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ABSTRACT 

 
Human Immunodeficiency Virus Type 1 (HIV-1), the virus that causes Acquired 

Immunodeficiency Syndrome (AIDS), attacks the immune system leaving patients 

susceptible to opportunistic infections that eventually cause death.  Highly Active 

Antiretroviral Therapy, HAART, is the current drug strategy used to combat HIV.  It is a 

combination therapy that includes HIV-1 Reverse Transcriptase and HIV-1 Protease 

inhibitors.  Drug resistant strains arise that evade current HAART treatments; therefore novel 

drugs are needed.   

HIV-1 regulatory proteins such as Tat, Rev, Nef, Vpr, Vpu, and Vif are attractive 

new drug targets.  Of particular interest is the HIV-1 Vif protein and its cellular binding 

partner APOBEC3G.  In the absence of HIV-1 Vif, APOBEC3G, a cytidine deaminase, is 

able to mutate the viral cDNA and render the virus noninfectious.  HIV-1 Vif binds to 

APOBEC3G and targets it for proteosomal degradation through an interaction with a Cullin-

RING ligase complex.  Blocking the HIV-1 Vif APOBEC3G interaction would allow 

APOBEC3G to perform its antiviral function.  

An attractive strategy to target the HIV-1 Vif APOBEC3G interaction would be a 

structure-based one.  To apply structure-based drug design approaches to HIV-1 Vif and 

APOBEC3G, I attempted to collect high resolution structural data on HIV-1 Vif and 

APOBEC3G.  My attempts were unsuccessful because the milligram quantities of soluble 

protein required were not obtained.   

Therefore, in Chapter III I used chemical cross-linking and mass spectrometry to 

probe the structural topology of HIV-1 Vif obtaining low resolution structural data.  
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Chemical cross-linking formed HIV-1 Vif multimers including dimers, trimers, and tetramers.  

Analysis of the cross-linked monomer revealed that HIV-1 Vif’s N-terminal domain is a 

well-folded, compact, globular domain, where as the C-teriminal domain is predicted to be 

disordered.  In addition, disorder prediction programs predicted the C-terminal domain of 

HIV-1 Vif to be disordered.  Upon oligomerization the C-terminal domain undergoes a 

disorder-to-order transition that not only facilitates oligomerization but may facilitate other 

protein-protein interactions.  In addition, HIV-1 Vif oligomerization bring Lys34 and Glu134 

in close proximity to each other likely creating one molecular surface forming a “hot spot” of 

biological activity.  

In Chapter IV I confirmed my low resolution structural data via peptide competition 

experiments where I identified peptides that can be used as scaffolds for future drug design.  

HIV-1 Vif oligomerization is concentration dependent.  The HIV-1 Vif peptides Vif(29-43) 

and Vif(125-139) were able to disrupt HIV-1 Vif oligomerization, which confirms the low 

resolution structural data.  HIV-1 Vif peptides Vif(25-39) and Vif(29-43) reduced the amount 

of APOBEC3G immobilized on the Protein A beads, reduced the amount of  HIV-1 Vif 

interacting with APOBEC3G, or degraded APOBEC3G itself.  These peptides could be used 

as scaffolds to design novel drugs that disrupt the function of HIV-1 Vif and or APOBEC3G.   

Therefore, low resolution structural data and peptide competition experiments were 

successful in identifying structurally important domains in HIV-1 Vif.  They also provided 

insight into a possible mechanism for HIV-1 Vif function where a disorder-to-order transition 

facilitates HIV-1 Vif’s ability to interact with a diverse set of macromolecules.  These data 

advance our structural understanding of HIV-1 Vif and they will facilitate future high-

resolution studies and novel drug designs. 
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INTRODUCTION 
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Human immunodeficiency virus type 1 (HIV-1), the retrovirus that causes 

acquired immunodeficiency syndrome (AIDS), has become epidemic over the last 30 

years.  The virus devastates a patient’s immune system by killing macrophages, CD4 T 

cells, and dendritic cells, leaving the patient susceptible to opportunistic infections that 

eventually cause death.  To combat the virus, drug strategies have been created and 

administered to patients.  Most patients currently receive highly active antiretroviral 

therapy (HAART), which includes inhibitors of both viral reverse transcriptase and 

protease and has effectively prolonged the lives of HIV-1-infected individuals.  However, 

due to the high infidelity of the reverse transcriptase and selective pressures caused by 

current drug regimens, viruses resistant to HAART have emerged, creating a need for 

new viral targets.   

Attractive new viral targets include HIV-1 regulatory proteins such as Tat, Rev, 

Vpu, Nef, Vpr, and Vif (Flexner, 2007).  In the past, regulatory proteins were thought to 

be unessential to the viral life cycle, and therefore not considered valuable drug targets.  

However, in recent years, the roles of regulatory proteins have become better understood, 

and many of them are necessary for viral production.  Two regulatory proteins, Tat and 

Vpr, have previously been targeted in clinical trials, but these inhibitors showed no 

antiviral activity (Haubrich, 1995; Para, 2006; Flexner, 2007).  Further investigation into 

regulatory proteins as potential drug targets are needed.  An interesting candidate is the 

HIV-1 Vif protein and its cellular binding partner, apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide-like 3G (APOBEC3G or simply, APO3G), which HIV-1 

Vif targets for proteosomal degradation (Marin, 2003; Sheehy, 2003; Stopak, 2003).  In 
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the absence of HIV-1 Vif, APO3G acts as an endogenous antiretroviral agent 

hypermutating the viral genome and rendering the virus noninfectious (Harris, 2003; 

Lecossier, 2003; Mangeat, 2003; Sheehy, 2003; Zhang, 2003; Bishop, 2004; Bishop, 

2004; Harris, 2004; Liddament, 2004; Wiegand, 2004; Zheng, 2004; Doehle, 2005; 

Holmes, 2007).  Therefore, blocking the Vif-APO3G interaction would allow APO3G to 

carry out its antiviral activity.   

Traditional drug therapies have relied on inhibitors designed to disrupt a specific 

protein/enzyme’s activity; however, a more effective approach to drug design might be 

structure-based.  In structure-based drug design, the development of inhibitors is based on 

specific interactions between a potential inhibitor and its target (protein/enzyme).  This 

approach has been successful in developing antiviral inhibitors of HIV-1 protease.  In this 

case, the design of inhibitors has been based on their interaction with the protease’s 

active site.  In particular, the Schiffer lab has focused on designing new inhibitors to fit 

inside the “substrate envelope,” a volume into which the majority of protease substrates 

fit.  The Schiffer lab hypothesized that if inhibitors fill that envelope, they will more 

effectively avoid drug resistance by HIV-1 protease (Prabu-Jeyabalan, 2002).     

To apply structure-based drug design strategies towards the HIV-1 Vif-APO3G 

interaction, I sought to obtain high-resolution crystallographic information.  My attempts 

were unsuccessful; therefore, I utilized mass spectrometry and cross-linking methods to 

obtain low-resolution data on the structure of HIV-1 Vif (Auclair, 2007).  This low-

resolution structural mapping revealed that HIV-1 Vif had a compact, globular N-

terminal domain and a disordered C-terminal domain.  The C-terminal disorder was also 
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predicted by disorder prediction programs.  Mapping of higher order HIV-1 Vif 

oligomers suggests that oligomerization occurs in a head-to-tail fashion, with the C-

terminus subsequently undergoing a disorder-to-order transition.  This transition may be a 

general mechanism allowing HIV-1 Vif to interact with a host of viral and cellular 

proteins.  In addition, my mass spectrometry analysis identified a “hot spot” for 

biological activity between residues 34 and 134, which was supported by a previous 

mutational analysis (Simon, 1999).  I then confirmed my structural information with 

peptide-competition experiments, mapping regions of structural importance.  Peptides 

mapping to the hot spot of biological activity disrupt oligomerization and N-terminal 

peptides found in the hot spot have an unknown influence on HIV-1 Vif and APO3G 

(Auclair, unpublished).  Although high-resolution structural data were not obtained for 

structure-based drug design, low-resolution structural data, in conjunction with peptide-

competition experiments, give new insights into HIV-1 Vif’s structural mechanisms and 

highlight potential regions for drug design.  

 In this chapter, I will give a brief overview of the AIDS epidemic and the stages 

of the HIV-1 life cycle.  After describing AIDS, I will give a detailed description of HIV-

1 Vif, including structural models, post-translational modifications, and protein-protein 

interactions.   APOBEC3G will then be described, including its role as an antiviral agent 

via cytidine deamination and/or blocking retrotransposition.  Finally, the HIV-1 Vif and 

APO3G interaction will be discussed, with a focus on proteosomal degradation of 

APO3G by its interaction with HIV-1 Vif and the Cullin-RING ligase complex.  
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AIDS 

 Acquired immunodeficiency syndrome is caused by the human immunodeficiency 

virus.  HIV-1 patients are classified as progressing to AIDS when their CD4+ T cell 

count drops below 200 per µl of blood, and the patients develop opportunistic infections 

(Centers for Disease Control, www.cdc.gov).  The median progression from HIV-1 to 

AIDS in untreated individuals is 9-10 years, and after diagnosis of AIDS a patient’s life 

expectancy is approximately 9 months.  HIV-1 is transmitted by three major routes: (1) 

sexual contact, (2) exposure to infected bodily fluids, including intravenous drugs, and 

(3) mother-to-child transmission.  

 AIDS patients have a weakened immune system, making them vulnerable to 

lethal opportunistic infections.  An opportunistic infection is caused by an organism that 

would not infect a person with a healthy immune system.  Common opportunistic 

infections observed in AIDS patients include tuberculosis, Epstein-Barr virus, and 

Kaposi’s sarcoma-associated herpes virus.  A patient’s AIDS classification is not changed 

even if the opportunistic infection is cured or the level of CD4+ T cells rise. 

 

The Global AIDS Epidemic 

AIDS has grown into a global epidemic even with advances in education and 

ability to treat the disease.  According to the Joint United Nations Programme on 

HIV/AIDS (UNAIDS) and the World Health Organization (WHO), the number of adults 

and children living with AIDS increased from 36.9 million (31.9-43.8 million) in 2004 to 

39.5 million (34.1-47.1 million) in 2006.  In addition to the overall increase in adults and 
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children living with AIDS, UNAIDS and WHO reported that new infections increased 

from 3.9 million (3.3-5.8 million) in 2004 to 4.3 million (3.6-6.6 million) in 2006.  The 

number of deaths due to AIDS rose from 2.7 million (2.3-3.2 million) in 2004 to 2.9 

million (2.5 million-3.5 million) in 2006.  Over the last few decades public education and 

the advent of new treatments have helped prolong the lives of HIV-1-infected 

individuals.  Even with these advances in education and treatment, however, the increase 

in new infections reported is most striking.  These numbers suggest AIDS is still a 

growing worldwide problem needing to be addressed through both new public education 

programs and treatments. 

The numbers released by UNAIDS and the WHO have recently been the subject 

of controversy (www.unaids.org).  For example, the number of adults and children living 

with AIDS was adjusted in 2006 from 39.5 million (34.1-47.1 million) to 33.2 million 

(30.6-36.1 million).  All the numbers released by the UNAIDS and WHO have been 

updated, including the numbers for previous years.  This discrepancy in numbers was due 

to an audit of the methodologies used to compute them and to increased accuracy in 

numbers reported from such places as India.  Although, the original estimated numbers 

were high, the adjusted numbers do not negate the validity of AIDS as a global epidemic 

that needs to be addressed.       

 

HIV-1 and the Viral Life Cycle  

HIV-1, the virus that causes AIDS, is a retrovirus classified as a member of the 

family retroviridae of the genus lentivirus.  HIV-1 has two copies of single-stranded, 
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positive-sense RNA encoding all nine of its viral genes.  Of these nine genes, three, i.e., 

gag, pol, and env, encode structural proteins, two envelope proteins, and three enzymes.  

The remaining six genes, i.e., tat, rev, nef, vpr, vpu, and vif, code for the six regulatory 

proteins. The viral life cycle consists of entry, reverse transcription, integration, nuclear 

export, budding, and maturation (Figure 1.1).  

Entry  

The HIV-1 virion infects macrophages, CD4+ T cells, and dendritic cells, causing 

cell death after virion budding.  The HIV-1 virion first infects a cell by the interaction of 

the viral envelope (env) protein, gp160, with host cell receptors.  The gp160 protein 

comprises a transmembrane domain (TM or gp41) and a surface domain (SU or gp120).   

The SU protein, gp120, binds to the N-terminal immunoglobulin domain of a CD4+ 

receptor on the host cell membrane.  After interacting with the CD4+ receptor, the env 

glycoprotein then interacts with a chemokine co-receptor, typically CCR5 or CXCR4.  

These interactions cause a conformational change in gp41, resulting in membrane fusion 

between the viral and cellular membrane and release of the viral genome into the host cell 

(Frankel, 1998).   

Reverse Transcription  

After release, the viral RNA is uncoated and reverse transcribed by the viral 

protein, reverse transcriptase (RT).  Reverse transcription is first initiated by base pairing 

of the cellular tRNA3
lys primer, thus allowing synthesis of a (-)-strand DNA molecule.  

The RNase H domain of RT degrades the (+)-sense RNA molecule used to synthesize the 

(-)-strand DNA, which is then used as a primer to synthesize the (+)-strand DNA.  This  
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Figure 1.1 

 

Reprinted by permission from Macmillan Publishers Ltd:  
Nature Reviews Drug Discovery, 2007. 

www.nature.com/nrd/index.html

http://www.nature.com/nrd/index.html
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Figure 1.1: HIV-1 Life Cycle.  The virion first interacts with a CD4+ receptor and a 

chemokine co-receptor, typically CCR5 or CXCR4, through its envelope glycoprotein 

(entry).  After binding, the viral core is released into the host cell, uncoated, and reverse 

transcribed into the viral cDNA (reverse transcription).  The viral cDNA is then 

transported to the nucleus and integrated into the host cell genome (integration).  After 

transcription, viral mRNAs are transported to the cytoplasm and translated into the viral 

proteins (nuclear export).  The structural proteins and enzymes are transported to the site 

of budding at the plasma membrane (budding).  After budding, HIV-1 protease cleaves 

Gag and Gag-Pol polyproteins, leading to a mature virion (maturation).  Proteins in 

green boxes are currently targeted by antiviral drugs, yellow boxes indicate targets in 

clinical trials, and red boxes indicate potential drug targets (Flexner, 2007).
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newly formed DNA double helix or viral cDNA is capable of integrating into the host 

genome.  This HIV-1 RT-mediated transcription of viral cDNA is a target of retroviral 

therapy (Frankel, 1998; Castro, 2006).   

Reverse transcription results in a large number of mutations in the newly 

synthesized viral cDNA due to the infidelity of HIV-1 reverse transcriptase.  In addition, 

host cell proteins, such as the cytidine deaminase APOBEC3G, cause mutations in viral 

cDNA (Harris, 2003; Lecossier, 2003; Mangeat, 2003; Sheehy, 2003; Zhang, 2003; 

Bishop, 2004; Bishop, 2004; Harris, 2004; Liddament, 2004; Wiegand, 2004; Zheng, 

2004; Doehle, 2005; Holmes, 2007).  

Integration 

The newly synthesized DNA double helix forms a nucleoprotein complex, or 

preintegration complex (PIC).  Along with reverse transcriptase, the PIC contains other 

viral proteins such as matrix, Vpr, and integrase.  The PIC is transported to the nucleus 

by the nuclear import machinery, importin-α and nucleoporins.  The viral integrase 

integrates the viral cDNA into the host cell genome by inserting it into the host cell 

chromosomes (Frankel, 1998; Castro, 2006).       

Nuclear Export 

After integration and transcription, both spliced and unspliced mRNAs are 

transported to the cytoplasm where they are translated into viral proteins.  The Tat, Rev, 

and Nef proteins are synthesized first.  Once synthesized, HIV-1 Rev enters the nucleus, 

binds the Rev response element (RRE) of unspliced mRNA and transports it out of the 
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nucleus using the nuclear export machinery.  Once exported from the nucleus, the 

mRNAs are translated into viral proteins (Frankel, 1998).       

Budding  

The Env proteins, gp120 and gp41, are synthesized in the endoplasmic reticulum 

(ER) as is the CD4+ receptor.  To avoid Env binding to CD4+ in the cytoplasm and on 

the ER, CD4+ is targeted for degradation by two viral proteins: Vpu and Nef. Vpu targets 

CD4+ via the ubiquitin-proteosome pathway, and Nef targets CD4+ via endosomal 

degradation.  The degradation of CD4+ facilitates the transport of Env proteins to the site 

of the newly forming virion.  Simultaneously, structural proteins such as Gag and Gag-

Pol, whose synthesis is caused by a -1 ribosomal frameshift (Jacks, 1988), are transported 

to the plasma membrane of the host.  The viral matrix protein is myristoylated and 

anchored to the cellular membrane.  Along with the structural proteins and enzymes, two 

copies of the unspliced viral genome are transported to the bud site and incorporated into 

the virion.  The newly created virion buds from the host cell in an immature, 

noninfectious, state (Frankel, 1998). 

Maturation 

After the immature virion buds from the host cell, the viral protease cleaves the 

Gag and Gag-Pol polyprotein, resulting in the release of viral enzymes, rearrangement of 

structural proteins, and maturation of the virion.  This mature virion is now able to infect 

the next cell and repeat the viral life cycle (Frankel, 1998). Traditional drug treatments 

include inhibitors targeting the HIV-1 protease, thus preventing cleavage and viral 

maturation.   
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Antiviral Therapy, Drug Resistance, and Novel Drug Targets 

 Although AIDS cannot currently be cured, AIDS patients can be treated by a drug 

regimen, HAART.  HAART typically consists of drugs targeting two proteins in the viral 

life cycle: reverse transcriptase and HIV-1 protease.  When traditional HAART becomes 

ineffective, patients are treated with newer inhibitors that target viral entry.  These 

inhibitors include two types of reverse transcriptase inhibitors (nucleoside or nucleotide 

reverse-transcriptase inhibitors [NRTI], and non-nucleoside reverse-transcriptase 

inhibitors [NNRTI]), 10 protease inhibitors, and 2 inhibitors of viral entry.  These 

inhibitors are prescribed as a combination of drugs to minimize the effects of drug 

resistance; as resistance to one drug-treatment regimen arises, patients are treated with a 

new combination of drugs (Flexner, 2007).      

 Treatment has caused the emergence of drug-resistant strains, which likely existed 

before treatment and were selected by the drug-induced selective stress.  Drug resistance 

is due to a change in molecular recognition so that a previously effective inhibitor 

becomes ineffective in treating the disease.  Several drug-resistant mutants have already 

been described for both HIV-1 reverse transcriptase and protease, leading to the 

development of second- and third-generation RT and PR inhibitors less susceptible to 

resistance.  Although, the current HAART therapy is necessary to sustain HIV-1-infected 

patients, this therapy is no longer sufficient due to drug-resistant viruses (Coffin, 1995; 

Gruttola, 2006; Flexner, 2007).   

Emergence of these drug-resistant strains has resulted in the need to identify new 

drug targets.  Potential new drug targets include viral proteins in the viral life cycle or 



 13

cellular proteins playing a role in that cycle.  Targeting viral enzymes such as integrase or 

RNase H are two potential strategies, but a more attractive group of targets may be the 

regulatory proteins Tat, Rev, Nef, Vpr, Vpu, and Vif (Cochrane, 2004; Federico, 2004; 

Zhao, 2004; Barbaro, 2005; Reeves, 2005; Yu, 2005; Harrich, 2006).  Regulatory 

proteins have not been considered valuable drug targets because they were originally 

considered nonessential proteins.  Many of these proteins, however, have recently been 

shown to be necessary for infectivity (Rouzic, 2005; Ehrlich, 2006; Nekhai, 2006; 

Lindwasser, 2007).  Regulatory proteins have also not been considered because targeting 

them would disrupt the large surface of a protein-protein interaction, producing 

pharmacological problems.  For example, an antagonist to Vpr, which inhibits cell 

division, had no anti-HIV-1 activity (Para, 2006).  Although targeting an enzyme’s active 

site may be simpler than targeting a protein-protein interface, the emergence of drug 

resistance has made it necessary to tackle this complex problem (Flexner, 2007).     

Other potential drug targets are host cellular proteins involved in the viral life 

cycle such as the chemokine co-receptors CXCR4 and CCR5, which are necessary for 

viral entry.  CXCR4 is less likely to be a candidate for antiviral therapies due to its 

importance in normal cell development, but the role of CCR5 in normal cellular 

processes appears less crucial.  Furthermore, a natural population of patients has a 32-

amino acid deletion in their CCR5 protein that makes them resistant to infection and does 

not appear to affect any cellular processes, strengthening the case for CCR5 inhibitors 

(Paxton, 1996; Flexner, 2007).    
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Along with targeting and blocking the activity of cellular proteins involved in the 

life cycle, another promising area for drug development is enhancing or enabling the 

activity of naturally occurring host defenses.  One example is APOBEC3G (APO3G), a 

cellular cytidine deaminase that causes G-to-A hypermutations in the plus strand of the 

viral cDNA, rendering the virus noninfectious (Harris, 2003; Lecossier, 2003; Mangeat, 

2003; Sheehy, 2003; Zhang, 2003; Bishop, 2004; Bishop, 2004; Harris, 2004; Liddament, 

2004; Wiegand, 2004; Zheng, 2004; Doehle, 2005; Holmes, 2007).  Therefore, enhancing 

the activity of APO3G is a possible strategy to fight the virus.  In the case of APO3G, 

HIV-1 has developed a protein, Vif, which counteracts the endogenous antiviral 

properties of APO3G. Thus, neutralizing Vif is another potential and attractive treatment 

strategy. 

 

HIV-1 Virion Infectivity Factor (Vif) 

HIV-1 Vif, originally called sor (short open-reading frame), is a 23 kDa, highly 

basic protein conserved in all lentiviruses except equine infectious anemia virus (EIAV) 

(Kan, 1986; Lee, 1986; Sodroski, 1986).  EIAV may lack Vif because an equine cytidine 

deaminase has not yet been described. Even if an equine cytidine deaminase did exist, 

another EIAV gene might have a Vif-like function.  Early in the fight against AIDS, 

HIV-1 Vif was recognized as essential for virus infectivity (Strebel, 1987).  However, 

HIV-1 Vif was only recently shown to be important in degrading the endogenous 

antiviral protein APO3G through an interaction with a Cullin-RING ligase complex 

(Harris, 2003; Lecossier, 2003; Mangeat, 2003; Sheehy, 2003; Zhang, 2003; Bishop, 
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2004; Bishop, 2004; Harris, 2004; Liddament, 2004; Wiegand, 2004; Zheng, 2004; 

Doehle, 2005; Holmes, 2007).   

The development of first-, second-, and third-generation small-molecule inhibitors 

of HIV-1 protease has been successful due to structure-based drug design.  However, the 

three-dimensional structure is not available for HIV-1 Vif.  This lack of structural 

information is due to an inability to bacterially express milligram quantities of soluble 

HIV-1 Vif proteins.  Due to this lack of structural information, traditional structure-based 

drug design techniques cannot be applied to HIV-1 Vif.  However, understanding the 

molecular mechanism and biochemical properties of HIV-1 Vif will aid in its 

development as a therapeutic target.   

Insights into the structure of HIV-1 Vif have been gained through homology 

models.  Mutational analysis has highlighted HIV-1 Vif residues necessary for infectivity 

and can give insights into regions that are potential drug targets.  In addition, HIV-1 Vif 

infectivity has been shown to be correlated to several biochemical properties, including 

multimerization, phosphorylation, and binding partners such as APOBEC3G.  However, 

more structural and biochemical data are needed in order to exploit HIV-1 Vif as a 

therapeutic target.  Through mass spectrometry and peptide-competition experiments, I 

have collected low-resolution structural data and new biochemical data revealing a novel 

mechanism for HIV-1 Vif action and possibly its native tertiary structure.  

The subsequent sections provide an overview of the characterization of HIV-1 Vif 

to date.  Structural models, a mutational analysis, multimerization, and phosphorylation 
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will be considered.  Finally, evidence will be given for HIV-1 Vif binding to a host of 

other macromolecules.      

Structural Models 

 Although no HIV-1 Vif structural data are available from crystallographic or 

NMR studies, several homology models have been created.  HIV-1 Vif has no known 

structural homologs; therefore, no sequence can be used to model the whole HIV-1 Vif 

protein.  To create a homology model, the HIV-1 Vif sequence was divided into C- and 

N-terminal domains (Lv, 2007).  The C-terminal domain (residues 142-177) was modeled 

using von Hippel-Lindau tumor-suppressor protein (VHL) because both VHL and HIV-1 

Vif have been proposed to contain a suppressor of cytokine signaling (SOCS) box 

domain, they have similar conserved key residues, they have similar predicted secondary 

structures, and VHL is the only SOCS-box protein structure available.  The SOCS-box 

was first described in the SOCS family of proteins as a 40-amino acid region of 

homology thought to be involved in targeting proteins for ubiquitination through 

interactions with the Elongin BC complex (Stebbins, 1999).   

The N-terminal domain (residues 1-143) of HIV-1 Vif was modeled using 

nitrate/nitrite response regulator (NarL) from Escherichia coli because its predicted 

secondary structure is similar to that of HIV-1 Vif, it is functionally similar to HIV-1 Vif 

in terms of multimerization and phosphorylation, and the NarL C-terminal domain is 

similar to that of VHL.  Residues 178-192 of HIV-1 Vif were not included in the model 

because they were not similar to either NarL or VHL and were considered to lack 

functional importance (Lv, 2007).  However, my cross-linking data (Chapter III) and the 
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large number of proteins that bind to the HIV-1 Vif C-terminus (Auclair, 2007) lead me 

to hypothesize that the C-terminus is important for HIV-1 Vif function and should not 

have been omitted from the model. 

 The homology model created by Lv et al. gave insight into HIV-1 Vif structure 

and its interaction with the Elongin B/C complex.  For example, two helices forming a 

concave surface in Elongin C interacted with the SLQ residues of HIV-1 Vif.  In 

addition, the cysteines in HIV-1 Vif (C114 and C133) were predicted to be in two 

adjacent loops, creating a groove with a heavily, negatively charged center that could 

allow interactions with other proteins (Figure 1.2A) (Lv, 2007).  However, when 

considering this structural model, one must keep in mind that the templates were two 

different proteins with little sequence homology to HIV-1 Vif.  In addition, these two 

proteins were selected based on their predicted secondary structure, and the C-terminal 

tail of HIV-1 Vif was excluded from the analysis.   

Another homology model of HIV-1 Vif was created using isopenicillin N 

synthase from Aspergillus nidulans (Figure 1.2B, (Balaji, 2006)).  This model was based 

on 25% sequence homology and similar secondary structure predictions between HIV-1 

Vif and isopenicillin N synthase.  Unlike the previous model of HIV-1 Vif, this model 

was created using one protein sequence and structure.  This model suggested that the C-

terminus of HIV-1 Vif (150-192) is exposed on the protein surface and is thus available 

to kinases.  The model also identified that the HIV-1 Vif C-terminus contains helices able 

to self-associate, suggesting that HIV-1 Vif can dimerize and may facilitate the formation 

of higher-order oligomers.  Finally, a positive surface is created with a hooklike structure 
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partially obstructed by S146, which has been shown to be phosphorylated (Balaji, 2006).  

As for the previous model, this model is based on secondary structure predictions and is 

built on a sequence with low identity to HIV-1 Vif.  Therefore, one must be cautious in 

overanalyzing the significance of this model.  In addition, the model itself contains many 

unideal geometries (Balaji, 2006), bringing into question the validity of the model itself.  

Although, these two models can be used to guide further studies, without experimental 

structures or structural data, structure-based drug design is difficult. 

Both of these HIV-1 Vif models (Figure 1.2A and 1.2B) were created using two 

different templates and are drastically different from each other.  Therefore, it is unlikely 

that both models accurately represent the HIV-1 Vif structure.  The model of Balaji et al. 

(Figure 1.2B) more accurately predicts the number of beta sheets and alpha helices than 

the model of Lv et al. (Figure 1.2A), but the latter model presents a more likely structure 

based on the order of helices and sheets (Figure 1.2C).  I obtained the pdb files for each 

homology model (1VZF.pdb and vif-b-c.pdb) and mapped my intra-molecular cross-links 

(Chapter III) onto them (Figure 1.2D and E).  In order for an EDC cross-link to occur 

between a lysine and glutamic or aspartic acid they must be within 5 angstroms of each 

other (Kalkhof, 2005).  Based on the distances generated by mapping my intra-molecular 

cross-links it can be seen that the majority of the distances observed are around above 5 

angstroms for each respective model.  This suggests that neither model is well described 

by my cross-linking data, and therefore not likely to be the actual structure of HIV-1 Vif.  

Therefore, it is likely that some aspects of each model are correct, however this cannot be 

confirmed without a high resolution structure of HIV-1 Vif.     
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Figure 1.2A 
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Figure 1.2B 
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Figure 1.2C 
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Figure 1.2D
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Cross-link Residue Cross-link Residue Distance (Angstroms)
   

Termini E45 31.42 
Termini D61 30.39 

E2 K26 17.44 
E2 K141 36.35 
E2 K176 25.37 

D14 K34 31.19 
K22 E45 13.31 
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E171 K181 N/A 
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Figure 1.2E
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Figure 1.2: Predictions of HIV-1 Vif Structure.  (A.) Homology model of HIV-1 Vif 

based on comparisons with VHL and NarL (Lv, 2007).  (B.) Homology model of HIV-1 

Vif based on a comparison to isopenicillin N synthase (Balaji, 2006).  (C.)  Secondary 

structure prediction of HIV-1 Vif and the HIV-1 Vif sequence (Jones, 1999; Bryson, 

2005). (D.) Intra-molecular cross-links from Chapter III mapped onto the homology 

model from (A.).  Distances between residues are listed in the table.  A distance is not 

listed for the E171-K181 cross-link because the C-terminus was absent from the model.  

(E).  Intra-molecular cross-links from Chapter III mapped onto the homology model from 

(B.).  Distances between residues are listed in the table.  The pdb contained 2 extra 

residues at position 64 and 65, therefore residues involved in cross-links after these 

residues are shifted 2 amino acids towards the C-terminus.  In addition, the sequence used 

to generate the model is different from the HXB2 sequence I used, so some residues are 

different amino acids than seen in my cross-linking data.  For example, R181 shown here 

is equivalent to K181 in the HXB2 sequence.
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 Mutational Analysis 

HIV-1 Vif residues critical for viral infectivity were identified throughout the 

viral protein by in-depth mutational analysis (Simon, 1999).  For example, infectivity was 

reduced by greater than 85% due to mutations in the HIV-1 Vif N-terminus, including 

residues 38-40 and 43-44, which are adjacent to the APO3G-binding domain (Russell, 

2007).  Viral infectivity was also reduced by greater than 85% when both cysteines 

(residues 114 and 133), shown to be important for Cul5 binding, were mutated to serine 

(Kobayashi, 2005; Luo, 2005; Mehle, 2006; Xiao, 2006; Xiao, 2007a; Xiao, 2007b).  

Similarly, infectivity was decreased by greater than 85% after mutating the SOCS-box 

residues 144-146, shown to be important for Elongin C binding (Mehle, 2004; Yu, 2004; 

Kobayashi, 2005).  Finally, infectivity fell by greater than 85% in the HIV-1 Vif triple 

mutant, at residues 161-163, which have been shown to be important for oligomerization 

(Yang, 2001; Yang, 2003; Zennou, 2006).  The diverse nature of these residues indicates 

that multiple domains are necessary for HIV-1 Vif’s function and viral infectivity.  The 

domains highlighted by these mutational analyses, taken together with other biochemical 

and structural data, suggest that they could be used as targets to facilitate drug design 

(Simon, 1999).  Therefore, these domains may be worth cloning and trying to express as 

soluble HIV-1 Vif protein.  

Multimerization 

The function of HIV-1 Vif has been implicated both in vitro and in vivo with 

homo-oligomerization as dimers, trimers, and tetramers (Yang, 2001; Yang, 2003).  The 

proline-rich region in the C-terminus, residues 151-164, has been identified as the 
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putative oligomerization domain.  A HIV-1 Vif deletion mutant of the putative 

oligomerization domain failed to rescue the infectivity of HIV-1 Vif-defective viruses 

(Yang, 2001).  In addition, a peptide containing HIV-1 Vif residues 155-166 reduced 

both the number of HIV-1 Vif oligomers observed and HIV-1 replication in 

nonpermissive T-cells.  The number of oligomers and HIV-1 replication was also reduced 

by other non-HIV-1 Vif peptides containing a PPXP domain, identified via phage display 

(Yang, 2003).  Therefore, the key residues in HIV-1 Vif oligomerization are 161PPLP164 

(Yang, 2003).  Thus, disrupting HIV-1 Vif oligomerization may inhibit HIV-1 Vif 

function and create noninfectious virus. 

