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Abstract 
Switches play an important regulatory role at all levels of biology, from molecular 

switches triggering signaling cascades to cellular switches regulating cell maturation and 

apoptosis.  Medical therapies are often designed to toggle a system from one state to 

another, achieving a specified health outcome.  For instance, small doses of 

subpathologic viruses activate the immune system’s production of antibodies.  Electrical 

stimulation revert cardiac arrhythmias back to normal sinus rhythm.  In all of these 

examples, a major challenge is finding the optimal stimulus waveform necessary to cause 

the switch to flip.  This thesis develops, validates, and applies a novel model-independent 

stochastic algorithm, the Extrema Distortion Algorithm (EDA), towards finding the 

optimal stimulus.  We validate the EDA’s performance for the Hodgkin-Huxley model 

(an empirically validated ionic model of neuronal excitability), the FitzHugh-Nagumo 

model (an abstract model applied to a wide range of biological systems that that exhibit 

an oscillatory state and a quiescent state), and the genetic toggle switch (a model of 

bistable gene expression).  We show that the EDA is able to not only find the optimal 

solution, but also in some cases excel beyond the traditional analytic approaches.  Finally, 

we have computed novel optimal stimulus waveforms for aborting epileptic seizures 

using the EDA in cellular and network models of epilepsy. This work represents a first 

step in developing a new class of adaptive algorithms and devices that flip biological 

switches, revealing basic mechanistic insights and therapeutic applications for a broad 

range of disorders.    
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CHAPTER I 

Introduction 

 

 
Switches play an important regulatory role at all levels of biology.  At a molecular level, 

we see examples of switches that can activate or deactivate specific biochemical 

pathways[1,2] or trigger signaling cascades[3].  At a cellular level, we know about 

switches that play key roles as gatekeepers regulating cell maturation[4–7] and cell 

death[8].  At an intercellular level, postsynaptic potentials from one neuron can lead to 

opening or closing of voltage-dependent gates in other neurons allowing or inhibiting 

propagation of action potentials[9–11].  At an organism level, neural clusters in the 

hypothalamus act as a toggle switch that governs whether the body is in a sleep or wake 

state[12,13].  In all of these examples, biological switches flip between distinct states.   

Medical therapies often seek to trigger, or stimulate, biological switches that toggle a 

system from one state to another, achieving a specified health outcome.  For example, 

clinicians use small doses of subpathologic viruses to activate the immune system’s 

production of antibodies for the purpose of vaccination[14].  Electricity has been used to 

induce a switch in clinical state, as seen in cardiac defibrillation where short electrical 

pulses are delivered to revert arrhythmias back to normal sinus rhythm[15–19].  More 
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recently, electrical stimuli are applied to deep brain structures in order to combat 

Parkinsonian tremors[20–23], epileptic seizures[24–26], and even major depressive 

disorders[27–30].  We have studied cases where mechanical stimulation has been used to 

stimulate normal breathing patterns in neonates suffering from life-threatening 

apneas[31].   

In all these instances, one of the major challenges has been finding optimal stimulus 

waveforms, the ideal shape of the stimulus intensity over time.  Figure 1.1 shows 

examples of different stimulus waveforms, some successfully causing a change in state.  

While different waveforms may be able to trigger a switch in the system, they may not all 

be optimal.  It is important to note at this point that different applications may define 

optimality uniquely.  For electrical stimulation, clinicians may want to reduce the 

maximum stimulus intensity at any point in time for fear of causing tissue damage or 

energy leakage into neighboring regions leading to detrimental side effects.  Other 

clinicians may be concerned about reducing total energy consumption, in order to 

maximize battery life for implantable devices.  In vaccines, one may seek to minimize the 

total injected dose to prevent toxicity.  Whatever the criterion, the fundamental question 

remains, how does one go about finding the optimal stimulus waveform? 

Background 
Traditional methods have involved systematically testing a large number of different 

waveforms and examining which stimuli performed optimally[15].  Unfortunately, as one 

can imagine, there are an infinite number of possible waveforms, and thus systematically 



17 
 

searching through all of them is impossible.  Some researchers have narrowed the search 

field by assuming a specific waveform shape, and systematically exploring the 

parameters that make up the size of the shape[16].  For example, one may seek to find the 

optimal pulse width and amplitude of a rectangular stimulus.  These constraints lead to a 

biased search, missing potentially more optimal solutions.   

As an alternative to an exhaustive search, some researchers have sought to apply 

mathematical techniques from the field of calculus of variations[32] to solve for the 

optimal stimulus waveform[33–38].  In these instances, researchers use a mathematical 

model of the behavior in question, applying various formulas and techniques from 

calculus of variations to derive the optimal stimulus waveform.  While this method does 

indeed result in the optimal solution, it is very time-intensive and difficult to use on 

complex systems.  Furthermore, it requires a mathematical model describing the behavior 

accurately.  With biological systems as complex as they are, often times it is very hard to 

model a specific behavior much less an entire system.   

Contribution 
Thus, the challenge we have set for ourselves in this thesis is: 

To develop an algorithm that can find an optimal stimulus waveform without any 

knowledge of the mechanisms or models underlying the physiological system. 
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Figure 1.1: Example of a switch being stimulated by a variety of stimulus waveform shapes, some 
successful while others are not. 
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To answer this challenge, the thesis can be broken into three aims: 

Aim 1: Expansion of a gradient-based algorithm by incorporating stochastic seeding to 

develop standards by which to measure the validity of any new algorithm 

The validation of any novel algorithm requires the definition of an analytical standard.  

We defined our standard based on analytical approaches using calculus of variations.  As 

we had stated earlier, applications of calculus of variations in biology have been limited 

due to the complexity and difficulty of convergence required for implementation of this 

technique.  Furthermore, traditional variational approaches compute local optima whereas 

there is often a need to explore the solution space more broadly to find the global 

optimum.  To address these limitations, we have devised a stochastically-seeded gradient 

algorithm; a series of random stimuli is the starting points for the algorithm.  The 

algorithm derives how the system will respond to minute changes for each of these initial 

starting points.  Using first-order gradients, or slopes, the algorithm proceeds to calculate 

a more optimal solution.  This algorithm iterates this process until it converges to a single 

solution.  The inclusion of stochastic seeding, or the randomly generated initial stimuli, 

enables the algorithm to explore a large solution space.  We demonstrate and discuss the 

ease of using the gradient-based algorithm in searching for optimality.   

Chapter 2 presents an overview of the mathematical foundations and derivations 

underlying calculus of variations and more specifically the gradient algorithm we used.  

We detail our incorporation of stochastic seeding and its application to finding optimal 

stimulus waveforms for two separate neuronal models in Chapter 3.   
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Aim 2: Development and Validation (using the methods of Aim 1) of a novel model-

independent stochastic algorithm for finding optimal stimulus waveforms, which we 

call the Extrema Distortion Algorithm.   

Stochastic algorithms are computational tools that engineers have applied to optimization 

problems.  These iterative methods leverage random processes to sample the solution 

space broadly surrounding a set of initial solutions.  After exploring the solution space, a 

pruning process chooses a few of the sampled solutions, which then become the starting 

points of the next iteration.  The simplest stochastic algorithm that we have found used in 

experimental neuroscience has been what is known as spike-triggered averaging[33,39].  

While the literature has demonstrated that the spike-triggered average produces results 

that qualitatively look very similar to what analytical techniques have produced, we 

explore some quantitative discrepancies further in Chapter 4.   

Because of the discrepancies that lie with spike-triggered averaging, we developed a 

novel Extrema Distortion Algorithm to find optimal stimulus waveforms to flip a switch, 

which we call the Extrema Distortion Algorithm.  Chapter 5 describes and validates the 

Extrema Distortion Algorithm using the results from our first aim.   

Aim 3: Application of the Extrema Distortion Algorithm to find optimal stimulus 

waveforms for suppressing epileptic seizures 

While simple neuronal models are interesting, their clinical applications are limited.  

Thus, we wanted to apply the Extrema Distortion Algorithm to a more complicated 
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problem, one that is too complex for analytical techniques to solve, in order to glean 

therapeutic and clinical insights by finding the optimal stimulus waveform.  In Chapter 6, 

we apply our algorithm to the problem of suppressing epileptic seizures using a range of 

computational models based on different mechanisms hypothesized in the literature.   

Chapter 7 closes the thesis with a discussion of a few interesting directions for the future 

of this research. 
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CHAPTER II 

Gradient Algorithm: Mathematical 
Foundations 

 

 
Before we apply the gradient-based algorithm as developed by Bryson and Ho [40] to our 

optimization problem, it would be beneficial to first understand the mathematical 

construct and foundations by which various analytical techniques are used.  Many of the 

algorithms used for finding optimal waveforms rely on a branch of mathematics called 

calculus of variations.   

Most people are familiar with calculus as a field of mathematics used to find the 

minimum or maximum points for a given function.  What calculus of variations does is 

find the function with a minimum or maximum value based on a function of functions, 

or, in mathematics, a functional.  In the context of finding optimal waveforms, calculus of 

variations helps us find the waveform, or function, that uses the least amount of energy, 

which is a function of the waveform, or functional.   

                                                             
Portions of this chapter have been reprinted with permission from: Chang J, Paydarfar D.  Switching 
neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.  J Comput 
Neurosci. 2014 37(3):569-82.   
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In order to progress into the mathematical foundations, let us begin by first defining the 

system in question as a set of nonlinear differential equations: 

                 ,      is given,         (2-1) 

where      is an n-dimensional vector function describing the n states in the nonlinear 

system, and      is an m-dimensional vector function describing the external stimulus?  

As an example, in the Hodgkin-Huxley equations,      is a 4-dimensional vector 

function,                       and      is a 1-dimensional vector function describing 

the current intensity at any given time. 

In order to find an optimum, we need to define a metric to measure “optimality.”  We call 

this a performance index.  In most mathematical abstractions, the performance index 

follows the form:  

                               
  

  

 (2-2) 

where             is a q-dimensional vector describing the q terminal conditions, and 

               is an equation that uses both the states and the stimulus across all time to 

measure some level of performance.  The convention in most of the literature is to 

minimize  .  If one desires to maximize a performance metric, the negative of the metric 

is used, and thus the problem becomes one of minimization.  Using equations (2-1) and 

(2-2), the optimization problem is now mathematically formalized as finding the function 

     that minimizes the functional   given the system equations as defined by      .   
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At this point, we have system constraints as a unique entity from the performance index.  

In calculus of variations, we can combine these distinct entities into a single functional 

using Lagrange multipliers.  Lagrange multiplier, also termed influence functions in some 

literature, is a technique that allows us to combine, or adjoin, multiple functions or 

constraints into one function.  In order to combine the system constraints, (2-1), and the 

performance index, (2-2), into one unified equation, we adjoin the two functions using a 

set of Lagrange multipliers that we define here as     : 

                                                           
  

  

 (2-3) 

One of the foundational terms in calculus of variations is the Hamiltonian which is a 

scalar function,  , used to simplify such equations: 

                                                       (2-4) 

In mechanics, the Hamilton refers to the total energy in the system.  We use it now to 

simplify the mathematics a little.  Substituting (2-4) into (2-3), as well as integrating by 

parts the last component of the new performance index, we can rewrite   : 

              

                                       
  

  

             

(2-5) 
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In order to optimize this modified performance index, we want to find the variation in    

due to variations in      and      at      and     , the temporal boundary conditions 

of the problem: 

      
  

  
       

    

           
    

  

  
       

  

  
     

  

  

 (2-6) 

In order to simplify the equation, we remove the    variable by defining the Lagrange 

multiplier,     , as follows: 

    
  

  
  

  

  
     

  
, with boundary conditions        

  

      
 (2-7) 

This choice of the Lagrange multiplier in (2-26) simplifies (2-6):  

                 
  

  
    

  

  

 (2-8) 

For an optimum solution,      for any arbitrarily defined      .  Examining (2-8), we 

see that this happens only if  

  

  
           (2-9) 

The two equations, (2-7) and (2-26), constitute the Euler-Lagrange equations in calculus 

of variations. 
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With the Euler-Lagrange equations, we can now translate an optimization problem into a 

set of system equations that define the optimal stimulus.  However, this is a two-point 

boundary value problem, which can be difficult to solve where we can define some of the 

variables. 

Up to this point, we have allowed       to be arbitrary.  However, we can restrict the 

stimulus further by including the terminal condition constraints: 

            (2-10) 

Because we now have constraints for both the initial conditions and the terminal 

conditions, we know 

          ,          ,         (2-11) 

We can rewrite (2-6) to include the constraints from (2-26).  To differentiate the 

Lagrange multipliers, we rename them from   to  : 

      
  

  
        

  

  
     

  

  

 (2-12) 

Again, we choose the n-vector multipliers      such that we remove the    component: 

     
  

  
  

  

  
   

  

  
 (2-13) 
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The boundary conditions are such that if the terminal conditions are known,         .  

If they are not known, then the terminal conditions from the Euler-Lagrange equations 

still hold: 

        

        

   

   
 
    

         
  (2-14) 

The multiplier function,     , can be understood as the influence the stimulus,   , has on 

the performance index,  .  We also want to find the influence the stimulus has on the 

system arriving at the terminal conditions.  To do this, we rewrite the performance index 

such that         and    .  We then reproduce the process in equations (2-12) to 

(2-26) using this new performance index, and defining the influence functions in this 

particular iteration as,     , an       matrix: 

          
  

  
    

  

  

 (2-15) 

with      defined as:  

     
  

  
 

 

  where        
    
    

  (2-16) 

Now, we can expand our performance index to include both the effects of    on    and 

   .  We introduce,  , as yet another Lagrange multiplier to adjoin these two variables: 
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 (2-17) 

At this point, we want to find    such that the combined performance index and distance 

to terminal condition improves over time.  Thus, we choose: 

       
  

  
 

 

        
  

  
 

 

  (2-18) 

where   is a scaling factor between 0 and 1. 

Plugging this back into (2-17) we see: 

            
  

  
 

 

        
  

  
 

 

 

 

  
  

  

 (2-19) 

The fact that this equation is always negative means that this choice of    guarantees an 

improved       , which should lead to a better performance.   

In order to find out what the proper multiplier,   , should be, we plug (2-18) into equation 

(2-15):  

            
  

  
  

  

  
 

 

        
  

  
 

 

   
  

  

 (2-20) 

After rearranging the terms, we see that: 
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 (2-21) 

We now define variables   and   as follows:  

      
  

  
 
  

  
 

 

   
  

  

 (2-22) 

      
  

  
  

  

  
 

 

   
  

  
 

 

   
  

  

 (2-23) 

which allows us to rewrite (2-21) as follows: 

             (2-24) 

Solving for  : 

  gtxQv f   1  (2-25) 

Because we want to move       towards     , we will therefore choose 

                     (2-26) 

where   is a scaling factor between 0 and 1.   
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CHAPTER III 

Gradient Algorithm: Revealing Optimal 
Stimuli for Switching Neuronal State 

 

 
Introduction 

There has been recent interest in establishing methods that utilize external electrical 

stimulation for controlling pathological neuronal activities in neurological disorders, for 

example, Parkinsonian tremor [21] and epileptic seizures [24].  Determining the minimal 

effective stimulus for such control is a key practical question because energetic 

optimization of the stimulus will decrease power usage and prolong battery life, as well 

as diminish off-target effects and damage to neighboring regions.   

Finding optimal stimulus waveforms to control biological systems poses interesting 

computational challenges.  Traditionally, optimization of signals has been conducted 

analytically using calculus of variations [32], in which an optimal functional is derived 

and solved as a boundary-value problem, using the shooting method [41] or the Newton-

Raphson method [42].  These techniques, which have been applied to neuronal models 

                                                             
Portions of this chapter have been reprinted with permission from: Chang J, Paydarfar D.  Switching 
neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.  J Comput 
Neurosci. 2014 37(3):569-82. 
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[33,39,43], requires an initial guess that seeds an algorithm used to solve the boundary-

value problem.  Finding an initial guess that converges to a solution can be difficult in 

mathematical models with steep nonlinearities of multiple state variables. Another 

important limitation for solving optimal functionals as a boundary value problem is the 

need for a priori knowledge of the optimal endpoint of all state variables.  Optimization 

problems are often defined by a single outcome measure (e.g., achieving a voltage 

threshold for an action potential) and the optimal endpoint for all state variables may be 

unknown.  Finding a global optimum therefore would require solving the boundary value 

problem multiple times for all possible endpoints that include the desired outcome 

measure [33]. 

Gradient-based optimization methods [40,44] offer an alternative computational approach 

for variational analysis that retains the complete model description and circumvents the 

need for solving a boundary-value problem.  Gradient-based algorithms solve the 

optimization problem directly without first deriving a functional with defined boundary 

conditions.  Recent success using this approach has been achieved for solving complex 

control problems in mechanics [45–47], epidemiology [48], game theory [49], kinetics 

[50] and immunology [51–53]. 

To our knowledge, gradient algorithms have not been applied to problems in 

computational neuroscience, and here we ask if such an approach might be useful for 

identifying minimal effective stimuli for controlling neuronal activity.  As an initial 

analysis, we focus on waveforms that induce a single action potential in a classical 
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monostable neuron [10] or induce or suppress repetitive firing in a bistable neuron 

[54,55].  Furthermore, we develop and apply a stochastic seeding approach to the 

gradient algorithm in order to explore more fully the solution space to determine globally 

optimal solutions as opposed to just locally optimal solutions.  Our results provide insight 

into how optimal control of neuronal activity is strongly influenced by temporal 

constraints of the stimulus waveform and the terminal conditions that define the outcome 

measure. 

The chapter proceeds as follows.  We first outline the gradient-based algorithm as well as 

its implementation for both the Hodgkin-Huxley and the Fitzhugh-Nagumo models.  We 

highlight the importance of broad exploration of the solution space using stochastically 

generated seeds as we examine the results.  Finally, we discuss the advantages and 

limitations of the gradient algorithm and compare it to other previously used techniques. 

Methods 
First-order gradient algorithm 

The previous chapter detailed the derivation and theoretical framework of the first-order 

gradient algorithm.  Here we provide a systematic outline of the implementation of the 

algorithm.  To summarize, this algorithm begins with an initial estimate of the optimal 

stimulus and iteratively chooses a better stimulus based on the first-order gradient, or 

slope, of the system’s response.  The algorithm accomplishes this by calculating how the 

changes in the stimulus will affect the performance index as well as the error in terminal 

conditions.  To calculate the error in terminal conditions, the algorithm runs the system’s 
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response to the stimulus and compares the actual state at the terminal point with the 

desired terminal state.   

