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ABSTRACT

The KIL gene of vaccinia virus encodes for a host range protein; in the absence

of which, the virus is unable to' grow in certain cell lines (RK - 13 and some human cell

lines). KIL fuction can be complemented in RK- 13 cells by the cowpox host range gene

product CP77 despite a lack of homology between the two proteins except for anyrin

repeats. We investigated the role ofanyrin repeats of the KIL gene in the host-range

restriction of growth in RK - 13 cells. The growth of a recombinant vaccinia virus, with

the KIL gene mutated in the most conserved anyrin repeat, was severely impaired as

evidenced by lack of plaque formation and reduction in viral titers. Infection of RK -

cells with the mutant recombinant vaccinia virus resulted in total shutdown of both

cellular and viral protein synthesis early in infection, indicating that the host restriction

mediated by the anyrin repeat is due to a translational block. A comparison of the

cellular localization of the KIL wild type and mutated forms showed no difference, as

both localized exclusively in the cytoplasm ofRK- 13 cells. We also investigated the

interaction of the vaccinia virus KIL protein with cellular proteins in RK-13 cells and co-

immunoprecipitated a 90 kDa protein identified as the rabbit homologue of human

ACAP2 , a GTPase-activating protein with anin repeats. Our result suggests the

importance of ankyrin repeat for host-range fuction ofKIL in RK-13 cells and identifies

ACAP2 as a cellular protein which may be interacting with KIL.
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CHAPTER I

INTRODUCTION

A. Vaccinia Virus: A Member Of The Poxviridae Family Of Viruses

Vaccinia virus (VV) is a member of the Poxviridae family of double stranded DNA

viruses. One of the unique featues of this family is that unlike other DNA viruses

they do not replicate in the nucleus (Moss , 2001). The Poxviridae family consists of

two subfamilies; Entomopoxvirinae (viruses infecting arhropods) and

Chordopoxvirinae (viruses infecting vertebrates). Within the subfamily of vertebrate

poxviruses there are eight genera, one of which is Orthopoxvirus. VV belongs to the

Orthopoxvirus genus along with variola virus, cowpox virus, monkeypox virus, etc.

(Table 1) (Esposito, 2001) (Fenner, 2000). The members of the Orthopoxvirus

genus canot be distinguished morphologically. They are related antigenic ally and

share considerable cross reactivity between the species. Thus, a previous infection

with anyone of the species would offer some protection against any other member

of the genus (Esposito , 2001).



Table I: Members of the Orthopo irus genus

Genus and species

Camelpox virus
Cowpox virus
Ectromelia virus
Monkeypox virus
Racoonpox virus
Skunpox virus
Taterapox virus
U ashin gishu virus

Vaccinia Virus

Variola virus
V olepox virus

Reservoir host

camels
rodents
rodents
Squirrels
Raccoons
Skus
Gerbils
Unkown
Unkown

Humans
Voles

Geographic distribution other natually
occuring host

Nil
cats , cows , humans

Nil
monkeys , humans

Nil
Nil
Nil

Horses
Humans, rabbits, cows

River buffaloes
Nil
Nil

Afrca, Asia
Europe , western Asia
Europe

Western and central Afrca
Eastern USA
Western USA
Western Africa
Eastern Africa
Worldwide

Worldwide (eradicated)
Western USA

(Esposito , 2001).



1. Human infections caused by four members ofthis genus are as follows:

Varola virus

Variola virus is a strictly human pathogen. It has an incubation period of 12 days. A

period of high fever, head and backache, and malaise, lasting about 2-5 days is

followed by maculopapular rash. The rash becomes vesicular and then pustular

within 1-2 days. Death occurs either late in the first week or the second week of the

ilness and is associated with extensive viremia. The mortality rate during natually

occuring smallpox infections was 30% (Henderson, 1999) (Esposito , 2001).

Monkeypox virus

Monkeypox virus can cause a smallpox-like disease in humans (Esposito , 2001).

Inter-human spread is very unlikely. The year 2003 saw an outbreak of monkeypox

in humans in the United States. The infection stared in a pet housing facility in

Ilinois, when infected rodents from Africa transmitted the virus to native prairie

dogs housed in the same facilty. Human infections resulted after close contact with

their pet prairie dogs. There was a wide spectru of clinical manfestations in the

patients. Patients with a previous history of smallpox vaccination showed milder

symptoms. Most of the 37 patients had a mild, febrile, rash ilness. One patient had

to be hospitalized for severe encephalitis (Reed et aI. , 2004) (Ligon, 2004).

Cowpox virus

Cowpox virus was originally regarded as a disease of European cows, causing

ulcers. It was later observed that the cow is an ancilar host, being infected from a



rodent reservoir. Humans coming in contact with cows, cats, and zoo animals

acquire a localized pustular skin infection (Esposito, 2001) (Baxby and Bennett

1997).

Vaccinia virus

Strains of VV used for vaccination against smallpox cause dermal pustules and, in

some cases, can cause severe side effects. The most common side effects observed

were as follows:

. Progressive vaccinia usually occurs in individuals with congenital or acquired

immunodeficiency. In persons suffering from agamaglobulinemia, defective cell-

mediated immunity and other conditions associated with a suppressed immune

system, the vaccinia lesions do not heal. One third of such patients die (Esposito

2001) (Lane and Milar, 1969) (Lane et aI. , 1970).

. Eczema vaccinatu: People that previously suffered from eczema are susceptible

to this kind of complication (Lane and Milar, 1969). This occured at a rate of 66 in

14.5 milion people, with no deaths. Eruptions occur at sites that are, or had been

eczematous and may eventually spread to normal skin. Persons suffering from this

complication have high fever and general lymphadenopathy. Mortality in such

individuals can be controlled by treating them with vaccinia immunoglobulin

(Esposito, 2001).



. Generalized vaccinia is manifested by the breakout of rash all over the body at 6-

days post vaccination (Brown, 1965) and occured in 141 cases among 14.5 milion

people vaccinated. Lesions develop at locations other than the site of vaccination.

No specific therapy is needed and patients may experience high fever and malaise

(Esposito, 2001).

A subspecies ofVV , buffalopox virus, mainly found in India, causes oral and skin

lesions in individuals coming in contact with the animals or drinkng their milk

(Esposito, 2001).



2. Historical background of Variola infections and its eradication using VV

The most notable of the Orthopoxviruses is Varola virus, a strictly human

pathogen and the causative agent of smallpox. The earliest record of smallpox

comes from 1157 B.C. from the mumified remains of Ramses V (Henderson

1999) (Behbehani , 1983). There have been major outbreaks of smallpox with high

mortality all around the world, until its eradication in 1980. The name varola is

derived from the Latin varius (spotted) or varus (pimple) as coined for the first

time by Bishop Marus of Switzerland (Henderson, 1999) (Moore, 1815). English

accounts of the disease used the word 
pockes. Variola infection was called smallpox

in order to distinguish it from the Greatpox (syphilis) (Henderson, 1999) (Creighton

1894). The history of immunzation against smallpox goes back to sometime before

1000 AD in India, where it was common to inoculate pustule fluid or scab material

by either intranasal insufflations or by direct application to the skin. These practices

made their way into China, western Asia, and were introduced to Europe in the early

1700s (Henderson, 1999). In 1796, Edward Jenner was able to show that inoculation

using cowpox lesion material, or variole vaccinae (smallpox of the cow) could

confer protection from smallpox in humans. He showed that material taen from the

human pustular lesions caused by cowpox virus, when inoculated into the skin of

another person, protected the individual from subsequent smallpox infection.

However, sustaining the virus through ar-to-arm inoculation presented many



difficulties and was complicated by the transmission of syphilis among the

inoculated individuals. The problem was eventually solved by growing the virus on

the flan of a calf, and this provided an adequate and safer supply of vaccine

material (Henderson, 1999). According to Jenner s wrtings, he also used lesion

material from horses suffering from a disease called "grease , which is now extinct.

Many passages of the virus, that he and other vaccinators had used, gave rise to

what is now considered as a different virus species, known as vaccinia virus.

General vaccinations came to an end after the WHO declared this disease eradicated

in 1980 , but vaccination of laboratory workers and some militar personnel

continued (Henderson, 1999).

3. Use of VV as recombinant "accines in the post eradication era

Descriptions of recombination between VV and DNA fragments of other

poxvirus gave rise to the idea of using VV as recombinant virus, caring foreign

genes that could serve as vaccines against diseases other than smallpox. The reasons

for VV being a good vector are as follows:

a) VV can accommodate large amounts of foreign DNA, up to 25 kbp (Smith and

Moss, 1983), so that no deletions are needed. This could lead to one recombinant

virus expressing many foreign antigens and serve as a polyvalent vaccine in a single

vaccination. This was exemplified by experiments where a recombinant VV



containing the hepatitis B surface antigen, herpes simplex glycoprotein , and

infuenza virus hemagglutinin was injected into rabbits which then produced

antibodies against all three antigens (Perkus et aI. , 1985).

b) The vaccine is extremely stable when freeze dried (Henderson, 1999).

c) It is cheap to make and easy to administer (Henderson, 1999).

However, as a vaccine for smallpox, the VV had an imperfect safety

record and needed to be attenuated. In an attempt to attenuate the virus, researchers

created deletions and this led to the discovery of many VV genes that are involved

in host responses to infection. This opened upa whole realm of study involved in

unaveling the details of the very complex biology of VV.

B. VV Biology

1. VV Structure VV consists of an enveloped virion containing a core, which

encloses the double stranded DNA genome.

a) Vaccinia virus virions as visualized by cryoelectron microscopy appear as smooth

rectangles (Moss, 2001) (Dubochet et aI. , 1994). The virion consists of an envelope

surounding a core, which encloses the double stranded DNA genome. Vaccinia

virus can exist as four forms: 1) an envelope-less cytoplasmic infectious paricle

called IMV (intracellular matue virion), 2) an intracellular enveloped form called



IEV (intracellular enveloped virion), 3) a membrane bound form at the cell

periphery called CEV (cytoplasmic enveloped virion), and, 4) an enveloped EEV

(extra cellular enveloped virion) (Smith et aI. , 2002).

b) The VV core has a rectangular shape and the wall of the core is composed of two

layers. The outer layer consists of a cylindrical subunt, and the inner layer is 5um

thick and smooth in textue (Easterbrook, 1966). The core is dumbbell shaped and is

found associated with structues called lateral bodies. The core encloses the VV

genome.

c) The VV genome is very large, approximately 200 kbp, encoding more than 200

gene products. The ORFs ofVV are named after the 16 HindIII restriction enzme

digested fragments, by decreasing order of sizes, from A to P. The alphabet is

followed by the ORF number (from left to right) within the fragment. The ORF

designation also has L or R (left or right), depending on the direction of the reading

frame (Moss, 2001). The genome has inverted terminal repetitions (ITRs) (Garon et

aI. , 1978). These are identical sequences, oriented in opposite directions, occurng

at the two ends of the genome. The ITRs contain an AT rich region, that is

incompletely base-paired and forms a hairpin loop (Baroudy et aI. , 1982). The

sequences of several vaccinia virus strains are now available, e.g. the Copenhagen



strain ofVV(VC-2) (Goebel et aI. , 1990), the Western Reserve (WR) (Unpublished;

Genban Accession number A Y243312) and the modified vaccinia virus Anara

(MV A) (Antoine et aI. , 1998) have been completely sequenced.

2. VV Life Cycle (Figure I)

a) VV entry: The exact mechanism ofVV entr into cells is not yet clear. The fact

that VV can enter almost any cell makes the possibilty of a ubiquitous molecule

being the receptor very plausible (Moss, 2001). However, no receptor has yet been

identified for the poxviruses. A report of VV binding to epidermal growth factor

(EGF) receptors exists, but it does not explain which form ofVV binds to the

receptor (Eppstein et aI. , 1985) (Marsh and Eppstein, 1987). Another proposal

suggested that poxviruses use chemokine receptors, but this remains to be

substantiated (Lalani et aI. , 1999).

Four VV proteins (all IMV proteins) have been implicated in the entry of the

VV into the cells. They are LIR (Ichihashi ard Oie, 1996), A27L, D8R, and H3L

(Lin et aI. , 2000). The infectivity of the IMV can be abrogated by adding antibodies

to LIR and A27L. A deletion mutant ofH3L, which binds to heparn sulphate

bound to cells with lower effciency under some conditions as compared to others.

The binding and entry study for EEV has not been very successful, mostly because



of low amounts of EEV, fragility of the outer envelope of EEV, and also because it

is difficult to obtain pure preparations of IMV free EEV (Moss , 2001).

b) Uncoating of the VV core : The cores come with some early proteins incorporated

within them. EM images have revealed that the viral DNA is extrded out of pores

in the core (Moss , 2001).

c) Earlv Gene expression: Almost half of the VV genes belong to the early category

and are transcribed before replication (Boone and Moss, 1978) (Paoletti and Grady,

1977). The early genes are transcribed within minutes after entry of the virus into

the cell (Baldick et aI. , 1992). The viral RNA polymerase is similar to a eukarotic

polymerase in size and subunt complexity (Baroudy and Moss, 1980). Early mRA

is synthesized within the core and then extruded out in a microtubule dependent

maner. Early mRNAs extruded from the core are assembled in the cytoplasm

distinct from the core (Mallardo et aI. , 2001). The polyribosomes and other

translational machinery are recruited to this region and the early transcripts are

translated to early proteins. These early proteins are required for viral replication to

progress. Some early genes are as follows: MiL , KiL , A33R, A56R and Fi2L.

d) DNA replication: Poxviruses are distinct from other DNA viruses in that they

replicate in the cytoplasm of the cell instead of the nucleus. Distinct regions (called



viroplasm, viral factory or factory areas) in the cytoplasm have been characterized

by light and electron microscopy (Cairns, 1960) (Harford et aI. , 1966) (Moss, 2001).

The time when DNA synthesis stars vares between different members of the

poxvirus family. However, it usually stars 1-2 hours after infection (Joklik and

Becker, 1964) (Moss, 2001). Soon after the uncoating of the core in the cytoplasm

the viral genome is extruded out of the core and the DNA associates closely with the

membrane of the endoplasmic reticulum (ER) Soon after the initial DNA synthesis

at 2 hrs, the replication sites are, or become, completely surounded by the ER

membranes. When virion assembly starts, around 6 hrs post-infection, the ER

dissociates from the replication sites. The presence of early proteins is required for

the initiation of replication. There have been some viral genes shown to be involved

in viral replication e. , the E9L DNA polymerase (Beaud, 1995), B1R protein

kinase (Banam and Smith, 1992)(Beaud, 1995), D5R nucleic acid-independent

nucleoside triphosphatase (Evans et aI. , 1995), D4R uracil DNA glycosylase (Milns

et aI. , 1994), the H6R DNA topoisomerase 13L single stranded-DNA binding

protein H5R virosome-associated protein, and the A50R DNA ligase (Beaud, 1995).

In addition, several viral-encoded proteins regulate the level of the

deoxyrbonucleoside triphosphate pool: the J2R thymidine kinase; A48R

thymidylate kinase; 14L and F4L subunits of ribonucleotide reductase; and F2L

dUTPase (Beaud, 1995).



e) Intermediate and late gene expression: Intermediate gene expression stas after

DNA replication and the intermediate proteins serve as transcription factors for the

expression of late gene products (Moss, 2001). Many of the late proteins are

packaged into the vaccinia virion and mediate early protein synthesis soon after

infection (Broyles, 2003). Some intermediate genes are: H5R, AiL, A2L and G8R

(Keck et aI. , 1990). Some late genes are: A34R , B5R and Fi3L.

f) Packaging and expulsion ofVV from cell : The intracellular immatue virion

moves to the cell periphery in a microtubule-dependent maner. The IMV gets

wrapped in membranes derived from Golgi/Trans-Golgi (Ichihashi et aI. , 1971)

(Hiler and Weber, 1985), or the endosomes (Tooze et aI. , 1993), to form IEV.

