
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2012-04-03 

The Subtype Specific and Cross-Reactive T Cell Responses to The Subtype Specific and Cross-Reactive T Cell Responses to 

Influenza Viruses in Humans: A Dissertation Influenza Viruses in Humans: A Dissertation 

Jenny Aurielle B. Babon 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Amino Acids, Peptides, and Proteins Commons, Biological Factors Commons, Cells 

Commons, Hemic and Immune Systems Commons, Immunology and Infectious Disease Commons, 

Influenza Humans Commons, Respiratory Tract Diseases Commons, Virus Diseases Commons, and the 

Viruses Commons 

Repository Citation Repository Citation 
Babon JA. (2012). The Subtype Specific and Cross-Reactive T Cell Responses to Influenza Viruses in 
Humans: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/xaap-nf51. Retrieved 
from https://escholarship.umassmed.edu/gsbs_diss/603 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and 
Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/930?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/940?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/940?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/948?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1069?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/990?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/987?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/xaap-nf51
https://escholarship.umassmed.edu/gsbs_diss/603?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


 

 

THE SUBTYPE SPECIFIC AND CROSS-REACTIVE T CELL 

RESPONSES TO INFLUENZA VIRUSES IN HUMANS 

 

A Dissertation Presented  

By  

JENNY AURIELLE BALILI BABON  

 

 

Submitted to the Faculty of the  

University of Massachusetts Graduate School of Biomedical Sciences, Worcester  

in partial fulfillment of the requirements for the degree of  

 

DOCTOR OF PHILOSOPHY  

03 APRIL 2012 

IMMUNOLOGY AND VIROLOGY 

 

 

 





iv 
 

ACKNOWLEDGEMENTS 

 

And I have come to the end of tunnel.  That was one long tunnel! 

As I reflect on my training as a scientist and the time I spent in graduate school, I 
have come to realize that I am truly blessed!  I am surrounded by a bunch of wonderful 
people who have helped me throughout this journey and I appreciate everything that they 
have contributed to who I am today.   

First of all, I would like to thank my mentor, Dr. Masanori Terajima for taking me 
on as a graduate student in his laboratory.  His zen-like approach to science is something 
I admire and wish to emulate.   I could not thank him enough for being patient with me 
and for being always available to answer questions, to give advice and to provide 
guidance, among others.    

I thank Dr. Francis Ennis for his words of wisdom and for reminding us to always 
keep a big picture perspective.  His invaluable knowledge on influenza and his comments 
and suggestions helped mold this thesis project.  I also appreciate the faculty members of 
our group, past and present.  Big thank you’s go to Alan, Dan, Sharone, Mary and Anuja 
for your insightful comments during lab meetings.  I especially thank Dan for being a part 
of my TRAC committee for the last five years.   

I would also like to acknowledge my TRAC committee members, Larry, 
Katherine and Ray.  Thank you for all the helpful discussions and directions during the 
TRAC meetings and for being a part of my dissertation committee.  I also thank Dr. Jason 
Kim and Dr. Loren Fast for taking the time to read and critique my dissertation.    

John Cruz, Laura Orphin and Kim West have been instrumental in teaching me 
the necessary laboratory techniques for my thesis project.  To the CTL king and to the 
ELISPOT queens, I salute you!  John has also been an excellent resource for any lab-
related issue and I thank him for always accommodating my requests and inquiries.  I 
thank Pamela Pazoles and Marcia Woda for teaching me how to “flow.”  ICS is not my 
favorite experiment to do, but it surely was tolerable because I knew a flow expert is just 
around the corner.   

 Labmate, deskmate, hoodmate – Anita Leporati.  Your cheerful demeanor and 
positive outlook (and of course, that infectious laughter!) kept me sane through this entire 
ride.  Thank you for listening to all my crazy stories.  You have become a dear friend to 
me. 



v 
 

I am very grateful to be a part of the group previously known as CIDVR, past and 
present members.  You will always have a special place in my happy memory vault.  My 
lab-life was a pleasant and enjoyable experience because everyone is always ready to 
help and give encouragement, not only in lab-related stuff but also in the finer things in 
life.  Special thanks to Laurie-Ann for helping me out during the final stretch of my thesis 
writing.   

Massachusetts has become a home away from home because of the wonderful 
people I met through the years.  To my grad school “family” here in Worcester – Abby, 
Arlene, Freidrich, Judith, Krista, Lucy, Rachel and Reina, thank you for all the wonderful 
memories (mostly revolving around food) and for your friendship.  Thank you to Homer 
and Gen for being the ‘kuya’ and ‘ate’ of the family, helping us out (the newbies in MA) 
in so many ways.  To Arlene and Rachel, I don’t know how you were able to put up with 
a crazy roommate like me – thank you for all the little things and the big things and all 
things in between.  To my running buddy, Krista – thank you for going the miles with 
me, not only on the pavement but also in the road of life.  To my drinking buddy, Lucy – 
a “hydrated” being is a happy being; thanks for all the conversations over “hydration”.  I 
would also like to acknowledge my grad school classmates for their support and 
encouragement from the core course, to qualifying exams, to (failed) experiments – thank 
you Kristen, Joel, Zaida, Ermelinda and Bhavana.  To friends, old and new, especially the 
Boston Filipino community and Adrian – thank you for providing a place of familiarity 
and camaraderie.  I would also like to extend my gratitude to my very good friend Bing.  
You are the constant variable in this ever-changing equation.  I am so glad that you are 
always a phone call away (or a 3-hour drive for that matter).  I don’t know how I could 
have gone through the last seven or so years without you.  

Lastly, but certainly not the least, I am grateful for having a very supportive 
family – Der, Mer, Nengi, Reni and Dongi.  I especially would like to acknowledge my 
parents, who always believed in my dreams and supported my love for learning and for 
science.  I have been physically away from all of you for most of my life, but I know we 
are eternally bound by our love for each other.  Your prayers, words of encouragement, 
pep talks and helpful advice throughout the years have made me who I am today.  I could 
never ask for a better support system and I can certainly say that you have always been 
behind me every step of the way.  You are my inspiration! 

 

 

 



vi 
 

ABSTRACT 

 

Human influenza is a contagious respiratory disease resulting in substantial 

morbidity and mortality worldwide. With the recent cases of avian influenza infections  

in humans and the heightened concern for an influenza pandemic arising from these 

infections, it is essential to understand host responses that would confer protective 

immunity to influenza.  The cell-mediated immune responses to influenza virus play an 

important role during influenza infection.   

To analyze the specificity and diversity of memory T-cell responses, we 

performed a genome-wide screening of T cell epitopes to influenza A virus in healthy 

adult donors.  We identified a total of 83 peptides, 54 of them novel, to which specific T 

cells were detectable in interferon-(IFN-γ) enzyme-linked immunosorbent spot assays 

(ELISPOT) using peripheral blood mononuclear cells (PBMCs) from four healthy adult 

donors. We found that among 11 influenza viral proteins, hemagglutinin (HA) and matrix 

protein 1 (M1) had more T-cell epitopes than other viral proteins. The donors were not 

previously exposed to H5N1 subtype, but we detected H5 HA T cell responses in two of 

the four donors.  To confirm that HA is a major target of T cell responses we also 

analyzed H1 and H3 HA-specific T-cell responses using PBMC of additional 30 adult 

donors. Fifteen out of thirty donors gave a positive response to H3 HA peptides, whereas 

five of thirty donors gave a positive response to H1 HA peptides.  

Because we detected T cell responses to the H5 HA peptides in donors without 

prior exposure to H5N1 subtype, we asked if cross-reactive T cells to H5 HA peptides 
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can be attributed to a prior exposure to H2N2 subtype, the closest HA to the H5 based on 

their phylogeny.  We compared younger donors who have no prior exposure to H2N2 

subtype and older donors who were likely to be exposed to H2N2 subtype, and both 

groups responded H2N2 peptides at similar level, suggesting that memory T cells cross-

reactive to H5 HA peptides can be generated by prior exposure to the H1N1 and H3N2 

subtypes, and the exposure to H2N2 subtype is not necessary. We subsequently identified 

a CD4+ T cell epitope that lies in the fusion peptide of the HA.  This epitope is well 

conserved in all 16 subtypes of HA of influenza A and the HA of the influenza B virus.  

A CD4+ T cell line specific to this epitope recognizes target cells infected with various 

influenza A viruses including seasonal H1N1 and H3N2, a reassortant H2N1, the 2009 

pandemic H1N1, H5N1 and influenza B virus in cytotoxicity assays and intracellular 

cytokine staining assays.  Individuals who have the HLA-DRB1*09 allele have ex vivo 

IFN-γ responses to this epitope peptide in ELISPOT. Although natural infection or 

standard vaccination may not induce strong T and B cell responses to this very conserved 

epitope in the  fusion peptide, it may be possible to develop a vaccination strategy to 

induce these CD4+ T cells which are cross-reactive to both influenza A and B viruses. 
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CHAPTER I 

INTRODUCTION 

 

Influenza is a contagious respiratory illness in humans ranging from mild to severe, 

and at times can lead to death.  It causes significant morbidity and mortality worldwide. 

There are, on average, more than 200,000 hospitalizations  associated with influenza 

illness each year (220).  In a survey of influenza-related mortality in the United States 

between 1976 and 2007, the number of deaths can range from 3,000 to 48, 000 (32).  The 

elderly and children younger than five years are more susceptible to influenza, as shown 

by the rates of influenza-associated primary respiratory and circulatory hospitalizations 

(220).  Influenza A viruses (IAV) are the major type of influenza virus that causes disease 

in humans, and while influenza B viruses (IBV) can also infect humans, they do so to a 

less severe extent (151).  These viruses cause acute illness and do not result into 

persistent infections in humans, but they are maintained in circulation in the population 

and are detectable all year round by direct person-to-person spread during acute 

infections (240).    

 

A. The nature of influenza viruses 

The influenza viruses are segmented negative stranded RNA viruses that belong to the 

family Orthomyxoviridae. There are three genera or types of influenza virus - 

influenzavirus A, influenzavirus B, and influenzavirus C - based on the antigenic 
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differences in the matrix protein (M) and the nucleoprotein (NP) (124).  Influenza A, B, 

and C viruses have a common evolutionary precursor (151).  Based on comparative 

sequencing studies using the hemagglutinin (HA) protein component, it is estimated the 

IAV HA gene diverged from the IBV HA gene  more recently than from the 

hemagglutinin-esterase-fusion (HEF) gene, the HA equivalent in influenza C virus (212).  

The divergences between the different subtypes of IAV HA genes are estimated to have 

occurred from several thousand to several hundred years based  on the rate of amino acid 

substitution in HAs isolated from aquatic birds (212).   Influenza B and C viruses seem to 

be near or at an evolutionary equilibrium in humans, while the genes of type A viruses 

were introduced into the human population less than 150 years ago and were most likely 

derived from birds (240). 

Influenza A viruses are classified into subtypes, which are determined by differences 

in the nucleic acid sequences of the hemagglutinin (HA) and the neuraminidase (NA) 

viral proteins (151).  At present, there are 17 known HA subtypes and nine NA subtypes 

(67, 222, 231).  Except for the most recently identified H17 HA which was isolated from 

a bat species (222),  all 16 HAs and nine NAs have been isolated and identified from wild 

aquatic birds, which are considered to be the natural reservoir for IAV (240).  IAV can 

also naturally infect swine, horses, seals, whales and mink (151).  Virus strains are named 

accordingly and they include the host of origin (if the host organism is not human), 

geographic location of the first isolation, strain number and year of isolation, with the 

particular subtype in parenthesis (4).  Thus, an IAV that was the 8th virus isolated from a 

person in Puerto Rico in 1934 was given the name A/PuertoRico/8/1934 (H1N1), while 
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an IAV isolated from a duck in Vietnam is named A/Dk/Vietnam/568/2005 (H5N1).  

Influenza B viruses are not classified into subtypes, although strains are usually identified 

by the lineage that they belong to.  IBV strains that have been described in the last 

century or so started out as a homogenous group that eventually diverged into two 

distinct lineages – the B/Victoria and the B/Yamagata lineages (179).  IBV strains are 

also named following the guidelines for IAV, except that there is no subtype designation 

(4). 

   

i. Virus structure and protein  components 

The IAV particles are usually spherical in shape with a diameter of about 100 nm, 

although filamentous particles that can be as large as 300 nm have been observed in 

certain conditions (151).  The virus structure is quite complex and is depicted in Figure 

1.1.  It is characterized by distinctive spikes comprising of the HA and NA proteins that 

are jutting out of the viral lipid envelope, which is derived from the host cell membrane 

where the virus has previously replicated (151).  The matrix 2 protein (M2) also 

comprises the viral envelope (125) and serves as an ion-channel, playing an important 

role in the release of the viral genome into the cytoplasm (37, 157).  Underlying the viral 

envelope is a shell of matrix 1 protein (M1) (69) that encapsulates the ribonucleoprotein 

(RNP) complex.  The RNP complex is made up of an RNA segment in close association 

with the nucleoprotein (NP) and the viral polymerase proteins PB1, PB2 and PA 
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Figure 1.1.  A schematic representation of the structure of influenza A virus.  
Reprinted with permission from Nelson and Holmes Nature Reviews Genetics 2007: 8, 
196–205. (License No. 2845511024333). 
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(113, 146).    IAV and IBV are made up of the eight RNA segments, while influenza C 

viruses only have seven segments.  These RNA segments have a negative sense, are 

single-stranded, and comprise the influenza viral genome (151).  The eight RNA 

segments and the corresponding viral protein they encode for are listed in Table 1.1.   

More recently, an alternative open reading frame in the PB1 gene was identified 

encoding for a novel influenza protein called PB1-F2 (36).  It localizes in the 

mitochondria and promotes apoptosis in cells that are exposed to synthetic PB1-F2 (36).  

A third major polypeptide from the PB1 segment called N40 has also been recently 

described which is derived from a differential AUG codon usage (237).  Not all influenza 

isolates express the PB1-F2 and N40 proteins.  The non-structural proteins 1 and 2 (NS1 

and NS2) are only found in infected cells and are not part of the virion.     

Influenza B viruses are very similar to IAV by electron microscopy (181).  The 

IAV and IBV may have the same number of RNA segments, the IBV genome only 

encodes for ten proteins, as the PB1-F2 protein or the N40  has not yet been identified in 

IBV (151).   Table 1.1 highlights the main differences between IAV and IBV in terms of 

their genome and sequence similarities between related proteins.   
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Table 1.1. Comparison of IAVa and IBVb viral proteins.d   

Segment Name aa length in IAV aa length in IBV aa similarity (%) 

1 PB2 759 770 37 

2 PB1 757 750 61 

3 PA 716 726 36 

4 HA 566 585 28 

5 NP 498 566 37 

6 NA 469 466 30 

7 M1 252 248 31 

7c M2/BM2 97 109 26 

8 NS1 230 281 very low 

8c NS2/NEP 121 122 24 

 
a Prototype strain used is A/Sydney/5/1997 (H3N2). 
b Prototype strain used is B/Florida/02/2006. 
c The alternate ORF of this protein is encoded by a spliced mRNA within the vRNA 
segment. 
d Table is modified from (98). 
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ii. Influenza A virus life cycle 

 The influenza virus infects the host cell through the binding of the viral HA to 

sialic-acid containing receptors on the cell membrane (233, 235).  The human influenza 

A viruses preferentially bind to sialic acid residues attached to galactose by an α-2,6 

linkage, while the avian influenza A viruses prefer the α-2,3 linkage (43) .   These α-2,6 

sialic acid receptors are preferentially expressed on human airway epithelial cells (70).  

The virus is internalized via the endocytic pathway, where the low pH in the endosomes 

allows for the acidification of the virus interior by pumping H+ through the M2 ion 

channels leading to the dissociation of M1 from the RNP (92).  The low pH also causes a 

structural change in the HA, promoting the fusion of the viral membrane with the 

endosomal membrane (51, 198) and releasing the dissociated RNPs into the cytoplasm. 

The RNPs, which contain the genetic material needed for the replication of the 

virus, are then transported into the nucleus via interactions with NP (161), where the viral 

RNA segments are transcribed into mRNA through the aid of the viral polymerase PB1 

(95).  The polymerase PB2 cleaves 5’-capped fragments from newly synthesized host cell 

mRNA that will serve as primers for viral mRNA synthesis, a phenomenon called cap-

snatching (22, 117, 159).  A poly-A tail is also added to the newly transcribed viral 

mRNA (160).  This mRNA is transported back into the cytoplasm for protein translation 

(193), where newly synthesized HA, NA and M2 proteins are shuttled to the cell 

membrane through the ER and the Golgi apparatus (144, 201) while the polymerase 

proteins PB1, PB2, PA and NP are brought back to the nucleus to form new RNP 
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complexes (201).  On the other hand, NS1 sequesters host mRNA in the nucleus and 

prevents pre-mRNA splicing and polyadenylation, providing an ample supply of cap 

structures for viral transcription while inhibiting host gene expression (166).   

 The PA is required for both transcription of viral proteins and replication of the 

viral genome (87, 143).  M1 and NS2 mediate the nuclear export of the newly formed 

RNP (131, 147).   M1 associates with the RNP and both are brought , by yet unknown 

mechanisms, to the apical side of the plasma membrane where the HA, NA and M2 

proteins are assembled, eventually packaging the M1 and RNP complex into new virus 

particles (144).  The virus particles are released from the cell membrane by the action of 

NA, where it cleaves off the sialic acid from the virion and the cellular glycoproteins 

(144).   

 

iii.  The Influenza Hemagglutinin 

The HA is one of two surface viral glycoproteins, making up about 25% of the total 

viral protein (142).  As described briefly above, HA is indispensable in the viral life cycle 

because it is necessary for binding the viral receptor on target cells and mediating the 

fusion of viral and cellular membranes (48, 199).  The active form of HA consists of 

trimer of identical subunits that are anchored in the viral membrane due to the 

hydrophobic transmembrane sequences in the C-terminal region of the protein (199).  

The two subunits that consists a monomer of HA, HA1 and HA2, are linked by a 

disulfide bond, and they are products of the enzymatic cleavage of the precursor protein 
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HA0.    This cleavage step occurs extracellularly by a trypsin-like protease that is 

restricted in the respiratory tract epithelia (73) and renders the virus infectious.  For some 

of the HAs of the H5 and H7 subtypes, polybasic sequences are inserted at the cleavage 

site, allowing these HAs to be cleaved intracellularly by furin-like enzymes and is 

thought to be related to the widespread systemic and virulent infections by these subtypes 

in birds (199).   