As we will show, this algorithm is very robust to the initial estimate of the optimal 

stimulus, enabling us to use randomly generated stimuli to search across a larger solution 

space.  We describe the gradient algorithm below, which is based on the formalisms 

developed by Bryson and Ho [40].   

Given a nonlinear system of equations: 

                  for         (3-1) 

where      describes an n-dimensional system and      describes an m-dimensional 

external stimulus to the system, and the system’s initial conditions   , we seek an optimal 

stimulus,     , that minimizes the scalar performance index,  , such that: 

                   
  

  

 (3-2) 

where                is a performance metric.  The performance metric can be any 

function of both the system and the stimulus.  In our examples, we will be using L2-norm 

as the performance metric to calculate the energy of the stimulus.  In examining 

exogenous stimulation, this metric is relevant to the power used by the stimulus.  This 

means that our performance metric is: 
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                  (3-3) 

We can replace this metric with another mathematical expression meaningful to any other 

optimization parameter.  For instance, in endogenous stimulation, one may be more 

interested in ATP consumption as opposed to the L2-norm, and may change the 

performance metric accordingly. 

Finally, the algorithm is constrained by   terminal conditions of the form: 

         (3-4) 

The algorithm proceeds as follows: 

1. Estimate the stimulus variable,     .  We used a uniform random number 

generator to specify the initial stimulus values for each time step from    to   .  

2. Integrate the state variables       forward with the given initial conditions and the 

stimulus generated in Step 1.   

3. Determine the influence functions      and      by backward integration of  

     
  

  
   

  

  
 (3-5) 

     
  

  
 

 

  (3-6) 

using the values from the state calculated from Step 2.  Here,      is an     

dimensional matrix, while      is an     dimensional matrix.  In these 
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calculations,      represents the strength of influence changes to the stimulus will 

have on the performance index, while      represents the strength of influence 

changes to the stimulus will have on the error in terminal conditions.   

These two influence functions describe how changes in the stimulus will affect 

the performance index and the distance from the expected terminal conditions.   

4. Simultaneously with Step 3, compute: 

      
  

  
 
  

  
 

 

   
  

  

 (3-7) 

      
  

  
  

  

  
 

 

   
  

  
 

 

   
  

  

 (3-8) 

  and   are intermediate variables used to simplify the equations in step 5.  Here, 

  is a     dimensional matrix while   is a     dimensional matrix.  The 

variable   is a scaling factor that describes how large of a step size should be 

taken.  We discuss how to choose this value at the end of the algorithm.   

5. Using the results from the state variables in Step 2, calculate  

                 (3-9) 

                   (3-10) 

Here,  , an     dimensional matrix, becomes a multiplier that balances the two 

different influence functions      and     .  As   becomes larger, the algorithm 
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puts more weight in the effect of the influence factor      as compared to the 

influence factor     .  

The variable    is proportional to the distance between the actual terminal state 

due to the estimated stimulus and the desired terminal conditions that have been 

defined.  The variable ε is another scaling factor that describes how large the step 

size is.  The larger the scaling factor, the larger the step will be in the direction of 

the gradient towards the optimal solution. 

6. Repeat steps 1 to 5 with an improved estimate of the stimulus variable using  

       
  

  
 

 

        
  

  
 

 

  (3-11) 

This entire process continues for either a predefined number of iterations, or until 

the standard deviation of    and    over a set number of iterations has fallen 

below a specified threshold, indicating that the algorithm has converged to a 

solution.   

It is interesting to note that this algorithm weighs and manages the weights of both the 

performance index as well as how closely the estimated stimulus fulfills the terminal 

conditions.  As seen in Step 5, the further away the terminal states of the system due to 

the estimated stimulus is from the terminal conditions, the larger   becomes.  Thus more 

weight is put on the effect of the stimulus with regards to fulfillment of the terminal 
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conditions,      as opposed to the effect of the stimulus on improving the performance 

index,     .   

Some trial and error may be needed with regards to how to choose scaling factors for 

both   and  .  The predicted decrease in the performance index,   , can be compared to 

actual decrease in performance index.  If the difference is large, the scaling factor can be 

decreased.  If the difference is small between predicted versus actual, the scaling factor 

can be increased.   

All of the simulation and algorithmic work was carried out in Matlab (The MathWorks 

Inc., Natick, MA, USA).  Our code is publically accessible on the Internet at PhysioNet 

(http://physionet.org).   

Hodgkin-Huxley model 

One of the classic computational models regarding excitable systems is the Hodgkin-

Huxley neuron model [10].  The model is a four dimensional system that captures the 

ionic mechanisms underlying the generation of an action potential.  The Hodgkin-Huxley 

model is defined as follows: 

                                              (3-12) 

                         (3-13) 

                         (3-14) 

                         (3-15) 
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,                (3-16) 

      
           

            
,                    (3-17) 

                 ,       
 

            
 (3-18) 

where   is the membrane voltage,  ,  , and   represent dimensionless quantities 

associated with sodium channel activation, potassium channel activation, and sodium 

channel inactivation respectively, and   represents the exogenous stimulation we are 

looking to input into the system (µA/cm2).  The parameter   is based on the ambient 

temperature, which we have set to 1.5.  The parameter   is the capacitance of the 

membrane, which we set at (1 µF/cm2).  The Hodgkin-Huxley model that we have 

defined here is monostable; the membrane is quiescent, firing an action potential only 

when it is elicited by the input stimulus.   

By setting each of the differentials as well as the stimulus to 0, we are able to find the 

resting state of the Hodgkin-Huxley model.  We found this resting state to be   = 0.0026 

mV, m = 0.0529, n = 0.3177 and h = 0.596. 

Using the gradient algorithm, we can determine what the optimal stimulus should be in 

order to cause an action potential from the resting state using the least amount of energy 

as determined by the performance index mentioned earlier, L2-norm, which we measured 

in µJ/cm2.  The standard model measures current per unit area of membrane (1 cm2). 
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We generated our initial estimate by choosing random values at intervals of 0.1 

milliseconds.  Each random value was chosen from a uniform distribution from -1 

µA/cm2 to 1 µA/cm2.  These initial estimates were multiplied by a scaling factor to allow 

for different stimulus strengths.  To increase the chance that we find the global optimal, 

we ran the algorithm 10 times with a different randomly generated stimulus. 

We define the terminal condition as the voltage above which an action potential is 

guaranteed:  

              (3-19) 

The gradient algorithm allows us the flexibility to define the terminal conditions for only 

one of the four state variables.  This is useful because it allows us to broaden the search 

for stimuli that achieve the outcome (an action potential) without artificially restricting 

ourselves to solutions that may not be optimal.  For our purposes, we only require the 

stimulus to trigger an action potential irrespective of the values of  ,  , and  .  Placing 

constraints on those values could restrict the search to a solution that is not optimal.   

Another consideration for setting the terminal condition is whether the first order gradient 

converges to desired end-point.  For example, if we set the terminal condition of   to be 

near the peak of the action potential (e.g.             ), the algorithm has a very 

difficult time converging to a solution that ends at the peak of the action potential.  This 

is due to the extreme nonlinearity of the state variables in that particular region of the 

action potential.  A small change in the stimulus results in either a better performance 
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index or a lower error in terminal conditions.  Because we are using a first-order gradient 

algorithm, we would often end up either over- or under-stepping the stimulus, thereby 

causing a failure in convergence.  We found that by setting the terminal condition to be 

lower, we were both able to guarantee the desired outcome (an action potential) and 

convergence of the gradient algorithm towards a solution.   

Implementing the gradient algorithm for the Hodgkin-Huxley model 

We defined optimization by trying to minimize the L2-norm of a stimulus that takes us 

from the initial stationary state to the threshold for induction of an action potential.  Thus 

our performance index is  

       
  

  

 
(3-20) 

The influence functions for the Hodgkin-Huxley model are: 

       

 
 
 
 
 
 
 
 
 
   

  

   

  

   

  

   

  
   

  

   

  
  

   

  
 

   

  
 

   

  
  

   

   
 
 
 
 
 
 
 
 

 (3-20) 

with the boundary condition              , and where 
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 (3-30) 

For this study, we only have one terminal condition,   crosses a certain threshold, 

leading to an action potential.  Thus, the rest of our equations reflect having only one 

terminal condition.   
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 (3-31) 

with boundary conditions               and where the gradients are the same 

as for the influence function  . 

The variables  ,  , and    now become: 

       
   

  

  

 (3-32) 

                  
  

  

 (3-33) 

                   (3-34) 

We set the algorithm to run for 100 iterations, with k = 0.1 and ε = 0.5.  To generate the 

initial stimulus, a uniform distribution random number generator with a range of -1 to 1 

was used to generate the stimulus amplitudes at every 0.1 ms interval for a total of 25 

milliseconds.  Because of the stiffness of the Hodgkin-Huxley equations, we used 

MATLAB’s differential equation solver, ode113 (MathWorks; Natick, MA).   
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FitzHugh-Nagumo (FHN) model 

While the transition from quiescence to a single action potential is interesting, many 

biological systems exist in states that are oscillatory in nature.  In a recent study, 

Paydarfar, Forger and Clay [43] showed that small oscillatory stimuli can be used to 

induce a state transition in a bistable system.  While, we could theoretically model the 

Hodgkin-Huxley model as a bistable system by adding a sufficiently large exogenous 

depolarizing persistent current, previous studies have shown that the squid axon, which is 

the basis for the Hodgkin Huxley model, fails to exhibit repetitive firing under the 

condition of a persistent depolarizing current clamp [56].  Furthermore, our preliminary 

analysis suggested that the first-order gradient algorithm does not readily converge 

because of the sensitivity of the Hodgkin-Huxley system, specifically the terminal point, 

even to small changes in the stimulus.  To change the stimulus by a small amount would 

cause the system to overshoot the terminal condition, causing the gradient algorithm to 

attempt to reverse the problem, but overshooting the terminal condition again in the 

opposite direction.   

We found the FitzHugh-Nagumo system to be much more lenient as a bistable model.  

The FitzHugh-Nagumo model is a two dimensional system that has been used to describe 

excitability in neurons and has served as a model system for bistable behavior 

[39,54,55,57–60].   

The FitzHugh-Nagumo model [54,55] is defined as follows: 
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      (3-35) 

     
 

 
           (3-36) 

This model is unitless, but one can show that the FitzHugh-Nagumo model is a two-

dimensional reduction of the Hodgkin-Huxley equations[54].  With regards to neuronal 

excitability,    is analogous to Hodgkin-Huxley’s   and  , while    is analogous to 

Hodgkin-Huxley’s   and   states [54].  The variable   is analogous to current 

stimulation, which can be in the form of an endogenous persistent current or an 

exogenous input stimulus.  In order for the system to exhibit bistability (quiescence and 

repetitively firing), we have chosen parameters as previously defined [57], a = 0.7, b = 

0.8, c = 3.0, and r = 0.342.  In this particular configuration, the system gravitates, when 

there is no stimulation, towards one of two states: quiescence or repetitive firing.  The 

repetitive firing state is an oscillatory limit cycle, while the quiescent state is a fixed 

point.  The minimum value of    is the equivalent of the peak of an action potential in the 

FitzHugh-Nagumo model.  We wanted to determine the optimal stimulus to both induce 

and suppress repetitive firing in a bistable system.  Thus, we used the gradient algorithm 

to calculate the optimal stimulus when transitioning from the fixed point to the oscillatory 

limit cycle, and vice versa.   

In order to systematically explore the entire limit cycle in the repetitive firing state, we 

captured a set of 68 points (RF1, RF2 … RF68) dispersed around the limit cycle.  We 

determined this set of 68 points by allowing the system to reach steady state in MATLAB 
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and recording the values of    and    as returned by the Runga-Kutta differential 

equation solver, ode45.  To find the optimal stimulus from quiescence to the repetitive 

firing state, we set up 68 computational experiments, each starting where    is equal to 

quiescent point and ending at        where   lies between 1 and 68.  Similarly to find 

the optimal stimulus from the repetitive firing state to quiescence state, we set up 68 

computational experiments, each starting with        where n lies between 1 and 68, 

and ending at    equal to the quiescent point.  In order to define the phase around the 

limit cycle, we normalize the time at which each of the 68 points occur so that RF1 occurs 

at phase     and RF68 occurs at phase    .  Figure 3.1 shows a graph of all the 68 

points, with some of the phases marked off.  We ran each computational experiment 10 

times to again increase the probability of finding the global optimal for each phase. 

Implementing the algorithm for the FHN model from quiescence to 
repetitive firing 

We set our scaling factors to be       and      .  To generate the initial stimulus, a 

uniform distribution random number generator with a range of -1 to 1 was used to 

generate the stimulus amplitudes at every 0.1 ms interval for a total of 30 milliseconds.  

Because we were dealing with a bistable system, we wanted to ensure that the system did 

not revert back to the quiescent state.  As such, we observed the system’s response for 

100 milliseconds, 70 milliseconds after the stimulus had completed.  We verified in each 

of our results that the range of x1 values remained larger than 3.5 units, which was the 

range of the repetitive firing steady state in the last 20 milliseconds of our 100-

millisecond system response.  Because the FitzHugh-Nagumo model was less stiff, we  
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Figure 3.1: Plot of the limit cycle in the FitzHugh-Nagumo model.  The phase values are normalized 
by time so that 0 and 1 are both at the “peak of the action potential” which occurs when x1 is at its 
minimal value.  Four representative phase values are shown to show the time progression around the 
limit cycle 
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were able to use MATLAB’s ode45 differential equation solver.  In this application of 

finding transitions from quiescence to repetitive firing, we are examining the phase at 

which the stimulus terminates on the limit cycle.   

We found that depending on which of the 68 points we were using as the terminal 

condition, the gradient algorithm would take a variable number of iterations to converge 

to a solution.  Thus, instead of specifying a threshold, we terminated the algorithm when 

the standard deviation of the last 20 iterations of δJ was less than 0.0001 and δu was less 

than 0.1.  For the sake of time, we terminated the gradient algorithm after 1000 iterations 

if it had not yet converged.   

Implementing the algorithm for the FHN model from repetitive firing to 
quiescence 

We set our scaling factors to be k = 0.5 and ε = 0.5.  To generate the initial stimulus, a 

uniform distribution random number generator with a range of -1 to 1 was used to 

generate the stimulus amplitudes at every 0.1 ms interval for a total of 8 milliseconds.  In 

order to develop results comparable to previous literature [39], we’ve chosen a stimulus 

duration of 8 milliseconds, which is less than the limit cycle period (12.84 ms).  In this 

application of finding transitions from repetitive firing to quiescence, we are examining 

the phase at which the stimulus begins from the limit cycle.   

Because we were dealing with a bistable system, we wanted to ensure that the system did 

not revert to the repetitive firing state.  As such, we observed the system’s response for 

100 milliseconds, 92 milliseconds after the stimulus had completed.  We verified in each 
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of our results that the range of x1 values remained smaller than 3.5, which was the range 

of the repetitive firing steady state in the last 20 milliseconds of our 100-millisecond 

system response.  Again, because the FitzHugh-Nagumo model was less stiff, we were 

able to use MATLAB’s ode45 differential equation solver.   

As we did for determining convergence when finding the optimal stimulation from 

quiescence to repetitive firing, we terminated the algorithm when the standard deviation 

of the last 20 iterations of    was less than 0.0001 and    was less than 0.1, with a 

maximum number of iterations set at 1000.   

Results 
In order to achieve a better understanding of how the gradient algorithm performs, its 

advantages and its limitations, we applied it to three distinct scenarios: the triggering of a 

single action potential in a monostable system, the initiation of repetitive firing in a 

bistable system and the suppression of repetitive firing in a bistable system.  We 

proceeded with two of classic neuronal model systems: the Hodgkin-Huxley model as our 

monostable system and the FitzHugh-Nagumo system as the bistable system.  While the 

FitzHugh-Nagumo system has been used mainly in neuronal systems, it also has broader 

applications in other biological systems [61,62].   

Hodgkin-Huxley model of neuronal excitation 

Figure 3.2 shows the gradient algorithm beginning with a randomly generated stimulus, 

and within a few iterations, we see the rough shape of the optimal stimulus.  Within 30  
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Figure 3.2: Gradient algorithm shapes random stimuli towards an optimal waveform.  Here we show 
the progression of solutions as the gradient algorithm begins with a white-noise stimulus and finds 
the most energetically efficient solution over 100 iterations.  The top panel shows the L2-norm 
trajectory over 100 iterations.  The six panels show the evolving waveform at the 1st, 5th, 10th, 20th, 
and 30th iteration of the algorithm.  There is very little improvement between the 30th and the 100th 
iteration as seen in the L2-norm trajectory (top panel).  By convention, positive current is 
depolarizing  
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iterations, the algorithm reveals the optimal stimulus with little further improvement in 

L2-norm following subsequent iterations.  One interesting observation we noted is that 

the first iteration often produces a stimulus with a poorer performance index.  This is 

because we are randomly generating the stimulus, which most likely fails to meet the 

terminal condition.  Thus, the algorithm first changes the stimulus to be closer to meeting 

the terminal condition, before it begins improving the performance index.   

Figure 3.3 shows the stimulus waveform of gradient algorithm at 100 iterations and the 

action potential it caused.  Note that the membrane potential V in Figure 3.3 is offset from 

the HH model by -60 mV, which is also consistent with modern usage of the Hodgkin-

Huxley model.  The original model arbitrarily set the resting potential at 0 mV, while 

neurons actually rest in a hyperpolarized state.  The result of the gradient algorithm had 

an L2-norm of 15.5 µJ/cm2.  As a point of comparison, we used a constant amplitude 25-

ms stimulus and reduced the amplitude down until it just barely created an action 

potential.  We found that using an amplitude of 2.255 µA/cm2, the neuron would fire an 

action potential at 11 ms.  We then reduced the duration of the stimulus until it no longer 

fired an action potential, and found that when the amplitude was 2.255 µA/cm2 and the 

duration was 9.7 ms, the neuron would just barely fire an action  
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Figure 3.3: The optimal stimulus derived from the gradient algorithm (top) triggers a single action 
potential in the Hodgkin-Huxley model (bottom) 
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potential.  The L2-norm of this barely supra-threshold rectangular pulse was 49 µJ/cm2.  

Thus, the waveform generated using this technique showed a large reduction of energy 

necessary for causing the neuron to fire a single action potential.   

