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Abstract 

Profound lymphopenia has been observed during many acute viral 

infections, and our laboratory has previously documented a type 1 IFN-

dependent loss of most memory (CD44hi) and some naïve (CD44lo) CD8 T cells 

immediately preceding the development of the antiviral T cell response at days 2-

4 following lymphocytic choriomeningitis virus (LCMV) infection. In this thesis, I 

will examine additional mechanisms involved in the early attrition of CD8 T cells 

and evaluate whether antigen-specific and non-specific CD8 T cells are equally 

susceptible. Lastly, I will examine whether the early attrition of CD8 T cells 

contributes to the generation of an effective immune response. 

Poly(I:C), a potent inducer of type 1 IFN, was previously shown to  cause 

the attrition and apoptosis of CD8 +CD44hi cells in normal mice, but not in type 1 

IFN receptor–deficient mice (IFN1-R KO). I questioned whether additional 

molecule(s) might contribute to the type 1 IFN-induced apoptosis of 

CD8 +CD44hi cells. I used a PCR array to determine the expression of 84 

apoptosis-related genes at 6 hours post-poly(I:C) treatment, relative to an 

untreated control. There was an 11-fold increase in CD40 RNA expression in 

CD8 +CD44hi cells isolated from poly(I:C)-treated mice. CD40 protein expression 

was also increased on CD8 +CD44hi cells, peaking between 9 and 12 hours 

following poly(I:C) treatment, before declining thereafter. This increase in CD40 

protein expression directly correlated with an increase in Annexin V reactivity, an 

indicator of early apoptosis. Nevertheless, CD40 was not required for the loss of 

CD8 +CD44hi cells, as both wildtype and CD40-deficient mice were equally 
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susceptible to the poly(I:C)-induced attrition. Upon further characterization, I 

found this population of CD40+CD8 +CD44hi cells to be CD11c+B220-Thy1.2-

MHCIIhi, which is consistent with a “lymphoid” CD8 + DC phenotype. Kinetic 

analysis revealed a type 1 IFN-dependent increase in this CD8 + DC population 

at 12 hours post-poly(I:C) treatment. This increase was only observed in the 

spleen, as no increase in percentage was observed in the peritoneal cavity 

(PEC), lungs, inguinal lymph nodes (iLN), or peripheral blood. Collectively, these 

results suggest that the type 1 IFN-dependent increase in splenic CD8 + DCs 

accounts for the observed increase in Annexin V reactive cells following poly(I:C) 

treatment. 

These findings required a re-evaluation of the type 1 IFN-induced attrition 

of CD8+CD44hi T cells with an anti-CD8  antibody, which is a more exclusive 

marker for T cells than the anti-CD8  antibody. Kinetic analysis revealed a 

significant decrease in splenic CD8 +CD44hi T cells at 12 hours post-poly(I:C) 

treatment. This reduction in splenic CD8 +CD44hi T cells was not due to 

trafficking to other organs, as the PECs, lungs, iLN, lungs, and peripheral blood 

all exhibited significant, although varying, decreases in the percentage of 

CD8 +CD44hi T cells at 12 hour following poly(I:C) treatment. These data support 

the notion that the type 1 IFN-induced attrition of CD8 +CD44hi T cells was a 

“global” phenomenon and could not be completely due to migration out of the 

spleen.  

The attrition of CD8 +CD44hi T cells was also dependent upon type 1 IFN 

at 3 days post-LCMV infection, as there was no significant reduction of this 
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population in IFN1-R KO mice. The loss of wildtype CD8 +CD44hi T cells 

correlated with an increased activation of caspases 3 and 8, which are enzymes 

that play essential roles in apoptosis and inflammation. A significant loss of 

CD4+CD44hi T cells, which also correlated with an increased activation of 

caspases 3 and 8, was observed at 3 days post-LCMV infection. Collectively, 

these results suggest that attrition of both CD4+CD44hi and CD8 +CD44hi T cell 

populations is type 1 IFN-dependent and associated with the activation of 

caspases following LCMV infection.  

At 3 days post-LCMV infection, both wildtype CD8 +CD44hi and 

CD4+CD44hi T cell populations had a higher frequency of cells with fragmented 

DNA, a hallmark characteristic of the late stages of apoptosis, as revealed by 

terminal transferase dUTP nick end labeling (TUNEL), relative to uninfected 

controls. This suggests that the loss of both populations was due to apoptosis. 

Therefore, I questioned whether the LCMV-induced apoptosis of both 

CD4+CD44hi and CD8 +CD44hi T cell populations occurred through a 

mitochondrial-induced pathway involving the pro-apoptotic molecule Bim. The 

attrition of both CD4+CD44hi and CD8 +CD44hi T cells was significantly higher in 

wildtype mice compared to Bim KO mice at 3 days post-LCMV infection. 

Moreover, both wildtype CD8 +CD44hi and CD4+CD44hi T cell populations had 

higher frequency of TUNEL+ cells, relative to Bim KO populations. These results 

suggest that the apoptosis of CD8 +CD44hi and CD4+CD44hi T cells, following 

LCMV infection, might occur through a mitochondrial-induced pathway involving 

Bim. 
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Studies have shown “lymphoid” CD8 + DCs to be involved in the 

phagocytosis of apoptotic lymphocytes. Therefore, I evaluated whether host 

CD8 + DCs are capable of phagocytosing apoptotic lymphocytes by adoptively 

transferring CFSE-labeled wildtype donor splenocytes (Ly5.1) into congenic 

wildtype hosts (Ly5.2), followed by inoculation with poly(I:C).  There was an 

increased frequency of donor cells (Ly5.1, CFSE+) within the host CD8 +CD11c+ 

gate at 9 and 12 hours post-poly(I:C) treatment. The results suggest that type 1 

IFN-activated CD8 + DCs might aid in the rapid clearance of apoptotic cells 

during the type 1 IFN-induced attrition associated with viral infections. 

I next questioned whether TCR engagement by antigen would render CD8 

T cells resistant to attrition. I tested whether a high concentration of antigen 

(GP33 peptide) would protect LCMV-specific naïve TCR transgenic P14 cells 

specific for the GP33 epitope of LCMV and GP33-specific LCMV-immune cells 

from depletion. Both naïve P14 and memory GP33-specific donor CD8 T cells 

decreased substantially 16 hours after inoculation poly(I:C), regardless of 

whether a high concentration of GP33 peptide was administered to host mice 

beforehand. The increased activation status of naïve antigen-specific cells via 

peptide inoculation did not confer resistance to type 1 IFN-induced depletion. 

Donor naïve P14 and LCMV-specific memory cells were also depleted from day 

2 LCMV-infected (Clone 13) hosts by 16 hours post-transfer. These results 

indicate that antigen engagement does not protect CD8 T cells from the type 1 

IFN-induced attrition associated with viral infections.  



 ix

Computer models indicated that early depletion of memory T cells may 

allow for the generation for a more diverse T cell response to infection by 

reducing the immunodomination caused by cross-reactive T cells. To test this in 

a biological system, I questioned whether the reduced apoptosis of the cross-

reactive memory CD8 population (NP205), in aged LCMV-immune mice (18-22 

months), following heterologous virus challenge (PV), would allow it to dominate 

the immune response. At day 8 post-PV infection, the cross-reactive memory 

CD8 T cell response (NP205) was more immunodominating in aged LCMV-

immune mice relative to younger LCMV-immune mice. This was indicated by the 

increased ratio of the cross-reactive NP205 response to the newly arising non-

cross-reactive, PV-specific NP38 response in older LCMV-mice relative to 

younger LCMV immune-mice, at day 8 post-PV infection. These data suggest 

that the early attrition of T cells allows for the generation of a more diverse T cell 

response to infection by reducing the immunodomination caused by cross-

reactive T cells.  Collectively, these findings offer further insight into the early 

attrition of T cells associated with viral infections. 
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Chapter I:  Introduction 

 

A. Lymphocytic Choriomeningitis Virus (LCMV) 

LCMV is the prototypic virus of the arenavirus group, which consists of 

ambisense, enveloped RNA viruses that cause persistent infections in a variety 

of rodent populations and occasionally cause human infections. The arenavirus 

group includes a variety of Old World and New World viruses. LCMV is an Old 

World virus whose natural host is Mus musculus. The LCMV virion contains two 

ambisense RNAs, each encoding two genes of opposite polarity separated by a 

double-stranded hairpin structure. The large (L) RNA encodes (in a 5’ to 3’ 

direction) both the small zinc-binding protein (Z), which facilitates virus budding 

from the plasma membrane (Perez, Craven et al. 2003), and the RNA-dependent 

RNA polymerase, which is required for transcription and replication of the viral 

genome. The short (S) RNA contains the genes that encode (in a 5’ to 3’ 

direction) both the glycoprotein (GP) precursor polypeptide and the nucleoprotein 

(NP), which encapsidates the genome segments and represents the most 

abundant protein in the virion. The GP precursor polypeptide is post-

translationally processed into GP-1 and GP-2. Linked through a non-covalent 

association, the GP-1 and GP-2 protein form tetrameric spikes, which mediate 

cell entry. Productive infection of cells requires the interaction of the GP-1 protein 

with its receptor, -dystroglycan, which is expressed ubiquitously. Upon cell 

entry, fusion of the virus with the phagolysosome membrane is mediated by GP-

2. Ribonucleoprotein (RNP) complexes, containing the viral RNA complexed to 
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NP and the viral polymerase, are then delivered into the cytoplasm, and 

replication of the virus is initiated. Once assembled, the virus leaves the cell by 

budding from the plasma membrane.  

Currently, there are 3 independently isolated LCMV strains, Armstrong, 

Traub, and WE, commonly used in the laboratory today. In 1933, the Armstrong 

strain of LCMV was isolated from a monkey that received a serial passage of 

cerebrospinal fluid from a suspected human case of St. Louis encephalitis virus 

(Armstrong and Lillie 1934). This monkey ultimately developed a severe 

lymphocytic choriomeningitis, a symptom for which the virus was named.  In 

1935, Eric Traub reported, in Science, of a virus (Traub strain) serologically 

identical to the Armstrong strain, and this caused a relatively asymptomatic 

persistent infection of his mouse colony (Traub 1935). In 1936, a third strain of 

LCMV, WE, was isolated from a patient who had contact with Traub’s mouse 

colony and eventually died from a hemorrhagic disease (Scott and Rivers 1936). 

In the 1980s, it was discovered that certain LCMV variants, such as the Clone 13 

variant of the Armstrong strain and the Docile variant of WE, could initiate 

immunosuppression in immunocompetent adult mice (Ahmed, Salmi et al. 1984; 

Ahmed and Oldstone 1988). Sequence analysis of Clone 13 revealed a five-

nucleotide change from the parental LCMV Armstrong strain. While three 

mutations were silent, two of these nucleotide changes led to amino acid 

changes in the viral polymerase (lysine to glutamine at amino acid 1079) or the 

GP, specifically GP260, which became a leucine instead of phenylalanine. This 

mutation occurred in GP-1, resulting in a 2-3 log increase in binding affinity of 
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Clone 13, relative to the parental Armstrong strain, to -dystroglycan (Sevilla, 

Kunz et al. 2000; Kunz, Sevilla et al. 2001; Smelt, Borrow et al. 2001). Both WE 

and Traub strains of LCMV bind to -dystroglycan with an affinity similar to that 

of Clone 13. -Dystroglycan is expressed primarily on dendritic cells (CD11c+ 

and DEC205+). Therefore, strains that bind with high affinity to -dystroglycan 

(Clone 13, WE, and Traub) replicate predominantly in the splenic white pulp and 

in marginal zone DCs (70% of DCs infected), causing immunosuppression and 

the establishment of viral persistence. In contrast, LCMV strains that bind -

dystroglycan with low affinity (parental Armstrong strain), replicate primarily in the 

splenic red pulp, generating a robust anti-LCMV response that ultimately results 

in viral clearance. The Armstrong and Armstrong-derived Clone 13 will be the two 

strains of LCMV used for this study. 

 

B. Immune Response to LCMV 

The LCMV model system has been of great importance for developing 

knowledge of the immune response to viruses. LCMV is a relatively non-

cytopathic virus that does not down-regulate MHC expression (Bukowski and 

Welsh 1985), giving it the capacity to induce very strong T cell responses. The 

host response to an acute LCMV infection is dependent upon a number of 

variables, including mouse strain, viral strain, viral dose and route of inoculation. 

Nevertheless, there are similarities in the dynamics of the immune responses to 

most strains of LCMV in mice inoculated with low to moderate doses (Welsh 

2000). Upon intraperitoneal (i.p.) or intravenous (i.v.) infection with LCMV, there 
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is a strong sterilizing host immune response leading to clearance of the virus and 

long term immunological memory. During the early stages of viral replication, 

type 1 interferon (IFN) is induced, and this stimulates the activation and 

proliferation of NK cells during the first 4 days following infection (Merigan, 

Oldstone et al. 1977; Welsh 1978; Biron, Turgiss et al. 1983; Biron, Sonnenfeld 

et al. 1984). Although the innate response to LCMV is quite robust, it is the 

adaptive immune response that is responsible for viral clearance. Viral titers 

decline after day 5 due the sensitivity of the virus to cytotoxic lymphocytes 

(CTLs), which are detected as early as 6 days post-infection, ex vivo. As with 

most viral infections, LCMV infection is a potent stimulator of CD8 T cells, which 

recognize viral peptides in association with Class I MHC molecules on virus-

infected antigen-presenting cells. CD8 T cell stimulation is so profound that the 

CD4/CD8 ratio changes from 2:1 to about 1:3 at the peak of the response 

(around day 8 or 9) (McFarland, Nahill et al. 1992; Lau, Jamieson et al. 1994; 

Selin, Vergilis et al. 1996; Varga and Welsh 1998). High numbers of activated 

macrophages and anti-LCMV-antibody producing splenic B cells also peak at this 

timepoint (Welsh and Doe 1980; Moskophidis and Lehmann-Grube 1984), 

presumably recruited by the increased amount of T-cell-dependent cytokines (IL-

2 and IFN- ) produced by the expanded CTL population (Kasaian and Biron 

1989; Gessner, Drjupin et al. 1990). These proliferating T cells are mostly 

specific to viral peptides, but their fate and the fate of bystander T cells are highly 

regulated by apoptotic events that come in two waves during an acute infection. 

The first wave, which is the topic of this study, is associated with a transient 
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lymphopenia (2-4 days post-infection), occurring prior to the development of the 

anti-viral T cell response (McNally, Zarozinski et al. 2001). There is a substantial 

loss in many types of leukocytes during this early lymphopenia, but bona fide 

antigen-specific memory and “memory phenotype” (CD44hi) CD8 T cells are 

among the most susceptible. This loss in CD8 T cells occurs throughout the 

body, including lymphoid and non-lymphoid tissues, and cannot be accounted for 

simply by lymphocyte migration.  The loss of memory CD8 T cells was, at least in 

part, thought to be due to apoptosis, as they were reported positive for early 

apoptotic markers (Razvi, Jiang et al. 1995; McNally, Zarozinski et al. 2001; 

Jiang, Lau et al. 2003). Although the dynamics of CD8+ T cell lymphopenia have 

been established in mice infected with LCMV, the early stages of infections by 

many human viruses, including influenza, measles, West Nile, Ebola, Lassa, and 

SARS corona viruses, are also characterized by a severe lymphopenia (McNally, 

Zarozinski et al. 2001; Nabeshima, Murata et al. 2002; Peacock, Kim et al. 2003; 

Wong, Wu et al. 2003). Similar lymphopenias are seen in viral infections of 

domestic animals (Tompkins, Nelson et al. 1991; Harder, Kenter et al. 1996; 

Vallee, Tait et al. 2001; Zitzow, Rowe et al. 2002).  

The second wave of apoptosis occurs following the peak of the T cell 

response, resulting in a significant loss of activated effector T cells. Those cells 

that survive this contraction phase, presumably through increased expression of 

the interleukin 7 receptor alpha-chain (Kaech, Tan et al. 2003), enter an immune 

or memory state and respond rapidly upon homologous re-challenge. CD8 , 

which is transiently expressed on a subset of CD8  T cells upon antigenic 



 6

stimulation, has been suggested to promote the survival and differentiation of 

activated lymphocytes into memory CD8+ T cells (Madakamutil, Christen et al. 