There is controversy about the origin of the membranes, and they may come from

both ofthe above mentioned sources. The F13L (Blasco and Moss, 1991) and B5R

(Engelstad and Smith, 1993) proteins have been shown to be required for efficient

wrapping. The lEV is an intermediate form between the IMV and the CEV. There is

evidence that the movement of lEV from within the cytoplasm to the cell periphery

is assisted by microtubules (Hollnshead et aI. , 2001) (Rietdorf et aI. , 2001) (Ward

and Moss, 2001). These wrapped paricles fuse with the plasma membrane. Some of

the fused virus particles (CEV) get released into the medium as EEV, while others

remain adherent to the cell surface. The viral protein A36R is responsible for the

polymerization of actin on the cell surface (Frischkecht et aI. , 1999). The actin tail



can grow very long and could detach from the cell with the CEV at its tip (Smith et

aI. , 2002).
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c. Immune Responses to VV Infection

Both humoral and cell-mediated immunity are important in protection

against Orthopoxviruses. Genetic defects in B-cell or T-cell immunity lead to

susceptibility to side effects after vaccination. Studies in mice have demonstrated

that both CD4 (+) and CD8 (+) T cell-mediated immunity protect against VV

infection (Xu et aI. , 2004). Early in infection, in a naIve individual, the cytotoxic T

lymphocyte (CTL) response is responsible for clearng infection and is the first

response (Ada and Blanden, 1994) (Henderson, 1999). CD8 (+) T cells can confer

protection in the absence of antibody and can provide protective memory. VV

specific T-cell memory can last up to 50 years post-vaccination in the absence of

antigen (Demkowicz et aI. , 1996). Epitope specific CD8+ T cell responses were

analyzed in the peripheral blood mononuclear cells (PBMCs) ofHLA-A2.1-

positive donors after primar immunization. The frequency of epitope-specific

CD8+ T cells peaked at two weeks after immunzation and declined thereafter. They

were, however, stil detectable 1-3 years after primar immunzation (Terajima et

aI. , 2003).

As mentioned before, VV exists in four forms; IMV, lEV, CEV and EEV.

EEV is mostly responsible for the long-range dissemination of the virus and spread

of the virus in vivo (Payne, 1980). There are contradictory reports about the

inhibition of EEV infectivity by neutralizing antibody. While one report says that

EEV is resistant to neutralizing antibodies (Ichihashi and Oie, 1996), another claims



that EEV infectivity can be inhibited by antibody (Law, 2001). However, many

studies have shown that antibody-mediated mechanisms canot offer protection

during a primar infection. Type I CD4+ T cells also help in the induction of long

lasting CTL response (Henderson, 1999). Interferons (IFNs) also playa crucial role

in poxvirus infections. IFN-a/Wr can effectively control viral growt (Xu et aI.

2004). Inflamatory cells like PMNs and macrophages also play an important role.

Inflamatory cells may limit virus spread by phagocytosis of poxvirus virions that

have been either antibody coated or C3b coated (Buller and Palumbo , 1991) and by

secretion of interferons and chemokines (Buller and Palumbo, 1991). However

poxviruses have developed strategies to evade the host immune system.

D. Immune Evasion by Orthopoxviruses

The role of viral proteins in inhbiting host responses to infection was first

demonstrated by the discovery of the regulation of the complement activation

pathway by poxviruses (Kotwal et aI. , 1990) (Kotwal and Moss, 1988b).

Subsequently, many pox-viral proteins have been identified that interfere directly

with host immune responses. The viral proteins responsible for immune evasion can

fuction in the following ways:



I. Inhibition of complement acti"ation

In response to viral infection, the complement pathway gets activated leading to the

production of C3 convertase, which can cause the inactivation of virus and

destruction ofthe infected cells (Tomlinson, 1.993). The complement pathway is

regulated by cellular proteins, limiting its harful effects on the cell. The regulators

have a common structual featue, a motif called the short consensus repeat (Reid

and Day, 1989). VV encodes for a protein (VCP) containing four copies of this

repeat, and it is secreted from infected cells (Kotwal and Moss, 1988b). The C3

convertases are rapidly degraded by VCP , inhibiting the complement activation

pathway (McKenzie et aI. , 1992).

2. Inhibition of TNF

Tumor necrosis factors (TNs) are pro-inflamatory cytokines that induce death of

virus-infected cells. The TNFs bind to either Type I or II TNF receptors (TNFR)

(Moss and Shisler, 2001). Leporipoxviruses and Orthopoxviruses encode for TNFR

homologs (Moss and Shisler, 2001). Members of the Orthopoxvirus family can

encode for a varing number of TNFR homologs. Smallpox and ectromelia have

one, and cowpoxvirus has three, intact TNFR Type II homologs which are called

crmB , crmC and crmD (Hu et al. , 1994) (Smith et aI. , 1996) (Loparev et aI. , 199

(Chen et aI. , 2000). In most strains ofVV, the TNFR homolog ORF is interrpted



(Howard et aI. , 1991). These TNFR homologs can block TNF-a mediated cytolysis

and counter the anti-viral state of the cell.

3. Inhibition of IL-Ip function

Interleukin- lp (IL- l/l is a pro-infamatory cytokine that binds to a high affinity

cellular receptor and mediates a broad response to viral infection via signal

transduction pathways (Moss and Shisler, 2001). Orthopoxviruses encode secreted

homologs ofinterleukin- l receptor (IL- IR), which specifically bind to IL- lp. Also

in order for IL- lp to be activated, the precursor form needs to be cleaved by

caspase - 1. The cowpox virus encodes for a protein called crm, which prevents

activation oflL- lpby inhbiting caspase- l fuction (Ray et aI. , 1992).

4. Inhibition ofIFN and IL-

Interferons bind to cellular receptors, both Type I and II, and activate the Janus

kinase and signal transducers and activators of transcription (JAKSTAT) pathway,

inducing an anti-viral state in cells (Darell et aI. , 1994). Orthopoxviruses produce

proteins that can bind to tye I or II IFNs (Moss, 2001). The VV protein B8R has

been shown to bind to IFN-y and shares sequence similarity with the extracellular

domain of the IFN- y receptor. Interleukn 18(IL- 18) is a cytokine that induces IFN-

y production in macrophages, natual kiler (NK) cells, and T cells. This cytokine

has potent anti-viral properties that can protect mice from infections with vaccinia



virus (Tanaka-Kataoka et aI. , 1999). Interleukn - 18 binding protein (IL- 18BP) is a

soluble, secreted inhbitor oflL- , produced by both humans and mice (Novick et

aI. , 1999). Orthopoxviruses encode IL- 18BP homologs that can bind IL-

(Calderara et aI. , 2001).

5. Intracellular proteins with anti-"iral properties

In response to IFN s, cells express products that interfere with viral replication

(Samuel, 1991). VV infection leads to the production of double stranded RNA

which activates protein kinase R (PKR) (Gunery and Mathews, 1998). PKR can

inhibit viral protein synthesis by phosphorylation of the sub-unt of the translation

initiation factor eukarotic initiation factor 2 (eIF-2) (Brand et aI. , 1997).

Orthopoxviruses encode a double stranded RNA binding protein (E3L gene ofVV)

that can compete with PKR in binding with the ds RNA and thus inhbit PKR

activation (Chang and Jacobs, 1993). E3L is a host-range gene ofVV and its abilty

to counteract the anti-viral responses of the cell contributes to its host-range

fuction. VV lacking the E3L gene is unable to grow in HeLa cells because the

endogenous level of PKR is higher in the HeLa cells compared to baby hamster

kidney (BHK) cells which support the growth of the mutant VV (Langland and

Jacobs, 2002). Hence, the host range restriction ofVV is closely tied in with the

anti-viral state of a cell and on the ability of the virus to disable the host response to

infection.



E. VV Host-range Restrictions

1. Host Range genes of VV

The host-range of VV is very broad among mamalian cells. Due to the presence of

a huge genome, it was thought that VV would be very likely to encode for specific

genes that would allow it to cross species bariers. The first evidence of the

existence of poxvirus host range mutants was the rabbitpox virus mutants (Gemmell

and Fenner, 1960), which failed to grow in pig kidney cells (McClain, 1965)

(McClain and Greenland, 1965). The first host range mutant (hr mutant) in VV was

identified during screening of nitrous acid mutagenized stock in an attempt to isolate

temperatue sensitive mutants (Drilien et aI.; 1981). The mutant was tested on 14

different cell lines and the results showed that the growth of the mutat was

restricted in most of the human cell lines tested and that the restriction was

independent of the source of origin of the cell lines; i.e. wh ether epithelial or

fibroblastic, transformed or diploid, they all restricted the growth of the mutant. The

mutant was also found to be totally restricted in its growth in rabbit cells, both

epithelial and kidney cell line. The mutant, however, grew much better in monkey

cell lines, both in primar and a continuous cell line, and grew the best in BHK and

chicken embryo fibroblasts (CEF). It was determined that the hr mutant had 

deletion of 18 kbp which occured at the left end of the genome (Drilien et aI.



1981). In order to map the exact location of the deletion, recombinant VV were

created where fragments of wild type DNA were inserted into the mutant virus and

the recombinants screened by their ability to grow in human cells (Gilard et aI.

1986). The DNA fragment containing the M and K fragments was able to restore

growth of the mutant. This fragment contained an ORF encoding for a 32.5 kDa

polypeptide (Gilard et aI. , 1986). This ORF Was eventually shown to be transcribed

leftard from HindIII fragment into the M fragment and was called Kl L

following standard protocol for naming VV genes. The Kl L ORF is disrupted in the

Varola virus (Mas sung et aI. , 1993). Since the identification of KIL gene as the

host range gene, other VV genes with host range fuction have been reported

namely C7L (Perkus et aI., 1990), the fuction of which is not completely

understood, and E3L (Chang et aI. , 1995) (Langland and Jacobs, 2002), which has

been very well studied as explained above.

Even though the Kl L gene was characterized, the exact mechansm of how

it mediated its fuction has not been entirely elucidated. To date, there has been no

characterization of any interaction between KIL and any host protein. In vitro yeast

two hybrid assays have shown that KIL interacts with ClOL, another VV protein

but no biological significance has yet been attributed to this interaction (McCraith et

aI. , 2000). Experiments have been carried out in order to determine the exact stage

of life cycle when the block in growth occurs in cells infected with the hr mutat.

...



2. RNA synthesis in cells infected with mutant VV (KIL-)

A non-permissive human transformed cell line (KB) infected with the hr mutat

shows a steady production of cytoplasmic RNA for the first 90 minutes which

declines thereafter. The rate and extent ofRNA synthesis during the 90 minute

period was seen to be similar to that in cells infected with the wild type virus

(Drilien et aI. , 1981). RNA synthesis was also studied in the non-permissive rabbit

kidney cell line, RK- 13. MY A, lacking the KIL ORF along with many other ORFs

shows the same host range phenotype in RK - 13 cells as the hr mutant described by

Drillen (Sutter et aI. , 1994). A study using recombinant MY A, called MV A-KIL

which expressed the Kl L gene, was used in the study to determine the extent of

RNA synthesis in RK- 13 cells. Cellular RNA, collected at time points 0, 0.

and 4 hours post-infection, were probed for early mRNAs (Sutter et aI. , 1994). In

cells infected with MY A-KIL, the transcripts of these early genes were detectable at

the highest levels at 2 hours. There were more transcripts detectable at 1 hr than at 4

hours. In cells infected with MY A, again, the highest levels of transcripts were

detected at 2 hours post infection, but in contrast to the MY A-KIL, the levels were

higher at 4 hours than at 1 hour. This indicated that there was an accumulation of

early transcripts in the absence of the KIL protein. The early transcripts in

infections with both viruses could be detected well beyond the shutoff of protein

synthesis. Intermediate transcripts were detectable at 2 and 4 hours post infection

using MY A-KIL, while none were found in cells infected with MV A (Sutter et aI.
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1994). Another study (Ramsey-Ewing and Moss, 1996), using RK- 13 cells infected

with the wild type KIL (+) virus and a mutant KIL (-) virus, reported similar

observations. RNA levels were studied using a nuclease protection assay in infected

RK- 13 cells. The assay indicated that the RNA levels peaked at 2 hour after

infection and then went down in cells infected with KIL (+) virus. In cells infected

with the mutat lacking a fuctional KIL gene product, RNA was detected at 2

hours but persisted til 6 hours before they decreased. Study of intermediate

transcripts showed that in KIL (+) infected cells; intermediate RNA was detectable

at 4 hour post infection, and in KIL (-) infected cells very little RNA was detected

at 24 hours post infection. As for late transcripts, in cells infected with the wild tye

they were present between 6 and 24 hours, but none detected after infection with the

KIL- virus (Ramsey-Ewing and Moss, 1996). The absence of intermediate and late

transcripts could contribute to the absence of DNA synthesis. There were several

studies done to analyze DNA synthesis in cells infected with KIL (-) virus in

comparison to that in cells infected with the KIL (+) virus and these are

sumarized below.
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3. DNA synthesis in cells infected with VV with mutant KIL 

(-)

Cytoplasmic DNA synthesis was seen to be considerably lower in hr-infected cells

than in wt-infected cells (Drillen et aI. , 1981). RK-13 cells infected with MY A did

not show any DNA replication (Sutter et aI. , 1994), while in cells infected with

MY A-KIL, there was evidence of DNA replication. This indicated that the absence

of intermediate and late transcripts was due to the absence of DNA replication. In a

similar study (Ramsey-Ewing and Moss, 1996), it was observed that in RK- 13 cells

infected with a KIL (-) virus there was no increase in the levels of DNA afer the

initial 0 hour time point. In contrast, in cells infected with KIL (+) virus, there was

an increase in the levels of DNA by 4 hours, and it continued afer that (Ramsey-

Ewing and Moss, 1996).

The absence of DNA replication could be due to delay in uncoating of the

template DNA or due to some defect in the replication apparatus. In order to

differentiate between the two possibilities, the kinetics of the levels of DNA

replication of plasmid DNA serving as template (which does not need uncoating)

was studied (Ramsey-Ewing and Moss, 1996). The pattern of DNA synthesis was

not any different from that of viral DNA synthesis. This indicated that the defect in

DNA synthesis was due to an impairment in the replication machinery rather than

being a defect of uncoating the template alone.



4. Protein synthesis in cells infected with VV with mutant KIL (-)

Since the consistent pattern in all the studies has been the accumulation of

early mRNA in the absence ofKIL gene product, the question that followed was

whether there was a defect in the translation ofthese early mRAs to early proteins.

The first evidence of the lack of protein synthesis showed that in KB cells infected

with the hr mutant there was a decline in protein synthesis compared to the wt virus-

infected cells (Drillen et aI. , 1981). In order to rule out the possibility that the

decline was due to the absence of DNA replication in the hr mutant infected cells

the cells infected with wt virus were treated with cytosine arbinoside (which inhbits

DNA synthesis). No decline in protein synthesis was observed in these cells

indicating that the absence of DNA replication was not the reason for the decline in

protein synthesis (Drilien et aI. , 1981). Observations from a study using RK-

cells infected with either MY A (lacking KIL) or MY A-KIL showed similar results.

In cells infected with MY A there was an abrupt shutdown of protein synthesis, and

no proteins , either cellular or viral, were detected between 2 and 12 hours post-

infection (Sutter et aI. , 1994). The absence of protein synthesis in the presence of

early mRNAs suggested a translational block.



5. CP77 and KIL

V0251CP77 is the cowpox host range gene encoding for a 77-kDa polypeptide. The

cowpox virus has the largest genome amongst viruses in the Orthopoxvirus family.

