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Abstract 

Two decades after the discovery of the Hepatitis C Virus (HCV), Hepatitis C 

infection still persists to be a global health problem. With the recent approval of the first 

set of directly acting antivirals (DAAs), the rate of sustained viral response for HCV-

infected patients increased significantly. However, a complete cure has not been found 

yet. Drug development efforts primarily target NS3/4A protease, bifunctional serine 

protease – RNA helicase of HCV. HCV NS3/4A is critical in viral function; protease 

domain processes the viral polyprotein and helicase domain aids replication of HCV 

genome by unwinding double stranded RNA transcripts produced by NS5B, RNA-

dependent RNA polymerase of HCV. Protease and helicase domains can be isolated, 

expressed and purified separately while retaining function. Isolated domains of HCV 

NS3/4A have been extensively used in biochemical and biophysical studies for scientific 

and therapeutic purposes to evaluate functional capability and mechanism. However, 

these domains are highly interdependent and modulate the activities of each other 

bidirectionally. Interdomain dependence was demonstrated in comparative studies where 

activities of isolated domains versus the full length protein were evaluated. Nevertheless, 

specific factors affecting interdependence have not been thoroughly studied. 

Chapter II investigates the domain-domain interface formed between protease and 

helicase domains as a determinant in interdependence. Molecular dynamics simulations 

performed on single chain NS3/4A constructs demonstrated the importance of interface 

in the coupled dynamics of the two domains. The role of the interface in interdomain 

communication was experimentally probed by disrupting the domain-domain interface 
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through Ala-scanning mutations in selected residues in the interface with significant 

buried surface areas. These interface mutants were assayed for both helicase and protease 

related activities. Instead of downregulating the activities of either domain, interface 

mutants caused enhancement of protease and helicase activities. In addition, the interface 

had minimal effect in RNA unwinding activity of the helicase domain, the mere presence 

of the protease domain was the main protagonist in elevated RNA unwinding activity. In 

conclusion, I suspect that the interface formed between the domains is transient in nature 

and plays a regulatory role more than a functional role. In addition, I found results 

supporting the suggestion that an alternate domain-domain arrangement other than what 

is observed in crystal structures is the active, biologically relevant conformation for both 

the helicase and the protease. 

Chapter III investigates structural features of HCV NS3/4A protease inhibitors in 

relation to effects on inhibitor potency, susceptibility to drug resistance and modulation 

of potency by the helicase domain. Nearly all NS3/4A protease inhibitors share common 

features, with major differences only in bulky P2 extension groups and macrocyclization 

statuses. Enzymatic inhibition profiles of different drugs were analyzed for wildtype 

isolated protease domain and single chain NS3/4A helicase – protease construct, their 

multi drug resistant variants, and additional helicase mutants. Inhibitor potency was 

mainly influenced by macrocyclization, where macrocyclic drugs were significantly more 

potent compared to acyclic variants. Potency loss with respect to resistance mutations 

primarily depended on the P2 extension, while macrocyclization had minimal effect 

except for P2-P4 macrocyclic compounds which were up to an order of magnitude more 
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susceptible to mutations A156T and, in lesser extent, D168A. Modulation by helicase 

domain was also dependent on P2 extension, although opposite trends were observed for 

danoprevir analogs versus others. In conclusion, this study provides a basis for future 

inhibitor development in both avoiding drug resistance and exploitation of the helicase 

domain for additional efficacy. 

In this thesis, I have provided evidence further supporting and revealing the 

details of domain-domain dependency in HCV NS3/4A. Lessons learned here will aid 

future research for dissecting the interdependency to gain a better understanding of HCV 

NS3/4A function, which can possibly be extended to all Flaviviridae NS3 protease – 

helicase complexes. In addition, interdomain dependence can be exploited in future drug 

development efforts to create better drugs that will pave the way to an effective cure. 
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Chapter II will be submitted for publication as “Destabilization of Protease – 

Helicase Interface Enhances Both Protease and Helicase Activities of Hepatitis C Virus 

Non-Structural Protein NS3-NS4A Complex” by “Cihan Aydin (first author), Sourav 

Mukherjee, Alicia M. Hanson, David N. Frick and Celia Schiffer”. 

A modified version of Chapter III will be submitted for publication as “Drug 

Resistance against Hepatitis C Virus NS3/4A Protease Inhibitors is Mainly Caused by the 

P2 Groups” by “Akbar Ali, Cihan Aydin (co-first author) and Celia A. Schiffer”. Part of 

the data presented in Chapter III was published in the paper “Romano, K. P., A. Ali, C. 

Aydin, et al. (2012). "The Molecular Basis of Drug Resistance against Hepatitis C Virus 

NS3/4A Protease Inhibitors." PLoS Pathog 8(7): e1002832.”, which is available online as 

of July 27th, 2012. 
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CHAPTER I 

 

INTRODUCTION
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Epidemiology of Hepatitis C Virus 

Hepatitis C Virus (HCV) was initially discovered in 1989 as the causative agent 

of non-A non-B viral hepatitis [1]. Approximately 150 million people around the globe 

are chronically infected with HCV with 3-4 million new infections happening annually, 

and an annual death toll of 350,000 people [2]. HCV is primarily transmitted via 

exposure to blood of an infected individual and, to a lesser extent, through sexual contact. 

High risk individuals for HCV infection include recipients of blood products or organ 

transplants prior to discovery of HCV and HCV detection systems, intravenous drug 

users, long-term hemodialysis patients, healthcare workers and individuals who are 

infected with Human Immunodeficiency Virus (HIV) [3]. Acute HCV infection is often 

asymptomatic or produces mild symptoms such as abdominal pain and flu-like 

symptoms, thus Hepatitis C is usually not diagnosed in acute phase [4, 5]. HCV infection 

can be cleared by host immune system, however, majority of acute HCV infections 

progress into chronic viral hepatitis. Around 20% of chronically infected patients develop 

cirrhosis within two decades, which further progresses into hepatocellular carcinoma and 

liver failure [6]. Chronic HCV infection is the major cause of liver transplantation in the 

United States [7, 8]. 

HCV is genotypically diverse – six genotypes were classified (1-6) and 

subcategorized further into different subtypes (a, b, c, etc.) [9]. Depending on geography, 

distinct patterns of genotypical distribution is present (Figure I.1a). Genotype 1 is the 

major genotype in the world, especially in continental America and Europe. Genotype 3, 

the second predominant genotype, is mostly observed in Southeastern Asia and countries   
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Figure I.1 – Prevalence of different genotypes of HCV around the globe and 

variance across genotypes and subtypes. (a) Genotypical distribution of HCV exhibits 

distinct patterns with respect to geographical location. Genotype 1 is the most dominant 

across the world, with the others following (Copyright 2009, World Health Organization) 

(b) Confirmed genotypes and subtypes of HCV are genetically diverse. Genomic 

sequences for confirmed HCV subtypes were obtained from GenBank [10] using 

Simmonds et al classification [9]. Alignment of sequences and tree generation was 

performed in SeaView [11] using MUSCLE algorithm [12] for sequence alignment and 

PhyML [13] for generating phylogenetic trees. Texts next to the branches denote 

genotype, subtype and accession numbers for confirmed genomic sequences. Scale bar 

represents the average number of substitutions per site. 
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like Russia, England and Australia. Other genotypes are relatively minor, but distinct 

geographical patterns of spread has been observed – genotype 2 is more dominant in sub-

saharan Africa, genotype 4 in Middle East, genotype 5 in South Africa and genotype 6 in 

Asia [9, 14]. These genotypes and subtypes are distinct both genetically and 

epidemiologically, relative nucleotide differences are around 30% at genotype level and 

around 25% at subtype level [14].  
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Hepatitis C Virus Life Cycle 

HCV is a member of the family Flaviviridae genus Hepacivirus, enveloped, 

single stranded positive-sense RNA viruses. The genome of HCV is encased in an 

icosahedral capsid formed by the Core proteins and further enveloped in host-derived 

membrane, embedded with viral envelope glycoproteins E1 and E2 (Figure I.2). The life 

cycle of HCV consists of entry, uncoating, translation, replication, repackaging and exit 

phases (Figure I.3a). HCV circulates in the host organism in various ways – either in 

association with low density lipoproteins (LDLs), immunoglobulins or as a free virus 

particle [15]. Association of the envelope protein E2 with Tetraspanin (CD81) and 

Scavenger Receptor Class B Type I (SR-BI), in combination with LDL receptors (LDL-

R), glycosaminoglycans (GAG), Claudin-I and Occludin, facilitate fusion with human 

hepatocytes [16-23]. The virion is then taken into the cell via clathrin-mediated 

endocytosis [24]. Acidification of the endosomes facilitates fusion with endosomal 

membranes and subsequent release of HCV RNA into cytoplasm [25, 26] (Figure I.3b). 

The 9.6 kb genome of HCV encodes an open reading frame (ORF) flanked by 5' 

and 3' highly structured untranslated regions (UTRs) (Figure I.4a). The 5' UTR contains 

the internal ribosome entry site (IRES) which is essential for the translation of the viral 

genome [27]. Additionally, composition of the 3' UTR is important for viral propagation 

in vivo [28]. HCV positive sense RNA is translated by the host replication machinery in a 

cap-independent manner, producing a single polyprotein composed of structural proteins 

(Core, E1, E2), p7 and non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A, NS5B),  
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Figure I.2 – Structure of HCV. RNA genome of the HCV is encased in an 

icosahedral capsid formed by core proteins and further enveloped in host-derived 

membrane embedded with envelope glycoproteins E1 and E2 (Toronto Western Hospital 

Liver Centre).  

  



8 
 

 

  



9 
 

Figure I.3 – HCV life cycle and entry of HCV into host cells. (a) Life cycle of 

HCV starts with the entry of viral particles into host cells and subsequent release of viral 

positive sense RNA, which is then translated into structural and non-structural proteins in 

endoplasmic reticulum. Processing of the viral polyprotein is performed by host and viral 

proteases. At some point, negative sense RNA is generated, which will serve as a 

template for positive sense RNA that is packed inside mature virions. Replication of viral 

genome commences in specialized structures called "membranous web". Replicated viral 

RNA is then packaged into virus particles and exocytosed (Reprinted by permission from 

Macmillan Publishers Ltd: Nature Reviews Microbiology, Moradpour, D., F. Penin, et al. 

(2007). "Replication of hepatitis C virus." Nat Rev Microbiol 5(6): 453-463., Copyright  

2007). (b) HCV possibly associates with LDLs while travelling inside the host organism. 

LDL receptors and GAGs are identified as early factors in HCV entry into the cells. 

Additional factors such as SR-BI and CD81 is required for tethering viral particles to the 

cell membrane. Claudin I and Occludin are late entry factors that possibly translocate 

viral particles to the tight junctions of polarized hepatocytes. HCV is then endocytosed in 

clathrin-coated vesicles. Acidification of endosomes results in the uncoating of viral 

genome and injection of virus RNA into host cell cytoplasm (Reprinted by permission 

from Macmillan Publishers Ltd: Nature Reviews Microbiology, Moradpour, D., F. Penin, 

et al. (2007). "Replication of hepatitis C virus." Nat Rev Microbiol 5(6): 453-463., 

Copyright  2007). 
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Figure I.4 – HCV genome, translation and polyprotein processing. (a) The 9.6 

kb genome contains 5' IRES and 3' structured motifs which are conserved. (b) HCV 

genome is translated into a polyprotein which is processed co- and post-translationally. 

Structural proteins and p7 is processed by ER signal peptidase (solid diamond) and the 

core protein is further matured by signal peptide peptidase (open diamond). Non-

structural proteins are processed by two viral proteases – NS2/3 cysteine protease cleaves 

the NS2-NS3 junction and NS3/4A serine protease cleaves NS3-NS4A junction in cis and 

others in trans. (c) Processing of viral proteins result in 3 structural proteins (C, E1, E2), 

p7 viroporin protein and 5 non-structural proteins (NS2, NS3/4A, NS4B, NS5A and 

NS5B) (Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 

Microbiology, Moradpour, D., F. Penin, et al. (2007). "Replication of hepatitis C virus." 

Nat Rev Microbiol 5(6): 453-463., Copyright  2007). 
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Structural proteins and p7 are liberated from the viral polyprotein by host cell signalases 

and host signal peptide peptidases inside ER lumen [29-31]. Subsequent cleavage of non-

structural proteins are performed by viral proteases denoted as NS2/3 [32] and NS3/4A 

[33] (Figure I.4c). 

Both structural and non-structural proteins are critical for HCV propagation. Most 

of these proteins perform multiple functions required for viral propagation, host immune 

suppression and pathogenesis. Core and envelope proteins are an integral part of the virus 

particle, forming the viral capsid, facilitating virus – host cell interaction and infection. 

Core protein forms the viral capsid that binds the viral RNA [34, 35] and also alters the 

host cell lipid mechanism, which is implied in stearosis [36]. Highly glycosylated 

envelope proteins E1 and E2 form a heterodimeric complex that facilitates host – virus 

interactions [37, 38]. The p7, a member of viroporins, has been shown to form oligomeric 

ion channels in vitro and to be critical for infectivity in vivo [39-41]. Non-structural 

proteins form the viral replication machinery and are also responsible for packaging of 

infectious virus particles. NS2 is implicated in virus assembly and polyprotein processing 

[42, 43]. In combination with N-terminal domain of NS3 protease, NS2/3 cysteine 

protease cleaves the NS2-NS3 junction [32]. NS3/4A is a multifunctional protease – 

helicase complex that processes the remaining viral polyprotein, aids in replication by 

unwinding RNA in ATP-dependent fashion and suppresses immune response [44-47]. 

NS4A cofactor, an integral part of the NS3/4A protease, also anchors NS3/4A to the 

membrane and aids in the processivity and translocation efficiency of NS3 helicase [48-

51]. NS4B is implicated in the formation of "membranous webs" where viral replication 
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happens [52, 53]. NS5A is an essential phosphoprotein that binds to RNA and implicated 

in replication, virus assembly and regulation of host processes [54]. NS5B is the RNA-

dependent RNA polymerase that replicates the viral genome [55-57]. In addition, an 

alternate reading frame protein (ARFP) overlapping with the core protein on the +1 frame 

was also discovered, but a specific function for this protein has not been attributed [58, 

59]. 

Viral replication commences in a region of ER where the membrane is altered to 

form vesicular structures, called "membranous web", which contains non-structural 

proteins and viral RNA in production [60, 61]. Replicated viral RNA is then packaged 

into viral particles and exocytosed through the secretory pathway. However, the specific 

mechanisms associated with viral replication, packaging and release have not been fully 

explored. 
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Treatment of Hepatitis C and Anti Hepatitis C Drug Discovery Effort 

Hepatitis C, like Acquired Immuno Deficiency Syndrome (AIDS), is a major 

health problem across the globe; but, unlike AIDS, HCV infection can be cured in 

majority of cases. Until mid-2011, the treatment regime against Hepatitis C involved 

pegylated interferon-α (PEG-IFN) and ribavirin (RBV) [62, 63]. Interferons are cytokines 

that are produced by the body in response to viral infection and activate host immune 

system [64-66]. Pegylation increases the half life of interferons, so PEG-IFN is stable in 

bloodstream for extended periods of time [67, 68]. Ribavirin is a nucleotide analog, 

similar to ribo-purines, that gets incorporated into the viral genome during replication and 

induces hypermutations that are harmful for viral viability [69]. Duration and 

effectiveness of this dual therapy heavily depends on host and viral factors [70, 71]. 

Sustained viral responses (SVRs) were observed for 50% of the patients who exhibit 

genotype 1 virus and up to 90% for genotypes 2 and 3 [72, 73]. However, PEG-IFN – 

RBV combination therapy is costly, lengthy (up to 72 weeks) and side effects such as 

anemia, flu-like symptoms and depression is frequently observed in patients undergoing 

therapy [74, 75]. Thus, pharmaceutical industry is more focused on creating directly 

acting antiviral (DAA) agents against crucial viral machinery and, potentially, vaccines to 

create specific drugs to combat Hepatitis C Virus. 

Non-structural proteins constitute critical machinery essential for viral 

propagation, hence potential DAA development targets. Drug candidates against non-

structural proteins are being developed actively – especially for NS3/4A protease 

(reviewed below in depth in “Inhibitors of Non-Structural Protein 3/4A Protease”), 
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NS5A (e.g. BMS-790052 (Bristol-Myers Squibb) [76]), nucleoside inhibitors (e.g. RG-

7128 (Roche/Pharmasset) [77], PSI-7977 (Pharmasset) [78]) and non-nucleoside 

inhibitors (e.g. filibuvir (Pfizer) [79], BI-207127 (Boehringer Ingelheim) [80], GS-9190 

(Gilead) [81]) for NS5B [82]. Two protease inhibitors have recently been approved by 

the Food and Drug Administration (FDA) and are currently being utilized in triple 

combination therapies including PEG-IFN, RBV and either telaprevir (Vertex 

Pharmaceuticals – Incivek®) or bocepravir (Merck – Victrelis®) [83, 84]. Up to 20% 

improvement in SVR rates for treatment-naïve and non-responsive patients have been 

observed in the triple therapy regime over the old PEG-IFN/RBV regime [85-87]. 

Additional inhibitors along the development pipeline exhibit good activities against 

respective targets and are progressing in various stages of clinical trials. Eventually, near-

term goals for drug development is to combine new generation DAAs with the current 

triple combination PEG-IFN/RBV/PI therapy to improve SVR rates and in long-term, use 

highly effective DAAs in mono- or combinatory therapies without PEG-IFN/RBV. 
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Non-Structural Protein 3/4A – "Swiss Army Knife" of Hepatitis C Virus 

NS3/4A, nicknamed the "Swiss Army Knife" of HCV by Kenichi Morikawa and 

colleagues [88], is a 685 residue multi functional protein formed by a serine protease 

domain and an RNA helicase domain connected by a flexible linker, with the residues 12-

25 of NS4A integrated into the protease non-covalently (Figure I.5a). Protease domain 

plays a critical role in viral protein processing (Figure I.4) and overcoming host immune 

response. Helicase domain unwinds dsDNA and dsRNA in ATP-dependent manner in 

vitro and likely assists in the replication of the viral genome. NS4A serves as a cofactor 

for both domains and anchors the protein to membranes.  Both unwinding and proteolysis 

functionalities are essential in a mutually exclusive manner; hence NS3/4A is a prime 

target for drug development. 

Protease Domain 

HCV NS3 protease comprise the N-terminal 181 residues of the protein [44] 

(Figure I.5b). Protease domain folds into two β-barrels, a common motif observed in 

chymotrypsin-like serine proteases. The distorted N-terminal β-fold is stabilized by the 

contributing β-strand from the cofactor NS4A. The active site is formed by three residues 

in the cleft between the two subdomains, H57 and D81 from the N-terminal subdomain, 

and S139 from the C-terminal subdomain. Crystal structures of the protease domain in 

isolation show that protease active site is shallow and solvent exposed [48].  

NS3 protease is necessary for cleaving NS3-4A, NS4A-4B, NS4B-5A and NS5A-

5B junctions, the first being in cis and the remaining in trans [33, 89, 90]. In addition, 

HCV protease circumvents host immune response by cleaving Toll interleukin-1 receptor 
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domain-containing adapter-inducing interferon-β (TRIF) and mitochondrial antiviral 

signaling protein (MAVS), adapter proteins for Toll-like receptor 3 (TLR3) and Retinoic 

acid-inducible gene I (RIG-I), hence disrupting viral RNA sensors in host cells [91-94]. 