2004). While much research has focused on the contraction phase, still little is 

known of the first wave of apoptosis, including the underlying mechanisms and 

its contribution, if any, to the generation of an effective immune response.  

 

C. Type 1 IFN Response to Viral Infection 

Upon infection with a pathogen, the initial host response is to secrete 

inflammatory cytokines, which can activate the innate arm of the immune 

response. The recruitment of innate immune cells such as NK cells, neutrophils, 

macrophages, and dendritic cells to the site of infection can either completely 

eliminate or prevent the spread of infection until the adaptive arm of the immune 

response is activated. One of the most prominent inflammatory cytokines 

released early after viral infection is type 1 IFN, one of two main classes of 

related cytokines (the other being type 2 IFN, or IFN- ). The type 1 IFN family 

includes many members, but IFN-  and IFN-  are the two predominant forms. 

Type 1 IFN is produced from multiple IFN-  genes and a single IFN-  gene, 

clustered on murine chromosome 14. Each IFN-  subtype is encoded by its own 

gene, containing no introns, and regulated by its own promoter sequence 

(Braganca and Civas 1998). Once type 1 IFN is induced and secreted from an 

infected cell, it acts in both an autocrine and paracrine fashion, stimulating its 

receptor expression on the infected cell and those cells that neighbor it. This 

process, termed “priming,” results in the increased production of type 1 IFN after 
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its initial induction. This positive feedback loop occurs in two steps. First, IFN 

regulatory factor 3 (IRF-3), which is produced constitutively in most cell types, 

induces the early expressed type 1 IFN subtypes, IFN-  and IFN- 4. These 

subtypes subsequently signal through the type 1 IFN-receptor to induce IFN 

regulatory factor 7 (IRF-7) expression, leading to the induction of the other IFN-  

subtypes (Marie, Durbin et al. 1998; Sato, Hata et al. 1998; Sato, Suemori et al. 

2000). 

The receptor for all type 1 IFNs is composed of two chains, IFN R1 and 

IFN R2 (Novick, Cohen et al. 1994). Each chain of the receptor is constitutively 

bound to a distinct member of the Janus kinase family: IFN R1 to tyrosine kinase 

2 (TYK2) and IFN R2 to Janus kinase 1 (JAK1). Ligand binding induces the 

dimerization of both receptor chains and the phosphorylation of TYK2, JAK1, and 

the intracellular tyrosine residues of each receptor chain (Colamonici, Porterfield 

et al. 1994; van Boxel-Dezaire, Rani et al. 2006). The transphosphorylation of 

both chains by these receptor-associated tyrosine kinases results in the 

activation of signal transducers and activators of transcription (STATs) 1 and 2, 

which are released from the IFN R2 chain upon its phosphorylation (Stark, Kerr 

et al. 1998). The phosphorylation of the IFN R1 creates a binding site for STAT2 

and, upon STAT2 phosphorylation, STAT1 is able to bind (Leung, Qureshi et al. 

1995). This results in dimerization of STAT1 and STAT2 and their subsequent 

dissociation from the receptor. Before translocation into the nucleus, however, 

the heterodimer forms the transcriptional-activator heterotrimeric complex, IFN-

stimulated gene factor 3 (ISGF3), consisting of STAT1, STAT2, and IFN 
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regulatory factor 9 (IRF-9) (Darnell, Kerr et al. 1994; Haque and Williams 1994; 

Bluyssen, Durbin et al. 1996). Once ISGF3 enters the nucleus, it can induce the 

expression of over 300 type 1 IFN-stimulated genes containing IFN-stimulated 

response elements (ISRE) (Kessler, Levy et al. 1988; Williams 1991). In addition 

to forming a heterodimer with STAT2, STAT1 can homodimerize, creating a 

complex termed IFN- -activated factor (AAF) (Decker, Lew et al. 1991), which 

can induce the expression of genes containing a IFN- -activated site (GAS) upon 

entry into the nucleus (Decker, Lew et al. 1991; Lew, Decker et al. 1991).  Type 1 

IFNs fail to elicit an antiviral or an anti-proliferative response in cells lacking 

STAT1 or STAT2 (Muller, Laxton et al. 1993). Moreover, STAT1-deficient mice 

have an increased susceptibility to viral infections, as type 1 IFN is unable to 

induce expression of genes necessary to establish an antiviral state (Durbin, 

Hackenmiller et al. 1996; Meraz, White et al. 1996). Nevertheless, type 1 IFNs 

can activate additional STAT family members, including STATs 3 and 5, which 

mediate the potent anti-apoptotic and mitogenic effects in T cells lacking STAT1 

upon IFN-  signaling (Tanabe, Nishibori et al. 2005; van Boxel-Dezaire, Rani et 

al. 2006). While type 1 IFN can limit non-specific CD8 T cell expansion in a 

STAT1-dependent manner, it can promote antigen-specific expansion and IFN-  

production by CTLs in a STAT4-dependent fashion (Nguyen, Watford et al. 

2002). 

The initial induction of type 1 IFN is generally thought to occur by two 

complementary receptor systems that account for most virus detection. One 

class of receptors is expressed ubiquitously and is localized to the cell’s cytosol, 
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where it detects viral nucleic acids upon infection. This class of receptors 

includes the RNA helicases retinoic acid inducible gene-I (RIG-I) and melanoma 

differentiation antigen 5 (MDA5), which is the primary cytosolic receptor for 

poly(I:C), a potent inducer of type 1 IFN (Gitlin, Barchet et al. 2006; Kato, 

Takeuchi et al. 2006). The double-stranded RNA-activated protein kinase (PKR) 

is also involved in the cytosolic induction of type 1 IFN (Zinn, Keller et al. 1988), 

but it is unclear whether PKR itself is the pattern-recognition receptor (PRR) 

(Alexopoulou, Holt et al. 2001). The second class of receptors detects viral 

nucleic acids in endosomes (Stetson and Medzhitov 2006). This class of 

receptors includes the toll-like receptors, TLR3, TLR7, TLR8, and TLR9, which all 

can lead to type 1 IFN signaling upon detection of viral nucleic acids. TLR3 

recognizes double-stranded RNA (Alexopoulou, Holt et al. 2001), TLR 7 and 8 

recognize single-stranded RNA (Diebold, Kaisho et al. 2004; Heil, Hemmi et al. 

2004; Lund, Alexopoulou et al. 2004), and TLR9 detects unmethylated CpG 

motifs in DNA.  Although a potent inducer of type 1 IFN, TLR4 detects 

lipopolysaccharides derived from gram-negative bacteria.  

Most cell types, with the appropriate stimulation, are capable of producing 

type 1 IFN in vitro, but it has been difficult to identify the principle producers of 

virus-induced type 1 IFN in vivo (Malmgaard 2004). Murine plasmacytoid DCs 

have been shown to be a major producer of type 1 IFN during in vivo infections 

with MCMV, VSV, and HSV-1 (Asselin-Paturel, Boonstra et al. 2001; Barchet, 

Cella et al. 2002; Dalod, Salazar-Mather et al. 2002), but not during infections 

with LCMV Armstrong or with the synthetic dsRNA analog, poly(I:C) (Diebold, 
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Montoya et al. 2003; Diebold, Kaisho et al. 2004). Interestingly, cultured non-

plasmacytoid dendritic cells produce large amounts of type 1 IFN after in vivo 

infection with LCMV Clone 13 but not after infections with the Armstrong strain 

(Diebold, Montoya et al. 2003). Recently, it has been shown that marginal zone 

organization, and marginal zone macrophages, specifically, are critically involved 

in the production of type 1 IFN against LCMV Armstrong (Louten, van Rooijen et 

al. 2006).  

As mentioned previously, type 1 IFNs activate innate immune cells (i.e. 

macrophages and NK cells) and induce a variety of target genes that exhibit 

immediate antiviral activity (Muller, Steinhoff et al. 1994; van den Broek, Muller et 

al. 1995; Biron 2001). The immunomodulatory role of type 1 IFN has gained 

noticeable attention over the last few years. For instance, infection with LCMV 

has been shown to induce CD8 T cell responses against antigens that are not 

expressed directly within antigen presenting cells (APCs), termed cross-priming, 

by a type 1 IFN-dependent mechanism (Le Bon, Etchart et al. 2003). Also, it has 

been shown that CD8 T cells lacking type 1 IFN receptor have a reduced ability 

to expand and differentiate into effector CTL’s following infection with LCMV 

(Kolumam, Thomas et al. 2005; Aichele, Unsoeld et al. 2006; Thompson, 

Kolumam et al. 2006).  

Although the underlying mechanisms leading to the early attrition of 

memory CD8 T cells following LCMV infection are still under investigation, kinetic 

analyses revealed that type 1 IFN induction immediately preceded this early 

attrition (McNally, Zarozinski et al. 2001). Experiments using the potent type 1 
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IFN inducer, poly(I:C), caused a similar reduction in total lymphocytes and 

memory CD8 T cells compared to an LCMV infection, though with more rapid 

kinetics, in parallel with the type 1 IFN response. Also, type 1 IFN receptor-

deficient mice were resistant to the early attrition, with little reduction in the total 

number of lymphocytes or memory phenotype CD8 T cells after either LCMV 

infection or poly(I:C) treatment (McNally, Zarozinski et al. 2001), This loss in T 

cells can be induced by inoculation with recombinant IFN-  (McNally, Zarozinski 

et al. 2001) and blocked by antibody to type 1 IFN (Jiang, Gross et al. 2005). 

Interestingly, type 1 IFN has also been implicated in the splenic apoptosis early 

during infection with the gram-positive bacteria Listeria monocytogenes, although 

this appears to have a negative effect on the bacterial handling in the mouse 

(Carrero, Calderon et al. 2004; O'Connell, Saha et al. 2004). While ample 

evidence implicates type 1 IFN in the early attrition of memory CD8 T cells 

following LCMV infection, it is not yet known whether these effects are direct or 

indirect. 

 

D. Apoptotic Signaling Pathways 

There are two major pathways that can initiate apoptosis in cells: the 

death receptor pathway (extrinsic) and the mitochondrial-mediated pathway 

(intrinsic). Both pathways, for the most part, rely on the activation of multiple 

cysteine aspartate-specific proteases called caspases. The primary function of 

caspases is to cleave cellular substrates resulting in the amplification of 

apoptosis process and the stepwise dismantling of the cell (Best and Bloom 
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2004). Caspases contain a N-terminal prodomains that consist of one or more 

binding domains (Lavrik, Golks et al. 2005). Caspases 8 and 9 serve as key 

intiator caspases as their long prodomains contain multiple binding domains, 

such as death effector domains (DED) or caspase recruitment domains (CARD) 

that allow for homotypic interactions with specific adaptor proteins and their 

subsequent autocatalytic processing upon aggregation at these sites (Fesik 

2000). Once activated, initiator caspases can then activate the small prodomains 

of downstream executioner caspases, such as caspase 3, ultimately resulting in 

the cleavage of cellular substrates (Hengartner 2000). This process leads to the 

morphological changes characteristic of apoptosis: cell shrinkage, membrane 

blebbing, chromatin condensation, and the appearance of apoptotic bodies that 

will be phagocytosed by macrophages and dendritic cells (Pokrovskaja, 

Panaretakis et al. 2005). Death receptors are members of the tumor necrosis 

factor receptor super family (TNFRSF), which is characterized by a specific 

intracellular domain, known as the death domain (DD). Members of the TNFRSF 

include Fas, tumor necrosis factor receptor 1 and 2 (TNFR1/TNFR2), and the 

TNF-related apoptosis-inducing ligand (TRAILR2/DR5). Upon ligand/receptor 

binding, intracellular adaptor proteins (FADD or TRADD) are recruited via their 

DD. Caspase 8 is recruited to the complex via its DED, thus contributing to the 

formation of the death-inducing signaling complex (DISC). Caspase 8 is activated 

by autocatalytic processing and functions as a key initiator caspase, leading to 

the activation of downstream effector caspases such as caspase 3. In some cell 

types, the apoptotic signal is further amplified by the caspase 8-mediated 
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cleavage of Bid. This truncated form of Bid translocates to the mitochondria, 

where it binds to Bak and Bax, leading to activation of the intrinsic mitochondrial 

pathway (Gross, McDonnell et al. 1999; Wang 2001). TNFRSF-mediated cell 

death can be inhibited by the caspase-8 (FLICE)-like inhibitory protein (FLIP), 

which consists of many splice variants and cleavage products and elicits its 

effects at the DISC (Krammer, Arnold et al. 2007). 

Multiple stress/death signals, however, can lead to the direct activation of 

the mitochondrial apoptotic pathway without death receptor signaling.  Such 

stress signals are produced by cytotoxic drugs, such as DNA-damaging agents 

and -irradiation, oxidative stress, or growth factor deprivation. Cell death at the 

mitochondrial level is initiated by perturbation of the mitochondrial membrane and 

proceeds via the release of cytochrome c (cyt c) from the intermembrane space 

of the mitochondria via pores formed by homooligomers and heterooligomers of 

the proapoptotic Bcl-2 family membranes, Bak and Bax. Once released into the 

cytosol, cytochrome c forms a complex, called the apoptosome, with apoptotic 

protease-activating factor-1 (Apaf-1), dATP, and the inactive form of Caspase 9. 

Upon activation, caspase 9 can activate downstream effector caspases, including 

caspase 3. 

The susceptibility of cells to apoptosis via the intrinsic pathway is 

dependent on the balance between pro-apoptotic and anti-apoptotic Bcl-2 family 

members (Gross, McDonnell et al. 1999; Strasser, O'Connor et al. 2000; Wang 

2001). These Bcl-2 family members are classified into 3 main categories: the 

anti-apoptotic, such as Bcl-2, Bcl-xl, Bcl-w, and Mcl-1, which share between one 
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and four regions of Bcl-2 homology (BH) domains; the Bax-like pro-apoptotic: 

Bax, Bak, Bok, and Diva, which contain two or three BH regions; and the BH3-

only pro-apoptotic proteins, Bik, Bid, Bim, BMF, and Bad (Gross, McDonnell et al. 

1999; Strasser, O'Connor et al. 2000; Wang 2001). BH3-only proteins are 

required for the initiation of apoptosis, whereas the Bax/Bak-like proteins play an 

essential role in downstream signaling events (Huang and Strasser 2000). In 

additional to physical levels, post-translational modifications also play important 

roles in regulating the effects of both pro- and anti-apoptotic members of the Bcl-

2 family.  

Bcl-2-interacting molecule (Bim) is involved in apoptosis induced by 

cytokine withdrawal or calcium flux (Bouillet, Metcalf et al. 1999) and mediates 

the programmed death of T lymphocytes during the shutdown of an immune 

response following viral infection (Strasser and Pellegrini 2004). Loss of Bim 

protects self-antigen-specific thymocytes (Bouillet, Purton et al. 2002) and B cells 

(Enders, Bouillet et al. 2003) against negative selection and prolongs the in vivo 

survival of T cells activated by the superantigen staphylococcal enterotoxin B 

(SEB) (Hildeman, Zhu et al. 2002) or cross-presented antigen (Davey, Kurts et 

al. 2002). Bim also mediates the apoptosis of IL7R lo effector T cells and limits T 

cell memory generation following LCMV infection (Wojciechowski, Jordan et al. 

2006). Likewise, the overall survival of peripheral T cells requires suppression of 

Bim function either directly by IL-7 or by IL-7-driven induction of Bcl-2 

(Wojciechowski, Tripathi et al. 2007). There are 3 splice forms of Bim: BimS, 

BimL, and BimEL. BimS is a much more potent inducer of apoptosis than BimL and 
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BimEL, suggesting that the extra region present near the N-terminus of these two 

splice forms attenuates apoptotic activity. BimS, however, has not been detected 

in any cell types (O'Connor, Strasser et al. 1998). The pro-apoptotic activity of 

BimL and BimEL is regulated at the post-translational level by close interaction 

with the dynein light chain 8 (LC8) via the microtubule-associated dynein motor 

complex. Apoptotic stimuli disrupt this interaction, allowing BimL and BimEL to 

dissociate from LC8 and neutralize the anti-apoptotic activity of Bcl-2 

(Puthalakath, Huang et al. 1999). Bim can also bind and directly activate Bak and 

Bax, which are required for mitochondrial cell death in response to diverse stimuli 

(Wei, Zong et al. 2001). Bak is a mitochondrial integral protein, whereas Bax is 

sequestered in the cytoplasm by 14-3-3 protein, under normal conditions and is 

released upon the initiation of apoptosis (Nomura, Shimizu et al. 2003).  