Phosphorylation 

 HIV-1 Vif phosphorylation on serines and threonines has been shown to be 

important for Vif function (Yang, 1996; Yang, 1998).  The three phosphorylation sites 

originally identified were Ser144, Thr155, and Thr188 (Yang, 1996), followed by two 

more sites, Thr96 and Ser 165 (Yang, 1998).  The kinase(s) responsible for 

phosphorylating residues 144, 155 and 188 are unknown, but p42/44 mitogen-activated 

protein kinase (MAPK) is responsible for phosphorylating residues 96 and 165 (Yang, 

1998).  Mutating both Ser144 and Thr96 resulted in loss of HIV-1 Vif activity and 

inhibition of HIV-1 replication, suggesting that they are important for both functions.  

HIV-1 Vif peptides containing the 96 and 165 phosphorylation sites were not 

phosphorylated, suggesting that structural determinants in HIV-1 Vif may be necessary 

for their phosphorylation (Yang, 1996; Yang, 1998).  The infectivity of HIV-1 Vif-

deficient cells was also enhanced by MAPK, suggesting that MAPK plays a role in HIV-
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1 replication by both an HIV-1 Vif-dependent and an HIV-1 Vif-independent manner 

(Yang, 1999). 

 Phosphorylation of residues 96 and 165 was likely not observed with 

phosphorylation of 144, 155, and 188 because only low levels of MAPK were present in 

the original experiments (Yang, 1998).  Therefore, other phosphorylation sites are 

possible, but not observed because the appropriate kinase is absent or in low abundance.  

The exact role of phosphorylation in HIV-1 Vif is unclear, but it may facilitate protein-

protein interactions or regulate HIV-1 Vif activity.  Therefore, disrupting phosphorylation 

of HIV-1 Vif may inhibit its function, yielding another potential drug target. 

Macromolecular Interactions of HIV-1 Vif 

 The function of HIV-1 Vif has been implicated in its interactions with many host 

cell proteins, viral proteins, and nucleic acids.  These interactions are crucial to HIV-1 

Vif post-translational modification, packaging, and ability to target the endogenous 

antiviral protein APOBEC3G for proteosomal degradation.  An important area of drug 

development will be developing novel drugs to inhibit any of these interactions. 

Src proteins 

 HIV-1 Vif binds to two kinases from the Src family, Hck and Fyn, but does not 

appear to be phosphorylated by either kinase.  Hck inhibits HIV-1 replication, and this 

inhibition is suppressed by HIV-1 Vif (Hassaine, 2001).  In addition, Fyn and Hck have 

been shown to phosphorylate tyrosines in APO3G, which may regulate its function.  

HIV-1 Vif binding to Hck and Fyn inhibits their catalytic activity, likely inhibiting 

APO3G phosphorylation and affecting its function (Hassaine, 2001; Douaisi, 2005).  
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Furthermore, in the presence of Fyn and Hck and the absence of HIV-1 Vif, less APO3G 

is incorporated into virions, whereas more phosphorylated APO3G is encapsidated 

(Hassaine, 2001; Douaisi, 2005).  Thus, Hck and Fyn may inhibit APO3G encapsidation 

by phosphorylating it in the absence of HIV-1 Vif (Douaisi, 2005).  These results also 

suggest that HIV-1 Vif interacts with Src kinases (Fyn and Hck) and prevents them from 

inhibiting HIV-1 replication, presumably by blocking their kinase activity.  

HIV-1 Pr55Gag   

 In addition to binding to cellular proteins like the Src kinases, HIV-1 Vif has been 

shown to bind to the NC (nucleocapsid) p7 domain of HIV-1 Pr55Gag (Bouyac, 1997; 

Huvent, 1998).  This interaction between HIV-1 Vif and Pr55Gag is prevented by deletion 

of the 22 C-terminal residues (171-192) and point mutations of basic residues (157-179) 

in the C-terminus of HIV-1 Vif, suggesting that the C-terminus is critical for its 

interaction with Pr55Gag (Bouyac, 1997).  Furthermore, HIV-1 Vif packaging into virus-

like particles of sf9 baculovirus cells was abrogated by HIV-1 Vif binding to the C-

terminal domain of NC and by mutating or deleting NC.  Therefore, the NC-Vif 

interaction may be crucial for HIV-1 Vif packaging into budding virions (Huvent, 1998).  

Finally, the interaction between Gag and HIV-1 Vif prevents the processing of Pr55Gag by 

the viral protease (Bardy, 2001).  Although both HIV-1 Vif and HIV-1 Gag are basic 

proteins, I propose their interaction is specific because HIV-1 Vif packaging appears to 

depend on HIV-1 Gag.  Therefore, blocking this interaction may affect viral budding and 

is an attractive drug target.  
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RNA 

 HIV-1 Vif has also been shown to bind RNA in vitro and viral genomic RNA in 

vivo, which likely helps regulate reverse transcription (Dettenhofer, 2000; Cancio, 2004; 

Henriet, 2005; Bernacchi, 2007; Henriet, 2007).  In addition to regulating reverse 

transcription, HIV-1 Vif may be packaged into the virion through interactions with viral 

genomic RNA and nucleocapsid (Henriet, 2005).  Deleting the first 43 amino acids in 

HIV-1 Vif prevents its binding to RNA, and deleting its last 56 amino acids prevents its 

ability to stimulate reverse transcription.  The DNA synthesis activity of reverse 

transcriptase depends on RNA, and DNA is regulated by HIV-1 Vif (Cancio, 2004). 

 HIV-1 Vif binds viral genomic RNA fragments in the following regions: the 5'-

untranslated region (5'-UTR), gag, and the 5' portion of pol with Kds between 45 and 

65nM.  HIV-1 Vif appears to bind cooperatively to the 5'-UTR and gag, and some of the 

approximately 7-24 HIV-1 Vif molecules that bind to RNA do so in a cooperative 

fashion.  Viral genomic RNA binding occurs in a hierarchical fashion, primarily at the 

TAR apical loop, poly(A) stem-loop, and a short region in gag, with Kds between 9.5 

and14nM (Henriet, 2005; Bernacchi, 2007).  In addition to binding the viral RNA, HIV-1 

Vif can bind the corresponding DNA and its complement at similar affinities (Bernacchi, 

2007).  HIV-1 Vif’s ability to bind RNA could have evolved for two reasons: (1) HIV-1 

Vif aids in RNA packaging and reverse transcription, and (2) HIV-1 Vif could protect the 

viral genomic RNA from APO3G deamination (Henriet, 2005; Bernacchi, 2007). 

 In addition to binding RNA, HIV-1 Vif can act as an RNA chaperone by helping 

to anneal tRNA3
lys to the viral RNA, thus initiating reverse transcription and facilitating 
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the first strand transfer (Henriet, 2007).  HIV-1 Vif also stimulates weak HIV-1 genomic 

RNA dimers.  HIV-1 Vif inhibits the formation of NCp-mediated RNA dimer formation 

and tRNA3
lys hybridization.  Therefore, HIV-1 Vif may inhibit the early stages of reverse 

transcription and RNA dimer formation.  However, this inhibition is likely overcome due 

to the low copy number of encapsidated HIV-1 Vif (Henriet, 2007).    

APO3G and the Cullin-RING Ligase complex    

Arguably the most important interactions of HIV-1 Vif are with Elongin B and C, 

Cullin 5, and the APOBEC3 family of proteins, including APO3G and APO3F.  HIV-1 

Vif binds APO3G, a cytidine deaminase, and targets it for proteosomal degradation 

through direct interaction with Cullin5, Elongin B, and Elongin C in a Cullin-RING 

ligase complex.  HIV-1 Vif oligomerization may be necessary to neutralize APO3G; 

therefore strategies to block HIV-1 Vif oligomerization could prevent the neutralization 

of APO3G.  However, since the importance of HIV-1 Vif oligomerization in the APO3G 

interaction is still being investigated, the interaction between HIV-1 Vif and APO3G is a 

more promising area for drug development because of APO3G’s antiviral properties.  

 

Apolipoprotein B mRNA Editing Enzyme, Catalytic Polypeptide-like 3G 

(APOBEC3G)  

Identification: Nonpermissive and Permissive Cells 

The production of infectious virus requires the presence of HIV-1 Vif in specific 

cell types (Sodroski, 1986; Strebel, 1987; Madani, 1998).  Permissive cells include 293T, 

SupT1, and CEM-SS cells, whereas nonpermissive cells include peripheral blood 
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lymphocytes, CEM, H9 and Hut78 cells.  In permissive cells the virus is infectious in the 

presence or absence of HIV-1 Vif, whereas in nonpermissive cells the virus is only 

infectious in the presence of HIV-1 Vif (Gabuzda, 1992; vonSchwedler, 1993; Sheehy, 

2002; Ehrlich, 2006). 

To examine what was responsible for loss of HIV-1 infectivity in nonpermissive 

cells, heterokaryon experiments were conducted in which a nonpermissive cell was fused 

with a permissive cell (Simon, 1998).  If the permissive cell phenotype were dominant, 

then the fused cell would contain a cellular protein with a function similar to that of HIV-

1 Vif, and if the nonpermissive phenotype were dominant, then the fused cell would 

likely have a factor that led to the loss of infectivity, which could be counteracted by 

HIV-1 Vif.  In these experiments, when permissive 293T cells were fused with 

nonpermissive Hut78 cells, virions without HIV-1 Vif were 10-fold less infectious than 

virions produced from 293T cells alone.  These results suggest that a factor in 

nonpermissive cells is the reason for this antiviral activity and that HIV-1 Vif likely 

counteracts its activity (Simon, 1998).  This same result was supported by another 

heterokaryon experiment, in which nonpermissive H9 cells were fused with HeLa cells 

(Madani, 1998).  A subtractive hybridization screen revealed the antiviral factor to be 

APO3G (Sheehy, 2002).  

APO3G is a member of the APOBEC family of proteins which includes 

activation-induced cytidine deaminase (AID) and APOBEC1-APOBEC4.  Many of the 

APOBEC family members have antiretroviral activity.  For example, along with APO3G, 

APOBEC3F can inhibit HIV-1 in a Vif-dependent manner (Bishop, 2004; Liddament, 
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2004; Wiegand, 2004; Zheng, 2004; Holmes, 2007).  In addition, APOBEC proteins from 

other species can inhibit HIV-1, suggesting the antiviral activity of APOBEC proteins is 

widespread and conserved throughout evolution (Mariani, 2003; Bishop, 2004; Bishop, 

2004; Kobayashi, 2004; Wiegand, 2004; Cullen, 2006; Holmes, 2007).   

Cytidine Deamination and Hypermutation 

APOBEC3G (APO3G) is an endogenous cytidine deaminase that deaminates G-

to-A in the plus strand of HIV-1 DNA reverse transcripts.  In the presence of APO3G, the 

nascent HIV-1 reverse transcripts contain a large number of mutations, which may 

explain the lower accumulation of HIV-1 reverse transcripts (Harris, 2003; Lecossier, 

2003; Mangeat, 2003; Sheehy, 2003; Zhang, 2003; Bishop, 2004; Harris, 2004; 

Liddament, 2004; Wiegand, 2004; Zheng, 2004; Doehle, 2005; Holmes, 2007).  These 

mutations in the HIV-1 cDNA may create nonfunctional, mutant proteins or may 

inactivate the viral RNA, making the virus noninfectious.   

In addition to deaminating HIV-1 reverse transcripts, APO3G represses 

replication of murine leukemia virus (MLV) (Harris, 2003; Mangeat, 2003; Bishop, 2004; 

Harris, 2004; Kobayashi, 2004; Holmes, 2007), foamy virus (Lochelt, 2005; Russell, 

2005; Delebecque, 2006; Holmes, 2007), and equine infectious anemia virus (EIAV) 

(Mangeat, 2003; Holmes, 2007).  Both MLV and EIAV lack a HIV-1 Vif-like 

protein/gene, but their repression by APO3G can be blocked by introducing HIV-1 Vif, 

indicating it can function without the presence of other HIV-1 factors (Mangeat, 2003).  
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Retrotransposition 

Hypermutation has been shown to be one potential mechanism by which APO3G 

inhibits viral replication.  However, other possible mechanisms have been described, 

including the ability of APO3G to inhibit retrotransposons in a deamination-dependent or 

deamination-independent fashion (Dutko, 2005; Esnault, 2005; Schumacher, 2005; Chiu, 

2006; Ehrlich, 2006; Esnault, 2006; Holmes, 2007; Hulme, 2007; Niewiadomska, 2007).  

Retrotransposons are mobile genetic elements that can be classified into two general 

classes: (1) long interspersed nuclear elements (LINE) and (2) long terminal repeats 

(LTR).  LTRs, also known as endogenous retroviruses, are related to infectious 

retroviruses (Esnault, 2006).  APO3G can prevent the retrotransposition of IAP 

(intracisternal A-particles) and musD, two endogenous mouse retroviruses, with the 

transposed copies containing G-to-A mutations (Esnault, 2005; Esnault, 2006; Holmes, 

2007).  APO3G was also shown to decrease the amount of transposed IAP and musD 

cDNA without affecting the RNA transcript intermediate (Esnault, 2006).  Thus, APO3G 

may have a dual inhibitory effect: editing and reducing transposed cDNAs (Ehrlich, 

2006).  In addition to restricting mouse retrotransposons, APO3G can restrict Ty1, a yeast 

retrotransposon, by reducing the integration of Ty1 cDNA, and resulting in G-to-A 

hypermutations in the integrated element (Dutko, 2005; Schumacher, 2005; Holmes, 

2007).  APO3G also interacts with Ty1 Gag and is packaged into Ty1 virus-like particles 

by a mechanism similar to that for its entry into HIV-1 virions, suggesting that APO3G 

restricts Ty1 and HIV-1 by similar mechanisms (Dutko, 2005).   
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In addition to its effects on LTR retrotransposons, APO3G may also influence 

LINE retrotransposons.  APO3G was originally thought to have no effect on most LINE-

1 retrotransposons (Esnault, 2005; Bogerd, 2006; Chen, 2006; Muckenfuss, 2006; 

Stenglein, 2006; Holmes, 2007; Hulme, 2007), but these findings are contradicted by a 

recent report that APO3G may affect LINE-1 retrotransposition in 293T cells 

(Niewiadomska, 2007).  Regardless, APO3G appeared to inhibit Alu elements, short 

interspersed nuclear elements, or L1-mediated retrotransposons (Chiu, 2006; Hulme, 

2007).  Since this inhibition of Alu elements was independent of APO3G catalytic 

activity, G-to-A hypermutations were not present.  The ability of APO3G to inhibit Alu 

elements was likely due to a catalytically inactive high molecular mass form of APO3G 

(Chiu, 2006).   

APO3G complexes and Multimerization         

APO3G exists in two forms: a high molecular-mass (HMM) form and low 

molecular-mass (LMM) form.  The HMM ribonucleoprotein complex of APO3G is 

catalytically inactive and predominant in activated CD4+ T cells, but after RNase 

treatment, it is converted to the enzymatically active LMM form.  The LMM form of 

APO3G is predominant in resting CD4+ T cells where HIV-1 replication is blocked and 

reverse transcription is impaired (Chiu, 2005).  When resting CD4+ T cells are activated 

by mitogens and the cytokines interleukin-2, -7, and -15, LMM APO3G is recruited into 

HMM APO3G, which may be associated with the increased ability of these activated 

cells to be infected with HIV-1 (Chiu, 2005; Stopak, 2007).  Therefore, the LMM form of 

APO3G acts as a post-entry restriction factor that protects resting CD4+ cells from HIV-1 
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infection (Chiu, 2005), whereas activated CD4+ cells containing catalytically inactive 

HMM complexes are susceptible to HIV-1 infection.  HMM complexes were also found 

to include Staufen-containing RNA-transporting granules, Ro ribonucleoprotein 

complexes, and Alu and Y RNA retroelements.  This finding indicates that Alu 

retroelements are sequestered in the HMM complex, thus preventing the nuclear L1 

enzymatic machinery from retrotransposing] these elements (Chiu, 2006).     

In addition to the HMM and LMM forms of APO3G, APO3G can form multimers 

(Opi, 2006; Wedekind, 2006; Opi, 2007), which are sensitive to RNase treatment (Opi, 

2006; Opi, 2007).  Monomeric APO3G is packaged into virions, is catalytically active, 

and has antiviral activity (Opi, 2006).  A multimerization-defective mutant of APO3G, 

C97A, can form HMM complexes, suggesting that multimerization and HMM complex 

formation are two unrelated, RNA-dependent processes.  This mutant is resistant to HIV-

1 Vif-induced degradation, even though the two proteins still interact in 

immunoprecipitation experiments (Opi, 2007).  Although resistant to degradation, C97A 

can be incorporated into virions and its antiviral activity is inhibited by HIV-1 Vif, 

suggesting that HIV-1 Vif’s ability to target APO3G to the proteosome and prevent its 

incorporation into virions are two unique functions (Opi, 2006; Opi, 2007). 

APO3G complexes and Multimerization         

APO3G exists in two forms: a high molecular-mass (HMM) form and low 

molecular-mass (LMM) form.  The HMM ribonucleoprotein complex of APO3G is 

catalytically inactive and predominant in activated CD4+ T cells, but after RNase 

treatment, it is converted to the enzymatically active LMM form.  The LMM form of 
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APO3G is predominant in resting CD4+ T cells where HIV-1 replication is blocked and 

reverse transcription is impaired (Chiu, 2005).  When resting CD4+ T cells are activated 

by mitogens and the cytokines interleukin-2, -7, and -15, LMM APO3G is recruited into 

HMM APO3G, which may be associated with the increased ability of these activated 

cells to be infected with HIV-1 (Chiu, 2005; Stopak, 2007).  Therefore, the LMM form of 

APO3G acts as a post-entry restriction factor that protects resting CD4+ cells from HIV-1 

infection (Chiu, 2005), whereas activated CD4+ cells containing catalytically inactive 

HMM complexes are susceptible to HIV-1 infection.  HMM complexes were also found 

to include Staufen-containing RNA-transporting granules, Ro ribonucleoprotein 

complexes, and Alu and Y RNA retroelements.  This finding indicates that Alu 

retroelements are sequestered in the HMM complex, thus preventing the nuclear L1 

enzymatic machinery from retrotransposing] these elements (Chiu, 2006).     

In addition to the HMM and LMM forms of APO3G, APO3G can form multimers 

(Opi, 2006; Wedekind, 2006; Opi, 2007), which are sensitive to RNase treatment (Opi, 

2006; Opi, 2007).  Monomeric APO3G is packaged into virions, is catalytically active, 

and has antiviral activity (Opi, 2006).  A multimerization-defective mutant of APO3G, 

C97A, can form HMM complexes, suggesting that multimerization and HMM complex 

formation are two unrelated, RNA-dependent processes.  This mutant is resistant to HIV-

1 Vif-induced degradation, even though the two proteins still interact in 

immunoprecipitation experiments (Opi, 2007).  Although resistant to degradation, C97A 

can be incorporated into virions and its antiviral activity is inhibited by HIV-1 Vif, 
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suggesting that HIV-1 Vif’s ability to target APO3G to the proteosome and prevent its 

incorporation into virions are two unique functions (Opi, 2006; Opi, 2007).  

Structural Insights into APO3G  

As for HIV-1 Vif, no high-resolution structure is available for APO3G.  However, 

homology models (Huthoff, 2005) and low-resolution structures (Wedekind, 2006) of the 

LMM and HMM species have been generated using small-angle x-ray scattering (SAXS) 

and advanced shape-recognition methods.  The low-resolution structure of the LMM 

species shows an extended shape with tail-to-tail dimerization, and shape analysis of 

LMM and HMM species indicates that their association in dimers would lead to only 

minimal HMM complexes (Wedekind, 2006). These results suggest that other proteins or 

macromolecules (e.g., RNA) are needed to form the HMM complex.   

In addition to the low-resolution structural models, the secondary structure 

arrangement of APO3G was predicted to be similar to those of other cytidine deaminases, 

except for an additional third alpha-helix exposing D128, the residue involved in species 

specificity (Huthoff, 2005).  Finally, a model structure of APO3G was created based on 

the crystal structure of APOBEC2 (Figure 1.3; (Zhang, 2007).  This model predicts that 

two residues important for packaging APO3G into the virion, R122 and W127, are on the 

surface of the protein.  In addition to R122 and W127, and in agreement with the 

secondary structure analysis, D128 is on the surface of the protein with a negative 

electrostatic potential (Zhang, 2007).  This structural information can be used in 

conjunction with other biochemical data to identify surfaces on APO3G where protein- 
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Figure 1.3 

 

Zhang, K. B. et al. (2007) Model Structure of Human APOBEC3G.  PLoS 
One 2(4): e378.   
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Figure 1.3: APOBEC3G structural model.  Homology model of APO3G based on the 

APOBEC2 structure (Zhang, 2007).
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protein interactions may occur, suggesting good target regions for drugs.  

Species Specificity   

HIV-1 Vif appears to form a complex with APO3G in a species-specific manner.  

HIV-1 Vif does not form a complex with murine APO3G (Mariani, 2003; Bogerd, 2004; 

Mangeat, 2004; Schrofelbauer, 2004), and African green monkey (AGM) Vif blocks the 

antiviral activity of AGM but not human APO3G (Mariani, 2003; Bogerd, 2004; 

Mangeat, 2004; Schrofelbauer, 2004).  In addition, HIV-1 Vif reduced the amount of 

human APO3G packaged into the budding virion, but did not affect the packaging of 

murine or African green monkey APO3G.  This species specificity in APO3G was due to 

one amino acid at position 128, an aspartic acid in humans, and a lysine in AGM 

(Mariani, 2003; Bogerd, 2004; Mangeat, 2004; Schrofelbauer, 2004).  The species-

specific sensitivity of human APO3G was changed by a D128K mutant from human Vif 

to simian immunodeficiency virus (SIV)AGM Vif, and a K128D mutant in AGM APO3G 

changed its specificity from SIVAGM Vif to HIV-1 Vif (Mariani, 2003; Bogerd, 2004; 

Mangeat, 2004; Schrofelbauer, 2004).   

Conservation of D128 indicates that this region in APO3G may be an ideal drug 

target.  The conserved nature implies that drugs targeting this region would be specific 

for the HIV-1 Vif-APO3G interaction.  Since only one residue is necessary, the surface 

required for inhibition may not be large.  In addition, changing the species specificity 

disrupted the interaction between HIV-1 Vif and human APO3G, preventing the 

degradation of APO3G.  If this interaction could be disrupted by a drug, the antiviral 

effects of APO3G would be sufficient to reduce viral infectivity.  
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RNA, HIV-1 Gag binding, and Virion Incorporation    

HIV-1 Vif binds APO3G and prevents its incorporation into budding virions, with 

both HIV-1 Gag and RNA playing roles in APO3G packaging.  Whether these 

interactions are direct and necessary for virion incorporation are unclear due to 

conflicting reports, but both Gag and RNA clearly play a role (Alce, 2004; Cen, 2004; 

Luo, 2004; Svarovskaia, 2004).  A direct interaction between APO3G and the HIV-1 Gag 

polypeptide, in particular the nucleocapsid, is sufficient for APO3G packaging into Gag 

virus-like particles (Alce, 2004; Cen, 2004), even in the absence of viral genomic RNA 

(Luo, 2004).  The N-terminus of nucleocapsid, NCp7, is the most critical region in 

facilitating the Gag-APO3G interaction, and incorporating APO3G into budding virions 

(Alce, 2004; Luo, 2004; Burnett, 2007).  In addition, this interaction between NCp7 and 

APO3G allows APO3G to be close to the reverse transcriptase complex in the virion 

(Alce, 2004).  Therefore, the APO3G-NCp7 interaction is not only important for APO3G 

incorporation, but also inhibits tRNA3
Lys (the primer tRNA for reverse transcription) 

annealing to viral RNA, which may lead to inhibition of reverse transcription initiation 

(Guo, 2007). 

 APO3G and Gag have been reported to interact both directly (Cen, 2004) and 

indirectly via an RNA-mediated mechanism (Svarovskaia, 2004).  However, the 

packaging of APO3G is enhanced by but does not depend on viral genomic RNA (Luo, 

2004; Svarovskaia, 2004).  APO3G co-immunoprecipitates with HIV-1 RNA, mRNAs, 

and other RNA-binding proteins, but many of these RNAs and other APO3G-binding 

proteins are excluded from budding virions, suggesting that APO3G is packaged into 
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virions based on its affinity for HIV-1 RNA.  Interestingly, almost all APO3G-associated 

proteins were released with ribonuclease treatment, but HIV-1 Vif remained bound 

(Kozak, 2006), suggesting that RNA is not needed to mediate the APO3G-Vif 

interaction.  In a conflicting report, APO3G associates with HIV-1 nucleoprotein 

complexes through viral RNA, where an interaction with the 5’-UTR of HIV-1 RNA is 

necessary and sufficient for APO3G incorporation into budding virions (Khan, 2005).                       

APO3G incorporated into budding virions is found in a large complex with viral 

RNA (vRNA), which differs from the HMM form of APO3G (Burnett, 2007; Soros, 

2007).  This complex with viral RNA also includes APO3G multimers, formed in an 

RNA-dependent fashion, and recruited to the plasma membrane via HIV-1 Gag (Burnett, 

2007).  The vRNA in the APO3G-vRNA complex blocks the enzymatic activity of 

APO3G, which is restored during reverse transcription by RNase H.  Therefore, RNase H 

appears not only to degrade the vRNA bound to APO3G, allowing APO3G to act on its 

viral minus-strand DNA substrate, but also to produce the APO3G DNA substrate (Soros, 

2007).   

 In addition to being important for budding, the interaction of APO3G with RNA 

may give insights into its function in other cellular processes.  For example, APO3G has 

been shown to localize to mRNA processing bodies (P-bodies) (Wichroski, 2006; 

Gallois-Montbrun, 2007).  APO3G has also been shown to interact with Pol-III derived 

RNAs such as Y3 and 7SL RNAs (Wang, 2007).  The packaging of 7SL into virions is 

mediated by its interaction with both APO3G and the RNA-binding domain of 
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nucleocapsid.  This interaction with 7SL suggests a cellular role for APO3G (Wang, 

2007).  

 

HIV-1 Vif, APO3G, and the Cullin-RING Ligase Complex 

APO3G Degradation 

 HIV-1 Vif binds directly to APO3G, preventing APO3G packaging and 

drastically reducing the amount of APO3G in the cell.  This reduction of endogenous 

APO3G is caused by HIV-1 Vif weakening the translational efficiency of APO3G mRNA 

and targeting APO3G for degradation via the 26S proteosome (Marin, 2003; Sheehy, 

2003; Stopak, 2003).  HIV-1 Vif alone is sufficient to degrade APO3G; when HIV-1 Vif 

is expressed in the absence of other viral proteins, APO3G is still degraded (Stopak, 

2003).  HIV-1 Vif stimulates ubiquitination of APO3G, thus targeting it for degradation 

via the proteosome (Sheehy, 2003).  In addition, HIV-1 Vif function was suggested to 

involve two domains; the first domain contained residues SLQ(Y/F)LA that were 

involved in degrading APO3G, and the second domain was implicated in binding to 

APO3G (Marin, 2003). 

 Although this APO3G-binding domain had been proposed, the HIV-1 Vif 

residues involved in binding to APO3G were only recently identified.  A potential 

APO3G-binding domain in HIV-1 Vif was identified in studies of the D128K-APO3G 

mutant, which is unable to bind HIV-1 Vif or be degraded, as residues 14DRMR17, but 

other likely binding sites could not be ruled out (Schrofelbauer, 2006).  In fact, the HIV-1 

Vif residues 40YRHHY44 are important for APO3G binding, and residues 14DRMR17 are 
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important for APO3F binding (Russell, 2007).  In addition, mutating the APO3G-binding 

site increased HIV-1 Vif’s ability to hinder APO3F (Russell, 2007).  

Proteosomal Degradation 

 HIV-1 Vif targets APO3G for proteosomal degradation through an interaction 

with Cullin5 (Cul5), Elongin B, Elongin C and Rbx1 (Figure 1.4).  This interaction forms 

a Skp1-Cullin-F-box (SCF)-like complex, or a Cul5-EloB/C E3 ubiquitin-ligase complex, 

which facilities the ubiquitination and degradation of proteins, such as APO3G, via the 

proteosome.  It is interesting to note that APO3G and HIV-1 Vif are both ubiquitinated 

and degraded, HIV-1 Vif to a lesser extent.  A HIV-1 Vif mutant unable to interact with 

the Cul5 complex also could not facilitate the degradation of APO3G.  In addition, this 

Vif-Cul5-EloB/C complex could ubiquitinate APO3G but not APO3G-D128K, an 

APO3G mutant unable to bind HIV-1 Vif (Yu, 2003; Mehle, 2004; Yu, 2004; Kobayashi, 

2005; Luo, 2005).   

HIV-1 Vif binds Elongin C through an interaction with its BC-box motif (the 

SLQ(Y/F)LA domain) in the SOCS (suppressor of cytokine signaling)-box (Mehle, 2004; 

Yu, 2004).  Serine phosphorylation in the SOCS-box of HIV-1 Vif inhibited Elongin C 

binding (Mehle, 2004), and the SLQ/AAA mutant was unable to form the Cul5 complex 

and degrade APO3G (Kobayashi, 2005).  Although the SOCS-box motif is necessary for 

assembly of the Cul5-EloB/C complex, it is not sufficient because two cysteines outside 

the SOCS-box are required for Cul5 binding.  Therefore, HIV-1 Vif appears to act as a 

substrate receptor in the Cul5-EloB/C complex (Yu, 2004; Luo, 2005; Mehle, 2006; 

Xiao, 2006; Xiao, 2007a; Xiao, 2007b). 
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Figure 1.4 

 

Reprinted from Trends in Biochemical Sciences, 32(3), Holmes, R., M. Malim, and K. 
Bishop, APOBEC-mediated viral restriction: not simply editing, 118-28, 2007, with 
permission from Elsevier. 
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Figure 1.4:  Role of HIV-1 Vif in Proteosomal Degradation of APO3G in 

Nonpermissive Cells.  In cells infected with wild-type virus, HIV-1 Vif binds to APO3G 

and targets it for proteosomal degradation through an interaction with a Cullin-RING 

ligase complex.  The Cullin-RING ligase complex includes Cul5, Elongin B & C, and 

rbx1.  In the absence of HIV-1 Vif, APO3G is not degraded and is packaged into the 

budding virion.  APO3G is then released with the viral core into the host cell cytoplasm, 

where it causes G-to-A mutations of the plus-strand viral cDNA.  These mutations 

inactivate the virus and prevent further infection (Holmes, 2007).
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  HIV-1 Vif binding to Cul5 involves Vif residues 100-142.  In particular, residues 

H108C114C133H139 in HIV-1 Vif are required to form the Vif-Cul5-EloB/C E3 ligase 

complex.  This HCCH motif is part of a larger motif, Hx5Cx17-18Cx3-5H, which 

coordinates one zinc molecule and is necessary for assembling the Vif-Cul5-EloB/C 

complex through an interaction with Cul5 (Kobayashi, 2005; Luo, 2005; Mehle, 2006; 

Xiao, 2006; Xiao, 2007a; Xiao, 2007b).  Also important in coordinating the zinc 

molecule, binding to Cul5, and degradation of APO3G are the hydrophobic HIV-1 Vif 

residues, Ile120, Ala123, and Leu124 (Mehle, 2006).  HIV-1 Vif proteins lacking this 

HCCH motif or with mutations at these residues bound less strongly to Cul5, zinc, and 

degraded APO3G less than wild-type proteins (Kobayashi, 2005; Luo, 2005; Mehle, 

2006; Xiao, 2007b). HIV-1 Vif binding to Cul5 is mediated through the N-terminus of 

the first Cullin repeat in Cul5 (Mehle, 2006; Xiao, 2006).  HIV-1 Vif function was 

inhibited by chelating the zinc in the Vif-Cul5-EloB/C complex, but chelation did not 

affect cellular Cul5-SOCS3 E3 ligase assembly, suggesting that the zinc requirement for 

assembly may be unique to HIV-1 Vif and that the Vif-Cul5-EloB/C complex would be a 

good candidate for a drug target (Xiao, 2007a). 

 On the other hand, formation of the Vif-Cul5-EloB/C complex and degradation of 

APO3G do not appear to be unique to APO3G or HIV.  Other APOBEC3 proteins are 

degraded by mechanisms similar to those for APO3G (Shirakawa, 2006) and an 

adenovirus protein, E4orf6, has been shown to contain a Vif-like BC-box essential for 

complex formation and p53 degradation, but no zinc is required (Luo, 2007).  Thus, other 

viruses can apparently hijack the Cul5-EloB/C E3 ligase complex to degrade cellular 
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proteins, but the requirement for zinc is unique to HIV-1 Vif.  Therefore, targeting the 

recruitment of viral proteins to this complex is a potential drug target, and the 

requirement for zinc gives a more specific target in the HIV-1 Vif-Cul5 interaction.  

 

Summary 

 Obtaining structural information for HIV-1 Vif would give insights into the 

molecular mechanisms of its protein-protein interactions with other cellular and viral 

partners (Figure 1.5).  This information would thus advance knowledge about HIV-1 Vif 

and suggest other likely functions.  