The homology among the different IAV HAs is variable.  H2 and H5 HA are the most 

closely related HA (80% homology), while H3 and H1 HA are the most divergent (25% 

homology) (7, 67) .  Most of the homology is located in the HA2 subunit, including the 

highly conserved fusion peptide sequence (48).  In fact,  analysis of evolutionarily 

conserved sequences in the different influenza A viral components reveal that the 

FGAIAGFIE sequence of the fusion peptide is the only region in the HA protein that is 

98-100% conserved in influenza viral strains of the different human and avian influenza 

subtypes that circulated between 1997 to 2006 (91).   Comparisons between the HAs of 

A/Puerto Rico/8/34 (A/PR/8) and B/Lee/40 also show significant conservation in the first 

12 amino acids of the fusion peptide sequence (118). This conservancy is probably due to 

the critical role of this domain in triggering fusion and destabilizing target membranes 

during the fusion process (48).   
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B. Influenza genetics and epidemiology 

Influenza viruses undergo constant antigenic variation to escape the host immune 

response.  This characteristic largely defines the epidemiology of the viruses. These 

variations are brought about by two distinct mechanisms that are influenced by the nature 

and design of the viral genome as well as by selective immune pressure.  Antigenic drift 

is a consequence of the error-prone RNA polymerase-dependent replication, which 

introduces point mutations leading to gradual antigenic changes in the HA or NA proteins 

(231).  Some drift variants can amplify and survive because of escape from neutralizing 

antibodies (240).  These gradual changes may also affect host species range and influence 

disease severity.  Drift variants can occasionally cause epidemics and can typically 

prevail for two to five years before it is replaced by another variant (240).  The HA is the 

major antigenic component of influenza and all neutralizing antibodies that confer 

sterilizing immunity are targeted to the HA.  Five antigenic domains have been defined 

by studying the structure of H3 HA, all of which are located in the HA ectodomain (240).  

Antibodies to NA have also been detected and they help to prevent cell-to-cell spread of 

the virus, but do not neutralize it (112).  Antigenic drift in the NA has also been reported 

(240). 

A second mechanism in which viral diversity is achieved is through antigenic shift.  

A shift is brought about by the reassortment of the viral RNA segments from one virus 

subtype with the genes of a different subtype.  This typically occurs between human and 

avian viruses, where in vivo reassortment has been seen among human and avian strains 
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as well as between human and avian strains (240).  Antigenic shift can also occur by 

direct transmission of an avian or swine virus into the human population (29).   This 

“mixing” of genes can generate viral proteins that are now immunologically distinct from 

previously circulating strains.  When a virus subtype resulting from an antigenic shift is 

able to successfully establish transmission within a species, in particular in humans,  

higher infection rates  and increased morbidity and mortality are observed, which can 

ultimately lead to a pandemic (240).   

 

C. Influenza pandemics: a historical perspective 

 Influenza pandemics occur when there are major changes brought about by 

antigen shift, introducing a novel influenza virus to which human population has not been 

previously exposed.  In theory, novel influenza viruses that are encountered by our 

immune system have the capacity to initiate an influenza pandemic if they accrue enough 

mutations that would allow them to infect human cells and be efficiently transmitted from 

one person to the next (241).  In the last 400 years, about 31 pandemics have been 

recorded (127), four of which occurred in the recent century (Figure 1.2).  The mortality 

impact of these pandemics can range from devastating to mild (127), as exemplified by 

the 1918 “Spanish” influenza pandemic and the 2009 swine-origin H1N1 pandemic 

respectively.   
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Figure 1.2.  Influenza through the years.  We are constantly exposed to influenza 
antigens in our lifetime.  Influenza viruses have been circulating in the human population 
in the last hundred years or so.  As of late, only three IAV subtypes have successfully 
established human-to-human transmission: H1N1 emerged in 1918 and was replaced by 
H2N2 in 1957.  H3N2 replaced H2N2 in 1968 and has been circulating since then, amidst 
constant antigen drift.  The H1N1 subtype re-emerged in 1977 and is believed to be 
related to the H1N1 of the 1940’s.  It co-circulated with H3N2 until the emergence of a 
new H1N1 subtype in 2009, which has effectively replaced the previous H1N1.  In the 
past fifteen years, some avian influenza subtypes (e.g. H5N1, H7N7) have directly 
infected humans, although transmission within the human population has not been 
established.  IBV co-circulates with IAV.  In the 1940’s, influenza vaccination was 
introduced and since then has been available annually. 
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A usual hallmark of pandemic influenza is the distinct shift in the mortality rate, where 

younger individuals are more affected.  During the three pandemics of the 20th century, a 

significant proportion of influenza-related mortality included individuals less than 65 

years old (196). 

 The first influenza pandemic of the 20th century came in three distinct waves in 

1918 and spread throughout Europe, Asia and North America (14, 214).  Called Spanish 

flu, it is deemed to be the deadliest pandemic in history, where an estimated 50 million 

people died from influenza, more than the number of people killed during World War I, 

which was happening simultaneously (106).  The young and healthy (between 15 to 35 

years old) were disproportionally affected and 99% of the deaths were in people younger 

than 65 years old. Taubenberger and colleagues were able to recover the genomic RNA 

of the 1918 virus from archived formalin-fixed lung autopsy material (215) and from 

frozen, unfixed tissue from an influenza victim who was buried in permafrost in 

November 1918 (170) and performed initial genetic characterization of the 1918 flu 

virus, identifying it as subtype H1N1virus that may have arose from an avian-like 

predecessor that was able to adapt to humans (170).   

 The succeeding pandemics that came after 1918 were milder and had fewer 

excess deaths.  These happened in 1957 (Asian flu, H2N2), 1968 (Hong Kong flu, H3N2) 

and 1977 (Russian flu, H1N1) (96) (Figure 1.2).  The 1957 pandemic was caused by an 

H2N2 subtype, effectively replacing the H1N1 that had been in circulation.  This new 

subtype had acquired novel HA, NA and PB1 genes from an avian H2N2 virus (185, 
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240).  H2N2 circulated for about ten years and has not been detected in the human 

population since 1968.  The H3N2 subtype is also thought to have originated from China 

and caused an epidemic in Hong Kong  in 1968, eventually spreading to other countries 

(41).  The HA of the previously circulating H2N2 was replaced with an avian-derived H3 

HA gene segment, retaining the N2 NA gene segment (185, 232). The PB1 gene segment 

was also replaced, and is speculated to be derived from an avian source as well (110).  In 

1977, an H1N1 subtype caused epidemics in Russia and China that quickly spread 

globally and primarily affected younger people with relatively mild presentation (111).  It 

has been determined that the 1977 H1N1 is closely related to H1N1 strains that were 

isolated between 1947 and 1957 (186).  The 1977 H1N1 subtype did not replace the 

H3N2 in circulation; instead it co-circulated with H3N2 and maintained its presence in 

seasonal epidemics (251), alongside IBV (Figure 1.2).    

 More recently, a novel H1N1 subtype emerged in 2009 (6).  The 2009 H1N1 

caused large epidemics in Mexico and the United States that eventually spread across the 

globe (2, 33, 99).  The 2009 H1N1 was eventually determined to be of swine origin, 

where majority of the gene segments are closely related to common swine influenza 

viruses (1, 227).  This 2009 H1N1 subtype effectively replaced the seasonal H1N1 strains 

that circulated previously.  
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D. Avian influenza in humans 

The zoonosis of avian influenza is usually only limited to birds and these subtypes 

have caused major outbreaks in livestock chicken populations intermittently, leading to 

significant economic and social impact (reviewed in (31)).    However, the Centers for 

Disease Control and Prevention (CDC) has documented avian influenza of the subtypes 

H5, H7, and H9 to have infected humans (http://www.cdc.gov/flu/avian/gen-info/avian-

flu-humans.htm).  Highly pathogenic strains of influenza A have only been identified and 

restricted to the H5 and H7 subtypes (reviewed in (8)).   

In the last two decades, there were documented bird-to-human transmissions of 

H5N1 in 1997 (3)  and H7N7 in 2003 (66), causing outbreaks in Hong Kong and the 

Netherlands respectively.  In 2005, avian H5N1 infections in humans were documented 

in Southeast Asia, which eventually spread out to the rest of the continent (218).  This 

avian influenza subtype was determined to be of the highly pathogenic strain and brought 

about elevated concern with regards to its ability to be transmitted from one person to 

another.  Since then, global surveillance of avian influenza species have become a norm 

because of the possibility that these viruses may acquire mutations that would allow for 

human-to-human transmission that can potentially result in a pandemic.  As of December 

30, 2011, there have been 574 recorded cases of human avian influenza infections 

globally, 337 of which turned out to be fatal, a case fatality rate (CFR) of 58.7% 

(http://www.wpro.who.int/NR/rdonlyres/B44D349B-3DF1-4573-8286-

8F81C5FC9B02/0/AIWeekly313WPRO30Dec2011.pdf).  From the same report, 23.2% 
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of the cases occurred in individuals between the age range of 20-29 and the highest CFR 

was seen in the 10-19 age range (73%).  However, these numbers do not include those 

who may have been infected by H5N1 but were asymptomatic or did not present febrile 

or respiratory illness.  The stringent criteria that the World Health Organization (WHO) 

utilize to confirm an H5N1 infection prompted a recent meta-analysis of data from 

different studies that determined the seroprevalence of avian H5N1 infection in humans 

(230).   They found that  about 1 to 2% of the 12,500 study participants from 20 studies 

have sero-evidence for prior H5N1 infection (230). 

 

E. Influenza vaccination 

One of the more effective ways to reduce disease burden by a viral infection is 

through vaccination.  The goal of any vaccination regimen is to produce a long-lasting, 

(and if possible, a lifetime) protective immune memory.  However, due to the nature of 

influenza viruses, this has become an elusive goal.  Influenza viruses are constantly 

undergoing antigenic drifts and can also undergo occasional shifts. Additionally, there are 

two subtypes of IAV and a strain of IBV that have been are co-circulating every flu 

season since 1977.  Thus, the current vaccination strategy of influenza requires accurate 

prediction of the influenza strains that may circulate in the coming flu season and this 

relies on viral surveillance of circulating strains causing human disease in the past season 

worldwide (65).  The WHO recommends the composition of the seasonal influenza 

vaccine based on this surveillance data.  Although vaccination is not mandatory, most 
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countries have special recommendations and guidelines that are in place for vaccination 

of high-risk individuals for influenza (149).  According to the CDC, this group includes 

children under five years old and adults over 65 years old, pregnant women, those with 

medical conditions that may leave them immunocompromised, and health care workers 

(http://www.cdc.gov/flu/keyfacts.htm).    

In the United States, there are two types of licensed influenza vaccines being 

administered.  The more common one is the trivalent, inactivated vaccine (TIV) 

composed of H1N1 and H3N2 seasonal flu strains and an IBV strain.  Since the 

emergence of the novel H1N1 in 2009, the TIV composition for the 2011-2012 influenza 

season replaced the seasonal H1N1 with the 2009 H1N1.   TIV is introduced 

intramuscularly and given to individuals 6 months and older (CDC recommendations).  

They are commercially available and are regulated by the amount of HA (15ug per flu 

strain).  Alternatively, a live attenuated influenza vaccine (LAIV) is also available and is 

administered intranasally to individuals age 2 to 49 years old (CDC recommendations).  

In Europe, both formulations are available, as well as adjuvanted influenza vaccines 

(149).  Both the LAIV and the TIV can induce HA-specific antibody responses (60), 

which are determined by the hemagglutination-inhibition (HAI) antibody titers.   

The level of serum anti-HA antibodies has been used extensively as a correlate of 

protection and is indicative of vaccine efficacy (47).  Susceptibility to infection is 

inversely correlated with the anti-HA titers, usually determined by HAI, wherein a post-

vaccination titer of 1:40 indicates the level of antibody that is able to protect 50% of the 
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population  (163).  With recent advances in the field of viral immunology, there is a need 

to include other immune correlates of protection to evaluate vaccine efficacies.  In elderly 

populations, serum antibody levels may be limited as a measure of vaccine efficacy, 

while T cell responses correlated with protection (135).  There are also other antibodies 

generated to other components of the influenza virus, as well as other immune 

mechanisms, as discussed below, that may also serve as correlates of protection. 

 

F. The innate immune response to influenza 

The innate immune system serves as our first line of defense against an invading 

pathogen.  It is characterized by a non-specific response to a pathogen that can be readily 

mobilized upon infection.  On a cellular level, innate immunity is comprised of 

intracellular signaling cascades that trigger the production of cytokines that contribute to 

modulating and containing the infection.   These signaling cascades are initiated by the 

recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition 

receptors (PRRs).  Among these PRRs are the membrane-associated toll-like receptors 

(TLRs), which can recognize a variety of PAMPs, including viral RNA.  TLR-3 

recognizes double-stranded RNA, while TLR-7 recognizes single stranded RNA in the 

endosomal compartment (54, 85). The influenza viral life cycle allows for both mRNA 

species to trigger the innate immune response via these TLRs.  Influenza is also 

recognized by a cytosolic sensor of PAMPs called retinoic acid inducible gene – I (RIG-

I) (109).   Recognition of these influenza components by the PRRs and cytosolic sensors 
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leads to the induction of the type I interferon (IFN) pathway, a known potent antiviral 

mechanism (reviewed in (206)) that triggers a global antiviral state by the production of 

IFN-inducible effectors such as PKR, OAS and MxA (86).  The antiviral effects of type I 

IFN activation in influenza is antagonized by the NS1 protein, where a deletion of this 

gene in a reverse genetic system increased interferon induction and the virus generated 

following NS1 deletion were attenuated (72).  A third player in the innate immune 

recognition of influenza includes the intracellular NOD-like receptors (NLRs).  These 

NLRs have been shown to activate the inflammasome, a molecular platform involving 

several protein complexes that can activate caspase 1, an important enzyme that cleaves 

precursor forms of inflammatory cytokines such as interleukin (IL)-1 (140).  More 

recently, activation of the inflammasome by NLR recognition of influenza can influence 

the outcome of the subsequent adaptive immune response (97). 

 

G. The adaptive immune response to influenza 

The adaptive immune response plays an important role in protecting the host and 

eliminating pathogen.  It is characterized by high degree of specificity to distinct portions 

of the pathogen and the ability to establish memory to that pathogen.  This allows for a 

more rapid response to repeated exposures of the same pathogen. There are two arms to 

this response – the humoral, antibody-mediated response and the cellular T cell-mediated 

response.  Both arms of the adaptive immune response are involved during influenza 

infection (Fig. 1.3).  
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Figure 1.3.  Humoral and cellular immunity induced by influenza virus 
infection. (1) Influenza virus binds to the receptor on the host cell and entry the cell by 
receptor-mediated endocytosis. (2) The endosomal acidification permits fusion of the 
host and viral membranes by altering the conformation of hemagglutinin. (3) Upon the 
fusion, viral RNP complexes are released into the cytoplasm and (4) transported to the 
nucleus, where the viral RNAs (vRNA) are transcribed into messenger RNAs (mRNA) 
and replicated by the viral RNA-dependent RNA polymerase complex into 
complementary RNA (cRNA). (5) mRNA are exported to the cytoplasm for translation of 
structural proteins. (6) Synthesis of envelope proteins takes place on ribosomes of 
endoplasmic reticulum. (7) The newly synthesized viral RNPs are exported from the 
nucleus to the assembly site at the apical plasma membrane, where (8) new virus particles 
are budding and release out of host cells. Influenza virus infection triggers innate (not 
shown) and adaptive immune response where the effector cells and molecules are 
involved in restriction of viral spread, as follows: The cellular immune response (right) is 
initiated after recognition of viral antigens presented via MHCI and MHC II molecules 
by antigen presenting cells (APC), which then leads to activation, proliferation and 
differentiation of antigen-specific CD8+ T or CD4+ cells. These cells gain effector cell 
function and either they help directly (Th1 or Th2 cell) to produce antibodies or, CTL 
effector cells recognize antigen peptides presented by MHCI on APC and kill the virus 
infected cells by exocytosis of cytolytic granules. The humoral immune response (left)is 
mediated by specific antibodies (e.g IgG, IgA) produced by antibody secreting plasma 
cells (ASC) which are the final stage of B cell development. This process is aided by 
CD4+ T helper and T cell-derived cytokines essential for the activation and differentiation 
of both B-cell responses and CD8+ T cell responses. (Stanekova and Vareckova. 2010. 
Virology Journal.  7:351.   Reprinted with permission under the terms of the Creative 
Commons Attribu tion License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.) 
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i. Antibody-mediated responses to influenza 

The humoral response is contributed by B cells and the antibodies that they 

secrete.  These antibodies recognize distinct structural components of the intact viral 

proteins that are present on the surface of the virus particle or on virus-infected cells.  

Neutralizing antibodies are particularly important because they can provide sterilizing 

immunity.  They can directly bind to virus particles, preventing virus entry into host cells.  

The antibody isotype IgA is locally secreted in the respiratory epithelia in response to 

IAV infection and persists for at least three to five months post infection in mice (34).  

Virus-infected cells that are coated with IgG antibody are recognized and lysed by natural 

killer (NK) cells via antibody-dependent cell- mediated cytotoxicity (88).  These 

antibodies may also bind infected cells and lyse them by activating the complement 

system (167, 228).  It has been established that the levels of HA- and NA-specific 

antibodies in the serum correlate with protection from illness following natural (46) or 

experimental infection (38).   

 Antibodies to HA, NA, NP and M are produced during influenza infections in 

humans (163).  In both mice and men, antibodies to HA and NA correlate with resistance 

to infection, while antibodies to M1 and NP do not (240).  The neutralizing antibodies to 

influenza are directed to HA and antibodies to NA modify severity.  Passive transfer of 

anti-HA antibodies can resolve influenza infection in T and B cell deficient SCID mice 

(184).  Monoclonal antibodies to M2 were previously generated and characterized from 

in vitro cell lines (248) and passive transfer of these antibodies conferred protection in 
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mice by reducing the level of viral replication in the lungs (226).  However, protection by 

antibody becomes progressively less efficient through time.  There is a gradual decrease 

of IgG and IgA antibodies as well as antibody secreting cells specific to influenza within 

the first year after initial infection (107, 239). High mutation rates of HA and NA genes 

also result to altered antibody binding sites leading to virus escape from antibody 

recognition, as described above. 

 

ii. T cell-mediated immune responses to influenza 

The T cell-mediated immune response to viral infections is also widely studied 

because of its importance in controlling pathogens.  Unlike antibodies that recognize 

intact viral proteins, T cells recognize short peptide fragments presented by professional 

antigen presenting cells in the context of an MHC molecule through the T cell receptor 

(TCR).  This MHC restriction is influenced by the expression of either the CD8 or the 

CD4 co-receptor on the T cell surface (103).   

A detailed description of the functions of CD8+ and CD4+ T cells has been reviewed 

by Janeway (103, 104).  In summary, CD8+ T cells recognize peptide bound to MHC 

class I molecules which are expressed on virtually all cell types.  The MHC class I 

molecules typically present peptides that 8-10 amino acids in length and are derived from 

endogenously synthesized proteins, including viral proteins that are actively produced 

during infection.  On the other hand, CD4+ T cells recognize peptide bound to MHC class 

II molecules.  The expression of MHC class II is limited to professional antigen 
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presenting cells and B cells.  Structural differences in the peptide binding groove of MHC 

class I and MHC class II allow for longer peptides (between 12 to 17 amino acids in 

length)  to bind to MHC class II molecules.  In addition, MHC class II molecules present 

antigens derived extracellularly.  Peptide fragments generated from the uptake of 

exogenous antigen into the acidified endosomes are then loaded onto the MHC class II 

complexes.  The recognition of a particular TCR and co-receptor with its cognate 

peptide-MHC complex stimulates a cascade of signaling events in the T cells, leading to 

their proliferation and differentiation into effector T cells.  These effector T cells can 

either directly or indirectly promote the lysis of infected cells.  Following resolution of 

infection, the effector T cell populations are down-regulated and a memory T cell pool is 

established and maintained, with the potential to rapidly respond against subsequent viral 

exposures.   