 

E. Type 1 IFN and Apoptosis 

Although type 1 IFN has been used to induce apoptosis in certain multiple 

melanoma cell lines for many years, the precise mechanisms have remained 

elusive (Otsuki, Yamada et al. 1998; Chen, Gong et al. 2001). In certain cancer 

cells, however, type 1 IFN was found to induce apoptosis through the 

mitochondrial route, specifically, involving Bim up-regulation, Bak conformational 

change and caspase activation. In addition, certain cancer cell lines resistant to 

type 1 IFN-induced apoptosis do not express Bim, even though they express 

significant levels of type 1 IFN receptor, supporting a role for type 1 IFN in the 

regulation of Bim expression levels (Gomez-Benito, Balsas et al. 2007). 
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Interestingly, the signaling adaptor for MDA5, which is involved in poly(I:C)-

induced type 1 IFN production, is localized to the outer membrane of 

mitochondria, suggesting that this pathway may interact with Bcl-2 family 

members, such as Bim (Balachandran, Roberts et al. 2000; Seth, Sun et al. 

2005). Type 1 IFN can also induce the activation of several caspases in various 

tumor cell lines, including caspase 3 and 9, both associated with mitochondrial-

induced apoptosis. Caspase 8, which is typically associated with death receptor-

mediated apoptosis, was also activated in certain cells lines, but to a lesser 

extent (Thyrell, Erickson et al. 2002; Panaretakis, Pokrovskaja et al. 2003). 

Collectively, these results suggest that type 1 IFN-stimulated signaling might 

interfere with other growth factor-induced or cytokine-induced pathways 

characteristic of mitochondrial-induced apoptosis (Pokrovskaja, Panaretakis et al. 

2005). 

Nevertheless, there are over 300 genes that can be induced by type 1 

interferon (Kessler, Levy et al. 1988; Williams 1991; Maher, Romero-Weaver et 

al. 2007). Therefore, there is the potential for numerous molecules that may 

indirectly or directly contribute to apoptosis of memory CD8 T cells downstream 

of type 1 IFN-signaling. Since type 1 IFN initiates the activation of NK cells during 

the early host immune response, it was hypothesized that NK cells may be 

contributing to the early attrition of T cells. Mice depleted of NK cells and 

subsequently inoculated with poly(I:C), however, showed similar amounts of 

memory CD8 T cell attrition to that of non-depleted, untreated wildtype hosts 

(McNally, Zarozinski et al. 2001).  Likewise, mice deficient in perforin showed a 
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similar phenotype to that of wildtype mice following poly(I:C) treatment, 

suggesting that this key mediator of cell lysis was not involved in the early 

attrition of memory CD8 T cells (McNally, Zarozinski et al. 2001). Type 1 

interferon also stimulates the synthesis of IFN- , which can duplicate many of the 

effects of type 1 IFN (Sen and Ransohoff 1993). Poly(I:C), however, induced the 

apoptosis and attrition of memory CD8 T cells in mice lacking IFN-  receptors 

(McNally, Zarozinski et al. 2001). Many TNFSF members are affected by type 1 

IFN and, therefore, could potentially contribute to the apoptosis of memory CD8 

T cells. Elevated levels of Fas were detected on poly(I:C)-treated memory CD8 T 

cells, but poly(I:C)-treated gld mice (deficient in FasL) showed a similar amount 

of memory CD8 T cell apoptosis relative to that of the wildtype (McNally, 

Zarozinski et al. 2001). Poly(I:C) also induces potentially cytotoxic cytokines such 

as TNF and TRAIL, so named because of its high homology to other members of 

the TNF family, particularly FasL, is also induced by type 1 IFN (Wiley, Schooley 

et al. 1995; Pitti, Marsters et al. 1996; Sato, Hida et al. 2001).  TRAIL is 

expressed by many cells of the immune system and has one known murine 

death receptor, TRAIL-R2 (also known as DR5 or Killer) (Wu, Burns et al. 1999). 

This can activate both caspases and NF- B and at least two decoy receptors 

that lack intracellular signaling domains (Wu, Burns et al. 1999). TRAIL was 

initially shown to induce apoptosis on tumor cells but not most normal cells 

(Wiley, Schooley et al. 1995; Pan, O'Rourke et al. 1997), but has since been 

implicated in the death of hepatocytes, thymocytes, and neurons (Martin-Villalba, 

Herr et al. 1999; Lamhamedi-Cherradi, Zheng et al. 2003; Mundt, Kuhnel et al. 
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2003). Interestingly, TRAIL plays a critical role in regulating the generation of 

CD8+ T cell memory through activation-induced cell death (AICD) (Janssen, 

Droin et al. 2005) and in the apoptosis associated with listeriosis upon infection 

with Listeria monocytogenes (Zheng, Jiang et al. 2004). It is not known, however, 

whether either TNF or TRAIL might play a role in the early attrition of memory 

CD8+ T cells during infection with LCMV.  

 

F.  Dendritic Cells 

DCs have a central immunoregulatory role in maintaining peripheral 

tolerance and initiating antigen-specific T cell responses. Three subpopulations 

of CD11c+, MHC class II+ DCs are found in a murine spleen. They are 

distinguished based upon their differential expression of CD4 and CD8  

homodimers: CD4+CD8 - (CD4+), CD4-CD8 + (CD8+), and CD4-CD8 - double 

negative (DN) DCs (Vremec, Pooley et al. 2000; Montoya, Edwards et al. 2005). 

A fourth subpopulation of splenic DCs, the plasmacytoid DC (pDC), is 

phenotypically characterized as being CD11clow, MHC class IIlow, and B220+ 

(Montoya, Edwards et al. 2005). CD4+, CD8 +, and DN DCs have the capacity to 

efficiently present antigen and stimulate the proliferation of both CD4 and CD8 T 

cells in vivo, but differ in their capacity to secrete cytokines.  The CD8 + DC 

population produces higher levels of IL-12 compared to both CD4+ and DN DC 

populations under many experiment conditions (Hochrein, Shortman et al. 2001).  

Although pDCs are capable of stimulating T cell responses (O'Keeffe, Hochrein 

et al. 2002), they are relatively poor APCs. They are, however, a major source of 
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type 1 IFN during many viral infections (Asselin-Paturel, Boonstra et al. 2001; 

Dalod, Salazar-Mather et al. 2002). Of all the splenic DC populations, immature 

CD8 + DCs appear to be specialized for the uptake and cross-presentation of 

exogenous antigens on MHC class I (den Haan, Lehar et al. 2000; Pooley, Heath 

et al. 2001). One way these exogenous antigens gain access to the cross-

presentation pathway is via the capture of apoptotic cells (Albert, Pearce et al. 

1998; Albert, Sauter et al. 1998). Phagocytosis of these apoptotic cells followed 

by toll-like receptor signaling can activate the uninfected DC, resulting in 

subsequent cross-priming of CTLs against viruses that do not directly infect DCs 

(Schulz, Diebold et al. 2005). With certain viruses, such as LCMV-Armstrong, the 

cross-priming of CD8+ T cells occurs by a type 1 IFN-dependent mechanism (Le 

Bon, Etchart et al. 2003). Type 1 IFN, however, induces opposing effects on 

cross-presentation, depending on the maturation status of the DC. Type 1 IFN 

treatment of immature DCs results in a significant inhibition of CD40L-induced IL-

12 production, resulting in an inhibition of CD8 T cell activation, whereas 

exposure of mature DCs to type 1 IFN results in high levels of CD40L-induced IL-

12 production and the subsequent activation of CD8 T cells. These effects occur 

via a STAT1-dependent and STAT4-dependent mechanism, respectively 

(Longman, Braun et al. 2007).  

Apoptotic bodies are engulfed by phagocytes through the recognition of 

phosphatidylserine (PS). Normal cells generally maintain an asymmetric 

distribution of phospholipids across the plasma membrane, restricting 

phosphatidylserine to the inner leaflet of the plasma membrane. When cells 
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undergo apoptosis, this asymmetric distribution is lost, as PS equilibrates 

between the outer and inner leaflet (Callahan, Williamson et al. 2000). The 

increased expression of PS on the outer leaflet of apoptotic or necrotic cells acts 

as an “eat me” sign for phagocytes (Fadok, Savill et al. 1992). Normally, the 

presence of apoptotic cells is difficult to detect in vivo, due to the rapid clearance 

by phagocytes. Certain viruses, however, can have an inhibitory effect on DCs, 

causing them to inefficiently phagocytose apoptotic lymphocytes. Recent studies 

have linked the early type 1 IFN response to impairment in DC differentiation and 

function early during the LCMV infection through a STAT2-dependent, but 

STAT1-independent, pathway (Hahm, Trifilo et al. 2005). Although both occur 

by a type 1 IFN-dependent mechanism, it is not known whether the impairment in 

DC differentiation and function is related to the early attrition of memory CD8 

following LCMV. 

 

G. Attrition of CD8+ T Cells and Heterologous Immunity 

Many of the viruses associated with profound lymphopenia can also 

induce remarkably strong immune responses, provided that innate defenses 

keep the infection from overwhelming the host. This, plus the fact that partial 

lymphopenia induced by sublethal irradiation or immunosuppressive drug 

treatment can enhance immune responses to tumor (Ma, Urba et al. 2003) and 

viral (Pfizenmaier, Jung et al. 1977) antigens, have led us to speculate that the 

virus-induced lymphopenia might facilitate the mounting of a strong antiviral T 

cell response (McNally, Zarozinski et al. 2001; Peacock, Kim et al. 2003). 
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Consistent with this hypothesis is the fact that older mice develop less initial 

lymphopenia and mount a weaker CD8 T cell response to LCMV than do 

younger mice (Kapasi, Murali-Krishna et al. 2002; Jiang, Anaraki et al. 2003).   

Studies have also shown that engagement of naïve T cells with their 

ligands, under conditions of appropriate co-stimulation, causes the upregulation 

of the anti-apoptosis protein Bcl-XL, thereby giving them a survival advantage 

(Boise, Minn et al. 1995).  One might, therefore, predict that antigen-specific T 

cells engaging their cognate ligand would preferentially resist the type 1 IFN-

induced apoptosis. It was reported that depletion of both naïve and memory CD8 

T cells during the early stages of the immune response to infection is selective 

(Jiang, Lau et al. 2003). Most T cells, regardless of specificity, were induced to 

express early activation markers upon infection, but nonspecific T cells were 

depleted, while those T cells specific for the pathogen expressed late activation 

markers and expanded in number (Jiang, Lau et al. 2003). However, it is unclear 

whether there was a transient apoptotic loss before the rapid antigen-specific 

proliferation. This resistance to early attrition, upon antigen engagement, may 

influence the immunodominance hierarchy of CD8+ T cells in the context of an 

infection with a heterologous pathogen, which can cross-react with T cells 

specific for a previously encountered pathogen.  

Effector CD8 T cells that survive the contraction phase following viral 

infection create a memory CD8+ T cell pool with a distinct hierarchy of epitope-

specific responses in a naïve host. Some of these viral epitopes are dominant 

and stimulate strong T cell responses, while others are subdominant and 
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stimulate weaker or barely detectable T cell responses. Immunodominance is 

regulated by various parameters, including the efficiency of processing and 

presentation of the peptide, the affinity between peptide and the MHC-I, the 

availability of T cells with TCR that recognize the peptide–MHC complex, and the 

competition between T cells for binding domains on the APC. When this memory 

CD8 T cell pool encounters a cross-reactive antigen, a preferential expansion of 

cross-reactive memory CD8 T cells may occur, due to the high frequency of 

these cells and their ability to rapidly proliferate compared to naïve T cells (Selin, 

Cornberg et al. 2004). Brehm et al demonstrated this concept using two distantly 

related arenaviruses, LCMV and Pichinde virus (PV). These viruses encode 

nucleoprotein epitopes (NP205), sharing 6 of 8 amino acids. In a naïve host, 

NP205 is normally a subdominant epitope for both viruses, but due to a selective 

expansion of NP205-specific cross-reactive memory CD8 T cells, the NP205-

specific T cell response became dominant when LCMV-immune mice were 

infected with PV, or when PV-immune mice were infected with LCMV. This 

demonstrates how cross-reactive expansion can alter the hierarchy of T cell 

responses (Brehm, Pinto et al. 2002).  

In some cases, memory T cells can cross-react with a heterologous virus 

and provide partial protective immunity (Brehm, Pinto et al. 2002), but in other 

cases, cross-reactive memory responses may cause a deviation of the immune 

response and result in unusual immunopathology (Chen, Fraire et al. 2001). Due 

to the competition between T cells that gives rise to immunodominance, low 

affinity cross-reactive memory T cells might prevent the development of more 
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effective high-affinity T cells responding to the immunodominant epitopes that 

normally dominate during a homologous infection. Therefore, since memory CD8 

T cells are more susceptible than naïve CD8 T cells to type 1 IFN-dependent 

attrition, the loss of cross-reactive memory CD8 T cells may reduce their 

immunodominance and allow for a more diverse immune response. Alternatively, 

if a cross-reactive memory CD8 T cell population was protected from depletion 

by antigen-engagement, it could dominate the immune response and prevent the 

expansion antigen-specific naïve CD8 T cells.  

 

H. Thesis Objectives 

The goal of this thesis was to further elucidate the mechanism(s) by which 

the attrition of T cells occurs and evaluate whether it contributes to the 

generation of a diverse and effective immune response. Therefore, I ask the 

following 3 important fundamental questions. 

 

1. What downstream molecule(s) contribute to the type 1 IFN-induced attrition of 

T cells during the early immune response to viral infection?  

 

2. Are antigen-specific and non-specific T cells equally susceptible to the type 1 

IFN-induced attrition associated with early immune response to viral infection? 

 

3. Does the early attrition of memory T cells facilitate the development of a 

diverse naïve T cell response? 
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Chapter II: Materials and Methods 

 

A. Virus stocks and inoculation 

LCMV Armstrong strain and its highly disseminating variant, clone 13, are 

ambisense RNA viruses in the Old World arenavirus family and were propagated 

in BHK21 baby hamster kidney cells (Welsh, Lampert et al. 1976; Yang, Dundon 

et al. 1989). Pichinde virus, strain AN3739, a New World arenavirus only distantly 

related to LCMV, was propagated in BHK21 cells (Yang, Dundon et al. 1989). 

LCMV and PV were titrated by plaque assay on Vero cells.  

 

B. Mice 

Male C57BL/6 (B6) mice and IL-7R KO mice were purchased from The 

Jackson Laboratory (Bar Harbor, ME). B6.SJL-Ptprc<a> (Ly5.1), (C57BL/6 x 

C57BL/10SgSnAi)—[Tg] TCR-LCMV P14-[KO]rag2 (P14), and 129SVE (129) 

mice were purchased from Taconic Laboratories (Germantown, NY). All mice 

were purchased at 5-6 weeks of age and maintained under specific pathogen-

free conditions within the Department of Animal Medicine at the University of 

Massachusetts Medical School. IFN- /  receptor knockout mice (strain 129SVE 

and C57BL/6) (IFN1-R KO) (Muller, Steinhoff et al. 1994) were bred in-house. 

C57BL/6-Tg(TcraTcrb)1100Mjb (OT-1) (Barnden, Heath et al. 1994) crossed to 

B6.PL-Thy1a/Cy (Thy1.1) mice and Granzyme B KO mice were bred by Dr. 

Kenneth L. Rock (University of Massachusetts Medical School). C57BL/6-Bim 

knockout mice (Bim KO) were bred by Dr. Roger J. Davis (University of 
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Massachusetts Medical School). C57BL/6-CD40 knockout mice (CD40 KO) were 

bred by Dr. Dale L. Greiner (University of Massachusetts Medical School). 