HIV-1 Vif is an attractive target for structure-based drug design because it acts on 

the endogenous antiviral protein, APO3G, targeting it for proteosomal degradation.  In 

the absence of HIV-1 Vif, APO3G is packaged into budding virions where it deaminates 

G-to-A in the plus strand of the viral cDNA, preventing further rounds of infection.  

Inhibiting the HIV-1 Vif-mediated degradation of APO3G would allow this host cell 

protein to perform its natural function as an antiviral agent, making HIV-1 Vif a good 

drug target.  To date no structural data are available for HIV-1 Vif due to the difficulty in 

acquiring large quantities of soluble protein for X-ray crystallographic and NMR studies.  

Therefore, information on the structure of HIV-1 Vif from cross-linking and mass 

spectrometric studies will reveal the regions important for HIV-1 Vif function, thus 

signaling likely new drug targets.  In addition, the cross-linking data will be confirmed by 

peptide-competition experiments, whose results may give insight into new 

peptidomimetics and molecules that can be used to disrupt the function of HIV-1 Vif.
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Figure 1.5 
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Figure 1.5: HIV-1 Vif Binding Domains.  The sequence of HIV-1 Vif is mapped with 

its binding domains as previously described (Bouyac, 1997; Huvent, 1998; Bardy, 2001; 

Yang, 2001; Yang, 2003; Cancio, 2004; Mehle, 2004; Yu, 2004; Kobayashi, 2005; Luo, 

2005; Mehle, 2006; Schrofelbauer, 2006; Xiao, 2006; Auclair, 2007; Mehle, 2007; 

Russell, 2007; Xiao, 2007a; Xiao, 2007b).     
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 In this chapter I outline my experimental design and some of the techniques used 

to investigate the structural topology of HIV-1 Vif.  Since HIV-1 Vif is an ideal candidate 

for structure-based drug design, my first goal was to obtain soluble protein for 

crystallographic studies.  Therefore, I first discuss in detail the techniques used for 

protein expression, then those used in cross-linking and mass spectrometry to obtain 

structural information.  Then I describe at length the techniques used to characterize the 

HIV-1 Vif/APOBEC3G (APO3G) interaction, including surface plasmon resonance, size-

exclusion chromatography and laser light scattering (SEC-LS), and peptide-competition 

experiments.  Finally, I will describe intrinsically disordered proteins.   

 

Protein Expression  

Structure-based strategies to design drugs that target HIV-1 Vif and APO3G have 

not been possible to date due to the lack of three-dimensional structures for these 

proteins.  Only limited structural or biochemical information is available for these 

proteins because they could not be obtained in large quantities of soluble protein needed 

for conventional structural analyses such as X-ray crystallography or nuclear magnetic 

resonance (NMR).  Large quantities of protein are generally obtained by bacterial 

expression systems that yield soluble and insoluble fractions (Appendix I).  Proteins 

expressed in the soluble fraction are generally believed to be in a native conformation 

that retains their normal physiological functions, whereas proteins found in the insoluble 

fraction are unfolded and thus in a nonnative form.  Thus, expressing milligram quantities 

of soluble protein, Vif and/or APO3G, in its native form is necessary to pursue structure-
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based therapeutic strategies.  Moreover, large quantities of these proteins will allow their 

use in conventional biophysical techniques to decipher their function(s). 

To this end, I sought to obtain milligram quantities of both soluble HIV-1 Vif and 

APO3G for X-ray crystallographic studies by optimizing expression conditions. In my 

initial expression experiments, I varied (1) isopropyl β-D-1-thiogalactopyranoside (IPTG) 

concentration to induce protein expression, (2) temperature of induction and expression, 

and (3) type of induction/expression media.  Lower concentrations of IPTG would slow 

the rate of protein (HIV-1 Vif and APO3G) induction and expression and decrease the 

accumulation of protein per cell. These conditions would prevent host E. coli cells from 

being overwhelmed by high levels of a foreign protein that they would sense as toxic and 

shuttle to inclusion bodies (insoluble fraction).  Lower temperatures for induction and 

expression are used to slow the rates of natural host cell processes, thus preventing HIV-1 

Vif and APO3G from being considered toxic by E. coli.  Different media such as terrific 

broth (TB) and Luria broth (LB) are recommended for induction/expression because 

media with high nutrient contents promote robust growth of E. coli thus increasing the 

amount of HIV-1 Vif and APO3G produced.   

Another technique I used to increase the yield of soluble protein was expressing 

HIV-1 Vif and APO3G with a tag known to be soluble. This technique has been reported 

to enhance the expression of toxic proteins in the soluble fraction by masking their toxic 

characteristics.  I, therefore, tested expression constructs of HIV-1 Vif and APO3G as 

fusion proteins with maltose binding protein (MBP), glutathione S-transferase (GST), and 

NusA, all known to increase solubility of the expressed fusion proteins (Terpe, 2003 ). 
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To further increase the yield of soluble protein, I used four other strategies:  

codon optimized cells, baculovirus expression, recovery of protein from the insoluble 

fraction, and different HIV-1 Vif variants. First, I used codon optimized E. coli cells.  

The gene for HIV-1 Vif contains several codons for arginine, isoleucine, and leucine, 

which correspond to rare tRNAs in E. coli. To enhance synthesis of these rare tRNAs in 

E. coli, I used BL21CodonPlus(DE3)-RILE. coli cells which have plasmids that produce 

these rare amino acids.  Second, I tried to increase the yield of soluble APO3G and HIV-

1 Vif by using baculovirus vectors to express the proteins in insect cells that have post-

translational machinery. Post-translational modification may be crucial for folding of the 

respective proteins, as well as their functions.  APO3G and HIV-1 Vif are reported to be 

phosphorylated (Yang, 1996; Yang, 1998; Yang, 1999; Douaisi, 2005).  Third, I tried to 

recover HIV-1 Vif and APO3G from the insoluble fraction by using 8M urea or 6M 

guanidine hydrochloride, which denatures proteins, and then refolded to obtain native 

protein.  A fourth approach was to use different Vif variants and species since the 

naturally occurring differences in amino acids might increase the solubility of a particular 

Vif protein.  For example, the different amino acid sequence of SIV Vif might be more 

efficiently expressed as soluble protein than that of HIV-1 Vif.  

Finally, I tried to increase the yield of soluble proteins by co-expressing HIV-1 

Vif with APO3G.  This strategy was based on the possibility that the complex would be 

more stable, thus more soluble, than each individual protein.  All these strategies were 

used to reach the goal of obtaining soluble HIV-1 Vif and APO3G proteins for 

crystallographic studies that would provide data for use in structure-based drug design.  
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Mass Spectrometry: Methods for Chapter III 

 As described above, my first goal was to obtain soluble HIV-1 Vif and 

APO3G proteins for crystallographic studies of the structures for HIV-1 Vif, APO3G, 

and their complex. However, the strategies described in the previous section failed to 

produce soluble protein (Appendix I).  Therefore, I sought low-resolution structural 

information by alternative strategies such as cross-linking and mass spectrometry (Figure 

2.1).  

Mass spectrometry has traditionally been used to identify proteins, but over the 

last few decades it has been increasingly used to probe protein-protein and protein-ligand 

interactions.  In particular, when traditional structural methods such as X-ray 

crystallography or NMR cannot be used, mass spectrometry is useful because it can probe 

structural characteristics using small quantities (nM range) of protein in a relatively short 

amount of time (Farmer, 1998; Back, 2003; Trester-Zedlitz, 2003).  In addition, cross-

linking and mass spectrometry analysis can be used to validate the structural predictions 

of molecular simulations (Back, 2003; Trester-Zedlitz, 2003; Sinz, 2006).    

 Structural information about protein-protein and protein-ligand interactions can be 

obtained by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI/MS).  

Most non-covalent protein complexes dissociate when subjected to MALDI/MS analysis, 

but these interactions can be kept intact by four main measures.  First, specific matrix and 

protein concentrations can be used to favor the protein complex (Farmer, 1998).  Second, 

“first shot” laser analysis can be utilized, in which each spot on the MALDI plate is only 

irradiated once at the threshold irradiance, and all the “first shots” are summed to prevent 
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Figure 2.1   

Reprinted from Journal of Molecular Biology, 331, Back, J.W., L.D. Jong, O. 
Muijsers, and C. G. de Koster, Chemical Cross-linking and Mass Spectrometry for 
Protein Structural Modeling, 303-313, 2003, with permission from Elsevier. 
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Figure 2.1: Cross-linking and Mass Spectrometry Analysis.  A protein complex is 

cross-linked and resolved on a denaturing gel with a noncross-linked control.  The 

noncross-linked control and cross-linked samples are in-gel digested and analyzed by 

mass spectrometry.  The noncross-linked sample determines peptide coverage, the cross-

linked monomer determines intra-molecular cross-links, and the cross-linked samples 

contain inter-molecular cross-links.  Cross-linking data can be used as distance 

constraints to build three-dimensional models (Back, 2003).   
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radiation damage from disrupting the protein complex.  Third, the pH of the sample and 

matrix can be adjusted to favor the protein complex.  However, concerns that these 

techniques may not keep a complex intact have led to a fourth way to detect protein 

complexes: chemical cross-linking.  MALDI/MS analysis of a complex prior to cross-

linking allows the molecular masses of individual subunits to be determined, and after 

cross-linking this analysis allows the stoichiometry of the complex to be determined.  

Therefore, MALDI/MS can give insights into the composition of a protein-protein 

complex, the mass of its subunits, and the stoichiometry of the complex (Farmer, 1998). 

Cross-linking and mass spectrometry analysis become particularly useful for 

investigating limited quantities of proteins as in the case of HIV-1 Vif.  These techniques 

can be used to determine neighboring amino acids in three-dimensional space, when 

these relationships are not apparent from the primary sequence, thus allowing potential 

topology models to be built.  Cross-linkers of different lengths and reactivities can be 

used to validate observed cross-links and to determine unique distant constraints for 

residues.  Cross-linking conditions should be as near physiological as possible to ensure 

that the protein structure is not disturbed; chemical cross-linkers are typically not 

destructive since cross-linked enzymes generally retain their activity.  The complexity of 

mass spectrometric analysis can be reduced by using gel separation and in-gel digestion 

to separate unique protein species (Back, 2003; Sinz, 2003; Sinz, 2006). 

 Cross-links have been identified by three mass spectrometric techniques:  

MALDI/MS, electrospray ionization (ESI)-MS/MS, and Fourier transform ion cyclotron 

resonance (FT-ICR).  MALDI/MS and ESI can be used to identify cross-links based on 
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molecular weights.  In addition, ESI-MS/MS can give sequence data about cross-links, 

which aids in their identification.  The identification of cross-links has been advanced by 

the development of FT-ICR mass spectrometry.  FT-ICR has great mass accuracy, more 

than 2 ppm, which reduces the number of cross-link candidates and increases the 

accuracy of identification (Back, 2003; Sinz, 2003; Sinz, 2006).       

 Looking for cross-links in mass spectrometry data is a daunting task.  To aid in 

identifying cross-links, researchers have used many different techniques, including 

isotope labeling, fluorescence labeling, affinity cross-links, and 18O labeling of peptides 

(Sinz, 2003; Trester-Zedlitz, 2003; Sinz, 2006).  For example, protein samples can be 

divided, and half can be in-gel trypsin digested in the presence of 16O and the other half 

in the presence of 18O water.  After digestion, the two samples are mixed and analyzed.  

Since oxygen molecules are incorporated into the C-terminus of tryptically cleaved 

peptides, cross-linked peptides have an 8-mass-unit shift and uncross-linked peptides 

have a 4-mass-unit shift (Yao, 2001; Back, 2002).  

 Cross-linking and mass spectrometry have been increasingly applied over the last 

several years to identify the structural characteristics of proteins, particularly as an 

alternative approach to obtaining structural information when large quantities of proteins 

and complexes cannot be isolated.  For example, cross-linking and mass spectrometry 

analysis of apolipoprotein(apo)A-I cross-linked to high density lipoprotein (HDL) 

particles has given insight into the spatial orientation of apoA-I on HDL particles and 

supported two of three structural models (Davidson, 2003).  In addition, calmodulin 

cross-linking to a small peptide, melittin, has been used to determine interacting regions 
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within the calmodulin-melittin complex (Schulz, 2004).  These data have helped 

determine the orientation in which melittin binds calmodulin and have been used to 

create a novel three-dimensional model of the complex (Schulz, 2004).  In addition to 

confirming structural models (Davidson, 2003) and creating new structural insights into 

peptide binding (Schulz, 2004), cross-linking and mass spectrometry analysis can be used 

to confirm data from crystallography and NMR.  For example, the technique has been 

used to confirm NMR data on the interactions between calmodulin and a short skeletal 

muscle, myosin light-chain kinase peptide (M13) (Kalkhof, 2005). 

 Therefore, in the absence of milligram quantities of protein necessary for 

crystallography, mass spectrometric and cross-linking techniques are a valuable approach 

to obtaining structural information for protein-protein and protein-peptide interactions.  

Using cross-linkers with different reactivities and distance constraints can give insight 

into which residues are three-dimensionally adjacent and aid in constructing a three-

dimensional model.  Structural mapping via mass spectrometry can be used when 

crystallography and NMR are not available to create novel structural data, to confirm 

models, or to confirm experimentally collected structural data.  These structural data can 

be used with other biochemical data to aid in drug design.   

 

Surface Plasmon Resonance  

 A technique used to analyze protein-protein, protein-small molecule, and protein-

nucleic acid interactions is surface plasmon resonance (SPR), which I used to obtain 

binding data for the HIV-1 Vif/APO3G interaction (Appendix II).  SPR can measure 
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protein-protein interactions in real time and produces an on-rate (kon) and an off-rate (koff) 

that can be used to calculate a dissociation constant (Kd).  The SPR machine (Biacore) 

measures binding in terms of response units (RUs), where 1000 RUs equals 1ng of mass 

per mm2 (Fivash, 1998) www.biacore.com).  

 A sensor chip docked into the SPR machine is the surface on which proteins 

interact.  Sensor chips are composed of carboxy-methylated dextran surfaces that allow 

ligand binding by multiple chemistries.  The chemistry most commonly used in 

immobilization is amine coupling, but nickel and streptavidin affinity are also used.  A 

ligand is immobilized onto the sensor chip surface by a covalent interaction, which 

allows the surface to be regenerated and reused.  After the ligand is immobilized, an 

analyte is injected into the machine, and the ligand-analyte interaction is measured 

(Fivash, 1998) www.biacore.com). 

 This ligand-analyte e.g. protein-protein interaction is measured as the change in 

response units determined by the angle of light at an optical detection unit. The unit 

measures light refracted by molecular interactions on the sensor surface inside a flow 

cell, on which a polarized light beam is focused (www.biacore.com). 

 

Size-exclusion Chromatography and Laser Light Scattering  

 Size-exclusion chromatography and laser light scattering (SEC-LS) are used to 

determine the molecular weights of proteins and protein-protein complexes.  Therefore, I 

used this approach to determine the molecular weight of HIV-1 Vif and APO3G 

oligomers in solution as well as the molecular weight of the HIV-1 Vif-APO3G complex 

http://www.biacore.com/
http://www.biacore.com/
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(Appendix II).  The goal of determining the exact molecular weight of the HIV-1-Vif 

APO3G complex was to give insight into its stoichiometry.   

 In SEC-LS experiments, proteins are first separated on a size-exclusion column 

and analyzed by laser light scattering.  The amount of scattered light is related to the 

molecular weight of a protein or protein complex; therefore, the absolute mass (molecular 

weight [MW]) and size (radius of gyration) of macromolecules can be determined.  Using 

SEC-LS has numerous advantages: (1) macromolecules are studied in solution, (2) 

experiments can be conducted faster (in hours) than other techniques (in days), and (3) 

the MW determination is accurate to within 7% error.  In addition, SEC-LS can directly 

measure MW, whereas dynamic light scattering indirectly calculates the MW of a sample 

by measuring its polydiversity and other parameters (Yale Keck Facility website, 

www.keck.med.yale.edu).    

  

Peptides: Methods for Chapter IV 

Since high-resolution structural data could not be obtained for the HIV-1 VIf-

APO3G interaction, I confirmed my low-resolution structural data and identified 

potential inhibitors of a specific protein-protein interaction by using peptide-competition 

experiments.  In addition, the peptides used in the peptide competition experiments can 

be tagged with antennapedia for cellular uptake to correlate my low resolution structural 

data with viral infectivity (Yang, 2003).  In the case of HIV-1 Vif, peptides could be 

isolated to block either oligomerization or the Vif-APO3G interaction.  These peptides 
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could be used to block HIV-1 Vif’s function, thus allowing APO3G to perform its role as 

an antiretroviral agent.   

In a similar manner to my peptide competition experiments, Phage display has 

been used to develop peptides that bind to HIV-1 Vif and prevent its ability to self-

associate (Yang, 2003).  These peptides contain a PXP motif that is consistent with the 

161PPLP164 motif observed in HIV-1 Vif’s proposed oligomerization domain.  Indeed, 

when peptides containing the PPLP domain were identified via phage display and tagged 

with antennapedia, they inhibited HIV-1 replication in vivo (Yang, 2003).  The 

antennapedia-tag acts as a cellular uptake signal, and HIV-1 replication is inhibited, 

presumably by peptide-mediated inhibition of HIV-1 Vif oligomerization (Yang, 2003).  

The same PPLP-containing peptides have recently been tagged to the TAT-uptake signal 

and shown to inhibit viral infectivity (Miller, 2007).  These peptides were also shown to 

reduce the number of HIV-1 Vif multimers, thus increasing the amount of APO3G and 

reducing infectivity (Miller, 2007).    

The function of HIV-1 Vif can be disrupted not only by blocking its 

oligomerization (the Vif-Vif interaction), but also by disrupting the Vif-APO3G 

interaction.  The HIV-1-APO3G interaction has been shown to be strongly inhibited by 

N-terminal HIV-1 Vif peptides in peptide-competition assays where the most potent 

peptide contained residues 57-71 (Mehle, 2007).  This peptide reduced the amount of 

Vif-APO3G binding to almost background levels.  This result not only gives insight into 

potential therapeutics, but also implicates the N-terminal region of HIV-1 Vif in APO3G 

binding (Mehle, 2007).   
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Intrinsic Disorder 

The techniques described above can also give insight into potentially disordered 

regions in HIV-1 Vif.  A central theme in structural biology is that structure and function 

are correlated; therefore, protein function has been assumed to depend on a well-defined 

structure.  However, a class of proteins was recently discovered to function without a 

defined structure; these proteins are known as intrinsically disordered (Dyson, 2005; 

Fink, 2005).  Intrinsically disordered proteins have three main characteristics: (1) lack of 

a specific tertiary structure but a defined secondary structure, (2) low overall 

hydrophobicity, and (3) high net charge.  Therefore, these characteristics allow the 

proteins to sample an ensemble of conformations (Dyson, 2005; Fink, 2005). 

Lack of order is determined by a protein’s underlying amino acid sequence 

(Dyson, 2005; Fink, 2005).  Based on sequence, disordered proteins fall into two groups, 

those without any structure at all and those with disordered domains.  These disordered 

proteins or regions have few bulky hydrophobic amino acids such as Val, Leu, Ile, Met, 

Phe, Trp, and Tyr, whereas they have more polar and charged amino acids such as Gln, 

Ser, Pro, Glu, Lys, Gly, and Ala.  These patterns have been used to develop programs that 

predict disorder in proteins based on their sequence (Dyson, 2005; Fink, 2005). 

Intrinsic disorder provides a unique functional advantage to proteins; it allows 

them to bind a large diverse set of ligands.  Upon ligand binding, the disordered region 

undergoes a disorder-to-order transition, suggesting that folding and binding are coupled 

in these proteins.  Many of these proteins are involved in molecular regulation; therefore, 

they are abundant in cell cycle control, transcriptional and translational regulation, and 
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have been linked to cancer.  On a similar note, hub proteins in large protein networks are 

often intrinsically disordered.  This disorder allows these proteins to bind the large and 

diverse set of ligands involved in the network (Iakoucheva, 2002; Dunker, 2005; Dyson, 

2005; Fink, 2005).  Therefore, intrinsic disorder plays an important functional role, but 

more research is needed to identify the importance of intrinsic disorder in other 

processes, including viral infection. 
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CHAPTER III 

 

MASS SPECTROMETRY ANALYSIS OF HIV-1 VIF REVEALS AN INCREASE IN 

ORDERED STRUCTURE UPON OLIGOMERIZATION IN REGIONS NECESSARY 

FOR VIRAL INFECTIVITY 
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ABSTRACT 

HIV-1 Vif, an accessory protein in the viral genome, performs an important role 

in viral pathogenesis by facilitating the degradation of APOBEC3G (APO3G), an 

endogenous cellular inhibitor of HIV-1 replication. In this study, intrinsically disordered 

regions in HIV-1 Vif were predicted using sequence-based algorithms.  This disorder 

may explain why traditional methods to determine the structure of HIV-1 Vif have been 

unsuccessful, making structure-based drug design impossible. To characterize HIV-1 

Vif�s structural topology and to map its oligomerization domains, I used chemical cross-

linking, proteolysis and mass spectrometry.  Cross-linking showed evidence of monomer, 

dimer, and trimer species via denaturing gel analysis and an additional tetramer via 

western blot analysis.  Among the noncross-linked monomer, and cross-linked monomer, 

dimer, and trimer samples, I identified 47 unique linear peptides and 24 (13 

intramolecular, 11 intermolecular) noncontiguous cross-linked peptides. In all samples 

analyzed, I found almost complete peptide coverage of the N-terminus, but reduced 

peptide coverage in the C-terminal region of the dimer and trimer samples.  These 

differences in peptide coverage or �protections� between dimers and trimers indicate 

specific differences in packing between the 2 oligomeric forms.  Intramolecular cross-

links within the monomer suggest that the N-terminus is folded into a compact domain, 

while the C-terminus remains intrinsically disordered.  The intermolecular cross-link data 

also show that upon oligomerization, the C-terminus of one Vif protein becomes ordered 

by wrapping back on the N-terminal domain of another monomer.  In addition, the 

majority of intramolecular cross-links maps to regions previously reported to be 
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necessary for viral infectivity.  Thus, my data suggest that HIV-1 Vif is in a dynamic 

equilibrium among its various oligomers, potentially allowing it to interact with other 

binding partners.   
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INTRODUCTION 

The human immunodeficiency virus type-1 (HIV-1) accessory protein, viral 

infectivity factor or Vif, is a 23 kDa highly basic protein (pI 10.7) present in all 

lentiviruses except equine anemia infectious virus.  Over the last several years, the 

function and interactions of HIV-1 Vif have been extensively investigated (Lake, 2003; 

Baraz, 2004; Navarro, 2004; Rose, 2004).  HIV-1 Vif potentially interacts with many 

viral and cellular macromolecules: APOBEC3G (APO3G), an endogenous cytidine 

deaminase (Madani, 2000; Sheehy, 2002), and its family members such as APOBEC3F 

(Wiegand, 2004; Liu, 2005), HIV-1 Gag (Bardy, 2001), HIV-1 protease (Hutoran, 2004), 

viral RNA (Cancio, 2004; Henriet, 2005), and 2 proteins in a cullin-RING ligase 

complex: Cullin5 (Luo, 2005; Mehle, 2006; Xiao, 2006) and elongin C (Yu, 2003; 

Mehle, 2004; Yu, 2004).   

When HIV-1 Vif is absent or nonfunctional, post-infection viral replication and 

viral production are dramatically reduced in �nonpermissive� primary CD4 T-cells.  This 

reduced viral production is likely due to the irreversible effects of the cellular enzyme 

APO3G found in nonpermissive cells, which inhibits viral replication possibly through its 

deaminase activity or by preventing the build-up of reverse transcripts (Gabuzda, 1992; 

Sakai, 1993; Sova, 1993; vonSchwedler, 1993; Sheehy, 2002; Bishop, 2006).  HIV-1 Vif 

binds APO3G and targets it for proteosomal degradation through a cullin-RING ligase 

complex, which includes interactions with elongin C and Cullin5 in the Cullin5-elongin 

BC complex and may also block APO3G�s translation (Marin, 2003; Sheehy, 2003; 

Stopak, 2003; Mehle, 2004; Kobayashi, 2005; Luo, 2005; Mehle, 2006; Shirakawa, 
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2006).  Specifically, HIV-1 Vif interacts with elongin C through HIV-1 Vif�s SOCS box 

motif (Yu, 2003; Mehle, 2004; Yu, 2004), and HIV-1 Vif binds Cullin5 via an HCCH 

zinc-binding motif in HIV-1 Vif (Luo, 2005; Mehle, 2006; Xiao, 2006).  Therefore, it is 

likely that HIV-1 Vif�s interactions with other macromolecules are important to its 

function in suppressing the effects of APO3G.  

The lack of or slowing of disease progression to AIDS in HIV-1-infected patients 

has been correlated with mutations in the HIV-1 Vif gene (Hassaine, 2000; Sakurai, 

2004; Farrow, 2005).  Therefore, the spread of HIV-1 infection might be prevented by 

blocking HIV-1 Vif�s ability to inhibit APO3G, thus allowing the full action of its 

antiviral effects.  Inhibiting HIV-1 Vif function might therefore suppress viral replication.  

Thus, HIV-1 Vif is considered a viable therapeutic target either for structure-based 

inhibitors or as a potential vaccine candidate.   

To develop HIV-1 Vif into a viable therapeutic target, the molecular mechanisms 

need to be clearly understood for HIV-1 Vif function, including its oligomerization and 

interactions with putative functional partners.  To date, little biochemical data are 

available on HIV-1 Vif, and more importantly, no structural data.  This lack of data is 

partially due to an inability to express high levels of soluble recombinant protein using 

either prokaryotic or baculovirus expression systems. However, as I will show, regions of 

HIV-1 Vif are highly likely to be intrinsically disordered.  Intrinsically disordered 

proteins have extensive regions that lack a fixed tertiary structure (Romero, 2006) and are 

characterized by a high net charge and low overall hydrophobicity (Dyson, 2005; Fink, 

2005).  In addition, proteins with regions known to be disordered tend to bind a large and 
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diverse set of proteins and nucleic acids (Dunker, 2005; Fink, 2005).  These properties of 

intrinsically disordered proteins are also known characteristics of HIV-1 Vif.   

Although little structural or biochemical data are available for HIV-1 Vif, homo-

oligomerization has been implicated in its function.  A putative oligomerization domain 

has been found to map to amino acid residues 151-164 (Yang, 2001).  Indeed, if this 

region is deleted or mutated, HIV-1 Vif function is significantly reduced.  More 

specifically, residues 161-164, which map to the PPLP domain of HIV-1 Vif, were shown 

to be necessary for HIV-1 Vif oligomerization (Yang, 2003).  In addition, peptides 

corresponding to the region 153-171 drastically reduced the number of HIV-1 Vif 

oligomers observed.  Adding these short peptides also inhibited HIV-1 replication in 

nonpermissive cells, presumably by competing with the functionally necessary step of 

oligomerization in HIV-1 Vif (Yang, 2003).  Taken together, these data suggest that the 

oligomerization domain in HIV-1 Vif is residues 151-171 

(AALITPKKIKPPLPSVTKLTE). 

In this study, sequence-based algorithms were used to predict intrinsically 

disordered regions of HIV-1 Vif.  These regions may explain why traditional methods to 

determine the structure of HIV-1 Vif, and thus structure-based drug design, have been 

elusive.  For proteins like HIV-1 Vif, which are difficult to express in large quantities, an 

ideal method to obtain structural information at the level of individual amino acids is 

mass spectrometry (MS).  MS uses only nanogram amounts of protein, as opposed to 

milligrams for other biophysical and structural techniques (Farmer, 1998; Back, 2003; 

Sinz, 2003; Trester-Zedlitz, 2003; Eyles, 2004; Schulz, 2004; Kalkhof, 2005).  Using a 
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novel approach involving short covalent chemical cross-linkers to stabilize the protein-

protein complex, proteolysis and various forms of MS techniques, I identified HIV-1 Vif 

oligomer (protein-protein) interactions.  By determining a series of these interactions, I 

also obtained a low-resolution structural map of HIV-1 Vif.  Here I report for the first 

time data on the structural topology of HIV-1 Vif, the domains involved in HIV-1 Vif 

oligomerization, and a mechanism by which Vif may bind other proteins. 

 

MATERIALS AND METHODS 

HIV-1 Vif: This protein, which had been expressed and purified by Immunodiagnostics, 

Inc., Woburn, MA, was obtained from the AIDS Research and Reagent Program or 

directly from Immunodiagnostics, Inc.  According to the manufacturer�s product sheet, 

the HIV-1 Vif protein was from strain HXB2, expressed in Escherichia coli with a 6X 

His tag that is cleaved under native conditions, stored in 50 mM Tris, pH 8.0, 150 mM 

sodium chloride, and was >99% pure.  Several lots of HIV-1 Vif protein were obtained 

and all gave consistent results. 

The purity of the HIV-1 Vif protein from Immunodiagnostics was analyzed by 

SDS PAGE (Figure 3.1B).  The predominant band corresponded to monomeric HIV-1 

Vif protein with a molecular weight of 23 KDa and was approximately 95% pure as 

determined by densometric analysis of the SDS PAGE.  However, along with the 23 KDa 

band, multiple lower molecular weight bands were observed. These bands are likely 

degradation products of the HIV-1 Vif protein, suggesting the protein may be unstable.  

Further analysis of these smaller products are needed because they may be more soluble 
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forms of HIV-1 Vif that can be used in further structural and biochemical analysis.  In 

addition, the HIV-1 Vif protein became insoluble when I tried to concentrate it.  Thus, 

even if the expression of this protein could be scaled up, larger amounts of protein would 

likely be unobtainable  Lastly, when HIV-1 Vif cross-links were analyzed by MS, the 

proteins were sequenced by MALDI-TOF and peptides from the entire protein were 

identified, confirming the full-length HXB2 Vif protein sequence (Table 3.2).   

APO3G: This protein, which had been expressed and purified by Immunodiagnostics, 

Inc., Woburn, MA, was obtained from the AIDS Research and Reagent Program.  

According to the manufacturer�s product sheet, the protein was expressed in E. coli or 

baculovirus. When expressed in E. coli, APO3G was 6X His-tagged, purified to >95% 

purity via preparative SDS-PAGE, and stored in PBS, 30% glycerol, 0.1% sarcosyl; when 

expressed in baculovirus, APO3G was a T-tag fusion protein, purified to >95% purity 

using (NH4)2SO4 fractionation and immunoaffinity chromatography, and stored in 20 

mM Tris, pH 8.0, 0.1 M sodium chloride, 0.01% sarcosyl.     

Co-Immunoprecipitation: HIV-1 Vif was captured by immunoprecipitation on an 

EZviewTM Red Protein A Affinity gel (Sigma) using an anti-Vif antibody (TG001 

obtained from the NIH AIDS Research and Reagent Program).  The affinity gel with 

immobilized HIV-1 Vif was washed with 20 mM Tris, pH 8.0, 0.5 M sodium chloride 

buffer, and incubated with APO3G overnight at 4°C.  After APO3G incubation, the gel 

beads were washed, and the HIV-1 Vif-APO3G complex was eluted by boiling.  The 

samples were then analyzed by 16% Tris-Glycine SDS PAGE and western blotted using 

an antibody for APO3G.  The same protocol was followed for APO3G, with APO3G 
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captured by immunoprecipitation on the Protein A Affinity gel using an anti-APO3G 

antibody and western blotted using a HIV-1 Vif antibody (TG001).   

Cross-linking of HIV-1 Vif: The �zero length� cross-linking agent, EDC (1-ethyl-3-[3-

dimethylaminopropyl] carbodiamide; Pierce), and sulfo-NHS (N-hydroxysuccinimide; 

Pierce) were prepared freshly as 0.1 M stock solutions in deionized water.  The cross-

linking reaction was performed in solution as described (Grabarek, 1990).  HIV-1 Vif 

protein (5 mg/ml) was diluted in 50 µl activation buffer (0.1 M MES, pH 6.0, 0.5 M 

NaCl) to 29 µM, 1 µl of EDC stock solution was added to give a final EDC concentration 

of 2 mM, and 2.5 µl of sulfo-NHS stock solution was added to give a final concentration 

of 5 mM.  Cross-linking reactions were also performed at 4 µM, 1 µM, and 0.63 µM 

HIV-1 Vif.  Other HIV proteins such as HIV-1 Vpr are found intracellular at 5 nM at 

viral entry and up to 43 nM in later stages of viral replication (Popov, 1998).  Although 

the 1 µM and 0.63 µM HIV-1 Vif concentrations are likely above the intracellular 

concentration of HIV-1 Vif, they are likely more closely related to the intracellular 

concentration of HIV-1 Vif than the original 29 µM concentration used for cross-linking.    

These low-concentration HIV-1 Vif solutions were used because they are dilute, therefore 

avoiding random protein-protein interactions.  Preliminary experiments determined that 

the minimal time required for optimal cross-linking in solution was 15 minutes.  Thus, 

the cross-linking reaction was conducted at room temperature for 15 minutes and 

quenched by adding SDS PAGE gel-loading dye with 2-mercaptoethanol.  The resulting 

mixture of HIV-1 Vif oligomers was resolved by 16% SDS-PAGE with a noncross-

linked HIV-1 Vif protein, allowing each species to be individually proteolyzed.  Similar 
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cross-linking results were obtained using multiple lots of HIV-1 Vif protein. The density 

of the Coomassie blue-stained gel bands was determined using UVP Bio-imaging System 

EPI Chemi II Dark Room and LabWorks 4.0 software. Cross-linking experiments using 

purified proteins can only be performed in vitro.     