Viral and host cleavage sites show little sequence homology – only P6, P1 and P1’ 

residues show a distinct trend (D/E-X-X-X-X-C/T||S/A/H-X-X-X) [44, 95] (Table I.1). 

However, even with limited sequence complementarity, all protease substrates occupy the 

protease active site in a distinct, conserved fashion [95, 96]. The common volume 

occupied by bound substrates, called the "substrate envelope", has been demonstrated and 

extensively studied for HIV-1 and HCV NS3/4A proteases [95, 97]. 

Helicase Domain 

HCV NS3 helicase is a member of the DEXH/D-box family of RNA helicases 

from helicase superfamily II, which are characterized by at least twelve conserved motifs 

[98] (Figure I.5c). Most prominent of these motifs are the Walker A motif (G-X-X-X-X-

G-K-T/S), which interacts with the β- and γ- phosphates of NTPs and the Walker B motif 

(DEAH/D-box), which chelates divalent cations [99-101]. Similar to other DEAD-box 

RNA helicases, the helicase core consists of two conserved RecA-like subdomains 1 and 

2 [100, 102]. In addition, a C-terminal accessory domain with high α-helical content is 

also present for Flaviviridae NS3 helicases, possibly conferring translocation polarity 

[103]. 

NS3 helicase exhibits both RNA and DNA unwinding activity in vitro [45, 104]. 

Helicase domain associates with the single stranded region of duplexes, accommodating 

the nucleic acid in the cleft formed between subdomains 1-2 and 3 [105, 106]. Bound   
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Table I.1 – Primary cleavage sites for NS3/4A protease for genotype 1a. 

Amino acid sequence of polyprotein processing and immune suppression sites cleaved by 

NS3/4A. Cleavage sequences are diverse except an acidic residue at P6, a cysteine at P1 

and a serine at P1' positions. Similar amino acids are highlighted.  



20 
 

Substrate P6 P5 P4 P3 P2 P1 P1' P2' P3' P4' 

3-4A D L E V V T S T W V 

4A-4B D E M E E C S Q H L 

4B-5A E C T T P C S G S W 

5A-5B E D V V C C S M S Y 

TRIF P(8) S S T P C S A H L 

MAVS E R E V P C H R P S 
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Figure I.5 – Structure of single chain HCV NS3/4A protease – helicase 

complex and individual domains. (a) Crystal structure of scNS3/4A protease (lower 

box) – helicase (upper box) complex (PDB-ID: 1CU1) in apo form, where NS4A 

protease cofactor is covalently linked to the N-terminus of the protein, solved by Yao et 

al [107]. In this structure, helicase domain covers otherwise shallow protease active site. 

C-terminus of the protein, the P-side product of NS3-NS4A junction, occupies protease 

active site. (b) Crystal structure of scNS3/4A protease domain bound to NS4A-NS4B P-

side product (PDB-ID: 3M5M) [95]. Protease is composed of two subdomains with β-

barrel folds. NS4A cofactor integrates into the N-terminal subdomain β-barrel fold, 

stabilizing the protease structure. A zinc ion is chelated by three cysteines in C-terminal 

subdomain and is structural. Catalytic triad lies between two subdomains and the active 

side is fairly shallow and solvent exposed. (c) Crystal structure of NS3 helicase domain 

bound to ssDNA (PDB-ID: 3KQK) [108]. NS3 helicase is formed by two recA-like 

subdomains 1 and 2, and an α-helical subdomain 3. DNA binding occurs in the groove 

formed between subdomains 1-2 and 3, and ATP hydrolysis occurs in the groove between 

subdomains 1 and 2. 
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nucleic acid translocates from 3' to 5' direction in ATP-dependent manner [109]. This 

translocation activity is likely the driving force behind unwinding and removal of nucleic 

acid bound proteins [109]. Exact mechanism of unwinding is still unknown, but several 

mechanisms that accounts for biochemical and structural observations have been 

proposed [98, 110]. NS3 helicase can also form oligomers, NS3 helicase was 

demonstrated to unwind nucleic acid substrates in monomeric, dimeric or oligomeric 

forms [111-115]. Unwinding activity of NS3 helicase exhibits cooperative behavior 

depending on substrate concentration, which may indicate productive association 

between individual helicase domains [113]. However, whether observed oligomeric form 

is relevant in vivo has not been elucidated. 

NS4A 

NS4A consists of three regions that are critical in HCV function – N-terminal 

transmembrane helix (amino acids 1-20), hydrophobic β-strand (amino acids 21-32) and 

C-terminal acidic region (amino acids 40-54). N-terminal transmembrane helix anchors 

NS3/4A to membranes [116]. Hydrophobic β-strand is integrated into the β-barrel fold of 

the protease domain, thus stabilizing protease fold [48, 89]. Without NS4A integration, 

protease activity is reduced significantly. C-terminal acidic region is implicated in 

helicase function, which will be explained in the next section. Additionally, cleavage 

between NS3 and NS4A happen in the unimolecular NS3-NS4A complex in cis fashion 

[33, 90]. P1-site in the NS3-NS4A cleavage junction is a threonine unlike other cleavage 

sites, which, in combination with cis cleavage, is likely to be important in post-

translational integration of NS4A inside NS3 [117].  
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Interdomain Dependency in Non-Structural Protein 3/4A 

Although NS3/4A incorporates two domains with distinct functionalities into one 

single chain protein complex, most of the studies performed on NS3/4A involve 

truncated domains isolated independently. Isolated domains are easier to overexpress and 

purify and both domains are active in isolation [33, 44, 46, 47, 118]. In addition, 

structural discrepancies between individual domains and the full length complex is 

minimal [107]. Isolated domains have been utilized extensively in biochemical and 

structural characterization, and drug discovery. However, studies performed on protease 

– helicase constructs exhibit possible interplay between the two domains [50, 114, 115, 

119, 120]. 

Effect of domain-domain interdependence on protease function remains a 

controversial topic. On one side, comparable activities between isolated protease and full 

length protein were demonstrated [45, 121]. On the opposing side, significant 

enhancement in protease activity [120] and alterations in protease inhibitor potencies 

[122, 123] were observed when the helicase domain was present. Direct comparisons 

between these studies are difficult due to differences in assay conditions and constructs. 

Three different protease constructs were utilized. The first construct involves expression 

of NS3 protease (or NS3 protease – helicase complex) without NS4A, where the NS4A 

protease cofactor peptide is added externally in saturating amounts [124, 125]. In the 

second construct, NS4A protease cofactor region is ligated to the N-terminus of NS3 

protease (or NS3 protease – helicase complex) with a flexible linker (usually GSGS), 

forming single chain NS3/4A (scNS3/4A) [126, 127]. The third construct is the closest to 
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the actual NS3/4A protein in vivo, since NS3 and non-truncated NS4A is expressed as a 

single protein, which is autoprocessed to obtain full length NS3/4A [118, 119]. scNS3/4A 

constructs are popular in the field, since they overexpress relatively well and can be 

purified with better yield. Each construct has advantages and disadvantages, and the 

discrepancies between the constructs are possibly the reason behind the observed 

controversy.  

Influence of protease domain on helicase activity is better characterized and more 

consistent across different protease – helicase constructs. NS3 helicase exhibits both 

DNA and RNA unwinding activity in vitro. An initial study performed on the RNA 

unwinding activity of helicase domain exhibited comparable activities in the absence and 

presence of the protease domain [45]. However, enhancements in helicase activities were 

demonstrated later when protease domain was present [114, 119, 128, 129]. Protease 

domain specifically enhances RNA unwinding activity of the helicase domain – minimal 

modulations have been observed either for RNA binding or ATPase activities [114], a 

fact also observed in West Nile Virus NS3/2B [130]. This effect is more pronounced in 

full length NS3/4A construct [119], meaning that in addition to a correctly folded active 

protease domain, NS4A may serve a further purpose in helicase function. Recently, C-

terminal acidic region of the NS4A protein was shown to be important in rate of ATP 

hydrolysis and ATP-dependent RNA binding, both for HCV [50] and Flavivirus NS3 

helicase [51, 131]. In summary, protease domain – NS4A complex may serve as a 

cofactor for NS3 helicase to achieve efficient and processive unwinding activity. 
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Structures of Single Chain NS3 Protease – Helicase Constructs from 

Hepatitis C Virus and Flaviviruses 

Extensive structural studies have been performed on the individual domains and 

deposited in databases. However, only three sets of structures are available for the full 

length NS3/4A. Crystallographic studies performed using single chain NS3/4A protein 

yielded information on the apo form [102], various stages of RNA translocation [109] 

and inhibitor binding in the presence of helicase domain [132]. In these structures, 

helicase domain covers the protease active site (Figure I.5a). In addition, the domains 

contact each other in two distinct regions, separated by the protease active site (Figure 

I.6). Nearly 900 Å2 is buried in this domain-domain interface. The first contact region is 

formed between the N-terminal half of the protease domain and helicase subdomains 2 

and 3. Residues Y56, V78 and D79 from protease domain, and S483, M485 and V524 

from helicase domain form the core of this region, significant portion of these residues 

are buried in this 400 Å2 interface. The second contact region is formed between the C-

terminus of the protein, also the P-side product of NS3-NS4A cis-proteolysis reaction, 

and protease active site. P-side products of NS3/4A protease strongly associate with 

protease active site, exhibiting micromolar affinities [95, 125, 133]. Apart from the linker 

region, which connects the two domains covalently, this domain-domain interface is the 

only apparent contact region between the two domains. However, probably due to the 

small size and composition compared to biologically functional interfaces [134, 135], no 

investigation has been performed on this interface for functional relevance and possible 

role in domain-domain communication. 
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Figure I.6 – Domain-domain interface in scNS3/4A. 900 Å2 interface between 

the domains is divided by the protease active site into two regions – direct interface 

(right) between helicase subdomains 2-3 (yellow and blue) and  N-terminal subdomain of 

protease (magenta), and substrate interface (left) between the C-terminus (orange) and C-

terminal subdomain of protease (red). Annotated residues were mutated to alanine for 

functional studies (detailed in Chapter II).   
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The domain-domain arrangement observed in HCV NS3 crystal structures differs 

significantly between various Flaviviruses. NS3/2B from Dengue Virus (DV), a member 

of the Flaviviruses, is similar to HCV NS3/4A both in composition and function [136]. In 

addition, helicase dependency of protease activity was also observed for full length DV 

NS3/2B constructs in vitro [130]. Two major differences is observed between Flavivirus 

and HCV NS3 complexes – NS2B being a cofactor instead of NS4A and the missing C-

terminal helix in helicase domain, which renders direct contact between C-terminus and 

protease active site unfavorable. Several crystal and solution structures of single chain 

NS3/2B constructs are available [137-139] (Figure I.7). In these structures, the protease is 

rotated away from the helicase domain, resulting in an extended conformation in two 

alternative arrangements. A smaller interface compared to HCV NS3/4A was formed 

between protease domain and helicase subdomains 1 and 2 – in this interface protease 

domain is in direct contact with the ATPase cleft, and possibly functional, minor 

alterations in ATPase activity was observed with mutations in protease domain [138]. 

This brings in the question whether the domain-domain arrangement observed in HCV 

NS3/4A crystal structure is relevant in vivo, or an artifact due to crystallization and strong 

intramolecular contacts between protease active site and C-terminus. Deletion of the C-

terminus of HCV NS3/4A was shown to reduce the incubation period required before 

reaction initialization for helicase domain to become fully active [115], hence the kinetic 

barrier of transformation from crystallographic conformation to an extended 

conformation, similar to Flavivirus NS3/2B, is possibly lowered by inhibiting the strong 

interactive force between the two domains. 
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Results from studies investigating the membrane attachment of HCV NS3/4A also 

suggest an alternative structural arrangement compared to published structures. 

Membrane attachment of NS3/4A is critical in HCV life cycle, and two factors – NS4A 

transmembrane helix and NS3 protease helix α0 – perform anchorage function [116, 140, 

141]. Alterations in either factor result in incorrect localization of the protein, disruption 

of viral replication and viral polyprotein maturation [116, 141]. However, membrane 

bound models of NS3/4A suggest that helicase domain has to move away from the 

protease in order not to clash with the membrane [116] (Figure I.8). Still, the transiency 

of membrane attachment is not yet fully explored. Cytoplasmic NS3/4A expressed in 

replicon-based systems cleave membrane-unbound polyprotein junctions whereas 

membrane-integrated NS3/4A was required for the correct cleavage of membrane-bound 

substrates [140], which suggests that cycling between membrane-bound and unbound 

stages, in addition to compact and extended conformations is possibly important in 

inherent protease and helicase activities. 
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Figure I.7 – Comparison of single chain NS3 protease – helicase structures 

from HCV and DV. (a) scNS3/4A crystal structure of HCV (PDB-ID:1CU1) [108] and 

(b) two crystal structures of DV scNS3/2B with alternative domain arrangements 

(Conformation I – PDB-ID: 2VBC, Conformation II – PDB-ID: 2WHX) [137, 138]. 

Protease domains are colored in blue, helicase in red, linker in yellow, NS4A or NS2B 

cofactor in cyan, and the C-terminal α-helix of HCV scNS3/4A in orange. Unlike HCV 

scNS3/4A, scNS3/2B structures from DV exhibit extended, rod-shaped conformations. 
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Figure I.8 – Model of membrane integration for full length HCV NS3/4A. A 

model for cotranslational membrane integration of HCV NS3/4A is presented. Protease 

domain is colored in blue, helicase in gray, NS4A in orange, protease helix α0 in green 

and protease catalytic triad is represented as magenta spheres. NS4A and protease helix 

α0 are both important in membrane integration. Note that in the crystallographic 

conformation (in brackets), helicase domain significantly clashes with the membrane 

when both membrane attachment factors are integrated. (Brass, V., J. M. Berke, et al. 

(2008). "Structural determinants for membrane association and dynamic organization of 

the hepatitis C virus NS3-4A complex." Proc Natl Acad Sci U.S.A. 105(38): 14545-

14550, Copyright 2009 National Academy of Sciences, U.S.A.). 
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Inhibitors of Non-Structural Protein 3/4A Protease 

Initial proof-of-concept inhibition of HCV NS3/4A protease was discovered in 

early kinetic studies. N-terminal products of protease substrates were shown to inhibit 

protease function with micromolar inhibition constants [142]. Thus, similarities between 

N-terminal products have been exploited by the pharmaceutical industry in structure-

based drug design to create NS3/4A protease inhibitors. The first inhibitor from product-

based structure-activity relationship (SAR) studies that exhibited high potency in clinical 

trials was ciluprevir (Boehringer-Ingelheim) [143, 144]. Although ciluprevir was later 

dropped from development due to cardiotoxicity [145], proof of inhibition for product-

based inhibitors paved the way for further drug development. 

Over the past decade, significant drug development has been performed on 

peptidomimetic inhibitors by multiple pharmaceutical companies, which resulted in 

generation of various linear and macrocyclic inhibitors [146, 147] (Figure I.9). Structural 

features of these drugs are similar – all mimic the P4-P1' region of protease substrates. 

These drugs contain a ketoamide or sulfonamide warhead in P1' position, a cysteine-like 

moiety at P1 with terminal olefin that integrates into protease catalytic triad, and a 

proline-like moiety at P2 with a bulky extension. Trans amide-bond geometry between 

P2 and P3 [148] is stabilized by either macrocyclization or bulky side chain at P3 

position. Recently approved inhibitors telaprevir and boceprevir are both linear 

ketoamides. Some other inhibitors that are currently in clinical trials are the macrocyclic 

sulfonamide TMC-435 (Tibotec) [149] and linear carboxylate BI-201335 (Boehringer-

Ingelheim) [150] in phase 3; macrocyclic sulfonamide drugs danoprevir (Roche) [151] 
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and vaniprevir (Merck) [152], the linear sulfonamide asunaprevir (Bristol-Myers Squibb) 

[153] and linear ketoamide narlaprevir (Schering Plough) [154] in phase 2; and 

macrocyclic sulfonamide MK-5172 (Merck) [155] in phase 1 clinical trials. There are 

many more inhibitors undergoing clinical investigation and pre-clinical development, but 

chemical structures for most of these drugs are not publicly available. 

However, drug resistance mutants in NS3/4A protease are rapidly selected in both 

pre-clinical experiments and clinical trials under drug pressure [156]. HCV NS5B 

polymerase lacks proof reading activity; hence misincorporation of bases into the viral 

genome causes high degree of mutations in viral proteins [157-159]. These mutations 

potentially alter the viability of viral production, but under drug pressure, less viable 

species containing drug resistance mutations thrive. Especially, mutations in the protease 

domain residues R155, A156 and D168, which contact the P2 extension of protease 

inhibitors, confer resistance to a multitude of drugs [96, 156, 160-162]. These mutations 

significantly alter inhibitor – protease contacts without disrupting substrate – protease 

interactions and cleavage kinetics. Structural basis of drug resistance for HCV NS3/4A 

protease inhibitors was demonstrated extensively [96], thus new generation drugs should 

be developed with drug resistance and drug-protein interactions in consideration. 
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Figure I.9 – Inhibitors of HCV NS3/4A protease. HCV NS3/4A protease 

inhibitors with disclosed chemical structures. These drugs are grouped (rectangles) with 

respect to developmental stages.  
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Thesis Summary 

Although individual domains have been studied extensively, interdependence of 

protease and helicase domains of HCV NS3/4A and underlying mechanisms of domain-

domain communication has not been elucidated. This thesis work attempts to evaluate 

this interdependency by investigating the role of domain-domain interface in protease and 

helicase function, and by investigating the role of helicase domain in protease inhibitor 

recognition. Chapter II demonstrates that the interface between the two domains is 

transient and regulatory in silico and in vitro, both protease and helicase activities were 

enhanced when the interface was disrupted. In turn, an alternative domain arrangement 

relevant for in vivo function is proposed, which is in agreement with recent reports 

covering both in vitro and in vivo observations. Chapter III demonstrates that the helicase 

domain plays a limited but consistent role in protease inhibitor potency modulation. 

Overall, this thesis expands the knowledge on interdomain dependence in the bifunctional 

HCV NS3/4A enzyme, and provides information for potential drug development 

exploiting this dependence. 
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CHAPTER II 

 

DESTABILIZATION OF PROTEASE – HELICASE INTERFACE ENHANCES 

BOTH PROTEASE AND HELICASE ACTIVITIES OF HEPATITIS C VIRUS 

NON-STRUCTURAL PROTEIN NS3-NS4A COMPLEX 
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Abstract 

Hepatitis C Virus (HCV) non-structural proteins 3 (NS3) and 4A (NS4A) form a 

heterodimer (NS3/4A) that is both a serine protease and RNA helicase, both of which are 

essential for viral propagation. Recombinant DNA can be used to express the NS3 

helicase and protease domains separately in model organisms, but the isolated domains 

behave differently from full length NS3 in assays, suggesting that “interdomain 

communication” occurs. However, the mechanism of this communication and the 

subsequent biological implications is unclear. Here, we investigated interdomain 

dependence in the context of the domain-domain interface formed in the “compact” 

conformation observed in the HCV NS3/4A crystal structures, using a combination of 

computational and biochemical methods. The two domains of the NS3/4A were 

dynamically coupled through the interfaces in silico. However, amino acid substitutions 

designed to disrupt this interface did not hinder the catalytic activities of either domain; 

in fact, many enhanced the activity. These findings suggest that in solution the protein 

might assume the “extended” conformation where the protease is rotated away from the 

helicase, which is observed in the crystal structures of homologous proteins from 

Flaviviruses and proposed to play a biological role by facilitating cleavage of proteins in 

trans. Based on these results, the disruptions likely caused in the interface by the 

introduced substitutions lowers the energetic barrier between the compact and the 

extended conformations, thus the protein is rendered more active. The dynamic interplay 

between the two enzymatic domains of HCV NS3/4A likely modulates the protease and 

helicase activities in vitro and may very well have implications in vivo.  
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Introduction 

Hepatitis C Virus (HCV) is the causative agent of non-A non-B viral hepatitis that 

infects 3% of the world population [1]. HCV infection, if not cleared by the host, 

eventually progresses into chronic hepatitis [2]. Upon infection of the host, the single 

strand positive sense RNA genome is translated into a 3,000 amino acid polyprotein 

which is then processed by a combination of host and viral proteases NS2/3 and NS3/4A 

to yield structural and non-structural proteins [3]. 

