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ABSTRACT

The c-Jun NHz-terminal kinase (JNK) group and the p38 group of mitogen-activated

protein kinases (MAK) are stress-activated protein kinases that regulate cell proliferation

differentiation, development, and apoptosis. These protein kinases are involved in a signal

transduction cascade that includes a MAP kinase (MAPK), a MAP kinase kinase (MAP2K), and

a MA kinase kinase kinase (MAP3K). MAPK are phosphorylated and activated by the

MAP2K, which are phosphorylated and activated by various MAP3K.

The work presented in this dissertation focuses on understanding the regulation and

fuction of the JN and p38 MAPK pathways. Two different strategies were utilized. First, I

used molecular and biochemical techniques to examine how MAP2K and MA3K mediate

signaling specificity and to define their role in the MAPK pathway. Second, I used gene targeted

disruption studies to determine the in vivo role ofMAP2K and MAP3K in MAPK activation. I

specifically used these approaches to examine: (1) docking interactions between p38 MAPK and

MA2K (MKK and MKK6 (Chapter II)J; (2) the differential activation ofp38 MAPK by

MAP2K (MKK , MK4, and MKK6 (Chapter III)J; and (3) the selective involvement of the

mixed lineage kinase (MLK) group ofMAP3K in JNK and p38 MAPK activation (Chapter IV

and Appendix). In addition, I analyzed the role of the MK3 and MKK6 MA2K in cell

proliferation and the role ofthe MLK MAP3K in adipocyte differentiation (Chapter III and

Chapter IV). Together, these data provide insight into the regulation and fuction of the stress-

activated MAPK signal transduction pathways.
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CHAPTER I

INTRODUCTION

As living organisms , cells adapt to changes in the environment. These changes include

differences in temperatue , oxidation, and nutrent concentration - basic necessities for

maintaining cellular homeostasis. Physical and chemical fluctuations act as signals to stimulate

cellular growth, differentiation, and death. A mechanism by which cells convert a signal into a

biological fuction is a process called signal transduction. Signal transduction is critical for

normal life. Specific stimuli differentially affect cellular homeostasis and any abnormal

signaling may lead to a diseased state. Therefore, understanding signal transduction pathways is

essential for understanding and treating human diseases. Maintaining homeostasis requires the

cooperation of many signaling pathways. Previous studies have established a role for mitogen-

activated protein kinase (MAPK) pathways in regulating cellular responses. Here I sumarize

recent advances in understanding the MAPK signal transduction pathway and the role of MAPK

in diverse cellular processes.



The MAK signal transduction pathway

Mitogen-activated protein kinases (MAPK) are serine-threonine kinases that are activated

by the exposure of cells to extracellular stimuli , such as growth factors, cytokines, and cellular

stress (Figue 1.1). Recent reviews focus on the components and the regulation of the MAK

pathways (Davis 2000; Ono and Han 2000; Kyrakis and Avruch 2001; Weston and Davis 2002;

Nebreda and Porras 2000; Manning and Davis 2003). These kinases are stimulated through a

signaling cascade and regulate cell proliferation, differentiation, development, inflammation, and

apoptosis. MAP kinases control these cellular processes, in part, through the activation of

various transcription factors. MAP kinase signaling occurs though a "three-tiered"

phosphorylation cascade (Davis 2000; Kyrakis and Avrch 2001). This protein kinase cascade

involves a MAP kinase (MAPK), a MAP kinase kinase (MAP2K), and a MAP kinase kinase

kinase (MA3K). MAK are phosphorylated and activated by MA2K, which are

phosphorylated and activated by MA3K.

The canonical MAK pathway is evolutionarily conserved (Davis 2000; Kyrakis and

Avrch 2001). In mammals, there are three major groups of MAP kinases: (1) extracellular-

signal regulated kinases (ERK), (2) c-Jun NHz-terminal kinases (JNK), and (3) p38 MAP

kinases. As serine-threonine kinases, these MAPK phosphorylate protein substrates on

conserved Ser-Pro or Th-Pro motifs. The target sequence of these substrate phosphorylation

motifs is distinct for individual MAP kinases. In addition, MAP kinases are also differentiated

by the dual phosphorylation motif that mediates their activation: (1) Thr-Glu- Tyr (ERK), (2)

Th-Pro-Tyr (JN), and (3) Thr-Gly-Tyr (p38 MAPK).

MAP kinases are activated by different extracellular stimuli. The ERK pathway

primarily responds to mitogens and is regulated by a Ras-dependent pathway (Cobb 1999;



.L.

Pearson et al. 2001; Chen et al. 2001; Schonhoff et al. 2001). Some examples of these mitogenic

signals are epidermal growth factor (EGF), fibroblast growth factor (FGF), nerve growth factor

(NGF), and platelet-derived growth factor (PDGF). In contrast, the JNK and p38 MAK

pathways are stress-activated MA kinases, since they are activated by both inflammatory

cytokines and environmental stress (Davis 2000; Ono and Han 2000). Examples 

inflammatory cytokines that activate JNK and p38 MAPK are tuor necrosis factor alpha

(TNFa) and interleukn- l (IL- l). Examples of environmental stress include UV radiation

osmotic shock, heat shock, lipopolysaccharide (LPS), and protein synthesis inhibitors. The

following sections summarize the JN and the p38 MAPK pathways and discuss their role in

cellular responses.



Figure 1. 1. The mitogen-activated protein kinase (MAPK) signal transduction pathway.

MAPK are activated by extracellular stimuli to regulate cell proliferation, differentiation

development, and apoptosis. MAPK control these cellular processes, in part, through the

activation of various transcription factors. MAPK signaling occurs though a phosphorylation

cascade that involves a MAP kinase (MAK), a MAP kinase kinase (MA2K), and a MAP

kinase kinase kinase (MAP3K). MAPK are phosphorylated and activated by MAP2K, which are

phosphorylated and activated by MAP3K. There are three major groups of MAPK in mammals:

ERK, JNK, and p38 MAPK. The ERK pathway primarly responds to mitogens , while the 

and p38 MAPK pathways are stress-activated MAK pathways and are strongly stimulated by

inflammatory cytokines and environmental stress.
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The c-Jun NHz-terminal kinase (JNK) group of MAP kinases

The c-Jun NHz-terminal kinases (JN) were first identified as p54 protein kinases that

were activated in response to cycloheximide (Kyrakis and Avrch 1990). These protein kinases

bind to and phosphorylate the c-Jun transcription factor at two sites , Ser-63 and Ser-73. (Adler et

al. 1999; Pulverer et al. 1991; Hibi et al. 1993). Cloning of the p54 kinase revealed it as a

member of the MA kinase family (Derijard et al. 1994; Kyrakis et al. 1994). The p54 kinase

named c-Jun NHz-terminal kinase (JN), has been extensively characterized (Davis 2000;

Kyrakis and Avrch 2001; Weston and Davis 2002; Manning and Davis 2003). Three genes

encode the JNK protein kinase family, Jnkl , Jnk2 and Jnk3. The Jnkl and Jnk2 genes are

ubiquitiously expressed, while the Jnk3 gene is restrcted to a limited number of tissues (e.

brain, heart, testis). These Jnk genes are alternatively spliced to create ten different mRNAs.

Each gene generates a p46 kDa and a p54 kDa JNK isoform (Gupta et al. 1996).

Inflammatory cytokines and cellular stress activate the JN pathway through the MAP

kinase cascade. Activation of JNK leads to phosphorylation of protein substrates, particularly

the c-Jun components of the activator protein- l (AP- l) transcription factor complex.

Phosphorylation of c-Jun by JN directly enhances AP- l transcriptional activity (Pulverer et al.

1991; Smeal et al. 1991). In addition to c-Jun phosphorylation JN also phosphorylates other

AP- l proteins (JunD and ATF2) that subsequently enhance AP- l gene transcription (Gupta et al.

1995; Whitmarsh et al. 1995; Whitmarsh and Davis 1996). Thus, AP- l activation involves a

direct phosphorylation, as well as, an induced expression of AP- l transcription factors. In

contrast to activation of AP- JN inhibits transcriptional activity ofNFATc1 (NFAT2) and

NFATc3 (NFAT4) upon phosphorylation (Chow et al. 1997; Chow et al. 2000). Furthermore

activated JN also regulates protein stability by inhibiting ubiquitin-mediated degradation



(Musti et al. 1997; Fuchs et al. 1998).

The p38 group of MA kinases

The p38 MA kinase was originally characterized as a 38 kDa protein that was

phosphorylated in response to LPS treatment (Han et al. 1993). Independent studies identified

this protein as a target of anti-inflammatory drgs that inhibit cytokine production (Lee et al.

1994), and as an activator ofMAPKAP kinase 2 (Rouse et al. 1994; Freshney et al. 1994).

Cloning of this 38 kDA protein identified it as a member of the MAP kinase family (Han et al.

1994). This kinase is named p38 MAP kinase and has been extensively characterized (Ono and

Han 2000) (Nebreda and Porras 2000; Kyrakis and Avrch 2001). Four genes encode p38 

kinases p38a p38/3, p38y, andp388. The p38a and p38~ MAK consist of one sub-group,

while the p38y and p38 MAPK represent a second subgroup. The p38a and p38~ MAPK are

sensitive to the anti-inflammatory drg SB203580 , while the p38y and p38 MAPK are resistant

to its inhibition. Furhermore, the p38a and p38~ MAPK are ubiquitiously expressed, while the

p38y and p38 MAPK display a more limited pattern of expression. For example , the p38y

MAK is expressed in skeletal and heart muscle and the p3 MAPK is expressed in endocrine

and exocrine tissues.

Cytokines and cellular stress activate p38 MAPK through a protein kinase cascade.

Activation of p3 8 MAPK is important for the production of inflammatory cytokines, such as IL-

, IL- , IL- , and TNa (Kumar et al. 2003). Induction of these cytokines may be mediated, in

part, through the stabilization and translation of the short-lived cytokine mRNAs (Clark et al.

2003; Kumar et al. 2003). The p38 MAPK also phosphorylates many transcription factors

including several AP- l proteins (e.g. ATF2). In addition to phosphorylating transcription factor



substrates, p38 MAK phosphorylates other protein kinases (e.g. MAPKA2, PRA, MSK1

and MN1I2) to amplify its signal. MAPKA2 and PRAK phosphorylate the small heat shock

proteins HSP27 (Rouse et al. 1994; Freshney et al. 1994; New et al. 1998) and MNK1I2

phosphorylate the translation initiation factor eIF-4E (Waskiewicz et al. 1997; Waskiewicz et al.

1999). Similarly, MAPKAP2 and MSKI activate the CREB transcription factors ATFI and

CREB (Tan et al. 1996; Deak et al. 1998).

The MA2K: MAP kinase kinases

MA kinases are activated by dual phosphorylation at conserved Thr-Xaa- Tyr motifs in

the activation loop (Davis 2000; Kyrakis and Avrch 2001). This dual phosphorylation is

mediated by a MAP kinase kinase (MAP2K). At least six protein kinases fuction as MA2K:

MEKI and MEK2 (for ERK1I2 MAPK signaling pathway); MKK and MKK6 (for p38 MAPK

signaling pathway); MK4 and MKK7 (for INK MAPK signaling pathway).

The JN protein kinases are activated by MKK4 and MK7. Nine alternatively spliced

isoforms with distinct NHz-terminal regions (MK4 and MKK7) and COOH-terminal regions

(MKK7) have been identified by degenerate PCR analysis (Lin et al. 1995; Sanchez et al. 1994;

Derijard et al. 1995; Tourier et al. 1999; Tourier et al. 1997). MK4 and MK7

phosphorylate all three JNK isoforms, although they are differentially activated by specific

stimuli. For example, MKK4 is strongly activated by environmental stress, while MKK7 is

activated by both inflammatory cytokines and environmental stress (Tourier et al. 2001).

Recent studies indicate that although MKK4 and MKK7 phosphorylate JNK on both Thr and Tyr

residues, MKK4 preferentially phosphorylates JNK on Tyr and MKK7 preferentially targets 

on Th (Lawler et al. 1998; Tourier et al. 2001). Since dual phosphorylation is necessary for



maximal JNK activation, MKK4 and MKK7 may cooperate to synergistically activate JNK.

Thus, in response to cytokine stimulation, the basal level of MK4 activity may be important for

maximal JNK activation.

The p38 MAPK kinases are activated by MKK and MK6. Four alternatively spliced

isoforms with distinct NHz-terminal regions have been identified by degenerate PCR analysis.

(Moriguchi et al. 1996b; Moriguchi et al. 1996; Han et al. 1997; Han et al. 1996; Derijard et al.

1995; Raingeaud et al. 1996). MKK3 and MKK6 are strongly activated by both inflammatory

cytokines and environmental stress , although they differentially activate different p38 MAK

isoforms. MKK3 phosphorylates p38a, p38y, and p38b, whereas MKK6 phosphorylates all four

p38 MAK isoforms (Enslen et al. 1998; Jiang et al. 1997). One aim of this thesis is to

determine how MKK3 and MKK6 mediate selective activation ofp38 MAP kinases (Chapter II).

MKK and MK6 are specific activators ofthe p38 MA kinase, and neither kinase

activates the JN pathway. Interestingly, MKK4 also phosphorylates p38 MAPK in vitro

(Derijard et al. 1995). The mechanism ofp38 MAPK activation by MA2K is different than the

mechanism of JNK activation by MAP2K. There appears to be no preferential phosphorylation

of Thr or Tyr residues by the MAP2K in p38 MAPK activation (Enslen et al. 2000; Tourier et

al. 2001). MK3 , MKK4 , and MK6 phosphorylate p38 MAPK equally on Tyr and 

residues. The absence of preferential p38 MAPK phosphorylation may lead to redundancy

among the MA2K. For example , p38 MAPK activation is not significantly affected in MKK4-

deficient cells (Yang et al. 1997a; Tourier et al. 2001). A second aim of this thesis is 

determine whether MK4 is a relevant activator ofp38 MAPK (Chapter III).



The MAP3K: MAP kinase kinase kinases

MAP2K are activated by dual phosphorylation on conserved Ser-Xaa3-Thr motifs in the

activation loop (Davis 2000; Kyrakis and Avrch 2001). This dual phosphorylation is mediated

by a MAP kinase kinase kinase (MA3K). Many protein kinases may fuction as MAP3K in the

JNK and p38 MAPK pathways. These MAP3K are divided into several broad groups: (1) the

MEK kinase family (MEKK); (2) the Tumor progression locus- (Tpl-2); (3) the thousand and

one kinase family (TAO); (4) the TGF~-activated kinase (TAK); (5) the apoptosis signal-

regulating kinase (ASK); and (6) the mixed lineage kinase family (MLK).

Many MAP3K were initially identified as MAK activators in transfection assays

(Fanger et al. 1997). The biochemical properties of these MAP3K have been recently reviewed

(Kyrakis and Avrch 2001; Gallo and Johnson 2002). The MEKK, MEKKI - MEKK4, are a

diverse group ofMAP3K. MEKK share a common kinase domain and activate all different

MAK pathways. MEKK contain different regulatory regions such as SH3-domains and Pro-

rich regions that mediate interactions with other proteins. Tpl-2 is a protein kinase that is

encoded by a proto oncogene and activates all different MAK pathways. In contrast, T AO 1

specifically activates the p38 MAPK pathway. Common featues ofTAO kinases include an

NHz-terminal kinase domain, followed by a very large (700 amino acid) COOH-terminal region.

T AKI contains a short NHz-terminal regulatory motif that is essential for interacting with the

TAB adaptor proteins , coupling T AKI to upstream signals. ASK! binds to several adaptor

proteins as well, coupling ASKI to downstream apoptotic signaling. T AKI and ASKI activate

the JN and p38 MAK pathways. Lastly, seven MLK have been identified; however, only a

few of these protein kinases have been characterized.
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The large number of MAP3K suggests an inherent redundancy in MAK regulation.

This idea of redundancy is supported by the presence of common substrates for these protein

kinases. However, much remains unclear regarding the role of MAP3K in MAPK signaling. A

third aim of this thesis is to elucidate the individual role of the MLK MAP3K, particularly the

MLK3 MAP3K, in JNK and p38 MAPK activation (Chapter IV, Appendix I). Characteristics of

the MLK MAP3K family wil be discussed in detail below.

The mixed lineage kinase (MLK) group of MAP3K

Mixed lineage kinases (MLK) are serine/threonine kinases that regulate the 

pathway. MLK share two strctual featues: a kinase catalytc domain and a leucine zipper

region (Gallo and Johnson 2002). The kinase catalytic domain shares similarities to both Ser/Thr

and Tyr kinases. Protein kinase subdomains 1-7 resemble the MEKK serine/threonine kinases

while protein kinase subdomains 8- 11 resembles the Src tyosine kinases. Thus, when MLK

were first cloned, their dual phosphorylation specificity was unclear and MLK were named

mixed lineage kinases" (Dorow et al. 1993). Autophosphorylation on Ser and Thr residues of

MLK, however, demonstrate its Ser/Thr specificity (Gallo et al. 1994). MLK also share a

leucine zipper region that is required for dimerization and subsequent autophosphorylation and

activation of the JN pathway (Nihalani et al. 2000; Nihalani et al. 2001; Ikeda et al. 2001;

Leung and Lassam 1998; Vacratsis and Gallo 2000).

Within the MLK family of protein kinases , seven different MLK have been identified

(Gallo and Johnson 2002). They are fuher divided into three subgroups based on their domain

characteristics: MLK, DLK, and ZAK (Figure 1.2). All of the MLK share a common kinase

catalytic domain and leucine zipper region. The MLK (MLKI - MLK4) have additional
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domains that mediate protein-protein interactions. The DLK (DLK and LZK) contain two

leucine zipper motifs, while ZAK may featue a sterile-a motif (SAM) in addition to the leucine

zipper region that may mediate dimerization.

The MLK subgroup, MLKI - MLK4, contains a SH3-domain, a Pro-rich region, and a

Cdc42/Rac (CRIB) binding motif. The SH3 domain ofMLK3 has been shown to bind

intramolecularly to the Pro-rich region and autoinhibit its kinase activity (Zhang and Gallo

2001). In addition, MLK3 also binds activated Cdc42 , a member of the Rho family ofGTPases

(Teramoto et al. 1996; Bock et al. 2000). Overexpression ofCdc42 has been shown to increase

MLK3 activity; however, the mechanism of activation is not completely understood. The

interaction ofMLK3 with activated Cdc42 may disrupt the SH3-mediated autoinhibition, since

the CRIB motif is located adjacent to the Pro-rich region (Gallo and Johnson 2002).

As MAP3K, MLK phosphorylate MK, such as MKK7 , a preferred substrate of many

MLK (Merrtt et al. 1999). Thus , all known MLK strongly activate JN. However, some MLK

such as MLK3 , also activate ERK and p38 Mi\PK in transfection assays. Consistent with

multiple MAPK activation, MLK3 has been shown to phosphorylate in vitro several MAP2K

(MEK1 , MKK3 , MK4 , MKK6 , and MKK7), but the physiological relevance of the

phosphorylation remains unclear (Shen et al. 2003; Tibbles et al. 1996; Merrtt et al. 1999).

MLK-mediated JN activation also appears to have a negative regulatory role on MLK fuction.

The COOH-terminal ofMLK2 and MLK3 has been proposed to be phosphorylated by JN in a

negative feedback loop (Vacratsis et al. 2002; Phelan et al. 2001).



Figure 1.2. The mixed lineage kinase (MLK) family of MAP3K.

Mixed lineage kinases (MLK) are MAP3K that regulate the ERK, JN, and p38 MAPK

pathways. Within the MLK family of MAP3K, seven different MLK have been identified. They

are further divided into three subgroups based on their domain characteristics: MLK, DLK, and

ZAK. All of the MLK share a common kinase catalytic domain and leucine zipper region. The

MLK (MLKI - MLK4) have additional domains such as SH3-domains, Pro-rich regions, and

Cdc42/Rac (CRIB) binding motifs that mediate protein-protein interactions. The DLK (DLK

and LZK) contain two leucine zipper motifs, while ZAK may featue a sterile-a motif (SAM).
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Regulation of MAPK pathways by upstream signaling components

MAP3K directly bind to upstream regulatory proteins to mediate MAPK activation. For

example, Cdc42 and Rac, members of the Rho family of GTPases, are upstream activators of the

JNK and p38 MAPK pathways (Coso et al. 1995; Minden et al. 1995). Activated Cdc42 and Rac

directly bind to the MLK or the MEKK (Porter et al. 1999). In addition, MAP3K bind to adaptor

proteins to indirectly mediate MAPK activation. The TNF-receptor adaptor proteins TRAF2 and

RIPI interact with MEKKl/ASKI and MEKKl/MEKK , respectively (Baud et al. 1999;

Nishitoh et al. 1998; Lee et al. 2003).

In addition to upstream GTPases , MAPK3K are also regulated by upstream kinases

(Fanger et al. 1997; Kyrakis 1999; Kyrakis and Avrch 2001). For example , the germinal

center kinases (GCK) HPK1 , GCK, and NIK have been shown to activate MEKKI and MLK3

(Kiefer et al. 1996; Tibbles et al. 1996; Su et al. 1997; Yuasa et al. 1998). GCK also bind to

adaptor proteins , coupling MAPK pathways to additional upstream components. The GCK and

GCKR protein kinases bind the TNF-receptor adaptor protein TRA2, while HPKI binds the

SH2/SH3 adaptor proteins , Grb2 and Crk (Ling et al. 1999; Shi et al. 1999). The mechanism of

MA3K activation by GCK is not completely clear; however, the GCK protein kinase, which

binds both TRA2 and MEKK1 , may directly phosphorylate MEKKI (Chadee and Kyrakis

2004). TRAF2 may also mediate MAP3K activation by increasing GCK protein stability (Zhong

and Kyrakis 2004).

MAP3K activation represents the entr point into the canonical MAPK pathway and thus

integrates signals ftom multiple stimuli (Davis 2000; Kyrakis and Avrch 2001). For example

Rho GTPases and the SH2/SH3 adaptor proteins could be regulated by tyosine kinases and may

therefore relay signals from receptor tyosine kinases to the MAPK pathways. In contrast, the



TN-receptor adaptor proteins, TRAF2 and RIP1 , mediate signals from the cytokine receptors to

the MAPK pathways. Thus, due to the large number of protein kinases involved, mechanisms

that account for MAPK signaling specificity are not completely understood.

