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Abstract 

Immunologic self-tolerance is maintained by both central and peripheral 

mechanisms.  Furthermore, regulation of mature lymphocyte responses is governed by 

inhibitory as well as stimulatory signals.  TCR recognition of cognate peptide bound to 

MHC molecules provides the initial stimulus leading to T lymphocyte activation and 

determines the antigen specificity of any subsequent response.  However, lymphocytes 

must discriminate between foreign and self antigens presented by self-MHC molecules to 

maintain self tolerance and avoid pathological autoimmunity.  Consequently, TCR 

ligation alone is reported to result in abortive activation, T cell anergy, apoptosis, and 

tolerance.  Under normal physiological conditions, costimulatory signals modify 

lymphocyte responsiveness to TCR ligation to prevent autoimmunity while enabling 

robust responses to foreign antigen.  Members of the CD28/B7 superfamily provide the 

critical secondary signals essential for normal immune cell function.   

CD28 is an essential positive costimulatory molecule with critical functions in 

thymic development, lineage commitment, and regulation of peripheral lymphocyte 

responses to antigenic stimuli.  CD28 ligation by APC-expressed B7 molecules alters 

proximal signaling events subsequent to MHC/TCR interactions, and initiates unique 

signaling pathways that alter mRNA stability and gene transcription.   Furthermore, 

CD28 signaling is required for regulatory T cell development and function.   Thus, CD28 

has a central role in both potentiating lymphocyte activation mediated by TCR 

engagement and regulating peripheral tolerance.  In contrast, Ctla-4 mediates an 

inhibitory signal upon binding B7 molecules on an antigen-presenting cell.  Its 

importance in governing lymphocyte responses is manifested in the fatal 
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lymphoproliferative disorder seen in Ctla-4-/- mice. The lymphocyte proliferation is 

polyclonal, antigen and CD28 dependent, and arises from defects in peripheral CD4+ T 

cell regulation.  The high percentage of peripheral T lymphocytes expressing activation 

markers is accompanied by lymphocyte infiltration into numerous non-lymphoid tissues 

and results in death by 3-4 weeks.  While still controversial, Ctla-4 signaling has been 

reported to be essential for induction of peripheral T lymphocyte tolerance in vivo and in 

some model systems is proposed to regulate both T lymphocyte anergy induction and the 

immune suppressive effects of some regulatory T cells in the prevention of 

autoimmunity.   

Signaling pathways activated by TCR ligation and CD28 costimulation have been 

extensively characterized.  In contrast, the mechanisms mediating Ctla-4 maintenance of 

tolerance remain largely unknown.  Ctla-4 gene expression is tightly controlled during T 

cell development and activation, and its intracellular localization and expression on the 

cell surface is regulated by numerous pathways and intermediates.  While a tailless Ctla-4 

mutant is capable of inhibiting T cell activation, recent studies have shown that a ligand 

independent form of Ctla-4 is also capable of providing an inhibitory signal to T 

lymphocytes.  In conjunction with the strictly controlled expression kinetics and the 

perfect amino acid homology between the intracellular domains of mouse and human 

Ctla-4, this data suggests that Ctla-4 may participate in the modulation or initiation of 

intracellular signaling pathways. 

Positive and negative costimulatory receptors on the T cell modify lymphocyte 

responses by altering both quantitative and qualitative aspects of the lymphocyte 

response including threshold of activation, cytokine secretion, and memory responses.  
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Positive costimulation augments T cell responses, in part, by downregulating the 

expression of genes that actively maintain the quiescent phenotype.  This study was 

initiated to determine the role of Ctla-4 ligation in modifying the global gene expression 

profile of stimulated T cells and to determine if the Ctla-4 mediated maintenance of T 

cell tolerance was achieved, in part, by altering the transcription of quiescence genes 

necessary for the prevention of T cell activation subsequent to TCR and CD28 

stimulation.   

Previous studies investigating the influence of Ctla-4 ligation on transcriptional 

profiles of activated lymphocytes detected only quantitative alterations in the 

transcriptional regulation initiated by CD28 signaling.  In contrast, our data suggests that 

quantitative effects of Ctla-4 ligation that differentially influence pathways acting 

downstream of stimulatory receptors results in a stable and qualitatively unique 

phenotype detectable at the level of the transcriptome.  Thus, the cumulative effect of 

Ctla-4 signaling is unique and not constrained to reversing alterations in expression 

initiated by CD28.  In addition, Ctla-4 ligation can be shown to influence T lymphocyte 

responsiveness and the resulting global expression profile within 4 hours after stimulation 

and prior to detectable Ctla-4 surface expression.  In a subpopulation of T cells, TCR 

stimulation activates pathways that result in commitment to activation with 2-6 hours.  In 

contrast, CD28 signaling must be maintained for 12-16 hours to ensure maximal 

responses at the population level.  The period of sensitivity to Ctla-4 inhibition of 

activation is more constrained and does not extend beyond 12 hours.  Together, these data 

support a potential role for Ctla-4 in modification of the early transcriptional response 
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and may explain various alterations in phenotype resulting from Ctla-4 ligation that have 

been reported in secondary responses. 

Identification of genes involved in lymphocyte activation, maintenance of self-

tolerance, and attenuation of immune responses opens the door to therapeutic 

manipulation of the pathways implicated.  CD28 costimulation results in general 

amplification of TCR-initiated transcriptional responses, and specifically alters the 

expression profile of a subset of genes.  In contrast, Ctla-4 ligation directly and 

specifically alters the expression of a select group of genes when ligated, and results in 

minimal suppression of the global CD28-mediated costimulatory transcriptional 

response.  Ctla-4 regulated genes comprise a heterogeneous family, but include known 

quiescence factors, transcriptional regulators, and various determinants of cell cycle 

progression and senescence.  The role of Ctla-4 in maintaining self-tolerance indicates 

that targeted manipulation of these gene products presents a novel therapeutic 

opportunity, and suggests that the mechanisms involved in Ctla-4-mediated maintenance 

of peripheral T cell tolerance and regulation of immune responsiveness is more nuanced 

than previously thought.  In addition, this study provides the most comprehensive 

description of global gene expression during primary lymphocyte activation yet available.  

The integration of statistical and bioinfomatics analyses with large scale data mining 

tools identifies genes not previously characterized in lymphocytes and can direct future 

work by predicting potentially interacting gene products and pathways.   
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Introduction: 

Central and peripheral mechanisms of tolerance in the immune system 

 Broad specificity within the adaptive immune system enables potent 

immunological defenses against a wide range of foreign pathogens.  The repertoire of the 

peripheral T lymphocyte compartment encompasses an estimated 25x106 T-cell receptors 

(TCRs) enabling recognition of both foreign and self-antigens(1).  While the diversity of 

the TCR repertoire is necessary for effective immune surveillance against a range of 

potential pathogens, the processes that generate diverse TCR specificities also result in 

the generation of antigen receptors specific for self-peptides.  Mechanisms of central 

tolerance serve to eliminate potently self-reactive lymphocytes during thymic maturation 

by induction of apoptosis in thymocytes that recognize self-peptide bound to Major 

Histocompatibility Complex (MHC) with high affinity, in a process termed “negative 

selection”.  Deletion of overtly autoreactive thymocytes is dependent on intra-thymic 

presentation of diverse peripheral tissue antigens to developing lymphocytes.  Impaired 

self-peptide presentation results from defects in the regulation of transcription of 

peripheral antigens in the thymus and leads to autoimmune pathology with broad 

specificity for peripheral tissues(2, 3).  Negative selection potently suppresses the 

generation of autoreactive lymphocytes, but mature peripheral lymphocytes with TCRs 

specific for self-antigen are nonetheless detectable in healthy individuals(4, 5). 

Mechanisms of peripheral tolerance serve to prevent or attenuate pathological activation 

of autoreactive lymphocytes that avoid thymic deletion.  Nonetheless, positive selection 

of thymocytes ensures that all peripheral lymphocytes express TCRs with low inherent 

affinity for self-peptide/MHC complexes.  Consequently, avoidance of inadvertent 
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lymphocyte activation in the periphery is dependent on additional receptor-ligand 

interactions that regulate lymphocyte responsiveness to TCR engagement, coordinate 

numerous cellular responses, and modulate the scope of any resulting immune activation. 

  

 

T Lymphocytes and the Immune Response: 

 

 The Two Signal Model of T Cell Activation 
Peripheral T cell responses to a given antigen involve the clonal expansion of a 

small subset of T cells that possess unique TCRs but have common antigen specificity.  

As a result, the overall response to antigen encounter is a direct consequence of factors 

influencing the activation, expansion, and regulation of individual T cells.  TCR 

engagement of peptide/MHC (pMHC) ligands on professional antigen presenting cells 

(APCs) is critical for the initiation of T cell mediated immune responses(6). TCR 

recognition of cognate pMHC, referred to as signal one, is required for T cell activation 

and determines the antigen specificity of T cells involved in normal immune responses. 

In addition, the TCR is differentially responsive to subtle changes in its ligand and can 

mediate signals that result in diverse biological responses(7, 8). 

TCRs possess inherent affinity for self-pMHC as a result of positive selection 

during thymic development.  Central tolerance mechanisms restrict the affinity of 

interactions between TCRs and self-pMHC that are involved in peripheral immune 

homeostasis, and serve to prevent unwarranted lymphocyte activation.  In the absence of 

additional signals, TCR engagement by a MHC-antigen complex is reported to result in 



 4

anergy, apoptosis, or inefficient T cell activation(9).  The requirement for an additional 

signal to optimize T cell activation has proven critical for the maintenance of peripheral 

self-tolerance and the initiation of productive immune responses.   

The two-signal model of lymphocyte activation states that optimal lymphocyte 

responses require an initial signal resulting from TCR interaction with APC-expressed 

pMHC complexes, coupled with a secondary antigen-independent signal termed 

costimulation(10)(Figure 1.1).  CD28 is the archetypal costimulatory molecule and is 

constitutively expressed by >90% of human CD4+ T cells, and >50% of human CD8+ T 

cells. CD28 interaction with B7 molecules on APCs provides signal two and results in 

enhanced activation, accelerated cell cycle progression, T cell survival, and clonal 

expansion(11, 12).  The hallmark of CD28 costimulation is enhanced interleukin-2 (IL-2) 

production and bcl-xL upregulation, which promote T cell expansion and support the 

development of an effective immune response(13).  CD28 enhances T cell activation by 

diverse mechanisms that serve to enable TCR signaling and promote prolonged T cell-

APC interaction. 

  CD28 engagement amplifies membrane-proximal signaling initiated by the TCR, 

but also transduces a unique signal reportedly necessary for the stabilization of some 

RNA transcripts and efficient upregulation of numerous genes including IL-2 and bcl-

XL(11, 14-18). In addition, CD28 signaling potentiates the macromolecular 

reorganization of the cell membrane initiated by TCR ligation, resulting in aggregation of 

numerous multimolecular signaling complexes at the site of T cell/APC contact(19-21).  

In fact, recent work suggests that CD28:B7 interactions in the absence of TCR triggering 

are sufficient for cell polarization and lipid raft aggregation.(22)  The resulting structure,  
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Figure 1.1: The two signal model of T cell Activation  
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Figure 1.1:  The two-signal model of T cell activation.  In addition to antigen receptor 

triggering, T cells require second antigen-independent signals via CD28:B7 interaction in 

order to respond efficiently.  CD28 ligation enhances TCR-induced signals, and also 

transmits a unique signal that results in increased survival, facilitates cell-cycle entry, and 

leads to efficient cytokine production.  Ctla-4 ligation interferes with proximal TCR 

signaling and suppresses distal effects of CD28 costimulation.  The relative balance of 

CD28 and Ctla-4 signaling may dictate the outcome of antigen-receptor engagement in a 

manner dependent on B7 ligand availability.
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termed the immunological synapse (IS), stabilizes the intercellular contact for as much as 

24 hours, and is reportedly necessary for full commitment to activation(23). However, the 

temporal parameters governing CD28 costimulation have not been well defined. 

While CD28 functions primarily to enhance lymphocyte activation, it also plays a 

prominent role in the maintenance of peripheral tolerance.  CD28 signaling is obligatory 

for the development and maintenance of regulatory T cells(24), up-regulates immune 

attenuators including Ctla-4, and skews T cell responses towards an autoimmune 

protective Th2 phenotype(24, 25).  CD28-mediated effects on TCR signaling pathways 

have been well characterized, but the molecular and biochemical mechanisms mediating 

qualitative effects of CD28 costimulation are poorly understood and the distal effectors of 

CD28 signaling have not been fully elucidated.   

 

 

The B7/CD28 family of immomodulatory receptors: 

 

 Members of the B7/CD28 family of receptors regulate diverse aspects of 

the adaptive immune system and are key determinants of T cell responsiveness and 

effector function (Table 1.1).  Signaling pathways initiated by B7/CD28 family members 

are essential components of mechanisms that simultaneously promote and sustain T cell 

responses to pathogens and serve to maintain tolerance to self-antigen by inhibition or 

attenuation of T cell responses.  CD28 and Ctla-4 are the critical costimulatory receptors 

regulating antigen responsiveness of mature peripheral T cells, and provide positive and 

negative second signals to T cells,  
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Table 1.1: The B7/CD28 family of immunomodulatory receptors 
 
A:  Comparison of CD28 family members. 
 
 
 

Comparison of CD28 family of receptors 

  CD28 CTLA-4 ICOS PD-1 BTLA 
% identity 100% 30% 27% 23% 23% 
Chromosome           
  Human 2q33 2q33 2q33 2q37 3q13.2 
  Mouse 1C1, 30.1 cM 1C2, 30.1 cM 1C2, 32 cM 1D, 55 cM 16A1 
Structure           
  Ligand binding motif MYPPPY MYPPPY FDPPPF ? ? 
  Cytoplasmic domain PI3K motif, PP2A PI3K motif, PP2A, SHP2 PI3K ITIM motif, SHP2ITSM motif, SHP1 Two ITIM motifs 
Expression           
  Cell type T T T, NK T, B, M T, B  
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Comparison of B7 family of costimulatory molecules 

  B7-1 (B7.1) B7-2 
(B7.2) ICOSL (B7h, B7-H2; B7RP-1) PD-L1 (B7-H1) PD-L2 (B7-

DC) B7-H3 
B7-H4 
(B7x; 
B7S1) 

% identity of 
extracellular 
domain 

100% 27% 27% 25% 23% 29% 21% 

Chromosome               
  Human 3q13 3q21 21q22 9p24 9p24 15q24 1p13.1 
  Mouse 16B, 32.8 16B, 

26.9 
10C1 19B 19B 9A 3F2.2 

Expressiona               
  Lymphoidb B, M, DC, T B, M, 

DC, T 
B, M, DC, T B, M, DC, T DC, M B, T, M, 

DC, NK 
T, B, M, 
DC 

  Non-lymphoid Rare; 
including 
podocyte 

Rare FibroblastEndothelialEpithelial Endothelial, Tissues (including 
placenta);Tumors (including many T cell 
lymphomas, carcinomas, melanomas, 
glioblastoma 

Some B cell 
lymphomas 

Bone 
Marrow 

Lung and 
ovarian 
tumors 

Receptor CD28 
CTLA-4 

CD28 
CTLA-4 

ICOS PD-1 PD-1 ? ? 

aProtein, but not mRNA expression is summarized; see text for regulation of expression. 
bB=B cell; M=macrophage; DC=dendritic cell; T=T cell; NK=natural killer cell. 

B: 
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Table 1.1:  Comparison of CD28 (Panel A) and B7 (Panel B) family members.   
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respectively.  CD28 transmits signals important for T cell survival and proliferation, 

while Ctla-4 inhibits T cell responses and regulates peripheral tolerance.  Ctla-4 and B7 

share B7 ligands, B7.1 and B7.2.  Regulation of Ctla-4 and CD28 signaling is effected by 

precise control of surface expression, availability of ligands, differential ligand-binding 

characteristics, and unique signaling properties.  Additional members of the CD28 family 

include ICOS, PD-1, and BTLA.  While the ligand for the inhibitory receptor BTLA 

remains undiscovered, both ICOS and PD-1 are known to bind B7 family members. 

ICOS and PD-1 result in positive and negative regulation of T cell responses respectively.  

However, CD28 and Ctla-4 are unique in their ability to regulate primary T cell responses 

and provide dominant signals controlling T cell activation in naïve lymphocytes. 

 

 

Biology of CD28 Costimulation: 

 

 CD28 costimulation is essential for normal immune function.  CD28-deficient 

mice or mice treated with antagonists of CD28:B7 interaction manifest profoundly 

defective responses to allograft antigens(11), infectious pathogens(26-29), GVHD(30), 

and induction of contact hypersensitivity(31).  Similarly, absence of CD28 costimulation 

reduces T cell proliferation in vitro and in vivo in response to  TCR stimulation(32-34).  

More globally, CD28 deficiency results in diminished germinal centre formation and 

defective isotype class switching in B cells, and diminished CD4-dependent CD8+ T cell 

responses(35-37).   



 12

CD28 is uniquely capable of synergizing with TCR-mediated signals to activate 

transcription factors controlling proliferation, differentiation, and cell death including 

NFκB(18), NFAT(15, 38), and AP-1(39).  While receptor-ligand interactions mediating 

costimulatory signals are diverse, CD28 is unique in its ability to integrate signals with 

the TCR and to centrally determine the outcome of antigen receptor engagement in naïve 

T cells(40, 41).  Moreover, CD28 is unique in its ability to provide signals required for 

cellular activation, cell cycle entry, and efficient cytokine production in lymphocytes, and 

results in greater enhancement of immune responses than other costimulatory receptor 

interactions(42, 43).  An essential component of CD28 costimulation is regulation of 

distal determinants of cell death, proliferation, and differentiation including cytokines 

interleukin 2 (IL-2), interferon gamma (ifn-γ), and interleukin 4 (IL-4)(44); chemokines 

Mip-1alpha/CCL3(45); cytokine receptors CD25, IL-12R, and CXCR5(26, 46, 47); and 

APC counter-receptors Ctla-4/CD152, CD154/CD40L, ICOS, CD134/OX40, and 4-

1BB(47, 48).  Thus, CD28 orchestrates the regulation of genes that shape the phenotype 

of responding cells in ways that determine not only their immediate response, but also 

their ability to respond to and provide intercellular signals in subsequent days. 

 

CD28 regulates key signaling intermediates that control the initiation and character of 

an immune response 

 CD28-ligand interactions determine proximal regulation of signaling thresholds as 

well as subsequent events leading to gain of effector function.  Quantitatively, CD28 

costimulation functions primarily to potentiate signals initiated by TCR engagement.  

CD28 costimulation directly alters intrinsic properties of TCR signaling by facilitating 
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TCR/pMHC interaction and enhancing ZAP70 phosphorylation(49-51).  In addition, 

CD28 enhances TCR-induced glycolipid-enriched membrane microdomain (GEM) 

aggregation following TCR triggering and amplifies early TCR-signaling events 

mediated by PLC-γ(21, 51-53).  Distally, CD28 alters the global expression profile of 

antigen receptor activated lymphocytes by amplifying gene regulations that result from 

TCR stimulation(15, 54).  At the single-cell level, altered expression of CD28 target 

genes define cellular differentiation, burst size(55), and long-term cytokine 

production(34).  Thus, CD28-mediated signals modulate the evolving character of an 

immune response via mechanisms distinct from its membrane-proximal enhancement of 

TCR signaling.   

CD28 signaling modifies the activity of proteins involved in the determination of 

cellular commitment to proliferation prior to significant changes in transcription.  The 

hallmark of CD28 function is the upregulation of Il-2 production and CD25 expression 

subsequent to antigen receptor engagement(26, 33, 44, 55).  In vivo, however, common 

γ-chain cytokines, including IL-2 are not essential for antigen-driven cellular 

proliferation(56, 57) and CD28 enhancement of cell cycle entry and progression is at 

least partially independent of IL-2 production(58).   

CD28 directly modulates cell cycle regulators prior to IL-2 production.  

Repression of E2f regulated genes is central to the ability of inactive pRB to maintain 

cells in the G0 stage of the cell cycle(59).  CDK4/CDK6 mediated phosphorylation of 

pRB allows entry into the cell cycle, and progression through late G1 and S phases is 

dependent on cyclin-E/CDK2 phosphorylation of pRB as well(59).  CD28 signaling 

upregulates D cyclin expression (60, 61) and leads to the activation of CDK4/CDK6 and 
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the consequent phosphorylation of pRB within 3-4 hours of activation, and prior to IL-2 

production(62).  Inhibition of CDK protein activity by CDK-interaction protein (CIP), 

and INK and cyclin-dependent Kinase inhibitors(KIP) protein families prevents entry into 

G1(63).  CD28 signaling results in degradation of KIP1 via the PI3K-AKT pathway, but 

KIP1-deficient mice maintain normal proliferative responses to activation signals 

initiated by CD3/CD28 probably as a result of redundant inhibition of cell cycle entry by 

INK4C, which is also antagonized by CD28 signaling(61).  

Entry into the cell cycle is accompanied by increases in cellular metabolism, 

increased expression of genes involved in synthetic pathways, and increases in cell 

size(64)  in a process enhanced by CD28(15, 65).  The CD28 signaling pathways leading 

to enhancement of cellular metabolism and macromolecular synthesis implicates MTOR, 

(66) acting downstream of PI3K in a pathway commonly dysregulated in cancer(67, 68).  

Similarly, the pleiotropic transcription factor c-myc regulates genes controlling 

transcription initiation factors, ribosomal RNA synthesis, and determinants of cellular 

division (E2Fs and CDC25(64)), making it a potential downstream target of CD28(69). 

 

CD28 regulates mechanism influencing peripheral self-tolerance 

TCR-triggering without concomitant CD28 ligation is reported to result in the 

induction of anergy or apoptosis.  TCR engagement in the absence of costimulation may 

enhance apoptosis induction by failing to sufficiently upregulate anti-apoptosis factors or 

via inhibition of cell cycle progression(70-72).  CD28 signaling specifically induces 

expression of the anti-apoptotic factor bcl-xL (73) in a NF-kB dependent manner while 

simultaneously repressing pro-apoptotic factors including p73(74).  Thus, CD28 
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signaling may critically determine the clonal diversity of an immune response by 

enhancing survival of antigen-receptor-stimulated T lymphocytes in a cell-specific 

manner.   

CD28 signaling may also control peripheral tolerance by regulating anergy 

induction.  Anergy is an acquired, antigen-specific state of hyporesponsiveness in which 

lymphocytes fail to respond to appropriate antigenic stimulation(Reviewed in (75)). 

Anergy induction in T cells is a tolerance mechanism that results in the persistence of 

lymphocytes that are functionally inactivated by antigen encounter and remain 

hyporesponsive to subsequent antigen receptor triggering even in the context of sufficient 

CD28 costimulation.(76) Therapeutic anergy induction has potential in treating 

autoimmune disease and has been used to prolong allograft survival in animal 

models(77).  Two general forms of anergy have been described that represent distinct 

biological states resulting from distinguishable signaling events.(78)  Clonal anergy is 

principally a state of growth arrest resulting from incomplete T cell activation and is most 

often seen in previously activated cells.  Clonal anergy is reversible by addition of 

exogenous IL-2 or anti-Ox40 treatment, results from a defect in the Ras/MAP kinase 

pathway that may involve Egr-2(79), and generally does not result in suppressed effector 

function.  In contrast, adaptive anergy generally develops in vivo following submitogenic 

antigen-receptor triggering on naïve CD4+ lymphocytes in the absence of CD28 

mediated costimulation or the presence of significant coinhibitory signals(80).  Adaptive 

tolerance induction occurs subsequent to an initial proliferative response and requires 

antigen persistence. Concomitant CD28 ligation prevents antigen-receptor-mediated 

induction of T cell anergy(81) through mechanisms dependent on CD28 enhancement of 
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cell cycle progression(80).  The state of adaptive anergy results from an early block in 

tyrosine kinase activation with consequent inhibition of calcium mobilization and 

impaired signaling through the IL-2 receptor(82), and proximal signaling defects in 

anergic cells may be related to defective LAT activation(83).  However, it has also been 

demonstrated that anergy avoidance subsequent to CD28 ligation utilizes PKC-theta-

dependent pathways distinct from those that augment proliferation(84) supporting the 

notion that CD28 determines qualitative aspects of immune responsiveness.    

Numerous genes identified as potential mediators of anergy induction have 

recognized roles in T cell activation and costimulatory pathways.  In particular, Cbl-b is 

one of several E3 ubiquitin ligases involved in the induction and maintenance of an 

anergic phenotype((85), Reviewed in (86)) that has a key role in the integration of 

costimulatory signals originating with CD28 and Ctla-4(87).  Identification of pathways 

and signaling determinants involved in anergy induction will necessitate a detailed 

understanding of T cell costimulatory pathways and may enable therapeutic manipulation 

of this endogenous mechanism of self-tolerance. 

 

CD28 alters qualitative aspects of T cell differentiation 

Cellular division in CD4+ lymphocytes is accompanied by irreversible acquisition 

of specific phenotypes defined by cytokine profile.  Following activation, 

undifferentiated naïve CD4+ Th0 cells respond to costimulatory signals that direct 

development toward the Th1 and Th2 effector cell lineages that coordinate cell-mediated 

immunity and humoral responses respectively (Reviewed in (88)).  Th1 effector cells 

secrete interferon-gamma, and regulate CD8+ T cell responses in response to intracellular 
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pathogens.  In contrast, Th2 cells produce IL-4, promote allergic responses, and are 

critical for effective immunity against helminthes.  Polarizing influences result in the 

expression of distinct transcription factors in Th1 and Th2 cells necessary for cellular 

differentiation, particularly T-bet and GATA3 respectively(89), and are partially 

influenced by cellular division(89-91).  CD28 preferentially skews T lymphocyte 

differentiation towards a Th2 phenotype via NF-kB induction of GATA3(92-94).  

Concomitant Ctla-4 engagement counteracts CD28 mediated changes in gene 

transcription via direct inhibition of GATA3 but not T-bet mRNA expression(54, 95) and 

encourages Th1 differentiation of activated naïve T cells.(96)  Moreover, Ctla-4 

deficiency increases the efficiency of CD28 signaling and results in enhanced NF-kB 

activation, GATA3 expression, and Th2 skewing(97).  Thus, integration of costimulatory 

signals is critical to lineage fate determination in naïve cells with resulting long-term 

consequences and differential susceptibility to infection and autoimmunity.  While the 

critical determinants of lineage fate decisions have been identified, a precise 

understanding of the upstream regulatory mechanisms involved in costimulatory signal 

integration that precede lineage commitment will enhance our ability to design 

knowledge-based therapeutic intervention strategies. 

 

Epigenetic regulation of gene expression by CD28 

In Eukaryotic cells, the physical structure of genes influences their expression.  

DNA methylation and chromatin remodeling are critical determinants of gene 

accessibility for transcriptional machinery.  CD28 signaling results in chromatin 

modification and epigenetic regulation of gene expression.(90, 98-105)  Mechanisms of 
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CD28-mediated epigenetic regulation of gene expression involve posttranslational 

regulation of constitutively expressed proteins, as evidenced by the fact that cytosine 

demethylation at the IL-2 locus occurs within 20 minutes of TCR/CD28 ligation.(104)  

Similarly, modification of chromatin accessibility at gene loci involved in cellular 

differentiation (IL-4 and IFN-γ) have been detected within one hour of TCR/CD28 

ligation, and reinforce the notion that proximal signal integration of the TCR and CD28 

pathways is definitive soon after activation(89).  CD28-mediated signals reinforce re-

positioning of the SW1/SNF-related chromatin remodeling BAF complex within minutes 

of TCR/CD28 engagement in naïve T cells in a process that is critically dependent on 

both PKC/RAS pathways and calcium flux.(98)  CD28 engagement results in robust 

expression of c-REL(102) through a CsA sensitive pathway(15), and results in chromatin 

modification of the IL-2 gene locus via interaction with the CD28-responsive regulatory 

element.(18, 102)  Critically, recent observations suggest that stable chromatin 

remodeling may alter subsequent cellular responses to activating stimuli.  Antibody 

ligation of CD3 and CD28 results in increased IL-2 expression following active 

demethylation of a specific CpG site, recruitment of Oct-1, and histone 

modification.(106)  Oct-1 remains bound to the IL-2 enhancer following termination of 

stimulatory signaling resulting in accelerated and magnified gene transcription upon 

reactivation.  Moreover, fully-activated CD4+ effector cells possessed stable histone 

acetylation and loss of cytosine methylation at the IL-2 promoter enhancer with 

concomitant chromatin remodeling.  In contrast, CD4+ T cells rendered anergic by TCR 

ligation in the absence of costimulation showed no histone acetylation or cytosine 

demethylation in the IL-2 promoter/enhancer region, and an absence of chromatin 
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remodeling(107).  CD28 signal-specific epigenetic modification of the IL-5 gene locus 

has also been implicated in Th2 lineage differentiation and appears dependent on NFκB 

activation and GATA 3 upregulation(108).  Stable epigenetic modification of target genes 

as a consequence of costimulation may provide a historical record of prior signaling 

events that have the potential to influence future responses. 

 

 

CD28- and TCR-signaling utilize unique and overlapping pathways: 

 

The TCR and CD28 signal independently and display unique biophysical and 

biochemical properties.  Relative to TCR interactions with peptide/MHC complexes on 

the APC, CD28 displays significantly higher on and off rates in its interactions with B7 

ligands(42, 50).  Moreover, APCs express many more B7 molecules than TCR ligands, 

suggesting that CD28 engagement by B7 ligands is more numerous, dynamic, and fluid 

than TCR-pMHC interactions.  Unlike the TCR, which signals through ten 

immunoreceptor tyrosine-based activation motifs (ITAMs) located on CD3-ζ 

chains(109), CD28 signaling is dependent on non-ITAM tyrosine phosphorylation events 

and a proline rich region(110).  While the mechanism by which TCR-pMHC interaction 

initiates signaling, a process termed receptor triggering, remains controversial, it may 

depend on the inherent biophysical properties of the receptor ligand pairs that results in 

size-based segregation of the relevant cell-surface molecules based on the dimension of 

their ectodomains(42, 111-113).  CD28 ligation activates discrete signaling cascades that 

differentially depend on its association with the TCR and localization to the 
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immunological synapse(15-17).  CD28 aggregation in the immunological synapse is 

driven by APC-expressed B7(114) in a process dependent on the B7 cytoplasmic 

tail(115) that may regulate the micrometer-scale colocalization of the TCR and CD28 that 

is necessary for efficient costimulation(116).  Both CD28 and the TCR relocalize to 

glycolipid enriched membrane microdomains (GEMs) containing active LCK protein 

tyrosine kinase upon interaction with their cognate ligands(112, 117).  Association with 

the PTKs LCK or FYN results in phosphorylation of tyrosine residues in the cytoplasmic 

domains of CD28 and the TCR(118).  In contrast to their shared dependence on PTK 

activity, the TCR, but not CD28, ligation results in activation of ζ-chain associated 

ZAP70 and phosphorylation of the LAT-SLP76 (linker for activation of T cells-SH2 

domain containing protein of 76 kDa) complex(51).  LAT-SLP76 phosphorylation and 

recruitment provides the structural framework upon which various adaptors and enzymes 

aggregate to activate all of the main pathways responsible for T cell activation(109).  The 

resultant signaling complex results in rapid activation of PLC-γ, cleavage of membrane 

lipids to produce PIP2, PIP3, and DAG, increased intracellular calcium, and activation of 

RAS (via GRP, a DAG-binding guanine exchange factor(GEF)) and most PKCs(119).  

Simultaneously, RAS-GRP and VAV1 activity produces activated RAS-GTP and RHO 

family GTPases,  and PI3K modified lipid byproducts are generated, with the resultant 

effect of reorganizing the plasma membrane and cytoskeleton, and orientation of the 

MTOC towards the site of APC contact(120, 121).  Secondary changes in chromatin 

accessibility at specific loci, accelerated intracellular vesicular trafficking, and nuclear 

translocation of constitutively expressed transcription factors are detectable within hours. 
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Under conditions of supraphysiological TCR ligation, as may occur with antibody 

binding, stable TCR aggregation in the absence of costimulation can result in activation 

of all the main signaling pathways implicated in T cell activation, cell cycle entry, and 

widespread gene regulation.  In contrast, isolated CD28 ligation does not lead to cellular 

activation, results in limited transient gene regulations, and has no known biological 

effect(15, 17, 54).  However, the gene regulations that occur subsequent to CD28 

engagement in the absence of TCR ligation specify some of the pathways involved in 

CD28 costimulation of TCR signals.  In particular, binding of the p85 regulatory subunit 

of PI3K by the phosphorylated tail of CD28 initiates a PtdIns-dependent kinase(PDK)- 

and AKT-dependent phosphorylation of glycogen synthase kinases 3α and 3β(15, 122, 

123).  Ablation of PI3K interactions with CD28 by mutation of the relevant tyrosine 

residue results in defective AKT activation(124), diminished IL-2 production(125), 

reduced bcl-xL expression(126, 127), and a general reduction in antigen-driven T cell 

responses in vivo(128).  Activated AKT is a critical downstream mediator of CD28 

signaling as AKT amplifies TCR mediated gene regulations by cooperative influences on 

NF-kB activity with TCR-induced PKC-θ, and GSK3 inhibits NFAT export(15, 129-

131).   

The ability of CD28 signaling to directly regulate the activity and nuclear 

localization transcription factors underlies its ability to influence cell cycle progression 

and metabolism in activated T cells.  AKT in particular is hypothesized to regulate 

numerous transcription factors downstream of CD28 including Forkhead, c-myc, and the 

cyclin-d-CDK4/CDK6 complex.(122, 132)  In addition to its influence on AKT activity, 

PI3K activation by CD28 is likely to influence additional pathways involved in mediating 
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the pleiotropic effects of costimulation, including those involving mTOR and PKC 

activation(123, 133, 134).  The costimulatory mechanisms regulating these diverse 

pathways during T cell activation remain only partially characterized but imply a central 

role for specific signaling intermediates involved in the integration of signals resulting 

from upstream activation of the TCR and CD28. 

The TEC family kinases TEC and ITK are crucial mediators of activating signals 

delivered through the TCR, and were thought to be differentially regulated by CD28-

mediated costimulatory signals. More recently, ITK has been shown to operate 

independently of CD28 costimulation(135), but the central role TEC family kinases play 

in T cell responsiveness warrant further discussion of their role in T cell activation.  TEC 

and ITK are regulated by LCK or FYN-dependent phosphorylation, PIP3, PIP3 

independent VAV1 mediated mechanisms, and direct protein-protein interaction(65, 

136).  Positive regulation of PLC-γ by TEC and ITK is dependent on TCR-mediated 

phosphorylation of LAT-SLP76.  TEC and ITK activate PLC-γ to increase intracellular 

calcium, increasing PKC by DAG-dependent mechanism, and activating RAS/RAF/ERK 

through RAS-GRP(51, 129, 137).  Mutations in the tail of CD28 that prevent ITK 

activation abolish costimulatory enhancement of PLC-γ activity, calcium flux, and NFAT 

activation(51).  Mutant NFATc that is constitutively localized to the nucleus allows full 

activation of T cells activated through the TCR in the absence of CD28 costimulation, 

highlighting the central role TEC family kinases play in mediating distal effects of CD28 

signaling(15, 138).   

 Vav1 stabilizes the numerous protein-protein interactions required for productive 

proximal signaling by the TCR, and participates in nearly all TCR signaling 
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pathways(139).  Identification of costimulation-defective mutants of CD28 in which 

PI3K binding is unaffected but Vav1 phosphorylation is abolished highlights the central 

importance Vav1 plays in mediating CD28 costimulatory signals(125, 140, 141).  CD28 

recruits Vav1 to the membrane by unknown mechanisms, and Vav1 phosphorylation by 

CD28 activates GEF activity by removing intramolecular inhibition of the DBL-

homology domain by the pleckstrin-homology domain(142). Early reports indicated that 

membrane recruitment and activation of Vav1 by CD28 required TCR dependent 

phosphorylation of SLP76(50, 143, 144).  However, recent work indicates that B7 driven 

accumulation of CD28 at T cell:APC interfaces results in Vav1 activation in the absence 

of TCR ligation and correlates with increased calcium flux and NFκB p65 translocation 

to the nucleus(22).  In addition, CD28 signaling has been shown to result in 

posttranslational modification of Vav1 via a novel CD28-costimulatory pathway that 

results in Vav1 methylation and nuclear localization(145).  Vav1 mediates CD28 

induction of NFAT, Nf-kB, and AP1 activity,(146-148) and is crucial for Th2 

differentation independent of GATA3 expression(149).  Several reports have linked Vav1 

activity to Cbl-b, an essential downstream regulator of CD28 costimulation(150, 151).  

Absence of Cbl-b restores defective Ig class switching and germinal center formation in 

Vav1 deficient mice(152).  In addition to its role in peripheral T cell activation, Vav1 is 

critical for normal TCR and CD28 mediated signaling in lymphocyte development(153).  

The profound defects observed in Vav1-deficient thymocytes and mature 

lymphocytes(153-157) result in large part from the ability of Vav1 to regulate RAC-GTP 

production.  RAC-GTP participates in regulation of PI3K, which then regulates the 

activity of TEC PTK, PLC-γ1, AKT, and more distal downstream effectors including 
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nuclear import of NFAT, and activation of NF-kB and RAS/RAF/ERK(139, 154, 158, 

159). 

 The E3 ubiquitin ligase cbl-b proto-oncogene(160) is a key mediator of CD28 

costimulatory signals capable of direct interaction with proteins involved in signaling 

pathways downstream of the TCR and CD28(161, 162).  Moreover, cbl-b is a key 

negative regulator of T cell responsiveness in vivo(161, 163, 164), influences the CD28-

dependence of in vivo immunity(152),  and regulates the induction and maintenance of 

anergy(85, 86, 149, 165-168). Cbl-b deficiency results in spontaneous autoimmunity 

characterized by auto-antibody production, T and B lymphocyte activation, 

overproduction of IL-2, infiltration of peripheral tissues and parenchymal damage(167).  

Cbl-b deficiency bypasses CD28-costimulation requirements for upregulation of Il-2, and 

restores T-cell-dependent antibody responses in CD28-deficient mice(169).  Cbl-b 

regulates the activity of receptor protein tyrosine kinases as well as antigen and cytokine 

receptors that signal via associated cytoplasmic protein tyrosine kinases.  Cbl-b 

negatively regulates T cell responsiveness by numerous mechanism including inhibition 

of receptor clustering and lipid raft aggregation(163), proteolysis-dependent and 

independent regulation of PI3K(170, 171), promotion of ligand-induced TCR down-

modulation(172) and upregulation of receptor endocytosis(173), and ubiquitination-

dependent regulation of key receptors and signaling intermediates(174, 175).  Cbl-b 

contains an amino terminal Ring finger motif and putative phosphotyrosine binding 

domain, and carboxy terminal proline-rich region, conserved tyrosine residues, and a 

leucine zipper(176).  Cbl-b is rapidly tyrosine phosphorylated by Syk- (syk/Zap-70) and 

Src- (Fyn/lck) family kinases upon TCR engagement(177, 178) allowing direct regulation 
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of the RAC-1 GTPase GEF Vav1 in a trimeric complex involving ligand-stimulated 

tyrosine kinases, resulting in inhibition of TCR mediated Vav-1 activation(169, 172) and 

subsequent Vav-1-mediated activation of c-Jun N-terminal kinase(179).    CD28 

costimulation counteracts cbl-b-mediated inhibition of TCR signals by targeting cbl-b for 

ubiquitination-dependent downregulation(87, 180, 181).  Thus, regulation of cbl-b 

activation by CD28 is critical to the integration of TCR and costimulatory signals and 

broadly influences in vivo immunity by altering proximal signaling events and distal 

mediators of T cell activation(182). 