HIV-1 Vif-specific oligomers were identified by western blot analysis using a 

monoclonal antibody to HIV-1 Vif (TG001) obtained from the NIH AIDS Research and 

Reagent program.  Proteins were transferred from a SDS polyacrylamide gel to 

nitrocellulose membrane at 200 mAMPS for 2 hours at 4°C.  After transfer, the 

membrane was treated with blocking buffer (10 mM Tris-HCl, pH 8.0, 0.3 M NaCl, 

0.25% Tween, and 5% milk) for approximately 4 hours at room temperature.  After 

blocking, the membrane was incubated overnight at 4°C with a 1:20,000 dilution of the 

HIV-1 Vif monoclonal antibody in blocking buffer.  The membrane was then washed 6 

times with blocking buffer without milk and incubated at room temperature for 1 hour 

with goat anti-mouse secondary antibody (1:40,000).  The membrane was then washed 6 

times and developed using the Pierce Supersignal ECL kit and a Kodak X-Omat machine.  

Preparation of Samples for Mass Spectrometry (MS): Four samples of HIV-1 Vif (the 

noncross-linked monomer band, and the cross-linked monomer, dimer, and trimer bands) 

were in-gel digested in preparation for MALDI-TOF MS, LC-ion trap-MS, and LC-

QTof-MS analyses in the presence or absence of heavy water (18O) (Yao, 2001; Back, 

2002).  Heavy water (18O) was used to label peptides and cross-links.  Therefore, peptides 

digested in 18O water were 4 mass units larger than those digested in 16O water and cross-

linked peptides were 8 mass units larger.  Gel bands were in-gel digested with trypsin or 
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chymotrypsin using the Calbiochem ProteoExtract� All-in-one Trypsin Digestion Kit 

according to the manufacturer�s protocol or as described (Soskic, 2001).  Briefly, gel 

bands containing each oligomer were excised and cut into small pieces. One-half was 

digested in an Eppendorf tube in 16O water, and the other half was digested in an 

Eppendorf tube in 18O water.  The gel pieces were washed 2 times with wash buffer (50 

mM ammonium bicarbonate in 50% ethanol) at room temperature.  Gel slices were 

shrunk in 100% ethanol, and incubated for 1 hour at 56°C with 50 mM ammonium 

bicarbonate containing DTT.  After cooling to room temperature, gel slices were 

incubated for 30 min with iodoacetamide at room temperature in the dark, washed, 

shrunk, and dried.  Dried gel slices were digested overnight with trypsin (1 µl of 8 ng/µl) 

at 37°C with either 16O or 18O water.  Peptides were extracted using 50 mM ammonium 

bicarbonate and 50% N,N-dimethyl formamide and evaporated to dryness using a 

SpeedVac.  Dried peptides were dissolved in 2% acetonitrile, 0.1% TFA.  Finally, 

peptides digested in 16O water were added to their corresponding half sample digested in 

18O water.   

Peptide Analysis using Reflectron MALDI-TOF MS: HIV-1 Vif noncross-linked and 

cross-linked peptides extracted from gel bands were purified using an Omix C18 ZipTip 

reverse-phase cleanup pipette tip.  The ZipTip was prewashed with 50% acetonitrile and 

equilibrated with 0.1% trifluoroacetic acid (TFA).  Peptides were bound to the ZipTip by 

aspirating them 5 times through the ZipTip.  The ZipTip was then washed by repeated 

aspiration of 10 µl of 0.1% TFA, and peptides were eluted by repeated aspiration of 5 µl 

of 50% acetonitrile containing 0.1% TFA.  The eluate (1 µl) was spotted onto a MALDI-
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TOF MS target plate with 1 µl of 10 mg/ml α-cyano-4-hydroxycinnamic acid matrix (α-

cyano) in 50% acetonitrile, 0.1% TFA, and air dried.  Samples were analyzed using a 

Waters MALDI L/R MALDI-TOF mass spectrometer in the reflectron mode to acquire 

spectra from m/z 400 - 6000. Each spectrum was the sum of 500 laser shots and was 

lock-mass calibrated using a mixture of synthetic peptides in the lock-mass well.  

MALDI-TOF heavy water experiments were repeated in triplicate.             

Liquid Chromatography Mass Spectrometry (LC-ion trap-MS) of Peptide 

Fragments: The HIV-1 Vif digests of the noncross-linked and cross-linked gel bands 

were analyzed by capillary HPLC nanoelectrospray (NESI) MS and data-dependent 

MS/MS using a ThermoFinnigan LTQ linear quadrupole ion trap MS equipped with a 

Finnigan Surveyor HPLC pumping system. Samples (1-5 µl) were injected into a 35 

µl/min flow of 2% acetonitrile in 0.1% formic acid onto a 300 µm X 5 mm C-18 Pepmap 

trapping column (LC Packings) using a manual NanoPeak injection valve (UpChurch 

Scientific). A 30-min solvent gradient from 5 to 50% acetonitrile in 0.1% formic acid was 

then passed in the reverse direction at 200 nl/min through the trapping column.  The 

trapping column eluate was passed through a 75 µm ID X 10 cm ProteoPrep II packed 

PicoFrit HPLC column/electrospray emitter (New Objectives, Inc.) installed in the NESI 

source of the mass spectrometer.  Positive ion ESI MS spectra were acquired during the 

elution with one full scan MS, followed by data-dependent MS/MS product ion spectra 

(35% normalized collision energy) of the 10 most intense ions from the full-scan MS 

spectrum. The NESI source was operated with the source at 1.8 kV and capillary at 

250oC. 
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LC-QTof-MS Mass Spectrometry of Peptide Fragments (Q-Tof): The HIV-1 Vif 

noncross-linked and cross-linked peptide digests were analyzed by capillary 

nanoelectrospray (NESI) MS and data-dependent MS/MS using a Waters Q-Tof Premier 

Mass Spectrometer equipped with a Waters CapLC HPLC pumping system. Samples (1-5 

µl) were injected by a manual NanoPeak injection valve onto a CAPTRAP (Michrome 

Bioresources, Inc.) trapping column at 12 µl/min flow of 2% acetonitrile in 0.1% formic 

acid. A 30-min solvent gradient from 2 to 98% acetonitrile in 0.1% formic acid was then 

passed through the trapping column in the reverse direction at 200 nl/min. The trapping 

column eluate was passed through a 75 µm ID X 10 cm ProteoPrep II-packed PicoFrit 

column/electrospray emitter (New Objectives, Inc.) installed in the NESI source of the 

mass spectrometer. Data-dependent positive ion NESI MS spectra were acquired during 

the elution with one full-scan MS spectrum followed by MS/MS product ion spectra of 

the 4 most intense ions from the full-scan MS lock-mass spectrum. The NESI source was 

operated with the source at 2.7 kV and capillary at 200oC. 

Data Analysis: HIV-1 Vif noncross-linked and cross-linked peptides were identified 

from molecular weight and MS/MS sequence data using SEQUEST and analyzed using 

PAWS (Protein Analysis Worksheet), GPMAW (General Protein Mass Analysis for 

Windows), and MassLynx software tools (Sinz, 2003).  PAWS was used to match peptide 

MH+ ions observed in the MALDI-TOF MS data to sequences from HIV-1 Vif, and 

GPMAW was used to similarly match sequences from both normal peptides and cross-

linked peptides observed in MALDI-TOF MS and LCMS (ion trap and QTof) analyses.  

MassLynx was used to analyze MALDI-TOF spectra and to identify 16O and 18O ion 
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pairs from linear and cross-linked peptides.  The mass (molecular weight) of a cross-

linked peptide was assigned only if the cross-link met the following criteria: 1) its 

cleavage was trypsin specific (R or K), 2) the cross-linked peptide must contain at least 

one Lys residue in one peptide and at least one Glu or Asp residue in the other, 3) ions 

present in the cross-linked sample must be absent in the noncross-linked control, 4) 

intramolecular cross-linked peptides were identified by their presence in the monomer 

cross-linked sample, 5) intermolecular cross-links were inferred when they were seen 

only in the cross-linked dimer or cross-linked trimer and not in the monomer (Davidson, 

2003), 6) the cross-link was present in at least 2 out of 3 experiments, and 7) linear 

peptides showed a mass shift of +4 Da, and cross-linked peptides showed a mass shift of 

+8 Da. Criterion 2 reflects that cross-linking reactions form amide bonds between lysine 

side-chain amine groups and glutamic acid or aspartic acid side-chain carboxyl groups. 

Criterion 7 reflects that trypsin cleavage in heavy water led to 2 atoms of 18O being 

incorporated into the carboxy terminus of each peptide, resulting in a mass shift of +4 Da 

for a linear peptide and +8 Da for a cross-linked peptide (Yao, 2001; Back, 2002).   

 Although high molecular weight cross-links are prone to less accurate mass 

matches, due to a higher signal-to-noise ratio, particular care was taken to ensure the 

accuracy of identifying cross-linked peptides (Table 3.3).  These cross-links were only 

identified if they were reproduced in more than one sample and had the appropriate heavy 

water label.  The majority of the data is within an acceptable parts-per-million (ppm) 

range; however, the few values that diverge slightly meet the other criteria for being 

cross-linked and are still less than one Dalton different from the theoretical mass. 



 92

Structure Predictions: Intrinsically disordered regions of HIV-1 Vif were predicted 

from PONDR®, Predictors of Natural Disordered Regions, which utilizes sequence-based 

algorithms (Romero, 2001; Vucetic, 2005).  Access to PONDR® was provided by 

Molecular Kinetics (6201 Las Pas Trail-Ste 160, Indianapolis, IN 46268; 317-280-8737; 

E-mail: main@molecularkinetics.com).  VL-XT is copyright©1999 by the WSU 

Research Foundation, all rights reserved.  PONDR® is copyright©2004 by Molecular 

Kinetics, all rights reserved.  In addition to the prediction of intrinsic disorder, a 

consensus secondary-structure prediction was obtained from the Pole BioInformatique 

Lyonnais website using Network Protein Sequence Analysis (Combet, 2000). 

 

RESULTS 

HIV-1 Vif co-immunoprecipitates with APO3G 

The HIV-1 Vif protein from Immunodiagnostics was determined to be 

biologically functional by co-immunoprecipitating it with its known binding partner, 

APO3G.  HIV-1 Vif bound to immobilized APO3G expressed in either E. coli or 

baculovirus, and APO3G bound to immobilized HIV-1 Vif (Figure 3.1A).  These results 

suggest that the HIV-1 Vif protein obtained was in a biologically relevant form, thus 

folded and functional.   

 

HIV-1 Vif forms higher order oligomers in vitro 

 To isolate oligomeric forms of HIV-1 Vif, chemical cross-linking experiments 

were performed.  Higher order oligomers of HIV-1 Vif were observed in vitro using the 
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hetero-bifunctional zero-length cross-linker, EDC.  EDC first reacts with the carboxylic 

group of an aspartic or glutamic acid, forming an amine-reactive O-acylisourea 

intermediate.  This intermediate is stabilized by adding sulfo-NHS to create an amine-

active ester with an extended half-life.  Extending the amine-active ester�s half-life 

facilitates its interaction with the amine group of lysine, thus forming a peptide bond.  

Peptide bond formation results in loss of a water molecule, decreasing the mass of each 

cross-linked peptide by 18.011 mass units (Schulz, 2004; Kalkhof, 2005).  Cross-links are 

formed between acidic residues and lysines with distances < 5 Å, based on the length of 

the EDC molecule itself (Kalkhof, 2005) (Figure 3.1).     

Analysis of cross-linked HIV-1 Vif protein by denaturing PAGE showed three 

oligomeric forms: cross-linked monomer (24 kDa), cross-linked dimer (48 kDa), and 

cross-linked trimer (72 kDa) (Figure 3.2B, lane 3).  The presence of oligomers of HIV-1 

Vif was confirmed by western blotting, which showed not only the monomer, dimer, and 

trimer forms, but also a cross-linked tetramer (Figure 3.2C, lane 2).  The oligomers on the 

Coomassie-stained gel were quantified by densitometric analysis, which suggested that 

approximately 46% of the reaction product is cross-linked monomer, 39% is cross-linked 

dimer, and 15% is cross-linked trimer (Figure 3.2B, lane 3).  A noncross-linked sample of 

HIV-1 Vif, run as a control, showed a band consistent with a HIV-1 Vif monomer 

(Figure 3.2B, lane 2).  The western blot of the noncross-linked monomer (Figure 3.2C, 

lane 1) shows a small amount of HIV-1 Vif dimer, which is sometimes observed for 

oligomeric proteins under reducing and denaturing conditions (Figure 3.2C, lane 1).  If 

the HIV-1 Vif dimer in the noncross-linked monomer sample is due to disulfide bonding,  
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Figure 3.1  
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Figure 3.1: Cross-linking reaction using EDC (1-ethyl-3-[3-dimethylaminopropyl] 

carbodiamide) (modified from Pierce website; www.piercenet.com)
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Figure 3.2 
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Figure 3.2: HIV-1 Vif is functional and can form higher order oligomers.  (A) HIV-1 

Vif co-immunoprecipitates with APO3G.  Vif (APO3G) was immobilized on Protein A 

affinity beads, incubated overnight with APO3G (Vif), and eluted via boiling.  Lane 1: 

Immobilized APO3G interacts with HIV-1 Vif.  Lane 2: Immobilized HIV-1 Vif interacts 

with baculovirus-expressed APO3G.  Lane 3: Immobilized HIV-1 Vif interacts with E. 

coli-expressed APO3G.  The higher molecular weight bands are the result of heavy 

chains, light chains, and Protein A background routinely observed in 

immunoprecipitation experiments.  (B) SDS PAGE analysis of HIV-1 Vif cross-links.  

Lane 1: Molecular weight markers (kDa). Lane 2: Noncross-linked HIV-1 Vif control 

predominantly as a monomer (23 kDa).  Lane 3: EDC cross-linked HIV-1 Vif, with 

evidence for a dimer (46 kDa) and trimer (69 kDa).  (C) Western blot of HIV-1 Vif cross-

links.  Lane 1: A noncross-linked HIV-1 Vif control that is predominantly monomeric, 

with a small amount of dimer.  The presence of dimer is likely due to unreduced the 

hydrophobic effect.  Lane 2: EDC cross-linked HIV-1 Vif, with evidence for dimer, 

trimer, and tetramer forms.   

The band distances in the Coomassie-stained gel (B) appear smaller than those in 

the western blot (C), however the distances are similar suggesting the bands in the SDS 

PAGE are the same as in the western blot.  I measured the total lane distance from well to 

dye front and labeled that Z, then I measured the respective distances from the dye front 

to each oligomeric state and labeled them A (monomer), B (dimer), and C (trimer).  Next 

I calculated the ratio Rf, which is A/Z (monomer), B/Z (dimer), and C/Z (trimer), in both 
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the SDS PAGE and western blot.  The Rf, monomer is 0.73 for SDS PAGE and 0.72 for the 

western blot, the Rf, dimer is 0.65 versus 0.69, and the Rf, trimer is 0.42 versus 0.44.   
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treatment with 2-mercaptoethanol or iodacetamide should reduce the band, thus shifting 

the dimer to monomer.  The HIV-1 Vif noncross-linked sample was treated with 50 mM 

and 100 mM 2-mercaptoethanol as well as 55 mM iodacetamide (Grabarek, 1990) and 

the HIV-1 Vif dimer band remained.  Therefore, this residual HIV-1 Vif dimer is likely 

not due to disulfide bonding but to other effects such as the hydrophobic effect (Tsai, 

1997). 

Before analyzing the cross-linked monomer and oligomers to gain insight into the 

topology of HIV-1 Vif and to map its oligomerization domains, I examined HIV-1 Vif 

for its predicted regions of intrinsic disorder and secondary structure. Understanding the 

regions of disorder in HIV-1 Vif would give a better understanding of the protein may be 

folded. 

 

Structure Predictions  

HIV-1 Vif was examined for regions of intrinsic disorder by submitting the HXB2 

HIV-1 Vif sequence to PONDR®, Predictors of Natural Disordered Regions, which uses a 

sequence-based algorithm with four predictor algorithms or routines to predict regions of 

disorder.  PONDR® predictors are feedforward neural networks of 21 amino acids per 

window and have been trained on a specific set of ordered and disordered sequences.  

The information obtained is smoothed over a 9-amino acid sliding window, and residues 

above 0.5 are considered disordered (Romero, 2001; Vucetic, 2005).  Of the four 

predictor routines used by PONDR®, only one, VL-XT, predicted that the N-terminus of 

HIV-1 Vif is disordered, and two, VL-XT and XL1-XT, predicted that two short regions 
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(possibly extended loops) between residues 50-63 and 87-100 are disordered.  However, 

all four predictors unanimously predicted that the C-terminus is disordered (Figure 3.3).  

These predictions suggest that the C-terminus of HIV-1 Vif is intrinsically disordered.   

Since intrinsically disordered proteins often do not have defined secondary 

structure (Figure 3.7A) (Combet, 2000), the secondary structure of HIV-1 Vif was 

predicted using the Pole BioInformatique Lyonnais Network Protein Sequence Analysis 

(NPS) secondary-structure consensus prediction program.  The majority of HIV-1 Vif�s 

secondary structure is predicted to be random coil, but its predicted secondary structure 

also included an ordered N-terminus consisting of mostly beta-sheets and one alpha helix 

as well as a disordered C-terminus consisting of mostly alpha helices. 

 

Identification of Noncross-linked Linear Peptides 

 As mentioned above, analysis of the cross-linked monomer and oligomers will 

give insight into the topology of HIV-1 and help to map its oligomerization domains.  To 

that end, the regions of HIV-1 Vif that were protected from protease digestion upon 

folding and oligomerization were elucidated by detailed examination of the linear 

peptides (Strochlic, 2001).  Because the cross-linking reaction is not 100% efficient, 

some peptides may be observed with diminished intensity in regions that are important 

for oligomerization.  Noncross-linked HIV-1 Vif, cross-linked monomer, cross-linked 

dimer, and cross-linked trimer were excised from gels, trypsin digested separately in 16O 

and 18O water, and analyzed by reflectron MALDI-TOF MS, LC-ion trap-MS, and LC-

QTof-MS.  Gel bands were digested in 18O water to label peptides and cross-links for  
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Figure 3.3 
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Figure 3.3: Predicted regions of intrinsic disorder for HIV-1 Vif. Regions of disorder 

were predicted using PONDR®, Predictors of Natural Disordered Regions (Romero, 

2001; Vucetic, 2005). Each color indicates a separate predictor algorithm: blue, VL3; red, 

VL-XT; yellow, XL1-XT; and green, CaN-XT. 
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identification.  During trypsin cleavage, two oxygen atoms are added to the C-terminus of 

each peptide, so that peptides digested in 18O water will be 4 mass units larger than 

peptides digested in 16O water and cross-links will be 8 mass units larger than their 

unlabelled counterparts.  For example, Figure 3.4 shows a region of the MALDI-TOF 

spectrum for a peptide where the first peak (with mass-to-charge [m/z] of 728.351]) 

represents the unlabelled peptide (16O), and the fifth peak is 4 Da higher ([m/z 732.367]) 

represents the labeled peptide (18O).  The ion at m/z 728.351 corresponds to a theoretical 

mass of 728.351 for the peptide 37-41. All experimental peptides identified via MALDI-

TOF were analyzed as above, and their parts per million (ppm) and mass difference from 

the theoretical mass are shown in Table 3.1. 

All three mass spectrometry techniques mentioned above and both trypsin and 

chymotrypsin digests were used to identify peptides that provide 100% sequence 

coverage for the noncross-linked sample, 99% coverage for the cross-linked monomer, 

95% for the dimer, and 83% for the trimer (Figure 3.6 and 3.7).  The difference in 

coverage (particularly in the C-terminus) between monomer, dimer, and trimer suggests 

that the dimer and trimer samples have more protected areas, indicating conformational 

change due to oligomerization.  However, just because a particular peptide is not 

observed does not mean it no longer exists.  For example, the loss of coverage in the high 

molecular weight samples could correspond to modification of lysines by EDC, thus 

preventing trypsin cleavage.   

Analysis of the MALDI-TOF MS, LC-ion trap-MS, and LC-QTof-MS data shows 

complete peptide sequence coverage for all samples analyzed from residues 1 to 91.  The  
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Figure 3.4  
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Figure 3.4: Analysis of an HIV-1 Vif peptide using reflectron MALDI-TOF-MS.  

The mass spectrometry data presented here represent an example of a peptide spectrum.  

The mass-to-charge ratio (m/z) shown for a singly charged molecular ion, MH+, 

represents the molecular weight of a peptide. This spectrum shows an unlabelled peptide 

at m/z 728.351 and its labeled (18O) counterpart (4Da larger) at m/z 732.367.  This 

peptide corresponds to residues 37-41 in HIV-1 Vif.    
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Table 3.1: Peptides Identified by MALDI-TOF MS.  A noncross-linked sample and 

cross-linked monomer, dimer, and trimer samples were excised from an SDS 

polyacrylamide gel, in-gel trypsin digested, and peptides were identified by MALDI-TOF 

MS.  Experimental molecular weights for identified peptides are listed with their ppm and 

mass difference from the theoretical molecular weight of the peptide.  The values in this 

table represent three experiments.
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monomer, dimer, and trimer samples have an area of protection around residues 92-94 

(KKR), which may be due to a conformational change or possibly due to trypsin cleavage 

at each site, creating single-residue peptides.  The trimer sample, but not the monomer or 

dimer sample, has an area of protection from residues 107-121 (IHLYYFDCFDSAIR), 

suggesting that these residues may be involved in trimerization.  This region in the trimer 

is also well conserved, contains several aromatic residues, and includes one of the 2 

cysteines in the protein, suggesting that this trimer region is a functional domain.  From 

residues 122 to 147, there is almost complete peptide coverage in all samples analyzed.  

Peptide coverage is reduced in the C-terminal domain of the dimer and trimer. In other 

words, �protection� is increased in this region, suggesting that it is involved in HIV-1 Vif 

oligomerization, consistent with a previous report that the oligomerization domain is 

from residues 151-171 (Yang, 2001; Yang, 2003).   

For example, the trimer sample shows an area of protection in residues 148-157 

(LALAALITPK), and the dimer and trimer samples show a region of protection in 169-

173 (LTEDR).  In addition, the sample digested with chymotrypsin contains a peptide in 

the noncross-linked and cross-linked monomers, corresponding to residues 151-174. This 

peptide is lost in the dimer and trimer, supporting the importance of this region for 

oligomerization.  The different areas of protection observed between the dimer and trimer 

samples suggest changes in the details of interactions as the protein�s oligomeric state 

transitions from dimer to trimer (Figure 3.6 and Table 3.2).  Finally, the �protection� 

observed in the C-terminus of the dimer and trimer sample are consistent with these 

regions becoming more ordered upon oligomerization. 
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Table 3.2 



 110

Table 3.2: Peptide Analysis of HIV-1 Vif.  Peptides were identified by mass 

spectrometry (MS) of HIV-1 Vif fragments that were uncross-linked (UnX), cross-linked 

monomer (Mono), dimer, or trimer and digested with either trypsin (T) or chymotrypsin 

(C).  Identification by LC-QTof-MS is indicated by italics, and identification by both LC-

QTof-MS and LC-ion trap-MS is indicated by bold.   
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Identification of Cross-linked Peptides 

In addition to the linear peptides, cross-linked peptides were observed by 

reflectron MALDI-TOF MS labeled with heavy water (18O).  These cross-linked peptides 

were identified by the presence of peaks not seen in the noncross-linked sample and a +8 

Da mass shift due to the incorporation of four 18Os in the two cross-linked peptides.  For 

example, a region of the MALDI-TOF spectrum from an intermolecular cross-link seen 

only in the dimer and trimer (Figure 3.5) shows an ion (m/z 3068.305) in the trimer 

sample for the unlabelled (16O) cross-link, and 8 mass units higher an ion (m/z 3076.720) 

is seen for the labeled (18O) cross-link.  For this high molecular-weight range, the m/z ion 

at 3068.305 is well correlated, to within less than half a Dalton, with a theoretical m/z ion 

of 3068.710 for the cross-linked peptides residues 51-63 linked to residues 159-173.  All 

experimental cross-links identified via MALDI-TOF MS, with their parts per million and 

mass difference from the theoretical mass, are shown in Table 3.3. 

In all cross-linked samples but not in the noncross-linked control, I identified 13 

intramolecular cross-links (Table 3.4), of which two map to the same residue, thus 

appearing only once in Figure 3.7B (E45 to K92).  This core of intramolecular cross-links 

seen in all 3 oligomeric forms are between distinct and distant residues separated in 2-

dimensional sequence, indicating that HIV-1 Vif is compactly folded in 3-dimensional 

space.  In addition, one cross-linked peptide, residues 23-34 linked to residues 159-172, 

is specific to the monomer sample, suggesting a possible conformational change upon 

oligomerization (Table 3.4 and Figure 3.7B). 
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Figure 3.5  
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Figure 3.5: Analysis of an HIV-1 Vif Cross-link Using Reflectron MALDI-TOF-MS.  

These mass spectrometry data represent a sample spectrum of a cross-linked HIV-1 Vif 

peptide.  The mass-to-charge ratio (m/z) shown for a singly charged molecular ion, MH+, 

represents the molecular weight of a peptide.  This spectrum shows an unlabelled 

intermolecular cross-linked peptide at m/z 3068.305 and its labeled (18O) counterpart, 

8Da larger, at m/z 3076.720.  This region corresponds to a cross-link between peptides 

residues 51-63 and residues 159-173 and is only seen in the dimer and trimer.  The 

beginning of the +8 Da ion series is indicated by an arrow.   
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Table 3.3: Cross-links Identified by MALDI-TOF MS.  A noncross-linked sample and 

cross-linked monomer, dimer, and trimer samples were excised from an SDS 

polyacrylamide gel, in-gel trypsin digested, and analyzed by MALDI-TOF MS to identify 

cross-links.  Cross-linked peptides were identified, as shown, by their experimental 

molecular weight and mass difference from their theoretical molecular weight, in ppm. 

Values are the best representatives of three experiments. 
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   Intermolecular cross-links were observed in the cross-linked dimer and trimer 

samples (Table 3.4 and Figure 3.7C, D).  These intermolecular cross-links were identified 

by their presence in the dimer and/or trimer sample but not in the noncross-linked or 

cross-linked monomer samples, and by the presence of a +8 Da mass unit shift.  Also 

identified were 7 cross-links specific to the trimer, and 4 in both the dimer and trimer.  

The majority of cross-links observed in the cross-linked dimer and trimer mapped to the 

N- and C-termini of HIV-1 Vif.  The trimer also contained a set of cross-links that 

mapped to the C-terminus of each respective monomer, suggesting not only an N- to C-

terminus interaction in the trimer, but also a C- to C-terminus interaction. 

Overall, cross-link sequence coverage was observed in 62.5% of the monomer, 

69.3% of the dimer, and 69.8% of the trimer. Complete cross-link sequence coverage is 

not expected since cross-linked fragments are likely in digested dimers and trimers above 

4000 Da. Given the current technology, peptides with molecular weights greater than 

4000 are difficult to uniquely identify.  These differences in levels of coverage between 

cross-links in the monomer and those in the dimer and trimer suggest a conformational 

change that allows the C-terminus to become more accessible to cross-linking, implying 

that the region becomes more ordered upon higher-order oligomerization.  The 

redundancy in intermolecular cross-links indicates that oligomerization occurs in a 

unique, specific manner that is likely functionally significant and not due to nonspecific 

aggregation.  The identified intramolecular cross-links give insight into the tertiary fold 

of the HIV-1 Vif protein, whereas the intermolecular cross-links give insight into the 

quaternary fold of the homo-oligomer (Figure 3.7, Figure 3.8, and Table 3.4). 
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Table 3.4 

Monomer  Dimer  Trimer  
K26, K34 E171, D172     
Termini E45 Termini E45 Termini E45 
Termini D61, E76 Termini D61, E76 Termini D61, E76 

E2 K26, K34 E2 K26, K34 E2 K26, K34 
E54, D61 K176, K179 E54, D61 K176, K179 E54, D61 K176, K179 

E2 K141 E2 K141 E2 K141 

E2 K176, K179, K181 E2 
K176, K179, 

K181 E2 K176, K179, K181
D14 K26, K34 D14 K26, K34 D14 K26, K34 

K22, K26 E45 K22, K26 E45 K22, K26 E45 
K26, K34 D78, E88 K26, K34 D78, E88 K26, K34 D78, E88 

E45 K91, K92 E45 K91, K92 E45 K91, K92 
E45 K92 E45 K92 E45 K92 

D78, E88 K91, K92 D78, E88 K91, K92 D78, E88 K91, K92 
E171, D172 K181 E171, D172 K181 E171, D172 K181 

  K34 E134 K34 E134 
  E45 K176, K179 E45 K176, K179 
  D61 K160, K168 D61 K160, K168 
  K92 E171, D172 K92 E171, D172 
    D14 K158, K160, K168
    K34 Termini 
    K158, K160, K168 E171, D172 
    K158, K160, K168 Termini 

    
K160, K168, 
E171, D172 Termini 

    

K160, K168, 
E171, D172, K176, 

K179 Termini 
    E171, D172 K181 
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Table 3.4: Cross-links of HIV-1 Vif.  Cross-linked residues were identified by MALDI-

TOF-MS and heavy water labeling of trypsin-digested monomeric, dimeric, or trimeric 

forms of HIV-1 Vif.  The cross-linking agent EDC specifically links lysine (K) to either 

aspartic acid (D) or glutamic acid (E).  If more than one lysine or acidic residue is within 

an identified fragment, all are listed.  Linking residues are listed sequentially.  Cross-

linked residues in bold appear in Figure 3.7.  Italics indicate that experimental molecular 

weights were consistent with theoretical molecular weights of both cross-links.  
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Figure 3.6A 

 

 
 
Figure 3.6B 

 
 
Figure 3.6C 
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Figure 3.6D 
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Figure 3.6: HIV-1 Vif Peptide-Sequence Coverage Map.  Coverage maps of peptides 

created by tryptic and chymotryptic digestion of HIV-1 Vif and identified by MALDI-

TOF, LC-ion trap-MS, and LC-QTof-MS, and of cross-linked peptides created by tryptic 

digestion and identified from MALDI-TOF.  Peptides and cross-links were identified by 

comparing their experimental molecular weights with a list of theoretical molecular 

weights calculated from ProteinProspector or GPMAW.  In addition, identification of 

peptide or cross-link ions was confirmed by the heavy water label; a corresponding ion 4 

Da larger for a peptide and 8 Da larger for a cross-link.  (A) Noncross-linked. (B) 

Monomers. (C) Dimers. (D) Trimers.  Identified regions are those that are cross-linked to 

each other and those that are protected.  Black: peptides; blue: intramolecular cross-links; 

red: cross-links in the dimer and trimer; green: trimer cross-links.      
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Figure 3.7A 
 
 
 
 
 
 
 
 
Figure 3.7B 
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Figure 3.7C
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Figure 3.7D  
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Figure 3.7: Cross-links of HIV-1 Vif. Schematic diagram of cross-links observed in 

different oligomeric states of HIV-1 Vif as analyzed by MALDI-TOF and heavy water 

labeling.  (A) Consensus secondary structure predicted for HIV-1 Vif (Combet, 2000).  

Red: beta-sheet.  Blue: alpha-helix.  Purple: random coil (B) Cross-links observed in the 

monomer sample. (C) Cross-links observed in the dimer sample, shown from the N- to C-

terminal and from the C- to N-terminal directions. (D) Cross-links observed in the trimer, 

shown from the N- to C-terminal and from the C- to N-terminal directions.  Cross-

linking: Dotted lines indicate that cross-links appeared in both the dimer and trimer 

samples.  The blue bars represent peptide coverage for each oligomeric state.     
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DISCUSSION 

Here, I report novel data on the topology and oligomerization of HIV-1 Vif.  

These data were obtained using techniques that require small amounts of protein, 

specifically cross-linking, proteolysis, and state-of-the-art mass spectrometry (LC-QTof-

MS, LC-ion trap-MS and MALDI-TOF MS) (Farmer, 1998; Yao, 2001; Back, 2002; 

Back, 2003; Sinz, 2003).     

My analyses of HIV-1 Vif elucidated a variety of its oligomeric states: 

monomeric, dimeric, and trimeric.  Linear peptides identified by my analyses covered the 

entire protein for both the noncross-linked and cross-linked monomers of HIV-1 Vif.  In 

the dimer and trimer, however, certain regions of the oligomers were not observed, 

indicating that cross-linking �protected� them from proteolysis.  Such protected linear 

peptides were observed in the dimer and trimer at residues 169-173 and in the trimer 

alone at 107-121 and 148-157.  The difference in protection between the dimer and trimer 

indicates specific differences in packing between the two oligomers, likely reflecting 

increased order upon oligomerization.  