Much of what is known about the cell-mediated immunity to influenza has been 

gleaned using mouse models.  The availability of reagents and genetically-modified 

mouse models has allowed for an extensive analysis of the T cell response to influenza, 

although influenza in mice does not necessarily replicate what is seen in natural infection 

in humans, birds and other vertebrate species (219).   Mice that lack B cells were more 

susceptible to a lethal challenge of influenza, but priming with sub-lethal doses of 

influenza promoted resistance to a subsequent lethal infection and adoptive transfer of 

influenza specific CD8+ and CD4+ T cells prior to lethal challenge conferred protection in 

mice (80).  These results suggest a contribution by both CD8+ and CD4+ T cells to 

immunity to IAV.   
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The CD8+ T cell response is characterized by its ability to rapidly proliferate during 

the initial phase of a viral infection and its cytotoxic capacity.  Influenza-specific CD8+ T 

cells can contribute to protective immunity based on studies done in CD8+ T cell-

deficient mice, where there is delayed viral clearance (18).  Early on, CD8+ cytotoxic T 

cells (CTL) have been shown in murine studies to limit influenza A virus replication and 

to protect against lethal influenza A virus challenge (119, 121, 130).  Passive transfer of 

NP-specific CD8+ CTL can also protect against a lethal influenza infection in mice  

(216).  They are also able to mediate clearance of virus in mice that were depleted of 

CD4+ T cells (56).  Several of these CTL responses are cross-reactive, recognizing 

conserved components of the viral proteins, thus allowing them to lyse target cells that 

are infected with different influenza subtypes (240).  Indeed, several of these influenza-

specific CTLs target the viral internal proteins NP, M1 and viral polymerases (15, 19, 20, 

78, 171, 223, 224, 247).  The CTL memory response to influenza has also been studied in 

humans.   CD8+ CTL were detected in the peripheral blood lymphocytes of infected or 

vaccinated individuals by day 6 until day 14 and undergo contraction by day 21 (59).  A 

live influenza infection in human volunteers demonstrated that CTL can clear virus as 

seen by the reduction in viral titers and recovery in donors that had a robust T cell 

responses (137).   

CD4+ T cells are not essential in providing protective immunity in mouse models 

of influenza infection when both CD8+ T cells and B cells are present (reviewed in (27)).   

Optimal humoral and cellular immunity to influenza require the activation of CD4+ T 

helper cells (reviewed in (27)).  Influenza specific CD4+ T cells can provide help to B 
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cells and cross-reactive CD8+ T cells during infection and they may also regulate early 

innate immune responses by indirectly upregulating inflammatory cytokines and 

chemokines during the early stage of infection (209).  Mice that lack CD4+ T cells had 

compromised CD8+ T cell memory response after influenza challenge, suggesting that   

CD4+ T cells play a role in maintaining the CD8+ T cell cytotoxic responses and the 

transition to memory phase (17).   

CD4+ T cells can also act as antiviral effectors themselves upon sequential 

infection of two different influenza subtypes (136).  This cytotoxic effector function is 

carried out by a perforin-mediated mechanism, mediating protection against a lethal 

influenza infection in mice and inducing higher levels of neutralizing antibody titers (26).  

Teijaro and colleagues have shown that  memory CD4+ T cells specific to the H1N1 

influenza virus provide a protective immune response in the lungs after a lethal challenge 

in mice by enhancing T cell recruitment to the lungs (217).  Moreover, B cell deficient 

mice with HA-specific or polyclonal memory CD4+ T cells were protected from 

influenza virus challenge in the presence of CD8-depleting antibodies, thus 

demonstrating an intrinsic effector function for influenza-specific CD4+ T cells (217).   

In humans, the role of CD4+ T cells is not fully understood.  A recent study 

performed challenge experiments where they inoculated healthy human volunteers 

intranasally with influenza virus to demonstrate the contribution of the CD4+ T cell 

response to protection (236).  The challenge virus given to these individuals was 

determined by the absence of neutralizing antibody titers to that particular IAV in the sera 
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prior to infection.  They found significant correlation between influenza-specific CD4+ T 

cell responses and disease protection, suggesting a role for memory CD4+ T cells in 

influenza infection in humans. 

 

iii. Identification of T cell epitopes to influenza 

 The identification of T cell epitopes is important for understanding and analyzing 

cell-mediated immune responses in general, and is relevant in our understanding of 

disease pathogenesis, monitoring disease progression and developing vaccines (5).  T cell 

epitopes to various viral pathogens have been identified, including influenza.  Defining 

the T cell epitopes to influenza will enable us to determine which responses are specific 

for a given virus strain or subtype or which ones are cross-reactive, among others (28).  

Bui and colleagues compiled all influenza T cell epitopes described in literature in 2007 

(28).  Although several T cell epitopes have been determined from human samples (76, 

101, 102), they are biased because they utilized the sequences of the A/Puerto Rico/8/34 

(H1N1) strain (A/PR/8), a prototype strain that was isolated more than 70 years ago and 

is not a circulating strain.  Moreover, only a few epitopes have been determined using 

current isolates of human pathogenic strains (~1.2%, on average, for a given strain) 

compared to A/PR/8 (~24%) or A/X-31 (H3N2), a reassortant virus with internal genes 

from A/PR/8 strain and external genes of the A/Hong Kong/68, which is the H3N2 

prototype strain (~32%) (28).   There are also limited epitopes determined for influenza 

strains of pandemic potential, including the avian influenza subtype H5N1 strains (102).   
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H. Cytokines produced during influenza infection 

Cytokines are secreted signaling protein molecules that are rapidly produced by a 

variety of cell types during an immune response.  In the course of an influenza infection, 

cytokines are secreted by both innate and adaptive immune cells. A subset of cytokines, 

called chemokines, is also produced.  These chemokines act as chemoattractants that 

bring cells of the immune system to the site of infection.  Human plasmacytoid and 

myeloid dendritic cells have been shown to produce distinct waves of chemokines that 

allows for a coordinated recruitment of immune effectors, including neutrophils, natural 

killer (NK) cells, cytotoxic T cells and effector memory T cells (158).  Cytokines 

involved during the course of an influenza infection include IL-1α/β, TNF-α/β, IL-6, IL-

8, IFN-α/γ and  MIP1-α/β (16).    

IFN- γ is a pleiotropic cytokine that is secreted mainly by T lymphocytes, including 

T-helper 1 CD4+ T cells and cytolytic CD8+ T cells, and by NK cells (reviewed in (13)).  

During viral infection, IFN- γ promotes an antiviral state by inducing the  synthesis of 

host proteins that are able to inhibit viral replication (reviewed in (154)).  It also 

contributes to enhanced antigen presentation by inducing the expression of MHC 

molecules on antigen presenting cells (64) and by augmenting peptide degradation during 

antigen processing in the proteasome (245).   In a heterologous secondary influenza 

infection, IFN- γ deficient mice have impaired ability to clear the challenge virus, even 

though they have similar number of T cells and antibody (HAI) titers to wild-type mice 

(25).  This indicates a protective role for IFN-γ during secondary influenza infection. 
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TNF-α is another pleiotropic cytokine that is produced mainly by macrophages, but 

can also be secreted by T lymphocytes.  Although TNF-α is associated with systemic 

inflammation that may lead to septic shock (reviewed in (225) ), it has been shown to 

mediate inflammatory responses to several autoimmune diseases (116), as well as 

microbial (53) and viral infections (93), including influenza .  An influenza-specific 

CD8+ cytotoxic lymphocyte line producing both TNF- α and IFN-γ was shown to lyse 

mediated by both cytokines during the course of influenza infection (120).  Another 

cytokine produced during influenza infection is MIP1-β.  It is a chemokine secreted 

mainly by monocytes, CD4+ T cells and NK cells, and preferentially recruits CD4+ and 

CD8+ T cells and promotes neutrophil infiltration (132).     The outcome of the immune 

response to infection can lead to either protection or immunopathology depending on the 

interplay, timing, magnitude and location of these cytokines.   

 

I. Heterosubtypic Immunity to Influenza 

Heterosubtypic immunity (HSI) is the immunity generated by a given IAV 

subtype or its antigens that protects against challenge with a virus of another IAV subtype 

(e.g. immunity to H1N1 protecting against an infection with H3N2) (81).   It is 

hypothesized that T cells are the major contributors to HSI, especially T cells that target 

the internal proteins of influenza (81).  Because the internal viral proteins are conserved, 

T cells generated against them are potentially cross-reactive, allowing them to participate 

in a more rapid response upon challenge, thus enhancing virus clearance and reducing 
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immunopathology (81).  However, pre-existing T cells to influenza cannot prevent 

infection (sterilizing immunity) as this is the function of neutralizing antibodies.  These 

antibodies are usually specific only to the strain that they were raised against, and 

because of the propensity of influenza to antigenic drift, antibodies generated to a 

previous influenza infection may not be efficient in neutralizing a future influenza 

infection.  However, antibodies should not be totally discounted for a possible 

contribution to HSI. Cross-reactive monoclonal antibodies directed to the stem region of 

the HA have been described and characterized recently (45, 57, 210).  These recent 

developments also point to the contribution of cross reactive antibodies to HSI.  

 

i. HSI in mice and other animal models 

HSI was first demonstrated by Shulman and Kilbourne wherein mice that were 

previously infected or immunized with an H1 subtype of influenza virus had partial 

immunity against challenge with an H2 subtype of influenza as seen by reduced 

pulmonary viral titers, reduced mortality and less severe lung lesions (188).  This partial 

protection is specific only to influenza A viruses, since infection with an influenza B 

virus strain did not provide the same protection.  It is now well-established that a mild 

influenza infection in animals can provide protection against a subsequent and more 

severe challenge with a heterosubtypic virus containing a different HA and NA (reviewed 

in (63)).  This protection due to HSI has also been demonstrated in other vertebrate 

animals.  In ferrets, HSI was shown by a decrease in viral titers after a heterosubtypic 
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challenge and the immunity generated to the initial IAV infection lasted for 18 months 

(246).  Chickens that were primed with H9N2 survived a lethal challenge with H5N1 and 

this protection was mediated by T cells (191).   HSI also mediated protection to a 

different IAV subtype in pigs (90, 174) and cotton rats (207), reducing viral titers and 

modulating pathology in infected tissues.  Thus, HSI can contribute to decreased severity 

of a subsequent influenza infection by controlling viral titers and promoting viral 

clearance, diminished shedding and transmission. 

 

ii. HSI in humans 

 HSI has not been directly tested or demonstrated in humans and proves to be 

controversial (63).  Ideally, one would have to find an influenza sero-negative individual 

or know the history of influenza exposure to perform challenge experiments.  However, 

this is really hard to come by in human studies.  In theory, one could study HSI in 

pediatric cohorts, although there are confounding differences in the influenza 

susceptibility between adults and children (63).    The majority of what is known about 

HSI in humans has been gleaned from epidemiological evidence, usually relating 

incidence rates of one IAV subtype to previous exposure to a different subtype, either 

through natural infection or vaccination.  Interestingly, the occurrence of several 

pandemic events provided an avenue to study HSI in the context of two different IAV 

subtypes circulating in nature.  During the onset of the 1957 pandemic, a cohort of 

factory workers in the former USSR were surveyed to determine if a previous infection 
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with the H1N1 subtype that circulated the previous year would affect their susceptibility 

to the emerging H2N2 subtype (200).  They found that workers who were less likely to 

get sick with H2N2 had prior exposure to H1N1.   A similar observation was seen in a 

retrospective analysis of the Cleveland Clinic Family Study in the 1950s.  Adults who 

caught the flu in the prior year did not get sick or had relatively fewer symptoms when 

the H2N2 IAV emerged (61).  In both these studies, there is an indirect indication that 

although there were no neutralizing antibodies to H2N2 present in these individuals, they 

were partially protected against H2N2 via HIS generated from previous encounters with a 

different IAV subtype (61).  It is also thought that immunity to H2N2 may have provided 

protection during the onset of the 1968 pandemic, when H3N2 emerged, because these 

two subtypes share a common neuraminidase that may contain shared antigens that can 

contribute to cross-protection  (187).  

 

J. Thesis Objectives 

 The overall goal of this thesis is to characterize the breadth and depth of the 

influenza A specific CD8+ and CD4+ T cell responses in humans that are induced by 

natural infection and vaccination.  We hypothesize that a subset of the memory T cells 

generated from a previous encounter with influenza is cross-reactive and that these 

T cell responses may contribute to HSI to influenza with viruses of a different 

subtype. 
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This thesis is presented in two parts:  

CHAPTER III:  Genome-wide screening of human T-cell epitopes to influenza A 

viruses  

Question:  

� What are the targets of the human T cell response to influenza? 

� Are there cross-reactive T cell responses to specific viral components? 

 

Approach:  

� ELISPOT screening of human PBMC using peptides spanning all of the 

influenza viral proteins. 

� Generating peptide-specific T lines to further characterize the functionality 

and phenotype of these T cells. 

 

CHAPTER IV: A human CD4+ T cell epitope in the influenza hemagglutinin is 

cross-reactive to influenza A subtypes and to influenza B virus 

Question:  

� Are there cross-reactive T cells specific to the influenza HA? 

� Can we detect H2 HA-specific memory T cell responses in individuals who 

were previously exposed to H2N2? 

� Are these H2 HA-specific responses cross-reactive to H5 HA? 
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Approach: 

� ELISPOT screening using H2 HA peptides and comparing the profile of the IFN-

γ responses in two groups: older donors who have previously encountered the 

H2N2 and younger donors who are naïve to H2N2. 

� Characterization of HA specific responses by generating specific T cell lines. 
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CHAPTER II 

MATERIALS AND METHODS 

 

A. Influenza peptides and recombinant proteins 

Peptides encompassing the entire sequence of all influenza viral proteins were 

obtained from the National Institutes of Health (NIH) Biodefense and Emerging 

Infections Research Resources Repository (BEI Resources; Table 2.1).  They are 17 

amino acids in length with overlapping 11 to 12 amino acids. The peptide length was a 

debated compromise in an effort to detect most CD4+ and CD8+ T-cell epitopes at a 

reasonable cost. The amino acid sequences of these peptides were based on vaccine 

strains of influenza A viruses (H1N1 and H3N2 or an antigenically indistinguishable 

strain from the vaccine strain when the amino acid sequences of the proteins were not 

available for the vaccine strain) and recent isolates of influenza virus A (H5N1), as 

indicated in Table 2.1.   Because of the considerable difference between avian and human 

N1 NA amino acid sequences, peptide sets for both neuraminidases were synthesized. 

Polymerase B1-F2 peptides of both strains were also synthesized because of differences 

between the H1N1 and H3N2 strains.  Peptides covering the pre-hemagglutinin protein 

(pre-HA) of influenza B/Nanchang/12/1998 were also synthesized.  Control peptides for 

known major histocompatibility complex (MHC) class I and II epitopes of influenza A 

viruses were also provided by BEI Resources. Peptides spanning the HA of 

A/Japan/305/1957 (H2N2) were designed to correspond to BEI Resources’ H5 HA 
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peptides and synthesized by AnaSpec, Inc. (San Jose, CA).  A vaccinia virus B5R peptide 

(B5R5-19) was used as a negative control and was also obtained from AnaSpec, Inc.  All 

the peptides were reconstituted by dissolving in 100% dimethyl sulfoxide at a stock 

concentration of 10 mg/ml.   

The CEF peptide pool was obtained through the NIH AIDS Research and Reference 

Reagent Program, Division of AIDS, the National Institute of Allergy and Infectious 

Diseases (NIAID), NIH, and was used as a positive peptide pool control. This peptide 

pool contains MHC class I-restricted human T-cell epitope peptides of cytomegalovirus, 

Epstein–Barr virus, and influenza A virus (49).   

Recombinant HA proteins of A/Singapore/1/1957 (H2N2) and A/Canada/RV444/04 

(H7N3) were obtained from BEI Resources.  Recombinant HA proteins from A/New 

Caledonia/20/1999 (H1N1), A/Wisconsin/67/2005 (H3N2) and A/Vietnam 1203/2004 

(H5N1) were obtained from Protein Biosciences (Meriden, CT; H1, H3 and H5).  A 

recombinant vaccinia virus B5R protein was used as an irrelevant protein control and was 

provided by BEI Resources.
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B. Influenza viruses and other viruses 

For live virus infections, the following influenza virus strains were used: A/New 

Caledonia/20/1999 (H1N1), A/Wisconsin/67/2005 (H3N2), X-27 (reassortant of 

A/Rockefeller Institute/5/57 (HA) x A/NWS/34 (NA), subtype is H2N1), A/Hong 

Kong/483/1997 (H5N1), A/California /7/2009 NYMC (H1N1) and 

B/Malaysia/2506/2004.  The H1N1 and H3N2 seasonal virus strains and the influenza B 

virus were a gift from Dr. Michel DeWilde and Dr. Robert Ryall of Sanofi Pasteur.  The 

H5N1 strain was provided by Dr. Nancy Cox from the World Health Organization 

Influenza Reference Laboratory at the Centers for Disease Control and Prevention (CDC) 

and the reassortant H2N1 strain was obtained from BEI resources.  The 2009 pandemic 

H1N1 strain was provided by Dr. Alexander Klimov of the CDC.  The vaccinia virus WR 

strain was used as an unrelated virus control and was provided by Bob Marshall from the 

University of Massachusetts Medical School.   

All experiments using the live H5N1 strain were performed by John Cruz in  a 

biosafety level 3 laboratory of University of Massachusetts Medical School according to 

enhanced BSL3 guidelines (Federal Register / Vol. 74, No. 182 / Tuesday, September 22, 

2009 / Notices). 
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C. Human PBMCs used in this study 

Blood samples were obtained from healthy adult volunteers and their peripheral blood 

mononuclear cells (PBMCs) were purified by density gradient centrifugation using 

Ficoll–Hypaque (Sigma).  DNA from either PBMC or autologous B lymphoblastoid cell 

lines (BLCLs) were extracted for HLA typing using the Puregene DNA purification kit 

(Gentra Systems, Minneapolis, MN).  The HLA Class II typing for most of these donors 

was performed by either the HLA Typing Laboratory at the University of Massachusetts 

Medical Center or by the HLA Core Facility of the Center for Infectious Diseases and 

Vaccine Research (now part of the Division of Infectious Diseases and Immunology) at 

the University of Massachusetts Medical School. 

The four donor PBMCs we used for our genome-wide screening of T cell epitopes in 

Chapter III were chosen based on either the availability of PBMCs for large-scale 

screening and/or their reactivity to the influenza peptides in the CEF peptide pool in 

enzyme linked immunosorbent spot (ELISPOT) assays that had been previously 

performed by Kim West in our laboratory.  Donors 1, 3, and 4 received the influenza 

vaccine almost every year.  Donor 2 never received any influenza vaccine. None of the 

four donors had a history of laboratory-confirmed influenza infection.  Additional 

screening of the H1 and the H3 HA peptides was performed using PBMCs from 30 

healthy hospital workers.  These donors were recruited for a clinical study that was 

previously described elsewhere (40).  The Day 0 bleed was used for the screening.  For 

screening of B/HA peptides, additional donor PBMCs were collected from healthy 

volunteers through the weekly blood draw in our laboratory.   
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For the screening of H2 HA peptide pools described in Chapter IV, donors were 

classified into two age groups based on their birth year and relative to their exposure to 

the H2N2 subtype that circulated from 1957 to 1968.  Older donor PBMCs (born on or 

before 1957) were originally obtained for a long-term vaccinia virus clinical study.  

