neuronal blockade of TH-GAL4 neurons significantly reduced PER to a range of 

sucrose concentrations and stimulation of a single dopaminergic neuron in the 

SOG drove PER in hungry, but not satiated flies (Marella et al., 2012).   

 

Recent studies found a population of DA neurons required for reward learning. 

These rewarding DA neurons have cell bodies in the PAM cluster, and they are 

not labeled in the previously used TH-GAL4 line.  Rewarding DA neurons are 

labeled by the DDC-GAL4 or R58E02-GAL4 lines and they project to the 

horizontal MB lobes. Importantly they do not overlap with the previously 

described PPL1 or MB-M3 PAM DA neurons which signal negative value (Aso et 

al., 2010; Aso et al., 2012; Liu et al., 2012).  Stimulation of PAM DA neurons 

could replace presentation of sugar reward during olfactory conditioning, forming 

appetitive memory that was dependent on dDA1 expression in the MB (Liu et al., 

2012).  By performing in vivo Ca2+ imaging using GCaMP, Liu et al. showed that 

these rewarding PAM DA neurons were responsive specifically to ingestion of 

sucrose by the fly (Liu et al., 2012).   

 

These data suggest complex actions of dopaminergic signaling in several 

aspects of appetitive behavior and helped guide us in our study of appetitive 

reward signals involved in learning and memory.  While compelling, the model 
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proposed by Liu et al. did not integrate the prior findings of OA in providing 

appetitive reward in insects.  The work I now present sought to unify the models. 

Introduction 
 

Dopamine is synonymous with reward and motivation in mammals (Dayan & 

Balleine, 2002; Wise, 2004). However, only recently has dopamine been linked to 

motivated behavior and rewarding reinforcement in fruit flies (Krashes et al., 

2009; Liu et al., 2012). Instead, octopamine has historically been considered to 

be the signal for reward in insects (Hammer, 1993; Hammer & Menzel, 1998; 

Schwaerzel et al., 2003). Here we show, using temporal control of neural function 

in Drosophila, that only short-term appetitive memory is reinforced by 

octopamine. Moreover, octopamine-dependent memory formation requires 

signaling through dopamine neurons. Part of the octopamine signal requires the 

α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-

targeted dopamine neurons. Octopamine triggers an increase in intracellular 

calcium in these dopamine neurons, and their direct activation can substitute for 

sugar to form appetitive memory, even in flies lacking octopamine. Analysis of 

the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent 

reinforcement also requires an interaction with dopamine neurons that control 

appetitive motivation. These data indicate that sweet taste engages a distributed 

octopamine signal that reinforces memory through discrete subsets of 

mushroom-body-targeted dopamine neurons. In addition, they reconcile previous 
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findings with octopamine and dopamine and suggest that reinforcement systems 

in flies are more similar to mammals than previously thought. 

 

Prior work has implicated OA, the invertebrate analog of norepinephrine, as the 

reinforcing signal in appetitive conditioning in insects. Electrical stimulation of a 

single octopaminergic neuron, or injection of OA into the honeybee antennal 

lobes or MB calyx, can replace the presentation of a sucrose reward in olfactory 

conditioning of the proboscis extension reflex (Hammer, 1993; Hammer & 

Menzel, 1998). In the invertebrate nervous system OA is synthesized from the 

amino acid tyrosine via a two-step reaction catalyzed by tyrosine decarboxylase 

(TDC) and tyramine b-hydroxylase (Tβh) (Cole et al., 2005; Monastirioti et al., 

1996). Tβh mutant Drosophila that lack octopamine cannot form appetitive 

memory (Schwaerzel et al., 2003). However, the precise role of OA release is 

currently unknown. The Tdc2 gene encodes the neuronal TDC and a Tdc2-GAL4 

can be used to label and manipulate many of the OA neurons in the fly (Cole et 

al., 2005). Expressing a light-activated trigger in OA neurons enabled 

replacement of reward with OA neuron activation in olfactory conditioning in 

larvae (Schroll et al., 2006). In contrast, activation of specific subsets of 

dopaminergic neurons in larvae and adult flies (Claridge-Chang et al., 2009; Aso 

et al., 2010) could substitute for negative stimuli in aversive memory formation. 

These findings led to the prevailing and somewhat surprising model that insect 

reinforcement signaling was unlike that in mammals, with DA mediating aversive 
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reinforcement and reward being signaled by OA (Schwaerzel et al., 2003; 

Heisenberg, 2003).  

 

Recently this separatist view of reinforcement across phyla has been overturned. 

Although some mammalian midbrain DA neurons encode value-related reward 

signals (Schultz et al., 1997) others have been identified that are activated by 

rewarding and aversive stimuli (Matsumoto & Hikosaka, 2009a; Schultz, 2010). 

In Drosophila, mutations in the DopR dopamine receptor disrupt both aversive 

and appetitive memory (Kim et al., 2007). Furthermore, discrete subsets of DA 

neurons can convey aversive and appetitive reinforcement in addition to 

appetitive motivational control (Krashes et al., 2009; Liu et al., 2012; Claridge-

Chang et al., 2009; Aso et al., 2010; Waddell, 2010). Therefore in this study we 

investigated the respective roles of OA and DA in appetitive reinforcement in 

Drosophila.  

 

Results 

Octopamine	   neurons	   can	  mediate	   the	   short-‐term	   reinforcing	   effects	   of	   sweet	  

taste	  

 

We first tested whether output from the octopamiergic Tdc2-GAL4 expressing 

neuron was required for appetitive olfactory conditioning with sucrose 
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reinforcement. OA neurons were blocked throughout the experiment using Tdc2-

GAL4 driven uas-shibirets1 (uas-shits1) (Kitamoto, 2001). We assayed Tdc2-

GAL4;uas-shits1 flies in parallel with flies harboring the GAL4 driver or uas-shits1 

transgene alone and wild-type flies for comparison (Figure III-1A). All flies were 

incubated at 31˚C to disrupt neurotransmission from OA neurons for 30min prior 

to being trained and tested for 3h appetitive memory performance at 31˚C. 

Surprisingly, no defects were apparent.  

 

Bees form more robust appetitive memory if they are allowed to ingest sucrose 

rather than just taste it (Wright et al., 2007) and sweet taste and nutrient value 

both contribute to appetitive memory reinforcement in Drosophila (Burke & 

Waddell, 2011; Fujita & Tanimura, 2011). We reasoned that OA blockade might 

lack consequence if OA only represents sweet taste and nutrient value provides 

sufficient reinforcement. To test this model we blocked Tdc2 neurons while 

training flies with arabinose, a sweet but non-nutritious sugar (Burke & Waddell, 

2011)(Figure III-1B). All flies were incubated at 31˚C for 30min prior to and during 

training and testing for 3min memory. In this case, memory performance of Tdc2-

GAL4;uas-shits1 flies was significantly impaired compared to all control groups. 

Importantly, no significant differences were apparent between groups trained with 

arabinose and tested at the permissive temperature (Figure III-1C). To further 

challenge a nutrient bypass model we blocked OA neurons when flies were 

conditioned with arabinose supplemented with nutritious sorbitol (Burke & 
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Waddell, 2011). No differences were apparent between the groups (Figure III- 

1D), similar to blocking OA neurons in flies conditioned with sweet and nutritious 

sucrose (Figure III-1A). These data are consistent with OA conveying the 

reinforcing effects of sweet taste only and that reinforcing signals representing 

nutrient value are sufficient for appetitive learning (Fujita & Tanimura, 2011).  

 

OA	  neuron	   stimulation	   can	   replace	   sugar	   presentation	   during	   conditioning	   to	  

form	  short-‐term	  appetitive	  memory	  

 

To determine whether OA provides instructive reinforcement we conditioned 

adult flies with odor presentation paired with artificial OA neuron activation, 

achieved by expressing uas-dTrpA1 with Tdc2-GAL4. dTrpA1 encodes a 

Transient Receptor Potential (TRP) channel that conducts Ca2+ and depolarizes 

neurons when flies are exposed to temperatures >25˚C (Hamada et al., 2008). 

Ad libitum fed wild-type, Tdc2-GAL4, uas-dTrpA1 and Tdc2-GAL4;uas-dTrpA1 

flies were conditioned by presenting an odor with activating 31˚C, and 

immediately tested for memory performance (Figure III-2A). Tdc2-GAL4;uas-

dTrpA1 flies exhibited robust appetitive memory performance that was 

statistically different from all other groups (Figure III-2B). Significant memory 

remained at 30min (Figure III-2C) in satiated flies but performance was 

statistically indistinguishable from all other groups at 3h, even in hungry flies 
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(Figure III-2D). Therefore we found that appetitive memory implanted with OA 

neuron activation is short-lived. Tdc2-GAL4 expresses in neurons that contain 

and could plausibly release tyramine, either alone or together with OA (Cole et 

al., 2005)(Figure III-5). To confirm that artificial learning requires OA we 

stimulated Tdc2 neurons in Tβh mutant flies (Monastirioti et al., 1996) that cannot 

synthesize OA from tyramine (Figure III-2E). No learning was observed 

suggesting that OA release from Tdc2 neurons is required for artificial learning, 

however this does not completely rule out roles for numerous neuropeptides co-

expressed in Tdc2-GAL4 neurons in mediating aspects of appetitive reward 

(Nassel, 2002). 