 

Integration of TCR and CD28 signals is a multifaceted process  

Cellular responses to immunological stimuli reflect the convergence of numerous, 

often contradictory, signaling pathways that necessarily operate to regulate distal 

outcomes via regulation of gene expression.  Shared targets of diverse pathways 

determine the qualitative responses manifested by integrating quantitative signal 

information.  The elucidation of pathways responsible for cellular activation in 

lymphocytes has often depended on non-physiological stimuli that might mask subtle 

relationships that exist between various signaling pathways, including the TCR and 

CD28.  The differential sensitivity of antigen receptor stimulated cells to CsA inhibition 

in the presence or absence of PMA or anti-CD28 antibody was interpreted as evidence of 

distinct pathways downstream of these two receptors.(183)  However, the 

supraphysiological stimulus provided by either anti-CD28 or PMA results in non-

physiological chromatin remodeling of the IL-2 gene locus and bypasses the requirement 

for c-Rel and the CD28 response element that are essential for IL-2 gene upregulation in 
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antigen receptor stimulated cells.(35, 102, 184)  More recent work has demonstrated that 

CD28 is, in fact, CsA sensitive under more physiological stimulation conditions,(15, 146) 

consistent with the ability of CD28 to enhance TCR induction of calcium flux and NFAT 

activity(51, 185).  Similarly, the apparent dependence of IL-2 production on CD28 

costimulation was thought to result from unique signal transduction pathways distinct 

from that used by the TCR(186, 187).  However, further characterization of transcription 

factors regulating IL-2 gene transcription, including NFAT, c-REL-AP1, and NF-kB, 

identifies them as common targets of both TCR and CD28 signaling(18, 48).  

Nonetheless, it is a common biological phenomenon that integration of complex 

quantitative signals can result in qualitatively different responses.   

 

 

Ctla-4 and Negative Costimulation in the Adaptive Immune Response 

 

Molecular genetics and expression of Ctla-4 

In addition to positive costimulation provided by CD28 ligation, regulation of 

peripheral lymphocyte responsiveness to antigen encounter is achieved by coinhibitory 

signaling mediated by negative regulators of T cell activation.  Ctla-4 provides an 

inhibitory signal that counteracts positive signals transmitted through the TCR and CD28, 

and is necessary for the maintenance of peripheral T cell tolerance(188).  Like CD28, 

Ctla-4 is a type 1 transmembrane glycoprotein of the immunoglobulin superfamily(189).  

The Ctla-4 gene is located on chromosome 1 in mice and chromosome 2 in humans 

within a locus containing both ICOS and CD28 (189-193).  The Ctla-4 gene contains four 
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exons encoding a signal sequence, an extracellular IgV-like domain containing the B7-

binding MYPPY motif, a transmembrane region, and a cytoplasmic tail(190, 194).(Figure 

1.2)  Human and murine Ctla-4 share 76% amino acid identity overall, and the 

cytoplasmic domain of Ctla-4 is 100% conserved across mammals(190).  The Ctla-4 gene 

product encodes a protein of 223aa with a 35aa signal peptide that exists as a covalently 

linked homodimer on the cell surface(195, 196).  Homodimerization is mediated by a 

conserved cysteine residue at position 122 in the stalk region and by N-glycosylation at 

position 78 and 110(196, 197).  The 36aa long cytoplasmic tail of Ctla-4 lacks enzymatic 

activity but contains a membrane-proximal lysine-rich region, tyrosine residues at 

positions 165 and 182, and a proline-rich region starting at position 169(198).   

The Ctla-4 transcript undergoes alternative splicing(Figure 1.3).  In humans, 3 

transcripts can be detected: a full-length transcript composed of exons 1-4, a transcript 

coding for soluble Ctla-4 that excludes exon 3, and a transcript that includes only exons 1  

and 4(191, 199-202)  Mice express an additional transcript that excludes exon 2 and 

codes for a ligand-independent (li) form of Ctla-4(199). 

In addition to thymocytes and mature T cells, Ctla-4 gene expression has been 

detected in a variety of cells including monocytes, B cells, CD34+ stem cells, fibroblasts,  

granulocytes, and mouse embryonic cells(203-208).  While Ctla-4 may signal in these 

cells, or provide signals to other cells via B7 ligands, no function has yet been attributed 

to Ctla-4 in non-T cells. 

Factors mediating transcriptional control of Ctla-4 gene expression in T cells have 

not been well defined, but are known to involve several signaling pathways. 

Transcriptional regulation of Ctla-4 is initiated 335bp upstream of the start codon, and the
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Figure 1.2: Structure of Ctla-4 gene  
 

A:      
 
B: Protein Sequence 
5’ 
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Figure 1.2:  Structure of Ctla-4 gene and protein sequence.  The Ctla-4 gene is located on 

mouse chromosome 1 and human chromosome 4.  The full-length transcript encodes 4 

exons corresponding to a gene length of 6.81Kb. (Panel A)  Human and mouse protein 

are 76% conserved at the amino acid level.  The cytoplasmic domain is 100% conserved. 

Potential phosphotyrosine residues are printed in yellow. (Panel B)  Binding sites for 

molecules known to associate with the cytoplasmic tail of Ctla-4. (Panel C)
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5’ upstream region of Ctla-4 contains several transcriptional regulatory sequences 

including sites for NFAT, Nf-κB, AP-1, STAT, GATA-1, and Oct-1.(191, 192, 209)   

NFAT in particular may be central to transcriptional regulation of Ctla-4 as NFAT levels 

correlate directly with levels of Ctla-4 mRNA, and cyclosporine A mediated inhibition of 

NFAT activation reduces Ctla-4 gene transcription.(210, 211)    

Ctla-4 mRNA expression is upregulated from nearly undetectable basal levels in 

naive T cells upon TCR-mediated activation, and its expression is further enhanced by 

CD28 signaling(25, 209, 211, 212).  Levels of Ctla-4 mRNA are regulated, in part, by 

alterations in mRNA stability that occur as a result of TCR and CD28 signaling.  Under 

conditions of TCR signaling alone Ctla-4 mRNA half-life is ~4.6 hours.  CD28 

costimulation increases the half-life to ~8.9 hours.(211, 213)  Ctla-4 mRNA stabilization 

is likely mediated by three 3’ UTR AUUUA motifs implicated as binding sites for  

proteins mediating mRNA degradation.(211, 214)    Maximal Ctla-4 expression is 

achieved 24-48 hours after activation in both primary and secondary responses, and 

memory cells maintain a higher level of basal expression. (213).  CD4+CD25+ regulatory 

T cells (Tregs) and anergized T cell clones express Ctla-4 constitutively(215) 

Regulation of Ctla-4 protein expression is complex and incompletely understood. Unlike 

CD28, which is constitutively expressed on T cells, Ctla-4 is undetectable on naïve T 

cells.  Ctla-4 is quickly upregulated subsequent to TCR ligation and reaches maximal 

expression at the cell surface 24-48 hours following activation.  In resting cells the vast 

majority of Ctla-4 protein is maintained intracellularly in vesicles located in the region of 

the microtubule organizing center (MTOC).  TCR engagement initiates cytoskeletal 
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Figure 1.3:  Ctla-4 undergoes alternative splicing 
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Figure 1.3:  Ctla-4 undergoes alternative splicing.  Ctla-4 contains four exons encoding a 

signal sequence, the ligand binding domain containing the B7-binding MYPPY motif, a 

transmembrane region, and the cytoplasmic domain.  Single nucleotide polymorphisms in 

non-coding regions of the Ctla-4 gene in humans and mice result in altered splicing.  In 

humans, common allelic variation results in reduced production of the soluble isoform of 

CTLA-4 which lacks the transmembrane region and is associated with increased risk of 

several common autoimmune diseases including Graves disease and type I diabetes.  In 

mice, increased risk of type I diabetes is associated with lower mRNA levels for the 

ligand-independent form of Ctla-4 which has been shown to transmit an inhibitory signal 

in T cells.  An alternative transcript lacking the cytoplasmic domain has also been 

reported in mice, but no function has yet been attributed to it. 
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rearrangement, reorientation of the MTOC towards the point of APC contact, and 

vesicular trafficking of CTLA-4 to a point proximal to the synapse where the 

 majority of Ctla-4 is retained in vesicles throughout lymphocyte activation(216).  In 

humans, only ~10% of total Ctla-4 is surface expressed following activation.(213, 217)  

However, translocation of Ctla-4 to the cell surface from intracellular vesicles and 

accumulation in the synapse is proportional to the strength of TCR signaling, suggesting 

that stronger TCR stimuli result in increased Ctla-4 mediated inhibition(216).  Enhanced 

Ctla-4 inhibition may serve to moderate responses of T cells experiencing high-affinity 

antigen-receptor interactions as a means of maintaining clonal diversity in a polyclonal 

response(218).  The half-life of Ctla-4 on the cell surface is regulated by the rate of 

internalization.  Once internalized, Ctla-4 is rapidly degraded in lysosomal 

compartments, with a half-life of two hours.(213, 219, 220)  Interestingly,  TCR signaling 

can induce recycling of Ctla-4 from the lysosome to the cell surface, providing an 

alternative method of increasing surface expression of Ctla-4(221).  Previously activated 

resting cells maintain higher levels of intracellular Ctla-4 and upregulate surface 

expression with faster kinetics.   

The binding properties of the B7 molecules, CD28, and Ctla-4 support a role for 

Ctla-4 in the attenuation of T cell activation(42).  Sequential expression of B7.2 and B7.1 

on APCs favors the sequential binding of CD28 and Ctla-4 (CD28/Ctla-4 Kd are ~8 and 

20 for B7,2 and B7.1 respectively).  In fact, the earliest costimulatory complexes formed 

between CD28 and B7.2 are estimated to be 10,000 fold less stable than the later B7.1: 

Ctla-4 complexes.  Complexes of B7.2:Ctla-4 and B7.1:CD28 are predicted to have 
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intermediate binding strengths and may allow fine tuning of the costimulatory or 

inhibitory signal.  Ctla-4, despite its low level of expression in naïve cells, is capable of 

regulating both primary and secondary immune responses and inhibits early events in T 

cell activation(222).  Temporal requirements of Ctla-4 mediated inhibition have not been 

defined, and it remains unknown how delayed or transient Ctla-4 ligation affects T cell 

activation. 

 

Ctla-4 inhibits T cell activation: The Ctla-4 knockout phenotype 

The central importance of Ctla-4 in the maintenance of self-tolerance is 

dramatically evident in the Ctla-4-/- mouse phenotype. Ctla-4 deficiency results in 

massive lymphoproliferation, multi-organ inflammatory infiltrates, and death by 3-5 

weeks(223, 224). Thymocyte development is normal in Ctla-4-/- mice and the disease 

appears to result from a defect in peripheral T cell tolerance and homeostasis(225-227).  

Moreover, in vivo anti-Ctla-4 antibody blockade permits development of autoimmune 

disease in normally resistant mouse strains(228), hastens the onset while increasing the 

severity of diabetes in genetically predisposed mice(229), exacerbates disease in 

experimental autoimmune encephalitis or neuritis(230-232), and augments responses to 

tumor vaccines(218, 233-241).  The clinical importance of such findings is already being 

investigated in clinical trials that utilize Ctla-4 blockade to augment endogenous anti-

tumor responses(237, 239, 242-245). 

 Complementing the observations in Ctla-4 knockout mice and models 

utilizing Ctla-4 blockade, Ctla-4 ligation by B7 molecules has been shown to result in 
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decreased activation and inhibits both cell cycle progression through G1 and IL-2 

synthesis(222, 246).  Investigators have shown alterations in the function of several 

known transcription factors following Ctla-4 ligation such as NFκB, IκB, and NFAT(95, 

97, 247-251).  Ctla-4 ligation also results in reduced phosphorylation of CD3(252) and 

differentially regulates mitogen activated protein kinases (MAPK) JNK and ERK(253).  

Targeted Ctla-4 engagement downregulates, or prevents, autoimmunity in animal 

models(254), and inhibits allograft rejection(230).  In addition to the observed role of 

Ctla-4 in determining T lymphocyte activation upon primary stimulation, there is 

growing appreciation for the effects Ctla-4 signaling has on subsequent immune 

responses that are distinct in some ways from its ability to inhibit stimulatory signals 

originating with the TCR or with CD28.  It has been shown that Ctla-4 signaling can 

affect the biology of cells in ways that determine susceptibility to subsequent infection by 

HIV(255), effector function(256), and threshold of activation upon restimulation(256).  

However, the mechanism by which Ctla-4 influences lymphocyte phenotype following 

activation is not known, and gene regulations that may be associated with enduring 

alterations in phenotype have not been investigated. 

 

Ctla-4 undergoes alternative splicing 

 Recently, common allelic variation in the relative expression of alternative splice 

forms of Ctla-4 has been linked to autoimmune disease in both humans and mice(199).  

In mice a translationally silent polymorphism within exon 2 has been linked to altered 
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expression of a Ctla-4 isoform lacking the B7 binding domain.  This ligand independent 

isoform (liCtla-4) is expressed in activated T cells from diabetes resistant strains at levels 

four-fold greater than that seen in the diabetes-prone NOD mouse and is proposed to be 

the Idd5.1 locus.  In humans, susceptibility to the common autoimmune disorders of 

Graves’ disease, autoimmune hypothyroidism, and type 1 diabetes was mapped to a 3’ 

region of the Ctla-4 gene and the disease susceptible haplotype associated with a 

significant reduction in expression of a soluble isoform of Ctla-4 that lacks the 

transmembrane region encoded by exon 3(199).  While these results indicate a central 

role for alternative Ctla-4 isoforms in determining susceptibility to autoimmune disease, 

the regulation of alternative isoform expression, target cells involved, and mechanism of 

action remain almost completely uncharacterized. 

 

Ctla-4 signal integration 

Ctla-4 inhibits some, but not all, signals generated by either TCR signaling or 

CD28 costimulation. Ctla-4 inhibits the CD28 mediated accumulation of NFAT, but not 

AP-1, in the nucleus, inhibiting NFAT-mediated gene regulations including IL-2 gene 

transcription (257).  In contrast, Ctla-4 signaling does not influence CD28-mediated 

stabilization of IL-2 mRNA, consistent with its inability to prevent CD28 mediated Bcl-

xL accumulation(13, 257).   In addition, Ctla-4 does not prevent trace amounts of IL-2 

produced by CD28 costimulation from degrading the cell cycle inhibitor p27(257).  Ctla-

4 does not alter the transcriptional profile of human peripheral blood leukocytes 

stimulated through the TCR alone as assayed by microarray analysis(54), but prevents the 
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TCR-induced upregulation of cyclin D3(which is CD28 independent) as well as cdk4 and 

cdk6 as determined by western blotting(257).  

 

Ctla-4 inhibits CD4+ lymphocyte activation by diverse mechanisms 

 Numerous models describing the mechanism of Ctla-4 function have been 

proposed and it is likely that Ctla-4 actively maintains T cell tolerance by acting at 

several levels to prevent dysregulated T cell activation.  Ctla-4 competes with CD28 for 

B7 ligands(258), and a tailless mutant of Ctla-4 expressed on the surface is capable of 

down-regulating lymphocyte responses.(259)  Furthermore, Ctla-4 forms a two-

dimensional lattice with bound B7.2 that may disrupt molecular organization within the 

immunological synapse(197, 260), and recruits phosphatases to the lipid rafts which 

counteract kinase activity resulting from TCR and/or CD28 ligation(252)(Figure 1.4).  

More distally, Ctla-4 ligation inhibits changes in gene expression triggered by TCR and 

CD28 signaling,(54) but the significance of Ctla-4 mediated gene regulation in the 

maintenance of tolerance remains unclear. 

A significant observation is that Ctla-4 mediates cell-extrinsic regulation.  

Transplantation of T cell depleted Ctla-4-/- bone marrow into RAG-deficient recipients 

reconstitutes the lymphoproliferation and multi-organ T cell infiltration characteristic of 

Ctla-4 deficiency.  However, transplantation of a 1:1 mixture of Ctla-4-/- and Ctla-4+ T 

cell deleted bone marrow produces healthy mice, stable chimerism within the myeloid 

and lymphoid compartments, and normal cellular phenotype(261).  Additionally, Ctla-4-/- 
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CD4+ and Ctla-4-/- CD8+ population became activated, expanded, and contracted in a 

manner indistinguishable from their WT counterparts in response to  lymphocytic 

choriomeningitis virus (LCMV), leishmania major, and mammary tumor virus which 

cause acute, chronic, and persistent infections, respectively(262).  Together, results from 

chimeric bone marrow experiments indicate Ctla-4-/- lymphocytes can be non-

autonomously regulated by Ctla-4 WT cells, implying that the pathology seen in Ctla-4-/- 

mice is likely to result from intrinsic defects in cell activation as well as extrinsic 

regulatory defects.  Work in our lab has shown that depletion of WT cells in established 

bone marrow chimerae initiates the characteristic lymphocyte activation, proliferation 

and tissue infiltration seen in Ctla-4 deficient mice.  However, depletion of either CD4+ 

or CD8+ WT cells alone fails to disrupt regulation of Ctla-4-/- cells.  Moreover, current 

evidence fails to support a dominant role for Tregs in extrinsic regulation by Ctla-4 in  

bone marrow chimerae.  To date the mechanism of regulation evident in mixed Ctla-4-/-

/Ctla-4+ bone marrow chimerae has not been elucidated. 

 The differential effects of Ctla-4 ligation in the regulation of TCR and CD28 

signaling pathways supports the notion that dynamic integration of Ctla-4 mediated 

signals is likely to occur at multiple points.  In addition, the role of Ctla-4 in regulating T 

lymphocyte activation and progression of immune responses is strongly influenced by 

extrinsic factors.  Published results support the notion that Ctla-4 regulation of T cell 

activation may depend on the relative availability of B7 ligands(114, 258, 263), TCR 

signal strength(264-266), and activational history(265, 267).  
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Figure 1.4:  Ctla-4 lattice formation with bound B7.1 
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Figure 1.4:  Ctla-4 interactions with B7.1 result in the formation of extended lattice 

arrays.  Unlike B7.2 which exists as a monomer on the surface of cells, dimeric B7.1 is 

capable of binding two ligands.  In addition, CD28 is most likely monomeric on the T 

cell surface, indicating that lattice formation is unique to Ctla-4:B7.1 interactions.  The 

avidity enhanced binding that results from extended formation of Ctla-4:B7.1 interactions 

results in affinities of interaction more than 104-fold more stable than CD28:B7.2 

interactions.
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Mechanisms of Ctla-4 Mediated Inhibition of T Cell Activation 

 Several non-mutually exclusive mechanisms have been proposed in order to 

explain the observed phenomena that result from Ctla-4 manipulation or deficiency.  The 

absence of pathological disease in Ctla-4-/- mice in the context of B7, CD28, class II 

MHC, or TCR deficiency implies a primary role for Ctla-4 in the attenuation or 

regulation of signals initiated by the TCR or CD28(268).  Overexpression of Ctla-4 on 

CD4+ or CD8+ T lymphocytes inhibits both in vitro and in vivo  T cell responses in a 

manner dependent on normal CD28 and B7 expression(269).  Interestingly, Ctla-4 may 

initiate inhibitory pathways that  utilize common signaling intermediates as indicated by 

the ability of alternative inhibitory receptors not normally expressed in CD4+ T cells to 

ameliorate disease in the context of Ctla-4 deficiency in CD4+ T lympohcytes(270).  

Moreover, observations in numerous experimental settings indicate that Ctla-4 operates 

to suppress or counteract TCR and CD28 mediated signals at several levels via distinct 

mechanisms. 

 

 

Cell Intrinsic Regulation of T Cell Activation by Ctla-4 

 

Ctla-4 inhibits CD28 signals by sequestering shared ligands 

 The recognition that CD28 and Ctla-4 share the ligands B7.1 and B7.2 suggest 

that Ctla-4 may compete with CD28 for ligands in situations where APC-expressed B7 is 
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limiting.  Mice expressing a mutant form of Ctla-4 that lacks the cytoplasmic domain are 

long-lived and show no evidence of lymphocytic infiltration of peripheral tissues, but did 

exhibit lymphadenopathy, increased numbers of activated T cells, and a predominantly 

Th2 phenotype(271).  The partial rescue was interpreted as evidence that ligand 

competition is a component of Ctla-4 action.  In separate experiments, expression of Ctla-

4 lacking the cytoplasmic domain resulted in defective IL-2 secretion, survival, and 

proliferation by naïve lymphocytes in response to antigen stimulation in vitro.  Addition 

of exogenous IL-2 rescued the proliferative and survival defect suggesting that 

suppression of Il-2 secretion, the upregulation of which is a hallmark of CD28 

costimulation, was the critical result of Ctla-4 surface expression in the absence of 

intracellular signaling that may be mediated by the cytoplasmic domain of Ctla-4.  

Moreover, adoptive transfer of lymphocytes expressing tailless Ctla-4 were compromised 

in their ability to expand when introduced into Rag-/- mice, a process at least partially 

dependent on CD28 signaling(259).  Finally, memory CD4+ T cells, which are known to 

be less dependent on CD28-mediated signaling for activation and proliferation, that 

expressed tailless Ctla-4 showed normal proliferative capacity in a lymphopenic 

environment(259).  As previously discussed, biochemical studies have shown that Ctla-4 

has a much higher affinity for B7 ligands than CD28, further supporting the notion that 

ligand competition may be central to Ctla-4 mediated inhibition(42).   
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Ctla-4 disrupts the immunological synapse 

 T cell activation through the TCR results in cytoskeletal rearrangement, 

aggregation of lipid microdomains, and coordinated partitioning of receptors into discrete 

membrane compartments at the site of T cell:APC contact.  The resulting immunological 

synapse stabilizes the intercellular interaction of multimolecular signaling complexes and 

may be essential for full cellular activation.  Ctla-4 has been shown to cocluster with the 

TCR and the lipid raft ganglioside GM1 after T cell stimulation in a process that was 

dependent on the cytoplasmic tail of Ctla-4(272).  Ctla-4 partitioning to lipid rafts was 

enhanced under conditions of TCR and Ctla-4 ligation, and could be forced by linking 

Ctla-4 to a GPI anchor.  Forced localization of tailless Ctla-4 to the lipid rafts, although 

necessary, was not sufficient for inhibition of activation in the absence of Ctla-4 

engagement by B7(272).  Crystallization of a B7.1:Ctla-4 complex indicates that Ctla-4 

homodimers bridge bivalent B7.1 homodimers in a periodic arrangement(273).  The 

zipper-like oligomerization can potentially lead to the avidity-enhanced stabilization of 

extended lattice-like formations of B7:Ctla-4 complexes, potentially disrupting the 

ordered intercellular ligand-receptor interactions that characterize the immunological 

synapse.  The potential ability of Ctla-4 ligand binding to result in mechanical disruption 

of activating receptor interactions within the synapse is compatible with the known 

characteristics of B7 ligation by CD28 and Ctla-4, and may function in parallel with 

ligand competition-mediated inhibition by Ctla-4. 

 Early reports suggested that B7.1 and B7.2 mediated similar costimulatory signals 

and suggested that unique roles for the related ligands was determined primarily by their 
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differential expression patterns.(274, 275)  However, despite numerous structural 

similarities, B7.1 and B7.2 possess distinct biochemical features, affinities for CD28 and 

Ctla-4, and oligomeric states. Ctla-4 has higher affinity for both B7 ligands relative to 

CD28, and a relative preference for B7.1 as compared to B7.2 (CD28/Ctla-4 Kd are ~8 

and 20 for B7.2 and B7.1 respectively)(42).  B7.1 exists on the cell surface as a 

homodimer, while B7.2 exists as a monomer(111, 276, 277).  B7.2 is constitutively 

expressed on mature APCs, while B7.1 is upregulated by activation stimuli via 

CD40:CD40L interactions(278).  The binding properties, oligomerization states, and 

expression kinetics of CD28, Ctla-4, and the B7 molecules suggest that attenuation of 

activation signals may require a coordinated interplay between T cells and APC.  

 

Ctla-4 sequesters signaling intermediates and recruits phosphatases to the IS 

In some settings, Ctla-4 mediates inhibition of T cell responses in B7 independent 

manner.  Mutant Ctla-4 incapable of B7 binding inhibits T cell proliferation, cytokine 

secretion, and ERK activation when expressed in Ctla-4 deficient T cells(279).  

Moreover, the naturally occurring ligand independent isoform of Ctla-4 suppresses T cell 

activation and delays the onset of lymphoproliferative disease when expressed in Ctla-4 

deficient mice(200, 279).  These data prove that Ctla-4 mediated inhibition of T cell 

activation is only partially dependent on ligand competition or disruption of the 

immunological synapse.  
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 TCR and CD28 engagement initiates signaling cascades that result in cellular 

activation via coordinated regulation of protein activity and gene transcription.  Ctla-4 is 

capable of modifying or attenuating signals initiated by TCR and CD28 engagement.  

The cytoplasmic tail of Ctla-4 and CD28 associate with common signaling intermediates 

regulating T cell activation.  Association of the serine/threonine phosphatase PP2A with 

the CD28 cytoplasmic tail is negatively regulated by tyrosine phosphorylation of the 

CD28 binding domain following TCR triggering, and inhibition of PP2A activity enables 

potent CD28-mediated costimulation of T cell activation(280).  Ctla-4 binds both the 

catalytic and regulatory subunits (PP2AA) of PP2A, and this association is abrogated by 

tyrosine phosphorylation of the Ctla-4 cytoplasmic domain resulting in enhanced Ctla-4 

mediated inhibition of T cell activation as measured by IL2 gene transcription(198).  

These results indicate that PP2A negatively regulates the function of both CD28 and 

Ctla-4 via phosphotyrosine dependent association with their cytoplasmic domains.  In 

addition to PP2A, Ctla-4 and CD28 also share binding infinity for Src homology domain-

containing tyrosine phosphatases (SHP-1 and SHP-2) and PI3K.  Early reports suggested 

that Ctla-4 recruited phosphatases to the immunological synapse resulting in reversal of 

TCR- and CD28-mediated phosphorylation events(281). The relative importance of these 

associations in the regulation of T cell activation remains controversial, but recent data 

suggest that they may mediate differential signaling based on their inclusion in 

multimeric signaling complexes whose organization is directed by CD28 and Ctla-4.  

Thus, association of Shp-2 or PI3K with Ctla-4 is not required for Ctla-4 mediated 

inhibition of T cell activation(282), but SHP-2 and PI3K associate with Gab2 to mediate 
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CD28 signaling that results in inhibition of TCR-mediated signaling events in a negative 

feedback loop(283).  While not definitively shown, it remains possible that Ctla-4 

functions in part by sequestering signaling intermediates required for efficient signal 

transduction by CD28.  Alternatively, regulated phosphorylation of CD28 and Ctla-4 

tyrosine residues by Src family tyrosine kinases(284-286) may alter the relative 

proportions of proteins associating with CD28 and Ctla-4, and thus change the balance of 

stimulatory and inhibitory signals they mediate.  

 

Cell-Extrinsic Mechanisms of Ctla-4 Function 

 

Wild-type T lymphocytes regulate Ctla-4-/- T cells in mixed bone marrow chimerae 

 Ctla-4 functions to maintain peripheral tolerance by cell extrinsic regulation of T 

lymphocyte responses by cell-contact-dependent and –independent mechanisms.  The 

most dramatic example of cell-extrinsic regulation by Ctla-4 is seen in bone marrow 

chimerae reconstituted with donor cells from Ctla-4-/- and Ctla-4 wild-type mice.  Bone 

marrow recipients reconstituted with T cell depleted Ctla-4-/-  donor cells develop the 

lymphoproliferative disease and tissue infiltration characteristic of native Ctla-4 

deficiency.  The pathogenesis of the observed disease recapitulates all aspects of the 

native disease and is initiated only upon thymic emigration of donor T cells.  In contrast, 

mixed bone marrow chimerae remain healthy and maintain a balanced ratio of naïve 

donor cells in the periphery(261).  Moreover, Ctla-4-deficient cells in mixed bone 
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marrow chimerae respond to several pathogens in a manner indistinguishable from their 

wild-type counterparts(262).  Numerous models have been proposed to explain cell-

extrinsic regulation by Ctla-4, but the dominant mechanism remains undefined.  Given 

the diversity of observations made about Ctla-4 function in various contexts, it is possible 

that numerous mechanisms mediated by Ctla-4 act cooperatively to maintain self-

tolerance at the population level. 

 

Regulation of cytokine production 

 Cytokines are critically important regulators of T cell activation, survival, 

differentiation, and effector function.  Cytokine activity is determined by the expression 

pattern of appropriate receptors and intracellular proteins involved in mediating cytokine 

signaling.  Thus, cytokines are capable of acting at a distance to coordinate varied 

responses in different cell types and serve to orchestrate immune responses at the 

population level.  CD28 costimulation concomitant with TCR triggering results in potent 

upregulation of IL-2 gene transcription.  IL-2 acts in both paracrine and autocrine fashion 

to enhance cell survival, proliferation, and effector function.  Il-2 deficiency results in 

dramatically reduced T cell survival following antigen receptor stimulation, markedly 

reduced proliferation, and inefficient T cell mediated immune responses.  Ctla-4 ligation 

inhibits CD28-mediated upregulation of IL-2 and IL-2R(287).  Signals initiated by TCR 

triggering and CD28 ligation regulate the activity and expression of numerous other 

transcription factors that determine cellular differentiation, coordinate T cell-dependent 

humoral responses, and influence antiviral immunity through stimulation of the innate 
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immune system.  In contrast, several cytokines result in potent immunosuppression of T 

cell responses and serve to maintain self-tolerance by inhibiting or attenuating 

unwarranted T cell activation.  TGF-beta and IL-10 inhibit T cell responses and have 

been examined for their ability to mediate Ctla-4 function.  Critically, no role for TGF-

beta has been reliably discerned in the intrinsic regulation of T cell responses mediated 

by Ctla-4(288).  However, a large body of evidence suggests that TGF-beta may mediate 

suppressive effects of regulatory T cells(289-294) and Ctla-4 has been shown to enhance 

the suppressive activity of CD4+CD25+ regulatory T cells(295).  Ctla-4-deficient mice 

have functional CD4+CD25+ regulatory T cells that are generated in the thymus, 

indicating that suppressor function is at least partially independent of Ctla-4 action.  In 

contrast, the generation of adaptive regulatory T cells in the periphery is dependent on 

TGF-beta induction of FoxP3(296-300) and may require permissive signaling through 

Ctla-4(301).  Moreover, several lines of evidence support the notion that Ctla-4 does 

mediate some suppressive effects of regulatory cells(302, 303), but not all.  The data 

suggest that Ctla-4 may regulate the development of a subset of adaptively generated 

regulatory T cells and contribute to specific mechanisms of suppression, thus explaining 

previous contradictions regarding the overlapping role of Ctla-4 and TGF-beta in 

maintaining immunotolerance.  However, the critical downstream mediators of Ctla-4 

signaling that control responses to TGF-beta and may result in phenotypic changes upon 

restimulation or long-term unresponsiveness to antigen receptor engagement have not 

been defined. 
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Ctla-4 maintains peripheral self-tolerance through tryptophan catabolism 

 Tryptophan catabolism and the consequent production of tryptophan catabolites 

mediates a suppressive effect on immune responses.  In the short-term, tryptophan 

deprivation and exposure to tryptophan catabolites results in CD3 down-regulation and 

impaired lymphocyte effector function.  Longer term, tryptophan catabolism results in the 

emergence of a regulatory phenotype in naïve CD4+CD25-  T cells mediated through 

TGF-beta dependent upregulation of FoxP3(304).  The CD4+CD25+CD62L+Ctla-

4+GITR+CD69-CD45RBLow cells that develop in the context of increased tryptophan 

catabolism are capable of suppressing diabetogenic responses in vivo(304). Thus, 

tryptophan catabolism is an effector mechanism regulating peripheral self-tolerance 

through direct suppression of T cell effector responses and generation of suppressive T 

cell function in naïve CD4+ T cells.  Ctla-4 signals through B7 on dendritic cells to 

upregulate the expression of indoleamineoxygenase resulting in increased tryptophan 

catabolism and suppression of immune responses(305).  TGF-beta is crucial for the 

development of a regulatory phenotype in peripheral CD4+CD25- cells(300).  Ctla-4 

ligation soon after activation is critically required for TGF-beta-mediated FoxP3 

induction, and Ctla-4 deficiency results in the inability to develop peripheral 

CD4+CD25+ suppressor cells(301).  Furthermore, upregulation of IDO expression in 

dendritic cells is regulated by suppressor T cells constitutively expressing Ctla-4(306).  

Thus Ctla-4 enables TGF-beta-mediated generation of regulatory T cells in the periphery 

and provides a mechanism by which suppressor T cells acquire the ability to regulate 

both effector T cell responses and further generation of regulatory cells via modulation of 
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tryptophan catabolism.  Interestingly, CD28 is also capable of signaling through B7 

molecules expressed on dendritic cells, but induces immunostimulatory signals that 

counteract the induction of tolerogenic properties that result from Ctla-4-B7 

interactions(307).  Recent work also suggests that additional ligand-receptor interactions 

involving CD40 and CD40L, expressed on dendritic cells and lympohcytes respectively, 

may be crucially involved in regulating dendritic cell responses to B7 engagement(308).  

Cumulatively, these data highlight the complex interplay of costimulatory signaling 

pathways in the regulation and determination of peripheral tolerance mechanisms.  

Moreover, the cyclical interdependence of mechanisms underlying development of 

regulatory T cells and induction of tolerogenic properties in dendritic cells is dependent 

on CD28 and Ctla-4 signaling. 

 

Ctla-4 regulates suppressor T cell function and signals through B7 on T cells 

 Ctla-4 enhances, and CD28 inhibits, the ability of regulatory CD4+CD25+ T cells 

to induce a tolerogenic phenotype in dendritic cells(295). In addition, this effect is 

differentially regulated by B7.1 and B7.2 and may reflect preferential binding to Ctla-4 

and CD28 respectively(295, 309).  A requirement for CD28 signaling in the generation of 

suppressor T cells is well established, but the role of Ctla-4 has been more 

controversial(310-312).  Contradictory data regarding the role of Ctla-4 in regulatory T 

cell function may reflect differing requirements as a result of alternative mechanism of 

suppression.  Thus Ctla-4 is reportedly necessary for the adaptive generation of 

regulatory cells developed in the periphery, but is not required during development of 
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thymic-derived regulatory T cells(313).  Thus, Ctla-4 deficient mice maintain a 

population of CD4+CD25+ regulatory cells that possess potent suppressive activity in 

vitro, but are not sufficient to prevent the lymphoproliferative disease that develops in 

Ctla-4-/- mice.   

B7-ligand interactions facilitate bidirectional signaling that serves to modulate 

immune responsiveness by various mechanisms.  As indicated, Ctla-4 and CD28 initiate 

tolerogenic and immunostimulatory signaling pathways in dendritic cells upon binding 

B7(307, 314).   Recent work has shown that T cell expressed B7 also regulates 

lymphocyte responses by engaging Ctla-4 in T-T interactions(315) in a manner analogous 

to Ctla-4 mediated inhibition by APC-expressed B7.  However, recent data also suggest 

that CD4+CD25+ regulatory T cells can suppress T cell responses by Ctla-4 mediated 

ligation of B7 molecules expressed on alloreactive effector cells(303).  Regulatory T cells 

are known to inhibit activation of effector T cells by altering the phenotype of dendritic 

cells and by secretion of inhibitory cytokines.  Thus, the diversity of mechanisms utilized 

by suppressor T cells results in intercellular interactions that are differentially dependent 

on Ctla-4.  Contact-dependent regulation of effector cells via B7 signaling represents a 

novel regulatory mechanism consistent with the known activity of B7 in dendritic cells, 

and may provide new opportunities for therapeutic manipulation.  The mechanism by 

which B7 signals in T cells is not known.  Our lab is currently in the process of exploring 

the role B7-mediated inhibition might play in various contexts of immune dysregulation.
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Ctla-4 and immunotolerance 

 Costimulatory signals are critical determinants of T cell activation and influence 

the specificity, magnitude, character, and duration of immune responses.  Alterations in 

CD28 and Ctla-4 function are associated with autoimmune pathology in humans, and 

therapeutic manipulation of costimulatory signals in the treatment of cancer is already 

being investigated in clinical trials(236, 316, 317).  Altered Ctla-4 function in particular 

has been shown to result in increased susceptibility to several common autoimmune 

disorders.  In humans, single nucleotide polymorphisms identified in the CTLA-4 gene 

influence alternative splicing and increase susceptibility to Hashimoto’s thyroiditis, 

Graves disease, and type I diabetes (TID)(199).  While definitive associations of CTLA-4 

polymorphisms with susceptibility to numerous other diseases remains controversial, a 

central role for Ctla-4 in regulating progression of established autoimmune disease has 

been identified(318).  In mice, Ctla-4 has been shown to control the severity and onset of 

numerous autoimmune diseases including experimental autoimmune 

encephalomyelitis(319, 320), autoimmune diabetes(200, 321), and chronic experimental 

colitis(322).  In conjunction with the observed phenotype of Ctla-4-/- mice(323) and other 

reports suggesting subtle contributions of Ctla-4 function to the development and 

progression of numerous diseases, these data suggest that Ctla-4 might represent a 

general susceptibility gene for autoimmune disease(324, 325).  The broad relevance of 

Ctla-4 to clinically relevant disease states makes it an ideal target for therapeutic 

manipulation. 
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TCR-triggering alters gene expression: CD28 amplification and Ctla-4 inhibition 

Two reports have published the results of global gene expression profiling in T 

lymphocytes following activation(15, 54).  According to both reports, TCR signaling 

alone results in the altered regulation of several thousand genes.  CD28 signaling alone 

results in few transcriptional alterations, but is capable of substantially magnifying the 

response to TCR ligation when simultaneously engaged.  For the vast majority of genes 

assayed, CD28 costimulation serves to enhance TCR initiated gene regulations although a 

number of genes are reported to be reciprocally regulated by CD28 costimulation in 

comparison with TCR ligation alone. In the one report that examined the influence of 

Ctla-4 ligation(54), Ctla-4 triggering was reported to inhibit gene regulations subsequent 

to CD28 costimulation but not TCR monostimulation.  However, both studies used 

antibody-coated microbeads to stimulate human peripheral blood leukocytes (PBLs) 

heterogeneous for activational history and antigen specificity.  Moreover, the stimulated 

cells were analyzed as bulk populations and undoubtedly contained cells with naïve 

phenotypes as well as cells undergoing both primary and secondary activation.  No 

studies have been published that profile global gene expression in stimulated 

lymphocytes using naïve populations homogenous for phenotype and activation status.  