These were comprised of hospital workers who did not report any febrile illness during 

blood draw. The younger donor PBMCs (born after 1968) were collected from healthy 

volunteers through the weekly blood draw in our laboratory.  Additional donors were 

sought to further characterize a cross-reactive CD4+ T cell peptide epitope that we 

identified in this study.  We chose donors who had the HLA-DRB1*09 allele.   PBMCs 

of these donors were previously collected for other studies in our laboratory and extra 

vials from these studies were used for the experiments described below. 

 

D. IFN-γ ELISPOT assay 

ELISPOT assays were performed as previously described (101).  Briefly, 

cryopreserved PBMCs (2–2.5 x 106 cells per well) were seeded onto polyvinylidene 

difluoride membrane 96-well plates (Millipore, Bedford,MA) precoated with 5µg/ml 

anti-IFN-γ monoclonal antibody (clone D1K; Mabtech, Cincinnati, OH) in the presence 

or absence of peptide or peptide pools.  Phytohemagglutinin (Sigma–Aldrich, St. 

Louis,MO;1:100),CEF peptide pool, and/or virus were used as positive controls. After 

18–24 hours of incubation, cells were removed by washing with phosphate-buffered 

saline plus 0.05% Tween 20. Secondary biotinylated anti-IFN-γ monoclonal antibody 
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(clone 7-B6-1; Mabtech) was added at 2 µg/ml and the plates were incubated for two 

hours at room temperature. Plates were washed again and IFN-γ was detected with 

avidin–peroxidase (3420-2H, Mabtech) and substrate kit (NovaRed, Vector Laboratories, 

Burlingame, CA). The frequency of IFN-γ-producing cells was determined by using the 

ImmunoSpot S4 Pro Analyzer and the ImmunoSpot Academic V.4 Software (Cellular 

Technologies Ltd., Shaker Heights, OH).  Experiments were usually performed in 

triplicate wells, with some repeat experiments done in duplicate wells. 

 

E. Peptide pool design 

For our genome-wide T cell epitope screening, we made peptide pools that contained 

15 non-overlapping peptides and made two sets of peptide pools to facilitate the peptide 

screening. The first set of peptide pools (Table 2.2) contains all peptides of the surface 

glycoproteins of H1, H3, and H5 HA and avian N1 (aN1) and human N1 (hN1) and N2 

NA. This set of peptide pools consists of 33 pools: pools 1–6 contain H1 HA peptides, 

pools 7–12 contain H3 HA peptides, pools 13–18 contain H5 HA peptides, pools 19–23 

contain hN1NApeptides, pool 24–28 contains aN1NA peptides, and pool 29–33 contains 

N2 NA peptides. The second set of peptide pools (Table 2.3) consists of 38 pools and 

included all peptides of the internal viral proteins: NP and nonstructural protein 1 (NS1; 

pool 1–8), M1 and nonstructural protein 2 (NS2; pool 9–12), polymerase A (PA) and 

matrix protein 2 (M2; pool 13–21), and polymerase B1 (PB1) and polymerase B2 (PB2; 

pool 22–38). Three additional peptide pools were also made (Table 2.2 Pool 34-36). 
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These contained PB1-F2 peptides and H5 HA peptides representative of regions of amino 

acid sequence diversity among different strains of H5N1 viruses. 

 In later ELISPOT screening experiments using H2 and B HA peptides, we 

designed non-overlapping peptide pools containing 9 or 10 peptides per pool at a stock 

concentration of 1.1 or 1 mg/ml respectively (Table 2.4).  

 

F. Depletion of CD4+ or CD8+ expressing cells from PBMCs 

CD4+ or CD8+ expressing cell populations were depleted from PBMCs by negative 

selection using anti-CD4 or anti-CD8 antibody-coated magnetic beads from the MACS 

purification system (Miltenyi Biotec, Bergisch Gladbach, Germany) and processed 

according to the manufacturer’s protocol. Depleted PBMCs were used in ELISPOT to 

determine the cell population producing IFN-γ.   
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Table 2.2. Peptide Pool Design: Set 1 – Hemagglutinins, Neuraminidases and PB1-
F2 
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Table 2.3. Peptide Pool Design: Set 2 – Influenza Internal Proteins 
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Table 2.4. Peptide pool design – H2 HAs and B HA 
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G. Generation of bulk culture cell lines 

To generate peptide-specific bulk culture lines, PBMCs (3 to 5 x 106 cells) were 

washed and resuspended in 2 ml of AIM/V-10% FBS supplemented with 1:100 sodium 

pyruvate (Gibco) and 1:1000 2-mercaptoethanol (Gibco). The corresponding influenza 

peptide was added at a final concentration of 10 µg/ml. Human recombinant interleukin 

(rhIL)-7 (Peprotech, Inc., Rockyhill, NJ) was also added to the culture (5 ng/ml) and 

incubated at 37  C. On day 3, human recombinant interleukin (rhIL)-2 (BD Discovery 

Labware, Bedford, MA; 25–50 U/ml) was applied, and the medium was replenished with 

AIM/V-10% FBS and rhIL-2 every 3 to 4 days. Bulk culture 51Cr release assays were 

performed between days 10 and 13 of culture. The cultures were restimulated once with 

autologous PBMCs on day 14 to reduce nonspecific background lysis and to generate 

enough cells for the assays.  To establish influenza A-specific T cell clones, a limiting 

dilution assay was performed as previously described (101). Briefly, PBMCs that had 

been stimulated in bulk culture for 14 days were plated at a concentration of 1, 3, 10, or 

30 cells per well in 96-well round-bottom microtiter plates in 50 µl of AIM-V medium 

containing 10% FBS, 25 U IL-2, a 1:1,000 dilution of anti-CD3 monoclonal antibody 

12F6 (gift from Dr. Johnson Wong), and 1 x 105 gamma-irradiated (3500 rads) allogeneic 

PBMCs/well. On day 7, 50 µl of fresh AIM-V medium with FBS and IL-2 was added, 

and on day 14, fresh medium with 1 x 105 gamma-irradiated allogeneic PBMCs/well and 

a 1:1,000 dilution of the anti-CD3 12F6 were added. The cells were assayed for cytolytic 

activity using 51Cr release assays between days 21 and 28. Cells from wells with 
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influenza A peptide-specific cytolytic activity (specific killing of 15% and above at a 

peptide concentration of 10 µg/ml) were expanded to 48-well plates.  

 

H. Preparation of antigen presenting cells (APCs) for 51Cr release assays and 

intracellular cytokine staining (ICS) 

For virus-infected targets, autologous B lymphoblastoid cell lines (BLCL) were 

established from donor PBMC by culture with Epstein–Barr virus in 24-well plates as 

previously described (82). BLCL target cells were infected with either of the following 

egg-adapted virus strains: A/New Caledonia/20/1999 IVR-66 or A/Wisconsin/67/2005X-

161B.  These virus strains were a gift from Dr. Michel DeWilde and Dr. Robert Ryall of 

Sanofi Pasteur. The optimal concentrations of the two strains were determined by John 

Cruz in preliminary experiments (unpublished results).  For infections using recombinant 

vaccinia virus expressing influenza HA, BLCLs were infected at an MOI of 1.   Infected 

cells were initially incubated for one hour in 300 ul PBS with 0.1% Bovine Serum 

Albumin (BSA) at 37oC.  RPMI-10 was added to bring the volume up to 1mL and the 

cells were incubated for up to 18 hours at 37ºC. Virus-infected target cells were then 

radiolabeled for use in 51Cr-release assays or used as APCs in ICS.  

Peptide-pulsed targets were prepared using autologous BLCLs that were either 

radiolabeled for one hour in CTL assays or used directly in ICS assays. Peptide is added 

to the cells at a final concentration of 10 µg/ml per peptide, unless indicated otherwise. 
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I. Cytotoxic T cell assay by 51Cr release 

Cytotoxicity was measured as described previously (101).  T-cell lines or bulk culture 

effector cells were added to 1.5x103 51Cr-labeled target cells at various effector to target 

(E:T) ratios.  Wells that had target BLCLs and media were used to determine the 

background (spontaneous) 51Cr release, while wells that had target BLCLs and detergent 

(10% name of detergent) were used to determine the maximum 51Cr release.  After 

incubation for 4–6 hours at 37ºC, supernatants were harvested (Skatron Instruments, 

Sterling, VA), and % specific immune lysis was calculated as [(experimental release - 

spontaneous release)/(maximum release - spontaneous release)] x 100. The % 

spontaneous lysis is given by the (spontaneous release/maximum release) x 100 and was 

<30% in all assays.  All conditions were performed in triplicate wells. Unpulsed target 

cells were used as a negative control.  

J. Surface and intracellular cytokine staining 

Bulk culture lines or T cell lines derived from limiting dilution assays were used as 

effector cells in ICS.  They were washed and resuspended at 5x105 cells in RPMI 1640 

medium supplemented with 10% FBS (RPMI 10). Autologous BLCLs were used as 

APCs at an E:T ratio of 10 and were added to the effector cells.  These were incubated 

for 1 hour at 37 C in a 5% CO2 incubator, followed by an additional five hours in the 

presence of Golgi plug (BD Biosciences, San Jose, CA). The cells were then washed with 

FACS buffer (2% FBS and 0.1% sodium azide in phosphate-buffered saline) and stained 
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using the Live/Dead aqua fixable dead cell stain kit (Invitrogen, Eugene, OR) to identify 

live and dead cells. Cells were then stained for surface markers such as CD3 (clone SK7, 

APC-Cy7; BD Biosciences, San Jose, CA) , CD8 (clone SK1, PerCP-Cy5.5 or clone 

RPA-T8, FITC; BD Biosciences, San Jose, CA), CD19 (clone SJ25C1, PE-Cy7; BD 

Biosciences, San Jose, CA) and/or CD56 (clone B159, PE-Cy7; BD Biosciences, San 

Jose, CA) and/or CD14 (clone M5E2, PE-Cy7; BD Biosciences, San Jose, CA), and CD4 

(clone OKT4, Pacific Blue; eBiosciences, San Diego, CA or clone RPA-T4, APC; BD 

Biosciences, San Jose, CA) for 30 minutes at 4oC. After washing with FACS buffer, the 

cells were fixed and permeabilized with Cytofix/Cytoperm (BD Biosciences, San Jose, 

CA) and stained for the intracellular cytokine IFN-γ (clone 4S.B3, PE or clone B27, 

Alexa Fluor 700; BD Biosciences, San Jose, CA) or tumor necrosis factor (TNF) -α 

(clone Mab11, APC; BD Biosciences, San Jose, CA) for 30 minutes at 4ºC. Cells were 

then washed with Permwash buffer (BD Biosciences, San Jose, CA) and resuspended in 

1X BD Stabilizing Fixative (BD Biosciences, San Jose, CA) for flow cytometric analysis. 

Multiparameter flow cytometric analyses were performed using the BD FACSAria flow 

cytometer. The number of events collected per experiment varied from 150,000 to 

300,000. List-mode data files were analyzed using FlowJo (Version 6.3 or 7.2, TreeStar 

6, Inc., Ashland, CA).  

 

K. Peptide binding assay 

A fluorescence polarization assay was used to determine the binding affinities of HA 

peptides containing the fusion peptide sequence to the HLA-DR1 molecule. The reagents 
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used for the assay were provided by Dr. Lawrence Stern and Liusong Yin from the 

University of Massachusetts Medical School.  The HA306–318 peptide probe (Ac-

PRFVKQNTLRLAT) was synthesized (21st Century Biochemicals, Marlboro, MA) and 

labeled with Alexa-488-tetrafluorophenyl ester (Invitrogen, Eugene, Oregon).  Soluble 

recombinant HLA-DR1was prepared as previously described (68).   Peptide-free HLA-

DR1 (100 nM) was mixed together with the Alexa-488-HA peptide probe (25nM) and 

varying concentrations of unlabeled competitor peptide (from 0.08 to 20 nM).  The 

mixtures were done in triplicate wells for each competitor peptide concentration in a 96-

well format and incubated for three days at 37 C in binding buffer (pH 5.5) containing 

protease inhibitors and 0.5 mg/ml octylglucoside.   Fluorescence was detected using the 

Alexa488-FP-DISS-one measurement protocol of the PerkinElmer 2030 Explorer 

multilabel plate reader.  IC50 values were obtained by fitting a binding curve of the plots 

of percent dissociation of peptide probe versus the logarithmic value of the concentration 

of competitor peptide using GraphPad Prism Version 5.04. 

L. Statistical analysis 

Statistical analysis of the ELISPOT responses of PBMC to peptide pools was done 

using GraphPad Prism Version 5.04.  One-way analysis of variance (one-way ANOVA) 

was performed to determine variations among the means of the different peptide pool 

responses.  An unpaired student’s t-test was performed comparing the mean of media 

only wells against a specific peptide pool response.  P values of ≤0.01 were considered 

significant.   
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CHAPTER III 

GENOME-WIDE SCREENING OF HUMAN T CELL EPITOPES TO 

INFLUENZA A VIRUSES 

 

Characterization of epitope specific T cell responses is relevant in understanding the 

immune response to influenza infection and vaccination.  Previous efforts to characterize 

the T cell response to influenza by our group (101) and others (76) were limited by 

focusing only on the conserved viral proteins or utilizing viral protein sequences derived 

from the A/PR/8 strain.  Other groups also focus on a particular influenza viral protein 

such as HA or M1 (50, 243), or determine influenza-specific T cell epitopes restricted to 

a particular HLA allele (242, 244).  Therefore, we sought to determine the baseline T cell 

memory responses to influenza by performing a genome-wide screening of T cell 

epitopes using synthetic peptides covering all viral proteins whose sequences are based 

on more recent circulating strains of influenza, including the avian H5N1.  ELISPOT was 

used to quantitate the number of IFN-γ-producing cells in donor PBMCs that are specific 

for the influenza A viral proteins.  This method of screening for T-cell epitopes directed 

to viral proteins had been used with much success (9), in particular with vaccinia virus 

(148).   

 

A. Peptide Screening 

We first sought to determine the optimal conditions in establishing a standard 

approach to screening IFN- γ responses using ELISPOT.  We have several vials of 
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PBMC collected from Donor 1, thus preliminary experiments were performed using this 

donor’s PBMC.  Donor 1 is HLA-A*02:01 positive and  was previously shown by Kim 

West in our laboratory to have  T-cell responses specific to the influenza CD8+ T cell 

epitope M158-66 (unpublished data), which is considered an immunodominant epitope 

(138).  We initially determined the optimal peptide concentration to use in our ELISPOT 

screening to minimize false positives and negatives by using 17-mer peptides that contain 

known influenza T cell epitopes that Donor 1 is expected to respond to.  We were able to 

detect IFN-γ responses to the M1 peptide containing the immunodominant M158-66 at all 

peptide concentrations but the spot forming cells/106 (SFC/106) were increased 

significantly when the peptide concentration was 2 µg/ml (Fig. 3.1).  There is no apparent 

explanation as to why we see a significant difference in the SFC values for the M1 

peptide epitope, since the DMSO used to reconstitute the peptides is essentially diluted 

(<0.1% of final volume in well).  We also did not observe a peptide dose response for the 

M1 peptide epitope since there was no trend of decreasing SFC values as peptide 

concentration decreases.   However, for the M1 peptide epitope, we consistently saw 

higher SFC values at 2 µg/ml compared to higher peptide concentrations (data not 

shown).  IFN-γ responses were also optimal at a peptide concentration of 2 µg/ml for the 

other peptide epitopes tested, with higher concentrations of the peptide giving minimal 

SFC values (Fig. 3.1).   
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Figure 3.1. Determining the optimal peptide concentration for our ELISPOT 
screening.  Donor 1 PBMCs were used to determine the minimal peptide concentration 
that would give positive IFN-γ responses in ELISPOT.  17-mer peptides containing 
known influenza epitopes were assayed at various concentrations.  M1 Peptide 10 
contains the HLA-A*0201 epitope M158-66, PB1 Peptide 69 contains the HLA-A*0201 
epitope PB1413-421, and H3 HA Peptide 55 contains the HLA-DR1 epitope H3 HA322-333.  
H3 HA Peptide 46 is a candidate peptide that had IFN-γ responses in our initial 
experiment.  SFC values are representative of one experiment and error bars are given by 
the standard deviation of the mean of triplicate wells.  PHA stimulation was used as a 
positive control (mean = 2545 SFC/106).  
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We only had limited peptide amounts and donor PBMC to perform our screening, 

thus we decided not to use the matrix system of designing peptide pools.  Instead, we 

explored the possibility of maximizing the number of peptides we can use in a pool and 

taking advantage of the overlapping nature of the synthetic peptides.  The number of 

IFN-γ-producing cells did not differ significantly if we used five, 10, or 15 non-

overlapping peptides in a pool (Table 3.1).  The PBMC also responded to the CEF 

peptide pool, which contains HLA-A*02:01-restricted T cell epitopes to CMV, EBV and  

influenza (49), including the influenza epitope, M158-66.  However, we saw a significant 

decrease in the SFC/106 values if we used a peptide pool that included overlapping 

peptides to M158-66 (Table 3.1).  Based on our results, we established for our screening 

that 15 non-overlapping peptides in a pool at a concentration of 2 µg/ml per peptide 

would allow us to detect influenza-specific IFN-γ responses in ELISPOT using human 

PBMC.   

We also wanted to determine the cut-off SFC for a positive response.  There is no 

set standard to determine the cut-off number of spots in ELISPOT screening.  In most 

cases, the number of spots in unstimulated or negative wells (background spots) is used 

to determine the cut-off.  We arbitrarily determined the cut-off of a positive ELISPOT 

response at 20 SFC/106 based on the value given by the mean of the spot-forming cells 

(SFC) per 106 cells plus three standard deviations (SD) of the negative control wells in 

our donors (Table 3.2).  For donors that had higher background spots, we adjusted the 

cutoff value for a positive response accordingly (see Donor 3, Table 3.2).   In later 

analyses,   peptide pools that had SFC values close to the arbitrary 20 SFC/106 cut-off  
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Table 3.1.  ELISPOT results of optimization experiments for peptide screening. 

Stimulation aSFC/106 

Experiment 1 Experiment 2 

PHA 1810.7 ± 31.7 1741.3 ± 33.0 

CEF peptide pool 230.7 ± 1.5 226.7 ± 5.5 

Overlapping peptide pool  0.3 ± 0.6 0.3 ± 0.6 

Non-overlapping peptide pool   

5 peptide per pool 37.3 ± 3.5 33.3 ± 4.9 

10 peptides per pool 40.0 ± 6.1 30.7 ± 1.2 
b15 peptides per pool-A 38.7 ± 2.1 34.7 ± 0.6 
c15 peptides per pool-B 36.0 ± 1.0 32 ± 6.08 
 

a SFC/106 values are given by the mean of three wells for each experiment and the 
standard error of the mean was calculated for each value. 
 
b Pool includes M1 peptide 10 (containing M158-66) and peptides from H3 HA, NS1, NP, 
PB1 and M2. 
 
c Pool includes M1 peptide 10 (containing M158-66) and non-overlapping M1 peptides. 
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Table 3.2. Background spots of negative control wells for Donors 1, 2, 3, and 4. 

