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Abstract

Itk and Rlk are members of the Tec kinase family of non-receptor protein tyrosine

kinases that are preferentially expressed in T cells. Numerous previous studies have

demonstrated that these proteins play an important a role in the regulation of signalling

processes downstream of TCR activation in CD4+ T cells, particularly in the

phosphorylation of PLCyl. In addition , Itk and Rlk have both been shown to be

important for CD4+ T cell development, differentiation , function and homeostasis

following TCR activation. In the absence of Itk and Rlk, CD8+ SP thymocytes and T

cells develop a memory/previously activated phenotypic profile , however, very little is

known about the influence of Itk and Rlk on CD8+ T cell development and function.

This study ilustrates a previously unappreciated role for Itk and Rlk in the regulation of

cytokine signals during CD8+ SP thymocyte maturation, and in the development of the

memory CD44hi profie of Itk -/- and Itk -/- Rlk -/- CD8+ SP thymocytes and CD8+ T

cells. This study also provides the first detailed study of the role of loss of Itk and

particularly both Itk and Rlk in CD8+ signalling and function and shows that these Tec

kinase family members play an important role in the maintenance of CD8+ T cell fitness

and function , particularly in the ability of CD8+ T cells to accumulate in response to

infection. Collectively, my studies demonstrate a critical role for Itk and Rlk in the

generation of optimal CD8+ T cell responses. They also raise the novel observation that

these proteins may be involved on the regulation of cytokine signals in T cells.
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INTRODUCTION

Development of the T Cell Repertoire

Thymic Organogenesis:

The thymus is the seat of T cell development and differentiation and without this

organ there would be no thymocytes available for seeding of the peripheral lymphoid

compartments. That the thymus was the source of the cells that were found in the lymph

and peripheral organs was reported by Jacques Miler in 1961 at a time when not much

was know about this mysterious organ that sat above the heart and gave rise to the cells

that travelled throughout the body. Since this time , significant progress has been made in

characterising this organ that is now so central to T cell biology and function. Perhaps

not surprisingly, the relationship between the thymus and thymocytes is a symbiotic one

with the thymocyte needing the thymus to complete its maturation and differentiation and

the thymus relying on the thymocyte maturation process to become a fully differentiated

and mature organ (1, 2).

This symbiotic relationship begins at about d 10 of murine gestation with the

formation of the thymic anlage. A primitive epithelial thymic primordium is generated

when neural crest derived mesenchymal cells fuse with ectoderm and endoderm from the

pharyngeal pouch. These cell types are the precursors of the thymic stromal cells that

makeup the skeleton of the developing thymus (3). Thymocyte progenitors enter the

thymic primordium from the fetal liver via surrounding blood vessels at about d11 of

murine gestation. As the thymus is not yet vascularised, the thymocyte progenitors have

to leave adjacent pharyngeal vessels and traverse the perithymic mesenchyme and the
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basement layer surrounding the thymic: rudiment. This process is mediated by

chemoattractants secreted by the stromal cells of the thymus. The progenitors proliferate

and differentiate , allowing the thymus to develop from an undefined mass of epithelial

cells and lymphocytes into a highly ordered structure containing distinct cortical and

medullary regions surrounded by a subcapsular region , interspersed with blood vessels

and containing many distinct cell types (1, 2). In keeping with the symbiosis between

thymus and thymocyte , in the absence of thymocyte progenitors, the thymus is incapable

of developing its highly ordered structure. In animal models containing natural mutations

that impair T cell development, the cortical and medullary regions fail to develop. This

development is restored by the re-introduction of thymocytes into the thymic rudiment (4

5).

Extensive phenotypic analysis of the cell types composing the thymus has

revealed that the cortex of the thymus contains mainly cortical epithelial cells and

macrophages, while the medulla of the thymus contains mainly bone-marrow derived

cells such as dendritic cells and macrophages. Interdigitating dendritric cells are

localized mainly at the boundary between the cortex and the medulla known as the cortic-

medullary junction (1, 6). These epithelial and bone-marrow derived cells express the

MHC Class I and MHC Class II molecules that are necessary for thymocyte

development. Blood vessels permeate the thymus, extending deep into the medullary and

cortical regions of the thymus. Thymocyte progenitors, derived from the bone-marrow

later in neonatal life, utilize these blood vessels to gain access to the thymus. The thymic

progenitors enter the thymus at the cortico-medullary junction. From here they traverse
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the cortex and travel to the subcapsular region , maturing in the process. Immature

thymocytes from the subcapsular region then re-migrate across the thymus , first across

the cortex and then into the medulla, developing into mature thymocytes along the way

(7) (Figure 1.1).



Figure 1.1: Thymic Organization and Thymocyte Migration

Thymocyte progenitors enter the thymus at the cortico-medullary junction via blood

vessels located in and around the medulla of the thymus. The cells then migrate inward

toward the subcapsular epithelium. Crosstalk between the developing thymocytes and

the thymic epithelium promotes their maturing and differentiation from DN (CD4- CDS-

or TN (CD3- CD4- CDS-) progenitors into pre-DP (CD4+ CDS. As the DP cells become

mature SP thymocytes they migrate into the medulla where they remain until their exit to

the periphery.
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The forces that regulate the formation of this highly complex organ stil remain a

mystery. Although incredible progress has been made in identifying the individual cell

types involved in the formation of the thymus, many questions remain regarding the

processes that regulate the generation of the distinct microenvironments, the

communication between thymocytes and the various cell types that populate these

microenvironments and how this impacts the complex route the thymocytes take through

the thymus and their subsequent maturation and differentiation.

T Cell Development:

T cell development is a highly complex process that takes place in a series of

ordered steps concurrent with the differentiation and organization of the thymic

architecture. Upon entry into the thymus from the bone-marrow , the common lymphoid

progenitor lacks expression of the T Cell Receptor (TCR), CD3, a component of the TCR

complex and the co-receptors CD4 and CDS and is designated a triple-negative TN

immature thymocyte. T cell maturation is chronicled by the sequential expression of

these and other cell surface molecules, and can be divided into three broad developmental

stages based on the surface expression of these receptors Figure (1.2) (S). During the

most immature TN stage of thymocyte development, thymocytes express the molecules

CD44 and CD25, and can be further sub-divided into four developmental stages based on

expression of these receptors: TNl (CD44+ CD25-), TN2 (CD44+ CD25+), TN3 (CD44-

CD25+), TN4 (CD44 CD25-). As the immature thymocytes progress through the latter

two stages (TN3 - TN4) of development, they undergo VDJ rearrangement of their

TCRf3 genes. This developmental process takes place as the progenitors make their



second pilgrimage across the thymus from the subcapsular region to the cortico-

medullary junction (7). Productive rearrangement of TCR(3 genes and expression of

TCR(3 along with pre-Ta (the Pre-TCR complex) on the surface of the thymocyte leads

to (3 selection , upregulation of the CD4 and CDS co-receptors, and the generation of

immature CD4+ CDS+ double positive (DP) thymocytes. This initiates the second phase

of thymocyte development. Following pre-TCR expression and differentiation to the

double positive stage of thymocyte development, thymocytes undergo repeated re-

arrangement of their TCRa chain genes until a productive rearrangement is made. This

TCRa chain replaces the surrogate pre-Ta chain, generating a functional mature a/(3

TCR. Double positive thymocytes are found mainly in the cortex of the thymus as they

migrate from the subcapsular region back to the medulla (7). Thymocytes that do not

generate productive TCR(3 rearrangements undergo apoptosis. The DP thymocytes are

now capable of undergoing their third and final phase of maturation , the processes of

positive and negative selection and lineage commitment , to become mature CD4+ or

CDS+ single positive (SP) thymocytes (8 9) (Figure 1.2).
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Figure 1.2: Thymocyte Development

T cell development begins with entry of the common lymphoid progenitor (CLP) into the

thymus. These cells are CD3- CD4- CDS- and are designated TN cells. Thymocytes

progress through several stages of TN development characterized by expression of CD44

and CD25 termed TN! - TN4. These cells are permanently committed to the T cell

lineage with the initiation of TCR y and gene rearrangement at the TN! - TN 2 stages.

TN2 cells that successfully rearrange their TCR y and genes commit to the y lineage T

cell lineage. Rearrangement of the TCRI3 gene begins at the TN2 - TN3 stage and

signals commitment to the al3 T cell lineage. A functionally rearranged TCRI3 gene is

expressed at the cell surface coupled with the pre-Ta chain to form the pre-Ta complex.

Progression to the DP (CD4+ CDS+) stage is preceded by rearrangement of the TCRa

gene. Expression of a functional TCR a gene signals allelic exclusion and the functional

TCR a replaces pre-Ta and pairs with TCRI3 chain to form the mature al3 TCR on the

surface of DP cells. Signal through TCR al3 promote positive and negative selection and

lineage commitment leading to the generation of mature CD4+ and CD8+ SP

thymocytes.
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Thymocyte Selection:

The T cell repertoire is sufficiently diverse to allow for the generation of immune

responses to a wide array of foreign pathogens. This diversity is generated by the

processes of VDJ recombination and positive and negative selection that enable the

generation of a diverse T cell repertoire, while simultaneously protecting us from

autoimmunity by removing potentially self reactive T cells from the T cell repertoire (S).

Positive selection refers to the process whereby double positive (DP) thymocytes

are induced to become either CD4+ or CDS+ single positive thymocytes, depending on

their interaction with either MHC Class I or MHC Class II respectively. Positive

selection is thought to occur primarily in the cortical area of the thymus where the TCR

expressed on T cells encounter self-peptide/MHC molecules expressed on thymic

epithelial cells. Negative selection is thought to occur primarily in the medullary area of

the thymus, where the maturing T cells encounter peptide/MHC complexes expressed on

medullary epithelial cells and bone-marrow derived stromal cells (2, 10, 11). Supporting

this view are data showing that most of the thymocytes present in the medullary region of

the thymus are either CD4+ or CDS+ single positive (SP), while the cortical areas contain

mainly CD4+ CDS+ double positive thymocytes (DP).

T cell selection is governed by the efficacy of the signal received through the

TCR. If this interaction is of a moderate affinity allowing for the generation of a signal

within a unique signallng threshold, T cells are positively selected. However, if a double

positive T cell encounters self-peptide/MHC complexes to which they have too strong of

an avidity, a deleterious signal is generated which leads to the death of that potentially
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autoreactive T cell (S). T cells also undergo death by neglect if they do not encounter

self-peptide/MHC complexes that can generate a signal within the threshold that allows

for positive selection. Following the selection process , the thymocytes are now

committed to being either CD4+ SP or CD8+ SP, exit the thymus from the medulla and

migrate into the peripheral lymphoid areas where they are now capable of generating

immune responses to a wide array of pathogens , while maintaining silence to self.

Lineage Commitment:

Lineage commitment is the decision making process that a DP thymocyte

undergoes in becoming a CD4+ or CDS+ SP thymocyte. This decision occurs concurrent

with the process of positive selection and is governed primarily by the interaction of TCR

and the CD4 or CDS co-receptors expressed on the surface of the thymocyte with either

Class I or Class II MHC molecules expressed on thymic epithelial cells. Classically,

engagement of TCR and CDS with MHC I results in the down-regulation of CD4 co-

receptor expression and generation of a CDS+ Class I restricted T cell, while CD4+ SP

thymocytes arise from the interaction of TCR and CD4 with MHC II molecules and the

resultant extinguishing of CDS co-receptor expression.

Cytokines and Signalling Molecules in CD4 and CDS SP Selection and Lineage

Commitment:

It has always been of much interest that signals received through the TCR can

result in such distinct outcomes - positive selection, cell survival and lineage

commitment versus negative selection and cell death. However, not all stages of



thymocyte development are dependent solely on signals transmitted through the pre- TCR

or the TCR aj3 complex. The earliest lymphoid progenitors (TN! and TN2 thymocytes)

express receptors for stem cell factor (SCF) and IL-7 and are dependent on the cytokines

SCF and IL-7 for maintenance and survival in this early TCR independent stage of

thymocyte development. The importance of these cytokines is demonstrated in

genetically deficient murine models. For example, mice lacking IL-7R have an overall

reduction in thymic cellularity with diminished production of aj3 thymocytes and a

complete absence of y6 thymocytes. This lack of aj3 thymocytes is due to a block in TN

thymocyte development at the TN! - TN2 stage and it was subsequently established that

IL-7 (acting through IL-7Ra and the common ychain) was necessary for the up-

regulation of anti-apoptotic molecules such as Bc1-2, and for the regulation of

transcription and VDJ recombination at the TCRy genetic locus (12). This dependence

on cytokine signals occurs before the maturing thymocyte undergoes the processes of

positive and negative selection and lineage commitment. When the maturing thymocyte

reaches the TN3 - TN4 stage of thymocyte development, it expresses the pre-TCR

complex on its surface and enters the receptor dependent phase of thymocyte

development. At this stage, expression of IL-7R is downregulated and is not re-

expressed until the thymocyte becomes SP (13). The thymocyte is now primarily

dependent on signals transmitted first through its immature antigen receptor complex

(pre-TCR at TN3 - TN4) and later its mature a/j3 TCR (at the DP - SP transition).