As we sought to gain a better understanding of the algorithm’s application, we examined 

the effect that stimulus duration would affect the optimal stimulus’ L2-norm.  We 

changed tf, but kept the rest of the system parameters constant.  This meant that not only 

did the stimulus decrease in duration, the action potential occurred sooner as well.  Figure 

3.4 shows the plot illustrating how the stimulus duration affected the optimal stimulus’ 

L2-norm.  As we can see from the plot, when the stimulus duration was increased, smaller 

L2-norms could be achieved, up until a certain point.  Beyond 25 milliseconds, the 

improvements in L2-norm are minimal.   

Figure 3.5 shows the shape of the optimal waveforms under the different conditions of 

when the system crosses the specified threshold.  It is interesting to note that when an 

action potential is desired earlier (less than 7 ms), the optimal waveform is monophasic; 

whereas action potential timings that are later (more than 7 ms) are optimally achieved 

with biphasic waveforms.  In a recent study, Clay, Forger and Paydarfar [63] explained 

that the hyperpolarization phase of the optimal stimuli is useful for removing a small 

amount of sodium inactivation, thus allowing for a less energetic depolarizing phase to 

still elicit an action potential.  This figure shows that this is indeed true, but only when 

the desired time to action potential is long enough.  If the time to action potential is  



53 
 

 

 

 

 

Figure 3.4: Longer stimulus duration provides for more energetically efficient stimulus.  Once the 
stimulus duration extends past a certain point, there is no further improvement in energy efficiency 
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Figure 3.5: The optimal waveforms change from a monophasic stimulus to a biphasic stimulus as the 
amount of time to action potential increases 

  



55 
 

 

shorter, the hyperpolarization phase is reduced, and it disappears all together if the time 

to action potential is too short.  From a design perspective, this may suggest that in 

neuronal systems that require rapid elicitation of an action potential, excitatory 

postsynaptic currents would be much more prevalent than in neuronal systems that are 

more amenable to delayed elicitation of action potentials.   

We examined the robustness of the gradient algorithm to randomly generated initial 

estimates of the optimal stimulus.  As such, we created a set of randomly generated seeds 

with varying amplitudes (at 0.1 ms resolution), and tracked for each iteration both the L2-

norm and the distance the calculated endpoint was from the desired terminal state.  Figure 

3.6 shows a plot of L2-norm trajectory over the first 30 iterations.  While each trajectory 

started at different places, they all ended at solutions with the roughly the same L2-norm.  

There is some variation in the error due to terminal conditions, but the system is 

extremely sensitive, and so any small changes in the stimulus will result in small 

variations in the distance of the end point to the terminal conditions. 

The FitzHugh-Nagumo model: quiescence to repetitive firing 

The L2-norm values for all 10 runs of each of the 68 computational studies are shown in 

Figure 3.7.  For each of these runs, the system starts at the quiescent fixed point and 

terminates at a specified phase, ϕ, as defined previously.  The gradient algorithm failed to 

converge within the set limit of 1000 iterations for some of the runs, and we have  
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Figure 3.6: Gradient algorithm is robust to the initial stimulus.  The stimulus energy trajectories of 
100 different seeds with different amplitudes are shown 
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Figure 3.7: Only certain phase regions converged when transitioning from quiescence to repetitive 
firing.  The points that converged are marked in black, while those that failed are marked in red. 
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marked them accordingly.  This plot reveals a clustering of low L2-norm values around ϕ 

= 0.58, a lack of convergence in the range 0.05 < ϕ < 0.5, and a multiplicity of solutions 

where ϕ > 0.9 or ϕ < 0.05.  

To begin, we notice that the optimal transition from the quiescent state to the repetitive 

firing state is when the terminal condition is around ϕ = 0.58.  In fact, there is a small 

range, 0.55 < ϕ < 0.65 where the gradient algorithm produces consistently low L2-norm 

values.  This shows a particular trajectory with the most ideal “entrance” into the 

repetitive firing state from the quiescent state.  At these phases, there appears to be only 

one extrema in the solution space. 

Secondly, there is a large range of phases, in which the gradient algorithm is unable to 

converge to a solution with the predetermined number of iterations.  We increased the 

number of iterations to 5000, but the gradient algorithm still failed to converge to a 

solution in the range 0.05 < ϕ < 0.4, which corresponds to rapid changes in the state 

variables during the action potential.  Because we are using a first-order gradient 

algorithm, as the algorithm gets closer to those solutions, small changes in the stimulus 

can cause the algorithm to overshoot its estimation of the optimal, leading to loss of 

convergence.  We believe that a solution exists because the terminal condition is on a 

steady state limit cycle.  If we took the solution when ϕ = 0.58 and padded the end with 

zeroes, we should be able to find a stimulus that takes us to a phase angle between 0.05 

and 0.4.  This suggests that perhaps the set of initial estimates that allow for convergence 

to a local optima solution, also known as the region of convergence, is small compared to 
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the region of convergence we have seen for the mono-stable Hodgkin-Huxley or the 

bistable FitzHugh-Nagumo when the terminal condition is within the range of 0.55 < ϕ < 

0.65.   

Finally, we notice multiple local optima found when the terminal condition on the limit 

cycle is close to the peak of x1 (ϕ < 0.05, and ϕ > 0.9).  Figure 3.8 shows an example of 

two stimulus waveforms that resulted in a transition from quiescence to repetitive firing 

using the exact same starting and ending points.  As illustrated here, this multiplicity 

occurs because the terminal condition is on an oscillatory limit cycle.  In this example, 

two distinct optimal stimuli result because there can be a multiplicity of subthreshold 

oscillations before the trajectory jumps to the stable limit cycle.  In this example, the 

algorithm converged to two optimal stimulus waveforms that caused either one or three 

subthreshold oscillations before inducing a jump to the limit cycle.  The stimulus 

inducing a jump after one subthreshold oscillation has shorter duration and larger 

amplitude, compared to the optimal stimulus that transitions more gradually.  This 

finding matched one of the results we found in the Hodgkin-Huxley model: If we want to 

transition states quicker, more energy is required.   

To provide a comparison, we again calculated the optimal rectangular pulse to switch the 

FitzHugh-Nagumo model from quiescence to repetitive firing and found that the best 

stimulus had an amplitude of 0.11 and a duration of 21.102 resulting in an L2-norm  
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Figure 3.8: Gradient algorithm finds multiple optimal solutions that induce a transition from 
quiescence to repetitive firing.  The initial condition (quiescent fixed point) and the terminal 
condition (ϕ = 0) of the gradient algorithm are the same for both trials.  The only difference is the 
initial randomly generated stimulus that is given to the gradient algorithm.  The top panel shows the 
two optimal stimuli (green and blue), while the bottom panel shows the response from the x1 variable 
in the FitzHugh-Nagumo model to the stimuli (matched green and blue). 
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of 0.26.  The results from the gradient algorithm ranged from 0.0038 at the best and 

0.0097 at its worst.  Here we can see a substantial improvement over standard rectangular 

pulse stimulus.   

Like our results in the Hodgkin-Huxley model, Figure 3.9 shows the paths toward 

optimality resulting from different initial randomly generated seeds.  Although the 

different seeds have a broad range of L2 norms and distances to the terminal condition, 

almost all of them converge to one of the two clusters.  We found that of the solutions 

that converged, 78% of the randomly generated seeds converged to the larger L2-norm 

solution and 22% converged to the smaller L2-norm solution.  We note in Figure 9 that 

there are some points that drop L2-norm very sharply with successive iterations, almost as 

if attracted to the lower local optimum, but then bounce back up, settling into the upper 

local optimum.  This phenomenon is because a single iteration may cause the L2-norm to 

drop by a lot, but it may increase the error in the terminal conditions.  In the next 

iteration, the gradient algorithm corrects the error in the terminal condition, leading to the 

bounce back in the L2-norm value.   

The FitzHugh-Nagumo model: repetitive firing to quiescence 

Figure 3.10 shows the L2-norms of 10 runs each of the 68 computational studies from 

each of the points along the repetitive firing limit cycle to the quiescent point.  In all 

cases, the stimulus duration was set at 8 ms.  From the figure, we can see that there is 

again an optimal window where ϕ is between 0.4 and 0.6 at which to begin transitioning  
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Figure 3.9: Trajectories of stimulus energy through 200 iterations of gradient algorithm show 
convergence to two waveforms.  We ran 100 different randomly generated seeds with different 
scaling factors.  The green and blue colors match the respective green and blue waveforms seen in 
Figure 8 
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Figure 3.10: Gradient algorithm reveals multiplicity in transitioning from repetitive firing to 
quiescence across different phases.  The top panel shows the stimulus energy of the different 
optimized stimuli (8 ms duration) that induce transitions from different phases of repetitive firing to 
the quiescent fixed point.  Specific examples of different solutions are shown in the bottom pane, 
labeled a through d.  Note that b and c are solutions with the same starting phases.   
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from the repetitive firing limit cycle to the quiescent fixed point.  This corresponds to the 

location closest to the quiescent fixed point.  Around this window, the best L2-norm 

values sit around 0.012.  In comparison, the most optimal constant stimulus waveform 

has an L2-norm of 0.064, for a duration of 7.87 ms and an amplitude of 0.09 given at 

ϕ=0.72.  It is interesting to note that when using a constant stimulus waveform, the 

discrete stimulus fails to suppress repetitive firing across a large range of phase angles.  

In contrast, the gradient method enables discovery of novel waveforms that induce a 

transition from a broad range of phases around the limit cycle to the quiescent state.   

We had discussed how multiplicity occurred in the earlier example of stimuli that induce 

the FitzHugh-Nagumo neuron to transition from the quiescent state to the repetitive firing 

state, due to the cyclical nature of the system.  Here, we can see that even when the 

stimulus duration is smaller than one cycle, we can find multiplicity with the FitzHugh-

Nagumo system.  We chose the example where ϕ = 0.678.  Figure 3.11 shows the 

convergence of a set of randomly generated initial conditions towards the two different 

stimuli.  Figure 3.12 shows two stimuli that start from the same point on the repetitive 

firing limit cycle and end up at the quiescent point.   

One interesting implication about this particular result is that there is potential for 

applying the gradient algorithm to phase shifting an oscillatory system.  What we can see 

here in Figure 3.12 is that one of the solutions transitions almost immediately into the 

quiescent point, while the other makes a loop around the limit cycle before entering  
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Figure 3.11: Random stimuli converge towards two different optimal stimuli that induce a transition 
from repetitive firing to quiescence.  The trajectories of stimulus energy through 100 iterations of 
gradient algorithm are shown here.  All of these stimuli start from the same starting phase (ϕ = 
0.678).   
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Figure 3.12: Gradient algorithm reveals different mechanisms of suppressing repetitive firing.  The 
top panel shows the stimuli, the middle panel the x1 response to the stimuli.  The bottom panel shows 
the entire state space response to both stimuli.  As we can see, one stimulus (green) suppresses the 
system quickly, while the other stimulus (blue dashed) causes the system to run more quickly around 
the oscillatory state before entering into the quiescent state.  The black line in the figure is marked to 
show the first course of the system without any stimulation.  This marks the limit cycle of the 
repetitive firing state.   
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into the quiescent point.  This is interesting because the normal period of one cycle is 

12.84 ms.  We captured an instance where the stimulus in 8 ms has traveled around the 

entire limit cycle.  We could theoretically set up the gradient algorithm to travel from one 

point on the limit cycle to a different point of the limit cycle, requiring this phase shift to 

take place within a fraction of the period of the limit cycle.  In this way, the gradient 

algorithm can be used to find optimal phase shifting stimuli [39,64,65]. 

Discussion 
Optimal control theory is rooted in calculus of variations, developed by Bernoulli, de 

l’Hôpital, and Euler [32].  However, the real-world applications of calculus of variations 

did not start until more recently in the 1950s.  Because problems in optimal control 

generally are nonlinear, they do not have simple solutions that can be analytically 

determined.  Thus, a range of numerical methods was developed.  These numerical 

methods fall into roughly one of two broad categories: indirect methods and direct 

methods [66,67]. 

Indirect methods use Pontryagin’s maximum principle to determine a set of first-order 

conditions that define the optimal solution.  This set of first-order conditions combines 

the original state variables with an extra set of adjoint variables, one for each of the 

original states, that measures the influence of the state variables to each other.  A 

boundary value problem (BVP) solver like the shooting method or Newton-Raphson 

method is then used to solve numerically this new system of equations.  The advantage of 



68 
 

the indirect method is that once a solution is found from the BVP solvers, it is easily 

verified against the first-order conditions captured by calculus of variations. 

One of the disadvantages of the indirect method is that the region of convergence around 

the variables may be smaller with the addition of the adjoint variables.  Thus, there is a 

higher chance of starting a BVP solver at a state that ultimately diverges from the optimal 

solution.  With most numerical algorithms, a good initial guess can avoid starting at 

locations that diverge from the optimal solution.  However, one usually requires some 

background information or understanding of the equations to be able to provide a good 

initial seed from which most BVP solvers will work.  If a bad seed is chosen, the BVP 

solver will diverge away from the solution.  With the adjoint variables, developing the 

initial seed becomes even more difficult as they do not have any physical interpretation 

by which to understand how they relate to the other variables, and thus it is difficult to 

even develop an initial estimate for these variables by which to seed the algorithm.  To 

this point, most researchers have attempted to simplify the Hodgkin-Huxley model in 

order to circumvent these two disadvantages.  Researchers have used a phase reduction 

model of the neuron [37,38,68], parameterized the stimulus [69], or used simpler 

“integrate-and-fire” models [34,35].  To our knowledge only Forger et al [33] have 

applied the indirect method to solve the original Hodgkin-Huxley model in its complete 

form.   

The direct method, first proposed by Kelley [44] and further developed by Bryson and 

Ho [40], does not create a surrogate system of equations, but instead uses the original 
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system of equations to iteratively move towards a more optimal solution.  This method 

does not add any new parameters and thus avoids the need to calculate another set of 

variables and first-order derivatives.  Furthermore, by not adding a new set of parameters 

to the systems of equations, it allows for a larger region of convergence from the initial 

estimate.  Indeed, we have shown that randomly generated stimulus waveforms can be 

used to find optimal solutions for induction of an action potential in the monostable 

Hodgkin-Huxley equations, as well as induction or suppression of repetitive firing in the 

bistable FitzHugh-Nagumo equations.  We were able to show with both models that the 

solutions converged even though they started from very different seeds.  Because of this, 

a priori knowledge is not needed to find locally optimal solutions.  In order to explore the 

solution space further and find a global optimal solution, we have developed this 

algorithm to include a stochastically seeding component.  By running the algorithms with 

different randomly generated seeds, the algorithm allows for more of the solution space 

to be explored, thus allowing one to have greater confidence that the best solution found 

is indeed the global optimal.   

One of the advantages of using this gradient algorithm is its ability to find optimal 

solutions even when terminal conditions are not defined for all of the state variables.  As 

we noted in finding the optimal stimulus necessary to trigger a single action potential, the 

gradient algorithm did not require us to have the terminal condition defined for all four 

state variables.  We were able to construct the algorithm such that it found the optimal 

stimulus necessary to achieve a membrane voltage above the threshold for an action 

potential.  Considering that our specific goal was to find the optimal stimulus necessary 
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to elicit an action potential, this allowed us to find the optimal without adding any extra 

restrictions on the terminal conditions.  By adding more terminal conditions than we 

need, we are actually restricting our search for a global optimum and including certain 

assumptions into the algorithm that may lead to sub-optimal solutions. 

Our computational study using the gradient algorithm has shown the importance of 

precisely defining the optimality problem, lest we actually find an optimal solution to a 

different problem.  In our study, we wanted a globally optimal solution, and so we left the 

terminal condition to include only the voltage threshold.  In the study of Forger et al [33], 

specific states were obtained using a priori knowledge of squid axons that were related to 

different biological mechanisms leading to action potentials.  By applying this 

knowledge, they were able to find two unique optimal solutions specific to the two 

unique mechanisms.  Although we imposed no restrictions on the physiological 

mechanism for eliciting action potentials in this study, we did find that constraints on the 

timing of a spike resulted in qualitatively different optimal waveforms (Figure 3.5). 

While the gradient algorithm has been advantageous for our applications, it has also 

shown some of its limitations.  Because we were using a first-order system, there were 

terminal conditions to which the algorithm was unable to converge, due to the highly 

nonlinear sensitivity of the system to the stimulus in certain regions.  We have found that 

in these situations, the first-order gradient will overshoot the optimal solution and cause 

the algorithm to iterate through a worse solution.  From here, the algorithm re-iterates to 

improve the solution again towards the optimal, but repeatedly fails near the terminal 
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condition by overshooting again.  We note that this pattern occurs most often in rapidly 

changing regions in our systems (e.g. near the peak of the action potential).  In areas that 

are less sensitive to changes in the stimulus, the gradient algorithm performs very well. 

It is possible to use the second-order gradient in the algorithm as well in order to prevent 

overshooting.  However, the second-order gradient algorithm is much more sensitive to 

the initial estimate, and thus has a difficult time even beginning to iterate towards an 

optimal solution [40] as the region of convergence is much smaller.  One alternative 

proposal is to combine both the first-order and the second-order gradient algorithms in 

order to maximize the first-order’s ability to converge quickly at the beginning, with the 

second-order’s ability to converge more accurately at the end [45]. 

We have shown how stochastically-seeded gradient algorithm can be applied to finding 

energetically optimal stimuli for transitioning various biological systems from one state 

to another, whether it is from a quiescent state to a single action potential, a quiescent 

state to repetitive firing, or from repetitive firing back to quiescence.  In this study, we 

have highlighted this algorithm and its use in gaining insight into the Hodgkin-Huxley 

system and the FitzHugh-Nagumo system when evaluating optimization based on L2-

norm.  Future work may focus on applying the same techniques to neurons that exhibit a 

much wider repertoire of behaviors [70–74], which have been classified extensively using 

bifurcation theory. These techniques can also be applied to more complicated models like 

those that describe the impact of deep brain stimulation to treat Parkinsonian tremors 

[22,23,75–78] and epileptic seizures [25,26,79–81].  
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Furthermore, while applying this algorithm to finding optimal external electrical 

stimulation, we postulate that the stochastically-seeded gradient algorithm can also aid in 

gaining insight into the design principles governing endogenous neuronal stimulation.  