As a result, it remains unclear whether Ctla-4 transduces a unique signal that results in 

specific changes in gene expression, or whether Ctla-4 functions primarily by inhibiting 

signals generated by the TCR and/or CD28. 
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Ctla-4 functions to maintain quiescence in peripheral lymphocytes 

Genes necessary for quiescence are necessarily downregulated upon T cell 

activation(326, 327).  CD28 costimulation has been shown to reciprocally regulate gene 

expression and results in the simultaneous upregulation of genes necessary for 

proliferation and effector function while repressing genes associated with a quiescent 

phenotype(15, 54).  Published reports also indicate nearly equal numbers of up and 

down-regulated genes in primary T cells stimulated ex vivo(15, 54).  These reciprocal 

regulations evidence the complex choreography involved in gene regulation that occurs 

upon T lymphocyte activation and reinforces the notion that maintenance of a naïve 

phenotype is an active process.  The balance between protective immunity and 

pathological autoimmunity is maintained by mechanisms that determine signaling 

thresholds of antigen and costimulatory receptors. Altered costimulatory pathways can 

result in enhanced activation of lymphocytes and autoimmunity, or antigen-specific 

tolerance induction through clonal anergy or active immunosuppression by regulatory T 

cells. The molecular mechanisms that underlie maintenance of immunotolerance in vivo 

and integrate co-stimulatory signals with antigen receptor signals in T cells are poorly 

understood. 

The overall objective of this thesis work was to gain additional insight into the 

mechanisms underlying costimulatory regulation of T cell responses.  Specifically, the 

present work sought to identify mediators of Ctla-4 function by assessing the genomic 

expression patterns that exist under varying conditions of Ctla-4 ligation and deficiency.  

To accomplish this necessitated a global characterization of the transcriptome of 
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activated naïve lymphocytes, thus providing additional insight into lympohocyte 

responses to antigen-receptor- and CD28-mediated signaling pathways.  The central 

importance of costimulatory signals in immune regulation has been shown in numerous 

disease models, and a greater understanding of the mechanisms underlying signal 

integration in T cells will provide novel opportunities for knowledge based approaches to 

combating autoimmune disease and pathology. Thus, a second goal of this work was the 

creation of a database of gene regulations occurring subsequent to T cell activation that 

will enable the identification of novel genes central to the maintenance of peripheral 

tolerance.  
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CHAPTER II 

 

MATERIALS AND METHODS 
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MATERIALS and METHODS: 

 

Mice: 

The phenotype and antigen specificity of 5C.C7 TCR-transgenic Rag-/- mice has been 

described previously(288, 328).  In brief, the 5C.C7 TCR is specific for moth cytochrome 

C (MCC88-103) oligopeptide presented in the context of the class II MHC molecule I-Ek.  

Expression of the 5C.C7 TCR transgene in developing thymocytes results in a 

predominantly (>95%) CD4+ peripheral T cell compartment.  Ctla-4-deficient mice(323), 

B7.1-/-/B7.2-/- mice(329), CD28-/-(26), and Rag1-/-(330) mice have also been previously 

characterized.  All mice were maintained in a specific-pathogen-free facility.  Unless 

otherwise specified, lymphocyte donor mice were used at 6-12 weeks of age.  All mice 

sacrificed were euthanized by CO2. 

 

T cell purification: 

CD4+ T cells were isolated from lymph nodes of donor mice by dissection and tissue 

homogenization in RPMI supplemented with penicillin, streptomycin, beta-

mercaptoethanol (2-ME), and 10% fetal bovine serum (FBS)(cRPMI).  As indicated, 

CD4+ lymphocytes were isolated by positive selection using α-CD4 magnetic bead 

purification or by fluorescence activated cell sorting (FACS).  5C.C7 lymph node cells 

were >90% CD3+CD4+CD44LowCD25- following homogenization and did not require 

further isolation steps prior to in vitro use.  Magnetic bead purification utilized 

AutoMACS LS+ columns according to the manufacturer’s protocols (Miltenyi Biotec, 
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Auburn, CA).  FACS isolation was performed by the University of Massachusetts 

Medical School Flow Cytometry Core Facility under sterile conditions subsequent to 

fluorochrome-conjugated antibody labeling.  Unless otherwise stated, purified 

populations were >95% pure by flow cytometry analysis. 

 

Bone marrow isolation and transfer: 

Femurs and tibiae from bone marrow donor mice were surgically dissected and cleaned 

of soft tissue.  Marrow was flushed from dyaphyses with RPMI supplemented with 5% 

FBS using a 25 gauge needle and syringe after removal of the epiphyses.  Marrow was 

homogenized by repeated aspiration through a 25 gauge needle before lysis of red blood 

cells in 1ml RBC lysis buffer at room temperature for 1 minute.  Cells were washed in 

5ml RPMI 5% FBS, counted, and resuspended in 3ml of sterile phosphate buffered saline 

(PBS).  Lymphocyte depletion was achieved using magnetic beads recognizing CD4, 

CD8, and either the Thy1 or Ly5 congenic markers.  Beads were washed twice in 4ml 

PBS to remove unconjugated antibody prior to use.  Six beads total were used per target 

cell, divided evenly among appropriate molecular target identities.  Ctla-4 wild-type 

(WT) and Ctla-4-deficient bone marrow typically consisted of <5% and 10-15% mature T 

cells respectively.  Antibody-conjugated magnetic beads were incubated with RBC 

depleted bone marrow preparation for 30 minutes at 4 degrees Celsius with rotation.  

Magnetic separation utilized a stationary magnet for two minutes.  Generally, 

lymphocytes were undetectable by FACS analysis following depletion protocols when 

analyzed for CD3, CD4, and CD8 expression.  Lymphocyte depleted bone marrow cells 
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were resuspended at 33x106 cells per ml in PBS.  150ul containing 5 x106 total cells was 

injected into the tail vein of recipient Rag-/- mice previously irradiated (within 36 hours) 

with 300 rads.  Mature donor lymphocytes were typically detectable in blood samples 4-5 

weeks after transplantation. 

 

In vitro stimulation assays 

Stimulation of isolated 5C.C7 Rag-/- lymph node cells by engineered antigen presenting 

cells (APCs) was accomplished as follows.  Chinese Hamster ovary (CHO) cells 

expressing I-Ek , and differentially expressing synthetic ligands for CD28 and Ctla-4 have 

been described previously(288). CHO cells were grown in DMEM supplemented with 

penicillin and streptomycin, L-glutamine, 2-ME, 10% FBS, 300ug/ml hygromycin, and 

300ug/ml zeocin.  Prior to coculture with 5C.C7 Rag-/- lymph node cells, CHO cells were 

removed from culture using PBS with 5mM EDTA and 5% FBS to maintain the integrity 

of surface proteins, and incubated for 90 minutes at 1.5x107 cells per milliliter at 37ºC in 

RPMI 5%FBS supplemented with 100ug/ml mitomycin C.  Following mitomycin C 

treatment, CHO cells were washed 4x in cRPMI, resuspended at 5x106 cells per milliliter 

of cRPMI containing the indicated concentrations of HPLC-purified moth cytochrome C 

(MCC88-103) oligopeptide, and incubated for 5 hours in 96 well round-bottom plates at 

37ºC with 5x104 cells per well to allow equilibrated MHC binding of MCC.  Excess 

MCC was removed after 5 hours, and 5C.C7 Rag-/- lymph node cells were added at a 1:1 

ratio with CHO cells in 200ul cRPMI.  Lymph node cells cocultured with CHO APCs 

were harvested at indicated times by gentle pipetting.   Isolation of phenotypically pure 
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in vitro activated lymphocytes was achieved by antibody-mediated staining and FACS 

isolation in the University of Massachusetts Medical School Flow Cytometry Core 

Facility as indicated.  Isolated populations were always >90% pure, and generally >95% 

pure, for CD4 and the specified activation markers.  Antibody-mediated stimulation of 

lymphocytes was accomplished using soluble, plate-bound, or polystyrene microbead-

conjugated antibodies to CD3, CD28, and/or Ctla-4.  Antibody-coated plates were 

prepared by incubating PBS containing antibody at the specified concentrations for 1 

hour at 37ºC and washing the plates with cRPMI immediately prior to addition of cell 

preparations.  Antibody-microbeads were prepared by incubation of 1.2x107 polystyrene 

microbeads (Interfacial Dynamics Corporation, Eugene, OR) at 37ºC with rotation for 20 

minutes in 1ml of PBS solution containing antibodies at the specified concentration.  

Conjugated microbeads were washed 3x in PBS, and resuspended in 1ml of cRPMI at 

room temperature a minimum of 1 hour before use in culture.  Conjugated beads were 

used at a ratio of 12 beads per cell.  Thymidine incorporation was measured in 

stimulated cells by the addition of 1uCi of Thymidine in 10ul of cRPMI per well in 96 

well plates for 12-16 hours.  Sample plates were frozen at -80ºC until analyzed. 

 

Lklf Overexpression Construct, Transfection, and Retroviral Infection of NFCs 

A retroviral expression construct was constructed that included a MSCV promoter, the 

protein coding region of Lklf, an internal ribosomal entry site (IRES), and the green 

fluorescent protein (GFP) gene.  XL1 Blue ultra-competent E.coli cells were transfected 

using a standard heat-shock protocol, and grown on agarose.  Selected colonies were used 



 61

to inoculate 5 ml cultures, and incubated overnight.  Plasmid was purified using Qiagen 

MiniPrep protocol, and restriction enzyme digests confirmed the integrity and orientation 

of the gene insert.  Large quantities of plasmid were prepared by bulk culture of 

transfected E.coli clones, and plasmid was isolated by Qiagen MaxiPrep protocol.  

Phoenix cells were transfected with the purified Lklf-construct or an empty MSCV 

plasmid using Lipofectamine.  The Phoenix cell packaging line was grown overnight 

before replacing the media with a minimal volume of fresh media.  NFCs, a double 

positive thymoma cell line capable of undergoing differentiation, were cocultured with 

Phoenix cells for several days and purified for positive GFP expression by FACS.   

 

Microarray analysis: 

RNA isolation was performed using either TriReagent (Molecular Research Center, Inc., 

Cincinatti, OH) or TRIzol (Gibco/BRL, Gaithersburg, MD) according to the 

manufacturer’s instructions.  A 260/280 spectophotometric ratio of 1.8-2.0 was required 

before samples could be labeled for microarray analysis.  Preparation of biotin-labeled 

cRNA for microarray analysis was performed using either single or double-amplification 

protocols, as indicated, that utilized either 4-8ug or 50-400ng of total RNA as the starting 

material respectively.  When >4ug of total RNA was available, a “standard” labeling 

protocol was followed.  Briefly, total RNA was converted into double-stranded cDNA 

using a two-step cDNA synthesis reaction utilizing a specific oligo(dT)24 primer 

containing a T7 RNA polymerase promoter site located 3’ of the poly T tract.  Biotin 

labeled cRNA was generated from the cDNA sample by in vitro transcription driven by a 
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T7 RNA polymerase.  When <4ug of total RNA was available, samples were amplified 

and labeled for microarray analysis using a two step protocol (Affymetrix SSvII Protocol) 

starting with 50-400ng of total RNA.  Briefly, double-stranded cDNA was generated 

using a two-step reverse transcription protocol with the same oligo(dT)24 primer used in 

the standard protocol.  In vitro transcription was performed on the cDNA to produce 

cRNA.  400-800ng of first-cycle cRNA product was utilized as the starting material for a 

second reverse transcription reaction utilizing random hexamer primers that yielded 

cDNA.  Amplified cDNA was used to generate biotin-labeled cRNA by in vitro 

transcription.  Biotin-labeled cRNA was purified using RNeasy spin columns (Qiagen, 

Germany).  Biotin-labeled cRNA samples were processed for microarray analysis by the 

University of Massachusetts Medical School Genomics Core Facility.  Briefly, about 

20ug of labeled cRNA were fragmented by mild alkaline treatment at 94ºC for 30 

minutes, and the product used to prepare the hybridization cocktail.  The hybridization 

cocktail includes 4 control cRNAs to inform subsequent image analysis and data 

normalization, and a biotinylated oligonucleotide marker to facilitate image orientation, 

microarray scanning, and probeset mapping.  cRNA samples were hybridized to 

MgU74Av.2 microarrays and scanned according to the manufacturer’s guidelines. 

Briefly, sample cocktails were heated to 99ºC for 5 minutes, equilibrated to 45ºc for 5 

minutes, and centrifuged at room temperature for 5 minutes.  A total of 10-15ug of each 

fragmented sample was hybridized to Affymetrix GeneChip according to the 

manufacturer’s protocol.  Arrays were washed with non-stringent buffered solution, 

stained with R-phycoerythrin streptavidin, washed again, and read by the GeneArray 
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Scanner.  Array data normalization was achieved by maintaining global array intensity 

within the linear bounds of detector sensitivity, and subsequent normalization of 

measured values to signal intensities of spike-controls included in the hybridization 

cocktail.  The resultant raw data was analyzed by MicroArray Suite 5.0 (MAS5.0) 

(Affymetrix), Genespring (Agilent Technologies), or Ingenuity Pathways Analysis 

(Ingenuity Systems).  The determination of signal intensity significance in relation to 

background signal detection was performed according to Affymetrix MAS5.0 standard 

algorithms and resulted in “present”, “absent”, or “marginal” calls (i.e. “flags”).  In order 

to allow rational determination of fold-change differences between sample conditions, 

sequential data normalization was applied as follows: measured probeset signal intensity 

values below 0.01 were set to 0.01; each measurement was divided by the 50.0th 

percentile of all measurements in that sample; when appropriate, specific samples were 

normalized to one another as indicated by dividing the median signal measurement of 

each gene in each experimental samples by the median values of that gene’s 

measurement in the corresponding control samples.  Measures of significance were 

obtained by calculating the standard deviation from the average expression value for each 

gene when sufficient replicates were available, or by use of the cross gene error model, as 

indicated.  The cross-gene error model provides reliable estimation of significance when 

fewer than three replicates are available by combining measurement variation and 

between-sample varation information.  For the analyses included herein, when two 

replicates were available the cross gene error model was configured to compute 

significance based on the assumption that variability between replicates is similar for all 
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genes with similar measurement levels. In contrast, in the few conditions assayed where 

only one chip was analyzed per condition, the cross-gene error model was configured 

based on the assumption that a minority of the genes measured were biological 

significance.  The cross-gene error model calculates deviation for each gene based on the 

appropriate assumption as outlined above and orders the values based on increasing 

control strength.  Medians of the deviation and control strength are calculated and the 

deviation on squared control strength is computed using the following equation expressed 

in terms of normalized data: 

S(norm)2=a2/C2+b2 

Where:  

 a = fixed (absolute) error (base) 

 b = proportional error (proportion), + 5% 

 C = control value (also referred to as the control strength) 

The control value is a synthetic value equal to the product of the values used in prior 

normalization steps.  In analyses included herein where a per-chip and per-gene 

normalization was applied, the control value is defined as: 

C=C(per-chip)*C(per-gene) 

In experiments with two samples per condition where variability between replicates was 

assumed similar for genes with similar measurements, a separate curve for each group of 

replicates was applied.  Where only one chip was analyzed per condition, and a minority 

of genes were considered to vary with biological significance, the error model applied a 

separate curve for each sample.  The number of replicates per condition, specific 
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characteristics of the included samples, labeling protocols utilized, and error models 

applied for each experimental approach are presented in the corresponding chapter.   

 

Lklf Real-time PCR 

Oligonucleotide primers with the sequences 

5’:CTATCTTGCCGTCCTTTGCCACTTTCG and 

3’:ATGGAGAGGATGAAGTCCACACACG were made by Integrated DNA 

Technologies to amplify a 132 base pair product. Realtime protocol was: hot start 95°C 

for 8’30”; melt at 95°C, 30”, anneal at 55.4°C, 30”, extend 72° 25” for 43 cycles; melt 

curve recorded from 55°C at increments of 0.5°C increase every 30” over 80 cycles.  

LKLF was normalized to beta-2-microglobulin using the primer sequences 

5’:AATCCAGTTTCTAATATGCTA and 3’:TATTGCTCAGCTATCTAGG. Realtime 

protocol was: 95°C for 3’; melt at 94°C, 20”, anneal at 50°C, 25”, extend 72° 25” for 40 

cycles; melt curve recorded from 55°C at increments of 0.5°C increase every 10” over 80 

cycles.  Biorad real-time PCR Super mix reagent was used for all reactions.  Data 

analysis, standard curve generation and copy number calculation was performed with 

MyiQ software. Time points including 0, 8, 12, 16, 20, 24, 35, 55, 60 and 65 hrs post-

stimulation were looked at in both mechanical and biological replicates.  
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CHAPTER III 

 

RESULTS 

 

Global Expression Profiling of Naïve CD4+ 

Lymphocytes in Steady-State Ctla-4-Deficient Model 

Systems 
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Identification of genes differentially regulated by Ctla-4 deficiency in naïve 

peripheral CD4+ lymphocytes in the absence of B7 ligands: 

 

 To provide a contextual framework for the analysis of expression profiles 

subsequent to differential Ctla-4 ligation, we utilized in vivo models that allowed for 

steady-state analysis of naïve Ctla-4 deficient CD4+ cells.  As an initial approach we 

utilized Ctla-4 deficient mice crossed onto the B7.1-/-/B7.2-/- double knockout.  As 

published, impaired CD28 costimulation subsequent to the absence of B7 ligand 

completely abrogates the lymphoproliferative disease that invariably results in Ctla-4 

single knockout mice(268).  The lack of positive costimulation in B7.1-/-/B7.2-/-/Ctla-4-/- 

mice results in healthy mice with naïve peripheral CD4+ lymphocytes capable of primary 

activation responses with normal kinetics and burst size, but heightened TCR sensitivity 

when stimulated by plate-bound or soluble antibody, pharmacologic activation by PMA + 

ionomycin, or coculture with antigen and splenic or engineered APC (Data not shown).  

Alternate approaches to the study of naive Ctla-4-deficient CD4+ lymphocytes can be 

achieved by the use of TCR-transgenic Ctla-4 knockout mice, or CD28-/-/Ctla-4-/- double 

knockout mice.  However, analysis of the resultant expression profiles in these strains is 

complicated by the absence of physiologic interaction of the TCR with self-antigen/MHC 

and the inability to verify the normal responsiveness of the lymphocytes to numerous 

stimuli in a primary activation, respectively.    In contrast, B7.1-/-/B7.2-/-/Ctla-4-/-   

lymphocytes remain sensitive to CD28 costimulation and reconstitute the 

lymphoproliferative disease seen in Ctla-4 deficient mice in Rag-/- bone-marrow 
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recipients upon thymic emigration of Ctla-4-/- donor lymphocytes (Figure 3.1).  For this 

reason, B7.1-/-/B7.2-/-/Ctla-4-/- mice provide a good model to investigate the possibility 

that absence of Ctla-4 genetically predisposes lymphocytes to pathologic activation by 

altering the baseline expression of genes involved in the determination of lymphocyte 

responsiveness.  Additionally, the global expression profile of naïve Ctla-4 deficient 

CD4+ lymphocytes can provide both a normative measure of gene expression for analysis 

of alternate models of Ctla-4 deficiency, and indicate a steady-state expression profile 

that will inform the analysis of any subsequent kinetic profile.   

As an initial approach in the identification of genes regulated by Ctla-4 ligation, 

we used microarray analysis to compare the global expression profile of ex vivo CD4+ 

lymphocytes from B7.1-/-/B7.2-/- (B7KO) double knockout mice and B7.1-/-/B7.2-/-/Ctla-4-

/- (B7CT) triple knockout mice.   CD4+ lymphocytes were MACS purified to >90% from 

lymph nodes, and analyzed for expression of the activation markers CD44, CD69, and 

CD62L.  All mice except one showed identically low expression of CD44, an absence of 

CD69 expression, and similar CD62L profiles.  Donor cells from two mice were pooled 

for each sample analyzed by microarray, with biological duplicates performed for both 

strains.  One B7CT mouse had a relatively higher CD44 expression (15% vs ~5-7%) and 

this sample was processed separately for later analysis.    

Microarray analysis utilized the Affymetrix MGu74Av2 Genechip covering 

12,422 gene probesets.  Results were normalized as follows:  values below 0.01 were set 

to 0.01; each measurement was divided by the 50th percentile of all measurements in that 

sample; each gene was divided by the median of its measurements in all samples; If the  
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Figure 3.1:  B7.1-/-/B7.2-/-/Ctla-4-/-  bone marrow recipients recapitulate 
immune pathology of Ctla-4-deficient mice and die by 8-10 weeks 
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Figure 3.1:  Rag-/- mice receiving B7.1-/-/B7.2-/-/Ctla-4-/-  bone marrow succumb to a 

lymphoproliferative disease with similar kinetics as mice receiving Ctla-4-/- marrow.  

5x106 T cell depleted bone marrow cells from Ctla-4-/-, B7.1-/-/B7.2-/-, B7.1-/-/B7.2-/-/Ctla-

4-/- , or wild-type B6 mice were transferred to minimally irradiated Rag-/- recipients.  The 

percentage of surviving recipients with respect to time is shown.  Recipients of wild-type 

B6 or B7.1-/-/B7.2-/- bone marrow remain healthy indefinitely and successfully 

reconstitute their peripheral lymphocyte compartment.  In contrast, recipients of Ctla-4-

deficient bone marrow succumb to a lymphoproliferative autoimmune disease upon 

thymic emigration of T cells that is identical to the disease seen in native Ctla-4-deficient 

mice.  B7.1-/-/B7.2-/-/Ctla-4-/- bone marrow recipients also develop disease in contrast to 

B7.1-/-/B7.2-/-/Ctla-4-/-   mice which remain healthy.  Disease in B7.1-/-/B7.2-/-/Ctla-4-/- 

bone marrow recipients recapitulates all aspects of disease seen in native Ctla-4 

deficiency including a high percentage of activated peripheral lymphocytes, lymphocytic 

infiltration of most tissues, and death within 3-5 weeks of initial thymic emigration. 
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median of the raw values was below 10 then each measurement for that gene was divided 

by 10 if the numerator was above 10, otherwise the measurement was thrown out.  5475 

genes were flagged as “present” or “marginal” in 2 or more samples by Affymetrix 

MAS5.0, representing 44% of the included genome.  Global comparison of the chips 

showed segregation of the sample conditions (B7KO or B7CT) as expected, but the 

B7CT sample with a greater percentage of CD44high lymphocytes was a relative outlier, 

and further analyses were performed twice to allow analysis with and without this 

sample.    

Globally, the expression profiles of naïve CD4+ lymphocytes in B7KO and B7CT 

mice are very similar, as expected from their phenotype and responsiveness to activating 

signals.  However, slight but consistent variation in the expression of nearly 100 genes 

was detected at a greater than two-fold difference.  Further analysis of significance, 

normalized expression, and flag calls resulted in the identification of 79 genes 

differentially regulated in naïve CD4+ cells in the absence of Ctla-4 with a statistically 

significant fold-changer greater than 1.5-fold.  84% of the identified genes were 

downregulated in the absence of Ctla-4, expressed at an average of 39% (~2.6 fold 

change) of expression in B7KO samples.  Upregulated genes in Ctla-4 deficient samples 

were, on average, more slightly altered at 215% of expression in B7KO samples.  As 

expected, Ctla-4 was dramatically altered, with the second highest calculated fold change, 

flagged as present and absent in B7KO and B7CT samples respectively with a signal 

strength 25-fold greater than background on the B7KO chips in spite of the minimal 

expression known to exist in naïve T cells.  Only four genes were altered more than four 
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fold, including Mela, Ctla-4, Ccr9, and Sel1h.  However, 64% of genes downregulated 

more than two-fold in B7CT cells were consistently flagged as present to absent calls. 

  Most genes identified as differentially regulated have not been extensively 

studied in lymphocytes but have been at least partially characterized in other cell types, 

and several of them are known to regulate T lymphocyte activation.  Genes differentially 

regulated in the absence of Ctla-4 that are known to regulate T cell responses to antigen 

receptor ligation include slfn4, an uncharacterized member of the schlafen family of 

putative quiescence factors, recognized for their role in regulating lymphocyte 

development and activation(331-333); lag-3(CD223), a CD4 homologue known to inhibit 

primary T lymphocyte activation localizes to the c-smac within the immunological 

synapse(334) and negatively regulates T cell expansion following antigen 

stimulation(335), influences susceptibility to multiple sclerosis(336), and appears to be a 

Treg marker involved in active suppression of effector T cells(337); the antiapoptotic Src 

regulator, ptpn13/FAP-1, is a putative tumor suppressor known to regulate NFκB(338) 

and is negatively regulated by activated p53(339) and IL-2(340, 341) ; the proto-

oncogene and transcriptional activator Mybl1 is known to upregulate Bcl-2(342) and 

influence proliferation in leukemic cells(343); the proto-oncogene and cell-cycle 

regulator, rb1; the retinoblastoma binding protein, Rbap46, is a tumor suppressor, a 

member of the WD-repeat protein family, and component of histone modifying and 

remodeling complexes, but has no known function in lymphocytes(344); the tumor 

suppressor and growth inhibitor Sel1L(345) has not been characterized in lymphocytes 
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but is associated with autoimmune-diabetes(346); TGF-beta inducible protein BigH3 is a 

suspected growth inhibitor not characterized in lymphocytes.   

Genes altered more than 1.5-fold in the absence of Ctla-4 with p-values less than 0.05 are 

shown in Table 3.1.  Importantly, a non-biased search for putative regulatory sequences 

failed to identify over-represented sequences in the 1kb upstream regions of the identified 

genes when limited to elements 10bp or less in length.  The preponderance of genes 

identified as differentially regulated in the absence of Ctla-4 in the context of B7 

deficiency that have known functions relating to growth regulation, signal transduction in 

lymphocytes, or tumor suppression are altered in ways that would be expected to increase 

the threshold of activation and resistance to cell cycle entry. This may reflect a non-

specific, generalized down-regulation of genes in the absence of Ctla-4, consistent with 

the observed ratio of up- and down-regulated genes.  Alternatively, the maintenance of a 

naïve phenotype in Ctla-4-deficient lymphocytes may require, or result from, 

compensatory changes in basal expression of additional determinants of T cell activation 

thresholds.  However, the controversial role of Ctla-4 in thymocyte development(203, 

226, 347-349) and the paucity of data regarding the function of genes differentially 

expressed in B7.1-/-/B7.2-/-/Ctla-4-/- CD4+ lymphocytes requires additional 

characterization of their potential relationship to Ctla-4 function.   

The identification of genes differentially expressed in naïve Ctla-4 deficient cells 

will allow comparative analyses with expression profiles in primary Ctla-4 sufficient 

cells subsequent to Ctla-4 ligation.  The data identifies a small number (<80) of genes 

displaying statistically significant changes in expression in the absence of Ctla-4.  Genes 
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Table 3.1:  Genes differentially expressed in naïve B7.1-/-/B7.2-/-/Ctla-4-/- 

CD4+ lymphocytes as a result of Ctla-4 deficiency 
 

Category Common 
Name 

Fold 
Change 

Characterization 
 

Cell Cycle Sugt1 -1.64 SGT1, suppressor of G2 allele of SKP1 (S. cerevisiae) 
 Nbn -1.57 nibrin 
 Cdc6 1.59 cell division cycle 6 homolog (S. cerevisiae) 
   
Anti-apoptotic Thy28 1.54 thymocyte protein thy28 
   
Pro-apoptotic Ifi16 -1.81 interferon, gamma-inducible protein 16 
 Bad 1.60 ES cell Mus musculus cDNA clone 2410088E21, mRNA  
 Sgpp1 1.94 sphingosine-1-phosphate phosphatase 1 
   
Signaling Lancl1 -2.24 LanC (bacterial lantibiotic synthetase component C)-like 1 
 Usp18 -1.98 ubiquitin specific protease 18 
 Stat5b -1.92 signal transducer and activator of transcription 5B 
 Stard7 -1.76 START domain containing 7 
 Gna11 -1.73 Mus musculus guanine nucleotide-binding protein (Gna11)  
 Nr4a2 -1.70  
 Cops3 -1.69 COP9 (constitutive photomorphogenic) homolog, subunit 3  
 Rhoc -1.62 ras homolog gene family, member C 
 Dtx1 -1.55 deltex 1 homolog (Drosophila) 
 Ccr2 -1.55 chemokine (C-C) receptor 2 
 Il6st -1.54 interleukin 6 signal transducer 
 Cd3g -1.51 Mouse CD3-gamma (T3-gamma) gene, exon 7. 
 Pik3cd 1.54 phosphatidylinositol 3-kinase catalytic delta polypeptide 
 Fzd3 1.64 frizzled homolog 3 (Drosophila) 
 Itm2a -1.69 integral membrane protein 2A 
 Ctla4 -17.67 cytotoxic T-lymphocyte-associated protein 4 
   
Transcription Trp63 -1.88 transformation related protein 63 
 Rnf20 -1.76 ring finger protein 20 
 AW547477 -1.60 thymopoietin 
 Nr3c1 -1.54 nuclear receptor subfamily 3, group C, member 1 
 Tceb1 1.67 transcription elongation factor B (SIII), polypeptide 1 
   
Translation Ebna1bp2 -2.86 EBNA1 binding protein 2 
 Eif5b -2.24 vs58d02.r1 Stratagene mouse skin (#937313 
 Styx -2.19  
 Ncbp2 -1.80 nuclear cap binding protein subunit 2 
 Eif1a -1.69 eukaryotic translation initiation factor 1A 
 Pa2g4 1.76 proliferation-associated 2G4 
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Category Common Name Fold 

Change 
Characterization 

 
Immune Ifit1 -2.05 interferon-induced w/ tetratricopeptide repeats 1 
 G1p2 -1.78 interferon, alpha-inducible protein 
 Ctsb -1.52  
 Kcnq1 1.51 3' similar to U70068 Mus musculus (KvLQT1)  
   
Cytoskeleton   Cd9 -1.91 CD9 antigen 
And Adhesion Tuba1 -1.71 tubulin, alpha 1 
 Slmap -1.54 sarcolemma associated protein 
 Plec1 -1.52 plectin 1 
   
Metabolism Idh1 -1.86 isocitrate dehydrogenase 1 (NADP+), soluble 
 Atp11a -1.58 ATPase, class VI, type 11A 
 Arsa -1.57 arylsulfatase A 
 Dhrs1 -1.57 dehydrogenase/reductase member 1 
 Mrpl12 -1.55 mitochondrial ribosomal protein L12 
 Glud -1.54 glutamate dehydrogenase 
   
Miscellaneous Slc29a1 -2.98 solute carrier family 2, member 1 
 Mrpl44 -2.35 mitochondrial ribosomal protein L44 
 Tnfaip1 -2.11 Mus musculus Edp1 protein (Edp1) gene,  
 1110004L07Rik -1.94 exportin, tRNA  
 G22p1 -1.84 thyroid autoantigen 
 B230312B02Rik -1.74 RIKEN cDNA B230312B02 gene 
 Rcl1 -1.72 RNA terminal phosphate cyclase-like 1 
 Ensa -1.69 endosulfine alpha 
   
Unknown Mela -52.36 melanoma antigen 
 Wt1 1.88 EST: 3' similar to M55512 Mouse Wilms' tumor  
 Gtrgeo22 -1.79 gene trap ROSA b-geo 22 
 Rnf138 -1.67 ring finger protein 138 

 Pabp4i1 -1.66
Similar to Poly(A) binding protein, cytoplasmic 4, 
isoform 1 (LOC216817) 

 Rnf149 -1.59 ring finger protein 149 
 Glo1 -1.58 CDNA clone IMAGE:4037400 
 DXImx46e -1.53 vw47f05.x1 Soares_mammary_gland_ 
 1500001L20Rik 2.17 WD repeat domain 40A 
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Table 3.1:  Genes whose expression is significantly altered in the absence of Ctla-4.  

Peripheral CD4+ lymphocytes from were purified by FACS from B7.1-/-/B7.2-/- and B7.1-

/-/B7.2-/-/Ctla-4-/- mice.  RNA was isolated from purified population and analyzed by 

Affymetrix MgU74Av2 microarray following single-step cRNA amplification and 

labeling starting with 5-8ug of total RNA.  Individual samples were obtained from 

starting populations representing pooled lymphocytes from 2-3 mice.  Biological 

replicates were isolated and processed at separate times.  Microarray sample processing 

and scanning was performed as described utilizing the Affymetrix MAS5.0 software and 

yielded “present” or “absent” flag calls based on signal intensity relative to background.  

Further analysis using Genespring allowed for identification of genes differentially 

expressed.  Briefly, data was normalized by setting values below 0.01 to 0.01 and 

dividing each measurement by the 50.0th percentile of all measurements in that sample. 

Average measurements in each condition were compared and genes differentially 

expressed at least 1.5 fold are listed in table 3.1.  Genes without statistically different 

expression when compared using the cross-gene error model were excluded.  Genes 

without statistically significant expression in at least one condition were excluded.  The 

majority of genes (84%) with detectable expression in both conditions were 

downregulated in the absence of Ctla-4.   
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involved in signal transduction are the most commonly affected, and several identified 

genes have known roles in regulating T cell activation.  The majority of genes identified, 

however, are relatively uncharacterized in lymphocytes.  The finding that a majority 

(>80%) of the genes identified were down-regulated may result from one of several 

mechanisms.  It is possible that experimental error introduced bias and suppressed 

expression levels as a whole.  This is unlikely given the standardization procedures 

involved in setting detector thresholds, the use of global expression patterns to detect 

outlying samples, and normalization steps that provide statistical data of specific genes 

relative to the whole transcriptome.  Biologically, several other mechanisms may explain 

the preponderance of down-regulated genes.  While B7 ligands are not required for 

thymocyte development, interactions between B7:CD28, and perhaps B7:Ctla-4, do 

influence aspects of thymic selection processes and are required for the development of 

specific subsets of peripheral T cells.  Thus, the absence of B7 may alter both central and 

peripheral tolerance mechanisms.  However, the decreased threshold of activation that 

accompanies Ctla-4 deficiency in B7-/- mice strongly suggests that Ctla-4 plays a critical 

role in regulating naïve T cell responsiveness in a manner analogous to that seen in Ctla-4 

wild-type mice.  Our data suggest that minor alterations in basal transcription may result 

from Ctla-4 absence allowing further investigation of the role these genes play in T cell 

activation. 
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Genomic expression patterns in extrinsically regulated Ctla-4 deficient T cells 

 Ctla-4 deficiency results in intrinsic defects in lymphocyte activation and self-

tolerance that are manifested in the CD28 costimulation dependent lymphoproliferative 

disease in Ctla-4 knockout mice(268).  Moreover, despite contradicting reports(203, 347, 

349), previous work, supported by results generated in our lab, indicates that Ctla-4-

deficient thymocyte development is normal(226), and that disease pathogenesis originates 

with uncontrolled CD4+ lymphocyte activation in the periphery as a consequence of TCR 

interaction with self-p/MHC in the context of CD28 costimulation.  Overt disease 

resulting from the lack of Ctla-4 is avoided in the context of B7 and/or CD28 deficiency, 

depletion of CD4+ peripheral lymphocytes(224, 268), or inactivating mutations of TCR 

signaling or MHC presentation pathways(224, 227, 323).  Similarly, limitation of the 

TCR repertoire in TCR-transgenic Ctla-4-/- mice prevents or delays autoimmune 

disease(227).  In conjunction with in vitro stimulation assays showing a decreased 

threshold of activation in Ctla-4-/- CD4+ lymphocytes, and biochemical evidence of 

alterations in proximal TCR signaling pathways in the absence of Ctla-4, these 

observations provide compelling evidence of an intrinsic regulatory defect.  However, 

published results have also indicated that defective regulatory mechanisms intrinsic to 

Ctla-4 deficient lymphocytes can be regulated extrinsically in the presence of Ctla-4 WT 

cells(261, 262).   

When transferred to Rag-/- recipients, T cell depleted Ctla-4-/- bone marrow 

reconstitutes the lymphoproliferation and multiorgan infiltration seen in Ctla-4-/- mice at 

4-8 weeks after transplantation.  However, when co-transferred with Ctla-4 WT bone 
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marrow, the recipient displays a stable, balanced chimerism of Ctla-4 WT and KO 

peripheral lymphocytes.  Bone marrow chimerae remain healthy, and Ctla-4-/- peripheral 

lymphocytes display none of the autoimmune reactivity characteristic of isolated Ctla-4 

deficiency.  Thus, Ctla-4 maintenance of peripheral tolerance is not limited to the down-

regulation of specific T cell responses in a T cell-autonomous fashion.  Work in our lab 

has demonstrated that depletion of WT lymphocytes using antibody to Ly5 or Thy1 

congenic markers in the chimera initiates the autoimmune phenotype seen in Ctla-4-/- 

mice, indicating a persistent and active regulation of the Ctla-4-/- cells by Ctla-4 sufficient 

cells is necessary for the maintenance of balanced chimerism (Data not shown).  

Moreover, the rapidity with which lymphoproliferation and pathology is observed 

following depletion of wild-type T cells suggests that altered thymic development in 

mixed chimerae does not underlie the tolerant phenotype of Ctla-4-/- cells in the 

periphery.   

To date, the phenotype of wild-type cells that mediate regulation of Ctla-4-

deficient T cells in mixed bone marrow chimerae has not been established.   Either CD4 

or CD8 WT lymphocytes provide sufficient regulation of Ctla-4-/- cells in the periphery.  

Moreover, the Ctla-4 deficient lymphocyte population maintains its ability to respond to 

antigenic stimuli, and becomes activated, expands, and contracts indistinguishably from 

WT cells in response to lymphocytic choriomeningitis virus, Leishmania major and 

mouse mammary tumor virus, which cause acute, chronic and persistent infections, 

respectively(262). Thus, regulation of Ctla-4-deficient cells restores normal immune 

responsiveness and does not require an antigen-independent, generalized suppression of 
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their function.  However, the mechanism by which Ctla-4+ T cells regulate their Ctla-4-/- 

counterparts remains unknown.  Again, using microarray analysis, we examined the 

global expression profiles of CD4+ Ctla-4-/- and CD4+Ctla-4+ cells from stably 

reconstituted bone marrow chimera. 

 

Generation of mixed bone marrow chimera and microarray sample preparation: 

 Minimally irradiated (300 rads) Rag-/- mice were injected with 5x106 T cell 

depleted bone marrow cells at a 1:1 ratio of Ctla-4+: Ctla-4-/- or Ctla-4+:Ctla-4+.  Donor 

cells were distinguishable by the expression of Ly5 or Thy1 congenic markers.  Thymic 

emigration, indicated by the presence of peripheral lymphocytes, was first detected at 3-4 

weeks after transfer.  In most cases, stable reconstitution is achieved by 12 weeks with 

nearly a 1:1 ratio of donor cells in the periphery.  Recipient mice were sacrificed at 12-16 

weeks, CD4+CD44 Low lymphocytes were isolated by FACS, and RNA was prepared 

using either Trizol or Ultraspec reagents.  CD44Low isolated cells were CD69- and CD25- 

by flow cytometry.  In one experiment, RNA samples from numerous mice were pooled 

to allow 5ug of total RNA to be labeled in a single-step amplification, and the resuling 

cRNA was analyzed on one chip per condition.  In two subsequent experiments, 1-2 mice 

were pooled to provide sufficient RNA for two-step amplification.  Affymetrix 

MgU74Av2 Genechips were utilized, representing 12,488 genes.  Identical labeling, 

sample preparation, and Genechip loading were used for the two-step amplification 

analyses, and samples were analyzed as replicates using the Genespring software 

package.  Samples prepared from 5ug of pooled RNA were analyzed separately and the 
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results of the two experiments cross-referenced for validity, taking into account 

differences in amplification magnitude and spectrum that result from the two protocols. 