Thymocytes express many of the same family of signalling molecules

downstream of the pre- TCR and the a/j3 TCR on CD4+ or CD8+ SP thymocytes , as



peripheral T cells do downstream of their mature a/(3 TCR complex (14). This

observation led to the analysis of the role of many of these molecules in thymocyte

development and maturation , most successfully so in genetically deficient murine

models. Among the membrane proximal molecules found to be important in CD4+ and

CD8+ SP thymocyte selection and/or lineage commitment were the Src kinases Lck and

Fyn , the Syk kinase ZAP-70 and the Tec kinases Itk and Rlk (15- 18). Absence of the src

kinases Lck and Fyn in developing thymcoytes results in a reduction in the development

of SP thymocytes and abrogation of positive selection of CD4+ and CD8+ SP thymocytes

(17 , 19). Lck is also important in the CD4/CD8 lineage choice, as it has been shown that

modulation of Lck expression and activity can affect the decision that a DP thymocyte

makes when committing to either the CD4+ or CD8+ SP lineage (20 , 21). Loss of ZAP-

70 also results in a complete block in CD4+ and CD8+ SP thymocyte development, and

as such does not affect the CD4+ versus CD8+ lineage choice (22 , 23). Also implicated

in modulation of the signalling thresholds that regulate positive and negative selection are

the Tec kinase family members Itk and Rlk. Loss of Itk or both Itk and Rlk mostly

affects positive selection of CD4+ and CD8+ SP thymocytes and also has a minor effect

on negative selection of CD8+ SP thymocytes. So far, there is no evidence to suggest

that loss of either or both of these kinases affects the CD4/CD8 lineage decision (15, 18,

24) (Figure 1.2).

Recently, several reports have provided evidence of a role for the common yc

cytokines IL-7 and IL- 15 in the later receptor dependent phase of thymocyte development

and differentiation, mainly in the lineage CD4/CD8 lineage decision. The involvement of



IL-7 in the regulation of the CDS+ SP lineage decision was initially reported by Brugnera

and colleagues (25). These authors, using a system meant to test the developmental

potential of signalled DP thymocytes, showed that thymocytes exposed to stimulatory

cultures containing anti-CD3 antibodies or the pharmacological agents PMA and

Ionomycin down-regulated expression of the CDS co-receptor to become CD4+ CDS

intermediates. If subsequently cultured under non-stimulatory conditions, these

thymocytes preferentially became CD4+. However, if cultured in media with IL- , these

thymocytes downregulated expression of CD4 and preferentially re-expressed the CDS

co-receptor to become CDS+ SP thymocytes. Participation of IL-7 in the CDS+ SP

lineage decision was further demonstrated by Chong and colleagues who showed that

thymocytes lacking the negative regulator of cytokine signallng SOCS- , preferentially

became CDS+ SP thymocytes when stimulated through the IL-7R (26). Ilangumaran and

colleagues implicated IL- 15 in regulation of the CDS lineage decision by demonstrating

that thymocytes from SOCS- l -/- IFNy -/- mice were skewed towards the CDS+ SP

lineage in fetal thymic organ culture (FTOC), and were particularly sensitive to IL-

stimulation in-vitro (27).

The Cellular Immune Response

After surviving the developmental and selective pressures of the thymic

microenvironment, the mature, self-tolerant CD4+ and CDS+ SP thymocytes emigrate

from the thymus to the peripheral lymphoid organs. These T cells circulate throughout

the host and its network of lymphoid and non-lymphoid tissues in constant surveilance

for the presence of foreign antigens and infectious agents.



The LCMV Model of the Cellular Immune Response

A hallmark of the mature immune system is its ability to mount a response to a

variety of pathogens. One of the most studied of these pathogens is the murine

Lymphocytic choriomeningitis virus (LCMV). LCMV is an enveloped ambisense RNA

virus and is the prototypic member of the arenavirus family. It contains two ambisense

RNA' s, the Land S RNA' s which each encode two genes. The L RNA encodes the L

protein, a RNA dependent RNA polymerase required for transcription of the LCMV

genome and the Z protein , while the S RNA encodes for nucleoprotein (NP) and

glycoprotein (GP). LCMV replicates mainly in the cytoplasm of cells and spreads by

budding from the plasma membrane of infected cells. It has a wide host range and can

replicate in many different cell types including the cells of the central and peripheral

lymphoid system. Infection of mice with LCMV and the immune response it generates

has been used for years as a model to characterize the various cell types and mechanisms

involved in the evolution of the cellular immune response to pathogens. There has also

been extensive characterization of the epitope specific responses generated following

LCMV infection, and there are many tools currently available that allow the antigen

specific response to be followed at a single cell level , that makes LCMV a valuable tool

for study of the cellular immune response (28, 29).

Innate Immunity:

Generally infection with LCMV results in a transient infection to which there is a

strong sterilizing host immune response that clears the virus by eight days post infection



and leads to the development of immunologic memory. Following LCMV infection or

infection with other intracellular pathogens, infected cells produce type 1 IFNs, IFNa and

IFNf3. These cytokines with their potent anti-viral properties are at the frontline of the

host's defense to viral pathogens. Numerous cells types of the innate , non-specific

immune system including NK cells, NK T cells and various granulocytes are recruited to

the site of infection by the various cytokines and chemokines secreted by infected cells.

NK cells are a major line of defense against viral infection. They are activated by the

type1 IFN' s and possess cytolytic granules and specific cell surface receptors, which

enable them to recognize and directly eliminate infected cells. NK cells also secrete the

inflammatory and anti-viral cytokines IFNy and TNFa. These cytokines have direct anti-

viral properties , as well as enhancing the activation state of macrophages and dendritic

cells. Activation of macrophages and dendritic cells , also known as professional antigen

presenting cells (APC' s) is the link between the innate and adaptive immune response to

infection (30 , 31).

Adaptive Immunity: The Antigen Specific T cell response

Macrophages and dendritic cells, which are derived from bone-marrow

precursors, along with B cells , are unique in their ability to present antigen and to

catalyze antigen specific T cell responses. These cells express high levels of the co-

stimulatory molecules B7. lIB7.2 and CD40, in addition to MHC Class I and MHC Class

II molecules. In response to the inflammatory cytokine milieu produced by an ongoing

infection, macrophages and dendritic cells up-regulate expression of their co-stimulatory



and MHC molecules. This enhances antigen presentation to CD4+ and CD8+ T cells and

initiates activation of the antigen specific T cell (adaptive) immune response (31).

Infection with the Armstrong strain of LCMV results in a characteristic CD4+ and

CD8+ T cell response that can be divided into three distinct phases. 1. The

expansion/effector phase during which antigen specific T cells increase in number and

function to control viral spread. 2. The silencing phase in which the immune system

returns to homeostasis. 3. The memory phase, in which antigen specific cells surviving

the response are maintained as a defense against secondary infection (28) (Figure 1.3).



Figure 1.3: The LCMV Model of the Cellular Immune Response

Early in infection with LCMV , the innate arm of the immune response is activated with

production of the Type I IFNs (IFNa and IFNI)) and activation of NK cells. Viral

replication peaks about day four post-infection and virus is cleared by approximately day

8 post infection. Infection with LCMV results in a characteristic expansion

(approximately 5 to seven fold) of the CD8+ T cell subset that is detectable by day five

post-infection and peaks at day eight post-infection. This expansion is a programmed

event subject to many factors intrinsic and extrinsic to the CD8+ T cell such as response

to cytokines and the duration and strength of the TCR signal. The peak of the infection is

followed by a decline in the numbers of antigen specific cells as the immune system

returns to homeostasis. This process is mediated in part by the process of activation

induced cell death and also by cytokine withdrawal as the inflammatory response

subsides. The cells remaining at the end of the immune response become long-lived

memory T cells.
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T Cell Expansion

Although there is expansion of both the CD4+ and CD8+ T cell compartments

the sterilising T cell response to LCMV infection is mediated mainly by CD8+ T cells.

Antigen specific T cell expansion is first detectable at about five to six post infection.

This is followed by a massive expansion of antigen specific CD8+ T cells that peaks at

approximately eight days post infection (Figure 1.3). At this point LCMV specific CD8+

T cells account for approximately fifty percent of the CD8+ T cell compartment (32 33).

The mechanism behind this massive proliferation of CD8+ T cells is not well defined. 

was initially thought to be partially dependent on the provision of IL-2 to the CD8+ T

cells , in either a paracrine manner by CD4+ T cells or in combination with autocrine

delivery by the CD8+ T cells themselves (34-36). More recently, it has been shown that

the CD8+ T cell response to infection is an autonomous event initiated following contact

with antigen. Evidently, CD8+ T cells are more sensitive to this program of division and

differentiation than CD4+ T cells , and undergo a more extensive program of proliferatIon

than CD4+ T cells (37-39). CD4+ T cell expansion to LCMV infection occurs with a

delayed kinetic as compared to CD8+ T cell expansion. The magnitude of the response is

such that the CD4/CD8 ratio changes from about 2: 1 in naIve mice to about 1:2 in acutely

infected mice at the peak of th CD8+ T cell response. CD4+ T cells rebound both in

total number and function as the CD8+ T cell response declines (28 , 40). The antigen

specific response is directed to a diverse array of epitopes, many of which have been

defined for T cells in a variety of murine strains. In the C57BL/6 mouse specifically, the

immunodominant CTL epitopes that have been defined include np 396, gp 33, gp 34, and



gp 276 all of which are D restricted. Subdominant CTL responses are mounted to the

epitopes gp 92 and np 205 which are D and K restricted respectively. Fewer CD4+

epitopes have been defined. The CD4+ immunodominant epitope identified so far is gp

, while the only subdominant epitope described so far is np 309, which are both I-

restricted (28 42).

Activated CD4+ T cells and CD8+ (CTL' s) possess a variety of effector functions

with which to combat infection. Upon activation CD4+ T cells secrete the antiviral

cytokines IFNy and TNFa in addition to IL-2. CD8+ CTL' s in addition to secreting the

anti-viral cytokines IPNy and TNFa , contain the cytolytic granules perforin and

granzyme B that are necessary for cell-mediated cytolysis. Resolution of LCMV

infection is dependent on the CD8+ (CTL) response, as mice deficient in CD8+ T cells

fail to resolve an LCMV infection (43). This resolution is also perforin dependent and

somewhat IFNy dependent, as LCMV infection of perforin deficient mice results in a

persistent infection despite the generation of a robust CTL response , while infection of

IFNyR deficient mice results in delayed clearance of virus (44, 45).

Immune Silencing

Following the peak of expansion of the T cell response , there is a rapid decline in

the numbers of both the CD4+ and CD8+ epitope specific T cells as the immune system

undergoes homeostasis. This results in the generation of a long-lived population of

CD4+ and CD8+ LCMV specific memory T cells. Multiple mechanisms have been

proposed to explain the regulation of this phase of the immune response, but a definitive



mechanism remains elusive. Immune silencing is mediated in part by the process of

activation induced cell death (AICD). Virally activated CD8+ T cells upregulate

expression of the TNF family of pro-apoptotic Fas, Fas Land TNF receptor molecules.

As a consequence, these activated CD8+ T cells are more sensitive to apoptosis.