 

Although OA neuron innervation of the MB is relatively sparse in the γ lobe, heel 

and calyx (Busch et al., 2009) (Figure III-5), prior work suggests that the MB 

neurons are the likely eventual destination of appetitive reinforcement signals 

(Liu et al., 2012; Schwaerzel et al., 2003; Heisenberg, 2003; Kim et al., 2007). 

We therefore used the NP7088, 0665-GAL4 and 0891-GAL4 (Gohl et al., 2011) 

lines to investigate the role of the four individual classes of OA neurons that 

innervate the MB (Busch et al., 2009): OA-VUMa2, OA-VPM3, OA-VPM4 and 

OA-VPM5 (Figure III-2F). NP7088 expression broadly overlaps with Tdc2-GAL4 

neurons in the brain (Figure III-2G) but does not label OA-VPM5 neurons (Busch 

et al., 2009). 0665-GAL4 (Gohl et al., 2011) expression is even more restricted 

and labels the OA-VPM3 and OA-VPM4 neurons (Figure III-2H). Finally, 0891-
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GAL4 (Gohl et al., 2011) is the most sparse and only labels OA-VPM4 (Figure III- 

2I).  

 

Activating these more restricted populations of MB-innervating OA neurons 

during odor presentation did not form appetitive memory (Figure III-2J). Similarly, 

blocking any of these populations (NP7088, 0665-GAL4 or 0891-GAL4) using 

uas-shibirets1 did not significantly impair arabinose-reinforced memory (Figure III-

6). Importantly, these data suggest that the fly equivalent of the bee VUMmx1 

neuron (Hammer, 1993), OA-VUMa2 (Busch et al., 2009), and the other MB-

innervating neurons covered by these drivers, are neither sufficient nor essential 

for conditioned olfactory approach behavior in fruit flies. Instead the data support 

the notion that either the calyx-innervating OA-VPM5 neurons are critical, or a 

more distributed OA signal involving other non-MB innervating OA neurons is 

required for appetitive memory reinforcement, and possibly involve other 

neurons. This stands in contract to the findings that single DA neurons can 

mediate aversive signals (Aso et al., 2010; Aso et al., 2012). 
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Reinforcing	   DA	   neurons	   are	   functionally	   downstream	   of	   OA-‐dependent	  

reinforcement	  

 

One study has implicated the DopR dopamine receptor in appetitive memory. 

Flies with the dumb1 mutation have impaired appetitive memory and the defect 

can be reversed by restoring DopR receptor expression to the MB (Kim et al., 

2007). We therefore tested whether memory formation with OA neuron activation 

required DopR (Figure III-3A). No significant memory was observed in any group 

carrying the dumb1 mutation. Therefore a functional DA system is required to 

form appetitive memory with OA neuron activation, suggesting that DA is 

downstream of OA in appetitive memory processes. 

 

A recent study implicated DA neurons in the PAM cluster in appetitive 

reinforcement (Liu et al., 2012). We independently identified GAL4 lines in the 

InSITE collection that express in subsets of rewarding PAM-DA neurons (Gohl et 

al., 2011). 0273-GAL4 and 0104-GAL4 label many neurons innervating the MB 

and whose cell bodies predominantly lie in the PAM cluster (Mao & Davis, 2009; 

Tanaka et al., 2008) (Figure III-3B-E, Figure III-7A). Staining 0273-GAL4; uas-

mCD8::GFP brains with anti-tyrosine hydroxylase (TH) antibody revealed that 

0273-GAL4 expresses in all the approximately 140 DA neurons in the PAM 

cluster (Figure III-3C). Importantly, 0273-GAL4 does not label DA neurons in the 

Paired Posterior Lateral 1 (PPL1) cluster that convey negative value (Claridge-
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Chang et al., 2009; Aso et al., 2010; Mao & Davis, 2009) (Figure III-7A). 0104-

GAL4 expression is more restricted and labels about 40 of the PAM-DA neurons 

included in 0273-GAL4 (Figure III-3E).  

 

We tested whether 0104-GAL4 and 0273-GAL4 PAM neurons could provide 

appetitive reinforcement by activating them with uas-dTrpA1 while presenting an 

odor during conditioning in satiated flies. Both 0104-GAL4;uas-dTrpA1 and 0273-

GAL4;uas-dTrpA1 flies exhibited very robust appetitive memory that was 

statistically different from all control flies (Figure III-3F) and far greater than 

scores observed with a similar stimulation of OA neurons (Figures III-2, III-3A).  

 

Since 0104-GAL4 more precisely labels reinforcing PAM-DA neurons than 0273-

GAL4, we used uas-shits1 to test whether neurotransmission from PAM-DA 

neurons was required for appetitive learning with sugar reinforcement. The 0104-

GAL4;uas-shits1 flies were tested in parallel with those harboring the GAL4 driver 

or uas-shits1transgene alone and wild-type flies for comparison. All flies were 

incubated at 31˚C to disrupt neurotransmission from PAM-DA neurons for 30min 

prior to and during conditioning with arabinose or sucrose reinforcement. 

Blocking 0104-GAL4 neurons completely abolished memory performance in 

arabinose-conditioned flies (Figure III-3G). The initial memory performance of 

sucrose-conditioned flies was also significantly impaired (Figure III-3H). 

Moreover, sucrose-conditioned 24h memory was abolished if 0104-GAL4 
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neurons were only blocked during training (Figure III-7B). Importantly, training 

and testing the flies at the permissive temperature did not impair performance 

(Figure III-7C). Therefore PAM-DA neurons, like OA neurons, are critical for 

conditioning with arabinose but, unlike OA neurons, they also contribute towards 

the reinforcing effects of nutritious sucrose.  

 

We used PAM-DA neuron activation to further challenge whether DA reinforcing 

signals are downstream of OA. We artificially conditioned Tβh mutant flies that 

lack OA. Appetitive memory formed in Tβh mutant flies with 0104-GAL4;uas-

dTrpA1 or 0273-GAL4;uas-dTrpA1 was statistically indistinguishable from that 

formed in the wild-type background (Figure III-3I and Figure III-7D) confirming 

that DA-mediated reinforcement may be downstream, and can function 

independently, of OA.  

 

OA-‐dependent	  reinforcement	  functions	  through	  discrete	  groups	  of	  DA	  neurons	  

 

To investigate a plausible direct link between OA and DA neurons we tested 

whether appetitive memory could be formed with OA neuron activation in OA 

receptor mutant flies. Artificial learning worked effectively in satiated octβ1R 

mutant flies (Figure III-8) but was impaired in hungry oamb mutant flies (Han et 

al., 1998) (Figure III-4A) suggesting a key role for OAMB in OA reinforcement. 
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We tested for a role of oamb in PAM-DA neurons by expressing a uas-oambRNAi 

transgene (Figure III-9A) with 0104-GAL4 and conditioning flies with arabinose 

(Figure III-4B). Memory performance of 0104-GAL4;uas-oambRNAi flies was 

significantly different to that of both control groups. We also tested the same flies 

conditioned with sucrose. Consistent with prior experiments with OA 

manipulation, no effect was observed with this nutritious sugar (Figure III-9B). 

Therefore the OAMB receptor is involved in mediating OA-dependent memory in 

the PAM-DA neurons. 

 

The OAMB receptor couples to the release of calcium from intracellular stores 

(Han et al., 1998; Balfanz et al., 2005). We therefore expressed GCaMP3.0 (Tian 

et al., 2009) in PAM-DA neurons with 0104-GAL4 and assayed intracellular Ca2+ 

responses evoked by application of exogenous octopamine. Octopamine 

application drove a significant increase in Ca2+ signal in PAM-DA neurons that 

was abolished by pre-exposing the brain to the OA receptor antagonist mianserin 

(Maqueira et al., 2005; Crocker & Sehgal, 2008) (Figure III-4C and Figure III-10). 

It is worthwhile to mention however, that we saw the best response using bath 

concentrations of 5mM OA.  Though well outside of physiological levels on the 

synaptic scale, such concentrations were necessary as one could imagine 

diffusion across the brain was somewhat hindered and the effective dose 

reaching receptors in the PAM DA neurons was most likely reduced, though not 

quantified.  Still, these behavioral, anatomical and physiological data are 
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consistent with OA-dependent reinforcement involving OAMB-directed 

modulation of PAM-DA neurons. 

 

Studies in octβ2R (Maqueira et al., 2005) flies revealed a more nuanced picture 

for OA-mediated reinforcement. Artificial olfactory learning with OA neuron 

activation was impaired in satiated octβ2R/+ heterozygous flies (Figure III-4D) 

but was restored in octβ2R/+ flies by food-deprivation (Figure III-4E). These data 

suggest that OA also integrates with systems that are responsive to hunger to 

provide instructive reinforcement. Such a role for OA is also highlighted by the 

observation of memory performance in all prior experiments using satiated flies 

(Figure III-2, III-3 and III-8).  