There has been a wealth of research recently focusing on understanding fundamental 

design principles that govern neuronal excitation, for instance in elucidating how sensory 

percepts are encoded [82–84], as well as to populations of neurons within functioning 

networks to better understand how information is transmitted from neuron to neuron [85–

88].  In order to gain insight into how endogenous stimulation are optimized, one could 

use equations relating to different optimization rules, incorporate that into the 

performance metric in the algorithm, determining a theoretical result verified or refuted 

through experimental techniques.    
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CHAPTER IV 

Stochastic Search Algorithms: Review of 
Applications in Medicine 

 

 
Introduction 

While the gradient algorithm has shown to be quite robust, it requires the existence of a 

mathematical model.  Biological systems are often so complex that mathematical models 

are not available.  As such, one needs alternative model-independent techniques to seek 

out optimality.  Researchers have developed various algorithms that use stochasticity, or 

random processes, to explore the solution space in search of these optimal solutions. 

Stochastic search algorithms are a class of methodologies used heavily in the engineering 

and computational disciplines to find optimal solutions to problems that have extremely 

large solution spaces.  These algorithms seek to learn over time what the important 

features of the solution are by analyzing the outputs of known inputs as seen in Figure 

4.1.  This mentality is very different to analytical techniques that seek to analyze the 

system itself in order to solve for the optimal stimulus.  Stochastic search algorithms use 

stochasticity to explore broadly the solution space, while the iterative and adaptive nature 

of the algorithm helps focus it towards the optimal solution.  While these algorithms are 
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still relatively new, researchers use them for a wide range of applications from 

developing optimal traffic light schedules for minimizing gridlock in cities or finding 

optimal protein structure conformations to minimize energy costs.   

As we have stated previously, finding optimal stimulus waveforms is an extremely 

difficult task due to the infinite number of possible stimulus waveform.  In this chapter, 

we review four prominent stochastic search algorithms used in clinical applications: 

spike-triggered averaging, stochastic hill-climbing, simulated annealing, and genetic 

algorithms.  We examine their strengths and weaknesses, and we discuss their potential 

use in finding optimal stimulus waveforms.   

Review of Methods 
Like analytical techniques, stochastic search algorithms seek to find the best set of values 

for a given set of parameters,  , in order to minimize or maximize a cost function,     .  

It is important to note that stochastic search algorithms often work with discrete 

parameters as opposed to the continuous functions that the gradient algorithm used.  As 

such, instead of thinking of the stimulus as     , stochastic search algorithms would set 

up the stimulus as     , where   is a vector of discrete parameters, each of which 

represent a unique time point in the continuous stimulus. 
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Figure 4.1: Fundamental concept of stochastic search algorithms 
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Spike-triggered averaging 

One of the simplest forms of stochastic search used extensively in experimental 

neuroscience has been spike-triggered averaging (STA).  STA feeds broadband stochastic 

stimulation into the system, averaging a snippet of the input stimulus preceding each 

spike generated.  Neuroscientists have used this method to gain insight into key stimulus 

features that govern neural encoding of sensory information[43,89–91].  At a very high 

level, the algorithm is as follows: 

1. Generate a long randomly generated stimulus 

2. Apply the stimulus to the system in question 

3. For every spike, or event, triggered, save the preceding T seconds worth of 

stimulus. 

4. Average all the saved snippets. 

5. Scale the average until the resulting stimulus just barely triggers an event. 

While the spike-triggered averaging has been used predominantly to gain insight into 

neural encoding, a few recent studies have shown the potential use of spike-triggered 

averaging to finding optimal stimulus waveforms[33,39,43].  In the first of these studies, 

Forger and Paydarfar used the bistable FitzHugh-Nagumo model to compare optimal 

stimuli found using calculus of variations with those from the spike-triggered average.  

They examined stimulus waveforms necessary to trigger repetitive firing from quiescence 

and vice versa.  What was interesting about this study is that the general waveform shapes 

from both methods were qualitatively similar to each other.  While quantitatively, calculus 
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of variations produced a more optimal solution when transitioning from quiescence to 

repetitive firing, they found that spike-triggered averaging found a better solution when 

suppressing repetitive firing.   

The fact that calculus of variations produced a better answer than spike-triggered 

averaging was expected because the former methodology utilized analytical techniques to 

find the best solution.  What was surprising from the study of Forger and Paydarfar was 

the second observation that the spike-triggered averaging produced better results when 

suppressing repetitive firing.  They explained the phenomenon by noting that around the 

point representing quiescence, there is a stable basin of attraction.  This meant that if the 

stimulus took the system to a state within that basin, it would eventually spiral towards 

quiescence without further stimulation.  Thus, the goal may not necessarily be to get from 

oscillation to quiescence, but rather to get from oscillation to just past the lip of the basin 

of attraction.  The technique using calculus of variations could not take into account the 

basin, and as such used more energy to go completely to the center of the basin of 

attraction of quiescence as opposed to just to the edge.   

Furthermore, unlike calculus of variations, spike-triggered averaging did not have any 

concept of initial conditions.  As such, when they examined the results of the two 

algorithms, they noticed that the timing of when the stimulus is given was different 

between the two methodologies.   

While the research here show the potential spike-triggered averaging has on finding 

optimal stimulus waveforms, it is unclear why this method appears so effective.  In 
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chapter 5, we examine more closely the relationship between STA and optimality, finding 

that STA has a few weaknesses that lead it towards suboptimal results. 

Stochastic hill-climbing 

One of the ways of finding more optimal solutions with stochastic search algorithms is to 

include an adaptive or learning component to the algorithm.  One of the simplest 

stochastic search algorithms with an adaptive component is stochastic hill-climbing.  

While stochastic hill-climbing has not been used to find optimal stimulus waveforms, it 

has been applied in other medical applications including image classification[92] and 

analysis[93,94], and vaccination strategies[95].   

Stochastic hill-climbing starts with a randomly generated solution and explores a sample 

of neighboring solutions around that initial seed.  It then chooses the best of the samples to 

be the starting seed of the next iteration.  The outline of the stochastic hill-climbing 

algorithm is as follows: 

1. Choose a random initial solution.  (e.g.                    ) 

2. Add a small noise component to   to move to a neighboring solution,    .  (e.g. 

                                 where    is a small randomly 

generated increment) 

3. Repeat step 2 a few times to generate a set of neighboring 

solutions:              .. 

4. Evaluate        for all the neighboring solutions.   
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5. Select the     with the best       . 

6. If the best        is better than     , set   to be     .  Otherwise, keep   to be the 

same.   

7. Repeat steps 2-6 for a defined number of iterations 

Figure 4.2 illustrates this algorithm.  We have constructed a simple two-dimensional 

solution space, where each point in the x-y plane represents a solution,  .  The z-axis 

represents the performance index,     .  The algorithm seeks to find the solution that 

maximizes the performance index.  Each arrow shows one iteration through the algorithm.  

As seen from the illustration, each step is taken in a direction that leads upwards towards 

the maximum.  Because the algorithm does not sample every single possible neighboring 

solution, the move from one solution to another may not be the most optimal, but it is 

always closer than the current step.   

Figure 4.3 illustrates one of the major weaknesses of stochastic hill-climbing: local 

optima.  If the algorithm reaches a local optimal solution, it will remain there, as any move 

away from the optimal solution will lead to a poorer performance.  One technique that 

researchers use to get around this is to pick multiple random starting solutions, allowing 

for greater exploration across the solution space.  Some iterations of the algorithm may 

end at the local optimal solution, but with enough starting solutions scattered randomly 

across the search space, some iterations may reach the global optimal solution.   
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Figure 4.2: Illustration of stochastic hill-climbing 
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Figure 4.3: Flaw in stochastic hill-climbing algorithm 
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Simulated annealing 

Simulated annealing is similar to stochastic hill-climbing, but it makes allowances to 

avoid being stuck at a local optimal solution.  Kirkpatrick was the first to detail this 

algorithm, taking inspiration from metallurgy where the heating and cooling of metals in a 

controlled manner guide atoms towards a more stable, and thus more optimal, state[96].  

Like stochastic hill-climbing, simulated annealing has not seen applications relating to the 

problem of finding optimal time-varying stimulus waveform shapes, however, it has had 

wide use in radiology[97–101], biochemistry[102–111], image processing[112–115], 

genetics[116], and therapeutics[117–121]. 

The advantage of simulated annealing compared to stochastic hill-climbing is that under 

certain conditions, it allows a worse solution to become the starting seed of the next 

iteration.  Thus, even if the algorithm has arrived at a local optimal solution, it can still 

potentially move towards away and end up at an even better solution later.  Simulated 

annealing uses a parameter, called temperature, to determine of whether or not a worse 

solution becomes the starting seed of the next iteration.  The fundamental steps of the 

simulated annealing algorithm are as follows: 

1. Choose a random initial solution,  . 

2. Choose an initial temperature,  .   

3. Select a randomly generated neighboring solution,   .   

4. If       is better than     , select the new solution as the starting seed.   
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5. If       is worse than     , decide based on comparing       –       with   to 

determine whether to select the new solution as the starting seed for the next 

iteration.   

6. Decrease temperature 

7. Repeat steps 3-6 for a defined number of iterations 

In this algorithm, the rate at which the temperature decreases over time and the exact 

equation that determines the relationship between temperature and the new solution are all 

customizable.  Often temperature decreases with some relationship to the iteration 

number.  Concerning step 5, the simplest version of simulated annealing uses temperature 

as a marker of how large the difference can be between the new solution and the current 

solution.  Thus, if the difference is less than the temperature, the algorithm accepts the 

new solution as the starting seed.  As one can imagine, as the temperature decreases over 

time, the margin of allowing poorer solutions narrows.   

While this is the simplest, mathematicians have developed theories about how to define 

this relationship between temperature and the acceptance of a new solution.  The 

Metropolis-Hastings algorithm is a specific variation of the simulated annealing algorithm, 

constructing a probabilistic model for the acceptance of poorer solutions based on the 

temperature parameter[122,123].  
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Genetic algorithms 

Genetic algorithms are a specific type of stochastic search algorithm, which incorporate 

elements of learning across a population of solutions.  While stochastic hill-climbing and 

simulated annealing have been the progression of one solution over time, genetic 

algorithms work with an entire set of solutions all at once, allowing each solution to 

“learn” from other solutions in that set.  These algorithms have gained significant traction 

in the scientific community in the past two decades.  The initial idea for genetic algorithms 

came from evolutionary biologists who wanted to model evolutionary processes on the 

computer in the late 1950s and early 1960s[124].  While various computer scientists had 

incorporated concepts like population, mutation and recombination into their algorithms, it 

was not until 1975 when John Holland developed the first systematic understanding and 

application of genetic algorithms as a problem solving mechanism[125].   

Genetic algorithms encode solutions as “chromosomes,” one-dimensional arrays of 

parameters, or “genes.”  Figure 4.4 shows an example of how the genetic algorithm could 

encode a variety of signals. 

A “fitness function,” the performance index, is defined to determine how well a solution 

survives.  The fundamental structure of a genetic algorithm is as follows: 
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Figure 4.4: Encoding signals as chromosomes.  In this example, the amplitude of the signal at each 
time step becomes the value of genes.  Once the method of encoding has been decided, the genetic 
algorithm is initiated with a generation, or set, of stochastic seeds. 
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1. Choose a random initial generation, or a group of solutions.   

2. Reproduce the next generation of solutions using recombination and mutation.   

3. Select which of the chromosomes from the generation are fit enough to propagate 

based on the cost function.  

4. Repeat steps 2 and 3 for a defined number of iterations 

Traditionally, recombination selects a random point in the chromosome and switches 

everything on one side with the corresponding region on the second chromosome.  The 

algorithm mimics mutation by adding a small perturbation to a randomly selected gene in 

the chromosome.  Figure 4.5 illustrates how a few of the components of the genetic 

algorithm works.   

Researchers can customize the algorithm in many different ways.  Some customize the 

way chromosomes encode the solutions, while others may customize the order in which 

recombination, mutation, and selection occur.  Forrest provides more information about 

the variations in genetic algorithms and their applications[126].   

Because genetic algorithms operate on populations of chromosomes, they are less likely to 

fall prey to local optimal solutions.  Even if certain solutions congregated around local 

optimal solutions, the recombination and mutation process shake up the population  
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Figure 4.5: Each iteration of the genetic algorithm goes through a set of recombination, mutation, 
and selection in order to form the next generation.  Here we use the generation initialized from 
Figure 4.4 as an example of how recombination, mutation, and selection would work to generate the 
next set of solutions.  

  



88 
 

sufficiently to cause wider exploration of the search space.  Furthermore, because the 

population of solutions is in communication with each other, there is a greater chance of 

finding the optimal solution.  Genetic algorithms have been in a wide range of applications 

including image processing[127–134], physiology[135–137], genetics[138,139], 

biochemistry[140–144], epidemiology[145–151], diagnostic analysis[152–159], 

radiology[160,161], and even hospital administration[162–165].   

Wongsarnpigoon and Grill published a study using genetic algorithms to find optimal 

stimulus waveforms for a model of neural stimulation[166].  They found the optimal 

stimulus waveform necessary to trigger an action potential in the MRG model of a 

peripheral nervous system myelinated axon as described by McIntyre et al[167].  In order 

to accomplish this, they encoded a stimulus as a chromosome where each gene 

represented a single stimulus amplitude at a given time step (dt = 2 μs) for a given pulse 

width.  They ran the experiment with a range of pulse widths from 10 μs to 1 ms.  Each 

generation consisted of 50 chromosomes.  They defined the fitness function as the energy 

used in the waveform combined with a penalty if the waveform failed to elicit an action 

potential.  In order to get convergence to an optimal solution, they ran the algorithm for a 

total of 10,000 generations.  The result of this algorithm led to finding that truncated 

Gaussian waveforms were more optimal than other monophasic conventional waveforms 

that were tested including rectangular waveforms and exponentially decaying waveforms.   
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Discussion 
While we have examined a few of the more prominent stochastic search algorithms, there 

are still many more algorithms available including stochastic search variable 

selection[168–170], simultaneous perturbation stochastic approximation[171], and particle 

swarm optimization[46,75].  Spall’s book provides a very helpful introduction to the 

theory behind stochastic search and optimization as well as in-depth analysis on the 

algorithms listed above[172].   

All of the stochastic search algorithms encode the stimulus as a vector, where each 

parameter represents an independent dimension in the solution space.  Depending on the 

resolution of the stimulus and the stimulus duration, the dimensionality of the solution 

space could become extremely large.  For instance, if a 30-ms stimuli sampled every 0.1 

ms, results in a 300-dimension solution space.  This “curse of dimensionality” is one of 

the biggest problems with stochastic search algorithms.   

The term “curse of dimensionality” was coined by Richard Bellman, who described how 

as the dimensionality of the solution increased, the solution space itself increases much 

more rapidly[173].  Assume, in our search for optimal stimulus waveforms, that we limit 

our search space to stimulus intensities of only integers between -10 to 10, meaning that 

for every time step, there are only 21 possible intensity values (-10, -9, -8, … 8, 9, and 

10).  If we wanted to find the optimal 0.1-ms stimulus waveform sampled every 0.1-ms 

(e.g. there was only one time interval), we would have to search 21 possible solutions.  If 

we were searching for optimal 0.2-ms stimulus waveforms, we would have to search 21 * 
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21, or 441 possible solutions.  Studying a 1-ms stimulus waveform gives us 1.7 * 1013 

possible solutions.  At these levels, getting a meaningful sample of the neighboring 

regions becomes very difficult.  What is staggering is that this is only after we have 

limited our search space to only integers.  If we allowed the search space to include values 

up to three or four decimal points, it would be impossible to produce any meaningful 

sampling.   

In order to use stochastic search algorithms efficiently, we will need to develop a way to 

simplify the solution space.  Spike-triggered averaging avoids this conundrum by simply 

averaging all the data without any structured search patterns.  We explore this further in 

the next chapter.  In Chapter 6, we develop and validate a novel approach to reduce 

adaptively the dimensionality of the problem as the algorithm iterates forward to reduce 

the impact of this curse.  
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CHAPTER V 

Spike-Triggered Averaging: Limitations 
as an Optimization Tool 

 

 
Introduction 

As we stated previously, one of the simplest stochastic algorithms is spike-triggered 

averaging (STA), a technique used in experimental neuroscience to gain insight into 

neuronal responses to stimulus features [89,90,174–177].  STA, also known as reverse 

correlation or white-noise analysis, computes the average input stimulus preceding each 

spike generated from broadband stochastic stimulation.  This process reveals key stimulus 

features that govern how neurons inherently encode sensory information.  

While there are other stochastic search algorithms, as detailed in the previous chapter, 

many of them fall prey to the “curse of dimensionality.”  Spike triggered averaging is one 

of the few techniques unaffected by the curse because of its simplicity.  As we have 

discussed already, some studies have examined the similarities between STA waveforms 

and optimal stimuli calculated using analytical techniques [33,39,63].  
                                                             
Portions of this chapter are reprinted with permission from: Chang J, Paydarfar D. Optimal stimulus 
waveforms for eliciting a spike: How close is the spike-triggered average?  7

th
 International IEEE EMBS 

Conference on Neural Engineering, April 22-24, 2014, The Corum, Montpellier, France.   



92 
 

In this chapter, we analyze how noise-based STA waveforms relates to energy-optimal 

waveforms for eliciting a spike in the Hodgkin-Huxley (HH) model [10].  In order to 

explore a range of neuronal threshold levels, we studied the HH model under two 

conditions: the standard condition in which there is no persistent current, and a near-

bistable condition, in which a large persistent current is added causing the membrane to be 

at a heightened state of excitability near a sub-critical Hopf bifurcation [71]. 

Methods 
Hodgkin-Huxley model 

The Hodgkin-Huxley model is a four-dimensional system that captures the ionic 

mechanisms underlying the generation of an action potential.  By adjusting the persistent 

current, we can raise the excitability of the membrane such that much less stimulus energy 

is required to fire an action potential.  Using different levels of persistent current, we are 

able to study differences in stimulus optimality related to a range of membrane thresholds, 

for example between high threshold interneurons as compared to low thresholds seen in 

some cortical neurons.  Also, raising the persistent current affects the resonance properties 

of the membrane such that the neuron is more responsive to oscillatory stimuli [71].  

Determining optimality using a stochastically-seeded gradient algorithm 

In order to provide a gold standard for optimality, we rely on analytic methods.  In this 

chapter, we calculate energy-optimal waveforms by minimizing the L2-norm of the 

stimulus.  Traditionally, optimization of signals has been conducted using calculus of 

variations [32], in which an optimal functional is derived and solved as a boundary-value 
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problem.  This approach has been used to calculate energy-optimal stimuli for the HH 

model [33].  An alternative approach has solved this problem directly using a 

stochastically-seeded gradient algorithm [178].  We use this approach for the HH model, 

to determine the optimal stimulus necessary to trigger a single action potential in both high 

and low persistent current conditions. 