TNFR1 KO, TNFR2 KO, and vFLIP transgenic (tg) mice were bred by Dr. Francis 

Chan (University of Massachusetts Medical School). STAT1 KO and STAT3 

dominant negative (DN) mice were bred by Dr. Joonsoo Kang (University of 

Massachusetts Medical School). TRAIL KO mice were bred by Dr. Stephen P. 

Schoenberger (La Jolla Institute for Allergy & Immunology). To generate LCMV-

immune mice, B6 mice were infected i.p. with 5 x 104 pfu of the Armstrong strain 

of LCMV and were considered immune 6 weeks or longer after infection. To 

generate PV-immune mice, B6 mice were infected i.p. with 2 x 107 pfu of PV and 

were considered immune 6 weeks or longer after infection. All experiments were 

done with institutional guidelines as approved by the Institutional Animal Care 

and Use Committee of the University of Massachusetts Medical School. 

 

C. RNA Isolation and Gene Expression Profiling 

RNA was isolated from splenocytes using an RNeasy kit (Qiagen) and 

evaluated spectrophotometrically at 260 nm to determine concentration. First 

strand synthesis was done using the ReactionReadyTM First Strand cDNA 

Synthesis Kit (Superarray) on a PTC-200 Thermo Cycler (MJ Research) using 

the following program: 37ºC for 60 min, followed by 95ºC for 5 min.   

A mouse apoptosis RT  Profiler™ PCR Array was used to determine 

relative increases or decreases in the expression 84 key genes involved in 

apoptosis, or programmed cell death. The SYBR Green PCR master mix was 
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made using the RT  Real-TimeTM SYBR Green Master Mix. Real-Time PCR was 

performed using Bio-Rad MyIQ in combination with continuous SYBR Green 

detection (Superarray). The reaction was performed in a 25 L reaction volume 

containing 3 L cDNA and 22 L of RT  Real-TimeTM SYBR Green Master Mix 

(Superarray). The general PCR condition profile was as follows: polymerase 

activation at 95ºC for 10 min, followed by 40 cycles of denaturing at 95ºC for 

15 s, annealing at 55ºC for 30 s and extension at 72ºC for 30 s. Fold changes in 

expression were determined by the CT method, using a provided Excel-based 

PCR array data analysis template. 

 

D. Apoptosis Assays (Caspase Activation, Annexin V Staining,  TUNEL Staining) 

Caspase activity was determined via CaspGLOWTM fluorescein active 

stains specific for caspase-3 (FITC-DEVD-FMK) and caspase-8 (FITC-IETD-

FMK). All caspase stains were purchased from BioVision (Mountain View, CA). 

Upon the completion of surface staining, each active caspase stain was added at 

0.3 μl per sample and incubated for 1 hour at 37°C with 5% CO2. Cells were 

washed and resuspended in Wash bufferTM prior to analysis via flow cytometry.  

For some experiments, apoptosis was evaluated via flow cytometry using 

fluorescently-conjugated Annexin V (BD Pharmingen). Upon the completion of 

surface staining, the cells were washed and incubated in Annexin V binding 

buffer with Annexin V at a 1:20 dilution for 15 minutes at room temperature. The 

cells were then washed, resuspended in Annexin V binding buffer, and analyzed 

by flow cytometry immediately. Annexin staining was done in conjunction with the 
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vital dye 7-amino-actinomycin D (7-AAD) to differentiate early apoptosis (Annexin 

V+ 7-AAD-) from late apoptosis/necrosis (Annexin V+ 7-AAD+). 

Apoptosis was also evaluated via flow cytometry using terminal 

transferase dUTP nick end labeling (TUNEL). Erythrocytes were removed from 

harvested splenocytes using a 0.84% NH4Cl solution.  Splenocytes were added 

to a 48 well plate at 1 x 106 cells per well and incubated at either 37ºC (5% CO2) 

or 4ºC for 5 hours.  Cells were then harvested and stained with the appropriate 

fluorescent surface antibodies. Upon the completion of surface staining, the cells 

were fixed according to the manufacturer’s protocol. TUNEL+ cells were detected 

using an ApoDIRECT In Situ DNA Fragmentation Assay Kit (BioVision). 

 

E. Synthetic peptides 

Several previously defined T cell epitopes encoded by LCMV were used in 

this study (Whitton, Southern et al. 1988; van der Most, Murali-Krishna et al. 

1998). LCMV-specific epitopes include NP396-404 (FQPQNGQFI), GP33-41 

(KAVYNFATC), and GP276-286 (SGVENPGGYCL). A previously defined T cell 

epitope encoded by PV, NP38-45 (SALDFHKV), was also used in this study 

(Brehm, Pinto et al. 2002). All peptides listed above were purchased from 

Biosource International and were purified with reverse phase-HPLC to 90% 

purity. The immunizing peptide, GP33-45 (KAVYNFATCGIFA), was donated by 

Dr. Kenneth L. Rock (University of Massachusetts Medical School) (Ciupitu, 

Petersson et al. 1998). 
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F. Adoptive transfers 

Single-cell suspensions were prepared from the spleens of C57BL/6 

(wildtype), IFN1-R, P14, OT-1, LCMV-immune, or PV-immune mice, and 

erythrocytes were removed by lysis, using a 0.84% NH4Cl solution. Prior to some 

transfers, donor splenocytes were labeled with the fluorescent dye CFSE (2 μM) 

for 15 minutes at 37ºC (5% CO2) (Molecular Probes, Eugene, OR) (Oehen, 

Brduscha-Riem et al. 1997).  

For P14 and OT-1 co-transfer experiments, 3-4 x 106 P14 cells (Ly5.2, 

Thy1.2) and OT-1 cells (Ly5.2, Thy1.1) were adoptively transferred, via tail vein 

injection (i.v.), into Ly5.1 recipient mice in a 200 μl volume of HBBS (Life 

Technologies, Grand Island, NY). For immune transfers, 4 x 107 LCMV-immune 

or PV-immune splenocytes were also adoptively transferred, i.v., into Ly5.1 

recipient mice in a 200 μl volume of HBBS. GP33-45 peptide immunizations were 

done 1 day post-transfer. OT-1 and P14 donor cells were visualized with 

fluorescently labeled V 2 (B20.1) (BD Pharmingen). P14 donor cells were 

differentiated from OT-1 donor cells via fluorescently labeled Thy1.2 (53-2.1) 

antibody (BD Pharmingen). LCMV- and PV-immune donor cells were visualized 

with fluorescently labeled Ly5.2 (104) antibody (eBioscience).  

To evaluate whether CD8 + DCs were capable of phagocytosing apoptotic 

cells, 2 x 107 CFSE-labeled wildtype (Ly5.1) cells were adoptive transferred, i.v., 

into congenic wildtype (Ly5.2) hosts. Host DCs (Ly5.2) were visualized with 

fluorescently labeled antibody to CD11c (HL3) antibody (eBioscience) and Ly5.2 

(104) antibody (eBioscience). 
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G. Inoculations 

For experiments involving in vivo peptide administration, mice were 

inoculated i.v. with 5 μg of GP33-45 peptide (in 200 μl of Hanks balanced salt 

solution (HBSS)) per mouse. Poly(I:C) (Amersham Pharmacia) was administered 

at a dose of 100 μg/200 μl in HBSS per mouse 5 hours later. For the induction of 

an acute LCMV-Clone 13 or LCMV-Armstrong infection, mice were injected i.v. or 

i.p. with 5 x 104 pfu of virus in 0.1 ml of PBS. In some experiments, CFSE-

labeled donor splenocytes were then transferred i.v. into LCMV-infected hosts at 

2 days post-infection. Splenocytes and leukocytes from other tissues were 

harvested 16 hours after donor cell transfer.  

 

H. Intracellular IFN-  staining 

LCMV-specific memory CD8 T cells were detected by measuring IFN-  

secretion in response to stimulation with LCMV peptides using the 

Cytofix/Cytoperm Kit Plus (with GolgiPlug; BD PharMingen), as described 

previously (Varga and Welsh 1998). Splenocytes (2 x 106) were incubated in 96-

well plates (5 h; 37°C) with 5 μM synthetic peptide, 10 U/ml human rIL-2 (BD 

Pharmingen) and 0.2  μl of GolgiPlug. Cells were then washed in Flow Cytometry 

Buffer (HBBS, 2% FCS, and 0.1% NaN3), blocked with  -Fc (2.4G2), and 

incubated (30 min; 4°C) with a combination of fluorescently labeled mAbs 

specific for CD8  (53-6.7, APC), CD69 (H1.2F3, PerCP-Cy5.5) (BD 

Pharmingen), CD45.2 (104, PE), and CD44 (IM7, APC-Cy7) (eBioscience). 
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Subsequent fixation and permeabilization of the cells was performed to allow 

intracellular access of mAb to IFN-  (XMG1.2; PE-Cy7) (eBioscience). Freshly 

stained samples were analyzed on a BD Biosciences LSR II and FlowJo 

software. 

 

I. Computer modeling 

For computer simulations we used IMMSIM, an agent-based model of the 

immune system governed by probabilistic events. This program can be found at 

www.immsim.org and can be downloaded for the purpose of research and 

education. This model’s past applications are found in several previous reports 

(Celada and Seiden 1992; Seiden and Celada 1992; Celada and Seiden 1996; 

Kohler, Puzone et al. 2000; Behn, Celada et al. 2001). The IMMSIM model 

consists of epithelial cells in a grid of discrete “interaction sites,” where T cells, B 

cells, and APCs of the immune system encounter each other and antigens, and 

mount cellular and humoral responses whenever a virus infects and expresses 

antigens in the target epithelial cells. The interactions are governed by affinity 

and chance encounters (via computer generated random numbers, RNs). 

Different RNs result in responses different in repertoire and events, simulating 

the variability within individual mice in vivo. IMMSIM computer simulations were 

conducted by Claudio Calcagno, Dario Ghersi, Roberto Puzone, and Franco 

Celada at the University of Genoa, Genoa, Italy. 

 

J. Statistical analyses  
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Student’s t test was calculated using GraphPad InStat and used for data 

analysis where appropriate. Results are expressed as the mean + standard 

deviation. 
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Chapter III:  Apoptotic Properties of Cells During the Early Stage of the 

Immune Response to LCMV Infection 

 

Our lab has previously documented a type 1 IFN-dependent attrition of 

CD8 +CD44hi cells, immediately preceding the development of the antiviral T cell 

response to LCMV (McNally, Zarozinski et al. 2001). This loss was attributed to 

apoptosis, since the early attrition correlated with an increase in Annexin V 

reactivity. In this chapter, I show that a population of “lymphoid” CD8 + DCs, 

found within the CD8 +CD44hi gate, increases upon poly(I:C) treatment and 

accounts for the increase in Annexin V reactivity. Since Annexin V reactivity was 

previously thought to be associated with the apoptosis of CD8+ T cells, I re-

examined the early attrition of T cells associated with viral infections. I show that 

the loss of CD8 +CD44hi and CD4+CD44hi T cells is type 1 IFN-dependent and 

correlates with an increase in caspase activation following LCMV infection. 

Furthermore, this loss is associated with increased DNA fragmentation, which is 

a hallmark characteristic of the late stages of apoptosis. I also show that the 

apoptosis of CD8 +CD44hi and CD4+CD44hi T cells is reduced in Bim KO mice 

following LCMV infection, thereby suggesting that the death occurs through a 

mitochondrial-induced pathway involving Bim. Finally, I show that the “lymphoid” 

CD8 + DC population may aid in the rapid clearance of apoptotic cells during the 

early type 1 IFN-induced lymphopenia. 
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A.  Type 1 IFN-induced attrition of CD8 +CD44hi cells 

It has been previously demonstrated that CD8 T cells undergo apoptosis 

and decline in number in response to type 1 IFN. This apoptotic loss, however, is 

more pronounced in the bona fide antigen-specific memory and the “memory 

phenotype” CD8 T cell population (CD44hi) than in the naïve T cell population 

(CD44lo) (McNally, Zarozinski et al. 2001). A greater than 75% reduction in the 

number of CD8 +CD44hi cells in the spleen occurred 24 hours following 

treatment with the type 1 IFN-inducer poly(I:C) (Figure 1A), while a smaller 

(58%), though significant, reduction in naïve CD8 +CD44lo cell number was also 

observed (Figure 1C). Although both populations underwent a decline in cell 

number 12 hours following poly(I:C) treatment, the CD8 +CD44hi cell population 

exhibited a greater increase in Annexin V reactivity, relative to the CD8 +CD44lo 

cell population (Figure 1B and 1D). Type 1 IFN-receptor knockout (IFN1-R KO) 

mice exhibited a slight, but not statistically significant, decline in CD8 +CD44hi 

and CD8 +CD44lo cell number 24 hours following poly(I:C) treatment (Figure 1A 

and 1C). Neither IFN1-R KO population (CD8 +CD44hi or CD8 +CD44lo) had an 

increase in Annexin V reactivity 12 hours following poly(I:C) treatment, further 

supporting the involvement of type 1 IFN in the apoptotic loss of CD8  cells, 

particularly in the CD8 +CD44hi population (Figure 1C and 1D).  

Although these data support the involvement of type 1 IFN, I questioned 

whether additional molecule(s) might contribute the loss of CD8 T cells. I 

compared the poly(I:C)-induced attrition of CD8 +CD44hi cells, the more 

susceptible population, in multiple knockout and mutant mice, such as Granzyme  
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B KO, IL-7R KO, TRAIL KO, TNFR1 KO, TNFR2 KO, STAT1 KO, STAT3 

dominant negative (DN) and vFLIP transgenic (Tg) mice along with their relevant 

controls. All mice underwent a comparable loss of CD8 +CD44hi cells compared 

to their wildtype controls at 12 hours post-poly(I:C) treatment, suggesting that 

none of these molecules contribute to the type 1 IFN-induced attrition. Table 1 

summarizes these results.  
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B.  An increase in “lymphoid” CD8 + DCs accounts for the observed 

increase in Annexin V reactive CD8 +CD44hi cells following poly(I:C) 

treatment 

To determine whether additional pro-apoptotic molecule(s) may contribute 

to the type 1 IFN-induced apoptosis of CD8 +CD44hi cells, I first used a mouse 

apoptosis RT  Profiler™ PCR Array to determine relative increases or decreases 

in the expression 84 key apoptotic genes. There was an 11-fold increase in 

CD40 RNA isolated from CD8 +CD44hi cells 6 hours post-poly(I:C) relative to 

RNA isolated from untreated CD8 +CD44hi cells. Six hours post-poly(I:C) was 

chosen for RNA isolation, since this was the timepoint that immediately preceded 

a significant loss of CD8 +CD44hi cells and the corresponding increase in 

Annexin V reactivity. No significant increase in CD40 RNA expression was 

observed in the CD8 +CD44lo population 6 hours post-poly(I:C) treatment. 