Regulation of MAPK pathways by scaffold proteins

Signaling specificity is mediated, in part, by protein-protein interactions. Scaffold

proteins interact with different components of the MAPK pathways to assemble fuctional

signaling complexes (Whtmarsh and Davis 1998; Morrson and Davis 2003). For example, the

JNK-interacting protein (TIP) is a family of scaffold proteins that regulate the JN pathway. The

TIP family consists of four proteins (TIPI - JlP4), which differentially bind to components at all

three levels of the JN pathway: MAPK-MAP2K-MA3K (Dickens et al. 1997; Whitmarsh et

al. 1998; Yasuda et al. 1999; Kelkar et al. 2003; Ito et al. 1999; Lee et al. 2002). Each TIP binds

to JN, MK7 , and the MLK MAP3K. Several MLK, including MLK2 , MLK3 , and DLK, also

interact with both TIP 1 and TIP2 consistent with their abilty to strongly activate JNK

(Whitmarsh et al. 1998; Yasuda et al. 1999). In contrast, the strctually distinct TIP3 and TIP4

proteins have been shown to interact with JNK-MK7-MLK3 and JNK-MKK4-

MEKKl/MEKK3 (Kelkar et al. 2003; Ito et al. 1999; Lee et al. 2002). In addition, some studies

suggest that TIP2 also binds to p38 MAPK-MKK3-MLK3 to potentiate p38 MAPK activation

(Schoorlemmer and Goldfarb 2001; Schoorlemmer and Goldfarb 2002; Buchsbaum et al. 2002).

Transfection studies indicate that TIP potentiate MAPK activation, perhaps by increasing

the "effective" local kinase concentration. Interestingly, TIPI also inhibits MAK activation by

preventing DLK dimerization, suggesting that scaffold proteins may act as molecular switches in

response to specific stimuli (Nihalani et al. 2003; Nihalani et al. 2001). In addition, scaffold



proteins may mediate the subcellular localization ofMAPK activation. For example, JIP

proteins bind to kinesin light chain, a component ofkinesin motor complex, suggesting that JIP

may act as cargo proteins for kinesin-mediated transport (Whitmarsh and Davis 2001; Verhey et

al. 2001; Bowman et al. 2000; Lee et al. 2002).

Regulation of MAPK pathways by docking interactions

Functional signaling complexes are also created through binary interactions between

individual members in the MAPK cascade. These binary interactions are mediated by specific

MAK docking motifs that are present in MAK, MAPK activators , MAK substrates , MAPK

phosphatases , and MAK scaffolds (Enslen and Davis 2001). Although MAPK docking sites

are found throughout the MAPK family, there are specific motifs for individual MAK

subgroups to regulate signaling specificity (Enslen and Davis 2001; Sharrocks et al. 2000;

Tanoue and Nishida 2003). These docking sites are physically distinct ftom kinase active sites

and are necessary for effcient substrate recognition and subsequent phosphorylation.

MAPK docking motifs were initially identified in MAP kinase substrates. The NHz-

terminal 8 domain in c-Jun was the first domain identified for JNK interaction (Hibi et al. 1993;

Dai et al. 1995). This domain contains a conserved MAPK docking site, the D domain, and is

found on many MAK interacting proteins. The D domain consists of a hydrophobic motif

separated ftom a cluster of basic residues (L/I- L/I-Xz- R/z+) (Enslen and Davis 2001;

Tanoue and Nishida 2003). Similar D domains have been identified in other MAPK

transcription factor substrates. Examples of these D domains include the D domain on

MEF2A1C that binds p38 MAPK (Yang et al. 1999), the D domain on Sap 1 that binds p38

MAPK (Galanis et al. 2001; Barsyte-Lovejoy et al. 2002), and the D domain on Elkl that binds



JNK and ERK (Yang et al. 1998b; Yang et al. 1998c). The NHz-terminal regions ofMAPK

activators (MEK1 , MEK2, MKK4, and MKK7) and MAPK phosphatases (MKl , MK3 , and

MK5) have also been proposed to contain D domains (Tanoue et al. 2000). Interestingly, a

second docking motif, the F- P motif has been recently identified in Elkl-ERK interactions

and SAP1-p38 MAPK interactions (Jacobs et al. 1999; Galanis et al. 2001). This suggests that

multiple docking domains may act synergistically to mediate MAK interaction and activation.

Docking motifs have also been identified in the MAP kinases. For example, common

docking (CD) domains have been identified in the COOH-terminal regions ofERK, JNK, and

p38 MAK (Enslen and Davis 2001; Tanoue and Nishida 2003). The CD domain contains

hydrophobic and acidic residues that are proposed to interact with hydrophobic and basic

residues in the D domains ofMAPK interacting proteins. Recently, studies using X-ray

crystallography and mass spectrometr provide further strctual insight into MAK docking

interactions (Weston and Davis 2002; Chang et al. 2002; Lee et al. 2004; Heo et al. 2004). These

studies confer a direct interaction between hydrophobic residues in the CD domain and the L-

L motif in the D domain of MAPK interacting proteins. These studies also indicate that ionic

interactions between acidic residues in the CD domain and basic residues in D domain can

directly influence MAPK binding.

Biological Functions of the JNK and p38 MAPK pathways

MAP kinases regulate many physiological processes in response to physical and chemical

changes in a cell' s environment(Kyrakis and Avruch 2001; Davis 2000). These environmental

changes are able to stimulate cellular growth, differentiation, development, and death. The MAP

kinases control these processes , in part, through the activation of various transcription factors.



As stress-activated MAP kinases JN and p38 MAPK playa key role in reguating gene

transcription in response to cellular stress and inflammatory cytokines. For example, activated

JNK and p38 MAPK increase AP- dependent gene transcription and cytokine expression.

The physiological roles of JN and p38 MAPK are quite complex. The JNK pathway has

been implicated in the regulation of apoptosis, cell survival , differentiation, inflammation, and

embryonic morphogenesis (Weston et al. 2002; Davis 2000). The p38 MAPK pathway is also

proposed to regulate similar processes (Ono and Han 2000; Nebreda and Porras 2000). Thus, the

JNK and p38 MAPK pathways may have both redundant and non-redundant fuctions. These

fuctions appear to be cell-tye specific and context dependent.

Many studies have used overexpression and dominant-negative approaches to analyze

MAK fuction (Davis 2000; Kyrakis and Avrch 2001). However, mechanisms for the

diverse cellular response to MAPK activation remain unclear. This may be due, in part, to the

cell-tye and cell environment, or may be caused by the promiscuity of the protein kinases in the

MAK cascade. In contrast, studies of MAK gene targeted disruption have provided strong

insight into the physiological roles of individual MAK (Figue 1.3) (Weston and Davis 2002;

Davis 2000). Since this thesis analyzes the in vivo roles of several MAPK (Chapter III , Chapter

, Appendix), characteristics of gene targeted MAK wil be discussed in detail below. In

addition, since no MLK MAP3K gene targeted disruption has been reported, studies ofMLK

fuction using overexpression and dominant-negative approaches wil also be discussed.
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Figure 1.3. Gene targeted disruption of the JNK and the p38 MAPK pathways in mice.

The physiological roles of JN and p38 MAK are quite complex and appear to be cell-

type specific and context dependent. The JNK pathway has been implicated in the regulation of

apoptosis, cell survival , differentiation, inflammation, and embryonic morphogenesis. The p38

MAPK pathway is also proposed to regulate similar processes. Recent studies of MAPK gene

targeted disruption have provided strong insight into the physiological roles of individual

MAPK. Ilustrated are some characteristics of gene targeted MAPK in mice.
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Gene targeted disruption of the JNK pathway

Mice with targeted disruption of the Jnkl , Jnk2 or Jnk3 genes were viable and appeared

to be developmentally normal (Yang et al. 1998a; Yang et al. 1997b; Dong et al. 1998). This

suggested that there is fuctional redundancy among the JN genes. However, the loss of 

appeared to have cell-type specific defects. For example, mice deficient in Jnkl or Jnk2 exhibit

defects in T-cell differentiation. Jnkr

/- 

mice exhibited defects in the differentiation of T helper

(Th) cells into Th2 effector T -cells (Dong et al. 1998), while JnkT

/- 

mice exhibited defects in the

differentiation ofT helper cells into Thl effector T-cells (Yang et al. 1998a). In addition, mice

deficient in Jnk3 were resistant to kainic acid-induced neuronal apoptosis in the hippocampus

(Yang et al. 1997b).

Mice with compound mutations in the Jnkl and Jnk2 genes are early embryonic lethal

due to defects in neural tube closure (Sabapathy et al. 1999; Kuan et al. 1999). These mice

exhibited opposite apoptotic defects in the developmental forebrain and hindbrain. Jnkr/- JnkT

mice have increased apoptosis in the forebrain and decreased apoptosis in the hindbrain.

Together, these data suggest a context-dependent role for JNK in cell surival and cell death.

Recent studies of Jnkr/- JnkT

/- 

mouse embryonic fibroblasts (MEF) demonstrate a lack

of JNK activation and defects in AP- dependent gene transcription (Tourier et al. 2000;

Ventua et al. 2003). The Jnkr/- JnkT

/- 

MEF are resistant to stress-induced apoptosis due to a

failure of mitochondria membrane depolarization and cytochrome c release (Tourier et al.

2000). In contrast, these MEF are not resistant to Fas-induced apoptosis, suggesting a distinct

role for JN signaling in response to specific apoptotic stimuli. This suggests that JN 

required for apoptosis mediated by the mitochondral pathway, but is not required for apoptosis

mediated by death receptor signaling. In addition Jnkr/- JnkT

/- 

MEFs exhibit defects in growth



arrest that include increased p53 expression and decreased proliferation (Tourier et al. 2000).

These cells are sensitive to TNFa-induced apoptosis in presence of protein synthesis inhibitors

suggesting that JN mediates cell surival under certain conditions (Lamb et al. 2003).

Mice with targeted disruption of the JN activators Mkk4 and Mkk7 are embryonic

lethal due to impaired liver development (Dong et al. 2000; Yang et al. 1997a; Ganiatsas et al.

1998; Nishina et al. 1999; Wada et al. 2001). The Mkk4-

/- 

mice have increased hepatic apoptosis

while MkkT

/- 

mice exhibited decreased hepatocyte proliferation. MEF isolated ftom these mice

demonstrated partal defects in stress-stimulated JNK activation (Tourier et al. 2001). In

addition, MKK7 has been shown to be essential for cytokine-stimulated JNK activation, while

MKK4 contrbutes to maximal cytokine-stimulated JN activation. Not surrisingly, mice with

compound mutations of the Mkk4 and Mkk7 genes exhbited defects similar to that seen in Jnkr

JnkT

/- 

mice (Tourier et al. 2001). Fibroblasts isolated ftom these mice exhibited a lack of JNK

activation and resistance to stress-induced apoptosis. Together, these studies suggest that the

protein kinases involved in JNK signaling have both redundant and non-redundant fuctions.

Gene targeted disruption of the p38 MAK pathway

The p38 MAK kinase pathway also plays a key role in embryonic development. Mice

with a targeted disruption of p38a MAPK are early embryonic lethal due to placental defects

(Tamura et al. 2000; Allen et al. 2000; Adams et al. 2000; Mudgett et al. 2000). The p38a 

embryos appear pale and anemic and are developmentally delayed. The p38a

/- 

placentas

display a lack of blood vessels and increased apoptosis. The labrynthine layer of placenta is

also severely reduced. These phenotypes are consistent with a decrease in vascularization of

both the embryo and the placenta. In one study, tetraploid wild-type embryos were fused 



diploid p38a /- embryos and rescued the embryonic lethality (Adams et al. 2000). This suggests

that the abnormal embryonic development seen in p38a /- embryos is a secondary affect of

defective placental fuction. Nevertheless , p38a MAPK is essential for vascularization and

development of the placenta.

Cultured p38a

/- 

ES cells also exhibit defects in p38 MAPK activation and function

(Allen et al. 2000). These cells have reduced MAPKAP-2 activation in response to cellular

stress. In addition, the p38a /- ES cells display severe defects in IL-6 cytokine production in

response to IL- l activation. This suggests that p38 MAK may playa key role in the regulation

of IL-6 cytokine expression.

Studies of gene targeted disruption of Mkk3 or Mkk6 also suggest that the p38 MAPK

pathway plays a key role in the inflammatory response (Tanaka et al. 2002; Wysk et al. 1999; Lu

et al. 1999). Mkk3-

/- 

and Mkk6-

/- 

mice are viable with no obvious developmental defects.

However, these mice do exhibit defects in inflammatory cytokine production and T-cell

apoptosis. Mkk3-

/- 

MEF displays reduced IL- , IL- , and TNFa production in response to

TNa-stimulation (Wysk et al. 1999). In contrast, LPS-stimulated Mkk3- macrophages exhibit

decreased IL-12 production (Lu et al. 1999). Furhermore, peripheral T-cells ftom Mkk3- mice

are resistant to activation-induced cell death (Tanaka et al. 2002). Interestingly, thymocytes

ftom Mkkol- mice are also resistant to apoptosis (Tanaka et al. 2002), suggesting a non-

redundant role for MKK3 and MKK6 in T-cell development and cell death.

Gene targeted disruption of the MA3K and biological functions of the MLK

Examining the biological fuction of individual MA3K is particularly diffcult due to

the inherent redundancy observed among the kinases at this level. Gene targeted disruption
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studies ofa few MAP3K, partcularly the MEKK group ofMAP3K, have provided some insight

into their fuction. For example Mekkr mice exhibited defects in eyelid closure, a process

associated with epithelial cell migration (Yujiri et al. 2000). MEF derived ftom the Mekkr

mice displayed defects in cell migration and reduced JN activation in response to taxol, a drg

that affects microtubule stability. In Mekkl 
Mi keratinocytes , MEKKI is also essential for

TGF~/activin-stimulated JNK activation and cell migration (Zhang et al. 2003). In contrast

Mekk3- mice are embryonic lethal due to placental and embryonic defects in vascularization and

development (Yang et al. 2000). This phenotype is similar to that observed in p38a l- mice

suggesting that MEKK3 may contrbute to p38 MAPK activation in vivo.

Other MA3K null mice are viable with no obvious phenotyic effects. However, these

mice do display altered MAPK activation in response to specific stimuli. MEF isolated from

Mekk2- mice have reduced FGF-stimulated JN activation (Kesavan et al. 2004); T-cells

isolated from Mekk4- mice have reduced IL-18-stimulated p38 MAPK activation (Chi et al.

2004); and macrophages isolated ftom TpI2- mice have reduced LPS-stimulated ERK activation

(Dumitr et al. 2000). Therefore, the effects ofMAP3K on MAPK activation appear to be cell-

tye and stimulus specific. Interestingly, four different MA3K have all been implicated in

TNFa signaling (Sathyanarayana et al. 2002; Takaesu et al. 2003; Tobiume et al. 2001; Yang et

al. 2000) However, the relevant contrbution of each individual MAP3K remains unclear.

TNFa activates several signaling pathways and mediates a balance between life and

death (Wajant et al. 2003; Varfolomeev and Ashkenazi 2004). TNFa binds to the TNF receptor

type 1 (TNF-Rl). Upon ligand binding, the silencer of death domain (SODD) repressor protein

dissociates ftom the TNF-Rl receptor and recruits the TNF-Rl- associated death domain

(TRADD) protein through direct interaction between TNF-Rl and the death domain ofTRADD.



TRAD serves as a molecular scaffold, binding the adaptor proteins Fas-associated death

domain protein (FADD), TNFR- l- associated factor-2 (TRA2), and receptor interacting protein

kinase- l (RIP1). The FADD adaptor protein signals the caspase-8 pathway to stimulate

apoptosis, while the TRA2 and RIP 1 adaptor proteins activate the NF-1d pathway to stimulate

cell survival. In addition , TRAF2 and RIP 1 also mediate JNK- and p38 MAPK- dependent gene

transcription through interaction with GCK and MAP3K. Recently, gene targeted disruption

studies of Traj2 and Ripl indicate that TRA2 and RIP 1 selectively mediate JN and p38

MAK activation, respectively (Lee et al. 2003; Yeh et al. 1997).

MEF isolated ftom the MAP3K Askl- mice are resistant to TNFa-induced apoptosis

(Tobiume et al. 2001). This resistance is due to the loss of sustained JN activation, which is

dependent on the generation of reactive oxygen species. In contrast, MEF isolated ftom the

MA3KMekk3- mice have increased sensitivity to TNFa-induced apoptosis (Yang et al. 2000).

MEKK contrbutes to TNFa-stimulated NF-1d activation. MEKK binds to RIPI and

phosphorylates Irl kinases in vitro leading to the subsequent phosphorylation and degradation

oflrl and the activation ofNF-KB. MEKK also contrbutes to TNa-stimulated p38 MAPK

activation through it association with RIPI (Lee et al. 2003). These studies ofMAP3K gene

disruptions suggest a distinct role for individual MAP3K in TNFa signaling.

Interestingly, studies using chemical inhibitors or siRNA have suggested a role for two

other MA3K in the TNFa signaling pathway. First, transfection of Takl siRNA inhibits JN

p38 MAPK, and NF-rl activation in response to TNFa, IL- , and LPS stimulation (Chen and

Goeddel2002; Ishitani et al. 2003; Takaesu et al. 2003). TAKI activates the MAK pathways

through its association with TRAF2 through a T AK1- AB2/3- TRA2 complex (Takaesu et al.

2003; Ishitani et al. 2003). However, since TRAF2-deficient cells are not implicated in TNFa-



stimulated p38 MAPK activation and RIP I-deficient cells are not implicated in TNa-stimulated

JNK activation (Lee et al. 2003; Yeh et al. 1997), it is not obvious how a MA3K could

commonly activate JN, p38 MAPK, and NF-1d. Interestingly, studies using the MLK

chemical inhibitor CEP- II004 indicate that MLK3 selectively inhibits TNFa-stimulated 

activation (Sathyanarayana et al. 2002). However, transfection of Mlk3 siRNA has also been

shown to inhbit multiple pathways in response to TNFa (Chadee and Kyrakis 2004). To date

no targeted gene disruption study of Mlk3 has been reported and the role ofMLK3 in TNa

signaling remains unclear.

MLK3 appears to playa role in other signaling pathways as well. Overexpression of

MLK3 activates the ERK, JNK, and p38 MAPK pathways and MLK3 phosphorylates MEK1

MK3 , MKK4, MK6 , and MKK7 in vitro (Shen et al. 2003; Gallo and Johnson 2002). This

MLK3 activation ofMAPK may be mediated by various stimuli. For example, chemical

inhibition suppresses MLK3 activation of JNK in response to ceramide (Sathyanarayana et al.

2002). Inhibition ofMLK3 by siRNA also reduces PDGF-stimulated ERK activation, EGF-

stimulated ERK and JN activation, and T-cell co-stimulated activation ofERK, JNK, and p38

MAK (Chadee and Kyrakis 2004). Finally, MLK3 may activate the NF-rl pathway in

response to T-cell co-stimulation. (Hehner et al. 2000). MLK3 phosphorylates Irl kinases 

vitro leading to the subsequent phosphorylation and degradation oflKB and the activation of

NF-1d.

Interestingly, recent RNAi-based studies suggest that MLK3 is required for seru-

stimulated cell proliferation and cell migration. Serum-stimulated cell proliferation was reduced

by siRNA-inhibition ofMLK3 (Chadee and Kyrakis 2004). In addition, depletion ofMLK3 by

siRNA increased cell sensitivity to taxol (Swenson et al. 2003). This suggests that MLK3 may



; .

be important for mitosis and cell migration, processes where microtubule regulation is essential.

Previous studies also suggest essential roles for MLK family members in JN activation

in neurons (reviewed in (Wang et al. 2004; Gallo and Johnson 2002)). Overexpression 

MLK2 , MLK3 , or DLK induces apoptosis in differentiated PC12 cells and neurons, and

inhibition ofMLK with CEP- 1347 suppresses apoptosis in these cells upon NGF withdrawal (Xu

et al. 2001; Putcha et al. 2003; Maroney et al. 2001; Mata et al. 1996; Harrs et al. 2002a; Harrs

et al. 2002b). Recent studies also demonstrate that overexpressed DLK disrupts neural cell

migration and telencephalon morphogenesis (Hirai et al. 2002). These data suggest essential

roles for the MLK protein kinases in developing and differentiated neurons.

Gene targeted disruption studies of the MA2K and the MAP3K wil be useful in

determining their physiological role in MAPK cascades. In my thesis work, I used molecular

biochemical, and genetic approaches to examine how MAP2K and MAP3K mediate signaling

specificity and to define their role in the JNK and p38 MAK pathways. Specifically, I

examined the regulation of JN and p38 MAK by investigating: (1) the docking interactions

between MAPK and MAP2K; (2) the differential activation ofMAPK by MAP2K; and (3) the

selective involvement ofMLK MAP3K in MAPK activation. Together, these data bring insight

into the regulation and fuction of stress-activated MAK signal transduction pathways.



CHAPTER II

MOLECULAR DETERMINANTS THAT MEDIATE

SELECTIVE ACTIVATION OF p38 MAPK ISOFORMS

Summary

The p38 mitogen-activated protein kinase (MAPK) group is represented by four

isoforms in mammals (p38a, p38~2 , p38y and p383). These p38 MAK isoforms appear to

mediate distinct fuctions in vivo due, in part, to differences in substrate phosphorylation by

individual p38 MAK and also to selective activation by MAPK kinases (MAP2K). My data

demonstrates that specificity can be caused by the selective formation of fuctional complexes

between the MAP2K and different p38 MAPK. The formation of these complexes requires the

presence of a MAK docking site in the NHz-terminus of the MAP2K. This process provides a

mechanism that enables the selective activation ofp38 MAK in response to activated MAP2K.

This study was done in collaboration with Herve Enslen durng the early part of my

thesis work. I generated the MKK3/M6 chimeras and contrbuted to data in Figure 11.1.

Herve Enslen contrbuted to data in Figues 11.2 - 11.



Introduction

The p38 group of mitogen-activated protein kinases (MAPK) is activated by treatment of

cells with pro-inflammatory cytokines and by exposure to environmental stress (Cohen 1997).

One important function of the p38 signaling pathway appears to be the regulation of cytokine

expression (Lee et al. 1999).

Molecular cloning studies have led to the identification of four p38 isoforms: p38a (also

known as SAPK2a), p38~2 (SAPK2b), p38y (SAPK3) and p388 (SAPK4). The p38a and p38~

MAK are 60% identical to p38y and p388 MAPK, indicating that these protein kinases

represent related, but distinct, MAPK sub-groups (Cohen 1997). One sub-group (p38a and

p38b~) is inhibited by a class ofpyrdinyl imidazole drgs, while the other sub-group (p38y and

p388) is insensitive to these drugs (Lee et al. 1999). These p38 MAPK phosphorylate both a

common group of substrates and distinct substrates (Cohen 1997), and they can be selectively

activated by some extracellular stimuli (Wilk-Blaszczak et al. 1998; Conrad et al. 1999). This

suggests that they may exert distinct biological actions. Indeed, studies of HeLa cells indicate

that while p38a induces apoptosis, p38~2 promotes cell surival (Nemoto et al. 1998). These

studies suggest that different p38 isoforms have overlapping, but also distinct physiological

roles.