 
Experiment 

SFC/106 

Donor 1 Donor 2 Donor 3 Donor 4 
1 3.5 12.5 17.5 2 
2 3.5 5 16.5 1 
3 2 5 18.5 2.5 
4 2 3.5 32 1.5 
5 1.5 3 21.5 4.5 
6 2.5 4 24 13.5 
7 9 6.5 17.5  
8 8 6 16.5  
9 4.5 0.5 26  
10 8  25.5  

Mean 4.5 5.1 21.6 4.2 
S.D. 2.8 3.3 5.2 4.7 
Cut-Off (Mean 
+3*S.D) 

12.9 15 37.2 18.4 
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were considered positive if the p-value were determined by using an unpaired student’s t-

test  was < 0.01.   

 

B. The PBMCs of Donor 1 have broad IFN-γ response to peptide epitopes on 

several influenza A proteins 

We performed a genome-wide screening of influenza T cell epitopes in Donor 1 using 

peptide pools that cover the entire influenza viral proteins.  The PBMCs of donor 1 were 

broadly reactive to peptide pools from several influenza proteins, as indicated by the IFN-

γ responses to peptide pools containing HA peptides (Fig. 3.2A; pools 1, 7, 8, 10, 11, 13, 

14, 15, 17 and 18), NA peptides (Fig. 3.2A; pools 29, 30 and 33), NP peptides and NS1 

peptides (Fig. 3.2B; pools 2, 3, 4, 5, 6, and 8), M1 and NS2 peptides (Fig. 3.2B; pools 9, 

10, 11, and 12), PA peptides (Fig. 3.2B; pool 20), and PB1 and PB2 peptides (Fig. 3.2B; 

pools 22 and 37).  IFN-γ responses to individual peptides from positive pools containing 

H3 HA and NS2 and M1 peptides are illustrated in Fig. 3.2C and D, respectively.  In 

addition, donor 1 had positive responses to two pools containing PB1-F2 and H5 HA 

variant peptides (data not shown). We also detected several IFN-γ responses to H3 but 

only one pool tested positive for H1 HA. For the internal viral proteins, the majority of 

responses were seen in pools containing M1, NP, NS1, and NS2 peptides. The pool that 

contained the peptide with the HLA-A2-restricted M1 epitope M158-66 (Fig. 3.2B; pool 

10) had the highest SFC value among all the peptide pools.  The sum of the number of 

IFN-γ-producing cells responding to these positive peptides was 1108, which is 90.7% of  
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Figure 3.2.  IFN-γ response of Donor 1 PBMC to peptides from all influenza 
proteins. PBMC were first tested in ELISPOT against (A) Set 1 peptide pools (1–33), 
which include the hemagglutinin (H1 HA, H3 HA, and H5 HA) and neuraminidase (aN1 
NA, hN1 NA, and N2 NA) peptides and (B) Set 2 peptide pools (1–38), which include 
peptides spanning all viral internal proteins. Positive pools were deconvoluted to test 
individual peptides. An example of such screening is illustrated in C and D. ELISPOT 
assays were performed using (C) individual peptides in Set 1 peptide pool 7, 10, and 11 
consisting of H3 HA peptides and (D) NS2 and M1 peptides contained in Set 2 peptide 
pools 9 and 10.   PHA stimulation was used as a positive control and was consistently 
above 2,000 SFC/106 in all experiments. Peptide pools and individual peptides were 
tested in triplicate wells with 200,000 to 250,000 cells per well. The final concentration 
of peptide used in all experiments was 2 µg/ml per peptide. The dotted line indicates the 
cutoff SFC value of positive responses for this donor (20 SFC/106) that determines which 
pools will be deconvoluted.  Error bars indicate the standard deviation among triplicate 
wells and statistical significance was determined by using unpaired Student’s t test (* = 
p<0.01, ** = p<0.001 and *** = p<0.0001).   
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the number of IFN-γ-producing cells responding to live influenza virus stimulation (1221 

SFC/106 for H1N1 and 1219 SFC/106 for H3N2; Table 3.4).  

 

C. IFN-γ responses to influenza A proteins in three other healthy adults 

We selected three additional donors based on the availability of PBMCs for large-

scale screening and their previous reactivity to the influenza peptides in the CEF peptide 

pool in preliminary ELISPOT assays.  All three of these donors responded to peptides 

from several influenza A viral proteins as summarized in Figure 3.3. The PBMCs of 

Donor 2 exhibited less reactivity to influenza peptides, with responses to only four 

peptides (Fig. 3.3, white box).  Positive peptide pools for each of the donors were 

deconvoluted to test the individual peptides and narrow down the peptide-specific 

response.  Table 3.3 summarizes all the peptides that elicited IFN-γ responses from the 

four donor PBMCs.  On average, the four donors’ PBMCs responded to 21 different 

peptides from nine different viral proteins, including H3 and H5 HA. Responses to H3 

and H5 HA were comparable, with SFC values ranging from 20 to 60 SFC per million 

cells. Most of these peptides do not contain a known epitope sequence based on our 

search using the Immune Epitope Database (IEDB; www.immuneepitope.org) (28, 155). 

We considered a peptide sequence to be a potential novel epitope if there was no record 

that the sequence was associated with positive T-cell data in the IEDB. We also 

considered both the amino acid sequence of the 17-mer peptide and the corresponding 

HLA allele of the donor’s PBMCs that responded.  Some of the peptides we identified 

have a record of some positive T-cell data in IEDB, but were not fully characterized with  
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Figure 3.3. Broad T-cell responses to influenza viral proteins in PBMC from healthy 
adults.  PBMCs from four healthy adults were screened for IFN-γ responses to all 
influenza proteins in ELISPOT assays.  Each bar corresponds to the total number of 
peptides that elicited an IFN-γ response in all donor PBMC tested. 
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regard to their HLA restriction or minimal epitopes (indicated in Table 3.3).  About 60% 

of these peptides gave “moderate” IFN-γ responses (SFC between 31 to 99 SFC/106) 

compared with the number of IFN-γ-producing cells responding to the 

“immunodominant” HLA-A2-restricted M158-66 epitope (Fig. 3.4).  

To determine if the IFN-γ responses we saw to the peptides were representative of 

the IFN-γ responses elicited during a viral infection, we took the sum of the SFC values 

to the peptides for each donor and compared it the SFC values during live virus 

stimulation.  Table 3.4 lists the sum of the number of IFN-γ-producing cells responding 

to these positive peptides for donors 2, 3, and 4, as well as the SFC values for live virus 

stimulation of these donors’ PBMCs.  By taking the sum of the responses after 

stimulation with the complete set of the peptides spanning all viral proteins, we find that 

our total SFC values for all the viral proteins are comparable with that of live virus 

stimulation in ELISPOT.  

 

D. The phenotype of IFN-γ producing cells 

To determine the T-cell population that produced IFN-γ after peptide stimulation, we 

depleted CD4+ or CD8+ cells from the donors’ PBMCs.  We then performed ELISPOT 

using the peptide of interest to stimulate the CD4+- or CD8+-depleted cells. Peptides that 

had SFC values greater than 60 SFC/106 in Table 3.3 were first analyzed to ensure that 

there are enough peptide-specific precursor cells. Except for the M158-66 epitope, all of 

the IFN-γ-producing cells that responded to the peptides in ELISPOT were CD4+ cells, as  
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Figure 3.4. Distribution of SFC values of positive peptides in ELISPOT assays. The 
SFC values for each peptide that gave a positive IFN-γ response were plotted in a 
histogram chart to determine the frequency of IFN-γ-producing cells among four donor 
PBMCs. 
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Table 3.4. Total SFC values corresponding to IFN-γ responses in ELISPOT to 
influenza peptide stimulation or live virus infection. 
 

 Total SFC valuesa 

H1 and 
hN1 

peptides 

H3 and N2 
peptides 

H5 and 
aN1 

peptides 

Internal 
protein 
peptides 

H1N1 
virus 

infection 

H3N2 
virus 

infection 
Donor 1 202 264 180 620 1221 1219 

Donor 2 0 52.5 0 52.5 NDb 420 

Donor 3 0 985 0 1825 1182 1478 

Donor 4 0 273 193 714 1033 1135 

 

aTotal SFC values are representative of one ELISPOT experiment, with triplicate wells 
per peptide or virus stimulation. 
 
bND, not done. 
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indicated by a drastic decrease in SFC values when CD4+cells are depleted from whole 

PBMCs (Table 3.5).  

For the other candidate peptide epitopes, short term bulk culture cell lines using donor 

PBMCs were set up and ICS was performed on days 12–14 to determine the phenotype 

of the IFN-γ-producing cells.  Fig. 3.4 illustrates representative plots indicating the 

phenotype of IFN-γ-producing cells from peptide-stimulated bulk culture using donor 3 

PBMCs. More than 87% of IFN-γ-producing T cells expressed the CD4 surface marker 

upon cognate peptide stimulation in ICS (Fig. 3.4).  

 

E. Characterization of the influenza-specific T cell lines generated from limiting 

dilution assay 

We generated bulk culture lines by stimulating donor PBMCs with peptides of 

interest to further characterize the peptide-specific responses we identified in our 

ELISPOT screening. We selected peptides that potentially contain novel epitopes by 

searching for MHC class I and class II binding motifs within the peptides using two 

prediction algorithms, HLA Peptide Binding Predictions (http://www-

bimas.cit.nih.gov/molbio/hla_bind/) (153) and SYFPEITHI (http://www.syfpeithi.de) 

(169).  We used these peptides to stimulate donor PBMC and generate short-term bulk 

culture cell lines.  After two weeks in culture, the peptide specificity of these cell lines 

was determined by using a standard 51Cr release assay by looking at their ability to kill 

autologous BLCL targets pulsed with the cognate peptide.  Although cytotoxicity may 

not be a major function of virus-specific CD4+ T cells, our group had previously 
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Table 3.5.  Phenotype of IFN-γ-producing cells after CD4+ or CD8+ cell depletion. 

Peptide SFC/106 

Whole PBMCs CD4-depleted 

PBMCs 

CD8-depleted 

PBMCs 

    

DONOR 1    
aM158-66 401.7±32.3 281.7±4 0±2.5 
bH3 HA322-334 8.3±0 6.7±2.1 25±5.5 

H3 HA273-289 46.7±1.2 8.3±2.1 65±1.2 

M1234-250 53.3±5.9 1.3±1.5 57.3±6.6 

N2176-192 34.7±3.2 0±0.6 68±4.7 

DONOR 3    

M191-107 90.7±2.1 0±0.6 164.2±2.1 

M197-113 124±10.4 27.5±4 152.5±18.3 

M1205-221 68±8.2 7.5±1 174.2±4 

M1210-226 97.3±9.3 7.5±2 235±5 

M1216-232 22.7±0.6 0.8±0.6 50±5 

N2176-192 44±2 0.8±1.2 135±5 

NP109-125 74.7±1.5 7.5±1 95±5 

NP115-131 30±3.5 0.8±1.2 45±9.2 

NP175-191 22±3.5 0.8±1.2 20±12 

NP187-203 37.3±2.9 2.5±1.7 42.5±5.7 

NP193-209 52±4 4.2±1.5 102.5±8.5 

H3 HA249-265 25±8.5 2.5±1.4 25±0 
 

aM158-66 is an HLA-A2-restricted immunodominant epitope.  It is used here as a control 
peptide for positive CD8 T-cell responses in HLA-A2 donors. 
 
bH3 HA322-334  is an HLA-DR1-restricted epitope.  It is used here as a control peptide for 
positive CD4 T-cell responses in HLA-DR1 donors. 
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Figure 3.5 Flow cytometry to determine the phenotypes of IFN-γ producing cells in 
Donor 3 PBMCs.  Peptide-stimulated short term bulk culture cells using donor 3 PBMC 
were used as effectors in an ICS.  The peptides illustrated here were used to initially 
stimulate whole PBMC and establish the bulk culture.  The final peptide concentration 
was 10 µg/ml in all experiments.   
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established both CD8+ and CD4+ T cell lines using a standard 51Cr release assay (58, 71, 

83, 101, 102, 141). Peptide-stimulated bulk culture lines that had a specific immune lysis 

of ≥15% in 51Cr-release assays (E:T ratios of 10, 30, and 90 were tested) were used in a 

limiting dilution assay to generate peptide-specific T-cell lines. We were able to generate 

T-cell lines that are specific to peptides H3 HA267-283, H3 HA350-366, M1205-221, and M191-

107, as well as to known T-cell epitopes contained in peptides H3 HA321-337 

(PRYVKQNTLKLAT, HA322-334) restricted by HLA-DR1 and M155-71 (GILGFVFTL, 

M158-66) restricted by HLA-A2. A 51Cr-release assay was performed to determine the 

ability of the T-cell lines to kill targets pulsed with decreasing doses of cognate peptide. 

T-cell lines specific to H3 HA267-283, H3 HA350-366 and M1205-221 were able to kill peptide-

pulsed targets at a peptide concentration of 10 μg/ml (≥15% specific lysis, Table 3.6).  

We also determined the surface expression of CD4 or CD8 of these T-cell lines by 

flow cytometry.  The T-cell lines that were specific to H3 HA267-283 (1-3E2), H3 HA350-366 

(2-10D8), and M1205-221 (3-1C9) were CD4+ (Table 3.6), whereas the M1-M155-71-specific 

T-cell line was CD8+, as expected (data not shown). We also performed IFN-γ ICS by 

pulsing autologous BLCLs with the cognate peptide and adding the appropriate T-cell 

line prior to Golgi plug application (Fig. 3.6).  T-cell lines were able to produce IFN-γ 

upon cognate peptide stimulation of autologous APCs, comparable with the virus-

infected control, although only a low percentage of the 2-10D8 T-cell line produced IFN-

γ after stimulation with either live influenza A virus or the peptide.  
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Figure 3.6.  Influenza specific T cell lines generated from limiting dilution assay 
are CD4+ and secrete IFN-γ.  T cell lines were stimulated by culturing them with 
either virus-infected or peptide-pulsed autologous BLCLs as APC for six hours after 
Golgiplug application.  (A) The CD3+ LDAlow CD14-CD19- gated population were 
analyzed for their CD4 and CD8 surface expression.  (B)  The CD4+ T cells were 
analyzed for their IFN- γ expression after peptide or virus stimulation. 
PMA:ionomycin was used as a positive control.  Virus-infected APCs used for the 1-
3E2 and 2-10D8 T cell lines were infected with A/Wisconsin/67/2005X-161B 
(H3N2) virus, while APCs used for the 3-1C9 T cell line were infected with A/New 
Caledonia/20/1999 IVR-66 (H1N1) virus.   
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F. H1 HA and H3 HA T cell responses in 30 additional donors 

The human T-cell responses to influenza hemagglutinin are not well-characterized.  

Since we detected several HA-specific T-cell responses in the first four donors, we 

decided to analyze HA-specific T-cell responses using the PBMCs of 30 hospital 

workers.  These donor PBMCs were collected as part of a clinical study performed by our 

group (40).  Using the same ELISPOT strategy we previously employed, Laura Orphin in 

our laboratory screened pre-vaccination PBMCs from these donors to determine their 

baseline HA-specific T cell responses.  We did not include the H5 HA peptides from BEI 

because of the limited number of PBMCs.    Fifteen out of the 30 donors have memory 

responses to at least one HA peptide.  All fifteen responders had memory responses 

specific to the H3 HA, while five of them responded to H1 HA.   These results are 

consistent with our initial screening using four donor PBMCs where majority of the HA 

responses that we detected are to the H3 HA.   

 

 

 

 

 

 

 



80 
 

 
 

Table 3.7. Summary of H1 and H3 HA peptides that gave a positive IFN-γ response 
in our ELISPOT screening using PBMC from additional 30 donors.  

 
Protein 

AA 
Position 

Sequencea No. of Positive 
Donors 

SFC/106b 

H3 HA 13-29 LVFAQKLPGNDNSTATL 1 62.5 

H3 HA 37-53 PNGTIVKTITNDGIEVT 2 50, 107.5 

H3 HA 43-59 KTITNDQIEVTNATELV 2 30, 37.5 

H3 HA 59-75 VQSSSTGGICDSPHQIL 1 57.5 

H3 HA 83-99 IDALLGDPQCDGFQNKK 1 52.5 

H3 HA 107-123 SKAYSNCYPYDVPDYAS 2 40, 50 

H3 HA 119-135 PDYASLRSLVASSGTLE 1 22.5 

H3 HA 131-147 SGTLEFNNESFNWTGVT 1 37.5 

H3 HA 155-171 CKRRSNNSFFSRLNWLT 1 20 

H3 HAc 209-225 SLYAQASGRITVSTKRS 4 20, 25, 330, 167.5 

H3 HAc 215-231 SGRITVSTKRSQQTVIP 2 37.5 

H3 HAc 243-259 PSRISIYWTIVKPGDIL 5 33.3, 37.5, 40, 42.5, 75 

H3 HAc 249-265 YWTIVKPGDILLINSTG 4 27.5, 27.5, 32.5, 32.5 

H3 HAc 255-271 PGDILLINSTGNLIAPR 4 30, 22.5, 35, 50 

H3 HA 267-283 LIAPRGYFKIRSGKSSI 1 20 

H3 HA 291-307 GKCNSECITPNGSIPND 1 22.5 

H3 HA 321-337 CPRYVKQNTLKLATGMR 3 50, 35, 67.5 

H3 HA 344-360 TRGIFGAIAGFIENGWE 1 50 

H3 HA 368-384 GFRHQNSEGIGQAADLK 1 27.5 

H3 HA 386-402 TQAAINQINGKLNRLIG 2 27.5, 32.5 

H3 HA 397-413 LNRLIGKTNEKFHQIEK 1 22.5 

H3 HA 403-419 KTNEKFHQIEKEFSEVE 1 57.5 

H3 HA 409-425 HQIEKEFSEVEGRIQDL 1 57.5 

H3 HA 421-437 RIQDLEKYVEDTKIDLW 1 90 
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Protein AA 
Position 

Sequencea No. of Positive 
Donors 

SFC/106b 

H3 HA 433-449 KIDLWSYNAELLVALEN 3 35, 27.5, 57.5 

H3 HA 439-455 YNAELLVALENQHTIDL 2 22.5, 35 

H3 HA 457-473 DSEMNKLFERTKKQLRE 1 55 

H3 HA 463-479 LFERTKKQLRENAEDMG 1 20 

H3 HA 481-497 GCFKIYHKCDNACIGSI 3 62.5, 22.5, 80 

H3 HA 505-521 DVYRDEALNNRFQIKGV 1 85 

H3 HA 528-543 KDWILWISFAISCFLL 1 50 

H3 HA 550-566 FIMWACQKGNIRCNICI 1 47.5 

H1 HA 37-53 LEKNVTVTHSVNLLEDS 1 27.5 

H1 HA 156-172 GKSSFYRNLLWLTGKNG 1 35 

H1 HA 262-278 GNLIAPWYAFALSRGFG 1 60 

H1 HA 416-432 LERRMENLNKKVDDGFL 1 40 

H1 HA 434-450 IWTYNAELLVLLENERT 1 25 

H1 HA 458-474 VKNLYEKVKSQLKNNAK 1 37.5 

H1 HA 464-479 KVKSQLKNNAKEIGNG 2 65, 75 

H1 HA 480-496 CFEFYHKCNNECMESVK 1 45 

H1 HA 510-526 KLNREKIDGVKLESMGV 1 35 

H1 HA 527-543 YQILAIYSTVASSLVLL 1 20 

H1 HA 545-560 SLGAISFWMCSNGSLQ 1 42.5 

H1 HA 550-565 SFWMCSNGSLQCRICI 1 20 

a Underlined sequences are known influenza HA epitopes.  Amino acids highlighted in 
yellow reflect an amino acid change in our peptide sequence compared to the previously 
published epitope.   
b SFC values are representative of one ELISPOT experiment with three replicate wells. 
c This peptide contains amino acid residues that overlaps with another peptide and tested 
positive for IFN-γ response using PBMC from the same donor.  
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G. Influenza B HA screening  

The IBV is a component of the trivalent vaccine given annually, and IBV co-

circulates with IAV during most influenza seasons.  The T cell responses to IBV are also 

not well-characterized.  We thought of extending our ELISPOT screening using B HA 

peptides because we were able to detect several responses to the IAV HA proteins than 

previously reported.  Therefore, we performed a similar screening using peptides 

comprising the IBV pre-HA protein.  PBMCs from six additional healthy donors with no 

prior respiratory or influenza-like illness at the time of blood drawing were tested against 

pools containing 9 or 10 B/HA peptides at a final peptide concentration of 2 µg/ml.  All 

donors had detectable IFN-γ responses to at least one IBV HA pool (Fig. 3.8).  Our 

results indicate that there is a robust memory T cell population specific to the IBV HA 

protein that is generated from exposure to IBV through either natural infection or 

vaccination. 
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Figure 3.7.  T cell responses to the influenza B HA peptide pools.  Donor PBMCs 
were screened against peptide pools spanning the entire IBV B/HA.  Each legend 
represents an individual donor.  PHA stimulation is used as a positive control and is ≥ 
2000 SFC/106 for all donor PBMC.  Error bars represent the standard deviation in 
triplicate wells. (n = 6 donors). 
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H. Chapter Summary 

 

We performed a comprehensive screening of peptides covering all influenza A virus 

proteins to determine the breadth and depth of the T cell response to influenza at baseline 

levels.  Our results confirm previous reports that the T cell response to influenza is 

broadly directed to several viral proteins. We found that the surface glycoproteins, HA 

and NA, which are major components of inactivated vaccines, had many T cell epitopes.  