The cowpox host range gene is parially deleted in the WR (Kotwal and Moss

1988a) and the VC-2 (Goebel et aI. , 1990) strains ofVV. In an interesting study

(Ramsey-Ewing and Moss, 1996), the CP77 gene was inserted into the genome of a

mutant VV lacking a fuctional KiL gene (KIL-CP77+). In RK- 13 cells , this KIL

(-) CP77 (+) recombinant behaved differently than the KIL (-) mutant. Not only did

the CP77 gene product rescue viral early protein synthesis, but it also rescued DNA

synthesis and late protein synthesis. In RK -13 cells infected with the recombinant

virus, K 1 L (-) CP77 (+), the levels of early transcripts decreased initially at around 3

hours post-infection (comparable to that in cells infected with KIL (-) CP77 (-)), but

stared to reappear at later times. Similarly, the intermediate RNAs were detectable

at 12 hours post-infection and so were the late transcripts. It was observed that in the

presence of CP77, there was a resumption of DNA synthesis after a lag of about 8-

16 hours post-infection in RK-13 cells. The CP77 protein has been implicated in

preventing apoptosis (Ink et aI. , 1995). More recently, it has been shown to relieve

host restriction in apoptotic HeLa cells at the intermediate gene translation stage by

regulating the fuction of eIF-2 (Hsiao et aI. , 2004) and has also been shown to act

upstream of caspase activation. However, the role of apoptosis has been ruled out as

the basis of host-restriction in RK- 13 cells (Chung et aI. , 1997). Therefore, CP77



must be involved in an alternative pathway. It has been suggested that the two

proteins KIL and CP77 may have multiple roles which may differ in different cell

lines (Ramsey-Ewing and Moss, 1996).

As mentioned earlier, there is no homology between these two proteins

except for the presence of anyrin repeats, and ths led us to analyze more deeply

the anyrin repeats.

F. Ankyrin Repeats

1. What is an ankyrin repeat?

It is a 33 amino acid repeat motif, first identified in Swi6p and CdclOp, two yeast

cell cycle regulators and in development regulators Notch (from Drosophila

melanogaster) and LIN- 12 (from Celegans) (Breeden and Nasmyth, 1987). Later

the cytoskeletal protein ankyrin (ANK) was shown to contain 24 of these repeats

and hence the name of the repeats (Lux et aI. , 1990). The range of species

containing proteins with anyrin repeats has been shown to extend from viruses to

humans and at least 400 proteins are known to have this motif (Michaely and

Bennett, 1992). Some proteins consist solely of anyrin repeats while others have

anyrin repeats along with other fuctional domains. The number of repeats in a

protein has been known to vary. For example, the anyrn protein has 24 and NF-



has 5. An interesting feature of anyrn repeats is that these motifs usually occur as

multiple copies, at least 4 copies per protein (Bork, 1993). An exception to this rule

is Orthopoxvirus proteins containing anyrin repeats.

A study of variola and vaccinia virus proteins revealed that many of them

contain anyrin repeats (Bork, 1993) (Shchelkunov et aI. , 1993). Some examples

are: CI9L, MIL, KIL, CI7L , CI5L, B4R, and B14R proteins of vaccinia virus and

the OIL , B6R, B 19R, B21 R, and G3R of variola virus. The number of anyrin

repeats in these proteins var from 1- , with the G3R protein being the most tyical

with 5 anyrin repeats (Shchelkunov et aI. , 1993). Based on the known fuction of

anyrin proteins, which contain 24 anrin repeats , it has been suggested that the

viral proteins containing anyrin repeats may have important fuctions in regulation

of viral growth and modifications of cell strctural elements.

2. The structure of an ankyrin repeat

The elucidation of the three dimensional structue of an anyrin repeat occurred 10

years after the discovery of this motif and was resolved from the 53BP2 protein

bound to p53 (Axton et aI. , 1994; Sedgwick and Smerdon, 1999). The structue

showed that a single anrin repeat consists of2 anti-parallel a-helices connected

to 2 ~-sheets. The ~-sheets form a continuous projection away from the a-helices at

an angle of almost 90 , forming an anyrin groove (Fig.2). This groove consists of
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solvent exposed residues from the a-helical bundle. A tyical anyrin repeat 

considered to be a ~-hairpin-helix-loop-helix (~2a2) structue (Sedgwick and

Smerdon, 1999). Conserved residues in anyrin repeats can be divided into

different categories , such as those that are involved in formation and stabilzation

and others in forming the interface between repeats. Most anrin repeats have a

conserved consensus sequence of6 amino acids (TPLHLA), of which the first four

Thr-Pro-Leu-His (TPLH) initiates the first a-helix of the repeat by forming a tight

tu (Sedgwick and Smerdon, 1999). The hydrogen-bonding interaction between the

Thr6 and His9 of the side chain and main chain respectively, stabilizes this tur.



(b) 10 20 
D--G- TPLHLA---G---VV-LLL --GADVNA-

.. 

Consensus 1

-G- TPLHLA---G---VV-LLL--GADVNA-D-

Consensus 2

Fig 2: Structure of an ankyrin repeat.

(a) shows the arangement of a-helices (cylinders) and ~-hairpins

(arows), which is characteristic of the ann (ANK)-repeat architectue viewed

from the ' top ' of the domain (left). A single AN repeat is highlighted in red. The

continuous ~-sheet projects away from the helical stack to form the anyrn groove

which is indicated by the dotted arc (right).

(b) The AN-repeat consensus. ANK-repeat domains are assembled from multiple
sequential copies of a 33 residue motif. The strctue-based consensus (consensus

1) defines the AN repeat as a ~2a2 motif highighted in red (compare with (a)).

(consensus 2) is based on the location of exon boundares in the anyr gene. In

both consensus sequences, the extent of a single ANK repeat is indicated by a black
arow.

(Sedgwick and Smerdon, 1999)



3. Function of the ankyrin repeats:

The role of anyrin repeats is to mediate protein-protein interactions and has been

documented with many examples (Bork, 1993). A few examples are as follows:

uI6-CDK6 : Cyclin dependent kinase 6(CDK6) is a cell cycle regulatory molecule

and p16 is a CDK inhibitor. The interaction between these molecules is mediated by

the anyrin grooves (Bork, 1993).

IKB-NF- : NF-KB is a transcription factor and IKB is an inhbitor ofNF-KB. IKB

binds to NF-KB so that the nuclear localization signal (NLS) of the p65 subunit is

masked and the transcription factor is retained in the cytoplasm. Both proteins have

anyrin repeats, and the interaction between them is mediated by these repeats. The

anyrin groove formed by repeats 1 2 and 3 ofI-KB makes contact with the NLS

region ofp65 (Bork, 1993).

GABPa-GAB..-DNA : GA-binding protein alpha (GABPa) is a transcription

factor that binds to DNA along with GABP-~. Interaction between the two proteins

is mediated primarily by the ~-hairpin fingers. Furher contacts are mediated by

residues in the anyrin groove (Sedgwick and Smerdon, 1999).



53BP2-p53 interaction p53 is a mediator of cellular stress response with a role in

cell cycle control, DNA repair, and apoptosis. 53-BP2 interacts with p53

transactivates it, and promotes apoptosis. Although most of the interaction is

mediated by the (SH3) domain of the 53BP2 protein, the ~-hairpin ofthe ANK4

domain of the 53BP2 protein has been shown to make contact with p53 (Axton et

aI. , 1994).

These are examples of intermolecular interactions; however, there is also

evidence of anyrin repeats being involved in intramolecular interactions. In the

Swi6 protein, the region responsible for transcriptional activation interacts with the

core domain, which contains five anyrin repeats. In another example, the anyrin

repeats of the PAP protein of the ACAP (GTPase-activating protein) family of

proteins interacts with the GTPase-activating (GAP) domain (Mandiyan et aI.

1999).

Hence, it is clear that these repeats can be present in all kinds of proteins, in

different species, with disparate biological fuctions including: immunomodulatory

fuctions; signaling in cyclin dependent kinases; in developemental regulators; and

toxins. The role of anyrin repeats in viral proteins has not been well studied

especially in VV, considering the fact that so many VV proteins have anyrin

repeats.



G. OBJECTIVES OF DISSERTATION:

The fuction of Ki L a host range gene of VV, is unown except for the

fact that it is involved in the maintenance of viral protein synthesis. As mentioned

earlier, the host-range restriction of a virus can also be an indication of an anti-viral

state ofthe host cell. By studying the host-restriction of the wild type and the KIL-

virus in restrictive and non-restrctive cell lines, we have tried to shed light on any

novel antiviral pathway that the KIL gene product may be interfering with. The

complementation ofKIL fuction by the CP77 gene product has led to comparisons

between these two proteins, and the only homology found has been the presence of

anyrin repeats. This led us to examine the importce of these repeats (known to

be involved in protein- protein interactions) in mediating the host-range fuction.

The differences in the infectivity of the mutant VV (lacking the KiL gene) in

infection of permissive CV - 1 cells and non-permissive RK- 13 cells suggest that

there may be a cellular protein involved. There has not been any report of cellular

proteins interacting with the KIL protein ofVV. In this study, we decided to

address the involvement of cellular and viral proteins in the host range fuction of

KIL. The specific aims of this dissertation are as follows:



1. To define the importance of the ankyrin repeat of KIL protein in mediating

the host-range function.

a) To determine whether mutating the anyrin repeat affects the host-range fuction

ofthe K 1 L protein.

b) To define the intracellular localization of the wild type KIL and whether

mutations in the anyrin repeat causes the localization to change.

To identify cellular or "iral proteins interacting with the KIL protein.

If interactions are found, to determine their role in mediating the host

range function of the KIL protein.



CHAPTER II

MATERIALS AND METHODS

Cell Lines.

The following cell lines were used for experiments conducted for this thesis work:

The rabbit kidney cell line RK- 13 (ATCC accession number, CCL-37); the Afrcan

green monkey kidney cell line CV - 1 (A TCC accession number, CCL-70) and the

human osteosarcoma cell line lacking TK gene, 143B (ATCC accession number

CRL8303).

Cloning of the KIL gene from the New York City Board of Health (NCBH)

strain ofVV.

CV- l cells were grown to confuency in 75cm2 flasks using 10% MEM (MEM

containing 10% FCS). Inoculum (NYCBH strain ofVV) was made up in 2.

MEM (MEM containing 2.5% FCS). After an initial incubation of 1 hour, the

innoculum was aspirated, and cells were incubated for 48 hours in 10% FCS. Cells

were then washed once with sterile PBS (IX) and harested by scraping off from

the bottom of the flask and resuspended in PBS. The cells were centrifuged at 1 500



rpm for 5 minutes. The resulting cell pellet was resuspended in 600 III of nuclei

lysis buffer (from Wizard Genomic DNA kit). Genomic DNA was extracted using

the Wizard Genomic DNA purification kit (Promega, Madison, WI) according to

manufactuer s instructions. KIL cDNA was amplified using the XL PCR

amplification system (PE Applied Biosystems, Foster City CA). This PCR system

amplifies DNA using the rTth DNA polymerase enzyme which apar from efficient

DNA synthesis can also correct misincorporated bases. The PCR was performed as

follows: 94 C/4 min, 1 cycle; 94 C/l min, 52 C/l min, 65 C/5 min for 30 cycles;

C/l 0 min, 1 cycle.

The primers were designed based on the sequence ofVC- KIL.

KILs: 5' - CTCGAGTCAGACATGGATCTGTCACGAATTAAT -

KILas: 5' - GGATCCGTGGGAGAATCTAATTAGTTTTTCTTTACAC -

The PCR product was first cloned into Topo TA cloning vector (Invitrogen

Carlsbad, CA). Restrction enzyme digestion using the enzmes Xhol and BamI

yielded the insert fragment which was then cloned into XhoI (CTCGAG) and

BamHI (GGATCC) sites of the multiple cloning site of the mamalian expression

vector pCDNA3. 1 /Hygro (-) (Invitrogen, Carlsbad, CA).

GenBank Accession numbers. KIL: A Y621082



Site directed mutagenesis.

As described before, KILwt was first generated in pCDNA3. 1/Hygro (-). This

construct was then used to generate the Kl L mutated form. The 6 amino acids (96-

101) comprising the consensus sequence of the most typical anyrin repeat (amino

acid 93 -125) were converted to alanine using the site-directed mutagenesis kit

(Quickchange, Stratagene, La Jolla, CA) as shown below.

KIL wt ACTGCATTGTATTAT 96- T AL YY A- I 0 1 (amino acid sequence)

KILmman GCCGCGGCCGCTGCT (amino acid sequence)

Creating mutations in anyrin repeats by converting the amino acids in the

consensus sequence to alanines has been reported in other studies (Inoue et aI.

1992). 10 ng of plasmid DNA template (pCDNA3.1Hygro- KILwt) was used in

PCR amplification reaction using 125 ng of the following primers:

Ans:

GATGACAAAGGAAACGCCGCGGCCGCTGCTGCGGTTGA TAGTGGT 3'

Anas:

5' ACCACT ATCAACCGCAGCAGCGGCCGCGGCGTTTCCTTTGTCATC 3'

The PCR cycling conditions were as follows: 95 C/30 sec, 1 cycle; 95 C/30 sec

C/lmin, 68 C/12 min, 12 cycles. PCR was performed using the Perkin Elmer

DNA thermal cycler 480. The cDNA sequences of both KILwt and KILmutan

were confirmed and did not contain any unwanted mutations.



Generation of recombinants.

KILwt and KIL mutan (first generated in pCDNA3.1/Hygro -) were sub cloned

into transfer vector pSCllss. Recombinant VV vAbT33 (used as the parental strain)

has one lacZ gene as does the transfer vector pSC 11 ss. In order to avoid

recombination between the two lacZ genes, both KILwt and KILmutan were

sub cloned into transfer vector pSCllssEE. pSClissEE was created by restriction

enzyme digestion ofpSCllss vector with EcoRI (which deleted the lacZ sequence)

and then religating the vector to reconstitute the Thymidine Kinase (TK) gene.

Recombinant viruses vAbT33KILwt and vAbT33KILmutan were created

following standard protocol described before (Terajima et aI. , 2002). In order to

confrm the presence of the Kl L gene in the recombinant viruses , genomic DNA

was extracted from cells infected with the recombinants, and the Kl L gene was

amplified by PCR.



Table 2: Plasmids and Viruses used in this study:

Plasm ids Promoter

pCDNA3. 1I Hygro 

(-)

CMV

(Invitrogen) immediate early promoter

pEGFPC- CMV

(BD Biosciences, Palo Alto , CA) immediate early promoter

pSCllss (transfer "ector) p7.5 early promoter

Kindly provided by Dr. Bernard Moss, NIH.

pSCllssEE (Sugur Yamaguchi) p7.5 early promoter

pMax-GFP (Amaxa biosystems CMV

Gaithersburg-. MD 20877) immediate earlv nromoter

Viruses.

New York City Board of Health (NCBH) Wild type VV containing a fuctional

Kindly provided by Gail Mazara and K 1 L protein

Dennis Panicali

(Therion Biologics , Cambridge, MA)

"AbT33 VV lacking a fuctional KIL protein

Kindly provided by Alicia Gomez Yafal derived from NYCBH.

(Therion Biologics, Cambridge, MA).

AbT33KILwt (In this report) Described in text

"AbT33KILmutank (In this report) Described in text



Immunoprecipitations.

RK- 13 and CV -1 cells were grown (in 10% MEM) to confuency in 175 cm2 flasks.

Cells were metabolically labeled with eSS)-methionine (O.1mCi), long-term and

short-term.

Long- term labeling of cells: After aspirating the regular media (10% MEM) from

the confuent cells, they were first washed with wared long-term labeling media

(methionine free media containing 10% FCS and seru free media) and then

incubated in the same for 15 minutes at 37 C.. They were then incubated in the long-

term labeling media containing O. lmCi of eSS)-methionine overnght. After the

incubation, all the label was removed, and the cell monolayer was washed twce

with regular media (2.5 % MEM). The cells were then infected with an MOl of 10

of the NYCBH strain (in 7 mls of2.5 % MEM) and incubated for 1 hour at 37

Then, the inoculum was removed and cells were incubated for an additional 2 hours

in 10% MEM at 37 C. Cell lysate was prepared at the end of this time point. For

mock-infected cells, 2.5% MEM was added instead of inoculum and the rest of the

protocol was followed as above.

Short-term labeling: Cells were first infected with an MOl of 10 of the NYCBH

strain and incubated with inoculum (in 7 mls of2.5 % MEM) for 1 hour at 37 C. At

j ,



the end of this time, inoculum was removed and the cell monolayer was washed

with war short-term labeling media (100 ml methionine free media). Cells were

incubated in this media for 15 minutes at 37 C and then incubated for two more

hours in short-term labeling media containing O.1mCi of eSS)-methionine. Cell

lysate was prepared at the end ofthis incubation time.