 

Ctla-4-/-CD4+ lymphocytes in mixed bone marrow chimera display a unique 

transcriptional profile: 

  Because single step amplification of total RNA has shown more consistent and 

robust differential expression profiles in past experiments, initial analyses of global 

expression in Ctla-4-/-:Ctla-4+ bone marrow chimera was performed using pooled RNA 

from several mice analyzed on single Genechips.  6449 genes had detectable expression 

in at least one of the two samples, representing 52% of the included genome.  Overall, the 

expression profiles between Ctla-4-/- and WT samples correlated at 93 and 96 percent 

with and without weighting for signal intensity respectively.  In contrast, samples 

processed via two-step amplification correlated with single-step amplified products at 

only 46-52% when weighted for expression intensity, and 77-81% when unweighted, 

supporting the use of separate analyses.   

 Among genes with measurable expression in both 5ug samples labeled in a single-

step protocol, 317 genes, 75 genes, 33, and 21 genes evidenced a minimum of 2-, 3-, 5-, 

or 10-fold differences in expression respectively.  While there were almost identical 

numbers of genes up- and down-regulated more than two-fold in Ctla-4 deficient CD4+ 

lymphocytes (49% and 51% respectively), there was positive and consistent correlation 

between the magnitude of the differential expression and the likelihood of being 
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upregulated in Ctla-4-/- cells (60% and 71% of genes altered more than 5- and 10-fold 

respectively were upregulated in Ctla-4-/- cells).  A summary of genes regulated more 

than 5-fold  in extrinsically regulated Ctla-4-deficient cell, their expression profiles, and 

known functional ontology are listed in Table 3.2. 

 While 1117 genes were identified as having mixed calls in the two samples (P to 

A changes, or vice versa), only 225 of those genes had measurable signals more than 3-

fold over background and constitute reliable measurements (Figure 3.2).  However, a list 

of genes without detectable expression in one genotype can be ranked by the expression 

of the gene in the alternate sample (Table 3.3).  Together with genes identified as reliably 

altered in the absence of Ctla-4, these genes constitute a steady-state profile that can be 

reliably cross-referenced with replicative experiments using the less-sensitive two-step 

amplification.  However, 280 genes identified in the high-stringency screen of single-step 

amplified samples did not have consistently detectable expression in either Ctla-4-/- or 

WT samples that underwent double-amplification.  Among genes identified in our initial 

screen with sufficient expression in our second experiment, 35 of the 102 downregulated 

genes and 56 of 160 upregulated genes showed expression patterns confirming our initial 

screens.  In summary, using pooled samples in a high-stringency labeling protocol 

identified 542 genes differentially regulated in the absence of Ctla-4 as detected in naïve 

peripheral CD4+ lymphocytes from mixed bone marrow stably reconstituted with a 1:1 

ratio Ctla-4-/-:Ctla-4+ T cell depleted bone marrow cells.  282 identified genes were 

screened against the results of subsequent experiments using a lower sensitivity protocol, 

confirming the expression pattern in 91 genes, and leaving 280 genes unvalidated. 
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Table 3.2: Genes differentially regulated in naïve Ctla-4-deficient CD4+ T cells in 
mixed bone marrow chimerae 
 

Fold 
Change 

Common 
Name 

Description 
& Characterization 

 
Up-regulated Genes 

479.5 0610008N23Rik RIKEN cDNA 0610008N23 gene 
97.5 Pou2f1 Transcription Factor 
61.2 Hrb2 EST 
52.3 ORF6 EST 
27.6 Pigt Ribosomal Subunit 
26.7 Itsn intersectin (SH3 domain protein 1A) 
26.0 102130_f_at EST 
24.9 Hnrph3 EST; Diiferentially expressed in normal and neoplastic cells 
21.9 Mafk Transcription Factor 
17.3 2010200I23Rik cytochrome c oxidase, subunit VIIa 2 
16.4 161085_r_at EST 
14.1 Dnajc4 DnaJ (Hsp40) homolog, subfamily C, member 4 
12.6 Mfn1 EST 
11.1 Ttc1 tetratricopeptide repeat domain 1 
11.0 D3Ertd789e tetratricopeptide repeat domain 14 

8.6 Eif2s3y eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked 
8.3 Elovl1 EST 
7.8 Samhd1 EST 
6.6 160934_s_at Murine (DBA/2) mRNA fragment for gag related peptide. 
5.4 Akp5 Mouse embryonic alkaline phosphatase gene, complete cds. 

   
Down-regulated 

-189.0 Ercc1 excision repair cross-complementing rodent repair deficiency, complementation group 1 
-71.9 Il4 Intereukin4 
-66.2 5430432M24Rik EST 
-64.5 Prss11 protease, serine, 11 (Igf binding) 
-13.7 Limk1 LIM-domain containing, protein kinase 
-12.0 Slc30a4 zinc transporter; Mus musculus zinc transporter (ZnT4) gene, fragment 4, and partial cds. 

-7.2 4930517K11Rik ribosomal subunit 
-7.0 Pard6a cell cycle; cytokinesis; par-6 (partitioning defective 6,) homolog alpha (C. elegans) 
-6.0 Spock2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan 2 
-6.0 Kcnj9 EST 
-5.8 Iga secreted form; Mouse Ig germline D-J-C region alpha gene and secreted tail. 
-5.5 Homer3 EST 
-5.2 Gpr132 G protein-coupled receptor 132 
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Table 3.2:  Genes with detectable expression in all samples regulated more than 5-fold in 

Ctla-4-deficient naïve CD4+ T cells relative to their wild-type counterparts in mixed bone 

marrow chimerae.  CD4+ Ctla-4 deficient and wild-type populations were isolated from 

stably reconstituted mixed bone marrow chimerae and analyzed by Affymetrix 

MgU72Av2 microarray.  Samples analyzed represent pooled RNA from populations 

isolated from >5 mice per condition.  Only one microarray per condition was analyzed 

utilizing a single-step amplification protocol.  The cross gene error model was applied to 

allow for statistical comparison in the absence of biological replicates.  Genes in Table 

3.2 were detectable in Ctla-4-deficient and wild-type CD4+ lymphocyte populations as 

determined by MAS5.0 software analysis of the microarray data.  Further analysis using 

Genespring allowed for identification of genes differentially expressed.  Briefly, data was 

normalized by setting values below 0.01 to 0.01 and dividing each measurement by the 

50.0th percentile of all measurements in that sample. 33 unique genes meeting these 

criteria displayed 5-fold or greater changes in expression in the absence of Ctla-4.  

Differential expression was significant at p<0.05 as determined by the cross-gene error 

model.  Red highlighted genes were called present in all samples but possessed extremely 

low signal strength in at least one sample that required transformation to a minimal 

baseline value (0.01), potentially skewing calculated fold-change values. 
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Table 3.3: Genes with mixed calls that possess the highest signal 
intensity levels in samples with detectable expression 

Calculated 
Fold Change 

Common Name Description and Characterization 

Upregulated Genes 

638.5 C330006A16Rik ES cells cDNA, RIKEN full-length enriched library, clone:C330006A16 product:unknown 
413.5 Nfatc2 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2; regulation of transcription 
214.6 Dag1 dystroglycan 1; morphogenesis of an epithelial sheet 
178.9 Prkcz AV367375 RIKEN full-length enriched, similaro  to protein kinase C zeta mRNA 
88.5 Cbl Casitas B-lineage lymphoma 

7.3 Rn18s Mouse gene for 18S rRNA. 
5.2 Eif1a eukaryotic translation initiation factor 1A 
4.6 Hccs holocytochrome c synthetase 
4.1 Gpam  glycerol-3-phosphate acyltransferase gene, nuclear gene encoding mitochondrial protein 
3.8 Cdon cell adhesion molecule-related/down-regulated by oncogenes 
3.7 Kcna3 potassium voltage-gated channel, shaker-related subfamily, member 3 
3.6 160799_at UI-M-BH1-ann-g-07-0-UI.s1 NIH_BMAP_M_S2 Mus musculus cDNA clone 
3.1 2510010F15Rik RIKEN cDNA 2510010F15 gene 

 
 

Down-regulated Genes 

-204.9 D1Bwg1363e DNA segment, Chr 1, Brigham & Women's Genetics 1363 expressed 
-164.5 Pcbp4 UI-M-AQ1-aee-h-05-0-UI.s1 NIH_BMAP_MHI_N Mus musculus cDNA clone. 
-61.0 Prss15 protease, serine, 15 
-15.4 Arl4 ARF-like 4 protein; intracellular protein transport; small GTPase mediated signal transduction 
-11.9 102155_f_at EST 
-11.2 Ctsh cathepsin H; proteolysis and peptidolysis 
-10.4 Snai2 snail homolog 2;development; regulation of survival gene product activity; regulation of transcription 
-9.3 Kdap napsin A aspartic peptidase 
-4.5 Igl-V1 variable and contstant regions; V-J; Mus musculus immunoglobulin lambda-1 light chain precursor 
-3.8 2410015N17Rik RIKEN cDNA 2410015N17 gene 
-3.8 Bcl2l2 Bcl2-like 2; apoptosis; regulation of apoptosis 
-3.6 Tyk2 member of Jak (Janus) family; contains Jak homology regions 7 to 4; non-receptor tyrosine kinase. 
-3.6 Ptprv protein tyrosine phosphatase, receptor type, V 
-3.5 Dnalc4 dynein, axonemal, light chain 4 
-3.5 Cct2 Mus musculus Cctb gene for chaperonin containing TCP-1 beta subunit, complete cds. 
-3.4 Il1r2 interleukin 1 receptor, type II 
-3.1 Mela melanoma antigen 
-3.0 Itgb1bp1 integrin beta 1 binding protein 1 
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Table 3.3: Differentially expressed genes flagged as absent in one condition (Ctla-4-

deficient or wild-type) were ranked by their level of expression in the remaining 

genotypic sample as determined by normalized signal intensity.  31 genes with mixed 

calls (“present” to “absent” changes or vice versa) with the highest normalized signal 

intensities in the sample with detectable expression are shown.  Fold change values 

reflect approximate fold-increases in differential expression based on a comparison of 

signal strength value in the sample with detectable expression to background signal 

strength detected in the sample flagged “absent” by MAS5.0 software analysis of signal 

to noise ratios. Fold change numbers are demonstrative only and can not be construed as 

true ratios of expression due to the high signal:noise ratio in one of the samples.  Genes 

with known effects in lymphocytes are highlighted red.   
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Figure 3.2: Scatter plot of gene expression intensity in mixed bone 
marrow chimerae 
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Figure 3.2: Scatter plot of gene expression level in Ctla-4-deficient and-wild-type naïve 

CD4+ T cells from mixed bone marrow chimerae.  Minimally irradiated Rag-/- mice were 

transfused with 5x106 bone marrow cells consisting of a 1:1 mixture of T cell-depleted 

wild-type and Ctla-4-deficient donor cells.  Recipient mice successfully reconstituted 

their peripheral lymphocyte compartment with an approximate 1:1 representation of 

donor cells.  Recipient mice remained healthy and display no symptoms of 

lymphoproliferative disease or autoimmunity.  Recipient mice were sacrificed 12 weeks 

after bone-marrow transfer and donor CD4+CD44Low cells purified by FACS isolation 

using Ly5.1 or Thy1.1 congenic markers to discriminate Ctla-4-deficient and wild-type 

populations.   CD4+CD44Low populations represented 85-95% of peripheral CD4+ T cells 

and were also CD69-, CD62LHigh, and CD25-.  RNA from CD4+CD44Low populations of 

wild-type and Ctla-4-deficient donor cells was isolated and analyzed by oligonucleotide 

microarray using Affymetrix MgU74Av2 GeneChips.  Chip scanning, intensity 

normalization, and determination of “present” and “absent” calls were performed using 

Affymetrix MAS5.0 software.  Further data analsysis was performed using Genespring 

software and data normalization was achieved by setting values below 0.01 were to 0.01 , 

and dividing each measurement by the 50.0th percentile of all measurements in that 

sample.  The cross gene error model was applied to allow statistical comparison in the 

absence of biological replicates amplified by similar single-step labeling protocols.  Each 

dot in the scatter plot represents one gene where X-axis and Y-axis values correspond to 

the average level of expression in wild-type and Ctla-4-deficient CD4+ CD44 Low cell 

populations respectively according to normalized data values.  Gray colored genes have 



 90

levels of expression not statistically above background signal intensity in any sample.  

Red genes are present in all samples but are not changed more than two-fold.  Yellow 

genes (317) are present in both samples with measurable fold-changes greater than two 

fold.  Blue genes (225) are expressed in one sample at 3-times the control signal 

intensity, but are absent in the alternate genotype.  The central diagonal line indicates 

equivalence of expression.  The most proximal and distal pairs of parallel lines around 

the line of equivalence indicate 2-fold and 5-fold changes in expression respectively.  
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A comparison of genes differentially regulated in B7.1-/-/B7.2-/-/Ctla-4-/- CD4+ 

lymphocytes versus B7.1-/-/B7.2-/- CD4+ lymphocytes against genes differentially 

regulated in Ctla-4-/- cells in Ctla-4-/-:Ctla-4+ bone marrow chimerae could potentially 

reveal a mechanism by which Ctla-4-/- cells are regulated in the presence of Ctla-4 WT 

cells provided that alterations in gene regulation result from the interaction.  In total, only 

9 genes identified as differentially expressed in B7.1-/-/B7.2-/-/Ctla-4-/- versus B7.1-/-/B7.2-

/-  CD4+ cells ex vivo showed similar expression patterns in Ctla-4-/- versus Ctla-4+ CD4+ 

cells from stably reconstituted bone marrow chimera relative to Ctla-4 expression.  

Among these, only the decoy receptor Il1R2 and Ctla-4 have known regulatory function 

in lymphocytes.  Similarly, only 11 genes were inversely regulated in the bone marrow 

chimera relative to B7.1-/-/B7.2-/-/Ctla-4-/-:B7.1-/-/B7.2-/-  comparisons.  Of those, only 

Xlra3 and CD2ap are significant as determined by the cross-gene error model (See 

Materials and Methods). 

 

Discussion 

 Ctla-4 maintains peripheral T cell tolerance through cell-intrinsic and -extrinsic 

mechanisms that are only partially understood.  As previously discussed, intrinsic 

regulation of T cell responses by Ctla-4 involves potentially diverse mechanism that are 

likely to include ligand competition, mechanical disruption of activating interactions 

within the immunological synapse, and regulation of membrane proximal signaling 

events.  Mechanisms of cell-extrinsic regulation of T cell responses are not as well 
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studied, but may involve either cell contact-dependent or –independent interactions with 

Ctla-4 expressing cells. 

 Regulatory T cells (Tregs) are attractive candidates for mediators of non-

autonomous immune regulation by Ctla-4 given their well-established role in regulating 

lymphocyte responses to foreign and self-antigens both in vitro and in vivo(350).  

Mechanisms of Treg function are not well understood, but may involve regulation of 

APC function(304-306), secretion of regulatory cytokines(351), or direct suppression of 

effector T cells via cell-cell contact(352).  Ctla-4 is constitutively expressed on regulatory 

T cells and was initially considered to be essential for Treg function(353, 354) or 

development(301, 355).  However, published results(356) and work in our lab indicate 

that naturally occurring CD4+CD25+ peripheral lymphocytes in Ctla-4-deficient mice 

evidence potent immunoregulatory phenotypes indistinguishable from wild-type 

regulatory T cells in vitro.  In conjunction with the observation that CD8+ Ctla-4 wild-

type cells are capable of extrinsic regulation of Ctla-4 deficient lymphocytes in mixed 

bone marrow chimerae, the data suggest that non-autonomous regulation of Ctla-4 

deficiency can not be attributed solely to CD4+CD25+ suppressor T cell function.  

However, multiple lines of evidence suggest that regulatory T cells may utilize multiple 

mechanism to suppress effector T cells, some of which may require Ctla-4 

expression(301, 351, 356, 357). 

 A role for B7-mediated signaling in immunological tolerance was first recognized 

in dendritic cells.  Ctla-4 acts as  ligand for B7 receptor molecules that transduce 

intracellular signals resulting in upregulation of inoleamine-oxygenase, increased 
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tryptophan catabolism, and suppression of lymphocyte responses(305).  In contrast, 

simultaneous ligation of B7.1 and B7.2 on dendritic cells by soluble CD28 enhances T 

cell-mediated immunity by upregulating IL-6 and Ifn-gamma production(307), 

suggesting that B7 signaling may control functionally distinct effector responses as a 

result of differential ligand engagement.  Engagement of B7 expressed on effector T cells 

by regulatory T cells is also capable of inhibitory signaling, and may have a central role 

in autoimmune disease(303).  Together, these data suggest that Ctla-4 engagement of B7 

may provide a generalized mechanism of immunosuppression via bidirectional signaling.  

In the context of Ctla-4-/-:Ctla-4+ mixed bone marrow chimerae, inhibitory signaling 

through B7 on effector cells may explain numerous, previously unexplained, findings.  

For example, both CD4+ and CD8+ cells can express Ctla-4, potentially explaining the 

apparent sufficiency of either population in the regulation of Ctla-4-deficient cells.  

While B7-mediated inhibition of effector cells may operate independently of gene 

transcription, the regulation of tryptophan catabolism in dendritic cells indicates that, in 

some systems, B7 ligation regulates gene expression.  Genes identified in our system can 

be verified in vitro and in vivo to determine their regulation subsequent to B7 ligation on 

T cells.  Likewise, the importance of B7 signaling in the regulation of Ctla-4 deficient 

cells can be ascertained by transplantation of mixed Ctla-4+ and B7.1-/-/B7.2-/-/Ctla-4-/- 

bone marrow.  These experiments are already underway in our lab, and will inform our 

understanding of the gene expression patterns identified in extrinsically regulated Ctla-4-/- 

CD4+ T cells. 
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 Cytokines are important immunomodulatory signaling molecules involved in the 

regulation of autoimmune disease whose function is determined by the expression pattern 

and molecular associations of their respective receptors.  The role of cytokines, 

particularly, Il-10 and TGF-beta, in Ctla-4-mediated regulation of T cell responses has 

been controversial(288, 358), and a role for cytokine-mediated immunosuppression in 

extrinsic regulation of Ctla-4-/- T cells has not been elucidated.  Ctla-4-/- T cells actively 

regulated by wild-type cells maintain tolerance to self-antigen while maintaining normal 

antigen-specific responses to pathogens(262).  Consequently, indiscriminate 

immunosuppression by cytokines is an unlikely mechanism by which Ctla-4-/- T cells 

could be regulated.  Moreover, cytokine signaling regulates gene transcription via 

characterized pathways and activation of transcription factors with known target 

specificities.  Over-represented regulatory sequences consistent with these pathways were 

not detectable in genes differentially regulated in Ctla-4-/- CD4+ cells suggesting that 

suppression of autoimmune disease development in mixed bone marrow chimera does 

not result from canonical signaling pathways operating downstream of cytokine 

receptors. 

 Vesicular transport of active protein constituents between cells of the immune 

system has been described(359-362).  The transfer of Ctla-4 between lymphocytes has 

not been demonstrated, and is being investigated in our lab.  While Ctla-4 has not been 

detected on Ctla-4-/- cells in bone marrow chimerae, uptake of exogenous Ctla-4 could 

restore tolerance to self-antigen without detectable surface expression in a manner 

consistent with the native function of Ctla-4.  It is likely that such a mechanism would 
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not result in appreciable changes in gene expression as Ctla-4 functionsto suppress T cell 

activation, in part, by inhibiting membrane proximal signaling events that do not require 

regulation of gene transcription.  Despite growing evidence that intercellular protein 

exchange occurs in the immune system, there is currently no evidence to support models 

of immunoregulation involving intercellular vesicular transport of native Ctla-4 protein.  

 We have characterized the global expression pattern of Ctla-4-deficient CD4+ 

lymphocytes extrinsically regulated by wild-type T cells in order to elucidate the 

mechanism involved.  Numer genes involved in intracellular signaling, transcriptional 

regulation, or cell-cycle control are differentially regulated in Ctla-4-deficient CD4+ T 

cells.  Table 3.4 summarizes genes with known functions related to these processes that 

are differentially expressed between Ctla-4-deficient or wild-type cells in mixed bone 

marrow chimerae displaying either a statistically significant two-fold change in 

expression or detectable expression in only one condition of either Ctla-4-deficiency or 

wild-type Ctla-4 exprssion.  Notably, NFATc is upregulated to a greater relative degree 

than any other gene.  NFAT is centrally involved in the regulation of genes mediating T 

cell survival, activation, cytokine production, and anergy induction.  Thus, NFAT may be 

centrally involved in the regulation of Ctla-4-deficient responses by wild-type cells.  The 

majority of differentially regulated genes identified have not been characterized in T 

cells.  However, their role in T cell activation can be examined within the context of a 

kinetic study of T cell activation.  
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Table 3.4:  A selected list of genes involved in T cell immune responses 
that are differentially regulated in Ctla-4  KO/WT mixed bone marrow 
chimerae. 
 

Fold 
Change 

Common 
Name 

Description and Characterization 

413.5 Nfatc2 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 
152.8 Xlr3a X-linked lymphocyte-regulated 3b 
97.5 Pou2f1 POU domain, class 2, transcription factor 1 
88.5 Cbl Casitas B-lineage lymphoma 
62.8 Zfp326 zinc finger protein 326 
29.4 Ncoa6 nuclear receptor coactivator 6 
26.1 Rpo2tc1 RNA polymerase II transcriptional coactivator 
24.8 MVA5T T cell receptor alpha chain AV20S1 precursor, mRNA, partial cds. 
22.1 Ptk2 PTK2 protein tyrosine kinase 2 
21.9 Mafk v-maf musculoaponeurotic fibrosarcoma oncogene family, protein K  
19.5 Sox6 AV246999 RIKEN full-length enriched, 0 day neonate head Mus musculus cDNA clone  
17.0 Meox1 mesenchyme homeobox 1 
15.8 Cdc7 gene for muCdc7 
12.2 Rock2 Rho-associated coiled-coil forming kinase 2 
9.9 Hoxc5 homeobox protein (Hoxc-5) gene 
9.3 Ccr1 chemokine (C-C motif) receptor 1 
7.0 Zfx M.musculus Zfa gene. 
5.3 Il9 P40 T-cell and mast cell growth factor precursor;  
4.7 Ptpra protein tyrosine phosphatase, receptor type, A 
4.3 Cnot7 CCR4-NOT transcription complex, subunit 7 
4.1 Prrx1 paired related homeobox 1 
3.9 Tmpo thymopoietin 
3.3 Trp53bp1 transformation related protein 53 binding protein 1 
3.1 Eomes eomesodermin homolog  
2.8 Tbx6 T-box 6 
2.8 Btrc beta-transducin repeat containing protein 
2.6 Pnn pinin 
2.6 Il11ra1 interleukin 11 receptor, alpha chain 2 
2.5 5730497N03Rik trans-acting transcription factor 4 
2.4 Zfp148 zinc finger protein 148 
2.4 Zfp95 zinc finger protein 95 
2.4 Itpr1 inositol 1,4,5-triphosphate receptor 1 
2.3 Plk2 polo-like kinase 2 (Drosophila) 
2.2 Nfyb nuclear transcription factor-Y beta 
2.2 Cdk4 cyclin-dependent kinase 4 
2.2 Pou6f1 POU domain, class 6, transcription factor 1 
2.2 Zfp68 zinc finger protein 68 
2.1 Tec cytoplasmic tyrosine kinase, Dscr28C related (Drosophila) 
2.1 Sox10 SRY-box containing gene 10 
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Fold 

Change 
Common 

Name 
Description and Characterization 

-112.6 Figla factor in the germline alpha 
-82.0 Gadd45b growth arrest and DNA-damage-inducible 45 beta 
-71.9 Il4 interleukin 4 
-70.9 Fem1a Mus musculus sex-determination protein homolog Fem1a gene, complete cds. 
-64.9 Csf1r colony stimulating factor 1 receptor 
-45.5 Ccnb1 cyclin B1 
-32.1 Rgnef Rho-guanine nucleotide exchange factor 
-26.1 Hck hemopoietic cell kinase 
-12.2 Gna12 guanine nucleotide binding protein, alpha 12 
-10.4 Snai2 snail homolog 2 (Drosophila) 
-9.0 Creg cellular repressor of E1A-stimulated genes 
-6.5 Snx5 sorting nexin 5 
-5.2 Gpr132 G protein-coupled receptor 132 
-4.3 Ctla4 cytotoxic T-lymphocyte-associated protein 4 
-4.2 Cd44 CD44 antigen 
-3.6 Uhrf1 ubiquitin-like, containing PHD and RING finger domains, 1 
-3.6 Tyk2 member of Jak (Janus) family; Mus musculus non-receptor tyrosine kinase (Tyk2) gene. 
-3.6 Ptprv protein tyrosine phosphatase, receptor type, V 
-3.5 Ptprk protein tyrosine phosphatase, receptor type, K 
-3.4 Il1r2 interleukin 1 receptor, type II 
-3.3 Nek2 NIMA (never in mitosis gene a)-related expressed kinase 2 
-2.9 Cd79a CD79A antigen (immunoglobulin-associated alpha) 
-2.7 Ccr6 Mus musculus CCR6 gene. 
-2.6 Tnfsf5 tumor necrosis factor (ligand) superfamily, member 5 
-2.6 Tnfrsf4 tumor necrosis factor receptor superfamily, member 4 
-2.6 Nfyc nuclear transcription factor-Y gamma 
-2.6 Cd79b CD79B antigen 
-2.6 Itga4 integrin alpha 4 
-2.5 Bcl3 B-cell leukemia/lymphoma 3 
-2.5 Batf basic leucine zipper transcription factor, ATF-like 
-2.5 Ly6d lymphocyte antigen 6 complex, locus D 
-2.4 Il2rb interleukin 2 receptor, beta chain 
-2.4 Pglyrp1 peptidoglycan recognition protein 1 
-2.4 Rras Harvey rat sarcoma oncogene, subgroup R 
-2.4 Maf avian musculoaponeurotic fibrosarcoma (v-maf) AS42 oncogene homolog 
-2.4 Bcl2l1 Bcl2-like 1 
-2.3 Gadd45a Mus musculus GADD45 protein (gadd45) gene, complete cds. 
-2.3 Maz MYC-associated zinc finger protein (purine-binding transcription factor) 
-2.2 Cd19 Mus musculus cell surface protein CD19 gene, complete cds. 
-2.1 Smarcb1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1 
-2.1 Blr1 Burkitt lymphoma receptor 1 
-2.0 Inpp5d inositol polyphosphate-5-phosphatase D 
-2.0 Itgal integrin alpha L 
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Table 3.4:  Genes differentially expressed in Ctla-4-deficient cells in mixed bone marrow 

chimerae.  Minimally irradiated Rag-/- mice were transfused with 5x106 bone marrow 

cells consisting of a 1:1 mixture of T cell-depleted wild-type and Ctla-4-deficient donor 

cells.  Recipient mice successfully reconstituted their peripheral lymphocyte 

compartment with an approximate 1:1 representation of donor cells.  Recipient mice 

remained healthy and display no symptoms of lymphoproliferative disease or 

autoimmunity.  Recipient mice were sacrificed 12 weeks after bone-marrow transfer and 

donor CD4+CD44Low cells purified by FACS isolation using Ly5.1 or Thy1.1 congenic 

markers to discriminate Ctla-4-deficient and wild-type populations.   CD4+CD44Low 

populations represented 85-95% of peripheral CD4+ T cells and were also CD69-, 

CD62LHigh, and CD25-.  RNA from CD4+CD44Low populations of wild-type and Ctla-4-

deficient donor cells was isolated and analyzed by oligonucleotide microarray using 

Affymetrix MgU74Av2 GeneChips.  Chip scanning, intensity normalization, and 

determination of “present” and “absent” calls were performed using Affymetrix MAS5.0 

software.  Further data analsysis was performed using Genespring software and data 

normalization was achieved by setting values below 0.01 were to 0.01 , and dividing each 

measurement by the 50.0th percentile of all measurements in that sample.  The cross gene 

error model was applied to allow statistical comparison in the absence of biological 

replicates amplified by similar single-step labeling protocols.  Genes with a minimum 2-

fold differential expression in the absence of Ctla-4 in mixed bone marrow population or 

displaying detectable expression in only one genoptypic condition were screened for 

known functions relating to cell-cycle regulation, transcriptional regulation, or T cell 
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activation and survival.  The differential regulation observed is statistically significant as 

determined by the cross-gene error model.   
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CHAPTER IV 

 

RESULTS 

 

Kinetic Analysis of Global Expression Profiles in TCR-

Transgenic CD4+ Lymphocytes During Primary 

Activation 
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Kinetics of T Cell Activation, Division, and Commitment 

 

Temporal constraints on costimulatory signal integration 

Although it is well established that T cells require antigen-independent 

costimulation in addition to TCR triggering for efficient activation, the temporal and 

spatial parameters of signal integration that occur in lymphocytes are incompletely 

understood.  Rapid increases in intracellular calcium(363) and regulated phosphorylation 

of signaling intermediates occur within minutes of TCR engagement(364).  

Transcriptional, post-transcriptional, and post translational regulation of gene 

transcription, mRNA stability, and protein activity and degradation respectively are 

detectable within hours of T cell activation.  However, in vivo, commitment to activation 

and integration of costimulatory signals influencing T cell differentiation and effector 

function are postulated to require formation of stable intercellular contact via the 

immunological synapse and extended periods of receptor engagement(365-369).  

However, the precise temporal constraints affecting costimulatory signal integration 

following TCR engagement have not been well defined.  Moreover, the effect of transient 

or delayed CD28 or Ctla-4 engagement on T cells stimulated through the TCR has not 

been clearly examined.  A greater understanding of parameters governing costimulatory 

signal integration will aid the development of strategies manipulating T cell signaling 

pathways for therapeutic benefit.  In addition, a greater understanding of the mechanisms 

involved in costimulatory signaling will facilitate the identification of key signaling 

intermediates involved in the determination of lymphocyte respnsiveness. 
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Optimization of an in vitro, antigen-specific stimulation protocol 

To better understand how costimulatory signals delivered by CD28 or Ctla-4 

ligation are temporally integrated with TCR-mediated activation signals, we utilized an 

established in vitro stimulation system that allows discriminatory signaling through CD28 

and Ctla-4(288).  Synthetic ligands composed of the transmembrane region of B7.2 

linked to the scFV region of antibodies specific for CD28 or Ctla-4 were stably expressed 

in CHO cells capable of presenting MCC88-103 in the context of I-Ek, either singly or in 

combination.  Expression of T cell ligands were determined by staining with anti-I-Ek, 

CD28Ig, or Ctla-4Ig.  Repeated purification of populations matched for ligand expression 

by FACS yielded stable lines expressing equivalent levels of their respective ligands. 

(Figure 4.1)  5C.C7 Rag-/- lymph node cells were cocultured with peptide pulsed, 

mitomycin C treated CHO cells under conditions of TCR monostimulation, CD28 

costimulation, or Ctla-4 ligation. Increasing responder frequency correlated with 

increasing APC:T cell ratios below 1:1 suggesting that APC ligands could be limiting 

(data not shown).  All subsequent experiments utilized a 1:1 ratio of APC:T cell 

cocultured in 96 well round-bottom plates containing 105 cells total.  The stability of 

ligand expression on CHO cells in culture following mitomycin C treatment was 

assessed.  Downregulation of surface ligands was insignificant over the first 36 hours 

(data not shown).  Increasing the duration of peptide preincubation with APC also 

increased responder frequency significantly up to 5 hours (data not shown), and all 

subsequent experiments were performed after a 5 hour peptide prepulse with removal of 
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excess peptide.  The stability of peptide presentation in culture was assessed by 

prepulsing APCs with varying concentrations of peptide and culturing them for intervals  
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Figure 4.1: Engineered APCs express equivalent T cell ligands 
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Figure 4.1:  Engineered APCs expressing I-Ek and a combination of synthetic ligands for 

CD28 and Ctla-4  were repeatedly FACS purified for stable, homogenous expression of 

surface-expressed T cell ligands.   Synthetic ligands for CD28 and Ctla-4 were stained 

with CD28-Fc orCtla-4-FC as appropriate followed by a goat anti-human FITC 

conjugated secondary antibody.  Relative to CD28 scFV, higher Ctla-4 scFV levels were 

obtained in order to maximize Ctla-4-mediated inhibition.  The biological relevance of 

CD28 ligation by the chimeric CD28 ligand expressed on the CHO cells is evident in the 

enhancement of TCR-mediated T cell stimulation assessed by responder frequency.  The 

binding affinities of both chimeric ligands for their T cell-expressed ligands are expected 

to be similar based on the affinities of the antibodies from which they were derived. 

Preincubation of the CHO cells with CD28-Fc or Ctla-4-Fc failed to significantly affect 

the apparent enhancement or inhibition of T cell responses seen after stimulation with 

CHO cells expressing CD28 and/or Ctla-4 ligands respectively.  Thus, the low median 

fluorescent intensity (MFI) detected for the CD28 and Ctla-4 ligands may reflect poor 

binding characteristics of the chimeric Fc linked molecules in culture as revealed by their 

inability to reverse the stimulatory and inhibitory properties induced in T cells by their 

cognate receptors on engineered CHO cells. 
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up to 48 hours prior to addition of responder cells.  Minimal decreases in responder 

frequency were observed over the first 36 hours of coculture, reflecting stable antigen 

presentation in culture for extended times (data not shown).    

 

Parameters of activation: dose response, kinetics, and costimulation 

 Because ex vivo 5C.C7 Rag-/- T cells are homogenous for activational history and 

TCR specificity, responder frequency reflects the average strength of signals received by 

lymphocytes in a given system.  The magnitude of the responder frequency correlated 

with peptide prepulse concentration over a wide range of concentrations. (Figure 4.2)  

Kinetics of early activation marker CD69 expression, upregulation of CD4, and cell 

division following activation was characterized in cells receiving TCR monostimulation, 

CD28 costimulation, and Ctla-4 ligation.  (Figure 4.3)  Critically, maximal responder 

frequencies at most antigen concentrations were generally achieved by 8-12 hours, 

suggesting a high-degree of synchronicity existed in activated populations.  TCR 

monostimulation resulted in markedly diminished responder frequencies relative to CD28 

costimulated cells over the entire range of antigen concentration tested as measured by 

CD69 upregulation.  Amplification of TCR-mediated activation signals by CD28 ligation 

was most pronounced at lower and intermediate antigen concentrations when measured 

as percentage increase in responder frequency.  A reduction in thymidine incorporation at 

very high doses of antigen following CD28 costimulation was inconsistent with the 

expression of CD69 at early times and could be explained by either increased cell death 

or reduced burst size in CD28 costimulated cells at high antigen concentrations (Figure 
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4.2).  TCR monostimulation resulted in slightly delayed kinetics with regards to CD69 

expression, CD4 upregulation, cell cycle entry, and rates of cellular division.  Ctla-4  

ligation resulted in a reduction in responder frequency that was greatest at lower antigen 

concentration, and became negligible at the highest concentration tested.  Dose response 

curves were only marginally shifted by Ctla-4 ligation, and the kinetics of activation 

marker expression and cellular division at the population level were unchanged relative to 

cells receiving only CD28-mediated costimulation.  Maximal CD28 costimulation, 

measured as an absolute increase in responder frequency relative to TCR monostimulated 

cells, was greatest at intermediate antigen concentration.  Ctla-4 mediated inhibition of 

CD28 costimulation was also greatest at an intermediate antigen concentration of 5x10-4 

uM MCC88-103.   Because Ctla-4 only marginally inhibited activation induced by TCR 

monostimulation, we chose to quantify Ctla-4 mediated inhibition relative to CD28-

mediated enhancement of TCR activation signals according to the following equation: 

[(RFCD28)-(RFCtla-4)]/[RFCD28)-(RFTCR)] 

where RF denotes “responder frequency” and TCR, CD28, and Ctla-4 indicate conditions 

of TCR monostimulation, TCR+CD28 ligation, and TCR+CD28+Ctla-4 ligation 

respectively. 

 Temporal constraints on costimulatory signal integration are not well known.  To 

define the critical time period in which CD28 and Ctla-4 must be engaged to respectively 

enhance and inhibit T cell responses in our system, we utilized a cell transfer protocol 

that allowed for quantitative and qualitative changes in stimulation conditions over time.  

T cells were cultured under varying conditions of TCR monostimulation, and CD28 or 
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Figure 4.2: Dose response of curve of TCR-tg T cells stimulated with 

engineered APCs prepulsed with antigen 
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Figure 4.2:  TCR-transgenic CD4+ lymphocytes respond to TCR stimulation, CD28 positive 

costimulation, and Ctla-4 mediated inhibition over a wide range of antigen concentrations.  5x104 

5C.C7 TCR-transgenic CD4+ T cells were co-cultured in 96-well round-bottom plates with 5x104 

mitomycin C-treated Chinese hamster ovary (CHO) antigen presenting cells (APCs) engineered 

to express surface ligands for TCR, CD28 and Ctla-4 in varying combination that were prepulsed 

for five hours with the indicated concentration of moth cytochrome C oligonucleotide (MCC88-

103). 56 hours after the start of co-culture, 1µCi of tritiated Thymidine was added per well.  

Culture plates were frozen rapidly at -80º Celsius 16 hours after the addition of Thymidine.  

Individual culture conditions were performed in triplicate, and measured Thymidine 

incorporation represents the average of replicate wells.  Data shown is representative of numerous 

experiments.  CD28 resulted in the greatest relative enhancement of TCR-mediated activation at 

low doses of antigen.  Similarly, Ctla-4 ligation was most effective in counteracting CD28 

costimulatory signals at low doses of antigen.  Bulk culture stimulations were performed with 

5x10-4 uM MCC prepulse concentration to improve yields in both activated and naïve populations 

while ensuring adequate inhibition by Ctla-4. 
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.Figure 4.3:  TCR-tg T cells exhibit consistent responder frequency and 
reliable kinetics of activation and division when stimulated by 
engineered APCs. 
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Figure 4.3:  TCR-tg T cells stimulated in vitro by engineered APCs reveal antigen-dose-

dependent costimulation responses to CD28 and Ctla-4 ligands.  5x104 5C.C7 TCR-

transgenic CD4+ T cells were co-cultured in 96-well round-bottom plates with 5x104 

mitomycin C-treated Chinese hamster ovary (CHO) antigen presenting cells (APCs) 

engineered to express surface ligands for TCR, CD28 and Ctla-4 in varying combination 

that were prepulsed for five hours with the indicated concentration of moth cytochrome C 

oligonucleotide (MCC88-103). CD4+ T cells were harvested from triplicate wells at 

specific times after the start of co-culture, pooled, and analyzed for the expression of the 

early activation marker CD69.  CD69 expression is predictive of commitment to 

activation and cell-cycle entry.  The top, middle, and bottom panels display the 

percentage of CD69+ CD4+ T cells at serial timepoints after stimulation with engineered 

APCs prepulsed with 5x10-5, 5x10-4, or 5x10-3 µM MCC respectively.  Responses to 

CHO APCs expressing ligands for the TCR, the TCR+CD28, or the TCR+CD28+Ctla-4 

are shown in blue (clone V), green (clone M37), and red (clone M14/37) respectively.  

5x10-4 uM MCC prepulse concentration results in roughly 50% inhibition of CD28-

mediated costimulation by Ctla-4.  In addition, irreversible commitment to activation, as 

indicated by CD69 upregulation, is determined early after TCR triggering as reflected in 

relatively stable responder frequencies from 6 hours post-stimulation until first division.  