Typically, CD40 surface protein expression is thought to be limited to B cells, 

DCs, and macrophages (Banchereau, Bazan et al. 1994), but CD8 T cells, under 

certain conditions, have also been shown to transiently express CD40 

(Bourgeois, Rocha et al. 2002). Gating on the CD8 +CD44hi population at 

multiple timepoints following poly(I:C) revealed an increase in CD40 surface 

protein expression that peaked around 9 and 12 hours following poly(I:C) 

treatment (30% of the CD8 +CD44hi population) and subsequently declined 

thereafter, reaching untreated levels by 72 hours (around 2% of the 

CD8 +CD44hi population) (Figures 2A and 2B). The expression of CD40 directly 

correlated with increased Annexin V reactivity. There was little increase in 
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Annexin V reactivity in the CD40-CD8 +CD44hi population at all timepoints 

following poly(I:C) treatment (Figure 2A and 2B).  
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 Because increased CD40 expression directly correlated with increased 

Annexin V reactivity, I questioned whether CD40 expression was necessary for 

the poly(I:C)-induced attrition and tested CD40 KO mice. Both wildtype and 

CD40 KO mice, however, underwent a similar decrease in both percentage and 

number of CD8 +CD44hi cells, relative to the untreated control (Figure 3A and 

3B), suggesting that the attrition of CD8 +CD44hi cells is not dependent on the 

expression of CD40. 
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I next questioned whether this population of CD40+CD8 +CD44hi cells 

expressed Thy1.2, a pan T cell marker, following poly(I:C) treatment. While the 

CD40-CD8 +CD44hi population was Thy1.2+, the CD40+CD8 +CD44hi population 

was Thy1.2-, suggesting that this sub-population does not consist of T cells 

(Figure 4A). For further confirmation, I also stained the CD8 +CD44hi population 

for CD8  expression following poly(I:C) treatment. 87% of the untreated 

CD8 +CD44hi population co-expressed CD8 , while only 63% of the 

CD8 +CD44hi population co-expressed CD8  at 12 hours post-poly(I:C) 

treatment, further suggesting there is a non-T cell population within the 

CD8 +CD44hi gate (Figure 4B). I next compared the poly(I:C)-induced attrition of 

both CD8 +CD44hi and CD8 +CD44hi populations. There was a 53% reduction in 

the percentage of CD8 +CD44hi cells at 12 hours post-poly(I:C), relative to the 

untreated control (Figure 4C), and this correlated with a 3-fold increase in 

Annexin V+ cells and a 2-fold increase in the mean fluorescent intensity (MFI) of 

Annexin V reactivity (Figure 4D). There was a more pronounced decrease in 

percentage of CD8 +CD44hi cells (73%) relative to that of the CD8 +CD44hi 

population. This decrease correlated with only a modest increase in both the 

percentage and MFI of Annexin V+ CD8 +CD44hi cells, relative to the untreated 

control (Figure 4D). CD40 surface protein expression was not detected on the 

CD8 +CD44hi population at any timepoint following poly(I:C) treatment (data not 

shown).  

Based upon these findings, multiple conclusions can be made. First, the 

assessment of the poly(I:C)-induced attrition of CD8+CD44hi T cells was 
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underestimated using the anti-CD8  antibody. This was due to the poly(I:C)-

induced increase in Thy1.2-CD40+CD8 +CD44hi cells, which also accounted for 

the observed increase in Annexin V reactivity. Thus, the use of an anti-CD8  

antibody is a more reliable indicator of the attrition of CD8+CD44hi T cells. 

Nevertheless, the attrition did not correlate with an increase in Annexin V 

reactivity, thereby leaving it unclear as to whether the loss of CD8 +CD44hi T 

cells was due to apoptosis. This issue will be addressed in this thesis. 
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To further phenotype the Thy1.2-CD40+CD8 +CD44hi population that 

increases upon poly(I:C) treatment, I next questioned whether they may be a 

subset of DCs, since certain DCs can express a CD8 -homodimer (Vremec, 

Pooley et al. 2000; Montoya, Edwards et al. 2005). I used the DC marker, 

CD11c, which can also be found on CD8 T cells, but only at much later 

timepoints following viral infection (Day 8) (Lin, Roberts et al. 2003). CD11c 

expression was high in the CD8 +CD44hi population, 12 hours following poly(I:C) 

treatment (26.4%), while no significant increase was observed in the 

CD8 +CD44hi population (Figure 5A). This result suggests that this sub-

population of CD8 +CD44hiCD11c+ cells has a DC phenotype and increases in 

frequency in the spleen at 12 hours post-poly(I:C).  I further characterized this 

population of CD8 +CD44hi CD11c+ DCs at 12 hours post-poly(I:C) as class IIhi (I-

AB), CD40+ (Figure 5B), and B220- (Figure 5C). Collectively, these results 

suggest that this population displays a “lymphoid” DC phenotype.  
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Kinetic analysis of this poly(I:C)-induced increase in CD8 + DCs revealed 

a 2-fold increase in the percentage of CD8 + DCs in the spleen as early as 9 

hours and a 3-fold increase at 12 hours post-poly(I:C) treatment (Figure 6A). This 

increase in percentage corresponded to a 2-fold increase in total CD8 + DC 

number at 9 and 12 hours post-poly(I:C) treatment (Figure 6B). This increase 

was only observed in the spleen, as no increase in percentage was observed in 

the peritoneal cavity (PEC), lungs, inguinal lymph nodes (iLN), or peripheral 

blood (Figure 7). 
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 I also questioned whether this increase in splenic CD8 + DCs was type 1 

IFN-dependent. Both wildtype and IFN1-R KO mice were inoculated with 

poly(I:C) and splenocytes were harvested at 12 hours post-treatment. I observed 
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a 3-fold increase in the percentage of wildtype CD8 + DCs (0.6% to 1.5%, p = 

0.0073), compared to a 1.5-fold increase in the percentage of IFN1-R KO CD8 + 

DCs (0.6% to 0.8%, p = 0.0373) at 12 hours post-poly(I:C) (Figure 8), suggesting 

that this increase was partially type 1 IFN-dependent. Collectively, these results 

indicate that the increase in CD8 + DCs is partially type 1 IFN-dependent and 

specific to the spleen. Furthermore, this increase in CD8 + DCs accounts for the 

observed increase in Annexin V reactive cells following poly(I:C) treatment. 
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C. Re-evaluation of the type 1 IFN-Induced attrition of CD8 T Cells 

In light of these findings, it was necessary to re-evaluate the early attrition 

of CD8+ T cells using the anti-CD8  antibody, which is a more exclusive marker 

for T cells than the anti-CD8  antibody. I first conducted a kinetic analysis of the 

poly(I:C)-induced attrition of CD8 +CD44hi T cells in the spleen. This time course 

study revealed a 27% decrease in the percentage of CD8 +CD44hi T cells as 

early as 3 hours following poly(I:C) treatment and a 51% decline at 12 hours 

(Figure 9A). This was reflected in a statistically significant decrease in 

CD8 +CD44hi T cell number at 12 hours post-poly(I:C) treatment (Figure 9B). 

This reduction in splenic CD8 +CD44hi T cells was not due to trafficking to other 

organs, as the PECs, lungs, iLN, lungs, and peripheral blood all exhibited 

significant, although varying, decreases in the percentage of CD8 +CD44hi T 

cells at 12 hour following poly(I:C) treatment (Figure 10). These data support the 

notion that the type 1 IFN-induced attrition of CD8 +CD44hi T cells was a “global” 

phenomenon and could not be due to migration out of the spleen, although a 

small re-distribution of cells cannot be completely ruled out. 
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D. Re-evaluation of the type 1 IFN-Induced attrition of CD8 T cells 

associated with viral infection 

I next re-evaluated the attrition of CD8 T cells following LCMV infection.  

There was a greater increase in the percentage CD40+Annexin V+ cells in the 

CD8 +CD44hi gate compared to the CD8 +CD44hi gate, suggesting that the 

CD8 + DC population was present following LCMV infection (Figure 11). 

Therefore, I re-evaluated whether attrition of CD8 +CD44hi T cells was 

dependent on type 1 IFN induction following LCMV infection. Both wildtype and 

type 1 IFN1-R knockout mice were infected with LCMV. Spleens were harvested 

3 days post-infection. There was an 80% decrease in the percentage of wildtype 

CD8 +CD44hi T cells relative to the untreated control, and an 80% decrease in 

overall wildtype CD8 +CD44hi T cell number (Figure 12A and 12B). There was a 

statistically significant decrease in the percentage of IFN1-R KO CD8 +CD44hi T 

cells (p < 0.05), but no corresponding decrease was observed in IFN1-R KO 

CD8 +CD44hi T cell number (Figure 12A and 12B). These data suggest that the 

early attrition of CD8 +CD44hi T cells following LCMV infection is type 1 IFN-

dependent.  
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Although I have shown that the attrition of CD8 +CD44hi T cells is type 1 

IFN-dependent, it was now unclear whether this loss is due to apoptosis. 

Previous studies have shown that the IFN- -induced apoptosis of some 

malignant cell lines occurs by a caspase-dependent mechanism (Thyrell, 

Erickson et al. 2002). I, therefore, compared the level of caspase 3 and 8 

activation between CD8 +CD44hi T cells from both wildtype and IFN1-R KO mice, 

3 days post-LCMV infection.  Both wildtype and IFN1-R KO CD8 +CD44hi T cells 

had small but significant increases in the MFI of caspase 8 activity 3 days post-

LCMV infection (Figure 12C). Both caspase 8 (Figure 12C) and caspase 3 

(Figure 12D) activity was significantly increased in the wildtype, but not the IFN1-

R KO CD8 +CD44hi T cell population, suggesting that the activation of caspases 

might contribute to the type 1 IFN-induced apoptosis of this population. 
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E. The type 1 IFN-induced attrition of CD4 T cells associated with viral 

infection 

It was shown previously that CD4 T cell memory remains remarkably 

stable under conditions of CD8 memory T cells loss (Varga, Selin et al. 2001), 

but I questioned whether CD4+CD44hi T cells were as susceptible as 

CD8 +CD44hi T cells to the type 1 IFN-induced attrition following LCMV infection. 

There was a 65% decrease in the percentage of wildtype CD4+CD44hi T cells, 3 

days post-LCMV infection, relative to the uninfected control (Figure 13A). This 

decrease correlated with a greater than 50% reduction in the overall number of 

CD4+CD44hi T cells (Figure 13B). No corresponding decrease was observed in 

either the percentage or number of CD4+CD44hi T cells from IFN1-R KO mice, 

suggesting that the loss of CD4+CD44hi T cells is type 1 IFN-dependent (Figure 

13A and 13B). Wildtype CD4+CD44hi T cells had significant increases in caspase 

3 and 8 activity, 3 days post-LCMV infection, relative to the untreated control 

(Figure 13C and 13D). IFN1-R KO CD4+CD44hi T cells, however, had no 

significant increase in either caspase 3 or 8 activity, relative to the untreated 

control (Figure 13C and 13D), suggesting that both caspase 3 and 8 may be 

involved in the type 1 IFN-induced attrition of CD4+CD44hi T cells following LCMV 

infection.  
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F. Apoptosis of T Cells During the Early Immune Response to LCMV 

The analysis of apoptosis in vivo has proven difficult, because dying cells 

are rapidly scavenged by phagocytic cells bearing receptors for PS, which is 

expressed on the surface of apoptotic cells (van Engeland, Nieland et al. 1998).  

The TUNEL assay relies on the presence of nicks in DNA, which can be 

identified by terminal transferase, an enzyme that will catalyze the addition of 

fluorescently labeled dUTPs. Splenocytes isolated from either uninfected or 

LCMV-infected (Day 3) wildtype mice were incubated at 37°C for 5 hours. 

This short in vitro incubation allows for the detection of DNA fragmentation in 

cells via TUNEL staining. As a control, splenocytes were also incubated at 

4°C for 5 hours. Incubation at this non-physiological temperature would result 

in a decrease in DNA fragmentation, since metabolic processes would be 

hindered. After brief incubation at 37°C, 16.3% of uninfected CD8 +CD44hi T 

cells were TUNEL+, compared to 36.8% of LCMV-infected CD8 +CD44hi T 

cells (6.2% and 12% at 4°C, respectively) (Figure 14A). Similarly, 26.7% of 

uninfected CD4+CD44hi T cells were TUNEL+, compared to 39.6% of LCMV-

infected CD4+CD44hi T cells at 37°C (9.2% and 18.7% at 4°C, respectively) 

(Figure 14B). These results suggest that the attrition of both CD8 +CD44hi and 

CD4+CD44hi T cell populations, following LCMV infection, occurs through an 

apoptotic mechanism due to the increased amounts of DNA fragmentation, as 

detected by TUNEL. 
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G. Bim-Mediated Apoptosis of T Cells During the Early Immune Response 

to LCMV 

Bim is a pro-apoptotic molecule involved in mitochondrial-induced 

apoptosis and type 1 IFN was found to induce apoptosis in certain cancer cell 

lines through the upregulation of Bim (Gomez-Benito, Balsas et al. 2007). 

Therefore, I questioned whether the apoptosis of T cells would be reduced in Bim 

KO mice, relative to wildtype mice at 3 days post-LCMV infection. Over 70% of 

wildtype CD8 +CD44hi cells were depleted in percentage and number at 3 days 

post-LCMV infection compared to only 40% of Bim KO CD8 +CD44hi cells, 

relative to the untreated control (Figure 15A and 15B). The decrease in Bim KO 

CD8 +CD44hi cell number, however, was not significant (Figure 15B).  

Others have suggested that decreased induction of functional type 1 IFN 

may be involved in the reduced apoptosis of T cells (Jiang, Gross et al. 2005). 

Serum from wildtype and Bim KO mice, at 3 days post-LCMV, had comparable 

type 1 IFN endpoint dilution titers in a standard type 1 IFN bioassay using 

microtiter plate wells of L-929 cells challenged with vesicular stomatitus virus 

(1/2560 + 0, n=3). Therefore, differences in the apoptosis between wildtype and 

Bim KO CD8 +CD44hi cells cannot be attributed to differences in type 1 IFN 

induction. 

After brief incubation at 37°C, 19.2% of untreated wildtype 

CD8 +CD44hi T cells were TUNEL+, compared to 12.3% of Bim KO 

CD8 +CD44hi cells (5.6% and 5.0% at 4°C, respectively) (Figure 15C). At 3 

days post-LCMV infection, 48.3% of wildtype CD8 +CD44hi T cells were 
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TUNEL+, compared to only 15% of Bim KO CD8 +CD44hi T cells at 37°C 

(18.1% and 7.0% at 4°C, respectively) (Figure 15C). The reduced attrition 

coupled with the reduction in DNA fragmentation in Bim KO mice suggests 

that Bim may contribute to the apoptosis of CD8 +CD44hi T cells following 

LCMV infection. 
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 The attrition of CD4+CD44hi T cells in wildtype and Bim KO mice at 3 days 

following LCMV infection was also examined. At 3 days post-LCMV infection, 

there was a 69% decrease in both the percentage and number of wildtype 

CD4+CD44hi T cells compared to only a 44% decrease in Bim KO CD4+CD44hi T 

cells, relative to the untreated control (Figure 16A). The decrease in Bim KO 

CD4+CD44hi T cell number, however, was not significant (Figure 16B). After brief 

incubation at 37°C, 27.3% of untreated wildtype CD4+CD44hi T cells were 

TUNEL+, compared to 15.8% of Bim KO CD4+CD44hi T cells (10.9% and 6.5% 

at 4°C, respectively) (Figure 16C). At 3 days post-LCMV infection, 45.5% of 

wildtype CD4+CD44hi T cells were TUNEL+, compared to only 28% of Bim KO 

CD4+CD44hi T cells at 37°C (22.2% and 11.2% at 4°C, respectively) (Figure 

16C). Collectively, these results suggest that Bim may be involved in 

apoptosis of CD4+CD44hi T cells following LCMV infection. Moreover, these 

results suggest a common mechanism in the apoptosis of CD8 +CD44hi and 

CD4+CD44hi T cells following LCMV infection. 
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H. The Role of “lymphoid” CD8 + Dendritic Cells During type 1 IFN-Induced 

Apoptosis of T Cells 

It has been shown that the “lymphoid” CD8 + DC population is capable of 

phagocytosing apoptotic cells (Albert, Pearce et al. 1998; Albert, Sauter et al. 