In addition to linear peptides, 24 specific intra- and intermolecular cross-links 

were identified in the various oligomeric states (Figure 3.7).  These observed cross-links 

are not due to nonspecific aggregation since they involved only a limited number of 

lysine and aspartic/glutamic acid residues in HIV-1 Vif.  In fact, only 9 of 14 (64%) 

lysines and 7 of 16 (44%) acidic residues are involved in cross-links, whereas 224 cross-

links are possible if all lysines randomly interacted with all possible acids.  Since the 
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�zero-length� cross-linking agent, EDC, only links groups that are within 5 Å (Kalkhof, 

2005), the observed cross-links are specific and not due to nonspecific aggregation.   

Multiple, essentially redundant cross-links, were also observed between similar 

regions of the protein particularly in the N-terminus, indicating a specific fold. Thirteen 

cross-links were observed in the cross-linked monomer, dimer, and trimer, and are 

therefore intramolecular.  Of these 13 intramolecular cross-links, 10 are within the 

amino-terminal half of HIV-1 Vif, indicating that this region is likely folded into a 

compact domain.  Only one cross-link was observed between residues 171 and 181 in the 

carboxy-terminal half of HIV-1 Vif, suggesting that this region is less ordered in the 

monomer.  This intramolecular cross-link in the C-terminus may be due to C-terminal 

disorder, making it mobile and able to interact with nearby residues.  Another possibility 

is that this region has some defined secondary structure, with adjacent helix or sheet 

residues that can form a cross-link.  The HIV-1 Vif region between the two termini has 

only three cross-links (between residues 2 and 141, 2 and 176, and 26 and 171) and none 

in the last 16 residues of the protein (Figure 3.7B), indicating minimal interactions 

between N- and C-terminal regions within the monomer.  

The cross-linking data show that one residue can form a heterogeneous mixture of 

cross-links (Table 3.3, Table 3.4, Figure 3.6, and Figure 3.7).  For example, E2 cross-

links with residues K26, K34; K141, and/or K176, K179, or K181.  Although the N-

terminal domain of HIV-1 Vif is likely folded into a compact globular domain, I propose 

that this domain is unlikely to be a fixed structure, but dynamic and mobile.  This motion 

would allow residues such as E2 to contact multiple amino acids.  Another explanation 
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for one residue being involved in multiple cross-links is the less than 100% efficiency of 

the cross-linking reaction. 

The heterogeneity of cross-links may also be due to heterogeneity in the mass 

spectrometry analysis. Cross-links with same theoretical molecular weight cannot be 

distinguished without MS/MS (sequence) information for the cross-links.  For example, 

the theoretical molecular weight for the cross-link between E2 and K26 is identical to that 

for the cross-link between E54 and K176.  Without sequence information, one cannot 

determine which cross-link is related to the theoretical molecular weight.   

Heterogeneity in cross-linking specificity has also been observed by other groups 

for other proteins.  For example, EDC cross-linking data showed intermolecular cross-

links between peptides 1-7 in melittin and 1-13 in calmodulin as well as between 1-7 in 

melittin and 127-148 in calmodulin (Schulz, 2004).  Heterogeneity was also observed for 

a sDST (disulfosuccinimidyl tartrate) cross-linking reaction between annexin A2 and the 

S100A10 protein, p11.  Annexin A2 residues 33-50 showed intermolecular cross-linking 

to p11 residues 52-58 as well as between annexin A2 residues 109-124 and p11 residues 

52-56.  In this latter example, analysis of the known crystal structures of both proteins 

indicates that the observed cross-linking heterogeneity is between noncontiguous residues 

in the structures (Schulz, 2007).  

Another explanation for heterogeneity in cross-linking specificity may be that 

EDC reacts only with acidic residues in the monomer and not lysines, leaving an EDC 

molecule on the end of a given residue.  Thus, EDC might only interact with acidic 

residues in the monomer, but in the higher order oligomers it might actually form cross-
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links.  The high heterogeneity in my cross-liked samples may also be due the large 

number of cross-links observed, which was more than that observed by most other groups 

performing similar experiments (Schulz, 2004; Kalkhof, 2005; Schulz, 2007).  

Furthermore, intramolecular cross-links appear concentration dependent, suggesting that 

analyzing cross-linking reactions at different concentrations would give insight into 

heterogeneity and which cross-links are most robust.           

Additional specific intermolecular cross-links were observed in the dimer and 

trimer of HIV-1 Vif.  Four cross-links in the dimer were also observed in the trimer, 

where they link residues in the amino half of the protein, between 34 and 92, with 

residues in the carboxyl half of the protein, between 134 and 176.  An additional 6 cross-

links were observed in the trimer. Of these intermolecular cross-links, 2 involve extensive 

interactions between the two termini of the protein, and the remaining 4 occur within the 

carboxy quarter of the protein, between residues 158 to 192.  This observation suggests 

that, the carboxy-terminal domain, which is disordered in the structure of the monomer, 

becomes more ordered upon dimerization and trimerization.  To determine which 

intermolecular cross-links are lost, future experiments could include an HIV-1 Vif 

construct defective for oligomerization.  The results of such experiments would support 

the presence of intermolecular cross-links and may help identify any nonspecific cross-

links.  In addition, my cross-linking and peptide mass spectrometry data could be used to 

validate any homology models or theoretical structures generated.   

In fact, some of the intermolecular cross-links I observed could be new 

intramolecular cross-links that occur upon conformational changes due to higher-order 
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oligomerization.  Although I can�t rule out this possibility, I don�t think it�s likely for all 

the observed intermolecular cross-links because a dimer and trimer species are present in 

SDS polyacrylamide gels of cross-linked samples suggesting intermolecular cross-links 

exist in these species.  Even if some of these intermolecular cross-links are 

intramolecular, they are still important because they give insight into the structure of 

HIV-1 Vif as well as its possible dynamic motions upon oligomerization.  Whether some 

of the intermolecular cross-links are new intramolecular cross-links could be resolved by 

more in-depth analyses. Multiple cross-linking agents could be used and sequence 

information could be obtained for the cross-links to determine whether peptides from two 

unique monomers were involved in the cross-link. 

Proteins that contain regions of intrinsic disorder are characterized when studied 

in isolation by regions with poorly defined tertiary structure.  These proteins become 

more ordered when they oligomerize with or bind to other biological macromolecules 

(Dunker, 2005; Romero, 2006). In addition, intrinsically disordered proteins have high 

net charge and low overall hydrophobicity (Dyson, 2005; Fink, 2005).  Interestingly, both 

characteristics are attributable to HIV-1 Vif.  The propensity for intrinsic disorder can be 

successfully predicted from a protein�s sequence by programs such as PONDR® 

(Romero, 2001; Vucetic, 2005).  For example, PONDR VL-XT successfully predicted 

regions of intrinsic disorder in p53 and Mdm2 (Iakoucheva, 2002).  In p53, the middle 

portion of the protein is ordered, whereas both the N- and C-termini are predominantly 

disordered, as experimentally confirmed by NMR. �Disorder-to-order transitions� were 

also observed in p53 upon tetramerization and binding to other proteins.  Similarly, the 
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p53-binding domain in Mdm2 was predicted and confirmed to be ordered, with other 

regions confirmed to undergo �disorder-to-order transitions� (Iakoucheva, 2002). 

Interestingly, Mdm2 targets p53 for proteosomal degradation in an analogous fashion to 

HIV-1 Vif and APO3G.   

When the HIV-1 VifHXB2 sequence was submitted to PONDR® (Vucetic, 2005), 

all four predictor algorithms scored the C-terminus as highly disordered (Figure 3.3).  

Only one of the four predictors suggests that the N-terminus might also be disordered.  

This weak prediction for N-terminal disorder is consistent with my mass spectrometry 

data, with 10 internal cross-links within the N-terminus strongly supporting that it is 

predominantly ordered, in contrast to the C-terminus, where only one internal cross-link 

was observed (Figure 3.7B).  Thus, the C-terminus of monomeric HIV-1 Vif is likely 

intrinsically disordered and may become more ordered upon oligomerization.  This model 

is supported by our cross-linking data, since 4 new cross-links (Figure 3.7C) and another 

6 cross-links (Figure 3.7D) were obtained in the C-terminus for the dimer and trimer, 

respectively.  A 2-dimensional schematic (Figure 3.8) shows how HIV-1 Vif may homo-

oligomerize based on observed areas of protection and cross-links from the mass 

spectrometry analysis, with the carboxy termini becoming more structured as 

oligomerization occurs.  This schematic, where the twists and turns correspond to areas 

predicted to be random coils, is consistent with the secondary structure prediction (Figure 

3.7A).  The ordering of HIV-1 Vif upon oligomerization is consistent with the behavior 

of other intrinsically disordered proteins that become more ordered upon binding to other 

biological macromolecules (Dunker, 2005; Romero, 2006). 
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Figure 3.8A 

 
Figure 3.8B 

 
 
Figure 3.8C 
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Figure 3.8D 
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Figure 3.8:  Model for Topology and Multimerization of HIV-1 Vif: (A) 

Intramolecular cross-links suggest that the N-terminus is folded into a compact domain 

and the C-terminus is less structured.  The HIV-1 Vif monomer is globular in shape.  (B 

and C) Schematic of how the HIV-1 Vif dimer and trimer may fold.  The carboxyl 

terminus becomes more ordered upon oligomerization.  (D) Intra-molecular cross-links 

from Figure 3.7A mapped onto the model.  (E)  Inter-molecular cross-links specific to the 

dimer from Figure 3.7B mapped onto the model.  (F)  Inter-molecular cross-links sfrom 

Figure 3.7C pecific to the trimer mapped onto the model. 
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Intrinsic disorder can also be used to address two potential models for protein and 

substrate binding: an induced fit model, and a structure-capture or �lock and key� model.  

In the induced fit model, amino acids undergo conformational changes to form specific 

shapes that allow them to interact with their substrates.  In addition, in the induced fit 

model a protein binds with higher affinity to a reactions transition state than to either its 

substrates or products.  In the structure-capture or �lock and key� model, substrates bind 

to a fixed protein structure.  Therefore, the disorder-to-order transition observed for HIV-

1 Vif upon oligomerization suggests that it interacts with its binding partners through 

neither induced fit nor structure-capture but through induced folding (personal 

communication Sean Ryder).  The C-terminal domain of HIV-1 Vif can be shaped into 

the respective structure to bind a particular substrate, and multiple conformations can be 

sampled to allow binding to different substrates. 

Thus, in the absence of high-resolution structural data, I have successfully defined 

the oligomeric states and molecular topology of HIV-1 Vif.  These data, obtained from 

identification of both peptide-protection areas and specific cross-links, complement and 

expand previous reports on the identification of important HIV-1 Vif residues and regions 

required for HIV-1 infectivity.  For example, HIV-1 infectivity was reduced by more than 

85% when 20 HIV-1 Vif residues were mutated individually or in combination, and 

infectivity was reduced more than 50% by mutating another 9 residues (Simon, 1999).  

Of these 29 residues, 27 were identified by my mass spectrometry analysis as important 

for infectivity.  Three HIV-1 variants [(Q105A, L106A, I107V), (Y111A, F112A), 

(C114S)] containing 6 of the 27 sites of mutation (Simon, 1999) overlap directly with a 
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protected peptide I observed in the trimer (107-121).  This protected peptide contains 

H108, C114 and I120, which are important in Cullin5 binding (Luo, 2005; Mehle, 2006; 

Xiao, 2006).  Thus, protection of the region 107-121 in the trimer suggests that 

trimerization is essential for HIV-1 Vif activity, perhaps by facilitating Cullin5 binding 

through a mechanism that displaces one or more HIV-1 Vif monomers.   

Among these important residues, the remaining 21 map near two separate cross-

links that occur only when a dimer and trimer are formed.  Of these 21 residues, 5 are in 

three variants [(P161A, P162A, L163A), (P164A), (S165A)] and map adjacent to a cross-

link of K160 to D61.  The remaining 16 residues map to the region contiguous with K34 

cross-linking to E134. In this region, 4 variants [(W38A, F39A, Y40A), (H43A, Y44A), 

(C133S), (S144A, L145A, Q146A)] affect infectivity by greater than 85%, and 3 variants 

[(M29A, Y30A, I31V), (Y135A, Q136A), (N140A, K141A)] affect infectivity by greater 

than 50% (Simon, 1999).  My cross-linking data for K34 linking to E134 indicate that 

these essential regions, 29-44 and 133-146, are close together in 3-dimensional space. 

These data suggest that in the dimer and trimer, these regions come together to form a 

single molecular surface creating a �hot spot� for biological activity and possibly 

facilitating Cullin5 binding through C133 of the HCCH zinc-binding motif (Figure 3.9) 

(Luo, 2005; Mehle, 2006; Xiao, 2006).  Such a �hot spot� in HIV-1 Vif is supported by 

the HIV-1 viral RNA-binding site, residues 1-64, since it overlaps with �hot spot� 

residues 29-44.  Indeed, RNA binding activity was significantly reduced by mutating the 

HIV-1 Vif residues W11A, Y30A, and Y40A (Zhang, 2000), and Y30A and Y40A are 

adjacent to the proposed �hotspot� for biological activity.  Furthermore, HIV-1 Vif 
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Figure 3.9   
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Figure 3.9: Residues K34 and E134 form a �hot spot� for biological activity.  When 

residues surrounding K34 and E134 come together in 3-dimensional space, they appear to 

form a �hot spot� for biological activity, consistent with mutations near these residues 

decreasing the amount of infectious virions produced (Simon, 1999).      
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appears to bind cooperatively to viral RNA due to HIV-1 Vif multimers binding to the 

viral RNA (Henriet, 2005).   

Peptide-protection data in the dimer and/or trimer of residues 148-157 and 169-

173, and cross-links at residues 158, 160, and 170 are also consistent with the previously 

identified oligomerization domain, 151-171 (Yang, 2001; Yang, 2003).  In fact, 148-157 

overlaps with the SOCS box, residues 145-169, where HIV-1 Vif interacts with elongin C 

in the elongin BC complex.  This overlap is similar to the trimer-specific peptide 

protection of residues 107-121 corresponding with Cullin5 binding.  In addition, the 

oligomerization domain is also adjacent to and overlaps the putative HIV-1 NCp7 (Gag)-

binding site, residues 157-179 (Bouyac, 1997).  Therefore, not only are our protection 

and cross-linking data consistent with the previously reported oligomerization domain, 

but the overlap of this region with the NCp7 (Gag) binding site also suggests that Gag is 

important for HIV-1 Vif function.  A possible molecular mechanism is that the Cullin5-

elonginBC complex displaces one (or more) of the HIV-1 Vif monomers, thereby 

inducing a conformational change that may also facilitate the binding and targeting of 

APO3G for degradation.  Therefore, the structurally important HIV-1 Vif regions 

identified in my mass spectrometry analysis likely undergo a �disorder-to-order� 

transition upon oligomerization or binding to other macromolecules such as Cullin5, 

elongin C, viral RNA, and HIV-1 NCp7 (Gag) (Figure 3.10).  Although the sequence of 

HIV-1 Vif is not highly conserved among other lentiviral Vifs, the majority of cross-links 

and peptide-protection regions observed in this study occur at residues that are conserved 

among HIV-1 subtypes.  Among those cross-linked residues, E2, D14, K22, K26, and 
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Figure 3.10 
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Figure 3.10: HIV-1 Vif binding domains map onto a diagram of observed 

intermolecular cross-links.  The majority of observed cross-links mapped to regions of 

HIV-1 Vif involved in protein-protein interactions.  Cross-links in the N-terminal domain 

mapped to the RNA-, APO3G-, and APO3F-binding domains, whereas the C-terminal 

cross-links mapped to the Elongin C-, NCp7-, and oligomerization-binding domains.  No 

cross-links were observed in the Cul5-binding domain, but that region has an area of 

protection, suggesting that it may be involved in cross-links that are too large to be 

detected.  All these results taken together suggest that the regions observed in cross-

linking are structurally and functionally important domains.          
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E34 in the N-terminus and E134, K141, K158, K160, K171, and K176 in the C-terminus 

cluster as two regions of high-sequence conservation.  Conservation of these residues and 

cross-linking data are consistent with residues 29-44 and 133-146 being a �hotspot� for 

HIV-1 Vif�s biological activity.  As for HIV-1 Vif, PONDR® predicts that the C-termini 

of HIV-2 and SIV Vif are both disordered.  Therefore, these lentiviral Vifs may undergo 

a similar �disorder-to-order� transition upon oligomerization and binding of other 

macromolecules, similar to the one proposed for HIV-1 Vif.     

This first evidence for HIV-1 Vif�s molecular structure supports the following 

hypothesis: HIV-1 Vif monomers are likely in dynamic equilibrium between various 

homo-oligomers (dimer and trimer), Cullin5-elonginBC complex, APO3G, and possibly 

other biological macromolecules such as HIV-1 NCp7 (Gag) and HIV-1 viral RNA.  The 

HIV-1 Vif monomer is likely only transient, with a structurally defined N-terminal region 

and an intrinsically disordered C-terminus.  This disorder may facilitate the dynamic 

equilibrium of the various complexes.  Upon HIV-1 Vif binding to other 

macromolecules, the structure of its monomeric C-terminus becomes more defined, as 

observed in the C-terminal region upon formation of HIV-1 Vif dimers and trimers 

(Figures 3.7 and 3.8).  Specifically, this increase in structure, or �disorder-to-order� 

transition, is likely to be critical to HIV-1 Vif�s function in viral infectivity, as regions 

with specific cross-links and protected peptides correspond to previously identified 

regions critical to viral infectivity.  In addition, this disorder in the HIV-1 Vif C- terminus 

will likely make it impossible to obtain a full-length high-resolution structure of HIV-1 

Vif.  However, obtaining structural information may be possible for HIV-1 Vif truncation 
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mutants or HIV-1 Vif in complex with one of its binding partners.  Regardless, the 

structure and biochemical properties of these complexes need to be determined to better 

elucidate the specifics of HIV-1 Vif interactions, as disrupting one or more of these 

interactions critical for HIV-1 Vif function will be involved in future inhibitor design. 
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CHAPTER IV 

PEPTIDE-COMPETITION RESULTS CORROBORATE LOW-RESOLUTION 

STRUCTURAL ANALYSIS AND SUGGEST 

NEW DRUG SCAFFOLDS FOR HIV-1 VIF 
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INTRODUCTION 

The human immunodeficiency virus type-1 (HIV-1) encodes a highly basic (pI 

10.7) 23-kDa accessory protein, viral infectivity factor (Vif).  Vif is conserved in all 

lentiviruses, except equine anemia infectious virus (EAIV) (Kan, 1986; Lee, 1986; 

Sodroski, 1986).  If HIV-1 Vif is absent or nonfunctional in nonpermissive primary CD4 

T-cells, post-infection viral replication and viral production are dramatically reduced, 

likely due to a family of cellular cytidine deaminases, APOBEC3 proteins (Gabuzda, 

1992; vonSchwedler, 1993; Sheehy, 2002).  Two such APOBEC3 proteins, APOBEC3G 

(APO3G) and APOBEC3F, likely prevent viral infection by causing a G-to-A 

hypermutation in the plus strand of the viral cDNA or by preventing the buildup of 

reverse transcripts (Lecossier, 2003; Mangeat, 2003; Zhang, 2003; Bishop, 2004; Bishop, 

2004; Harris, 2004; Liddament, 2004; Wiegand, 2004; Zheng, 2004; Doehle, 2005; 

Holmes, 2007).  HIV-1 Vif may overcome the antiviral activity of APO3G or 

APOBEC3F by binding and targeting it for proteosomal degradation through a Cullin-

RING ligase complex (Yu, 2003; Mehle, 2004; Yu, 2004; Kobayashi, 2005; Luo, 2005). 

Therefore, blocking the interaction between HIV-1 Vif and APO3G or 

APOBEC3F may allow these antiviral proteins to function normally, thus preventing the 

spread of HIV-1 infection.  However, biochemical data on HIV-1 Vif have been difficult 

to obtain because of an inability to express high concentrations of soluble protein. 

Nevertheless, the function of HIV-1 Vif has been linked to a putative C-terminal homo-

oligomerization domain, PPLP (161-164), which maps to residues 151-164 (Yang, 2001; 
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Yang, 2003).  HIV-1 Vif was also shown by our lab to homo-oligomerize in an N- to C-

terminal fashion requiring both the N- and C-termini (Auclair, 2007).    

In addition to evidence linking the function of HIV-1 Vif to its homo-

oligomerization, two distinct HIV-1 Vif domains have been shown to interact with 

APO3G and APOBEC3F.  APO3G interacts with HIV-1 Vif at residues 40-44 

(YRHHY), and APOBEC3F interacts with HIV-1 Vif at residues 14-17 (DRMR) 

(Russell, 2007).  These results have been supported by the identification of other N-

terminal domains of HIV-1 Vif important for its interaction with APO3G (Schrofelbauer, 

2006; Mehle, 2007).  

In addition to limited biochemical data on HIV-1 Vif, traditional structure-based 

drug design to target this protein has proven difficult because of the inability to obtain 

milligram quantities of soluble protein.  One potential reason for this insolubility lies in 

the intrinsically disordered characteristics of HIV-1 Vif.  Indeed, I have shown that the C-

terminus of HIV-1 Vif may be intrinsically disordered and have identified two 

structurally important regions in HIV-1 Vif (Auclair, 2007).  Those studies suggest that 

the C-terminus of HIV-1 Vif undergoes a disorder-to-order transition upon 

oligomerization bringing an N-terminal region surrounding Lys34 in proximity to a C-

terminal region surrounding Glu134 creating one molecular surface as a potential �hot 

spot� for biological activity and protein binding, which is in agreement with a mutation 

analysis done by Simon et al (Simon, 1999; Auclair, 2007).   

In the current study, we have identified HIV-1 Vif peptides adjacent to and 

including Lys34 and Glu134 that disrupt oligomerization and impact HIV-1 Vif, APO3G, 
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and/or the Vif-APO3G interaction.  These peptides map to the proposed �hot spot� for 

biological activity, which supports our previous structural analysis.  Therefore, these 

HIV-1 Vif peptides may be useful in designing novel drugs targeting HIV-1 Vif or 

APO3G. 

     

MATERIALS AND METHODS  

Proteins: Both HIV-1 Vif and APO3G were expressed and purified by 

Immunodiagnostics, Woburn, MA as described in Chapter III (Auclair, 2007). 

Monoclonal Antibodies: The HIV-1 Vif antibody (319) was obtained through the AIDS 

Research and Reagent Program, Division of AIDS, NIAID, NIH: HIV-1 Vif Monoclonal 

Antibody (#319) from Dr. Michael Malim.  The immunogen used to generate this 

antibody was a 6XHis-Vif fusion protein overexpressed in BL21(DE3)pLysS Escherichia 

coli and purified under denaturing conditions.  Purified HIV-1 Vif protein from the pIIIB 

strain was used to immunize BALB/c mice. The spleen of one immunized mouse was 

recovered to generate hybridomas with the mouse plasmacytoma cell line SP2/0Ag.  The 

antibody did not show any cross-reactivity with non-HIV-1 Vif proteins (Simon, 1995).  

 The APO3G antibody was originally obtained through the AIDS Research and 

Reagent Program, Division of AIDS, NIAID, NIH: APO3G antibody from 

Immunodiagnostics, Inc., Woburn, MA.  Subsequently the antibody was obtained directly 

from Immunodiagnostics, Inc. Woburn, MA.  Due to the company�s proprietary 

information, the immunogen and methods used to generate this antibody are unavailable.  
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 The information provided by antibody manufacturers was supplemented by 

performing a wavescan from 200 nm to 350 nm (data not shown) to analyze antibody 

purity.  Antibodies were first diluted 1/100 in PBS (92 mM sodium phosphate dibasic, 16 

mM sodium phosphate monobasic, 1.5 M NaCl, pH 7.2) and mixed via pipette.  A 

spectrum of PBS alone showed a straight line across all wavelengths.  The spectrum for 

the HIV-1 Vif monoclonal antibody (#319) showed a large peak at approximately 215-

220 nm, representing peptide bonds, and a smaller peak at 280 nm, representing aromatic 

residues.  No peaks or noise were seen above the 300 nm (where DNA contamination can 

be detected), suggesting little or no DNA contamination.  The spectrum for the APO3G 

monoclonal antibody was similar to that of the HIV-1 Vif monoclonal antibody (#319).  

A large peak was seen at 215-220 nm, representing peptide bonds, and a much smaller 

peak at 280 nm, representing aromatic residues.  Some residual noise was seen at 

wavelengths above 300 nm, suggesting nucleotide contamination.   

Concentration Dependence of Oligomerization: The �zero-length� cross-linking agent, 

EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiamide; Pierce), and sulfo-NHS (N-

hydroxysuccinimide; Pierce) were prepared freshly as 0.1 M stock solutions in 0.1 M 

MES, pH 6.0, 0.5 M NaCl (cross-linking buffer).  Cross-linking reactions were set-up 

with 4 µg of HIV-1 Vif, 2.5 µl of 0.1 M NHS, 1 µl 0.1 M EDC, and varying volumes of 

cross-linking buffer from 25 µl to 275 µl (in 25 µl increments).  Therefore, all amounts 

(µg) of HIV-1 Vif and cross-linkers were kept constant, and the volume of the reaction 

was varied to change the final concentration of HIV-1 Vif per reaction: 6.96 µM, 3.48 

µM, 2.32 µM, 1.74 µM, 1.39 µM, 1.16 µM, 0.99 µM, 0.87µM, 0.79 µM, 0.70 µM, and 
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0.63 µM.  Cross-linking reactions were carried out for 30 min at room temperature.  After 

cross-linking, an equal volume of 20% v/v TCA (trichloroacetic acid) was added to each 

reaction and incubated on ice for 10 min.  Reaction tubes were centrifuged at 14000 rpm, 

supernatants were removed, and pellets were washed and resuspended in 10 µl ddH2O 

plus 10 µl 2% v/v Novex loading dye.  The reactions were analyzed by 16% Tris glycine 

SDS PAGE and transferred to nitrocellulose membrane at 50 mA for 12 h.  The 

nitrocellulose membranes were blocked for approximately 6 h in 10 mM Tris, pH 8.0, 0.3 

M NaCl, 0.25% v/v Tween 20 and 5% w/v non-fat dry milk.  After blocking, membranes 

were incubated overnight with 1:20,000 anti-Vif (319) antibody in blocking buffer plus 

5% milk.  The membranes were washed, incubated with 1:40,000 goat anti-mouse 

secondary antibody, washed again, and developed using Pierce Supersignal ECL kit a 

Fuji LAS-3000.  This assay was repeated 3 times.         

Peptide-competition experiments: Oligomerization: The cross-linking agent, EDC, 

and sulfo-NHS were prepared freshly as 0.1 M stock solutions in cross-linking buffer (0.1 

M MES, pH 6.0, 0.5 M NaCl).  The HIV-1 Vif protein (43.48 µM) was diluted in 50 µl 

cross-linking buffer to a final concentration of 1 µM.  The HIV-1 Vif protein was then 

incubated for 30 minutes on ice in the presence or absence of 1mM or 500 µM HIV-1 Vif 

peptides (Figure 4.1): Vif(25-39), Vif (29-43), Vif(69-83), Vif(125-139), Vif(129-143), 

Vif(145-159), and Vif(157-171).  These peptides were obtained from the NIH AIDS 

Research and Reagent Program and selected because they are from HIV-1 Vif regions 

that have been implicated in protein-protein interactions and/or have structural 

importance in creating a �hot spot� for biological activity (Figure 4.1) (Bouyac, 1997; 



155 

Huvent, 1998; Bardy, 2001; Yang, 2001; Yang, 2003; Cancio, 2004; Mehle, 2004; Yu, 

2004; Kobayashi, 2005; Luo, 2005; Mehle, 2006; Schrofelbauer, 2006; Xiao, 2006; 

Auclair, 2007; Mehle, 2007; Russell, 2007; Xiao, 2007a; Xiao, 2007b).  After incubation, 

reaction mixtures were cross-linked for 30 min at room temperature, in solution as 

described above.  Cross-linking reactions were quenched by precipitating with 20% v/v 

TCA and adding SDS PAGE-gel loading dye with 2-mercaptoethanol.  TCA precipitation  

allowed the total sample supernatant with equal amounts of protein to be loaded into each 

lane of the SDS polyacrylamide gel.  The resulting mixture of HIV-1 Vif oligomers was 

resolved by 16% Tris glycine SDS PAGE and confirmed by western blot analysis using a 

monoclonal antibody to HIV-1 Vif, 319, obtained from the NIH AIDS Research and 

Reagent program as described above.  The membrane was developed using the Pierce 

Supersignal ECL kit and a Fuji LAS-3000.  The bands were quantitated using multigage 

and plotted on a semi-log plot as oligomer band intensity divided by whole lane intensity 

versus HIV-1 Vif concentration. This competition experiment was repeated three times.   

Co-immunoprecipitation and Peptide-Competition Experiments: HIV-1 Vif/APO3G 

Binding: EZviewTM Red Protein A Affinity gel (Sigma) was conjugated with an APO3G 

antibody (Immunodiagnostics) by incubating overnight at 4ºC with end-over-end 

shaking.   Both HIV-1 Vif protein (43.48 µM) and APO3G protein (21.74 µM) were 

diluted in 50 µl Tris buffer (20 mM Tris, pH 8.0, 0.5 M NaCl) to a final concentration of 

1 µM and mixed gently.  The 1:1 molar ratio Vif/APO3G solution was then incubated for 

30 min in the presence or absence of 1mM HIV-1 Vif peptides on ice.  Stock peptides 

were diluted in DMSO such that the final DMSO concentration in reactions was 
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Figure 4.1 

Peptide Sequence 

Vif(25-39) VKHHMYISGKAKGWF 

Vif(29-43) MYISGKAKGWFYRHH 

Vif(69-83) YWGLHTGERDWHLGQ 

Vif(125-139) LGHIVSPRCEYQAGH 

Vif(129-143) VSPRCEYQAGHNKVG 

Vif(145-159) LQYLALAALITPKKI 

Vif(157-171) KKIKPPLPSVTKLTE 
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Figure 4.1: HIV-1 Vif Peptides and Schematic of Peptide Coverage.  The seven HIV-

1 Vif peptides used in the peptide-competition experiments were obtained from the NIH 

AIDS Research and Reagents Program.  The two N-terminal peptides, Vif(29-43) and 

Vif(25-39), along with the C-terminal peptides, Vif(125-139) and Vif(129-143), were 

selected because they have been shown to be important for HIV-1 Vif structure These 

amino acid domains are involved in K34-E134 cross-linking creating a putative �hot 

spot� for biological activity (Auclair, 2007).  The C-terminal peptides, Vif(145-159) and 

Vif(157-171), were selected because they overlap the proposed HIV-1 Vif 

oligomerization domain, 151-171 (Yang, 2001; Yang, 2003).  The peptide Vif(69-83) 

was chosen as a control for which no specific oligomerization and APO3G binding have 

been reported.  The peptides used in peptide-competition experiments are mapped as 

black boxes above the sectioned rectangle representing the HIV-1 Vif sequence, and 

below are HIV-1 Vif-binding domains (Bouyac, 1997; Huvent, 1998; Bardy, 2001; Yang, 

2001; Yang, 2003; Cancio, 2004; Mehle, 2004; Yu, 2004; Kobayashi, 2005; Luo, 2005; 

Mehle, 2006; Schrofelbauer, 2006; Xiao, 2006; Auclair, 2007; Mehle, 2007; Russell, 

2007; Xiao, 2007a; Xiao, 2007b).    
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approximately 4%.  The no-peptide control sample contained an equivalent amount of 

DMSO.  These experiments used the same peptides as in the peptide-competition 

experiments described above, with the addition of a β-endorphin peptide shown to have 

no effect on HIV-1 Vif (Potash, 1998).  While the proteins and peptides were incubating, 

the anti-APO3G-conjugated Protein A Affinity resin was washed with Tris buffer and 

incubated on ice.  After incubation, HIV-1 Vif-APO3G-peptide reactions were incubated 

for 3-5 h with the washed anti-APO3G-conjugated Protein A Affinity resin at 4°C with 

end-over-end mixing.  After this 5-h incubation, the Protein A Affinity beads with 

captured Vif-APO3G complex were washed with 20 mM Tris, pH 8.0, 0.5 M NaCl buffer 

and eluted from the gel via boiling.  Equal volumes of the samples were resolved by 16% 

Tris-glycine SDS PAGE and western blotted.  After transfer nitrocellulose membrane, the 

membranes were cut along the 38 KDa marker. The top half of the membrane was probed 

with an antibody to APO3G, and the bottom half was probed with an antibody to HIV-1 

Vif (319).  This Co-IP experiment was repeated three times.   

Serial dilution (2/3) experiments for peptides Vif(25-39), Vif(29-43), Vif(69-83), 

and Vif(125-139) were carried out in a similar fashion, except instead of using different 

peptides a range of peptide concentrations were used from 1 mM to 0.30 µM.  Stock 

peptides were diluted in 100% DMSO, and the initial 1 mM dilution contained 

approximately 4% DMSO.  The same amount of DMSO was not added to each dilution 

in the series; thus, the no-peptide control contained the highest amount of DMSO used.  