Majority of the responses that we detected were CD4+ T cell responses, probably due to 

the bias given by the length of the peptides that we used.  In addition, we found several 

CD4+ T cell epitopes in the HA protein and confirmed the abundance of this HA-specific 

T cell response by screening an additional 30 donors.  Healthy adults also have a robust 

memory T cell response to the IBV HA.  Genome-wide screening using overlapping 

peptides covering all viral proteins is useful in identifying T cell epitopes and is 

complementary to the approach based on predicted binding peptides to well-studied HLA 

alleles.   
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CHAPTER IV 

CHARACTERIZATION OF A CROSS-REACTIVE CD4 T CELL RESPONSE TO 

INFLUENZA A AND B HEMAGGLUTININS 

 

 We hypothesized that prior exposure to an IAV subtype generates memory T cells 

that can potentially contribute to HSI to a subsequent IAV of a different subtype.  Our 

group (102) and others (50, 180) previously identified H5 HA T cell responses in healthy 

individuals.   These individuals were not exposed to avian influenza, thus this T cell 

response to H5 HA must be cross-reactive.  Among the different HA subtypes, H2 and 

H5 HA are the closest based on their phylogeny (67). Because H2N2 only circulated 

from 1957-1968, this provided an opportunity to address the hypothesis that prior 

immunity to H2 HA may contribute to this cross-reactive T cell response.     

 

A. Screening of H2 HA and comparisons between older and younger donors 

Individuals who were previously exposed to the H2N2 virus would have a memory 

pool of H2 HA specific T cell responses.  Therefore, we sought to see if there are 

differences in the H2 HA responses in individuals born before the 1957 pandemic and 

those who were born after 1968, when H2N2 was last detected in the human population.   

IFN-γ ELISPOT assays were done to quantify the H2 HA memory T cells using H2 HA 

peptide pools to be able to compare the responses between older (born before 1957) and 

younger donors (born after 1968). We expected to detect responses to H2 HA in the 

PBMC of the older group but not in the younger donors. Indeed, seven of the 11 older 
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individuals’ T cells had IFN-γ responses to at least one peptide pool (Fig. 4.1A), although 

for most donors, the SFC values are modestly above our cut-off for a positive IFN-γ 

response (20 SFC/106) as described in Chapter III.  In our screening of T cell responses to 

the H2 HA peptides, we did not expect younger donors to have IFN-γ responses to the H2 

HA peptides.  However, four out of seven younger donors responded to a particular H2 

HA peptide pool.  Donors YD01 and YD04 had responses to peptides in the H2 HA 

peptide pool 7, while donors YD02 and YD06, had responses to peptides in the H2 HA 

peptide pool 9 (Figure 4.1B).  These younger donors were born well after 1968, when 

H2N2 was last detected in the human population. When we tested the individual peptides 

in these pools, the PBMC of donors YD02 and YD06 both had IFN-γ responses to H2 

HA339-355 (Fig. 4.2A), while YD04 had responses to H2 HA387-403 (Fig. 4.2B).  Based on 

these results, we hypothesize that the IFN-γ responses we saw in the PBMC of these 

donors may be due to cross-reactive memory T cells generated by exposure to more 

recently circulating seasonal influenza strains of the H1N1 and H3N2 subtypes.   
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Figure 4.1. IFN-γ responses of various donor PBMCs to H2 HA peptide pools.  (A) 
Older (n=11) and (B) younger donor PBMCs (n=7) were tested in ELISPOT against H2 
HA peptide pools to quantify and compare the IFN-γ responses to H2 HA.  Each peptide 
pool contains 9-10 non-overlapping peptides spanning the H2 HA and each point 
represents an individual donor.  Due to limited PBMCs collected from each donor, the 
ELISPOT peptide pool screening was only done once. Error bars represent the standard 
deviation in triplicate wells.  SFC values for the positive control, PHA, were between 
1245 -3664 SFC/106.  
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Figure 4.2. Deconvolution of positive H2 HA peptide pools.  (A) YD02 and YD06 
PBMC were screened against the individual peptides in H2 HA Pool 9, while (B) YD04 
PBMC was screened against the individual peptides in H2 HA Pool 7.  Error bars 
represent the standard error of the mean of triplicate wells.   
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B. The IFN-γ response to the H2 HA339-355 peptide is well-conserved in other HA 

subtypes and is mediated by CD4+ cells 

To determine if the H2 HA response we saw in YD02 and YD 06 was due to a 

cross-reactive memory T cell response to H1 and/or H3 HA, we tested the corresponding 

peptides in the H1 and H3 HAs.  We also included the corresponding peptides in H5 HA 

to see if this T cell response is also cross-reactive to H5.    Our ELISPOT screenings 

show that the donors’ T cells responded to these peptides (Fig 4.3A), especially to the 

peptides that contained the RGLFGAIAGF amino acid sequence (see Table 4.1 for 

sequence of HA peptides).   This sequence maps to the N-terminus of the HA2 subunit, 

which spans the fusion peptide of the influenza HA (48).   

The CD4+ or CD8+ expressing cells from YD02 PBMC were depleted by using 

MACS to identify the cell population that is responding to the peptides. We were only 

able to perform the experiment with donor YD02 PBMC because we had limited PBMC 

from YD06.  IFN-γ was produced in the presence of CD4+ cells in the PBMC, but not 

with CD8+ cells (Figure 4.3B).  The SFC values are also relatively increased when CD8+ 

cells are depleted due to enrichment of CD4+ cells, indicating that the peptides are 

presented by the MHC Class II molecule.    
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Figure 4.3. IFN-γ responses to corresponding peptide sequences in other A/HAs. (A) 
YD02 and YD06 PBMCs were screened against the corresponding 17-mer peptides in 
H1, H3 and H5 HAs that include a part or the entire RGLFGAIAGF amino acid sequence 
in ELISPOT.  Data is representative of two independent ELISPOT experiments. (B) 
YD02 PBMCs were depleted with either CD4 or CD8 expressing cells by negative 
selection using magnetic beads and were used in ELISPOT to determine the phenotype of 
IFN-γ responding cells. SFC values shown are adjusted for background spots given by 
the negative control SFC (2-3 SFC/106).  SFC values for the positive control, PHA, were 
greater than 2,000 SFC/106 in all experiments.  
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C. Characterization of in vitro generated cell line specific to H2 HA339-355  

To further characterize the T cell response to H2 HA339-355, we generated bulk 

culture lines by stimulating PBMC from YD02 with the peptide.  A limiting dilution 

assay at one, three or 10 cells per well in a 96-well plate was then set up to  isolate  T cell 

line(s) specific to H2 HA339-355.  We used a standard 51Cr release assay to select for 

peptide specific T cell lines from the limiting dilution plates as described in Chapter III.  

Selected T-cell lines that showed peptide specificity in our initial experiments were 

propagated and restimulated.  We found one T cell line that was able to kill autologous 

target BLCLs pulsed with H2 HA339-355 in a dose-dependent fashion (Figure 4.4A).  When 

we performed surface staining, greater than 97% of the live, CD3+cells were CD4+ 

(Figure 4.5).  A bulk culture line was also set-up by using YD04 PBMC and the H2-

HA387-403 peptide for stimulation, but we were not able to generate a specific T cell line 

after limiting dilution assay.   

The CD4+ T cell line was tested against target cells pulsed with corresponding 

peptides in H1, H3 and H5 HAs (Figure 4.4B).  As expected, this H2 HA339-355-specific T 

cell line was able to lyse those peptide-pulsed target cells.  The pattern of lysis is also 

consistent with the IFN-γ responses to the peptides in ELISPOT shown in Figure 4.3A 

(summarized in Table 4.1).  We also tested the H2 HA339-355 T cell line against target 

cells pulsed with various recombinant HA proteins in a 51Cr release assay (Fig. 4.6).  The 

T cell line recognized both recombinant HA from human influenza strains (H1, H2 and 

H3) and avian influenza HAs (H5 and H7).   
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Figure 4.4. Characterization of the H2 HA339-355-specific T cell line using a standard 
51Cr release assay. (A)  A dose response of the T cell line to H2 HA339-355 peptide was 
done using a standard 51Cr release assay. (B) The T cell line was also used as effector 
cells against autologous BLCLs pulsed with the corresponding peptides in other A/HAs. 
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Figure 4.5.  The H2 HA339-355 T cell line is a CD4+ T cell line.  In this surface staining, 
cells were first gated for singlets (FSC-H vs. FSC-A) and lymphocytes (SSC-A vs. FSC-
A).  The lymphocyte gate is further analyzed for their uptake of the Live/Dead Aqua stain 
to determine live versus dead cells and their expression of CD3 and CD19, taking only 
the live, healthy T cell population (LDA-/low, CD3+, CD19-).  CD4 surface expression is 
then determined from this gated population. 
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Figure 4.6. Ability of the H2 HA339-355-specific T cell line to recognize recombinant 
HA protein. Autologous BLCLs were treated with recombinant HA protein at a final 
concentration of 10μg/ml and used as targets in a standard 51Cr release assay using the H2 
HA339- 355-specific T cell line as effector cells. The recombinant H2 HA protein was 
tested in a separate experiment (light gray bars). The H2 HA339-355 was used as a positive 
control. 

 



95 
 

 

 



96 
 

 
 

D. The H2 HA339-355 T cell line recognize autologous target cells infected with 

various influenza A viruses 

To determine if the T cell line can kill virus-infected targets, we infected 

autologous BLCLs with seasonal H1N1 and H3N2 strains, including a 2009 pandemic 

H1N1 strain.  Target cells were also infected with a reassortant H2N1 strain.  All of the 

virus-infected target cells were lysed specifically by the H2 HA339-355 T cell line (Fig. 

4.7A).   In a separate experiment, the avian H5N1 infected target cells were also lysed by 

the H2 HA339-355 T cell line (Fig. 4.7 A, gray bars).  This indicates that this peptide 

epitope was processed and presented by APCs during infection in vitro. 

 

E. The H2 HA339-355 T cell line can also recognize target cells infected with influenza 

B virus 

The fusion peptide sequence is well-conserved in the influenza HA, including the 

B/HA (48).  Therefore, we asked if this T cell line is able to recognize this sequence in 

the influenza B/HA as well.  Indeed, the T cell line killed both peptide-pulsed or B virus 

infected targets (Fig. 4.7B), indicating that this CD4+ T cell epitope is also presented in 

the context of an influenza B virus infection. 
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Figure 4.7.  Recognition of influenza virus infected target cells by the H2 HA339-355 T 
cell line.  (A) Autologous BLCLs were infected with several strains of IAV representing 
relevant IAV subtypes and were used as target cells in a 51Cr release assay.  (B) 
Responses to the corresponding B/HA peptides and B virus infection were also 
determined in a 51Cr release assay.  H2 HA339-355-pusled target cells were used as a 
positive control. 
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F. The H2 HA339-355 T cell line produces IFN-γ and TNF-α 

Influenza-specific CD4+ T cells have been shown to produce a variety of 

cytokines, including IFN-γ and TNF-α (136).  We performed an intracellular cytokine 

staining assay to identify the cytokines produced by the H2 HA339-355 T cell line upon 

stimulation with either peptide-pulsed or virus-infected target cells. The live CD3+CD4+ 

T cells (>95%) produced both IFN-γ and TNF-α when they are stimulated with 

autologous BLCLs that are pulsed with the fusion peptide epitope, but not with the 

negative control HLA-A2 restricted M158-66 epitope peptide (Fig. 4.8A).  We also 

infected autologous BLCLs with seasonal and pandemic H1N1 and H3N2 strains, a 

reassortant H2N1, and influenza B strain and used them to stimulate the H2 HA339-355 T 

cell line.  As with peptide stimulation, the CD4+ T cells were double-positive for IFN-γ 

and TNF-α with more than 50% of the cells producing both cytokines in response to viral 

infection (Figure 4.8B).    This response is specific only to influenza, since the T cell line 

did not respond to peptide stimulation using a vaccinia B5R epitope or to vaccinia virus 

(MOI of 1) infected APCs in ICS (Fig. 4.8C). 
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Figure 4.8. Cytokine profile of the H2 HA339-355-specific T cell line upon stimulation 
with peptide-pulsed or virus-infected autologous BLCLs. The H2 HA339-355-specific T 
cell line was incubated with either (A) peptide-pulsed (10μg/ml) (B) influenza virus-
infected or (C) vaccinia B5R epitope-pulsed or vaccinia virus-infected BLCLs for 5-6 
hours in the presence of Golgi plug.  The T cells were then stained with surface marker 
and intracellular cytokine fluorophore-conjugated antibodies to determine the cytokine 
profile after stimulation.  These plots were gated for live, CD3+, CD19-, CD4+ cells.  The 
cytokine response to peptide shown in (A) is representative of one out of three 
experiments.  Responses to viral infected targets, including vaccinia virus infection, were 
determined in a single experiment. 
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G. Determining the HLA restriction of the H2 HA339-355 –specific T cell epitope 

To determine the HLA-restriction of the T cell line, we first tested it against 

mismatched BLCLs, initially focusing on HLA-DR alleles.  The two donors who 

responded in our ELISPOT screening shared the HLA-DRB1*09 allele.  We performed a 

51Cr release assay using peptide-pulsed BLCLs expressing a variety of HLA class II 

alleles as target cells (Fig. 4.9A).  As expected, the T cell line was able to lyse the 

autologous targets cells expressing HLA-DRB1*03 and HLA-DRB1*09:01 even at a 

peptide concentration of 0.1µg/ml (Fig. 4.9A).  It also lysed target BLCLs that expressed 

the HLA-DRB1*09:01, although to a lesser extent compared to the autologous targets, 

but not BLCLs that have mismatched HLA-DR alleles.  Our results suggest that this 

epitope is restricted by HLA-DRB1*09.  We did not see comparable % specific immune 

lysis in both BLCLs that expressed the HLA-DRB1*09:01.  Aside from HLA-DR, there 

are two other MHC Class II molecules that are expressed and can present antigens in 

humans.  Therefore, to eliminate the possibility that this epitope is restricted by a 

different HLA Class II molecule, we pre-treated target autologous BLCLs with various 

concentrations of blocking antibodies to HLA-DR, HLA-DP or HLA-DQ and used them 

in a 51Cr release assay to further investigate the restriction of this T cell epitope.  The % 

specific immune lysis was reduced by more than 70% (from 37.82% to 9.54%) when 

target cells were treated with blocking antibodies to HLA-DR at a concentration of 5 

µg/ml, but not with anti-HLA-DQ or anti-HLA-DP (Fig. 4.9B), although the % reduction 

of specific immune lysis by the anti-HLA-DQ at a concentration of 0.625 µg/ml is close  
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Figure 4.9. Determining the HLA restriction of the H2 HA339-355 T cell epitope.   (A) 
The H2 HA339-355 T cell line was used effector cells against various mismatched BLCL 
targets in a 51Cr release assay.  A dose response to the H2 HA339-355 peptide was also 
determined.  The HLA-DRB1 alleles expressed by each BLCL are listed on the y-axis. 
(B) Target BLCLs were incubated with anti-HLA-DR, -DQ or -DP antibodies prior to the 
addition of peptide and effector cells in a 51Cr release assay.  The % reduction of lysis 
was determined by (%SILno Ab -%SILanti-HLA Ab)/(%SILno Ab) *100, where % SIL is the 
specific immune lysis value for that particular antibody treatment.  Data is representative 
of at least three separate experiments for each blocking antibody treatment. 
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to 60%.   This indicates that the restriction of this peptide epitope is not solely restricted 

by HLA-DR and that the donor’s particular HLA haplotype may contribute to 

promiscuity of this epitope.     

 

H. Ex vivo responses to the H2 HA339-355 epitope in donor PBMCs with the HLA-

DRB1*09 allele 

The two donors, YD02 and YD06, that responded to the H2 HA339-355 peptide in our 

initial ELISPOT experiments both express HLA-DRB1*09 allele.  We therefore tested 

additional donor PBMCs that have the HLA-DRB1*09 allele.  All of the five additional 

HLA-DRB1*09 expressing donors’ cells had ex vivo IFN-γ responses to the HA peptides 

containing the RGLFGAIAGF sequence of the fusion peptide (Table 4.3).   

An MHC Class II binding motif prediction algorithm 

(http://tools.immuneepitope.org/analyze/html/mhc_II_binding.html) from the IEDB (155) 

identified “IESRGLFGAIAGFIE” as a top 4.52% binder to the HLA-DRB1*09:01 

molecule as well as “ESRGLFGAIAGFIEG” (top 4.98%) and “SRGLFGAIAGFIEGG” 

(top 5.32%) among peptides in the HA protein of the A/Japan/305/1957 (H2N2) strain.  