1998). Monocytes have been shown to phagocytose apoptotic bodies that are 

shed from the neighboring apoptotic cell and, in the process, become “false 

positive” by the Annexin V assay (Marguet, Luciani et al. 1999). This suggests 

that CD8 + DCs might become Annexin V+ upon engulfing apoptotic 

lymphocytes. Therefore, I examined whether this CD8 + DC population might be 

involved in the clearance of apoptotic cells following poly(I:C) treatment. To do 

this, I adoptively transferred CFSE-labeled wildtype splenocytes (Ly5.1) into 

congenic wildtype hosts (Ly5.2) and harvested splenocytes at multiple timepoints 

following poly(I:C) treatment. The CD8 +CD11c+ DC population assimilated 

CFSE+ donor cells at 9 and 12 hours post-poly(I:C), while the CD8 -CD11c+ DC 

population had a relatively lower capacity for the uptake of CFSE+ donor cells at 

similar timepoints (Figure 17). Collectively, these results suggest that the 

CD8 +CD11c+ DC population may aid in the rapid clearance of apoptotic cells 

following type 1 IFN-induced attrition and in turn, become reactive with Annexin V 

in the process.  
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Chapter IV:  Type 1 IFN-Induced Attrition of CD8 T Cells in the Presence or 

Absence of Cognate Antigen During the Early Stages of LCMV Infection 

 

In the previous chapter, I investigated potential mechanisms involved in 

the type 1 IFN-induced attrition of T cells associated with viral infection. It was 

still unclear, however, whether T cells specific to the virus were as susceptible as 

non-specific T cells to this early attrition phase. Studies have shown that 

engagement of naïve T cells with their ligand, under conditions or appropriate co-

stimulation, causes the upregulation of anti-apoptotic molecules, thereby giving 

them a survival advantage over non-specific cells (Boise, Minn et al. 1995). 

Moreover, a previous study reported that adoptively transferred P14 transgenic T 

cells, specific for the GP33 epitope of LCMV, were protected from depletion 

when measured 3 days after LCMV infection, whereas OT-1 transgenic T cells, 

specific for OVA, were significantly depleted, suggesting that TCR engagement 

by antigen may protect antigen-specific cells depletion (Jiang, Lau et al. 2003). It 

was unclear, however, whether this reflected a resistance to early depletion or a 

compensatory proliferation after the depletion event had occurred. I therefore 

designed two adoptive transfer models to examine whether a high concentration 

of antigen protects antigen-specific T cells from the early type 1 IFN-induced 

attrition associated with viral infections. In the first model, I examine whether 

naïve P14 cells and GP33-specific memory cells are protected from depletion by 

administering a high concentration of GP33-45 peptide, prior to the induction of 

cytokine-induced lymphopenia. In the second model, I examine whether naïve 
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P14 cells and GP33-specific memory cells are protected from depletion during a 

highly disseminating viral infection (Clone 13). Using both of these adoptive 

transfer model systems, I show that antigen engagement does not protect CD8 T 

cells from the type 1 IFN-induced attrition associated with viral infections. 

 

A. GP33-45 peptide does not protect naïve antigen-specific CD8 T cells 

from depletion induced by poly(I:C) 

To determine whether antigen engagement protects antigen-specific T 

cells from depletion, P14 splenocytes (Ly5.2) and OT-1 splenocytes (Thy1.1) 

were labeled with CFSE and adoptively transferred into naïve B6 recipient Ly5.1 

mice. Ly5.1 recipient mice were then inoculated with 5 μg GP33-45 peptide i.v. or 

PBS i.v., 1 day after transfer. Immunization with GP33-45 peptide alone elicits 

CTL responses in vivo (Ciupitu, Petersson et al. 1998), making it an appropriate 

antigen for use in our model system. This concentration of peptide and 

inoculation procedure for P14 cells had been optimized by others in our 

department and shown to result in the proliferation of virtually all (>95%) 

detectable CSFE-labeled P14 cells by 3 days post-peptide inoculation (LuAnn 

Pozzi, UMass Medical School, Ph.D. Thesis, 2005). In my hands, over 70% of 

the P14 transgenic cells had up-regulated CD69 expression by 21 hours post-

peptide treatment (Figure 18A), and no division had yet occurred, as indicated by 

the lack of CFSE dilution (Figure 18B).  These results indicate that there was 

sufficient GP33 peptide available to engage the receptors on the P14 T cells. 

Moreover, this dose of peptide did not result in the proliferation of P14 donor cells 
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between the time of initial peptide inoculation and splenocyte harvest (21 hours). 

Both P14 and OT-1 donor populations had a limited number of “memory 

phenotype” cells, as less than 15% were CD44hi. Five hours after the GP33-45 

peptide was administered, recipient mice were inoculated i.p. with either poly(I:C) 

or PBS. Splenocytes were harvested 16 hours after poly(I:C) inoculation. 

Previous experiments using BrdU to determine cell division showed no increase 

in labeling with BrdU by CD8 T cells 24 hours following poly(I:C) treatment, 

suggesting that there was no cell division immediately following type 1 IFN 

treatment (McNally, Zarozinski et al. 2001). Therefore, this system allows me to 

study whether TCR engagement by antigen (GP33 peptide) may protect antigen-

specific cells  (P14 cells) from depletion without the potential for compensatory 

proliferation to occur. 

Donor splenocytes (combined P14 and OT-1 cells) represented 0.5% of 

the untreated host’s splenocyte population. In the experiment shown, OT-1 cells 

comprised 60%, while P14 cells comprised 35% of the donor population, as 

distinguished by Thy1.2 and V 2 staining (Figure 18B). The percentage of donor 

splenocytes decreased by half after poly(I:C) treatment, to 0.24%, but the ratio of 

the transgenic T cells in the donor population changed only slightly (OT-1 to P14 

ratio was 54% to 41%, respectively), suggesting that both transgenic T cell 

populations were equally susceptible to depletion. Inoculation with GP33-45 

peptide alone had little effect on the percentage of donor splenocytes (0.52%) or 

on the ratio of OT-1 to P14 donor cells (57% to 38%) in the donor population.  

After poly(I:C) inoculation of GP33-45 peptide-treated host mice, there was a 
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substantial loss in the donor splenocyte population (0.35%), which was similar to 

poly(I:C) treatment without prior GP33-45 peptide treatment (0.24%).  Again, the 

ratio of the two transgenic populations changed slightly (OT-1 to P14 ratio was 

61% to 31%, respectively). There was, however, a statistically significant 

reduction in the percentage of P14 cells in mice treated with GP33-45 peptide 

followed by poly(I:C) inoculation when compared to poly(I:C) alone, as indicated 

by the relative decrease in the percentage of P14 cells (31% versus 41%, 

respectively; P < 0.01) (Figure 18B). Moreover, despite the GP33-45 peptide-

induced increased activation status  (MFI of CD69 expression) of P14 cells 

relative to OT-1 T cells, this did not correlate with an increased rate of survival 

after poly(I:C) treatment (19349 vs. 9676, respectively) (Figure 18A). 

Figure 18B depicts a representative experiment showing changes in 

percentage of donor T cell populations within a host’s splenocyte population, but 

this does not take into consideration the global effects of lymphopenia on total 

(host and donor) cell populations. Fig. 18C depicts the average splenocyte 

numbers of several mice per group after poly(I:C) treatment. P14 and OT-1 

donors were reduced by 50% upon poly(I:C) inoculation. The greater decrease in 

the number of OT-1 cells relative to the number of P14 cells may be due to 

different susceptibilities of the transgenic cells to type 1 IFN-induced depletion. 

When GP33-45 peptide was administered prior to poly(I:C) inoculation, P14 cells 

were reduced by about 66%, while OT-1 cells were still reduced by about 60%. 

There was a difference between the number of P14 cells remaining after GP33-

45 peptide and poly(I:C) treatment versus poly(I:C) treatment, although not quite 
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significant (P < 0.06) (Figure 18C). Combined, these results suggest that GP33-

45 peptide may slightly enhance depletion rather than protect the P14 cells from 

depletion.  
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B. Antigen-specific naïve CD8 T cells are not protected from depletion 

during the early phase of an acute viral infection 

We next examined whether naïve antigen-specific CD8 T cells are 

protected from depletion during the early stages of an acute viral infection. To 

increase the probability of antigen engagement of the T cells, we used the highly 

disseminating variant of LCMV, Clone 13, which differs from the Armstrong strain 

by two amino acids, but encodes similar T cell epitopes (Ahmed, Salmi et al. 

1984). We chose day 2 post-infection, since both type 1 IFN levels and viral load 

are high at this time point (Wherry, Blattman et al. 2003), and a decline of CD8 T 

cell numbers had been detected as early as 2 days post-LCMV Clone 13 

infection (Kim and Welsh 2004).  CFSE-labeled P14 cells (Ly5.2) were 

transferred i.v. into either a Day 2 Clone 13-infected mouse or a naïve C57BL/6 

mouse (Ly5.1). Splenocytes were harvested 16 hours later. There was a 10-fold 

loss in the percentage of donor P14 cells when transferred into a Day 2 Clone 

13-infected mouse upon harvest (Figure 19A). This loss of donor P14 cells was 

not specific to the spleen, as the loss also occurred in the lymph nodes (Figure 

19A), peripheral blood, bone marrow, peritoneal cavity, and lungs (data not 

shown), ruling out trafficking to other compartments.  

Decreases in the number of P14 donor splenocytes transferred into a day 

2 Clone 13-infected mouse were consistent with the decrease in the frequency of 

total P14 donor cells. Transfer into a Day 2 Clone 13-infected mouse resulted in 

a >90% reduction in the number of P14 donor cells, relative to transfer into a 

naïve recipient (Figure 19B).  Host CD8 T cells (Ly5.1) underwent a 70% 
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reduction 2 days post-Clone 13 infection, relative to a naïve Ly5.1 mouse (Figure 

19B). These results suggest that the high viral antigen load does not prevent the 

depletion of antigen-specific naïve P14 cells during the early lymphopenic phase 

of an acute LCMV infection. 
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C. GP33-45 peptide does not protect antigen-specific memory CD8 T cells 

from depletion by poly (I:C) treatment 

Although both naïve and memory CD8 T cells are susceptible to the early 

apoptosis phenomenon, bona fide antigen-specific memory and “memory 

phenotype” CD8+CD44hi T cells are far more susceptible (Figure 20A) (McNally, 

Zarozinski et al. 2001).  Because memory cells react with ligand in qualitatively 

and quantitatively different ways than naïve cells (Tanchot, Lemonnier et al. 

1997; Zimmermann, Prevost-Blondel et al. 1999; Veiga-Fernandes, Walter et al. 

2000; Grayson, Harrington et al. 2002), I also questioned whether antigen 

engagement would protect them from the early apoptosis. I examined whether 

treatment with GP33-45 peptide selectively protected GP33-specific, but not 

other LCMV-specific memory cells, from poly(I:C)-induced depletion. CFSE-

labeled LCMV-immune splenocytes (Ly5.2) were adoptively transferred into 

naïve B6 mice (Ly5.1). Ly5.1 recipient mice were then inoculated with GP33-45 

peptide i.v. or PBS i.v. 1 day after transfer. After 5 hours, recipient mice were 

inoculated with poly(I:C) i.p. Splenocytes were harvested 16 hours post-poly(I:C) 

inoculation. As expected, both naïve recipient (Ly5.1) and LCMV-immune donor 

(Ly5.2) CD8 T cell populations underwent attrition upon poly(I:C) inoculation of 

otherwise untreated mice (92% and 85% reduction, respectively), with a greater 

decrease in the CD44hi relative to the CD44lo population (Figure 20A). GP33-45 

peptide inoculation resulted in a slight reduction in the frequency of LCMV-

immune donor (Ly5.2) CD8+CD44hi T cells relative to no treatment and did not 

protect against poly(I:C)-induced attrition. GP33-45 peptide treatment followed by 
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poly(I:C) inoculation resulted in a similar degree of attrition in both recipient 

CD44hi (Ly5.1) and LCMV-immune donor (Ly5.2) CD8 T cells compared to 

poly(I:C) treatment only (Figure 20A and 20B).  

Decreases in GP33-specific CD8 T cell numbers upon peptide and/or 

poly(I:C) treatment were consistent with the decreases in the percentages of total 

memory T cells (Figure 20B), suggesting that the GP33-specific population was 

as susceptible as the non-specific memory population. Poly(I:C) treatment 

resulted in a 67% reduction in the number of GP33-specific CD8 memory T cells 

and a 51% reduction in the number of total memory CD8 T cells, as determined 

by -CD3 stimulation.  GP33-45 peptide treatment resulted in almost a 44% 

decrease in the number of GP33-specific CD8 memory T cells relative to 

untreated controls and only a marginal 13% decrease in the total number of 

memory CD8 T cells. GP33-45 peptide treatment followed by poly(I:C) 

inoculation resulted in an 80% decrease in the number of GP33-specific CD8 

memory T cells, relative to untreated controls. The total number of bona fide 

memory CD8 T cells underwent a similar degree of attrition whether or not the 

GP33-45 peptide was administered prior to poly(I:C) treatment (Figure 20B). 

Overall, these findings indicate that GP33-45 peptide was unable to prevent the 

depletion of GP33-specific CD8 memory T cells during poly(I:C)-induced 

lymphopenia and may enhance, rather than protect against depletion (Figure 20A 

and 20B). 
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D. Antigen-specific memory CD8 T cells are not protected from depletion 

during the early phase of an acute viral infection 

To test whether LCMV-specific memory CD8 T cells were protected from 

depletion during the attrition phase of the immune response to a viral infection, 

CFSE-labeled LCMV-immune cells (Ly5.2) were transferred i.v. into a Day 2 

Clone 13-infected host, Day 2 Armstrong-infected host, or a naïve host (Ly5.1). 

As a non-specific control, PV-immune cells were also transferred under the same 

conditions. Splenocytes were harvested 16 hours later. 

Both LCMV- and PV-immune donor CD8 T cells underwent almost a 50% 

reduction in both LCMV-Clone 13 and LCMV-Armstrong-infected mice (Figure 

21A). There was almost a complete loss of LCMV-specific (NP396, GP33, and 

GP276) and PV-specific (NP38) CD8 memory T cells after they were transferred 

into either an Armstrong or Clone 13-infected mouse (2 days post-infection) 

(Figure 21C). The loss of donor memory cells was not due to trafficking out of the 

spleen, as other compartments experienced a similar donor cell loss including 

the lymph nodes (Figure 21B), peripheral blood (0.1% to <0.01%), and lungs 

(0.1% to 0.04%) 16 hours post-transfer Clone 13-infected mice. These results 

suggest that the high viral antigen load does not prevent the depletion of LCMV-

specific memory CD8 T cells during the early lymphopenic phase of an acute 

LCMV infection.  
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Chapter V:  Early CD8 T Cell Attrition Contributes to the Development of a 

Diverse Immune Response Following Viral Infection 

 

As indicated in the previous chapter, CD8 T cells, regardless of specificity, 

are susceptible to the type 1 IFN-induced attrition associated with viral infections. 

Using computer models, we show how this concept is important in the context of 

heterologous immunity. These models indicate that the attrition of cross-reactive 

memory CD8 T cells reduces their immunodominance and allows for a more 

diverse immune response, since memory CD8 T cells are more susceptible to 

the type 1 IFN-induced attrition than naïve CD8 T cells. 

As mentioned previously, others have shown that old mice develop less 

initial lymphopenia relative to young mice (Jiang, Anaraki et al. 2003). Therefore, 

using the LCMV/PV cross-reactive model, I also question whether the reduced 

apoptosis of the cross-reactive memory CD8 population (NP205), in old LCMV-

immune mice, allow it to dominate the immune response following heterologous 

virus challenge (PV). LCMV and Pichinde virus (PV) encode epitopes in the 

nucleoprotein, NP205-212, sharing 6 of 8 amino acids. In a naïve host, NP205 is 

normally a subdominant epitope for both viruses, but due to a selective 

expansion of NP205-specific cross-reactive memory CD8 T cells, the NP205-

specific T cell response became dominant when LCMV-immune mice were 

infected with PV, demonstrating how cross-reactive expansion can alter the 

hierarchy of T cell responses (Brehm, Pinto et al. 2002).  This model shows that 

the early attrition of T cells allows for the generation of a more diverse T cell 
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response to infection by reducing the immunodomination caused by cross-

reactive T cells. 

 

A. Computer modeling predicts that early attrition of memory CD8 T cells 

allows for more diversity in newly arising T cell responses 

Computer simulations were used to determine the impact of virus-induced 

lymphopenia on the T cell response to a virus infection in virtual mice that had a 

partially cross-reactive pool of memory T cells. The simulations first showed that, 

in the absence of a memory cell lymphopenia, cross-reactive T cells would 

dominate a new T cell response and inhibit the emergence of a complex naïve T 

cell response specific to a new pathogen (Figure 22A). The simulation tests that, 

after a successful interaction with an APC, the T cell is protected from type 1 

IFN-mediated death for a designated number of time steps, decided at the 

beginning of the simulation. Thus, during the heterologous virus infection, only 

cross-reactive memory T cells are protected from depletion during the early 

lymphopenia. This is contrasted with the model in which even cross-reactive 

clones are susceptible to the early lymphopenia.  