However immune silencing cannot be wholly explained by expression of these

molecules, as loss of these molecules does not abrogate silencing of the immune

response. This process is also not dependent on regulation of expression of anti-apoptotic

molecules, as it is not rescued by over expression of Bcl-2 (46-48). Other Bcl-2 family

members have also been implicated in modulation of the pro-apoptotic and anti-apoptotic

pathways that regulate cell death. For example, studies have shown that the pro-

apoptotic molecules Bax and Bak are part of an obligate machinery that controls

thymocyte deletion and peripheral homeostasis. Bax and Bak are activated by the pro-

apoptotic BH3 - only family members Bim and Bid. Bim and Bid in turn are inhibited by

binding to a pocket created by intermolecular associations between the BHl - BH3

subunits of Bcl-2 and Bcl-XL. The survival of the cell is then controlled by the ratio of

expression of pro-apoptotic to anti-apoptotic molecules. Recently Bim, a member of the

BH3 only family of pro-apoptotic proteins, was implicated in regulation of the immune

silencing of the influenza response. Bim was shown to be important for the cytokine

withdrawal induced apoptosis that occurs as the cytokine milieu generated during the

immune response wanes (49). Immune silencing has also been demonstrated to be

facilitated in part by the migration of antigen responsive cells to non-lymphoid tissues,

although this would not account for the total decline in the antigen specific population in



lymphoid tissues (50). It has also been suggested that the contraction of the immune

response is a programmed event that is intrinsic to the T cell although no mechanisms

have been proposed to explain how this process may be regulated (51). So the regulation

of this phase of the immune response is still somewhat shrouded in mystery.

T Cell Memory

The decline of the antigen specific response leaves in its wake a population of

long-lived antigen specific memory CD4+ and CD8+ T cells. These T cells are capable

of mounting a faster more efficient response to subsequent infections (52, 53). The

LCMV model system has been extensively used to study the mechanisms by which

memory T cells are generated and maintained. Although memory T cells were originally

believed to be descendant from a separate lineage to that of effector T cells , current

opinion largely holds that memory T cells are derived from the linear differentiation of

effector T cells (54-58). Generally, in the murine system, a memory CD4+ or CD8+ T

cell is defined by elevated expression of the surface molecules CD44 and CD62L

(CD44hi CD62Lhi). Memory CD8+ T cells additionally possess high levels of CD122

(IL-2Rj3) and Ly-6C. Current work has also shown that memory T cells are not a

homogenous population and can be divided into several subsets with distinct functional

capabilities, on the basis of cell surface markers. CD44hi CD4+ and CD8+ memory T

cells can be further subdivided based on differential expression of CD62L and the

chemokine receptor CCR7. Memory T cells are subdivided into effector memory T 

(CD44hiCD62LloCCR7-) and central memory T CM (CD44hiCD62LhiCCR7+)

populations. These cells are found in different sites in the body, with T EM cells localising



preferentially to the blood , spleen and non-lymphoid tissue , and T CM cells localised to

lymphoid compartments. Additionally, it was demonstrated that T EM cells respond to

antigen and make cytokines more rapidly than T CM cells , although these generalities do

not hold in all systems and sometimes differ between CD4+ and CD8+ memory T cells

(50, 54, 57). Despite these inconsistencies , there is a general consensus as to the

existence of these memory T cell subsets.

An important characteristic of the memory T cell population is their ability to be

maintained in the host for extended periods of time , sometimes offering protection for the

lifetime of the host (55, 59 , 60). This characteristic has been a subject of intense

investigation for vaccinologists searching for the answers to the generation of a long-

lived protective response to vaccination. One of the first questions asked was whether

memory T cells needed a constant tickling through their TCR and as such a constant

exposure to residual antigen to survive in the host. However, several studies have shown

that memory T cells can be maintained independently of antigen stimulation , as memory

T cells transferred into MHC deficient hosts can survive long-term (61 62). Subsequent

investigation has shown however that these cells are not as functionally efficient as

memory T cells maintained in the presence of MHC (63).

Memory T cells , mainly CD8+ CD44hi memory T cells, have been shown to be

dependent on the common yc cytokines IL- 15 and IL-7 for maintenance (58). The

requirement for IL- 15 is partially due to the high expression of IL-2Rf3 on CD8+ memory

T cells (64-67). The involvement of cytokines in the maintenance of the CD4+ CD44hi

memory subset is more controversial , as there have been studies that both support and



oppose a role for common y chain cytokines , in particular IL- , in the maintenance of

CD4+ memory T cells (65 , 68-70). Additional studies characterizing memory T cells

show that these cells have a higher rate of turnover in the periphery as compared to naIve

T cells , and higher expression of the anti-apoptotic molecules Bcl-2 and Bcl-XL(58).

Although many advances have been made in the past few years in characterizing

memory T cell development and maintenance , many questions still remain as to the

impact of extrinsic and intrinsic T cell factors on the generation and maintenance of

memory T cells. For example, much stil remains to be defined about the biochemical

and epigenetic changes that CD4+ or CD8+ effector T cells undergo in becoming

memory T cells, the hierarchy of the signallng pathways that modulate these changes,

how these changes are inherited by memory T cells , how they differ between CD4+ and

CD8+ memory T cells, and how they may contribute to the heterogeneity in phenotype

and function of the memory T cell subsets. As such, this leaves much work to be done in

refining of our understanding of this subset of T cells so important to our immunological

stabili ty.

T Cell Activation

As detailed in the preceding paragraphs, T cells are a vital component of the

body s defense against pathogenic challenge. The initiation of this response follows a

complex interaction of the TCR with antigen presented by self-MHC molecules and with

accessory co-stimulatory molecules expressed on the surface of specialized antigen

presenting cells. Along the pathway to immune function , the T cell activates a complex

array of genes beginning as early as ten minutes following contact with antigen, that can



over the course of seven to ten days result in a complex array of regulatory and

differentiative events that follows the T cell into immunological memory (71).

One of the earliest questions in T cell signallng biology was how the first

detectable consequences of T cell receptor cross-linking, the mobilization of intracellular

stores of calcium and the phosphorylation of membrane proximal and cytoplasmic

molecules, were linked to transcription factor activation and subsequent IL-2 gene

transcription and production by activated T cells. Elucidation of these mechanisms

contains the key to understanding how T cells integrate signals received through the TCR

and convert them into functionally distinct responses such as cytokine production

proliferation and cytotocixity. Unlocking these mechanisms would potentially provide a

tool with which to manipulate the immune system to generate protective immune

responses to a wide array of pathogens. Extensive work has gone into understanding this

connection between the interaction of the T cell with antigen presenting cells and the

subsequent induction of protective T cell immune responses and has resulted in our

current understanding of the positive and negative regulatory events controllng T cell

activation.

Src and Syk Kinases

Contact and interaction of the TCR with MHC/foreign peptide on the surface of

APC' s leads to capping of the TCR and formation of a structure known as the

immunological synapse (IS). The TCR/MHC complex is at the center of this synapse and

recruits to itself all the signallng molecules necessary to activate T cell function (72 , 73).



One of the earliest positive regulatory events following crosslinking of the TCR is

the phosphorylation and activation of the src kinase family members Lck and fyn. These

kinases initiate signalling events downstream of the TCR by phosphorylating

immunoreceptor activation motifs (IT AMS) in the cytoplasmic tails of the TCR

associated CD3 molecules. Lck is very important to T cell activation as the absence of

Lck results in minimum phosphorylation of IT AMS. Fyn is not able to fully compensate

for the absence of Lck (74). The main purpose of IT AM phosphorylation is the

recruitment of the syk kinases ZAP-70 and Syk to the T cell receptor. ZAP-70 and Syk

dock to the phosphorylated IT AM motifs via their SH2 domains. The importance of

ZAP-70 in T cell function is demonstrated by the severe immunodeficiency of ZAP-

null humans and mice. ZAP-70 null humans and mice lack mature peripheral CD8+ T

cells and have TCR unresponsive CD4+ T cells (23, 75). After T cell activation , Lck

phosphorylates ZAP-70. The phosphorylation and autophosphorylation of ZAP-

creates docking sites for other SH2 domain containing signallng molecules. Among the

SH2 containing signallng molecules recruited to ZAP-70 is the linker of activated T cells

(LAT). LAT is a substrate for ZAP-70 and after being phosphorylated by ZAP-70 serves

to recruit other signalling molecules such as SLP-76, PLCy, PI3K (p85), Grb- , Sos, Vav

and the Tec family kinases Itk and Rlk (76). Recruitment of LA T is a seminal event in T

cell activation as it results in the formation of a signalosome complex downstream of the

T cell receptor that is critical to the continued transduction of signals from the TCR (14).



PLCy

Phospholipase C yl (PLCyl) regulates the hydrolysis of inositol phospholipids

and the generation of polyinositolphosphates and diacylglycerols (77). Specifically,

recruitment of PLCyl to the signalosome complex facilitates the phosphorylation and

activation of PLCy. This phosphorylation activates PLCy to catalyse the hydrolysis of

phosphotidylinositol 4 5 bi phosphate (PIP2) present in the cell membrane into inositol

5 trisphosphate (IP3) and diacyl glycerol (DAG). IP3 binds to receptors on the

endoplasmic reticulum causing release of intracellular stores of calcium. The rise in

intracellular calcium eventually results in the opening of calcium channels in the cell

membrane leading to an influx of extracellular calcium and the generation of a sustained

calcium flux. Generation of a sustained calcium flux is necessary for the initiation of

many effector functions such as cytokine gene transcription, proliferation and cytotoxic

function. For example, one of the first consequences of the generation of a sustained

calcium flux is the translocation of the transcription factor NFA T into the nucleus where

it participates , along with the c-fos/c-jun (AP- I) transcription factor complex, in the

transcription of cytokine genes like IL- , IFNy and TNFa (78). Generation of DAG links

the TCR to two distinct signallng pathways, the protein kinase C (PKC) and Ras/Raf

Map kinase (MAPK) signallng cascades.

Activation of PKC results in the eventual activation and translocation of the

transcription factor NFkB to the nucleus where it promotes cell proliferation , cell survival

and the transcription of effector cytokine genes (79). Activation of PKC also promotes

the phosphorylation and activation of the c-jun N terminal MAP - kinase JNK.



Activation of both isoforms of JNK (JNKl/2) results in the phosphorylation and

activation of the c-jun and c-fos transcription factors that form the AP- l complex (80).

Generation of DAG also activates the Ras/Raf MAP-kinase pathway. Activation of the

Ras guanine exchange factor and its partner Raf leads to the activation of the ERK and

p38 MAP-kinases (81) (Figure 1.4).



Figure 1.4: Itk and Rlk in T Cell Receptor Signallng

Following TCR crosslinking, the src kinase Lck is activated. Lck then phosphorylates

IT AM residues on the intracellular domain of the TCR associated CD3 molecules

facilitating the recruitment of ZAP-70. Lck subsequently phosphorylates ZAP- , and

recruits the adaptor molecule LA T - Linker of activated T cells. The recruitment of LA 

and its subsequent phosphorylation by Lck initiates the formation of a signallng complex

as signalling molecules such as SLP- , Vav , Grb2 , Sos and PLCy are recruited to the

phosphorylated SH2 domains of LAT. The Tec kinases Itk and Rlk are also recruited to

the LAT nucleated signalling complex , where they are phosphorylated and activated by

Lck. Upon activation, Itk and Rlk mediate a central event in T cell activation , the

phosphorylation and activation of PLCyl. PLCy is now able to catalyse the generation of

the second messengers DAG and IP3 from PIP2 in the cell membrane.

The generation of DAG leads to the activation of the PKC and NFkB pathway and to the

activation of the ERK, JNK and p-38 MAP-kinase pathways which result in the

generation of the AP- l transcription factors jun and fos. IP3 binds to receptors on the

mitochondrial membrane , facilitating an increase in the intracellular stores of calcium and

the generation of a sustained calcium flux which results in the activation and

translocation of the transcription factor NFAT to the nucleus , where it participates along

with NFkB and the AP- l complex in the transcription of genes for multiple effector

functions including the transcription of cytokines such as IL- , IFNy and TNFa and T

cell proliferation.
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Tec Kinases

Activation of PLCy is a critical event in the activation of a T cell , and it serves as

a major intersection following crosslinking of the TCR to link the TCR to multiple

distinct cellular signalling pathways. The activation of PLCy in T cells is mediated in

part by the Tec kinase family members Itk and Rlk.

The Tec kinase family of non-receptor protein kinases is the second largest family

of cytoplasmic protein kinases (82). There are six known members , five of which are

variably expressed in cells of the hematopoietic lineage. Specifically, Tec, the first

member of this family to be identified, is expressed in most hematopoietic cells as well as

in endothelial cells and the liver (82, 83). Btk, the third Tec family member identified

can be found in most hematopoietic cells including B cells and mast cells (84). The other

Tec kinases , Itk (the second Tec family member to be identified) and the more recently

cloned Rlk have a limited pattern of expression and are restricted to thymocytes , T cells

NK cells and mast cells with Itk being detectable in the thymus by d14 of foetal

development, before the generation of DP thymocytes (85-87).