We also ran a similar prediction query using the NetMHCIIpan-2.1 server 

(http://www.cbs.dtu.dk/services/NetMHCIIpan/), which ranks the predicted binding 

motifs against a set of 200,000 random natural peptides (145).  “IESRGLFGAIAGFIE”,  
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Table 4.2.  Healthy adult donors have ex-vivo IFN-γ responses to the fusion peptide 

epitope. 

 

Donor 

 

HLA Class II typing 

aSFC/106 

H1 H2 H3 H5 B/HA 

YD02 DRB1*03, 

DRB1*09:01:02 

22.7±1.73 26.7±2.65 46.7±2.65 32±5.86 14±1.53b 

YD06 DRB1*01, 

DRB1*09:01:02 

22.7±4.04 28±3.21 36±2.89 36±4.16 N.D. 

YD08 DRB1*04, DRB1*13 22.2±2.65 60±4.04b 66.7±2 22.2±3 7.4±2.31 

YD09 DRB1*09, DRB1*12 33.3±4 46.7±5.51 41.7±3.06 31.7±3.06 48.3±6.56 

YD10 DRB1*09, DRB1*14 101.7±4.24 96±10.50 84.7±11.79 71.2±7 81.4±9.17 

YD11 DRB1*01, DRB1*09 68±7.55 40±2.65 72±7 68±3.60 34.7±3.51 

YD12 DRB1*04:06, 

DRB1*09:01 

103.3±20.43 56.7±2.08 53.3±6.43 40±7 48.3±2.89 

YD13 DRB1*04, DRB1*09 N.D. 66.7±6.11 N.D. 30±3.46 N.D. 
 

a The SFC/106 values indicate the IFN-γ response of that donor to the HA peptide 
containing the conserved RGLFGAIAGF sequence.  The cut-off for a positive response is 
20 SFC/106. 
b Performed in a separate experiment. 

N.D. Not done. 
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“ESRGLFGAIAGFIEG”, and “SRGLFGAIAGFIEGG” are all in the top 16% of 

predicted binders to HLA-DRB1*09:01 (IC50 between 231-238 nM). Donor YD08 also 

had ex vivo responses to the H2 HA339-355 epitope, but did not have the HLA-DRB1*09 

allele (Table 4.3), suggesting the promiscuity of this epitope. 

 

I. Binding of the CD4+ T cell epitope containing the conserved fusion peptide 

sequence to  HLA-DR1 

We also performed a fluorescence polarization assay to determine the binding affinity 

of the H2 HA339-355 peptide to the HLA-DR molecule.  Since the HLA-DRB1*09 

molecule was not available for the assay we used HLA-DRB1*01:01 (HLA-DR1) 

molecule, which has a similar peptide binding motif in position 1 (55, 202) . We used 

overlapping H5 HA peptides containing parts of the fusion peptide sequence to determine 

the optimal 17-mer that can bind to HLA-DR1 (Fig. 4.10).  The H5 HA345-361 

(KRGLFGAIAGFIEGGWQ) had an IC50 of ~ 893 µM, which indicates that this 17-mer 

sequence can bind, although modestly compared to HA306-318, to HLA-DR1 (Table 4.3).  

This peptide sequence was also predicted to be a strong binder HLA-DRB1*01:01 (top 

16%; IC50 = 28.1 nM) using the NetMHCIIpan-2.1 server 

(http://www.cbs.dtu.dk/services/NetMHCIIpan/) (145) and belongs to the top 9.36% 

binders to HLA-DRB1*01:01 using the IEDB MHC Class II binding motif prediction 

algorithm      (http://tools.immuneepitope.org/analyze/html/mhc_II_binding.html) (155). 
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Figure 4.10. Binding of HA peptides to the HLA-DR1 molecule. Various 
concentrations of unlabeled HA peptides containing the fusion peptide sequence were 
mixed with Alexa-488-conjugated HA CD4 T cell epitope (HA306-318) to determine 
their binding affinity to recombinant soluble HLA-DR1. Unlabeled HA CD4 T cell 
epitope peptide was used as a positive control for binding to HLA-DR1. Values 
shown represent the mean of triplicate wells for a single experiment. 
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Table 4.3. IC50 values determined from Figure 4.10. 

Peptide aIC50 (nM) 

HA CD4 epitope (H3 HA306-318) 25.22±0.03 

H5339-355 24139±0.44 

H5345-361 893±0.09 

H5351-367 314640±0.39 

aIC50 values were determined by fitting to a competition  
binding equation using GraphPad Prism v5.04.  
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J. Chapter Summary 

We established a human CD4+ T cell line recognizing a cross-reactive epitope that is 

conserved among the different HA types of influenza A, and also the HA of influenza B. 

The epitope is located in the fusion peptide sequence of the influenza HA and contains 

the conserved RGLFGAIAGF sequence.  Our in vitro experiments show that the CD4+ T 

cell response to this epitope is characterized by the production of IFN-γ and TNF-α.  This 

epitope is recognized by individuals who have the HLA-DRB1*09 allele.  This epitope 

may also be promiscuous, as it was recognized by donor PBMC that did not have the 

HLA-DRB1*09 allele.  In addition, this epitope is able to bind the HLA-DR1 molecule in 

a biochemical assay.  To our knowledge, this is the first influenza CD4+ T-cell epitope in 

the HA protein that is cross-reactive to influenza A and B viruses.  The implications of a 

cross-reactive T cell response to HA are discussed in Chapter V. 
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CHAPTER V 

DISCUSSION 

 

A. The T cell response to influenza is broad and directed to several influenza 

proteins 

We performed a comprehensive screening of peptides covering all influenza A virus 

proteins. We confirmed previous reports by us (101) and others (10, 23, 76, 229) that the 

T-cell responses to influenza are broadly directed to multiple epitopes on several viral 

proteins. We found that surface glycoproteins, HA and NA, which are major components 

of inactivated vaccines, also had several T-cell epitopes. Overall, HA and M1 had more 

T-cell epitopes than other viral proteins, and those that we have done depletion 

experiments or by surface staining of peptide-stimulated bulk cultures with were of the 

CD4+ phenotype.  Recently, we (39) and others (89) reported that trivalent inactivated 

influenza vaccine can induce T-cell responses and that these T-cell responses may be 

targeting epitopes on HA, NA, and M1. Therefore, healthy adults have a broad and 

diverse memory T cell pool to influenza.  This is in agreement with the diversity of the T 

cell responses observed in human subjects to HIV(http://www.lanl.gov), CMV(213) and 

poxviruses (105, 148).   This memory T cell pool is generated by prior exposure to 

influenza by either natural infection and/or vaccination.   

There have been previous studies that looked at T-cell responses to all of the  

influenza proteins in humans, both by our group and others (76, 101), but they were 

limited by either focusing on well-conserved peptide sequences or by using the sequences 
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of the A/PR8, which was isolated more than 70 years ago and is not a circulating strain. 

Other groups that identify T cell responses to influenza focus on a particular influenza 

viral protein such as HA or M1 (50, 180, 243, 244), or determine influenza-specific T cell 

epitopes restricted to a particular HLA allele (242, 244).   The majority of the human T 

cell epitopes previously identified were to the internal proteins of influenza A.  This is 

most likely due to the conservancy of the amino acid sequence of these viral proteins 

among the different strains. Thus, previous efforts may have underestimated the breadth 

and depth of the T cell response to influenza.  In this thesis, we have employed a broader 

approach to genome-wide screening of T cell epitopes to influenza in humans (134) and 

this has been done by other groups as well (10).   

Although we have identified T cell responses to influenza that are directed to almost 

all of the viral components, there were limitations to the approach we used for epitope 

screening.  For several of the peptides that we identified, we were unable to determine 

whether T cells responding to a given peptide were CD4+ or CD8+ T cells.  Depletion of 

PBMCs with either CD4 or CD8 expressing cells prior to ELISPOT is a useful method to 

determine the T cell population responding to a particular peptide and we were able to do 

so for PBMC from Donor 1 and Donor 3.  However, this was limited by the amount of 

PBMCs we have collected from our donors.  In hindsight, depletion of PBMCs prior to 

screening of individual peptides from positive peptide pools determined by the initial 

ELISPOT experiments may have provided us more information as to the phenotype of 

the responding T cells.  We also did not use in vitro amplification of influenza A-specific 

T cells to avoid skewing the relative frequency of the T cells specific to each epitope. As 
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a result, the frequency of most peptide-specific T cells in PBMCs was not high enough to 

determine the phenotype by performing ICS experiments.  For the PBMC of Donor 3, we 

were able to determine the phenotype of responding T cells by stimulating the PBMC 

with peptide and maintaining short term bulk cultures that we used in ICS.  Again, we 

were limited by the PBMC that we have, since generating bulk cultures for each 

particular peptide would require a significant number of cells.   

Based on the ICS of Donor 1 PBMCs stimulated with live influenza A viruses 

(A/New Caledonia/20/1999 (H1N1) and A/Wisconsin/67/2005 (H3N2)), it is estimated 

that approximately 80% of T cells responding to a live virus infection are CD8+ T cells 

(data not shown).  This would indicate that majority of the T cell specificities present in 

response to a live virus infection are of the CD8+ phenotype.  However, all peptides for 

which we were able to perform further experiments with were recognized by CD4+ T 

cells, with the exception of the CD8+ T-cell epitope, M158-66. This could be explained by 

the length of peptides we used for the screening.  17-mer peptides may have stimulated 

CD4+ T cells better than CD8+ T cells, thus the sensitivity of detecting CD4+ T cells has 

been relatively higher. Ideally, we should have included influenza-naive donors as a 

negative control to demonstrate that T cells responding to influenza peptides have been 

generated against influenza virus exposure from either natural infection or vaccination. 

However, it is practically impossible to find influenza-naive adults (we cannot obtain 

large volumes of blood for genome-wide screening experiments from very young 

influenza-naive children). 
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Assarsson et al. recently reported that PB1 was the major target for both CD4+ 

and CD8+ T-cell responses (10). In our screening, we found that the HA (especially H3) 

and M1 were the major targets of T-cell responses. Our peptides were 17-mer 

overlapping by 11 amino acids covering all influenza A viral proteins. In their study, they 

used synthetic peptides based on the minimal epitopes predicted to have high-affinity 

binding to HLA class I or class II molecules and to be highly conserved based on 

prediction algorithms (10).  The use of minimal epitope peptides in the assays is likely to 

increase the sensitivity of detecting responding T cells, especially in the case of CD8+ T 

cells.  This is true in their study, where they were able to detect more CD8+ T cell 

epitopes compared to our results. The use of longer peptides covering all viral proteins is 

probably less sensitive in detecting specific CD8+ T cells, but it may detect T cells 

recognizing atypical T-cell epitopes or epitopes restricted by MHC class I or class II 

molecules whose binding motif predictions are not available (for example, HLA-DP and 

DQ alleles and rare HLA-A, -B, and -C alleles).  These differences in the peptide sets 

may explain why screenings by Assarsson et al. (10) and our study presented here 

produced different results. 

The HLA restriction of the epitope candidate peptides identified in this screening 

has not been experimentally determined, thus we were unable to test whether these 

epitopes could be identified by prediction algorithms.   However, in deciding which 

peptides to use in establishing peptide-specific T cell lines, we used prediction algorithms 

to determine binding motifs using the HLA alleles expressed by the donor PBMC that 

responded to a particular peptide as a determinant of MHC restriction. We think that our 
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results are complementary to those of Assarsson et al. (10) and that both approaches may 

be used, if possible, to identify T-cell epitopes on a virus. 

IFN-γ ELISPOT has been used to determine T cell responses to influenza and 

other viral pathogens including vaccinia virus (148), HIV (208) and  herpes simplex virus 

(HSV)-2 (162).  Although IFN-γ production represents majority of the T cell response to 

a particular pathogen, other cytokines may also characterize the T cell response.  One of 

the CD4+ T cell lines that we generated from a limiting dilution assay using cytotoxicity 

as a readout, 2-10D8, produced very minimal IFN-γ after stimulation with autologous 

BLCL pulsed with the cognate peptide or infected with influenza A virus (Chapter III, 

Fig. 3.6 B).  This cytotoxic CD4+ T cell line recognized a peptide epitope in HA that was 

initially identified in IFN-γ ELISPOT assays (Chapter III, Table 3.3; 25SFC/106).    We 

have not evaluated this T cell line for its ability to produce other cytokines.   This 

suggests that measurement of IFN-γ production alone may also underestimate the T cell 

response to influenza.   

Other cytokines can be used to evaluate the T cell responses to influenza in 

ELISPOT.  IL-2 is an important cytokine required for T cell proliferation and is produced 

by activated T cells.  In a screening of CD4 T cell epitopes to influenza using HLA-DR 

transgenic mice, IL-2 ELISPOT was used to determine the ex vivo T cell responses after 

intranasal influenza infection (172).  Another relevant cytokine to look at is IL-10, which 

has anti-inflammatory properties that may be able to mediate tissue damage and 

pathology in the course of influenza infection.  Both CD8+ and CD4+ effector T cells 

have been shown to simultaneously produce large amounts of IL-10 and IFN-γ during 
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acute influenza infection in mice (211).  In addition, virus-specific IL-10+ CD4+ memory 

T cells were readily detected 26 days post infection and were still detectable at day 9 

(35).  IL-10 producing human CD4+ T cells that are specific to the M1 protein and have 

T-regulatory characteristics have also been described recently (156).  Thus, a more 

thorough identification and characterization of the T cell response to influenza will have 

to assess the production of other cytokines in addition to IFN-γ, such as IL-2 and IL-10.   

 

B. The T cell responses to influenza A hemagglutinins 

In our genome-wide screening, HA and M1 proteins were the major targets of the 

T cell response to influenza.  We expected to see that majority of the T cell responses 

would be towards the internal proteins of influenza because they are highly conserved.  It 

was interesting to see that despite the propensity of the HA gene to mutate and thus, 

potentially generate escape mutations in T cell epitope sequences, a significant portion of 

the memory T cell responses were still directed to epitopes in the HA protein.  Because 

we only screened four individuals, we determined if we would see a similar robust HA 

response by screening more donors’ PBMC.  The abundance of T-cell responses against 

HA was confirmed by analyzing the PBMCs of 30 additional healthy donors by screening 

with HA peptides covering H1 and H3 HA in IFN-γ ELISPOT.  More responses to H3 

HA were seen than to H1 HA (53.3% of the donors responded to H3 and 16.7% to H1); 

thus, it is probably not surprising that we did not detect H1 HA-specific responses among 

the four healthy donors we previously screened. These may reflect (1) the epidemiology 

of currently circulating influenza A strains during the time when PBMC samples were 
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collected, (2) the history of prior infections with H3N2 versus H1N1 viruses in these 

individuals, or (3) higher virulence of H3N2 strain than H1N1 strain, all of which are 

factors that are difficult to ascertain.  A surveillance of influenza and pneumonia-related 

cases in the United States spanning fifteen years reveal that the H3N2 subtype has a 

higher severity index, causing more illness and increased mortality compared to the co-

circulating H1N1 or IBV (197), which is consistent with the third factor.    

The amino acid sequence identity between the HA and NA of A/New 

Caledonia/20/99 (H1N1) and A/Wisconsin/67/2005 (H3N2) is 40% for the HA 

(AAP34324 and ABW80978) and 42% for the NA (CAD57252 and ABP52004), 

respectively. This suggests a low probability of identifying subtype cross-reactive T-cell 

epitopes in these proteins. However, in two of the four healthy adult donors whose 

PBMCs were screened we detected T cells responding to the peptides encoded by the H5 

HA gene in IFN-γ ELISPOT assays.  Although the frequencies of these T cells were not 

high, they were comparable with those responding to the peptides encoded by the H3 HA 

gene. Other groups have also identified cross-reactive memory T-cell responses to avian 

H5N1 proteins in healthy individuals who were previously infected or exposed to 

seasonal influenza, as well as in individuals who received seasonal influenza vaccination 

(77, 79, 115, 128, 180), including our group (102). The donors included in these studies 

were unlikely to have been exposed to H5N1.  Most of the cross-reactive responses they 

identified were toward the internal proteins M1 and NP (115, 128), which is expected 

because the internal proteins are highly conserved, even among the different subtypes. 
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They were also able to identify cross-reactive responses to the HA (128, 180) and NA 

(77) proteins. 

Roti and colleagues (180) reported the presence of CD4+ T cells recognizing 

epitopes encoded by H5 HA gene in healthy individuals, who were unlikely to have been 

exposed to the H5N1 virus, although in vitro amplification of specific T cells was needed 

to detect them, suggesting a low frequency of these H5 HA cross-reactive T cells. These 

donors who had H5 HA-specific responses were old enough to have been exposed to 

H2N2 and H2 and H5 HA are the most related HA. However, they reported that none of 

the H5 HA epitopes identified was uniquely cross-reactive to H2 HA.  Their findings 

suggest that exposure to H2N2 viruses is not essential for cross-reactivity to H5 HA. 

Except for two peptides (H5151-167 and H5243-259 in Table 3.3) that have a four- to eight-

amino-acid overlap with the H5 HA epitopes identified by them, the H5 HA peptides that 

our donors’ PBMCs responded to are different.  We performed a multiple alignment 

between the H5 HA peptide we identified and the corresponding sequence in H1, H2 and 

H3 HAs (Fig. 5.1).  As expected, H2 and H5 HAs have more sequence similarity, and 

there was some level of homology with the H1 HA, but not with H3 HA in peptides that 

span the HA2 subunit of H5 HA (HA347-568, underlined in Fig. 5.1).  We also did not 

observe responses to the H1 and H3 HA peptides corresponding to the eight H5 HA 

peptides in these donors.  Therefore, we sought to detect H2 HA responses in donors who 

have been exposed to H2N2 and determine if these are cross-reactive to H5 HA.  We 

detected H2 HA-specific T cell responses in both older and younger donors, suggesting 
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Figure 5.1. Multiple alignment of cross-reactive H5 HA peptide epitopes and their 
corresponding sequence in H1, H2 and H3 HA.  Alignment was determined using the 
align sequences analysis tool of the Influenza Research Database 
(http://www.fludb.org/brc/analysis_landing.do?decorator=influenza). 
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that H2N2 exposure is not essential for H5 HA cross-reactivity, as previously proposed 

by Roti and colleagues (180).    

Many of the novel HA T cell epitopes we detected and those previously defined 

are located on conserved segments of the HA protein sequence, with the majority of them 

clustering at the C terminus. A previous study correlated the H3 three-dimensional 

structure and the epitopes that had been identified in mice and humans and found that the 

dominant epitopes to HA are primarily located in conformationally stable segments of the 

C-terminal region (126). In addition, a recent study using HLA-DR1 transgenic mice 

identified a diverse HA-specific, HLA-DR1- restricted CD4+ T cell response, with the 

majority of epitopes located in conserved HA regions (172).  Although we were not able 

to determine the MHC restriction of the HA-specific T cell responses we identified in 

ELISPOT (except for those that responded to Donor 1 and 3, Chapter III), we suspect that 

they are of the CD4+ phenotype.  As mentioned above, our ELISPOT screening strategy 

lends an unintentional bias towards detecting CD4+ T cell responses due to the length of 

the peptides we used for screening.  