Band intensities were quantitated using the LAS-3000 and Fujifilm Multigage software.  

The HIV-1 Vif band intensities were divided by the APO3G band intensities and these 
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normalized band intensities were plotted versus peptide concentration on a semi-log 

scale.  These experiments were also repeated three times. 

In these peptide-competition experiments, 1 µM HIV-1 Vif was incubated with 1 

µM APO3G for 30 min before adding each respective peptide, and incubations were 

continued for 3-5 h.  Preliminary binding information suggested that the interaction 

between HIV-1 Vif and APO3G is weak (Appendix II); therefore, I expected that the 

peptides would disrupt the protein-protein interaction.  However, if HIV-1 Vif and 

APO3G bound tightly, their interaction would not be efficiently inhibited by the peptides.  

To address these two possibilities, the order of adding components could be altered in 

peptide-competition experiments.  For example, HIV-1 Vif could be incubated with the 

respective peptides before adding APO3G, which could allow the peptides to bind to 

either HIV-1 Vif or APO3G preventing the other respective protein binding instead of the 

peptide competing for binding with the other respective protein. 

In-vitro HIV-1 Vif-peptide uptake experiments: 293T cells were transfected with a 

plasmid containing the full-length infectious NL4-3 strain of HIV-1.  Cell supernatants 

containing virions were collected, quantified for HIV-1 p24 amounts, and used to infect 

nonpermissive CEM cells at a m.o.i. of 0.1.  An aliquot of CEM T-cells were mock-

infected and served as a negative control for infection.  After 2 hr of initial infection, the 

cells were washed and then split into aliquots.  An aliquot was cultured in the absence of 

any peptide and served as the positive control for infection.  The other aliquots were 

cultured in the presence of one of the following antennapedia 

(RQIKIWFQNRRMKWKK)-tagged HIV-1 Vif peptides: Vif(29-43), Vif(69-83), 
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Vif(125-139) (see Figure 4.1 for sequences of the previous 3 peptides), Vif(155-166) 

[KPKQIKPPLPSV], and a scrambled protein kinase C (PKC) control 

[KCVHVGAKQKQIAHLHRR].  Infected cultures were maintained in the presence or 

absence of these peptides for 15 days, with periodic replenishing of the peptides and after 

day 15 post-infection they were cultured in the absence of any peptide.  Aliquots of 

infected culture supernatants were sampled during the infection period to monitor viral 

replication using a HIV-1 p24 antigen-capture ELISA assay to detect the amount of p24 

protein present in the supernatant.  These experiments were repeated in duplicate. 

RESULTS 

 The relationship between the rate of oligomerization and HIV-1 Vif concentration 

were examined by measuring the concentration dependence of oligomerization.  To 

confirm the low-resolution structural data obtained in Chapter III and to determine 

potential peptides that could be used in drug design, competition was examined between 

HIV-1 Vif and various HIV-1 Vif peptides.  Both the disruption of oligomerization and 

the Vif-APO3G interaction were investigated.         

Oligomerization of HIV-1 Vif depends on its concentration  

To determine the the relationship between rate of oligomerization and HIV-1 Vif 

concentration, oligomerization products were measured at various HIV-1 Vif 

concentrations.  Oligomerization was measured in cross-linking reactions with constant 

amounts of HIV-1 Vif protein and cross-linker in varying volumes, thus varying only the 

protein concentration.  Each reaction was TCA precipitated based on its total reaction 

volume (see Methods) before SDS PAGE analysis; therefore, the same amount of HIV-1 
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Vif (4 µM) was added to each lane.  As the volume of the cross-linking reaction was 

increased, thus decreasing the protein concentration, the amount of cross-linked products, 

dimer and trimer, also decreased.  The amount of monomer increases as the amount of 

dimer and trimer decreases (Figure 4.2A).  These experiments were repeated three times, 

with similar results in each case. 

To obtain a Kd of dimerization, the band intensity for the dimer was normalized to that 

for the whole lane and plotted versus HIV-1 Vif protein concentration (Figure 4.2B).  

These normalized intensities did not change significantly over the concentrations 

investigated, making it impossible to determine a Kd of dimerization.  To determine a Kd, 

further experiments are needed with a wider range of protein concentrations.  

HIV-1 Vif Peptides Block Oligomerization 

To determine if HIV-1 Vif peptides could inhibit HIV-1 Vif oligomerization, 

peptide-competition experiments were performed.  The peptides were selected from HIV-

1 Vif regions shown to be important for oligomerization, other protein-protein 

interactions, and/or structurally important for Vif function (Figure 4.1; (Bouyac, 1997; 

Huvent, 1998; Bardy, 2001; Yang, 2001; Yang, 2003; Cancio, 2004; Mehle, 2004; Yu, 

2004; Kobayashi, 2005; Luo, 2005; Mehle, 2006; Schrofelbauer, 2006; Xiao, 2006; 

Auclair, 2007; Mehle, 2007; Russell, 2007; Xiao, 2007a; Xiao, 2007b).  Peptide-

competition experiments were conducted with a 500-fold or 1000-fold excess of peptide 

such that 1µM HIV-1 Vif was cross-linked in the presence or absence of 1mM or 500µM 

HIV-1 peptides and analyzed via western blotting.  A no-peptide control sample shows 

the presence of monomeric and dimeric HIV-1 Vif (Figure 4.3A, lane 1).  Peptides 
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Figure 4.2A 
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Figure 4.2B  

Concentration Dependence of Oligomerization
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Figure 4.2: HIV-1 Vif Oligomerization Depends on HIV-1 Vif Concentration.  (A.) 

HIV-1 Vif was cross-linked in the presence of equal amounts of protein and cross-linking 

agent, but volumes were changed to vary final protein concentrations.  Cross-linking 

reaction products were analyzed by SDS PAGE and western blot using an antibody 

against HIV-1 Vif.  The molecular weight marker is in kilodaltons (kDa).  The protein 

concentration for each lane is listed above the respective lane.  As reaction volume 

increased and the protein concentration thus decreased, the amount of dimer and trimer 

decreased.  The amount of monomer increased as the amount of dimer and trimer 

decreased.  (B.) The amount of monomer, dimer, and trimer product was quantitated and 

normalized by dividing each respective oligomeric state band intensity by the intensity of 

the whole lane and plotting versus protein concentration on a semi-log scale.  The 

monomer data was normalized to 2 to put it on the same scale as the dimer and trimer 

samples.  
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Vif(25-39) and Vif(69-83) do not appear to affect HIV-1 Vif oligomerization as similar 

levels of oligomer products are observed as in the no-peptide control (Figure 4.3A, lanes 

2 and 4).  In addition, peptides Vif(129-143), Vif(145-159), and Vif(157-171) appear to 

have little or no effect on the amount of oligomers formed (Figure 4.3A, lanes 6-8), but 

peptides Vif(29-43) and Vif(125-139) dramatically reduced the amount of HIV-1 Vif 

oligomer products (Figure 4.3A, lanes 3 and 5).  These two peptides, Vif(29-43) and 

Vif(125-139), map to the region previously identified as a �hot spot� for binding to 

proteins important for HIV-1 Vif function (Auclair, 2007).  

The apparent failure of peptides Vif(129-143) and Vif(157-171) to inhibit 

oligomerization is noteworthy because they were shown by my cross-linking data 

(Chapter III) to be involved in oligomerization.  Similarly, Vif(157-171) has been 

reported to lie within the HIV-1 Vif oligomerization domain (Yang, 2001; Yang, 2003).  

A possible explanation for why these peptides did not inhibit oligomerization is that 

higher concentrations of peptide are needed or other cell factors (proteins) are involved.  

These experiments were repeated in triplicate, with similar results in each case.    

 Both N-terminal and C-terminal regions in HIV-1 Vif interact with APO3G  

To determine if HIV-1 Vif peptides could disrupt the HIV-1 Vif-APO3G 

interaction, the same peptides as above were used in co-immunoprecipitation (co-IP) and 

peptide-competition experiments.  In co-IP experiments, mixtures of 1 µM HIV-1 Vif 

and 1µM APO3G were incubated for 0.5 h with and without 1000-fold excess peptide (1 

mM) before adding APO3G antibody-conjugated beads and incubating 3 to 5 h longer. 

HIV-1 Vif-APO3G complexes were eluted from beads and analyzed via western blot 
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Figure 4.3A 
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Figure 4.3A: HIV-1 Vif Peptides Block Oligomerization.  To determine if HIV-1 Vif 

15-mer peptides inhibited HIV-1 Vif oligomerization, HIV-1 Vif was incubated in the 

presence or absence of peptides and cross-linked. Reaction products were analyzed by 

SDS PAGE and western blotted using an antibody against HIV-1 Vif.  The peptides were 

selected based on their involvement in Vif-Vif interactions as previously observed 

(Auclair, 2007).  Lane 1: No peptide.  Lane 2: HIV-1 Vif(25-39).  Lane 3: HIV-1 Vif(29-

43).  Lane 4: HIV-1 Vif(69-83).  Lane 5: HIV-1 Vif(125-139).  Lane 6: HIV-1 Vif(129-

143).    Lane 7: HIV-1 Vif(145-159).  Lane 8: HIV-1 Vif(157-171).  Peptides Vif(29-43) 

and Vif(125-139) appeared to have the greatest ability to inhibit dimerization, whereas 

peptides Vif(129-143), Vif(145-159), and Vif(157-171) appeared to have a minor effect 

on inhibiting dimerization, and peptides Vif(25-39) and Vif(69-83) appeared to have no 

effect on HIV-1 Vif dimerization.  The molecular weight marker is in kDa.         
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with anti-HIV-1 Vif and APO3G antibodies.  Peptides Vif(125-139), Vif(129-143), 

Vif(145-159), and Vif(157-171) had little effect on the amount of HIV-1 Vif observed 

(Figure 4.3B, lanes 5-8), whereas  peptides Vif(25-39) and Vif(29-43) displaced HIV-1 

Vif (Figure 4.3B, lanes 2 and 3).  In addition, Vif(69-83) appeared to have levels of HIV-

1 Vif that were consistent with the no-peptide control (Figure 4.3B, lane 4).  As a control 

peptide, I used β-endorphin (YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE), which 

has been shown to have no effect on HIV-1 Vif, (Potash, 1998), but in my hands β-

endorphin appeared to displace the amount of HIV-1 Vif that interacted with APO3G 

(Figure 4.3B, lane 9).   

 In addition to probing the co-immunoprecipitated complexes for HIV-1 Vif, I 

probed for APO3G to determine how much APO3G was immobilized on the Protein A 

affinity beads.  The peptides Vif(69-83), Vif(125-139), Vif(129-143), and Vif(157-171) 

appear to have immobilized a similar amount of APO3G as the no-peptide control 

(Figure 4.3B, lanes 4-6 and lane 8).  Vif(145-159) appears to have immobilized half as 

much APO3G as the control, and peptides Vif(25-39) and Vif(29-43) appear to have 

immobilized almost no APO3G (Figure 4.3B, lane 7 and lanes 2-3).  A control peptide 

which has been shown to have no effect on HIV-1 Vif, β-endorphin, (Potash, 1998) 

appeared to reduce the amount of APO3G in the putative HIV-1 Vif-APO3G complex 

(Figure 4.3B, lane 9). 

  The detection of reduced APO3G is surprising since one would expect to always 

detect APO3G after using an anti-APO3G antibody to isolate APO3G on the Protein A 

beads in order to isolate the putative HIV-1 Vif-APO3G complex.  Thus, further 
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Figure 4.3B 
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Figure 4.3B: Both N-terminal and C-terminal regions in HIV-1 Vif interact with 

APO3G. HIV-1 Vif was co-immunoprecipitated with APO3G in the presence or absence 

of HIV-1 Vif 15-mer peptides and analyzed via western blotting using both HIV-1 Vif 

and APO3G antibodies.  The peptides were selected based on their involvement in Vif-

Vif interactions (Auclair, 2007).  Lane 1: No peptide.  Lane 2: Vif(25-39).  Lane 3: 

Vif(29-43).  Lane 4: Vif(69-83).  Lane 5: Vif(125-139).  Lane 6: Vif(129-143).  Lane 7: 

Vif(145-159).  Lane 8: Vif(157-171).  N-terminal peptides, Vif(25-39) and Vif(29-43), 

reduced the amount of both Vif and APO3G, whereas peptides Vif(125-139), Vif(129-

143) and Vif(157-171) had little effect on Vif and APO3G levels.  Peptide Vif(145-159) 

seemed to reduce the amount of APO3G, but the level of HIV-1 Vif was only minimally 

reduced.  Peptide Vif(69-83) appeared to have levels of APO3G and HIV-1 Vif 

consistent with the no-peptide control.  β-endorphin was selected as a control because it 

was shown to have no effect on HIV-1 Vif (Potash, 1998), but in this case it reduced both 

the amount of HIV-1 Vif and APO3G observed.  To determine if the same amount of 

protein was loaded in each lane I could compare the amount of APO3G immobilized on 

the beads, however I incubated APO3G with HIV-1 Vif and peptide and then 

immobilized on the beads.  Because of this, I am unable to determine if the same amount 

of protein is loaded in each lane.  To correct for this in future experiments I would 

immobilize APO3G on the beads and then incubated with HIV-1 Vif and peptides.  The 

molecular weight marker is in kDa.  
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investigation is warranted into why APO3G detection was reduced by some of these 

peptides.  One possibility is that the APO3G or HIV-1 Vif sample was contaminated by 

RNA thus blocking the antibody binding site and, reducing the protein observed.  This 

possibility could be examined by repeating these experiments in the presence of RNase 

A.  These experiments were repeated three times, with similar results in each case.  

 Another unexpected result was that the β-endorphin control reduced the amounts 

of both HIV-1 Vif and APO3G observed.  β-endorphin has been used in cellular uptake 

experiments, where it did not reduce the amount of HIV-1 antigen p24, indicating no 

effect on viral replication (Potash, 1998).  In those experiments, however, β-endorphin 

was monitored for its ability to inhibit viral replication in cells, not its ability to interact 

with APO3G or HIV-1 Vif.  In those experiments β-endorphin was added to a cell culture 

system, whereas I added it to purified proteins that are known to be unstable.  The peptide 

may be causing HIV-1 Vif and APO3G to aggregate or may affect the purified proteins 

by an unknown mechanism.  In addition, I cannot rule out the possibility that the β-

endorphin peptide is contaminated with proteases, however it is unlikely since other HIV-

1 Vif peptides I tested reduced the amount of HIV-1 Vif and APO3G.  

In addition to the β-endorphin control, another interesting control to consider 

would be determining the effect of mutant HIV-1 Vif peptides on viral replication.  This 

would help to elucidate the potential role wild type peptides may have on the Vif-APO3G 

interaction.  If a mutant peptide had no effect particular residues could be identified as 

playing a crucial role in the interaction.  
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HIV-1 Vif(25-39) and HIV-1 Vif(29-43) Disrupt the HIV-1 Vif-APO3G Interaction  

To determine the concentration range necessary to disrupt the HIV-1 Vif-APO3G 

interaction, I used serial dilutions (2/3) of HIV-1 Vif peptides and co-

immunoprecipitation.  HIV-1 Vif (1 µM) was incubated with APO3G (1 µM) and either 

Vif(25-39), Vif(29-43), Vif(69-83), or Vif(125-139) from 1mM to 0.30 µM. Reactions 

were analyzed for Vif-APO3G complexes as for the previous Vif-APO3G co-

immunoprecipitation experiments.  Band intensities for HIV-1 Vif-APO3G complexes on 

western blots were quantitated, normalized, and plotted versus peptide concentration.  

The amount of APO3G or HIV-1 Vif was not affected by Vif(69-83) and Vif(125-139) 

compared to the no-peptide control (Figure 4.4C and 4.4D).  Vif(25-39) and Vif(29-43) 

reduced the amounts of HIV-1 Vif and APO3G to levels comparable to the no-peptide 

control.  Vif(25-39) at concentrations above 88µM and Vif(29-43) above 17 µM 

appeared to reduce the amount of APO3G observed (Figure 4.4A and 4.4B, respectively).  

Below these two concentrations, the peptides appear to have no effect on HIV-1 Vif 

binding to APO3G.  These experiments were repeated in duplicate, with similar results in 

each case.  

HIV-1 Vif peptides inhibit viral replication in vitro  

To determine if HIV-1 Vif peptides could disrupt viral replication nonpermissive 

CEM T-cells were infected with infectious HIV-1 NL4-3 virus and the cells were 

maintained in culture with or without antennapedia-tagged HIV-1 Vif peptides for 21 

days.  Antennapedia-tag is a tag that allows for cellular uptake of peptides.  As a positive 
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control, cells were treated with no peptide and infected with HIV-1 virions collected from 

the supernatant of infected 293T cells.  HIV-1 replication, shown by the amount of its 

p24 antigen in cell supernatants, increased to a maximum at 11 days post-infection, after 

which the amount decreased because of the cytopathic effects of HIV-1 (Figure 4.5, red 

squares).  Two negative controls were used: uninfected cells and infected cells treated 

with PKC-scrambled peptide. In uninfected controls no p24 was produced (Figure 4.5, 

cyan diamonds), and in cells treated with the PKC-scrambled peptide, p24 levels did not 

differ from those of infected positive controls, suggesting that there was no non-specific 

inhibitory effect on spread of infection in culture in the presence of antennapedia peptides 

(Figure 4.5, yellow triangles).   

When HIV-1-infected CEM T-cells were treated with the HIV-1 Vif peptides, 

Vif(29-43), Vif(69-83), and Vif(125-139), the amount of p24 production decreased by 

approximately an order of magnitude (Figure 4.5, blue asterisks, green X, orange circles).  

Removing the peptides after day 15 led to a rebound in viral p24 production (Figure 4.5, 

blue asterisks, green X, orange circles).  The peptide Vif(155-166), which has been 

shown to reduce viral replication (Yang, 2003), also reduced p24 production and thus 

viral replication (Figure 4.5, purple plus signs), but not to the same extent as the other 

HIV-1 Vif peptides tested.   

 

DISCUSSION 

Here I report novel data on concentration dependence of HIV-1 Vif 

oligomerization, HIV-1 Vif peptides that can disrupt HIV-1 Vif Oligomerization, HIV-1 
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Figure 4.4A 
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Figure 4.4B 
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Figure 4.4C 
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Figure 4.4D 

197.7
126.4
81.1

40.3

31.2

17.1

6.7

HIV-1 Vif

APOBEC3G

Protein A and antibody 
background

N
o 

pe
pt

id
e

10
00

 µ
M

66
7 

µM
44

4 
µM

29
6 

µM

19
8 

µM
13

2 
µM

88
 µ

M
59

 µ
M

39
 µ

M
26

 µ
M

17
 µ

M
12

 µ
M

5.
0 

µM
3.

0 
µM

2.
0 

µM
1.

5 
µM

1.
0 

µM
0.

68
 µ

M
0.

45
 µ

M
0.

30
 µ

M

m
ar

ke
r 

8.
0 

µM

m
ar

ke
r 

197.7
126.4
81.1

40.3

31.2

17.1

6.7

HIV-1 Vif

APOBEC3G

Protein A and antibody 
background

N
o 

pe
pt

id
e

10
00

 µ
M

66
7 

µM
44

4 
µM

29
6 

µM

19
8 

µM
13

2 
µM

88
 µ

M
59

 µ
M

39
 µ

M
26

 µ
M

17
 µ

M
12

 µ
M

5.
0 

µM
3.

0 
µM

2.
0 

µM
1.

5 
µM

1.
0 

µM
0.

68
 µ

M
0.

45
 µ

M
0.

30
 µ

M

m
ar

ke
r 

8.
0 

µM

m
ar

ke
r 

Vif(125-139)

0

0.1

0.2

0.3

0.4

0.5

0.6

Concentration (uM)

R
el

at
iv

e 
Vi

f/3
G

 b
an

d 
in

te
ns

ity

 



181 

Vif(125-139)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Concentration (uM)

 R
el

at
iv

e 
[V

if/
3G

 +
 V

if(
12

5-
13

9)
]/[

Vi
f/3

G
 +

 n
o 

pe
pt

id
e]

 b
an

d 
in

te
ns

iti
es

10
00 66

7

44
4

29
6

19
8

13
2

88 59 39 26 17 12 8.0 5.0 3.0 2.0 1.5 1.0 0.6
8

0.4
5

0.3
0

Vif(125-139)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Concentration (uM)

 R
el

at
iv

e 
[V

if/
3G

 +
 V

if(
12

5-
13

9)
]/[

Vi
f/3

G
 +

 n
o 

pe
pt

id
e]

 b
an

d 
in

te
ns

iti
es

Vif(125-139)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Concentration (uM)

 R
el

at
iv

e 
[V

if/
3G

 +
 V

if(
12

5-
13

9)
]/[

Vi
f/3

G
 +

 n
o 

pe
pt

id
e]

 b
an

d 
in

te
ns

iti
es

10
00 66

7

44
4

29
6

19
8

13
2

88 59 39 26 17 12 8.0 5.0 3.0 2.0 1.5 1.0 0.6
8

0.4
5

0.3
0



182 

Figure 4.4: HIV-1 Vif(25-39) and HIV-1 Vif(29-43) Disrupt the HIV-1 Vif-APO3G 

interaction.  The binding characteristics between HIV-1 Vif and APO3G were examined 

by co-immunoprecipitating 1 µM HIV-1 Vif with 1 µM APO3G in the presence or 

absence of serial dilutions of the following 15-mer peptides: Vif(25-39) (A), Vif(29-43) 

(B), Vif(69-83) (C), and Vif(125-139) (D).  Interactions were analyzed via western 

blotting using both HIV-1 Vif and APO3G antibodies.  (A) Lane 1: No peptide.  Lane 2-

23: 2/3 serial dilutions starting at 1 mM and ending at 0.30 µM; lane 6 and 21 marker. 

(B.)  Lane 2: No peptide.  Lane 3-23: 2/3 serial dilutions starting at 1 mM and ending at 

0.30 µM; lane 1 and 14 marker. (C.) Lane 2: No peptide.  Lane 3-23: 2/3 serial dilutions 

starting at 1 mM and ending at 0.30 µM; lane 1 and 14 marker.  (D.) Lane 1: No peptide.  

Lane 2-23: 2/3 serial dilutions starting at 1 mM and ending at 0.30 µM; lane 6 and 20 

marker.  Along with the western blots for each peptide (A-D) a representative plot of 

relative Vif/APO3G band intensity versus concentration (µM) is shown plotted on a 

semi-log scale.  In addition, for each peptide (A-D) a histogram is shown of relative 

[Vif/APO3G + respective peptide]/[Vif/APO3G + no peptide] at each concentration.  

These histograms are the average of two experiments and plotted along with the standard 

deviation for each concentration.  Vif(25-39) and Vif(29-43) at concentrations above 88 

µM and 17 µM, respectively, appear to disrupt the interaction between APO3G and HIV-

1 Vif as compared with the no-peptide control.  Below these peptide concentrations, 

Vif(69-83) and Vif(125-139) appeared to have no effect on APO3G or HIV-1 Vif.  These 

experiments were repeated in duplicate, with similar results in each case. 



183 

 Ideally the no peptide control lane would be the most intense band, thus giving 

the largest ratio of Vif/APO3G.  In this case the histograms would not exceed 1 on the y-

axis.  However, in these experiments the no peptide control was not always the most 

intense band and the Vif/APO3G normalization of some lanes where neither HIV-1 Vif 

nor APO3G were readily detectable gave a normalized band intensity larger than the no 

peptide control, thus giving y-axis values above 1.   
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  Figure 4.5 
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Figure 4.5.  HIV-1 Vif peptides inhibit viral replication in vitro.   Cells were incubated 

in the presence of each respective peptide until day 15, after day 15 peptides were 

removed.  No replication was observed in the uninfected control (blue diamonds).  HIV-1 

Vif peptides, Vif(29-43), Vif(69-83), and Vif(125-139), reduced the amount of p24 

expressed in infected cells (green X Vif(29-43), blue asterisk Vif(69-83), and orange 

circle Vif(125-139)) as compared to the infected control (red squares).  In addition, 

Vif(155-166) reduced the amount of p24 observed to a lesser extent then the other HIV-1 

Vif peptides (purple plus sign).  p24 levels for the PKC control did not differ from those 

of infected controls (yellow triangles versus red squares).  Removing the peptides after 

day 15 led to a rebound in viral p24 production (blue asterisks, green X, orange circles).  

This experiment was repeated in duplicate and an average of both of these experiments is 

represented in the graph above plotted with standard deviation for each point.   
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Vif peptides that can disrupt the putative HIV-1 Vif-APO3G interaction, and HIV-1 Vif 

peptides that disrupt viral replication.  These data were obtained using co- 

immunoprecipitation and peptide-competition experiments.  Viral replication data was 

obtained using HIV-1 Vif peptides tagged with antennapedia, a cellular uptake signal.   

 This study shows that HIV-1 Vif oligomerization is concentration dependent.  As 

the protein concentration decreases the number of oligomers, dimers and trimers, 

observed decreases.  The amount of monomer appears to increase.  This finding indicates 

that cross-linking is not due to nonspecific protein-protein interactions.  Further analysis 

with a larger protein concentration range could lead to an approximate Kd for HIV-1 Vif 

dimerization.        

 The formation of HIV-1 Vif dimers was reduced by two HIV-1 Vif peptides, 

Vif(29-43) and Vif(125-139).  This result suggests that both of these regions are 

important for HIV-1 Vif dimerization, consistent with my observation that the N-

terminus of one HIV-1 Vif monomer cross-links with the C-terminus of another HIV-1 

Vif monomer (Auclair, 2007).  In particular, these two HIV-1 Vif peptides include either 

Lys34 or Glu134, which also comprise the proposed �hot spot� of biological activity 

(Auclair, 2007).  These peptides could be used as scaffolds to design new drugs that 

disrupt oligomerization, thus potentially inhibiting HIV-1 Vif function.   

The peptides used to examine their effect on HIV-1 oligomerization were also used to 

disrupt the Vif-APO3G interaction as assessed by co-immunoprecipitation.  Two of these 

peptides, Vif(25-39) and Vif(29-43), appeared to decrease the amount of APO3G 
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immobilized on affinity beads and thus the amount of HIV-1 Vif co-immunoprecipitated.  

The action of these two peptides is interesting because they might be disrupting the 

APO3G-antibody interaction in the co-IP, aggregating APO3G, and/or disrupting the 

APO3G-Vif interaction.   

To further elucidate the role of these peptides [Vif(25-39), Vif(29-43), Vif(69-

83), and Vif(125-139)] in disrupting the HIV-1 Vif-APO3G interaction I performed serial 

dilution experiments and co-immunoprecipitations.   In an ideal experimental condition I 

would use concentrations of APO3G 2-3-fold higher than the Kd, but to date there are no 

Kd values for the APO3G-Vif interaction [Preliminary surface plasmon resonance 

experiments suggest it may be on the order of 100 µM (Appendix 2)].  Due to protein 

instability the highest concentration of APO3G attainable is approximately 27 µM.  

Therefore, due to the limited amount of APO3G, serial dilution experiments were 

performed with an equimolar amount of HIV-1 Vif and APO3G (1µM).   Vif(69-83) and 

Vif(125-139) appeared to have no effect on the amount of HIV-1 Vif or APO3G present 

in the serial dilution IPs (Figure 4C and 4D), but both Vif(25-39) and Vif(29-43) at 

concentrations above 88 µM and 17 µM, respectively, seemed to reduce the amount of 

Vif and APO3G.  Below these two concentrations the peptides had no apparent effect on 

HIV-1 Vif binding to APO3G (Figure 4A and 4B).   

The different concentration ranges in which these peptides affect APO3G suggest 

that one may more strongly inhibit the Vif-APO3G interaction than the other.  The serial 

dilution experiments confirmed the single concentration experiments, suggesting that 

these two peptides may disrupt the APO3G-antibody interaction or the Vif-APO3G 
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interaction, or aggregate APO3G.  The site at which these HIV-1 Vif peptides bind is 

unclear; they could bind to the APO3G antibody, to HIV-1 Vif, or to APO3G. In the last 

case, the peptide might change the protein conformation, thus preventing the protein-

antibody interactions.  However, the HIV-1 Vif peptide is unlikely to bind the APO3G 

antibody because the APO3G antibody binds strongly the APO3G protein.  This issue 

might be addressed by varying the order in which components are added to the reaction.  

Another possibility is that the peptides trigger a conformational change in APO3G, thus 

releasing it from its antibody (Figure 4.6).   

Although for these experiments I assume HIV-1 Vif and APO3G bind directly 

and the majority of evidence suggests that, it is possible that the HIV-1 Vif-APO3G 

interaction is mediated via another macromolecule.  For example, both proteins are 

known to bind RNA, suggesting that their interaction could be mediated by RNA 

(Svarovskaia, 2004; Henriet, 2005).  To rule out this possibility, further investigation is 

needed.  A large-scale mutational analysis of HIV-1 Vif and APO3G in the presence of 

RNase A would help elucidate whether in fact their interaction was direct.   

Whether the peptides bind to APO3G or HIV-1 VIf could be determined by direct 

ELISA in which peptides are immobilized.  If the HIV-1 Vif peptides in fact aggregate 

APO3G, this finding would suggest a novel function for HIV-1 Vif, i.e., that it can 

aggregate APO3G prior to proteosomal degradation.  Such a finding would be consistent 

with the suggestion that targeting APO3G to the proteosome and preventing its 

incorporation into virions are unique functions of HIV-1 Vif (Opi, 2006; Opi, 2007).  

Therefore, it is tempting to speculate that the decrease of APO3G I observe with Vif(25-
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39) and Vif(29-43) may be a mechanism for HIV-1 Vif to inhibit incorporation of 

APO3G into virions. 

Furthermore, the ability of Vif(25-39) and Vif(29-43) to disrupt the HIV-1 Vif-

APO3G interaction was likely specific for four reasons.  First, the no-peptide control 

cultures had the highest concentration of DMSO, which did not affect the proteins or 

their interaction. Second, peptides Vif(69-83) and Vif(125-139) did not affect APO3G, 

HIV-1 Vif, or their interaction, although the experiments were conducted under the same 

conditions as for Vif(25-39) and Vif(29-43).  Third, the highest concentrations of DMSO 

used in HIV-1 Vif-APO3G experiments were also used in the peptide-competition 

experiment of oligomerization where they had no affect on the HIV-1 Vif protein. Fourth, 

the concentrations at which Vif(25-39) and Vif(29-43) disrupted the HIV-1 Vif-APO3G 

interaction, 88µM and 17µM respectively, were consistent among multiple experiments 

for each peptide. 

Some of the same peptides used in the competition experiments were also used in 

preliminary in vitro cellular experiments to test whether they have an effect on viral 

replication.  An antennapedia tag was used for cellular uptake of HIV-1 Vif peptides.  

These peptides, which correspond to the �hot spot� for biological activity, reduced the 

amount of p24 observed, and thus reduced the levels of viral replication.  For example, 

HIV-1 Vif peptides Vif(29-43), Vif(69-83) and Vif(125-139) all reduced the amount of 

p24 observed in cell-free culture supernatants by approximately an order-of-magnitude 

compared to the infected positive control.  While these experiments suggest inhibitory 

effects of the selected HIV-1 Vif peptides on spread of viral infection in the test-cultures, 
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Figure 4.6 
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Figure 4.6: Proposed mechanisms for Vif(25-39) and Vif(29-43) inhibition of the 

HIV-1 Vif-APO3G interaction.  (A.) Vif(25-39) and Vif(29-43) could inhibit the 

interaction between APO3G and its antibody, thus preventing its immobilization and co-

immunoprecipitation with HIV-1 Vif.  Another possibility is that the peptides could 

trigger a conformational change in APO3G, thus releasing it from its antibody (B.) 

Vif(25-39) and Vif 29-43) could inhibit the interaction between APO3G and HIV-1 Vif.  

For both (A.) and (B.), it is unclear to which protein the peptide binds, but in the case of 

(B.) a peptide interaction with APO3G might explain why it is not immobilized.  Peptide 

binding could cause a conformational change in APO3G and prevent its binding to both 

HIV-1 Vif and the antibody.  (C.) Vif(25-39) and Vif(29-43) could bind to APO3G and 

nucleate its aggregation.
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 it will be necessary to determine whether the virus in cell-free supernatant collected from 

the peptide-treated cultures retained infectivity-potential by using it in primary infections 

of permissive or nonpermissive cells.  These experiments will delineate whether the HIV-

1 Vif peptides blocked Vif-APO3G interaction leaving free APO3G to be packaged in the 

output virus.  Further experiments are needed to elucidate the direct or indirect 

mechanism of the inhibitory effects of the peptides and to determine the exact role of 

APO3G.  Experiments that would potentially allow us to obtain this information will be 

to perform similar in vitro experiments in permissive cells, where APO3G is absent, and 

experiments using HIV-1 with no functional Vif (Vif-deleted) and monitor viral 

replication.   