Structurally, the Tec kinases possess a modular organization that is reminiscent of

the family of Src kinases. Tec , Btk and Itk have unique N terminal regions followed by

Src homology 3 (SH3) and SH2 protein interaction domains and a catalytic tyrosine

kinase domain. Unlike the Src kinases however, the Tec kinases have an N- terminal

(plextrin homology) PH domain, which is important for localization to the cell

membrane , an adjacent Tec homology domain (consisting of a Btk homology region



(BH) and one or two proline rich regions (PRRs)) instead of the N-terminal myristolation

sites and regulatory C terminal tyrosine residues of the Src kinases (82). Rlk has two

main differences to its other family members. The first is that it does not possess an N-

terminal PH domain , having instead a string of N terminal cysteine residues, and it has no

BH domain , having only the proline rich regions. The second is that Rlk has an

alternative translational start site that generates a shorter form of Rlk that can translocate

to the nucleus (88 , 89) (Figure 1.5).



Figure 1.5: Structure of the TEC Kinase Family Members

Itk and Rlk are members of the larger Tec family of non-receptor tyrosine kinases. The

Tec kinase family consists of five members that are expressed in haematopoeitic cells

four of which are shown here. These include Tec and Btk. The kinases are highly

structurally homologous , each possessing a C terminal catalytic kinase domain, an SH2

and SH3 domain , a TH domain containing proline rich repeats (PRR). At the N terminus

the Tec kinase family, with the exception of Rlk , possesses a plextrin homology (PH)

domain that promotes the localisation of the Tec kinases to the cell membrane following

TCR activation. Rlk instead has a string of N terminal cysteine repeats that perform the

same function.
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The potential importance of the Tec kinases in the regulation of lymphocyte

signalling and function was realised following the discovery that mutations in the

tyrosine kinase Btk were associated with a disorder in B cell development and function in

humans. This rare genetic disorder, X-linked agammaglobulinemia, caused a severe

reduction in serum immunoglobulin levels (90). A similar but less severe phenotype

(xid) was caused by a point mutation in the PH domain of murine Btk (91). The

importance of Btk in the regulation of B cell function , and the limited pattern of

expression of Itk, Rlk and Tec to cells of the immune system and to T cells in particular

led to attempts to determine the importance of these Tec kinase family members in T cell

function.

The Role of Uk and Rlk

Uk and Rlk in T Cell Development

To understand the role of Itk in T cell signalling and function, mice genetically

deficient in Itk and either Rlk or both Itk and Rlk were generated (18 , 92, 93). The initial

analyses of Itk -/- mice revealed that Itk was critical for the development of CD4+ cells in

the thymus and in the periphery. The thymus and lymph nodes of mice lacking Itk were

deficient in both percentages and total numbers of CD4+ SP thymocytes and mature

CD4+ T cells , and the CD4:CDS ratio was reversed , from 2: 1 in wildtype mice to

approximately 1:1 in Itk -/- mice. Although the fraction of CDS+ SP thymocytes was

increased in the thymus of the Itk -/- mice , there was no effect on the percentages or total

numbers of peripheral CDS+ T cells. To further study the effect of Itk deficiency on

thymocyte development, the . Itk -/- mice were crossed to TCR transgenics. Upon



crossing the Itk -/- mice to the AND TCR transgenic which is MHC Class II restricted

and recognizes a pigeon cytochrome C peptide and to the HY TCR transgenic which is

MHC Class I restricted and is specific for male antigen , it became evident that Itk was

important in the positive selection of CD4+ and CD8+ SP thymocytes during thymic

development (18). Negative selection, which was assessed in the well-characterized male

HY transgenic model, did not appear to be different between the wildtype and Itk-/- mice.

The role of Itk in CD4+ T cell selection was further assessed by Julie Lucas 
in the lab

who showed , using a series of MHC II restricted TCR transgenics with different avidities

for the selecting peptide , that increasing the avidity of the TCR increased the efficiency

of positive selection , and that the efficiency of this process was regulated by the presence

of Itk (24). This model , which was based on the hypothesis that the processes of positive

and negative selection is influenced by qualitative differences in signallng downstream

of the TCR , implicated Itk in modulation and amplification of the TCR signal (24).

The role of Rlk in T cell development was a little more difficult to discern. Mice

lacking only Rlk did not have any visible defects on T cell development. However

crossing the Rlk -/- mice to the Itk -/- mice resulted in an exacerbation of the defects seen

in the absence of Itk. Positive selection of CD4+ SP thymocytes and CD4+ peripheral T

cells were more impaired in AND TCR transgenic Itk -/- Rlk -/- mice as compared to

AND TCR transgenic Itk -/- mice. In contrast to a previous report, examination of the

loss of Rlk and both Itk and Rlk on negative selection revealed that negative selection of

HY transgenic CD8+ T cells was impaired in the absence of Itk. This defect was

':"

exacerbated by the absence of both Itk and Rlk. Surprisingly, despite this deficiency in

fLi



positive selection and possibly due to the effect of impaired negative selection , the total

numbers of CD4+ SP thymocytes in Itk -/- Rlk -/- mice is similar to that seen in wildtype

(WT) mice. In addition , both the percentages and total numbers of CDS+ SP thymocytes

in the Itk -/- Rlk -/- mice are increased compared to both Itk -/- and WT mice. This

increase in total numbers in the CD4+ SP and CDS+ SP compartment reduces the

CD4:CD8 ratio from 2: 1 in WT mice to 1: 1 in Itk -/- Rlk -/- mice, similar to that seen in

Itk -/- mice (15 , 93, 94). In addition to defects in positive and negative selection , the T

cells in the Itk -/- and Itk -/- Rlk -/- mice have an altered phenotype. Approximately 50%

of the CD4 T cells and SO% of the CDS+ T cells in the periphery are CD44hi.

Paradoxically, a portion of the CD8+ SP thymocytes in the thymus of these mice are also

CD44hi (24). Questions pertaining to the origin and function of these cells are the

subject of the second chapter of this thesis.

Itk and Rlk in T Cell Signallng and Function

Mice deficient in Itk or in both Itk and Rlk were used to investigate the

importance of these Tec kinases in TCR signalling. Itk -/- CD4+ and CDS+ T cells

proliferated poorly in response to allogeneic and anti-CD3 stimulation. This proliferative

defect was rescued by stimulation with the phorbol ester PMA which activates PKC and

the calcium ionophore Ionomycin , indicating that Itk was acting in a membrane proximal

manner , prior to activation of PLCy (1S). Experiments done to place Itk in the signalling

cascade downstream of the TCR showed that Itk was directly phosphorylated by Lck, the

src kinase that is activated immediately following TCR crosslinking, and that this
f:f

phosphorylation increased the kinase activity of Itk (95 , 96). These analyses were



extended by Karen Liu who showed that Itk -/- CD4+ T cells were deficient in the

phosphorylation of PLCy and that this resulted in diminished production of the second

messenger IP3 and in the subsequent generation of an impaired calcium flux (92). As a

consequence , Itk -/- CD4+ T cells proliferated poorly in response to stimulation with anti-

CD3 and anti-CD28 as compared to wildtype mice. These studies along with many

others were seminal in elucidation of the current model of Itk in T cell receptor

signallng. Included in these were studies by Stephen Bunnell showing that Itk was

recruited to the cell membrane in a PH domain dependent manner following TCR

activation (97). In addition , these data showed that the SH2 and SH3 domains of Itk were

able to bind to multiple proteins demonstrated to be importnt for TCR signalling such as

SLP- , ZAP- , LAT and PLCy (97). In this model, Itk is recruited to the cell

membrane in a PI3K and PH domain dependent manner, where after being

phosphorylated by Lck, it forms part of a multiprotein signallng complex nucleated by

LAT. Recruitment to this complex places Itk in proximity to its major substrate PLCy,

and promotes the activation of PLCy dependent signalling pathways (Figure 1.4).

Similar studies were done to elucidate a role for Rlk in T cell signallng. In-vitro

studies done to identify binding partners for the Rlk SH3 and SH2 domains , placed Rlk in

the same signalosome complex with Itk where it was implicated in the phosphorylation of

SLP-76 and in promotion of IL-2 cytokine secretion (98). Rlk has also been shown to

cooperate with Itk in the phosphorylation of PLCy, the generation of a sustained calcium

flux and in the activation of the ERK MAP-kinase pathway, indicating that these kinases

have redundant roles downstream of TCR signalling (93). Consistent with these



observations , activation of Itk -/- Rlk -/- CD4 T cells resulted in increased impairment in

the generation of a sustained calcium flux and in the subsequent activation and nuclear

translocation of the NFAT and AP- 1 transcription factors. These observations were in

keeping with data showing that activation of Itk -/- Rlk -/- T cells with anti-CD3 resulted

in a proliferative response that was even more impaired than that of Itk -/- T cells. The

Itk -/- Rlk -/- T cells were also more deficient in secretion of IL-2. Rlk is required for

activation of IL-2 cytokine secretion , as Rlk -/- T cells produced two-fold less IL-2 that

wildtype T cells, but loss of Itk or both Itk and Rlk completely abolished IL-2 cytokine

secretion. Other studies have similarly shown that activation of Itk -/- and Itk -/- Rlk -

CD4+ T cells results in impaired secretion of other effector cytokines like IFNy and IL-

(93, 94, 99, 100).

Itk and Rlk in the Immune Response

CD4 T Cell Immunity

Initial studies on the physiological relevance of a deficiency in Itk and Rlk on T

cell function in-vivo were focused on those requiring a CD4+ T cell or TH mediated

response for the generation of protective immunity. Deborah Fowell , who initiated these

studies in Richard Locksley s lab, undertook studies to characterize the effects of loss of

Itk on the activation of cytokine genes. She showed that in response to stimulation with

anti-TCR , anti-CD28 antibodies and APe's, Itk - /- cells on a BALB/c background were

deficient in the generation of the TH2 cytokine IL-4 as well as in IL-5 and IL-

secretion (99). This defect was shown to directly result from the impairment of NFATc

nuclear localization following TCR activation and the subsequent deficient activation of



IL-4 gene transcription. Additionally, Itk -/- mIce on the BALB/c background

preferentially mounted a protective THI response to infection with the intracellular

parasite Leishmania major, instead of the non-protective TH2 response usually generated

to this pathogen by BALB/c mice (99). The Itk -/- mice were essentially resistant to this

pathogen as control of the infection was associated with a marked reduction in parasite

load as well as a strong CD4+ T cell mediated IFNy response. In keeping with this

inability to mount a TH2 response, Itk -/- mice infected with the nematode

Nippostrongulus brasilienis failed to generate the TH2 response necessary for clearance

of this pathogen. These experiments demonstrated that loss of Itk had a direct effect on

the ability of activated T cells to mount an efficient immune response. They also

implicated Itk in the regulation of mechanisms controllng the epigenetic modification of

cytokine gene expression during T cell activation and differentiation, since NFATc has

the ability to recruit coactivators capable of modulating chromatin structure (101 , 102).

Interestingly, the region of the chromosome to which Itk is localized also contains genes

for the TH2 cytokines IL- , IL-4 and IL- 13. Recently it has been shown that mice

lacking a conserved noncoding sequence designated CNS 1 , which is located between the

IL-4 and IL- 13 genes , are impaired in their abilty to generate a TH2 response. Like the

Itk -/- mice, CNS 1 -/- mice on a BALB/c background are resistant to Leishmania major.

Even more intriguing are the observations that the CNSI -/- mice are impaired in basal

modification at the IL-4 and IL-13 genetic loci and that this impairment is similar to that

found at the IL-4 and IL- 13 genetic loci of Itk -/- mice. This data strongly implicates Itk

in the regulation of the mechanisms controllng the epigenetic modification at cytokine



gene loci (103). Underscoring the importance of Itk in the regulation of TH2 responses is

the observation that mice lacking Itk have an impaired response in an experimental

asthma model (104). Itk is also potentially important in the downregulation of the CD4+

T cell mediated immune response. Andrew Miller demonstrated that Itk -/- CD4+ T cells

stimulated with APC plus peptide fail to upregulate expression of the death molecule

FasL (100). This results in enhanced expansion of the CD4+ T cells upon secondary

stimulation, and in failure of superantigen (SEB) induced deletion that is dependent in

part on the Fas/FasL interaction.