 

Our prior work demonstrated that fly neuropeptide F (dNPF) modulates the MB-

heel innervating MB-MP1 DA neurons to limit retrieval of appetitive memory 

performance to hungry flies (Krashes et al., 2009). Artificial learning with OA 

worked effectively in dNPF receptor mutant flies suggesting that OA functions 

independently of dNPF (Figure III-11). We therefore tested for a role of Octβ2R in 

MB-MP1 DA neurons. We used a new Tdc2-LexA (Figure III-12) to 

simultaneously express lexAop-dTrpA1 in OA neurons and uas-octβ2RRNAi in 

MB-MP1 neurons using c061-GAL4;MBGAL80 (Krashes et al., 2009) (Figure III-

4F). Hungry Tdc2-LexA;lexAop-dTrpA1 flies formed robust appetitive memory. 

However, Tdc2-LexA;lexAop-dTrpA1 flies that also carried c061;MBGAL80;uas-
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octβ2RRNAi transgenes to knockdown octβ2R expression in MB-MP1 neurons did 

not display memory performance (Figure III-4F). We independently tested the 

role of MB-MP1 neurons in OA-mediated reinforcement by simultaneously 

stimulating OA neurons while disrupting output from MB-MP1 neurons with uas-

shits1 (Figure III-13). Flies in which MB-MP1 neurons were simultaneously 

blocked during artificial conditioning showed no significant memory. Since MB-

MP1 neurons can provide aversive reinforcement if artificially engaged during 

odor presentation (Aso et al., 2010), they likely provide negative influence to the 

system (Waddell, 2010). Therefore our data indicate that OA-dependent 

appetitive reinforcement requires Octβ2R modulation of negative DA signals from 

MB-MP1 neurons in addition to OAMB signaling in positive PAM-DA neurons.  

 

The 0104-GAL4 DA neurons have presynaptic terminals in the tip of MB 

β´ and γ lobes and presumed dendrites in the anterior medial protocerebrum 

(AMPR, Figure III-4G, III-4H). We used GFP-reconstituted across synaptic 

partners (GRASP) (Feinberg et al., 2008; Gordon & Scott, 2009) to investigate 

plausible sites of synaptic contact between OA neurons and the PAM and MB-

MP1 DA neurons. We expressed lexAop-mCD4::spGFP11 with Tdc2-LexA and 

uas-mCD4::spGFP1-10 with 0104-GAL4 or c061-GAL4;MBGAL80. Both of these 

combinations revealed strong GFP labeling in the AMPR (Figure III-4I and Figure 

III-14). In addition, MB-MP1 DA neuron:OA GRASP labeled the MB-heel region. 

The best candidates to bridge these two regions are the OA-VPM4 neurons, 
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which densely innervate the MB heel and γ lobes and the AMPR (Busch et al., 

2009). However OA-VPM4 neurons are cleanly labeled in 0891-GAL4 (Figure III- 

2I) and included in the 0665 (Figure III-2H) and NP7088 (Figure III-2G) GAL4 

lines, all of which were insufficient for appetitive conditioning (Figure III-2J). The 

rest of the AMPR innervating neurons, OA-VUMa6, OA-VUMa7, OA-VUMa8 and 

OA-VPM3, are also included in the NP7088 GAL4 labeled population (Busch et 

al., 2009). Lastly, the MB-calyx innervating OA-VPM5 neurons that are in Tdc2-

GAL4 but not NP7088 do not have arbors in the AMPR or MB-heel (Busch et al., 

2009) so cannot provide direct modulation of PAM or MB-MP1 DA neurons. Our 

data therefore suggest that reinforcing OA in the fruit fly is provided by a 

distributed set of neurons, some of which have arbors in the AMPR where they 

modulate reinforcing PAM and MB-MP1 DA neurons. We speculate that 

reinforcement through OA also requires simultaneous regulation of other 

unidentified DA neurons, or involvement of additional parallel modes of OA 

action.  

 

Discussion 
 

Although OA is a ‘trace’ amine in mammals and may have its own physiological 

role (Burchett & Hicks, 2006), OA is largely considered the functional insect 

analog of noradrenaline. Our data suggest that OA conveys reinforcement by 

differentially modulating discrete recipient neurons through the OAMB and 



 68 

Octβ2R receptors. OAMB resembles α-adrenergic receptors being preferentially 

coupled to Ca2+ entry (Han et al., 1998; Balfanz et al., 2005). Studies in 

mammals have linked α-adrenergic signaling to rewarding DA neurons (Drouin et 

al., 2002). In contrast, the Octβ2R is most similar to mammalian β-adrenergic 

receptors acting through cAMP (Maqueira et al., 2005). β-adrenergic signaling 

has a documented influence on synaptic plasticity and memory in mammals and 

is a potential avenue for treatment of post-traumatic stress disorder (PTSD) 

following memory reactivation (Debiec & Ledoux, 2004; Debiec & LeDoux, 2006). 

The β-adrenergic like Octβ2R appears to play a similar role in the fly brain gating 

appropriate information flow and memory by modulating specific DA neurons.  

 

Taken with prior work from others (Krashes et al., 2009; Liu et al., 2012; 

Claridge-Chang et al., 2009; Aso et al., 2010; Mao & Davis, 2009), our data 

demonstrate that flies have discrete populations of DA neurons representing 

negative or positive value. This antagonistic organization of populations of DA 

neurons appears to reflect that in mammals (Schultz, 2010). In addition, some 

mammalian rewarding DA neurons are also inhibited by aversive cues (Ungless 

et al., 2004), through neurons in the lateral habenula proposed to code negative 

prediction error (Matsumoto & Hikosaka, 2007). Our data are consistent with the 

balance between the two fly DA systems being critical to determine appetitive 

learning and memory-driven behavior (Waddell, 2010).  We propose that OA 

provides appetitive reinforcement by coordinately regulating activity in the 
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positively and negatively acting fly DA neuron populations. It will be interesting to 

determine whether OA influences other behaviors (Crocker & Sehgal, 2008; 

Koon et al., 2011; Crocker et al., 2010; Certel et al., 2007; Certel et al., 2010) via 

a similar route and whether they are simultaneously influenced by reinforcing OA 

signals. 
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Materials and Methods 
 

Fly strains  

Fly stocks were raised on standard cornmeal/agar food at 25°C and 60% relative 

humidity. The wild-type strain is Canton-S. The Tdc2-GAL4, NP7088, uas-shits1 

(carrying insertions on the first and third chromosome) and uas-dTrpA1 flies are 

described (Cole et al., 2005; Kitamoto, 2001; Hamada et al., 2008; Busch et al., 

2009).  The uas-mCD8::GFP and uas-mCD8::mCherry strains are those in (Lee 

& Luo, 1999; Lai & Lee, 2006). The TβhnM18, oa2f02819, octβ2rf05679, oamb584 and 

dumb1 mutant strains are described (Monastirioti et al., 1996; Kim et al., 2007; 

Lee et al., 2003; Koon et al., 2011). The MB-MP1 expressing c061-

GAL4:MBGAL80 flies are described (Krashes et al., 2009). The Tdc2-lexA:VP16 

transgenic line was generated by cloning the same regulatory region as 

described previously (Cole et al., 2005) into the pBS_LexA::VP16_SV40 vector 

(Lai & Lee, 2006). Transgenic flies were raised by standard procedures and lines 

were screened for those with appropriate expression. The GRASP reporters 

lexAop-mCD4::spGFP11 and uas-mCD4::spGFP1-10 are described (Gordon & 

Scott, 2009). The lexAop-dTrpA1 was constructed by subcloning a NotI and XhoI 

restriction site-flanked dTrpA1 cDNA from pOX-dTrpA1 (Paul Garrity, Brandeis 

University) into the pLOT transformation vector (Lai & Lee, 2006). Transgenic 

flies were commercially generated (BestGene Inc., CA). The uas-

oambRNAi(2861GD) and uas-octβ2RRNAi(104524KK) were obtained from the 
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VDRC (Dietzl et al., 2007). The 247-LexA::VP16 flies are described (Pitman et 

al., 2011). 0104-GAL4, 0665-GAL4, 0891-GAL4 and 0273-GAL4 flies refer to 

PBac{IT.GAL4}0104, PBac{IT.GAL4}0665, PBac{IT.GAL4}0891 and 

PBac{IT.GAL4}0273 and were generated within the framework of the InSITE 

project (Gohl et al., 2011) The lexAop-rCD2::mRFP, uas-Brp::GFP, and uas-

DenMark flies are described (Lee & Luo, 1999; Wagh et al., 2006; Nicolai et al., 

2010). The uas-GCaMP3.0 flies are described (Tian et al., 2009). 