Thus, the peptide-competition experiments suggest a role for the HIV-1 N-

terminus in oligomerization and the Vif-APO3G interaction.  These results are consistent 

with a previous report of HIV-Vif peptides disrupting the Vif-APO3G interaction (Mehle, 

2007).  In that study, N-terminal peptides disrupted the Vif-APO3G interaction with the 

most potent effect shown by Vif(57-71).  This inhibition by Vif(57-71) was dose-

dependent, and the Vif(57-71) mutant Y69A/W70A failed to inhibit the Vif-APO3G 

interaction, suggesting that the inhibition is specific and that Y69 and W70 are critical 

residues in the interaction.  On the other hand, Vif(25-39) appeared to enhance the Vif-

APO3G interaction in that study, whereas the same peptide appeared to reduce the HIV-1 

Vif- APO3G interaction in mine.  In both studies, Vif(125-139) did not affect Vif-

APO3G binding.  Although further experiments are necessary to conclusively understand 

the mechanism by which these peptides interfere with the HIV-1 Vif-APO3G interaction, 
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these data taken with those reported here demonstrate that N-terminal peptides impact the 

HIV-1 Vif-APO3G interaction (Mehle, 2007).    

 Here I show that HIV-1 Vif oligomerization is concentration dependent, thus not 

due to random protein-protein interactions from aggregation.  HIV-1 Vif oligomerization 

was apparently blocked by HIV-1 Vif peptides, Vif(29-43) and Vif(125-139), consistent 

with my structural analysis implicating residues 34 and 134 in a �hot spot� for biological 

activity (Auclair, 2007).  The results presented here also indicate that Vif(25-39) and 

Vif(29-43) reduce the co-IP of APO3G and HIV-1 Vif .  In addition, I show that the two 

HIV-1 Vif peptides that disrupted oligomerization and one peptide that disrupted the 

HIV-1 Vif-APO3G interaction mapped to similar regions, suggesting that 

oligomerization and Vif-APO3G binding may use similar binding sites.  All these data 

are consistent with a putative �hot spot� for biological activity at Lys34 and Glu134 in 

HIV-1 Vif (Auclair, 2007) and suggest they may also be important for the Vif-APO3G 

interaction.  Finally, I showed that HIV-1 Vif peptides [Vif(29-43), Vif(69-83), and 

Vif(125-139)] tagged with antennapedia could reduce the amount of viral replication in 

nonpermissive cells.  Thus, these residues could be targeted in the design of potential 

inhibitors to disrupt this interaction.  Disrupting this interaction would prevent 

degradation of APO3G, allowing it to act against the viral cDNA and prevent infectivity.  

By identifying peptides that disrupt HIV-1 Vif oligomerization and affect HIV-1 Vif 

and/or APO3G, this study present novel agents that can be used as scaffolds in designing 

novel drugs for HIV-1/AIDS.         
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CHAPTER V 

DISCUSSION 
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Millions of people worldwide are infected with AIDS, and no cure is currently 

known. The greatest hope for controlling the expanding HIV epidemic is developing a 

preventive HIV vaccine. Despite almost 20 years of effort, the search for a beneficial 

HIV vaccine continues. The HIV vaccine field is a very active and challenging one that 

will continue to push forward understanding of basic immunology and drive the 

development of new vaccine technologies.  However, in the absence of a vaccine 

HIV/AIDS has been successfully treated by current drug regimens, but these drugs are 

becoming less effective due to drug resistance.  Drug resistance is a change in molecular 

recognition that allows viral proteins to evade current drugs, creating a need for novel 

drug targets.  One such target is the interaction between HIV-1 Vif and the host cell 

antiviral protein, APOBEC3G (APO3G).   

 An effective approach to designing inhibitors to disrupt the HIV-1 Vif-APO3G 

interaction is based on target structure, but no structural information is currently available 

for either HIV-1 Vif or APO3G.  Therefore, my dissertation research focused on 

collecting and analyzing structural data for possible use in targeting HIV-1 Vif and to 

elucidate mechanisms of HIV-1 Vif function.   

Structural Analysis of HIV-1 Vif   

 At the time this dissertation was written, HIV-1 Vif was the only HIV-1 protein 

with no available structural data (crystallographic or NMR structure).  Therefore, I made 

extensive attempts to express and purify soluble HIV-1 Vif and APO3G proteins for use 

in crystallographic studies (Appendix I).  To that end, diverse strategies were employed, 

including using different strains of HIV-1 Vif, multiple fusion proteins known to increase 



 200

solubility, expressing Vif and APO3G in both E. coli and baculovirus, and co-expressing 

HIV-1 Vif with APO3G.  One fusion-protein tag, NusA, did produce large quantities of 

soluble HIV-1 Vif protein that oligomerized (Appendix I) in a similar fashion to the 

untagged HIV-1 Vif protein (Chapter III).  However, when the NusA tag was cleaved, the 

HIV-1 Vif protein was unstable and precipitated/aggregated.  Since large quantities of 

soluble HIV-1 Vif and APO3G proteins were not obtainable, I used mass spectrometry 

and cross-linking to obtain low-resolution structural data on HIV-1 Vif (Yao, 2001; Back, 

2002; Back, 2003; Sinz, 2003; Trester-Zedlitz, 2003; Sinz, 2006). 

 These studies gave insights into the tertiary and quaternary structures of HIV-1 

Vif by identifying both intra- and inter-molecular cross-links (Chapter III).  The majority 

of intra-molecular cross-links were found in the N-terminal region of the HIV-1 Vif 

monomer, whereas almost no intra-molecular cross-links were found in the C-terminus.  

Thus, the N-terminal domain of HIV-1 Vif is folded into a compact and globular 

structure, and the C-terminal domain may be disordered.  The N-terminal region of HIV-

1 Vif, which is responsible for binding to RNA (Dettenhofer, 2000; Cancio, 2004; 

Henriet, 2005; Bernacchi, 2007; Henriet, 2007), APO3G (Sheehy, 2002; Marin, 2003; 

Sheehy, 2003; Stopak, 2003; Russell, 2007), and APO3F (Bishop, 2004; Liddament, 

2004; Wiegand, 2004; Zheng, 2004; Russell, 2007) might do so through a specific-

binding interface, whereas the disorder in the C-terminus may facilitate binding of a 

diverse set of proteins such as Cullin5, elongin C, NcP7 Gag, and HIV-1 Vif itself.   

 The lack of intra-molecular cross-links in the C-terminus of monomeric HIV-1 

Vif led me to hypothesize that the C-terminus was disordered.  This hypothesis was 
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tested by submitting the HIV-1 Vif sequence to PONDR®, a program that predicts 

regions of disorder in proteins based on a series of sequence-prediction algorithms.  The 

C-terminus of HIV-1 Vif was predicted to be disordered, as well as the C-termini of HIV-

2 and simian immunodeficiency virus (SIV) Vif.  In addition, I observed only a few 

cross-links in the HIV-1 Vif monomer suggesting the C-termini is disordered.  New inter-

molecular cross-links in the dimer and trimer species of HIV-1 Vif suggested a disorder-

to-order transition in the C-termini (Chapter III).  These inter-molecular cross-links were 

between the N-terminus of one HIV-1 Vif monomer and the C-terminus of another HIV-

1 Vif monomer, suggesting that oligomerization occurs in a head-to-tail fashion.  These 

new cross-links in the HIV-1 Vif C-terminus suggest that it undergoes a disorder-to-order 

transition during oligomerization.  This mechanism of action may be general, applying to 

other HIV-1 Vif C-terminal binding partners such as elongin C, Cullin5, and NcP7, 

which may undergo a disorder-to-order transition during binding.   

 Drawing from my inter-molecular cross-linking results, I hypothesized that Lys34 

and Glu134 come in proximity to each other in 3-dimensional space, forming a “hot spot” 

for biological activity.  This possibility is consistent with evidence that mutating residues 

around 34 and 134 reduced viral infectivity by greater than 85% (Simon, 1999).  Further 

support for my hypothesis for a “hot spot” of biological activity is that Lys34 is adjacent 

to the HIV-1 Vif binding domains for APO3G, APO3F, RNA (Dettenhofer, 2000; 

Sheehy, 2002; Marin, 2003; Sheehy, 2003; Stopak, 2003; Bishop, 2004; Cancio, 2004; 

Liddament, 2004; Wiegand, 2004; Zheng, 2004; Henriet, 2005; Bernacchi, 2007; Henriet, 

2007; Russell, 2007) and Glu134 is near the binding domains for Cullin5, elongin C, 
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NcP7 Gag, and oligomerization (Bouyac, 1997; Huvent, 1998; Yang, 2001; Yang, 2003; 

Kobayashi, 2004; Mehle, 2004; Yu, 2004; Kobayashi, 2005; Luo, 2005; Mehle, 2006; 

Xiao, 2006; Auclair, 2007; Xiao, 2007a; Xiao, 2007b) domains.   

 This analysis of low-resolution structural data identified regions in HIV-1 Vif that 

may be ideal targets for small-molecule inhibitors.  The analysis also elucidated a 

potential mechanism in which HIV-1 Vif undergoes a disorder-to-order transition to 

interact with a diverse set of proteins and nucleic acids.  Disrupting this transition may 

also prove to be a useful target for future drug design.  Therefore, the structural data 

collected provide a useful guide to future structural and functional studies of HIV-1 Vif.   

Drug Design 

 Another strategy to confirm my low-resolution structural analysis and to identify 

potential scaffolds for novel drug design was to explore HIV-1 Vif peptides that 

competed with HIV-1 Vif oligomerization and the HIV-1 Vif-APO3G interaction 

(Chapter IV).  I found that peptides HIV-1 Vif(29-43) and Vif(125-139) inhibited HIV-1 

Vif oligomerization, specifically dimerization.  This result confirmed my previous low-

resolution structural analysis and identified two HIV-1 Vif peptides that could be used as 

scaffolds in drug design.   

 In addition to disrupting HIV-1 Vif oligomerization, I tested the same peptides in 

co-immunoprecipitation experiments to determine if they disrupted the HIV-1 Vif-

APO3G interaction.  Two HIV-1 Vif peptides, Vif(25-39) and Vif(29-43), decreased the 

amount of co-immunoprecipitated complex.  Analysis of these complexes reveals that the 

peptides may have other effects besides disrupting the HIV-1 Vif-APO3G interaction. 
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The peptides might also be: (1) disrupting the APO3G-antibody interaction, (2) 

aggregating APO3G, and/or (3) exerting an unknown effect on HIV-1 Vif.  Further 

investigation is needed into the mechanisms of action of these peptides, but they remain 

attractive therapeutic scaffolds because of their proximity to the potential “hot spot” for 

biological activity (Chapter III) and to a recently proposed APO3G-binding site (Russell, 

2007).    

In addition, I have done preliminary in vivo experiments using the cellular uptake, 

tag, antennapedia.  I infected nonpermissive cells with a protein kinase C scrambled 

control peptide and three HIV-1 Vif peptides:  HIV-1 Vif(29-43), HIV-1 Vif(69-83), and 

HIV-1 Vif(125-139).  Two of the three peptides, HIV-1(29-43) and HIV-1 Vif(125-139) 

map to the proposed “hot spot” for biological activity (Chapter III).  The PKC control 

peptide did not reduce the amount of p24 observed, whereas each HIV-1 Vif peptide 

reduced the amount of p24 by approximately an order of magnitude.  These preliminary 

results suggest that these HIV-1 Vif peptides could be used as scaffolds for the design of 

novel drugs.     

Future Research Directions  

 HIV-1 Vif plays significant roles in interacting with multiple proteins (Bouyac, 

1997; Huvent, 1998; Yang, 2001; Yang, 2003; Kobayashi, 2004; Mehle, 2004; Yu, 2004; 

Kobayashi, 2005; Luo, 2005; Mehle, 2006; Xiao, 2006; Auclair, 2007; Xiao, 2007a; 

Xiao, 2007b) and RNA (Dettenhofer, 2000; Cancio, 2004; Henriet, 2005; Bernacchi, 

2007; Henriet, 2007) , as well as in preventing the antiviral activity of APO3G (Sheehy, 

2002; Marin, 2003; Sheehy, 2003; Stopak, 2003; Russell, 2007), making it an important 
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protein to characterize.  However, the difficulties of working with full-length HIV-1 Vif 

protein in biochemical and biophysical studies have led to studying HIV-1 Vif by 

characterizing its protein fragments.  An interesting fragment to consider in future studies 

would be a C-terminal mutant. Such studies could include further analysis of maltose 

binding protein (MBP)-Vif140 and MBP-Vif150 mutants with a truncated C-terminus 

(Appendix I).  My prediction that the C-terminus is intrinsically disordered (Chapter III) 

suggests that removing it would make HIV-1 more stable and expressible, while 

maintaining functionality specific to its N-terminus. Thus, one could use such N-terminal 

fragments to elucidate specific interactions between HIV-1 Vif and APO3G, APO3F, and 

RNA.   

The reciprocal approach could also be taken. C-terminal fragments could be 

generated, and if these proteins were expressible and stable, their interactions with HIV-1 

Vif-binding partners could be studied.  For example, a C-terminal Vif mutant containing 

the Cullin5-binding domain, residues 108-139, could be expressed and incubated with 

Cullin5 (Kobayashi, 2005; Luo, 2005; Mehle, 2006; Xiao, 2006; Xiao, 2007a; Xiao, 

2007b).  The resulting complex of Cullin5 with this C-terminal HIV-1 Vif fragment could 

be analyzed by x-ray crystallography to determine its structure, leading to an 

understanding of these two proteins at the atomic level.  The HIV-1 Vif fragments for 

such studies could be elucidated by cross-linking and mass spectrometric analyses 

(Chapter III).  Indeed, two HIV-1 Vif regions, residues 34-61 and 158-192, which were 

identified as involved in oligomerization (Chapter III), could be synthesized and studied 

with their respective binding partners.  The HIV-1 Vif(34-61) fragment could help 
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elucidate interactions with both APO3G and RNA, whereas a fragment from 158-192 

could help elucidate interactions with Elongin C, HIV-1 Gag, and oligomerization.   

 To obtain soluble HIV-1 Vif, mutants could be generated and screened for 

solubility.  One approach would be to produce random mutations in GFP-tagged HIV-1 

Vif, transform into bacterial cells ,and select for soluble mutant protein in green 

fluorescent colonies.  Soluble HIV-1 Vif could be isolated from green colonies and 

sequenced for use in further structural and biochemical analysis.  In addition to a 

mutagenesis screen for solubility, HIV-1 Vif mutants could be screened for failure to 

oligomerize, which might improve solubility; the monomeric form of HIV-1 Vif may be 

more soluble and easier to work with (Chapter III; Appendix I).  

Another approach to identifying HIV-1 Vif fragments would be limited 

proteolysis.  HIV-1 Vif could be incubated with different proteases, thus creating unique 

cleavage products.  The HIV-1 Vif regions most accessible to proteases (unstructured 

domains) would likely be cleaved first, whereas those less accessible (compact domains) 

would likely not be cleaved.  Therefore, limited proteolysis would likely identify compact 

globular domains that could be used to study HIV-1 Vif’s binding characteristics.  These 

domains might also be useful in obtaining soluble HIV-1 Vif constructs, which could be 

used to solve a three-dimensional structure of HIV-1 Vif.  The results of limited 

proteolysis could also confirm my prediction that the HIV-1 Vif C-terminus is 

disordered.  If my prediction is correct, the C-terminal fragment of HIV-1 Vif should be 

cleaved early and not remain in compact domains.   
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 Based on my prediction that oligomerization of HIV-1 Vif would lead to a 

disorder-to-order transition of its C-terminal domain (Chapter III), I hypothesized that 

this transition is a general mechanism by which HIV-1 Vif binds to its diverse set of 

interaction partners.  Therefore, it is important to further examine this transition using 

techniques such as NMR, which allows proteins to be studied in solution and to gain 

insights into their protein dynamics.  Therefore, NMR data could be collected on HIV-1 

Vif and compared to data on HIV-1 Vif in complex with one of its C-terminal-binding 

partners such as Elongin C.  One would expect the NMR spectra to show a disordered 

HIV-1 Vif C-terminus, and the emergence of an ordered HIV-1 Vif C-terminus in the 

presence of Elongin C would support my hypothesis.  Further support for this hypothesis 

could be gained by cross-linking and mass spectroscopic analysis of HIV-1 Vif and its 

binding partners such as APO3G.  An increase in cross-links in the C-terminus of HIV-1 

Vif upon binding to APO3G or HIV-1 Gag would support a general mechanism for 

protein-protein interactions being facilitated by a disorder-to-order transition.    

 In addition to in vitro characterization of the structural interactions between HIV-

1 Vif and its binding partners, these interactions could be studied in vivo (cell culture).  

The HIV-1 Vif regions involved in oligomerization and in cross-links, 34-61 and 158-

192, the region surrounding the proposed “hot spot” for biological activity (Chapter III), 

could be mutated and analyzed in vivo to elucidate their role in infectivity.  If deleting or 

substituting these residues reduced viral infectivity, this finding would suggest that 

infectivity is related to protein-protein interactions.  The importance of these regions in 
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HIV-1 Vif could be confirmed by cross-linking HIV-1 Vif to its binding partners such as 

APO3G.   

Another approach to in vivo studies of HIV-1 Vif interactions would be to 

examine the effect of disrupting HIV-1 Vif oligomerization.  Nonpermissive cells could 

be infected with NL4-3 HIV-1 and cultured in media spiked with antennapedia-tagged 

peptides (Vif[29-43] and Vif[125-139]; Chapter IV).  Viral replication would be 

monitored by ELISA for production of p24 core protein in cell supernatants.  If these 

regions are important for infectivity, disrupting them should reduce viral infectivity.  

Such differences in infectivity could be explored by dose-response studies to tease out the 

mechanism by which the peptides act.   

 My initial goal was to obtain large quantities of soluble HIV-1 Vif protein for 

crystallographic characterization of HIV-1 Vif and identification of functional domains 

that could be targeted for inhibition.  Despite considerable efforts (Appendix I), I did not 

achieve my goal with full-length protein, but I did obtain low-resolution structural data 

that was confirmed in peptide-competition experiments.  These analyses predicted that 

HIV-1 Vif contains a compact globular N-terminus and a disordered C-terminus.  

Analysis of cross-linked HIV-1 Vif oligomers led to the hypothesis that upon HIV-1 Vif 

oligomerization, its C-terminus undergoes a disorder-to-order transition.  This transition 

may be a general mechanism that allows HIV-1 Vif to bind a large variety of 

macromolecules.  In addition, my structural analysis identified HIV-1 Vif peptides, 

Vif(29-43) and Vif(125-139), that block oligomerization and can be used as scaffolds for 

future drug design.  Therefore, in the absence of high-resolution structural data, my low-
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resolution data advance existing knowledge on the structure and function of HIV-1 Vif 

by showing that its N-terminus is ordered and that its C-terminus undergoes a disorder-

to-order transition upon oligomerization. 
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APPENDIX I 

ATTEMPTS TO EXPRESS AND PURIFY HIV-1 VIF AND APOBEC3G 
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METHODS AND RESULTS 

GST-Vif 

 The GST-VifLAI expression construct was obtained from Drs. Melissa Farrow and 

Mohan Somasundaran.  HIV-1 VifLAI was cloned into the pGEX-3X expression vector, 

which contains the GST-fusion protein.  Expression trials were performed at both 37°C 

and room temperature (approximately 25°C), in LB broth, at 1mM and 2 mM IPTG, and 

in BL21(DE3) and BL21(DE3)CodonPlus-RIL cells (Figure A1.1A) .  The 

BL21(DE3)CodonPlus-RIL cells are enriched with plasmids that produce tRNAs for the 

rare E. coli codons, arginine, isoleucine, and leucine, and are supposed to aid in 

expressing proteins such as HIV-1 Vif with an abundance of these rare codons.  Proteins 

were expressed for 4 hours at 37°C was carried out for 4 hours or at room temperature for 

24 hours.  For large-scale expression of HIV-1 Vif, one 37°C expression trial was 

conducted in a 10 L fermentor.  

 Cell samples were taken at various times during the overexpression experiments 

to monitor protein levels in both the soluble and insoluble fractions.  Samples were 

centrifuged, the pellets were resuspended, and the suspension was sonicated.  The 

samples were centrifuged again and collected as supernatants (soluble fraction) and 

pellets (insoluble fraction). The pellet was resuspended in acetic acid and analyzed with 

the supernatant by 16% SDS PAGE. Since the majority of GST-VifLAI protein was found 

in the inclusion bodies, they were collected from a 37°C experiment, solubilized in 8M 

urea, and dialyzed into PBS to refold the protein. After dialysis, the protein aggregated or 

did not refold, which may have been due to the slow protein refolding in dialysis.  
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Figure A1.1A 
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Figure A1.1A: GST-Vif Expression.  HIV-1 Vif was cloned into the pGEX-3X vector 

with a GST tag and expressed at room temperature in BL21CodonPlus(DE3)-RIL E. coli 

cells.  Protein expression was induced by treating the cultures with 1mM IPTG in LB for 

44 hours.  Expression was analyzed by 16% SDS PAGE.  The majority of the GST-Vif 

was expressed in the insoluble fraction.  
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Therefore, protein samples were subjected to drop-wise refolding into PBS, but the 

protein still aggregated.  I next tried refolding protein samples drop-wise into a panel of 

16 buffers known as the FoldIt Screen (Hampton Research).  All refolding attempts 

resulted in protein aggregation. 

 

HAT-Vif 

 The pHAT-VifLAI expression construct was obtained from Drs. Melissa Farrow 

and Mohan Somasundaran.  HIV-1 VifLAI was cloned into a pHAT11 vector containing a 

HAT tag.  The HAT tag (Clontech) is derived from chicken lactate dehydrogenase 

protein and contains 6 unevenly distributed histidines.  This uneven distribution removes 

the excessive positive charge found in most 6X His tags, increasing solubility. 

 Expression trials were carried out for pHAT-VifLAI at 37°C, 28°C, 25°C (room 

temperature), 20°C, and 18°C.  Both BL21(DE3)CodonPlus-RIL and BL21(DE3) cell 

lines were used as was LB and TB (terrific broth).  TB is similar to LB, but it contains 

more nutrients that increase the yield of E. coli and thus the yield of target protein.  In 

addition to varying temperature, media, and cell line, I varied IPTG concentration for 

induction (including 2 mM, 1 mM, and 0.33 mM) and time of expression (3 to 48 hours).  

Each expression trial was analyzed by 16% SDS PAGE, and in all cases HIV-1 Vif 

protein was found in the inclusion bodies or insoluble fraction (Figure A1.1B).   

 In addition to the pHAT-VifLAI construct, HIV-1 VifHXB2 was cloned into the 

pHAT11 vector.  I hypothesized that the HIV-1 Vif protein might be more soluble if 

expressed by naturally occurring different codons.  This hypothesis was tested by using 
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Figure A1.1B 
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Figure A1.1B: HAT-Vif Expression.  HIV-1 Vif was cloned into the pHAT11 vector 

with a modified His tag, HAT, and expressed at 28°C for 2 hours in BL21(DE3) cells.  

Protein expression was induced by treating cultures with 1 mM IPTG in TB and analyzed 

via 16% SDS PAGE.  The HAT-Vif fusion protein was expressed in the insoluble 

fraction.    
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HXB2, another molecular clone of clade B HIV-1 with an amino acid sequence identical 

to that of LAI, but coded by different codons.  Expression of pHAT-VifHXB2 was induced 

for 4 hours by treating BL21(DE3) cells with 1mM IPTG in both TB and 2XYT media, 

respectively, at 28°C.  Analysis of protein expression by denaturing gel electrophoresis 

consistently showed HIV-1 VifHXB2 protein in the insoluble fraction.  In this instance, the 

difference in codon used to determine the HIV-1 Vif amino acid sequence did not 

improve protein solubility.  The inclusion bodies from the TB expression were pelleted 

and dissolved in 6 M guanidine hydrochloride, 0.1 M sodium phosphate, pH 8.0 and 

dialyzed into 50 mM MOPS, 150 mM sodium chloride, pH 6.5 with decreasing amounts 

of guanidine hydrochloride (Yang, 1996).  The HIV-1 Vif protein was not refolded from 

the inclusion bodies by this method. 

 

VIF140 and Vif150 

The maltose binding protein (MBP)-Vif140 and MBP-Vif150 expression constructs 

for truncated HIV-1 Vif were obtained from Dr. Hui Zhang.  Both HIV-1 Vif truncation 

mutants were cloned into the pMAL-2C expression vector containing the MBP fusion 

protein.  The C-terminal region of Vif was truncated in order to remove the proposed 

oligomerization domain, which may facilitate in HIV-1 Vif solubility (Yang, 2001; Yang, 

2003). 

MBP-Vif140 was expressed at 37°C, 30°C, and room temperature (approximately 

25°C) in BL21(DE3) cells and induced with 1 mM IPTG in LB for 3-5 hours.  The MBP-

Vif140 protein was expressed in the inclusion bodies in the 37°C expression; however in 
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the 30°C expression trials approximately 30-50% of the MBP-Vif140 protein expressed 

was in the soluble fraction. 

To increase the yield of soluble truncated HIV-1 Vif protein, a greater number of 

expression conditions were tried for MBP-Vif150 compared to MBP-Vif140.  Expression 

trials were conducted at 37°C, 30°C, 28°C, 25°C (room temperature), and 20°C.   

Induction was conducted in BL21(DE3) cells with 1mM or 0.33mM IPTG in LB or TB 

for 4-24 hours.  The expression experiments conducted at 37°C and 20°C yielded 

insoluble MBP-Vif150 protein (Figure A1.1C), but expression at 28°C in either 1 mM 

IPTG or 0.33 mM IPTG yielded soluble MBP-Vif150.  It appeared that 30-50% of the 

MBP-Vif150 protein expressed in these conditions was soluble (Figure A1.1D).  However, 

the stability of the protein made it insufficient for structural analysis via X-ray 

crystallography and NMR. 

In addition to cloning MBP-Vif140 and MBP-Vif150 into the pMAL-2c expression 

vector, they were also cloned into the pET43.1b (NusA expression vector).  Expression of 

NusA-Vif140 and NusA-Vif150 was conducted in LB or TB at 28°C in BL21(DE3) cells 

induced with either 1 mM or 0.5mM IPTG for 4-24 hours.  In some expression trials 

approximately 50% of the NusA-Vif140 or NusA-Vif150 was soluble, whereas in others it 

was completely insoluble.  Further analysis via western blot of those trials with some 

soluble protein revealed that the quantity observed was considerably less than 50%.   

The MBP fusion protein had aided in obtaining soluble Vif140 or Vif150, where 

approximately 50% of the protein obtained in expression trials at 28°C was soluble as 

compared to all the protein yielded from expression trials at 37°C being insoluble.  The  
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Figure A1.1C 
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Figure A1.1D 

97.4KDA
66.2KDa
45KDa

31KDa

21.5KDa

14.4KDa

T=
0 

so
lub

le

m
ar

ke
r

T=
3 

so
lub

le
T=

19
 s

olu
ble

MBP-Vif150

T=
0 

ins
olu

ble
T=

3 
ins

olu
ble

T=
19

 in
so

lub
le

97.4KDA
66.2KDa
45KDa

31KDa

21.5KDa

14.4KDa

T=
0 

so
lub

le

m
ar

ke
r

T=
3 

so
lub

le
T=

19
 s

olu
ble

MBP-Vif150

T=
0 

ins
olu

ble
T=

3 
ins

olu
ble

T=
19

 in
so

lub
le

 



 223

Figure A1.1C and A1.1D: MBP-Vif150 Expression.  (C.)  HIV-1 Vif150 was cloned into 

the pMAL-2C vector containing an MBP tag.  pMBP-Vif150 is a truncation mutant of 

HIV-1 Vif were the C-terminus has been deleted.  Expression was conducted using 

BL21(DE3) cells at 28°C in LB for 24 hours and induced with 1 mM IPTG.  Expression 

was analyzed via 16% SDS PAGE. The majority of the MBP- Vif150 was expressed in the 

insoluble fraction.  (D.)  The pMBP-Vif150 construct was expressed using BL21(DE3) 

cells at 37°C for 3 hours and then 28°C overnight in LB and induced with 1mM IPTG.  

Expression was analyzed via 16% SDS PAGE.  After overnight expression about 50% of 

the fusion protein produced is in the soluble fraction.     
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NusA fusion protein seemed to give less consistent results with the majority of the 

protein obtained being insoluble.  Further optimization will be necessary to determine if 

MBP truncation mutants will provide milligram quantities of fusion-protein and whether 

the protein will remain soluble and folded when the tag is cleaved. 

 

SIV-Vif  

 In addition to trying expression of different strains of HIV-1 Vif such as LAI and 

HXB2, we also tried to express SIV Vif.  SIV Vif and HIV-1 Vif share a conserved 

function in there respective hosts (Bogerd, 2004; Mangeat, 2004; Schrofelbauer, 2004) 

and the naturally occurring sequence difference in SIV Vif would aid in producing 

soluble protein.  As an alternative to mutagenizing HIV-1 Vif, it was determined whether 

trying to express SIV Vif might lead to the expression of soluble protein, albeit my goal 

for further analysis was to use HIV-1 Vif.  

 SIV239 Vif was cloned into the pHAT11 expression vector.  It was expressed in 

2XYT media in BL21(DE3) cells and induced with 1 mM IPTG at 28°C for 4 hours.  The 

protein expression was analyzed by 16% SDS PAGE and found to be in the insoluble 

protein.  SIV Vif expression was observed preinduction indicating expression was likely 

under the control of a leaky promoter (Figure A1.1E). 

 

Baculovirus Expression (APO3G and Vif) 

 The Baculodirect™ Baculovirus expression system using Gateway technology 

(Invitrogen) was used to carry out expression of HIV-1 VifLAI, HIV-1 VifHXB2, and  
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Figure A1.1E 
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Figure A1.1E: SIV-Vif Expression.  SIV Vif was cloned into the pHAT11 vector and 

expressed using BL21(DE3) cells in 2XYT at 28°C for 4 hours with 1mM IPTG 

induction and analyzed via 16% SDS PAGE.  The pHAT-VifSIV protein produced is 

insoluble.       
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APOBEC3G (APO3G).  HIV-1 VifLAI, HIV-1 VifHXB2, and APO3G were cloned into the 

pENTR Gateway entry vector either with or without a stop codon present.  A stop codon 

was absent from some of the constructs in order to allow for a C-terminal tag, such as a 

V5 epitope or HA tag, to be added to the expressed protein for purification and/or 

detection.  The Gateway entry vectors take advantage of the bacteriophage lambda site-

specific recombination system, thus allowing genes cloned into the entry vector to be 

transferred to other vectors, such as the BaculoDirect™ Linear DNA. 

 The pENTR-VifLAI, pENTR-VifHXB2, and pENTR-APO3G constructs were 

incubated in the presence of BaculoDirect™ Linear DNA and LR Clonase™, which 

facilitates the transfer of the respective gene from the entry clone to the BaculoDirect™ 

Linear DNA.  After the recombination event the BaculoDirect™ Linear DNA with the 

respective gene was incubated with Proteinase K and added to a cellfectin reagent and 

unsupplemented Grace’s Insect Media mixture.  This transfection mixture was added to 

sf9 insect cells and incubated at 22°C for 5 hours, after 5 hours it was removed and 

complete growth media was added, and then the cells were incubated at 27°C for 72 

hours. 

 After the 3 day incubation the media (supernatant) was removed, stored as P1 

viral stock, and used to infect new sf9 cells.  The new cells infected with P1 viral stocks 

then produced P2 viral stocks which were used to infect new sf9 cells, and so on.  The 

cells produced were centrifuged and checked for expression by 16% SDS PAGE and 

western blotting.  Antibodies to HIV-1 Vif and APO3G were used in the western blots; 

and since a V5 epitope was expressed in fusion with the protein of interest, an antibody to 
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V5 was also used in western blots.  Both HIV-1 Vif and APO3G expression were 

observed via western blot (Figure A1.2).   

 Infections were carried out using P1-P5 viral stocks and time points up to day 22.  

HIV-1 VifHXB2 and HIV-1 VifLAI with no stop codon produced soluble Vif protein that 

was only observable in western blots and not in regular coomassie stained gels.  In no 

samples was Vif protein observed in the SDS polyacrylamide gels, suggesting that only 

very small quantities were expressed.  APO3G with no stop codon and with a stop codon 

were expressed and analyzed via SDS PAGE and western blotting.  No APO3G protein 

could be detected in the SDS polyacrylamide gels, although protein was detected in the 

western blots.  There was a larger amount of APO3G with no stop produced than that of 

APO3G with a stop codon (Figure A1.2).  In addition, APO3G-HA was expressed as 

determined via western blot.  However, as in the case of HIV-1 Vif no APO3G protein 

was detected in SDS polyacrylamide gels, suggesting that only small quantities of the 

proteins were being produced with the baculovirus expression system. 