The stochastically-seeded gradient algorithm generates a series of random stimuli, and 

using a gradient-based approach, calculates how the system will respond to minute 

changes in the stimulus.  The algorithm iteratively uses these small gradients, or slopes, to 

converge towards the optimal solution.  Stochastic seeding enables the algorithm to 

explore a large solution space.  In the case of the standard HH model (with no persistent 

current), we previously showed convergence to the global optimal waveform [178].  

Finding the spike triggered average using different noise levels 

In order to mimic experimental spike-triggered averaging, we simulated white noise 

current stimulation, by choosing randomly the stimulus intensity from a Gaussian 

distribution for each 0.1 ms sample data point.  We tuned the amplitude of the noise such 

that the action potentials would fire at a rate of <1 Hz.  We fed white noise continuously 

until we generated 3,000 action potentials.  Each time an action potential occurred, the 

stimulus signal preceding the spike (up to 100 ms) was stored.  The average of all 3,000 

stimulus snippets (aligned to the peak of the action potential) was scaled to the minimum 

amplitude for triggering an action potential as previously described [33,39].   
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We ran the above protocol for the HH model under standard conditions (no persistent 

current) and the near-bistable condition (a persistent current of 6μA/cm2).  The duration of 

the stimulus prior to each spike was 30 ms for the standard condition and 100 ms for the 

near-bistable condition.  In order to capture the full oscillatory stimulus pattern in the 

neuron near its sub-critical Hopf bifurcation, we used a longer averaging period.   

All of the simulations and data analysis was done in MATLAB (The Mathworks, Inc, 

Natick, MA) on a Dell Precision T7500 (Intel Xeon Core E5520 @ 2.27 GHz, 2.26 GHz 

processors and 24 GB RAM).  The code for the gradient algorithm can be obtained 

directly from the authors or from Physionet (www.physionet.org). 

Results 
Gradient-based calculation of stimulus optimality for eliciting an action 
potential  

As seen in Figure 5.1, the standard HH model fires an action potential most efficiently 

when the stimulus includes a single hyperpolarization followed by depolarization phase.  

On the other hand, when the neuron is more highly excitable in the near-bistable 

condition, the stimulus shows more prolonged sub-threshold oscillations with multiple 

cycles between hyperpolarization and depolarization building up to the action potential. 

Comparing STA waveforms to optimal waveforms  

Figure 5.2 shows the STA waveform and the optimal waveform calculated from the 

gradient algorithms.  The two waveforms are remarkably similar, as reported previously  
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Figure 5.1: Energy-optimal stimulus waveform for the near-bistable condition (right) displays more 
resonance than the optimal waveform for the standard condition for the Hodgkin-Huxley model (left) 
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[7], [8], [11].  Two major differences stand out, however.  First, the spike-triggered 

average appears to be right-shifted compared to the gradient algorithm in both the standard 

as well as the near-bistable conditions.  Second, in the near-bistable condition, the spike-

triggered average exhibits a phase reversal in the stimulus about 20-ms prior to the action 

potential.   

We can explain the STA right-shift by considering that the waveform is an average of a 

library of successful stimuli without restriction on the effective portion of the stimulus that 

causes the spike.  The algorithm would average short brief large fluctuations that induce a 

spike with stimuli that have longer duration with smaller amplitude fluctuations.  In Figure 

5.3, we show using the gradient algorithm the optimal waveforms for progressively longer 

stimulus durations, all lined up to the peak of the spike.  Note that the shorter stimuli have 

higher amplitude and are right shifted, compared to the longer duration stimuli.  We 

previously showed that the longer stimuli are more energetically optimal [178].  Because 

of this phenomenon, we can see that if longer and shorter stimuli are included in the 

library of snippets that induce a spike, averaging the briefer waveforms with the more 

prolonged waveforms would result in a right-shift compared to the global optimal 

calculated from the gradient algorithm.  As such, when averaging the optima across 

different time scales, we get this right-shift.   

Regarding the deviation of the spike-triggered averaging from the gradient algorithm in 

the near-bistable condition, we examined the system’s response to all the individual 
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Figure 5.2: Comparison of spike triggered averaging results (orange) and the gradient algorithm 
(blue).  We note two main discordances: a phase reversal (*) and a right-shift (#). 

  



98 
 

 

 

 

Figure 5.3: Optimal waveform shapes given different stimulus durations as determined by the 
gradient algorithm. 
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snippets in our library.  We noticed that some of them caused single spikes, while others 

caused two or more spikes in rapid succession.  This led us to speculate that the stimulus 

necessary to cause repetitive spikes might be qualitatively different from that which causes 

a single spike.  We re-evaluated the near-bistable condition using the gradient algorithm, 

and we found two locally optimal solutions shown in Figure 5.4.   

Informed by this result, we re-analyzed the noise induced spike trains in the near-bistable 

condition and calculated the STA on the snippets that contained just one action potential.  

The result was much closer to the energy optimal waveform computed using the gradient 

algorithm, as seen in Figure 5.5.  The small rightward shift for the oscillations near the 

spike are not affected by this re-analysis, presumably because of the mechanism related to 

short duration stimuli (Figure 5.3).  This confirms that by averaging different local optimal 

solutions, or different modes, we get discordance from the true optimal. 

We did take into consideration the fact that we are using extremely high frequency noise 

stimuli, but when we calculated the spike-triggered average with white-noise filtered 

through a 1-kHz low-pass filter (which is more biologically realistic[174]), we found 

similar results.   
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Figure 5.4: The near-bistable solution has at least two locally optimal solutions: one that fires a single 
action potential (red), another which fires two action potentials in rapid succession (blue). 
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Figure 5.5: When averaging stimuli causing only one spike, the STA (red) phase reversal disappears, 
and STA aligns more closely with the true optimal (blue). 
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Discussion 
Our results suggest that while STA and energy optimal waveforms are remarkably similar, 

a number of mechanisms contribute to their discordance.  

First, we explain how a rightward shift in the STA occurs when averaging stimuli having a 

range of time scales contributing to spike generation.  The rightward shift occurs because 

the briefer stimuli cause a more rapid depolarization and induction of a spike compared to 

the longer duration stimuli.  Because the space of all possible solutions for the Hodgkin-

Huxley model includes solutions that are larger, which fire an action potential sooner, the 

spike-triggered average waveform is right-shifted from the optimal solution as determined 

by the gradient algorithm.  We find that using larger noise amplitudes can potentially 

cause a larger deviation away from energetically optimal solutions.  It is interesting to note 

that when choosing a smaller amplitude noise profile, the amplitude of the spike-triggered 

average also decreased, however the right-shift remained (Figure 5.3).  In theory, if we 

choose an amplitude of the noise such that it is close to the amplitude of the optimal 

solution, we might be able to reduce further the right-shift in the STA because we would 

not be including into the average the large amplitudes that cause the action potential to fire 

faster.  In practice, however, when we titrated the noise level further toward the amplitude 

of the optimal solution, spikes disappeared and we were not able to achieve this result.   

Second, multiplicity of optima can skew the STA waveform.  When there are multiple 

possible mechanisms to trigger an event, the multiplicity can cause the spike-triggered 

average to move away from the true optimal solution (Figure 5.5).  
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To gain a better appreciation of the relationship between spike triggered averaging and 

optimality, we imagine a stimulus with only two points.  This illustration can be 

extrapolated to higher dimensions, but for visual purposes we will use a two point 

stimulus.  The space created in Figure 5.6 is the set of all possible stimuli.  We have 

marked off two regions within this space.  Region A represents all the stimuli that 

successfully cause an event, while Region B represents all the stimuli that our white noise 

generator produces given a specific amplitude.   

In this depiction, the spike-triggered average is the centroid of Region C, which is the 

intersection between Region A and Region B.  In calculating the energy of the stimuli, we 

are using a simple L2-norm metric, which is equivalent to the distance between the stimuli 

and the origin.  Thus, the farther a point is from the origin, the larger is its energy.  Using 

this representation, we can begin to gain some insight into the relationship between spike-

triggered averaging and energy optimality.   

Figure 5.6 (top) is a representation of the standard Hodgkin-Huxley neuron.  As seen in 

the figure, the spike-triggered average alone is not close to the optimal, but when scaled to 

just barely causing an action potential, it is quite close to the true optimal solution.   

When multiplicity of solutions exists (e.g., as seen in the near-bistable condition), one can 

imagine a system similar to Figure 5.6 (bottom), where there exist two groups of solutions 

within the stimulus space, the scaled spike-triggered average could look very different 

when compared to the true optimal solution.   
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In our experiments, we recognized the existence of two sets of solutions by observing the 

train of action potentials in response to some of the stimuli.  As such, we filtered the data 

to produce only the stimuli that exist in one of these sets, and then performed spike-

triggered averaging, which led us to a result much closer to the true optimal solution.  As 

we stated earlier, we could theoretically also have decreased the noise amplitude, 

shrinking Region B, to eliminate the possibility of the second solution set intersecting with 

the noise profile we are using.  This is a potential solution, but only one that works if a 

large enough margin separates the two solution sets.  Again, it is difficult to build a library 

of successful stimuli if the noise profile is barely above the amplitudes of the true optimal 

stimuli.  As such, more often than not, the noise will be larger than what one can do to 

separate out multiple sets of successful stimuli.   

As seen, spike-triggered averaging can approximate the energetically efficient optimal 

solution, there are also times when it will fail to do so.  We posit that whether spike-

triggered averaging is successful or not depends largely on the shape of the solution space.  

Quantifying the solution space could enable a more accurate and consistent method to 

approximate the optimal signal using the spike-triggered library.  
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Figure 5.6: Whether the spike-triggered average is close to the energy-optimal is related to the shape 
of the intersection (Region C) between the set of all possible stochastic signal (Region B) and the set 
of all possible stimuli that successfully trigger an event (Region A).  Sometimes when the center of 
mass (y) is scaled (y’), it may move closer to the optimal stimulus (x) as seen in the top panel, while 
other times it may move further away as seen in the bottom panel. 
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CHAPTER VI 

Extrema Distortion Algorithm: 
Harnessing Noise to Optimally Flip a 

Switch 
 

 

Introduction 
In Chapter 4, we examined how stochastic search algorithms find optimal solutions 

without knowledge of the model.  We noted that one of the major problems with 

stochastic search algorithms as it relates to time-varying signals is the “curse of 

dimensionality,” that as we increase the resolution or duration of the optimal solution, the 

search space grows at an extremely rapid rate.  While spike-triggered averaging avoids 

this curse, we found in Chapter 5 that its relationship with optimality is more dependent 

on the solution space shape.  Using STA, we may get close to optimality, but there would 

be no guarantee without knowing what the solution space looked like.   

As such, we needed to develop another method to use stochastic search, while 

minimizing the effect of the curse.  In this chapter, we address the curse of 

dimensionality by representing signals by their extrema points.  Instead of searching 

neighboring solutions using every single point of the stimulus, we use the extrema as key 
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features points.  By distorting around these extrema, we can search for more optimal 

solutions using fewer dimensions.   

We test this algorithm on three unique models: a Hodgkin-Huxley model for triggering a 

single action potential, a bistable FitzHugh-Nagumo model for suppressing repetitive 

firing, and a genetic toggle switch model for switching states.  In each of these models, 

we applied analytical techniques to compare the accuracy of the results from our 

algorithm.  Finally, we discuss future directions of how this algorithm can continue to be 

developed.   

Methods 
Formalization of the problem 

Let us define the mechanics of our physiological system as                  , where 

     defines the m-dimensional states of the system and      defines the n-dimensional 

stimulus.  As we have seen in previous chapters, these definitions are generally the 

starting point from which traditional methods like calculus of variations or gradient-based 

algorithms solve for optimality.  Because we are developing a model-independent, 

stochastic algorithm, we focus our attention on the stimulus.  Most implementations of 

stochastic algorithms treat each point in the stimulus as its own individual dimension.  

Thus, we can calculate the number of dimensions a stimulus requires by multiplying the 

duration of the stimulus by the resolution of the stimulus generator.  Thus, if we have a 

25-ms 1-dimensional stimulus generated at a 0.1-ms resolution, the solution space has a 

dimension of 250.   
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The fundamental concept underlying stochastic algorithms is that adaptive distortions of 

randomly generated initial estimates of solutions, which we designate as   , evolve 

towards an optimal solution, which we designate as         , based on some predefined 

criteria.  This thesis uses the L2-norm, or “energy” of the stimulus as the basis of our 

definition of optimality.  We constrain our solution space to only solutions that 

successfully trigger a state change.  Mathematically, our goal is to minimize       given 

that the solution exists in the solution space.   

We modeled our algorithm initially off the stochastic hill-climbing approach in which a 

noise component,   , is introduced to the original stimulus, allowing the algorithm to 

search locally for more optimal solutions.  Once the algorithm finds a more optimal 

solution, that new solution, labeled μ1, becomes the new starting point of yet another 

local search.  Thus, this algorithm operates on the premise that  

optkk
 


lim  

One of the observations we made early in our study was that with large dimensional 

solution spaces, the closer we were to optimality, the more dependent the dimensions 

became on each other.  Thus, as we found solutions closer and closer to optimality, it was 

more important that both      and        moved in harmony.  When these dimensional 

spaces are large, the probability of many different parameters moving in synchronization 

with each other became rarer, making it more difficult for the stochastic search to find 

more optimal solutions successfully.   
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In this study, we propose that instead of focusing on manipulating every single data point 

in the stimulus, we focus on manipulating the extrema of each stimulus.  This method has 

the benefit of allowing many degrees of freedom early in the process, but as the algorithm 

progresses, and extraneous extrema are removed, the degrees of freedom decreases, 

allowing for a higher probability of finding more optimal solutions.   

Stochastic Extrema Distortion Algorithm 

As stated, we propose a stochastic Extrema Distortion Algorithm based on the idea of 

allowing each extrema to move randomly, using a linear transformation of the original 

signal with the new extrema as endpoints to fill in the gaps in between extrema.  The 

steps of the algorithm are as follows: 

1. Select a randomly generated starting seed, μ0, which causes a state transition. 

2. Find the extrema of μ0 and measure the time interval between them as seen in 

Figure 6.1A. 

3. Multiply each of the time intervals by a randomly generated number with a 

Gaussian distribution. 

4. Rescale the time of the stimulus to match the duration of the original stimulus.   

5. Add to each peak a randomly generated number with a Gaussian distribution.   

6. Linearly transform all the data points between the extrema with the new extrema 

endpoints as seen in Figure 6.1B.   

7. Scale the new stimulus to the same L2-norm as the most optimal stimulus seen so 

far 
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8. Scale the resulting stimulus down until it just barely achieves the desired 

outcome. 

9. Repeat steps 2-8 ten times with the same starting seed.   

10. Calculate the L2-norm of each of the ten results and choose the best one.  If none 

of the ten results is better than the original seed, choose the original seed.   

11. Repeat steps 2-10 using the chosen stimulus as the starting seed for a 

predetermined number of iterations.   

In order to capture our starting seeds, we fed white noise stimuli into the system and 

captured only the snippets that successfully caused a state transition.  These snippets 

became the starting seeds for our algorithm.   

In order to validate our algorithm, we used the gradient algorithm as detailed in chapter 3 

to set up a benchmark by which we could compare our results.   
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Figure 6.1: Diagram of a single iteration of the Extrema Distortion Algorithm.  Each panel shows the 
system response (top), the stimulus (middle) and a cartoon representation of the algorithm at work.  
The extrema are determined, and the intervals as well as the amplitudes are then distorted using 
multiplicative and addictive noise respectively to generate a new signal.   
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Induction of an action potential: The Hodgkin Huxley model 

The Hodgkin-Huxley[10] model is one of the best known computational models in 

biology .  This model is a four dimensional system that captures the ionic mechanisms 

underlying the firing of an action potential in a single neuron.  We apply our distortion 

algorithm to find the most energetically efficient, as defined by L2-norm, stimulus that 

will cause a single neuron to fire an action potential.  Chapter 3 describes the 

mathematical model for the Hodgkin-Huxley neuron.  As a reminder, our goal for this 

model was to find the optimal 50-ms stimulus that would successfully cause the neuron to 

fire an action potential within 100-ms of the start of the stimulus.   

For the Hodgkin-Huxley model, we multiplied the time intervals by a randomly 

generated number using a Gaussian distribution with mean of 1 and standard deviation of 

0.25.  We added to each peak a randomly generated number (Gaussian distribution with 

mean of 0 and standard deviation of 10% of the amplitude of the peak).  We allowed the 

algorithm to run for 3,000 iterations.   

Because we were looking for discrete state changes, a single action potential, we gave 

continuous white noise with an amplitude of 5μA/cm2 to the Hodgkin-Huxley model.  

Whenever an action potential occurred, we cut out the 50-ms snippet of stimulus 

proceeding the action potential.  These snippets became the starting seeds of the Extrema 

Distortion Algorithm.  We ran 10 seconds of white noise using a uniform distribution 

random number with a resolution of 0.1 ms, capturing 35 50-ms snippets.   
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Switching off oscillations: The Fitzhugh-Nagumo model  

The FitzHugh-Nagumo[54,55] model of neuronal excitation is a two-dimensional model 

that has been used to abstractly describe a simple excitable neuron, as well as cardiac and 

circadian rhythms has been detailed in Chapter 3.  As a reminder, the model is unitless, 

but regarding neuronal excitability, x1 is analogous to Hodgkin-Huxley’s V and m, while 

x2 is analogous to Hodgkin-Huxley’s h and n states.  The variable u represents the current 

stimulation, which can be in the form of an endogenous persistent current or an 

exogenous input stimulus.  Using the parameters found by Paydarfar and Buerkel[57], we 

defined a = 0.7, b = 0.8, c = 3.0 and r = 0.342.  In this particular configuration, the 

system gravitates, when there is no stimulation, towards one of two states: quiescence 

(stable fixed point) or repetitive firing (stable oscillatory limit cycle).  The minimum 

value of x1 is the equivalent of the peak of an action potential in the FitzHugh-Nagumo 

model.   

For our purposes, we are looking to minimize the energy needed to suppress repetitive 

firing, for instance in the clinical case of suppressing an epileptic neuron.  We have 

previously determine the optimal shape and phase angle for the start of an 8-ms stimulus 

waveform.  Thus, using the same parameters, we chose to apply the stimulus under the 

same starting conditions for the system (x1 = 0.9302, x2 = -0.3760.  Our goal for this 

model was to give an 8-ms stimulus, such that system suppresses repetitive firing stably 

for 92-ms after the stimulus is given.   
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We defined suppression of repetitive firing as the lack of peaks less than -1.5 units tall, 

slightly smaller than the height of a normal action potential.  For the FitzHugh-Nagumo 

model, we multiplied the time intervals by a randomly generated number using a 

Gaussian distribution with mean of 1 and standard deviation of 0.25.  We added to each 

peak a randomly generated number with a Gaussian distribution with mean of 0 and 

standard deviation of 10% of the amplitude of the peak.  We allowed the algorithm to run 

for 10,000 iterations.   