A virtual mouse was challenged with 70 particles of virus, which were 

cleared before time step 500, thanks to an effective immune response. The CD8 

memory T cells were transferred into different virtual recipients, and a second 

challenge with 240 particles of a partially cross-reactive virus was administered.  

The larger amount of challenge virus was necessary to elicit a valid response, 

because of the cross-reactive CD8 T cell pool. The two simulations modelled 
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were (1) specific protection from active attrition conferred to cross-reactive clones 

(Figure 22A) and (2) absence of any kind of protection from attrition (Figure 22B). 

Here a low affinity cross-reactive clone is depicted in red. In the absence of 

attrition, this low affinity clone can dominate the immune response against high 

and medium affinity clones (green and blue) originating at low frequency from a 

naive memory pool (Figure 22A and 22B). Figure 22B shows that if this low 

affinity cross-reactive clone undergoes apoptosis, an immunodominant response 

can be generated by higher affinity clones (i.e. green) from the naïve repertoire. 
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B. Reduced attrition of cross-reactive memory cells in old LCMV-immune 

mice limits the diversity of the ensuing immune response to heterologous 

Pichinde infection 

The computer simulation supports a model in which the apoptosis of 

cross-reactive memory CD8 T cells allows for the generation of a diverse 

immune response. I pre-bled both old (18-22 month old) and young (6-8 month 

old) LCMV-immune mice to determine the frequency of both dominant (GP33) 

and subdominant (NP205) epitope-specific memory CD8 T cells via intracellular 

IFN  assay. Old mice had GP33 frequencies ranging from 5-15% of the CD8 

population, while the young mice had frequencies ranging from 2-7% of the CD8 

population (Figure 23A). Old mice had NP205 frequencies ranging from 2-3% of 

the CD8 population, while young mice had similar frequencies, ranging from 1-

2% of the CD8 population (Figure 23A). Young and old LCMV-immune mice 

were infected with PV, which, like LCMV, induces a potent type 1 IFN response. 

At day 8 post-infection, the frequency of the cross-reactive memory (NP205) and 

non-cross-reactive PV-specific (NP38) CD8 T cells was determined via 

intracellular IFN  assay. Young and old naïve mice, age matched to their LCMV-

immune counterparts, were also infected with PV, to ensure that both old and 

young naïve mice mount a similar immune response to PV. Both had a 

comparable NP38-specific response at day 8 post-infection (15.9% and 17.6% of 

the CD8 population, respectively) (Figure 23B). At day 8 post-infection, 2 out of 3 

young LCMV-immune mice had an NP205 to NP38 ratio under 1, suggesting that 

the loss of the cross-reactive, NP205-specific memory CD8 population allowed 
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for the successful expansion of the newly arising NP38-specific response (Figure 

23B). One young LCMV-immune mouse, however, had an NP205 to NP38 ratio 

over 1 (5.5) (Figure 22B); this may be due to private specificity of this particular 

mouse’s TCR repertoire (Kim, Cornberg et al. 2005; Cornberg, Chen et al. 2006). 

Private specificity suggests that the differences in TCR repertoire between mice 

might dictate the nature of the cross-reactive response. All three old mice had 

NP205 to NP38 ratios over 1, suggesting that the lack of cross-reactive, NP205-

specific memory CD8 cell attrition allowed this population to dominate, thereby, 

hindering the expansion of the newly arising NP38- response (Figure 23B).  

There was a substantial loss of GP33-specific memory CD8 cells at day 8 

post-PV infection, relative to day 0, in young LCMV-immune mice (Figure 23A 

and 23B). This was not surprising, considering that non-cross-reactive memory 

cells are lost upon heterologous virus challenge (Selin, Vergilis et al. 1996; Selin, 

Lin et al. 1999; Liu, Andreansky et al. 2003). The GP33-specific memory CD8 

response, however, remained quite high in old LCMV-immune mice, at day 8 

post-PV, compared to day 0 (Figure 23A and 23B); this is most likely due the 

reduced lymphopenia in old mice relative to young mice following PV-infection. 

The NP205 to NP38 ratio was compared between additional young and old 

LCMV-immune, at day 8 post-PV infection, and this revealed young mice to have 

a significantly lower ratio relative to old mice (1.5 vs. 2.5, respectively) (Figure 

23C). Collectively, these results suggest that the early virus-induced 

lymphopenia limits the size of the cross-reactive memory pool (NP205), thus 
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allowing for the successful expansion of non-cross-reactive clones from the naïve 

pool.  
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Chapter IV:  Discussion 

 

In this thesis, I re-evaluated the early type 1 IFN-dependent loss of T cells 

associated with viral infections. I showed that the attrition of T cells is due to 

apoptosis, as revealed by an increase in DNA fragmentation following LCMV 

infection. I provided evidence that the apoptosis might occur through a 

mitochondrial-induced pathway involving the pro-apoptotic molecule Bim. I also 

showed that a population of “lymphoid” CD8 + DCs, which accounted for the 

previously observed increase in Annexin V reactivity, may aid in the rapid 

clearance of apoptotic cells during the early type 1 IFN-induced lymphopenic 

phase. Moreover, I provide evidence that the type 1 IFN-dependent attrition of 

CD8 T cells is non-selective, as both antigen-specific and non-specific CD8 T 

cells are equally susceptible. This non-selective depletion of memory CD8 T cells 

may allow for the generation of a more diverse T cells response to infection by 

reducing the immunodomination caused by cross reactive T cells as indicated by 

the computer generated models. I also show that the reduced attrition in LCMV-

immune aged mice results in the immunodomination of cross-reactive T cells 

(NP205) following heterologous PV infection. A more in depth discussion of these 

results follows. 

 

A. A re-assessment of the type 1 IFN-induced apoptosis of T cells 
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Previously, our lab had shown that the type 1 IFN-induced attrition of 

CD8 +CD44hi cells correlated with an increase in Annexin V reactivity, 

suggesting that this loss occurred through an apoptotic mechanism (Figure 1) 

(McNally, Zarozinski et al. 2001). It was believed that this CD8 +CD44hi 

population consisted of primarily T cells, but I found a population of “lymphoid” 

CD8 + DCs, within the CD8 +CD44hi gate, that increased upon poly(I:C) 

treatment (Figure 6).  This population accounted for the previously observed 

increase in Annexin V reactivity at 12 hours following poly(I:C) treatment (Figures 

1 and 2). 

This observation required a re-evaluation of the type 1 IFN-induced 

attrition of CD8+CD44hi T cells with an anti-CD8  antibody, which is a more 

exclusive stain for CD8+ T cells than an anti-CD8  antibody. The attrition of both 

CD8 +CD44lo and CD8 +CD44lo populations was similar, since the CD8 + DC 

population was only in the CD44hi gate (Figure 4C). There was, however, a 

significant loss of splenic CD8 +CD44hi T cells at 12 hours following poly(I:C) 

treatment (Figure 9). A type 1 IFN-dependent loss in splenic CD8 +CD44hi T cells 

was also observed at 3 days post-LCMV-Armstrong infection (Figure 12).  

Three potential mechanisms that could account for this loss were 

migration, increased adherence, and death. Although Inflammatory cytokines can 

alter the trafficking patterns of T cells, I observed a similar loss of CD8 +CD44hi T 

cells in spleen, PEC, lungs, iLNs, and peripheral blood following poly(I:C) 

treatment (Figure 10). Although it is difficult to rule out trafficking into 
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compartments that I have not yet examined, these data indicate that the loss of 

CD8 +CD44hi T cells is not due to redistribution into other organs. 

Inflammatory cytokines can also affect the adherence properties of T cells. 

Others have reported a similar transient decline of antigen-specific memory CD8 

T cells, assessed by flow cytometry, in the spleens of mice early after Listeria 

monocytogenes infection. This decline, however, was a consequence of the T 

cells undergoing an APC-dependent conditioning phase that renders them 

undetectable by flow cytometry, but readily detectable by histological techniques 

(Jabbari, Legge et al. 2006). This conditioning phase, termed T cell conditioning, 

is a process whereby APCs laden with antigen form aggregates with antigen-

specific T cells, thereby preventing them from being properly extracted or 

processed for analysis by flow cytometry (Maxwell, Rossi et al. 2004). A 

disruption of this interaction through protease treatment can enhance the 

recovery of antigen-specific memory CD8 T cells, but it cannot account for the 

loss of a significant number of cells (Jabbari, Legge et al. 2006), suggesting that 

T cell conditioning alone cannot account for the attrition of antigen-specific 

memory CD8 T cells during infection. 

LCMV infection causes substantial reductions in the frequencies of CD8 T 

cells that are specific to a heterologous virus as early as 2 days post-infection, 

and these frequencies do not recover as the infection resolves, a finding that 

neither migration or T cell conditioning can account for (Kim and Welsh 2004). 

This suggests that the long-term loss in memory might, in large part, be a 

consequence of the type 1 IFN-dependent apoptotic loss in memory CD8 T cells.  
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Others have shown that type 1 IFN can induce the activation of multiple 

caspases in certain tumor cell lines, including caspases 3 and 9, which are both 

associated with mitochondrial-induced apoptosis (Thyrell, Erickson et al. 2002). 

Caspase 8, which is typically associated with death receptor-mediated apoptosis, 

was also activated in certain cells lines, but to a lesser extent (Thyrell, Erickson 

et al. 2002; Panaretakis, Pokrovskaja et al. 2003). The attrition of wildtype 

CD8 +CD44hi and CD4+CD44hi T cells at 3 days post-LCMV infection, correlated 

with a significant increase in the activation of caspases 8 and 3 (Figure 12). No 

significant increase in the activation of caspase 3 was observed within the IFN1-

R KO CD8 +CD44hi or CD4+CD44hi T cell population and this was consistent with 

the reduced attrition of both populations (Figure 12). This finding confirms a 

previous study that associates the activation of caspase 3 with the type 1 IFN-

dependent depletion of CD8 T cells (Jiang, Gross et al. 2005). Caspase 8 

activation was significantly increased in the IFN1-R KO CD8 +CD44hi T cell 

population at 3 days post-LCMV infection (Figure 12), suggesting that it may not 

contribute to type 1 IFN-induced attrition of CD8 +CD44hi T cells. Caspase 8 

activation is also associated with proliferation (Chun, Zheng et al. 2002; 

Salmena, Lemmers et al. 2003; Kang, Ben-Moshe et al. 2004; Su, Bidere et al. 

2005), but our lab has previously shown that there is no proliferation of CD8 T 

cells during the early type 1 IFN-induced lymphopenia, but that they will 

proliferate upon recovery (McNally, Zarozinski et al. 2001). I have attempted to 

block the poly(I:C)-induced attrition of CD8 T cells using a pan-caspase inhibitor 

in vivo, but this has proven futile. There was still a significant cell loss, potentially 
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through a caspase-independent, programmed necrosis pathway, as suggested 

by others (Nussbaum and Whitton 2004). Nevertheless, these findings support a 

role for caspases in the type 1 IFN-induced attrition of T cells.  

Other groups, however, have reported caspase activation without 

significant apoptosis prior to T cell expansion (Alam, Cohen et al. 1999; 

Kennedy, Kataoka et al. 1999). I found a significant increase in DNA 

fragmentation, as revealed by TUNEL, within the CD8 +CD44hi and CD4+CD44hi 

T cell population at 3 days post-LCMV infection (Figure 14). This suggests that 

the attrition of both CD8 +CD44hi and CD4+CD44hi T cells occurs through an 

apoptotic mechanism, as DNA fragmentation is one of the hallmark 

characteristics of the late stage of apoptosis.  

Bim, a pro-apoptotic molecule involved in mitochondrial-induced cell 

death, has previously been shown to be involved in apoptotic events following 

either an acute or persistent LCMV infection. It is critical for eliminating most 

activated effector T cells at the resolution of an acute LCMV infection and as a 

result, functional memory cells are significantly increased in Bim KO mice 

following the contraction of the immune response (Wojciechowski, Jordan et al. 

2006).  Bim has also been demonstrated to have a critical role during chronic 

LCMV-Clone 13 by downregulating CD8 T cell responses. While NP396-specific 

CD8 T cells were rapidly deleted in wildtype mice, no decrease was observed in 

Bim KO mice (Grayson, Weant et al. 2006). 

Here I report the first evidence of Bim’s involvement in the early apoptosis 

of T cells following LCMV infection. The attrition of CD8 +CD44hi and 
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CD4+CD44hi T cells was reduced in Bim KO mice at 3 days post-LCMV infection, 

relative to wildtype mice (Figure 15A-B). The reduced attrition corresponded with 

a decrease in DNA fragmentation, as revealed by TUNEL, in Bim KO T cells, 

relative to T cells (Figure 15C). Nevertheless, Bim KO mice infected with LCMV 

were not completely resistant to the early lymphopenia (Figure 15A), suggesting 

that additional pro-apoptotic family members might be involved. T cell 

homeostasis is more severely disturbed in Bax/Bak double-deficient mice than in 

Bim KO mice, suggesting that other molecules that signal upstream of Bax/Bak 

may compensate for the loss of Bim (Wojciechowski, Tripathi et al. 2007). 

Moreover, physical interactions between MCL-1 and Bak prevent Bak 

homodimerization, mitochondrial pore formation, and spontaneous induction of 

apoptosis that may bypass Bim (Willis, Chen et al. 2005).  

Bim-dependent apoptosis can be dependent on the covalent modification 

of Bim by phosphorylation at multiple sites by members of the MAPK family 

members, which play a crucial role in type 1 IFN-mediated responses. Bim’s pro-

apoptotic function may be increased or decreased depending on the site of 

phosphorylation (Ley, Ewings et al. 2005). I examined the attrition of 

CD8 +CD44hi T cells at 3 days post-LCMV infection, in mice deficient in JNK1, a 

kinase that can phosphorylate Bim at multiple sites, as well as mice in which 

certain phosphorylation sites on Bim have been mutated (Bim3A, BimTA, and 

BimL). Mice deficient in Bmf, a closely related homolog of Bim, as well as mice in 

which a phosphorylation site on Bmf has been mutated, were also used (a brief 

description of each knockout and mutant mice used is provide in Table 2). All 
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mice showed a similar decrease in overall CD8 +CD44hi T cell number coupled 

with a corresponding increase in TUNEL staining, relative to the wildtype control 

at 3 days post-LCMV infection (data not shown).  
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I have not yet established whether type 1 IFN induction leads to an 

increase in Bim activity and/or expression, resulting in the apoptosis of T cell. 

Type 1 IFN has been shown to cause the attrition of certain cancer cell lines 

through a mitochondrial-induced pathway involving Bim (Otsuki, Yamada et al. 

1998; Chen, Gong et al. 2001). As mentioned previously, serum type 1 IFN 

serum levels are similar between both wildtype and Bim KO mice, at 3 days post-

LCMV infection. Therefore, the reduced attrition in Bim KO mice, infected with 

LCMV, is not due to lower levels of type 1 IFN induction.  

I also investigated whether TNFRSF members might be involved in the 

type 1 IFN-induced attrition of CD8+ T cells. TRAIL expression is induced by type 

1 IFN on multiple cells types and has been shown to kill certain normal and 

cancer cells (Wiley, Schooley et al. 1995; Pan, O'Rourke et al. 1997; Martin-

Villalba, Herr et al. 1999; Lamhamedi-Cherradi, Zheng et al. 2003; Mundt, Kuhnel 

et al. 2003). Although it has been reported that the depletion of T cells during the 

early response to listeria monocytogenes infection was partially dependent on 

TRAIL (Zheng, Jiang et al. 2004), I found that the poly(I:C)-induced attrition of 

CD8 +CD44hi cells in TRAIL KO mice was similar to that of wildtype mice (Table 

1). Poly(I:C) also induces TNF (Zhang, Sun et al. 1998), which can be cytotoxic 

to cells, but both TNFNR1 and TNFR2 KO CD8 +CD44hi cells mice were equally 

susceptible to the early type 1 IFN-induced attrition (Table 1).  Mice that over-

express viral FLICE (caspase-8)-like inhibitor proteins (v-FLIPs) are resistant to 

death receptor-induced apoptosis and programmed necrosis (Woelfel, Bixby 

et al. 2006). CD8 +CD44hi cells from these mice, however, were also susceptible 
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to the type 1 IFN-induced attrition (Table 1). Although these experiments were 

conducted prior to the discovery of the sub-population of CD8 + DCs within the 

CD8 +CD44hi gate, the substantial depletion exhibited by all KO mice following 

poly(I:C) treatment, suggests that these members of the TNFRSF may not play a 

role in the type 1 IFN-induced  attrition of CD8 T cells, although this requires 

further confirmation. 