Specificity ofp38 MAPK signaling has also been reported in studies of the MAPK

kinases (MAP2K) that activate the p38 MAPK isoforms. Two genes that encode p38-specific

MAP2K have been described: Mkk3 (Derijard et al. 1995) and Mkk6 (Han et al. 1996; Moriguchi

et al. 1996; Raingeaud et al. 1996; Stein et al. 1996). Targeted gene disruption studies in mice

have demonstrated non-redundant fuctions of the Mkk3 and Mkk6 genes (Lu et al. 1999; Wysk



et al. 1999). Furhermore, expression of activated forms of the MK3 and MK6 protein

kinases cause different biological responses in cardiac myocytes (Wang et al. 1998). These

actions are altered by co-expression of specific p38 isoforms; thus, p38a induces apoptosis

while p38~2 promotes a hypertophic response in cardiac myocytes (Wang et al. 1998). This

signaling specificity is likely to be important for the generation of appropriate biol ical

responses by the p38 MAPK pathway.

The mechanism that accounts for signaling specificity by the p38 MAK pathway is not

understood. Previously it has been demonstrated thatMKK6 is a common activator of p3 

p38~2 , p38y and p380 MAPK, while MKK3 activates only p38a, p38y and p380 MAPK (Jiang

et al. 1996; Cuenda et al. 1997; Goedert et al. 1997; Jiang et al. 1997; Wang et al. 1997; Enslen et

al. 1998). This selectivity ofp38 MAPK activation by MKK3 and MKK6 may contrbute to

the specificity of signal transduction by the p38 MAK pathway.

The purose of the study reported here was to examine the specificity of activation of

p38 MAK isoforms by MKK and MKK6. I show that the specificity ofp38 MAPK

signaling can be mediated by the selective docking interactions between the MA2K and p38

MAK. These observations provide insight into the mechanism ofp38 MAPK activation.
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Materials and Methods

Plasmids. The p38 , MK3 , and MKK6 expression vectors have been described (Enslen et al.

1998). Point mutations and chimeric constrcts were prepared using standard techniques.

Protein kinase isolation. Cells were solubilized in Triton lysis buffer (20 mM Tris (pH 7.4),

1 % Triton X- I00 , 10% glycerol, 137 mM NaCl, 2 mM EDTA, 25mM ~-glycerophosphate, 1

mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride, and 10 j.g/mL of aprotinin and

leupeptin) and centrfuged at 15 000 x g for 15 min at 4 C. Epitope-tagged protein kinases were

immunoprecipitated by incubation (4 hr) with the M2 Flag monoclonal antibody (Sigma) bound

to Protein G-Sepharose (Amersham Pharmacia Biotech). The Sepharose beads were collected by

centrfugation, washed twice with TLB , and twice with kinase assay buffer (25 mM HEPES pH

7.4 25 mM ~-glycerophosphate , 25 mM MgCI2, 0.5 mM dithiothreitol, 0. 1 mM sodium

orthovanadate). The immunoprecipitation of endogenous p38a was performed similarly except

that an anti-p38 rabbit polyclonal antibody bound to Protein A-Sepharose (Sigma Chemical Co.

was employed (Raingeaud et al. 1995). In some assays, the immunoprecipitated epitope-tagged

protein kinases were eluted by incubation with 0. 1 mg per ml of Flag synthetic peptide at 30

(20 min).

Protein kinase assays. Protein kinase immunoprecipitates were used for kinase assays. The

reactions were initiated by the addition of substrate protein (1 j.g) and 50 j.M 

(y- 

p)A TP (10

Ci/mmol) and the reactions were terminated after 20 min at 30 oC by addition ofLaemmli sample

buffer. Assays ofp38 kinase activity were performed using GST-ATF2 as the substrate



(Raingeaud et al. 1995). Substrate phosphorylation was examined after SDS-P AGE by

autoradiography and Phosphorimager analysis (Molecular Dynamics Inc.

Peptide competition assays. Peptide competition experiments were performed using bacterially

expressed GST-p38 bound to GSH-Sepharose and pre-incubated with synthetic peptides for 2 hr

at 4 C. The recombinant p38 was phosphorylated by MKK3b or MKK6 (isolated by elution

ftom immunoprecipitates prepared ftom transfected COS7 cells) by incubation (20 min at 30

in kinase buffer with 50 /-M ATP. The immobilized p38 was then washed four times with

kinase buffer and the p38 activity was measured in kinase assay with GST -ATF2 (1 /-g) and 50

/-M 

(y-

p)ATP (IOCi/mmol). The reaction was terminated after 20 min at 30 C and the

phosphorylated ATF2 examined by SDS-PAGE, detected by autoradiography, and quantitated

by Phosphorimager analysis.

Binding assays. GST -tagged MKK proteins were isolated ftom transfected COS7 cells using

glutathione (GSH)-Sepharose (Amersham Pharmacia Biotech) in TLB for (7 hr at 4 C). The

beads were washed five times with TLB and the presence of bound co-transfected p38a or

p38~2 was examined by immunoblot analysis.



Results

Role of the NH terminal region of p38 MAP2K in the selective activation of p38p2 MAPK

MKK and MK6 selectively activate different p38 isoforms (Enslen et al. 1998). To

identifY the molecular determinants responsible for this selectivity, I constrcted chimeric

protein kinases using MKK3 and MK6 sequences (Figure lI. la). Constitutively activated

MAP2K were constrcted by replacing the sites of activating phosphorylation with Glu. These

chimeric kinases caused similar activation ofp38a in co-transfection assays (Figue II. 1 b). 

contrast, differences were detected in assays using p38~2 (Figure lI. lc). As expected MK6

but not MKK , caused p38~2 activation. However, replacement of the NHz-terminal region of

MKK6 with sequences derived from MKK3 blocked the ability ofMK6 to activate p38~2

(Figure II. 1 c). Conversely, chimeras ofMKK3 with the NHz-terminal region ofMKK6 were

able to activate p38~2 (Figue lI. lc). Residues 1-18 ofMK6 were suffcient, but a larger

activation ofp38~2 was observed when MKK6 residues 1-82 were fused to the NHz-terminus of

MK3. These data indicated that the NHz-terminal region ofMKK3 and MKK6 regulates

substrate specificity (Figure II. 1 c), but not activity (Figue IIlb).

This conclusion was confirmed by studies of an alternative form of MK3 (MK3b)

(Moriguchi et al. 1996; Han et al. 1997) which contains an additional 29 amino acids fused to the

NHz-terminus ofMK3. I found that while MK3 and MKK3b both activated p38a (Figure

Il.lb), only MKb caused activation ofp38~2 (Figure lI. lc). Together, these data identifY a

role for the NHz-terminal region of MK and MKK6 in the determination of substrate

specifi city .



The NH terminal region of MA2K is required for binding to p38a and p38 MAPK

The analysis of MAP2K chimeras indicated that the first 18 amino acids of MK6

contains a region that can confer the ability to activate p38~2 on MKK (Figure lI. lc).

Alignent of the sequences ofMK3 , MKK3b, and MKK6 indicates that this 18 amino acid

sequence present in the NHz-terminal region ofMK6 is absent in MKK3 , but is conserved in

MKb (Figue TI.2a). This region contains several basic amino acids and also a sequence motif

that has been previously identified as a MAPK docking site (Holland and Cooper 1999). The

NHz-terminal region of MKK3b and MK6 conforms to the consensus sequence for this type of

MAK docking site (-Lys/Arg-XaarLeu/Ile-Xaa-Leu/le-). The NHz-terminal specificity

determining region ofMKb and MK6 may therefore fuction as a p38 docking site.

To test this hypothesis, binding ofp38a and p38~2 to MKK and MKK6 was examined

in co-precipitation assays using extracts prepared ftom transfected COS7 cells (Figue 11.2). The

p38a and p38~2 MAK co-precipitated with MKK6 and MKK3b, but not with MKK.

Interestingly, more p38~2 than p38a was observed to co-precipitate with MKKb and MK6.

To test whether the putative docking site located in the NHz-terminal region ofMKK6 and

MK3b was required for binding to p38, the effect of mutations of the conserved Leu-Xaa-Ile

motif on the interaction with p38 MAPK was examined. Mutational removal of the Leu-Xaa-Ile

motif (MKK3 and MKK6 ) reduced the co-precipitation ofp38a and p38~2 to MKK6 and

MKK3b. Furhermore, fusion of the NHz-terminal region ofMK6 (containing the putative

MAPK docking site to MKK3) allowed co-precipitation ofMKK3 with p38a and p38~2.

Fusion ofMKK6 residues 1-18 was sufficient for co-precipitation ofp38a and p38~2 , but a

larger amount of co-precipitation was detected when MKK6 residues 1-82 were fused to MKK.



These data indicate that a p38 docking site is present in the NHz-terminal region ofMK3b and

MKK6, but not MKK3.

Binding to MKKb and MKK6 potentiates p38 MAPK activation

There is a strong correlation between MAP2K binding to p38 MAPK and the activation

ofp38a and p38~2. For example, MKK3b and MKK6 (but not MKK3) bind and activate

p38~2. Similarly, p38a (which is activated less potently by MKK3 than by MKKb and

MKK6), binds to MKb and MKK6 , but not to MKK. To examine the relationship between

MAP2K binding and p38 activation, the effect of mutations that inhibit MAP2K binding on p38

activation was examined (Figue 11.3). Mutational removal of the MAK docking site (Leu-Xaa-

He) reduced the binding ofMK3b and MKK6 to p38a and p38~2 (Figure 11.2). The same

mutation also reduced p38a activation caused by MKK3b and MK6 (Figure I1.3b , c).

Furhermore, like MK3 , these mutant MKKb and MKK6 proteins were unable to activate

p38~2 (Figure I1.3d, e). These data indicate that binding to MKKb and MKK6 potentiates

p38a activation and is required for p38~2 activation.

To confirm the conclusion that MAP2K binding increases p38 activation, the effect of

activated MK3 and MK6 on the activation of endogenous p38a was examined in COS7 cells.

It has been previously reported that MKK6 (but not MKK3) potently activates endogenous

p38a (Raingeaud et al. 1996). Here, it is also demonstrated that MKK3b, like MKK6 , strongly

activates endogenous p38a MAPK (Figure 11.4). Disruption of the MAPK docking site located

in the NHz-terminal region ofMKK3b and MKK6 reduced the activation of endogenous p38a.

Furhermore , fusion of the NHz-terminal region of MKK6 (containing the putative MAPK

docking site to MKK) allowed MKK to activate endogenous p38a. These data suggest that



the binding ofMKKb and MKK6 to p38 is a determinant ofp38a activation in vivo. This

requirement for a binding interaction can be compensated by overexpression ofp38a, but not by

overexpression ofp38~2 (Figure 11.1).

The NHz-terminal MAPK docking site is likely to contrbute to p38 activation. To test

this hypothesis , competition analyses using synthetic peptides corresponding to the MAPK

docking sites ofMKK3b was performed (Figure 11.5). The effect of wild-tye peptides was

compared with the effect of pep tides in which the Leu-Xaa-Ile motif was replaced with Gly-Xaa-

Gly (Figue II.5a). Ifbinding to the NHz-terminal docking site was required for p38 activation, a

synthetic peptide containing this docking site should fuction as an inhibitor ofp38 activation.

Indeed, peptides derived ftom MKK3b (Figure II.5b) caused inhibition ofp38a activation 

MKK3b and MKK6 , but not by MKK3 , which lacks the MAPK docking site (Figure II.5b). 

contrast, mutant synthetic peptides lacking the MAK docking site caused no change in p38a

activation. Inhibition ofp38~2 activation by wild-type synthetic peptides, but not by mutated

synthetic peptides, was detected in experiments using MKK3b (Figue I1.5c, d) and MKK6

(Figure 1I. , f). However, the inhibitory effect of the peptides on p38~2 activation was larger

than on p38a, confirming the previous observation (Figue 11.3) that binding is required for the

activation ofp38~2 in vitro but serves only to potentiate the activation ofp38a.

Taken together, these data indicate that binding ofp38 to a docking site in the NHz-

terminal region ofMAPKK contrbutes to p38 activation.



Discussion

MAPK regulate a wide array of biological fuctions, therefore mechanisms must exist to

achieve signaling specificity and to ensure the correct biological response to extracellular

stimulation. The complexity of each MAPK pathway provides multiple levels where specificity

may be determined. Two simple mechanisms that can achieve signaling specificity are: 1)

selective activation of different MAPK; and 2) distinct MAPK substrate specificities. Such

differences in signaling specificity exist not only between the major groups ofMAK, but also

between individual members of a single group ofMAK.

The substrate specificity of MAPK depends, in part, on binding interactions between the

MAPK and its substrates (Ip and Davis 1998; Holland and Cooper 1999). Here I report that a

p38 docking domain in p38-specific MAP2K contrbutes to the selective activation ofp38

isoforms. For example, p38~2 is not activated by MA2K isoforms that lack a docking site (e.

MKK), but can be activated by MAP2K with a docking site (e.g. MK6). These data indicate

that the selective activation ofp38 by MAP2K requires molecular determinants present in the

MAP2K.

MAPK docking domains

Two genes encode proteins that act as specific activators ofp38 Mkk3 and Mkk6

(Derijard et al. 1995; Han et al. 1996; Moriguchi et al. 1996; Raingeaud et al. 1996; Stein et al.

1996). Targeted gene disruption studies in mice have demonstrated non-redundant fuctions of

the Mkk3 and Mkk6 genes (Lu et al. 1999; Wysk et al. 1999), indicating that the MKK and

MK6 protein kinases have distinct biological fuctions.



MKK activates the isoforms p38a, p38y and p388, but not p38~2. However, both

MK6 and MKKb (a variant form ofMK3 which has an additional 29 amino acids fused to

the NHz-terminus ofMKK3) activate the four p38 isoforms p38a, p38~2 , p38y and p388. In

this study, I have identified a p38 MAP kinase docking site within the NHz-terminal region of

MK3b and MKK6. These sequences are highly conserved and are required for p38~2

activation by these two enzymes. MK3 , which lacks the docking site, does not activate p38~2.

Fusion of the p38 docking site ofMKK6 to the NHz-terminus ofMKK3 allows activation of

p38~2. Furhermore, synthetic peptides based on the primary sequence of the docking sites of

MKb and MKK6 inhibit the activation ofp38~2. These data indicate that the binding of

p38~2 to an NHz-terminal region of the MAKK is necessary for p38~2 activation. In contrast

binding to p38a is not a requirement for activation by MKK3b and MKK6 in vitro. However

the binding interaction does serve to potentiate p38a activation. These data provide an

explanation for the selective activation ofp38a, but not p38~2 , by MK3.

A similar role for a docking mechanism has been described in the yeast S. cerevisiae where

a high affinity interaction between a MAP2K (Ste7p) and MAK (Kssl p and Fus3p) is required

for MAPK activation (Bardwell et al. 1996). This interaction depends on a MAPK docking site

present in the NHz-terminus of Ste7p. The sequence of the MAK docking site of Ste7p is

related to that identified in MK3b and MK6. These sequences are similar to the previously

reported MAK docking site consensus sequence found in MAPK substrates: -Arg/Lys-Xaa3-

Leu/le-Xaa-Leu/le- (Yang et al. 1998a; Yang et al. 1998b; Holland and Cooper 1999).

Interestingly, the NHz-terminal regions ofMEKI (32 amino acids), MKK4 (43 amino acids) and

MK7 (73 amino acids) have been demonstrated to be important for binding and activation of

ERK and JN (Fukda et al. 1997; Xia et al. 1998; Tourier et al. 1999; Xu et al. 1999).



Sequences similar to the MAK docking sites of MKK3b and MKK6 are present in the NH

terminal regions ofMEK1 , MKK4, and MKK7. Furher studies are required to delineate the

MAPK docking site with the NHz-terminus of MEK1 , MKK4, and MKK7.

MAPK docking sites are present in MAP2K, MAPK substrates and MAPK phosphatases

Short peptide sequences that bind p38a and p38~2 have been identified in the

transcription factors MEF2A and MEF2C (Yang et al. 1999). These domains are necessary for

effcient phosphorylation and activation ofMEF2A and MEF2C by p38a and p38~2 (Yang et

al. 1999). Similar MAK binding motifs have been characterized in several MAPK substrates

including c-Jun (Hibi et al. 1993), JunB (Gupta et al. 1996; Kallunki et al. 1996), Elk- l (Yang et

al. 1998a; Yang et al. 1998b), NFAT4 (Chow et al. 1997), ATF-2 (Gupta et al. 1995; Livingstone

et al. 1995). In general, these docking sites conform to the general consensus sequence:

Arg/Lys-Xaa-Xaa-Xaa-Xaa-Leulle-Xaa-Leulle- (Yang et al. 1998a; Yang et al. 1998b; Holland

and Cooper 1999). Binding sites for MAPK have also been identified in phosphatases that

regulate MAPK activation (Camps et al. 1998; Pulido et al. 1998; Oh-hora et al. 1999). These

considerations indicate that MAPK docking sites are located on the kinases that activate MAPK

(MAP2K), on phosphatases that inactivate MAPK, and on MAPK substrates.

The observation that MAPK can bind related sequences in both their substrates and

enzyes that regulate MAK activity (MAP2K and phosphatases) is intrguing. Is it possible

that the regulatory enzyes and substrates compete for binding to MAPK? This hypothesis

predicts that substrate phosphorylation by MAK would only be observed following release of

the activated MAPK ftom MAP2K. Indeed, evidence in favor of this hypothesis has been

reported in studies of yeast MAPK signaling pathways. For example, the S. cerevisiae MAPK



Ksslp is not able to phosphorylate exogenous substrates when bound to the MAP2K Ksslp

(Bardwell et al. 1996). Similar models for binding and release of activated MAK in mammals

have been reported for JN activation by MK4 (Xia et al. 1998) and ERK activation by

MEKI (Fukda et al. 1997).

Conclusions

In this study, protein regions that determine the specificity of p38 MAPK activation by

MA2K were identified. This study has established the presence ofp38 docking sites on

MKK3b and MKK6 by mutational analysis and peptide competition analysis. Differences in

the interaction of activators with individual p38 MAK isoforms may contrbute to the

specificity ofp38 MAPK signaling in vivo.

The MAK docking sites present in MAP2K appear to be targeted durng infection by

some pathogens. The lethal factor (LF) of anthrax lethal toxin (the major cause of death in

animals infected with anthrax) is a protease that cleaves the ERK docking site ofMEKl and

MEK2 , causing decreased activity towards ERK (Duesbery et al. 1998). Loss of the ERK

docking site may account for the effect of LF to block activation of ERK by MEKI and MEK2

in vivo (Duesbery et al. 1998). Interestingly, sequences similar to the LF cleavage site in MEKI

and MEK2 are present in the NHz-terminus ofMKK3b and MKK6. Cleavage ofMKK3b and

MK6 by LF at these sites would remove the p38 docking domain and would therefore be

predicted to prevent binding and activation ofp38~2 and markedly decrease activation ofp38a.

Indeed, LF was recently reported to inhibit p38 MAK signaling in macrophages (Pellizzari et al.

1999).



Figure ll.1. Identification of a domain required for activation of p38~2 by MAP kinase

kinases.

(A) Schematic representation ofMKK , MK3b, MKK6 and chimeras. MKK6 is shown in

white , MKK3 in black and the NHz-terminal extension ofMKb is grey. In the chimeras

domains ftom MKK are shown in black and domains ftom MK6 in white.

(B and C) Epitope-tagged p38a (B) or epitope-tagged p38~2 (C) were immunoprecipitated ftom

COS7 cells co-transfected with an empty vector (Control) or activated MAKK. The activated

MAKK were constrcted by replacing the two sites of activating phosphorylation with Glu

residues. Immunecomplex kinase assays were performed to measure p38 MAP kinase activity

using ATF2 as the substrate. The expression ofMAPKK and p38 was examined by immunoblot

analysis (lower panel). The rate of A TF2 phosphorylation was quantitated by Phosphorimager

analysis and is presented as relative protein kinase activity.
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Figure n.2. Binding of p38a and p38f32 to MAP kinase kinases.

(A) Primary sequence of the NHz-terminal domain ofMKK3 , MKK3b, MK6 and deletion

mutants (D) are aligned. Residues that are identical to MKb are indicated with a period (.

The residues ofMKK3b (LRI) and MKK6 (LKI) deleted in MK3b.1 and MKK6.1 are indicated

in bold. The deleted residues are indicated with a dash (-). Basic residues are indicated by

asterisks.

(B) Activated GST-tagged MK3 , K6(1- 18)- , or K6(1-82)-K3 were co-transfected with an

empty vector (Control), Flag-tagged p38a or Flag-tagged p38~2 in COS7 cells. The activated

MK were constrcted by replacing the two sites of activating phosphorylation with Glu

residues. Protein expression was monitored by immunoblot analysis of cell extracts. The GST-

MK fusion proteins were isolated ftom the cell extracts by incubation with GSH-Sepharose.

The co-precipitation ofp38a and p38~2 with the MK was examined by immunoblot analysis

with an antibody to the Flag epitope.

(C and D) The interaction of Flag-tagged p38a and p38~2 to GST -tagged activated MKK

MK3b and MKKb.1 (C) or MK6 and MKK6.1 (D) co-expressed in COS7 cells was

examined using the methods described in panel (B). The activated MKK were constrcted by

replacing the two sites of activating phosphorylation with Glu residues.
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Figure 11.3. Regulation of p38a and p38 2 by MAP kinase kinases.

(A) The primary sequence ofthe NHz-terminal region ofMK , MKKb and MKK3bA (left

panel) and ofMKK6 , K6(1-18)-K3 and MKK6A (right panel) are aligned.

(B - E) Flag-tagged p38a (B and C) or Flag-tagged p38~2 (D and E) were co-transfected

together with activated MKK , MK3b and MK3bA (B and D) or activated MK6, K6(1- 18)-

K3 and MKK6A (C and E) in COS7 cells. The activated MK were constrcted by replacing the

two sites of activating phosphorylation with Glu residues. The expression of p3 8 and MK was

examined by immunoblot analysis of celllysates. The protein kinase activity ofp38a and p38~2

was measured in immunecomplex kinase assays using A TF2 as the substrate. The

phosphorylated A TF2 was detected after SDS-P AGE by autoradiography and was quantitated by

Phosphorimager analysis. The p38 activity is presented as relative protein kinase.
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Figure 11.4. Regulation of endogenous p38a activity by MAP kinase kinases.