The bistable system is slightly different from a monostable system in that it is a little 

harder to define a clear distinguishing feature that we could use to dictate what portion of 

the stimulus was contributing to the state change.  As such, we gave discrete 8-ms 

snippets to the FitzHugh-Nagumo model and used successful snippets as the starting 

seeds for the Extrema Distortion Algorithm.  We used white noise generated using a 

uniform distribution random number generator with an amplitude of 2 units and a 

resolution of 0.1 ms, capturing 49 snippets over the course of 1,000 total snippets.   

As a proof of principle, we ran an instance of the Extrema Distortion Algorithm with 

100-ms long stimulus.  We wonder if the algorithm could guide us to knowing what the 

proper phase response of the stimulation should be.  We were able to capture 16 100-ms 

white noise snippets that successfully suppressed repetitive firing. 
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Flipping a genetic toggle switch 

One of the more recent innovations in biotechnology has been the construction of genetic 

toggle switches[179].  These switches play an important role in synthetic gene-regulatory 

networks by allowing transient stimuli, chemical, or thermal, to trigger state changes in 

bistable networks.  This switch is composed of two repressors and two constitutive 

promoters.  The opposing promoter, as seen in Figure 6.2, transcribes each repressor.   

This model consists of two state variables,   and  , representing the two repressor 

concentrations.  The equations governing this system are: 

 

 

where α1 and α2 are the rate of synthesis of repressor 1 and repressor 2 respectively, β is 

the cooperativity of repression of promoter 2 and γ is the cooperativity of repression of 

promoter 1.  In the study, they created a single plasmid that used the Lac repressor (lacI) 

in conjunction with the Ptrc-2 promoter as repressor 1 and a temperature-sensitive λ 

repressor (cIts), in conjunction with a PLs1con promoter as repressor 2.  Because of this 

particular setup, the parameters of the model are α1 = 156.25, α2 = 15.6, β = 2.5, and γ = 

1.    
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Figure 6.2: Diagram of the genetic toggle switch.  Figure adapted from Gardner TS, Cantor CR, 
Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli.  Nature 403: 339-342. 
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In this toggle switch, only one of the concentrations is elevated at any given time.  They 

used a pulse of isopropyl-β-D-thiogalactopyranoside (IPTG) to switch the system so that 

the lacI concentration was elevated, and then used a thermal pulse to switch the system 

back.  The model was expanded to include IPTG as the exogenous stimulus to the 

system.   

 

where K is the dissociation constant of IPTG from LacR and η is the cooperativity of 

IPTG binding.  K is set at 2.9618 x 10-5, and η = 2.0015.  Using the model, we can 

calculate the stable points by setting   

  
 and   

  
 to zero.  We learn that there are two stable 

fixed points: (0.3319, 11.7080) and (155.5143, 0.0995).  An unstable fixed point was 

calculated at (1.3144, 6.7342).   

From the literature, we have seen that a 20-minute pulse of IPTG is used to constitutively 

turn on lacI protein production.  Our goal was to find the optimal 20-minute pulse of 

IPTG that would turn off the lacI protein production at the end of 20 minutes.  One of the 

twists regarding the genetic toggle switch model is that the stimuli need to be positive-

only because the stimulus represents the concentration of IPTG.  A negative 

concentration is impossible.  Thus, when finding our starting snippets, we tested 20-

minute discrete non-negative intensity snippets.  We generated white noise using a 
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uniform distribution random number generate with an amplitude of 0.0002 and a 

resolution of 0.1 minutes, capturing 29 snippets out of 50 snippets.  In the distortion 

phase, instead of adding a randomly generated number to the peak, we multiplied the 

peak by a randomly generated number with a Gaussian distribution with mean of 1 and 

standard deviation of 0.1.  This way, the values would stay positive.  For the genetic 

toggle switch model, we multiplied the time intervals by a randomly generated number 

with a Gaussian distribution with mean of 1 and standard deviation of 0.25.  The 

algorithm iterations 2,000 times. 

Results 
We applied the Extrema Distortion Algorithm to three unique models to display the 

adaptability of this algorithm to a range of different systems.  We have chosen two of the 

classic computational models used in neuroscience: the Hodgkin-Huxley model for 

triggering a single action potential, and the FitzHugh-Nagumo model for suppressing 

repetitive firing.  We have also chosen to apply this algorithm to a relatively new model 

in synthetic biology, the genetic toggle switch for causing a switch from one state to the 

other.   

Induction of an action potential: The Hodgkin Huxley model 

We ran 35 instances of the Extrema Distortion Algorithm, each with a unique starting 

seed.  Figure 6.3 illustrates the path the algorithm takes as it begins with a stochastically  
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Figure 6.3: The Extrema Distortion Algorithm shapes stochastically generated stimuli towards an 
optimal waveform.  Here we show the progression of solutions from the original white noise stimulus 
in the 1st iteration to the 2nd, 5th, 10th, 20th, 50th, 1000th and 5000th iteration.  By convention, positive 
current is depolarizing.   
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generated initial stimulus, and it slowly evolves towards the optimal stimuli.  It is 

interesting to note that the algorithm makes substantial improvements even within the 

first 10 iterations, when fundamental shapes become visible.  By 50 iterations, most of 

the noise disappeared, and we saw convergence to a solution at 5,000 iterations.   

Because this is an Extrema Distortion Algorithm, we can monitor the extrema time and 

amplitude over the course of the algorithm as well as seen in Figure 6.4.  Here we can see 

that again, the algorithm begins with stochastically generated stimuli where the extrema 

are uniformly scattered out both in time and amplitude.  Over the course of 100 iterations, 

we can see the algorithm pruning away extraneous extrema, converging the remaining 

extrema towards specific locations.  There is a brief moment around 900 iterations where 

the algorithm does not find any improvement for a short period, but then it is able to find 

an improvement, which leads to more optimal solutions.   

The resulting 35 stimuli had an average L2-norm of 15.550 and a standard deviation of 

0.149.  Figure 6.5 shows the progression of improvement in stimulus energy over the 

5,000 iterations, as well as the resulting stimuli for all 35 snippets.  We lined up the 

resulting 35 stimuli based on where the action potential occurred.  As we can see, the 

algorithm did a good job at converging the various stochastically generated noise samples 

towards the optimal solutions.   
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Figure 6.4: The extrema in the signal evolves over the course of the algorithm.  Both the timing (top) 
and the amplitude (bottom) of the extrema begin randomly scattered and over the course of a few 
iterations, it rapidly converges towards a few key locations.  Over the course of a few hundred 
iterations, one can see the algorithm prune away at unnecessary extrema.   
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Figure 6.5: The algorithm takes randomly generated stimuli and evolves them towards a single global 
optimal solution for the Hodgkin-Huxley model.  As seen from the time course of the stimulus energy 
(A), the algorithm begins with very energetic stochastically generated stimuli and rapidly finds more 
energetically efficient stimuli.  Panel (B) shows all of the resulting stimuli overlaid on top of each 
other, aligned by where they cause an action potential to occur.  The stimulus’ baseline is at 0 μA / 
cm2 
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The best of the 35 snippets had an L2-norm of 15.270 compared to what we were able to 

determined using the gradient algorithm, 15.354.  Figure 6.6A shows the comparison of 

the best result from the distortion algorithm compared to the result from the gradient 

algorithm.  While we do see that the best of the Extrema Distortion Algorithm is better 

than the result from the gradient algorithm, we found that the variation among the 35 

resulting snippets were much larger using the Extrema Distortion Algorithm compared to 

the gradient algorithm, as seen in Figure 6.6B.   

The choice to use extrema instead of every single data point was to combat the “curse of 

dimensionality.”  We hypothesized that using the extrema alone would improve 

computational efficiency of the algorithm as well as produce results that are more 

accurate.  In order to test this hypothesis, we reconfigured our algorithm to use every 

single data point in what we are calling the all-points distortion algorithm instead of the 

Extrema Distortion Algorithm.  As we can see in Figure 6.7A, the improvement of L2-

norm across the 35 snippets using Extrema Distortion Algorithm converges towards an 

optimal solution faster than the improvement of L2-norm across 35 snippets using the all-

points distortion algorithm. 

Quantitatively, the average L2-norm of the all-points distortion algorithm is 15.902 with a 

standard deviation of 0.171.  The best result from all-points distortion algorithm has an 

L2-norm of 15.683.  Figure 6.7B shows that the best result in all-points distortion retains 

a considerable level of noise as compared to the best result in extrema  
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Figure 6.6: The Extrema Distortion Algorithm finds solutions that match very closely with that found 
using the gradient algorithm.  The result from the best of the 35 snippets using distortion of the 
extrema (red) is shown in panel A compared to the best of the 35 snippets using distortion of all the 
points (blue).  While the fundamental shape is very similar, the result using distortion of all the 
points retains more noise than the result using distortion of only the extrema.  Panel (B) shows the 
range of stimulus energy in 35 runs of both the Extrema Distortion Algorithm as well as the gradient 
algorithm.  The stimulus’ baseline is at 0 μA / cm2 
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Figure 6.7: The Extrema Distortion Algorithm (red) finds solution more efficiently than an all-points 
distortion algorithm (blue).  We show both the L2-norm progress of 5,000 iterations across both 
algorithms for the same initial 35 snippets in panel A.  Panel B shows the best solution from both 
algorithms.  The stimulus’ baseline is at 0 μA / cm2.   

  



126 
 

distortion.  Both of these results support our hypothesis that the extrema distortion is 

more efficient than the all-points distortion method, while maintaining a high level of 

accuracy. 

Switching off oscillations: The Fitzhugh-Nagumo model  

To push the algorithm further, we applied the algorithm to a bistable FitzHugh-Nagumo 

model to see how the algorithm would perform when suppressing repetitive firing in a 

bistable system.  We captured 49 white noise snippets, which we then ran through the 

Extrema Distortion Algorithm.  We noted that the resulting stimuli fell into one of two 

modes: one mode with an average L2-norm of 0.504 and a standard deviation of 0.079, 

while the other mode had an average L2-norm of 7.207 x 10-4 and a standard deviation of 

2.778 x 10-4.  Figure 6.8 shows the final form of all 49 stimuli separated into the two 

modes.  These waveforms correspond to results that we have obtained from the gradient 

algorithm, which produced two separate shapes, the smaller one with an L2-norm of 

0.0112 while the larger one had an L2-norm of 1.1277. 

We observed that the Extrema Distortion Algorithm performs better than the gradient 

algorithm in both shapes.  Upon closer examination, we realize that this was because we 

had different definitions of successful transition between the two algorithms.  The 

Extrema Distortion Algorithm was set to find an optimal solution that suppressed action 

potentials, while the gradient algorithm was find an optimal solution that suppressed all 

oscillatory activity.  Because the FitzHugh-Nagumo quiescent state has a shallow basin  
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Figure 6.8: The Extrema Distortion Algorithm converges towards the two locally optimal solutions in 
the FitzHugh-Nagumo model.  The 49 snippets used on the FitzHugh-Nagumo model revealed two 
separate locally optimal waveforms.  The top panels show the model response to the stimuli shown in 
the bottom panels.  Note that the left stimulus is much smaller in scale than the right stimulus.  The 
snippets are aligned such that the first valley after repetitive firing has ended occurs at 0 ms.  The 
stimulus’ baseline is at zero.   
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of convergence, the state can oscillate at a sub-action potential level for a longer period 

before arriving at the fixed point.  Thus, simply suppressing action potentials does not 

necessarily equate to arriving at the fixed point.   

In order to account for this difference between the two algorithms, we applied stricter 

definitions of success to the Extrema Distortion Algorithm.  Because we were unable to 

find any stimuli that took the system exactly to the fixed point of quiescence, we were 

unable to use that as the exact criteria.  What we did instead was shrink the definition of 

success in different experiments until we were no longer able to find any successful 

white-noise solutions to use as starting seeds.   

The resulting stimuli using a much tighter definition of success again was bimodal with 

the smaller set having an average L2-norm of 0.0072 and a standard deviation of 0.0018, 

while the larger set had a an average of 1.094 and a standard deviation of 0.123.  Figure 

6.9 shows just the smaller set of solutions found and compares the result from the 

gradient algorithm to the results from both the loose and strict definitions of successful 

transitions.  As seen here, the stricter definition of successful transitions does indeed find 

a waveform closer in shape to the solution found using the gradient algorithm.  

Finally, we examine how robust the Extrema Distortion Algorithm works with long 

stimulus durations.  The purpose of this experiment was two-fold.  First, we wanted to 

test the robustness of the Extrema Distortion Algorithm when using large dimensional  
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Figure 6.9: The Extrema Distortion Algorithm allows for more flexibility in terminal conditions 
leading to more optimal results.  Panel A shows the result from the gradient algorithm (blue) as well 
as two versions of the Extrema Distortion Algorithm.  The first version of the Extrema Distortion 
Algorithm (red) limits the terminal condition of success to be extremely close to the fixed point 
similar to the gradient algorithm.  The second version of the Extrema Distortion Algorithm (green) 
specifies the condition of success to just be a suppression of action potentials (-x1 < 1.5).  Panel B 
shows the state space of the system’s response to the various stimuli (left) with a zoomed in version to 
what is occurring next the fixed point (right).  The stimulus’s baseline is at 0. 
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stimuli.  Secondly, from a clinical perspective, the optimal phase and stimulus duration 

are often unknowns.  We wanted to find out if our algorithm could assist in the 

determination of these parameters by allowing it a great deal of flexibility to find optimal 

solutions.  Figure 6.10 shows the results from 17 white-noise snippets, aligned by where 

the first sub-action potential peak occurs after the transition from repetitive firing to 

quiescence.  As we can see, the algorithm does give general structures for what the shape 

of the optimal stimulus should be, as well as phase information.  From what we can see in 

the figure, the optimal stimulus waveform is in anti-phase to the system response in order 

to cause successful transition from repetitive firing to quiescence.  As seen in the figure, 

when we overlay all the solutions on top of each other, there is a remarkable amount of 

convergence between them.   

Flipping a genetic toggle switch 

So far, our applications have been neurologically based, but this algorithm is completely 

model agnostic.  Thus, we decided to expand our test cases to a non-neurological model.  

The genetic toggle switch, a relatively recent development in synthetic biology, is a 

bistable system, but instead of having one oscillatory state and one fixed state like the 

FitzHugh-Nagumo, both stable states are fixed.  We ran 29 white-noise snippets through 

the Extrema Distortion Algorithm.  The resulting optimal stimuli had an average L2-norm 

of 2.968 x 10-8 and a standard deviation of 2.25 x 10-9.  Figure 6.11A shows the best of 

the 29, with an L2-norm of 2.563 x 10-8, along with the results from the gradient  
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Figure 6.10: The Extrema Distortion Algorithm can be used to gain insight into the phase-
dependency and duration of the optimal stimulus.  The Extrema Distortion Algorithm used on 17 
unique 100-ms snippets shows converge towards a phase-specific stimulus waveform.  These snippets 
were all aligned such that the first peak after the action potential occurred at 100 ms.  The top panel 
shows the FitzHugh-Nagumo’s response to the stimulus displayed in the bottom panel.  The 
stimulus’s baseline is at 0. 
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Figure 6.11: The Extrema Distortion Algorithm can be used to find optimality under constrained 
conditions.  In panel A, success is defined by seeing a transition occur at 20 minutes.  The stimulus in 
terms of concentration of [IPTG] is shown above the concentration of repressor 2.  As seen, the 
Extrema Distortion Algorithm (red) produces a very similar waveform to that of the gradient 
algorithm (blue).  In panel B, success defines the transition occurring at 100 minutes, while the 
stimulus duration is still kept at 20 minutes.  The gradient algorithm calculates the optimal stimulus 
using knowledge of where the separatrix, while the Extrema Distortion Algorithm does not.  The 
stimulus starts at 0 M [IPTG]. 
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algorithm, which has an L2-norm of 2.487 x 10-8.  Again, we can see that the two results 

are similar in both shape as well as L2-norm value.   

As we had seen with the FitzHugh-Nagumo model, a change in the definition of success 

could result in a different optimal solution.  In searching for the optimal stimuli, we 

wanted the system to reach the terminal state at the end of the 20 minutes.  For practical 

implementation, one may only need it to have switched from being in the basin of 

attraction of one state to being in the basin of attraction of the other state.  In this desired 

implementation, one would only need to find an optimal stimulus that would cross the 

separatrix instead of travel all the way over to the other state.  Thus, we reconfigured the 

gradient algorithm to find the optimal stimuli to the separatrix.  We ran our Extrema 

Distortion Algorithm with a 20-minute stimulus, but instead of setting the condition of 

success as reaching the terminal state by the end of 20 minutes, we set it to reach the 

terminal state by 100 minutes.  With the gradient algorithm, we had a mathematical 

model that we could use to calculate where the separatrix existed.  Because we wanted to 

maintain our model-independent principle, we allowed the algorithm to reach the 

terminal condition at a more distant point in time, meaning that the stimulus must have 

cleared the separatrix in the first 20 minutes in order for it to transition.  Figure 6.11B 

shows one of the results we found compared to the gradient algorithm.  Again, we can see 

that the Extrema Distortion Algorithm was able to find a solution that had a very similar 

waveform shape and L2-norm values as the gradient algorithm.  It is interesting to see that 

the Extrema Distortion Algorithm was able to evolve a solution that learned where the 
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separatrix existed even without any knowledge of the mathematical model underlying the 

system.   

So far, we have been doing all our analysis using the L2-norm as an indicator of 

performance.  When dealing with chemical reactions however, the L2-norm has very little 

qualitative meaning.  In most chemical reactions, it is more important to minimize the 

maximum dosage of the stimulus at any given time.  We ran the Extrema Distortion 

Algorithm again using our goal as peak minimization.  Figure 6.12 shows the resulting 

waveform compared to the optimal waveform based on minimizing L2-norm.   

Evaluating the Use of Pre-Processing Noise Filter 
In the course of this work, we speculated that some initial filter of the seed would be 

useful to increase the efficiency of the algorithm.  As such, we explored this idea by 

using Empirical Mode Decomposition (EMD) to break down the successful white noise 

snippets into what we termed “distilled” snippets.  We then processed these distilled 

snippets through the Extrema Distortion Algorithm, allowing us to evaluate the benefits 

of the noise filter. 