To examine the role of Rlk in the generation of an effective CD4+ T cell mediated

immune response, Itk -/- Rlk -/- and Itk -/- mice were infected with the helminth

Schistosoma mansoni. As had been shown for infection with L. major, Itk -/- mice failed

to mount a TH2 response to S. mansoni resulting in reduced secretion of the TH2

cytokines IL- , IL-5 and IL- lO (94). Paradoxically, Itk -/- Rlk -/- mice infected with S.

mansoni mounted an effective TH2 response and developed lung granulomas similar in

size and volume to those seen in wildtype mice. This response was surprising because

given the defects in signallng in Itk -/- Rlk -/- CD4+ T cells, it was expected that the Itk -

/- Rlk -/- CD4+ T cell response would be even more impaired than that of Itk -/- CD4+ T

cells. Investigation of the expression of TH2 lineage determining transcription factors

revealed that Itk -/- Rlk -/- CD4+ T cells were impaired in their ability to downregulate

expression of GAT A-3 following TCR stimulation , suggesting that Itk -/- Rlk -/- CD4+ T

cells had a greater tendency to become TH2 cells (94).



Complicating the analysis of the role of Itk and Rlk in TH2 mediated responses is

the TH2-like environment of the Itk -/- and Itk -/- Rlk -/- mice. Analysis of the serum

immunoglobulin levels of Itk -/- mice revealed that na"ive Itk -/- mice had approximately

20 fold higher levels of IgE. In addition , analysis of the splenic architecture of these

mice showed the presence of enlarged germinal centers and eosinophilia , which is

indicative of a TH2-like environment (92). Like Itk -/- mice , the serum IgE levels in Itk-

/- Rlk -/- mice are also elevated and the splenic architecture is perturbed with enlarged

germinal centers. It is probable that in the absence of Itk and both Itk and Rlk, there is

dysregulated cytokine production by another cell type that expresses Itk and/or Itk

possibly NK T cells or mast cells that results in the TH2 environment seen in these mice.

These possibilities and the mechanisms behind them are currently under investigation.

Itk and Rlk are also important for the generation of TH 1 mediated responses.

Infection of Itk -/- and Itk-/- Rlk -/- mice with the intracellular pathogen Toxoplasma

gondii resulted in a graded response in these Tec deficient animals. T cells from Itk -

mice produced IFNy in amounts similar to those of wildtype mice, while Itk -/- Rlk -/- T

cells made significantly less IFNy (93). Additionally, the Tec deficient mice were less

able to contain the infection than wildtype mice as Itk -/- Rlk -/- mice had increased

numbers of brain cysts and a higher mortality rate later in infection. Itk -/- mice had an

intermediate phenotype with less numbers of brain cysts and a lower mortality rate than

Itk -/- Rlk -/- mice. Together, these experiments demonstrate that the Tec kinases are

essential components of the TCR signalling apparatus required for transmission of TCR



mediated signals , and show that non-receptor tyrosine kinases are of physiological

relevance in the initiation of an antigen driven T cell response.

CDS T Cell Immunity

Involvement of the Tec kinases in the regulation of CD8+ T cell immune

responses is less well characterized than that of the CD4+ T cell response. An initial

study by Martin Bachmann attempted to address this question by analyzing the anti-viral

CD8+ T cell response of Itk -/- mice to infection with LCMV (WE strain), vaccinia virus

(VV) and vesicular stomatitis virus (VSV) (105). Analysis of the LCMV specific CTL

response showed that the lytic ability of CD8+ T cells from acutely infected Itk -/- mice

were approximately two-fold reduced as compared to that of CD8+ T cells from wildtype

mice, and that the development of the CTL response was delayed by approximately one

day in the Itk -/- mice. Additionally, the secondary CTL response of CD8+ T cells from

acutely infected mice restimulated in culture for five days before analysis, was also

impaired in the Itk -/- mice. Despite this impairment in the CTL response, the Itk -

mice were able to clear the virus by eight days post infection.

The observations made in this study are the only published data available that

address the role of Itk in the CD8+ T cell mediated response. However, these data do not

thoroughly explore a role for Itk in CD8+ T cell function as analysis of the role of Itk in

the different phases of the antiviral CD8+ T cell response was lacking, including the

effect of Itk on the expansion, contraction and memory CD8+ T cell response and the

antigen-specific cytokine response. Additionally, no mechanisms as to the cause of the

impaired anti-viral responses made by the Itk -/- mice were addressed. The role of Rlk in



the CD8+ T cell response is currently unknown , as no experiments have been published

that directly address the role of Rlk in CD8+ T cell function either in-vitro or in-vivo.

Similarities and differences in activation of CD4 versus CDS T Cells

The lack of available knowledge on the involvement of the Tec kinases in CD8+

T cell function is symptomatic of a wider dearth of knowledge of the mechanisms

regulating CD8+ T cell effector function. There is a wealth of information available

regarding the signalling processes and mechanisms governing CD4+ T effector cell

subset differentiation and the epigenetic modifications that take place at cytokine loci

during differentiation. However, there is a disconcerting lack of data that similarly

examines the signalling processes and mechanisms governing CD8+ T effector T cell

differentiation and the remodeling of cytokine genes, despite ample evidence to support a

thesis that these processes may be differentially regulated in CD4+ versus CD8+ T cells.

The most visible difference between CD4+ and CD8+ T cells is in their effector

function. Upon infection with an intracellular pathogen, CD4 T cells tend to differentiate

into THI cells in which they secrete IFNy, IL2 and TNFa and facilitate the development

of a CD4+ THI and CD8+ T cell (CTL) response. Alternatively, when faced with a

parasitic antigen, CD4+ T cells differentiate into TH2 cells, secrete IL4 and aid in the

development of the humoral immune response. Although CD8+ T cells have been shown

to differentiate into TH2 - like cells (Tc2), the mechanisms governing this process are

not well characterized (106). Unlike CD4+ T cells, CD8+ T cells preferentially contain

granules with the cytolytic molecules perforin and granzymes , and develop into cytolytic
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T cells (CTL' s) that induce apoptosis of infected target cells. Like CD4+ cells , CDS+ T

cells produce the effector cytokines IFNy and TNFa in response to infection.

Despite similarity in production of the THI cytokines IFNy and TNFa , CD4+ and

CD8+ T cells utilise differential regulatory mechanisms to control transcription and

expression of these genes (107, 109). For example , production of IFNy from CD4+ T

cells requires expression of T -bet , a transcription factor that is a master regulator of THI

development. CDS+ T cells do not require T-bet to produce IFNy, but instead seem to

require expression of a newly discovered regulator of CDS+ T cell differentiation

eomesodermin to produce effector cytokines and to develop cytolytic function. CD4+

and CDS+ T cells also have differential requirements for co-stimulatory signals to be

efficiently activated. CD4+ T cell activation depends more on the provision of co-

stimulatory CD40/CD40L and OX-40/0X-40L signals for example , while CD8+ T cell

activation is somewhat dependent on 4-IBB/4-IBBL interactions than CD4+ T cell

activation. Additionally, CDS+ T cells are more sensitive to signals through the TCR

than CD4+ T cells , and will undergo a more extensive program of proliferation than

CD4+ T cells following activation (39). CD4+ and CDS+ T cells also differ in their

requirements for signalling molecules downstream of TCR activation, and the

consequences of mutation or removal of these signalling molecules is different for CD4+

and CDS+ T cells (109- 111).

These data all suggest that CD4+ and CDS+ T cells , despite some of their

similarities , have distinct requirements for activation and elaboration of effector function.

It is possible that CD4+ and CDS+ T cells integrate the signals transduced downstream of
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the TCR differently or that they integrate different combinations of signalling pathways

following activation. Whatever the possibilities , much work remains to be done to

distinguish the factors that may differentially regulate CD4+ and CD8+ T cell activation

and function.

Work presented in this Thesis

The Tec family of non-receptor protein tyrosine kinases is important in the

propagation of signals downstream of the TCR and BCR. The kinases are also important

in the translation of these signals into physiological cell and B cell functions

respectively. The Tec kinases primarily expressed in T cells, Itk and Rlk are necessary

for the optimal function of CD4+ T cells in-vitro, and for the differentiation of CD4 T 

cells into functional THI and TH2 subsets in-vivo. In spite of all the information

available about the role of Itk and Rlk in CD4+ T cell signalling and function, there is

very little known about the comparative role of these kinases in CD8+ T cell signalling

and function.

The work presented in this thesis addresses first the role of the Tec kinases Itk and

Rlk in the development of the CD8+ SP thymocyte compartment in the thymus of the Itk

/- and Itk -/- Rlk -/- mice. These cells have a "mature, activated" phenotype

characteristic of peripheral cells and we look at several potential mechanisms by which

. this phenotype might occur. Second, I look at the biochemical consequences of Itk and

Rlk deficiency on CD8+ T cell signallng and function in-vitro , and finally, using a

model of LCMV infection , I look at the physiological impact of loss of Itk and Rlk on the



development of an antigen-specific anti-viral response. These analyses represent the first

extensive analysis of the Tec kinases in CD8+ T cell signalling and function.



CHAPTER 

THE ROLE OF ITK AND RLK IN CD8+ T CELL

DEVELOPMENT
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INTRODUCTION

Thymocyte development occurs in discrete stages in the thymus. The thymus is a

highly ordered and compartmentalized organ , and thymocyte development is thought to

occur in a progressive manner in three distinct regions of the thymus. Generally,

immature thymocyte progenitors enter the thymus via blood vessels located in the

corticomedullary junction. These earliest progenitors are CD44 CD25- (TNl). They

progress from being CD44+ CD25- (TN1) when they enter the thymus , to being CD44

CD25+ (TN2), CD44- CD25+ (TN3) and lastly CD44- CD25- (TN4). The most

immature TN thymocytes are found in the subcapsular region. DP thymocytes are

housed mostly in the cortex , while the most mature CD4+ and CDS+ SP thymocyte

subsets reside in the medulla. The development of CD4+ and CDS+ T cells in the

thymus from immature thymocyte progenitors depends on the ability of these early

precursors to interpret and integrate a variety of signals from the thymic environment.

These signals and the manner in which they are interpreted by the developing thymocyte

can be divided into two major phases of thymocyte development. In the earlier phase,

thymocytes lack expression of the TCR and the CD4 and CDS co-receptors, and are

designated TN. Signals received at this stage are receptor independent. At this stage of

development the thymocytes express c-kit and IL-7R and are dependent on the cytokines

SCF and IL-7 for progression to the TN3 - TN4 stage of TN differentiation and

maturation (112, 113).

Progression through each stage of TN thymocyte development occurs as the

maturing thymocytes migrate inward from the corticomedullary junction to the
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subcapsular region of the thymus, such that the later TN stages of development, TN3 -

TN4, occur as the thymocytes enter the subcapsular region of the thymus.

As the thymocytes enter the TN3 and TN4 stages of development they rearrange

the TCR/3 gene and coexpress TCR/3 along with the surrogate alpha chain pre- Ta , to

generate the immature pre-TCR complex. Expression of TCR/3 marks the beginning of

the later phase of thymocyte development, when the signals that the thymocyte must

integrate to further differentiate are primarily receptor dependent. At this point the

thymocytes undergo /3 selection , which results in the proliferation of cells with a

productive /3 chain re-arrangement, allelic exclusion at the /3 chain locus , and the

initiation of TCRa gene re-arrangement. Generation of a productive TCRa gene

rearrangement initiates replacement of the surrogate pre-Ta receptor with a mature

TCRa chain and expression of the mature a//3 TCR complex on the surface of the

thymocyte. In addition, the TN4 thymocytes that successfully navigate this checkpoint

express the co-receptors CD4 and CD8 to become DP thymocytes. At this point, the

thymocytes are mainly localized to the cortex of the thymus. DP thymocytes in turn give

rise to either CD4+ or CD8+ SP thymocytes , and progression through this stage of

development is accompanied by migration of the CD4+ and CDS+ SP thymocytes into

the medulla of the thymus (S).