First division in the presence of CD28 occurs around 32-36 hours.  TCR monostimulation 

results in delayed entry into cell-cycle and the majority of activated cells do not divide 

until 40-50 hours.  Values shown are from pooled triplicates.  Representative experiment 
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is shown.  
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Ctla-4 costimulation for defined intervals, removed from culture, and cocultured with 

APCs providing all possible combinations of TCR, CD28, and Ctla-4 ligation in the 

presence or absence of antigen.  Flow cytometry analysis revealed that less than 10% of 

transferred cells were APCs from initial cultures (data not shown).  Internal controls were 

provided by T cells that remained in initial cultures, and by transfer of T cells between 

identical culture conditions.  The influence of costimulatory signals received by T cells 

was measured by CD69 expression 20-24 hours after initial stimulation, or after 16 hours 

in secondary culture conditions.  No difference was seen between measurements taken at 

those times.  Moreover, responder frequency in samples transferred between identical 

conditions was similar to that seen in unmanipulated cultures.   

As shown, T cells cultured under conditions of TCR monostimulation became 

increasingly refractory to activation by CD28 costimulation over time(Figure 4.4).  T 

cells were consistently and maximally responsive to CD28 ligation at any time up to 6 

hours following TCR monostimulation.  However, CD28 ligation occurring later than 6 

hours potentiated TCR activation signals in a decreasing manner over time, and CD28 

ligation after 16 hours of TCR monostimulation failed to increase responder frequency at 

all.  Decreased responsiveness resulted from interaction with APC ligands.  T cells 

initially cultured with APC in the absence of antigen did not become significantly 

refractory to stimulation over the initial 12 hours in culture (data not shown).  Ctla-4 

coligation with CD28 following TCR monostimulation inhibited CD28-mediated 

costimulation, but did not appear to produce independent effects on responder frequency 

apart from CD28.  Importantly, maximal T cell responses to TCR monostimulation were 
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evident after 1 hour when transferred between identical culture conditions, or transferred 

to cultures lacking antigen and costimulation.  This suggests that, in this system, T cell 

activation as a result of isolated TCR stimulation utilizes mechanisms that commit cells 

to become activated within one hour of TCR triggering.  In contrast, CD28 and Ctla-4 

costimulation can be integrated over an extended period.   

Responder frequencies in cultures initially receiving TCR and CD28 signals also 

suggest that persistent costimulatory signals influence T cell responsiveness for several 

hours after TCR triggering (Figure 4.5).  Our results show equivalent responses to TCR 

monostimulation and the absence of TCR ligation following one hour of combined TCR 

and CD28 stimulation, supporting the notion that TCR ligation activates all relevant 

pathways within one hour.  Moreover, increasing the duration of CD28 ligation increases 

responder frequency up to 12 hours, at which point, no difference is seen in comparison 

to cultures maintained under conditions of CD28 ligation throughout.  This suggests that 

CD28 engagement is stable for at least 12 hours and provides persistent enhancement of 

TCR signals.  Abrogation of CD28 ligation at any time prior to 12 hours reduced 

responder frequency.  Likewise Ctla-4 ligation inhibits T cell responses to TCR and 

CD28 coligation up to 12 hours after stimulation, supporting the idea that mechanisms of 

Ctla-4 inhibition of T cell activation are not relevant in the absence of CD28 

costimulation.  Moreover, the similar temporal constraints seen with CD28 and Ctla-4 

signal integration as assessed by responder frequency support models of Ctla-4 function 

that emphasize shared signaling pathways with CD28. 
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Figure 4.4:  Submitogenic TCR signaling results makes T cells increasingly refractory to 
costimulatory signals over time. 
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Figure 4.4:  TCR monostimulation makes T cells increasingly refractory to costimulatory 

signals.  Serial–coculture conditions under varying condition of TCR, CD28, and Ctla-4 

ligation conditions define the temporal parameters of TCR monostimulation and CD28 

and Ctla-4 costimulatory signal integreation as assessed by CD69 expression.  5x104 

5C.C7 TCR-transgenic CD4+ T cells were co-cultured in 96-well round-bottom plates 

with 5x104 mitomycin C-treated Chinese hamster ovary (CHO) antigen presenting cells 

(APCs) engineered to express I-Ek.  APCs were prepulsed for five hours with 5x10-4 µM 

moth cytochrome C oligonucleotide (MCC88-103) prior to start of coculture. T cells were 

removed from initial co-culture conditions at indicated times (X-axis) by gentle pipetting 

and co-cultured with CHO APCs prepulsed with 5x10-4 µM MCC under varying 

conditions of TCR monostimulation, CD28 costimulation, and CD28+Ctla-4 

costimulation (blue, green, and red curves respectively).  In addition, T cells were 

removed from initial culture conditions and co-cultured with CHO APCs expressing I-Ek 

in the absence of MCC peptide (black curve).  T cells were generally greater than 93% 

pure after removal from initial culture conditions.  T cells were analyzed for CD69 

expression 20 hours after start of co-culuture in initial conditions.  Cells stimulated by the 

TCR alone displayed maximal responder frequency by 1-2 hours and were not activated 

further by sustained TCR stimulation.  In contrast, CD28 costimulation could fully 

restore maximal responder frequencies at any time up to 6-8 hours.  In addition, Ctla-4 

was capable of inhibiting CD28-mediated costimulation to a degree that paralleled the 

magnitude of CD28 enhancement of TCR activation.  Costimulatory signals produced no 
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alteration in responder frequency beyond 16 hours. Results reflect average of three 

experiments performed in triplicate. 
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Figure 4.5:  CD28 costimulatory signals are integrated over a period of 
12 hours 
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Figure 4.5:  CD28-mediated signals are incorporated over a period 12 hours after initial T 

cell stimulation.  Serial–coculture conditions under varying condition of TCR, CD28, and 

Ctla-4 ligation conditions define the temporal parameters of TCR monostimulation and 

CD28 and Ctla-4 costimulatory signal integreation as assessed by CD69 expression.  

5x104 5C.C7 TCR-transgenic CD4+ T cells were co-cultured in 96-well round-bottom 

plates with 5x104 mitomycin C-treated Chinese hamster ovary (CHO) antigen presenting 

cells (APCs) engineered to express I-Ek and a CD28 ligand.  APCs were prepulsed for 

five hours with 5x10-4 µM moth cytochrome C oligonucleotide (MCC88-103) prior to start 

of coculture. T cells were removed from initial co-culture conditions at indicated times 

(X-axis) by gentle pipetting and co-cultured with CHO APCs prepulsed with 5x10-4 µM 

MCC under varying conditions of TCR monostimulation, CD28 costimulation, and 

CD28+Ctla-4 costimulation (blue, green, and red curves respectively).  In addition, T 

cells were removed from initial culture conditions and co-cultured with CHO APCs 

expressing I-Ek in the absence of MCC peptide (black curve).  T cells were generally 

greater than 93% pure after removal from initial culture conditions.  T cells were 

analyzed for CD69 expression 20 hours after start of co-culuture in initial conditions.  

Abrogation of CD28 ligation at any time prior to 12 hours reduces responder frequency.  

Similarly, Ctla-4 ligation is capable of inhibiting CD28-mediated over a similar time 

frame in support of models emphasizing shared signaling pathways downstream of CD28 

and Ctla-4. Results reflect average of 3 experiments performed in triplicate. 



 120

Figure 4.6:  Ctla-4 signals are integrated over a period of 8-12 hours 
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Figure 4.6:  Ctla-4 signals are integrated over a period of 8-12 hours.  Serial–coculture 

conditions under varying condition of TCR, CD28, and Ctla-4 ligation conditions define 

the temporal parameters of TCR monostimulation and CD28 and Ctla-4 costimulatory 

signal integreation as assessed by CD69 expression.  5x104 5C.C7 TCR-transgenic CD4+ 

T cells were co-cultured in 96-well round-bottom plates with 5x104 mitomycin C-treated 

Chinese hamster ovary (CHO) antigen presenting cells (APCs) engineered to express I-Ek 

as well as ligands for CD28 and Ctla-4  APCs were prepulsed for five hours with 5x10-4 

µM moth cytochrome C oligonucleotide (MCC88-103) prior to start of coculture. T cells 

were removed from initial co-culture conditions at indicated times (X-axis) by gentle 

pipetting and co-cultured with CHO APCs prepulsed with 5x10-4 µM MCC under 

varying conditions of TCR monostimulation, CD28 costimulation, and CD28+Ctla-4 

costimulation ( blue, green, and red curves respectively).  In addition, T cells were 

removed from initial culture conditions and co-cultured with CHO APCs expressing I-Ek 

in the absence of MCC peptide (black curve).  T cells were generally greater than 93% 

pure after removal from initial culture conditions.  T cells were analyzed for CD69 

expression 20 hours after start of co-culuture in initial conditions.  Abrogation of Ctla-4 

ligation prior to 8 hours results in CD28-mediated increases in responder frequency.  

However, elimination of both CD28 and Ctla-4 signaling prior to 8 hours results in 

decreased responder frequency reflecting ongoing positive costimulation by CD28.  

Collectively, the data suggest that TCR-mediated and costimulation-mediated signals use 

distinct mechanism and signaling pathways. Results reflect average of three experiments 

performed in triplicate.
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Ctla-4 inhibition of T cell activation can be reversed by attenuation of Ctla-4 

ligation prior to 8-12 hours after initial TCR stimulation (Figure 4.6).  In conjunction 

with previous results, this observation suggests that Ctla-4 alters the threshold of 

activation by mechanisms that primarily counteract CD28 mediated signals.  However, 

there is a slight difference between the temporal parameters of signal integration seen 

with CD28 and Ctla-4.  The critical period for ligation in the determination of activation 

threshold appears to be somewhat more constrained for Ctla-4 relative to CD28 

suggesting that Ctla-4 may initiate unique signaling pathways that are independent of 

CD28 and can not be overridden by CD28 ligation at later times despite evidence 

supporting a continued role for CD28 signaling.   

 

Discussion 

 The mechanisms underlying signal integration from antigen and costimulatory 

receptors is only partially understood.  CD28 functions primarily to enhance signaling 

through the TCR(12, 50, 54).  However, CD28 also mediates signaling that is 

independent of TCR triggering and results in qualitatively different immunological T cell 

responses(370).  The immunological synapse may provide the necessary biophysical 

environment for prolonged signaling through receptors on the T cell surface, and may be 

essential for costimulatory signal integration and gain of effector function(371).  In 

support of this model, our data suggests that TCR monostimulation leading to activation 

requires only transient (<1 hour) TCR engagement.  In contrast, CD28 alters the 

threshold of activation by persistent signaling over several hours, indicating a 
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fundamentally different mechanism leading to cell activation is involved.  Relative to 

TCR signaling, CD28 is unique in its ability to selectively stabilize mRNA transcripts(15, 

17, 186, 372).  T cell activation results in transcriptional upregulation of genes necessary 

for coordinated regulation of diverse processes involved in survival, cell growth, 

intercellular communication, and effector function.  The ability of CD28 signaling to 

amplify expression of key regulatory molecules involved in these processes by 

coordinated transcriptional, post-transcriptional, and post translational regulation is, in 

some instances, distinct from TCR signaling pathways and may serve to explain why 

continued CD28 ligation is an important determinant of threshold of activation.  

Similarly, the ability of Ctla-4 and CD28 to influence responder frequency profiles over 

similar timeframes and with opposing results is suggestive of a shared mechanism of 

regulation that is operative over extended periods of time.  Costimulatory signals are 

critical regulators of immunity and tolerance, with roles in T cell differentiation and 

effector function.  The diversity of lymphocyte responses that can result from TCR 

triggering may require additional time, beyond that required for TCR ligation and, 

perhaps, commitment to activation, to sufficiently integrate the array of costimulatory 

signals that are often temporally and spatially distinct.  Importantly, the consistency of 

our findings with current models of T cell activation and receptor signaling paradigms 

supports the use of engineered APCs as a physiologically relevant model system that 

recapitulates some published findings related to T cell activation, and may provide clarity 

in answering questions obscured by the use of supraphysiological stimuli and 

heterogeneous lymphocyte populations. 
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 Our in vitro system provides stringent control of TCR signal strength and 

differentially signals through CD28 and Ctla-4.  Moreover, the kinetics of activation 

indicates that cells identified by activation marker expression are highly synchronized for 

activation status and provide ideal samples for the characterization and isolation of 

phenotypically homogenous populations. 
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Chapter IV 

Results 

 

Kinetic Analysis of Global Expression Profiles in TCR-

Transgenic CD4+ Lymphocytes During Primary 

Activation 
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Kinetic Analysis of Genomic Expression Patterns in Activated TCR-tg CD4+ 

Lymphocytes 

 

TCR-tg lymphocytes and engineered APCs allow tight control of activation stimuli 

 Ctla-4 and CD28 utilize the same B7 family members, B7.1 and B7.2, as ligands, 

complicating the characterization of the two opposing costimulatory pathways.  Using an 

established in vitro stimulation system, we optimized a protocol of primary stimulation in 

CD4+ cells that allowed tight control of TCR signal strength, synchronous activation of 

TCR-tg lymphocytes, and differential signaling through either CD28 or Ctla-4.  

Numerous experiments delineated the parameters of T cell activation using this system, 

and allowed us to specify a degree of TCR stimulation that allowed for moderate 

activation in the absence of costimulation, significant positive costimulation by CD28, 

and apparent inhibition by Ctla-4. 

 To facilitate the identification of genes potentially regulated by Ctla-4, it was 

crucial that the kinetics of T cell commitment to activation and integration of CD28- or 

Ctla-4-mediated costimulatory signals be well defined.  Using expression of the very 

early activation marker CD69, upregulation of CD4, and the division marker CFSE, we 

established a normative profile of T cell activation with reproducible kinetics and 

responder frequency.  Importantly, maximal responder frequency was routinely achieved 

by 12 hours, implying a high degree of synchronicity in the activated populations. 
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 To determine the predictive value of CD69 expression in T cell activation, we 

stimulated ex vivo 5C.C7 lymphocytes with CHO APC prepulsed with 5x10-4 uM MCC, 

harvested the cells at 4, 8, and 12 hours, and sorted the cells by FACS for expression of 

CD69.  Sorted cells were then cocultured with CHO APC expressing I-Ek without MCC 

and analyzed at 24 and 72 hours for expression of activation markers and division status.  

CD69 expression was highly predictive of commitment to activation and eventual cell 

division.  It was noted that CD69+ cells isolated at earlier timepoints were more 

susceptible to cell death as indicated by Trypan blue staining and cell yield at subsequent 

timepoints.  While it was clear that a small fraction of sorted CD69- lymphocytes were 

capable of becoming activated when put back into culture, there was no evidence that 

interruption of stimulation ever reversed the activation status of cells as evidenced by the 

absence of naïve cells at late timepoints in cultures sorted for positive CD69 expression.  

In addition, while it is possible that sparse cell recovery at 4-8 hours after TCR 

stimulation alone skewed the results of subsequent analyses, the trend towards longer 

times to commitment in the absence of CD28 costimulation are consistent with activation 

marker expression data indicating a more prolonged and gradual achievement of maximal 

responder frequency with TCR stimulation alone.  These results again reflect a high 

degree of synchronicity in lumphocyte activation kinetics when using this system. 

 Having established the kinetics of activation in our system, the predictive and 

sequential nature of activation marker expression, and the temporal parameters of 

costimulatory signal integration, we scaled our activation assay up to allow purification 

of homogenous populations by FACS as indicated by CD69 expression, CD4expression, 
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and the cell-division marker, CFSE.  Figure 4.8 shows the sort protocols for samples 

isolated prior to 32 hours, 32-48 hours, and 60 hours and beyond.  As shown previously, 

the populations identified are expected to be highly synchronized and homogenous for 

activation history, activation status, and commitment to division. 

 As an initial screen for the utility of this protocol, we sorted a large quantity of 

cells and performed the standard single step amplification and labeling procedure 

available at the time, using 5-8ug of starting total RNA.  Microarry analysis using 

Affymetrix MgU74aV2 Genechips showed robust changes in global expression profiles.  

RT-PCR verification of select gene expression levels verified the results seen on 

microarray  (Data not shown).  Because the amount of RNA isolated was limiting for 

most experiments, a single sample was amplified in both a single- and double-step 

amplification procedure, and the results compared.  Figure 4.9 summarizes the results 

seen with both labeling protocols, and suggests that despite some flattening of signal 

intensity over the entire expression profile relative to single-step amplification, the limits 

of detection and linearity of amplification were not sufficiently altered with double 

amplification to significantly alter the profile seen.  As a result, all subsequent 

experiments were performed using the double amplification protocol. 

 Samples were isolated at 4 hour intervals up to 24 hours based on CD69 

expression. At 36 hours, 4 population were isolated per stimulation condition based on 

CD4 expression and CFSE staining, allowing additional characterization of the changes 

that occur during cell-cycle entry.  At 60 hours, populations were sorted based on 

division status.  It is noteworthy that despite a high degree of consistency in the responder 
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Figure 4.8:  Sort protocols for in vitro-stimulated T cells at varying 
times after activation 
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Figure 4.8:  Sorting protocols used to isolate CD4+ populations homogenous for 

activation status.  5x104 5C.C7 TCR-transgenic CD4+ T cells were co-cultured in 96-

well round-bottom plates with 5x104 mitomycin C-treated Chinese hamster ovary (CHO) 

antigen presenting cells (APCs) engineered to express surface ligands for TCR, CD28 

and Ctla-4 in varying combination that were prepulsed for five hours with 5x10-4 µM 

moth cytochrome C oligonucleotide (MCC88-103). 5C.C7 lymphocyte activation, as 

measured by responder frequencey (CD69 upregulation) correlates with antigen prepulse 

concentration and is enhanced or inhibited by CD28 and Ctla-4 ligands respectively.  A)  

At timepoints up to 24 hours CD4+ T cells co-cultured with CHO APCs under varying 

conditions of TCR, CD28 a, and Ctla-4 ligation were sorted for activation status based 

solely on expression of the early activation marker CD69.  Representative sort protocol 

shown.  Responder frequency (percent of CD69+ lymphocytes) is indicated in the pre-

sort histogram.  B) At timpoints from 32-48 hours, CD4+ T cells were sorted into 4 

populations based on the sequential upregulation of CD69 and CD4 and subsequent 

division.  Division status was determined by staining the cells with the cytoplasmic dye 

CFSE prior to stimulation.  Populations isolated were CD69-, CD69+CD4Low, CD4High-

undivided, and divided.  C) At timepoints beyond 48 hours, CD4+ T cells were isolated 

based solely on their division status as determined by CFSE intensity, and sorted into 

undivided and divided populations. 
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frequency seen with TCR and TCR+CD28 stimulation, TCR+CD28+Ctla-4 ligating 

condition produced a more variable activation response.  Because the greatest influence 

of the Ctla-4 binding M14 molecule is seen in the context of simultaneous CD28  

stimulation, the degree of Ctla-4 mediated inhibition was defined as (M37RF-

M14/37RF)/(M37RF-VRF), where “RF” indicates the responder frequency indcated by 

CD69 expression seen with the corresponding CHO APC.  Or more generally, “Ctla-4-

mediated inhibition” was defined as the percentage of CD28-mediated increase in 

responder frequency apparently reversed by Ctla-4 ligation.  To increase the likelihood of 

detecting consistent changes in gene expression subsequent to Ctla-4 ligation, 

lymphocytes stimulated in the presence of TCR, CD28 and Ctla-4 ligands were selected 

to maintain a roughly consistent 50% inhibition by Ctla-4 for samples analyzed by 

microarray.   A summary of in vitro 5C.C7 CD4+ T cell samples isolated by FACS for 

the production of RNA and subsequent microarray analysis is documented in Table 4.1 

 

TCR-Mediated T cell Activation Results in a Dynamic Regulation of Several Thousand 

Genes 

 TCR-signaling in the absence of positive costimulation has been reported to result 

in anergy, abortive activation, cellular death via apoptosis induction, and tolerance 

induction.  As shown previously, our in vitro stimulation system utilizing engineered 

APCs presenting MCC to 5C.C7 TCR-tg lymphocytes is capable of initiating T cell 

activation by TCR monostimulation, or T cell signaling with positive and negative 
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Figure 4.9:  Comparison of amplification protocols 
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Figure 4.9:  Expression values obtained from alternate amplification protocols that 

utilized the same starting RNA sample were analyzed.  5C.C7 Rag-/- T cells were 

activated in vitro by co-culture with peptide pulsed APCs for 16 hours in the presence of 

ligands for TCR, CD28, and Ctla-4.  Non-activated CD4+CD69- lymphocytes were 

isolated by FACS and used to prepare total RNA.  RNA was labeled for microarray 

analysis by both single- and two-step amplification and labeling protocols, and products 

of both protocols analyzed on Affymetrix MgU74Av2 oligonucleotide microarrays.  One 

chp per condition was analyzed.  Microarray scanning and qualitative determination of 

expression (“present” or “absent”) based on signal to noise ratios was performed using 

Affymetrix MAS5.0 software.  Further analysis was performed using Genespring analysis 

software.  Data was transformed and normalized by setting signal intensity values below 

0.01 were to 0.01 and dividing each measurement by the 50.0th percentile of all 

measurements in that sample.  The cross-gene error model was applied to provide 

statistical measures of significance in the absence of replicates.  6480 transcripts, 

representing 52% of the total probeset array utilized, were detectable in at least one of the 

two conditions (amplification protocols) examined.  5653 genes out of 6480, representing 

88% of the identified transcriptome were flagged as present on both samples.  This 

indicates that only 0.6% of all probesets were differentially flagged on the microarrays.  

Of the 5653 genes present in both samples 550, 147, and 39 genes indicated fold 

differences of 2, 3, or 5 respectively, corresponding to 10, 3, and 0 percent of genes 

expressed.
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costimulation.  T cell responses to TCR monostimulation in our system, while diminished 

with respect to responder frequency and displaying slightly delayed kinetics, still results 

in full commitment to activation, cell division, and did not result in increased cell death 

in culture.  In vitro blockade of potential T-T costimulation via anti-B7 antibody 

blockade did not alter responder frequency or entry into the cell cycle during primary 

stimulation as assessed by CD69 expression, CD4 upregulation, and CFSE staining. 

(Data not shown)  Moreover, naïve lymphocytes activated by TCR monostimulation, 

TCR ligation plus CD28 costimulation, or the combined ligation of the TCR, CD28 and 

Ctla-4 did not display dramatically different responses upon restimulation, and 

differences observed upon restimulation appeared to correlate with the overall strength of 

activation signals in the primary activation as assessed by responder frequency, and not 

the specific combination of TCR and costimulatory signals received.  (Dat not shown)  

Together, these data indicate that TCR ligation alone is capable of initiating a robust T 

cell response when sufficiently strong, and this observation correlates with the global 

expression profile assayed by microarray. 

 2129 genes were identified as present in a minimum of 4 of the samples receiving 

monostimulation alone and as having undergone a 3-fold change in expression in at least 

2 samples relative to ex vivo naïve cells.  Figure 4.10 shows a box plot representation of 

these genes in TCR-monostimulated samples segregated according to time and activation 

status.  Perhaps surprisingly, unactivated populations evidenced numerous significant 

gene regulations in culture despite receiving sub-mitogenic signals.  Although this could 

be attributed to bystander effects in the presence of activated cells, attrition of normal 
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Table 4.1: Summary of in vitro stimulated 5C.C7 CD4+ lymphocyte sample analyzed by microarray 

Hours 
Stimulated 

Stimulation Conditions Activation Phenotypes 
Isolated per Stimulation 

Condition 

# of 
Replicates 

Total Number of Samples per timepoint Average 
Inhibition in 

Presence of Ctla-4 
Ligands 

0 NA (Ex Vivo) CD69-CD25-CD44low 2 2 NA 

4 TCR 

TCR+CD28 

TCR+CD28+Ctla-4 

CD69- 

CD69+ 

2 12  

8 TCR 

TCR+CD28 

TCR+CD28+Ctla-4 

CD69- 

CD69+ 

2 11 

(Missing one TCR stimulated CD69-) 

44% 

12 TCR 

TCR+CD28 

TCR+CD28+Ctla-4 

CD69- 

CD69+ 

2 11 

(Missing one TCR stimulated CD69-) 

47% 

16 TCR 

TCR+CD28 

TCR+CD28+Ctla-4 

CD69- 

CD69+ 

2 12 40% 

20 TCR 

TCR+CD28 

TCR+CD28+Ctla-4 

CD69- 

CD69+ 

2 10 

(Missing one CD69+ sample from 
TCR+CD29 and TCR+CD28+CTLA-4) 

76% 

24 TCR 

TCR+CD28 

TCR+CD28+Ctla-4 

CD69- 

CD69+ 

1 6 53% 
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32 TCR 

TCR+CD28 

TCR+CD28+Ctla-4 

CD69- 

CD69+CD4Low 

CD69+CD4HighUndivided 

Divided 

1 11 ~50% prior to 
start of division 

60 TCR 

TCR+CD28 

TCR+CD28+Ctla-4 

Undivided 

Divided 

1 6 ~55% prior to 
start of division 
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Table 4.1:  Summary of in vitro stimulated 5C.C7 CD4+ lymphocyte sample analyzed by 

microarray.  5C.C7 Rag-/- CD4+ T cells were stimulated in vitro by APCs engineered to 

differentially express ligands for the TCR, CD28, and Ctla-4.  APCs were prepulsed with 

5x10-4 MCC for 5 hours prior to coculture with T cells.  At the indicated times, T cells 

were harvested, sorted for the indicated activation and division markers, and their 

transcriptome analyzed by microarray subsequent to RNA isolation, amplification, and 

labeling.  All isolated populations were greater than 93% pure by flow cytometry analysis 

after FACS purification.  Two ex vivo CD69-CD25-CD44Low samples were isolated to 

provide baseline gene expression measurements.  From 4-60 hours, samples were isolated 

at 8 timepoints under all three conditions of TCR, TCR+CD28, and TCR+CD28+Ctla-4 

ligand stimulation.  From 4-24 hours, naïve and activated populations were purified based 

on CD69 expression.  At 32 hours, 4 populations were isolated including CD69-, 

CD69+CD4Low, CD69+CD4High, and divided.   At 60 hours, cells were isolated into 

undivided and divided populations.  Biological replicates were produced for the majority 

of sample conditions isolated prior to 24 hours.  From 24-60 hours, only one sample per 

condition was processed for microarray analysis.  TCR monostimulation induced 

responder frequencies (assessed by CD69 expression) of 11-22%.   CD28 costimulation 

increased responder frequencies up to ~45-75%.  T cells stimulated in the presence of 

Ctla-4 ligands displayed varying responder frequencies between those seen with TCR 

monostimulation and CD28 costimulation.  Samples processed for microarray analysis 

were chosen to maintain a roughly 50% inhibition of CD28-mediated costimulation as 
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determined by responder frequencies.  In total, 78 stimulated samples and two ex vivo 

samples were analyzed by microarray.
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signals received in a more physiological environment, or unanticipated effects of the 

specific culture conditions irrespective of activating stimuli, it is also a potential result of 

penetrant but sub-mitogenic signaling.  This is an important possibility as sub-mitogenic 

signaling has been reported to confer a lasting phenotype on naïve cells.  These 

possibilities will be more fully explored in the comparison of expression profiles between 

stimulation conditions.  As expected, activated conditions displayed a greater amplitude 

and diversity of gene regulation across all timepoints relative to unactivated populations.  

Interestingly, while activated populations showed a mean increase in gene expression at 

all other timepoints, samples isolated 8 hours after activation displayed a large 

generalized downregulation of numerous genes, suggestive of active gene suppression.  

This phenomenon was unlikely to be due to spurious effects of microarray sample 

processing as it was unique to the activated populations and consistent across duplicates.  

The nearly 1200 genes downregulated at this time were characterized by an oscillatory 

pattern of regulation occurring over the initial 20 hours of activation.   Genes involved in 

metabolic processes were highly overrepresented in this group.  In contrast to the general 

downregulation observed at this timepoint, cell surface molecules and signaling 

intermediates were predominantly upregulated to a great degree.   The majority of known 

transcription factors were upregulated at 8 hours, but a significant minority was 

transiently downregulated.     A quick overview of genes identified as key regulators or 

participants in T cell activation indicated that most were highly regulated over numerous 

timepoints.  As a result, genes were further segregated into those showing a >10-fold 

change in expression over a minimum of 3 samples, and those showing a 5- to 10-fold 
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change over at least 3 samples.  A combined condition tree and gene tree of a 

combination of these groups indicated a linear divergence of the expression profile of 

unactivated populations from ex vivo samples over time. Among activated samples, the 

12 hour and 20 hour sample segregated in a non-linear fashion with respect to time, being 

found most similar to each other as a result of distinct upregulation of a cluster of 120 

genes. When a similar analysis is performed on the 122 most regulated genes, known to 

include numerous key mediators of T cell activation, the linearity of progression is 

improved and only the 16 hour sample mis-segregates, being identified most closely with 

the 24 hour sample. (Figure 4.11) 

Visual editing of genes identified as significantly regulated (>5-fold change in 

three timepoints in either activated or unactivated populations) yielded 418 genes.  

Hierarchical clustering of these genes in the activated samples provides a clear indication 

of the grouping of coordinately regulated genes over time, and K means clustering 

identified the 19 most significantly related groups of coordinately regulated genes in TCR 

activated samples over 60 hours of activation (Figure 4.12). 

A search for putative regulatory sequences within the 19 gene clusters identified by K-

means clustering indicated a heterogeneous pattern of overly represented sequences in the 

500bp upstream sequences of included genes.  Overall, 168 sequences 5-10bp in length 

were over-represented (p<0.05) in the upstream sequences of the 360 most highly 

regulated genes with known sequence relative to the rest of identified genes in the 

genome.  Moreover, principal component 1 of the K-means clustering includes only 36 

genes, but statistical analysis identified 304 over-represented putative regulatory 
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Figure 4.10: Box-plot representation of gene regulation in TCR-
monostimulated populations 
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Figure 4.10:  Box plot diagram showing magnitude of regulation in genes expressed in 

TCR monostimulated cells that remain naïve or become activated.  5C.C7 TCR-tg 

lymphocytes were stimulated in vitro by CHO APCs expressing I-Ek and prepulsed with 

5x10-4 µM MCC.  Lymphocytes were purified based on expression of activation markers 

(CD69, upregulation of CD4) and division status at numerous intervals from 4 to 60 

hours.  Total RNA isolated from the purified populations was labeled in a two-step 

amplification and labeling protocol, and subsequently analyzed on Affymetrix 

MgU74Av2 microarrays using the Affymterix MAS5.0 sorftware.  Duplicate biological 

samples were obtained for all timepoints prior to 24 hours.  Single samples were analyzed 

at 24, 36, and 60 hours.  6041 genes had detectable expression in at least 4 of the 23 

samples included in this analysis.  Further analysis utilizing Genespring analysis software 

was performed.   Unactivated samples are color-coded red, activated samples are green.  

Median gene expression is indicated by indents, boxed regions indicate quartile gene 

distributions, and feathered extensions equal 1.5 times the interquartile distance.  Data 

was transformed and normalized by setting signal intensity values below 0.01 were to 

0.01 and dividing each measurement by the 50.0th percentile of all measurements in that 

sample.  Measurements for each gene in each sample were divided by the average value 

of that gene’s measurement in two samples of untreated and purified 5C.C7 Rag-/- CD4+ 

lymphocytes isolated ex vivo.  Thus, expression values (Y-axis) are equivalent to fold-

change values relative to untreated ex vivo samples.  Box plots indicate the magnitude 

and scope of gene regulation occurring in naïve and activated populations in vitro from 4-

60 hours in culture.  Indents indicate the median gene expression value for genes detected 
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in at least 4 of 23 samples relative to its ex vivo expression value.  The length of the 

upper and lower segments of the boxes reflect interquartile distances among all genes 

analyzed.  The dotted line segments are arbitrarily set to 1.5 times the interquartile 

distance.  Outlying highly regulated genes are indicated by individual dots.  Thus, 5C.C7 

CD4+ lymphocytes activated by TCR monostimulation display broad gene regulations.  

More than one-third of all detectable genes display at least 3-fold changes in expression 

in two of 17 conditions (involving time after stimulation and activation status).  504 

genes display 5-fold or greater changes in expression in at least 3 of the 17 conditions.  

At eight hours, the general trend is towards downregulation of gene expression in 

activated cells.  At all other timepoints assayed, gene upregulation predominates.  The 

greatest global change in expression occurs ~20 hours after stimulation. 
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sequences (p<0.05), with 264 sequences significant at p<9e-5.  Longer upstream 

sequences tended to be the most statistically significant with 40 of the 50 most significant 

sequences (all p<9.1e-27) being 10bp in length.   In contrast, only 3 sequences were 

identified in component 10 (15 genes) and only 36 in component 14 (31 genes).  No 

overrepresented sequences were found in any of the other components (4-33 genes).  The 

search for putative regulatory sequences is independent of the clustering analysis 

performed.  Thus, the uniquely large number of over-represented sequences identified in 

the upstream region suggestive of shared mechanisms of regulation may reflect a 

common role for these genes in T cell activation.  The analysis is made more robust 

however by the inclusion of costimulated samples, and will be reconsidered in that 

context. 

 

TCR-Mediated Stimulation Results in Robust T Lymphocyte Activation 

 Global expression profiling of naïve CD4+ TCR-activated TCR-tg lymphocytes 

in vitro reveals a coordinated pattern of global gene regulation involving several thousand 

genes (Figure 4.13).  TCR monostimulation has previously been reported to result in 

abortive activation, anergy, or cell death.  While a severe reduction in responder 

frequency was observed following TCR monostimulation relative to CD28 costimulated 

cells, no defect in subsequent responsiveness or increased cell death was observed in our 

system.  These results are suggestive of a primarily quantitative effect of costimulation in 

setting the threshold for activation. 
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Figure 4.11:  Combination gene and condition tree of TCR 
monostimulated samples 
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Figure 4.11:  A combination gene and condition tree reveals complete segregation of 

activated and unactivated population stimulated by TCR ligation alone across all 

timepoints.  Hierarchical clustering was performed on all naïve and activated samples 

isolated from 5C.C7 CD4+ T cell activated in vitro by engineered APCs expressing I-Ek 

for 4-60 hours.  Global gene expression data was normalized to naïve, unstimulated 

CD4+ peripheral 5C.C7 ex vivo samples based on average values in replicates when 

available.  504 genes consistently up- or down-regulated more than five-fold in activated 

populations for three of the eight timepoints examined were used to generate the cluster 

analysis and condition tree in Panel A.  The majority of genes reported to regulate 

lymphocyte activation, cell-cycle entry, and apoptosis are included in this analysis.  

Statistically, the global expression patters reveal almost perfect linear segregation of 

activated population and identifies coordinately regulated genes.    Restricting the 

clustering analysis to genes displaying a minimum ten-fold change in expression in 3 of 

the eight timepoints analyzed from 4-60 hours improves the linearity of segregation 

according to (Panel B). 
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Figure 4.12: Prinicpal components analysis identifies coordinately 
regulated genes in TCR monostimulated populations 
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Figure 4.12:   A K-means clustering analysis identified the 19 most determinative 

expression profiles contributing to the overall patterns identified across all relevant 

samples stimulated by TCR ligation alone. The analysis was performed using normalized 

values for all genes displaying a minimum 5-fold change in expression in at least 3 

timepoints when normalized to naïve unstimulated 5C.C7 CD4+ lymphocytes isolated ex 

vivo.  Parameters used in the analysis: 19 clusters, maximum 100 iterations, Pearson 

correlation similarity measure.  The clusters converged after 22 iterations and 5 randomly 

chosen cluster failed to improve on the initial clustering results.  The 19 clusters 

contained from 8-44 genes each.  Panels A, B and C display the 3 dominant expression 

patters determinig the global expression profile of TCR stimulated 5C.C7 CD4+ T cells.  

Panel A contains the dominant component in TCR activated lymphocytes.  Searches for 

putative regulatory sequences identified numerous overrepresented elements in the 1kb 

upstream region of genes in 3 of the 19 clusters identified, validating their classification 

as coordinately regulated genes (Panels A, B, and C).  Genes comprising these clusters 

were analyzed further to identify signaling pathways involved in their regulation using 

Ingenuity Pathways Analysis software. 
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Costimulatory Signal Integration 

 CD28 alters the threshold of activation and serves to potentiate TCR-mediated 

signals.  By itself, CD28 ligation is reported to transiently alter the expression level of  

several genes, primarily by mechanisms that serve to stabilize mRNA transcripts 

transcribed at a basal level(15).  In the presence of simultaneous TCR ligation, CD28 has 

been shown to dramatically enhance the TCR-mediated alterations in gene expression, 

and is reportedly necessary for the expression of a subset of genes not reliably regulated 

by TCR monostimulation.  In contrast, Ctla-4 inhibits signals transmitted through the 

TCR and CD28 and reduces T cell responsiveness through mechanisms that reportedly 

alter the magnitude of transcriptional response but result in no qualitative changes.  Using 

our in vitro stimulation system, CD4+ TCR-tg lymphocytes were provided with either 

TCR monostimulation alone or in conjunction with CD28 ligation and/or Ctla-4 ligation.  

The CD28 and Ctla-4 ligands expressed on engineered APCs consisted of the scFV 

region of the relevant antibody linked to the B7 transmembrane region, were stably 

expressed, and at our chosen concentration of antigenic peptide resulted in a 3-5 fold 

increase in responder frequency by CD28 costimulation and a 50% Ctla-4-ligation-

mediated inhibition of CD28-mediated costimulation as assessed by responder frequency.  

Consistent with its known role, CD28 ligation served to enhance the magnitude of CD4+ 

lymphocyte responsiveness in a manner dependent on the strength of TCR signaling, with 

relatively greater effects on responder frequency evident at lower doses of antigenic 

peptide.   
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 CD28 ligation initiates a signaling cascade that is, relatively speaking, well 

established and defined.  However, the numerous points of interaction between signaling 

pathways makes it likely that downstream effectors of CD28 function are not all known, 

and the distal mediators of CD28 costimulation remain to be defined.  Ctla-4 has not been 

reported to regulate a unique subset of genes independent from those involved in TCR 

and CD28 signaling.  Using global expression profiling, we attempted a characterization 

of the transcriptome subsequent to varying condition of TCR,CD28 and Ctla-4 ligation.  

Using expression profiles of TCR-monostimulated cultures over several days as our 

baseline, we defined the magnitude and scope of changes in gene expression that result 

from CD28 costimulation.  We then characterized changes in global expression patterns 

that result from simultaneous Ctla-4 ligation concomitant with CD28.  Keeping in mind 

the results of our in vitro stimulation assays defining the temporal limitations of 

costimulatory signal integration, we sought to identify genes specifically regulated by 

CD28 and Ctla-4 ligation that can account for lasting phenotypic changes reported in the 

literature, and attempted to characterize subsequent alterations in transcriptome profiles 

that may be causally related. 

 

Serial timepoint analysis of the relative magnitude and similarity of gene regulation 

subsequent to TCR and costimulatory signal integration 

 The following pages comprising Figure 4.14 detail several facets of signal 

integration as they pertain to global expression patterns that result in the first twenty 

hours of T cell activation.  For each timepoint from 4-20 hours, screens were used to 
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Figure 4.13: TCR monostimulation results in robust gene regulation 
A: 
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Figure 4.13:  TCR stimulation results in robust gene regulation in activated cells in the 

absence of costimulation. 5C.C7 CD4+ lymphocytes were stimulated in vitro with 

engineered APCs prepulsed with MCC and expressing I-Ek.  At discrete intervals from 4- 

60 hours after initial stimulation, CD4+ lymphocytes were sorted for activation status 

based on expression of CD69, upregulation of CD4, and division status as described. 