HCV NS3/4A is a protein complex that contains both a protease and an ATP-

dependent RNA helicase. The N-terminal region of the NS3 protein forms a 

chymotrypsin-like serine protease that is only active when bound to the hydrophobic β-

sheet of the NS4A protein [4]. NS3/4A protease is required to cleave the junction 

between NS3 and NS4A in cis and the downstream viral polyprotein cleavage sites 

between NS4A and NS4B, NS4B and NS5A, and NS5A and NS5B [5], all of which are 

necessary for viral maturation. The protease domain also cleaves the host mitochondrial 

antiviral signaling protein (MAVS) and TIR-domain-containing adapter-inducing 

interferon-β (TRIF), which are required in the innate immune response that cells mount 

against HCV [6, 7]. In addition, the C-terminal region of NS3 forms an RNA helicase 

that is classified as a superfamily 2 DExD-box helicase. NS3 helicase incorporates both 

polynucleotide stimulated NTPase activity and 3' to 5' unwinding activity for duplex 

RNA and DNA [8-10]. The NS3 helicase likely aids the viral replication machinery by 

unwinding the RNA duplexes formed during and/or after replication [11]. Both functions 

of the HCV NS3/4A are essential for viral propagation, and they have been studied 
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extensively. Many of these studies were performed using NS3 fragments containing only 

protease or helicase domains because such fragments can be more easily isolated as 

recombinant proteins and are generally more stable in vitro than NS3/4A. However, 

studies comparing the full-length protein to the protease fragment or helicase fragment 

have shown the bidirectional influence of each domain on the functional capability of the 

other. The influence of the helicase domain on NS3 protease function is still controversial 

[12-14]. In most studies, helicase domain did not exert an effect on protease function [12, 

13, 15], but in one study, the full-length NS3-NS4A complex was significantly more 

active than NS3 protease [14]. The effect of the protease on the NS3 helicase function is 

better established – the RNA to DNA preference and RNA unwinding activity of the full-

length protein are both higher compared to the isolated helicase domain (NS3hel) [16, 

17]. Similar results have been obtained from studies on Flavivirus NS3/NS2B, which is 

an ortholog of HCV NS3/NS4A complex [18-20]. In summary, prior studies suggest the 

presence of domain-domain dependence in NS3 protein, but fail to elucidate how these 

two domains communicate. 

Several published crystal structures of recombinant proteins where the portion of 

NS4A needed to activate NS3 is covalently tethered to the NS3 N-terminus, forming a 

single chain NS3/4A protease – helicase construct (scNS3/4A) show a proximal 

arrangement of the two domains, where the helicase domain covers the protease active 

site [21-23]. In this “compact” conformation, the helicase and the protease domains form 

extensive interdomain contacts. In this study, we analyzed this interface as a possible 

medium for domain-domain communication. Molecular dynamics (MD) studies were 
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performed on scNS3/4A using the apo structure seen in PDB file 1CU1 [21] and in silico 

variants with deletions in the C-terminus and linker regions. MD results show dynamic 

coupling through the interface. In order to experimentally verify the suggested domain-

domain interaction, functional studies were performed to compare protease and helicase 

activities of scNS3/4A containing amino acid substitutions in the protease-helicase 

interface with those of wildtype scNS3/4A and isolated domains (i.e. single chain 

NS3/4A protease (scNS3/4Apro) and NS3 helicase (NS3hel)). Most amino acid 

substitutions in the interface destabilized the interface and enhanced protease and 

helicase activities. These findings suggest that the HCV NS3/NS4A complex might 

assume another conformation [24, 25] – possibly similar to the extended conformation 

seen in crystal structures of homologous proteins from related viruses [26, 27] – and that 

this alternate conformation not yet seen in scNS3/4A crystal structures is the catalytically 

active and biologically relevant arrangement. 
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Materials and Methods 

Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations were performed on scNS3/4A constructs. 

Briefly, the structure of the scNS3/4A was obtained from Protein Data Bank (PDB ID: 

1CU1) [21] and additional in silico deletion constructs ΔC-term (Δ626-631 – C-terminus 

deletion), ΔLin (Δ184-186 – linker deletion) and ΔDouble (Δ184-186, 626-631 – C-

terminus and linker deletion) were created. MD simulations were performed on 

quadruplicate on each construct using AMBER [28]. Resulting trajectories were analyzed 

for cross-correlations between the domains and distance calculations were performed 

between selected residues across the domains. Details of the simulation setup and 

analytical calculations are explained in Supplementary Methods. 

Nucleic Acid Substrates 

Single stranded oligonucleotides used to construct helicase substrates were 

obtained from Integrated DNA Technologies. Preparation of the DNA molecular beacon 

substrate for DNA unwinding assay was explained in detail previously [11]. Briefly, the 

50 µM each of the molecular beacon top strand 5'-Cy5 (Cyanine 5)-

GCTCCCCAATCGATGAACGGGGAGC-IBRQ (Iowa Black RQ)-3' and the bottom 

strand 5'-GCTCCCCGTTCATCGATTGGGGAGC-T19-3’ were heated to 95°C, slowly 

cooled to room temperature and further purified from native polyacrylamide gel 

electrophoresis using a crush and soak method. The RNA-DNA hybrid substrate for RNA 

unwinding assay was constructed by heating up the 1.1:1.2:1 mixture of top strands 5'-

GCUGUAUCGUCAAGGCACUAGUGC-Cy5-3', 5'-IBRQ-
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CCTACGCCACCAGCTCCGTAGG-3' and the bottom strand 5'-

GGAGCUGGUGGCGUAGGCAAGAGUGCCUUGACGAUACAGCUUUUU-U15-3' to 

95°C and slowly cooling down to room temperature. No further purification was 

performed for the RNA-DNA substrate. 

Protein Expression Plasmids 

The constructs for the isolated protease and helicase domains were defined 

elsewhere [29, 30]. The single chain NS3/4A (scNS3/4A) construct was generated by 

ligating the codon optimized genotype 1a helicase construct (H77c) downstream of the 

Bristol-Myers-Squibb patented scNS3/4A protease sequence (synthesized by GenScript) 

[31] and cloned into a pET28a expression vector (Novagen). Mutant constructs Y56A, 

V78A, D79A, S483A, M485A, V524A, Triple Prot (Y56A-V78A-D79A), Triple Hel 

(S483A-M485A-V524A), F438A, Q526A, H528A and F531A have been generated using 

the QuikChange II site-directed mutagenesis kit (Stratagene) with suitable mutagenesis 

primers generated by PrimerX (http://bioinformatics.org/primerx). The construct Hexa 

(Y56A-V78A-D79A-S483A-M485A-V524A) was constructed by ligating the protease 

domain of Triple Prot and the helicase domain of Triple Hel. Each mutant construct was 

sequenced to ensure correctness and full coverage. 

Protein Expression and Purification 

The expression and purification of scNS3/4Apro and NS3hel were detailed 

elsewhere [11, 30]. For the full-length scNS3/4A constructs, expression vectors 

containing scNS3/4A full-length inserts were transformed into BL21(DE3) E. coli cells. 2 

liters of lysogeny broth (LB) culture of transformed cells, supplemented with 20 µg/mL 
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kanamycin, was grown to an A600 of 0.6 with shaking at 30°C. The cultures were then 

transferred to 20°C, supplemented with 0.5 mM isopropyl-1-thio-β-D-galactopyranoside 

(IPTG) and incubated for 4 hours with shaking. After expression, the cells were harvested 

by centrifuging at 4,000 g for 30 min, suspended in 40 mL ice-cold 1X phosphate-

buffered saline (PBS), the precipitate was collected by centrifuging at 4,000 g for 30 min 

and stored at −80°C. 

All the subsequent steps were performed at 4°C. The frozen pellet was 

resuspended in 20 mL Buffer HT (25 mM HEPES, 500 mM NaCl, 10% glycerol, 0.1% 

octyl-β-D-glucopyranoside (OβG), 2 mM tris(2-carboxylethyl)phosphine (TCEP) and 20 

mM imidazole, pH 8.0). The suspended pellet was supplemented with 10 mM MgCl2, 4 

mM CaCl2, 1 mM MnCl2 and 200 U DNase I (Roche) and lysed with a cell disruptor 

(Micro Fluidics) in two passes. The lysate was incubated for 2 hours with gentle mixing 

and centrifuged at 40,000 g for 30 min. The clarified lysate was first passed through a 

0.22 nm syringe filter (Millipore) and then applied to a 1 mL HisTrap HP (GE 

Lifesciences) column, equilibrated in Buffer HT, using an AKTA FPLC (GE 

Lifesciences) with a flow rate of 0.4 mL/min. The column was washed with 10 column 

volumes (CV) of Buffer HT, 10 CV of Buffer HT with 40 mM imizadole with a flowrate 

of 0.25 mL/min. Finally, the protein was eluted with 5 column volumes of Buffer HT 

with 250 mM imidazole. The eluate was dialyzed against Buffer S (25 mM MES, 150 

mM NaCl, 10% glycerol, 0.1% OβG, 2 mM TCEP, pH 6.0) overnight. 

The dialyzed protein suspension was first centrifuged at 20,000 g for 30 min and 

the supernatant was applied to an 8 mL Mono S column (GE Lifesciences), equilibrated 
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in Buffer S, using an AKTA FPLC with a flowrate of 1 mL/min. A linear gradient from 

Buffer S to Buffer S with 1 M NaCl was applied to the column in 30 CV, and the protein 

eluted at ~60% Buffer S with 1 M NaCl. The eluate contained full-length scNS3/4A 

>90% pure, as judged by denaturing polyacrylamide gel electrophoresis and Western 

blotting. The eluate was concentrated to ~500 µL, flash frozen in 20 µL aliquots in liquid 

nitrogen and stored at −80°C. The same procedure was followed for all the full-length 

scNS3/4A constructs and no significant difference in expression and purification profiles 

had been observed. In addition, purified protein exhibited no discernible DNAse and 

RNAse contamination, within the timescale of helicase assays (data not shown). 

Protease Assays 

Depsipeptide cleavage assays were performed in a final volume of 60 µL 

containing protease assay buffer (50 mM Tris, 2.5% glycerol, 0.1% OβG, 5 mM TCEP, 

1% DMSO, pH 7.5) and 1-20 nM scNS3/4A in black 96-well flat bottom non-binding 

surface half-area plates (Corning) at room temperature. The protein was pre-incubated in 

the reaction mixture for 30 min and the reaction was initiated by injecting RET-S1 

substrate (Anaspec) (Figure II.1a) [32] with a final concentration of 250 nM in the 

reaction mixture. The fluorescence output was measured kinetically for at least an hour 

using an EnVision plate reader (Perkin Elmer) with excitation at 340 nm and emission at 

492 nm. Each dilution series was repeated five times. Active site titrations with the high 

affinity protease inhibitor ITMN-191 [33] were performed for each experiment to ensure 

accurate active enzyme concentration. 
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Figure II.1 – Protease cleavage assay. (a) Depsipeptide substrate RET-S1 

(Anaspec), based on NS4A-NS4B cleavage junction. This substrate is labeled with the 

FRET pair EDANS and DABCYL and contains an ester bond instead of an amide bond 

between P1 and P1’ moieties to facilitate faster cleavage. (b) Upon cleavage, the FRET 

pair is liberated and the increase in fluorescence intensity is recorded kinetically (black – 

no protein control, red to magenta – increasing protein concentration). Progress curves 

were fit to first order rate equations. (c) Obtained ks values are plotted against enzyme 

concentration and catalytic efficiencies were calculated from the concatenate linear fit.  
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The resulting progress curves were processed using OriginPro 8 (Origin Labs). 

Progress curves for each construct were fitted globally to Equation (1) (Figure II.1b). 

 𝐹 = 𝐹𝑓 − 𝐴𝑒−𝑘𝑠𝑡 (1) 

In Equation (1), 𝐹 is the fluorescence, 𝐹𝑓 is the final fluorescence, 𝐴 is the 

amplitude of the reaction which is shared between different datasets and 𝑘𝑠 is the 

specificity constant [34]. The obtained 𝑘𝑠 values were plotted against enzyme 

concentration and fitted linearly using all the data from different experiments (i.e. 

concatenate fitting) to Equation (2) (Figure II.1c) [34-36]. 

 𝑘𝑠 = �
𝑘𝑐𝑎𝑡
𝐾𝑀

� [𝐸]𝑇 (2) 

In Equation (2), 𝑘𝑐𝑎𝑡 𝐾𝑀⁄  is the catalytic efficiency and [𝐸]𝑇 is the total enzyme 

concentration. 

DNA Unwinding Assay 

The details of the DNA unwinding assay were previously described (Figure II.2a) 

[37, 38]. Briefly, the assay was performed in a final volume of 60 µL containing helicase 

assay buffer (25 mM MOPS, 1.25 mM MgCl2, 0.05 % Tween-20, 0.005 mg/mL BSA, 

2.5 mM TCEP, pH 6.5), 12.5 nM dsDNA substrate and 2-200 nM of the NS3 helicase 

constructs in white flat bottom 96-well half area plates (Corning) at 25°C. The reaction 

was initiated by injecting a final concentration of 1 mM ATP in multiple turnover 

conditions or the mixture of 1 mM ATP and 1 µM dT15 DNA trap. The decrease in  

Fluorescence intensity was monitored using a Varioskan plate reader (Thermo Scientific) 

with excitation at 643 nm and emission at 667 nm for multiple turnover conditions, and a 
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FLUOstar Omega plate reader (BMG Labtech) with excitation at 640 nm and emission at 

665 nm. 

Resulting progress curves were processed using Prism 5 (GraphPad). The 

progress curves for each construct were fitted individually to Equation (3) (Figure II.2c). 

 𝐹 = (𝐹0 − 𝐴) + 𝐴𝑒−𝑘𝑜𝑏𝑠𝑡 (3) 

In Equation (3), 𝐹 is the fluorescence, 𝐹0 is the initial fluorescence, 𝐴 is the 

amplitude of the reaction and 𝑘𝑜𝑏𝑠 is the observed first-order rate constant. The rates of 

the reactions were obtained from Equation (4) (Figure II.2e). 

 𝑉 = 𝑘𝑜𝑏𝑠 �
𝐴

𝐹0 − 𝐹∞
� [𝑆]𝑇 (4) 

In Equation (4), 𝐹∞ is the fluorescence when all the substrate is unwound and 

[𝑆]𝑇 is the total substrate concentration. Calculated velocities from individual 

experiments for a given construct were plotted against enzyme concentration and linear 

portions of these curves were fitted linearly with concatenate fitting (Figure II.2e). Slopes 

of these lines were reported as specific activities (𝑉/𝐸).  

RNA Unwinding Assay 

The details of RNA unwinding assay were previously described (Figure II.2b) 

[38]. Briefly, RNA unwinding assays were performed in a final volume of 60 µL 

containing helicase assay buffer, 25 nM RNA-DNA hybrid substrate and 1-20 nM of the 

scNS3/4A constructs or 20-150 nM of NS3hel in white flat bottom 96-well half area 

plates (Corning) at 25°C. The reaction mix was preincubated for 30 min and 

subsequently initiated by injecting a final concentration of 1 mM ATP. The increase in  
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Figure II.2 – DNA and RNA unwinding assays. (a) dsDNA substrate for DNA 

unwinding assays consists of a top strand labeled with Cyanine 5 (Cy5) – Iowa Black RQ 

(IBRQ) FRET pair in both ends and a longer bottom strand. Upon strand separation, the 

top strand self anneals and Cy5 fluorescence is quenched. (b) dsRNA-DNA hybrid 

substrate for RNA unwinding assays consists of an RNA Cy5-labeled top strand, a DNA 

IBRQ-labeled top strand and a long RNA bottom strand. Upon unwinding, both top 

strands are liberated and self-anneal, resulting in Cy5 fluorescence. (c) Loss of 

fluorescence in DNA unwinding reaction and (d) gain of fluorescence in RNA unwinding 

reaction are recorded kinetically and fit to Equations (3) and (5) respectively (black – no 

protein control, red to magenta – increasing protein concentration). Linear portions of (e) 

DNA and (f) RNA unwinding reactions are fit concatenately, using data from all 

independent datasets to obtain specific velocities (i.e. V/E).  
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fluorescence was monitored using a Varioskan plate reader (Thermo Scientific) with 

excitation at 643 nm and emission at 667 nm. 

 Resulting progress curves were processed using Prism 5 (GraphPad). The fitting 

scheme is the same as the DNA unwinding assay with the following differences. The 

progress curves were fit to Equation (5) (Figure II.2d). 

 𝐹 = (𝐹0 + 𝐴) − 𝐴𝑒−𝑘𝑜𝑏𝑠𝑡 (5) 

The velocities were calculated using Equation (6) (Figure II.2f). 

 𝑉 = 𝑘𝑜𝑏𝑠 �
𝐴

𝐹∞ − 𝐹0
� [𝑆]𝑇 (6) 

DNA Binding Assay 

The details of fluorescence anisotropy-based DNA binding assays were 

previously described [39]. Briefly, DNA binding assays were performed in a final volume 

of 60 µL containing helicase assay buffer, 5 nM Cy5-dT15 DNA and 1-100 nM NS3 

helicase constructs in black flat bottom 96-well half area plates (Corning) at 25°C. The 

protein-DNA mixture was incubated for 30 min and the fluorescence polarization was 

measured using an Infinite M1000 plate reader (Tecan) with excitation at 635 nm and 

emission at 667 nm. 

The resulting anisotropies were plotted against enzyme concentrations to obtain 

binding isotherms which, were subsequently fitted globally using Prism 5 to Equation (7). 

 

 𝑅 = 𝑅0 +
𝑅𝑚𝑎𝑥

2[𝑆]𝑇
��𝐾𝑑 +

[𝐸]
𝑛

+ [𝑆]𝑇� − ��𝐾𝑑 +
[𝐸]
𝑛

+ [𝑆]𝑇�
2

− 4
[𝐸]
𝑛

[𝑆]𝑇� (7) 
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In Equation (7), 𝑅 is the anisotropy, 𝑅0 is the background anisotropy, 𝑅𝑚𝑎𝑥 is the 

maximum anisotropy, 𝑛 is the stochiometry of binding, [𝐸] is the enzyme concentration, 

[𝑆]𝑇 is the total substrate concentration and 𝐾𝑑 is the dissociation constant for DNA, 

which is shared globally.  