In the medulla , some SP thymocytes acquire the CD44lo and HSAlo phenotypic

and functional characteristics of mature peripheral cells. Studies characterizing the

phenotype of recent thymic emigrants have shown that these cells are a mixture of mature

and intermediate phenotypes , as some cells continue their maturation in the periphery,



while others do not. The processes that regulate the maturation of medullary thymocytes

as well as the length of time for which thymocytes are housed in the medulla and the

signals that initiate their exit into the periphery are stil largely unknown , although

chemokine signals have been implicated both in the traffic of positively selected CD4+

and CD8+ SP thymocytes into the medulla, and their subsequent migration to the

periphery (114, 115).

The differentiation of thymocytes from the immature DP to mature CD4+ or

CDS+ SP stage is regulated by the processes of positive and negative selection and

lineage commitment. These processes run concurrently and are not mutually exclusive

and have been the subject of several recent reviews (116- 11S). A common thread

connecting them is their dependence on the strength of the signal generated through the

mature alp TCR complex for the development of mature CD4+ or CDS+ SP thymocytes

Signallng pathways downstream of the TCR have been implicated for some time

in both the promotion of thymocyte selection and in the CD4/CDS lineage choice (116).

This threshold or quantitative signalling model has demonstrated that commitment to the

CD4+ thymocyte lineage depends on stronger signals through the TCR, while signais of

lower intensity favour development of the CDS+ SP lineage. This difference in

signalling is thought to be dependent in part on the TCR proximal signalling molecule

Lck. The quantitative signallng model is similarly applicable to positive and negative

selection. Generally, it has been shown that positive selection of thymocytes is mediated

by signals of moderate or intermediate intensity, while stronger signals lead to negative

selection and thymocyte deletion (S).



In keeping with this hypothesis, modulation of TCR signalling strength can shift

the thresholds that regulate positive and negative selection. Several signallng molecules

proximal to the TCR have been implicated in modulation of TCR signalling. Among

them are the MAP-kinases ERK, JNK and p-38. Activation of the ERK MAP-kinase

signalling pathway is important for the positive selection of thymocytes , as impairment of

ERK activation selectively affects positive but not negative selection. The JNK and p-

pathways are seemingly more important for the regulation of thymocyte negative

selection (117 , 119).

Another TCR proximal signalling molecule implicated in the setting of the

thresholds that regulate positive versus negative selection is the Tec kinase family

member Itk. Like Btk, which is very important in signalling downstream of the B cell

antigen receptor, Itk, which is selectively expressed in murine T and NK cells, is

important for signallng downstream of the TCR (85 , 92).

A defining characteristic of mice lacking Itk is the impaired positive selection of

CD4+ SP thymocytes. In these mice, the percentages as well as the total numbers of

CD4+ SP thymocytes are lowered, and the CD4:CDS ratio, usually 2: 1 in wildtype thymi

is reversed. Data from Julie Lucas have shown that the absence of Itk lowers the positive

selction efficieny of MHC Class II restricted transgenic T cells with high avidity for their

selecting ligands, as compared to wildtype littermate controls (24). This efficiency is

further lowered as the affinity for selecting ligand decreases, implicating Itk in the setting

of the thresholds that modulate positive and negative selection.



Another characteristic of T cell development in Itk -/- mice is that there is an

increase in both the percentages and total numbers of CD8+ SP thymocytes in the thymus

(24). Curiously these thymocytes have a mature and activated phenotype similar to that

of peripheral previously-activated or memory T cells in that they are CD44hi and HSAlo.

This accumulation of CD44hi HSAlo CD8+ SP cells in the thymus is followed by an

accumulation of CD8+ CD44hi CD62Lhi Ly6Chi cells in the periphery of Itk -/- mice.

Given the importance of Itk in the modulation of the signalling threshold for

positive selection , we initially hypothesized that the generation of the increased numbers

of CD8+ SP thymocytes in the Itk-/- mice may be due to a switch in lineage commitment

from the CD4+ to the CD8+ SP lineage. We investigated this possibility using MHC II

restricted TCR transgenics on a variety of selecting backgrounds, however we never

observed an increase in either the percentages or total numbers of CD8+ SP thymocytes

in any of these mice , in the absence of Itk (24).

The absence of a defect in lineage switching to explain the presence of these

activated" cells in the thymus of Itk -/- mice led to several other considerations. We

first theorized that these cells had developed in the thymus as a result of a defect in

thymocyte development, distinct from a defect in lineage switching. Alternatively, our

second theory proposed that the CD8+ CD44hi cells in the thymus and periphery of Itk -

/- mice, had developed in the periphery of these mice as a result of impaired homeostatic

mechanisms , either in response to the mild lymphopenia induced by the reduction in

CD4+ T cell numbers , or in response to an environmental or self-antigen in the periphery

of the Itk -/- mice and recirculated to the thymus. This hypothesis was in part based on
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data from other groups showing that CD44hi cells in the periphery were capable of

migrating to the thymus (120, 121). None of the data generated supported these first

hypotheses , and this led to our last hypothesis in which we proposed that the CD8+

CD44hi SP thymocytes in the Itk -/- developed as a result of altered cytokine signals

received during lineage maturation. This last hypothesis was based on recent data

looking at the role of cytokines , specifically IL-7 and IL- , on the later stages of

thymocyte differentiation , in particular CD8+ SP thymocyte maturation. These data

show that IL-7 and IL- 15 are important for the development of CD8+ SP thymocytes, and

that in the absence of proper regulation of these cytokine signals, CD8+ SP thymocytes

can become CD44hi (25-27).

In this chapter we address the question of the origin of the CD8+ CD44hi SP

thymocytes in Itk -/- and Itk -/- Rlk -/- mice. We performed a series of experiments to

determine whether these cells develop in the thymus as a result of aberrant signals during

thymocyte development or alternatively, are cells that initially develop in the periphery as

a result of impaired homeostatic mechanisms , and have recirculated to the thymus. Our

accumulated data suggest that the CD44hi HSAlo CD8+ SP thymocytes in Itk -/ - and Itk

/- Rlk -/- mice develop in the thymus most likely due to altered cytokine signals received

during CD8+ SP lineage maturation. These cells accumulate in the thymus and retain

their activated phenotype upon migration to the periphery.



RESULTS

CD8 T Cells in the thymus and perivhery of Itk -I- and Itk -I- Rlk -I-mice have an

activated vhenotyve

Immediately observable in mice lacking Itk is the impairment in the positive

selection of the CD4+ SP thymocyte subset. This defect causes an almost twofold

reduction in the percentage and total numbers of CD4+ SP cells in the thymus and the

periphery, resulting in a reversal of the CD4:CD8 ratio from 2: 1 to 1: 1 or 1 :2. This

defect in positive selection of CD4+ T cells is also observed in Itk -/- Rlk -/- mice. In

contrast, the proportion and total numbers of CD8+ SP thymocyte and peripheral T cell

subsets in the Itk -/- and Itk -/- Rlk -/- mice are not reduced compared to that of wildtype

mice. Instead , while the fraction of CD8+ T cells in the periphery of Itk -/- and Itk -

Rlk -/- is very similar to that of wildtype mice , the thymi of Itk -/- and Itk -/- Rlk -/- have

a significant increase in the percentages and total numbers of CD8+ SP cells (Figure

1A). In addition , analysis of activation marker profies on CD8+ thymocytes from Itk -

/- and Itk -/- Rlk -/- mice revealed that these cells have an "activated and mature

phenotype. These thymocytes are CD44hi and HSAlo, making them very similar to the

previously activated "memory" cells that usually reside in the periphery. Like the CD8+

SP thymocytes, the CD8+ T cells in the periphery of Itk -/- and Itk -/- Rlk -/- mice are

also CD44hi , in addition to having increased expression of other activation markers such

as CD122 (IL-2Rf3)(Figure 2. 1B).



Figure 2.1: CD4/CDS distribution and activation marker profie of WT, Itk -/- and
Itk -/- Rlk -/- CDS+ T cells

Whole thymocyte and lymph node suspensions from WT , Itk -/- and Itk -/- Rlk -/- thymus

and lymph nodes were stained with antibodies against CD4 and CDS (A). CD8+ SP

thymocytes were than analyzed for expression of the activation marker CD44 and

peripheral T cells were analysed for expression of the activation markers CD44, CD122

and CD62L (B). This experiment is one of more than five experiments done to look at

CD4 and CDS expression and activation marker profiles in the WT , Itk -/- and Itk -/- Rlk

/- mice.
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The CD8 CD44hi cells of Itk 

/- 

and Itk 

/- 

Rlk 

/- 

mice are not present at birth and do not

develoTJ in FTOC

As thymocytes develop and mature they gain and lose CD44 expression and this

modulation of CD44 expression is used to characterize the various stages of the TN

thymocyte subset early in thymocyte differentiation (S). The most mature SP subset of

thymocytes is CD44lo as they prepare for exit to peripheral lymphoid organs. However

as the mature SP thymocytes enter the periphery, which in the early stages post-gestation

are devoid of T cells, they undergo proliferation in response to the lymphopenia of the

peripheral organs. The result of this lymphopenia-induced proliferation is up-regulation

of the marker CD44, usually identified with "activated" cells (122). The frequency of

these cells gradually diminishes as cells continually migrate from the thymus into the

periphery, filing up space and preventing further proliferation of the newly emigrated

cells from the thymus. These CD44hi cells remain to constitute the fraction of

previously-activated" cells typical of peripheral lymphoid organs (123). Although

CD44hi cells do not typically develop in the thymus , they can gain access to the thymus

as a result of recirculation from the periphery (120 , 121).

In our first hypothesis we proposed that the CD44hi cells observed in the thymi of

the Itk -/- and Itk -/- Rlk -/- mice had developed as a result of a defect in thymocyte

development. As a first test of this hypothesis , we looked at the CD44 expression on

thymocytes from neonatal mice immediately after birth (Figure 2.2). In addition , we

looked at the ability of these cells to develop in fetal thymic organ culture to determine

whether the CD44hi phenotype of the Itk -/- CD8+ SP cells developed during the initial



stages of thymocyte differentiation. As shown in Figure 2.2, CD8+ CD44hi cells were

not present immediately after birth in the thymi of Itk -/- mice. In keeping with this

observation , CD8+ CD44hi cells did not develop in FTOC when thymi were cultured for

seven days. Extension of the culture period for an additional seven days resulted in the

generation of CD44hi cells , but these cells were also present in the WT cultures, and

there were no appreciable differences in CD44 expression between WT and Itk -/- CD8+

SP thymocytes (Figure 2.2). These experiments showed that long-term FTOC induced

expression of CD44, but did not help resolve the question of whether CD8+ CD44hi SP

thymocytes observed in Itk -/- thymi developed in the thymus as a result of altered

developmental processes in the thymus of Itk -/- mice. We next looked the kinetic

progression of CDS+ CD44hi expression during CDS thymocyte development to

detrermine at what point the CD44hi phenotype developed in Itk -/- CD8+ SP cells.



J n

Figure 2.2: Neonatal and FTOC derived CD8+ CD44 Expression

Whole thymocyte suspensions were generated from day 15 and day 16 fetal thymi that

were cultured for either seven or fourteen days at 37 C to generate CD4 and CD8+ SP

thymocytes. Whole thymocyte suspensions were also generated from thymi isolated

from neonatal day 1.5 thymi. These cells were than analysed for expression of CD4

CD8 and CD44. This is one experiment of two done to look at thymocyte development

by FTOC. WT: N = 2, Itk: -/- N = 7.
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CD8 CD44hi cells are first detectable in day post natal thymi and spleen of Itk 

/- 

mice

Given the inconclusive results of the fetal thymic organ cultures , we next

performed a longitudinal study of CD8+ SP thymocyte and peripheral T cell development

to determine whether the accumulation of CD8+ CD44hi cells observed in the thymi of

Itk -/- mice developed first in the thymi or in the periphery of the Itk -/- mice. The CD44

expression on CD8+ TCRhi SP thymocytes and peripheral CD8+ T cells were followed

from birth (approximately d1.5) to adulthood (approximately 8 weeks) of age (Figure

3A).

Our study revealed that CD8+ SP thymocytes accumulated both in percentage and

total numbers in the thymus of Itk -/- mice as compared to WT mice. This accumulation

was not mirrored by a similar accumulation of CD8+ T cells in the periphery of the Itk -

mice. In fact it appeared that the Itk -/- CD8+ SP thymocytes were slightly delayed in

their entrance into the periphery. A delay that became noticeable at approximately three

weeks post - partum in the periphery of the Itk -/- mice (Figure 2.3A).