Activated epitope-tagged MKKb, MK , K6(1- 18)-K3 and K6(1-82)-K3 (A) or MKKb

MKb , MKK6, MK6 and MKK3 (B) were expressed in COS7 cells. The activated 

were constrcted by replacing the two sites of activating phosphorylation with Glu residues. The

epitope-tagged MK expression and endogenous p38a was examined by immunoblot analysis of

celllysates. The activity of the endogenous p38a was measured in an immunecomplex kinase

assays using ATF2 as the substrate. The phosphorylated ATF2 was detected after SDS-PAGE by

autoradiography and was quantitated by Phosphorimager analysis. The p38 activity is presented

as relative protein kinase activity.
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Figure n.s. Inhibition of p381U activity by peptide competition.

(A) The primary sequence of synthetic peptides corresponding to the native (wt-pep) or mutated

(gly-pep) NHz-terminal region ofMKKb are shown. The mutated peptide was prepared by

replacing the residues ofMKK3b (LRI) indicated in bold, with Gly.

(B) Purfied bacterially expressed GST-p38a was bound to GSH Sepharose and incubated with

100 JlM wild-tye or mutated MKK3b peptide. Purfied activated MK3 , MKKb, or MKK6

were incubated with the immobilized GST -p38a in kinase buffer with ATP for 20 min. The

GST-p38a was washed with kinase buffer and the p38a activity was measured using ATF2 and

(y-

PJATP as the substrates. The phosphorylated ATF2 was detected after SDS-PAGE by

autoradiography and was quantitated by Phosphorimager analysis. The p38a activity is presented

as relative protein kinase activity.

(C - F) Purfied bacterially expressed GST -p38~2 was bound to GSH Sepharose and incubated

with increasing concentration of the wild-type (C and E) or mutated (D and F) MKK3b peptide.

Purfied activated MKK3b (C and D) or MK6 (E and F) were incubated with the immobilzed

GST-p38~2 in kinase buffer with ATP for 20 min. The GST-p38~2 activity was measured as

described in (B).
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CHAPTER III

MECHANISM OF p38 MAPK ACTIVATION in vivo

Summary

The p38 mitogen-activated protein kinase (MAPK) is activated in vitro by three different

protein kinases: MKK; MKK4; and MK6. To examine the relative roles of these protein

kinases in the mechanism ofp38 MAP kinase activation in vivo I examined the effect of

disruption of the murne Mkk3 , Mkk4 and Mkk6 genes on the p38 MAPK signaling pathway. I

show that MKK and MKK6 are essential for tuor necrosis factor-stimulated p38 MAPK

activation. In contrast, ultraviolet radiation-stimulated p38 MAPK activation was mediated by

, MKK4, and MK6. Loss ofp38 MAK activation in the mutant cells was associated

with defects in growth arrest and increased tuorigenesis. These data indicate that p38 MAPK

is regulated by the coordinated and selective actions of three different protein kinases in response

to cytokines and exposure to environmental stress.

The Mkk3-/- Mkk6-

/- 

mice and fibroblasts were generated in collaboration with Nobuyu

Tanaka in Dr. Richard Flavell' s laboratory at the Yale University School of Medicine. I initially

characterized the Mkk3-/- Mkk6-

/- 

fibroblasts. Nobuyui Tanaka contrbuted to data in Figure

111.1 , Nyaya Kelkar contrbuted to data in Figure 111.4, Anja Jaeschke contrbuted to data in

Figue 111.8 , and Juan-Jose Ventua contrbuted to data in Figue III. lOa, c, d, e. Nyaya Kelkar

also contrbuted to data in Figue 111.7; however, I independently obtained similar results durng

the initial characterization.



Introduction

Several groups of mitogen-activated protein kinase (MAPK) signal transduction

pathways have been identified in mammals, including extracellular signal-reguated protein

kinase (ERK), c-Jun NH terminal kinase (JNK), and p38 MAPK. Each of these groups of

MAK is activated by dual phosphorylation on Thr and Tyr within a trpeptide motif (Thr-Xaa-

Tyr) located within the activation loop ofthe MAK. This phosphorylation is mediated by seven

MAPK kinases (MAP2K) that have specificity for individual MAPK isoforms. Thus, ERKI and

ERK are activated by MEKI and MEK2, ERK5 is activated by MEK5 JN is activated by

MK4 and MK7, and p38 MAK is activated by MKK and MKK6 (Schaeffer and Weber

1999; Kyrakis and Avrch 2001). These MAP2K and MAPK can create independent signaling

modules that may fuction in parallel.

The mechanism that accounts for the specificity of MA2K to activate individual MAPK

isoforms is mediated, in part, by an interaction between an NHz-terminal region located on the

MA2K and a docking site located on the MAK (Bardwell et al. 1996; Enslen and Davis 2001).

Recently, strctual insight into the mechanism of interaction between aMAP2K and a MAPK

has been achieved by X-ray crystallography (Chang et al. 2002). This analysis demonstrated that

there is a direct interaction of the NHz-terminal region of the MAP2K with a docking groove

present on the surface of the MAK distant ftom the catalytic active site (Weston and Davis

2002). A second determinant ofMA2K specificity is the strcture of the MAK activation

loop that contains the Thr-Xaa-Tyr dual phosphorylation motif (Enslen et al. 2000). The

specificity of these interactions mediates, in part, the ability of an individual MA2K to activate

a particular MAPK selectively.
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It is interesting that mammalian MAPK signaling modules include more than one

MA2K because in yeast only a single MAP2K appears to activate each MAK. The role of this

pathway complexity in mammals is unclear. However, it may be significant that individual yeast

MAK isoforms are activated by only a limited group of extracellular stimuli, but mammalian

MAPK isoforms are activated by a wide array of extracellular stimuli. It is therefore possible

that the employment of more than one MAP2K for the activation of a specific mammalian

MAK may contrbute to the abilty of these signaling modules to respond to multiple stimuli.

Studies of the ERKl/2 signaling module demonstrate that MEKI has an essential

fuction in placental formation durng embryonic development, but the role of MEKI to activate

ERKl/2 appears to be largely redundant with MEK2 (Giroux et al. 1999). In contrast, studies of

the JN signaling module have demonstrated non-redundant fuctions of both MKK4 and

MK7 in JN activation. Although MKK4 and MKK7 phosphorylate JN on both Thr and Tyr

residues, MK4 preferentially phosphorylates JNK on Tyr, while MK7 preferentially

phosphorylates JN on Thr (Lawler et al. 1998; Tourier et al. 2001; Wada et al. 2001). Since

dual phosphorylation on Thr and Tyr is required for full activation of JNK (Derijard et al. 1994),

these data suggest that MKK4 and MKK7 may cooperate to activate JNK. Strong support for

this conclusion has been obtained ftom studies of Mkk4 and Mkk7 gene disruption. Ultraviolet

(UV) radiation causes activation of both MKK4 and MKK7 (Tourier et al. 1999) and loss-of-

fuction mutations in either Mkk4 or Mkk7 cause reduced UV -stimulated JNK activation

(Nishina et al. 1997; Yang et al. 1997; Ganiatsas et al. 1998; Tourier et al. 2001; Wada et al.

2001; Kishimoto et al. 2003). Significantly, compound mutations of both Mkk4 and Mkk7

eliminated the ability ofUV radiation to activate JNK, indicating that these MAP2K isoforms are

essential for JN activation (Tournier et al. 2001).



The observation that MKK4 and MKK7 have non-redundant fuctions in the activation

of JN suggests that other MAP2K may also have specialized fuctions in mammalian MAPK

signaling modules. The purose of the study reported here was to examine the role of MAP2K

isoforms in the activation of p38 MAPK. Previous studies have identified the isoforms MK3

and MKK6 as specific activators ofp38 MAPK (Derijard et aI. 1995; Raingeaud et al. 1996).

However in vitro studies suggest that MKK4, an activator of JN, may also contrbute to p38

MAK activation (Derijard et al. 1995; Lin et al. 1995). Furhermore, it has also been reported

that some cell surface receptors, including tuor necrosis factor (TNF) receptors, may activate

p38 MAPK by a MAP2K-independent mechanism (Ge et al. 2002; Ge et al. 2003). My approach

was to examine the effect ofloss-of-fuction mutations in the murne Mkk3 , Mkk4 and Mkk6

genes. I show that all three MAP2K isoforms can contrbute to p38 MAPK activation and that

the repertoire ofMAP2K isoforms that cause p38 MAPK activation in vivo depends upon the

specific stimulus that is examined. Loss of p3 8 MAK regulation in the mutant cells causes

defects in growth arrest and increased tuorigenesis.
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Materials and Methods

Mice. Mkk3 /- mice (Wysk et al. 1999) (Lu et al. 1999), Mkk4 /- mice (Yang et al. 1997), and

Mkk6 /- mice (Tanaka et al. 2002) have been described. Mkk3 

/- 

Mkk6 /- mice were obtained by

interbreeding Mkk3 /- and Mkk6 /- mice. Tumor assays were performed using 12 week old male

athymic nude mice (Charles River) by subcutaneous injection of 1 x 10 fibroblasts. All animals

were housed in a facility accredited by the American Association for Laboratory Animal Care

(AAAC) and the animal studies were approved by the Institutional Animal Care and Use

Committee (IACUC) of the University of Massachusetts.

Cell culture. Murne embryo fibroblasts were isolated and cultued in Dulbecco s modified

Eagle s medium supplemented with 10 % fetal calf seru (Invitrogen). The fibroblasts were

immortalized using the SV 40 large T antigen expression vector p321- T and the Fugene reagent.

In vitro fibroblast proliferation assays were performed by staining with crystal violet (Tourier et

al. 2001). Dominant-negative JN was expressed in cells in retroviral transduction experiments

(Ventua et al. 2003).

siRNA studies. Fibroblasts were transfected with double stranded RNA (Dharmacon Research)

targeting the sequence AATGCGGAGTAGTGATTGCCC using Lipofectamine 2000

(Invitrogen) following the manufactuer s recommendations (Elbashir et al. 2001). The double-

stranded siRNA was designed to selectively suppress expression of mouse MKK4. Control

experiments were performed using double stranded RNA targeting the sequence
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AACA TGCAGAA TGCTGTT that suppresses the expression of luciferase (Elbashir et al.

2001). The cells were examined 48 hr post-transfection.

Biochemical assays. Cells were lysed in Triton lysis buffer containing 20 mM Tris (pH 7.4), 1%

Triton X- I00 , 10% glycerol , 137 mM NaCl , 2 mM EDTA, 25 mM glycerophosphate, ImM

sodium orthovanadate, 1 mM phenymethylsulfonyl fluoride , and 10 Ilg/ml of aprotinin and

leupeptin. Extracts (50 Ilg protein) were examined by protein immunoblot analysis by probing

with antibodies to JN (PharMingen), phospho-JN (Cell Signaling), p38 MAPK (Santa Cru),

phospho-p38 MAK (Cell Signaling), ERK1I2 (Santa Cruz), phospho-ERK (Cell Signaling),

MKK3 (Pharmingen), phospho-MKK/6 (Cell Signaling), MKK4 (Santa Cruz), MKK6

(Stressgen), MKK7 (Pharmingen), Rb (Pharmingen), hypo-pRb (Pharmingen) and a-tubulin

(Sigma). Immunecomplexes were detected by enhanced chemiluminescence (NEN). 

kinase activity was measured by in vitro kinase assays (Raingeaud et al. 1995). Ribonuclease

protection assays were performed using reagents obtained from Pharmingen.



Results

Targeted disruption of Mkk and Mkk6

We have previously reported phenotyes of mice with targeted disruptions of the Mkk3

and Mkk6 genes (Wysk et al. 1999; Tanaka et al. 2002; Lu et al. 1999). The Mkk3 -1- 
and Mkk6 -

mice were viable with no obvious developmental abnormalities. Mice with compound mutations

in Mkk3 and Mkk6 were created by breeding these mutant mice. Since Mkk3 and Mkk6 are both

located on mouse chromosome 11 , mice were screened for the presence of a chromosome

containing disruptions of both Mkk3 and Mkk6. Subsequent breeding resulted in the generation

of mice with compound mutations in Mkk3 and Mkk6. Mice lacking expression of both MKK

and MKK6 were not viable. The Mkk3 -1- Mkk6 -1- embryos died durng mid-gestation at Ell.0 -

Ell.5. Major defects in the formation ofthe placenta and deficiencies in the development of the

embryonic vasculatue were observed (Figue 111. 1). The mutant mice appeared to be

developmentally delayed and exhibited symptoms of severe anoxia. This phenotype of Mkk3 -

Mkk6 -1- 
mice resembles that previously described for p38 MAPK -1- embryos (Adams et al. 2000;

Allen et al. 2000; Tamura et al. 2000). The similar embryonic phenotype of these mice is

consistent with the known role ofMK3 and MKK6 to selectively activate p38 MAPK

(Raingeaud et al. 1996). Together, these data indicate that MK and MKK6 serve redundant

roles that are essential for surival.

To characterize the effects ofMKK and MKK6 deficiency biochemically, fibroblasts

were isolated ftom wild-type and mutant embryos. Immunoblot analysis demonstrated that

Mkk3 -1- mice did not express MKK3 , that Mkk6 -1- cells did not express MKK6 , and that Mkk3 -

Mkk6 -1- cells did not express MKK or MKK6 (Figue 1I1.2a). In contrast, these cells expressed
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similar amounts of JNK, p38 MAPK, MK4 , and MKK7 (Figure III.2a). These data indicated

that defects in the expression ofMKK and MK6 did not cause marked changes in the

expression of other components of stress-activated MA kinase pathways. Phase contrast

microscopy demonstrated that the wild-type Mkk3 - , Mkk6 - and Mkk3 -1- Mkk6 -1- cells

displayed the tyical flattened appearance of embryonic fibroblasts (Figure III.2b). The rate 

proliferation of these cells in medium supplemented with 10% fetal calf serum was similar

although the Mkk3 -1- Mkk6 -1- fibroblasts were found to reach a slightly higher satuation density

compared with wild-type fibroblasts (Figure III.2c).

MK and MKK6 are essential for cytokine-stimulated p38 MAPK activation

To examine the role ofMK and MKK6 in p38 MAK activation in vivo I investigated

the effect ofTNFa on wild-tye and mutant fibroblasts by immunoblot analysis using antibodies

that bind phosphorylated and activated MAPK and MAPKK. Control studies using wild-type

cells demonstrated that TNFa caused an increase in JN, ERK, and p38 MAPK activation

(Figure 111.3) (Chen et al. 2001; Ventua et al. 2003) and a more moderate activation of both

MK3 and MK6 (Figure 111.3). Mkk6 gene disruption did not cause obvious changes in

MAPK activation in cells treated with TNFa. In contrast Mkk3 gene disruption caused reduced

activation ofp38 MAPK, but did not alter JN activation. Mkk3 -1- cells also exhibited a slight

decrease in ERK activation, however the mechanism ofMKK3-mediated ERK activation

remains unclear. Mkk3 gene disruption may down-regulate p38 MAPK activation and disrupt

signaling cross-talk between the MAPK pathways (Xia et al. 1995; Hall and Davis 2002).

Interestingly, compound mutant cells lacking both MK3 and MKK6 were severely

defective in TNa-stimulated p38 MAPK activation (Figure 111.3). This defect in TNFa-
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stimulated p38 MAPK activation in Mkk3 -1- Mkk6 -1- 
cells was confirmed by in vitro kinase

assays (Figure 111.4). Mkk3 -1- Mkk6 -1- cells also exhibited similar defects in p38 MAPK

activation in response to IL- l cytokine stimulation (Figure 1115). Together, these data indicate

that MK and MK6 serve redundant, but essential , roles in the cytokine-stimulated activation

ofp38 MAPK.

MK and MKK6 contribute to p38 MAPK activation caused by UV radiation

MKK3 and MKK6 are essential for cytokine-stimulated p38 MAK activation (Figures

111.3 - 5). To investigate whether MKK3 and MK6 are required for other tyes of stimuli that

activate p38 MAPK, I examined the effect of an environmental stress, UV radiation. Control

studies using immunoblot analysis with phospho-specific antibodies demonstrated that exposure

of wild-tye cells to UV radiation caused increased activation of the MA2K MKK3 , MKK4

and MK6 (Figue 111.6) and caused increased activation ofERK, JNK, and p38 MAPK (Figue

111.6). Deficiency ofMK or MKK6 did not cause marked defects in p38 MAPK activation.

Strkingly, UV radiation also caused p38 MAP kinase activation in Mkk3 -1- Mkk6 -1- cells

although the extent ofp38 MAPK activation was diminished compared with wild-tye cells

(Figure 111.6). This observation was confirmed by using in vitro kinase assays (Figures 1115

111.7). Together, these data indicate that although MKK3 and MKK6 contrbute to p38 MAPK

activation in cells exposed to UV radiation, these protein kinases are not essential for UV -

stimulated p38 MAPK activation (Figures 111.5 - 7). This observation markedly contrasts with

the essential role ofMK3 and MKK6 in cytokine-stimulated p38 MAK activation (Figues

111.3 - 5).



MK4 contributes to UV -stimulated p38 MAPK activation

The observation that Mkk3 -1- Mkk6 -1- cells can respond to UV radiation with increased

p38 MAK activation demonstrated that a mechanism must exist in UV-stimulated cells to

activate p38 MAPK in the absence ofMKK3 and MKK6. Previous studies have indicated two

possible mechanisms. First, p38 MAPK may be activated by a MAP2K-independent

mechanism. For example, it has been reported that the TAB 1 adapter protein may cause p38

MAPK activation in the absence ofMAP2K involvement (Ge et al. 2002; Ge et al. 2003). This

TAB I-dependent (and MAP2K-independent) mechanism has been implicated in p38 MAK

activation caused by TNFa (Ge et al. 2002; Ge et al. 2003). However, since I now show that

TNFa-stimulated p38 MAK requires MKK3 and MKK6 (Figue 111.3 - 4), the conclusion that

TNa causes MAP2K-independent activation ofp38 MAP kinase (Ge et al. 2002; Ge et al.

2003) can be questioned. Since TAB 1 has not been implicated in p38 MAPK activation caused

by UV radiation (Ge et al. 2002; Ge et al. 2003), it is unlikely that TAB 1 contrbutes to the UV-

stimulated activation ofp38 MAPK observed in Mkk3 -1- Mkk6 -1- 
fibroblasts (Figure 111.5 - 7). A

second possible mechanism that may account for MK and MKK6-independent activation of

p38 MAPK is that these protein kinases may not be the only MAP2K that can activate p38

MAK. For example in vitro studies indicate that MK4 , an established activator of JNK, may

also activate p38 MAK (Derijard et al. 1995; Lin et al. 1995).

To test the role ofMKK4 in the UV-stimulated activation ofp38 MAPK, p38 MAPK

activation was compared in wild-type and Mkk4 -1- fibroblasts. As expected (Nishina et al. 1997;

Yang et al. 1997a; Ganiatsas et al. 1998; Tourier et al. 2001), Mkk4 gene disruption caused

decreased activation of JNK following exposure to UV or TNFa (Fig. 5A). In contrast, the loss

ofMKK4 expression caused no marked decrease in p38 MAPK activation in response to UV or



TNFa (Figure 111.8). These data confirm the conclusion that MKK4 has a non-redundant role in

the activation of JN and demonstrate that MKK4 has either no role, or a redundant role, in the

activation ofp38 MAPK.

To test whether MKK4 may have a redundant role in the activation ofp38 MAPK, the

effect ofMKK4Ioss-of-function in wild-type and Mkk3 -1- Mkk6 -1- fibroblasts was examined.

Attempts to constrct trple knockout mice (Mkk3 -1- Mkk4 -1- Mkk6 - by breeding were not

successful , in part, because all three genes are linked on mouse chromosome 11. Therefore an

alternative approach was employed to test the role ofMKK4 in p38 MAPK activation using

siRNA (Figue 1I1.8c). Decreased expression ofMKK4 caused by siRNA caused no change in

UV-stimulated activation ofp38 MAPK in wild-type cells , but strongly suppressed p38 MAPK

activation in Mkk3 -1- Mkk6 -1- fibroblasts (Figue 1I1.8c). Similarly, inhibition ofMK4 with

dominant-negative JNK caused little change in UV -stimulated p38 MAPK activation in wild-

tye cells, but inhibited p38 MAK activation in Mkk3 -1- Mkk6 -1- fibroblasts (Figure 111.9).

Together, these data indicate that MKK4 serves a role that is redundant with MK and MK6

in the activation ofp38 MAPK in cells exposed to UV radiation.

Altered p38 MAK regulation causes defects in growth arrest and increased tumorigenesis

It is been proposed that the p38 MAPK pathway regulates growth arrest (Bulavin et al.

2002a). Since Mkk3 -1- Mkk6 -1- fibroblasts exhibit severe defects in p38 MAPK regulation, I

investigated whether these cells might have altered proliferative responses. Control studies

demonstrated that although p38 MAPK activation was markedly reduced in Mkk3 -1- Mkk6 -

fibroblasts (Figure III.2a), the rate of proliferation of wild-tye and Mkk3 -1- Mkk6 -1- fibroblasts

was similar (Figure 1I1.2c). However, differences in proliferation between these cells were



observed following seru starvation (Figure III. lOb). Wild-tye cells cultued in seru-free

medium were not observed to proliferate. In contrast, the Mkk3 -1- Mkk6 -1- fibroblasts were found

to have increased proliferation potential in seru-ftee medium (Figue III. 1 Ob).

To biochemically characterize the difference between the wild-type and Mkk3 -1- Mkk6 -

fibroblasts , Rb phosphorylation (a hallmark ofGlIS progression) was examined in serum-starved

wild-type and mutant fibroblasts. Seru starvation caused Rb dephosphorylation in wild-tye

fibroblasts, but not in Mkk3 -1- Mkk6 -1- fibroblasts (Figure III. lOd). Cyclin-dependent protein

kinases are thought to represent the major group ofRb kinases in vivo. Therefore cyclin

expression was examined in the wild-type and Mkk3 -1- Mkk6 -1- fibroblasts. Ribonuclease

protection assays demonstrated that seru starvation caused decreased expression ofD-type

cyclins in wild-type cells (Figure IIl.lOc). In contrast, the expression ofD-type cyclins was

maintained in seru-starved Mkk3 -1- Mkk6 -1- fibroblasts. Immunoblot analysis confirmed that

D-tye cyclins were selectively expressed in seru-starved Mkk3 -1- Mkk6 -1- fibroblasts, but not

in the seru-starved wild-tye fibroblasts (Figue III.1Od). This deregulated expression ofD-

tye cyclins in Mkk3 -1- Mkk6 -1- fibroblasts is consistent with the established role ofp38 MAP

kinase as an inhibitor of cyclin D gene expression (Lavoie et al. 1996).