Poly(U)-Stimulated ATPase Assay 

The details of the modified malachite green assay were described previously [11]. 

Briefly, ATPase assays were performed in a final volume of 50 µL containing helicase 

assay buffer, 0-10 mg/mL poly(U) RNA and 5 nM NS3 helicase constructs at 25°C. The 

reaction was initiated by rapid mixing of 1 mM ATP (final concentration) and incubated 

for 10 min. 25 µL of this reaction was quenched in 200 µL of malachide green reagent (3 

vol of 0.045% (w/v) malachite green, 1 vol of 4.2% ammonium molybdate in 4 N HCl, 

0.01 vol of 10% Tween-20) in clear flat bottom 96-well plates (Corning), immediately 

followed by the addition of 25 µL of 34% sodium citrate. Color was allowed to develop 

for 15 minutes and the absorbance was read using a VarioSkan plate reader (Thermo 

Scientific) at 630 nm. The absorbance values were converted to the inorganic phosphate 

concentrations using a phosphate standard curve and converted to rates by dividing by 

incubation times. 

Resulting rates were plotted against uracyl concentrations and fitted globally 

using Prism 5 to Equation (8). 

 
𝑉

[𝐸]𝑇
=

𝑘𝑐𝑎𝑡[𝑈]
𝐾𝑅𝑁𝐴 + [𝑈] (8) 
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In Equation (8), 𝑉 is the rate of ATP hydrolysis, [𝐸]𝑇 is the total enzyme 

concentration, [𝑈] is the uracyl concentration and 𝐾𝑅𝑁𝐴 is the concentration of uracyl 

needed to stimulate the ATP hydrolysis to half of the maximum velocity, which is shared 

globally. 
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Results 

Structural Analysis of the Domain-Domain Interfaces 

The single chain NS3/4A (scNS3/4A) protein that is utilized in this study is 

comprised of two functional domains The portion of NS3 that forms the N-terminal 

protease folds into two subdomains with β-barrel folds – N-terminal (N-SD) and C-

terminal (C-SD) subdomains of NS3 protease (scNS3/4Apro). The serine protease active 

site is in a cleft between protease subdomains. The C-terminal helicase portion of NS3 

(NS3hel) is made of three subdomains, two N-terminal recA-like motor domains 

(subdomains SD1 and SD2) and a third α-helical domain (subdomain SD3). In order to 

analyze the extent of non-covalent contacts between the helicase and protease regions, 

the composition of the buried surface area in the domain-domain interface was evaluated. 

The crystal structures of scNS3/4A show extensive contacts between the protease and 

helicase domains (Figure II.3a) [21-23]. Approximately 900 Å2 is buried between two 

domains in two discrete interfaces, separated by the protease active site. 

The first interface is formed by the scNS3/4Apro C-SD and will be referred to 

here as the “substrate interface” (Figure II.3a, orange box) because this interface is 

formed with the C-terminus of NS3. The NS3 C-terminus is the cis-cleavage product of 

the NS3-NS4A junction, and remains bound in the P-side of the protease active site. The 

NS3 C-terminus – protease active site interactions have been studied before [30, 40], so 

we focused on analyzing contacts between the protease active site cleft and the helicase 

domains. Residues Q526 and H528 in NS3hel SD3 interact with the NS3 C-terminus 

directly, whereas residues F438 and F531 form a groove to accommodate one of the C-  
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 Figure II.3 – Structure of scNS3/4A and the domain-domain interface. (a) 

Cartoon representation of HCV scNS3/4A (PDB ID: 1CU1) [21]. Protease domain, 

helicase domain, linker, C-terminus and NS4A beta helix is colored in blue, red, green, 

yellow and cyan respectively. C-terminus – protein “substrate” (orange box) and protease 

– helicase “direct” (magenta box) interfaces are encased in rectangles. In this structure, 

helicase domain covers the solvent exposed active site of the protease and the C-terminus 

of the protein occupies the P-side of protease active site. (b) The domain-domain 

interface formed between the protease and the helicase is magnified. The residues 

represented in ball-and-stick figures and annotated were used in mutagenesis and 

biochemical characterization of the interface. 
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terminal residues. (Figure II.3b – left). 

The second interface, which will be referred to here as the “direct interface”, 

(Figure II.3a, magenta box) is formed between scNS3/4Apro N-SD and NS3hel SD2 and 

SD3. Residues from helicase and the protease domains form direct contacts, and ~400 Å2 

is buried in this interface mainly between Y56, V78, D79 from the protease and S483, 

M485 and V524 from the helicase. This interface is mostly hydrophobic, with Y56 in the 

core covered by M485 and V78, and in favorable hydrogen bonding distance with S483. 

These contacts are further complemented by V524, which forms hydrophobic contacts 

with V78, and D79 (Figure II.3b – right). 

The Dynamic Interaction between the Domains 

To investigate the dynamic coupling between the two domains and to evaluate the 

role of the interfaces, nanosecond-scale molecular dynamics (MD) simulations were 

performed on scNS3/4A (PDBID: 1CU1) [21] and three in silico deletion constructs, 

which are ∆Lin (∆184-186 – linker deletion construct), ∆C-term (∆626-631, C-terminus 

deletion construct) and ∆Double (∆184-186, 626-631 – deletion construct with both 

linker and C-terminus deletions). Linker deletion was made to break the covalent linkage 

between the helicase and the protease domains, and C-terminus deletion to disrupt the 

association of the protease and helicase through the strong substrate product-protease 

association. 

Dynamic cross-correlations were calculated from resulting trajectories for each 

deletion construct (Figure II.4a). Dynamic cross-correlations between two atoms indicate 

how these atoms move in the Cartesian space relative to each other and range between -1 
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(perfect anti-correlation) and 1 (perfect correlation). These correlations also signify the 

extent of interactions between atom pairs and regions of the protein in general. For all the 

constructs, the correlations were mainly distributed around 0 (i.e. no correlation) 

symmetrically, and correlations larger than 0.5 (i.e. the “shoulder”) were mostly intra-

domain correlations (Figure II.4b). Remaining interdomain correlations were investigated 

further to evaluate the significance of the interface and the modulation of domain-domain 

contacts due to deletions. 

Correlation distributions were generated and fitted to Gaussian function for 

residue pairs across domains (Figure II.5 – bottom, see Table II.1 for fitting parameters) 

excluding linker and C-terminus, and significantly correlating residue pairs were 

visualized (Figure II.5 – top, see Supplemental Methods for selection criteria, and Table 

II.1 for cutoff values). The width of the distributions (Table II.1) indicates the extent of 

correlation – wider distributions exhibit stronger interdomain correlations and vice versa. 

Compared to the wildtype, the distributions of interdomain correlations were narrower in 

ΔLin and wider in ΔC-term and ΔDouble, suggesting that the two domains were less 

correlated for ΔLin and more for the latter two. Changes in correlation distributions were 

also evident in correlation maps where more residue pairs exhibited correlations larger 

than 0.2 and smaller than −0.2 (Figure II.4a). Most of the significant correlations 

clustered around the direct interface. Interdomain correlations were stronger and more 

focused around the direct interface for the C-terminus deletion constructs (ΔC-term and 

ΔDouble), whereas correlated motion between distal residues was more dominant for the   
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Figure II.4 – Correlation maps for in silico deletion constructs and 

distributions of total correlations. (a) Cα-Cα correlation maps for each construct. Axes 

represent residue indexes and coloring represents strength of correlations. (b) 

Distributions for total correlations. Correlations were distributed around 0 (i.e. no 

correlation) symmetrically with “shoulder-like” regions for correlations larger than 0.5, 

which are intra-domain correlations (correlations within domains, either between or 

within individual subdomains of protease and helicase). 
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Table II.1 – Parameters for correlation distributions for in silico NS3/4A 

constructs and visualization cutoffs.  
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Construct µ (Mean) σ (SD)a 
Cutoffb (Number of Pairsc) 

Wildtype 0.005±0.002 0.101±0.001 
±0.33 (375) 

ΔLin -0.005±0.002 0.076±0.002 
±0.28 (340) 

ΔC-term -0.005±0.003 0.132±0.003 
±0.44 (326) 

ΔDouble -0.015±0.003 0.148±0.003 
±0.35 (362) 

a Standard deviation of the Gaussian fit to distributions 

b 
“Cutoff” denotes the visualization cutoffs used to create Figure 2 and “±” means 
negative correlations smaller than the cutoff and positive correlations larger than 
the cutoff were visualized 

c “Number of Pairs” denotes the total count of residue pairs that were selected for 
visualization 

  



87 
 

Figure II.5 – Interdomain correlations for in silico deletion constructs. Visual 

representation and distribution of interdomain correlations. For each of the in silico 

constructs, selected significant protease – helicase correlations were visualized (top 

panels) and the correlation distributions were plotted (bottom panels).  
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others, which can be explained as the propagation of the intra and inter subdomain 

correlation network through the interfaces. 

Additionally, distance difference distributions between Cα atoms of selected 

residues (Figure II.6a) across protease and helicase domains were generated (Figure 

II.6b). These distributions indicate the change in Cα-Cα distances of a given pair across 

simulation time, reflecting the relative freedom of movement between the domains. For 

the direct interface, the distributions for buried residue pairs (Y56-S483, Y56-M485) are 

similar. However, the movement of outer residue pairs (V78-V524, D79-V524) is more 

constricted for ΔC-term and wider for linker deletion constructs. The wildtype construct 

exhibited intermediary spread. These results correlate with the cross-correlation 

distributions. For the substrate interface, all distance distributions except C159-F438 

were constricted for wildtype and ΔLin, and wider for the other two constructs. 

 Taken together, removal of C-terminus caused stronger correlations through the 

direct interface, but removal of the linker caused the exact opposite effect. Removal of 

both the linker and the C-terminal caused the protein to behave similar to C-terminus 

deletion constructs, suggesting coupling through the direct interface dominates in the 

complex. The wild-type construct exhibited the combined characteristics of both 

deletions. In either case, the deletions affect the relative dynamics of the two domains 

acting through the interfaces. The C-terminus deletion confers freedom of movement 

between the domains at the substrate interface while strengthening the association 

through the direct interface and vice versa, indicating that both interfaces aid in the 

dynamic coupling of the domains, but work in an anti-coordinated manner.  
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Design of scNS3/4A Amino Acid Substitutions to Disrupt the Protease/Helicase 

Interface  

In order to evaluate the functional relevance of the interfaces, a total of ten 

residues from either interface were mutated to alanine in the plasmid expressing 

scNS3/4A to yield two sets of proteins with amino acid substitution in domain interfaces.  

The aim of the first set of substitutions was to disrupt the “direct” interface. Four 

proteins in this set had alterations in the protease region. Three of these “protease 

mutants” had one of three single point mutations Y56A, V78A, D79A, and one had all 

three substitutions in scNS3/4Apro N-SD (Y56A,V78A and D79A i.e. Triple Prot) 

(Figure II.3b – blue). Four proteins had mutations in NS3hel SD2 and SD3. Three of 

these “helicase mutants” had one of the following point mutations – S483A, M485A, 

V524A, and one protein had all three substitutions (S483A, M485A, and V524A, i.e. 

Triple Hel) (Figure II.3b – red). One protein (called “Hexa”) had all six amino acid 

substitutions in the interface (Y56A, V78A, D79A, S483A, M485A, V524A).  

The aim of the second set of altered scNS3/4A proteins was to disrupt the “substrate” 

interface formed between scNS3/4A C-SD, NS3hel SD3 and the NS3 C-terminus, with a 

goal to further focus on the role of helicase in substrate recognition. The proteins in this 

second set had one of the following amino acid substitutions – F438A, Q526A, H528A 

and F531A (Figure II.3b – orange). All mutant proteins were expressed, purified and 

biochemically characterized for protease, DNA/RNA unwinding, DNA binding and 

RNA-stimulated ATPase activities; in comparison with the scNS3/4A and the NS3 

fragments lacking either the protease or helicase regions (scNS3/4Apro and, NS3hel).  
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Figure II.6 – Distance distributions around the interfaces. (a) Residues used 

for distance calculations. Each residue pair consists of one residue from the protease and 

one residue from the helicase. (b) Distance distributions for the residue pairs in the direct 

interface. (c) Distance distributions for the residue pairs either side of the C-terminus.  
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Protease Cleavage Efficiencies 

The catalytic efficiencies ( ) of scNS3/4A and its site directed mutants 

were determined using a FRET-based cleavage assay (Figure II.7, Table II.2). All 

proteins harboring substitutions in the direct interface had higher catalytic efficiency than 

scNS3/4A except Y56A. However, this activation was nullified in the Triple Hel. Y56A 

containing mutants (Y56A, Triple Prot, Hexa) were less efficient in cleavage assays; 

Triple Prot performing the worst followed by Hexa and Y56A. Y56 is near the protease 

active site, so this residue may play a direct role in proteolysis. In addition, Y56 is also a 

reported drug resistance site [41], which may explain loss of activity for Y56A. The 

catalytic efficiencies of the proteins with substitutions in the substrate interface were 

similar to scNS3/4A, except H528A, which was more active. The truncated complex 

lacking the helicase domain (i.e. scNS3/4Apro) had an enhanced activity, similar to the 

interface mutants.  

Helicase Unwinding Rates for DNA and RNA Substrates 

 The ability of each of the above proteins to unwind DNA was assessed by 

measuring initial rates of helicase catalyzed DNA unwinding upon ATP addition at eight 

different protein concentrations. In order to compare the specific activity of each protein, 

initial rates were divided by protein concentration and averaged. These specific activities 

(V/E) were determined using a DNA molecular beacon based unwinding assay performed 

both in the presence (Figure II.8a, dark bars) and absence of an enzyme trap (Figure II.8a, 

light bar) under multiple and single turnover conditions (Table II.3). Under multiple 

turnover conditions, the same amount of NS3hel unwound DNA about 6 times faster 

/cat Mk K
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compared to wildtype scNS3/4A. All scNS3/4A proteins harboring amino acid 

substitutions designed to disrupt the helicase-protease interface unwound DNA with rates 

between those seen with scNS3/4A and NS3hel. Y56A, V78A and M485A were each 

significantly more active (more than 3 fold) than scNS3/4A. In addition, Triple Hel 

performed 2 fold better compared to NS3hel, unwinding DNA about 10 times faster than 

wildtype scNS3/4A. Similar to the substitutions that disrupt the direct interface, the 

unwinding rates catalyzed by proteins harboring substitutions designed to disrupt the 

substrate interface (i.e. those in the NS3hel SD3) were also between those seen with the 

full-length protein and the isolated helicase. 

When the ability of different scNS3/4A constructs to unwind DNA in the 

presence of an enzyme trap was compared, rates catalyzed under single turnover 

conditions were generally similar to those seen under multiple turnover conditions (i.e. in 

the absence of trap) with two noteworthy exceptions. Both F438A and F531A did not 

show discernible unwinding activity in the presence of a trap. Both of these residues are 

conserved, and F438 was previously identified as a critical residue for unwinding activity 

in NS3hel [42]. 

In addition to DNA unwinding rates, RNA unwinding rates and specific activities 

(V/E) were determined for all NS3 helicase constructs using a duplex RNA-DNA hybrid 

substrate in which the helicase must separate an RNA duplex to cause an increase in 

substrate fluorescence (Figure II.8a – bottom panel, Table II.3) [38]. Compared to 

NS3hel, scNS3/4A unwound RNA about 10 times more rapidly than NS3hel, confirming 

the prior observation that full-length NS3/4A unwinds RNA faster than DNA, while   
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Figure II.7 – Proteolysis catalytic efficiencies for interface mutants. Protease 

cleavage efficiencies of different scNS3/4A protease constructs. The catalytic efficiencies 

were normalized against full-length scNS3/4A (abbreviated as scNS3/4Afl here). 

Coloring represents different regions mutated (blue – protease mutations in direct 

interface, red – helicase mutations in direct interface, magenta – Hexa, orange – helicase 

mutations in substrate interface, gray – wildtype protease and protease – helicase 

complex). Errors reported are the standard errors of the mean (n=6).  
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Table II.2 – Catalytic efficiencies of RET-S1 cleavage for different NS3/4A 

protease constructs. Errors reported are the standard errors of the mean (n=6).  
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Construct kcat/KM (s-1µM-1)a 

scNS3/4Afl 0.082 ± 0.002 (1.00 ± 0.03) 
Y56A 0.071 ± 0.001 (0.87 ± 0.02) 
V78A 0.158 ± 0.001 (1.94 ± 0.04) 
D79A 0.124 ± 0.001 (1.52 ± 0.03) 

Triple Prot 0.025 ± 0.001 (0.31 ± 0.01) 
S483A 0.180 ± 0.002 (2.21 ± 0.05) 
M485A 0.159 ± 0.002 (1.94 ± 0.05) 
V524A 0.133 ± 0.001 (1.64 ± 0.04) 

Triple Hel 0.082 ± 0.001 (1.00 ± 0.03) 
Hexa 0.035 ± 0.001 (0.43 ± 0.01) 

F438A 0.085 ± 0.002 (1.04 ± 0.03) 
Q526A 0.082 ± 0.001 (1.00 ± 0.03) 
H528A 0.107 ± 0.002 (1.31 ± 0.04) 
F531A 0.082 ± 0.002 (1.00 ± 0.03) 

scNS3/4Apro 0.140 ± 0.004 (1.71 ± 0.06) 
a Values denoted in parenthesis are fold changes 

with respect to scNS3/4Afl. 
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Figure II.8 – Kinetic parameters for the multiple activities of the NS3hel 

constructs. (a) Multiple turnover DNA (top panel – dark bars), single turnover DNA (top 

panel – light bars) and multiple turnover RNA (bottom panel) unwinding activities; (b) 

ssDNA binding affinities and (c) extent of ATPase stimulation by poly(U) RNA are 

represented here. All activities were normalized against scNS3/4A (abbreviated as 

scNS3/4Afl here). Coloring represents different regions mutated (blue – protease 

mutations in direct interface, red – helicase mutations in direct interface, magenta – Hexa, 

orange – helicase mutations in substrate interface, gray – wildtype protease and protease 

– helicase complex). Errors reported are the standard errors of the mean. (n=3 for DNA 

unwinding and DNA binding assays, n≥4 for RNA unwinding assays, and n≥3 for 

ATPase assays).   
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Table II.3 – Specific activities of unwinding dsDNA and dsRNA beacons for 

different NS3 helicase constructs. Errors reported are the standard errors of the mean. 