Preparation of lysate: The monolayer was first washed two times with ice-cold PBS

and the supernatant was discarded. Cells were lysed in cold lysis buffer

(Immunoprecipitation kit, Roche, Indianapolis , IN) and harested by scraping.

Samples were transferred to a microhomogenizer (Kontes pellet pestle , VWR) and

were manually homogenized with approx. 10 strokes per 1 ml of cell lysate. Lysates

were then centrifuged in a table-top microfuge, at 12000 x g at 4 C for 10 minutes.

The supernatants were then precleaned.

Prec1eaning of supernatants: 1 ml of sample was incubated with 50Jll of protein A

agarose at 4 C overnight on a rocking platform. Samples were then centrifuged at

12000 x g for 20s and the supernatants collected in fresh tubes.

Immunoprecipitation: Immunoprecipitation was performed as per manufactuer

instrctions (Immunoprecipitation kit, using protein A agarose, Roche, Indianapolis

IN). The anti-KIL antibody (kindly provided by Dr. Robert Drillen) was used at



1 :200 dilution (Gilard et aI. , 1989). The anti-Kl L antibody was raised in rabbits

against a peptide comprising 19 amino acids from the carboxy-terminal end of the

KIL protein (Gilard et aI. , 1989). Samples were incubated with antibody for 1 hour

at 4 C on a rocking platform. Then they were incubated with 50111 of Protein A

agarose overnight at 4 C. Samples were centrifuged and pellet containing proteins

complexed with protein A agarose were collected and were washed three times

with high and low salt buffers and denatued in SDS buffer containing DTT.

Samples were ru on 9% SDS-P AGE and analyzed using a phospho imager.

Co-immunoprecipitation using anti-ACAP2 antibody : RK-13 cells were long-term

and short-term labeled as described earlier with eSS)-methionine.

Immunoprecipitation using anti-ACAP2 antibody (kindly provided by Dr. Paul

Randazzo, NIH) (1: 1 000 dilution) was also performed as described earlier. The anti-

ACAP2 antibody was raised in rabbits against residues 761-778 of ACAP2 protein

(Jackson et aI. , 2000). However, the anti-ACAP2 antibody failed to

immunoprecipitate the ACAP2 protein.

Sil"er staining and Mass spec sequencing.

RK-13 cells were grown to confuency in two 175 cm
2 flasks. Cells (2 x 10

cell/flask) were infected with 10 MOl of virus (NYCBH strain). After an hour of

incubation with inoculum, cells were washed and incubated for two more hours in



regular media (2.5% MEM). Celllysates were prepared as per manufactuer

instructions (Immunoprecipitation kit, Roche). Proteins were immunoprecipitated

using anti-KIL antibody and protein A agarose as per manufactuer s instruction

(Roche). Proteins were ru on 9% SDS-PAGE. The gel was stained using Silver

Stain Plus (Bio-Rad, Hercules, CA). The silver staining was performed as follows:

After gel electrophoresis, the gel was fixed in fixative enhancer solution (50%

methanol , 10% acetic acid, 10% fixative enhancer concentrate and 30% distiled

water) for 20 minutes. The gel was rinsed twce in deionized distiled water for 10

minutes with gentle agitation. It was then stained using staining solution, which was

prepared immediately before use. In order to prepare 50 ml of staining solution, 5

ml of silver complex solution, 5 ml of reduction moderator solution and 5 ml of

image development reagent was added to 35 ml of deionized water at room

temperatue. 50 ml of development accelerator solution was added to the staining

solution just before staining. The gel was stained until the bands became visible.

The staining reaction was stopped using 5% acetic acid solution for at least 15

minutes. The pertinent bands were excised from the gel and MALDI MS/PSD

analysis (by Dr. John Leszyk, Proteomics Core Facilty, UMASS Medical Center)

of the silver stained band identified the protein as a rabbit homologue of Human

ACAP2.



--"

Plaque assay in RK-13 cells.

RK- 13 cells were grown to confluency (1 x 10 cells/well) in 6 well plates and

infected with NYCBH, vAbT33 , vAbT33KILwt and vAbT33KILmuta with 

MOl of 0. 1. After an incubation of2 hours, cells were washed once and incubated in

10% MEM for 48 hours at 37 C. At 48 hours post infection, cells were washed and

stained with 0.2% of crystal violet in 10% ethanol.

Titration ofVV by focus forming assay.

Permissive CV - 1 cells were grown to confuency in 6-well plates. Cells were then

infected with serial dilutions of infected celllysates to be titrated. Infection of

permissive CV - 1 cells by infected celllysates followed standard procedures (Earl et

aI. , 1997) (Terajima and Leporati, in press). Viral titer was determined by staining

foci of infection using immunohistochemistry with anti-VV antibody (Biogenesis

Brentwood, NH) and histochemical staining kit (rabbit IgG, Vecta stain, ABC kit

Vector laboratories, Burlingame, CA). The anti- VV antibody used is a polyclonal

antibody raised in rabbits against Lister strain ofVV (Biogenesis, Brentwood, NH).

RT-PCR of "iral RNA:

Transcript levels of Kl L in the cells infected with four viruses were analyzed. RK-

13 cells (2 x 10 cells) were infected with 0.1 MOl ofNYCBH, vAbT33



vAbT33KILwt, vAbT33KILmutan. Cells were incubated with inoculum for 2

hours, after which they were washed and incubated in regular media (10% MEM)

for 6 hours. Total RNA was extracted from the cells using Ultraspec RNA isolation

system (Biotecx laboratories Inc. , Houston, TX). The extracted RNA was treated

with DNase I to eliminate any containating DNA in the RNA preparation. The

extracted RNA was incubated with lOX DNase I buffer, ImM DTT, 20 g/ml of

DNAse I , RNAse inhibitor, at 37 C for 2 hours. The DNase treated RNA was again

purified by Ultraspec. Reverse Transcriptase (RT) reactions were set up using 

of purfied RNA. A set of control reactions , without RT enzyme, was also set up.

PCR was set up with templates that were treated with R T 
and without R T, for each

sample in order to eliminate the possibility of amplification from any 
containating

DNA. PCR primers for the amplification of 
KI L gene were as follows:

KILs: 5' - CTCGAGTCAGACATGGATCTGTCACGAATTAAT -

KILas: 5' - GGATCCGTGGGAGAATCTAATTAGTTTTTCTTTACAC -

KI L was amplified using the XL PCR amplification system (PE Applied

Biosystems, Foster City CA) using the 
rTth DNA polymerase enzyme. The PCR

programe used was as follows: 94 C/4 min, 1 cycle; 94 C/l min, 52 C/1 min

C/5 min for 30 cycles; 72 C/I0 min, 1 cycle.



Cloning rabbit ACAP2.

Total RNA was extracted from unnfected RK-13 cells. Three fragments from the

middle of the open reading frame were amplified by RT-
PCR, using thee sets of

primers that were chosen from the regions conserved between human 

ACAP2

(Accession # NM 012287.3) and mouse 
ACAP2 (Accession # NM

030138) sequences.

ACAP2 (1) s: 5' - TGCCCAAGTACAAGAACAA -

ACAP2 (1) as: 5' - GGAATCTGCCTGGAGCATAC -

ACAP2 (2) s: 5' - TGTATGCTCCAGGCAGATTC -

ACAP2 (2) as: 5' - CGCCCTATAAGCTGAAGTCC -

ACAP2 (3) s: 5' - GCCTGAAGGAGAAGGCAAGA-

ACAP2 (3) as: 5' - TTTCTGTGAATCTTGCTGGAA -

The products were sequenced and based on these sequences the 5' end was

amplified by 5' RACE (SMAT RACE cDNA Amplification Kit, Stratagene).

Staring with the cDNA produced (RACE-ready cDNA) using the first set of

primers, a 5' RACE reaction was set up using primer:

ACAP2.5.2: 5' - TACTTCTTCCAAGCAGCCCTGAAGCGGGG -

The reaction was set up as follows:

Race-ready DNA

Universal 5' primer (lOX) l (supplied by manufacturers)

Sequence specific primer (1 00 



PCR master mix 41.5 l (supplied by manufactuers)

The PCR cycling parameters using a Perkin Elmer DNA thermal cycler 480 were as

follows: 94 /30 sec; 68 /30 sec; 72 /3 min; 25 cycles. The PCR products obtained

were cloned into TOPO T A cloning vector and the inserts sequenced.

Sequences from at least two independent PCR products were compared to

determine nucleotide sequence. The entire cDNA was then cloned using primers:-

ACAP2 s: 5' - GGCAGGATGAAGATGACGGTGGAT -

ACAP2as: 5' - TCAGAATTTCTGTGAGTCCTGCTGGAA -

GenBankAccession numbers. Rabbit ACAP2: AY620244

Pulse -Chase labeling.

RK-13 cells grown in 25cm
2 flasks were infected with 10 MOl of virus (NYCBH

vAbT33 , vAbT33KILwt, vAbT33KILmutan). Cells were incubated with inoculum for

30 minutes at 37 C. After aspiration of inoculum, cells were washed once and regular

media (l0% MEM) was added. Cells were then labeled and analyzed at 0 hour

(immediately after the 30 minute incubation) and 6 hours post infection. Labeling was

done as follows: Cells were first washed in war short-term labeling media (l00 ml

methionine free media). Cells were then incubated in the short term labeling media for 10

minutes. After that, cells were incubated with 3. Ci /ml eSS)-methionine (diluted in short

term labeling media) for 30 minutes at 37 C. After the label was removed, cells were lysed



using lysis buffer (20mM Tris-HCL (pH 8.0), 10mM NaCl, 0. 5% NP-40) . Celllysates

were ru on 10% SDS-P AGE and analyzed by autoradiography.

Localization of KIL.

Cells were grown on cover slips to 30-40% confuency. Cells were transfected using

effectene (Qiagen, Valencia, CA) with OA/-g of plasmid DNA, pEGFPKILwt and

pEGFPKILmutan and pEGFP. The pEGFPKILwt and pEGFPKILmutan

constructs were generated by fusion of the Kl L cDNA (both the wt and the mutated

form) to the carboxy terminal ofEGFP. Cells were fixed 36 hours post-transfection

with 4% paraformaldehyde and mounted on slides , using 4' Diamidino-

phenylindole (DAPI) containing mounting media (Vectashield, H- 1200, Vector

laboratories). DAPI stains nuclei specifically, with little or no cytoplasmic labeling.

Cells were then visualized using a Nikon DIAPHOT 300 Inverted Microscope with

a Zeiss AxioCam digital camera using openlab version 3.0 (Improvision) image

captuing softare.

Study of"iral factory formation in RK-13 cells infected VV:

Cells were grown to confluency on cover slips in 6-well plates. Cells were infected

with 5 MOl ofNYCBH and vAbT33 strains of virus. Cells were incubated for one

hour at 37 o , and then the inoculum was aspirated. Cells were washed once with

media (2.5% MEM) and incubated for two hours in 2.5% MEM. Cells were then



washed once with IX PBS and fixed with 4% paraformaldehyde at 4 DC for 20

minutes. After washing two times with IX PBS , cells were then stained with

Hoechst stain (0.25mg/ml) for 5 minutes. After removal of the stain, cells were then

incubated in PBS for 5 minutes and then mounted on slide using mounting media

(1 % glycerol in 1 % PBS).

In vitro transcription-translation:

Mamalian expression vectors pcDNA3.1Hygro(-) expressing the wild type KIL

and the mutated KIL were used in the in vitro transcription and translation assay

using the TNT Quick system (Promega). pcDNA3. 1Hygro(-) has a T7 promoter for

in vitro transcription-translation. The expressed proteins (KIL wild type and KIL

mutan) labeled with 10mCi/ml of eSS)-methionine were incubated for 60 minutes

at 30 C as per manufactuer s instruction. At the end ofthe incubation period

proteins were ru on 10% SDS PAGE gel and the results were analyzed by

autoradiography.

Designing siRNA: siRNA specific for ACAP2 was designed using the basic siRNA

design tool, available at the URL:

htt://wwl.Qiagen.com/Products/Genesilencing/CustomSiRNA (Qiagen). The

target DNA sequence chosen was: AAGAGGCTGAGCATTCCTAA, and was



raned the best match with a high score of 90. The specific siRNA for ACAP2 was

ofHPP scale purity, was all anealed and had DNA overhangs. A commercially

available (Qiagen) negative (non-silencing) control was also used in these studies.

Determination of the efficiency oftransfection of siRA into RK-I3 cells using

nucleofection (amaxa biosystems). Efficiency was determined by transfecting

pMax-GFP (Amaxa Biosystems, Gaithersburg, MD) plasmid DNA into RK-13 cells

using nucleofection protocol (Amaxa Biosystems, Gaithersburg, MD). RK- 13 cells

were grown to confluency. Cells were trypsinised and counted. 2 X 10
cells were

used for one transfection reaction. 2 X 10 cells were resuspended in 100 III of

nucleofection solution V (supplied by manufacturers), mixed with 

lAllg of pM ax-

GFP. Cells were transfected using the nucleofection programe A-33. Cells were

incubated for 24 hours, and then GFP expression was monitored by F ACS analysis.

FACS analysis: RK- 13 cells were transfected with either 
104 Ilg ofpMAGFP

plasmid DNA or no DNA (negative control). 24 hours after transfection
, cells were

trypsinised and collected by centrifugation. Cells were then resuspended and

washed twice in F ACS buffer (PBS/l %FBS). Cells were then fixed in 
1 %

paraformaldehyd for 10 minutes at 4 0 C in the dark. They were then washed once

and resuspended in 400 III of F ACS buffer and then analyzed for GFP fluorescence.



Real-Time PCR: Transcript levels of ACAP2 were measured quantitatively using

the Taqman real-time PCR amplification system (Applied Biosystems).

Primers used were as follows:

ACAP2 Taqman forward primer: CAGGGCAGGTGTGTTTATTTCTAA

ACAP2 Taqman reverse primer: CAAGGGTCTTTCCCTTCTTCA

Actin Taqman forward primer: CGAGA TCGTGCGGGACA T

Actin Taqman reverse primer: GCCA TCTCCTGCTCGAAGTC

Probes used:

ACAP2 Taqman Probe: ACGAGGTGCCAATCAACATGCCACT

Actin Taqman Probe: AAGGAGAAGCTGTGCTACGTGGCGCT

The RT reaction was set up in triplicate in a 96-well plate, staring with 3 J.g of

RNA for each sample. The RT reaction mix contained RT buffer, dNTPs , MgCI2

specific reverse primer, RNase inhbitor and RT enzme (Taqman, Reverse

transcription kit, Applied Biosystems, Foster city, CA). The PCR reagents were

added to the newly synthesized cDNA, and analyzed in the GeneAmp 5700

Detector (Applied Biosystems, Foster city, CA).



CHAPTER III

RESULTS

SECTION I

The role of ankyrin repeats in the host range function of KIL

As mentioned in the introduction, the fuctional complementation ofKIL by CP77;

despite the absence of homology (except for the presence of anyrn repeats), was of

considerable interest. The exact mechanism of how the KIL protein mediates its

host range fuction is unown. As mentioned earlier, there is no evidence of the

presence of any other known fuctional protein domains in KIL. The anin
repeats of the KIL protein have never been analyzed previously. We decided to

study these 33 amino acid residue repeats. First, we decided to study the impact that

the anyrin repeats have on the host range fuction of the KIL protein, both in

mediating the host range phenotye and the maintenance of protein synthesis.

Secondly, we decided to investigate the intracellular localization of the KIL wt

protein and compare it with that of the mutated KIL protein.



1. Analysis of the ankyrin repeat of KIL in mediating its host-range function.

The presence of anyrn repeats in the Kl L protein of VV had been reported earlier

in some studies; however, results differed concerning the number ofthese repeats.