The p38 MAP kinase pathway has also been implicated in the regulation of c-Jun gene

expression (Han et al. 1997; Hazzalin et al. 1997). Defects in the p38 MAPK pathway in Mkk3 -

1- Mkk6 -1- fibroblasts could therefore cause disrupted c-Jun expression and consequently altered

cellular proliferation. Therefore Jun mRNA expression was examined in wild-tye and Mkk3 -

1- Mkk6 -1- fibroblasts (Figure IIl.lOe). Contrary to expectations , c-Jun expression was increased

in Mkk3 -1- Mkk6 -1- fibroblasts. These data indicate that while the MKK3/6 pathway may

contrbute to the regulation of c-Jun expression, this role ofMK3/6 can be compensated by the



fuction of other signal transduction pathways in fibroblasts. Indeed, previous studies have

demonstrated that c-Jun expression is regulated by multiple fuctionally redundant signaling

pathways (Chiariello et al. 2000).

Together, these data indicate that Mkk3 -1- Mkk6 -1- fibroblasts exhibit a deregulated cell

cycle associated with a failure to growth arrest in serum-ftee medium and altered expression of

D-tye cyclins and c-Jun (Figue 111. 10). Consistent with this conclusion, a dramatic increase in

tuor burden was observed when SV 40 large T antigen immortalized Mkk3 -1- Mkk6 -

fibroblasts (compared with wild-tye cells) were injected subcutaneously in athymic nude mice

(Figure 111.11).



Discussion

The protein kinases MK3 and MKK6 have been reported to specifically activate p38

MAP kinase (Derijard et al. 1995; Raingeaud et al. 1996). Consequently, these MA2K have

been considered to be critical for p38 MAPK activation in vivo (Schaeffer and Weber 1999;

Kyrakis and Avrch 2001). However, biochemical studies indicate that MK4, an activator of

JNK, can also activate p38 MAPK in vitro (Derijard et al. 1995; Lin et al. 1995). The

physiological significance of this observation has been questioned. Indeed, the role ofMKK4 in

p38 MAPK activation in vivo is controversial because studies of Mkk4 -1- mice demonstrate major

defects in JN activation without obvious changes in p38 MAPK activation (Nishina et al. 1997;

Yang et al. 1997a). Furthermore, the proposed dual fuction ofMKK4 to activate two separate

groups ofMAPK (JN and p38 MAPK) is unprecedented.

In this study I have examined the role ofMK3 , MKK4, and MK6 using targeted gene

disruption in mice. I show that all three MAKK isoforms contrbute to the activation ofp38

MAP kinase in cells exposed to UV radiation. These data confirm the importnce of MK and

MK6 in p38 MA kinase activation. In addition, I demonstrate that MKK4 also contrbutes to

p38 MA kinase activation in cells exposed to UV radiation. This fuction ofMKK4 was not

detected in previous studies because the role ofMKK4 in fibroblasts exposed to UV radiation is

redundant with MKK3 and MKK6. Nevertheless, MKK4 is established by these data to be an

activator of two different groups of MAPK: JN and p38 MAPK.



MKK and MKK6 are essential for cytokine-stimulated p38 MAK activation

TNFa causes p38 MA kinase activation in wild-type fibroblasts , but not in Mkk3 -

Mkk6 -1- fibroblasts (Figure 111.3 - 4). This observation demonstrates that TNFa causes p38

MAPK activation in a MAPKK-dependent manner. However, a significant question relates to

the specificity of this response involving MKK3 and MK6. Why is there no discemable

contrbution ofMKK4 to TNa-stimulated p38 MAPK activation? One contrbuting factor may

be the observation that TNa activates MK3 , MKK6 , and MKK7, but does not activate MKK4

(Tourier et al. 1999; Tourier et al. 2001). However, disruption of the Mkk4 gene does cause

reduced TNa-stimulated JN activity, indicating that basally active MK4 is required for

maximal TNa -stimulated JNK activation (Tourier et al. 2001). The effectiveness ofMKK4

to activate JN under these conditions may be accounted by the observation that MKK7

primarily phosphorylates JNK on 180, while MKK4 primarily phosphorylates JNK on Tyr182

Interestingly, phosphoThr1 JN is the preferred substrate for MKK4 compared with non-

phosphorylated JNK (Lawler et al. 1998). The low Km ofphosphoThr JN as a substrate for

Tyr phosphorylation by MK4 most likely accounts for the ability of basally active MK4 to

participate in TNa-stimulated JN activation.

The mechanism ofMKK4 activation ofp38 MAK is markedly different ftom the

activation of JN. MKK4 preferentially phosphorylates JNK on Tyr (Lawler et al. 1998), but

phosphorylates p38 MAPK equally on Thr and Tyr (Enslen et al. 2000). Similarly, p38 MAK

is phosphorylated on both Thr and Tyr by MKK3 and MKK6 (Enslen et al. 2000). The absence

of preferential Thr or Tyr phosphorylation of p38 MAK may contrbute to the lack of a role for

MK4 in TNFa-stimulated p38 MAK activation.



Activation of p38 MAP kinase by MAP2K-independent mechanisms.

My studies of fibroblasts have not revealed a role for a MAPKK-independent mechanism

ofp38 MAPK activation. However, it is possible that such mechanisms ofp38 MAK

activation may exist in other cell tyes. Similarly, MAPKK-independent mechanisms ofp38

MAPK activation may be present in fibroblasts exposed to specific stimuli. Recent studies have

established that the adapter protein TAB 1 represents an example of a mechanism of MAPKK-

independent activation ofp38 MAPK (Ge et al. 2002). TAB 1 binds and activates TAK1 , a

MA3K that can activate both the JN and p38 MAK pathways. However, TAB 1 also binds

p38 MAK and causes MAKK-independent activation by causing p38 MAK

autophosphorylation and activation. Evidence that this fuction of TAB 1 is independent of

T AKI has been obtained ftom the identification of the splice variant TAB 1 b that does not bind

TAK1 , but does bind and activate p38 MAPK (Ge et al. 2003). The MAKK-independent

activation ofp38 MAPK caused by TAB 1 has been proposed to regulate the basal activity ofp38

MAPK and to contrbute to the activation ofp38 MAPK by cell surface receptors, including TNF

receptors (Ge et al. 2002; Ge et al. 2003). The observation that TNa does not activate p38

MAPK in Mkk3 -1- Mkk6 -1- fibroblasts suggests that TAB 1 does not contrbute to TNFa-

stimulated p38 MAPK activation in this cell type. Furher studies are required to determine the

physiological context of TAB I-mediated p38 MAPK activation. Importntly, the recent

description of Tabl -1- mice, which die durng early embryogenesis with cardiovascular and lung

dysmorphogenesis, wil facilitate this analysis (Komatsu et al. 2002).



The MKK/6 pathway regulates the cell cycle

The p38 MAK pathway has been reported to inhibit cell cycle progression by at least

three different mechanisms (Bulavin et al. 2002a). First, p38 MAP kinase inhibits the expression

ofD-type cyclins (Lavoie et al. 1996). Second, p38 MAPK can phosphorylate and inhibit

Cdc25B and Cdc25C , two protein phosphatases that activate cyclin-dependent protein kinase

activity (Bulavin et al. 2001). Third, p38 MAP kinase phosphorylates the p53 tuor suppressor

on two activating sites in the NHz-terminal region (Ser-33 and Ser-46) and causes p53-dependent

growth arrest (Bulavin et al. 1999; Sanchez-Prieto et al. 2000). Together, these targets of the p38

MA kinase pathway (cyclin D , Cdc25 , and p53) may cooperate to arrest the cell cycle. This

finding suggests that defects in p38 MAPK fuction may contrbute to cell cycle defects and

increased tuorigenesis. Indeed, the PpmlD gene (which encodes a phosphatase that inhibits

p38 MAPK) is amplified in many human tuors (Bulavin et al. 2002a). Inactivation ofp38

MAK by gene targeting in mice or by overexpression ofPPMID dramatically increases

tuorigenesis (Bulavin et al. 2002a). Similarly, in this study I found that decreased p38 MAK

activity caused by compound mutations of Mkk3 and Mkk6 causes growth arrest defects (Figure

111.10) and increased tuorigenesis (Figure 111.11).

Conclusions

The results ofthis study indicate that p38 MAPK is regulated by MK , MKK4, and

MK6. The MK3 and MKK6 protein kinases are specific activators ofp38 MAK. In

contrast, MK4 represents a site of integration of stress-activated MAK pathways because it

can activate both JNK and p38 MAPK. The repertoire of protein kinases that contrbute to p38

MAK activation depends upon the specific stimulus that is examined. Thus, exposure of cells



to TNF causes p38 MAPK activation by a mechanism that requires MK and MKK6. In

contrast MKK3 , MKK4, and MK6 contrbute to p38 MAPK activation caused by UV radiation.

This role ofMK4 in p38 MAPK activation in fibroblasts is largely redundant with MKK and

MKK6.

The contrbution ofMKK3 , MKK4 , and MKK6 to p38 MAPK activation may depend

upon the cell type that is examined. For example , differences in the expression ofMKK and

MK6 account for the observation that T cell receptor-mediated p38 MAPK activation is

selectively defective in Mkk6 -1- 
thymocytes and Mkk3 -1- CD4+ peripheral T cells, respectively

(Tanaka et al. 2002; Lu et al. 1999). Similarly, MKK4 may be an important activator ofp38

MAK in cells with low levels of MK3 and MKK6.

The observation that p38 MAPK is activated by three different protein kinases suggests

that this pathway represents a site of signal integration durng the response of cells to cytokines

growth factors, and environmental stimuli. This is likely to be biologically significant because of

the role ofp38 MAPK in the regulation of cell cycle progression (Bulavin et al. 2002a). Indeed

defects in the p38 MAPK pathway are associated with tuorigenesis (Bulavin et al. 2002b).



Figure nI. 1. Characterization of Mkk3 -1- 
Mkk6 

1- mice.

(A) The morphology of wild-tye and Mkk3 -1- Mkk6 -1- embryos at El1.0 is ilustrated. The

mutant embryos are anaemic and hypovascular.

(B) The morphology of the placenta of wild-type and Mkk3 -1- Mkk6 -1- embryos at Ell.0 is

ilustrated (ventral view). The placenta of the mutant embryos is pale with decreased

vascularization.

(C) Sections of the placenta from wild-tye and Mkk3 -1- Mkk6 -1- embryos at EIO.5 were stained

with Hematoxylin and Eosin (H&E). The developing labyrinth and spongiotrophoblast layers

are markedly decreased in the mutant compared to the wild-tye. Key: Ch, chorionic plate; la

labyrnth; sp, spongiotrophoblast; ma, maternal decidual tissue; and Gi , trophoblast giant cells.







Figure 111.2. Isolation of fibroblasts from MKK3/MKK6-deficient mice.

(A) Wild-type (WT), Mkk3 - , Mkk6 - and Mkk3 -1- 
Mkk6 /- fibroblasts were cultured in vitro.

Extracts prepared ftom these cells were examined by immunoblot analysis using antibodies to

JNK, ERK, p38 MAPK, MKK3 , MKK4 , MKK6 , MKK7 and a-tubulin.

(B) Cultures of WT Mkk3 - , Mkk6 - and Mkk3 -1- Mkk6 -1- fibroblasts were examined by phase

contrast microscopy.

(C) The proliferation ofWT Mkk3 - , Mkk6 - and Mkk3 - Mkk6 /- fibroblasts cultured in

medium supplemented with 10% fetal calf serum was examined. The relative cell number was

measured by staining with crystal violet (OD at 550nm). The normalized data presented are the

mean of trplicate determinations and are representative of three independent experiments.
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Figure 111.3. Targeted disruption of Mkk3 and Mkk6 prevents phosphorylation of p38

MAPK by Tumor Necrosis Factor.

Wild-type (WT), Mkk3 - , Mkk6 - and Mkk3 -1- Mkk6 -1- fibroblasts were treated without and

with 10 ng/ml TNFa (10 min). Extracts prepared ftom these cells were examined by immunoblot

analysis using antibodies to phospho-MKK3/6 (P-MKK3 , P-MKK4, P-MKK6), MKK3 , MKK4

MKK6 , phospho-p38 MAPK (P-p38), p38 MAPK, phospho-JNK (P-JNK), JNK, phospho-ERK

(P-ERK), ERK, and a-tubulin. The phospho-MKK3/6 antibody binds activated MKK3 and

MKK4 and can also bind more weakly to activated MKK6. Two exposures ofthe phospho-

MKK3/6 immunoblot are presented to show activated MKK3 , MKK4 , and MKK6.
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Figure 111.4. Targeted disruption of Mkk3 and Mkk6 prevents activation of p38 MAPK by

Tumor Necrosis Factor.

Wild-type (WT), Mkk3 Mkk6 , and Mkk3 -1- Mkk6 -1- fibroblasts were treated without and

with 10 ng/ml TNFa (10 min). The activation ofp38 MAPK was examined by in vitro kinase

assays using ATF2 as the substrate.
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Figure 111. 5. Targeted disruption of Mkk3 and Mkk6 prevents activation of p38 MAPK by

Interleukin-

Wild-type (WT) and Mkk3 -1- Mkk6 -1- fibroblasts were treated without and with 10 ng/ml IL-

(10 min) or 60 J/m
2 ofUV radiation. The 

activation ofp38 MAPK was examined by in vitro

kinase assays using A TF2 as the substrate.
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Figure 111. 6. Targeted disruption of Mkk3 and Mkk6 does not prevent UV -stimulated

phosphorylation of p38 MAPK.

Wild-type (WT), Mkk3 - , Mkk6 - and Mkk3 -1- Mkk6 -1- fibroblasts were treated without and

with 60 J/m2 UV radiation and incubated (30 min). Extracts prepared ITom these cells were

examined by immunoblot analysis using antibodies to phospho-MKK3/6, MKK , MKK4

MKK6 , phospho-p38 MAPK, p38 MAPK, phospho-JNK, JNK, phospho-ERK, ERK' and a-

tubulin.
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Figure 111. 7. Targeted disruption of Mkk3 and Mkk6 does not prevent UV-stimulated

activation of p38 MAPK.

Wild-type (WT), Mkk3 - , Mkk6 - and Mkk3 

/- 

Mkk6 -1- fibroblasts were treated without and

with 60 J/m
2 UV radiation and incubated (30 min). The activation ofp38 MAPK was examined

by in vitro kinase assays using A TF2 as the substrate.
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Figure 111.8. MKK4-deficiency causes decreased activation of JNK and p38 MAPK.

(A - B) WT and Mkk4 -1- fibroblasts were treated without and with 10 ng/ml TNFa (15 min) or

60J/m2 UV (30 min). The expression of JNK (A) and p38 MAPK (B) were examined by

immunoblot analysis (upper panels). Activated JNK (P-JNK) and p38 (P-p38) were detected by

immunoblot analysis (middle panels). JNK and p38 MAPK activity was also measured with an

in vitro kinase assay using c-Jun and ATF2 as substrates , respectively (lower panels). The

amount of phosphorylated c-Jun and A TF2 were quantitated by Phosphorimager analysis

(Molecular Dynamics). The data are presented in arbitrary units.

(C) WT and Mkk3 -1- Mkk6 -1- fibroblasts were transfected with siRNA duplexes targeting MKK4

(+ siRNA) or luciferase (- siRNA). The cells were treated without and with 60 J/m2 UV (30 min)

at 48 hr post-transfection. The expression ofMKK4 , p38 MAPK, and activated p38 MAPK (P-

p38) was examined by immunoblot analysis. p38 MAPK activity was examined in an in vitro

kinase assay using the substrate A TF2. The amount of phosphorylated A TF2 was quantitated by

Phosphorimager analysis.
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Figure 111.9. Inhibition ofMKK4 decreases UV-stimulated p38 MAPK activation.

WT and Mkk3 - Mkk6 -1- fibroblasts were retrovirally infected without and with T 180
, Y 

182

JNKI (dnJN1). Infected cells were treated without or with 60 J/m2 UV for 30 min. The

expression and activation ofp38 MAPK and JNK were examined by immunoblot analysis.

Activated p38 (P-p38) and p38 MAPK were detected by immunoblot analysis (upper panels).

Activated JNK (P-JNK), dnJNKl , and JNK were detected by immunoblot analysis (lower

panels).
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Figure 111. 10. Mkk3 -1- Mkk6 -1- fibroblasts exhibit defects in growth arrest.

(A) WT and Mkk3 -1- Mkk6 -1- fibroblasts were serum starved (24 hr). The effect of addition of

10% seru (30 min) to the serum starved cells is presented. The expression ofp38 MAPK and

activated p38 MAPK (P-p38) was examined by immunoblot analysjs.

(B) WT Mkk3 - , Mkk6 - and Mkk3 -1- Mkk6 -1- fibroblasts were cultured in different

concentrations of fetal calf serum (7 days). The relative cell number was measured by staining

with crystal violet (OD at 550nm). The normalized data presented are the mean of trplicate

determinations and are representative of three independent experiments.

(C) Cyclin and L32 mRNA expression in WT and Mkk3 -1- Mkk6 -1- fibroblasts was examined in

a ribonuclease protection assay. Cells growing in 10% fetal calf serum were compared with cells

cultured (24 hr) in serum-ftee medium.

(D) Extracts prepared ftom WT and Mkk3 -1- Mkk6 -1- fibroblasts were examjned by immunoblot

analysis using antibodies to cyclin Dl , cyclin D2 , Rb (detects Rb and phospho-Rb), hypo-pRb

(detects hypo-phosphorylated Rb), and a-tubulin. Cells growing in 10% fetal calf serum was

compared with cells cultured (24 hr) in serum-ftee medium.

(E) c-Jun, JunB , and JunD mRNA expression in WT and Mkk3 -1- Mkk6 -1- fibroblasts incubated

without and with 10 ng/ml TNFa or 10% seru (24 hrs) was examined in a ribonuclease

protection assay.
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Figure 111. 11. Compound disruption of Mkk3 and Mkk6 causes increased tumorigenesis.

WT and Mkk3 -1- Mkk6 -1- fibroblasts immortalized with SV 40 large T antigen were injected

subcutaneously in athymic nude mice. Representative mice with tumors are ilustrated. The

mice were euthanized and the tumors were fixed and processed for histological analysis.

Sections of the tumors stained with H & E are shown. The tumor volume was measured and is

presented graphically (mean - SD; n = 5).
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CHAPTER IV

ROLE OF MLK3 IN THE REGULATION OF MAPK

SIGNALING CASCADES

Summary

Mixed-lineage protein kinase 3 (MLK3) is a member of the MAP kinase kinase kinase

(MA3K) group that has been implicated in multiple signaling cascades. The effect oftargeted

disruption of the murne Mlk3 gene was examined. MLK3-deficiency caused a selective

reduction in tuor necrosis factor-a (TNFa) stimulated activation of the c-Jun NHz-terminal

kinase (JN). These data demonstrate that MLK3 is a component of the TNFa signaling

pathway that activates JN.

The Mlk3- mice were generated in collaboration with Dr. Richard Flavell' s laboratory at

the Yale University School of Medicine. I prepared MEF ftom the WT Mlk3- and Mlk3- mice

and initially characterized these fibroblasts. Anja Jaeschke contrbuted to the

immunofluorescence data in Figure IV.3A. Juan-Jose Ventua contrbuted to data in Figue

IV.4A, C, D. Tamara Barrett, Judith Reily, and Vicky Benoit assisted with the mouse breeding

and genotying.



Introduction

The mechanism of JNK activation caused by TNFa is incompletely understood. It is

established that JN is activated by dual phosphorylation on the T-loop within the motifThr-

Pro- Tyr (Derijard et al. 1994). This phosphorylation is mediated by the actions of two different

MA kinase kinases (MAP2K) MKK4 and MKK7 (Tourier et al. 2001). These MA2K can 

activated by MAP kinase kinase kinases (MAP3K), but the identity of the relevant TNa-

stimulated MAP3K is unclear.

Many transfection studies ofMAP3K have been reported that employ over-expression

and dominant-negative approaches (Widmann et al. 1999). In general, these studies have not

provided useful information in studies of JNK signaling because of the promiscuous fuction of

MA3K in both gain-of-fuction and dominant-negative experiments. In contrast, studies using

mouse knockouts have provided rigorous evidence for roles of individual MAP3K. Thus

MEKKI is required for TGF~/activin-stimulated JN activation (Zhang et al. 2003), MEKK is

required for FGF-stimulated JNK activation (Kesavan et al. 2004), MEKK3 contrbutes to

TNa-stimulated p38 MAPK activation (Lee et al. 2003), MEKK4 is required for IL-

stimulated p38 MAK activation (Chi et al. 2004), and Tpl-2 is required for LPS-stimulated

ERK activation (Dumitr et al. 2000).

Although progress towards understanding the role of MA3K has been achieved, the

mechanism of JNK activation in response to TNFa remains unclear. Thee MAP3K have been

implicated in TNFa-stimulated JN activation. First, ASKI is thought to be involved in the late

phase of JNK activation in response to TNFa, most likely as a result of the generation of reactive

oxygen species (Tobiume et al. 2001). The immediate activation of JN caused by TNFa may



be mediated by T AKI and/or by one or more members of the mixed-lineage protein kinase

(MLK) family. MLK protein kinases may be selectively involved in TNFa-stimulated 

activation (Sathyanarayana et al. 2002), while T AKI is implicated as a common TNa-

stimulated activator of JN, p38 MAPK, and NF-rl (Ishitani et al. 2003; Takaesu et al. 2003).

Since Traj2 -1- fibroblasts exhibit defects in TNFa-stimulated JNK and NF-KB (but not p38

MAPK) and Ripl -1- fibroblasts exhibit defects in p38 MAPK and NF-1d (but not JNK) (Lee et

al. 2003; Yeh et al. 1997), it is not obvious how a common MAP3K could be responsible for the

TNFa-stimulated activation of JNK, p38 MAK, and NF-rl. For this reason, I considered the

possibility that a MLK protein kinase might contrbute to TNFa-stimulated JN activation.

There are three sub-groups of mixed-lineage protein kinases (Gallo and Johnson 2002).