(n=3 for DNA unwinding assays, n≥4 for RNA unwinding assays).   
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Construct 
V/E (*1000 s-1)a 

DNA Unwinding 
(Multiple Turnover) 

DNA Unwinding 
(Single Turnover) RNA Unwinding 

scNS3/4Afl 0.28 ± 0.02 (1.00 ± 0.12) 0.37 ± 0.02 (1.29 ± 0.13) 0.74 ± 0.04 (1.00 ± 0.08) 
Y56A 0.92 ± 0.09 (3.25 ± 0.44) 0.68 ± 0.05 (2.41 ± 0.27) 0.87 ± 0.07 (1.17 ± 0.12) 
V78A 1.60 ± 0.24 (5.63 ± 0.98) 0.95 ± 0.07 (3.34 ± 0.38) 0.53 ± 0.04 (0.71 ± 0.07) 
D79A 0.55 ± 0.10 (1.93 ± 0.39) 0.47 ± 0.02 (1.67 ± 0.16) 0.75 ± 0.07 (1.01 ± 0.11) 

Triple Prot 0.81 ± 0.12 (2.49 ± 0.34) 0.49 ± 0.03 (1.73 ± 0.19) 0.70 ± 0.04 (0.90 ± 0.10) 
S483A 0.70 ± 0.08 (1.38 ± 0.17) 0.36 ± 0.03 (1.27 ± 0.14) 0.66 ± 0.06 (1.96 ± 0.14) 
M485A 0.39 ± 0.03 (4.78 ± 0.92) 0.56 ± 0.02 (1.99 ± 0.19) 1.45 ± 0.07 (1.12 ± 0.11) 
V524A 1.35 ± 0.23 (2.87 ± 0.50) 1.16 ± 0.07 (4.11 ± 0.44) 0.83 ± 0.07 (0.94 ± 0.08) 

Triple Hel 3.30 ± 0.60 (11.64 ± 2.35) 2.14 ± 0.15 (7.53 ± 0.84) 1.92 ± 0.06 (2.59 ± 0.17) 
Hexa 0.82 ± 0.09 (2.88 ± 0.39) 1.28 ± 0.06 (4.52 ± 0.45) 0.47 ± 0.03 (0.63 ± 0.05) 

F438A 0.21 ± 0.02 (0.75 ± 0.09) 0b 1.00 ± 0.06 (1.35 ± 0.11) 
Q526A 1.56 ± 0.08 (5.51 ± 0.56) 2.29 ± 0.10 (8.08 ± 0.79) 0.96 ± 0.07 (1.30 ± 0.12) 
H528A 0.58 ± 0.04 (2.05 ± 0.22) 0.91 ± 0.04 (3.20 ± 0.31) 1.06 ± 0.04 (1.43 ± 0.10) 
F531A 0.66 ± 0.06 (2.32 ± 0.29) 0b 0.49 ± 0.05 (0.67 ± 0.08) 
NS3hel 1.61 ± 0.07 (5.67 ± 0.55) N/Ac 0.08 ± 0.01 (0.10 ± 0.01) 

a Values denoted in parenthesis are fold changes compared to scNS3/4Afl MHBA multiple turnover 
rate for both MBHAs and scNS3/4Afl SBHA rate for SBHA 

b No detectable unwinding activity was observed. 
c Single turnover MBHA has not been performed for this construct. 
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truncated NS3 lacking the protease prefers DNA to RNA [16, 17]. Proteins harboring 

mutations in the helicase-protease interface unwound RNA with rates that were more 

similar to each other than those seen in DNA unwinding assays. RNA unwinding 

activities for most of the proteins with direct interface mutations were similar to those 

seen with of scNS3/4A (i.e. within a 0.75 – 1.25 fold range), with S483A and Triple Hel 

being significantly more active and Hexa slightly less active. All proteins harboring 

substitutions designed to disrupt the substrate interface were slightly more active 

compared to scNS3/4A, except F531A. Hence, presence of the protease domain enhanced 

the RNA helicase activity, and destabilizing the interface did not affect RNA unwinding 

significantly. As discussed later, we interpret these results to mean that the RNA 

unwinding activity of the helicase is modulated by the protease more directly than DNA 

unwinding, which depends more on interface contacts. 

Helicase Single-Stranded DNA Affinities 

In order to act as a helicase, NS3 must first load on its substrate by tightly binding 

single stranded nucleic acid. Fluorescence anisotropy based binding assays were 

performed to assess the ability of scNS3/4A, its various mutants, and NS3hel to load on 

substrates, which gave dissociation constants (Kd) for ssDNA binding (Figure II.8b, 

Table II.4). In this assay, scN3/4A and NS3hel both exhibited similar affinities to 

ssDNA. Differences between the various proteins were greater than those seen in either 

protease or helicase assays, and dissociation constants were spread over a wide range 

(~100 pM – ~10 nM). Compared to scNS3/4A; V78A, S483A, M485A, Triple Hel and 
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F531A bound ssDNA more weakly while D79A, Q526A and H528A bound ssDNA more 

tightly. 

Helicase RNA-Stimulated ATP Hydrolysis Rates 

HCV NS3 helicase utilizes ATP to unwind nucleic acids, and in turn, nucleic acid 

stimulates NS3 catalyzed ATP hydrolysis. In other words, in the presence of nucleic 

acids, NS3 helicase hydrolyzes ATP faster. The extent of ATPase activation by nucleic 

acids follows a behavior similar to Michaelis-Menten kinetics, and kinetic parameters for 

nucleic acid based activation can be obtained. For this purpose, a concentration gradient 

of poly(U) RNA was used to stimulate NS3 ATPase, and the extent of ATP hydrolysis 

was measured (Figure II.8c, Table S4). As was seen with the RNA unwinding results, the 

extent of ATP hydrolysis stimulation by poly(U) RNA ( ) for most of the constructs 

was constricted to a narrow range (0.75 – 1.25 fold); with Y56A exhibiting slightly lower 

 and, Triple Hel and Hexa slightly higher. The catalytic turnover rate constants (

) were also similar, varying in a constricted range (0.9 – 1.6 fold, Table S4). Thus, the 

ATPase activity is largely independent of the presence of the protease domain and the 

interface.  

RNAK

RNAK catk
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Table II.4 – ssDNA binding constants, RNA-stimulated ATP hydrolysis catalytic 

rate constants and the extent of RNA stimulation of ATP hydrolysis for different NS3 

helicase constructs. Errors reported are the standard errors of the mean (n=3 for DNA 

binding assays and n≥3 for ATPase assays).  
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Construct 
Cy5-dT15 Binding RNA-Stimulated ATP Hydrolysis 

Kd (nM)a kcat (s-1)a
 KRNA (ng poly(U)/ml)a

 

scNS3/4Afl 0.66 ± 0.20 (1.00 ± 0.43) 37.79 ± 4.46 (1.00 ± 0.17) 75.53 ± 6.37 (1.00 ± 0.12) 
Y56A 0.98 ± 0.33 (1.48 ± 0.68) 36.12 ± 5.00 (0.96 ± 0.17) 43.29 ± 1.53 (0.57 ± 0.05) 
V78A 1.73 ± 0.31 (2.63 ± 0.93) 45.89 ± 4.14 (1.21 ± 0.18) 82.64 ± 3.63 (1.09 ± 0.10) 
D79A 0.15 ± 0.16 (0.23 ± 0.25) 46.94 ± 5.92 (1.24 ± 0.21) 90.55 ± 8.51 (1.20 ± 0.15) 

Triple Prot 0.69 ± 0.15 (1.05 ± 0.39) 46.71 ± 7.75 (1.24 ± 0.25) 78.26 ± 5.83 (1.24 ± 0.13) 
S483A 1.91 ± 0.42 (2.91 ± 1.10) 35.94 ± 3.66 (0.95 ± 0.15) 93.39 ± 5.23 (1.08 ± 0.11) 
M485A 14.36 ± 2.73 (21.82 ± 7.86) 60.88 ± 10.47 (1.61 ± 0.34) 81.32 ± 4.99 (0.74 ± 0.08) 
V524A 0.44 ± 0.15 (0.67 ± 0.30) 37.04 ± 5.44 (0.98 ± 0.18) 56.14 ± 3.44 (1.04 ± 0.12) 

Triple Hel 3.43 ± 0.72 (5.22 ± 1.93) 61.23 ± 13.96 (1.62 ± 0.42) 100.65 ± 9.48 (1.33 ± 0.17) 
Hexa 0.61 ± 0.22 (0.93 ± 0.44) 55.07 ± 9.90 (1.46 ± 0.31) 56.73 ± 3.52 (0.75 ± 0.08) 

F438A 0.70 ± 0.33 (1.06 ± 0.60) 62.87 ± 9.18 (1.66 ± 0.31) 128.82 ± 9.49 (1.71 ± 0.19) 
Q526A 0.25 ± 0.15 (0.38 ± 0.26) 55.50 ± 6.32 (1.47 ± 0.24) 79.71 ± 4.38 (1.06 ± 0.11) 
H528A 0.07 ± 0.12 (0.11 ± 0.18) 49.58 ± 4.56 (1.31 ± 0.20) 80.51 ± 5.62 (1.07 ± 0.12) 
F531A 1.94 ± 0.37 (2.95 ± 1.06) 33.50 ± 2.25 (0.89 ± 0.12) 57.26 ± 4.38 (0.76 ± 0.09) 
NS3hel 0.71 ± 0.32 (1.08 ± 0.59) 43.00 ± 7.31 (1.14 ± 0.24) 63.36 ± 2.93 (0.84 ± 0.08) 

a Values denoted in paranthesis are fold changes compared to scNS3/4Afl. 
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Discussion 

In this study, the role of the protease-helicase interface in HCV NS3-NS4A 

complex was examined using a single chain NS3-NS4A protein (scNS3/4A) whose 

structure was previously determined at atomic resolution [21]. Dynamic coupling 

between the helicase and protease portions of scNS3/4A was observed in silico in the 

compact conformation the protein assumes in crystal structures. We experimentally 

showed that amino acid substitutions that destabilize the helicase-protease interface also 

affect NS3 catalyzed proteolysis, DNA and RNA unwinding, and the affinity of the 

protein for DNA. Most substitutions in the interface render the protein more active, 

presumably because of the liberation of domain-domain attachment. The protease has 

complex effects on NS3 catalyzed DNA and RNA unwinding, with the protease 

inhibiting DNA unwinding and stimulating RNA unwinding. Residues in the interface 

modulate DNA unwinding more than RNA unwinding. In contrast, the extent of ATPase 

stimulation by RNA was less dependent on the protease domain. Taken together, the data 

suggest that the interface disruptions engineered between the helicase and protease in the 

compact conformation caused the protein to achieve maximal activity. These results 

support the presence of an active conformer other than the compact state – the extended 

conformation, as has been suggested by others [21, 24, 25], and observed in structures of 

related proteins from similar viruses [26, 27, 43]. 

Protease and Helicase Domains of HCV NS3 are Dynamically Coupled in Silico 

Even though the interface formed between the protease and helicase domains of 

HCV NS3 is not as extensive as other reported biologically functional interfaces, where 
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the buried surface area is around 1500 Å2 and mostly hydrophobic in content [44], 

significant coupling between protease and helicase domains through the interfaces in 

silico was observed, albeit not as strong as intra-domain (i.e. within a domain, can be 

within or between subdomains) couplings. The extent and strength of interdomain 

correlations is changed when either the protease-helicase linker (residues 184-186) and/or 

the C-terminus of scNS3/4A (residues 626-631) is deleted, but still, upon deletion of 

these regions, the majority of the interdomain correlations remain within the 

neighborhood of the interfaces and extend through the inter and intra-domain correlation 

network. The interface formed between the two domains is most probably a transient, 

dynamic interface. The linker and the C-terminus are strong linkage points that keep the 

two domains in proximity; hence the interdomain interfaces are strongly associated 

through these regions. With removal of these linkages, the interfaces close to the deleted 

regions become “unlinked” and free to explore the otherwise constricted conformational 

space that is available. However, these deletions do not completely uncouple the 

domains; they only modulate the strength of correlated motion between domains. In order 

to elucidate the importance of the interfaces in protease and helicase activity, functional 

characterizations were performed on scNS3/4A mutants harboring amino acid 

substitutions designed to disrupt the helicase-protease interfaces.  

The Protease is Restricted by the Helicase 

The helicase domain acts as a regulatory mechanism that limits the catalytic 

efficiency of the protease in vitro. For all single amino acid substitutions in the direct 

interface (except Y56A mutants), increased cleavage activity was observed, whereas the 
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C-terminus – helicase interface mutants showed similar activity as the full-length protein. 

The combinatorial mutants nullified the effects of single mutations. These direct interface 

mutants may destabilize the direct interface, which, in turn, can alter the dynamics of 

protease – helicase interaction and ease the access of the protease substrate to the 

protease active site. In the combinatorial mutants, the interface was flattened out; this 

may be an indication of interface restabilization. 

Consistent with interface mutants, the isolated protease domain, which is not 

hindered by the helicase domain, is more active. Our protease results correlate with 

earlier results [12, 13]; which, in turn, disagree with a more recent report by Beran & 

Pyle suggesting that the helicase domain enhances NS3/4A protease activity [14]. Unlike 

other studies, Beran & Pyle compared an NS3-NS4A complex (which includes the 

complete NS4A that is processed in cis by the NS3/4A protease) with a complex formed 

by NS3 protease (NS3pro) combined with full-length NS4A, after the two peptides were 

independently expressed and combined in vitro. The lower activity observed for the 

NS4A-NS3pro used by Beran & Pyle could be explained by product inhibition by the C-

terminal of NS4A, which is known to act as a competitive inhibitor of the NS3 protease 

[30, 45].  

Our results suggest that the protease and helicase rotate around their flexible 

linker in order to achieve maximum protease activity. Such a mechanism was first 

proposed by Yao et al [21], that the helicase should move away from the protease domain 

so that the protease active site is liberated from the C-terminus of the protein and 

becomes accessible to process substrates in trans. Mutations in the direct interface in this 
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case destabilize this transient interface so that the transition from the “closed” state to the 

“open” state is easier, thus the protein is rendered more active. 

Helicase – Protease Interface Influences NS3 Helicase Action 

Parallel with the effect of helicase domain on protease function, the protease 

domain also restricts the helicase domain when the helicase is processing DNA. NS3hel 

is significantly more efficient in unwinding DNA than scNS3/4A, and the interface 

mutants exhibited activities between scNS3/4A and NS3hel. Therefore, the restrictive 

role of the domains is bidirectional – meaning protease and helicase should be liberated 

from each other in order to achieve full activity. The protease domain also influences the 

helicase by conferring specificity to RNA and increasing RNA unwinding activity. 

Unlike in DNA unwinding, interface mutations did not influence RNA unwinding rates 

significantly. The flatness of the activity profile of our panel of mutants in RNA-based 

assays suggests that the interface does not affect RNA unwinding. One reason for this 

difference may be due to the fact that, helicase domain alone unwinds RNA 10-times 

slower than scNS3/4A, suggesting that RNA might induce a conformational change in 

scNS3/4A that DNA does not. This is consistent with a direct role of the protease domain 

in dsRNA unwinding. How can the protease domain aid in the specificity for RNA versus 

DNA? The interaction of viral RNA with the serine protease 3C from the human 

rhinovirus has been well established [46]. Similarly, the direct binding of RNA to the 

HCV protease has been recently demonstrated [47]. In addition, the protease domain can 

specifically bind to HCV genomic RNA [48]. Taken together, the rate enhancement of 

RNA processing observed in the full-length protein may be the result of a specific 
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interaction of the protease domain with RNA; hence the protease domain acts as a 

cofactor of the helicase domain. 

Although there is no direct correlation between ssDNA binding affinities of 

interface mutants, the differences between multiple and single turnover rates for DNA 

unwinding for individual constructs can be explained in light of these results. For the 

constructs that were less active under single turnover conditions compared to multiple 

turnover rates, the affinity for binding ssDNA were lower and vice versa. This trend was 

most prominent for V78A, M485A and Triple Prot, where single turnover rates were 

considerably lower and, conversely, for V524A, Q526A and H528A, where they were 

higher. Our results indicate that disruptions in the domain-domain interface modulate the 

DNA unwinding activity of the helicase domain, similar to the protease domain. The 

ssDNA binding affinity is also modulated by the interface, albeit in a different fashion. In 

addition, the difference between multiple and single turnover unwinding directly 

correlates with ssDNA binding affinity.  

Curiously, the influence of interface mutations on ssDNA binding affinities does 

not correlate with their effect on either protease or helicase activities. Amino acid 

substitutions on both protease and helicase domains significantly alter ssDNA affinities, 

and these are reflected on the ability of an oligonucleotide to act as an enzyme trap in 

“single-turnover” helicase assays. These variations are more apparent in the helicase 

mutants. The mutations at the interface may alter DNA binding and unwinding through a 

combination of intra and inter-domain effects. Furthermore, binding of DNA is not likely 

to induce the liberation of two domains. This is supported by the published full-length 
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structures of scNS3/4A with bound helicase ligands [22]. Nucleic acid and ATP binding 

induces structural changes in the helicase domain but these changes were not reflected in 

the relative arrangement of the helicase and protease domains. Therefore, possibly, the 

full-length protein cycles through two stages – a dependent stage where two domains 

interact through the interfaces, and an independent stage where the domains are liberated. 

Nucleic acid binding likely occurs in the first state, while unwinding and ATP hydrolysis 

in the second. 

ATP Hydrolysis is Independent of Protease – Helicase Association 

The ATPase activity of the helicase domain is independent of the protease 

domain. The rates of ATP hydrolysis and the extent of stimulation of ATPase activity 

with poly(U) was similar in all the constructs tested. These results are not surprising, as 

previously tested helicase mutants which hamper the unwinding capability of the helicase 

still showed similar ATPase activities. However, our full-length constructs do not contain 

the acidic terminal helix of NS4A, which was shown to influence ATPase activity [20, 

49, 50]. Therefore, even if the protease does not directly affect ATPase, NS4A may 

modulate ATP hydrolysis indirectly. 

HCV NS3/4A Possibly Functions in an Extended Domain Arrangement 

All of the crystal structures of full-length NS3/4A [21-23] exhibit a compact 

domain arrangement. However, recent results from RNA unwinding studies [25] suggest 

another conformation – the “extended” conformation – similar to the NS3/2B protein 

[27], which is the functional analog of NS3/4A in Flaviviruses. Upon deletion of the C-

terminus, the HCV NS3 helicase domain formed functional complexes faster due to the 
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domains being more independent and able to sample more conformations [25]. In 

addition, the extended conformation is the only possible way the full-length protein can 

be modeled on a membrane. The amphipathic helix α0 of the protease domain and the 

transmembrane helix of NS4A, the factors that anchor NS3/4A to the membrane, were 

found to be functionally important [24, 51, 52]. 

In the compact conformation, the protease active site is occupied by the C-

terminus of the molecule. For the protease to function, the C-terminus must be dislodged 

from the active site so that the substrate can bind to the protease and get cleaved. 

Competition of the substrate and the C-terminus may be the key to the initial disruption 

of C-terminus – protease interactions. Following the association of protease and 

substrate, the direct interface interactions would also be disrupted, leading to the change 

to the extended conformation. After the cleavage, the P’ side of the substrate dissociates 

from the protease active site, leaving the P side still occupying the active site, as 

indicated by the product complex crystal structures [30]. The protease can finally either 

be recycled to the compact conformation by the C-terminus, or an uncleaved substrate 

peptide competes out the product for another round of cleavage (Figure II.9a). 

Our results also provide clues to the regulation of helicase activity in the closed 

and open states. The unwinding reaction involves multiple steps (binding, ATP hydolysis, 

nucleic acid translocation), and in either of these steps a transformation between the two 

different states is possible. When the C-terminus of the protein is deleted, the helicase 

forms functional complexes faster [25], suggesting the conformational shift from closed 

conformation to the extended conformation potentially involves an interaction between 
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the protein and RNA. However, our binding results and published crystal structures 

indicate that binding of the nucleic acid is not enough to induce a conformational change 

that separates the domains. Therefore, one or more of the following may be possible. 