One report cited 5 anyrin repeats (Bork, 1993) (Bork, 1993), while another cited 2

anyrin repeats (Shchelkunov et aI. , 1993). A conserved domain search we

performed on the KIL protein ofVV Copenhagen strain (GenBan accession

number AA48005) showed one very highly conserved anyrn repeat at amino

acid positions 93- 125 and a less conserved anyrin repeat at positions 29-61. Under

very low stringency conditions , we could detect two more anyrin repeats which

were much less conserved. All conserved domain searches were done using the

CDD: http://ww.ncbLnlm.nih.gov/Structue/cdd/wrsb.cgi (Marchler-Bauer et aI.

2003). After we cloned the KIL gene from the NYCBH strain ofVV (as described

in Materials and Methods), a conserved domain search showed the anyrin repeat

93- 125 as the most typical anyrin repeat in the NYCBH strain, and the amino acid

sequence of this repeat is completely conserved between the Copenhagen strain and

the NYCBH strain. In order to study the host-range fuction of the KIL gene

product, we initially used a transient transfection approach. RK- 13 cells were first

transfected with pCDNA3.1Hygro (-) KILwt. At 24, 48 and 72 hours post

transfection, the cells were infected with vAbT33 strain ofVV. It was expected that

the expression of wild type 
Kl L gene before infection would make the otherwise



non-permissive cells permissive to the mutant virus. This would serve as the

positive control for an experiment in which R(-13 cells would be transfected, and

subsequent infection with the mutant virus would indicate loss of fuction, if any.

These transfection-infection experiments failed to yield any results, as the positive

control did not work very well because of the poor transfection effciencies ofRK-

13 cells. We therefore prepared recombinant VV expressing the wild type KIL and

the mutant KIL with the same parental background. The vAbT33 strain ofVV was

chosen as the parental virus. vAbT33 is a recombinant VV , produced by deletion of

the 3' end of the KIL gene and the adjacent M2L of the NYCBH strain, and has a~-

galactosidase gene regulated by BamI F promoter inserted at ths site (Smith et aI.

1993). vAbT33 has a truncated KIL ORF and hence a non-fuctional KIL gene

product which is impaired in its ability to grow in RK- 13 cells (Smith et aI. , 1993).

We first cloned the KIL cDNA from the NYCBH strain of virus into the expression

vector pCDNA3. 1Hygro (-), as described before. In order to create a mutated form

of Kl L, the consensus sequence of 6 amino acids (96- 101) of the anyrn repeat 93-

125 was mutated by substituting to alanne, following the protocol as described

(Inoue et aI. , 1992). The cDNA sequences of both KILwt and KILmuta were

confirmed and did not contain any unwanted mutations. The cDNA of both the

KILwt and KILmutan were then cloned into the transfer vector pSCIIEE.

Recombinant virus was created using a standard protocol for the creation of



recombinant VV. The following aspects of the host-range restrction were studied

using the recombinants produced.

a) Study of plaque forming abilty of both vAbT33KILwt and

"AbT33KILmutank in RK-I3 cells.

RK-13 cells were infected with NYCBH, vAbT33, vAbT33KILwt and

vAbT33KILmuta at an MOl of 0. 1. Cells infected with NYCBH and

vAbT33KILwt supported viral growth as evident by the presence of plaques
, while

cells infected with vAbT33 and vAbT33KILmutank failed to produce plaques after

48 hours post infection (Fig 3). Plaques produced by the vAbT33KILwt were

smaller in size than those by NYCBH, probably due to the lower expression ofKIL

(described in details in the section "detection ofKIL protein , page 63). The

reintroduced K 1 L gene has a p7.5 promoter instead of its own promoter and lacks

the early termination motif. These differences might explain the difference in

protein expression. Another explanation of smaller plaque size could be that

vAbT33KILwt does not have M2L reconstituted, although the fuction ofM2L is

not known.
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b) Study of growth kinetics of" AbT33KILmutank and" AbT33KILwt in RK-

13 cells.

We also examined the kinetics of viral growth in RK- 13 cells. RK-13 cells were

grown to confuency in 25 cm 2 flasks. Cells were infected with the four viruses;

NYCBH (wild type, KIL+), vAbT33 (KIL-) vAbT33KILwt (KIL+) and

vAbT33KILmutan (mutated in anyrin repeat 93-125) at an MOl of 0. 1. Cell

lysates were collected at 0 6 and 12 hours post-infection and were titrated in

permissive CV- l cells (Fig 4). vAbT33KILwt and NYCBH both showed very good

growth in RK-13 cells. vAbT33 infected cells showed a gradual loss in growth over

time. The recombinant vAbT33KILmuta behaved similar to the vAbT33 parent

virus. The difference in the titers ofvAbT33KILwt and vAbT33KILmuta was

almost 3 logs (Fig 4).
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c) Detection ofKIL transcripts

KiL transcripts could be detected by RT-PCR using total RNA samples prepared

from RK- 13 cells infected with NYCBH, vAbT33KILwt and vAbT33KILmutan

(Fig 5 , lanes 1 , 7) but not from those infected with vAbT33 (Fig 5 , lane 3),

uninfected RK- 13 cells (Fig 5 , lane 9) or in the no template control (Fig 5 , lane11).

There were no transcripts detected in the absence ofRT enzme. (Fig 5 , Lanes 2 , 4

, 8 , and 10).
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FIG. 5 Detection ofKIL transcripts in VV infected RK-13 cells.



d) Detection of KIL protein.

An immunoprecipitation assay was performed using anti-KIL antibody (as

described in Materials and Methods) in order to detect both the wild type and

mutated KIL proteins from CV- l cells infected with the recombinant viruses

(NYCBH, vAbT33KILwt and vAbT33KILmutan). KIL protein was detectable by

immunoprecipitations from CV -1 (permissive) cells infected with all three viruses

(NYCBH, vAbT33KIL wt and vAbT33KILmutank) (Fig 6A). However, the

KILmutan protein migrates slower than the wild type KIL protein (Fig 6A),

suggesting that the mutation in the most conserved anyrin repeat of this protein

affects its secondar structue. This is expected because the consensus sequence of

the anyrin repeat that was mutated occurs at the tur of an a-helix. This was fuher

confirmed in an in vitro transcription/translation assay. Mamalian expression

vectors pCDNA3. 1Hygro (-), expressing the wild tye KIL and the mutated KIL

were used in the in vitro transcription and translation assay. These vectors also have

a T7 promoter for in vitro transcription and translation. The expressed proteins

(KIL wild type and KILmutan) labeled with 10 mCi/ml of eSS)-methionie, were

subjected to incubation at 30 C for one hour. At the end of the incubation, proteins

were ru on 10% SDS PAGE gel and results analyzed by autoradiography (Fig 6B).

Results showed that the mutated KIL protein ran at a slightly higher size than the

wild type KIL. We were unable to detect KILmutan protein in RK- 13 cells

infected with the vAbT33KILmutan virus. This is expected, because infection with



the vAbT33KILmutan is abortive in RK-13 cells and results in shutdown of

protein synthesis.
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Anti-KIL
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FIG. 6. A) Immunoprecipitation ofKIL protein from CV-I cells.

Cells were inected with 20 MOl ofNYCBH, vAbT33KILwt; vAbT33KILmuta.
The cells were incubated for 2 hours. The inoculum was aspirated and cells were incubated with
labeling media containng 0. 1 mCi of 35S-methonie and incubated for 6 hours.

Uninfected cells were also labeled with 0. 1 mCi of 35S-methonie.

Celllysates were prepared and incubated with protein A agarose.

Proteins associated with protein A agarose were immunoprecipitated with anti-KIL antibody.

Cells were analyzed by 9% SDS-P AGE.



FIG.6 B) In "itro translation of KILwt and KILmutank proteins.
35S-methonie labeled in vitro transcribed and translated KILwt
and KILmutan proteins were ru on a 9% SDS PAGE gel.

The KILmutan protein (lane 1) migrated a little slower than KILwt protein (lane 2).



e) Study the effect of KIL mutant "irus on protein synthesis.

The infection ofRK-13 cells with a mutant VV lacking a fuctional KIL gene has

been shown to cause the premature shutdown of synthesis of both cellular and viral

proteins. We wanted to see whether vAbT33KILmutan would elicit the same

response in protein shutdown. A pulse-chase experiment, using 3.5/lCi /ml of esS-)

methionine to label both cellular and viral proteins , showed that in cells infected

with NYCBH (KIL+), there is no effect on total protein synthesis at 6 hrs (Fig 7

lanes 1 and 2 ). In contrast, in cells infected with vAbT33 , there is a shutdown of

protein synthesis by 6 hours (Fig 7 , lane 4), as compared to 0 hr (lane 3) .The

recombinant virus, vAbT33KILwt, behaved very much like the NYCBH (Fig 7

lanes 5 , 6), and, as expected, in cells infected with the recombinant

vAbT33KILmuta, there is a total shutdown of protein synthesis at 6 hrs as

compared to 0 hr (Fig 7, lanes 7 and 8).

These data show that mutating the anyrn repeat 93- 125 can bring about

shutdown of protein synthesis of both cellular and viral proteins. We next decided to

investigate whether differences in localization of the KIL protein in the cell, the wt

and the mutated forms, may have a role to play in determining the host-restriction in

RK - 13 cells.
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f) Study oflocalization ofKILwt and KILmutank RK-13 cells.

An earlier attempt to determine sub-cellular localization ofKIL failed to assign the

distribution of this protein into anyone comparment (Gilard et aI. , 1989). The

absence of a nuclear localization signal suggests that the protein is present in the

cytoplasm. Ideally the intracellular localization ofKIL protein should be

determined by immunohistochemical staining using anti-KIL antibody.

Unfortunately, the anti-KIL antibody we used in this study is not suitable for

immunohistochemistr, and at ths point this is the only one anti-KIL antibody

available to the study. As an alternative, we made a fusion protein ofKIL and

enhanced green fluorescent protein (EGFP), assuming fused EGFP would not

change the localization of the KIL.We cloned the KIL gene (both wt and mutan)

into the expression vector pEGFP , fused to the carboxy terminus ofEGFP. EGFP is

a mutant form ofGFP , which upon excitation, produces more long lasting and

brighter fluorescence as compared to wild type GFP. Expression of both KILwt

(Fig 8A) and KILmuta (Fig 8B), in RK- 13 cells, showed that both these proteins

localize in the cytoplasm of the cell. The pEGFP vector alone localized all over the

cell, including in the nucleus (Fig 8C). Infection of transfected cells (detected by

anti-VV antibody conjugated with rhodamine "associated secondary antibody) with

the NYCBH strain did not show any difference between the two forms.
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CHAPTER IV

RESULTS

SECTION II

A. Interaction of KIL with a cellular protein:

The differences in permissibility of infection with the mutant VV (lacking the KIL

gene) in different cell lines suggests the involvement of cellular factors. This has

been suggested in various studies but there has been no experimental evidence

indicating existence of any cellular protein interacting with the KIL protein. A

yeast-two hybrid analysis of interacting VV proteins revealed that the KIL protein

interacts with another VV early protein, CI0L. No biological significance was

however, attributed to this interaction.

I. KIL protein interacts with rabbit ACAP2 protein in RK-13 cells.

In order to identify cellular proteins that may be interacting with the KIL protein 

, a co-immunoprecipitation assay was performed. RK- 13 cells were infected

with 10 MOl ofNYCBH. The cells were labeled with eSS)-methionine long-term

(overnight before infection, for identification of cellular proteins) and short-term (2



hours post infection, for identification of viral proteins). Celllysates were then

immunoprecipitated with anti-KIL antibody and protein A agarose, as described in

Materials and Methods, and the samples were ru on 9% SDS-PAGE. We were able

to immunoprecipitate the KIL protein from infected cells in the presence of anti-

KIL antibody, but not in the presence of rabbit control seru (Fig 9A). This

antibody also co-immunoprecipitated a 90 kDa protein, representing a cellular

protein being pulled down by the anti-KIL antibody, but not in the presence of

rabbit control seru (Fig 9A) or in a mock infection (Fig 9B). Immunoprecipitated

proteins were ru on 9% SDS PAGE gel and stained with silver stain plus as

described in materials and methods (Fig. 9C).
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Anti-KIL

220

97.

FIG. 9C. Detection of rabbit ACAP2 by sil"er staining.
Celllysates were prepared from RK-13 cells infected with NYCBH and proteins

were imunoprecipitated with either anti-KIL antibody (lane 1) or control seru
(lane 2). Cells were analyzed by 9% SDS-P AGE. A 90 kDa protein was

co-immunoprecipitated only in the presence ofKIL antibody (lane 1).

The band was excised and sequenced by Mass Spec.



2. MALDI MS/PSD Mass Spectrometry sequencing of the immunoprecipitated

protein.

Mass spectrometric techniques are used for the identification of proteins in the

database (proteomic mass spectrometry). Immunoprecipitated proteins were ru on

9% SDS PAGE gel and stained with silver stain plus as described in Materials and

Methods (Fig. 9C). The pertinent band was first digested with trypsin and then mass

analyzed and identified by MALDI MS/PSD. Matrix assisted laser desorption

ionization (MALDI) is a technique where the sample is co-crystallzed with a

matrix. The matrix is capable of absorbing UV, and when irradiated in vacuum, the

peptide sample absorbs energy transferred from the matrix and produces gaseous

ions that can be mass analyzed. After mass measurements are completed, mass

analysis is done by MS/PSD. MS/PSD (Post-source-decay) analysis is based on a

single peptide and the fragments derived from it; and this data is put through the

database using search algorithm. The sample analyzed was identified as the rabbit

homologue of human ACAP2 (Fig 10). The peptide fragments generated by the

proteomics analysis and used in the blast searches are as follows:

KHSTIOQKD RMEEMRE RSLGVHFSKV RFQQDSQKF

KA VOTSIATA YR, KHLNPGLQL YRA (Table 3). The MALDI MS/PSD

analysis was done at the proteomics core facility at the UMASS Medical Center

Worcester, by Dr. John Leszyk.
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Pre s stQP on YQur browser if you wish to IIbort this MS.Fit search prematurely.

Sample 1D (comment): hglc Bullet digest
Database sean:hed: NCBInr.100602
Mo1ecular wel ht search (lQOO - IOOO() Da) ele(;b 1154666 entries.
Full pi range: 1104731 entries.
Species much ( MAMMAL) selects 211101 entrIes.
Combined lT0lecular weigh pI and species searches select 199522 entries.
MS-Fit search selects 16 cntrlc (results dlspl Yf,d for to\,2 m tcl1e$).

Considered modific ticms: I Peptide N-termlnql Gin to pyroG\ul Oxidation of M I Protein N-terminus Acetyintc:d I

Peptide
Mass

Tolcntnce

(+/.)

ISO.OOO

ppm

## 

('I,) ProteinMuses
Matched MW 

(Dt)/pl

5/10 (50'10) n143. GO HOMO SAPIENS 18320 (D26069) Star cOdon is not identified

5/10 (50'1,) 87903. 9/6.64 I;OMO SAPIENS 977656 (AJ23S24S) centaurln beta 

.. , ., """ .. ,

.." r ---.r ''', R"""",n""WRn, ...,ft",,,,, ..,........
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MS-Fit Search Results
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to Match

Peptide
MMses

!Ie
monolsotoplc

Max. #

Missed
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Cystelnes
Modified'

acrylamtde

Digest
Used

Tryp$in

, ./

Result Summary

RAnk MOWSE
SCOrt

".n r
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Peptide Peptide
N tenninus C terminu::

\tydrogen (H) Acid (0 H)

Input #
Pept.ide
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NCBlnr. 01 Protein Name -

Acc !lon 1# 

38.

32.
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Detailed Results

1. SilO matches (50%). 71243.7 Da, pI - 6.60. Ace. # 3183205. HOMO SAPIENS. (D26069) Start codon is not identified.

mlz MH+ Ddta h Peptide S(:quCQ((! 
dins.. en onssubmitted matched Pt'm (Click for 'Fragment Ions)

841.39() 841.4531 -75.0971 96 102 (KHSTIQQK(D)

841 900 841.3184 85.0890 S85 59() (R)MNEEMR(E).