 

NusA-Vif 

 HIV-1 VifLAI was cloned into pET43.1 (Novagen), which encodes the NusA gene 

to express the NusA-fusion protein.  NusA is an E. coli protein that has been shown to be 

highly soluble, thus the characteristics of NusA can help insoluble proteins be expressed 

in the soluble fraction.  Based on our previous experience with HIV-1 Vif expression and 

the experience of others with expression of proteins with the NusA tag, we tried 

expression of NusA-VifLAI in BL21(DE3) cells in TB induced with 50 µM IPTG at 28°C  



 229

Figure A1.2  
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Figure A1.2: Baculovirus Expression of HIV-1 Vif and APO3G.  Baculovirus 

expression of APO3G with a stop codon, APO3G with no stop codon, and HIV-1 Vif was 

performed and analyzed via western blotting.  Left panel: Both APO3G with a stop codon 

and without a stop codon were expressed in sf9 insect cells and the day 9 sample was 

analyzed via western blot.  More APO3G without a stop codon was produced than 

APO3G with a stop codon, but in each case no protein expression was observed by 16% 

SDS PAGE.  Right panel: APO3G and HIV-1 Vif with no stop codons were expressed in 

sf9 insect cells and the day 22 sample was analyzed using a V5-antibody and western 

blotting.  Both soluble APO3G and HIV-1 Vif expression were observed, but no 

expression was visible on a 16% SDS polyacrylamide gel.         
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for approximately 18 hours.  The NusA-VifLAI expression was checked by 16% SDS 

PAGE where approximately 50% of the protein expressed was soluble.  To further 

optimize protein expression similar conditions were used as mentioned above with 

varying concentrations of IPTG: 100 µM, 200 µM, 400 µM, 600 µM and 1 mM.  The 100 

µM IPTG induction yielded similar amounts of soluble protein as the 50 µM induction, 

the 200 µM and the 400 µM induction yielded a slightly lesser amount of soluble protein 

about 40%, and 600 µM and 1mM IPTG inductions yielded only 20% soluble protein.  

Therefore, the original expression conditions were determined to be optimal. 

 A similar strategy was undertaken for NusA-VifLAI purification as was described 

for NusA-APO3G purification above.  First, NusA-VifLAI was purified using nickel 

affinity chromatography and the fractions were analyzed by 16% SDS PAGE.  The 

majority of NusA-VifLAI copurified with free NusA, as was the case with the NusA-

APO3G purification, but in the later fractions NusA-VifLAI was observed to be about 80% 

pure with no free NusA observed.  The NusA-VifLAI protein purified from these samples 

was confirmed to be VifLAI by both western blotting and mass spectrometry.  The NusA-

VifLAI obtained from the nickel affinity purification was further purified using anion 

exchange chromatography (MonoQ 10/10).  The SDS PAGE analysis of the MonoQ 

purified NusA-VifLAI revealed that it was purified away from the free NusA (Figure 

A1.3A).  However, Size Exclusion Chromatography (SEC) purification using the 

Superdex 200 and S protein affinity purification (a second tag present in the NusA 

expression vector) were tried in an attempt to obtain pure NusA-VifLAI above 95%.  The 
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Figure A1.3A 
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Figure A1.3A: NusA-Vif Purification.  HIV-1 Vif was cloned into the pET43.1 vector 

containing the NusA fusion tag.  pNusA-Vif was expressed in Bl21(DE3) cells overnight 

at 28°C in TB induced with 50µM IPTG.  The majority of the pNusA-Vif protein 

expressed was soluble and further purified using nickel affinity chromatography and 

anion exchange chromatograpy and analyzed via 16% SDS PAGE.  
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NusA-VifLAI protein aggregated, and these step were eliminated from further purification 

protocols of NusA-VifLAI.

 After purification of NusA-VifLAI, cleavage reactions were performed to obtain 

free VifLAI.  There are two possible protease cleavage sites between the NusA tag and 

HIV-1 VifLAI, i.e. enterokinase and thrombin.  The original attempts to cleave the fusion 

protein were with enterokinase, but after attempts at optimizing cleavage using different 

enzyme concentrations of the protease it was determined that the enterokinase-cleavage 

reaction was relatively inefficient.  Therefore, cleavage of the fusion protein was 

attempted with thrombin.  Thrombin cleaved the NusA-VifLAI fusion protein, but about 

97% of the free HIV-1 VifLAI precipitated leaving about 3% free HIV-1 VifLAI.  Cleavage 

reaction with thrombin was optimized using various conditions: (1) using different 

thrombin concentration; (2) addition of glycerol to stabilize the protein; (3) using 

different sodium chloride concentrations up to 1 M; and (4) trying different times and 

temperatures for the cleavage reaction. However, the majority of the cleaved HIV-1 

VifLAI aggregated in all cases.  Even though the majority of the cleaved HIV-1 VifLAI 

protein aggregated, attempts were made to purify the soluble protein.  First a negative 

purification approach was undertaken and the cleaved protein was run over the nickel 

affinity column again to obtain cleaved HIV-1 VifLAI  protein in the flow through; 

however, all the protein was lost in this purification step.  Size exclusion 

chromatography, both a Superdex 200 and Superdex G75 column, were used to purify the 

cleaved VifLAI but the aggregated protein eluted in the void volume.  Further purification 

of the cleaved protein was attempted using a Superose 6 column for size exclusion 
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chromatography (SEC), as was a MonoQ (negative purification) and MonoS column (the 

pI of Vif is 10.7 thus it should bind to a cation exchanger like the MonoS).  Interestingly 

the cleaved HIV-1 VifLAI protein from the MonoS and SEC columns produced no pure 

HIV-1 Vif protein, were as in the MonoQ purification instead of not binding and coming 

out in the flow through the HIV-1 VifLAI copurified with any remaining uncleaved NusA-

VifLAI protein.  This suggests that NusA-VifLAI is forming an oligomer with cleaved HIV-

1 VifLAI. 

 Cleavage of the NusA-VifLAI fusion protein proved unsuccessful, but since there 

was very little biochemical data available for Vif we attempted to perform a few 

experiments using the NusA-VifLAI fusion protein.  First, binding experiments were 

attempted: NusA-VifLAI and NusA-APO3G were incubated in the presence of zinc, 

cleaved HIV-1 VifLAI and NusA-APO3G in the presence of zinc, NusA-VifLAI and NusA-

APO3G in the absence of zinc, and cleaved HIV-1 VifLAI and NusA-APO3G in the 

absence of zinc.  The binding of HIV-1 VifLAI with APO3G might potentially induce 

conformational changes in the proteins that make them more stable, thus giving us 

soluble protein to work with.  In addition, zinc could help stabilize the proteins since 

HIV-1 Vif has been shown to be a zinc binding protein (Kobayashi, 2005; Luo, 2005; 

Mehle, 2006; Xiao, 2006; Xiao, 2007a; Xiao, 2007b).  Each individual protein and the 

binding reactions were analyzed by size exclusion chromatography using a Superose 6 

column.  Unfortunately, each protein and the complex eluted in the void volume 

suggesting they were aggregated.  In addition to trying to stabilize the proteins using Zinc 
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post purification, the purification was tried using magnesium chloride to try to stabilize 

the proteins.  This also did not aid in obtaining soluble protein.   

 The purified NusA-VifLAI fusion protein was used in crystallization screens.  

NusA-VifLAI at concentrations between 4 mg/ml and 7 mg/ml were used to set crystal 

trays using the Hampton I & II, the Wizard I & II, and the Wizard PEG-8000 

crystallization kits.  Since none of these conditions yielded crystals, therefore an 

expanded screen was attempted.  Purified NusA-VifLAI was sent to the Hauptman-

Woodward Medical Research Institute where 1536 unique crystallization conditions were 

screened using a high-throughput screen.  Several conditions produced crystalline-like 

objects; the most promising conditions contained lithium chloride, Tris, pH 8.0, 

ammonium sulfate, magnesium hydrate and ammonium sulfate or chloride.  Further 

optimization was performed using these conditions; despite all these attempts no 

defractable crystals were produced. 

 Finally, cross-linking experiments similar to those described in chapter III were 

performed.  NusA and NusA-VifLAI (0.66 mg/ml each) were cross-linked using 2 mM 

EDC and 5 mM sulfo-NHS for 15 and 30 minutes at room temperature.  Cross-linking 

assays were also performed under similar conditions in the absence of NHS.  The 

reaction mixtures were analyzed via 10% SDS PAGE and western blotting.  In the case of 

NusA no cross-links were observed, and in the case of NusA-VifLAI cross-links 

corresponding to dimers and trimers were observed.  The cross-links observed for NusA- 

VifLAI were consistent with those observed from cross-linking of HIV-1 Vif in chapter III 

(Figure A1.3B). 
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Figure A1.3B 
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Figure A1.3B: Cross-linking of NusA-Vif.  pNusA and pNusA-Vif were cross-linked 

using 2 mM EDC and (+/-) 5mM sulfo-NHS for 15 or 30 minutes and analyzed by 10% 

SDS PAGE.  No cross-links were observed for NusA alone and cross-links consistent 

with NusA-Vif dimers and trimers were observed for pNusA-Vif cross-linking, which is 

consistent with the cross-linking of HIV-1 Vif observed in Chapter III.  
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NusA-APO3G 

 As outlined above, the majority of my efforts were on expressing and purifying 

HIV-1 Vif.  However attempts were also made to express and purify soluble APO3G.  

APO3G was cloned into pET43.1 (Novagen), which encodes the NusA fusion protein.  

pNusA-APO3G was used in expression trials to try to obtain soluble APO3G protein. 

 pNusA-APO3G was expressed in BL21(DE3) cells at 18°C, 28°C, and 37°C in 

TB or LB and induced with either 1 mM, 0.5 mM, or 50 µM IPTG for 4-18 hours.  

Expression conducted at 37°C yielded no visible protein whereas expression at both 18°C 

and 28°C yielded low levels of expression, albeit, it was mostly soluble.  Therefore the 

ideal expression condition for NusA-APO3G were determined to be in BL21 (DE3) cells 

in TB and induced with 50 µM IPTG at 28°C for 16 hours.  NusA-APO3G expressed 

using these conditions produced soluble protein as determined by both 16% SDS PAGE 

and western blotting.   

 After expressing the NusA-APO3G protein, purification of the protein was 

attempted.  The NusA tag has a 6X His tag as part of its fusion tag sequence that was 

used in affinity purification.  The NusA-APO3G cells were resuspended and lysed in 50 

mM sodium phosphate, pH 8.0, 0.3 M sodium chloride, 25 mM DTT, 10 mM imidazole, 

and 1 mM PMSF using a cell disruptor.  The lysed cells were centrifuged at 14K for 30 

minutes and the supernatant was incubated with His-Select (Sigma) nickel resin for 2 

hours at 4°C.  After 2 hours the slurry (protein-beads) was poured into a gravity column 

and fractions were collected.  The protein was about 60% pure at this stage, then the 

pooled nickel fractions were cleaved with thrombin and purified on the FPLC using a 
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Sepharose 6 column.  After thrombin cleavage no free APO3G was observed, but free 

NusA was observed suggesting the cleavage was successful and that APO3G either 

precipitated after cleavage or is in such low quantity that it could not be detected by SDS 

PAGE.  Further analysis via western blot showed free APO3G to be present in the 

cleaved lanes, but the band intensity was faint suggesting that indeed the quantity of 

APO3G being produced is too small to detect via SDS PAGE.   

In addition, in the expression and purification of NusA-APO3G some free NusA 

is expressed and purified along with NusA-APO3G.  This is likely due to the ribosomes 

falling off the NusA-APO3G construct prior to synthesizing APO3G, or it is possible that 

an internal E. coli protease is cleaving the fusion protein.  Small amounts of APO3G 

were obtained from nickel purification alone; but because of the contaminating NusA 

protein, further purification of NusA-APO3G was attempted.  NusA-APO3G was 

purified as a fusion protein because it eliminates any contaminates that could interfere 

with cleavage and allows for NusA to keep APO3G soluble for as long as possible.  

Therefore, NusA-APO3G was purified using the same purification protocol through the 

nickel column, and instead of the cleaving reaction, the fusion protein was purified 

further using an anion exchange column (MonoQ) on the FPLC.  The chromatogram 

produced had two distinct peaks.  The first peak was free NusA and the second peak was 

a mixture of free NusA and NusA-APO3G, thus not all the contaminating free NusA was 

removed from the NusA-APO3G fractions (Figure A1.4).  Further purification of NusA-

APO3G was performed on a sizing column (S200), but the protein eluted in a high 
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Figure A1.4 
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Figure A1.4: NusA-APO3G Purification.  NusA-APO3G was expressed and purified as 

HIV-1 Vif was in Figure A1.3A.  
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molecular weight peak consistent with aggregation.  In addition, thrombin cleavage of the 

NusA-APO3G fusion protein resulted also in APO3G aggregating. 

Therefore, soluble APO3G protein was expressed using the NusA tag.  This 

protein was purified with the largest contaminant being free NusA using both nickel 

purification and anion exchange purification.  However, when further purification was 

attempted via size exclusion purification the fusion protein appeared to aggregate. 

 

Co-expression (Vif and APO3G) 

 HIV-1 Vif has been shown by my previous expression attempts and those of 

others to be highly insoluble.  APO3G is a cellular protein that has been shown to bind to 

HIV-1 Vif (Lecossier, 2003; Mangeat, 2003; Zhang, 2003; Bishop, 2004; Bishop, 2004; 

Harris, 2004; Liddament, 2004; Wiegand, 2004; Zheng, 2004; Doehle, 2005; Holmes, 

2007).  Therefore, my hypothesis was that co-expression of HIV-1 Vif with APO3G 

might stabilize the proteins and create a soluble protein complex.  NusA constructs were 

used in coexpression experiments because in previous experiments some soluble HIV-1 

Vif and APO3G were observed when they were expressed as NusA-fusions.  Therefore, I 

hypothesized that coexpression of NusA-fusions potentially will aid in solubilizing 

coexpressed proteins.    

 HIV-1 VifLAI and APO3G were cloned into the pACYC-Duet coexpression 

vector, creating pDuet-VifLAI and pDuet-APO3G.  First, I determined the fraction in 

which Vif would appear. To that end, pDuet-VifLAI was expressed in BL21(DE3) cells by 

inducing them overnight with 50 µM IPTG at 25°C in TB.  Duet-Vif was expressed only 
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in insoluble fractions (Figure A1.5A).  Subsequently, I tried to obtain soluble HIV-1 Vif 

and APO3G by cotransforming BL21(DE3) cells with pDuet-VifLAI and pNusA-APO3G 

and inducing them for 4 hours with either 1mM or 50 µM IPTG at 28°C in TB.  Duet-Vif 

was expressed at low level only in the insoluble fraction.  BL21(DE3)-competent cells 

were transformed with pDuet-VifLAI and these cells were used to create BL21(DE3) 

pDuet-VifLAI-competent cells.  Both pNusA-VifLAI and pNusA-APO3G were transformed 

into the BL21(DE3) pDuet-VifLAI-competent cells.  Both were expressed in TB and 

induced at 25°C with 50µM IPTG.  Western blot analysis revealed that pNusA-VifLAI 

coexpressed with pDuet-Vif, but the proteins were insoluble (Figure A1.5A).  On the 

other hand, pNusA-APO3G apparently did not coexpress with pDuet-Vif as only Vif 

protein was observed (Figure A1.5B).  Similarly, competent BL21(DE3)pDuet-APO3G 

cells were created.  pNusA-Vif was transformed into these cells and expressed by 

inducing in TB overnight at 25°C and 28°C, at 50 µM and 1 mM IPTG.  Although HIV-1 

Vif and APO3G were coexpressed in these cells, the majority was again found in the 

insoluble fraction.  A small fraction of expressed pNusA-Vif was soluble, but no APO3G 

was present in the soluble fraction. 

 Although an extensive range of coexpression variables was tried, additional 

variables could be tried, i.e., (1) cotransformation of pDuet-VifLAI with pDuet-APO3G 

and pDuet-APO3G with pNusA-Vif, (2) pDuet-APO3G could be expressed in 

BL21(DE3)pDuet-VifLAI-competent cells, (3) pDuet-VifLAI could be expressed in 

BL21(DE3)pDuet-APO3G-competent cells, and (4) a bicistronic expression vector, 

pDuet-VifLAI-APO3G, could be created for use in coexpression trials. 
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Figure A1.5A 
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 Figure A1.5B 
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Figure A1.5: Coexpression of HIV-1 Vif and APO3G.  (A.)  HIV-1 Vif was cloned 

into the pDuet expression vector for use in coexpression experiments and analyzed via 

western blotting.  Top panel: pDuet-Vif was expressed overnight in BL21(DE3) cells at 

25°C in TB and induced with 50 µM IPTG.  pDuet-Vif was expressed in the soluble 

fraction.  Bottom panel: pNusA-Vif was expressed overnight in BL21(DE3)pDuet-Vif-

competent cells at 25°C in TB and induced with 50µM IPTG.  Both pNusA-Vif and 

pDuet-Vif were expressed in the insoluble fraction.  (B.)  pNusA-APO3G is coexpressed 

with pDuet-Vif.  pNusA-APO3G was expressed in BL21(DE3)pDuet-Vif competent cells 

at 25°C in TB overnight and induced with 50 µM IPTG.  Coexpression was analyzed via 

western blotting.  pDuet-Vif was expressed in the insoluble fraction where as pNusA-

APO3G was not expressed at all.  
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DISCUSSION 

 HIV-1 infections and AIDS have been successfully treated by current drug 

regimens, but these drugs are becoming less effective due to drug resistance.  Drug 

resistance results when infectious agents such as viruses grow rapidly and evolve to 

produce proteins that evade current drugs, creating a need for novel drug targets.  One 

such target is the interaction between HIV-1 Vif and the host cell antiviral agent, APO3G 

(cite refs).  

The lack of available information on the structure of HIV-1 Vif is likely due to 

the difficulty of expressing and purifying milligram quantities of soluble protein.  

Therefore, my goal was to obtain soluble protein using different expression conditions, 

fusion proteins, and strains of Vif protein.  The majority of the protein expressed was 

found in the insoluble fraction, or inclusion bodies, and could not be refolded.  However, 

using the NusA tag facilitated purification of small quantities of soluble HIV-1 Vif and 

APO3G proteins.  Unfortunately, the large NusA tag could not be separated from either 

protein, making them unsuitable for structural analysis.  However, the NusA-VifLAI 

fusion protein was used in one biochemical experiment to obtain cross-links consistent 

with dimers and trimers (Chapter III). 

Although large quantities of soluble HIV-1 Vif and APO3G were not obtained, 

the protocols I tried could be further optimized to obtain soluble protein.  These 

optimization approaches include cloning full-length HIV-1 Vif into various tags known 

to improve solubility, e.g., MBP (maltose binding protein); varying other coexpression 

variables with APO3G and HIV-1 Vif; and optimizing protein expression in baculovirus 
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and in mammalian expression systems.  Other approaches would be to express proteins in 

minimal M9 media, to express all the fusion protein I generated at lower temperatures, 

and to use C-terminal-tagged proteins. To obtain native protein for structural analyses, it 

would be necessary to further optimize the cleavage of NusA-fusion proteins or the 

MBP-Vif truncation mutants.   



 250

REFERENCES 

Bishop, K. N., R. K. Holmes, A. M. Sheehy, N. O. Davidson, S.-J. Cho and M. H. Malim 
(2004). "Cytidine Deamination of Retroviral DNA by Diverse APOBEC 
Proteins." Current Biology 14: 1392-1396. 

Bishop, K. N., R. K. Holmes, A. M. Sheehy and M. H. Malim (2004). "APOBEC-
mediated editing of viral RNA." Science 305(5684): 645. 

Bogerd, H. P., B. P. Doehle, H. L. Wiegand and B. R. Cullen (2004). "A single amino 
acid difference in the host APOBEC3G protein controls the primate species 
specificity of HIV type 1 virion infectivity factor." Proc. Natl. Acad. Sci USA 
101(11): 3770-3774. 

Doehle, B. P., A. Schafer, H. L. Wiegand, H. P. Bogerd and B. R. Cullen (2005). 
"Differential Sensitivity of Murine Leukemia Virus to APOBEC3-Mediated 
Inhibition Is Governed by Virion Exclusion." Journal Of Virology 79(13): 8201-
8207. 

Harris, R. S. and M. T. Liddament (2004). "Retroviral Restriction By APOBEC 
Proteins." Nature Reviews Immunology 4: 868-877. 

Holmes, R., M. Malim and K. Bishop (2007). "APOBEC-mediated viral restriction:  not 
simply editing?" Trends Biochem Sci 32(3): 118-28. 

Kobayashi, M., A. Takaori-Kondo, Y. Miyauchi, K. Iwai and T. Uchiyama (2005). 
"Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-ElonginB-ElonginC 
complex is essential for Vif function." Journal of Biological Chemistry 280(19): 
18573-8. 

Lecossier, D., F. Bouchonnet, F. Clavel and A. J. Hance (2003). "Hypermutation of HIV-
1 DNA in the Absence of the Vif Protein." Science 300(5622): 1112. 

Liddament, M. T., W. L. Brown, A. J. Schumacher and R. S. Harris (2004). "APOBEC3F 
Properties and Hypermutation Preferences Indicate Activity against HIV-1 in 
Vivo." Current Biology 14: 1385-1391. 

Luo, K., Z. Xiao, E. Ehrlich, Y. Yu, B. Liu, S. Zheng and X.-F. Yu (2005). "Primate 
lentiviral virion infectivity factors are substrate receptors that assemble with cullin 
5-E3 ligase through a HCCH motif to suppress APOBEC3G." Proc. Natl. Acad. 
Sci USA 102(32): 11444-11449. 

Mangeat, B., P. Turelli, S. Liao and D. Trono (2004). "A single amino acid determination 
governs the species-specific sensitivity of APOBEC3G to Vif action." Journal of 
Biological Chemistry 279(15): 14481-14483. 

Mangeat, B., P. Turelll, G. Caron, M. Friedll, L. Perrin and D. Trono (2003). "Broad 
antiretroviral defence by human APOBEC3G through lethal editing of nascent 
reverse transcripts." Nature 424(6944): 99-103. 

Mehle, A., E. R. Thomas, K. S. Rajendran and D. Gabuzda (2006). "A zinc-binding 
region in Vif binds Cul5 and determines Cullin selection." Journal of Biological 
Chemistry 281(25): 17259-65. 

Schrofelbauer, B., D. Chen and N. R. Landau (2004). "A single amino acid of 
APOBEC3G controls its species-specific interaction with virion infectivity factor 
(Vif)." Proc. Natl. Acad. Sci USA 101(11): 3927-3932. 



 251

Wiegand, H. L., B. P. Doehle, H. P. Bogerd and B. R. Cullen (2004). "A second human 
antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif 
proteins." The Embo Journal 23(12): 2451-2458. 

Xiao, Z., E. Ehrlich, K. Luo, Y. Xiong and X. Yu (2007a). "Zinc chelation inhibits HIV 
Vif activity and liberates antiviral function of the cytidine deaminase 
APOBEC3G." FASEB J 21(1): 217-22. 

Xiao, Z., E. Ehrlich, Y. Yu, K. Luo, T. Wang, C. Tian and X.-F. Yu (2006). "Assembly 
of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-
stabilized hydrophobic interface in Vif." Virology 349(2): 290-9. 

Xiao, Z., Y. Xiong, W. Zhang, L. Tan, E. Ehrlich, D. Guo and X. Yu (2007b). 
"Characterization of a Novel Cullin5 Binding Domain in HIV-1 Vif." Journal of 
Molecular Biology 373(3): 541-50. 

Yang, B., L. Li, Z. Lu, X. Fan, C. A. Patel, R. J. Pomerantz, G. C. DuBois and H. Zhang 
(2003). "Potent Suppression of Viral Infectivity by the Peptides That Inhibit 
Multimerization of Human Immunodeficiency Virus Type 1 (HIV-1) Vif 
Proteins." The Journal of Biological Chemistry 278(8): 6596-6602. 

Yang, S., Y. Sun and H. Zhang (2001). "The Multimerization of Human 
Immunodeficiency Virus Type 1 Vif Protein." The Journal of Biological 
Chemistry 276(7): 4889-4893. 

Yang, X., J. Goncalves and D. Gabuzda (1996). "Phosphorylation of Vif and Its Role in 
HIV-1 Replication." The Journal of Biological Chemistry 271(17): 10121-10129. 

Zhang, H., B. Yang, R. J. Pomerantz, C. Zhang, S. Arunachalam and L. Gao (2003). "The 
cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 
DNA." Nature 424(6944): 94-98. 

Zheng, Y.-H., D. Irwin, T. Kurosu, K. Tokunaga, T. Sata and B. M. Peterlin (2004). 
"Human APOBEC3F Is Another Host Factor That Blocks Human 
Immunodeficiency Virus Type 1 Replication." Journal of Virology 78(11): 6073-
6076. 

 
 
 

  

  

 

 



 252

APPENDIX II 

EXAMINATION OF HIV-1 VIF AND APOBEC3G INTERACTIONS BY SURFACE 

PLASMON RESONANCE, SIZE-EXCLUSION CHROMATOGRAPHY, AND LASER 

LIGHT SCATTERING  
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METHODS 

Surface Plasmon Resonance (SPR) 

APOBEC3G (APO3G), obtained from the AIDS Research and Reference Reagent 

Program, was immobilized on a CM4 amine-coupling chip in a SPR machine (Biacore).  

The CM4 chip surface was activated with 50mM sodium hydroxide and primed by 

injecting a mixture containing EDC/NHS.  After injecting the EDC/NHS, 50µl of 

20µg/ml APO3G was injected to immobilize the protein on the chip.  The CM4 chip was 

then washed with ethanolamine to block any unreacted sites; 3000 response units of 

APO3G were immobilized on the chip.  

Binding of NusA-VifLAI to APO3G immobilized on the CM4 chip was tested by 

injecting 34µM NusA-VifLAI, 34µM NusA, and buffer alone.  After these single-

concentration injections showed binding, I injected the CM4-APO3G chip with buffer-

alone control (20mM Tris, pH 8.0, 150mM NaCl), 34µM NusA, and serial dilutions of 

NusA-VifLAI (34µM-532nM).  The serial-dilution injections produced responses that were 

analyzed by Biaevalution software to produce kinetic-binding data.  The software 

analysis subtracted the reference surface and blank buffer from experimental values 

(Chapter II, Methodology). 

 

Size-Exclusion Chromatography—Laser Light Scattering (SEC-LS) 

 HIV-1 Vif, APO3G, and HIV-1 Vif-APO3G were separated by size-exclusion 

chromatography column followed by laser light scattering analysis at the Yale Keck 

facility.  The low molecular weight or catalytically active form of APO3G (Chiu, 2006), 
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was isolated from RNA by incubating E. coli expressed APO3G with 50µg/ml RNase A 

(Chiu, 2005) for 1 hour at room temperature.  The RNase-treated APO3G sample was 

filtered through a 0.22 µm filter and analyzed by Superdex 200 size-exclusion 

chromatography.  Since the eluate of the Superdex 200 column contained a large 

aggregate, a tandem-column approach was used, i.e., each sample was first separated on a 

Superose 6 column, and then over a Superdex 200 column.  HIV-1 Vif was analyzed in a 

similar fashion to APO3G, but not treated with RNase A.  For the HIV-1 Vif-APO3G 

complex, APO3G was incubated with HIV-1 Vif and 50 µg/ml RNase A for 1 hour at 

room temperature and analyzed by tandem columns.  All proteins were analyzed in 50 

mM Tris, 150mM sodium chloride, and 1mM DTT, pH 8.0.     

 

RESULTS 

Dissociation kinetics of HIV-1 Vif-APO3G does not saturate  

 APO3G was immobilized onto a CM4 chip and serial dilutions of NusA-VifLAI 

were injected onto the immobilized sensor surface in order to obtain a dissociation 

constant for the Vif-3G interaction.  A dose-dependent binding of NusA-VifLAI to the 

APO3G surface was observed (Figure A2.1A).  However a graph of NusA-VifLAI 

concentration versus response units revealed that the reaction did not saturate.  Higher 

concentrations of protein are necessary to achieve this saturation, which I unfortunately 

was unable to obtain.  Even though the binding reaction did not saturate, an approximate 

Kd of 100µM was determined by fitting the data to the steady-state model (Figure 

A2.1B).  It is possible, however, that this binding constant could be influenced by how 
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Figure A2.1A 
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Figure A2.1B 
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Figure A2.1:  NusA-Vif Binding to APO3G Sensor Surface. (A) Dose-dependent 

binding of NusA-Vif to APO3G surface.  APO3G was immobilized on a CM4 sensor 

chip and different concentrations of NusA-Vif were incubated with the surface.  A dose-

dependent binding was observed for NusA-Vif to APO3G where as no NusA alone 

bound to the surface.  (B) Analysis of NusA-Vif binding to APO3G surface.  The 

concentration of NusA-Vif was plotted versus response units and an approximate Kd of 

100µM was observed.  The binding kinetics did not saturate, creating a need for further 

experiments to more accurately determine Kd.       
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APO3G was immobilized.  The amine coupling reaction could have altered the APO3G 

structure or blocked the HIV-1 Vif binding site, thus causing a low dissociation constant. 

 

Stoichiometry of HIV-1 Vif-APO3G interaction not determined due to insufficient 

amount of stable protein 

 HIV-1 Vif, APO3G, and HIV-1 Vif incubated with APO3G were analyzed using 

size-exclusion chromatography and laser light scattering at the Yale Keck facility.  

APO3G was analyzed using the Superdex 200.  However large protein aggregates were 

observed, which saturated the light scattering detector.  A tandem separation was 

performed using the Superose 6 and Superdex 200 SEC columns in order to separate the 

aggregates away from the remaining protein sample.  However the majority (greater than 

90%) of the sample analyzed was lost.  Loss of the protein was likely due to either 

protein aggregation or the protein interacting with the column matrix (Figure A2.2A).  

Similar to the APO3G analysis, the HIV-1 Vif and HIV-1 Vif incubated with APO3G 

analysis had similar failed results--large protein aggregates were seen and the majority of 

the protein analyzed was lost (Figure A2.2B and C).  In the HIV-1 Vif sample analysis, a 

peak was detected at the 18ml fraction that potentially corresponded to a 20kDa moiety; 

however the signal was too low for an accurate molecular weight determination (Figure 

A2.2B).  Furthermore, because of the low abundance of the possible 20kDa moiety the 

presence or absence of oligomers could not be determined. 
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Figure A2.2A 
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Figure A2.2B 
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Figure A2.2C 
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Figure A2.2:  SEC-LS Analysis of APO3G, HIV-1 Vif, and the Vif-APO3G complex.  

(A) Analysis of APO3G using SEC-LS.  APO3G was incubated with 50µg/ml RNase A, 

purified using a Superdex 200 or a Superdex 200 followed by a Superose 6 Column, and 

analyzed using laser light scattering.  Unfortunately, the APO3G sample aggregated and 

saturated the LS signal preventing molecular weight determination.  (B) Analysis of HIV-

1 Vif using SEC-LS.  HIV-1 Vif was purified using a Superdex 200 or a Superdex 200 

followed by a Superose 6 Column, and then analyzed using laser light scattering.  The 

HIV-1 Vif sample aggregated and saturated the LS signal preventing molecular weight 

determination.  However, a small peak in suggests a 20KDa Vif species may exist.  (C) 

Analysis of APO3G incubated with HIV-1 Vif using SEC-LS.  HIV-1 Vif and APO3G 

were incubated together in the presence of 50µg/ml RNase A, purified using a Superdex 

200 or a Superdex 200 followed by a Superose 6 Column, and then analyzed using laser 

light scattering.  The HIV-1 Vif-APO3G sample aggregated and saturated the LS signal 

preventing molecular weight determination.        
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DISCUSSION 

To quantitate the strength of the APO3G-Vif interaction I used surface plasmon 

resonance (SPR), which measures a dissociation constant or Kd.  Preliminary experiments 

using NusA-VifLAI as the analyte and APO3G immobilized on the sensor surface of the 

SPR machine determined an approximate Kd of 100µM.  This result suggested that HIV-

1 Vif and APO3G have a weak interaction that might be easily disrupted by inhibitors.  

However, the dissociation reaction did not saturate; thus, the Kd obtained was only a 

preliminary and approximate value.  To obtain a more accurate Kd value, the experiments 

should be repeated several times at higher concentrations of NusA-VifLAI to drive the 

reaction to saturation.  However, these experiments were precluded by the low solubility 

and low concentrations currently available for NusA-VifLAI.  The reciprocal experiment 

also needs to be performed, i.e., with APO3G as the analyte and HIV-1 Vif immobilized 

on the sensor surface. When these experiments were attempted, protein aggregated in the 

flow cell, thus clogging the machine.     

 To determine the stoichiometry of the HIV-1 Vif-APO3G interaction, I used size-

exclusion chromatography followed by laser light scattering.  This analysis was hindered 

by two technical problems. First, the samples of HIV-1 Vif, APO3G, and the HIV-1 Vif-

APO3G complex eluted from the column as aggregates that saturated the light scattering 

detector and prevented analysis of the remaining sample.  Second, the majority of each 

sample appeared to interact with the column matrix, resulting in a 90-100% loss of 

protein for analysis.  To repeat this type of analysis and to optimize column buffer 

conditions, more soluble and more stable proteins are needed.   
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