 

Behavioral analysis 

To generate flies to block or stimulate OA neurons we crossed uas-shibirets1 or 

uas-dTrpA1 female flies to Tdc2-GAL4 males. 6-8 day old flies were tested. To 

block refined subsets of OA neurons we crossed uas-shibirets1 female flies to 

male NP7088/CyO, 0665-GAL4 or 0891-GAL4/TM3 males, and only flies 

negative for CyO or TM3 were assayed. To stimulate Tdc2 neurons in the Tβh 

mutant background, Tβh nM18/FM7i-GFP;uas-dTrpA1 females were crossed with 

Tβh nM18;Tdc2-GAL4 males and only progeny negative for FM7i-GFP were 

assayed. To stimulate Tdc2 neurons in the dumb1 mutant background, uas-

dTrpA1; dumb1/TM3 females were crossed with Tdc2-GAL4;dumb1 males and 

only dumb1 homozygous flies were assayed. To stimulate 0273-GAL4 or 0104-

GAL4 PAM-DA neurons, uas-dTrpA1 female flies were crossed to 0273-GAL4 or 

0104-GAL4/TM6b male flies. To block 0104-GAL4 DA neurons uas-shibirets1 

females were crossed to 0104-GAL4/ TM6b males. To stimulate 0273-GAL4 or 
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0104-GAL4 neurons in the Tβh mutant background, TβhnM18/FM7i;uas-dTrpA1 

females were crossed with TβhnM18;0273-GAL4/TM6b or TβhnM18;0104-

GAL4/TM6b males respectively and progeny negative for FM7i and TM6b were 

assayed. To stimulate Tdc2 neurons in the oa2, oamb and octβ2R mutant 

backgrounds uas-dTrpA1; oa2f02819/TM3 or uas-dTrpA1;octβ2Rf05679/TM6 or uas-

dTrpA1;oamb584/TM6 females were crossed to Tdc2-GAL4;oa2f02819/TM3 or 

Tdc2-GAL4;octβ2Rf05679/TM3 or Tdc2-GAL4;oamb584/TM3 males, respectively. 

Only flies homozygous for oa2 and oamb flies were assayed. The octβ2R 

insertion is homozygous lethal so only heterozygous octβ2R/+ flies were 

assayed. To express oambRNAi in 0104-GAL4 neurons, we crossed uas-

oambRNAi(2861GD) females to 0104-GAL4/ TM6b males and only flies lacking 

TM6b were assayed. To express octβ2RRNAi in MB-MP1 neurons while 

stimulatingTdc2 neurons, we crossed c061-GAL4;MBGAL80;Tdc2-LexA/TM3 

females to uas-octβ2RRNAi(104524KK);lexAop-dTrpA1/TM3 males. To express 

shibirets1 in MB-MP1 neurons while stimulating Tdc2 neurons, we crossed c061-

GAL4;MBGAL80;Tdc2-LexA/TM3 females to uas-shits1;lexAop-dTrpA1/TM3 

males. To stimulate Tdc2 neurons in the npfr1c01896 mutant background female 

uas-dTrpA1;npfr1c01896 flies were crossed to Tdc2-GAL4;npfr1c01896 males. 

Heterozygous control flies were generated by crossing the respective uas-

transgene flies with wild-type flies. For the oa2, octβ2R, oamb, dumb1 and npfr1 

experiments, Tdc2-GAL4;(mutant) or uas-dTrpA1;(mutant) flies were flies mutant 

at the same locus to generate heterozygous transgene controls within the 
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relevant homozygous mutant background. Controls for MB-MP1 neuron 

manipulation were generated by crossing c061-GAL4;MBGAL80;Tdc2-

GAL4/TM3 or uas-shits1;lexAop-dTrpA1/TM3 or uas-

octβ2RRNAi(104524KK);lexAop-dTrpA1/ TM3 females to wild-type flies.  

 

Mixed sex populations were tested together in all behavior experiments unless 

genotype required sorting single sexes. Hungry state experiments involved food 

depriving flies for 18–20h before training in milk bottles containing a damp filter 

paper. To test flies in the satiated state, flies were food-deprived 14-16h, then 

transferred into fresh bottles containing food to satiate 4h before training. The 

olfactory appetitive paradigm was performed as described (Krashes & Waddell, 

2008) with the following modifications: For neural blockade experiments using 

uas-shits1, flies were incubated at 31˚C for 30min prior to and during training and 

testing for 3min memory. For permissive temperature experiments flies were kept 

at 23˚C at all times. For memory implantation experiments using uas-dTrpA1, 

flies were presented with one odor at the permissive temperature 23˚C for 2min 

in filter paper-lined tubes. They were then transferred into a new prewarmed filter 

paper-lined tube and immediately presented with a second odor at the activating 

31˚C for 2min. Flies were then returned to 23˚C and tested for immediate 

memory. To test 3h memory flies were trained as above and stored in plastic 

vials containing dampened filter paper until testing. For 24h memory 

experiments, flies were trained as above and stored in food vials for 3h followed 
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by 21h of food-deprivation before testing. Odors were 3-octanol (9.2 µl in 8 ml 

mineral oil) or 4-methylcyclohexanol (18 µl in 8 ml mineral oil). The performance 

index (PI) was calculated as the number of flies running toward the conditioned 

odor minus the number of flies running toward the unconditioned odor divided by 

the total number of flies in the experiment. A single PI value is the average score 

from flies of the identical genotype tested with each odor. 

 

Statistical analyses were performed using PRISM (GraphPad Software). Overall 

analyses of variance (ANOVA) were followed by planned pairwise comparisons 

between the relevant groups with a Tukey HSD post-hoc test.  

 

Imaging 

To visualize native GFP, mRFP or mCherry adult female flies were collected 2-10 

days after eclosion (1 day for GRASP flies) and brains were dissected in ice-cold 

4% paraformaldehyde solution in PBS (1.86 mM NaH2PO4, 8.41 mM Na2HPO4, 

175 mM NaCl) and fixed for an additional 60-120 min at room temperature under 

vacuum. Samples were washed 3X10 min with PBS containing 0.1% Triton-X100 

(PBT), and 2X in PBS before mounting in Vectashield (Vector Labs). 

For immunohistochemistry, brains were fixed and washed as described above, 

followed by overnight incubation on a shaker in 10% normal goat serum (NGS) at 

4˚C. For staining using the Tβh antiserum (Koon et al., 2011), brains were 

dissected in ice-cold PBS, then fixed in undiluted Bouin’s solution for 20 minutes. 
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Samples were washed 3X10 min with PBST as above. The anti- Tβh antiserum 

and anti-nc82 antibody were added to a final dilution of 1:200 (Koon et al., 2011). 

An anti-tyrosine hydroxylase (TH) antibody raised in rabbit (AB152, Millipore) 

was added to a final dilution of 1:200 and kept in same conditions for another 

three days. After washing with PBT, Alexa594-coupled goat anti-rabbit antibody 

(A-11037, Invitrogen) was added 1:200 for one more night, followed by washing 

and embedding as described before.  

 

Imaging was performed on a Zeiss LSM 5 Pascal confocal microscope and a 

Leica TCS SP5 X. Images were processed in AMIRA 5.2 (Mercury Systems). In 

some cases, debris on the brain surface and/or antennal and gustatory nerves 

were manually deleted from the relevant confocal sections to permit construction 

of a clear projection view of the z-stack. 

 

Live imaging 

Up to 7 day old uas-GCaMP3.0;0104-GAL4 flies were anaesthetized on ice and 

waxed to a custom imaging chamber. The head capsule was opened under 800 

µl of sugar-free HL3-like saline (Yoshihara, 2012), and the whole preparation 

transferred under a SliceScope microscope (Scientifica). Epifluorescence images 

were acquired using a Pike CCD camera (Allied) at a rate of 3 images/s at one 

set gain. The spontaneous baseline GCaMP3.0 response was imaged for 30s, 

then either 100 µl saline or 100 µl mianserin (12.5 mM, Sigma-Aldrich, filtered) 
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were added to the bath. After another 30 s, 100 µl octopamine (50 mM, Sigma-

Aldrich) or 100 µl octopamine (50 mM) + mianserin (12 mM, filtered) were added 

as before, to reach a final bath concentration of 5 mM octopamine and 2.45 mM 

mianserin, respectively. After registration of images (StackReg plugin) a 

standardized region of interest (ROI) was centered within the area of the MB β‘ 

lobe tip (Figure III-4C). Image processing and analysis was performed with Fiji / 

ImageJ 1.4. Intensity tables were exported to Excel and the (ΔF – F) / F was 

calculated, with an F consisting of the averaged first 24 images. Traces were 

generated in Prism 6 (GraphPad Software). Respective peak intensities within 5 

s after saline/octopamine/mianserin application were selected and compared to 

other groups for significant differences. 