874.43OQ 874.4787 -55.6642 297 304 (R)S1,VIlFSK
1027. 'UOO 1027. 4849 -71.8817 625 632 (R)FOODSOKF

(-) .

1180.7100 1180.6326 65.581 209 219 (KAVOTSIA"(AYR(E) ,
1210.7300 nlO. 97 49.8353 457 466 (K)H..NPGLQLYR(A) .

unmatch d masses: 797.3500 832.4800 948.4800 970.46001475.7600

The matched peptides cover 7'1, (49(632 M' s) of the protein.
Covcrnge Map for 'This Hlt,(MS.Dige l indc)!II): 1/6323'

%Md-01

511 0 matches (50%). 87903.9 Da. pl- 6.64. Ace. # 17977656. HOMO SAPIENS. (1\123&248) ccn\8urin bela2.



3. Cloning of Rabbit ACAP2

To confirm the presence of the rabbit homologue of human ACAP2 protein

we cloned the rabbit ACAP2 gene by RT-PCR and 5' RACE using total RNA from

unnfected RK-13 cells as template (Fig 11), as explained in materials and methods.

A Nucleotide Blast search showed 93% sequence identity between the rabbit and

human ACAP2 genes (Fig 12). A protein blast search showed 98% sequence identity

between the two proteins (Fig 13). All conserved domain searches were done using

the CDD: http://ww.ncbi.nlm.nih.gov/Strctue/cddlwrsb.cgi.

An experiment to co- immunoprecipitate KIL using anti-ACAP2 antibody

has been performed. However, the anti-ACAP2 antibody (kindly provided by Dr.

Paul Randazo , NIH) has never been tested in an immunoprecipitation reaction and

in our experiments failed to immunoprecipitate ACAP2. In order to study the

interaction between ACAP2 and KIL in vitro, we performed the following

experiment. We amplified rabbit ACAP2 and introduced a 5' T7 promoter and a

HA tag by PCR. We confirmed the constrct by direct sequencing of the PCR

product. We tried to in vitro translate the ACAP2 protein from the PCR product

(using the commercial kit: TNT T7 Quick for PCR DNA, Promega) and were

planing to perform an in vitro immunoprecipitation reaction using the 
in vitro

translated ACAP2 and in vitro translated KIL proteins. However, while we were

able to produce in vitro translated KIL protein, the ACAP2 protein was very

diffcult to translate.
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i 140254841 \ ref INM 012287. 3 \' mI' Homo sapiens centaurin beta 2 (CENTB2) I roNA
Length = 7102

Score = 3449 bits (1740) I Expect = 0.
Identities = 2193/2344 (93%)
Strand = Plus / Plus

Query: 1 ggcagga tgaaga tgacggtgga t t tcgaggagtgtctgaaggactcaccccgct tcagg 60
111111111111111\1 111\111111\1111\1\1111111\\11 11\11111111\
ggcagga tgaaga tgactgtgga t t tcgaggagtgtctgaaggactcgccccgct tcagg 230Sbjct: 171

Query: 61 gctgct t tggaagaagtagaaggaga tgtggctgaa t tggaactaaaact tga taagct t 120
111\1\111\111111\11\ 1\111111 1\1\1111\1\111\11111111\111

gcagct t tggaagaagtagaaggtga tgtggcagaa t ggaactaaaact tga taagct t 290

, '

..'G'

Sbjct: 231

Query: 121 gtgaagctctgta t tgcca tgat tga taccggaaaagcct t t tgtct tgcaaa taaacag 180
I11I1 II I' 1\111' \\111111' II 1111111111' 111\ 11111' IIIII-L 1\

gtgaaact ttgtat tgcaa tgat tga tactgg aaaagcct t t tgtgt tgcaaa taaacag 350Sbjct: 291

...

Query: 181 ttcatgaacgggatccgagacctggcccagtattctagtaatgatgctgtagttgaaaca 240
1111111' \1111 11111\1111\ \JJLLUJULUJJJ'LL1Jl.LLJL11J 111

--- ,- -, -- 

S15Ict: ' 35T--t,-tcatgaatgggat tcgigacct.ggctcagta ttctagtaa tgatgctgtcgttgagaca 410

Query: 241 agt t tgaccaagt t t tctgacagtct tcaagaaa tga taaa t t ttcacacaa tcctgt t t 300
111111. I'll HI' 11'111111111\1\\11111\1111\11111111\111111\\\
agtttgaccaagttttctgacagtcttcaagaaatgataaa t tttcacacaa tcctgttt 470Sbjct: 411

Query: 301 gaccaaactcagaga tcaa t taaggcacagc t tcagaact t tgt taaagaaga tct taga 360
I 11\111\111111111 1\ \\\11 1 I I \ I \1 \ 1111I 1 I , , 1111\\11\ , I I , I , , 1 II
gaccaaactcagaga tcaa t taaggcacagct tcagaact t tgttaaagaagatct taga 530Sbjct: 471

Query: 361 aaa t ttaaaga tgccaagaagcaa t t tgaaaaagtcagtgaagagaaagaaaacgca t tg 420
111\\ 1\\\11111\1111\1\1\1 1\111\11111\1\111 111\1\1\ 1\ 
aaa t tcaaaga tgccaagaagcaa t tcgaaaaagtcagtgaagaaaaagaaaa tgcgt ta 590Sbjct: 531

Query: 421 gcaaaaaa tgcccaagtacaaagaaacaaacagcatgaagt tgaagaagccacaaaca t t 480
1111\1111\\11111\111\11\11\11\ 1111111\111111111111 111111

gtaaaaaa tgcccaagtacaaagaaacaaacaaca tgaagt tgaagaagccaccaaca t t 650Sbjct: 591

Query: 481 t tgacagccacaagaaaa tgt tttcgaca ta tagccct tg acta tgtactccag a t taa t 540
11\1\1\ \1111111\11111 \1\1\ 1\1\1111 \1 1111\ 1\ 1111\1\\\ctgacagcaacaagaaaa tgt ttccgacaca tagccctcga t ta tgtgct tcaga t taa t 710Sbjct: 651

Fig 12. Nucleotide homology between human ACAP2 and rabbit ACAP2.



Query: 54.

Sbjct: 711

Query: 601

Sbjct: 771

Query: 661

Sbjet: 831

Query: 721

sbjet: 891

Query: 781

Sbjct: 951

gt tet teaateaaaaaggaga tetgaaa teetaaaa teaa tgtta teet t tatgta tgee 600
1111111\1111\\111111111 \11111\\11111\1\1111 

II \1111\111111gt tet teaa teaaaaaggaga teagaaa teetaaaa teaa tgttgtea t t ta tgta tgee 770

ea tt tggegttettteateaaggata tga t t ta t t tagtgaaeteggaceetaea tgaaa 6601\11\\11 111111111\\\11\1\11\1 I \11\111111\ 111111\111111\ea t t tggeet tet t teateaagga ta tga tetgt t tagtg aaet tggaeeetaea tgaag 830

ga tettggageaeagt tgga tegaetagt tgtgga tgeageaaaggagaaaagagaga tg 720
11111111 11111111111111111 111111111111111111\1111111111 III
ga tct tggtgeaeagt tgga tegaetggt tgtgg a tgeageaaaggagaaaagagaaa tg 890

gaaeaaaaaeat teeaeea tteaaeaaaagga tt teteeagtgatga t tetaagt tagaa 780II 1111\11111\\1111111111\\1\11\11\111\11\\\11\\\11\1\1\11\1

gageaaaaaea ttecace t teaaeaaaagg t t tetee tga tga t tetaagt tagaa 950

.I.

taeaaegtegatgetgeaaa tggea t tgt ta tggaaggetatetgt teaagegageeage 840I 1 I I I I 1 \1 I I I \\1 I I I I I I I I I I I I I I I I 'I I I 1 I II I II \ I I I I t I I I I I I I \ta taaegtaga tgetgeaaa tggea tagt ta tgg aa gga ta tetgt teaaaegageea e 1010

Query: 841 aatgeetteaaaaettggaaeagaegetggtttteaataeagaaeaateagetggtttae 900
1111111111111111\\1111\ 11111 11111 III ill III 1 I1I111 11111111sbj e t: , 1 0 11

~~~~

t t

=~_~~~~ ~~~

get