Microarray analysis of RNA from populations purified for activation status was 

performed and the data normalized to naïve, unstimulated, peripheral CD4+ lymphocytes 

from 5C.C7 Rag-/- mice.  Biological replicates were obtained for all samples isolated 

prior to 24 hours.  Single samples were isolated at 24, 32, and 60 hours.  The cross gene 

error model was apllied (see Materials and Methods).  26 samples representing 17 

conditions of activated and naïve populations stimulated in vitro for 4-60 hours were 

obtained.  A)  Kinetic profile of 6041 genes with detectable expression in a minimum of 

4 TCR-stimulated samples is shown.  TCR ligation in the absence of costimulation results 

in a minimum two-fold regulation of more than 1500 genes within 4 hours after 

activation.  B) TCR triggering in the absence of costimulation delays gene expression 

changes over the first four hours, but results in comparable numbers of genes regulated 

more than two fold at all subsequent time points relative to lymphocytes stimulated in the 

presence of Ctla-4 and/or CD28 ligands that results in enhance responder frequency.
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identify genes regulated two-fold or more under varying conditions of stimulation.  

Genes were grouped by the pattern of responsiveness they showed to TCR, CD28 and 

Ctla-4 ligation as shown in the Venn diagrams.  Box plots demonstrate the predominant 

quality (up or down) and the relative magnitude of gene regulation.  Scatter plots, colored 

by the respective categories identified in the Venn diagram, illustrate the relative 

influence of CD28 and Ctla-4 signaling on the global expression pattern.  Together, these 

data indicate a predominantly quantitative influence of costimulation, but also indicate 

that subtle differences do result from differential ligation of costimulatory receptors. 

 

CD28-signaling accelerates changes in gene transcription mediated by the TCR 

 Differences in gene transcription that result from CD28 costimulation are most 

significant at earlier times.  As indicated in the box plots, CD28 results in robust gene 

regulation by four hours that is significantly greater than is seen with TCR signaling 

alone.  From 8-20 hours, however, there is no substantial difference in the overall 

magnitude of regulation occurring.  TCR stimulated and CD28 costimulated T cells both 

regulate the greatest number of genes at 8 hours.  CD28 signaling is unique in that it 

produces a transient, but significant downregulation of several hundred genes by 4 hours 

that is not recapitulated at any other timepoint regardless of activation condition.  CD28 

signaling also maintains numerous transcripts at higher levels at late timepoints relative 

to TCR ligation alone as indicated by the relative interquartile distances observed in the 

box plot at 12-24 hours.  



 154

 

CD69- CD69+

0.01

0.1

1

10

100

CD69- CD69+

0.01

0.1

1

10

100

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Time(Hours) 4.0 , Activation Status CD69+ , Treatment Type TCR+CD28  (normalized

TCR+CD28 

TC
R

+C
D

28
+C

tla
-4

 

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Time(Hours) 4.0 , Activation Status CD69+ , Treatment Type TCR  (normalized)

TC
R

+C
D

28
 

TCR                    V      M37 M14/37  V     M37 M14/37 
                          CD69-         |         CD69+ 

173 1073
136

241

271 379

967

T4 V 2X T4 M37 2X

T4 M14-37 2X

2558

T4 P in 2

TCR TCR+CD28 

TCR+CD28+Ctla-4 

  

A: B: 

C: D: 

Figure 4.14.1: Global Expression Patterns 4 Hours After Activation 
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Figure 4.14.2: Global Expression Patterns 8 Hours After Activation 
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Figure 4.14.3: Global Expression Patterns 12 Hours After Activation 
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Figure 4.14.4: Global Expression Patterns 16 Hours After Activation 

A: B: 

C: D: 
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Figure 4.14:  Comparisons of global expression patterns in 5C.C7 CD4+ lymphocytes 

stimulated in vitro by engineered APCs differentially expressing ligands for the TCR, 

CD28, and Ctla-4 were performed.  Figures 4.14.1-4 show comparisons of global 

expression profiles at 4 hour intervals from 4-16 hours respectively.  V, M37, and 

M14/37 designations correspond to the use of engineered APC clones expressing ligands 

for the TCR, TCR+CD28, and TCR+CD28+Ctla-4 respectively during stimulation.  All 

gene measurements reflect the average of two biological replicates normalized to 

expression in unstimulated, naïve, peripheral 5C.C7 CD4+ lymphocytes.  Panel A shows 

a box plot representation of the overall magnitude of gene regulations that occur in naïve 

and activated populations under the three conditions of stimulation in the presence of 

TCR, CD28, and Ctla-4 ligand expression.  The analysis included all genes with 

detectable expression in at least one of the six conditions displayed.  Box indents indicate 

the median change in gene expression.  Upper and lower box segments reflect the 

interquartile distance of all genes analysed.  Dashed extensions are set to 1.5 times the 

interquartile distance.  Highly regulated genes are represented by individual dots.  Panel 

C is a Venn diagram showing the number of genes regulated uniquely or in common by 

lymphoyctes stimulated in the presence of varying combinations of ligands for the TCR, 

CD28, and Ctla-4.  Panel B and D show scatter plots of genes regulated at the 

corresponding time under conditions of TCR+CD28 vs. TCR monostimulation or 

TCR+CD28+Ctla-4 vs. TCR+CD28 respectively.  The average expression values of 

individual genes are indicated by colored dots.  The color of gene dots corresponds to 

colors in the Venn diagram.  The medial blue line represents equivalent expression in the 



 159

two conditions displayed.  Outer parallel lines reflect two-fold changes in gene 

expression. 
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Figure 4.15:  Increasing convergence of target genes regulated by TCR 
and CD28 with time  
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Figure 4.15:  Expression patterns initiated by TCR and TCR+CD28 signaling converge 

over time.  5C.C7 CD4+ lymphocytes were stimulated with engineered APCs presenting 

MCC in the context of I-Ek in the presence or absence of CD28 costimulation.  

Populations purified for the positive expression of CD69 allowed for subsequent 

microarray analysis of the transcriptome and identification of gene regulation occurring 

over time in activated lymphocyte populations.  Biological duplicates were obtained and 

average gene expression at each time interval normalized to expression in naïve, 

unstimulated, peripheral CD4+ 5C.C7 lymphocytes.  Genes regulated more than two-fold 

were identified in both TCR monostimulated and CD28 costimulated samples.  Of all 

genes regulated more than two-fold at a a given timepoint, the percentages of genes 

regulated uniquely or in common by TCR and CD28 signaling are shown.  At all 

timepoints the majority of genes regulated at least two-fold are regulated under 

conditions of either TCR monostimulation or CD28 costimulation.  CD28 signaling 

uniquely regulates the greatest number of genes at early times after stimulation.  

However, subsets of genes remain uniquely regulated by TCR and CD28 signals beyond 

20 hours, suggesting that long-term differences in phenotype or responsiveness may 

result from altered costimulatory signaling during primary activation.   
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Additional evidence for accelerated regulation by CD28 is also evident in the trend 

towards increasing commonality of regulated genes over time.  At 4 hours, TCR and 

TCR+CD28 signaling resulted in a minimum 2-fold regulation of 1547 and 2555 genes 

respectively.  1103 genes were regulated in common, representing 71% and 43% of all 

genes regulated by TCR monostimulation or TCR+CD28 costimulation, respectively. As 

indicated in Figure 4.15, there is an increasing convergence of target genes regulated by 

TCR and CD28 signaling from 4-20 hours.  This trend is quantitative as well as 

qualitative, as scatter plots of regulated genes reveal reduced numbers of genes 

differentially regulated by CD28 costimulation over time relative to their level of 

expression in TCR monostimulated cells.  Thus, CD28 signaling results in a qualitatively 

different phenotype at early times by regulating the expression of genes not altered by 

TCR triggering.  In addition, CD28 mediates a quantitative effect on TCR-induced gene 

transcription by enhancing the level of expression of TCR regulated genes.  However, 

these differences in expression pattern and magnitude become increasingly less 

significant over time. 

 Delayed gene regulation in the absence of costimulation is a general trend 

that is also seen in the expression pattern of individual genes that are regulated upon T 

cell activation.  It has been proposed that CD28 costimulation is essential for the 

upregulation of genes that are necessary for cell-cycle entry and T cell survival.  Il-2 

upregulation, in particular, is considered a hallmark of CD28-mediated costimulation and 

was considered a primary mechanism by which CD28 augments T cell responses.  Our 
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data suggests that IL-2, and other known CD28 target genes are only affected by the 

absence of CD28 signaling to a relatively small degree. (Figure 4.16) 

CD28 has modest effects on the expression of numerous genes regulated by TCR 

ligation.  In contrast CD28 uniquely regulates only a very small subset of genes.  

Identification of genes differentially expressed upon CD28 ligation over numerous 

timepoints indicated that very few genes were consistently altered in a CD28-specific 

manner or inversely regulated relative to isolated TCR stimulation. Only 4 genes were 

more than 2-fold altered by CD28 ligation at all six timepoints from 4-24 hours.  20 

genes, 83 genes, and 315 genes were differentially expressed following CD28 ligation in 

5, 4, and 3 timepoints respectively.   A search for putative regulatory sequences identified 

33 elements (p<0.05) 5-10bp in length that were over-represented to a significant degree 

in the 1kb upstream of the 424 genes identified after multiple testing correction.  Thus, 

these genes are likely regulated in a coordinated manner by specific mediators of CD28 

signaling. 

Altered gene expression subsequent to CD28 signaling is dependent on 

transcription factor activity.  While it is possible that CD28 alters transcriptional profiles 

exclusively by post-translational control of transcription factor activity, CD28 may also 

mediate its pleiotropic effects on T cell phenotype via targeted regulation of transcription 

factor expression.  In addition, the rapidity with which CD28 regulates gene transcription 

suggests that specific mediators of CD28 function are active at early times.  To identify 

potential mediators of CD28 function, we screened genes differentially regulated by 

CD28 over at least three timepoints for known or potential transcription factors based on 
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Figure 4.16:  Isolated TCR ligation potently upregulates genes necessary 
for activation and survival 
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Figure 4.16:  TCR signaling is capable of potently upregulating numerous genes involved 

in T cell activation and survival.  5C.C7 CD4+ lymphocytes were activated in vitro by 

APCs engineered to express TCR ligands alone or in conjunction with CD28 ligands.  

Purified populations of naïve and activated T cells were obtained at time intervals from 4-

60 hours and analyzed by microarray.  Expression data was normalized to unstimulated, 

naïve, peripheral CD4+ 5C.C7 lymphocytes.  Expression profiles for genes reportedly 

regulated in a primarily CD28-dependent manner are shown on a log scale.  These 

include interleukin-2, CD25, NFκ-B, and the Bcl2 family member Bcl2sl1.  Expression 

profiles in TCR-stimulated naïve, TCR-stimulated activated, CD28 costimulated naïve, 

and CD28-costimulated activated population are shown left to right as indicated.  Error 

bars indicate standard deviation across biological replicates.  The absence of error bars 

indicates only one sample was analyzed for the corresponding condition of time, 

stimulation condition, and activation status.  In general, TCR monostimulated cells 

achieve peak expression of highly regulated genes at levels greater than 80% of maximal 

expression in CD28-costimulated cells.  The majority of genes show little appreciable 

difference in peak expression in the absence of CD28 signaling, but a significant minority 

of genes show consistently lower levels of expression across numerous timepoints.   

Broad screens for genes uniquely, or inversely, regulated by CD28 reveal few CD28-

speciific targets. 
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published information, homology to known proteins, and domain identity.  Using a non-

stringent screen intended to identify proximal regulators of transcription in addition to 

DNA-dependent transcription factors resulted in the identification of 57 unique genes.  

Hierarchical clustering of these genes based solely on their expression in naïve and 

activated populations under condition of TCR or TCR+CD28 stimulation shows several 

unique patterns of expression and identify subsets of genes displaying coordinate 

regulation (Figure 4.17). The 57 genes identified as transcriptional regulators specifically 

controlled by CD28 costimulation are shown in Table 4.2.1 and Table 4.2.2.  Only 27 of 

the 57 identified transcriptional regulators potentially mediating CD28 signaling are 

known to bind DNA.  These 27 genes display unique temporal expression patterns 

suggesting a potential hierarchy of regulation may exist between some of them.   

An examination of the stability and magnitude of expression changes mediated by 

CD28 upon differentially regulated transcription factors revealed that Lklf/Klf2 was the 

most significantly altered target over the first 24 hours of activation.  Because Lklf 

expression is downregulated by CD28 costimulation and maintained at low levels for the 

duration of activation, restricting a similar analysis to earlier intervals yields slightly 

different results.  However, across all early intervals (4-12 hours, 4-16 hours, and 4-20 

hours) the same five TF genes are ranked as the most highly regulated. (Table 4.3)  These 

include Myb, Zfp46, Batf, Ahr, and Lklf.  Of these five only Myb and Lklf are 

downregulated by CD28 costimulation, implying that they may serve to restrict processes 

involved in T cell activation.  Expression profiles further reveal that Lklf is unique in its 
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Figure 4.17:  Hierarchical clustering reveals coordinated expression of CD28-induced transcriptional 
regulators 
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Figure 4.17:  Hierarchical clustering of 60 transcriptional regulators differentially 

expressed by CD28 ligation.  Microarray analysis was performed on TCR 

monostimulated and CD28 costimulated 5C.C7 CD4+ lymphocytes stimulated in vitro 

and purified for expression of activation markers at eight imepoints from 4-60 hours.  

Biological replicates were obtained for samples isolated prior to 24 hours in culture.  

Average expression values were normalized to unstimulated, naïve, peripheral CD4+ 

5C.C7 lymphocytes.  423 genes were regulated more than two fold by CD28 

costimulation at at least 3 of 6 timepoints analyzed prior to 24 hours relative to TCR 

monostimulation.  60 of the 423 genes are known or putative quiescence factors.  

Hierarchical clustering of the transcription factor expression profiles under condtions of 

TCR monostimulation and CD28 costimulation over time is shown.  The expression 

pattern of transcriptional regulators reflects the gene programs initiated upon T cell 

activation.  In this instance, clustering revealed several coordinately regulated patterns 

temporally offset over a period of 12 hours suggesting that causal relationships between 

them might exist.  Public database mining was used to guide predictions about relevant 

pathways that might relate observed expression via known associations, both direct and 

indirect.
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Table 4.2.1:  Transcriptional regulators potentially mediating CD28 
signaling effects 
 
 
Table4.2.1:  DNA-dependent/binding transcriptional regulators 
 

Probeset ID Common Name Description 
   
92703_at 2310032M22Rik RIKEN cDNA 2610016F04 gene 
97438_r_at 4631416I11Rik Mus musculus cDNA clone UI-M-BH2.2-aou-f-01-0-UI 3', mRNA  
97437_f_at 4631416I11Rik Mus musculus cDNA clone UI-M-BH2.2-aou-f-01-0-UI 3', mRNA. 
160495_at Ahr Mouse (strain C571) Ah-receptor (Ah) mRNA  
93444_at Batf basic leucine zipper transcription factor, ATF-like 
101475_at Bmi1 minor transcript; Mouse zinc finger protein (bmi-1) gene, complete cds. 
95755_at Csda cold shock domain protein A 
99917_at Ezh2 enhancer of zeste homolog 2 (Drosophila); vertebrate polycomb-group  
93250_r_at Hmgb2 high mobility group box 2 
98465_f_at Ifi16 interferon, gamma-inducible protein 16 
92440_at Irf6 interferon regulatory factor 6 
96109_at Klf2 Kruppel-like factor 2 (lung) 
99024_at Mad4 Max dimerization protein 4 
92644_s_at Myb myeloblastosis oncogene 
102209_at Nfatc1 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 
99076_at Nr1d2 nuclear receptor subfamily 1, group D, member 2 
104070_at Pcaf p300/CBP-associated factor 
94319_at Rab18 RAB18, member RAS oncogene family 
97948_at Rb1 Mouse retinoblastoma susceptibility protein (pp105 Rb) mRNA,  
104476_at Rbl1 retinoblastoma-like 1 (p107) 
98335_at Recc1 replication factor C 1 
92399_at Runx1 runt related transcription factor 1; AML1 homologue 
92199_at Stat5b signal transducer and activator of transcription 5B 
95536_at Tceb3 transcription elongation factor B (SIII), polypeptide 3 
102882_at Zfp46 zinc finger protein 46 
102872_f_at Zfp51 zinc finger protein 51 
95521_s_at Zfp68 zinc finger protein 68 
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Table 4.2.2:  Genes regulating transcription via DNA-independent mechanisms 
Probeset ID Common Name Description 
93055_at 1110054N06Rik RIKEN cDNA 1110054N06 gene 
103071_at 2810429C13Rik topoisomerase (DNA) II beta binding protein 
93204_r_at 3230402J05Rik RIKEN full-length enriched library, clone:E030006G18  
92992_i_at 5730497N03Rik trans-acting transcription factor 4 
93104_at Btg1 M.musculus btg1 mRNA. 
101583_at Btg2 TIS21; Mouse TIS21 gene, complete cds. 
101878_at Cd72 CD72 antigen 
100533_s_at Crem  
94395_at D3Ertd330e DNA segment, Chr 3, ERATO Doi 330, expressed 
160248_at D3Ertd330e DNA segment, Chr 3, ERATO Doi 330, expressed 
93493_at Ddx5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 
103532_at Eomes eomesodermin homolog (Xenopus laevis) 
94332_at Ets1 cDNA clone IMAGE:1396445 5', mRNA sequence. 
160662_r_at Gata6 GATA binding protein 6 
102705_at Il2 interleukin 2 
103657_i_at Mtf2 Mus musculus cDNA clone UI-M-AP0-abe-e-08-0-UI 3', mRNA  
96152_at Narg1 NMDA receptor-regulated gene 1 
92248_at Nr4a2  
93915_at Pou2af1 POU domain, class 2, associating factor 1; BOB1/OBF1; coactivator 
160793_at Pou6f1 Mus musculus cDNA clone UI-M-BH0-akf-h-09-0-UI 3', mRNA sequence. 
92356_at Ptpn8 protein tyrosine phosphatase, non-receptor type 8 
104125_at Rnf12 ring finger protein 12 
100974_at Ssbp4 musculus cDNA clone UI-M-AL1-ahk-g-10-0-UI 3', mRNA sequence. 
94292_at Strap serine/threonine kinase receptor associated protein 
97238_at Tacc3 transforming, acidic coiled-coil containing protein 3 
94008_at Tceb1 transcription elongation factor B (SIII), polypeptide 1 
102681_at Tnfrsf4 tumor necrosis factor receptor superfamily, member 4 
94809_at Tsg101 tumor susceptibility gene 101 
102263_at Zfp143 zinc finger protein 143 
103753_at Zzz3 zinc finger, ZZ domain containing 3 
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Table 4.2:  57 transcription factor were identified as stably and differentially regulated 

upon CD28 ligation. 5C.C7 CD4+ lymphocytes were stimulated with engineered APCs 

presenting MCC in the context of I-Ek in the presence or absence of CD28 costimulation.  

Populations purified for the positive expression of CD69 allowed for subsequent 

microarray analysis of the transcriptome and identification of gene regulation occurring 

over time in activated lymphocyte populations.  Biological replicates were obtained, and 

average gene expression levels were normalized to unstimulated, naïve, peripheral CD4+ 

5C.C7 lymphocytes.  57 known or suspected transcriptional regulators displayed a 

minimum two-fold change in expression in at least 3 of the six timepoints analyzed 

between 4 and 24 hours upon CD28 costimulation.  Table 4.2.1 lists the 27 transcription 

factors differentially regulated by CD28 signaling that are known to operate via DNA-

dependent mechanisms.  Table 4.2.2 lists the 30 transcriptional regulators known to 

function by DNA-independent mechanism that are differentially expressed subsequent to 

CD28 costimulation.



     Timepoint 
Probeset ID Common Name Average FC Abs FC T4 T8 T12 T16 T20 T24 
96109_at Klf2 0.19 -5.40 5.40 0.696 0.215 0.0681 0.0353 0.0681 0.029
92644_s_at Myb 0.22 -4.62 4.62 0.0586 0.451 0.0797 0.117 0.238 0.353
160495_at Ahr 3.46 3.46 3.46 0.406 8.743 2.589 4.14 2.853 2.03
102882_at Zfp46 3.28 3.28 3.28 0.611 12.77 0.297 3.081 0.747 2.166
97438_r_at 4631416I11Rik 2.95 2.95 2.95 0.564 4.914 0.448 1.198 0.519 10.03
99076_at Nr1d2 2.80 2.80 2.80 0.349 5.78 0.874 1.127 0.932 7.724
93444_at Batf 2.77 2.77 2.77 7.104 2.892 2.184 1.618 1.658 1.183
97437_f_at 4631416I11Rik 2.23 2.23 2.23 0.33 7.331 0.666 1.363 0.942 2.745
95521_s_at Zfp68 2.20 2.20 2.20 0.409 7.048 0.823 1.058 0.833 3.036
99024_at Mad4 0.46 -2.17 2.17 0.572 0.39 0.512 0.453 0.439 0.405
98335_at Recc1 2.06 2.06 2.06 0.417 1.508 1.127 2.91 2.062 4.359
92199_at Stat5b 1.96 1.96 1.96 3.566 2.218 2.319 1.189 1.657 0.834
95536_at Tceb3 1.88 1.88 1.88 0.805 2.978 2.619 2.351 1.481 1.04
95755_at Csda 1.85 1.85 1.85 2.486 2.274 1.434 1.45 2.164 1.318
102872_f_at Zfp51 1.82 1.82 1.82 2.513 3.13 0.759 0.809 0.709 2.984
102209_at Nfatc1 0.56 -1.77 1.77 0.953 0.432 0.339 0.467 0.52 0.678
99917_at Ezh2 1.67 1.67 1.67 0.678 0.783 2.003 2.464 1.806 2.275
92440_at Irf6 0.63 -1.59 1.59 0.943 0.923 0.781 0.442 0.322 0.362
104070_at Pcaf 0.66 -1.51 1.51 0.125 1.29 0.385 0.551 0.474 1.157
97948_at Rb1 1.50 1.50 1.50 0.141 1.125 0.66 2.802 1.325 2.921
104476_at Rbl1 1.41 1.41 1.41 0.48 2.373 0.748 1.113 1.001 2.766
101475_at Bmi1 1.39 1.39 1.39 0.101 2.615 0.935 1.64 0.758 2.314
93250_r_at Hmgb2 1.39 1.39 1.39 0.386 0.465 1.288 0.828 1.993 3.379
92703_at 2310032M22Rik 1.39 1.39 1.39 0.458 0.174 1.351 2.218 1.202 2.926
98465_f_at Ifi16 1.29 1.29 1.29 1.665 0.592 0.155 0.422 0.505 4.401
94319_at Rab18 1.27 1.27 1.27 0.193 2.014 0.896 1.362 0.984 2.173
92399_at Runx1 1.25 1.25 1.25 0.339 0.31 0.444 0.893 2.647 2.871
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Table 4.3: Lklf is the most significantly and stably altered transcription factor regulated by CD28 
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Table 4.3:  Analysis of the magnitude and stability of CD28 mediated transcriptional 

regulation of transcription factors.  27 DNA-dependent transcription factors (TFs) were 

differentially expressed following CD28 signaling in activated 5C.C7 CD4+ lymphocytes 

stimulated by engineered APCs in vitro.  (minimum two-fold change in expression 

relative to TCR-monostimulated cells for >3 timepoints from 4-24 hours).  Only 6 TFs 

were, on average, downregulated during the first 24 hours of T cell activation, and only 

two, Myb and Lklf/Klf2, were stably downregulated more than two-fold.  However, Lklf 

and Myb were the most significantly regulated transcription factors upon CD28-

costimulation over the first 24 hours of activation. Bolded common names denote the 5 

genes that are the most highly regulated over any interval from 4-20 hours.  

 

FC: Fold change. 

Abs FC: Absolute Fold Change 
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ability to maintain differential expression by CD28 signaling over the long term. (Figure 

4.18)   

CD28 enhances T cell activation by amplifying proximal signaling events and by 

induction of gene transcription leading to enhanced survival, quickened cell-cycle entry, 

and more efficient effector function.  Moreover, CD28 signaling may abrogate 

mechanisms of tolerance such as anergy induction.  The identification of genes 

specifically regulated by CD28 in the context of antigen receptor stimulation provides 

novel opportunities for therapeutic manipulation of the pathways involved and will lead 

to a greater understanding of T cell tolerance.  It is an intriguing possibility that the  

the ability of CD28 to modestly enhance the expression of numerous genes may have 

unrecognized biological significance.  It is clear that TCR stimulation is capable of 

activating all pathways necessary for activation, cell cycle entry, and survival.  Moderate 

increases in these processes, along with the increase in responder frequency that results 

from CD28 engagement, could potentially lead to physiologically significant changes in 

the context of a clonally expanding population of T cells.  Thus, modest changes in gene 

expression resulting from CD28 ligation can be significant if the differential expression is 

maintained long term.  Identifying factors that might mediate such an effect may reveal 

the mechanisms by which CD28 influences numerous processes in immunoregulation.   
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Figure 4.18:  Stable, long-term CD28 mediated regulation of Lklf 
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Figure 4.18:  Expression profiles reveal that CD28-mediated regulation of Lklf provides 

stable changes in gene expression relative to TCR monostimulation.  5C.C7 CD4+ 

lymphocytes were activated in vitro by APCs engineered to express TCR ligands alone or 

in conjunction with CD28 ligands.  Purified populations of naïve and activated T cells 

were obtained at time intervals from 4-60 hours and analyzed by microarray.  Expression 

data was normalized to unstimulated, naïve, peripheral CD4+ 5C.C7 lymphocytes.  60 

known or suspected transcriptional regulators were differentially expressed at least two-

fold by CD28 signaling in a minimum of 3 of 6 timepoints analyzed between 4 and 24 

hours.  Expression profiles for the four most highly and consistently regulated 

transcription factors are shown.  Expression profiles in TCR-stimulated naïve, TCR-

stimulated activated, CD28 costimulated naïve, and CD28-costimulated activated 

population are shown left to right as indicated.  Error bars indicate standard deviation 

across biological replicates.  The absence of error bars indicates only one sample was 

analyzed for the corresponding condition of time, stimulation condition, and activation 

status.  The apparent decline of Lklf in TCR monostimulated samples at late timepoints 

could result from activation-induced downregulation independent of CD28, or may 

reflect inappropriate data normalization as a result of the magnitude of expression 

changes that occur in dividing cells relative to naïve cells or activated cells at early 

timepoints. 
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Ctla-4 Influences the Global Expression Profile of CD28-costimulated T Cells 

 One report has investigated the role of Ctla-4 in modifying the global 

transcriptional response to activating stimuli delivered throught the TCR and CD28(54).  

The results suggested that Ctla-4 ligation in the absence of CD28 costimulation did not 

alter the genomic expression pattern subsequent to TCR ligation.  In addition, the effect 

of Ctla-4 ligation was limited to a partial suppression of CD28-mediated gene regulation 

and did not result in qualitative differences in gene expression.  Our system of in vitro 

stimulation has been designed to allow tight control of stimulating and inhibitory 

signaling in TCR-tg T cells while allowing for physiologically relevant interactions with 

APC-expressed ligands.  Moreover, purification of naïve and activated cells increases the 

likelihood of detecting subtle changes in gene expression that might be masked by the 

homogeneity of unsorted cells under varying conditions of costimulation.  In vitro, cells 

become activated despite the absence or presence of of CD28 and and Ctla-4 

respectively.  Moreover, some cells remain naïve by ignorance in the absence of Ctla-4 

signaling resulting in identical phenotypes maintained by different mechanisms.  We 

propose that Ctla-4 maintains peripheral tolerance, in part, by up-regulating factors 

necessary for the maintenance of self-tolerance and quiescence.  In the context of T cell 

activation, the activity of such factors may be manifested in the maintenance of a naïve 

phenotype, altered parameters of T cell activation and division, or long-term phenotypic 

changes. Thus, detecting transcriptional regulation subsequent to Ctla-4 ligation may 

require higher stringency protocols than have been used previously. 
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Ctla-4 inhibits CD28 mediated changes in gene transcription 

 The influence of Ctla-4 on the magnitude of CD28-mediated transcriptional 

regulation is seen in Figures 4.14.1 to 4.14.4.  Box plots reflect the ability of Ctla-4 to 

inhibit transcriptional regulation to much greater degree at early times after activation.  

At the genomic level, the ability of Ctla-4 to influence the scope of gene regulations is 

abolished by 12 hours.  This is reflected graphically in Figure 4.13 panel B.  As indicated 

by the Venn diagrams in Figure 4.14, the majority of gene expression changes occurring 

subsequent to TCR+CD28 ligation are not qualitatively affected by Ctla-4, suggesting 

that Ctla-4 functions to inhibit the progressive nature of CD28 transcriptional regulation.  

Over time, this is reflected in the convergence of target gene identities regulated in the 

presence or absence of Ctla-4 (Figure 4.19).  The decreasing relevance of Ctla-4 ligation 

over time, as it relates to the global expression profile is best seen in the serial scatter 

plots comparing gene expression levels in samples experiencing different combinations 

of CD28 or CD28+Ctla-4 costimulation. (Figure 4.14)  In contrast to the broadly 

distributed levels of relative expression seen at 4-8 hours, later times reveal a 

predominant 1:1 expression ratio reflected in the close grouping of genes around the axis.  

However, a subset of genes remains differentially regulated by Ctla-4 at every time point 

investigated. 

 We have proposed that Ctla-4 maintains immunotolerance, in part, by inducing 

the expression of transcriptional regulators that impose lasting phenotypic changes.  Ctla-

4 coligation with CD28 resulted in a minimum 2-fold change in expression of 11, 23, 

102, and 322 genes in 6, 5, 4, or 3 of the six timepoints between 4 and 24 hours.  Of these 
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Figure 4.19: Ctla-4 differentially regulates a small subset of genes 
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Figure 4.19:  Ctla-4- and CD28-signaling pathways converge on the same set of target 

genes.  5C.C7 CD4+ lymphocytes were stimulated with engineered APCs presenting 

MCC in the context of I-Ek in the presence or absence of Ctla-4 ligands in conjunction 

with CD28 costimulation.  Populations purified for the positive expression of CD69 

allowed for subsequent microarray analysis of the transcriptome and identification of 

gene regulation occurring over time in activated lymphocyte populations.  Biological 

duplicates were obtained and average gene expression at each time interval normalized to 

expression in naïve, unstimulated, peripheral CD4+ 5C.C7 lymphocytes.  Genes 

regulated more than two-fold were identified lymphocytes activated in the presence of 

Ctla-4 and/or CD28 ligands.  Of all genes regulated more than two-fold at at a given 

timepoint, the percentages of genes regulated uniquely or in common by Ctla-4 and 

CD28 signaling are shown.  At all timepoints the majority of genes regulated at least two-

fold are regulated under conditions of either CD28 costimulation or combined CD28 and 

Ctla-4 costimulation.  CD28 signaling uniquely regulates the greatest number of genes at 

early times after stimulation.  However, subsets of genes remain uniquely regulated by 

Ctla-4 and CD28 signals beyond 20 hours, suggesting that long-term differences in 

phenotype or responsiveness may result from altered costimulatory signaling during 

primary activation.  Over time there is increasing convergence of genes regulated more 

than two-fold under isolated CD28 costimulation or combined CD28/Ctla-4 ligation.  

Ctla-4 suppresses CD28 mediated transcriptional regulation to a greater degree at very 

early times after activation.   
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Table 4.4:  Transcriptional factors stably regulated by Ctla-4 ligation 
 

Probeset ID Timepoints 
Observed 

Common Name Description 

92344_at 6 Smarca3 
SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin, subfamily a, member 3 

99076_at 5 Nr1d2 nuclear receptor subfamily 1, group D, member 2 
96109_at 5 Klf2 Kruppel-like factor 2 (lung) 
92992_i_at 5 5730497N03Rik trans-acting transcription factor 4 
101528_at 5 Tcea1  
92934_at 4 Zfp90 zinc finger protein 90 
104669_at 4 Irf7 interferon regulatory factor 7 
102959_at 4 Tle4 transducin-like enhancer of split 4 
101919_at 4 Zfx zinc finger protein X-linked 
99001_at 4 Zfp292 zinc finger protein 292 
95530_at 4 6330549H03Rik general transcription factor II A, 1 
99950_at 3 Tbp TATA box binding protein 
99558_at 3 Ccnc cyclin C 
98628_f_at 3 Hif1a hypoxia inducible factor 1, alpha subunit 
98465_f_at 3 Ifi16 interferon, gamma-inducible protein 16 
98030_at 3 Trim30 tripartite motif protein 30 
95617_at 3 Rbl2 retinoblastoma-like 2 
94467_at 3 Cebpz CCAAT/enhancer binding protein zeta 
93611_at 3 Tbx6 T-box 6 
93250_r_at 3 Hmgb2 high mobility group box 2 
92991_at 3 Sp4 trans-acting transcription factor 4 
92468_at 3 Gbif globin inducing factor, fetal 
104476_at 3 Rbl1 retinoblastoma-like 1 (p107) 
101180_at 3 Atm ataxia telangiectasia mutated homolog (human) 
100130_at 3 Jun Jun oncogene 
99462_at 3 Top2b topoisomerase (DNA) II beta 
98855_r_at 3 A930001N09Rik RIKEN cDNA A930001N09 gene 
98629_f_at 3 Hif1a  
95879_at 3 Asf1a ASF1 anti-silencing function 1 homolog A  
94325_at 3 Hmgcs1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 
103074_f_at 3 Taf9 TAF9 RNA polymerase II, (TBP)-associated factor 
101529_g_at 3 Tcea1  
101439_at 3 Arl6 myc induced nuclear antigen 
100533_s_at 3 Crem  
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Table 4.4:  TCR and CD28-mediated stimulation of 5C.C7 CD4+ lymphocytes in 

thepresence of Ctla-4 ligands results in the differential expression of known transcription 

factors.   5C.C7 CD4+ lymphocytes were stimulated with engineered APCs presenting 

MCC in the context of I-Ek in the presence or absence of Ctla-4 ligands in conjunction 

with CD28 costimulation.  Populations purified for the positive expression of CD69 

allowed for subsequent microarray analysis of the transcriptome and identification of 

gene regulation occurring over time in activated lymphocyte populations.  Biological 

duplicates were obtained and average gene expression at each time interval normalized to 

expression in naïve, unstimulated, peripheral CD4+ 5C.C7 lymphocytes.  Table 4.4 lists 

transcription factors displaying more than two-fold differential expression identified in 

lymphocytes activated in the presence of Ctla-4 and/or CD28 ligands in the first 24 hours 

of in vitro stimulation.  Six timepoints from 4-24 hours after stimulation were examined, 

and the number of timepoints at which a minimum two-fold differential expression was 

detected in the presence of Ctla-4 ligands is indicated for each transcription factor 

identified.
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genes, 34 are known or suspected transcriptional regulators.  (Table 4.4)  In addition, 8 of 

these genes were identified as specific targets of CD28 signaling in previous screens, 

suggesting that the balance of stimulatory and inhibitory costimulation may define 

genomic expression patterns through the action of these transcription factors.  When 

weighted by the average change in expression seen over increasing intervals from 4-12 

hours up to 4-24 hours, the same 8 genes are ranked highest.  These include Lklf, Rbl2, 

Hmgcs1, Hif1a, cyclin C, Zfx, Tcea1, and a Riken clone (probeset ID 92992_i_at). 

In contrast to the rapid downregulation of Lklf that occurs with unopposed CD28 

costimulation, Lklf appears to be downregulated in activated cells at later timepoints 

(beyond 32 hours) under conditions of Ctla-4 ligation (Data not shown).  However, the 

statistical significance of Lklf differential regulation by Ctla-4 increases over time, in 

apparent contrast to its expression profile.   This may reflect the difficulty involved in 

choosing appropriate normalization standards when comparing vastly different biological 

samples.  This analysis makes use of data normalized to expression levels in ex vivo 

CD4+ lymphocytes.  The magnitude and scope of gene regulation that occurs during T 

cell activation makes standard microarray normalization steps insufficient over long 

periods of time.  Screens used to identify differentially regulated genes in samples 

processed at the same timepoint are internally controlled.  In contrast, gene expression 

profiles normalized to the ex vivo sample are not internally controlled.  Thus, the trends 

observed, and the relative expression observed under varying stimulation conditions at 

any given time remains reliable, but the magnitude of long-term trends in gene expression 

will not necessarily correlate with direct measurements of fold change.   
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Discussion 

 Transcriptional changes during lymphocyte activation have been previously 

characterized.  Our system improves on previous reports by utilizing phenotypically pure 

sample populations homogenous for activational history and stimulated by engineered 

APCs capable of differentially signaling through the TCR, CD28, and Ctla-4.  In 

addition, we have investigated genomic-scale expression patterns at numerous timepoints 

prior to cell-cycle entry allowing for identification of downstream mediators of 

costimulatory function that may determine distal outcomes of proximal integration of 

TCR, CD28, and Ctla-4 signals.  Our results provide the most comprehensive and 

stringently controlled kinetic study of genomic expression patterns in activated 

lymphocytes yet available.  While an exhaustive categorization of observed changes is 

beyond the scope of this work, our data does provide numerous findings that inform our 

understanding of signal integration as it occurs during lymphocyte activation. 

 The temporal parameters governing antigen-receptor and costimulatory signal 

integration have not been well defined.  In our system, TCR triggering activates all 

relevant pathways within the first two hours and can result in commitment to activation 

as early as one hour after stimulation.  In contrast, signals through CD28 and Ctla-4 are 

persistent over 12-16 hours and are integrated accordingly.  This suggests a distinctly 

different mechanism of signaling is utilized.  However, CD28 is also capable of 

significantly enhancing responder frequency to TCR engagement as early as one hour 

after stimulation.  Thus, CD28 functions to lower the threshold of activation in response 
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to antigen receptor engagement over an externded period, accelerates the rate of 

transcriptional regulation leading to cell-cycle entry at the population level, and 

marginally amplifies the transcriptional response of the majority of genes regulated by 

TCR signaling in activated cells.  However, alterations in gene regulation occurring as a 

result of CD28 ligation are heterogeneous, and a subset of genes is specifically sensitive 

to CD28-mediated regulation.  In contrast, the availability of Ctla-4 ligands serves to 

counteract CD28-mediated costimulation primarily by raising the threshold of activation 

without shifting the peak of the antigen-dose response curve or altering the kinetics of 

activation or cell-cycle entry.  In addition, the availability of Ctla-4 ligands has minor 

effects on the global expression profile of naïve or activated CD4+ T cells, and only a 

small number of genes are differentially regulated in the presence of Ctla-4 ligands for 

any appreciable amount of time.  Like CD28, Ctla-4 modifies the transcriptional response 

to the greatest degree at very early times after stimulation, and the effect is largely 

abrogated by twenty hours post-stimulation.   Thus, both CD28 and Ctla-4 appear to 

regulate membrane-proximal signaling events controlling T cell activation prior to one 

hour, yet also serve to modify the clonal response to TCR engagement over prolonged 

periods in a TCR-independent manner.  Numerous models have been proposed to explain 

the disparate effects of costimulation on T cell activation, and our results support the 

notion that CD28 and Ctla-4 function at multiple levels to regulate T cell resonses.   