The CD4+ T cell epitope PKYVKQNTLKLAT, was one of the first human CD4+ 

T cell epitopes identified (122), and  initially was thought to be immunodominant (123, 

249).   It has been used in several studies to characterize and describe the CD4+ T cell 

responses to influenza (30, 52, 74, 129, 164, 189).  Subsequent studies have shown that a 

number of HA-derived CD4+ T cell epitopes can be recognized in infected individuals 

(75) and healthy adults (12, 180).  Several HA-specific CD4+ T cell epitopes have also 

been identified by using transgenic mice expressing HLA-DR1 (172) and HLA-DR4 
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(242).  A study that looked at the CD4+ T cell memory phase in influenza infection using 

HLA-DRI transgenic mice found that although the overall memory response to influenza 

remains diverse and directed to several influenza proteins, they saw a modest but 

reproducible shift towards HA-derived epitopes (173).  Our data and these studies 

suggest that a significant portion of the CD4+ T-cell responses to influenza are directed to 

the HA, and most of them are in regions that are structurally and functionally conserved. 

A possible explanation could be that repeated exposure to different virus strains through 

infection or immunization may selectively stimulate T cells specific to the epitopes 

located in conserved regions of HA.   

 

C. Cross-reactive CD4+ T cell epitope to Influenza A and B HA 

We established a human CD4+ T cell line recognizing a cross-reactive epitope that is 

conserved among the different HA types of influenza A, and also the HA of influenza B. 

The epitope is located in the fusion peptide sequence of the influenza HA.  We also found 

adult donors’ T cells had ex vivo IFN-γ responses to the peptides that contain the 

RGLFGAIAGF sequence (H2 HA340-349) of the fusion peptide by ELISPOT.  There were, 

however, notable differences in the T cell responses to the RGLFGAIAGF sequence-

containing peptides form different HAs.  It would seem that the flanking residue in either 

the N-terminus or C-terminus of the conserved RGLFGAIAGF sequence may influence 

how these peptides are recognized (Chapter IV, Table 4.1).  These differences can be 

attributed to the effect of flanking residues on the affinity of the peptide-MHC to the T 

cell receptor (42, 145).  The differences in the T cell responses to the HA peptides can 
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also be due to the peptide registry that is bound to the MHC pocket.  A detailed study 

binding motif of HLA-DRB1*0901 indicate that the binding of antigenic peptides 

depends on the interactions between pocket 6 and 9 (100).   We speculate that the 

different overlapping peptides containing the conserved sequence may have different 

peptide registries, allowing for one peptide to bind more efficiently than the other.   

Analysis of evolutionarily conserved sequences in the different influenza A viral 

components reveal that the FGAIAGFIE sequence of the fusion peptide is the only region 

in the HA protein that is 98-100% conserved in influenza viral strains of the different 

human and avian influenza subtypes that circulated between 1997 to 2006 (91).  There is 

also significant conservation between the fusion peptide sequence of the HAs of IAV and 

IBV (118).   The fusion peptide plays a critical role in triggering fusion and destabilizing 

target membranes during the fusion process (48), thus there is strong functional restraint 

against mutation in this portion of the HA sequence.  A previous study using a mouse 

model showed that the stability of the fusion peptide sequence enhanced the 

immunogenicity of CD4 T cell epitopes adjacent to the fusion domain (168).  Our 

findings show that the fusion peptide itself contains a CD4+ T cell epitope as well.     

The CD4+ T cell epitope that we describe here is likely to be restricted by HLA-

DRB1*09, although it could possibly bind to other HLA-DR molecules as well, as 

previously shown for the HA306-320 CD4+ T cell epitope (249).  In fact we have shown 

that this CD4+ T cell epitope peptide can bind to the HLA-DR1 molecule in a 

biochemical assay (Fig. 4.10).  Moreover, all seven of the HLA-DRB1*09 donors’ 

PBMC have ex vivo IFN-γ responses to the fusion peptide epitope in ELISPOT.  The 
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ethnic origin of the HLA-DRB1*09 allele is Caucasoid and Oriental (www.ebi.ac.uk/cgi-

bin/imgt/hla/get allele.cgi?DRB1*09:01:02) and recent studies show that this allele is 

frequently present in East and Southeast Asian populations (152, 165, 178, 250), in 

particular the Han Chinese, which comprise more than 90% of the population of 

mainland China. In a high resolution genotyping of the HLA-DRB1 locus of individuals 

from Jiangsu Province, China, HLA-DRB1*09:01 is the most frequent allele (15.26%) 

(165).   It would be interesting to determine the contribution of this fusion peptide-

specific CD4+ T cell response to influenza immunity in this population. We also detected 

ex vivo T cell responses to the fusion peptide in one donor who is not HLA-DRB1*09.  In 

addition, our experiments using blocking antibodies to HLA-DQ (at 0.625 µg/ml) showed 

a reduction of specific lysis to some extent, thus we cannot rule out completely that the 

epitope is restricted by HLA-DP or –DQ.  The HLA Class II typing for donor YD02, 

from which the T cell line was derived from, is HLA-DRB1*0901, HLA-DRB1*03, 

HLA-DQB1*02, HLA-DPB1*05:01 and HLA-DPB1*28:01.  Using the T cell epitope 

prediction tool of IEDB, the 15-mer “RGLFGAIAGFIEGGW” is among the 11.21% top 

binders to the HLA-DQA1*05:01/DQB1*02:01 allele and is among the 18.17% top 

binders to the HLA-DRB1*03:01 allele.  This suggests that this peptide epitope could 

also be presented by HLA Class II molecules encoded by HLA-DP or DQ alleles.  We 

were not able to obtain the HLA-DQ and HLA-DP typing of the donor PBMC that we 

used to detect ex vivo responses to the fusion peptide.  It would be interesting to 

determine the contribution of the genotypic combination of HLA class II haplotypes to 

the fusion peptide-specific T cell response. 
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This CD4+ T cell epitope is also conserved in the HA of influenza B viruses.  

Influenza A and B viruses are almost the same in structure by electron microscopy, with 

both having the same number of gene segments that encode for the viral proteins (181).  

At the amino acid level, however, sequence similarities are only 12 to 37% for all 

proteins except for basic polymerase 1, which is 61% similar (Table 1.1; (98)). Influenza 

B has a larger genome, and its membrane channel protein is quite different from 

influenza A (181).  Although a number of CD4+ and CD8+ T cell epitopes in influenza A 

viruses have been identified using different strategies (IEDB, www.immuneepitope.org), 

only a few T cell epitopes have been identified in influenza B viruses.  An HLA-A*0201-

restricted CD8+ T cell epitope located in the NP (NP85-94) has been studied most 

extensively (175, 176, 195).  There are also two HLA-B8-restricted CD8+ T cell epitopes 

also located in the NP (NP30-38 and NP262-271) that have been identified (177) and one 

HLA-DRB1*0101-restricted CD4+ T cell epitope that is located in the HA (HA308-320) 

(177). These epitopes were identified by generating peptides from these two viral 

proteins based on prediction algorithms and using them to stimulate CTL responses in 

PBMC from a limited number of donors. Robust ex vivo responses to the IBV HA pools 

were detected in ELISPOT (Fig. 3.7) suggesting that B/HA-specific T cell responses are 

elicited through natural infection or vaccination.  Further studies to determine the role of 

these memory T cell responses should be done since IBV contributes to the burden of 

influenza disease (133, 150) and is a major component of the influenza vaccination that is 

currently being administered.  The identification of a cross-reactive T cell epitope that is 
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shared by both IAV and IBV provides an interesting avenue to explore how such a cross-

reactive T cell response may contribute protection to both influenza virus types. 

 

D. The relevance of cross-reactive CD4+ T cell responses in influenza infection 

A memory T cell pool is generated after initial encounter with influenza.  The 

presence of cross reactive T cells in the memory pool that can recognize a subsequent, 

but different, influenza subtype might be of an advantage.  They can proliferate more 

rapidly and are present at higher frequencies than antigen-specific naïve T cells allowing 

them to dominate the response to secondary (or tertiary) infection (234).  Our data 

suggest that a significant portion of the memory T cell response to influenza is comprised 

of CD4+ T cells, most of which are subtype cross-reactive.  The potential role of these 

cross-reactive T cells in HSI is summarized in Figure 5.2.   

CD4+
 T cells may play an important role in HSI than previously appreciated.  

Immunization with either A/H1 N1 or A/H3N2 of β2-microglobulin -/- mice that lack 

MHC Class I expression and do not have CD8+ T cells, are protected against a 

heterosubtypic challenge as indicated by the viral titers in the lung and survival after 

challenge, but depletion of CD4+ T cells in these knockout mice partially abrogated this 

protection implying the contribution of CD4+ T cells to HSI (62).  Cross-reactive CD4+ T 

cells also play important roles in generating robust antibody responses to influenza (182) 

and adoptive transfer of CD4+ T cell clones specific to HA, NA, M1 or NP of A/PR8 in 

athymic mice one day after infection enhanced the anti-HA antibody response (183).   
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Figure 5.2. A simplified model of the role of cross-reactive CD4+ T cells in 
heterosubtypic immunity to influenza.  (A) After initial encounter of an IAV of a given 
subtype (I), effector CD4+ T cells that are both subtype specific (blue) and cross-reactive 
(yellow) are generated.  They act in concert with components of the innate and humoral 
arms of the immune response (not shown) to resolve the infection (gray background).  
During a second encounter with an IAV of a different subtype (II), subtype specific CD4+ 
T cells are generated at later stages of the infection (red), but memory CD4+ T cells that 
are subtype cross-reactive (yellow) can be readily expanded at earlier stages of infection, 
potentially contributing to partial protection to subtype II resulting to a less severe 
disease (gray background).    The immune mechanisms by which partial protection can 
occur are illustrated in B.  (B). Cross-reactive T cells generated from a previous 
encounter with subtype I can provide T cell help to antibodies and exhibit intrinsic 
effector functions upon encounter with subtype II.  Vaccination strategies that can 
stimulate these subtype cross-reactive T cells should be considered. 
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Thus, cross-reactive CD4+ T cells can contribute to protection by promoting the 

production of anti-HA antibodies. 

The question remains: if cross-reactive CD4+ T cells are restimulated every time we 

get exposed to influenza antigens, why are they not preferentially expanded and therefore 

dominate the response during a subsequent infection or repeated vaccination?  This is not 

an easy question to address, since the immune response to influenza is characterized by 

both humoral and cell-mediated responses, not to mention a potent innate immune 

response that can affect the outcome of the adaptive immune response.  A possible 

hypothesis is that the immunodominant responses directed to the conserved internal 

proteins and to CD8+ T cell epitopes may overwhelm the cross-reactive T responses 

directed to these CD4+ T cell targets, including the conserved HA epitope we describe 

here.    Because CD8+ T cells target internal proteins which are highly conserved, the 

presence of these conserved antigens during a subsequent infection may preferentially 

expand these cross-reactive CD8+ T cells.  The cross-reactive CD8+ T cell memory 

population could also be present at higher frequencies.  Both scenarios may allow certain 

immunodominant responses to dominate the memory response to influenza.  It is worth 

determining how we can boost these cross-reactive CD4+ T cell responses to these 

conserved regions in the HA and to study the mechanism by which they contribute to 

protection against influenza. 
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E. Implications to vaccine design 

The gold standard of influenza vaccination has always been the generation of 

neutralizing antibodies targeting HA.  However, with recent developments in the field, 

including our results, it seems that the most effective way to approach the design of a 

universal influenza vaccine is to be able to stimulate both humoral and cell-mediated 

arms of the immune response.  Several studies in other viral models of infection have 

shown that a broad-based T cell response that is directed against several epitopes seems 

to be appealing (24, 139).  With a broad-based cell-mediated immune response, the virus 

is less likely to accumulate mutations that may lead to immune evasion.  This is 

applicable in the case of influenza virus, since it accumulates several mutations through 

antigenic shift and drift.  It may also be relevant to consider vaccination strategies that 

will enhance cross-reactive CD4+ T cell responses since they have to potential be key 

effectors themselves while providing help to antibody producing B cells and CD8+ T 

cells.  The challenge remains to be the polymorphism of the HLA expression in humans, 

which causes the differential ability of various MHC molecules to present viral epitopes.  

One way to approach this is to take advantage of the presence of MHC supertypes. MHC 

class I or II molecules belonging to the same supertype can bind the same epitope peptide 

expanding the population coverage by the single epitope (55, 192, 194).  Given the 

different studies on human T cell epitopes to influenza compiled and curated by the 

IEDB, we can begin to look at the distribution of T cell epitopes restricted by a particular 

MHC supertype and determine ways in which we can stimulate these T cells in 

individuals with the MHC supertype. 
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The fusion peptide epitope that we have characterized here is cross-reactive to both 

IAV and IBV.  Although natural infection or standard vaccination may not induce strong 

T and B cell responses to this highly conserved epitope (21, 114), it is worth determining 

how we may be able to induce these cross-reactive CD4+ T cells by vaccination.  As with 

any vaccination strategy, careful evaluation of the role of these fusion peptide-specific, 

cross-reactive T cells in vivo is required.  The fusion peptide sequence is highly 

conserved in IAV and IBV but not influenza C and is also quite different from class I 

glycoproteins expressed by other viruses such as HIV and parainfluenza virus type 1 (48).  

However, a BLAST search of the first 12 amino acids (GLFGAIAGFIEG) of the 

influenza fusion peptide against known human protein sequences deposited in the NCBI 

database reveal that a few host proteins, mostly transport proteins (e.g. tricarobxylate 

transport protein, citrate transporter protein and solute carrier family 25), contain a 

similar sequence, “G-FGAIAG.”  This has important implications in inducing T cell 

responses to this peptide epitope as a vaccination strategy, since we do not want to induce 

a population of auto-reactive T cells.  There is evidence of viral epitopes that are cross-

reactive to self-antigens, such as a human CMV CD4+ T cell epitope that is recognized 

by  auto-reactive glutamic acid decarboxylase (GAD65)-specific T cells (94).  To our 

knowledge, there is no known auto-reactive epitope containing the fusion peptide 

sequence.  Further studies are needed to determine if the fusion peptide CD4+ T cell 

response that we describe here are potentially auto-reactive.   

We described a cross-reactive CD4+ T cell response specific to the fusion peptide of 

HA that is characterized by the production of pro-inflammatory cytokines IFN-γ and 
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TNF-α in vitro.  The ex vivo responses of healthy donors to the fusion peptide were also 

characterized by IFN-γ production.  There is also the possibility that instead of lending 

protective immunity, this cross-reactive T cell response may actually promote 

immunopathology instead, as seen in some models of heterologous immunity, wherein a 

T cell memory response to a particular virus is able to mediate the immune response to a 

subsequent infection by an unrelated virus (reviewed in (190, 234).  How this cross-

reactive response to the fusion peptide mediates protection remains to be determined, and 

could be challenging to ascertain in humans.   

Recent identification and characterization of several human cross-reactive 

monoclonal antibodies to epitopes located in the more conserved HA2 domain or the 

stalk region of HA have been reported (45, 57, 210, 238).  This has stimulated a novel 

approach of generating influenza virus vaccines based on the stalk region (including the 

fusion peptide) where a “headless” HA lacking the HA1 subunit is used as an immunogen 

that elicits immune sera with broader reactivity (205).  The presence of the cross-reactive 

CD4+ T cell epitope in the fusion peptide may be helpful to induce higher levels of cross-

reactive antibody responses, at least for individuals with the HLA-DRB1*09 allele (and 

other alleles with a similar peptide binding motif).  Several groups have also shown that 

these cross-reactive antibodies can be detected in human sera (44, 108, 221).  Specific 

activation of these helper T cells should be considered in designing or improving 

vaccination strategies to influenza. CD4+ T cell epitopes also tend to be more 

promiscuous than CD8+ T cell epitopes due to the nature of MHC class II molecules (84).  
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This may be advantageous when considering epitopes to be included in an improved 

vaccine for influenza since more than one HLA molecule can present the peptide. 

A peptide-conjugate vaccine based on the fusion peptide of the precursor HA of the B 

virus (using the outer membrane protein complex (OMPC) of Neisseria meningitides as 

conjugate) was shown to elicit protection in mice against lethal challenge of various 

strains of influenza B and can potentially be extended to influenza A strains (21).  

However, they also show naïve wild type mice that survived an IBV challenge do not 

have significant antibody titers to the fusion peptide suggesting that immunity to the 

cleavage site is not usually elicited during natural influenza virus infection (21).   A 

similar study using the fusion peptide conjugated to keyhole limpet hemocyanin (KLH) 

yielded similar results (203). Both studies did not evaluate the T cell response to the 

peptide-conjugate vaccine.  A more recent study examined the presence of HA2-specific 

antibodies in acute and convalescent sera from adults with confirmed H3N2 infection 

(204).  They found that a third (15/45) of the subjects had antibodies specific to the N-

terminal residues 1-38 of HA2, which includes the fusion peptide sequence.  They also 

confirm the previous report that the first few residues of HA2 are weak natural 

immunogens.  Nonetheless, it is interesting to note that a B cell epitope (11) and an HLA-

A2 restricted CD8+ T cell epitope (76)  have been previously described.  More recently, 

CD8+ T cells specific to the fusion peptide (H1 HA344-353) were detected at modest 

frequencies in vaccinated human subjects one year after vaccination (114).  These data 

indicate that the fusion peptide of the influenza HA is a relevant target of the immune 

response to influenza, which can be exploited to contribute to protective immunity.    
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F. Overall summary and conclusions 

In this thesis, we have shown that the human T cell immune response to influenza is 

broad and directed to several viral proteins, mostly to the HA and M1.  Although there 

were subtype specific T cell responses to the HA and NA, we identified several cross-

creative T cell epitopes not only to the more conserved internal proteins, but also to the 

more divergent HA protein.   We also saw T cell responses to the H5 HA in individuals 

who have not been previously exposed to H5N1 viruses.  These subtype-cross-reactive 

H5 HA responses were generated by prior exposure to seasonal influenza subtypes either 

by natural infection and/or vaccination and were not particularly attributed to T cell 

memory from H2 HA, contrary to our initial thought.  In addition, the subtype-cross-

reactive T cell responses to HA that we saw were directed to highly conserved regions. 

Among them, we identified and characterized an HA CD4+ T cell epitope that is highly 

conserved in both IAV and IBV HA.  This T cell epitope is probably restricted by the 

HLA-DRB1*09:01 allele, although it also can bind to HLA-DRB1*01:01 in a 

biochemical assay.   

Although we did not perform animal experiment to test whether the cross-reactive T 

cell responses that we identified here are able to contribute to HSI to influenza of a 

different subtype, existing literature on cross-reactive T cell responses to influenza as 

discussed above suggests that cross-reactive T cells can provide partial protection to a 

subsequent influenza infection.  Further characterization of these cross-reactive T cells in 
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the context of human influenza infection and vaccination and in consideration of the 

epidemiology of the virus is quite challenging, but is important in our understanding of 

the adaptive immune response to influenza.  Our knowledge of the T cell response to 

influenza, including the results we have described in this thesis, has implications for the 

improvement of current vaccination strategies and in the design of a universal influenza 

vaccine.   
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