The MLK group, which consists ofMLK1 , MLK2 , MLK3 , and MLK4, share similar strctual

domains , including an SH3 domain and a Crib motif that binds Cdc42 and Racl. The DLK

group (DLK and LZK) is strctually distinct and lacks the SH3 and Crib sequences. The third

group of protein kinases consists of a single member (ZAK) that is distinctive because of the

presence of a sterile-a motif (SAM). Many of these protein kinases are expressed in only a

limited number of tissues; for example, MLKI is expressed in epithelial cells and DLK is

expressed in neurons (Gallo and Johnson 2002). However, one member of this gene family is

ubiquitously expressed, consistent with a possible role as a mediator ofTNFa signaling in many

tissues - MLK3.

This possibility is consistent with previous studies showing that TNFa activates MLK3

(Sathyanarayana et al. 2002), that TNFa and MLK protein kinases (Tourier et al. 2001) can

selectively activate MKK7 (Hirai et al. 1998; Merrtt et al. 1999), and that a small molecule

MLK inhibitor can inhibit TNFa-stimulated JN activation (Sathyanarayana et al. 2003).



However, recent RNAi-based studies have suggested that MLK3 is critically required for cellular

proliferation and is essential for the activation of multiple MAP kinase signaling pathways in

response to a broad range of stimuli (Chadee and Kyrakis 2004; Swenson et al. 2003). The role

ofMLK3 in signaling and the specific relevance ofMLK3 to TNFa signal transduction are

therefore unclear.

The purose of this study was to test the role ofMLK3 in TNFa-stimulated 

activation. My approach was to examine the effect of targeted disruption of the Mlk3 gene. I

report that MLK3-deficiency causes a selective defect in TNa-stimulated JN activation and

that MLK3 is not required for cellular proliferation. Surrisingly, MLK3-mediated JNK

activation negatively regulated the activation ofp38 MAPK. This negative cross-talk was

observed in response to TNFa stimulation and durng in vitro adipogenesis. Together, these data

suggest that MLK3 plays a non-redundant role in mediating the specific activation of JN.



,"'

Materials and Methods

Mice. Mouse strain 129/SvJ genomic clones of the Mlk3 gene were isolated by PCR and sub-

cloned into the vector pCR TMII (Invitrogen). A targeting vector designed to disrupt the Mlk3

gene (Figure IV. la) was constructed using standard techniques. ES cells were electroporated

with this vector and selected with 200 J.g/ml G418 (Invitrogen) and 2J.M gangcyclovir (Syntex).

Twelve Mlk3 -1+ ES cell clones were identified by Southern blot analysis and two were injected

into C57BL/6J blastocysts to create chimeric mice that transmitted the disrupted Mlk3 allele

through the germ-line. The mice were backcrossed ten generations to the C57BL/6J strain

(Jackson Laboratories). Homozygous Mlk3- mice were obtained by crossing heterozygous

Mlk3- animals. Histological analysis of the mice was performed using tissue fixed in 10%

formalin for 24 hr, dehydrated, and embedded in paraffin. Sections (4J.m) were cut and stained

with Harrs hematoxylin (Sigma) and eosin (Sigma). The mice were housed in a facility

accredited by the American Association for Laboratory Animal Care (AAAC). The animal

studies were approved by the Institutional Animal Care and Use Committee (IACDC) of the

University of Massachusetts Medical School.

Genotype analysis. The genotype at the Mlk3 locus was examined by Southern blot analysis of

Ncol restrcted genomic DNA by probing with a random-primed labeled probe (529 bp) that

was isolated by PCR using an Mlk3 cDNA as the template and the primers 5'

CTCCGAAGGCAACAGCAGCTTATGCCA-3' and 5'

CACACGCCGACCAGCCAGGGCCCGGCT- . Thewild-tye (140 bp) and disrupted (275

bp) alleles of Mlk3 were also detected by PCR amplification of genomic DNA using the primers



- AAGCGGAGCAACTCCGAGCAAG- , 5' - AAGGCTAACCAGAACTCAAG-3' and

5' - GTAGAAGGTGGCGCGAAGGG-

Cell culture. Primary murne embryo fibroblasts (MEF) were isolated and cultued in

Dulbecco s modified Eagle s medium (DMEM) supplemented with 10% fetal bovine serum

(Invitrogen). All experiments were performed using MEF between passage 2 and passage 5.

Similar data were obtained in experiments using independently isolated MEF cultues.

Proliferation assays were performed by staining with crystal violet (Tourier et al. 2000).

Adipocyte differentiation assays (Green and Kehinde 1975; Picard et al. 2002) were performed

by cultung 2-day post-confluent cells in medium supplemented with 10 Ilg/ml insulin (Sigma),

5 mM isomethylbutyl- l-xanthine (IBMX, Sigma), and Illg/ml dexamethasone (Sigma). The

medium was replaced after 72 hr with ftesh medium supplemented with 10 Ilg/ml insulin and 1

11M Troglitizone (Calbiochem). The accumulation of fat droplets within the cytoplasm was

detected by staining the cells with Oil-Red-O (VWR).

Migration and invasion assays. Boyden chamber assays were performed using 2.5xl0 cells in

5ml DMEM placed in each insert of a 24 multi-well plate (BIOCOATiI, Becton Dickinson).

Migration and invasion assays were performed without and with MatrgeliI, respectively, by

incubating the cells at 37 oC (16 hr). The inserts were placed in methanol (-20 OC) and stained

with 4' - diamino- phenylindole (DAPI, Vector Laboratories). The cells were visualized with

an Axioplan 2 microscope and a MicroImager CCD camera (Carl Zeiss).



Immunofluorescence analysis. Cells were grown on coverslips and fixed at -20 oC in methanol

(5 min) and in acetone (2 min). The coverslips were washed in PBS, incubated (30 min at 22 O

in BPT buffer (3% BSA/BS , 0.2% Tween-20), and stained with a mouse monoclonal antibody

to a-tubulin (Sigma) in BPT buffer (60 min at 22 OC). Immunecomplexes were visualized using

a FITC-conjugated goat anti-mouse Ig secondary antibody (Jackson ImmunoResearch). Slides

were mounted with Vectashield mounting medium with DAPI (Vector Laboratories, Inc).

Fluorescence microscopy was performed using a Ziess inverted microscope (Axiovert M200)

with a !Ox objective (N.A. 0.30), a CCD camera (Zeiss Axiocam ), and image acquisition

softare (Zeiss Axiovision).

Immunoblot analysis. Cell extracts were prepared using Triton lysis buffer (20 mM Tris (pH

7.4), 1 % Triton X- 100, 10% glycerol , 137 mM NaCl, 2 mM EDTA, 25mM ~-glycerophosphate

1 mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride, and 10 Ilg/mL of aprotinin

and leupeptin). Extracts (50 Ilg of protein) were examined by protein immunoblot analysis by

probing with antibodies to JNK (Pharmingen), phospho-JNK (Cell Signaling), p38 MAK

(Santa Cru), phospho-p38 MAPK (Cell Signaling), ERK1I2 (Santa Cru), MLK3 (Cell

Signaling), Irla (Cell Signaling), C/EBPa (Santa Cruz), phospho-Thr-222/226-C/EBPa (Cell

Signaling), C/EBP~ (Santa Cru), phospho-Thr-235-C/EBP~ (Cell Signaling), and a-tubulin

(Sigma). Imunocomplexes were detected by enhanced chemiluminescence (NEN).

Protein kinase assays. The activity of JNK, ERK, and p38 MA kinase was measured using 

vitro kinase assays using the substrates cJun, myelin basic protein, and A TF2 , respectively

(Whitmarsh and Davis 2001).
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RNase protection assays. Total RNA (5 f.g) was examined using the "Multi-probe RNase

protection assay" (Pharmingen) with the template sets mFos/Jun, mCR- , and mCK-3b following

the manufactuer s recommendations. The products were separated on a 5% sequencing gel

detected by autoradiography, and quantitated by Phosphorimager analysis (Molecular

Dynamics).
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Results

Targeted disruption of Mlk3

I constrcted a targeting vector to disrupt the Mlk3 gene. This vector was designed to

replace the kinase domain, exons 2 - 5 with a NeoR cassette (Figure IV. la). The vector was

linearized and electroporated into embryonic stem (ES) cells to obtain homologous

recombination within the Mlk3 gene. Twelve ES cell clones with the correctly targeted Mlk3

gene were identified by Southern blot analysis. Two ofthese clones were injected into

C57BL/6J blastocysts to create male chimeric mice that were bred to obtain germ-line

transmission ofthe disrupted Mlk3 allele. The mice were backcrossed to the C57BL/6J strain

background. Genomic DNA isolated ftom the progeny obtained ftom crossing Mlk3- mice was

examined by PCR and Southern blot analysis to identify wild-type Mlk3- and Mlk3 -

littermates (Figure IV. , c). The number of wild-type , heterozygous , and homozygous

knockout mice obtained ftom these crosses conform to the expected Mendelian inheritance.

Immunoblot analysis demonstrated that the level ofMLK3 expression was reduced in Mlk3 -

mice and was absent in Mlk3 -1- mice (Figure IV. ld).

MLK3-deficient mice were found to be viable , had a normal life-span, and were not

found to be tuor-prone compared with wild-type mice. The Mlk3- mice appeared to be

morphologically normal , but displayed a slight defect along the dorsal midline (Figue IV.2a).

Histological analysis indicated that MLK3-deficiency reduced the amount of dorsal epidermal

tissue (Figue IV.2b). The mechanism for this epidermal defect remains unclear; however

defects in the dorsal epidermis are ftequently associated with neural tube disclosure in mice and

dorsal disclosure in Drosophilia (Davis 2000; Weston and Davis 2002). Recent reports indicate
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that slipper a dMLK, is required for dorsal closure durng embryogenesis (Stronach and

Perrmon 2002; Sathyanarayana et al. 2003). This is consistent with the finding that epidermal

defects are observed along the dorsal midline of 
Mlk3- mice.

MLK3 is not essential for cellular proliferation

It has been established in previous RNAi-based studies that MLK3 is essential for seru-

stimulated cell proliferation (Chadee and Kyrakis 2004). This conclusion appears to be

inconsistent with the finding that 
Mlk3 -

1- mice are viable. To directly investigate whether MLK3

is required for proliferation, I isolated primary murne embryo fibroblasts (MEF) ftom wild-type

and Mlk3 -
1- E13.5 embryos. Phase contrast microscopy indicated that the morphology of the

wild-type and Mlk3 -
1- MEF was similar in sparse cultues and that both groups of MEF exhibited

contact growth inhibition in confluent cultues (Figue IV.3a). Measurement of proliferation

durng cultue in medium supplemented with 10% fetal bovine seru for 8 days demonstrated no

differences between wild-tye and Mlk3 -
1- MEF (Figure IV.3b). Similarly, no differences

between wild-tye and Mlk3 -
1- MEF were detected in experiments using seru concentrations

ranging between 0% and 20% (Figue IV.3c). The regulated expression of members ofthe AP-

family of transcription factors is implicated in cell proliferation and these genes represent

potential targets ofMLK3 signaling; however, comparison of wild-type and 
Mlk3 -1- MEF

indicated no differences in AP- l mRNA expression (Figure IVAa). Together, these data indicate

that MLK3 is not essential for MEF proliferation.

A previous RNAi-based study has indicated that MLK3 is also essential for the regulation

of microtubule dynamics (Swenson et al. 2003). Defective microtubule regulation would be

expected to cause defects in mitosis and cell migration (Swenson et al. 2003). Comparison 
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wild-type and Mlk3 -1- MEF did not indicate a requirement for MLK3 in proliferation (Figure

N.3b, c). I therefore investigated potential defects in cell migration caused by MLK3-

deficiency. Boyden chamber assays using an imposed seru gradient (0 - 10%) demonstrated no

differences in seru-induced chemotaxis between wild-type and Mlk3 -1- MEF (Figue IV.3d).

Similarly, no differences between the ability of wild-type and Mlk3 -1- MEF to invade a Matrgel

layer were observed (Figure IV.3d). These data suggest that MLK3-deficiency does not cause

major microtubule defects. Indeed, immunofluorescence microscopy using a monoclonal

antibody to a-tubulin indicated the presence of similar microtubule networks in wild-type and

Mlk3 -1- MEF (Figue IV.3a).

MLK3-deficiency causes a selective defectin TNFa-stimulated JNK activation

It is established that the MLK3 protein kinase is activated when cells are exposed to

TNa, and pharmacological studies using the drg CEP- II004 have implicated MLK3 in TNFa-

stimulated JN activation (Sathyanarayana et al. 2002). I therefore examined the ability of

TNFa to activate JN in wild-tye and Mlk3 -1- 
MEF with an in vitro protein kinase assay using

cJun as the substrate. This analysis demonstrated that TNa caused a rapid and transient

increase in JNK activity in wild-tye MEF and that the extent of JN activation was suppressed

(but not eliminated) in Mlk3 -1- MEF (Figure IV.5a). The effect ofMLK3-deficiency to suppress

JNK regulation by TNFa was also observed in experiments in which the JNK activation state

was monitored by immunoblot analysis with an antibody that binds dual (Thr and Tyr)

phosphorylated JNK (Figure IV.6a). The defect in JNK activation was not a consequence of

decreased TNF receptor expression because wild-type and Mlk3 -1- MEF expressed similar

amounts ofTN-RI and TNF-R2 (Figure IVAc). To confirm that the reduced TNFa-stimulated



104

JNK activation observed in Mlk3 -1- MEF was caused by MLK3-deficiency, I performed

complementation analysis (Figure IV.7). Together, these data demonstrate that MLK3

contrbutes to TNFa-stimulated JNK activation. However, MLK3 was not essential for TNFa-

stimulated JN activity.

The requirement ofMLK3 for maximal JNK activation appears to be selective for TNFa.

Thus, no defect in IL- l stimulated JNK activation was detected in MlkFI- MEF (Figue IV.6b).

Similarly, MLK3-deficiency did not cause defects in JNK activation when the MEF were

exposed to several environmental stresses, including ultraviolet radiation, osmotic stress

anisomycin , or cerami de activation (Figure IV.8). Furhermore, MLK3-deficiency did not cause

defects in growth factor-stimulated JN activation, including EGF , PDGF , and FGF activation

(Figue IV.9). The selective (and partial) defect in TNFa-stimulated JN activation observed in

MLK3-deficient fibroblasts markedly contrasts with previous RNAi-based studies that have

implicated an essential role ofMLK3 in JN activation caused by multiple stimuli (Chadee and

Kyrakis 2004).

MLK3-mediated JNK activation negatively regulates p38 MAPK

TNFa causes the activation of several signal transduction pathways, including JN

ERK, p38 MAPK, and NF-KB. Gene disruption experiments demonstrate that MLK3 is required

for maximal TNFa-stimulated JNK activation (Figure IV.5; Figure IV.6). It is possible that

MLK3 may also playa role in the TNFa-stimulated activation ofERK, p38 MAPK, and NF-1d.

Indeed, previous studies have implicated MLK3 in ERK activation (Chadee and Kyriakis 2004),

p38 MAPK activation (Rana et al. 1996; Chadee and Kyrakis 2004), and NF-1d activation

(Hehner et al. 2000). Control studies demonstrated that TNFa-stimulated I1da degradation and
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the activation ofERK and p38 MAPK was not reduced in MLK3-deficient MEF (Figue IVAb;

Figure IV. , c). An unexpected discovery was that TNa-stimulated p38 MAK activity was

increased in Mlk3 -1- MEF (Figure IV.5b). This increased TNFa-stimulated p38 MAK

activation was confirmed by immunoblot analysis using an antibody to phospho-p38 MAK

(Figure IV.6a) and was not observed in cells treated with IL- l (Figure IV.6b). Since JN can

suppress p38 MAPK activation and JN-deficient cells exhibit increased TNa-stimulated p38

MAK signaling (Morton et al. 2004), it is likely that the increased TNa-stimulated p38

MAPK activation is related to the observed decrease in TNa-stimulated JN activation (Figue

IV.6a). This increased TNa-stimulated p38 MAPK activation is consistent with the finding that

MLK3-deficient MEF exhibit greater TNa-stimulated expression ofIL- , a p38 MAPK target

than wild-tye MEF (Figue IVAd).

Altered MAPK regulation causes increased adipogenic potential

The increased p38 MAPK activation and decreased JN activation observed in Mlk3 

MEF is likely to be physiologically significant. It has been reported that JN activation inhibits

adipogenesis, by phosphorylating and inactivating the pro-adipogenic transcription factor PP ARy

(Camp et al. 1999). Conversely, p38 MAPK activation promotes adipogenesis , by increasing the

expression and phosphorylation ofC/EBP transcription factors (Engelman et al. 1998; Zhang et

al. 2004b). I therefore investigated whether altered MAP kinase activation might contrbute to

an effect ofMLK3-deficiency durng adipose differentiation. Wild-type and Mlk3 /- MEF were

differentiated in vitro to adipocytes and the expression and phosphorylation of JN, p38 MAPK

and ERK were examined by immunoblot analysis (Figure IV. lOa). Durng differentiation, JNK

phosphorylation was decreased in the Mlk3 /- MEF. Conversely, p38 MAPK phosphorylation
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was slightly increased in the Mlk3 /- MEF. No differences in the expression or phosphorylation

of ERK were observed. It has been reported that MAP kinases target transcription factors

involved in adipogenesis (Engelman et al. 1998; Camp et al. 1999; Hu et al. 1996). I therefore

examined the expression and phosphorylation of C/EBPa and C/EBP~ durng adipose

differentiation (Figure IV. l Ob). Expression and phosphorylation of C/EBPa was increased in the

Mlk3 /- MEF at early times during differentiation. Similarly, an increase of expression and

phosphorylation of C/EBP~ was also observed at early times durng differentiation. These data

indicate that MLK3-deficiency can alter MAP kinase and transcription factor activation durng

adipogenesis.

This suggests that MLK3-deficiency may increase adipose differentiation in vitro. 

directly investigate whether MLK3-deficiency can increase adipocyte differentiation in vitro

examined the morphology of differentiated wild-type and Mlk3- MEF by phase contrast

microscopy and by staining accumulated fat droplets with Oil-Red-O. Indeed, examining the

morphology of wild-type and Mlk3 /- MEF indicated an increase of adipocyte differentiation in

the Mlk3 /- MEF (Figure IV. l1a). To confirm that the increased adipocyte differentiation

observed in the Mlk3 /- MEF was caused by MLK3-deficiency, I performed complementation

analysis (Figue IV. ll b). Expression ofMLK3 was found to decrease the number of adipocytes

in the differentiated MLK3-deficient MEF. In addition Mlk3 /- MEF showed an increase in

differentiated adipocytes in both the presence and absence of insulin and the PP AR y ligand

troglitizone as compared to wild-type MEF (Figure IV. llc). Together, these data demonstrate

that MLK3-deficiency increases the adipogenic potential of primary MEF.
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Discussion

My analysis of Mlk3 -1- mice indicates that MLK3 fuctions as component of the TNa

signaling pathway that causes JNK activation in primary MEF. Previous studies using RNAi-

mediated gene suppression have suggested a more general role of MLK3 as an essential protein

kinase for the activation of multiple MAK signaling pathways in response to a broad array of

extracellular stimuli (Chadee and Kyrakis 2004). In addition, RNAi-based studies have

suggested that MLK3 is critical for cell proliferation (Chadee and Kyrakis 2004) and normal

microtubule fuction (Swenson et al. 2003). Analysis of Mlk3 -1- MEF do not support these

conclusions. Since my biochemical analysis were restrcted to MEF , it is possible that the

divergent conclusions between these studies reflect differences in the role ofMLK3 between cell

types. Nevertheless, it is difficult to reconcile the conclusion that MLK3 is critical for

proliferation and has multiple essential signaling roles with the finding that 
Mlk3 -1- mice are

viable and healthy. A second possible explanation of the more restrcted phenotye observed in

my study is that a greater degree of compensation may have occured in the MLK3 knockout

mice ftom a MLK family member compared with in vitro studies with RNAi. A number of other

potential explanations also exist, including the possibilty that the phenotype caused by a

reduction ofMLK3 expression is greater than that caused by the elimination ofMLK3

expression (Editorial 2003).

MLK3 is a component of the TNFa signaling pathway that activates JNK

TNFa binds to the TNF-Rl receptor to activate several signaling pathways, mediating a

balance between life and death (Wajant et al. 2003). TNFa can activate the caspase-8 pathway
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to stimulate apoptosis , or promote cell surival by activating NF-1d. In addition, TNa can

mediate JN- and p38 MAPK- dependent gene transcription through the interaction of the TNF

adaptor proteins , TRA2 and RIP1 , with MAP3K. In this study, I demonstrate that the MAP3K

MLK3 , has a non-redundant role in TNFa signaling (Figure IVA - 7). MLK3 mediated the

immediate activation of JNK in response to TNFa and was required for maximal TNFa-

stimulated JNK activation. In addition, I demonstrated that MLK3 is not required for TNFa-

stimulated activation ofp38 MAK and NF-1d. These data indicate that MLK3 selectively

regulates TNFa-stimulated JN activity.

Although MLK3-deficient MEF exhibit a selective reduction in TNFa-stimulated 

activation, a low level ofTNFa-induced JN activation was observed in Mlk3 -1- MEF (Figure

IV.5a; Figue IV.6a). One key question for futue studies is the identity ofthe MAP3K that

mediates the effects ofTNa on JN activation in MLK3-deficient cells. A plausible

hypothesis is that this protein kinase activity represents another member of the MLK group, but

other MA3K may contrbute to TNFa-stimulated JN activation. A second key question

relates to the mechanism by which TNFa activates MLK3. The adapter protein TRAF2 is

required for TNa-stimulated JN activation (Yeh et al. 1997), but whether TRAF2 might

regulate MLK3 directly or indirectly is unclear. Analysis of the regulatory relationship between

TRA2 and MLK3 represents a critical goal for futue experiments.

Interestingly, TNFa-stimulated activation ofp38 MAPK is increased in 
Mlk3 /- MEF

(Figue IV.5b; Figue IV.6a). Recent studies of JNK-deficient cells demonstrate increased p38

MAPK activation in response to TNFa (Morton et al. 2004). Conversely, decreased p38 MAPK

activity increases JNK activation durng macrophage differentiation (Hall and Davis 2002).
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These data suggest that negative cross-talk exists between the JNK and the p38 MAPK

pathways.

A JN-dependent mechanism may cause the observed increase in TNFa-stimulated p38

MAPK activation in MLK3-deficienct MEF. Since the immediate activation of JN and p38

MAPK is altered in these cells , the mechanism probably does not require gene regulation. One

plausible hypothesis is that this MAPK activity depends on the activation of JNK-dependent

phosphatases. For example, MAP kinase phosphatases (MKP) are dual-specific phosphatases

that regulate the ERK, JNK, and p38 MAK pathways (Camps et al. 2000; Theodosiou and

Ashworth 2002). Several MKP, such as MKP5 and MK7 , appear to preferentially

dephosphorylate JN and p38 MAPK (Theodosiou et al. 1999; Tanoue et al. 1999; Tanoue et al.