Pure white noise snippets contain many extrema.  We hypothesized that if we were able 

to reduce the number of extrema down to just the right number of extrema, each iteration 

of the distortion algorithm would require fewer computations, and thus over  
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Figure 6.12: The Extrema Distortion Algorithm can discover optimal stimuli based off of different 
performance metrics.  Here we show the resulting optimal stimuli discovered by the Extrema 
Distortion Algorithm using the L2-norm performance metric (blue) and the maximum amplitude 
performance metric (red).  The stimulus starts at 0 M [IPTG].   
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all the algorithm would be more efficient.  In order to distill the snippets down, we 

considered using Fourier analysis, wavelet analysis, and EMD to break down the white 

noise snippets, determining the fundamental component of the snippet causing the state 

transition.  We decided to use the Empirical Mode Decomposition.  Because we were 

working with short discrete stimuli, we did not want to use Fourier analysis because of 

the known edge effects.  Furthermore, we chose not to use wavelet analysis because we 

were concerned that the choice of wavelets may bias the results.   

Thus, we chose to use EMD to separate out the white noise snippets into a set of intrinsic 

mode functions (IMFs).  We tested every combination of consecutive IMFs, scaling each 

combination until it just barely caused a state transition.  From these results, we chose the 

combination of consecutive IMFs that used the least amount of energy.   

The distillation process is able to reduce many of the white noise snippets into very 

energy efficient snippets that successfully cause a state transition with a mean L2-norm of 

29.206 and standard deviation of 8.256.  We used these resulting filtered snippets as the 

starting seeds of the Extrema Distortion Algorithm.  The resulting distilled and distorted 

snippets have a mean L2-norm of 16.695 and standard deviation of 1.3194.   

Figure 6.13 shows that compared to just during extrema distortion alone with no filtering 

(mean = 15.550, standard deviation = 0.149), running EMD before EDA caused  
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Figure 6.13: Comparison of the ranges of L2-norm results between the gradient algorithm, the 
Extrema Distortion Algorithm, and the Empirical Mode Decomposition combined with the Extrema 
Distortion Algorithm. 

  



138 
 

increased variability.  The best result from doing the pre-processing had an L2-norm of 

15.438, which was comparable to the 15.275 from the Extrema Distortion Algorithm 

alone.  Figure 6.14 shows the best result from the Extrema Distortion Algorithm with and 

without pre-processing filter.   

It is interesting to note that there is no correlation between how well a snippet did after 

the distillation phase as compared to the distortion phase.  Furthermore, it would seem 

that the distillation process produced solutions that were worse than those generated from 

using only distortion were.  Our conclusion is that it is possible for any sort of pre-

processing work to oversimplify the white noise snippets, biasing the signal away from 

optimality.  Future research and algorithm development may show how better to reduce 

the amount of noise to start from the white noise snippet, while not biasing the solution.   

Discussion 
As can be seen in our results, the Extrema Distortion Algorithm is able to find stimulus 

waveforms that are very close to what we have analytically calculated to be optimal.  The 

use of extrema in simplifying data sets is not a novel concept in the field of signal 

processing.  In the field of pattern recognition, certain algorithms use the coordinates of 

robust extrema to simplify the number of points to match[180].  In computer vision, 

extrema are used as key feature markers for object recognition and multi-scale 

representation of the original images[181,182].  In many of these algorithms, extrema  
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Figure 6.14: Comparison of the best result from Extrema Distortion Algorithm (red) with the best 
result from the Extrema Distortion Algorithm combined with an initial Empirical Mode 
Decomposition denoising.  The stimulus is aligned such that the action potential occurs at 0ms. 
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mark key feature points, and thus, they construct a simplified representation of the 

original signal retaining only the most important components.  This makes the 

manipulation and usage of the signals more efficient and simpler.   

To our knowledge, algorithms that search for optimal stimulus waveforms have not used 

extrema.  As we have stated, one of the biggest problems with searching for optimal 

stimulus waveforms is that they exist in a very high dimensional solution space.  Some 

researchers approach this problem head on and apply search algorithms to the entire 

solution space[166], but others choose to simplify the solution space by making certain 

assumptions.  One of the most common methods of simplifying the solution space is by 

assuming certain basic shapes.  For instance, a number of studies search for the optimal 

dimensions of rectangular pulses for causing state transitions[72,76].  One study recently 

tried using the pivot points of cubic splines to redefine and simplify the solution 

space[69].  The problem with most of these studies that seek to simplify the solution 

space is that they bring in certain presuppositions of what the optimal stimulus waveform 

looks like.  Studies have shown that the rectangular pulse is not energetically 

efficient[34,183], and thus the use of these simplifications limit the possibilities of even 

better optimal stimulus shapes.   

One of the benefits of the Extrema Distortion Algorithm is that there are no 

presuppositions about optimality introduced into the algorithm.  The algorithm begins 

with stochastically generated noise containing many extrema.  This is beneficial in that it 

allows the stimulus to have more degrees of freedom to explore for optimality at the 
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beginning when the algorithm knows little about the optimal solution.  As the algorithm 

progresses, unnecessary extrema are filtered out, increasing the efficiency of the 

algorithm.   

One weakness with the algorithm is that we assume a linear transformation from one set 

of extrema to the other.  Once the waveform shape has been determined between 

extrema, there is little chance that it will change again.  So far, in the three examples we 

have used, we have not noticed this to be a problem.  We postulate that because we are 

beginning with many extrema, each extrema has the opportunity to be at the proper 

inflection points in the waveform before they disappear.  To improve this technique in the 

future, we may want to examine methods to aid in the search and verification of 

intermediate points as well as the extrema.   

In the Hodgkin-Huxley model, we noticed that the best result from the Extrema 

Distortion Algorithm produced an even better result than that found using the gradient 

algorithm.  While this surprised us at first, we realized that this result showed us the 

limitations of the gradient algorithm.  We used a first-order gradient algorithm for its 

robustness to initial conditions.  However, a first-order gradient algorithm has the 

weakness of not being able to fine-tune convergence when it sits very close to optimality 

because it overestimates or underestimates the next step due to its use of only first-order 

gradients.  Many algorithms need to trade between the ability to converge towards 

optimality and robustness to initial conditions.  The fact that the Extrema Distortion 

Algorithm can at times surpass analytical methods is thus a pleasant surprise.  That being 
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said, it is important to realize that while the best of the Extrema Distortion Algorithm was 

able to successfully find a better solution, there were many solutions found that although 

were close, were not as good as the gradient algorithm.  This variability is an inherent 

component of any stochastic algorithm.   

While this algorithm has performed both accurately and efficiently, it is a rather 

simplistic algorithm in the world of model-independent optimization techniques.  By 

examining these other techniques, we can gain ideas on how to improve both the 

accuracy and the efficiency of this algorithm.  We highlight at least three areas that we 

think future research may explore using our algorithm as a first step: initial noise 

filtration, cross learning between different seeds, and incorporation of statistical 

principles to guide choice of next stimulus.   

One of the first things we noticed when developing this algorithm is that there is an 

excessive level of noise in the starting seeds.  We speculate that if we were able to 

remove this noise, we would be able to converge quicker towards the optimal solution.  

We describe later in this chapter our first attempt to filter out some of the noise.  

Unfortunately, we have found that while filtering can help reduce the noise, how well a 

stimulus does after filtering does not necessarily correlate to how well it will do after the 

distortion process.  Furthermore, sometimes filtering the stimulus can bias it towards a 

specific waveform shape and thus push the solution further away from optimality as 

opposed to towards optimality.   
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Secondly, we recognize that the Extrema Distortion Algorithm utilizes at its heart a 

stochastic hill-climbing approach [172], which starts with a single seed and progresses its 

way forward without any input from how other parallel processes are performing.  As we 

have stated before, stochastic hill-climbing is one of the simplest approaches.  More 

recently, there has been growing interest in population-based evolutionary algorithms like 

genetic algorithms and particle swarm optimization.  These algorithms incorporate a 

learning process between different runs of the algorithm that start with different seeds.  

One of the earlier studies that looked at model-free methods to obtaining optimal 

stimulus waveforms used genetic algorithms[166].  Unfortunately, most of these 

population-based algorithms require all the solutions share a common dimensionality in 

order for them to be able to recombine.  Our algorithm does not meet that criterion as the 

number of extrema changes from one solution to the next.  However, the concept of 

allowing some form of learning between solutions is an area for future investigation as 

we may be able to boost efficiency of the algorithm.   

Finally, the algorithm chooses the next stimulus by examining a set of randomly chosen 

neighboring stimuli with no guidance as to where better solutions may come from.  The 

algorithm samples all neighboring solutions with equal probability.  One interesting 

approach that we came across when examining optimal stimulus waveforms was efficient 

global optimization (EGO)[184], which constructs a generalized least squares model of 

the response surface by making the assumption that solutions close together will elicit 

similar responses from the system in question.  The algorithm tests a set of points in the 

solution space in such a way as to minimize the error potential of the response surface 
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model by choosing new points to test that have the highest level of uncertainty as 

determined through statistical means.   

Unfortunately, this method assumes a continuous response surface.  In our search for 

optimal stimulus waveforms, we need to take into account the fact that certain stimuli do 

not successfully cause the state change that we want.  We break the assumption that 

neighboring solutions have similar responses due to solutions that sit close to the 

boundary between successful and unsuccessful stimuli.  While EGO may not directly be 

applicable, the concept of incorporating some sort of statistical measurement to guide the 

algorithm in sampling neighboring solutions is an area of future research that could 

improve the efficiency of the algorithm further.   

What we have done in this study is present a first step in the development of a stochastic 

optimization algorithm for black-box systems to find optimal stimulation for 

physiological systems that utilizes extrema to simplify the search space.  With further 

development by potentially incorporating noise filters, learning mechanisms or statistical 

principles, we may see these algorithms applied in a clinical setting to determine 

efficiently optimal stimulus waveforms for therapeutic treatments.    
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CHAPTER VII 

Extrema Distortion Algorithm: Optimally 
Suppressing Epileptic Seizures 

 

 
Introduction 

Epilepsy affects 2.3 million adults and over 450,000 children under the age of 18 in the 

United States[185,186].  Physicians diagnose roughly 150,000 new cases each year.  The 

total financial burden of this disease in both direct and indirect costs was estimated at 

$9.6 billion in 2009[187].  While the primary form of treatment for epilepsy is in the 

form of anti-seizure medication, nearly 30% of these patients do not respond to drug 

therapies[188].  While some patients can undergo surgery to treat refractory epilepsy, not 

all medically refractory patients are candidates for these procedures.  As an alternative, it 

has been shown that electrical stimulation of specific regions of the brain can aid in the 

suppression of seizure frequency and severity[189–195].   

One of the key features of epileptic seizures is dysfunctional neurological oscillatory 

activity.  Treatment for epilepsy via electrical stimuli has focused on the rectification or 

suppression of these dysfunctional oscillations.  To that end, three different types of 

treatments have been developed: vagus nerve stimulation[196–198], deep brain 
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stimulation of the thalamus, the subthalamic nucleus, the caudate nucleus and the 

cerebellum [24,189,199], and responsive neural stimulation of cortical epileptogenic 

regions[192–194].  In each of these treatments, a fundamental waveform is used, and 

physicians tweak a few basic parameters including frequency, pulse duration, and 

amplitude based on how the patient responds in order to improve performance.   

An important computational challenge arises here not only to find stimuli that 

successfully suppress seizures, but also to minimize its energy usage.  Each of the 

existing treatments has some adverse effects potentially related to energy leakage from 

the stimuli into neighboring areas.  For instance, patients that are given vagal nerve 

stimuli have demonstrated coughing, voice alteration, paraesthesia, dyspnea and 

headache[197,198].  Patients undergoing deep brain stimulation appear to be less prone to 

adverse effects, but there have been reports of depression, memory impairment, anxiety, 

and paraesthesia[189] related to stimulation.  Patients undergoing responsive neural 

stimulation of the cortex have shown instances of implant site pain, headaches, and 

dysesthesia[193].   

In this chapter, we apply the Extrema Distortion Algorithm to four separate mathematical 

models of epilepsy based on different mechanisms examining different levels of 

complexity.  We demonstrated how this algorithm is able to find optimal solutions 

relatively quickly without any bias towards one waveform over another and without 

needing any knowledge of the mechanisms underlying the models.  By applying this 
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algorithm to the four separate models, we seek to gain therapeutic insights into the 

clinical treatment of epilepsy with electrical stimulation. 

Methods 
Extrema Distortion Algorithm 

The Extrema Distortion Algorithm (EDA) finds optimal stimulus waveforms without 

requiring any a priori knowledge of the underlying mechanisms or mathematical 

equations defining the system or behavior.  EDA works by iteratively taking a starting 

waveform and allowing its extrema (the peaks and valleys) of the stimulus, to move 

around in search for a more optimal stimulus.  This more optimal stimulus becomes the 

starting waveform for the next iteration.   

We first seed the algorithm by applying white noise into the model in search for snippets 

that successfully cause the desired outcome.  The white noise snippets that successfully 

trigger the outcome turn into the seeds for EDA.  In all of the experiments done in this 

study, we sought to minimize the energy usage of the stimulus as conventionally defined 

by the L2-norm, which is the sum of the squares of the stimulus amplitudes over time.   

Devices giving electrical charge to the body attempt to do so in such a way that the net 

electrical charge injected is equal to zero.  This is because if excessive charge builds up 

in the body, irreversible damage is done to the neural tissue[200,201].  As such, we added 

a new constraint to our algorithm such that after every distortion, we subtract the mean of 

the stimulus from the stimulus.  This forces each distortion to produce only zero-mean 

stimulus waveforms.  Thus, we were able to restrict the search space for all the 
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experiments to return only charge-neutral solutions.  We ran each experiment twenty 

times with different starting seeds each time.   

Single cell repetitive firing 

In many instances of epilepsy, seizure activity arises from a derangement in the neuron’s 

intrinsic properties resulting in repetitive firing[11,202].  A subset of epilepsies falls in 

the category of channelopathies, mutations in genes that encode various ionic channels.  

Among these channelopathies, forms of generalized epilepsy with febrile seizures has 

been linked to mutations in genes encoding voltage-gated sodium channel α, leading to 

persistent inward current which likely causes increased excitability of the neuron’s 

membrane[202].  To model this, we have added a 9 μA/cm2 persistent current to the 

Hodgkin-Huxley model, essentially increasing the excitability of the neuron’s membrane.  

Our model consists of the following equations: 

                                                (6-1) 
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where   is the membrane voltage,  ,  , and   represent dimensionless quantities 

associated with sodium channel activation, potassium channel activation, and sodium 

channel inactivation respectively, and   represents the exogenous stimulation we are 

looking to input into the system.  The addition of the persistent current causes the 

Hodgkin-Huxley model that we have defined here to be bistable representing the 

increased excitability found in cells prone to seizures. 

Using EDA, we found the optimal 31-ms stimulus (the duration of two cycles of 

repetitive firing) that successfully suppressed the system from repetitive firing to 

quiescence where the membrane voltage no longer went above 50 mV.   

Single cell bursting 

There has been recent work that has examined the possibility that the epileptic cell is not 

repetitively firing, but instead bursting (e.g. firing sets of action potentials followed by 

temporary quiescence).  Cressman et al. have worked to develop a more accurate model 

of a single-cell neuron that includes the interaction of the neuron with the different ionic 

concentrations in its microenvironment[203] in an attempt to model this bursting 

behavior.   

The equations for this model are as follows: 
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                                     (6-13) 
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Variables and accessory equations are detailed in [203].   

What is interesting about this system compared to other experiments that we have done is 

that this system is not bistable.  The system only exists in its bursting state, and it is 

impossible to suppress the bursting behavior indefinitely.  As such, we try to accomplish 

something a little different.  Instead of seeking to suppress the system for a long period, 

we seek to suppress the burst quicker than normal, while maintaining when the next burst 

will occur. 

The bursting state cycles every 38 seconds, with action potentials firing the first 6 

seconds and quiescence in the remaining 32 seconds.  Using EDA we sought to give a 2-

second stimulus to the system 100 milliseconds after the bursting begins, suppressing any 

action potentials from occurring for 36 seconds following the end of the stimulus.   
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Coupled oscillators network 

From a network perspective, there is a hypothesis that one of the mechanisms underlying 

epileptic seizures is a synchronization of various regions of the brain[204–207].  

Synchronization has been observed in rat hippocampal slices perfused with high 

potassium saline solutions[208].  One of the alternative electrical therapies for patients 

has been vagal nerve stimulation (VNS).  While its exact mechanism is still unknown, it 

is hypothesized that VNS works by desynchronizing neuronal activity, an idea supported 

by the EEG response to VNS[209].   

As such, we have attempted to model a network of five coupled Hodgkin-Huxley 

neurons.  We chose five for computational purposes, but we could scale up the model 

relatively easily.  In order to model them as oscillators, we have increased the persistent 

current to 12 μA/cm2 such that the system is monostable repetitive firing.  We coupled 

every neuron with every other neuron by using a constant coupling factor and the voltage 

differences between the neurons:  

         

 

   

 
(6-20) 

where   represents the neuron in question,   represents all neurons and   is the coupling 

constant.  The new model of equations replaces Eq. (6-1) with: 
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(6-21) 

where   ,   ,   , and   are the state variables of the ith neuron.  All the other equations 

still applied.   

We started the five neurons in a near synchronous state.  We chose to use a 31-ms 

stimulus duration (two cycle lengths).  In this model, the mean-field potential of the five 

neurons is representative of what an EEG reading.  From our white noise snippets, we 

noted that a very small percentage (0.02%) successfully dropped the mean-field below 

32.5 mV.  As such, we set up EDA to find the optimal 31-ms stimulus waveform that 

would take the mean-field potential to below 32.5 mV by the end of the 31 milliseconds.   

Population-based systemic bursting  

The models of epilepsy can be generally categorized as either microscopic, ionic models 

and macroscopic, population models[210].  The first three models we have examined fall 

in the first category, examining and quantifying the ionics of the system.  Because 

epilepsy affects extremely large networks, it is difficult and time-intensive to calculate 

the ionic mechanism underlying each individual neuron in these large networks.  As such, 

researchers have developed population-based models that lump together groups of 

neurons into their mean-field components, modeling interactions between populations of 

neurons as opposed to individual neurons.  
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For our experiment, we have examined a simple bistable system developed by 

Suffczynski et al[211].  This model examines epilepsy through the interactions of four 

populations of neurons: pyramidal neurons, interneurons, thalamocortical neurons and 

reticulothalamic neurons.  In this model, the pyramidal neurons qualitatively mimic EEG 

activity.  Figure 7.1 shows a diagram with the various interconnections modeled between 

the four populations of neurons.  The researchers tailored the parameters to match 

experimental data collected from the Wistar albino Glaxo from Rijs-wijk (WAG/Rij) rat, 

which is a genetic animal model of absence epilepsy. 