Our analysis also showed that CD8+ CD44hi cells developed by four days after

birth in WT and Itk -/- mice. Although Itk -/- thymi seemed to have a higher proportion

of CD8+ CD44hi SP cells than WT thymi at this time , development of CD8+ CD44hi

expression occurred equivalently on the peripheral CD8+ cells of WT and Itk -/- mice

(Figure 2.3B).

The preferential accumulation of CD8+ SP thymocytes in the thymi of Itk -/- mice

as compared to WT mice suggested that the CD8+ phenotype typical of the Itk -/- mice

had developed first in the thymus. However, since the appearance of the CD8+ CD44hi



cell phenotype in the thymus was mirrored by the appearance of similar cells in the

periphery of WT and Itk -/- mice , these data did not provide a definitive determination of

the origin of the CD8+ CD44hi cells.



Figure 2.3: Day 4 Neonatal and Longitudinal Analysis of CD8+ CD44 Expression

(A) The percentages and total numbers of CDS+ SP thymocytes and peripheral T cells

developing in WT , Itk -/- and Itk -/- Rlk -/- were followed from birth to adulthood. Itk -

thymi accumulate greater percentages and total cell numbers of CDS+ SP thymocytes

than WT mice. This accumulation does not occur in the peripheral lymphoid

compartment. Single cell suspensions were generated from thymi and spleens isolated

from WT , Itk -/- and Itk-/- Rlk-/- mice from birth to approximately six - weeks of age,

and cells were stained with antibodies to CD4 , CDS, CD44 and TCR to follow the

development of CDS+ CD44 expression. These experiments were blind and genotypes

were determined following experiments. Two experiments were done per timepoint.

There were a minimum of two mice of a single genotype per WT or Itk -/- per timepoint.

(B) In this figure , CD44 expression is detected on WT peripheral CDS+ T cells by

neonatal day 4. However, CD44 expression is also upregulated on Itk -/- CDS+ SP

thymocytes and peripheral T cells at this time. This is one of two experiments done at

day 4. WT: N = 5 , Itk -/- N = 3.



CDS + CELLS ACCUMULATE IN THE THYMUS BUT NOT THE PERIPHERY
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Adoptivelv transferred Itk 

/- 

CD44hi CD8+ T Cells do not migrate to the thymi ofWT

hosts

Mature CD44hi cells resident in the periphery of mature mice are capable of re-

entering the thymus. This occurs either as an end result of continual migration of these

cells through the vasculature of the body or following an activation event that promotes

recirculation of activated cells (120, 121). Given this possibility, we wondered whether

the "mature , activated" cells present in the thymus might have recirculated from the

periphery. To investigate this possibility, we adoptively transferred WT and Itk -

CD4S.2 CD44hi and CD44lo thymocytes into CD4S. 1 congenic WT mice and looked for

trafficking of the transferred cells to the thymus of the congenic mice. As shown in

Figure 2.4, we could not detect localization of the transferred cells in the thymus of host

mice, even though these cells were readily observed in the peripheral lymphoid organs of

the host mice. This result suggested that the presence of CD8+ CD44hi cells present in

the thymi of Itk -/- mice was not due to the ability of the CD8+ SP CD44hi cells that had

developed in the periphery of the Itk -/- mice to migrate to the thymus.



Figure 2.4: Itk -/- Cells do not Migrate to the Thymus

Single cell suspensions were generated from thymi isolated from WT and Itk -/- mice.

CD4 and DP thymocytes were complement depleted and the remaining cells sorted for

CD8+ and CD44 expression. 2 x 10 WT and Itk -/- CD8+ CD44lo thymocytes and 4 x

CD8+ CD44hi Itk -/- thymocytes were adoptively transferred into separate WT

congenic host mice. The presence of transferred CD45.2 donor cells in spleen , lymph

node and thymus was followed from day 1.5 post transfer to approximately 16 days post

transfer. This experiment shows day 7 post adoptive transfer. This is one experiment of

two and there were two to three mice per timepoint per WT and Itk -/- animal.
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CD8+ CD44hi SP thymocytes in Itk 

/- 

and Itk 

/- 

Rlk 

/- 

thvmi are functionally mature

A hallmark of mature, peripheral CD8+ CD44hi T cell function is their ability to

secrete effector cytokines in response to activation. To determine whether the CD8+

CD44hi SP cells in the thymi of Itk -/- and Itk -/- Rlk -/- mice were functionally as well

as phenotypically similar to mature peripheral cells , we looked at the ability of these cells

to secrete the effector cytokine IFNy. For this we stimulated the cells with the phorbol

ester PMA and the calcium ionophore Ionomycin, and then looked at cytokine production

by intracellular staining. As shown in Figure 2. , the Itk -/- and Itk -/- Rlk -/- CD8+

CD44hi SP cells were able to produce IFNy directly ex-vivo in response to stimulation.

As these cells are not present in WT thymi , there was no cytokine production from the

WT thymocytes. However, while useful in indicating that the CD8+ CD44hi cells in the

thymus of Itk -/- and Itk -/- Rlk -/- mice were functionally as well as phenotypically

mature , this experiment did not resolve the question of the origin of these cells.

'*-



Figure 2.5: Cytokine Production by Itk -/- and Itk -/- Rlk -/- CD44hi Thymocytes

Whole thymocyte and spleen cell suspensions from WT , Itk -/- and Itk -/- Rlk -/- mice

were stimulated with PMA and Ionomycin for 5 hours in the presence of Brefeldin A.

Cells were then stained extracellularly for CD4 and CDS expression and then

intracellularly for IFNy expression. The IFNy production by gated CDS+ cell population

was then assessed. This is one experiment for the stimulation of the thymocytes and one

of three experiments done on isolated peripheral CD8+ T cells from WT , Itk -/- and Itk-

/- Rlk -/- mice.
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CD8+ CD44hi cells develop in the thymus but not the periphery of Itk 

/- 

lL- 15 

/- 

mice

In recent years , the common gamma cytokines IL- 15 and IL-7 have been

implicated in CD8+ lineage maturation (25 , 27). As our previous experiments had failed

to conclusively pinpoint whether or not the CDS+ CD44hi SP phenotype in the thymus of

Itk -/- mice had developed first in the thymus or the periphery, we next considered the

possibility that the CD8+ CD44hi SP cells in the thymus of Itk -/- and Itk -/- Rlk -/- mice

had developed as a result of altered cytokine signals received during CD8+ T cell lineage

maturation. This hypothesis was based on data from multiple labs showing the

involvement of cytokine signals in CDS+ SP thymocyte development. Particularly

interesting were data from two animal models , the SOCS 1 -/- and the SOCS 1-/- IFNy -

mice. These animals have increased percentages of CDS+ cells and a majority of the

CDS+ cells in the thymus and the spleen express high levels of CD44 as well as CD122

and Ly-6C. In addition , the CDS+ SP thymocytes in these mice were found to be

hyperresponsive to the common y chain cytokines IL-7 and IL- 15 (26, 27 , 124, 125).

This was particularly interesting to us in light of the mounting evidence of a role for IL-

and IL- 15 in the generation and maintenance of "memory" CDS T cells in the periphery

(64-66).

To look at the effect of IL- 15 on the development of the CD8+ CD44hi SP cells

in the thymus and on the maintenance of these cells in the periphery of Itk -/- mice , we

crossed the IL- 15 -/- mice to Itk -/- mice. We hypothesized that if IL- 15 was indeed

important for the generation of the CDS+ CD44hi phenotype of the CDS+ SP thymocytes

in the Itk -/- mice, then removing II- IS should resolve that phenotype. Since IL- 15 is



necessary for the maintenance of peripheral CD8+ CD44hi cells , we did not expect to see

a population of CD8+ cells in the periphery of the Itk -/- mice also deficient in IL- 15.

As shown in Figure 2. , Itk -/- that are also deficient in IL- , while practically

devoid of CD8+ T cells in the periphery, develop a population of CD8+ SP cells in the

thymus. These data were the first to definitively demonstrate that the CD8+ SP

phenotype observed in Itk -/- mice had developed first in the thymus (Figure 2.6). In

addition , the percentage of CD8+ SP thymocytes in the Itk -/- IL- 15 -/- mice is now very

similar to that found in WT mice , and much reduced compared to the percentage of

CD8+ SP thymocytes in Itk -/- mice, indicating that the removal of IL- 15 had a

dampening effect on the accumulation of CD8+ SP thymocytes normally observed in the

thymus of Itk -/- mice.

Interestingly, the loss of IL- 15 did not completely resolve the CD44hi phenotype

of the Itk -/- CD8+ SP thymocytes, as there was only an approximate 40% reduction in

the fraction of CD8+ SP thymocytes residing in the thymus of the Itk -/- IL- 15 -/- mice

that are CD44hi as compared to littermate control Itk -/- IL- 15 +/- mice. As shown in

Figure 2.6A, while approximately 78% of the CD8+ SP thymocytes in the Itk -/- mice are

CD44hi , only 43% of these cells are CD44hi in the thymus of Itk -/- IL- 15 -/- mice.

These data suggest that another cytokine, possibly IL-7 may also be involved in

generation of the CD44hi phenotype of the Itk -/- CD8+ SP thymocytes.

These data, in addition to demonstrating that the CD44hi phenotype of the Itk -

CD8+ SP thymocytes developed first in the thymus, also suggested that the CD8+

CD44hi cells in the thymus of the Itk -/- mice were, by some unknown mechanism



altered in their response to IL- 15 late in thymocyte differentiation. The incomplete

resolution of the CD44hi phenotype of the CD8+ SP cells in the thymus of Itk -/- IL- 15 -

/- mice suggested the involvement of another cytokine, possibly IL- , in the generation of

the CD44hi phenotype of the CD8+ SP cells in the thymi of Itk -/- mice.



I --

Figure 2.6: CD8+ CD44hi cells develop in Thymus ofItk -/- IL- 15 -/- mice

Thymus and lymph node cells isolated from WT , Itk - , IL- 15 -/- and Itk -/- IL- 15 -

mice were stained for expression of CD4, CDS and CD44. The CD4 and CDS

distribution in WT , Itk - , IL- 15 -/- and Itk -/- IL- 15 -/- thymi (A) and lymph node (B)

was assessed. CD44 expression was then analysed on gated CDS+ populations.

Numbers shown are total CDS+ T cell numbers. This is one experiment of three.
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CD8+ CD44hi cells in Itk 

/- 

and Itk -I- Rlk -I- mice are hYlJerreslJonsive to the common

yc cytokines IL- 15 and IL-

The phenotype of the Itk -/- IL- 15 1- mice as compared to Itk - , suggested that

IL- 15 was involved in the development of the CD44hi phenotype of the CDS+ SP

thymocytes in Itk -/- mice. Additionally, the thymic and peripheral CD8+ T cell

phenotype of Itk -/- and Itk -/- Rlk -/- mice is very similar to that of the CDS+ SP

thymocytes and peripheral cells from murine models in which the regulation of cytokine

signallng is perturbed (27, 124-126). We therefore asked whether the CDS+ SP

thymocytes and peripheral T cells from Itk -/- and Itk -/- Rlk -/- mice were similarly

deficient in the regulation of signalling processes downstream of IL-7 and IL-

stimulation. To do this , we cultured thymocytes from WT, Itk -/- and Itk -/- Rlk -/- mice

in a 1/20 dilution of IL-7 supernatant or 40 ng/ml of IL- 15 and looked at the effect of

these cytokines on CD8+ thymocytes. Whole thymocyte suspensions from WT, Itk -

and Itk -/- Rlk -/- mice were cultured in IL- 15 for 30 minutes at 37 C. The cells were

then stained for CD4, CDS and CD44 expression. As an assessment of cytokine

responsiveness, we looked at the phosphorylation of STAT-5 in CD8+ CD44hi SP cells

in response to IL- 15 signalling. STAT -5 is the principal STAT molecule downstream of

common yc cytokine signalling, and is maximally phosphorylated approximately thirty

minutes following exposure to cytokine (127). As shown in Figure 2. , after thirty

minutes of culture IL-7 and even moreso IL- 15 promoted phosphorylation of STAT-5 in

WT CD8+ SP CD44hi cells. However, CD8+ CD44hi SP cells from Itk -/- and Itk -

Rlk -/- thymi had higher levels of phosphorylated STAT-5 than CD8+ CD44hi SP cells



from WT thymi. These cytokine response .experiments suggest that Itk -/- and Itk -/- Rlk

/- CD8+ SP cells are altered in their ability to regulate signals downstream of IL-7 and

IL- 15.