~~~ ~~~

c;,

~~~ ~~~

t.t.1:Ci 1070

--..---- --- - . ._.. .- - ,--

Query: 901 cagaaaaagtttaaggataateeeaetgtagtagttgaagatcteaggetatgcaetgtg 960
IIIIILII \\\111111\1111 11111 11111111111 11111111 11111 IIISbjet: 1071 eagaaaaaatttaaggataateegaetgtggtagttgaagaeeteaggctttgeaeagtg 1130

Query: 961 aaaeattgtgaagatatagaaaggegattetgetttgaggtggtetetccaaetaaaagt 1020
1\1111111111\1 11111 1 11111111111111111111111 \1111 \1111\1131 aaacattgtgaagacatagagc aegattetgetttgaggtggtctegccaaeaaaaagt 1190Sbj et:

Query:

Sbjet:

Query:

Sbjet:

QUery:

Sbjet:

1021 tgta tgctceaggeaga ttetgaaaagctacgeeaggea tgga t taaagetgtteagaee 1080
II 1\1111\111' 111111 111\1111 11111111\11111111 11111\1111111191 tgea tgeteeaggeaga t tecgaaaagetgcgeeaggea tgga t 

taaggetgtteagaee 1250

1081 agta t tgetaetget ta tagagagaagggtga tgaa teagagaagetgga taagaaa tea 1140
1\1\\1\111' 1111\1111 I \11 , 11\111 I \1 , I 1111\\1\\11 I" 111\\111 I , II1251 agta ttgetaetget ta tagagagaagggtgatgaa teagagaagctggataagaaa tea 1310

1141 teteeatecaeaggaageetagattetggaaatgagteaaaagagaaattattaaaagga 1200
11111111111\111\1\11\1111\11111111111\ 1\11\111111111 \\\11\1311 teteeateeaeaggaageetagattetggaaatgagteeaaagagaaattattgaaagga 1370



Query: 1201 gaaagtgcactgcagcgggtccagtgtgtccctgggaa tgctagctgt tgtgactgtggt 1260
111\111\ 1\ 1\11\1\11\1\1\1 111\11\ 11\\\ 11\1\1\\\1\1\1\\1

Sbj ct: 1371 gaaagtgcgct tcagcgggtccagtgta tccctggcaatgccagctgttgtgactgtggc 1430

Query: 1261 ctggcaga tccacggtgggccagca tcaacttaggca tcaccttgtgcattgagtgctct 1320
11\111\11\\1\\\1\11111\\1\11\1 1 1\111\\111111\ 1\ 1\11111\

Sbj ct: 1431 ctggcaga tccacggtgggccagca tcaacctgggca tcaccttgtgta tcgagtgctcc 1490

Query: 1321 gggattcacaggagtcttggggttcatttttcaaaagtgcgatctttaactttagacacc 1380
II 1\1\11 1111 \1111\111\1\11\111\111\ \1111111\1\1111111\11

Sbjct: 1491 ggaattcaccggagccttggggttcatttttcaaaagtacgatctttaactttagacacc 1550

Query: 1381 tgggagcctgaacttttaaagcttatgtgtgagttggggaatgatgttataaacagagtt 1440
\\, 11111 111111\11' \111\ I 11111\11\ , \1\ I 111\ I \11111111 11111

Sbjct: 1551 tgggagccagaacttttaaagcttatgtgtgagttggggaatgatgttataaatcgagtt 1610

Query: 1441 ta tgaagctaacgtggaaaaaatgggaa taaagaagccacaaccaggacaaagacaggag 1500
11\ I 1111 'II 111'111\1\1" 111111\111 1\ '11111111111111 LI-IIII

Sbj ct: 1611 ta tgaagctaatgtggaaaaaatgggaa taaagaaaccccaaccaggacaaagacaggag 1670

Query: 1501 aaagaggcatatatcaaagcaaaatatgtggaaaggaaatttgtggataaatattctgta 1560
-- u

_-' --, '__

on_u --t-l-

---

I-- I-4-H+++-I-.+tI-Htltittt1- nll TfTll TTll rrr lr ITl rf Y' fr .
Sbjct: 1671 aaggaggcatatatcagagcaaaatatgtggagaggaaatttgtggataaatattctata 1730

Query: 1561 tca tca tca ctcctgagcaggaaaaaaaggt tgtctccaaaga tagcgaagaaaagagg 1620
1111 11111\111\11\11\ 1\111\11 1111111 111 11\111111111

Sbjct: 1731 tcattatcacctcctgagcagcaaaaaaagtttgtctctaaaagttctgaagaaaagagg 1790

Query: 1621 ctgagcattcctaaacttgggccaggcgaccaagtcagaacatccatccagagttcagtt 1680
1111\1\11 11111 1\11111\11 1\1\111\1111 111\ 1\1 1\1\11\1

Sbjct: 1791 ctgagcatttctaaatttgggccaggggaccaagtcagagcatctgcccaaagttcagtc 1850

Query: 1681 aaaagtaatgacagtggaa tccagcagagttctga tgatggaagagaa tctt taccctcc 1740
11\\1\111\\11\ 1\1 1\1\1\1\ 1\11\\11111\11\111\1\11111\11\

Sbj ct: 1851 agaagtaatgacagtgaaattcagcagagctctgatgatggaagagaatctttaccctcc 1910

Query: 1741 acagtgtcagccaatagtttatatgagcctgaaggagaaaggcaagattcttctgtgttt 1800
1\ 111111111111111\1\1\1\11\11\111\11\1\1\1\1\11\1\11\ 1\11\

Sbjct: 1911 acggtgtcagccaatagtttatatgagcctgaaggagaaaggcaagattcttctatgttt 1970

Query: 1801 ctcgattctaaacatcttaatccaggacttcagctctacagggcttcatatgaaaaaaat 1860

II II II 11111111111111111111111\11 1\ 11111 11111\11\1\111
Sbjct: 1971 cttgactcgaaacatcttaatccaggacttcagctttatagggcgtcatatgaaaaaaac 2030



Query: 1861 cttccaaaaatggctgaggct t tggctcatggtgcagatgtgaactgggctaat tcagag 1920
\\111 1111111\11111111\11\1111\111\1\\ \1111111111 1111\1111

Sbjct: 2031 cttcctaaaatggctgaggctttggctcatggtgcagacgtgaactgggccaattcagag 2090

Query: 1921 gaaaacaaagcaacaccacttattcaggctgtattagggggctctttggtgacatgcgag 1980
11111111111 II 11111111111111\111111111\1111111111111 II 11\

Sbj ct: 2091 gaaaacaaagcgacgccact ta t tcaggctgta t tagggggctct t tggtgacgtgtgag 2150

Query: 1981 ttcct tctacagaa tggtgctaa tgtgaaccaaagaga tgt tcaagggcggggaccactg 2040
11111 11111111111111111111 1111\1111\1111 11111\1\111111\ II

Sbj ct: 2151 ttcctcetacagaatggtgctaa tgtcaaccaaagagatgtccaagggcggggaecattg 2210

Query: 2041 caeca tgccaccgtet tagggca tacagggeaggtgtgt t ta t t tctaaaacgaggtgce 2100
11111111111111111111111 \1111111111 11111111 1111111\1111111

Sbj ct: 2211 caeca tgccaccgtcttagggcacacagggeaggta tgt t ta t tectaaaacgaggtgcc 2270

(."

Query: 2101 aa teaaca tgccactga tgaagaagggaaagacect t tgagca tagetgtagaagcagcc 2160
\ III \ \1 \ 1\\1\1\\ \ 11\11 I 1\1 \ \ \ \ I \ 11\ \ \ I1111 \ I I 1111\ n I \-1 \1 \ \

2271 aa tcaaca tgccactga tgaagaagggaaagaccct t tgagca tagctgtggaagcagcc 2330Sbj ct :

Query: 2161 aa tgctga ta tagtaacct tgt tacgct tagcaagaa tgaa tgaagaga tgcgggaa tcc 2220
\111111111\111 11111111111 1111111111\\11111\11111111111111' 

!?Jc: ~t-- CIt;_a.ta-g.t_~aecttg-ttacgt-t-t-a-g aagaatgaatga-galTat-qc9ggaa tca ' 2390'

Query: 2221 gaaggactttatggacagccaggtgatgaaacgtaeeaggatatttttegtgatttttcc 2280

I I \1 \ I I \\ 1 1 I I I I I 1 I II I \ 1 I I I \ \ I I I I 

,\ 

1 I I I \ 1 I '1\ \ , \ , I I I III , I
Sbjct: 2391 gaaggactttatggacagceaggtgatgaaacttatcaggacatatttcgtgatttttcc 2450

Query: 2281 eaaatggcatccaataatccagagaaattaaatcgtttecagcaggactcacagaaattc 2340
1\1111\11\1111\11\111111111 111111111\111111 11 1111\11111\1

Sbjct: 2451 caaatggcatccaataateeagagaaactaaatcgtttccagcaagattcacagaaattc 2510

Query: 2341 tgaa 2344
1\11

Sbjct: 2511 tgaa 2514



qi\39932727\sPIQ15057ICEB2 HUM
Centaurin beta 2 (Cnt-b2)Length = 778

Score = 1523 bits (3943) I Expect = 0.
Identities = 763/778 (98%), Positives = 770/778 (98%)

Query: 1

Sbjct: 1

MKVDFEECLKDS PRFRAEEVEGDVAELELKLDKLVKLCIAMIDTGKAFCLAKQFM 60
MKVDFEECLKDS PRFRAEEVEGDVAELELKLDKLVKLCIAMIDTGKAFC+ANKQFM
MKVDFEECLKDSPRFRALEEVEGDVAELELKLDKLVKLCIAMIDTGKAFCVANKQFM 60

Query: 61

Sbjct: 61

NGIRDLAQYSSNDAVVETSLTKFSDSLQEMINFHTILFDQTQRSIKAQLQNFVDLRKF 120
NG IRDLAQYSSNDAVVET S LTKFSDSLQEMINFHT I LFDQTQRS IKAQLQNFVKEDLRKFNGIRDLAQYSSNDAVVETSLTKFSDSLQEMINFHTILFDQTQRSlKAQLQNFVKEDLRKF 120

Query: 121 KDAKKQFEKVSEEKENALAQVQRNKQHEVEEATNILTATRKCFRHIALDYVLQINVL 
180KDAKQFEKVSEEKENAL KNAQVQRNKQHEVEEATNILTATRKCFRHIALDYVLQINVL

Sbj ct: 121 KDAKKQFEKVSEEKENALVKNAQVQRNKQHEVEEATNILTATRKCFRHIALDYVLQINVL 180

Query:

Sbjct:

181 QSKRRSEILKSMLSFMAHLAFFHQGYDLFSELGPYMKDLGAQLDRtVVAAKREMEQ 240
QSKRRSEILKSMLSFMAHLAFFHQGYDL SELGPYMKLGAQLDRLVVDAAKREMEQ181 QSKRRSEILKSMLSFMAHLAFHQGYDLFSELGPYMLGAQLDRLVVAAKREMEQ 240

Query: 2 41 KHSTIQQKDFSSDDSKLEYNVDAAGIVMGYLFKRANAFKTRWFS
QNNQLVYQK 300KHSTIQQKDFSSDDSKLEYNVAAGIVMGYLFKRNAFKTWRWFSIQNNQ

VYQKSbj ct : 241 KHSTIQQKDFS SDDSKLEYNVAAGIVM GYLFKRNAFKTRRW!S IQNNQLVYQK 300

Query: 301 KFKDNPTVDLRLCTVKHCEDIERRFCFEVVSPTKSCMLQADSEKLRQAWIKAVQTSI 360

- ---- '-

-KFK9N-P'IVVVE-DL--L--TVKHCED-rERRFCFEVVSPTKSCMAIJSEK
RQA.WIK1WQT51 -",Sbj ct: 301 KFKDNPTVEDLRLCTVKCEDIERRFCFEVVS 

PTKSCMLQADSEKLRQAWIKAVQTSI 360

Query: 361 ATAYREKGDESEKLDKKSSPSTGSLDSGNESKEKLLKGESALQRVQCVPGNASCCDCGLA 420
ATAYREKGDESEKLDKKSSPSTGSLDSGNESKEKLLKGESALQRVQC+PGNASCCDCGLA

Sbjct: 361 ATAYREKGDESEKLDKKSSPSTGSLDSGNESKEKLLKGESALQRVQCIPGNASCCDCGLA 420

Query: 421 DPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLCELGNDVINRVYE 480
DPRWAsINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYE

Sbjct: 421 DPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYE 480

Query: 481 ANEKMGIKKPQPGQRQEKEAYIKAYVERKFVDKYSVSSSPPEQEKKVSKDSEEKRLS 540
ANEKMGIKKPQPGQRQEKEAYI +AKYVERKFVKYS+S 

S PPEQ+KK VSK SEEKRLSSbj ct: 481 ANEKMGIKKPQPGQRQEKEAYIRAYVERKFVDKYSISLSPPEQQKKFVSKSSEEKRLS 
540--

Query: 541 UKLGPGDQVRTSIQSSVKSNDSGIQQSSDDGRESLPSTVSANSLYEPEGERQDSSVFLD 600
I K GPGDQVR S QSSV+SNDSGIQQSSDDGRESLPSTVSANSLYEPEGERQDSS+FLD

Sbj ct: 541 ISKFGPGDQVRAAQSSVRSNDSGIQQSSDDGRESLPSTVSANSLYEPEGERQDSSMFLD 600

Query: 601 SKHLNPGLQLYRAYEKNLPKMALGADVNANSEENKATPLIQAVLGGSLVTCEFL 660
SKH NPGLQLYRAYEKNLPKMALGADVNANSEENKATPLIQAVLGGSLVTCE FL

Sbjct: 601 SKHLNPGLQLYRAYEKNLPKMALGADVNANSEENKATPLIQAVLGGSLVTCEFL 660

Query: 661 LQNGANQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLS 
IAVEAAA 720LQNGANQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLS 
IAVEAAASbj ct: 661 LQNGANQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLS 
IAVEAAA 720

Query: 721 DIVTLLRLAEEMRESEGL YGQPGDETYQDI FRDFSQMASNNPEKLNRFQQDSQKF 778
DIVTLLRLAEEMRESEGLYGQPGDETYQDIFRDFSQMANNPEKLNRFQQDSQKF

Sbj ct : 721 DIVTLLRLAEEMRESEGL YGQPGDETYQDI FRDFSQMASNNPEKLNRFQQDSQKF 778

Fig 13. Amino acid sequence homology between human ACAP2 and rabbit ACAP2



4. KIL protein interacts with ACAP2 differently in RK-I3 and CV-I cells.

We were able to co-immunoprecipitate (using anti-KIL antibody) a 90 kDa band

from NYCBH-infected CV- l cells, which could be detected only after a longer

exposure (Fig 14). Although it is diffcult to measure a quantitative difference in

cells from different species using immunopreCipitation, we detected less ACAP2 in

CV- l cells (permissive) (Fig 14) than in RK- 13 cells (non-permissive) (Fig 9A). We

tried to detect the constitutive expression of the ACAP2 protein in RK-13 cells as

compared to that in CV- l cells. However, western blot analysis using anti-ACAP2

antibody did not yield conclusive results because the antibody produced multiple

bands at the expected size , which is 90 kDa.
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CHAPTER V

RESULTS

SECTION III

A. Functional significance of the KIL-ACAP2 interaction

1. Study of the formation of "iral factory

As mentioned above, cells infected with the mutant VV lacking the KIL gene

product have a defect in early protein production along with shutdown of DNA

replication and intermediate and late gene expression. Since we have been able to

show that the KIL protein interacts with rabbit ACAP2, which is involved in

membrane transportation, one of the questions we asked was whether the defect in

DNA synthesis and intermediate and late gene expression was a result of defects in

formation of the viral factory, which is the site of viral DNA synthesis.

RK-13 cells grown on cover-slips in 6-well plates were infected with MOl of 5 of

the NYCBH, vAbT33KILwt or vAbT33 viruses. After an incubation of3 hours at

, cells were fixed in 4% paraformaldehyde, washed, and then stained with

Hoechst's stain that enables the visualization of DNA , both host and viral, using

fluorescent microscopy. We were able to detect viral factories which appeared as

blue bodies in the cytoplasm, distinct from the nucleus, in cells infected with



NYCBH (Fig 15A) and vAbT33 (Fig 15B).These bodies were, however, absent in

uninfected cells (Fig 15C). The presence of these bodies in cells infected with the

mutant virus vAbT33 suggested that the host-range phenotype of defective DNA

replication and intermediate and late gene expression is not due to the inabilty of

the virus to form the viral factories.
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2. Study of the effect of silencing ACAP2 expression in RK-13 cells:

The identification ofthe rabbit ACAP2 as a protein interacting with KIL is very

interesting. Whether this protein is directly involved in the host range fuction

mediated by the KIL protein was the next question to ask. The simplest way to

explore the role of ACAP2 in the KIL mediated host-range fuction is to silence the

expression of the ACAP2 protein in the non-permissive cell line and study the effect

on viral growth. We decided to accomplish this by using the siRNA technology.

siRNA (104 Ilg) specifically targeting rabbit 
ACAP2 was transfected into RK-

cells as described in Materials and Methods. As a control, a non-silencing control

siRNA (IAllg) was also transfected into the RK- 13 cells. The commercially

available non-silencing control does not have sequence homology to any

mamalian sequences. The transfection efficiency ofRK- 13 using conventional

lipofectamine reagents has not been very good. So , the transfection effciency was

first determined using an electroporation technque as described in materials and

methods. At the end of the specific time points, GFP expression was analyzed by

F ACS. F ACS analysis showed that the transfection efficiency using the

electroporation method was at least 60 % at 24 hours post- transfection (Fig 16). So

RK- 13 cells were transfected with lAllg of siRNA specific to rabbit ACAP2 and

104 Ilg of the non- silencing control siRNA uSIng the amaxa electroporation

technology. The cells were incubated for 24 hours and then infected with MOl of

0.1 of the vAbT33 (KIL-) strain ofVV. This experiment was done in duplicate. In



the first set of experiments, total RNA was extracted from the RK- 13 cells, post-

transcription and post-infection. After cDNA synthesis, rabbit ACAP2 and rabbit fJ-

actin messages were amplified using real time PCR (Tables 4 and 5 and Fig 17).

The transcript levels of rabbit ACAP2 were normalized against rabbitfJ-actin

transcript levels. The normalized values were plotted in a graph (Fig 17). There was

about a 90% reduction in ACAP2 message in cells treated with the specific siRNA

as compared to cells treated with control. In the second set of experiments cells

were harested and the virus titrated in permissive CV- l cells. No viral growth was

observed in cells treated with specific siRNA and cells treated with non-specific

control siRNA. One limitation ofthese experiments , however, is the inability to

measure the extent of infection in the transfected cells.
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Fig. I6 Transfection effciency in RK-I3 cells using amaxa nucleofection.
RK-13 cells were transfected with pMa-GFP plasmid construct. 24 hours post
transfection, GFP expression was monitored by F ACS analysis.
At leas 60% cells were transfected (Fig. 16 A) as compared to the negative control (Fig,
16B).
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CHAPTER VI

DISCUSSION

CONCLUSIONS OF DISSERTATION

The objective of this study was to understand the role ofKIL protein ofVV in

mediating the host restriction in the RK- 13 cell line. As mentioned previously,

earlier studies with this protein have shown that it is involved in the maintenance of

viral protein synthesis. The reason for the abrupt shutdown of protein synthesis in

the absence ofKIL in RK-13 cells is not known. The cessation of cellular protein

synthesis in the event of a viral infection has been well studied.

It has been reported that cellular mRAs are transported on microtubules, which

during viral infection are replaced by viral mRA, thus bringing about a gradual

cessation of cellular protein synthesis. However the shutdown of both cellular and

viral protein synthesis, in the absence ofKIL protein, suggests that this protein is in

some way involved in the translation pathway. The absence of common fuctional

domains in this protein has made its study very difficult. The only domains that this

protein has are anyrn repeats. We were able to show that the most conserved



anrin repeat is important not only for the viral growth in RK- 13 cells, but also for

the maintenance of viral protein synthesis. The importce of the anyrin repeat

may explain the complementation ofKIL fuction by the CP77 protein, which also

has anyrin repeats. CP77 has two much conserved anyrin repeats. The loss of

fuction due to secondar effect on protein structure may be possible because the

mutated KIL lost one a-helix. Crystal strctual studies would be needed to

determine the details of a secondar effect on the structue of the KIL protein. The

definition of the mechanism by which the anyrin repeat ofKIL is involved in this

host-range restriction and shut down of all protein synthesis is an importt question

that needs to be answered. The mutation in the anyrn repeat, however, did not

seem to make a difference in the localization of this protein, since both the wild type

and mutated protein localized all over the cytoplasm.

The fact that growth ofVV lacking the KIL gene product is restricted in

some cell lines (rabbit kidney, human) and not in others (african green monkey,

BHK, CEF) brings up the question of the differences between the two groups.

Whether or not any cellular proteins are involved in the host range restriction of

, mediated by the KIL protein, is a pertinent question. It has been suggested in

earlier studies ofthe KIL protein, that cellular effectors or regulators may be

involved. This prompted us to ask the question of whether the KIL protein mediates

its host-range fuction via a cellular protein. In this study, we have been able to

preliminarily identify a cellular protein being co-immunoprecipitated with the KIL



protein in cells infected with VV. This protein was identified as ACAP2 (GTPase-

activating) protein and belongs to the ACAP family of proteins.

The identification of ACAP2 as the protein interacting with KIL, prompted

us to focus on this family of proteins as well as their regulators , which are discussed

in depth below. ACAP2 belongs to a GTPase-activating family, and there is

evidence in the literatue about many anti-viral GTPases. Hence, we also focused on

these familes as described below.

A. The ACAP protein family.

The ACAP family of proteins comprises GTPase-activating proteins, and is known

to regulate, specifically, the Arf family of GTP-binding proteins. The ACAP2

family consists of 4 family members; ACAPl , ACAP2, PAP, and ASAP 1. The

family members are characterized by the presence of a GAP-activating domain, and

sequences comprising PH, coiled coil, and anyrin repeat domains (Fig 18) (Jackson

et aI. , 2000). These proteins occur in multicellular organsms including C. elegans,

Drosophila, Arabidopsis. No orthologs were found in Saccharomyces. Earlier

studies have shown that the proteins are highly conserved among mamals. This is

reflected in our study, where we have shown that rabbit ACAP2 is 98% identical to

human ACAP2. The crystal structue of one member of the ACAP family shows

thaUhe anyrin repeat physically associates with the GAP domain intra-
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molecularly, but whether this association is involved in mediating the GAP activity

is not yet known (Mandiyan et aI. , 1999).
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Fig 18.

Schematic of ASAP/ ACAP family members.
ArGAP: ArfGAP domain.
ANK: Anyr Repeat.
PH: Pleckstr homology domain.
The "X Box" refers to the PI-PLC X-box. "Pro" refers to a proline-rich domain
with SH3-binding sites. "E/DLPPKP" is a domain of
tandem repeats of ths consensus sequence.

(Jackson et al. , 2000)
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B. The Function of ACAP2

As mentioned earlier, the ACAP family of proteins have GTPase-activating (GAP

activity) fuctions mediated by the GAP domain and have been shown to be

regulators ofthe Ar family members (Donaldson and Jackson, 2000). The GAP

proteins are stimulated by phospholipase D (PLD), phosphatidylinositol 3 , 4, 5-

triphosphate (PIP3) and PIP2 and phosphatidic acid (PA). These stimuli activate the