2001; Matsuguchi et al. 2001). The activity of these phosphatases may be reduced in MLK3-

deficient cells and de-repress p38 MAPK. A second explanation relies on the presence of a

negative feedback loop. JNK may down-regulate its activity by inactivating MA3K (Phelan et

al. 2001; Vacratsis et al. 2002). The lack ofMAP3K down-regulation may promote p38 MAPK

activation by channeling the activated MAP3K to other adaptor proteins. Recently, gene

targeted disruption studies indicate that RIP 1 is essential for TNFa-stimulated p38 MAK

activation (Lee et al. 2003). Furher studies are, thus , required to analyze the regulatory

relationship between RIP1 , MLK3 , and other MAP3K.

The JN and the p38 MAK pathways regulate adipogenesis

Adipogenesis is a physiological process that is differentially regulated by MAP kinases

(Rosen and Spiegelman 2000; Rosen et al. 2000). For example JN activation inhibits the pro-

adipogenic transcription factor PPARy (Adams et al. 1997; Camp et al. 1999). Conversely, p38
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MAPK activation promotes adipogenesis, in part, by increasing the transcriptional activation of

C/EBP (Engelman et al. 1998; Engelman et al. 1999). This suggests that adipogenesis is a

paradigm in which reciprocal alterations in JN and p38 MAPK activity may have biological

consequences. In this study, I show that MLK3-deficiency increases the adipogenic potential of

primary MEF (Figure IY.1O - IV. ll). MLK3-deficiency altered MAPK activation and increased

the expression and phosphorylation of the pro-adipogenic transcription factors C/EBPa and

C/EBP~. In addition, MLK3-deficiency increased adipocyte differentiation in vitro. These data

suggest that MLK3 plays a role in regulating adipogenesis.

The mechanism ofMLK3-mediated adipogenesis, however, remains unclear. Adipocyte

differentiation may be enhanced by an increase in C/EBPa and C/EBP~ phosphorylation by p38

MAPK (Engelman et al. 1998). In addition, up-regulated p38 MAPK may phosphorylate the

transcription factors, CREB and ATF1 , and increase C/EBP~ expression (Zhang et al. 2004b).

Conversely, adipocyte differentiation may be enhanced by a decrease in PP ARy phosphorylation

by JN inhibition (Camp et al. 1999). Other transcription factors involved in adipose

differentiation, such as C/EBPo, may also be affected by MLK3-deficiency.

Interestingly, the increased C/EBP~ activation observed in Mlk3 /- MEF durng adipose

differentiation may partially explain the increased IL-6 expression observed in Mlk3 /- MEF

following TNFa stimulation (Figue IVAd). TNa-stimulated IL-6 expression is dependent on

the activation ofp38 MAPK (Beyaert et al. 1996; Wysk et al. 1999). In addition, IL-

expression can also be regulated by the transcriptional activation ofC/EBP~ (Akira et al. 1990;

Nakajima et al. 1993). This suggests that in TNFa-stimulated Mlk3 /- MEF , increased p38

MAK activation may cause increased C/EBP~ activation, resulting in increased IL-

expressIOn.
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Although MLK3-deficiency caused increased adipogenesis in MEF cultues in vitro

analysis of Mlk3 -1- 
mice fed standard chow ad libitum did not reveal increased adiposity in vivo.

Further studies of these mice are required to determine whether MLK3-deficiency affects

adiposity in vivo; for example, if the mice are environmentally challenged on a high fat diet.

Conclusions

In this study, I have examined the role ofMLK3 in the TNFa signaling pathway. My

approach was to examine the effect of targeted disruption of the Mlk3 gene. A consensus

conclusion ftom my MLK3 knockout analysis (Figure IV. 1 - IV.9) and previously reported

studies (Sathyanarayana et al. 2002; Swenson et al. 2003; Chadee and Kyrakis 2004) is that the

limited role ofMLK3 that I observe in TNa signaling represents a non-redundant fuction of

MLK3. My analysis does not exclude the possibility that MLK3 may also have additional

fuctions that are redundant with other members of the MAP3K family.

I also observe that MLK3-mediated JNK activation can negatively regulate TNa-

stimulated p38 MAPK activity. This suggests that the JN and the p38 MAPK pathways can

coordinate their actions in response to specific stimuli. Regulating MAPK activation is likely to

be biologically significant, because of the opposing roles these MAK play in adipogenesis.

Indeed, altered JN and p38 MAK regulation are associated with changes in adipogenic

potential (Figue IV. I0 - IV. 11).

In conclusion, I report that the MLK3 protein kinase contrbutes to TNF a-stimulated JNK

activation. This identification of a role for MLK3 fills an important gap in our understanding of

the mechanism of JNK activation caused by TNFa.
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Figure IV. I. Disruption of the Mlk3 gene in mice.

(A) The strategy employed to disrupt the Mlk3 gene by homologous recombination is ilustrated.

The strctue of the Mlk3 gene , the targeting vector, and the disrupted Mlk3 gene are shown.

Restrction enze sites are indicated: B (Bamff), Nc (NcoI), Nt (NotI), (EcoRI), (XbaI).

The probe used for Southern analysis and the expected results of NcoI restrction digestion are

ilustrated.

C) Genomic DNA isolated ftom Mlk3 , Mlk3 - and Mlk3 -1- mice was examined by PCR

(B) and Southern blot (C) analysis.

(D) Protein extracts prepared ftom MEF isolated ftom Mlk3+1+, Mlk3 - and Mlk3 -1- mice were

examined by immunoblot analysis using antibodies to MLK3 and a-tubulin.
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Figure IV.2. MLK-deficiency cause epidermal defects along the dorsal midline.

(A) Mlk3- mice are viable. WT and MlkT

/- 

mice were bred and four day old littermates were

examined and photographed. The Mlk3- mice appear morphologically normal , but exhibit a

dorsal midline defect (red arrow).

(B) Histological examination of the WT and Mlk3- mice. Sections of the dorsal epidermis and

underlying tissue were stained with hematoxylin and eosin (H & E). Images oflow and high

magnification are shown. The red arrow indicates the loss of epidermal tissue along the dorsal

midline of the Mlk3- mice.
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Figure IV.3. Characterization of primary MEF isolated from wild-type and Mlk3 -1- mice.

(A) The morphology of sparse and confluent cultures ofWT and Mlk3 /- MEF was examined by

phase contrast microscopy (upper panels). The presence of micro tubules (green) in WT and

Mlk3 -1- 
MEF was examined by immunofluorescence microscopy (lower panels). 

DNA in the

nucleus was stained with DAPI (blue).

(B) Cells (2.5 x 10 ) were incubated in 11 mm wells with medium supplemented with 10% fetal

calf serum. Relative cell number was measured by staining with crystal violet. The proliferation

of WT and Mlk3 -1- MEF during culture for 8 days was examined. The data shown represent the

mean - SD (n = 3).

(C) The effect of serum concentration on the saturation growth density ofWT and Mlk3 -1- MEF

was examined. Cells (2.5 x 10 ) were incubated in 11 mm wells with medium supplemented

with different concentrations of serum for 7 days. Relative cell number was measured by staining

with crystal violet. The data shown represent the mean - SD (n = 3).

(D) Boyden chamber assays were performed to measure chemotaxis (cell migration) ftom serum

ftee medium to medium supplemented with 10% serum. Invasion assays were performed in

similar experiments using Matrgel!!. The cells were stained with 4' -6' - diamino- phenylindole

(DAPI) and visualized by fluorescence microscopy. The relative cell migration and invasion was

quantitated by counting the number of cells (mean - SD; n = 3). The migration and invasion by

WT and Mlk3 /- MEF is shown.
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Figure IV.4. Effect of MLK3-deficiency on gene transcription.

(A) Effect ofMLK3-deficiency on AP- l. The expression of several genes that encode proteins

that can form AP- l transcription factors by exponentially growing WT and Mlk3 -1- MEF was

examined in a ribonuclease protection assay to detect mRNA. The expression of ribosomal

protein L32 mRNA was examined in control experiments.

(B) Effect ofMLK3-deficiency on NF-KB. WT and Mlk3 -1- MEF were incubated with TNF (10

ng/ml) and the degradation ofIKBa was examined by immunoblot analysis. Control experiments

were performed by probing immunoblots with an antibody to a-tubulin.

(C) Effect ofMLK3-deficiency on TNF-R. The expression ofTNF-Rl and TNF-R2 was

examined in a ribonuclease protection assay to measure the amount of TNF receptor mRNA in

WT and Mlk3 -1- MEF. Control experiments were performed by measuring the amount of

ribosomal protein L32 mRNA. The data were quantitated by Phosphorimager analysis and the

relative TNF receptor expression was calculated as the ratio ofTNF receptor mRNA and L32

mRNA.

(D) Effect ofMLK3-deficiency on IL- 6. WT and Mlk3 -1- MEF were incubated with TNF (10

ng/ml) and the amount ofIL-6 and L32 mRNA was examined in a ribonuclease protection

assay. The data were quantitated by Phosphorimager analysis and the relative IL-6 mRNA

expression was calculated as the ratio ofIL-6 mRNA and L32 mRNA.
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Figure IV.5. MLK3 is required for maximal TNF-stimulated JNK activation.

(A) WT and Mlk3 -1- MEF were incubated with TNF (10 ng/ml) for different periods of time

before the cells were harvested to prepare protein extracts. JNK activity was measured with an

in vitro kinase assay using the substrate cJun. The phosphorylation of cJun was detected by

autoradiography and was quantitated by Phosphorimager analysis. The amount of JNK in each

assay was examined by immunoblot analysis.

(B) The TNF-stimulated activation ofp38 MAP kinase was examined in an in vitro kinase

assay using the substrate ATF2.

(C) The TNF-stimulated activation ofERK was examined in an in vitro kinase assay using

myelin basic protein (MBP) as the substrate.
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Figure IV.6. Maximal TNF-stimulated JNK phosphorylation on Thr and Tyr requires

MLK3.

(A) WT and Mlk3 -1- MEF were incubated with TNF (10 ng/ml) and the activation of JNK and

p38 MAPK was examined by immunoblot analysis using antibodies to phospho-JNK and

phospho-p38. The amount ofMAPK in each assay was examined by probing immUloblots with

antibodies to JNK and p38 MAPK.

(B) The effect ofIL- l (10 ng/ml) on JNK and p38 MAPK activation in WT and Mlk3 -1- MEF

was examined by immunoblot analysis.
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Figure IV. 7. Complementation analysis demonstrated that the expression of MLK3

increases TNF-stimulated JNK activation in MLK3-deficient MEF.

MEF were incubated without and with 10 ng/ml TNF (10 min). Protein extracts were

investigated by probing western blots with antibodies to JNK, MLK3 , and a-tubulin. JNK

activity was measured in an immunecomplex kinase assay with cJun as the substrate. The

incorporation of 32 phosphate into the substrate was detected by autoradiography and was

quantitated by Phosphorimager analysis.
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Figure IV.8. MLK3 is not required for JNK or p38 MAPK activation caused by stress.

(A) WT and Mlk3 -1- MEF were exposed to UV (50 J/m ) and the activation of JNK and p38

MAPK was examined by immunoblot analysis using antibodies to phospho-JNK and phospho-

p38. The amount ofMAPK in each assay was examined by probing immunoblots with

antibodies to JNK and p38 MAPK.

(B) The effect of osmotic stress (300 mM sorbitol) on JNK and p38 MAPK activation in WT

and Mlk3 -1- MEF was examined by immunoblot analysis.

(C) The effect of anisomycin (1 g/ml) on JNK and p38 MAPK activation in WT and Mlk3 -

MEF was examined by immunoblot analysis.

(D) The effect of cerarnide (1 0 M) on JNK and p38 MAPK activation in WT and Mlk3 -1- MEF

was examined by immunoblot analysis.

---
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Figure IV.9. MLK3 is not required for JNK or p38 MAPK activation caused by growth

factors.

(A) WT and Mlk3 -1- MEF were exposed to PDGF (20 ng/ml) and the activation of JNK and p38

MAPK was examined by immunoblot analysis using antibodies to phospho-JNK and phospho-

p38. The amount ofMAPK in each assay was examined by probing immunoblots with

antibodies to JNK and p38 MAPK.

(B) The effect ofEGF (50 ng/ml) on JNK and p38 MAPK activation in WT and Mlk3 -1- MEF

was examined by immunoblot analysis.

(C) The effect ofFGF (25 ng/ml) on JNK and p38 MAPK activation in WT and Mlk3 -1- MEF

was examined by immunoblot analysis.
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Figure IV. tO. MLK3-deficiency alters MAP kinase and transcription factor activation

during adipocyte differentiation.

(A) MLK3-deficiency alters MAPK phosphorylation during adipose differentiation. The

activation ofp38 MAPK, JNK, and ERK during in vitro differentiation ofMEF to adipocytes

was examined by immunoblot analysis.

(B) MLK3-deficiency increases the expression and phosphorylation of C/EBP transcription

factors. The phosphorylation of C/EBPa and C/EBP~ during adipose differentiation was

examined by immunoblot analysis using antibodies to phospho-C/EBPa (Ser-222/226) and

phospho-C/EBP~ (Thr-235). The amount of C/EBP in each assay was examined by probing

immUloblots with antibodies to C/EBPa and C/EBP~.
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Figure IV.H. MLK3-deficiency increases adipocyte differentiation 
in vitro.

(A) The morphology ofWT and 
Mlk3- MEF before differentiation (Control) and following

adipocyte differentiation (8 days) was examined by phase contrast microscopy and by staining

accumulated fat droplets with Oil-Red-

(B) The number ofadipocytes observed following in vitro differentiation ofWT Mlk3- and

Mlk3- MEF was counted. The data are presented as the relative number of adipocytes (mean

SD; n = 3).

(C) The effect ofthe presence or absence of insulin and troglitizone during the final 5

differentiation days ofWT and 
Mlk3- MEF was examined. The data are presented as the

relative number of adipocytes (mean SD; n = 3).
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CHAPTER V

DISCUSSION AND FUTURE DIRECTIONS

Due to the large number of protein kinases involved in MAPK cascades, regulation of the

MAPK pathway is needed in order to elicit an appropriate response. My thesis work examined

several ways of mediating MAPK signaling specificity using molecular and biochemical

techniques and animal models. Specifically, I examined the regulation of MAP kinases by

investigating: (1) the docking interactions between MAK and MAP2K (Chapter II); (2) the

differential activation ofMAK by MAP2K (Chapter III); and (3) the selective involvement of

MLK MA3K (Chapter IV and Appendix). In addition, I analyzed what effect MAPK signaling

specificity has on biological fuction, particularly cell proliferation and adipocyte differentiation

(Chapter III and Chapter IV). To conclude this dissertation, I wil sumarize the results below

and discuss possible futue directions.

Regulation of MAPK by docking interactions

Docking domains are present in many proteins that interact with MAPK to regulate

signaling specificity. In Chapter II, I identified a p38 MAPK docking site, a D domain , in the

NHz-terminal region of the MKK3b and MKK6 (Figure V. l). Binding ofMKb or MKK6 to

p38 MAPK increases p38 MAPK activation. My data demonstrates for the first time a specific

interaction between a MAP2K and the p38 MAP kinase. Recent studies using X-ray

crystallography and mass spectrometr provide strctual details on p38a - pepMKK3b

interactions (Weston and Davis 2002; Chang et al. 2002; Lee et al. 2004). These studies



--.:.

136

demonstrate that the hydrophobic residues in the MK3b D domain directly interact with

hydrophobic residues in a COOH-terminal docking groove ofp38a MAPK.

The formation ofMAP2K - p38 MAPK complexes appears to have fuctional

significance because D domain - p38 MAPK interactions increase p38a MAK activation and

are necessary for p38 MAPK activation (Figure 11. , 11.3). Interestingly, p38y MAPK has 

slightly different CD motif than p38a MAPK (Tanoue et al. 2000) and is only weakly activated

by MKK6 (Alonso et al. 2000). This suggests that docking interactions may contrbute to the

selective activation of other p38 MAPK isoforms. Futue studies should focus on determining

whether D domain - MAPK interactions contrbute to the activation of p3 8y and p3 8 MAPK.

Docking interactions may also contrbute to the selective activation of the MAP2K. For

example, the MAP2K, MK4 , contains a NHz-terminal MAPK binding site that mediates 

activation (Xia et al. 1998). In Chapter III, I demonstrate that MK4 also activates the p38

MAK pathway. Futue studies should focus on characterizing this proposed docking site and

analyzing the affect that this docking interaction has on p38 MAK activation. Together, these

studies wil provide fuher insight into how docking interactions modulate p38 MAK signaling

specificity. These docking interactions may have biological significance. For example , the

anthrax lethal factor is a protease that destroys the D domains of MAP2K and inhibits MAP

kinase activation durng pathogenic infection (Duesbery et al. 1998).
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Figure V.1. The NHz-terminal regions of the MA2K MKKb and MKK6 contain a p38

MAPK docking site.

The D domain, a p38 MAK docking site, is identified in the NHz-terminal regions ofMKKb

and MKK6. Binding ofMKK3b or MKK6 to p38 MAPK increases p38 MAPK activation. The

formation of the MAP2K - p38 MAPK complexes appears to have fuctional significance

because D domain - p38 MAK interactions increase p38a MAPK activation and are necessary

for p38~ MAK activation. This is the first demonstration of a specific interaction between

MAP2K and the p38 MAP kinase.
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Regulation of MAPK by MA2K

MA2K differentially activate the MAP kinases in order to regulate signaling specificity.

In Chapter III, I demonstrate that the p38 MAP kinase is activated in vivo by three different

MA2K: MKK , MKK4 , and MKK6 (Figure V.2). I demonstrate that MK3 and MK6 are

essential for TNa-stimulated activation ofp38 MAPK. In contrast, MK3 , MKK4 , and MK6

all contrbute to p38 MAPK activation in response to UV radiation. This suggests that the

mechanism ofp38 MAPK activation depends on the specific stimulus examined. In addition

MK and MK6 are selective activators of the p38 MA kinase; they do not activate JNK.

MK4, however, is the first MAP2K reported to activate two separate groups ofMAK. Thus

MK4 may represent a site of signal integration that coordinates overall MAP kinase activation

in response to growth factors, cytokines , and environmental stress.

MKK4-deficiency caused no significant difference in p38 MAPK activation in wild-tye

or Mkk4- MEF (Tourier et al. 2001) (Figure 111.8). However, MKK4-deficiency suppressed

p38 MAK activation in Mkk3- - Mkk6- MEF (Figue 111.8; Figure 111.9). Together these data

suggest that MKK4 displays a redundant role in p38 MAPK activation under the conditions

examined. The relevant contrbution ofMKK , MKK4, and MKK6 in p38 MAPK activation

may therefore depend on the cell environment and the cell-tye. For example, different levels of

MA2K kinase activity may affect p38 MAK activation. Basal unphosphorylated MKK6

activates p38a MAPK, while constitutively active MKK6 activates both p38a and p38y MAPK

(Alonso et al. 2000). This preferential MAPK activation appears to depend on different stimuli

as well. Unphosphorylated MKK4 affects MAPK activation in response to TNFa, while

phosphorylated MKK4 affects MAPK activation in response to UV (Tourier et al. 2001).
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In addition, the level ofMAP2K expression may differentially affect p38 MAPK

activation. Peripheral T-cell p38 MAPK activity is primarily dependent on MKK3 , while

thymocyte p38 MAPK activity is primarily dependent on MK6 (Tanaka et al. 2002). This

suggests that the relevant contrbution ofMAP2K in p38 MAK activation is also cell-type

specific. Interestingly, Mkk4-

/- 

mice are early embryonic lethal due to liver apoptosis (Yang et al.

1997; Ganiatsas et al. 1998; Nishina et al. 1999). This lethality may be due , in part, to defective

p38 MAK activity durng hepatogenesis , for a recent study proposed a role for p38 MAPK

activation in hepatocyte proliferation and liver development (Awad et al. 2000).

Understanding the relevant contrbution of MAP2K to p38 MAK activation represents a

critical goal for futue experiments. Since this contrbution may depend on the cell-tye and the

cell environment, futue experiments should focus on context dependent effects of MK

MK4, and MKK6. Specifically, MK3 , MKK4 , and MK6 may have non-redundant roles in

T-cells and hepatocytes and may affect p38 MAPK activation in response to different stimuli. In

addition, MKK , MK4, and MKK6 may selectively activate particular p38 MAK isoforms.

In a preliminary study ofUV-stimulated fibroblasts, MK4 and MK6 appear to activate one

p38 MAK isoform (p38a), while MK appears to activate two isoforms ofp38 MAPK (p38a

and possibly p38~). Futue experiments should focus on this observation and provide insight

into the mechanism of total p38 MAPK activation in vivo. Together, results of these questions

wil advance our understanding of the individual roles MKK , MKK4 , and MKK6 in p38 MAPK

activation.
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Figure V.2. The p38 MAP kinase is activated in vivo by three different MA2K: MKK,

MK4, and MK6.

, MKK4, and MK6 contrbute to p38 MAPK activation in response to UV radiation. In

contrast, MK3 and MK6 are essential for TNFa-stimulated activation ofp38 MAPK. This

suggests that the mechanism ofp38 MAPK activation depends on the specific stimulus

examined. In addition MK and MKK6 are selective activators ofthe p38 MAP kinase; they

do not activate JNK. MKK4, however, is the first MAP2K reported to activate two separate

groups of MAK and may represent a site of signal integration to coordinate MAK activation.
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Regulation of MAPK by MAP3K

MAP3K selectively activate different MAP kinases to regulate signaling specificity. In

Chapter IV, I demonstrate that the MLK group ofMAP3K selectively regulates the 

pathway. Specifically, I show that the mixed-lineage protein kinase 3 (MLK3) is a component of

the TNa signaling pathway that activates JNK (Figure V.3). MLK3 mediates the immediate

activation of JNK in response to TNFa. In addition, MLK3-deficiency causes a selective

reduction in TNa-stimulated JN activation in primary MEF. This suggests that MLK3 is

required for maximal TNa-stimulated JN activation. In contrast, MLK3 is not required for

TNFa-stimulated activation ofNF-1d and p38 MAPK. Together, these data suggest that MLK3

is selectively involved in TNFa-stimulated JN activation. Indeed, my studies demonstrate that

MLK3 has a non-redundant role in TNFa signaling and represents a point of divergence to

mediate distinct MAP kinase activation.