 

Real-Time PCR 

Total RNA from adult fly heads was isolated with Trizol (Invitrogen) and cleaned 

with RNeasy Micro Kit (Qiagen) with DNAse I treatment. RNA (200 ng) was 

reverse transcribed using the High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems) and oligo(dT)12-18. The cDNA was used for quantitative 

real-time PCR with ABI PRISM® 7000 Sequence Detection System (Applied 

Biosystems) with standard cycling parameters (2 min at 50 °C, 10 min at 95 °C, 

and 45 alternate cycles of 15 s at 95 °C and 60 s at 60 °C). The PCR mixture 

contained TaqMan® Gene Expression Master Mix and the appropriate Gene 

Expression Assay (Applied Biosystems). TaqMan qPCR assays were ordered for 
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OAMB (AB: Dm02150048m_1). GAPDH (AB: Dm01841185_m1) was used as an 

endogenous control for normalization (ΔCT value). The increase in expression 

(ΔΔCT value) was calculated and transformed to the exponential scale. 
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Figure III-1. Octopamine mediates the short-term reinforcing effects of 
sweet taste.  
(A) Blocking OA neurons with Tdc2-GAL4/ uas-shits1 during conditioning with 
sucrose has no consequence on 3 h appetitive memory, (all p>0.4, n≥6).  
(B) Blocking OA neurons during conditioning with arabinose significantly impairs 
appetitive learning, (p<0.05, n≥10).  
(C) No significant defects are observed when flies are conditioned with arabinose 
at the permissive 23˚C, (all p>0.1, n≥8).  
(D), Blocking OA neurons during conditioning with arabinose supplemented with 
nutritious sorbitol has no significant effect on appetitive learning (all p>0.4, n=8). 
All behavioral data are mean ± standard error of the mean (SEM). Asterisks 
denote significant difference between marked groups and all others (all p<0.05, 
ANOVA). 
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Figure III-2. OA neuron stimulation can replace sugar presentation during 
conditioning to form short-term appetitive memory.  
(A) Conditioning protocol pairing a 2 min odor presentation with heat-activation 
(red) of uas-dTrpA1 expressing neurons.  
(B) Tdc2-GAL4/uas-dTrpA1 driven OA neuron activation contingent with odor 
presentation forms appetitive olfactory memory in satiated flies (p<0.001, n≥14). 
(C) Tdc2-GAL4 neuron implanted appetitive memory remains significant 30 min 
after training in satiated flies (p<0.05, n≥8).  
(D) No appetitive memory is observed 3 h after training, even in hungry flies 
(p>0.5, n=6).  
(E) Implanting memory with Tdc2-GAL4 neuron stimulation requires OA. Artificial 
conditioning does not form significant memory in hungry Tβh mutant flies 
(p>0.05, n≥8).  
(F) Schematic of all four types of OA neurons that innervate the mushroom body 
(MB) in either the calyx (OA-VUMa2, OA-VPM5, plus the antennal lobe, AL), heel 
(OA-VPM4, plus the MB γ lobe), or both calyx and heel (OA-VPM3). Neurons 
arise from either the maxillary (Mx), mandibulary (Md), or labial (Lb) neuromere 
in the ventral brain.  
(G) NP7088-GAL4 expresses in many Tdc2 positive OA neurons in the brain. 
Projected view of a brain showing OA neurons that are common to Tdc2-
GAL4/Tdc2-LexA and NP7088-GAL4 revealed by genetic intersection. The MB-
OA cell types included in each line are color-coded.  
(H) 0665-GAL4 labels the MB-innervating OA-VPM3 and OA-VPM4 neurons in 
the brain; 247-RFP labeled MB is shown in red for reference.  
(I) 0891-GAL4 specifically labels the MB-innervating OA-VPM4 neurons in the 
brain. Scale bar 50 µm.  
(J) Stimulating subsets of OA neurons cannot replace sugar presentation in 
appetitive conditioning. (p>0.05, n≥6).  
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Figure III-3. Reinforcing DA neurons are functionally downstream of OA-
dependent reinforcement.  
(A) Memory cannot be implanted with Tdc2 neuron stimulation in dumb1 (DopR) 
mutant flies (all p>0.05, except Tdc2-GAL4/uas-dTrpA1 control p<0.001, n≥8).  
(B) 0273-GAL4 labels DA neurons in the PAM cluster (dashed box) that 
innervate the MB (red).  
(C) 0273-GAL4 labels all ~140 TH-positive DA neurons in the PAM cluster.  
(D) 0104-GAL4 labels DA neurons in the PAM cluster (dashed box) that 
innervate the MB (red).  
(E) 0104-GAL4 labels ~40 TH-positive DA neurons in the PAM cluster. Scale bar 
50 µm (b and d), 20 µm (c and e).  
(F) Robust appetitive memory can be implanted with 0104-GAL4 and 0273-GAL4 
neuron activation contingent with odor presentation. Three minute memory 
performance of 0104-GAL4;uas-dTrpA1 and 0273-GAL4;uas-dTrpA1 flies is 
significantly different from all other groups (p<0.01, n≥4).  
(F) Blocking DA neurons with 0104-GAL4/uas-shits1 during conditioning with 
arabinose abolishes appetitive learning (p<0.001, n≥8).  
(H) Blocking 0104-GAL4 DA neurons during conditioning with sucrose 
significantly impairs appetitive learning, (p<0.05, n≥6). i, 0104-GAL4 neuron 
stimulation can form robust appetitive memory in satiated Tβh mutant flies 
(p<0.001, n≥6). 
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Figure III-4. OA-dependent reinforcement functions through discrete 
groups of DA neurons.  
(A) Memory cannot be implanted with Tdc2 neuron stimulation in hungry oamb 
mutant flies. Only the Tdc2-GAL4/uas-dTrpA1 flies display significant learning 
(p<0.01, n≥8).  
(B) Appetitive memory formation with arabinose reinforcement requires oamb in 
0104-GAL4 neurons. Immediate memory of 0104-GAL4;uas-oambRNAi flies is 
significantly different to both control groups (p<0.05, n≥18). The uas-oambRNAi 

causes an approximately 40% decrease in oamb transcript levels 
(Supplementary Fig. 5A).  
(C) Application of 5 mM OA to the exposed living fly brain drives an increase in 
intracellular Ca2+, measured using GCaMP3.0, in reinforcing 0104-GAL4 DA 
neurons. The OA-evoked response (red trace) is significantly decreased in brains 
treated with 2.45 mM of the OA antagonist mianserin (blue trace, see also 
Supplementary Fig. 6). First dotted arrow marks time of application of mianserin 
or vehicle. Solid arrow marks application of OA or OA together with mianserin. 
Traces are averaged (n = 11 animals each) with the solid line representing the 
mean and the shaded areas showing the s.e.m. Panels above show 
representative pseudocolored images of fluorescence intensity 3 s before 
application (left) and 3 s after OA application (right). The dotted circle represents 
the region of interest used for analysis. Scale bar: 10 µm.  
(D) Memory cannot be implanted with Tdc2 neuron stimulation in satiated 
octβ2R/+ heterozygous mutant flies (p>0.05 for all groups, except Tdc2-
GAL4/uas-dTrpA1, p<0.05, n=8).  
(E) Memory can be implanted with Tdc2 neuron stimulation in hungry octb2R/+ 
heterozygous mutant flies. Performance of the Tdc2-GAL4/uas-dTrpA1 flies and 
Tdc2-GAL4/uas-dTrpA1; octβ2R/+ flies is significantly different to all other groups 
(p<0.05, n≥6).  
(F) Memory cannot be implanted with Tdc2 neuron stimulation in flies that also 
express uas-octβ2RRNAi in MB-MP1 neurons (all p>0.05 except Tdc2-GAL4/uas-
dTrpA1 control, p<0.001, n≥8). The efficacy of uas-octβ2RRNAi has been reported 
previously42.  
(G) 0104-GAL4 driven co-expression of mCherry (magenta) and the presynaptic 
marker Bruchpilot::GFP (Brp::GFP, green) reveals exclusive presynaptic label in 
the tip region of the horizontal MB lobes. Structures not labeled by Brp::GFP in 
the anterior median protocerebrum (ampr) above the MB lobes are likely to be 
dendritic arbors of these PAM-DA neurons. 
(H) Y-Z section (at the level of the dashed line in b) reveals Brp::GFP expression 
is refined to the b’ and g lobe tips. Scale bar: 20 µm. i, GRASP indicates 
plausible synaptic contact between OA neurons and 0104-GAL4 DA neurons in 
the anterior medial protocerebrum (ampr, dashed circles). Scale bar: 50 µm  
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Figure III-5. Tdc2-GAL4 labels all OA neurons that innervate the MB.  
Tdc2-GAL4: uas-CD8::GFP brain counter-stained with anti-GFP antibody (cyan), 
anti- Tβh antiserum (magenta), anti-nc82 antibody for neuropil reference (yellow), 
and overlay. GFP and Tβh staining patterns reveal very sparse labeling of the 
MB structure by OA neurons with innervation being restricted to the calyces (a-c, 
dashed circles), heels (d-f, dashed circles), and γ lobes (not shown). The 
absence of anti- Tβh label throughout the rest of the MB structure strongly 
suggests that no additional MB extrinsic neurons produce OA. Most described 
OA cells exhibit overlap with anti- Tβh labeling, as for example AL2 cells (d-f, 
arrows). Lack of overlap between Tdc2-GAL4 and Tβh is evident in a few cells 
consistent with them releasing tyramine but not OA. Of particular note in this 
regard are the cells in the ASM cluster (g-h). Scale bar: 20 µm. 
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Figure III-6. The NP7088, 0665-GAL4 and 0891-GAL4 subsets of OA neurons 
are not critical for arabinose reinforced memory. Blocking OA neurons with 
(A) NP7088-GAL4/ uas-shits1,(B) 0665-GAL4/ uas-shits1 or (C) 0891-GAL4/ uas-
shits1 during conditioning with arabinose has no consequence on 3 min appetitive 
memory, (all p>0.08, n≥6). 
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Figure III-7. Detailed anatomy and additional behavioral analysis of neurons 
labeled by 0104-GAL4 and 0273-GAL4 lines.  
(A) 0273-GAL4 (green) does not label TH-positive DA neurons (magenta) in the 
PPL1 cluster (dashed circles) that sit next to the MB calyx. 
(B) 24h appetitive memory is abolished when 0104-GAL4/ uas-shits1 flies are 
conditioned with sucrose at 31˚C (all p<0.05, n≥8). 
(C) No significant defects are observed when 0104-GAL4/ uas-shits1 flies are 
conditioned with arabinose at the permissive temperature of 23˚C (all p>0.1, 
n≥8).  
(D) 0273-GAL4 neuron stimulation can form robust appetitive memory in satiated 
Tβh mutant flies (p<0.001, n≥6). 
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Figure III-8. Memory implantation with OA neuron stimulation does not 
require the octβ1r gene.  
Tdc2-GAL4 neuron stimulation forms robust appetitive memory in satiated octβ1r 
mutant flies (p<0.001, n≥11).  
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Figure III-9. Confirmation of the efficacy of the uas-oambRNAi transgene 
and sucrose control. 
(A) Quantitative RT-PCR of OAMB transcripts from wild-type, oamb584 mutant 
and Elav-GAL4/ uas-oambRNAi fly heads. Values normalized to those from wild-
type flies. Asterisks denote significant decrease in abundance from wild-type 
samples, (p<0.01, T-test, n=6).  