GAPs to bring about GTP-binding and hydrolysis of its substrates (Randazo et aI.

2000). ACAP2 has been shown to act more specifically on Arf 6 than Ar 1. ACAP2

has been shown to be present in the cytoplasm and on tubular portions of the Ar 6

endosomal comparment (Jackson et aI. , 2000). As suggested in earlier reports

ACAP2 can be recruited to the membrane by activated Arf6. It has also been

suggested that because of the presence of multiple domains, the ACAP family of

proteins can have more than one role, and they could be acting as mediators

between proteins that are involved in cytoskeletal reorganizations. In order to better

understand the regulatory fuction of ACAP2 , it is important to understand the Arf

family of proteins.

C. The ARF family

The ADP-ribosylation factors (Arfs) are 20 kDa GTP-binding proteins belonging to

the Ras GTPase superfamily (Donaldson and Jackson, 2000). These proteins were

first identified as stimulators of the ADP-ribosyltransferase activity of the cholera
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toxin (CTA) (Moss and Vaughan, 1995). The Arfproteins can be fuher divided

into three classes: Class I (Arf 1 2 and 3), Class II (Arf 4 and 5), and Class III (Arf

6) (Moss and Vaughan, 1998) (Moss and Vaughan, 1995). Arf 1 , and 6 are the

most well studied of the Arfproteins. The Arfproteins are active in their GTP

bound form and inactive in their GDP bound form. Both, the release of GDP and the

hydrolysis of GTP bound to the Arf protein, are either very slow or undetectable

under physiological conditions, respectively. The guanne nucleotide exchange

protein (GEP) activates the Arfprotein by converting it into its GTP bound form.

Arf does not have GTPase activity and the conversion of Arf-GTP to Arf-GDP is

facilitated by the GTPase activating proteins (GAPs), Thus the GEP and GAP

proteins together help maintain both the GTP and GDP bound forms of Arf (Nie et

aI. , 2003) in the cell (FigI9). In cells, the fuction of Arfhas been related to

vesicular transport in the Golgi, endosome fusion, formation of clathrin-coated

vesicles, assembly of nuclear membrane, and intravesicular acidification. They have

also been shown to be involved in regulating membrane traffic, affecting membrane

ruffing, filopodia, and actin rich protrusions (Donaldson and Jackson, 2000)

(Donaldson and Jackson, 2000).
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binding and GAPs that acti"ate GTP hydrolysis by AR.
(Moss and Vaughan, 1998)
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D. ACAP2 may regulate other anti"iral GTPases.

The involvement ofGTPases in anti-viral activities is known (Taylor et aI. , 2004).

As described before, GTPases are GTP binding proteins that can hydrolyze GTP.

The GTPases have a variety of fuctions, and their role in anti-viral responses

durng an infection is stil being investigated. Three familes of GTPases have been

shown to be induced by interferons, namely, the Mx, GBP and p47 familes (Taylor

et aI. , 2004). Being a GTPase-activating protein, the possibilty of ACAP2

regulating the antiviral GTPases described below canot be ruled out. A brief

description of these GTPases and their roles in antiviral responses are as follows:

I) Mx family

The Mx proteins are interferon-induced GTPases and are members of the dynamin

superfamily of large GTPases. In humans, there are two Mx proteins , MxA and

MxB , encoded on chromosome 21. The MxA has been shown to have anti-viral

activity against many RNA viruses, including bunyaviruses, orthomyxoviruses, and

some DNA viruses like hepatitis B virus (Haller and Kochs, 2002) (Taylor et aI.

2004). In infections with bunyaviruses, MxA inhbits viral assembly by interfering

with transport of the viral nucleocapsid protein to the Golgi comparment (where

viral assembly takes place). In the case of infection with Thogoto virus, an

orthomyxovirus, MxA inhbits viral transcription and replication by interfering with

the transport of incoming nucleocapsids into the nucleus. In rodents, there are two
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Mx proteins, Mxl (predominantly nuclear) and Mx2 (predominantly cytoplasmic).

Most other vertebrates express only the cytoplasmic form ofthe protein. The

subcellular localization of the rodent Mx proteins determines their anti-viral

specificities, for ego , the nuclear Mx 1 protein responds against the

orthomyxoviruses which replicate in the nucleus, while the cytoplasmic Mx2

protein acts against the bunyaviruses, which replicate in the cytoplasm.

2) GBP Family (guanylate-binding proteins)

The human proteins GBPI and GBP2 and the mouse proteins Gbpl , Gbp2, Gbp3

Gbp4/Mag2 and Gbp5 are the proteins that are present most abundantly in response

to IFN-y stimulation. Apar from IFN-y, the GBPs can be upregulated by stimulation

with LPS , IL- l~ and TNF. The GBPs have high GTPase activity. The mouse Gbp2

allows targeting to intracellular vesicle like structures. HeLa cells become resistant

to vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMCV) after

over expression ofGBPI (Anderson et aI. , 1999).

3) p47 GTPase family

This group of 47-48 kDa proteins is produced in response to IFNs (Taylor et aI.

2004). Present knowledge about this family shows the existence of six members in

the mouse, namely, Igtp, Lrg47, Irg47 , Tgtp/Mg21 , Iigp and Gtpi. Homologues of

these proteins exist in the humans, but have not been cloned yet. The role of these
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proteins in resistance to protozoan and bacterial infections is very well studied.

Their role in viral infections is not entirely understood. However, some studies have

shown them to have antiviral activity in vitro. Overexpression ofthe Tgtp protein in

fibroblasts decreased their susceptibility to lysis by VSV. In another study,

overexpression of Igtp in HeLa cells inhibited coxsackievirus replication and

apoptosis of the infected cells. The curent models propose the following

mechansms of action for the p47 GTPases. P47 GTPases help in cell surival after

viral infection through activation of the phosphatidylinositol- kinase (PI3K)

surival pathway. They have also been shown to inhbit translation of viral

messenger RNA.

4) Arf GTPase family

The Arf family members have been discussed above. Recent studies have shown

that the HIV- l protein Nefinduces internalization of the MHC class-I molecule

from the surface of the infected cell. In order to accomplish this, it activates PI3K

which results in the formation of PIP3 at the cell membrane. This in tu recruits

Arf6 GEF to the PIP3 containing membrane and results in the activation of Arf6.

Activated Arf6 promotes internalization of the MHC molecule from the surface. The

Nefprotein also blocks the recycling of the MHC molecules from the Arf6

comparment to the cell surface. The activation of Arf6, for the internalization of
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MHC molecule, is an example of viruses hijacking cellular GTPases for immune

evasion (Blagoveshchenskaya et aI. , 2002).

E. Early e"ents in"ol"ing cellular membrane participation

As mentioned in the introduction, the VV life cycle is completed in its entirety in

the cytoplasm ofthe cell. This is unique among all DNA viruses, which replicate in

the nucleus of the cell. Recent work elucidating early events occurng in the cells

post-infection have shed light on several complicated yet interesting phenomena.

Infection of cells by VV is followed by the association of intracellular viral cores

with microtubules and the ER (Mallardo et aI. , 2002). Within minutes of the entry of

the viral core containing the DNA genome into the cell about halfthe genome is

transcribed and extruded out of the core in an ATP dependent maner. The

transcripts have been shown to accumulate in regions in the cytoplasm in granular

structues distinct from the cores and have been shown to be surounded by

polyribosomes (Mallardo et aI. , 2001). Polyribosomes are recruited to these sites

along with other host cell translational machinery, and early mRNAs are translated

to early proteins (Mallardo et aI. , 2002). The amorphous structue containing the

transcripts appeared to grow in size with infection. Both the cores and the mRNA

containing structue have been shown to be associated with microtubules (Mallardo

et aI. , 2001). It has been suggested that efficient VV early protein synthesis can be

hampered if the organization of the granular site fails. It has been suggested that the
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organization of these microtubules into the granular mRA accumulation site is

mediated predominantly by cellular proteins (Mallardo et aI. , 2002) (Mallardo et aI.

2001). No cellular protein has so far been identified as mediating the formation of

the mRA accumulation site in VV -infected cells. The possibilty of ACAP2 being

involved in these early events is very likely. The host range restriction by KIL in

non-permissive cells is associated with impairment of translation of viral proteins.

An anti-viral role of ACAP2 alone or in conjunction with other proteins, in

disrupting the formation of the granular strctues explained above could very well

account for the lack of viral protein synthesis.

F. Potential role of ACAP2 in host range function.

The difference in host-range restriction in cells of differing permissibility strongly

suggests the role of a cellular protein. We were able to immunoprecipitate from

infected RK- 13 cells the cellular GTPase- activating protein, ACAP2. Keeping in

mind the complexities of the life cycle of VV, it is possible to envision many

possible ways that the ACAP2 protein may be involved in the pathway regulated by

KIL.

1) An anti-viral role of ACAP2 would explain the difference in the host-range

restriction phenotype observed in different cells (fig.20). The obvious question is

why the host-range phenotype manfests itself differently in cells of different

permissibility (CV -1 and RK - 13 cells). This can be explained by a difference, either



110

in the expression levels or the ACAP2 protein, between the rabbit and African green

monkey (Fig. 20). The simplest model would be that in non-permissive cells

infected with the wild type VV, the fuctional K 1 L is capable of suppressing the

anti-viral effects of ACAP2, while in those infected with the mutat (KIL-), the

infection becomes non-productive (Fig 20).

2) A second possibility exists that the ACAP2 protein is recruited by the KIL

protein and is essential for the growth of the virus. The question then arises as to

why the host-range phenotype manfests itself differently in cells of different

permissibility (CV- l and RK-13 cells). This could be explained if there is a

compensatory cellular protein, apar from ACAP2 that rescues the growth of the

virus in the permissive cells and is either expressed in lower amounts or is very

different in non-permissive cells.

In order to investigate whether the expression levels of the ACAP2 protein is

different in the two cell lines, we performed an immunoprecipitation assay, trying to

co-immunoprecipitate ACAP2 protein from infected CV- l cells, using anti-KIL

antibody. Results showed that there was less ACAP2 being pulled down in CV-

cells as compared to that in RK- 13 cells. The expected band was only detectable in

lysates from CV - 1 cells afer longer exposure. However, it is very difficult to

quantify proteins from two different species. An effort to quantify endogenous

AcAp2 protein levels in the two cell lines by western blot analysis using an anti-

ACAP2 antibody failed to give any conclusive results, as there were multiple bands
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observed at the expected size. The role of ACAP2 in mediating host range fuction

ofKIL needs fuher study. The similarity between the ACAP2 sequences of human

and rabbit at both the nucleotide and amino acid levels correlate with the similarity

of host range restriction exhbited by the KIL (- ) virus in both rabbit kidney cell

lines and many human cell lines.

In order to fuher study ACAP2 , we knocked down ACAP2 in RK-13 cells

using siRNA technology. Although we were able to knock down rabbit 
ACAP2

expression by about 90 %, we did not detect a significant increase in viral titres

suggesting that the ACAP2 protein is not the only factor (there may be other

compensatory mechanisms) or may not be a direct player in regulating the host-

range fuction of the KIL protein. However, in our siRNA studies, we were not

able to determine the decrease in the ACAP2 protein levels, due to the unavailability

of a good anti-ACAP2 antibody. The lack of evidence showing absence of ACAP2

protein, in RK - 13 cells treated with the siRNA specific to A CAP , makes it difficult

to conclude that ACAP2 protein is not in any way involved in the host-range

fuction mediated by KIL protein. Some of the possible roles that ACAP2 might

have are outlined in Fig.21.

It is possible that the ACAP2 protein, is not directly anti-viral, but regulates

an anti-viral target. So far, the Arf- l and Arf-6 proteins are the known targets being

regulated by ACAP2. Both Ar-l and Arf-6 have a role in modifying the

cytoskeletal elements in the cytoplasm and also have a role in the regulation of
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membrane transfer and comparmentalization within the cytoplasm as well. The

complexities involved in the cytoskeletal and membrane structures early in VV

infection are stil being resolved and more detailed studies will be necessar to

answer these questions.

As has been mentioned before, the anti-viral roles ofGTPases are coming to

light. As a GTPase-activating protein, ACAP2 could be regulating fuctions of

other anti-viral GTPases as well , e.g. the Mx protein family members , the GBP

protein family members, and the p47 protein family members.

KIL has been shown to inhbit NFKB activation by interferig with the

degradation ofIKB (Shisler and Jin, 2004). However, it has not been shown to be

responsible for the host range fuction.
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Significance of study

The study of the host-range fuction ofKIL over the years has shown that this

protein is involved in maintaining viral protein synthesis. In the absence of this

protein, there is an abrupt shutdown of viral protein translation. In these studies, it

has also been suggested that the involvement of a cellular protein/proteins in

mediating host range fuction along with the KIL protein is a distinct possibility.

Interpretation of observations over the years has been difficult because of the

complexity ofthe VV life cycle (involving over 200 viral proteins), which until very

recently had not been fully realized and is stil being investigated with new facts

coming to light. The study of a host-range protein is significant because host

restriction is also an indication of the anti-viral state ofa cell and a successful

infection depends on the ability of the virus to disable the host response to infection.

As explained before, one very well characterized host-range gene product ofVV

the E3L protein, mediates its host range fuction by disabling the PKR mediated

antiviral mechansm. The possibility of the involvement of a similar or a novel

antiviral pathway being disabled by the KIL gene product is very plausible. The

preliminary identification of ACAP2 -KIL protein interaction is the first report of a

cellular protein being implicated in the host range fuction ofKIL. The mechansm

by which this interaction contrbutes to host range fuction needs fuher studies.
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Future Directions

a) Analysis of the crystal structure of both VV KIL and rabbit ACAP2

proteins.

The crystal structure resolution of the two proteins and their interacting surfaces

will allow an understading of the domains of both proteins involved in this

interaction. As has been mentioned before, the crystal strctue of a member of the

ACAP2 family (PAP) shows an intramolecular interaction between the anrin

repeats and the GAP domain. It will be importt to analyze whether the physical

interaction between the KIL protein and the rabbit ACAP2 is an anyrin-ankyrin or

an anyrin-GAP domain (anyrin repeat ofKIL and the GAP domain of ACAP2)

interaction. Once the domains of interaction are identified, mutational analysis can

be used to narow down the interface to the few critical amino acids that are vital for

this interaction. Since the KIL protein has been shown to lose its fuction by amino

acid substitution at the most conserved anyrin repeat, analysis of whether this

mutated KIL can interact with the ACAP2 protein will be an important study. An

attempt by us to answer this question was unsuccessful, as the available anti-KIL

antibody failed to immunoprecipitate the mutated KIL proteins from the RK-

cells infected with recombinant virus, vAbT33KILmutan.
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b) Identification of other players, cellular or "iral.

The possibilty that the ACAP2 protein is not the only one interacting with KIL stil

exists. It is possible that our immunoprecipitation experiment failed to detect

unstable proteins, either cellular or viral. Proteomic studies may be used to detect

more proteins.

c) Analysis of the cytoplasmic amorphous site for the accumulation of the 

early mRNA.

The life cycle of VV is very complex, with new information coming to light. The

existence of a specific region within the cytoplasm where the early viral transcripts

accumulate and are translated is a very interesting phenomenon that has been

described recently and is stil being studied. It is conceivable that cellular regulators

of cytoskeletal elements and membrane components are involved in the formation

of these structures, and fuer studies using the VV recombinants we have made

may be useful to elucidate whether the KIL protein is involved in this process.
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d) Study differences in Arf expression in permissi"e and non-permissi"e cells.

Using western blot analysis, the constitutive levels of Arf6, the target of ACAP2

can be studied in the permissive and non-permissive cells. Arf6 has already been

shown to be involved in the anti-viral pathway in HIV- l infection, where the viral

protein Nef, mediates the down regulation ofMHC class I expression on the cell

surface.

e) Analysis of the interaction of mutated KIL with ACAP2 protein, using

Bacterial two-hybrid system.

One limitation to the study of the interaction between the mutated KIL protein and

the rabbit ACAP2 protein is that in RK-13 cells infected with the mutant virus, there

is no KIL protein detectable by immunoprecipitation because of the abortive

infection. Hence, an in vitro method needs to be devised, and may be achieved by

using either a yeast two-hybrid, or a bacterial two-hybrid system.
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