First, the three-way interaction between RNA, protease and the helicase can induce the 

conformational change – this actually explains why the RNA unwinding rates were 

similar for the various proteases unlike DNA unwinding rates. Second, protein 

oligomerization may be a trigger for the conformational switch. HCV NS3 helicase 

operates as an oligomer when unwinding nucleic acids [53-55]. The crystal structure of 

an NS3hel oligomer bound to DNA, obtained by using a longer ssDNA fragment, 

exhibits an association between different helicase domains, which would be possible only 

if the protease rotates away from the helicase [56]. Hence, transient association of 

different molecules on a nucleic acid track may induce a conformational change for NS3 

protomers, which eventually associate to form oligomers. A third possibility is the 

combination of the first two. The association of RNA with the protein destabilizes the 

compact conformation and shifts the equilibrium between the closed and open states to 

favor the latter. Association and oligomerization of these RNA-protein complexes 

stabilizes the open state. This third model is the one most consistent with our results, 

since this model explains both the interface effect in DNA binding and unwinding, and 

the protease domain effect in RNA unwinding. Consistent with our results, we propose 

the following scheme for helicase action (Figure II.9b). The unwinding cycle first starts 

with binding to the single stranded overhang of RNA. This step is followed by the 

oligomerization and domain-domain rearrangement – in this stage, the protease also  
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Figure II.9 – A model for NS3/4A function consistent with in vitro results. (a) 

Upon binding substrate, the protein switches from compact to extended conformation. 

Cleavage reaction proceeds in the extended conformation and the P’ side of the substrate 

leaves upon cleavage. An uncleaved substrate can reattach for another round of 

proteolysis or the C-terminus can compete out the remaining product and return to the 

compact conformation. (b) The single stranded overhang of the dsRNA binds to the 

helicase in compact conformation. With the oligomerization and the protease-RNA 

association, the RNA-protein complex is ready to unwind RNA efficiently. The binding 

and hydrolysis of ATP fuels the unwinding reaction and the strands get separated. The 

protein then can either dissociate from RNA and other subunits of the oligomer, and 

return to the closed conformation or another dsRNA can attach to the protein in the 

oligomeric state. 
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associates with the RNA. ATP binding and hydrolysis fuels the movements needed for 

the helicase to translocate and separate the RNA strands. After unwinding, the protein 

can either bind a new RNA in the oligomeric state or complete the cycle by returning to 

the monomeric, apo state. 

The protease – helicase interplay in the HCV NS3-NS4A complex is likely even 

more complex in vivo, because NS3/4A attaches itself to the host ER membrane via two 

regions in the protein –  the protease helix α0 and the NS4A transmembrane helix [24, 

51]. Important unanswered questions concern when the protein associates with the 

membrane, and whether or not membrane association drives the above conformational 

change in vivo. Alternatively, the activation of the protein may lead to the conformational 

change and induce membrane integration. In either case, attachment to the membrane is 

required for the efficient cleavage of membrane-anchored cleavage junctions and 

continuation of HCV life cycle [51, 52]. Still, single chain NS3/4A, similar to the one 

used in this study, can cleave both membrane bound and free substrates in vivo [52], 

indicating that the protein is able to cycle between cytoplasmic and membrane bound 

states. Therefore, domain-domain interface may still play a regulatory role in controlling 

the catalytic activities of both domains in vivo.  
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Supplementary Methods 

Molecular Dynamics Simulations 

The apo crystal structure of single chain HCV NS3/4A was obtained from Protein 

Data Bank (PDB ID: 1CU1) [21]. Three additional in silico deletion constructs were 

created, where the C-terminus (Δ626-631), the linker region (Δ184-186) and both the C-

terminus and the linker (Δ184-186, 626-631) were deleted. These constructs were used as 

initial coordinates in molecular dynamics (MD) simulations using AMBER10 [28] with 

the ff03 force field [57]. 

The generated constructs were prepared for simulation using the tLEaP module of 

AMBER. First, the missing hydrogen atoms were added. Subsequently, the constructs 

were immersed in a truncated octahedral periodic water box with TIP3P waters [58], 

keeping the crystallographic waters. The edges of the box were at least 8 Å away from 

the nearest protein atom. The net charge of the system was calculated and if necessary, 

neutralized by adding either Na+ or Cl- as counter ions. The tetrahedral coordinated 

structural Zn2+ was parameterized using cationic dummy atom model [59] with the 

coordinating water and cysteines ionized to hydroxyl and anionic cysteines respectively. 

The resulting systems were composed of ~96,500 atoms including ~26,500 TIP3P water 

molecules with box dimension of ~(125 Å)x(125 Å)x(125 Å). 

The prepared systems were simulated using the sander module of AMBER. Four 

independent replicas per system were simulated with different initial velocities resulting 

in a total of sixteen trajectories. Initially, the conformation of each system was relaxed 

with a series of restrained minimizations. Stepwise gradient method was used in these 
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restrained minimizations, removing harmonic restraints sequentially with each successive 

minimization step. A final conjugate gradient minimization was performed on the 

unrestrained system to fully minimize the energy of the system.  

The resulting systems were simulated with periodic boundary conditions, and 

Particle Mesh Ewald summation method [60] was used for long-range electrostatic 

interactions with atoms further than 8 Å. The simulations were performed in a NTP 

(constant pressure – temperature) ensemble with the temperature coupled to a Berendsen 

thermostat [61]. First, the systems were gradually heated to 300 K with weak positional 

restraints in 100 ps, followed by the equilibration of waters for 250 ps while keeping the 

positional restraints on the protein atoms. Finally, all the restraints were removed and 500 

ps of equilibration was performed. Production simulations were performed employing 

SHAKE algorithm [62] with 2 fs time step. 20 ns trajectories were collected for each 

simulation at a speed of ~400 ps/day using 8 nodes on an AMD Opteron CPU.  

Trajectory Analyses 

We have performed four independent replicates for each construct with different 

initial velocities. Prior to the analyses of resulting trajectories, stability of the simulations 

were ensured by evaluating root mean square deviations (RMSDs) and radii of gyrations 

over simulation time (Figure II.10). For all constructs, RMSDs and radii of gyration 

stabilized ~3 ns starting from the initial restrained equilibration, so the data for the first 3 

ns were discarded from post simulation analyses. Remaining trajectories for each 

construct were concatenated, resulting in 72 ns trajectories per construct. 

Prior to analyses, concatenated trajectories were aligned using theseus [63]. The  
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Figure II.10 – Stability of individual trajectories. Root-mean square deviations 

(left) and radii of gyration (right) are represented for all the replicas of each construct. 

Stabilization of parameters was observed after 3 ns of simulation.  
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ptraj module of AMBER was used to analyze the aligned trajectories. Dynamic cross-

correlation matrices for all Cα atom pairs (Figure II.4a) were generated using Equation 

(9) 

 𝑐𝑖𝑗 =
〈∆𝑟𝑖 ∙ ∆𝑟𝑗〉

�〈∆𝑟𝑖2〉�〈∆𝑟𝑗2〉
 (9) 

In Equation (9), 𝑐𝑖𝑗 is the correlation coefficient between atoms i and j, ∆𝑟𝑖 is the 

positional fluctuation vector of atom i with respect to its average position, 〈 〉 denotes an 

ensemble average and ∙ denotes a dot product. Correlation coefficients larger than 0.5 (the 

“shoulders” in distributions for total correlations) are mostly the correlations within the 

subdomains (Figure II.4b). Remaining correlations are of interest because they 

encompass interdomain correlations, which account for roughly 40% of the total 

correlations. 

Histograms of these correlations were constructed with increments of 0.05, and 

were fit to Equation (10). 

In Equation (10) 𝜇 is the mean, 𝜎 is the standard deviation and 𝐴 is the area of the 

distribution curve. Distribution parameters were calculated for each construct (Table I.1) 

to evaluate the extent of correlations. 

For visualization purposes, ~300 residue pairs were selected (Table 1, Figure 

II.5). These numbers roughly correspond to 0.5% of interdomain correlations, excluding 

linker – protein and C-terminus – protein correlations. The cutoff values indicated are the 

 𝑦 =
𝐴

𝜎√2𝜋
𝑒− (𝑥−𝜇)2

2𝜎2  (10) 
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correlation coefficient lower limit (or higher limit in the case of anti-correlations) for 

visualization. This selection procedure served to ease visualization of correlations by 

optimally representing the interdomain correlations while avoiding clutter in the visual 

representations. 

Additionally, distances between the residues from the protease and the helicase 

domains were calculated over the simulation time (Figure II.6). For the direct interface, 

interdomain distances were calculated for the residues constituting the interface (Y56-

S483, Y56-M485, V78-V524, D79-V524) and for the substrate interface, residues from 

both domains covering the C-terminus (A156-Q526, V158-H528, C159-F438, C159-

F531). Histograms were generated from these distances with increments of 1 Å.  
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CHAPTER III 

 

P2 MOIETY IN THE HEPATITIS C VIRUS PROTEASE INHIBITORS IS THE 

MAJOR DETERMINANT IN DRUG RESISTANCE AND MODULATION OF 

INHIBITOR POTENCY BY THE HELICASE DOMAIN 
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Abstract 

Hepatitis C is a global health problem that plagues about 3% of the world’s 

population. Despite being curable, the current treatment with pegylated interferon and 

ribavirin is lengthy, not completely effective, and generally intolerable. Thus, research 

and development of directly acting antiviral drugs are being performed actively against 

critical viral machinery, such as NS3/4A protease, the primary and indispensible 

proteolysis machinery for polyprotein maturation and immune suppression. Drug 

development efforts on NS3/4A protease currently produced two drugs on the market – 

boceprevir and telaprevir – with promising new protease inhibitors in clinical trials. 

However, drug resistance emerges quickly under drug pressure and resistance patterns 

arise as early as in clinical trials. In addition, most of these drug development attempts 

disregard the helicase domain, which is an essential part of the Hepatitis C virus 

machinery and covalently linked to the protease. Furthermore, the protease and the 

helicase domains are interdependent functionally. However, there are conflicting results 

on the role of helicase domain in protease inhibitor recognition. In this study, four 

protease inhibitors and their macrocyclic analogs were investigated for susceptibility to 

drug resistance and modulation of potency by the helicase domain. Potency is mainly 

affected by macrocyclization. Conversely, for both potency loss due to drug resistance 

mutations and potency modulation by the presence of the helicase domain, the P2 group 

is identified as the major determinant. The results signify the importance of the P2 group 

in inhibitor resistance and assign a possible role for the P2 group in association with the 

helicase.  
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Introduction 

Hepatitis C Virus (HCV), a member of the Flaviviridae, is the causative agent of 

non-A non-B viral hepatitis that infects 170 million people worldwide [1, 2]. HCV is also 

genetically diverse; six major genotypes (1-6) were classified with the genotypes 1 and 3 

most prevalent around the globe [3, 4]. Acute HCV infection is asymptomatic, but 

persistent viral infection progresses into chronic viral hepatitis which leads to cirrhosis, 

liver failure and liver cancer; HCV is the main cause of liver transplantation in the United 

States [5]. Current state-of-art treatment regime includes the combination of either 

telaprevir or boceprevir, recently approved direct acting antivirals (DAAs) targeting HCV 

non-structural protein 3/4A (NS3/4A) protease, pegylated interferon-α and ribavirin [6]. 

This triple combination therapy led to higher sustained virologic response (SVR) rates, 

which is an indicator of cure, for both treatment-naive patients and patients who failed 

the previous dual therapy regime (with interferon and ribavirin alone) [7-11]. However, 

SVR strongly depends on host and viral factors, even with the new triple therapy regime 

[8, 12]. Also, serious side effects have been observed in these treatment regimes – most 

commonly anemia, flu-like symptoms, eczematous skin rash, depression and 

gastrointestinal symptoms [13]. Thus, the current HCV treatment is still not completely 

effective and not well tolerated by many patients and specific DAAs are necessary for an 

effective and better quality treatment. 

Pharmaceutical development effort for DAAs against HCV primarily focuses on 

the NS3/4A protein. HCV NS3/4A is the bifunctional protease – helicase complex that is 

pivotal in polyprotein processing and replication [14]. NS3/4A protease plays an 
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additional role in circumventing host immune response by cleaving host factors 

mitochondrial antiviral signaling protein (MAVS) and TIR-domain-containing adapter-

inducing interferon-β (TRIF) [15-17]. Drug development effort on the NS3/4A protease 

produced two drugs that are currently in market – telaprevir and boceprevir – which are 

linear ketoamides [18, 19]. In addition, many more compounds are in various stages of 

clinical development, both acyclic compounds (asunaprevir [20], BI-201335 [21]) and 

macrocyclic compounds including P1-P3 macrocycles (danoprevir [22], TMC-435 [23]) 

or P2-P4 macrocycles (vaniprevir [24], MK-5172 [25]). However this drug development 

effort primarily focuses on the protease domain alone. NS3 helicase is also required in 

HCV replication, and essential for viral propagation [26, 27]. Furthermore, both domains 

are interdependent and influence their activities bidirectionally [28-30]. Although there is 

no concrete evidence for a direct interaction between the helicase domain and protease 

inhibitors [31], helicase may play an accessory role [32, 33]. 

HCV replicates rapidly in host liver, producing around a trillion virus particles per 

day [34]. HCV NS5B, the RNA-dependent RNA polymerase, is inherently error-prone – 

misincorporation of bases into the HCV genome produces a low frequency of genetically 

diverse viral particles [35]. Under drug pressure, populations that contain mutations 

which confer resistance are selected rapidly. Most strikingly, mutations at the protease 

residues R155, A156 and D168 confer resistance to a multitude of protease inhibitors [36, 

37]. The different mutation patterns due to drug resistance are influenced by many factors 

such as genotypic diversity, genetic barrier for mutations and viral fitness. Emergence of 
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inhibitor resistance in HCV NS3/4A protease is thus the major drawback in cure of 

Hepatitis C using a monotherapy with a single protease inhibitor. 

NS3/4A protease inhibitors mostly share the same architecture (Figure III.1). The 

common features of these drugs in clinical development are either a ketoamide or an 

acylsulphonamide warhead at P1’ position, a cysteine-like P1 moiety with a cyclopropane 

and a terminal olefin, a proline-like P2 moiety with a bulky extension and capped at the 

P4 moiety [38]. On the other hand, these drugs differ in two major ways. First, the P2 

extensions are different – they all contain bulky, hydrophobic moieties but their identities 

are different. Second, these drugs are either macrocyclized or acyclic. Macrocyclization 

happens either between the P1 terminus and the P3, or the P2 extension and the P4 

terminus. All of these drugs have different potencies and different resistance profiles. In 

this study, four protease inhibitors with different P2 extensions and macrocyclization 

statuses were selected and their acyclic and/or macrocyclic analogs were generated to 

evaluate the effect of the different structural features of these inhibitors. Macrocyclization 

was observed to be the major determinant in inhibitor potency, and the P2 extension to be 

the major determinant in susceptibility to drug resistance and modulation by the helicase 

domain. These results explain the impact of different structural features in potency and 

susceptibility to drug resistance, and will form a basis for future HCV NS3/4A protease 

inhibitor development. 
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Figure III.1 – Inhibitors used in this study. (a) Telaprevir and (b) other protease 

inhibitors used in this study are shown. The inhibitors are classified according to 

macrocyclization status and identity of the P2 group. Macrocyclication class separates the 

compounds depending on the presence and position of the macrocycle (acyclic, P1-P3 

macrocycle, P2-P4 macrocycle). P2 class separates the compounds depending on the P2 

group (quinoline, isoindoline, quinoxoline). Inhibitors are colored according to the 

identity of the P2 group (asunaprevir – orange, danoprevir – teal, MK-5172 – magenta), 

and annotated according to the macrocyclization status (acyclic – circle, P1-P3 – square, 

P2-P4 – triangle). 
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Materials and Methods 

Synthesis of Inhibitors 

HCV NS3/4A inhibitors telaprevir, asunaprevir, danoprevir, vaniprevir, MK-5172 

and their acyclic and macrocyclic analogs were synthesized in lab. Chemical syntheses of 

these inhibitors are explained in detail in the Supplementary Methods. 

NS3/4A Protease Constructs 

HCV NS3/4A genotype 1a protease domains for both the full length and the 

isolated protease constructs were derived from the Bristol-Myers-Squibb patent [39] and 

cloned into a pET28a bacterial expression vector. Both of these constructs contain the 

NS4A cofactor peptide ligated to the N-terminus. In the full length construct, codon 

optimized genotype 1a NS3 helicase (H77) were cloned downstream. Multi drug resistant 

mutants R155K, A156T and D168A for both isolated protease and full length constructs 

and additional helicase mutations Triple Hel (S483A-M485A-V524A), Q526A and 

H528A on full length construct were generated by site-directed mutagenesis kit 

QuikChange II (Stratagene), using primer pairs generated by Primer X 

(http://www.bioinformatics.org/primerx/). 

Expression and Purification of NS3/4A Protease Constructs 

The expression and purification scheme for the isolated protease domain is 

detailed elsewhere [40]. Briefly, transformed BL21(DE3) E. coli expression cells were 

grown to an A600 of 0.6, induced with 1 mM isopropyl-1-thio-β-D-galactopyranoside 

(IPTG) and incubated with shaking for 5 hours at 37°C. Cells expressing the protein were 
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harvested by centrifugation and stored at -80°C. Frozen pellets were resuspended in 

resuspension buffer (50 mM phosphate buffer, 500 mM NaCl, 10% glycerol, 2 mM beta  

mercapto ethanol (βME), pH 7.5), lysed and centrifuged to pellet the cell debris and 

resulting supernatant was applied to a nickel-affinity column (Qiagen). The colum was 

washed with resuspension buffer and the protein was eluted with resuspension buffer 

supplemented with 200 mM imidazole. The eluate was treated with thrombin and 

dialyzed overnight to cleave the His-tag and remove the imidazole. The purified protein 

was flash frozen in liquid nitrogen and stored at -80°C. 

The expression and purification scheme for full length protein is detailed in 

Chapter II. Briefly, transformed BL21(DE3) E. coli expression cells were grown to an 

A600 of 0.6 at 37°C, transferred to 20°C, induced by 0.5 mM IPTG and incubated with 

shaking for 4 hours. Cells were then harvested via centrifugation; cell pellets were 

washed with 1X phosphate-buffered saline (PBS), repelleted and stored at -80°C. Frozen 

pellets were resuspended in Buffer HT (25 mM HEPES, 500 mM NaCl, 10% glycerol, 

0.1% OβG, 2 mM TCEP and 20 mM imidazole, pH 8.0) supplemented with DNAse I 

(Roche) and homogenized using a cell disruptor (Micro Fluidics). Lysed cells were 

centrifuged to clear the cell debris and applied to a 1 mL HisTrap HP column (GE 

Lifesciences) using an AKTA Purifier (GE Lifesciences). The protein was washed with 

Buffer HT supplemented with 40 mM imidazole and eluted with Buffer HT 

supplemented with 250 mM imidazole. The eluate was dialysed overnight against Buffer 

S (25 mM MES, 150 mM NaCl, 10% glycerol, 0.1% OβG, 2 mM TCEP, pH 6.0). 

Dialyzed protein was applied to a Mono S Column (GE Lifesciences) and eluted with a 
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linear gradient of NaCl up to 1M. The eluate was judged > 90% pure by polacrylamide 

gel electrophoresis, concentrated, flash frozen and stored at -80°C. 