In this model, there exist two states, a quiescent state, and a seizure state delineated by 

the strength of the pyramidal neurons’ mean-field voltage.  The system can 

spontaneously transition on its own from one state to the other due to a low level of 

sensory noise programmed into the model.  We found a set of initial conditions for the 

system such that the system begins in the quiescent state, but then spontaneously 

transitions into a seizure state a second later.  For this model, we used EDA to find the 

optimal 100-ms waveform that was sufficient to suppress the seizing state back to 

quiescence within 100 milliseconds after the stimulus terminated.   
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Figure 7.1: Diagram of the Suffczynski et al model.  Four populations of neurons are modeled: pyramidal 
neurons (PY), interneurons (IN), reticulothalamic neurons (RE), and thalamocortical neurons (TC). 
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Results 
Suppression of single cell repetitive firing 

Figure 7.2 shows the optimal stimulus found through EDA.  As seen in this figure, the 

optimal stimulus is multi-phasic with a prominent biphasic component in the center.  The 

stimulus is also in anti-phase with the membrane voltage. 

As a point of comparison, we did a grid search of biphasic rectangular pulses with 

varying stimulus duration (1 ms to 20 ms per phase) and stimulus amplitude (-10 μA/cm2 

to 10 μA/cm2 for the first phase, the inverse for the second phase, in 0.1 μA/cm2 

increments).  The optimal rectangular pulse that we found was 2-ms duration per phase, 

1.4 μA/cm2 and -1.4 μA/cm2 for the first and second phase respectively and had a total 

energy usage of 7.84 μJ.  The optimal stimulus waveform found using EDA had a total 

energy usage of 2.63 μJ.  

Suppression of single cell bursting 

This model of the single cell burster is a little different from the other three models in that 

the cell is not in a clearly defined repetitive firing state or a quiescent state, but instead in 

perpetual bursting state.  Figure 7.3 shows the optimal 2-second stimulus that 

successfully suppressed one burst prematurely while maintaining when the next burst 

occurs.  What is difficult to see in the figures is that there are 168 action potentials 

occurring both when the stimulus is given and when the stimulus is not given.  We 

discuss this result further in the discussion.  



156 
 

 

 

Figure 7.2: Optimal stimulus waveform for suppressing repetitive firing in a single cell. 
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Figure 7.3: Optimal stimulus waveform of the suppression of a single cell burster. 
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Desynchronization of coupled oscillators 

From the perspective of a network of coupled oscillators, we again see a biphasic 

stimulus that is in antiphase to the system as seen in Figure 7.4.  It is interesting to note 

that the timing of the stimulus as it relates to the phase of the neurons is extremely 

important.  We see that the stimulus leverages the slight differences between the 

oscillators to time the stimulus just right so that each one responds slightly differently 

compared to the others, causing desynchronization. 

For this model, we also did a rectangular pulse grid search and found that the optimal 

rectangular waveform had an L2-norm of 154.88 μJ/cm2 as compared to the optimal 

determined by EDA which had an L2-norm of 11.80 μJ/cm2.   

Suppression of systemic bursting  

Figure 7.5 shows the optimal stimulus waveform found by EDA for the population-based 

model of systemic bursting.  As we can see, the solution does indeed suppress the seizure 

state and bring it back to quiescence.  Again, we see the biphasic nature of the stimulus in 

antiphase to the voltage membrane of the pyramidal neurons. 
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Figure 7.4: Optimal stimulus waveform for desynchronizing a network of coupled oscillators 
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Figure 7.5: Optimal stimulus waveform for suppressing seizure activity in a systemic population-
based model.  We show the stimulus, the system’s response, and the control response with no 
stimulus.  The bottom set shows a magnification of the transition due to the stimulus.   
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Discussion 
Electrical stimulation for epileptic treatment 

Research has shown that 30% of all patients suffering from epilepsy do not see a 

reduction of seizure activity on anti-epileptic drugs[188].  While surgical procedures are 

an alternative form of treatment for patients, not all of them are capable of undergoing 

those procedures[212].  As such, researchers have looked into brain stimulation as a 

method to help in the suppression of epileptic seizures. 

Today, there are three types of brain stimulation that clinicians use to treat epilepsy: 

vagus nerve stimulation, deep brain stimulation, and responsive neural stimulation.  The 

traditional brain stimulation waveform for these therapies is rectangular.  In order to 

tailor the stimulation for each patient, clinicians adjust a limited set of parameters 

including pulse duration, pulse frequency, and pulse amplitude to reduce adverse effects 

and maximize efficacy. 

From a computational perspective, there is growing interest in applying non-standard 

pulsatile stimulation for the treatment of epilepsy.  Wilson and Moehlis have applied 

mathematical techniques and principles to solving computational models of epilepsy to 

find energetically efficient stimuli[213] to terminate seizure-like bursting behavior to a 

reduced version of the Cressman model.  Tass has examined the use of delayed feedback 

stimulation as a method to suppress seizures, but he does not examine it from the 

perspective of energy-efficiency[26].   
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Rectangular pulses are not optimal 

In this chapter, we have captured the optimal stimulus waveform using EDA on four 

separate computational models of epilepsy: suppression of single cell repetitive firing, 

desynchronization of networked coupled oscillators, suppression of systemic bursting and 

suppression of single cell bursting.  We have shown in the first two models that the 

optimal solution performs much better than optimal rectangular waveforms, thus 

allowing for potentially large energy reductions in energy consumption.  This 

improvement in energy consumption makes sense from the perspective that the biological 

world responds more often to signals bandlimited by certain frequencies.  From a signals 

perspective, sharp edges in the stimulus require extremely high frequencies, and thus 

these frequencies are wasted energy when given to a system that does not respond to such 

extreme rates of change.   

Optimal stimulus waveforms are short discrete bursts in antiphase to 
the system 

The field of dynamical system theory has studied effect of short discrete pulses in the 

context of oscillatory systems.  Some of the research has focused on examining how 

these short discrete bursts have changed the phase settings of the system[214], while 

others have examined how short discrete bursts can be used to desynchronized coupled 

oscillator networks or completely suppress oscillations [58].  Here in our study, we have 

seen that in all four models, a short discrete burst of stimuli, when given at the proper 

time with the proper waveform, can rectify the dysfunctional oscillatory activity that we 

see during seizure activity.   
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Furthermore, we also note that for three of the models (suppression of single cell 

repetitive firing, desynchronization of coupled oscillators and suppression of systemic 

bursting), the optimal stimulus waveform is in antiphase with the system’s internal 

oscillation, indicating that optimally effective stimuli are phase-dependent.  The same 

stimulus waveform may not work if given at a different phase, or time in the cycle.  

While the idea that antiphasic stimuli has a suppressive relationship with an oscillatory 

system is well-known in dynamical systems theory, it is slowly gaining traction in the 

field of neuroscience as well.  Rosenblaum and Pikovsky, as well as others later, 

demonstrated how synchronization can be controlled via a delayed-feedback stimulus that 

is slightly out of phase with the system[23,26,215].  More recently, computational studies 

have found optimal stimuli that are not just slightly out of phase, but in complete 

antiphase with the system’s oscillations[33,43].   

Mechanistically, if we examine the suppression of the repetitive firing of the single cell 

Hodgkin-Huxley, we can observe that the optimal stimulus gives a brief depolarization 

pulse followed by a larger hyperpolarization pulse.  The hyperpolarization pulse when the 

system would normally be building towards the action potential.  We have seen this result 

occur before in the suppression of repetitive firing in the FitzHugh-Nagumo model as 

seen in the results from Chapter 3 and 6.   

We also see this mechanism of suppressing repetitive firing at the system level bursting.  

We see that the stimulus given is in antiphase with the system such that it counteracts the 

oscillations, suppressing the burst.   
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This concept of stimulating in antiphase is intuitive for most people.  As most people will 

know, one of the gentlest ways to stop somebody on a swing is to apply opposing 

pressure on the swing to counteract the force by the child.  The same principles apply 

here: the stimulus is a depolarizing and hyperpolarizing force gently stopping the system 

from continuing on its oscillatory state.   

At first glance, the desynchronization of the coupled oscillator network is different from 

the other two models.  What is important to remember here is that the neurons are 

monostable repetitive firing.  It is impossible to suppress these neurons to complete 

quiescence.  When we examine what is happening, we note that the stimulus is in 

antiphase again with the system as we have seen in the other two models.  However, 

because the system is stable only in the repetitive firing state, the neuron will inevitably 

return to repetitive firing.  In the attempt to suppress the neuron, the stimulus does cause 

a slight delay in between firing.  The slight differences in phase with respect to the timing 

of the stimulus lead to the dispersion of phase across the different oscillators. 

The fact that the stimuli are all in antiphase with the system indicates that the stimulus is 

phase-dependent, meaning that the stimulus needs to be given at exact times with respect 

to the system.  If the stimulus was in phase with the system, one could hypothesize that 

the stimulus may actually amplify the seizures, causing further debilitation and other 

detrimental side effects.   

With more research, we may be able to one day develop therapeutic devices that can 

measure the phase and the frequency of the epileptic dysfunctional oscillations and 
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calculate the proper parameters for the waveform to minimize detrimental side effects 

while maximizing efficacy.  Furthermore, by using an adaptive algorithm, these devices 

could potentially even adapt to changes in the phase or frequency of the system due to 

physiologically changes in the patient. 

Understanding the single cell burster 

The single-cell bursting model poses an interesting challenge, as it appears to be an 

exception to the theme in that the optimal stimulus waveform does not match what we 

have seen in the other three models.  When examining the bursting system, we note that 

there is a fast wave and a slow wave.  The fast wave dictates the firing of the action 

potentials during the repetitive firing phase and the slow wave dictates whether the cell is 

in the repetitive firing phase or the quiescent phase of the bursting cycle.  From what we 

can see, our stimulus is on a much slower time scale and thus appears to suppress the 

bursting behavior by affecting the slow part of the burster. 

We also note that while the last action potential in the repetitive firing phase ends much 

sooner than the control, the stimulus fires as many action potentials as the control.  When 

examining the other state variables, it would seem that the stimulus pushes the system 

around the limit cycle quicker in order to suppress the repetitive firing portion sooner.  

From a clinical perspective, this may not be of much benefit to the patient, as it would 

appear that the stimulus seems to magnify the epileptic seizure first before suppressing it.   

We did try running the same algorithm using an extremely small 20-ms stimulus in order 

to match the fast part of the bursting model.  Unfortunately, we were unable to capture 
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any successful stimuli in our search.  This would imply that it is easier to affect the 

suppression of the bursting behavior by targeting the slow component as opposed to the 

fast component.  Because of computational limitations, we have not yet been able to run a 

long high-resolution stimulus targeting both fast and slow waves simultaneously in order 

to determine whether the optimal stimulus waveform can benefit by affecting both 

components.   

While the antiphasic feature does not appear in the single cell burster, it is possible that 

through exploring higher resolution stimuli with EDA, we will find a stimulus that exists 

in antiphase to the fast wave and thus confirm the pattern we have seen in the other three 

models.  For that matter, if we were to run a much longer stimulus, we may also see the 

antiphasic properties appear in relation to the slow wave.  From a patient’s perspective, a 

weak, but prolonged stimulus may not be desirable compared to a strong, but short 

stimulus.  It may also be interesting to examine a long stimulus with extremely high 

resolution to be examine both the fast wave and the slow wave components at the same 

time.  This would be a computational challenge, but it may give us unique insight into 

how the different components play a role in the suppression of epileptic seizures.   
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CHAPTER VIII 

Conclusions and Future Directions 

 

 
The challenge we set out for ourselves at the beginning of this endeavor was to develop 

an algorithm that can develop an optimal stimulus waveform for a given behavior without 

any knowledge of the mechanisms or mathematical models underlying the system.  To 

that end, we have developed the Extrema Distortion Algorithm (EDA).  We have 

validated the EDA by using standards constructed through a robust stochastically-seeded 

gradient algorithm.  We have even demonstrated the application of EDA towards gaining 

insight into therapeutic design as seen in our study on epilepsy.   

This work has just been the first step into this journey.  With this foundation, we can 

branch out in many different directions.  In this chapter, we highlight a few of them. 

Application to Real-World Clinical Problems 
One of the driving forces behind this research has been to develop goal has been one of 

the driving forces behind much of the work done.  We specifically focused on model-

independent algorithms so that one day this work, integrated into therapeutic devices, can 

find meaningful patient-specific optimal stimuli at the bedside.  While two patients may 
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have the same symptoms, their underlying pathophysiology may be different.  The 

differences in their internal neural wiring may lead one person to respond to specific 

frequencies and amplitudes differently than another person.  What works for one patient 

may not work for another patient.  As such, this algorithm can potentially “learn” what 

the unique optimal stimulus waveform is for each patient.   

Before this vision becomes reality, there are a few more research steps to take.  First, all 

our models and algorithms do not take into account noise inherent to the system.  We 

have treated each system as a noise-free deterministic system, always starting at the same 

state, where the same input given at the exact same time will always result in the same 

output.  Unfortunately, biological systems are almost never so deterministic, and it is rare 

for us to be able to give a stimulus under the exact same conditions every time.  In order 

to gauge the impact this has on EDA, we would first need to change our algorithm in 

such a way that we observe how a system responds to the same stimulus under multiple 

different noisy conditions.  The performance metric will need to change, no longer 

reflecting if the stimulus successfully reaches the desired outcome, but how often it does.   

Once we have a better idea how the algorithm performs in noisy systems, we would 

probably want to start to test the algorithm on a simple real-life biological system, 

whether in an animal model or through a non-invasive human procedure.  The 

fundamental set up should not be too complicated as all the algorithm needs is an input 

and an output.  As an example, an easy set up would be to hook up a surface EMG to 

determine what the optimal stimulus waveform would be to cause a contraction in a 
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muscle.  A surface electrode could be set up to give a small burst of stimulus to the 

region, and a second electrode can then be used measure muscle.  These two electrodes 

would serve as the input and output to the algorithm.  MATLAB has a library that allows 

it to read from and write to a National Instruments data acquisition (DAQ) system.  With 

this set up, minimal changes would be required to the existing code base.   

During this process, it will be important to examine how many stimuli we are giving to 

the system, and how the system responds over the course of the iterations.  For instance, 

in many of our studies we ran the algorithm for 1,000 iterations, each iteration containing 

10 distortions.  From a subject’s perspective, that would be 10,000 bursts of stimulus 

given to the patient in one experiment.  We may learn that this is too many test stimuli for 

a patient, and we may need to revise our EDA to be much more efficient.   

We have discussed in Chapter 7 a number of different avenues by which to improve 

EDA’s efficiency.  First, we currently use a random normal distribution to search 

neighboring extrema.  By constructing a secondary adaptive algorithm, we may be able to 

adjust the random distribution to more heavily take into account past extrema that we 

have tested.  For instance, if we know that we have jittered an extrema in one direction 

without successful outcomes, it may be helpful to bias the future distortions away from 

that direction.   

Another technique that we can use is to allow some form of cross learning to occur 

between the different starting seeds.  The algorithm currently works linearly, starting 

from a single seed and iteratively progressing towards a single optimal solution.  We run 
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this process twenty times on average.  If the algorithm was able to collate information 

across all twenty processes at each iteration, sharing information from one process to 

another, we may be able to converge more quickly towards an optimal solution.  

One of the other problems that may arise in the application of EDA to clinical problems 

is that we use white-noise generators to develop starting seeds for EDA.  We may be 

unable to accomplish this in a clinical setting.  As such, we may instead consider 

applying an extremely small white-noise process to a known stimulus waveform that 

works.  The small white-noise process would not affect the fundamental shape of the 

stimulus waveform, but it would add a number of extrema points that EDA can use to 

begin searching locally for more optimal solutions.  The advantage of this method is that 

it would allow for a sure starting point, removing the need to give large amounts of 

white-noise stimulation to find successful starting seeds.  The disadvantage of this 

method is that fixing the starting seed may bias the search algorithm, and more optimal 

solutions may be lost.  More research would have to be done in this area to find out what 

the appropriate trade-offs would be and under what circumstances would one be 

favorable to the other.   

Modeling Complex and Sensitive Systems 
In some clinical applications, there may not be enough time, no matter how efficient our 

algorithm may be, to learn what the optimal stimulus waveform is.  For instance, if a 

patient is suffering from cardiac arrhythmias, he or she may not have time to sit through a 

number of test stimuli to find what is optimal.  In these cases, running EDA on models 
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may still be beneficial.  First, the insights gained from EDA even on models may prove 

valuable in providing researchers with new hypotheses on novel stimulus waveforms.  

Second, in coupling the optimal stimulus waveforms obtained through EDA with real-

world experimentation, we may be able to develop stronger and more accurate models.  

Because the optimal stimulus waveforms often exploit some mechanism to produce 

optimal solutions, researchers can verify experimentally if these mechanisms are true to 

real-world systems or if further modifications in state variables or parameters are 

necessary in their models.   

In our exploration into computational biology, we have found many more biological 

models that can be studied, from cardiology (examining cardioversion or defibrillation 

from arrhythmias) to respiratory (stimulating respiratory rhythms in patients with apnea) 

even to pharmacological (studying optimal dosing patterns for drug treatments).  

Furthermore, it may be interesting to model not just the biological behavior, but also the 

electrical and physical properties of the electrode in relationship with the system.  As 

some researchers have noted, while we may be able to cut down on the energy 

consumption of the signal itself, the energetic requirements of the hardware may 

overwhelm any energy savings on the stimulus waveform itself[183].  Searching for 

optimality in the entire system from electrode to system may yield further insights into 

how we can improve the biological response to exogenous stimuli.   
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Optimality as a Design Principle in Nature 
As reviewed in the introduction of this work, switches exist throughout biology.  For a 

non-therapeutic application, biologists often think about why nature is designed a certain 

way.  There is a hypothesis that the biological world is optimal and efficient, but the 

metric used to determine optimality might not be apparent.  It may be interesting to test 

out various hypotheses regarding optimality, using EDA, to gain insight into why nature 

has designed to one versus another specific waveform to control a particular process.  

Examining biology from the perspective of optimality may yield novel insights into the 

mechanisms behind various biological behaviors. 
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