TCR ligation results in rapid changes in the phosphorylation status of numerous 

proteins and triggers rapid fluxes in intracellular calcium with the net effect of initiating 

changes in gene transcription through the activation of specific transcription factors(373-
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375).  Using in vitro stimulated TCR-transgenic CD4+ lympohcytes we have shown that 

TCR ligation alone results in antigen dose-dependent activation of primary T cells 

leading to broad transcriptional regulation and commitment to cell-cycle entry and 

division.  In contrast to published reports, TCR ligation in the absence of CD28 

costimulation resulted in robust upregulation of genes essential for cell survival, division, 

and effector function including interleukin-2 and Bcl-xL.  Moreover, the lack of CD28-

mediated signaling did not result in altered secondary responses or increased cell death.  

Thus, TCR signaling was capable of activating all pathways necessary for CD4+ T cell 

activation within 1-2 hours resulting in a minimum two-fold regulation of nearly 50% of 

all genes with detectable expression by 8 hours after stimulation suggesting that TCR 

engagement is sufficient for productive activation in CD4+ lymphocytes. 

CD28 ligation lowers the threshold of activation and results in increased 

responder frequency within one hour of TCR-mediated signaling.  In addition, CD28 

signaling potentiates TCR-mediated activation signals over a prolonged period of 12-16 

hours and enhances the expression patterns initiated by TCR engagement.  However, In 

contrast to published reports, our data indicates that CD28 does not enhance expression 

of TCR-induced genes to the degree reported.  The observed difference is likely a result 

of the use of purified populations in our analysis.  In our system, TCR signaling is 

generally capable of regulating gene expression to 80% or more of the maximal level 

observed with CD28 costimulation.  Moreover, CD28 has the greatest qualitative 

influence on genomic expression patterns in activated CD4+ lymphocytes at very early 

times after TCR stimulation, with diminishing effect over time. Thus, the primary effect 
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of CD28 is to lower the threshold of activation by influencing membrane proximal 

signaling events while sustaining TCR-mediated activation signals over an extended 

period.  In addition, our results suggest that CD28 uniquely regulates a very small subset 

of genes not altered by isolated TCR engagement.  The functional result of CD28 ligation 

is increased responder frequency at the population level, accelerated kinetics and 

amplified magnitude of transcriptional regulation at the cellular level, and specific 

regulation of a small subset of genes such as Lklf and Batf.  Thus, CD28 has a primarily 

quantitative effect on T cell responsiveness and clonal activation, but does induce 

qualitatively unique gene programs of unknown significance via regulation of genes that 

are, generally, not well characterized in lymphocytes. 

CD28 is postulated to increase T cell activation by numerous mechanisms.  CD28 

ligation has been shown to enhance phosphorylation of key signaling intermediates 

operating downstream of the TCR, to activate specific signaling pathways involving 

PI3K independent of TCR ligation, and to stabilize T cell interaction with APCs resulting 

in enhanced activation and gain of effector function by TCR-dependendent and –

independent mechanisms.  The ability of CD28 to enhance responder frequency to TCR 

stimulation within one hour of antigen encounter supports the notion that CD28 functions 

to potentiate membrane proximal signaling events.  However, we have also shown that 

CD28-signaling is capable of enhancing responder frequency when ligated up to 12 hours 

after initial TCR stimulation.  These results suggest that CD28 ligation permits T cell 

activation in response to otherwise sub-mitogenic TCR signaling.  In conjunction with 

the identification of genes uniquely regulated by CD28 in activated CD4+ lympohocytes, 
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these data also suggest that CD28 transmits a signal that operates independently from 

TCR signaling pathways.  While our system can not address the relevance of additional 

costimulatory signals that may result from prolonged T cell interaction with an APC, the 

extended kinetics of CD28 signal integration support a model of costimulation in which 

rapid sub-mitogenic signaling resulting from TCR triggering allows for the relatively 

slow development of an unresponsive state that can be rescued by subsequent 

costimulatory signals.  Thus, prolonged low affinity TCR interactions may program T 

cells to become unresponsive with kinetics that allow for extended integration of 

costimulatory signals. 

 Ctla-4 ligand-expressing APCs suppressed CD28-mediated amplification of TCR-

induced transcriptional changes and counteracted CD28-mediated increases in responder 

frequency.  In addition the availability of Ctla-4 ligands delayed the rapid increase in 

gene regulation enabled by CD28 following antigen recognition.  The delay in 

trancscriptional responsiveness may allow time for the integration of additional 

costimulatory signals prior to commitment.  However, the availability of Ctla-4 ligands 

did not shift the antigen-specific dose response curve of TCR-tg CD4+ T cells,  alter the 

kinetics of transcriptional regulation beyond eight hours,  delay cell-cycle entry, or 

change the kinetics of CD28-signal integration.  Thus, the critical effect of Ctla-4 was to 

increase the threshold of activation in a primarily CD28-dependent manner.  

Interestingly, four hours after stimulation CD4+ T cells activated in the presence of Ctla-

4 ligands displayed a global suppression of transcriptional regulation that was more 

pronounced than TCR monostimulation when compared with cells receiving CD28 
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costimulation.  This suggests that Ctla-4 is capable of differentially regulating 

transcriptional responses to TCR ligation and CD28-mediated effects on threshold of 

activation.  Moreover, while expression patterns resulting from CD28 and Ctla-4 ligation 

converge over time, a small subset of genes remains differentially expressed at late 

timepoints.  Thus, it remains likely that Ctla-4 differentially influences CD28 signaling 

pathways and may provide unique signals independent from CD28.  It is tempting to 

speculate that the stable differential expression of these genes may mediate a long-term 

phenotypic change reflecting costimulatory conditions.  However, during secondary 

stimulations in vitro, we did not detect changes in activation responses that correlated 

with the presence or absence of costimulation in the primary stimulation.  Instead, T cell 

recall responses were altered to reflect the overall strength of signals they received in the 

primary stimulation as measured by responder frequency (Data not shown).  Thus. we 

have failed to identify a lasting phenotype reflective of primary stimulation conditions 

with regards to CD28 and Ctla-4 ligation.   However, our results suggest that Ctla-4 alters 

the threshold of activation soon after TCR triggering by counteracting CD28-mediated 

signals, and that this effect persists as long as CD28 signaling is maintained.   

 At the transcriptional level, we were able to detect significant and stable 

differential regulation of a small subset of genes by both CD28 and Ctla-4.  Interestingly, 

the most significantly altered transcription factor identified is also a putative quiescence 

factor.  Lklf was specifically downregulated by CD28 ligation in activated CD4+ T cells, 

and it’s expression was maintained in the presence of available Ctla-4 ligands.  Thus, 
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Lklf regulation may reflect the sum of signals received through CD28 and Ctla-4, and the 

stability of regulation over time indicates that it may mediate long-lasting effects.   
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Lklf is putative T cell quiescence factor 

 Cellular quiescence is a state characterized by decreased cell size and metabolic 

activity characteristic of unstimulated, mature peripheral lymphocytes.  While quiescence 

was previously considered a default state for lymphocytes in the absence of activating 

stimuli, it is now clear that active process of gene regulation are involved in the 

maintenance of the resting state characteristic of peripheral lymphocytes.  The gene 

program regulating quiescence operates through constitutive activity of specific 

transcription factors that maintain survival while preventing unwarranted cellular 

activation.  Similarly, the induction of clonal anergy restricts T cells to a state of 

quiescence in the absence of specific signals.  Moreover, inhibition or loss of T cell-

expressed quiescence factors results in immune activation and lymphoproliferation.  

Thus, quiescence factors are key regulators of gene programs controlling peripheral self-

tolerance and autoimmunity, and are potential candidates for therapeutic manipulation. 

Lung Kruppel-like factor (Lklf) is a zinc-finger transcription factor(376) that 

regulates T cell quiescence and survival(377).  The Lklf gene is composed of three exons 

and is predominantly regulated by a single upstream promoter element (-138/-111bp) that 

does not correspond to known transcription factor consensus sequences(378).  Lklf 

expression is high in naïve T cells, reportedly down-regulated upon antigen stimulation, 

and re-expressed in memory T cells as a result of IL-7 stimulation(379) where its 

expression correlates with long-term survival(380).  Lklf expression in naïve T cells is 

IL-7 independent and is upregulated by ERK5 activation of  MEF2 transcription 

factors(381).  Lklf is upregulated two to three fold in Jurkat cells when SHIP-1 is 
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overexpressed, and correlates with significant growth inhibition(382).  Recently, 

numerous factors critical for Lklf expression have been identified including GRp-78, 

hnRNP-U and –D, CBF, PCAF, CREB, and SWI/SNF(383).  However, the mechanism 

and signaling pathways responsible for Lklf regulation in lymphocytes remain 

incompletely understood. 

The Lklf protein contains a transactivation domain and an autoinhibitory domain 

that mediates negative regulation of Lklf transactivation upon binding the E3 ubiquitin 

ligase, WWP1(384).   Lklf-deficiency is embryonic lethal and results in widespread 

growth and developmental defects in numerous tissues(385). Moreover, Lklf 

overexpression in certain transformed cell lines is sufficient for the induction of a 

quiescent phenotype characterized by decreased proliferation, reduced cellular 

metabolism and cell size, and reduced expression of activation markers on the cell 

surface(386).  Lklf is reported to maintain cellular quiescence by negatively regulating 

expression of the proto-oncogene, c-myc, and a dominant negative form of c-myc 

recapitulates many of the phenotypic changes that result from Lklf deficiency(386).  Lklf 

negatively regulates expression of the proto-oncogene Vav in some tissues, a critical 

determinant of T cell activation and membrane proximal signaling in antigen receptor 

stimulated T cells(387).  Lklf is also reported to reciprocally regulate genes involved in 

cellular division (p21WAF1/CIP1)(388)and apoptosis (WEE1)(389)  Despite its central 

role in the maintenance of T cell quiescence, little is known about the role Lklf plays 

during T cell activation.   
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 Ctla-4 functions to prevent T cell activation to self-antigen in the periphery, and 

preserves the quiescent phenotype of naïve T cells.  Thus, we proposed that Ctla-4 

operated to maintain peripheral self-tolerance by regulating the expression of quiescence 

factors.  An initial screen for genes differentially regulated by Ctla-4 ligation in actively 

dividing cells identified Lklf as positively regulated by Ctla-4 engagement (Figure 5.1).  

Inspection of Lklf expression within the context of a kinetic study of global expression 

profiles in antigen-stimulated TCR-tg T cells under varying conditions of costimulation 

indicated a central role for CD28 and Ctla-4 signals in the regulation of Lklf expression 

(Figure 5.2).  Moreover, numerous genes regulated by antigen receptor stimulation were 

coordinately regulated with Lklf upon costimulation, suggesting that integration of 

costimulatory signals originating with CD28 and Ctla-4 may operate via Lklf to regulate 

distal events in T cell activation.  Thus, we sought to define Lklf-regulated genes as a 

means of better understanding the genetic programs that result from TCR, CD28, and 

Ctla-4 ligation. 

 

Expression pattern of Lklf resulting from CD28 and Ctla-4 costimulation 

 The observed expression of Lklf in our kinetic analysis of genomic expression 

profiles in activated T cells is internally controlled, ensuring that relative measurements 

and the trends that result are reliable.  However, appropriate data normalization is 

dependent on certain assumptions that may be invalidated by the high percentage of 

genes being regulated in activated or dividing lymphocytes.  In order to more precisely 

determine the expression of Lklf in stimulated cells sorted for activation status under 
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Figure 5.1:  Ctla-4 ligation maintains high Lklf expression in dividing CD4+ T cells 
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6: TCR+CD28+Ctla-4 stimulated cells, undivided at 60 hours 
7: TCR+CD28+Ctla-4 stimulated cells, dividing at 60 hours 
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Figure 5.1:  Ctla-4 ligation during activation influences Lklf expression in dividing 

5C.C7 TCR-tg CD4+ T cells stimulated with TCR and CD28 ligands. 5C.C7 CD4+ 

lymphocytes were activated in vitro by coculture with engineered APCs expressing 

varying combinations of ligands for the TCR, CD28 and Ctla-4.  60 hours after 

stimulation, naïve and dividing lymphocytes were purified by FACS based on dilution of 

the cytoplasmic dye CFSE.  Unstimulated, naïve, peripheral CD4+ 5C.C7 lymphocytes 

were purified ex vivo.  Previously activated cells were obtained by stimulating 5C.C7 

CD4+ T cells in the presence of engineered APCs expressing TCR and CD28 ligands.  10 

U/ml of IL-2 was added at day 3 after stimulation, and resting previously activated cells 

were harvested at day 7 after stimulation.  RNA was isolated from all samples and RT-

PCR was performed to provide semi-quantitative measurement of Lklf and tubulin gene 

expression.  Lklk is highly expressed in naïve peripheral CD4+ lymphocytes, its 

expression is maintained in non-dividing cells culture in stimulating conditions, and it is 

downregulated during T cell activation following TCR and CD28 stimulation.  Cells 

activated in the presence of Ctla-4 ligands, in addition to TCR and CD28 stimulation, 

maintain Lklf expression despite entry into cell-cycle (Panel A).  4-fold serial dilutions 

indicate that Lklf is maintained at levels nearly 16-fold greater in dividing cells following 

stimulation in the presence of Ctla-4 ligands relative to TCR and CD28 stimulation 

(Panel B).  Panel B samples were normalized to tubulin expression as seen in panel A. 
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Figure 5.2: Ctla-4 ligation reverses CD28-mediated Lklf downregulation 
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Figure 5.2: Ctla-4 ligation reverses CD28-mediated Lklf downregulation over the critical 

period of costimulatory signal integration in activated CD69+ CD4+ T cells.  5C.C7 

CD4+ lymphocytes were stimulated with engineered APCs presenting MCC in the 

context of I-Ek in the presence or absence of Ctla-4 ligands in conjunction with CD28 

costimulation.  Populations purified for the positive expression of CD69 allowed for 

subsequent microarray analysis of the transcriptome and identification of gene regulation 

occurring over time in activated lymphocyte populations.  Biological duplicates were 

obtained and average gene expression at each time interval normalized to expression in 

naïve, unstimulated, peripheral CD4+ 5C.C7 lymphocytes.  Measurements represent the 

average of two experiments per condition, per timepoint.  As indicated, costimulatory 

signals delivered by CD28 and Ctla-4 ligation in this sytem are integrated over a period 

of 12-16 hours.  Lklf expression remains steady in TCR monostimulated cells despite 

expression of the early activation marker CD69 and commitment to cell-cycle entry as 

previously shown.  CD28 costimulation results in rapid down regulation of Lklf more 

than 44-fold by 20 hours.  T cell activation in the presence of Ctla-4 ligands prevents 

CD28-mediated Lklf downregulation and maintains Lklf expression at levels comparable 

with cells activated by TCR monostimulation. 
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varying condition of costimulation, we performed real-time RT-PCR on the same 

samples analyzed by microarray. 

 Lklf primers were designed and tested in our lab.  Biological replicates were 

processed in triplicate, and repeated (Figure 5.3).  The observed expression pattern was 

consistent with the general trend observed by microarray analysis, but indicated that 

levels of Lklf gene expression detected by microarray were artificially suppressed to an 

increasing degree beyond 24 hours (data not shown).  The divergence of the two datasets 

over time reflects both the difficulty involved in normalizing microarray data from 

dramatically different biological samples, and may also reflect a dilution of stably 

expressed transcripts leading to underestimation of expression and decreased signal 

intensity and significance.  

 

Genomic Expression Patterns Resulting from Overexpression of Lklf in NFC cells 

 As a first approach towards understanding the role of Lklf in activated 

lymphocytes we sought to identify genes regulated by Lklf using microarray analysis.  A 

retroviral expression construct was constructed that included a MSCV promoter, the 

protein coding region of Lklf, an internal ribosomal entry site (IRES), and the green 

fluorescent protein (GFP) gene.  NFC cells, a double positive thymoma cell line capable 

of undergoing differentiation, were cocultured with the Phoenix cell packaging line 

transfected with the Lklf-MSCV or control construct for several days and purified for 

positive GFP expression by FACS.  RNA was isolated from purified Lklf-MSCV- and 

control MSCV-infected GFP+ populations for microarray analysis.  Lklf overexpression 
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was confirmed in Lklf-MSCV transfected cells by RT-PCR ( Data not shown).  RNA 

from FACS-purified Lklf-transfected and control samples was labeled for microarray 

analysis using 5-8ug of total RNA in a single-step amplification and labeling protocol.  

Labeled samples were subsequently processed for, and analyzed on, Affymetrix 

MgU74Av2 microarrays.  Three independent experiments were performed starting with 

transfection of the Phoenix cell packaging line yielding triplicate RNA samples for 

microarray analysis.  Biological replicates were processed for microarray hybridization 

and scanning at separate times and data analysis was performed using the Genespring 

expression analysis software. 

 To allow for the identification of Lklf target genes, the microarray data was 

normalized as follows.  Data transformation was performed such that signal values below 

0.01 were set to 0.01.  Per chip normalization was accomplished by dividing each 

measurement by the 50.0th percentile of all measurements in that sample.  Specific 

samples were normalized to one another: values obtained in Lklf transfected samples 

were normalized to MSCV control samples. Each measurement for each gene in Lklf 

transfected samples was divided by the median of that gene's measurements in the 

corresponding MSCV control samples. 

 Screens to identify differentially expressed genes were performed as follows.  An 

initial analysis was applied to identify genes whose expresseion was altered 2-fold 

following Lklf overexpression using a Student’s T test with p-value cutoff of  0.05 and 

utilizing the Benjamini and Hochberg multiple testing correction.  766 genes were 

identified in this initial screen.  Genes with detectable expression in at least 3 samples for 
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Figure 5.3:  Real-time quantitative PCR of Lklf in sorted population. 
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Figure 5.3:  Quantitative real-time PCR verifies inhibition of CD28-mediated Lklf 

downregulation by Ctla-4.  5C.C7 CD4+ lymphocytes were stimulated with engineered 

APCs presenting MCC in the context of I-Ek in the presence or absence of Ctla-4 ligands 

in conjunction with CD28 costimulation.  Activated lymphocyte populations were 

purified based on expression of CD69 at early times after stimulation and dilution of the 

cytoplasmic dye CFSE at late timepoints (>32 hours post-activation). Biological 

duplicates were obtained for all conditions prior to 24 hours.  Real-time PCR reactions 

specific for Lklf were performed in triplicate on all samples used in the kinetic 

microarray analysis of expression patterns in activated TCR-tg CD4+ T cells.  The results 

indicate that Ctla-4 ligation provides long-term modification of CD28-induced changes in 

gene expression despite similarities in activation marker expression, commitment to cell-

cycle entry, and division status.  Moreover, the stability of Lklf expression detected in 

TCR monostimulated and Ctla-4 costimulated populations beyond 24 hours exceeds that 

seen by microarray analysis, suggesting that data normalization at late time-points is 

inadequate as a result of large-scale alterations in the global expression profile.  
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both MSCV control and Lklf-transfected samples were screened for fold-changes greater 

than 3 with p values <0.05 assuming equal variance, and ranked by the magnitude of 

observed regulation. 176 genes were identified in this screen.  Genes detectable in at least 

three samples in either condition of MSCV control or Lklf-transfected samples but not in 

the alternate condition were considered present to absent calls and ranked by the 

magnitude of expression in the condition with detectable expression.  An additional 151 

genes with significant expression in one condition only were detected in this manner.  

Thus 766 genes displayed statistically significant (p<0.05) regulation resulting in 2-fold 

or greater differences in expression.  Moreover 327 genes were regulated at least 3-fold 

by Lklf expression or displayed consistent mixed calls (present to absent, or vice versa) 

between MSCV control and Lklf-transfected samples. 

 

  Discussion 

Lklf is essential for the maintenance of peripheral T cell quiescence in vivo, and 

Lklf deficiency result in a predominantly activated phenotype in peripheral T cells.  

Moreover, Lklf is dramatically downregulated during T cell activation, suggesting that it 

may serve to restrict or prevent cellular processes leading to cell-cycle entry and gain of 

effector function.  However, a precise understanding of Lklf function is still lacking.  Our 

data suggests that Lklf is differentially regulated by engagement of the TCR or CD28, 

and may potentially be regulated by Ctla-4.  Thus, Lklf expression and subsequent 

transcriptional regulation of target genes may initiate gene programs resulting in unique 

phenotypes depending on the specific combination of stimulatory signals received.   
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A single report has been published describing microarray analysis of Lklf –

regulated genes detected in Jurkat cells expressing a tetracycline inducible form of 

LKLF(386, 390).  Induction of LKLF in Jurkat cells generates a quiescent phenotype 

resembling memory CD4+ T lympohcytes.  Approximately 200 transcripts were 

reportedly altered more than 1.5 fold by LKLF induction with nearly equivalent numbers 

up and down regulated.  Based on a perceived over-representation of cell-surface 

molecules involved in the initiation or propagation of signaling cascades, the authors 

conclude that LKLF expression primes quiescent cells for responses to specific 

extracellular stimuli.  However, in our kinetic study of genomic expression patterns in 

CD4+ T cells undergoing primary activation, the majority of published Lklf target genes 

identified in Jurkat cells were not significantly regulated, and none of the identified genes 

showed significant coregulation with Lklf (Data not shown).  Thus, it seems likely that 

genes regulated by Lklf in Jurkat cells may not correlate with Lklf-mediated gene 

regulation in primary CD4+ T cells.  To characterize Lklf-mediated gene regulation, we 

identified genes differentially regulated in NFC cells, a cell line that may be more 

physiologically relevant to primary CD4+ T cells than Jurkat cells.  In general, the results 

we obtained upon over-expressing Lklf in NFC cells do not correlate with those 

published by Buckley et.al(386).  Moreover, the amplitude and scope of transcriptional 

regulation by Lklf detected in NFC cells is significantly greater than those reported to 

occur in Jurkat cells.  Lklf regulates transcription of genes involved in diverse cellular 

process and is critical for development of numerous tissues.  Thus Lklf transcriptional 

regulation is likely to depend on the concomitant action of numerous other factors 
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enabling coordinated gene programs in a context-dependent manner.  It is possible that 

the undifferentiated state of NFC cells is more permissive for Lklf activity than 

transformed leukemic cells derived from mature peripheral lymphocytes.  Consequently, 

the relevance of Lklf target genes identified in cell lines is best assessed by inspection of 

their regulation in primary cells following antigen receptor mediated stimulation. 

  Microarray analysis of Lklf regulated genes was performed in triplicate and 

measures of sample similarity show consistent segregation of MSCV and Lklf-MSCV 

when compared across all probesets present or across probesets with significant signal.  

More than six thousand genes had significant signal intensity in 3 of the 6 samples (3 

MSCV control and 3 Lklf-transfected samples) analyzed, which is consistent with our 

earlier results using various cell lines and tissue samples.  We detected 1863, 568, and 

151 genes with fold changes greater than 2, 3, and 5 respectively based on average 

expression values.  A screen for differential expression with p values less than 0.05 

yielded 766, 327, and 111 genes with fold changes of 2, 3, and 5 respectively (Figure 

5.4).  Nearly equivalent numbers of genes were up- and down-regulated by Lklf.   

Lklf-mediated gene transcription is dependent on the cellular context in which it 

operates and genes identified by enforced overexpression may not recapitulate 

physiological expression patterns.  A screen for Lklf target genes regulated during T 

lymphocyte activation revealed a subset of genes that may mediate Lklf function 

following T cell stimulation.  Significant expression during in vitro T cell stimulation was 

defined as detectable expression in 10 of 75 samples processed, and a 3-fold change in 

expression in at least 5 of 48 conditions.  Among the 327 most significantly regulated 
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Figure 5.4:  Identification of gene regulated by Lklf in NFC cells 
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Figure 5.4:  Identification of genes differentially regulated by Lklf expression in NFC 

cells.  A MSCV retroviral construct encoding GFP was used to overexpress Lklf in the 

double-positive thymoma NFC cell line.  RNA was isolated from GFP positive NFC cells 

infected with a control MSCV vector or a Lklf-MSCV vector, and microarray analysis of 

the global expression profiles that resulted was performed.  Triplicate biological samples 

of both control-MSCV and Lklf-MSCV infected NFC cells were obtained.  Data was 

normalized by settting signal values below 0.01 to 0.01 and dividing each measurement 

by the 50.0th percentile of all measurements in that sample.  In some analyses (Panel A), 

gene expression values in Lklf expressing samples were normalized to control samples by 

dividing the measurement for each gene in Lklf-expressing samples by the median of that 

gene's measurements in the MSCV control samples.  Genes whose expression was 

significantly altered by Lklf expression were identified.  A volcano plot (Panel A) shows 

the relative significance (Y-axis p-value) and fold change distribution (X-axis) of genes 

in Lklf-expressing NFC cells when compared to control MSCV-infected samples.  

Individual genes are indicated by dots.  Average fold-change expression (log-base 2) is 

shown on the X-axis.  Genes in red display a minimum two-fold change in expression in 

Lklf-expressing NFC cells with a p-value less than 0.05.  A scatter-plot of these genes 

indicates that Lklf results in widespread positive and negative gene expression changes 

(Panel B).  The average magnitude of signal intensity for specific genes is depicted on a 

log scale in MSCV control (X-axis) and Lklf-expressing (Y-axis) samples.  Indicvidual 

genes are indicated by dots.  The central line indicates equivalent expression.  Inner, 

middle, and outer sets of parallel lines surrounding the line of equivalence indicate 2-, 5-, 
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and 10-fole changes in expression respectively.  Genes displaying less than two-fold 

changes in expression in Lklf expressing samples relative to controls have been excluded 

for clarity.   The greatest number of significant regulation involved enhanced expression 

of genes expressed at low level in MSCV control samples (see line of best fit). 
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genes (>3-fold change in expression, p<0.05, assuming equal variances or consistent 

mixed “present”/”absent” calls) altered by overexpression of Lklf in NFC cells, 92 were 

considered to be relevant to T cell activation in vitro based on signal detection and 

expression pattern.  80 of the 92 genes correspond to unique transcripts, and these are 

listed in bold print in Table 5.1.  Manual editing of genes regulated in both systems, 

revealed 10 Lklf-upregulated target genes with expression patterns consistent with 

regulation by Lklf during primary cell activation (Listed in red).  These included the cell 

cycle regulator Cdkn1c, the pro-apoptotic transcription factor mad4, and cell surface 

signaling molecule Cipp/Patj.  In contrast, six genes displayed expression patterns that 

were inversely correlated with results from Lklf overexpression in NFC cells (Listed in 

blue).  These included the transcription factor BatF, the immunomodulatory surface 

protein Gadd45B/MyD118, and the Bcl2-associated athanogene Bag2.  In addition, 

several genes positively regulated by Lklf in NFC cells were expressed by T cells 

following activation but displayed expression patterns that failed to coregulate with Lklf 

expression. 

Among genes inhibited in NFC cells following enforced Lklf expression, 14 

displayed negative co-regulation with Lklf in activated T cells as expected (Listed in red).  

These include critical regulators of cell signaling, division, and survival including Cyclin 

C, the src-like adaptor SLA, and antiapoptotic genes Bcl2a1a and Bcl2a1b.  15 genes 

showed positive co-regulation with Lklf, in direct contradiction of results in NFC cells 

(Listed in blue).  These include retinoblastoma 1, caspase 8-associated protein 2, 

Map3K3, Map4K2, and the tyrosine kinase Txk.   
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Using microarray analysis we have identified genes regulated by Lklf 

overexpression in the NFC cell line and examined their expression and coregulation with 

Lklf in a kinetic profile of genomic expression patterns in primary CD4+ cell activated in 

vitro.  A relatively small number of genes with known function identified as Lklf target 

genes showed significant regulation during primary CD4+ lymphocyte activation.  

However, the results suggest that a primary mechanism of Lklf maintenance of 

quiescence may involve upregulation of Mad4.  Expression of a dominant-negative 

MadMyc protein recapitulates many of the effects seen in Jurkat cells overexpressing 

Lklf, and overexpression of c-Myc reverses the phenotype that results from Lklf 

overexpression(386).  Member of the Mad family of basic-helix-loop-helix/leucine-

zipper proteins heterodimerize with Max and function as transcriptional repressors.  The 

balance between Myc-Max and Mad-Max complexes is postulated to control cellular 

proliferation and differentiation(391).  Mad4 forms complexes with Max more efficiently 

than other Mad family members or Myc (392) suggesting that Mad4 may have a 

dominant influence on Myc activity.  Moreover, overexpression of Mad4 has been shown 

to induce a replicative senescence-like state in human fibroblasts(393) and Mad4 may 

mediate some effects of TGF-β in multiple tissues (394, 395).  However, to date no 

specific role for Mad4 has been shown in T lymphoyctes.  Our results suggest that Lklf 

may inhibit unwarranted lymphocyte activation in naïve peripheral CD4+ lymphocytes 

by suppressing Myc activity via upregulation of the Max dimerization protein Mad4. 

Lklf also regulates expression of genes involved in cell survival.  Bcl2a1A has 

been shown to regulate apoptosis induction in B cells after antigen receptor engagement 
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(396), promote CD8+ lymphocyte survival following 4-1BB stimulation (397), promote 

thymocyte survival after pre-TCR signaling (398), and is upregulated in CD4+ and CD8+ 

T cells after TCR engagement in a manner independent from cytokine receptor signaling, 

bcl-xL induction, or Bcl-2 upregulation (399).  Upregulation of Bc2a1 in naïve 

lymphocytes treated with retinoid x receptor agonists is also independent of effects on 

Bcl-2 or Bcl-xL and results in decreased apoptosis (400).  A specific role for Bcl2a1 in 

CD4+ lymphocyte activation has not been identified, but our data suggest that Lklf may 

serve to inhibit Bcl2a1 expression in naïve CD4+ T cells and may enhance apoptosis 

following antigen receptor triggering in the absence of sufficient CD28 costimulation.  

Conversely, CD28 costimulation-mediated downregulation of Lklf may result in 

enhanced Bcl2a1 expression, preventing induction of apoptosis in the short term while 

allowing sufficient time for additional survival signals delivered by cytokine receptor 

signaling and subsequent induction of Bcl-2 and Bcl-xL.  Bcl2a1 induction is likely 

cooperative with the CD28-specific downregulation of the apoptosis facilitator Bcl2l11 

(Bcl2-like 11), and TCR-mediated induction of Bcl2a1C, bcl2l1, and Bcl2l2. 

 In order to assess the inclusiveness of our screen for genes regulated by Lklf 

during primary T cell activation, we performed an analysis to identify genes whose 

expression pattern correlated with Lklf in our kinetic study of gene expression profiles.  

Among 505 genes with the greatest negative correlation to Lklf during T cell activation,
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Table5.1.1: Genes upregulated by Lklf 
Category Common Name Fold Change  
    
    
Cell Cycle Regulators Tgf-alpha 8.4 Tranforming growth factor-alpha 
 Cdkn1c 7.5 Cdk inhibitor 
 Ros1 6.0 Protein kinase, proto-oncogene 
 Cxcl12 4.5 Growth factor 
 Cxcl1 4.5 Growth factor 
 Pkd2 3.6 Jak-Stat pathway 
 Fgf5 3.1 Growth factor 
    
Transcriptional Lklf 28.1 DNA-dependent TF 
Regulation Lyl1 11.2 DNA-dependent TF 
 TgfB1i4 10.6 DNA-dependent TF 
 Batf 6.8 DNA-dependent TF 
 Hist1h1c 6.5 Nucleosome organization 
 Klf12 5.6 DNA-dependent TF 
 FoxC1 5.2 DNA-dependent TF 
 Mad4 3.7 Mxd4, Max dimerization protein 4 
 Hist1h2bc 3.6 Nucleosome organization 
 Six5 3.2 DNA-dependent TF 
 Etsrp71 3.0 DNA-dependent TF 
    
Immune Defense Cd2/Ly37 10.1 LFA-3 receptor, Protein kinase, adhesion 
 Prf1 5.7 Perforin 1, Cytolysis, Ca sensitive 
 Klra4 4.2 Heterophilic cell adhesion 
 Litaf 3.7 LPS-induced TNF 
 Gadd45B 3.3 Negative growth-regulatory protein 

MyD118 
 Pik3cd 3.3 PI3K catalytic domain 
    
    
Apoptosis Bag2 4.3 to 3.4 Chaperone, Bcl2-associated athanogene 
Factor Casp4 3.9 Apoptosis induction 
 Mad4 3.7 Mxd4, Max dimerization protein 4 
    
Signaling Molecule Cipp 8.3 INADL, Patj, Protein binding 
 Gnat1 6.1 G-protein signaling 
 Cer1 5.5 Inhibits BMP signaling 
 Rasgrf2 4.7 GEF activity 
 Scn9a 4.6 V-gated ion channel 
 3830613022 4.5 G-protein signaling 
 Map2k1 3.9 Mapk signaling 
 Pkd2 3.6 Jak-stat pathway 
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Table5.1.1: Genes Upregulated by Lklf 
Category Common Name Fold Change  
    
    
Cellular Adhesion Selenbp1 101.6 Selenium binding protein 
And Cytoskeleton Tmsb4x 34.8 Actin Binding 
 Agc1 27.8 Binds hyaluronic acid 
 Mmp8 15.5 Collagen catabolism 
 Gsn 8.4 Gelsolin, Actin binding 
 Capg 6.9 Actin binding 
 Asgr1 5.3 Endocytosis, adhesion 
 Strm 3.9 Striamin 
    
Metabolic/Synthetic Siat7a 11.2 Sialyltransferase 7A, Ganglioside 

biosynthesis 
Processes Fabp4 8.7 Lipid transport 
 Ptgs2 5.1 Prostaglandin synthesis, cyclooxygenase 

2 
 Aldh3a1 5.1 Metabolic pathway 
 Tgm2 5.0 Proteolysis, peptidolysis 
 Nqo1 4.6 NAD(P)H dehydrogenase quinone 1, 

Electron transport 
 Tgm2 5.0 Transglutaminase2  
 Sth2 3.8 soft tissue heal 2,  Steroid Metabloism 
 Txnip 3.7 VDUP1, thioredoxin interacting protein    
 Tcn2 3.6 Transcobalamin 2 
 Smpdl3a 3.1 Sphingomyelin phosphodiesterase 

 
 
 
 

Category Common Name Fold Change  
    
    
Unknown Mkrn3 4.4 Makorin-3, Zfp127 
 Tfpi 3.6 Tissue factor pathway inhibitor 
 Rere 3.4 Atr2, atrophin-2 
 Gkap42 3.1 G kinase anchoring protein 
 Drd3 3.1 EST 
 937302 5.2  
 Eppb9 5.0 endothelial precursor protein B9 
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Table5.1.2: Genes down-regulated by Lklf 
Category Common Name Fold Change  
    
    
Cell Cycle Regulation Bin1 -5.0 Bridging Integrator, Myc box dependent 

interacting protein 1, Sh3p9 
 Ccnc -3.1 Cyclin C 
 Rnf2 -3.3 Chromatin binding 
 Rb1 -3.3 Retinoblasoma-1, Cell-Cycle Inhibitor 
 Cops2 -3.7 Signalosome subunit 
    
Transcriptional Pola1 -3.4 DNA polymerase 
Regulation Pnn -3.4 Pinin, DNA-dependent TF 
 Cnot7 -3.1 to -5.8 DNA-dependent TF 
 NP220 -3.4 Zfml, matrin-like protein, Zinc finger protein 

638, Znf638 
 Rora -3.5 RAR-related orphan receptor alpha    
 Smarca3 -3.6 to -6.0 SNF2/SWI2 family member 
 Cops2 -3.7 COP9 signalosome complex subunit 2, 

Csn2, SGN2, Trip15 
 Gabpa -3.8 GA binding protein alpha chain 
 Tcfap2c -3.9 AP2 TF 
 Zfpn1a2 -5.4 DNA-dependent TF 
 Idb3 -6.0 Id3, inhibits Pol II 
 Hells -6.8 LSH, PASG, lymphoid-cpecific helicase 
 Idb1 -12.5 Id1, inhibits Pol II 
 HIVep1 -12.9 HIV enhancer binding 
    
Immune Defense Rasa1 -3.0 RasGAP, RAS p21 protein activator 
 Cd2ap -3.1 CD2-associated protein 
 Rock1 -3.1 Rho-associated coiled-coil forming kinase 
 CD99 -9.1  
 Ltb -9.4 Lymphotoxin B 
 CD48 -11.7 BCM1, BLAST1, OX-45 
 Ctsw -12.1 Cathepsin W 
 Cst7 -18.8 Leukocystatin 
 Gzma -31.3 Granzyme A 
    
Apoptosis Factors Casp8ap2 -4.6 FLASH, caspase 8 associated protein 2    
 Tnfaip3 -6.7 Tumor necrosis factor, alpha-induced protein 

3, zinc finger protein A20 
 Notch1 -6.7  
 Nr4a1 -7.2 DNA-dependent TF, Caspase inhibitor 
 Bcl2 -7.5  
 Bcl2a1a -15.9 Bfl1 
 Bcl2a1b -31.0 aka Bcl2a1c 
    
Cellular Adhesion Itgb7 -4.0 Integrin-beta 7 
And Cytoskeleton Kif5b -3.9 Kinesin family member 5B 
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Table5.1.2: Genes down-regulated by Lklf 
Category Common Name Fold Change  
    
    
Signaling Molecule Acvrl1 -3.4 Activin receptor-like kinase 1, kinase activity 
 Gem -3.4 RAS-like protein KIR,G-protein signaling 
 Arhgdig -3.4 RHO GDI-gamma 
 Rock1 -3.7 Rho-associated coiled-coil forming kinase 1 
 Map3k3 -3.7 MAPKKK3, Mekk3 
 Sla -4.1 Slap, Src-like adaptor 
 Ptprc -4.7 to -6.8 Protein tyrosine phosphatases receptor 
 Rock2 -4.8 Rho-associated coiled-coil forming kinase 2 
 Ramp2 -4.8 G-protein signaling 
 Map4k2 -5.5 MAPK signaling 
 Sh2d1a -6.1 Sap, Xlp, SLAM-associated protein 
 Gpr65 -10.4 G-protein signalin 
 Txk -17.2 Tyrosine kinase 
    
Metabolic/Synthetic Abcb7 -3.0 ATP-binding cassette transporter 7 
Processes Edem1 -3.1 Mannosidase alpha-like1, ER degradation 

enhancer 
 Slc30a4 -5.2 Zinc transporter 
 Tfrc -5.4 Transferrin receptor 
 Kcna3 -6.0 to -32.8 Potassium channel 
 Man1a -7.6 to -40.5 Mannosidase 1 alpha 
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Table 5.1.2: Down-regulated by Lklf 
Category Common Name Fold Change  
    