(B) Knockdown of OAMB in 0104-GAL4 DA neurons has no consequence for 
appetitive learning when conditioning using nutrient-rich sucrose (p>0.05, n=6). 
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Fig. S6 !

 

 

 

 

 

 

 

 

Figure III-10. Application of OA to the exposed living fly brain drives an 
increase in intracellular Ca2+, measured using GCaMP3.0, in reinforcing 
0104-GAL4 DA neurons. 

More detail of the data represented in Figure III-4C. Application of 5 mM OA to 
the exposed living fly brain drives an increase in intracellular Ca2+, measured 
using GCaMP3.0, in reinforcing 0104-GAL4 DA neurons. The OA-evoked 
response is significantly decreased in brains pre-treated with 2.45 mM of the OA 
receptor antagonist mianserin (mianserin + OA, P < 0.01, U = 15, Mann-Whitney 
U-test). OA application elicits different responses to saline application (P < 0.05, 
U = 24, Mann-Whitney U-test). Responses to mianserin and mianserin + OA (P > 
0.05, U = 37, Mann-Whitney U-test) are not statistically different. Lines connect 
datapoints corresponding to the same individual fly (n = 11 each).
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Figure III-11. Memory implantation with OA neuron stimulation does not 
require the npfr1 gene.  
Tdc2-GAL4 neuron stimulation forms robust appetitive memory in satiated npfr1 
mutant flies (p<0.05, n≥8). 
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Figure III-12. Tdc2-LexA recapitulates Tdc2-GAL4 expression and allows 
simultaneous analysis of OA and specific DA neurons. 
(A) Whole brain projection of Tdc2-GAL4 expression of uas-mCD8::GFP (green), 
including single sections at the level of the MB calyx and heel (insets). 
(B) Tdc2-LexA expression of lexAop-rCD2::mRFP (magenta) resembles the 
Tdc2-GAL4 pattern, with notable additional labeling in posterior central complex 
(CB) neurons.  
(C) merge of Tdc2-GAL4 and Tdc2-LexA patterns.  
(D-F) OA and MB-MP1 DA neurons innervate the heel region of the MB lobes 
(dashed line). Single confocal sections at the level of the heel from a c061-
GAL4;MBGAL80/lexAop-mCD8::GFP;Tdc2-LexA/uas-mCD8::GFP fly brain. d, 
OA neurons in the Tdc2-LexA channel (green), f, MB-MP1 neurons in the c061-
GAL4;MBGAL80 channel (magenta), e, merge of d and f showing that OA 
neuron processes are intermingled with DA processes. Scale bar 50 µm. 
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Figure III-13. Transmission from MB-MP1 DA neurons is required for OA-
dependent appetitive memory formation. Memory cannot be implanted with 
Tdc2-GAL4 neuron stimulation in satiated flies if MB-MP1 neuron output is 
simultaneously disrupted with uas-shits1 (all p>0.05 except Tdc2-GAL4/uas-
dTrpA1 control p<0.001, n≥8).  
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Fig. S10 !

                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III-14. GRASP reveals sites of putative contact between OA and MB-
MP1 DA neurons. 
OA and DA neuron processes make close contact in the heel (dashed circle) and 
the anterior median protocerebrum (ampr, dashed ellipse). A single confocal 
section at the level of the MB heel from a c061-GAL4;MBGAL80/lexAop-
mCD4::spGFP11;Tdc2-LexA/uas-mCD4::spGFP1-10 brain showing GRASP 
between OA and MB-MP1 DA neurons. Scale bar 50 µm. 
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Chapter IV: Discussion 
 

How we evaluate our experiences in the environment in which we live often 

determines how successful we will be within it.  Being able to determine what’s 

good, better and best from bad, worse and just downright terrible is essential to 

survival.  Qualitative analysis of our world involves not only our immediate 

sensory perceptions on a moment to moment basis, but also evaluation over 

time, leading to a remembered experience of the benefit or harm of various 

stimuli.  Were this not the case, we would probably never eat nutritious broccoli 

or Brussels sprouts, or consume high fat and sugar-rich foods without regard to 

the damage it does to our bodies in the long run.  What might seem aversive at 

first may in fact have long-term benefit, while initial instant gratification may leave 

you unfulfilled in the future.  Our internal systems of reward and punishment must 

be able to appropriately assign value to our actions and interactions.  As not all 

aversive or attractive stimuli are of equal valance, developing separate and 

parallel methods to signal different aspects of reward or punishment is highly 

beneficial for efficient processing. Separate parallel systems of reward 

processing for both the hedonic sweet taste and the underlying nutritive value of 

sugars have been observed in humans, rats, mice and locusts (Smeets et al., 

2005; Chambers et al., 2009; de Araujo et al., 2008; Sclafani, 2001; Ackroff et al., 

2009; Simpson & White, 1990; Raubenheimer & Tucker, 1997).  My own work 
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has shown that a similar system of organization is present in our model organism 

of choice, Drosophila melanogaster.   

 

But what is the neurological nature of reward?  With a host of genetic tools, 

techniques and technology becoming more sophisticated, it would at first seem 

reasonable to assume that we have the ability to shed light on what makes a 

particular stimulus rewarding in the brain.  However, as soon as we take into 

account the complexity of human emotional response, personal preference, 

cultural and environmental influences, individuality and our prior experiences, it 

becomes clear that finding something as direct as how all pleasure is registered 

and evaluated in the human brain becomes a gargantuan task.  For example, 

how might one reconcile individuals with what might be termed a “masochistic” 

inclination, in which pain, which by all natural means should be avoided at all 

costs, its registered as rewarding, and sought out?  Likewise, in the case of 

addiction, individuals seek out rewarding actions or stimuli despite often (rather 

subjectively) disproportionally severe negative consequences.  Moreover, how 

might something as subjective and varied as emotional pleasure or reward differ 

from physical pleasure or reward in how it is represented in the brain?  In the 

studies presented in this thesis, we examined but one aspect of reward in 

response to food using the fruit fly. And while the findings were fruitful in aiding in 

our understanding of a relatively simplistic neural reward circuit, they can by no 
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means explain the intricate details of what we term pleasurable or rewarding in 

human behavior and in the brain. 