The Mlk3 gene is the first MLK MAP3K family member reported to be targeted by gene

disruption in mice. MEF isolated ftom Mlk3-

/- 

mice exhibit a decrease of early TNa-stimulated

JNK activation (Figue IV.5; Figure IV.6). Although this JN activation is suppressed in the

MLK3-deficient MEF , a low level of JN activity stil remains. This observation suggests that a

second MA3K may contrbute to TNFa-stimulated JNK activation in MLK3-deficient cells.

The identity of this MAP3K is not clear, but several MA3K have been previously implicated in

the TNFa signaling pathway. Two MAP3K appear to have specific roles in TNa signaling and

probably do not contrbute to the low level of JN activity. ASKI contrbutes to the late phase

of JNK activation, while MEKK3 mediates p38 MAK activation by directly interacting with

RlPI (Lee et al. 2003; Tobiume et al. 2001). In contrast, TAKI appears to playa general role in

TNFa signaling and may contrbute to JN activation in Mlk3-

/- 

MEF. TAKI has been
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implicated in the immediate activation of JNK through its association with TRAF2 (Ishitani et al.

2003; Takaesu et al. 2003). A second explanation is that the low level of JNK activity is

mediated by an unidentified MA3K, particularly a member ofthe MLK family. This idea is

consistent with the fact that fuctional redundancy exists among MLK, as MLK2 or DLK also

mediates JNK activation (Gallo and Johnson 2002).

Interestingly, TNa-stimulated activation ofp38 MAPK is increased in the Mlk3-

/- 

MEF

(Figure IV.5; Figue IV.6). Recent studies of JN-deficient cells also demonstrate increased p38

MAK activation in response to TNFa (Morton et al. 2004). In contrast, decreased p38 MAK

activation caused an increase in JN activity during macrophage differentiation (Hall and Davis

2002). Together, these data suggest that negative cross-talk exists between the JNK and the p38

MAK pathways. The cross-talk that I observed may be mediated by TNF receptor adaptor

proteins that bind different MAP3K. For example, the TRA2 adapter protein is required for

TNa-stimulated JNK activation (Yeh et al. 1997), however, whether TRA2 directly or

indirectly activates MLK3 remains unclear. Conversely, the RIPI adaptor protein is essential for

TNFa-stimulated p38 MAPK activation (Lee et al. 2003), but whether MLK3 directly or

indirectly inhibits RIP I-mediated p38 MAPK activation has not been determined. Thus

understanding the mechanism of MLK3 activation is critical for understanding the regulation of

TNa-activated MAP kinases.

Futue experiments should therefore focus on understanding the relevant contrbution of

MAP3K in TNa-stimulated MAPK activation. Specifically, the combined effect of a

MLK3/MAP3K-deficiency on JN and p38 MAPK activation should be examined. Mice with

compound mutations in Mlk3 and MAPK3K genes (Mlk2 , Dlk, Takl , Askl , Mekk3), or siRNA

inhibition ofMAPK3K genes in Mlk3-

/- 

MEF may be two approaches used to analyze TNFa-



145

stimulated MAK activation. A second goal should be to understand the mechanism ofTNFa-

stimulated MLK3 activation. Analysis of the regulatory relationship between TRAF2, RIP1 , and

MLK3 may provide insight into the role MAP3K have in mediating TNa signaling specificity.
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Figure V.3. MLK3 is a component of the TNF signaling pathway that activates JNK.

MLK3 mediates the immediate activation of JN in response to TNFa and is required for

maximal TNFa-stimulated JN activation. A low level of JN activity stil remains in MLK3-

deficient MEF , suggesting that a second MAP3K may contrbute to TNFa-stimulated 

activation in MLK3-deficient cells. In contrast, MLK3 is not required for TNFa-stimulated

activation ofNF-1d and p38 MAK. These data demonstrate that MLK3 is selectively involved

in TNFa-stimulated JN activation. Interestingly, TNa-stimulated activation ofp38 MAK is

increased in MLK3-deficient MEF , suggesting that negative cross-talk exists between the 

and the p38 MAK pathways.
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MAP kinases and cell cycle progression

Cellular growth is a physiological process that is differentially regulated by MAP

kinases. Recent reviews have focused on the role ofp38 MAPK in the cell cycle (Ambrosino

and Nebreda 2001; Bulavin et al. 2002; Yee et al. 2004). The p38 MAPK negatively regulates

the G liS and G2/M transitions, depending on the cell-type and the stimulus examined. For

example , p38 MAPK inhibits cyclin D expression upon seru starvation (GlIS arrest), but

inactivates the Cdc25B phosphatase following UV stimulation (G2/M arrest). The p38 MAPK

also phosphorylates p53 and p21 CIP to inhibit both G liS and G2/M progression in response to

DNA damage. This suggests that loss ofp38 MAPK regulation, due to MKK3/MKK6-

deficiency, may alter cell proliferation. Indeed, my data demonstrates that MK3/M6-

deficiency causes seru-stimulated GlIS growth defects (Figue 1I1.2B-C; Figue 111.10). Mkk3-

1- Mkk6- fibroblasts lose contact-growth-inhibition and fail to growth arrest in seru-free

medium. Seru-starved Mkk3- - Mkk6- fibroblasts also have increased expression of cyclin D

and reduced hypo-phosphorylated Rb. Interestingly, a recent report suggests that p38 MAPK

phosphorylates the transcriptional repressor HBPI and provides a mechanism to inhibit cyclin D

expression (Xiu et al. 2003). Together, these data indicate a role for MK3/M6 in inhibiting

cell proliferation.

The inhibitory role of MKK/M6 in cell proliferation suggests that MK/MKK6

may fuction as tuor suppressors. Indeed Mkk3- - Mkk6- fibroblasts increase tuorgenesis 

vivo (Figure 111.11). Preliminary studies suggest that MKK contrbutes to the G liS growth

arrest and increased tuorgenesis (Figure 1I1.2B-C; Figure III. lOB). The Mkk3- fibroblasts

exhibit reduced contact-growth-inhibition and promote tuor growth in vivo. However, these

effects are less dramatic than those observed in the Mkk3- - Mkk6- fibroblasts, suggesting
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cooperation between the MAP2K. In addition, MKK4 is also implicated in growth arrest

tuorgenesis, and metastasis suppression (Molnar et al. 1997; Teng et al. 1997; Yamada et al.

2002). Futue experiments should therefore focus on understanding the individual roles of

MKK3 , MKK4 , and MK6 in cell cycle progression and tuorgenesis.

MAP kinases and adipogenesis

Adipogenesis is a physiological process that involves the cooperation of many signaling

pathways. Recent reviews have focused on the role of MAPK and the regulation of adipocyte

differentiation (Rosen and Spiegelman 2000; Rosen et al. 2000; Lane et al. 1999; Rosen 2002;

Camp et al. 2002). The JN MAPK negatively regulates adipogenesis, by phosphorylating and

inhibiting the transcription factor PPARy. In contrast, the p38 MAPK phosphorylates members

of the C/EBP transcription factor family to promote adipocyte differentiation. This suggests that

negative cross-talk exists between the JNK and the p38 MAK pathways during adipose

differentiation. Thus, a MLK3-deficiency may disrupt the MAPK cross-talk and affect

adipogenesis. Indeed, I show that MLK3-deficiency increases the adipogenic potential of

primary MEF (Figue IV. 10; Figue IV. ll). JN activity is decreased, while p38 MAPK

activity is modestly increased in Mlk3-

/- 

MEF. These MEF also exhibit increased expression and

phosphorylation of C/EBPa and C/EBP~. Furhermore, MLK3-deficiency increases adipocyte

differentiation ftom MEF in vitro. Together, these data suggest that MLK3-mediated MAPK

activation plays a role in the regulation of adipogenesis. However, the precise mechanism of

regulation remains unclear. Interestingly, a recent report indicates that C/EBP~ expression is

increased by the p38-dependent transcription factors CREB , ATF1 , and ATF2 durng adipose

differentiation (Zhang et al. 2004). Other transcription factors, such as PP ARy and C/EBP , may
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also be affected by MLK3-deficiency and provide a mechanism for MLK3-mediated regulation

of adipocyte differentiation.

My observation that MLK3-deficiency increases adipogenesis in vitro suggests that MlkT

/- mice may have altered adiposity in vivo. Preliminary studies suggest that Mlk3-

/- 

mice fed a

standard chow diet do not exhibit increased adiposity in vivo. Future studies should therefore

examine Mlk3-

/- 

mice that are environmentally challenged. For example Mlk3-

/- 

mice should be

fed a high fat diet or exposed to cold temperatue. Metabolic effects of MLK3-deficiency should

be determined. In addition, MAPK signaling should also be examined in the adipose tissues.

Together, these data wil advance our understanding of the role ofMAK in adipogenesis and

metabolic homeostasis.
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Conclusion

In conclusion, the work presented in this dissertation focuses on understanding the

regulation and fuction of stress-activated MAPK signal transduction pathways. I used

molecular and biochemical techniques to examine how MA2K and MA3K mediate signaling

specificity and to define their role in the MAK cascade. In addition, I used gene targeted

disruption strategies to determine the in vivo role ofMA2K and MA3K in MAPK activation.

Specifically, I examined the regulation and fuction of the JN and the p38 MAPK pathways by

analyzing: (1) docking interactions between p38 MAPK and MK or MKK6 (Chapter II); (2)

the differential activation ofp38 MAPK by MKK , MKK4, and MK6 (Chapter III); and (3) the

selective involvement ofMLK in JN and p38 MAPK activation (Chapter IV and Appendix). I

also examined the role of MK3 and MK6 in cell proliferation and the role of MLK3 in

adipocyte differentiation (Chapter III and Chapter IV). Together, these data provide insight into

the regulation and fuction ofMAPK signal transduction cascades. Understanding these

signaling pathways is essential for understanding and treating human diseases.
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APPENDIX

THE MIXED-LINEAGE KINASE DLK IS ESSENTIAL

FOR EARLY EMBRYONIC DEVELOPMENT

Summary

The DLK protein kinase is a member of the mixed-lineage protein kinase group of

MA3K that is implicated in the regulation of the JNK pathway in neurons. To examine the

fuction ofDLK, I used a targeted gene disruption strategy in embryonic stem cells to create

mice with a germ-line mutation of the Dlk gene. In this Appendix, I demonstrate that Dlk -1- mice

are not viable and this mutation causes an unexpected early lethal phenotype. The mechanism of

the requirement of DLK for viability is not established, but DLK is expressed in the trophoblast

giant cells of the placenta, and may therefore playa role in embryonic development.

The Dlk -1- mice were generated in collaboration with Dr. Richard Flavell' s laboratory at

the Yale University School of Medicine. I constrcted the targeting vector and initially

characterized the embryonic lethality. Claire Weston and Beth Doran genotyped the E18.

embryos in Figue A.2 and contrbuted to the in situ hybridization data in Figue A.3. Tamara

Barrett, Judith Reily, and Vicky Benoit assisted with the mouse breeding and genotyping.
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Introduction

The mechanism of JNK activation by MAP3K in neurons is incompletely understood. 

is established that JN activation is mediated by two different MA kinase kinases (MA2K),

MKK4 and MKK7 , which are activated by various MAP kinase kinase kinases (MAP3K) (Davis

2000). However, the identity of relevant MA3K in MAPK activation in neurons remains

unclear.

The dual-leucine-zipper-bearing kinase (DLK/ZPKI) is a member of the mixed-

lineage kinase group ofMAP3K that activates the JN pathway (Holzman et al. 1994; Reddy

and Pleasure 1994; Hirai et al. 1996). Mixed-lineage kinases share a common protein kinase

domain, followed by a leucine zipper region that mediates homodimerization and activation of

these proteins (Gallo and Johnson 2002). The DLK protein kinase is closely related to the

leucine-zipper kinase (LZK), while other members of the mixed-lineage kinase family (MLK1

MLK2 , MLK3 , MLK4 and ZAK) are more distinct. DLK and LZK share the characteristic

MLK kinase domain, but in contrast to the other MLK family members, DLK and LZK contain

two leucine-zipper motifs. The strctue ofDLK also includes a proline rich region of unown

fuction in the COOH-terminus. Biochemical studies have showed that DLK can selectively

activate MKK7 , an activator of JN (Merrtt et al. 1999), and that DLK and MK7 can bind to

the TIP scaffold proteins to regulate JN activation (Morrson and Davis 2003).

Many of the mixed-lineage kinases are expressed in a limited number oftissues (Gallo

and Johnson 2002). Previous studies have shown that DLK is abundantly expressed in the

embryonic and adult brain, including developing cells of the telencephalon and differentiated

cells of the neural cortex (Holzman et al. 1994; Blouin et al. 1996; Nadeau et al. 1997). This
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expression is consistent with a possible role for DLK as a mediator of JNK activation in neurons.

This possibility is consistent with recent studies showing that overexpressed DLK disrupts neural

cell migration and telencephalon morphogenesis (Hirai et al. 2002), and that overexpressed DLK

induces neuronal apoptosis (Xu et al. 2001). However, DLK is also expressed in differentiating

epithelial cells and regenerating hepatocytes, suggesting multiple roles for DLK durng

development (Nadeau et al. 1997; Douziech et al. 1998). The role ofDLK in JN signaling and

the relevance ofDLK in MAK activation in neurons therefore remain unclear.

The purose of this study was to investigate the biological fuction of the DLK protein

kinase. My approach was to use a targeted gene disruption strategy to examine the effect of

DLK-deficiency in mice. I report that DLK is required for early embryonic development and

suggest that DLK plays an essential role in JNK activation and MA kinase regulation.
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Materials and Methods

Mice. A 129/SvJ strain Dlk genomic clone was isolated ftom a BAC library by hybridization

analysis using a probe derived ftom a Dlk cDNA. A targeting vector designed to disrupt the Dlk

gene (Figure A.la) was constrcted using standard techniques. ES cells (strain 129svev) were

electroporated with this vector and selected with 200 Ilg/ml G418 (Invitrogen) and 211M

gangcyclovir (Syntex). Two Dlk- ES cell clones identified by Southern blot analysis were

injected into C57BL/6J blastocysts to create chimeric mice. The chimeric mice were used to

obtain germ-line transmission of the disrupted Dlk allele and the mice were backcrossed for ten

generations to the C57BL/6J strain (Jackson Laboratories). The mice were housed in a facility

accredited by the American Association for Laboratory Animal Care (AAAC). The animal

studies were approved by the Institutional Animal Care and Use Committee (IACUC) of the

University of Massachusetts Medical School.

Genotype analysis. The genotye of mice and embryos was examined by Southern blot analysis

of XbaI or EcoRV (5 ' probe) andBamHI (3 ' probe) digested genomic DNA using 5' probe

primers 5' GAATAGTACGTCTCTTGGAGTCAAGT-3' and 5'

TGGAGGCAGGAGGATCAACATTCAA-3' and 3' probe primers 5'

GAACAGCAACCACGAATCG-3' and 5' TACTTCTTCCCGCCACTCTG-3' (Figue A.l).

The wild-type (260bp) and disrupted (160 bp) Dlk alleles were also detected by PCR analysis

using the primers 5' CCTGGTACACATTCTGTGTCC- , 5'

CCTACAAGATGTAGATTCCTC- , and 5' GTGGAATGTGTGCGAGGCCA -
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In situ hybridization. Embryos ftom timed matings were fixed in 10% formalin for 24 hr

dehydrated, and embedded in paraffin for sectioning (4 11m). Digoxigenin-labeled anti-sense

oligoprobes were generated as follows: DLK: 5' TTCAAGGAAGCCACTGCCAC- , 5'

CTTTCGCATAGAAGCCTCAC- , 5' TTCCCACACCCCAGATGATG- , 5'

ACCTTCTTCACAGCTACCTC- , 5' CAGGTAATTCATGCCACCAG- , 5'

TGCTCTTGTCACTCAGCTCC- . Corresponding sense oligoprobes were also prepared.

Oligoprobes were hybridized overnght at 37 oC in a humid chamber. The signal was enhanced

using a Tyramide Amplification System (Biogenex) followed by incubation (15 min) with

streptavidin-conjugated horseradish peroxidase (Biogenex). The amplified product was

developed with 3 diaminobenzidine (Vector Laboratory), and counterstained briefly with

Mayer s hematoxylin (Sigma).
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Results and Discussion

Disruption of the murine Dlk gene

I constrcted a targeting vector to disrupt the murne Dlk gene. This vector was designed

to replace exons 2 - 6 with a NeoR cassette (Figure Ala). This region ofthe Dlk gene includes

the translational initiation codon and the kinase domain. The vector was linearized and

electroporated into embryonic stem (ES) cells to obtain homologous recombination within the

Dlk gene. Four Dlk -1+ ES cell clones were identified by Southern blot analysis. Two of these

clones were injected into C57BL/6J blastocysts to create male chimeric mice that were bred to

obtain germ-line transmission of the disrupted Dlk allele. The mice were backcrossed to the

C57BL/6J strain background for ten generations. The Dlk -1+ mice were found to be viable

fertile, and had a normal life-span.

DLK is essential for early embryonic development

Genomic DNA isolated ftom the progeny obtained ftom crossing Dlk -1+ mice was

examined by PCR and Southern blot analysis to identifY wild-type Dlk - and Dlk -1- mice

(Figue A. , c). However, the number of wild-tye, heterozygous, and homozygous knockout

littermates obtained ftom these crosses did not conform to the expected Mendelian inheritance.

Indeed, no Dlk -1- mice were detected (Figue A.2). This observation suggests that homozygous

deletion of Dlk may cause embryonic lethality. This is consistent with previous studies

demonstrating DLK expression in developing mouse embryos ftom Ell onwards (Holzman et al.

1994; Nadeau et al. 1997). To directly investigate whether DLK-deficiency causes embryonic

lethality, I examined the genotyes of embryos obtained ftom timed matings of Dlk -1+ mice.
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Analysis ofE9. , EI6. , and EI8.5 embryos demonstrated a non-Mendelian ratio of wild-type

Dlk - and Dlk -1- 
embryos (Figure A.2). Because no Dlk -1- embryos were detected at or after

E9. , these data indicate that DLK is essential for early embryonic development.

DLK is expressed in the trophoblast giant cells of the placenta

The Dlk -1- embryos are not viable and this mutation causes a lethal phenotype. To fuher

investigate the spatial and temporal pattern ofDLK expression durng embryonic development

Dlkexpression was examined in wild-tye embryos by in situ hybridization. Analysis ofE14.

embryonic brains indicate a high level of Dlk expression in the developing neural cortex (Figue

A.3a). This is consistent with previous reports that examine Dlk expression in embryonic and

adult neural tissues (Holzman et al. 1994; Blouin et al. 1996; Nadeau et al. 1997). Unexpectedly,

a low level of Dlk expression was also detected in the placenta of wild-tye embryos. Analysis

ofE12.5 embryonic placentas indicate that DLK is expressed in the trophoblast giant cells of the

placenta (Figure A.3b). Since trophoblast giant cells contrbute to the viability of the embryo

(Rossant and Cross 2001), DLK may play an essential role in these cells durng early embryonic

development.

Discussion

In this study, I report that the DLK protein kinase is essential for embryonic

development. Analysis ofDLK-deficient mice indicates that DLK is required for embryonic

viabilty prior to E9.5 (Figure A.2). In addition, DLK is expressed in the trophoblast giant cells

of the placenta (Figue A.3b). Together, these data suggest that DLK plays a role in the

development of the early embryo. The mechanism ofDLK-mediated embryonic morphogenesis
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remains to be established. Futue experiments wil therefore focus on analyzing E3.5 cultued

blastocysts. Specifically, the effect ofDLK-deficiency on early trophoblast development wil be

examined.

My analysis ofDLK-deficient mice does not exclude the possibilty that DLK may be

required for additional fuctions. Previous studies suggest that DLK plays a role in 

activation durng neuronal apoptosis, neural cell migration, and telencephalon morphogenesis

(Xu et al. 2001; Hirai et al. 2002). In addition, previous reports suggest a role for DLK in 

activation in differentiating epithelial cells and ocular development (Nadeau et al. 1997; Cai et

al. 2002; Weston et al. 2003; Weston et al. 2004). Together, these data implicate DLK in

multiple roles in JN signaling durng embryogenesis. Futue experiments wil thus focus on

understanding the role ofDLK-mediated MAK activation in developing and differentiated

neurons. The Dlk -1+ 
ES cells wil be used to obtain Dlk -1- ES cells and differentiated into

neurons to examine the effect ofDLK-deficiency on JNK activation in neural tissues. The role

of DLK in MAPK activation in neurons may represent a non-redundant fuction of DLK in

developing and differentiated cells. Alternatively, DLK may have additional roles that are

redundant with other MLK family members.

In conclusion, I report that the DLK protein kinase is required for early embryonic

development. This identification of a fuction for DLK suggests essential roles for the mixed-

lineage protein kinases in JN activation and MAP kinase regulation durng development.
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Figure A.I. Targeted disruption of the murine Dlk gene.

(A) The strategy employed to disrupt the Dlk gene is ilustrated. The strctue of the wild-type

Dlk gene and the targeting vector are shown. Homologous recombination in ES cells results in

the replacement of Dlk exons 2 - 6 with a NeoR cassette. Restrction enzye sites are indicated:

(BamHI), (HindllI), (NotI), RV (EcoRV), (XbaI), Xh (XhoI). The XbaI, EcoRV and

BamHI digestions of genomic DNA result in restrction ftagments that can be used to distinguish

between the wild-type and disrupted Dlk alleles by Southern blot analysis using 5' and 3' probes.

(B) DNA isolated from the tails of wild-tye and Dlk /+ mice was restrcted with BamHl and

examined by Southern blot analysis using a 3' probe. Thewild-type and disrupted Dlk alleles are

indicated.

(C) Tail DNA was examined by PCR using primers that detect the wild-tye (260 bp) and

disrupted (160 bp) Dlk alleles.
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Figure A.2. DLK is essential for early embryonic development.

Genomic DNA isolated ftom the progeny obtained ftom crossing Dlk -1+ mice was examined by

PCR and Southern blot analysis. The number of wild-type Dlk - and Dlk -1- littermates are

indicated.



163

Age # of mice

+/+ -/+

E9.

E16.

E18.

Weaned 274 203
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Figure A.3. DLK is expressed in the trophoblast giant cells of the placenta.

(A) Dlk expression was examined by in situ hybrization using anti-sense probes (Magnification

x40). Sections prepared ftom the brain of wild-type E14. 5 embryos indicated high levels of Dlk

expression in the developing neural cortex. Control experiments were performed using sense

probes.

(B) Dlk expression was examined by in situ hybrization using anti-sense probes (Magnification

xlO and x40). Low levels of Dlk expression was detected in the trophoblast giant cells of the

placenta of wild-type E12.5 embryos. Control experiments were performed using sense probes.
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