    
Unknown Activity Ube2v2 -3.0 Ubiquitin-conjugating enzyme E2 variant 2 
 1110013l07 -3.1 Riken cDNA 
 261010N10 -3.1 Riken cDNA 
 2010300G19 -3.2 Riken cDNA 
 1700065A05 -3.2 Riken cDNA 
 Bat9 -3.2 zinc finger and BTB domain containing 12 
 Rbms1 -3.2 Mssp, RNA binding motif, single stranded 

interacting protein 1 
 Adm -3.2 Adrenomedullin 
 97154_f_at -3.2 EST 
 4921518A06 -3.3 Riken cDNA 
 Siat8d -3.3 Sialyltransferase 8 
 Cspg6 -3.3 Chondroitin sulfate proteoglycan 6 
 Tbc1d15 -3.3 EST 
 Rnf2 -3.3 Ring1B 
 Sema4a -3.4 Receptor 
 Pnpt1 -3.4 polyribonucleotide nucleotidyltransferase 1   
 D3Ertd330e -3.4 94395_at 
 2310005N03 -3.5 Riken cDNA, Hnrpu 
 CD52 -3.5 CAMPATH-1 (Cdw52) 
 Fndc3 -3.8 EST 
 Smarca5 -3.9 SWI/SNF related, matrix associated, actin 

dependent regulator of chromatin, subfamily 
a, member 5 

 Narg1 -3.9 Nat1, NMDA receptor-regulated gene 1 
 Serpin1 -4.1 serine (or cysteine) proteinase inhibitor 
 Hrb2 -4.1 HIV-1 Rev binding protein 2 
 Matr3 -4.1 matrin 3 
 Lypla1 -4.2 lysophospholipase 1 
 Rcbtb1 -4.4 regulator of chromosome condensation 

(RCC1) and BTB (POZ) domain containing 
protein 1 

 Tm4sf9 -4.5 TM-4 family member 9 
 Crtam -4.6 Surface protein 
 Ptbp2 -4.6 polypyrimidine tract binding protein 2   
 Atp1a1 -4.8 ATPase, Na+/K+ transporting, alpha  1  
 Zfp146 -5.1 OZF, zinc finger protein 146 
 Pscd1 -5.3 Pleckstrin homology, Sec7, coiled-coil 

domains 1 
 Zfpn1a2 -5.4 zinc finger protein, subfamily 1A, 2 (Helios) 
 Spred2 -8.8 sprouty-related, EVH1 domain containing 2 
 Bub1 -12.5 Mitotic checkpoint serine/threonine-protein 

kinase 
 Htatip2 -14.6 HIV-1 tat interactive protein 2, homolog 
 1190002N15 -27.0 Riken cDNA 
 Cd53 -37.6 Ox-44, Tspan25 
 Emb -42.7 EST 
 Itm2a -73 integral membrane protein 2A 
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Table 5.1:  Overexpression of Lklf in NFC cells identifies potential target genes in 

primary CD4+ T cells.  A retroviral vector encoding GFP was used to overexpress Lklf in 

double-positive thymoma NFC cells.  Control-MSCV and Lklf-encoding MSCV vectors 

were used to infect NFC cells.  Infected cells were purified by FACS based on expression 

of GFP.  Triplicate samples were prepared and processed for microarray analysis.  Genes 

differentially regulated upon Lklf overexpression in NFC cells were identified and their 

expression pattern in primary 5C.C7 CD4+ lymphocytes stimulated in vitro under 

varying conditions of TCR, CD28, and Ctla-4 ligation examined.  80 genes identified as 

differentially regulated by Lklf in NFC cells showed significant expression and/or 

regulation in 5C.C7 CD4+ primary cell activated in vitro.  Genes coregulating with Lklf 

during primary CD4+ T cell activation in a manner consistent with their regulation by 

Lklf in NFC cells are listed in red print.  Genes with expression patterns in primary cells 

that reflect an inverse relationship with Lklf relative to that seen in NFC cells are listed in 

blue.  Genes identified as Lklf targets in NFC cells that have variable expression patterns 

without significant co-regulation with Lklf in primary CD4+ T cells stimulated in vitro 

are listed in black. 
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Figure 5.5:  Hierarchical clustering of Lklf target genes based on kinetic 
expression profiles in activated CD4+ T lymphocytes 
 

→Increasing Time→ 
 
 

                        TCR              TCR+CD28         TCR+CD28+Ctla-4 
           CD69-     CD69+  CD69-           CD69+        CD69-            CD69+ 
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Figure 5.5:  Hierarchical clustering of Lklf target genes in kinetic study of genomic 

expression patterns in CD4+ T cells undergoing primary activation in vitro.  5C.C7 CD4+ 

lymphocytes were stimulated in culture by engineered APCs expressing different 

combinations of ligands for the TCR, CD28, and Ctla-4.  Populations of naïve and 

activated lymphocytes were purified by FACS at discrete times between 4 and 60 hours 

and their global expression profiles analyzed by microarray.  Genes with detectable 

expression in at least 10 of 78 samples analyzed were ranked by their degree of positive 

or negative co-regulation with Lklf across all stimulation conditions, states of activation, 

and timepoints based on their Spearman correlation values.  More than 1000 genes 

displaying some measure of co-regulation with Lklf were cross-referenced with Lklf 

target genes identified by retroviral overexpression of Lklf in the NFC cell line.  All 88 

genes represented displayed statistically significant (p<0.05) regulation upon enforced 

Lklf expression in NFC cells analyzed in triplicate on microarrays.  Hierarchical 

clustering based on expression patterns in 5C.C7 CD4+ lymphocytes undergoing primary 

activation in vitro was performed to characterize the temporal and qualitative relationship 

of potential Lklf target genes significantly regulated in primary CD4+ T cells.  Genes 

included in the above diagram are listed in Table 5.2 according to known function and 

degree of regulation following over expression in NFC cells.  These genes had not been 

identified as significantly regulated by Lklf in prior screens that utilized search 

algorithms that biased results based upon the magnitude of regulation resulting from Lklf 

over-expression in NFCs.  Moreover, genes identified by initial screens for co-regulation 
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in primary cells were twice as likely to predict qualitative regulation by Lklf following 

over-expression in NFC cells than analyses performed in the reverse order. 
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Table 5.2 
Categoory Fold 

Change 
Lklf 

Correlation 
Common 

Name 
Description 

     
Cell cycle 2.2 -0.751 Jun Jun oncogenes 
 -3.4 -0.698 Qscn6 Quiescin Q6 
     
Apoptosis  2.4 -0.762 Btg2 B-cell translocation gene 2, anti-proliferative 
     
Transciption 6.7 -0.782 Rere  
 6.5 -0.716 Hist1h1c histone 1, H1c 
 2.3 -0.803 Cebpd CCAAT/enhancer binding protein delta 
 2.1 -0.771 Hdac5 Histone deacetylase 5 
 -2.7 -0.689 Pcaf p300/CBP-associated factor 
     
Translation 2.4 -0.732 Cpeb1 cytoplasmic polyadenylation element-binding protein 
     
Immune Response 6.3 -0.832 Samhd1 SAM domain- and HD domain-containing protein 1 
 4.3 -0.691 G1p2 interferon, alpha-inducible protein 
 3.8 -0.827 Ian1 immune associated nucleotide 1 
 2.8 -0.767 Imap38 immunity-associated protein 
 2.1 -0.774 Ly6c lymphocyte antigen 6 complex, locus C 
 2.1 -0.68 Ctsl Cathepsin L 
 -2.2 -0.686 Ifit2 interferon-induced protein with tetratricopeptide repeats 2 
 -3.2 -0.753 Tap2 transporter 2, ATP-binding cassette, sub-family B 
     
Signaling 4.2 -0.797 Tgtp T-cell specific GTPase 
 3.4 -0.867 Btbd14a BTB (POZ) domain containing 14A 
 2.5 -0.782 Il7r interleukin 7 receptor precursor 
 2.4 -0.696 Gbp2 guanylate nucleotide binding protein 2 
 2.3 -0.898 Il6ra interleukin 6 receptor, alpha 
 2.2 -0.8 Fln29 IFN and LPS inducible, negatively regulates TLR signaling 
 2.1 -0.678 Frat2 frequently rearranged in advanced T-cell lymphomas 2 
 -2.1 -0.895 Tec cytoplasmic tyrosine kinase, Dscr28C related 
 -2.1 -0.682 Sema4d semaphorin 4D 
 -2.2 -0.736 Sh3bp5 SH3-domain binding protein 5 (BTK-associated) 
 -2.3 -0.8 Il27ra interleukin 27 receptor, alpha 
 -2.3 -0.721 Itpr5 inositol trisphosphate receptor type 2 
 -2.4 -0.734 Map3k3 mitogen activated protein kinase kinase kinase 3 
 -2.5 -0.695 Nsg2 neuron specific gene family member 2 
 -3.5 -0.871 Txk TXK tyrosine kinase 
 -3.5 -0.712 Cd3d CD3 antigen, delta polypeptide 
     
Adhesion 23.9 -0.781 Cd9 CD9 antigen 
Cytoskeleton 2.0 -0.848 Map1lc3b microtubule-associated protein 1 light chain 3 beta 
 -2.5 -0.75 Tubb2 tubulin, beta 2 
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Table 5.2 
Categoory Fold 

Change 
Lklf 

Correlation 
Common 

Name 
Description 

     
Metabolism 5.3 -0.88 Dhrs8 dehydrogenase/reductase (SDR family) member 8 
 3.7 -0.917 Dntt deoxynucleotidyltransferase, terminal 
 2.5 -0.92 Dntt Riken cDNA 
 2.1 -0.831 Ctss Cathepsin S 
 2.1 -0.706 Kcnj8 potassium inwardly-rectifying channel J8 
 2.1 -0.878 Cyp2s1 cytochrome P450, family 2, subfamily s, polypeptide 1 
 2.0 -0.733 Cyp4f13  
 2.0 -0.798 Abca1  
 -2.1 -0.736 Hdc histidine decarboxylase 
 

-2.5 -0.719 Elovl6 
ELOVL family member 6, elongation of long chain fatty acids 
(yeast) 

 -4.5 -0.794 Ugcg UDP-glucose ceramide glucosyltransferase 
 -5.5 -0.712 Cnga1 cyclic nucleotide gated channel alpha 1 
     
Miscellaneous 2.3 -0.773 Daf1 decay accelerating factor 1 
 2.3 -0.737 Dnahc8 dynein, axonemal, heavy chain 8 
     
Unknown 

26.0 -0.694 
0610011I04
Rik hepatocellular carcinoma-associated antigen 112 

 

6.2 -0.678 

cDNA 
clone 
IMAGE:100
5369  

 4.7 -0.691 Sntb1 Riken cDNA 
 

2.3 -0.678  
similarity to protein ref:NP_032607.1 (M.musculus)  melanoma 
antigen 

 2.2 -0.685 Itm2c integral membrane protein 2C 
 2.2 -0.685 ud35h06.r1  
 2.2 -0.743 Usp18 ubiquitin specific protease 18 
 2.1 -0.801  EST 
 

2.1 -0.913 
1500005K1
4Rik Riken cDNA 

 
-2.0 -0.894 

5830431A1
0Rik  

 -2.2 -0.776 Osbpl5 EST 
 

-2.2 -0.683 
6330442E1
0Rik Riken cDNA 

 
-2.6 -0.744 

4930422J18
Rik EST 

 -2.6 -0.741 Gbp3 EST 
 -2.7 -0.819 BC052328 EST 
 

-3.1 -0.855 
2810052M0
2Rik Riken cDNA 
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Table 5.2 

Categoory Fold 
Change 

Lklf 
Correlation 

Common Name Description 

     
Cell Cycle 2.6 0.829 Gfi1 growth factor independent 1 
 -3.4 0.814 Arhgdig Rho GDP dissociation inhibitor (GDI) gamma 
     
Transcription -2.0 0.807 Rorc RAR-related orphan receptor gamma 
 -2.2 0.803 Sap30 sin3 associated polypeptide 
 -2.2 0.865 Ddx18 Myc-regulated DEAD-box protein 
 -2.5 0.862 Gtf2h4 general transcription factor II H, polypeptide 4 
 -2.8 0.913 Idb2 inhibitor of DNA binding 2 
     
Signaling 4.3 0.809 Sdc4 syndecan 4 
  -2.1 to -2.7 0.873 Pla2g12a phospholipase A2, group XIIA 
     
Immune  2.7 0.824 Tnfsf11 tumor necrosis factor (ligand) superfamily, member 11 
 -2.8 0.938 Lta lymphotoxin A 
     
Metabolism 2.5 0.9 Alad aminolevulinate, delta-, dehydratase 
 2.2 0.853 Fabp5 fatty acid binding protein 5, epidermal: mal1; Fabpe gene. 

 -2.1 0.806 Slc2a1 
solute carrier family 2 (facilitated glucose transporter), 
member 1 

 -2.3 1 Hk2 hexokinase 2 
 -2.8 0.878 Car12 carbonic anyhydrase 12 
 -2.2 0.856 Tnnt1 troponin T1, skeletal, slow 
     
Unknown -2.2 0.922 AA408556 hypothetical protein LOC107094 
 -2.2 0.811 D3Ertd330e DNA segment, Chr 3, ERATO Doi 330, expressed 
 -2.7 0.87 Dnmt3a vv58e04.r1 Soares_thymus_2NbMT  
 -3.0 0.836 1200007D18Rik hypothetical protein LOC67458 
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Table 5.2:  Identification of potential Lklf target genes in primary CD4+ lymphocytes 

based on initial measures of coregulation.  Microarray analysis was performed to 

characterize the global expression profile of 5C.C7 CD4+ lymphocytes activated in vitro 

by APCs engineered to express varying combinations of ligands for the TCR, CD28 , and 

Ctla-4.  Naïve and activated populations were isolated at discrete times from 4-60 hours 

after initial stimulation based on expression of activation markers and division status.  

Genes with detectable expression in at least 10 of 78 samples analyzed were ranked by 

their degree of coregulation with Lklf across all timepoints, activation states, and 

stimulation conditions.  Genes with the greatest degree of positive or negative co-

regulation with Lklf in primary cells stimulated in vitro were cross referenced with genes 

differentially expressed in NFC cells overexpressing Lklf.  Co-regulation with Lklf in 

primary cells accurately predicted the qualitative nature of Lklf-mediated changes in gene 

expression in NFC cells.  In contrast, the magnitude of Lklf-mediated regulation in NFC 

cells did not accurately predict qualitatitve (positive or negative) co-regulation with Lklf 

in primary cells stimulated in vitro.    Genes initially identified by their coregulation with 

Lklf in primary CD4+ 5C.C7 lymphocytes that had not been previously identified as 

significant Lklf target genes are shown in Table 5.2.  The magnitude of the fold change in 

expression seen with Lklf overexpression in NFC cells is listed.  Correlation values for 

expression profiles detected in primary CD4+ 5C.C7 T cells is shown relative to Lklf.  

Correlation values less than 0 indicate positive coregulation, and correlation values 

greater than 0 indicate negative coregulation in primary cells.  Genes displaying a 

qualitatively consistent relationship with Lklf expression in both NFC and primary CD4+ 
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T cells are shown in red.  Genes displaying inverse relationships in the two systems are 

shown in blue.  
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 27 genes (5.3%) showed statistically significant changes in expression of at least two-

fold upon Lklf overexpression in NFC cells.  22 of the 27 genes (81%) had not been 

previously identified in our analysis as important Lklf targets based on the magnitude of 

their regulation by Lklf in NFC cells.  Similarly, among 503 genes that positively co-

regulated with Lklf during T cell activation in vitro, 80 genes (16%) showed at least 2-

fold changes that were statistically significant (p<0.05) following Lklf overexpression in 

NFC cells.  66 of the 80 genes (83%) had not been previously identified as important Lklf 

target genes as a result of the small fold-changes observed in NFC cells upon Lklf 

overexpression.  These results strongly suggest that for genes undergoing dynamic 

regulation across a variety of conditions and sampled at numerous times, measures of 

correlation based on extended kinetic profiles provides greater predictive value of 

physiologically-relevant gene interaction than the magnitude of resultant gene expression 

changes detected in the context of isolated overxpression. Hierarchical clustering of 

genes regulated more than two fold by Lklf expression in NFCs displaying coregulation 

with Lklf in activated primary CD4+ T cells is shown in Figure 5.5.   

Among genes altered more than two-fold by Lklf expression in NFC cells, the 

magnitude of regulation detected did not correlate with the likelihood of consistent gene 

co-regulation with Lklf in primary T lymphocytes following stimulation.  However, 

measures of co-regulation in a kinetic study of T cell activation reliably predicted the 

qualitative regulation exerted by Lklf over-expression in NFC cells.  Thus, 83% of genes 

evidencing negative co-regulation with Lklf in the kinetic study were depressed in NFC 
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cells over-expressing Lklf.  A summary of Lklf regulated genes identified by statistical 

comparison of gene expression profiles in primary CD4+ T cells stimulated in vitro is 

presented in Table 5.2. 

Our data suggest that Lklf expression is not sufficient for the maintenance of a 

naïve phenotype.  Instead, Lklf expression is differentially regulated by costimulatory 

signals triggered by CD28 and Ctla-4 ligation and may mediate unique, long-term 

phenotypic changes as a result.  The lack of overt autoimmunity and pathological disease 

in mice containing Lklf-deficient lymphocytes suggests that mechanisms of peripheral 

tolerance remain intact.  The tendency of Lklf-deficient lymphocytes to display an 

activated phenotype may result from altered expression of only a few genes involved in 

regulating threshold of activation or cell cycle progression, consistent with its down-

regulation by CD28 ligation.  For example, in NFC cells Lklf up-regulates cyclin C while 

down regulating the cyclin-dependent kinase inhibitor Cdkn1c (p57KIP2).  p57Kip2 is 

known to inhibit both cyclin A- and cyclin E-associated cdk2 kinase activities resulting in 

decreased cell proliferation and DNA synthesis(401).  Similarly, cyclin C has been shown 

to act cooperatively with c-myc to induce cdc2 expression and promote G1/S and G2/M 

cell cycle transitions(402).  Additional genes involved in cell cycle regulation (e.g. jun, 

Gfi1), signaling (e.g.Cipp, sla, Gpr65, IL7R, FRAT2, Tgtp, etc), and transcriptional 

regulation (e.g. Pola1, Hells, Cebpd, Hdac5) were identified as Lklf target genes co-

regulating with Lklf in primary T cell activation.  Literature supports the notion that 

altered expression of these genes may predispose lymphocytes to become activated in the 

absence of Lklf. 
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Several genes encoding important T cell signaling molecule that were regulated 

by Lklf in NFC cells possessed contradictory expression patterns in activated primary T 

cells.  Many of these genes, including Tec, Txk, Map3k3, Map4k2, and CD3-delta are 

central to the propagation of antigen-receptor signals.  All of these were downregulated 

by Lklf in NFC cells, and increased expression in Lklf-deficient lymphocytes could lead 

to increased antigen receptor sensitivity in the periphery and inappropriate activation.   

Similarly, Gadd45-beta, was upregulated by Lklf in NFCs but negatively co-regulated 

with Lklf in primary T cells.  Gadd45-beta deficiency predisposes mice to the 

development of spontaneous autoimmune lymphoproliferation(403), and decreased 

expression in the context of Lklf-deficiency may partially explain the Lklf-/--phenotype.  

The positive co-regulation of these genes with Lklf in activated primary T cells 

committed to cell-cycle entry is likely to reflect the influence of dominant mechanisms of 

regulation that result from TCR triggering.   

In summary, we have shown that Lklf is regulated by costimulatory signals 

mediated by CD28 and Ctla-4.  Moreover, we have identified genes significantly 

regulated by Lklf expression in a thymoma cell line and characterized their expression 

pattern in a kinetic study of activated T cells under varying condition of costimulation.  

Our results indicate that a specific subset of dysregulated genes may explain the 

predominantly activated phenotype of Lklf-deficient peripheral T lymphocytes.  

Moreover, we have identified likely targets of Lklf in primary cells that could potentially 

explain observed differences in phenotype that result from varying costimulation 

conditions.  Many of the identified Lklf target genes regulated during primary CD4_ T 
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cell activation, specifically Bcl2a1 and Mad4, have not been well characterized in this 

context.  This work provides the basis for further exploration of mechanisms underlying 

the maintenance of peripheral tolerance, costimulation, and regulation of T cell 

responsiveness. 
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The central importance of costimulatory signals in immune regulation has been 

shown in numerous disease models and is evident in the phenotype of CD28-/- and Ctla-4-

/- mice.  While CD28 signaling pathways have been relatively well defined, attempts to 

define the mechanisms by which Ctla-4 inhibits T cell activation and maintains peripheral 

tolerance have been hampered by the complexities of Ctla-4 expression, ligand binding, 

and signal integration.  Although much has been learned about the proximal events 

associated with CD28 and Ctla-4 ligation, relatively little is known about distal effects of 

costimulatory signal integration that may underlie qualitative aspects of immunity.  While 

CD28 has been shown to reciprocally regulate genes necessary for quiescence and T cell 

activation, a definitive role for Ctla-4 in this process has not been elucidated.  Thus we 

sought to define the transcriptional targets involved in mediating Ctla-4 tolerance 

induction.  

Progressive T cell activation is dependent on changes in gene transcription initiated by 

signals transmitted through the TCR.  CD28 is reported to greatly enhance the TCR-

induced transcriptional response in a primarily quantitative manner.  Ctla-4 reportedly 

counteracts CD28 signaling and mediates a partial inhibition of gene transcription upon T 

cell activation.  We have proposed that Ctla-4 ligation results in the specific regulation of 

genes necessary for the maintenance of a naive phenotype such as quiescence factors and 

that these changes result in altered responsiveness of the T cell to further stimulation.  To 

provide a contextual framework for the identification of potential mediators of Ctla-4 

function, we utilized an in vitro stimulation system capable of differentially signaling 
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through the TCR, CD28, and Ctla-4 to facilitate the generation of an extensive database 

of gene regulations occurring during primary activation of CD4+ T cells experiencing 

varying combinations of antigen receptor stimulation and positive and negative 

costimulation.  Microarray analysis was performed on FACS-purified CD4+ T cells 

stimulated under varying conditions of costimulation and homogenous for activation 

hisotry, expression of activation markers, and division status.  In addition, stringent 

control of activation conditions made possible by the use of engineered APCs and TCR-

tg T cells facilitated further characterization of the temporal parameters of antigen 

receptor and costimulatory signal integration.   The database of gene regulations permits 

extensive data mining and the application of combined bioinformatics approaches. Our 

results are relevant to our understanding of autoimmune disease, peripheral T cell 

tolerance, and T cell differentiation.  Furthermore our results are relevant to numerous 

other model systems, such as those seeking to explain the phenomenon of anergy 

induction in lymphocytes.  Understanding the mechanisms involved in costimulatory 

signal integration, the long term effects of CD28 and Ctla-4 ligation, and the 

intermediates bridging the two, will be essential for the productive manipulation of 

costimulation pathways in clinical applications. 

In general, our results clearly indicate that TCR ligation in the absence of costimulation is 

capable of activating all signaling pathways necessary for commitment to activation and 

cell-cycle entry within 1-2 hours.  TCR signaling induces a dynamic transcriptional 

response characterized by reciprocal regulation of several thousand genes, including key 

determinants of cellular activation and quiescence.   In CD4+ T cell subpopulations 
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purified on the basis of activation marker expression, TCR signaling potently upregulates 

genes necessary for long-term survival and effector function to levels comparable with 

those seen subseqeuent to CD28 costimulation, including interleukin-2, CD25, and Bcl-

xL.  CD28 enhances proximal TCR-signaling events leading to CD4+ T cell activation as 

evidenced by dramatically enhanced responder frequency to a broad range of antigen 

concentrations within 1-2 hours.  In addition, CD28 transmits unique signals that can be 

integrated with sub-mitogenic TCR signals over an extended period of 12-16 hours.  

Thus, CD28 functions to lower the threshold of activation in a manner that allows for 

rapid amplification of T cell responses to antigen receptor stimulation in the presence of 

CD28 ligands, but also allows for prolonged costimulatory signaling that is permissive 

for commitment to activation in CD4+ T cells that have received prior sub-mitogenic 

TCR signals.  Consequently, CD28 signaling prevents the induction of an unresponsive 

phenotype in CD4+ T cells exposed to low levels of antigen receptor stimulation for an 

extended period.  At the transcriptional level, CD28 differentially modifies TCR-

mediated changes in gene expression.  In general, CD28-signaling accelerates the rate of 

transcriptional regulation subsequent to TCR-triggering and results in modest changes in 

the overall scope and magnitude of genomic expression patterns observed during primary 

T cell activation.  Globally, expression patterns of T cells activated by TCR triggering 

with or without CD28 costimulation converge over time and result in relatively few 

stably expressed transcripts displaying differential regulation by CD28 signaling.  These 

data suggest a general overestimation of the role CD28 plays in determining the 

magnitude of gene expression changes in previous reports that failed to use 
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physiologically relevant ligand and did not examine T cell populations homogenous for 

activation status.    Il-2 and bcl-xL, traditionally considered CD28-specific target genes, 

display less than two-fold changes in expression over extended intervals subsequent to 

CD28 costimulation.  The magnitude of differential regulation is consistent with 

increased mRNA stabilization mediated by CD28, and may not require increased 

transcription.  Critically, several genes reportedly expressed in activated T cells in a 

CD28-dependent manner were only marginally increased in expression by CD28 

costimulation relative to TCR monostimulation.  In contrast, numerous genes not 

previously identified as CD28-specific targets were more highly regulated following 

CD28-mediated costimulation, suggesting that novel pathways downstream of CD28 

remain undiscovered.  No genes were reliably regulated by CD28 costimulation in a 

manner reciprocal to that seen following TCR monostimulation.  However, a very small 

number of genes appeared to specifically dependent on CD28 signaling for efficient 

regulation.  The vast majority of genes differentially regulated by CD28(>2-fold average 

difference over a minimum of 12 hours) were associated with metabolic, cytoskeletal, or 

synthetic pathways and may partially explain the observed decrease in time to cell cycle 

entry observed with CD28 costimulation.  A small subset of genes differentially regulated 

by CD28-signaling are transcription factors, and  only one transcription factor, Lklf, 

maintained long-term differential expression subsequent to CD28 ligation suggesting that 

mechanisms underlying regulation of Lklf expression may utilize novel CD28-mediated 

signaling pathways.  
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We have shown that the expression of Ctla-4 ligands on engineered APCs 

providing TCR- and CD28-mediated stimulatory signals to TCR-tg CD4+ T cells 

correlates with changes in gene expression that serve to counteract transcriptional 

regulation by CD28.  .  However, the degree to which Ctla-4 suppressed CD28-mediated 

changes in gene expression was much less than has been reported previously and global 

patterns of expression were largely identical, both quantitatively and qualitatively, by 20 

hours in cells activated under conditions of CD28 ligation with or without concomitant 

Ctla-4 ligation.  A predominant preferential effect of Ctla-4 suppression of transcriptional 

regulation based on molecular function or process was not detected.  However a small 

number of genes remained stably altered by Ctla-4 relative to TCR and CD28 coligation.  

Surpisingly, the most stably altered transcription factor, Lklf, was also the most 

significantly changed by CD28 signaling relative to isolated TCR ligation. 

The central role of CD28 and Ctla-4 in determining the nature and extent of 

immune responses implies that identification of downstream mediators might provide 

useful targets for immunotherapeutic and pharmacological approaches to combating 

immunological disease.  The strength and precision of tolerance induction that can be 

affected by costimulation dependent mechanisms is dramatically revealed in the cell-

extrinsic regulation of Ctla-4 knockout cells in mixed bone marrow chimera.  The stable 

chimerism that results from a 1:1 donor transfusion of Ctla-4-knockout and wild-type 

marrow is dependent on continual Ctla-4-dependent mechanisms of regulation that are 

sufficient for the restoration of normal pathogen-specific immunity, yet maintain 

immunotolerance to self-antigen in otherwise potently self-reactive lymphocyte 
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populations.  Analysis of the genomic expression pattern in these regulated Ctla-4-

deficient CD4+ T cells reveals numerous changes in gene expression that may indicate 

the pathways involved in extrinsic regulation. 

Wild-type cells are capable of reversing the autoreactivity native to Ctla-4-

deficient T cells while maintaining normal responsivness to foreign antigen.  An 

understanding of mechanisms of cell-extrinsic regulation of autoimmune T cells 

operative in the context of mixed Ctla-4-gentoype bone marrow chimerae may lead to the 

development of therapeutic strategies.  Transcriptional mechanisms that might potentially 

mediate the regulatory effect of wild-type cells would be expected to involve regulators 

of lymphocyte signaling pathways operating downstream of the antigen receptor and/or 

CD28.  Expression of the E3 ubiquitin ligase c-Cbl is turned on in Ctla-4 –deficient cells 

and expressed at high levels.  c-Cbl expression and activity also correlates with anergy 

induction and inhibition of peripheral T cell responsiveness, and c-cbl is known to 

regulate proximal signaling molecules downstream of the TCR including Rap1 and 

CrkL(86).  The NFATc2/NFAT1 transcription factor is involved in the regulation of 

numerous processes in lymphocytes including gene regulation during activation and 

cooperative activity with FoxP3 during regulatory T cell development(404) .  In Ctla-4 

deficient cells extrinsically regulated by wild-type cells in mixed bone marrow chimerae, 

NFAT1 is severely upregulated.  Very recently, NFAT1 was clearly identified as a 

critical component of the signaling pathway that results in anergy induction in B cells 

chronically exposed to self-Ag(405).  In contrast, other work has shown that a 

constitutively active form of protein kinase B(PKB) reduced nuclear accumulation of 
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NFAT1 and NF-kappaB when introduced into T cells.  Unexpectedly, the effect of the 

reduced shuttling and nuclear accumulation of NFAT and NF –kappaB was a reduction in 

activation threshold, enhanced cell cycle progression, and increased production of Th1 

and Th2 cytokines similar to what was seen with CD28 costimulation(406)  

Cumulatively, these results suggest that in certain contexts NFAT1 can counteract 

signaling pathways mediated by CD28.   In addition to c-Cbl and NFAT1 upregulation, 

Ctla-4 deficient cells upregulated the atypical protein kinase C, PKC–zeta.  Interestingly, 

T cell:APC interaction via CD40:CD40L results in transient association of c-Cbl with the 

cytoplasmic tail of PI3K resulting in increased PIP3 production.  PIP3 activates 3’ (PI)-

protein kinase 1 that activate PKC-zeta by phosphorylation.  PKC-zeta increases nuclear 

NFAT1 accumulation and phosphorylates the catalytic domain of NFAT1.  Thus a direct 

line of interactions from c-CBL to increased NFAT activity and subsequent inhibition of 

pathways normally regulated by CD28 is enhanced in extrinsically regulated Ctla-4-

deficient T cells.  The lymphoproliferative defect in Ctla-4 deficiency is CD28 

dependent, suggesting that increased nuclear NFAT resulting from a combination of 

increased expression and enhanced upstream activation through c-Cbl and PKC-zeta may 

explain the tolerant phenotype of Ctla-4 deficient T cells in mixed bone marrow 

chimerae.  To date, no other molecular mechanism mediating extrinsic regulation of Ctla-

4 deficiency has been proposed. 

The restoration of appropriate antigen-specific responses in Ctla-deficient T cells 

in the presence of wild-type cells suggests that generalized mechanisms of 

immunosuppression are not operative in this context. Instead, contact dependent 
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mechanisms seem likely to prevail.  Cumulatively, the data available is consistent with a 

model in which Ctla-4 deficient cells are tolerized in a process similar to anergy 

induction by interaction with APCs rendered tolerogenic by interactions with wild-type 

cells.  This model is in accord with numerous findings.  First, Ctla-4 deficiency requires 

antigen receptor triggering and CD28 costimulation to initiate disease(268), suggesting 

that mechanisms of tolerance induction must precede or coincide with antigen 

recognition by the TCR.  The regulation of Ctla-4-deficient cells is dependent on the 

continued presence of either CD4+ or CD8+ wild-type T cells indicating that Ctla-4 

functions on a continuing basis to regulate the knockout T cells.  The ability of Ctla-4 to 

provide extrinsic regulation is only known to occur through a limited number of distinct 

mechanisms.  Ctla-4 can signal through B7 to induce a tolerogenic phenotype in dendritic 

cells characterized by enhanced tryptophan catabolism.  Direct suppression of effector 

cells has also been achieved by T cell-expressed B7-mediated signaling upon binding 

Ctla-4 on regulatory T cells(303).  However, this would represent an antigen non-specific 

mechanism if it did not occur concomitantly with lymphocyte:APC interaction.  

Moroever, PKC-zeta is known to be regulated by CD40/CD40L interaction.  Thus I 

would propose a model in which a three-way interaction occurs between wild-type 

regulatory T cells specific for self-antigen, tolerogenic dendritic cells presenting self-

antigen, and Ctla-4-deficient effector cells capable of responding to self-antigen.  

Tolerogenic dendritic cells provide altered signaling via accessory costimulation 

molecules such as CD40 potentially enabling the upregulation of c-Cbl and blockade of 

CD28-mediated signals by an NFAT1-dependent mechanism.  Confirmation that NFAT1 



 239

functions as an anergy factor in T cells and is critical for tolerance induction in regulated 

Ctla-4-deficient cells will be an important first step in clarifying the validity of this 

model. 

In contrast to the number and magnitude of changes seen in exrinsically regulated 

Ctla-4 deficient T cells, Ctla-4 deficiency in the context of absent B7 resulted in only 

insignificant changes in expression.  With the exception of Ctla-4 and the melanoma 

antigen, Mela, there were no genes significantly altered more than four fold.   Given the 

absence of pathology in Ctla-4 deficient mice in the presence of inactivating mutations of 

the B7:CD28 signaling pathway, it is likely that the slightly increased sensitivity of Ctla-

4 deficient mice to isolated TCR triggering reflects a partial role for biophysical 

disruption of the immature immunological synapse or altered activity of proximal 

signaling intermediates as a result of Ctla-4 recruitment to the APC:T cell interface.  

Given the recent reemergence of reports suggesting a role for Ctla-4 in thymic 

development, it was important to establish that baseline gene expression is not altered in 

the absence of Ctla-4 prior to activation. 

 Similarities in the the phenotype of Lklf-deficient and Ctla-4-deficient mice 

suggest that they both function to maintain the quiescent phenotype of peripheral 

lymphocytes.  RT-PCR and quantitative real-time PCR confirmed the differential 

regulation by CD28 and Ctla-4.  Lklf is not a Ctla-4-specific target gene.  However, Ctla-

4 ligation abrogated the suppressive effect of CD28 signaling on Lklf expression 

completely, as assessed by quantitative PCR.  Thus, regulation of Lklf transcription may 

represent a critical juncture in the integration of the opposing costimulatory pathways. 
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 Lklf expression is necessary but not sufficient for the maintenance of a quiescent 

phenotype.  Lklf expression is maintained in activated and divided cells stimulated by 

isolated antigen receptor triggering or in the presence of Ctla-4 ligation.  In transformed 

cell lines, Lklf overexpression did not alter growth characteristics (Data not shown).  

Moreover, overexpression of Lklf in primary T cells infected with a retroviral construct 

encoding Lklf showed normal responses to antigen receptor ligation or costimulation 

through CD28 or Ctla-4 (Data not shown).  The ability of forced Lklf expression in Ctla-

4-deficient peripheral T cells to suppress or prevent the development of autoimmune 

disease is being investigated.  The CD28-dependent nature of the lymphoproliferative 

disease in Ctla-4-/- mice suggests that transcriptional regulation mediated by CD28 may 

be important.  Lklf   

 Lklf reproducibly regulates several hundred genes when overexpressed in a 

double positive thymoma cell line.  In contrast, similar experiments with other putative 

immunoregulatory or quiescence factors did not provide reproducible results.  These 

included FoxP3, TSC-22, and Tob.  In an attempt to characterize targets of Lklf relevant 

to primary T cells, a comparison was made between all genes altered more than three fold 

by Lklf overexpression in NFC cells and the observed degree of coregulation with Lklf 

expression in the kinetic profile of T cell activation.  Lklf expression remains unchanged 

in naïve or TCR monostimulated cells, is quickly downregulated by CD28 costimulation, 

and is maintained by Ctla-4 signaling despite concurrent CD28 ligation. As reported, nine 

genes identified as Lklf targets in NFC cells coregulated with Lklf expression in primary 
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cells.  Two of the identified genes, Sh2d1a(SAP/SLAM-associated protein) and Sla(Src-

like adaptore protein), are known to regulate T cell responses.  

 Sla is an adaptor protein containing Src homology 3 (SH3) and SH2 domains 

highly similar to those found in Lck and other Src family members.  Initially 

characterized as an inhibitor of mitogenesis(407), Sla has been shown to inhibit TCR 

signaling by association with a multimolecular signaling complex containing CD3-zeta, 

ZAP-70, VAV, LAT, and SLP-76(408).  Sla mediates downregulation of the TCR in 

thymocytes by targeting TCR-zeta for degradation in a c-cbl-dependent manner(409) and 

interferes wih TCR signaling in peripheral T cells leading to functional downregulation 

of NFAT and NF-kB(410).  Similarly, Sh2d1a/SAP functions to fine-tune immune cell 

activation and disruption of Sh2d1a/SAP function results in X-linked lymphoproliferative 

syndrome (XLP)(411).  XLP is often fatal and is characterized by 

hypogammaglobulinemia, fulminant infectious mononucleosis, and lymphoma.  

Sh2d1a/SAP is required for signaling through CD150/SLAM.  Slam is upregulated on 

naïve T cells during primary activation and is constitutively expressed on memory cells 

where it mediates a positive costimulatory signal capable of enhancing TCR-dependent T 

cell responses independent from CD28.  While most reports have focused on the role 

Sh2d1a/SAP plays in CTL and NKT function, a recent report has shown that memory and 

effector CD4+ T cells from XLP patients are specifically defective in IL-10 

secretion(412).  These observations suggest that Ctla-4 maintenance of Lklf expression 

may result in the direct downregulation of Sla and a consequent increase in TCR signal 

strength.  Enhanced TCR signaling can induce anergy by altering the relative activity of 
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specific transcription factors including NFAT1.  Thus Ctla-4 ligation may operate 

through Lklf to prime cells for anergy induction. 

 

The relationships identified by cross-referencing expression profiles from in vitro 

overexpression data with kinetic expression patterns in primary T cell activation facilitate 

hypothesis-driven experiment design.  Newly available bioinformatics tools allow mass-

incorporation of published observations into statistical analyses defining coordinately 

regulated genes.  Thus the dataset generated by the kinetic profiling of in vitro activated 

primary CD4+ T cells will enable efficient cross-referencing with observations made in 

more focused investigations of gene function.   

The validity of the results presented above is dependent on the the integrity of the 

in vitro stimulation system we have utilized.  The use of TCR-tg T cells and engineered 

APCs capable of differentially signaling through Ctla-4 and CD28 should allow precise 

control of stimulation conditions.  However, apparent instability in the magnitude of 

inhibition mediated by the presence of Ctla-4 ligands raises concerns about the nature of 

the T cell/APC interaction that is occurring.  While surface expression of T cell ligands 

has been matched across cell lines, and is stable over long periods of time, the apparent 

inhibition of T cell activation in the presence of Ctla-4 ligands has intermittently been 

observed to result from undefined variables that are Ctla-4 independent.  Recent work in 

our lab has definitvely shown that the engineered APCs are capable of signaling through 

Ctla-4, and no explanation can be given for the apparent Ctla-4 independent suppression 

of T cell responses that has been observed at various times.  Recent experiments suggest 
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that the CHO APCs maintained in culture for extended periods are more likely to result in 

spurious changes in T cell responsiveness.  The experiments included in the above 

analyses were performed using CHO APCs that had been cultured for relatively shorter 

durations, and thus may have inhibited T cells in a purely Ctla-4 dependent manner.  

Some reassurance is provided by the stability of expression trends seen with the more 

highly expressed genes reportedly influence by costimulatory signals.  However, the 

possibility remains that observed phenotypes may reflect non-specific properties of the 

stimulation system.  Thus all observations and predictions derived from the dataset must 

be validated in independent systems. 
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