Layered Reward in Drosophila, Part I: A Refined Palate 
 

The study presented in Chapter II took a somewhat ethological approach to the 

question of how sugar reward learning is processed in the fruit fly brain.  We 

sought to better understand how and ultimately why the sugar sucrose, long used 

in appetitive olfactory conditioning in the fly as reward (Tempel et al., 1983; 

Schwaerzel et al., 2003; Krashes & Waddell, 2008; Colomb et al., 2009), acted 

as such a potent reinforcer of memory both short and long term. By conditioning 

flies using sugars of differing nutritional properties, we found that the sweet 

tasting but non-nutritive sugars arabinose or xylose could drive only STM 

formation.  Conversely, a post-ingestive nutrient signal provided by ingestion of 

sucrose, fructose or the nutritious but tasteless sorbitol or maltodextrin was 

required for the formation of appetitive LTM.  Our definition of “sweetness” was 

determined by the flies’ performance in the PER assay, which measures a fly’s 

acceptance of a substance.  Though a few studies have examined the fly’s ability 

to discriminate between different sugars of similar nutritional profile (Masek & 

Scott, 2010), it remains to be seen whether there are other properties of these 

sugars being coded by the brain by unknown mechanisms.  Are there subtle but 

distinct differences in how the fly “tastes” sucrose or fructose?   
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Likewise, our use of the term “nutritious” in this study refers only to the ability of 

each sugar or compound to sustain fly life as the sole source of food.  There are 

inevitably more aspects to nutrition in the food selection of a fly such as the 

presence of amino acids, lipids, minerals and even water content.  The systems 

of water sensation (Cameron et al., 2010) and a mechanism by which flies 

modulate preference for amino acids (Ribeiro & Dickson, 2010; Toshima & 

Tanimura, 2012; Itskov & Ribeiro, 2013) have been recently described in the fly, 

and it would be interesting to speculate whether appetitive conditioning using 

other macronutrients may show similar features as we observe using sugars.   

 

Our finding that arabinose-trained flies performed poorly for 24hr memory was 

not dependent on amounts ingested during olfactory conditioning (Fig II-1E and 

II-2E), nor due to any negative effects on health (Fig. II-5B) but rather, appetitive 

LTM performance was based solely on the consumption of nutritional content by 

the fly.  The practical implication of this finding being that in nature, it would seem 

more beneficial for an organism to accurately recall a food source that provided 

life-sustaining nutrient rather than just one that tasted sweet, but lacked nutrient 

completely.  While a situation such as this might be exceedingly rare in nature, 

this mechanism might aide a fly in selecting a food source with the highest 

nutritional benefit over others.   
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Furthermore, flies can rapidly discriminate between sweetness alone and a 

sweet and nutritious compound based on nutrient content, showing strong 

preference behavior within 2 minutes.  The rapidity with which the fly can sense 

the presence or absence of nutrient in two equally sweet compounds is quite 

remarkable, and might be of further advantage to the fly’s foraging strategy, as 

less time spent evaluating and sampling food means less time being exposed 

and vulnerable to predation.   

 

Layered Reward in Drosophila, Part 2: Octopamine and Dopamine 
 

We next took an interventionist approach to explore what neural circuit 

mechanisms mediated these parallel systems of reward in the fly brain, building 

upon our previous findings.  Blocking Tdc2-GAL4 OA neurons with shibirets1 

while training flies with either sweet or sweet and nutritious sugars revealed that 

OA represents the rewarding effects of sweet taste only, and that nutrient reward 

signals which drive appetitive LTM function independently of OA. Consistent with 

the finding that “sweet taste conditioning” forms only STM, stimulation of OA 

neurons was sufficient to drive robust 2 minute memory in the absence of sugar 

reward, but the memory did not persist, suggesting an alternate pathway for 

nutrient signaling.  Analysis of OA subsets which innervate the MB revealed that 

unlike the DA system in which single neurons can drive aversive behavior, a 

more distributed OA signal was required for appetitive memory formation.   



 103 

One key caveat of blockade experiments using shibire which must be mentioned 

is that shibire blocks vesicle recycling, and might have non-neuronal 

consequences for cells at the restrictive temperature.  Crippling normal vesicular 

transport might significantly disrupt a host of metabolic functions and negatively 

affect the overall health of the cell.  While our experiments blocking only during 

the acquisition phase reveals normal expression of memory post blockade, 

suggesting normal cellular function when returned to the permissive temperature, 

the possibility remains that our “blocked” neurons might still show some altered 

neuronal function not detected in our assay. 

 

Furthermore, the initial studies characterizing the shibire flies (Koenig et al., 

1983) were done at the neuromuscular junction.  To date, there has not been an 

exhaustive study of a similar effect of prevention of vesicle recycling within an 

intact CNS.  This may be why we don’t necessarily see a complete disruption of 

appetitive memory performance when blocking certain subsets of neurons in the 

fly brain, suggesting incomplete blockade of neurotransmission.  The dynamin 

protein acts as a tetramer whose assembly acts to pinch off budding clatherin-

coated vesicles during endocytosis (Muhlberg et al., 1997).  As such, it has been 

suggested that manipulations of dynamin such as those in our shibire 

experiements only disrupt transmission involving neurotransmitters packaged in 

such vesicles, and not dense core vesicles which may house larger 

neuropeptides (Nassel, 2002). Furthermore, activation of either 0273 or 0104-
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GAL4 neurons by dTrpA1 stimulation could also plausibly lead to co-release of 

expressed neuropeptides alongside the neurotransmitter dopamine (Yew et al., 

2009).  As such, it is hard to completely rule out any secondary roles for these 

neuropeptides during appetitive conditioning. 

 

In the manipulation of any system in an intact organism, compromises must be 

made, and no approach is without caveats, secondary effects and potential 

pitfalls for misinterpretation. Behavioral testing using populations of animals is 

inherently noisy and often slight day to day variation in performance scores was 

found to be quite common.  To counteract this variation, we performed each 

experiment with side-by-side testing of age-matched positive (and negative 

where applicable) control flies. Rather than assaying absolute levels of learning, 

in this way we can determine behavioral performance relative to daily controls.  

This allows us to make more confident conclusions of our data when 

manipulating neural circuits to disrupt or drive appetitive behavior. 

 

dTrpA1, while a very powerful tool to investigate the instructive role of neural 

circuits, is often regarded as a “sledgehammer” approach.  Studies ectopically 

expressing uas-dTrpA1 in the NMJ found firing rates of action potentials in 

excess of 100Hz when prep temperatures approached 29˚C (Hamada et al., 

2008).  This prolonged, sustained and high frequency stimulation of neurons by 

dTrpA1 may result in neural activity outside of physiological levels, making 
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interpretation more complicated.  However, despite this aberrant stimulation of 

the neurons, in our experiments, we do see what appears to be a specific 

response when stimulating during odor presentation.  One approach we have 

considered but not yet investigated would be to perform a behavioral “dose 

response curve” monitoring appetitive learning performance scores as a function 

of increased temperature during conditioning.  If we were to see increasing 

performance scores as temperature (and therefore, firing rate) increased, we 

could be more confident of our heat-activated stimulation results.  Likewise, a 

rigorous analysis of coincident pairing and reverse training using neuronal 

stimulation (US) and odor (CS) during conditioning might also shed light on how 

closely direct stimulation can mirror the effects of sugar-odor conditioning  

 

OA-implanted memory was found to be dependent on the dDA1 dopamine 

receptor, suggesting a link between OA and rewarding DA systems.  Stimulation 

of DA neurons residing in the PAM cluster also produced robust appetitive 

memory that was able to persist well past 24hrs, even in Tβh mutant flies lacking 

OA. Therefore, rewarding DA is functionally downstream and can act 

independently of OA. Furthermore, blockade of PAM DA neurons using shibirets1 

significantly impaired both sweet as well as sweet and nutritive conditioned 

appetitive memory.  Our finding that DA acts as a final arbiter of appetitive 

reward was both surprising given the previous literature on DA mediating 

punishment in the fly, but also made sense in light of years of work linking DA to 
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reward in mammalian systems.  OA-implanted memory requires the α-adrenergic 

like OA receptor OAMB, and knockdown of oamb in PAM DA neurons 

significantly impaired sweet but not sweet and nutrient learning in flies, strongly 

suggesting that OA functions through DA to provide sweet taste reinforcing 

signals.  Furthermore the β-adrenergic receptor OCTβ2R involvement is likely to 

intersect the motivational state element of appetitive memory, as we were able to 

implant memory with OA in starved, but not fed octβ2r/+ heterozygous mutant 

flies.  These divergent roles for two OA receptors provides an explanation for one 

of our initial findings, that memory could be implanted with OA stimulation in both 

food-deprived as well as satiated flies.  This finding suggested that in addition to 

providing instructive reward information, OA stimulation acts to relieve the fly of 

the usual satiation based restraint on appetitive memory performance (Krashes 

et al., 2009).  

 

Finally, a live-imaging approach using GCaMP showed that application of OA to 

the exposed fly brain evoked a significant increase in intracellular Ca2+ in 

rewarding PAM DA neurons.  These data lead us to propose a new model for 

reward learning in Drosophila in which OA represents the reinforcing of sweet 

taste through the OAMB receptor in a subset of rewarding DA neurons that 

innervate the MB. In addition, these rewarding DA neurons integrate post-

ingestive nutrient reward signals required to reinforce appetitive LTM (Figure IV-

1).   