Regardless of the additional mechanisms involved, it is still unclear 

whether the loss of T cells results from either the direct or indirect effects of type 

1 IFN. I have, however, preliminary evidence that supports an indirect role for 

type 1 IFN using an adoptive transfer model.  I adoptively transferred bona fide 

IFN1-R KO memory CD8+CD44hi T cells into wildtype recipient mice followed by 

inoculation with poly(I:C). These memory cells were generated using a less 

virulent vaccina virus (VV) variant, expressing the entire glycoprotein of LCMV 

(VV-GP), since IFN1-R KO mice have difficultly clearing most other viruses. 

Since the donor IFN1-R KO memory population lacks IFN1-R expression, any 

donor cell loss, following poly(I:C) treatment, could be attributed to the indirect 

effects of type 1 IFN, whereas no loss would suggest a direct effect. There was a 

significant loss in both VV-specific cells (B8R) and LCMV-specific cells (GP33), 

at 12 hours post-poly(I:C) treatment (Figure 24), suggesting that attrition of bona 

fide IFN1-R KO CD8+CD44hi T cells might occur through the indirect effects of 

type 1 IFN.  
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B. A role for “lymphoid” CD8 + DCs during the type 1 IFN-induced early 

lymphopenia 

 I document a type 1 IFN-dependent increase in CD8 + DCs that was 

greater following poly(I:C) treatment, relative to LCMV infection. This is not 

surprising since CD8 + DCs can be activated through TLR3, a receptor for 

poly(I:C) (Schulz, Diebold et al. 2005). Interestingly, this increase in CD8 + DCs 

correlated with the decrease in the CD8 +CD44hi T cells (Figure 6 and 9). 

Therefore, I questioned whether CD8 + DCs might aid in the rapid clearance of 

apoptotic cells, following poly(I:C) treatment, in vivo. There was a slight increase 

in the uptake of CFSE-labeled congenic donor cells, by host CD8 + DCs, at 9 

and 12 hours post-poly(I:C) treatment (Figure 17). Others have shown that the 

engulfment of apoptotic cells results in an increase in class II expression, a result 

consistent with my finding of increased class II expression at 12 hours post-

poly(I:C) treatment (Figure 5B and 17) (Clayton, Savage, 2003). T cells and DCs 

are in close contact during antigen presentation, but this would not explain the 

increased uptake of CFSE+ donor cell label by host DCs, since doublets were 

gated out using pulse-width, prior to analysis. Nevertheless, there are very few 

CFSE+ donor cells taken up by the host CD8 + DCs. This was to be expected 

since there was a higher frequency of endogenous, unlabeled apoptotic cells 

also taken up. Another caveat is that we were unable to determine the phenotype 

of the donor cells taken up by host DCs.  I have tried to detect T cell surface 

proteins (i.e. Thy1.2) within the host DCs, but the results were inconclusive. 
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Monocytes have been shown to phagocytose apoptotic bodies that are 

shed from the neighboring apoptotic cell and, in the process, can become “false 

positive” by the Annexin V assay (Marguet, Luciani et al. 1999). This suggests 

that CD8 + DCs might become Annexin V+ upon engulfing apoptotic 

lymphocytes. The apoptotic phenotype, as indicated by an increase Annexin V 

reactivity, suggests that the plasma membrane of the CD8 + DC might be fusing 

with the plasma membrane of the apoptotic body it engulfs. Phagocytic cells 

expressing T-cell immunoglobulin- and mucin-domain-containing molecule 

(Tim4) have bee shown to associate with exosomes carrying exposed PS, which 

may also account for the observed increase in Annexin V reactivity (Miyanishi, 

Tada et al. 2007). Nevertheless, increased Annexin V reactivity also suggests 

that the DCs could actually be dying. The typical lifespan of mature DCs is 

estimated at 3 days in vivo (Ingulli, Mondino et al. 1997; Kamath, Pooley et al. 

2000). Also, DC populations begin to drop in number within 24 hours of infection 

of mice with LCMV and decline even further by day 3 post-infection.  It is not 

known whether this is due to migration, phenotypic alterations, and/or cell death, 

but it is known to be type 1 IFN-dependent (Montoya, Edwards et al. 2005). 

Although contrary to the current dogma, it has been shown that the surface 

expression of phosphatidylserine on macrophages is required for phagocytosis of 

apoptotic lymphocytes. Pre-treating these macrophages with Annexin V was 

found to inhibit phagocytosis of apoptotic thymocytes (Callahan, Williamson et al. 

2000). Interestingly, the apoptosis PCR array also revealed an increase in IL-10 

RNA in CD8 +CD44hi population, containing CD8 + DCs, at 6 hours post-
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poly(I:C). Recently, it has been shown that exposure of DCs to IL-10 can 

suppress the induction of anti-apoptotic genes, which coincided with the 

spontaneous apoptosis of the DC (Chang, Baumgarth et al. 2007). In some 

cases, an impairment of apoptotic cell phagocytosis can lead to autoantibody 

production and may result in the breakdown of self tolerance (Asano, Miwa et al. 

2004). We are currently setting up a system to determine what effect depleting 

DCs prior to poly(I:C) treatment has on the early attrition of T cells, utilizing 

CD11c-DTR mice. These mice can be depleted of DCs because the diphtheria 

toxin receptor is on the CD11c promoter (Jung, Unutmaz et al. 2002).   

 

C. Antigen engagement does not protect CD8 T cells from the type 1 IFN-

induced attrition associated with viral infections 

I show here that antigen engagement by antigen-specific naïve (P14) or 

memory (LCMV-immune) CD8 T cells, with either peptide or viral antigen, does 

not protect these cells from depletion resulting from poly(I:C) inoculation or viral 

infection (LCMV). This is in contrast to an earlier report that concluded that 

depletion was selective for non-specific CD8 T cells and that antigen-specific 

CD8 T cells resisted deletion and instead underwent extensive proliferation 

(Jiang, Lau et al. 2003).  We suggest that this paper may have missed an early 

depletion preceding the proliferation phase.  Our study also seems at odds with 

the concept that antigen-engagement can up-regulate anti-apoptotic proteins 

such as Bcl-XL and protect cells from apoptosis (Petschner, Zimmerman et al. 

1998).  Our results indicate that protection from apoptosis does not occur at 
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these very early stages of the type 1 IFN response. Poly(I:C) treatment up-

regulated CD69 on both donor naïve P14 and OT-1 transgenic T cell populations 

(Figure 18A), consistent with the ability of type 1 IFN to nonspecifically up-

regulate CD69 on naïve T cells (Sun, Zhang et al. 1998; Sun and Sprent 2000). 

In contrast, GP33-45 peptide up-regulated CD69 only on the GP33-specific P14 

T cells, but not on the OVA-specific OT-1 cells, consistent with reports indicating 

that TCR engagement upregulates CD69 expression (Figure 18A).  In addition, 

GP33-45 peptide inoculation down-regulated CD62L expression on P14 cells, but 

not on OT-1 cells (data not shown). These experiments show the nonspecific 

effects of the TLR agonist poly(I:C) and the very specific effects of peptide on the 

transgenic T cell populations. This peptide-dependent engagement of the T cells 

did not, however, selectively protect them from the apoptosis and attrition 

mediated by poly(I:C) (Figure 18). Therefore, the increased activation status of 

naïve antigen-specific cells via peptide inoculation did not confer resistance to 

type 1 IFN-induced depletion. 

Memory CD8 T cells are more susceptible than naïve CD8 T cells to type 

1 IFN-induced depletion (McNally, Zarozinski et al. 2001) (Figure 20A). Because 

the experiments with transgenic P14 T cells utilized immunologically naïve T 

cells, I also investigated whether the GP33-45 peptide would protect GP33-

specific memory CD8 T cells from poly(I:C)-induced depletion. The GP33-specific 

memory population was susceptible to the poly(I:C)-induced attrition regardless 

of whether the GP33-45 peptide was administered beforehand (Figure 20B) 

Treatment with GP33-45 peptide alone resulted in a slight loss of GP33-specific 
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memory CD8 T cells, suggesting that memory CD8 T cells may be more 

susceptible to AICD than naïve CD8 T cells (Figure 20B). Another explanation is 

that the loss of GP33-specific memory cells may be due to T cell conditioning, 

which was described earlier. 

Similar results showing a failure of antigen to protect T cells from deletion 

were found in virus-infected mice. When naïve transgenic P14 cells or LCMV-

specific memory CD8 T cells were transferred into day 2 LCMV Clone 13-

infected mice, where substantial levels of antigen should be present, the donor 

P14 cells were significantly depleted (Figure 21). Serum from day 2 LCMV Clone 

13-infected mice and poly(I:C)-treated mice, 16  hours post-infection, had 

comparable type 1 IFN endpoint dilution titers of 1/6400 in a standard  type 1 IFN 

bioassay using microtiter plates of L-929 cells challenged with vesicular 

stomatitis virus, suggesting that type 1 IFN induction was similar between both 

models used in this study. LCMV-specific and PV-specific memory CD8 T cells 

also underwent a significant depletion when transferred into a day 2 post-Clone 

13-infected mouse, (Figure 21A) and this decrease occurred in all epitope-

specific memory CD8 T cells tested (Figure 21C). Thus, antigen load has no 

protective effect on this early T cell attrition and, if anything, may enhance the 

attrition. The loss of memory CD8 T cells could not be attributed to trafficking into 

other organs, such as the peripheral blood, bone marrow, peritoneal cavity, 

lungs, or the lymph nodes (Figure 21B and data not shown). Collectively, these 

results show that antigen-specific naïve and memory CD8 T cells are not 
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protected from depletion during the early stages of the immune response to a 

viral infection. 

 

D. Early attrition of CD8 T cells allows for greater diversity during challenge 

with a heterologous virus 

CD8 T cell memory to virus is stable in the absence of infection, but 

apoptotic events that occur during the early immune response to infection can 

leave the host with a reduced population of memory CD8 T cells to previously 

encountered viruses (Selin, Vergilis et al. 1996; Selin, Lin et al. 1999; Liu, 

Andreansky et al. 2003). Although this early depletion may appear to be 

detrimental to the host, studies in which a lymphopenic state was induced via 

cytotoxic drugs or irradiation showed that such a lymphopenic state can lead to 

enhanced immune responses, by making room in lymphoid organs for 

development of T cell responses (Pfizenmaier, Jung et al. 1977; Peacock, Kim et 

al. 2003).  

Our computer modeling predicts that if cross-reactive antigen prevents the 

type 1 IFN-induced deletion of a memory T cell population, those cross-reactive 

memory T cells, even those of low affinity, would compete against a more diverse 

and higher affinity new T cell response to the newly encountered pathogen 

(Figure 22). Therefore, an early depletion of these cells, even in the presence of 

TCR engagement with antigen, would allow for a more diverse response to 

occur.  Thus, this early T cell attrition phenomenon that occurs under conditions 

of virus-induced lymphopenia may not only allow for room in the immune system 
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for a more vigorous T cell expansion but may also allow for a more diverse T cell 

response originating from naïve T cells.  

Creating a biological model to study the consequence of the lack of type 1 

IFN-induced attrition of memory CD8 T cells during the early immune response 

has, thus far, proven problematic, in part, because it is difficult to separate the T 

cell apoptosis-inducing properties of the type 1 IFN response from the myriad of 

other type 1 IFN-induced events that regulate antigen presentation and the 

subsequent immune response. Nevertheless, I took advantage of the finding that 

older mice develop less initial lymphopenia relative to younger mice (Jiang, 

Anaraki et al. 2003; Jiang, Gross et al. 2005) and questioned whether the 

reduced apoptosis of the cross-reactive memory CD8 population (NP205) in 

older LCMV-immune mice, following heterologous virus challenge (PV), would 

allow them to dominate the immune response. I show that the cross-reactive 

memory CD8 T cell response (NP205) was more immunodominating in older 

LCMV-immune mice relative to younger LCMV-immune mice, at day 8 post-PV 

challenge (Figure 23B). The diminished PV-response in older LCMV-immune 

mice relative to younger LCMV-immune mice could be attributed to older mice 

having a smaller immunologically naïve repertoire.  Both young and old naïve 

mice, however, mounted a similar  magnitude of a PV-specific response, at day 8 

post-infection (Figure 23B). Since non-cross-reactive memory cells are lost upon 

heterologous virus challenge, there was a significant loss of GP33-specific cells 

at day 8 post-PV infection, relative to day 0, in young LCMV-immune mice 

(Figure 23A-B). The high GP33-specific response, in old LCMV-immune mice 
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(day 8 post-PV) could be attributed to the decreased amount of apoptosis 

following PV-infection, presumably due to lower type 1 IFN levels relative to 

young LCMV-immune mice (Jiang, Gross et al. 2005). The one young LCMV-

immune mouse that had an NP205 to NP38 ratio over 1 (5.5) could be due to 

private specificity (Figure 22b). Nevertheless, the immunodominance of the 

cross-reactive population (NP205), at day 8 post-PV, was consistent between 

several old LCMV-immune mice, relative to young LCMV-immune mice (Figure 

22c). 

Bim KO mice undergo less T cell attrition than wildtype mice following 

LCMV infection. Therefore, the PV/LCMV cross-reactive model could be applied 

to Bim KO mice, which would remove the age variable. Interestingly, LCMV-

immune Bim KO mice have a higher frequency of LCMV-specific memory CD8 T 

cells, since an increased number of effector cells survive the contraction phase 

(Wojciechowski, Jordan et al. 2006). Therefore, Bim KO LCMV-immune mice will 

have an increased frequency of NP205-specific memory cells, relative to wildtype 

LCMV-immune mice. When I challenge BIM KO LCMV-immune mice with PV, 

the reduced attrition might allow the cross-reactive NP205 response to dominate, 

thereby limiting the expansion of the NP38 non-cross-reactive response. 

As previously mentioned, CD8 T cell memory to virus is stable in the 

absence of infection, but apoptotic events that occur during the early immune 

response to infection can leave the host with a reduced population of memory 

CD8 T cells to previously encountered viruses (Selin, Vergilis et al. 1996; Selin, 

Lin et al. 1999; Liu, Andreansky et al. 2003). The CD4 memory pool, however, 
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was found to be remarkably stable under these conditions (Varga, Selin et al. 

2001).  Active (cytokine secretion at the beginning of the response) and passive 

(competition for resources and space) are two mechanisms of T cell attrition 

(Selin, Cornberg et al. 2004). My findings suggest both memory CD4 and CD8 T 

cells are equally susceptible to active attrition, as both populations were 

susceptible to type 1 IFN-induced attrition (Figure 12 and 13). Therefore, the 

increased stability of CD4 memory, relative to CD8 memory, might be due to 

survival subsequent to passive attrition. Because the contraction of the CD8 

response is much greater than the CD4 response, there would be more 

competition for space for CD8 T cells than CD4 T cells. This would be more 

detrimental for pre-existing memory CD8 T cells than CD4 T cells. Mathematical 

modeling of memory CD8 T clones during the primary and secondary response 

to cross-reactive viruses, suggest that either active attrition alone or both passive 

and active attrition could account for the observed memory loss, but passive 

attrition alone, could not (Selin, Cornberg et al. 2004). Collectively, these data 

suggest that the relative stability of memory CD4 T cells might be due to the lack 

of passive attrition during the contraction of the immune response. 
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