Protease Cleavage Assays 

Protease cleavage assays were performed in a final volume of 60 µL containing 

protease assay buffer (50 mM Tris, 2.5% glycerol, 0.1% OβG, 5 mM TCEP, 1% DMSO, 

pH 7.5) and up to 20 µM HCV NS3/4A protease substrate Ac-DE-Dap(QXL-520)-EE-

Abu-ψ-[COO]AS-C(5-FAMsp)-NH2 (Anaspec) in black 96-well flat bottom non-binding 

surface half-area plates (Corning) at room temperature. The reaction was initiated by the 

rapid addition of 10 µL of HCV NS3/4A protease to a final concentration of 20 nM. The 

fluorescence output was measured kinetically for at least an hour using an EnVision plate 

reader (Perkin Elmer) with excitation wavelength at 485 nm and emission at 530 nm. End 

point readings were also taken after 6 hours. For each construct, three independent 

experiments were performed. 

Inner filter effect in higher concentrations of substrate was corrected using the 

following scheme. End point readings were subtracted from the background fluorescence 

values to obtain reaction amplitudes and these amplitudes were plotted against substrate 

concentration. Initial linear portion of this curve is fitted with linear regression and 

extrapolated to maximum substrate concentration, to obtain the ideal amplitude line. 

Corresponding amplitude values in the ideal amplitude line were divided by the actual 

amplitudes to obtain inner filter effect correction parameters which are then multiplied by 

initial velocities to obtain corrected velocities. Corrected velocities were plotted against 

substrate concentrations and all the replicates were fitted to Michaelis-Menten equation 
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globally to obtain Michaelis-Menten constants (KM), which was shared between different 

replicates. 

Enzymatic Inhibition Assays 

All enzymatic inhibition assays were performed in non binding surface 96-well 

black half-area plates (Corning) in a reaction volume of 60 µL. ~1 nM NS3/4A protease 

was preincubated with increasing concentration of drugs in protease reaction buffer for an 

hour. The reaction was initiated by the rapid addition of 5 µL of HCV NS3/4A protease 

substrate to a final concentration of 200 nM and kinetically monitored using a Perkin 

Elmer EnVision plate reader (excitation 485 nm – emission 530 nm) for an hour with 30 s 

between data points. Initial velocities were obtained from the progress curves and plotted 

against inhibitor concentrations to get inhibition curves. Resulting curves were fitted to 

Morrison’s equation: 

𝑉𝑖
𝑉0

= 1 −
�[𝐸]𝑇 + [𝐼]𝑇 + 𝐾𝑖

𝑎𝑝𝑝� − ��[𝐸]𝑇 + [𝐼]𝑇 + 𝐾𝑖
𝑎𝑝𝑝�2 − 4[𝐸]𝑇[𝐼]𝑇

2[𝐸]𝑇
 

𝐾𝑖
𝑎𝑝𝑝 = 𝐾𝑖 �1 +

[𝑆]
𝐾𝑀

� 

Where [𝐸]𝑇 is the total enzyme concentration, [𝐼]𝑇 is the total inhibitor 

concentration, [𝑆] is the substrate concentration, 𝐾𝑀 is the Michaelis-Menten constant, 

𝑉0 is the initial velocity when there is no drug, 𝑉𝑖 is the initial velocity at [𝐼]𝑇, 𝐾𝑖
𝑎𝑝𝑝 is the 

apparent inhibition constant and 𝐾𝑖 is the inhibition constant. Non-linear regression 

analyses were performed where independent replicates from different protease constructs 

with different drugs were fitted globally, sharing 𝐾𝑖. 
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Results 

Protease Inhibitors Used in this Study 

In this study, four drugs that are currently in clinical trials were selected with 

different macrocyclization statuses and P2 extensions. These drugs are asunaprevir 

(BMS-650032), which is an acyclic compound with a quinoline in the P2 extension; 

danoprevir (ITMN-191), which is a P1-P3 macrocyclic compound with an isoindoline; 

and MK-5172, which is a P2-P4 macrocyclic compound with a quinoxoline. In addition, 

macrocyclization analogs of these drugs were generated – namely AH-55 (asunaprevir 

P1-P3 macrocyclic), AG-30 (danoprevir acyclic), AG-53 (danoprevir P2-P4 

macrocyclic), AH-49 (MK-5172 acyclic) and AH-54 (MK-5172 P1-P3 macrocyclic). 

Vaniprevir (MK-7009) was also synthesized because vaniprevir is an inhibitor also being 

investigated in clinical trials; and similar to danoprevir and nearly the same as AG-53 

with the only difference P1 terminus being saturated. With the addition of telaprevir 

(Figure III.1a), a total of ten protease inhibitors (Figure III.1b) were investigated in this 

study. 

Macrocyclization Status is the Major Determinant in Inhibitor Potency 

To determine the effect of the P2 moiety and different macrocyclization patterns, 

in vitro potencies of HCV NS3/4A protease inhibitors were determined in inhibition 

assays for full length protein, isolated protease domain and their variants. Initially, KM 

values for each protein construct were determined (Table 1). KM’s for all the constructs, 

except full length A156T mutant, were similar, which signify that the substrate 
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recognition was not altered significantly with respect to the different multi drug 

resistance mutations and helicase mutations. 

Telaprevir and boceprevir are the only two drugs that are approved by FDA and 

currently being utilized in clinical treatment regimes in combination with ribavirin and 

interferon [41]. However, compared to the other drugs, telaprevir was significantly less 

active against both wildtype and drug resistant mutants, except D168A (Figure III.2a). 

Other acyclic drugs (asunaprevir, AG-30 and AH-49) are more active compared to 

telaprevir, with their potencies ranging from lower nanomolar for the wildtype up to 

lower micromolar for drug resistant mutants (Figure III.2b). 

Macrocyclic compounds on the other hand are more potent, compared to acyclic 

compounds. P1-P3 macrocycles exhibit lower Ki values for both wildtype and drug 

resistant variants, with their potencies ranging from higher picomolar for the wildtype up 

to higher nanomolar for drug resistant mutants (Figure III.2c). P2-P4 macrocycles, except 

vaniprevir, were significantly more potent for the wildtype protease constructs, in the 

range of mid to high picomolar. Similar to P1-P3 macrocycles, potencies for the drug 

resistant variants were in the higher nanomolar range (Figure III.2d). Side by side 

comparison of vaniprevir against AG-53 exhibited significant loss of potency for 

vaniprevir; this signifies the importance of the terminal olefin in the P1 moiety where a 

potential pi-stacking interaction with the F154 is possible [42]. 

Identity of the P2 Moiety is the Major Determinant in Drug Resistance 

The inhibitor potencies were normalized with respect to the corresponding 

wildtype construct to obtain drug resistance patterns for each inhibitor. The fold potency  
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Figure III.2 – Potencies of protease inhibitors used in this study. The 

inhibition constants (Ki’s) for wildtype and MDR variants for (a) telaprevir, (b) acyclic 

compounds, (c) P1-P3 macrocycles and (d) P2-P4 macrocycles. For the majority of MDR 

constructs, macrocyclic drugs are more active compared to acyclic drugs. For wildtype 

protein, the P2-P4 macrocyclic compounds are more potent compared to P1-P3, a trend 

which changes with MDRs. Vaniprevir is the exception due to the terminal methyl group 

in the P1 residue instead of the olefine. Error bars represented in this figure are standard 

errors of the mean (n≥4). 
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losses for the compounds with respect to wildtype constructs for the full length versus 

protease domain are similar (Figure III.3), meaning that the helicase domain has minimal 

effect in drug resistance. However, when the data was grouped with respect to different 

P2 extensions, a clear trend in resistance profiles was observed. The fold loss potencies 

due to drug resistance mutations cluster well within drugs with different macrocyclization 

statuses either in the asunaprevir class (Figure III.3a), the danoprevir class (Figure III.3b) 

or the MK-5172 class (Figure III.3c). Hence, identity of P2 extension group primarily 

determines susceptibility to drug resistance mutations for protease inhibitors. 

Two major exceptions have been observed. First, the P2-P4 macrocycles all 

exhibited increased susceptibility against the mutants A156T (more than an order of 

magnitude more susceptible) and D168A (less susceptibility compared to A156T). P2-P4 

macrocycles restrict the movement of P2 extension, which may potentially affect the 

adaptability of P2 conformation [40, 43, 44]. Second, vaniprevir was more susceptible to 

drug resistance against each of the mutants analyzed, but the overall trend observed 

exhibited similar characteristics as AG-53 (Figure III.3b). In summary, the major factor 

affecting drug resistance was the P2 extension group. 

P2 Moiety is also the Major Determinant in Modulation of Inhibitor Potency by 

the Helicase Domain 

Inhibitor potencies for wildtype and drug resistant variants for the isolated 

protease domain were normalized with respect to their full length counterparts in order to 

determine the extent of modulation in inhibitor potencies when the helicase domain is 

present (Figure III.4). Up to an order of magnitude modulation was observed. For the 
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wildtype constructs, the modulation was minimal (up to 3 fold preference for the full 

length protein). For the mutants R155K and A156T, preference for the full length protein 

was more pronounced for asunaprevir and MK-5172 analogs (up to 8 fold), whereas 

limited modulation was observed for danoprevir analogs. The situation is reversed for 

D168A, where the full length preferences for the asunaprevir and MK-5172 were not 

present and, conversely, danoprevir analogs exhibited significant preference for the 

isolated protease domain (up to an order of magnitude). In addition, the potencies against 

the helicase mutants were normalized against full length wildtype construct. Similarly, an 

order of magnitude modulation with respect to different helicase mutations were 

observed, but a dominant trend was not present (Figure III.5). To conclude, helicase 

domain influences protease inhibitor potencies, albeit slightly. 
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Figure III.3 – Drug resistance profiles of the inhibitors for multi drug 

resistant variants. Resistance profiles of full length protein and isolated protease MDR 

constructs against (a) asunaprevir, (b) danoprevir and (c) MK-5172 analogs. Ki values 

were normalized to the respective wildtype constructs. The fold potency loss trends for 

the full length protein and the protease domain are similar. Except the P2-P4 macrocyclic 

drugs (triangles), the resistance trends are clustered with respect to the P2 group. For the 

P2-P4 macrocycles, the inhibitor potency is significantly lower for A156T and slightly 

lower for D168A. Error bars represented in this figure are the propagated errors from 

error-weighted divisions. 
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Figure III.4 – The modulation of drug activities by the helicase domain in 

multi drug resistance mutants. The fold change potencies are with respect to the full 

length constructs. Values higher than one indicate increased preference for the full length 

protein, and vice versa. The modulation of activity is more apparent for MDRs compared 

to the wildtype and the values cluster well according to the identity of the P2 moiety 

(different colors). The danoprevir class (teal) behaves differently; these drugs exhibit the 

least enhancement for WT, R155K and A156T whereas loses affinity for D168A when 

the helicase domain is present. Error bars represented in this figure are the propagated 

errors from error-weighted divisions. 
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Figure III.5 – The effect of helicase mutations on inhibitor potency. The fold 

changes are with respect to the full length wildtype construct. The helicase mutants affect 

inhibitor potency (to a smaller degree) but the trend is not consistent. Error bars 

represented in this figure are the propagated errors from error-weighted divisions. 

 

  



156 
 

 

  



157 
 

Discussion 

In this study, differences in the structural features of a series of HCV NS3/4A 

protease inhibitors were evaluated for inhibitor potency, susceptibility to drug resistance, 

and modulation of inhibitor activity by the presence of the helicase. We have identified 

the macrocyclization status as the major determinant of inhibitor potency, and P2 moiety 

of drug resistance profile and modulation by helicase domain. 

The macrocyclic drugs are more potent compared to their acyclic peers likely due 

to the restriction of dynamics of the molecule. P1-P3 macrocycles restrict the P1 terminus 

and the rotation around the core of the proline-like P2 moiety. P2-P4 macrocycles on the 

other hand restrict the movement of the P2 extension and the backbone of the drug 

extending from P2 proline to P4 capping. Restricting the movement around the P2 proline 

possibly aids in stabilizing the restrained conformation of the proline, which was 

observed as a conserved feature in substrate bound protease structures [42]. Further gain 

in potency observed for the P2-P4 macrocycles is probably caused by the restriction of 

the P2 extension, in addition to the restriction of the P2 backbone conformation. The 

bulky P2 extensions for the HCV NS3/4A protease inhibitors form specific contacts with 

the protease domain, especially in the vicinity of R155, A156 and D168 [40]. Hence, 

restricting the rotation of P2 extension would favor intermolecular interactions by 

decreasing the entropic penalty of binding. Restriction of the P1 cysteine-like moiety may 

be another reason for the increased potency in the case of P1-P3 macrocycles, since this 

moeity is buried deep within the core of the active site. Thus, by keeping the inhibitor 
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geometry restricted, the interactions between the inhibitor and the protease are stabilized 

more in the presence of macrocycles. 

Drug resistance profile primarily depends on the identity of the P2 extension. The 

structural basis for resistance to HCV NS3/4A protease inhibitors for the multi drug 

resistance (MDR) mutations R155K, A156T and D168A has been explained in detail 

[40]. Although there are other mutations that confer drug resistance [45-47], these three 

mutations confer drug resistance to a large variety of protease inhibitors because the large 

P2 extension, which exists nearly in all of the HCV NS3/4A protease inhibitors, forms 

specific contacts with these residues [40]. However, the modulation of potencies varies 

between different drug classes, since the signature interactions between the drug and the 

protease primarily depend on the identity of the P2 group.  

On the other hand, potency losses due to drug resistance mutations did not 

considerably depend on the macrocyclization status or the presence of the helicase 

domain. Compounds with P2-P4 macrocycles are more susceptible to resistance possibly 

due to the movement restriction enforced by macrocyclization. By restricting the 

geometry of the P2 extension, stronger interactions with the protein are formed – 

however, the ability for the inhibitor to adapt to a different environment is lowered in 

exchange. This inability leads to pronounced steric clashes (A156T), or disruption of the 

van der Waals network (D168A), which cannot be recuperated from [40]. The P1-P3 

macrocyclization, on the other hand, does not have a pronounced role in drug resistance 

profiles for analyzed MDR mutations, possibly due to being away from the mutation 

sites, which are clustered together [40].  
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The effect of the helicase domain in potency loss due to drug resistance mutations 

is less pronounced, but correlates with the identity of the P2 extension. In a full length 

NS3/4A crystal structure with an inhibitor similar to danoprevir, P2 extension occupies 

the groove formed between the helicase and the protease active site [48]. Although no 

specific interactions between the inhibitor and the helicase were observed, solvent 

exclusion from the otherwise exposed hydrophobic P2 extension may be the reason for 

the observed potency increase in the asunaprevir and MK-5172 classes. The opposite 

trend observed in danoprevir is surprising and cannot be explained yet. The modulation 

of inhibition by mutations in the helicase on the other hand did not produce a consistent 

trend with respect to any inhibitor feature, consistent with a previous report [31]. In either 

case, modulation of protease inhibition by the helicase domain is observed, even though 

no specific recognition by the helicase was designed into any of these protease inhibitors. 

In conclusion, this study elucidates the specific roles of different chemical 

structural features of protease inhibitors in association with HCV NS3/4A. P2 extension 

plays a pivotal role, and optimizing this moiety is the key to overcoming drug resistance. 

Another interesting feature is the extent of potency modulation in the full length protein 

via possibly non-specific interactions with the helicase domain. Accordingly, the helicase 

domain should be investigated as a possible recognition site for future inhibitor 

development. By considering inhibitor recognition by the helicase as well as the protease 

active site, better inhibitors that recognize both domains but stay within the substrate 

envelope can be generated. A dual-action inhibitor that recognizes both the helicase and 

the protease inhibits both domains, because the helicase domain must be liberated from 



160 
 

the protease domain to be fully active in RNA unwinding [49]. This, in turn, would lead 

to more effective treatments including monotherapy, where the cost and the length of 

combinatorial therapy may be reduced and side effects of the current treatment regime 

may be circumvented. 
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Supplementary Methods 

Inhibitor Design and Synthesis 

Danoprevir, asunaprevir, vaniprevir, and MK-5172 have similar core structures, 

but contain different heterocyclic moieties at P2 and varying macrocyclization status and 

position. These drugs exhibit differential susceptibilities to major drug resistant protease 

variants R155K, A156T, and D168A in both enzymatic and antiviral assays. To 

understand the effect of different P2 moieties and macrocylization status on inhibitor 

activity against drug resistant NS3/4A protease variants, we designed and synthesized 

acyclic and macrocyclic analogues of these drugs. Asunaprevir, a linear compound with 

an ether-linked isoquinoline moiety at P2 proline, was prepared along with its P1–P3 

macrocyclic analogue (AH-55). Danoprevir and vaniprevir are both macrocyclic 

compounds containing a carbamate-linked isoindoline moiety at P2 proline, but the 

direction of the macrocycle is different: danoprevir contains a P1–P3 macrocycle while 

vaniprevir contains a P2–P4 macrocycle, and a saturated P1 side chain [21]. For direct 

comparison with danoprevir, a vaniprevir P1 olefin analogue (AG-53) was prepared 

along with an acyclic analogue (AG-30) of these compounds. Finally, for MK-5172, 

which is a P2–P4 macrocyclic compound containing an ether-linked quinoxaline moiety, 

both the acyclic (AH-49) and the P1–P3 macrocyclic analogues (AH-53) were prepared. 

The asunaprevir P1–P3 macrocyclic analogue (AH-55) was synthesized as the 

following. Briefly, the P2 fragment, (2S,4R)-1-(tert-butoxycarbonyl)-4-((7-chloro-4-

methoxyisoquinolin-1-yl)oxy)pyrrolidine-2-carboxylic acid, obtained by the reaction of 

Boc-trans-4-hydroxy-L-proline and 1,7-dichloro-4-methoxyisoquinoline, was coupled 
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with the preassembled P1–P1′ fragment, (1R,2S)-1-amino-N-(cyclopropylsulfonyl)-2-

vinylcyclopropanecarboxamide [50], using O-(7-azabenzotriazol-1-yl)-1,1,3,3-

tetramethyluroniumhexafluorophosphate (HATU)/ diisopropylethylamine (DIEA) to 

provide the P2–P1′ intermediate. Boc deprotection followed by the coupling of the free 

amine with the Boc-protected amino acid (S)-2-(tert-butoxycarbonylamino)non-8-enoic 

acid using HATU/DIEA provided the bis-olefin precursor for ring-closing metathesis. 

Cyclization of the bis-olefin intermediate was accomplished using a highly efficient ring-

closing metathesis catalyst Zhan 1B, and provided the asunaprevir P1–P3 macrocyclic 

analogue (AH-55). 

The danoprevir acyclic analogue (AG-30) was synthesized as the following. 

Briefly, the P2 and P1–P1′ fragments were preassembled and the final compound was 

generated by a four step reaction sequence, including Boc deprotection, P2–P3 amide 

coupling, ester hydrolysis, and finally coupling with the P1–P1′ fragment. The P2–P3 

fragment was assembled by coupling the Boc-L-tert-leucine with the preassembled P2 

fragment, (3R,5S)-5-(methoxycarbonyl) pyrrolidin-3-yl 4-fluoroisoindoline-2-carboxylate 

[40], using HATU/DIEA. Hydrolysis of the P2–P3 methyl ester with LiOH·H2O in a 

THF-MeOH-H2O mixture followed by coupling of the resulting acid with the P1–P1′ 

fragment using HATU/DIEA provided the analogue AG-30. 