 107 

While this system of parallel reward through OA and DA has only been 

demonstrated to mediate sugar driven reward, it is tempting to speculate whether 

the same circuitry is used to code for other rewarding stimuli.  Could other 

nutrients such as water, protein, lipids or even specific minerals/ salts provide 

reward in nutrient-deprived flies using a similar mechanism? And what of the fly’s 

other pleasurable pursuits?  The act of mating in male flies has been shown to be 

highly rewarding and can be used as the US in associative olfactory conditioning 

of memory (Shohat-Ophir et al., 2012).  Could a similar arrangement of OA and 

PAM DA neurons mediate this reinforcement, or might another set of DA neurons 

mediate these rewards?   

 

OA has been implicated in modulating a host of other behaviors in the fly (Certel 

et al., 2007; Crocker & Sehgal, 2008; Crocker et al., 2010; Lee et al., 2003; Koon 

et al., 2011).  It is not unreasonable to question whether OA also exerts its 

influence in these behaviors through various DA subsets, or perhaps through 

other modulatory systems such as serotonin (5HT).  OA, 5HT and DA have been 

implicated in the selection/initiation, escalation and continuation of aggressive 

behaviors respectively, in male flies (Certel et al., 2007; Certel et al., 2010; 

Alekseyenko et al., 2010; Alekseyenko et al., 2013), though an interaction of 

these aminergic systems in mediating these behaviors has yet to be investigated. 
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Chasing the elusive nutrient reward signal 
 

For all our knowledge of how fleeting sweet taste is mediated in both the 

periphery and in the brain, our understanding of the mechanism by which the 

post-ingestive nutrient reward signal remains largely incomplete.  It is also a 

rather compelling subject, as typically the first question I’m asked after presenting 

this work is: “So what’s this nutrient signal?” 

 

While there is a vast and ever growing literature on the subjects of neuronal and 

humeral mechanisms underlying behaviors of feeding, food seeking, appetite and 

satiety, the exact mechanism by which the fly senses nutrient content to relay 

reward value is unknown.  As our model for appetitive reinforcement integrates 

OA signaling through PAM DA neurons to mediate sweet taste, might another 

neuronal or peptidergic signal converge on these DA neurons to convey nutrient 

reinforcement? 

 

Previous studies on larval feeding behavior found that overexpression of 

Drosophila neuropeptide F (dNPF) prolonged feeding in larvae and 

overexpression of its receptor npfr1 could drive satiated larvae to consume bitter 

laced food typically avoided by WT controls (Wu et al., 2003; Wu et al., 2005).  

dNPF is considered the insect ortholog of mammalian neuropeptide Y (NPY), 

long associated with stimulation of feeding, and whose levels were found to 

increase in response to starvation (Sanacora et al., 1990).  From this data, it 
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seemed plausible that inhibition of dNPF signaling might encode satiety and 

therefore represent ingestion of nutrient.  A recent study has found quite the 

opposite effect, that stimulation of dNPF-GAL4 neurons is sufficient to drive 

appetitive LTM, but only if multiple spaced training cycles are employed (Shohat-

Ophir et al., 2012).  Stimulation of dNPF-GAL4 neurons was also found to disrupt 

ethanol-conditioned reward learning and NPF levels increased in response to 

ethanol consumption, suggesting that dNPF might not only gate food reward 

memory expression as in (Krashes et al., 2009), but also code for appetitive 

reward itself in ethanol conditioning (Shohat-Ophir et al., 2012). 

 

Another neuropeptide candidate which may mediate nutrient information is that 

encoded by the gene hugin (Bader et al., 2007).  Hugin is the insect analog of 

neuromedin U also associated with feeding in mammals, but having the opposite 

effect of NPY.  Whereas injection of neuromedin U into the hypothalamus of rats 

results in a marked reduction in feeding and subsequent weight loss, neuromedin 

U knockout mice display hyperphagia and increased body weight (Ivanov et al., 

2002; Hanada et al., 2004; Budhiraja & Chugh, 2009).  Overexpression of hugin 

in flies using tubulin-GAL4 causes reduced food consumption in larvae and slows 

growth (Melcher & Pankratz, 2005).   In adults, neuronal blockade of hugin-GAL4 

neurons using tetanus toxin promotes increased initiation of feeding (Melcher & 

Pankratz, 2005).  These data suggest that hugin neurons may convey nutritional 

information to the brain to inhibit feeding behaviors at a point of satiety.  
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However, stimulation of hugin-GAL4 neurons coincident with arabinose 

conditioning failed to drive LTM formation (data not shown), suggesting hugin 

signaling, though clearly involved in regulation of feeding, does not appear to 

convey nutrient reward information to the brain to guide appetitive memory. 

 

Recent studies have identified internal molecular sensors for several sugars.  

Work from Miyamoto et al. revealed that a particular gustatory receptor, Gr43a, 

present in all major peripheral taste organs is also selectively expressed within 6 

neurons in the adult brain, and these neurons are specifically responsive to the 

sugar fructose (Miyamoto et al., 2012).  Furthermore, the investigators found that 

stimulation of Gr43a neurons during conditioning with odor was sufficient to drive 

mild appetitive memory formation in starved flies, whereas in fed flies an aversive 

response was seen (Miyamoto et al., 2012).  Though the data points to Gr43a as 

an internal sensor of nutrient by way of monitoring hemolymph fructose, my own 

manipulations using this line showed it to be ineffective in driving LTM, nor could 

its knockout disrupt sucrose-conditioned LTM (data not shown).  

 

Dus et al. found expression of the sodium/glucose co-transporter like cupcake in 

the R4 neuron of the ellipsoid body.  cupcake expression, as well as output from 

R4 cells is required for flies to select food in a preference assay based on 

nutrient content independent of taste (Dus et al., 2013).  However, as output from 

these neurons was dispensable for associative spatial learning, it is possible the 
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cupcake containing R4 neurons may not play a role in mediating nutrient reward 

signals required for associative olfactory memory, though future work is 

warranted. 

 

Furthermore, our lack of identification of a neuronal nutrient signal may suggest 

that the signal itself, is non-neuronal in nature.  It is therefore worth considering a 

possible role for Drosophila glial cells in providing a nutrient signal to reward 

centers in the brain. Based on the ability for glia to provide neurotrophic support 

during synapse development and maintenance in adult brains (Clarke and 

Barres, 2013), its possible a post-ingestive nutrient signal my be mediated 

though glial:neuron interactions.  

 

Additional evidence points to adipokinetic hormone (AKH) as another candidate 

which might signal ingestion of a nutritious substance.  A recent study showed 

that stimulation of AKH neurons only at the time of testing for 4hr sucrose-

conditioned memory could suppress appetitive performance, effectively satiating 

the flies and reducing their motivational drive (Gruber et al., 2013).  While an 

attractive candidate to pursue in mediating nutrient signals, it brings about a 

fundamental question of our search: will a satiating signal which prevents 

appetitive feeding behavior also be able to code for ingested nutrient reward?  As 

seen from the study of Gerber et al. it is critical that flies be either food deprived 

or artificially brought to a proper motivated state by neural stimulation in order to 



 112 

see appetitive performance.  It is therefore quite possible that stimulation of a 

nutrient signal may satiate flies during training, masking associative learning and 

result in a lack of appetitive memory performance.  As such, the search for the 

“nutrient reward neuron” is ongoing still. 

 

Final Remarks 
 

In conclusion, the work present here represents a significant contribution to the 

field of Drosophila learning and memory and to our understanding of the 

organization of the brain as well.  A system of layered reward in flies that 

employs dopamine reconciles a long discordant theory of reward between 

mammals and insects; where OA signaled for reward while DA mediated 

punishment.  The complexity with which the fly brain functions to process 2 

stages of food reward, both sweet taste via OA and sweet and nutrient value 

through DA suggests that the Drosophila model will be of great importance to 

future endeavors of neuroscience and ultimately our understanding of our own 

brains. 

 

As a final remark, while the work presented in the dissertation reveals a complex 

and nuanced model for reward learning in Drosophila, it is always worth 

remembering that it is but one facet of the complete picture of what drives 

motivated behavior.  I’m confident that in the years to come, future studies will 
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build upon and elucidate these findings further still, coming one step closer to the 

truth of how things work.  However, while our knowledge of the systems 

governing reward in flies and in humans grows with each new discovery, each 

model presented will inevitably fall short of explaining in full detail all that we are.  

Even if we crack the code of memory and can map out experience dependent 

changes in neuronal circuitry down to the last synapse, will it tell us why we are 

who we are?  While seemingly pessimistic at first, this lack of knowledge and 

absence of definitive answer I believe to be actually hopeful, as it is what has 

always driven scientific pursuit in the first place and will continue to do so in the 

future. 
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Figure IV-1. A New Model for Appetitive Olfactory Memory in Drosophila 
OA (orange) functions through PAM DA neurons (green) via OAMB receptor to 
provide reinforcement of sweet taste alone and also through MB-MP1 DA 
neurons (red) via OCTb2R to modulate motivational state to the MB (grey).  The 
rewarding PAM DA neurons also integrate post-ingestive nutrient reward signals 
of unknown source to drive appetitive LTM 
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