Vaniprevir and its P1 olefin analogue (AG-53) were synthesized following the 

synthetic methods reported by McCauley et al. [24]. The MK-5172 acyclic and P1–P3 

macrocyclic analogues were synthesized as the following. The intermediate (2S,4R)-1-

tert-butyl 2-methyl 4-((3-chloro-7-methoxyquinoxalin-2-yl)oxy)pyrrolidine-1,2-
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dicarboxylate was prepared from the quinoxaline derivative 3-chloro-7-

methoxyquinoxalin-2-ol and the bosylated Boc-cis-4-hydroxy-L-proline, (2S,4R)-1-tert-

butyl 2-methyl 4-(((4-bromophenyl)sulfonyl)oxy)pyrrolidine-1,2-dicarboxylate, using 

Cs2CO3-mediated SN2 displacement reaction [25]. Vinylation with potassium 

trifluoro(vinyl)borate via palladium catalysis followed by hydrogenation of the double 

bond provided the common P2 intermediate (2S,4R)-1-tert-butyl 2-methyl 4-((3-ethyl-7-

methoxyquinoxalin-2-yl)oxy)pyrrolidine-1,2-dicarboxylate. The acyclic analogues (AH-

49) was assembled from the P2 intermediate by a four step reaction sequence, including 

Boc deprotection, P2–P3 amide coupling, ester hydrolysis, and coupling with the P1–P1′ 

fragment. the bis-olefin precursor for the P1–P3 macrocyclic analogue was synthesized 

from the P2 fragment in an analogous reaction sequence. Finally, cyclization of the bis-

olefin intermediate using ring-closing metathesis catalyst Zhan 1B provided the MK5172 

P1–P3 macrocyclic analogue (AH-54). 
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Discussion 

Effect of the Domain-Domain Interface in Interdomain Dependence and Function 

To date, several crystal structures of the single chain NS3/4A protease – helicase 

complex (scNS3/4A) have been published [1-3]. In all of these structures, helicase 

domain covers the otherwise shallow, solvent exposed active site of the protease, and a 

900 Å2 interface is formed in this conformation. Most functional interfaces bury a surface 

area of at least 1500 Å2 and are primarily formed between hydrophobic residues [4, 5]. 

The domain-domain interface in NS3/4A does not share these characteristics, and 

relevance of this interface has not been investigated before. Along with the semi-flexible 

linker region which covalently attaches the two domains together, this interface is the 

location through which domain-domain communication could happen. In Chapter II, a 

two-part approach was taken to validate this hypothesis. Molecular dynamics studies on 

the scNS3/4A and deletion constructs demonstrated significant interdomain correlations 

between helicase and protease. However, the observed interdomain correlations were not 

as strong as intra-domain correlations. In addition, these correlations were affected by 

deletions in the linker and/or C-terminus regions. These results suggest that the domain-

domain interactions through the crystallographic interface is transient, and disruptions in 

the interface enhance protein function rather than disrupting. Biochemical assays probing 

multiple activities of full length scNS3/4A, interface mutants and isolated domains 

demonstrate that destabilizing the interface affect activities of both domains in vitro. 

However, the effect observed is possibly not through the domain-domain interface. Both 

in protease cleavage and DNA unwinding/binding experiments, disruption of the 
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interface caused increased activities compared to scNS3/4A protease – helicase complex. 

MD simulations and biochemical studies both indicate that the interface is transient and 

disruptions in the interface cause the two domains to become more independent. 

The effect of the helicase domain on protease activity has been debated before, 

with opposing views. The first view is that helicase domain does not affect protease 

cleavage and the protease domain is more active in isolated form [6-8]. In our 

experiments, which utilized a similar construct – the single chain NS3/4A, similar results 

were observed. However, Pyle and coworkers demonstrated up to two orders of 

magnitude enhancement in protease function in the full length NS3/4A [9]. When these 

results are compared, kinetic efficiencies for both the single chain and full length 

constructs were comparable. However, the kinetic efficiency for the isolated protease 

construct from the Pyle lab was significantly lower. This construct is formed by the 

isolated protease domain and the unmodified NS4A, which contains the C-terminal 

product of the NS4A-NS4B cleavage junction. The C-terminus of the NS4A is in 

favorable position to occupy the active site of the protease, hence act as a competitive 

inhibitor of protease activity – which may explain the lower reaction rates observed with 

this construct. Overall, the helicase represses the protease function and disrupting the 

interface also disrupts the transient association between the two domains, leading to the 

liberation of the protease domain and the increase in cleavage activity. 

Helicase DNA unwinding activity was modulated by the interface mutations in a 

similar manner as observed for protease activity, which indicates that the core 

functionalities of both domains are restricted when the domains are bound together. 
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However, RNA unwinding activity was highly enhanced when protease domain was 

present, and the modulation via the interface was minimal. In this case, presence of the 

protease domain is the main cause of this enhancement, rather than the interface. 

Additionally, similar results were obtained from studies of the Flaviviridae NS3/2B 

complex, where the two domains form an alternate crystallographic interface [10-12]. 

However, the effect of the protease domain in RNA unwinding is unclear. 

In conclusion, the interface between protease and helicase domains of HCV 

NS3/4A is likely more regulatory than functional. The domain-domain interface has to be 

disrupted in order to achieve optimum activity. This observation implies that when the 

two domains are liberated, they are free to rotate around the semi-flexible linker, making 

individual domains independent, yet in favorable distance to switch between a closed, 

inactive conformation and an open, active conformation. Disruptions in the interface 

increase the rate of cycling between conformations.  

The crystallographic and solution structures of the Flavivirus single chain NS3/2B 

exhibits a different domain-domain arrangement compared to the HCV scNS3/4A. 

scNS3/2B constructs are similar to HCV scNS3/4A except they lack the C-terminal helix 

and the C-terminus product, which interacts with the HCV NS3/4A protease active site. 

Without the C-terminus, the Flavivirus scNS3/2B forms an extended conformation, 

where the protease domain is rotated away from the helicase and the N-terminal half of 

the protease interacts with the helicase subdomains 1 and 2 [10-12]. Therefore, will the 

absence of the C-terminus affect the activity of the HCV NS3/4A? Pyle and coworkers 

elegantly demonstrated that when the C-terminus was deleted, the incubation time for 
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maximal helicase activity was lowered [13]. This observation supports my hypothesis in 

two ways. First, the interface formed between the two domains is transient and mostly 

dependent on strong associations between the C-terminus and the protease. Second, with 

the C-terminus deletion, the conversion from the closed conformation to open is more 

rapid. In this context, the important question is whether the two domains associate and 

form an alternate interface in the open conformation or they rotate freely without any 

interaction. Presence of an alternate functional interface (compared to the HCV NS3/4A) 

was demonstrated by Lescar and coworkers for Dengue Virus NS3/2B [12]. Mutations in 

residues at the protease, which form contacts to the ATPase loop between helicase 

subdomains 1 and 2, affect ATP hydrolysis and RNA unwinding in vitro. Hence, a 

secondary interaction location between the two domains is also a possibility in the HCV 

NS3/4A. Mapping these mutations in the HCV NS3/4A and probing for modulations in 

the helicase activities may yield similar results, which would further complement the 

alternate conformational arrangement hypothesis. 

Future studies should attempt to elucidate the different domain-domain 

arrangements with respect to various stages of cleavage and RNA unwinding. Crystal 

structures of HCV scNS3/4A to date demonstrate the apo form of the protein and various 

stages of RNA translocation with respect to ATP hydrolysis. However, both domains go 

through multiple steps to perform their respective activities. Reaction intermediates 

should be probed structurally, using solution-based biophysical methods, such as small 

angle x-ray scattering (SAXS), dynamic light scattering (DLS) and static light scattering 

(SLS), to obtain the size, shape and molecular weight of reaction intermediates. 
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Information obtained from these studies will provide the domain-domain orientation and 

oligomerization status of these species. An alternate method that can be utilized is 

deuterium exchange, which will provide solvent accessibility information. Alternate 

interface patterns can be obtained from deuterium exchange rates for reaction states. 

Lower deuteration rates mean lower solvent accessibility, hence a possible interaction 

between the domains. Furthermore, the rates of transition between different states can be 

obtained from single molecule experiments. If the two domains are labeled differentially 

with a FRET pair, the rate of transition between alternate states can be followed in real 

time using single molecule FRET methods. In both cases, the results obtained should 

elucidate how the two domains behave with respect to each other while performing their 

function.  

Effect of the Protease Domain in Helicase RNA Preference 

For both the Flavivirus NS3/2B and HCV NS3/4A, presence of the protease 

domain confers RNA preference over DNA and significantly enhances the RNA 

unwinding of the helicase domain [14-16]. In Chapter II, similar results were obtained for 

the scNS3/4A construct in comparison with the isolated helicase. This enhancement was 

mainly due to the presence of the protease domain, role of the domain-domain interface 

was limited and positive – disruptions in the interface caused further minor enhancements 

in unwinding activity. Comparable enhancement was observed for both the full length 

NS3/4A and scNS3/4A. Hence, the protease domain alone is the main reason behind the 

observed enhancement in RNA unwinding. 
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A direct interaction between NS3/4A protease and viral RNA can be the reason 

for the observed enhancement. Most DEAD-box RNA binding/processing proteins 

contain cofactors that enhance ATP hydrolysis, RNA binding and remodeling [17-19]. A 

third role, other than polyprotein processing and immune suppression, can be attributed to 

the protease domain – being a helicase cofactor. The protease may fulfill this role by 

potentially working as a RNA clamp by interacting with viral RNA. Previously, RNA 

binding activity for Rhinovirus serine protease 3C was demonstrated [20, 21]. 

Additionally, engineered RNA oligomers were shown to inhibit HCV NS3/4A protease 

specifically [22, 23]. In essence, possible RNA binding activity of the protease increases 

the efficiency and/or the processivity of the helicase. 

A recent study by Ray and Das demonstrate that specific interactions between 

viral RNA and protease domain are possible [24]. In this study, the effect of NS3/4A 

protease on transciption of viral RNA and translation was thoroughly investigated. 

Specific binding was observed between HCV internal ribosome entry site (IRES) and the 

protease domain which can be antagonized by the host La protein – which also binds to 

the HCV IRES and function as a translation switch. Translation of HCV polyprotein was 

repressed when NS3/4A protease was overexpressed, possibly by competing with the La 

protein, and increases in the amount of HCV RNA transcripts were observed. This 

interaction is mapped to the active site of the protease due to the fact that proteolysis was 

inhibited when HCV IRES is bound to the protease. In addition, NS4A was eliminated as 

a possible cause of this interaction, only interactions with the C-terminal half of the 
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protease was observed. In essence, specific interactions between the HCV IRES and 

NS3/4A protease were shown to be important in HCV life cycle. 

However, the above observation is not enough to determine the observed 

enhancement in RNA unwinding in vitro. Substrates for NS3 helicase unwinding 

reactions usually consist of a longer bottom strand and a shorter strand, which leaves a 

single stranded overhang stretch of rU (or dT in DNA substrates). Helicase domain 

associates with the substrate on this single stranded region, and the length of this single 

stranded stretch determines how many NS3/4A molecules associate with the RNA and 

perform the unwinding reaction (~6 nucleotides per molecule) [25]. Accordingly, if there 

is a specific interaction between helicase substrates and protease domain, dsRNA should 

be investigated for interactions with the protease domain, because if the helicase 

associates with single stranded region, protease domain, in turn, could contact the double 

stranded region. Enzymatic binding assays such as fluorescence anisotropy, gel-shift 

assays or surface plasmon resonance may be performed between single and double 

stranded HCV-derived RNA and protease domain, including non specific RNA from 

other organisms (e.g. Poliovirus RNA, which has no specificity towards the protease 

[24]) to probe for binding specificity and the mode of binding. Preferential binding for 

the HCV-derived RNA should be observed from these binding assays. Further 

experiments such as mutagenesis and crystallography can additionally be performed to 

pinpoint the location of specific interactions between the protease and RNA. 

Domain-Domain Arrangement in Vivo 
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Biochemical and biophysical characterization of the HCV NS3/4A was primarily 

performed using individual domains or full length constructs which are expressed in a 

high yield expression system, purified and assayed in buffer systems. However, in vivo, 

NS3/4A protein integrates into the ER membrane, possibly via the N-terminal 

transmembrane helix of NS4A and helix α0 of the protease domain [26]. Membrane 

integration is critical for viral propagation and disrupting membrane insertion results in 

the impairment of NS3/4A function [27, 28]. However, when the crystallographic 

structures of the scNS3/4A were juxtaposed onto the membrane-attached structural model 

of NS3/4A, the helicase domain clashes with the membrane [26]. Thus, the transient 

interface and cycling between open and close conformers observed in vitro may not be 

valid in vivo. 

Helix α0 possibly works as the initial targeting mechanism that directs the protein 

to the membrane either co-translationally or immediately after translation. Liberation of 

the NS4A, via the cis cleavage reaction in the NS3-NS4A junction, happens afterwards; 

hence integration of NS4A to the membrane is controlled by the initial interaction 

between protease helix α0 and the membrane [26]. One major question is, whether this 

interaction is transient or permanent. If this interaction is transient, protease domain 

becomes relatively free to sample more conformations, possibly the closed conformation. 

One way to test this hypothesis is to employ an in vitro system involving liposomes and 

full length NS3/4A. This way, the activities of NS3/4A can be tested relatively easily in a 

membrane-like environment and by comparing results obtained from liposome studies to 

earlier unbound solution studies, effect of membrane binding can be evaluated. 
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Sub-genomic replicons of HCV can also be utilized as an alternate method to 

probe membrane binding. Sub-genomic replicons include the critical minimal machinery 

of the HCV (NS3/4A, NS4B, NS5A and NS5B) plus the HCV IRES that provide the 

essential functions of the virus, in a cell-based system. These replicons contain reporter 

systems to analyze protease (e.g. MAVS cleavage), replication (e.g. quantitative Real 

Time Polymerase Chain Reaction – qRT-PCR) and translation (e.g. luciferase activity). 

Interface mutations that were characterized biochemically can be cloned into these 

replicons to evaluate the domain-domain interface, to validate in vitro observations and 

eventually to ascertain closed and open conformations. 

Effect of Helicase Domain in Protease Inhibition 

HCV NS3/4A protease is the major target in combating HCV infection. The 

directly acting antivirals (DAAs) approved for treatment by Food and Drug 

Administration (FDA) – telaprevir and boceprevir – are antagonists of the protease 

domain and majority of the inhibitors in clinical trials, which exhibit up to low picomolar 

potencies, are also being developed against HCV NS3/4A protease [29, 30]. However, 

the role of the helicase domain in inhibitor recognition is largely undetermined. 

Conflicting results were reported that either favor the modulation of inhibitor potency by 

the helicase domain or argue against any effect of the helicase domain [7, 31, 32]. 

However, these studies utilize a limited range of drugs and protease constructs. In 

Chapter III, enzymatic potencies of ten inhibitors were determined for wildtype 

scNS3/4A and protease, multi drug resistance (MDR) mutants and helicase mutants. 

Either between the protease and the scNS3/4A constructs for wildtype and MDR variants 
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or between the wildtype scNS3/4A and helicase mutants, up to an order of magnitude 

modulation in drug potencies was observed. These results signify that, even without any 

designed recognition between protease inhibitors and helicase domain, helicase has a 

minor but discernible effect in inhibitor potency. 

Modulation of inhibitor potency by the helicase domain primarily depends on the 

identity of the P2 extension of inhibitors. P2 extensions for the inhibitors are mostly 

bulky hydrophobic groups. In a recent crystal structure of scNS3/4A with a protease 

inhibitor, P2 extension occupies the groove formed between helicase domain and 

protease active site [3]. Specific interactions between helicase domain and the P2 

extension were not observed, however non-specific interactions mostly hydrophobic in 

nature is a possibility. Observed modulations were more apparent in MDR mutants, 

which additionally signify that the loss of interactions between protease and the inhibitor 

can partially be recovered with helicase interactions. D168A mutant constructs however 

exhibit contradictory behavior, where danoprevir analogs significantly disfavor the 

helicase domain. Isoindoline moiety in danoprevir analogs is significantly dislocated in 

crystal structures of MDR variants [33] and change in conformation of the isoindoline 

extension may clash with the helicase domain, which may account for protease 

preference. In conclusion, helicase domain must be further explored for protease 

inhibition. 

Using the helicase domain as a constraint in protease inhibitor development will 

open further avenues in drug discovery. Drugs that interact with both protease and 

helicase domains specifically will be advantageous. By strongly interacting with 
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domains, the interaction surface of the drug will be increased, resulting in stronger drug-

protein interactions. In theory, these drugs should also inhibit the helicase domain and 

inhibit the competition between the inhibitor and protease substrates. By binding both 

domains simultaneously, the protein will be kept in the closed state. In the closed state, 

the helicase covers the protease active site, which should essentially render protease 

active site inaccessible. In addition, locking the two domains should also inhibit helicase 

function, since unwinding function of the helicase is most likely performed in the open 

conformation. Thus, dual-action protease inhibitors that recognize both domains strongly 

and specifically will result in repression of cleavage and unwinding activities of HCV 

NS3/4A, two essential functions in HCV life cycle. 

Existing protease inhibitors can be altered to recognize both domains. MK-5172 

acyclic analog (AH-49) is a good starting point for creating a proof-of-concept dual 

action NS3/4A inhibitor. MK-5172 and analogs are very potent against the protease 

domain and, except MK-5172 itself, not as susceptible to drug resistance compared to 

other inhibitors. Quinoxoline moiety of MK-5172 analogs favorably interact with H57 

and D81, members of the catalytic triad which are strongly conserved, hence significant 

portion of the potency is retained because mutations in the catalytic triad essentially make 

the protein incompetent. This quinoxoline moiety can be further extended to the helicase 

by adding hydrophobic side chains or better occupation of this hydrophobic cleft. In 

addition, different P4-capping moieties can be explored, similar to the one used by 

Schiering et al. [3], to form more specific contacts with the helicase, especially residues 
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Q526 and H528. Potential gains in potency from these modifications can be tested both in 

enzymatic or replicon-based assays. 

 

Conclusion 

HCV NS3/4A contains two important machineries essential for viral propagation. 

For this reason, both domains are still being investigated vigorously, for both scientific 

and pharmaceutical purposes. In addition, interdomain dependence between the domains 

poses an interesting scientific question. Why have these distinct domains evolved to work 

together? By better understanding the interdomain dependence, we can provide a better 

answer to this challenging question. Furthermore, we can find ways to exploit this 

phenomenon to produce better DAAs that may lead to the cure of Hepatitis C, using a 

single, highly specific, dual-action next generation drug that is effective regardless of the 

genotypical differences between the different HCV genotypes. 

The lessons learned from HCV NS3/4A can also be applied to Flaviviruses. 

Flaviviruses are mostly disease causing viruses in humans and animals alike and, 

collectively, the annual death toll caused by Flavivirus-related diseases are significant, 

especially in the underdeveloped parts of the world. Flavivirus and HCV NS3 proteins 

are similar in composition and function. More interestingly, interdomain dependence 

observed in HCV NS3/4A also applies to Flavivirus NS3/2B. Essentially, similarities 

between these two proteins can be utilized to learn about the evolution of the Flaviviridae 

protease – helicase compexes and eventually produce effective DAAs against 

Flaviviruses to cure associated viral diseases.  
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