I .



Figure 2.7: Response to common yc cytokine stimulation

Whole thymocyte suspensions from WT , Itk -/- and Itk -/- Rlk -/- mice were cultured in

the presence of IL-7 and IL- 15 for 30 minutes in media containing 1mg/ml BSA and 0.5

% FCS. STAT-5 phosphorylation was assessed by intracellular staining. This is one

experiment of three.
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DISCUSSION

Itk and Rlk are members of the Tec kinase family of signalling molecules and are

known to have a somewhat redundant function downstream of TCR signalling (93). 

addition to their importance in peripheral T cell signalling, Itk and Rlk are also important

in signalling downstream of the TCR in maturing thymocytes. Their importance as

amplifiers of the strength to the signal downstream of the TCR has been extensively

demonstrated in a variety of murine transgenic models in which the positive selection of

CD4+ SP cells and to a lesser extent CD8+ SP cells is impaired in Itk -/- mice and more

so in Itk -/- Rlk -/- mice (15 , 18 24). This defect in positive selection is thought to occur

primarily as a result of the lowering of the strength of the TCR signal that occurs in the

absence of Itk and both Itk and Rlk. This diminishes either the strength or the duration of

the signal that a maturing DP thymocyte needs to differentiate into a CD4+ or CD8+ SP

cell, thereby lowering the effciency of this process.

An interesting characteristic of development in the Itk -/- and Itk -/- Rlk -

thymus , in which the positive selection and development of the CD4+ T cell subset is

more affected than that of the CD8+ subset, is that there is an accumulation of CD44hi

CD8+ SP cells (Figure 2.3). This phenotype is carried over to the CD8+ T cells in the

periphery of Itk -/- and Itk -/- Rlk -/- mice which in addition to being CD44hi and

CD62Lhi , also express increased levels of the activation markers CD122 (Figure 2. 1B).

This increase in CD8+ SP cells in the thymus is not due to lineage switching, as has been

previously demonstrated in published data from this lab (24). In these experiments , the

author, using a variety of pigeon/moth cytochrome C MHC Class II restricted transgenics



with a range of avidities for the selecting ligand, showed that although lowering the

avidity of the MHC/TCR interaction affected the positive selection of Itk -/- transgenic

mice more than that of WT transgenic mice, at no point was there increased development

of CD8+ SP cells on the Itk -/ - background.

In this study we explore the origin of the CD8+ CD44hi SP cells that develop in

the thymus of Itk -/- and Itk -/- Rlk -/- mice and a potential role for Itk and Rlk in the

lineage differentiation process. Our data show that CD8+ SP thymocytes accumulate in

the thymus of Itk -/- mice , presumably in the medullary compartment , and have a slight

delay in their accumulation in the periphery, suggesting a delay in migration to the

periphery (Figure 2.3). In addition, our data demonstrate that CD8+ SP thymocytes from

mice lacking Itk and moreso from mice lacking both Itk and Rlk are altered in their

ability to regulate their response to cytokine signals, specifically in their response to the

common yc cytokines IL-7 and IL- 15.

Classically, cytokines have only been shown to influence thymocyte development

at the earliest TN 1 - TN2 stages of thymocyte differentiation. At this early stage of

thymocyte differentiation thymocytes express receptors for SCF and IL- , and are

critically dependent on these cytokines for progression to the later TN3 - TN4 stages of

thymocyte development (112, 113).

More recently, data from the Singer laboratory have suggested that IL-7 is also

important for support of the CD8+ lineage differentiation process (25, 128). This model

of CD8+ lineage differentiation termed "co-receptor reversal" , proposes that when DP

cells are signalled either in response to MHC Class I or MHC Class II expressing antigen



presenting cells, they downregulate expression of their CDS co-receptor to become CD4+

CDSlo intermediates. If these intermediates are subsequently subjected to CD4 selecting

signals that is they receive a persistent signal from an MHC Class 11 restricted APC, they

maintain CD4 expression and develop into CD4+ SP thymocytes. In the absence of a

persistent or sustained signal , the CD4+ CDSlo intermediates silence expression of CD4

and become dependent on the cytokine IL-7 to maintain expression of CD8. Importantly,

in the presence of a persistent signal , signalled DP thymocytes cultured in the presence of

IL-7 did not upregulate CD8 co-receptor expression or extinguish CD4 co-receptor

expression. The signalled DP thymocytes cultured in the presence of IL-7R blocking

antibody and anti yc antibody, abrogated development of CD8+ SP cells silencing of CD4

co-receptor expression. In addition to suggesting a role for IL-7 in CD8+ lineage

differentiation, the need for anti yc antibody to fully block CD8+ SP development

suggests that other common yc cytokines, possibly IL- 15 may potentially be involved in

this process. Although this system is very artificial , it nonetheless provides intriguing

evidence for a role for cytokines in this later CDS+ SP stage of thymocyte development.

Additional evidence for a role for cytokines in CDS+ lineage determination has

come from studies in the SOCS- l -/- and SOCS- l -/- IFNy -/- mouse models. SOCS- l is

expressed at all stages of TN thymocyte differentiation. However, as thymocytes become

, the level of SOCS- l increases dramatically. Equally dramatic is the quenching of

SOCS- l expression that occurs as DP cells undergo the processes of positive selection

and lineage commitment to become CD4+ SP and CD8+ SP thymocytes. CD4+ SP cells

subsequently lose expression of SOCS- , but SOCS- l expression is maintained in CDS+



SP cells (26, 129). Analysis of the peripheral lymphoid compartments and the thymi of

SOCS- 1 deficient animals show that a significant proportion of the CD8+ SP cells in the

thymus and peripheral lymphoid organs of SOCS- 1 -/- and SOCS- 1 -/- IFNy -/- mice is

CD44hi. These cells are hyperresponsive to stimulation with IL-7 and IL- 15. For

example , thymi of SOCS- 1 -/- and SOCS- 1 -/- IFNy -/- mice cultured in the presence of

these cytokines generate more CD8+ SP cells than WT thymi. In addition , CD8+

thymocytes from SOCS- 1 -/- mice maintain an elevated level of STAT-5 phosphorylation

over a longer time-period than CD8+ SP thymocytes from WT mice (26, 27). These

experiments demonstrate a potential role for IL-7 and IL-15 in regulation of the CD8+

lineage differentiation process, and show that the inability to regulate the signalling of

these cytokines can accelerate the maturation of CD8+ SP thymocytes just as

overexpression of IL-7 and IL-15 can promote the phenotypic and functional maturation

of peripheral CD8+ T cells. CD8+ SP thymocytes and peripheral CD8+ T cells from Itk -

/- and Itk -/- Rlk -/- mice are phenotypically similar to that of SOCS- 1 -/- and SOCS- 1 -

IFNy -/- mice.

Additionally, the peripheral CD8+ T cells in Itk -/- and Itk -/- Rlk -/- mice are

phenotypically similar to peripheral CD8+ lymphocytes from IL-7 and IL- 15 transgenic

mice , where these cytokines are overexpressed (126, 130), and to the CD8+ lymphocytes

from ST AT-5 transgenic mice , where there is constitutive activation of the signalling

pathways downstream of the common yc cytokine receptors (131). These studies

prompted us to investigate the effect of the common yc cytokines on the development of

the CD8+ CD44hi cells in the thymus and periphery of the Itk -/- and Itk -/- Rlk -/- mice.



We initiated our investigation by gcnerating Itk -/- IL- 15 -/- mice. Analyses of

the CD8+ cell populations in the thymus and the periphery of these mice led us to

conclude that the CD8+ CD44hi cells in the Itk -/- mice most likely arose during

thymocyte development, specifically during CD8+ lineage maturation. This conclusion

was based on the data showing that a smaller fraction of CD8+ CD44hi SP thymocytes

were generated in the thymus of the Itk -/- IL- 15 -/- mice, as compared to Itk -/- mice,

and that very few CD8+ CD44hi cells remained in the periphery of the Itk -/- IL- 15 -

mice (Figure 2.6). This lessened the probabilty that the CD8+ CD44hi cells remaining

in the Itk -/- IL- 15 -/- mice had recirculated from the periphery. In addition , our studies

on the response of Itk -/- and Itk -/- Rlk -/- CD8+ SP thymocytes to signals from IL-7 and

IL- 15 revealed that Itk -/- and moreso Itk -/- Rlk -

/- 

CD8+ SP thymocytes are

hypersensitive to IL-7 and in particular to IL- 15 signals (Figure 2.7). The Tec kinase

family has been previously implicated in cytokine signallng, but these experiments were

mostly with other Tee kinase family members and in non-T cell types (132, 133). Our

experiments demonstrate a role for the T cell specific Tec kinase family members in the

regulation of cytokine signalling in T cells.

The crosstalk between Tec kinases specific to signalling downstream of the TCR

and proteins connected to the regulation of the SOCS- l dependent control of cytokine

signallng are unknown. However, there has been data suggesting that the proper

transduction of signals downstream from the TCR is necessary for maintaining the level

of SOCS- l protein expression. For example , in cells lacking the negative regulatory

transcription factor Jun D , there is a decrease in SOCS- l at the RNA level. This



phenotype is followed by an increase in the secretion of cytokines from T cells lacking

JunD. As such , it is possible that in the absence of Itk and Rlk which regulate the

expression of the jun and fos family members , expression of JunD is decreased , thereby

affecting SOCS- l expression (134). However, it is debatable whether this mechanism is

operable during the later TCR dependent phase of thymocyte development.

Alternatively, SOCS- l expression in Itk -/- and Itk -/- Rlk -

/- 

CD8+ SP

thymocytes may be regulated post - translationally by a protein such as Pim- l. Pim - 1

is a serine threonine kinase and is expressed primarily in cells of the hematopoietic

lineage. Expression of Pim -1 mRNA is markedly induced following TCR crosslinking.

Pim- l is also induced in response to cytokine signalling and is involved in the regulation

of SOCS- l protein stability. Pim -1 has a role in thymocyte development as it is

expressed during the late TN stage of thymocyte development where it participates in the

transition from the TN4 - DP stage of thymocyte development (135- 137). Diminished

production of Pim- 1 in the absence of Itk and Rlk would potentially lead to the impaired

stability and function of SOCS- , lowering SOCS- l expression in CD8+ SP thymocytes

and resulting in hyperresponsiveness to cytokine stimuli

As such , it is possible that the levels of SOCS- l protein or mRNA are lower in Itk

/- and Itk -/- Rlk -/- CD8+ SP thymocytes. Although the signals regulating the lowering

of SOCS- 1 expression in CD8+ SP thymocytes as they develop from DP to 

thymocytes are unknown, we propose that the some of the signals needed to maintain

SOCS- 1 expression in CD8+ SP thymocytes are TCR dependent. There are several

mechanisms by which SOCS- 1 expression may be diminished in CD8+ SP thymocytes.
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We hypothesize that in Itk -/- and Itk -/- Rlk -/- CD8+ SP thymocytes undergoing lineage

differentiation in response to reduced TCR mediated signals, the strength of these signals

are further reduced. We propose that this reduction in the strength of TCR signalling

may directly affect SOCS- 1 expression in CD8+ SP thymocytes, leading to a

hypersensitive response to IL-7 or IL- 15 during the lineage differentiation process.

Our experiments also showed that CD8+ SP thymocytes accumulate in the

thymus of Itk -/- mice. The most plausible anatomical location of this accumulation is in

the medulla of the thymus. The medulla of the thymus is the point at which most mature

CD8+ SP thymocytes are thought to leave the thymus before migrating to the periphery

as recent thymic emigrants. Most recent thymic emigrants have the phenotypic

properties of mature peripheral cells , as they are CD44lo and HSAlo. However, some

recent thymic emigrants have also been shown to undergo this phenotypic maturation

upon exit to the periphery. These data suggest that the thymocytes leaving the thymus

are a mixed population of mature and maturing cells , and the mechanisms governing the

dwell time of SP thymocytes in the medulla and maturational stage at which these cells

leave the medulla and enter the periphery are largely unknown , although chemokines are

thought to playa large part in this process (114). As such , it is possible that the

accumulation of CD8+ SP thymocytes in the thymus of Itk -/- mice , in addition to their

slight delay in entrance to the periphery can cause them to be subjected to the

maturational processes that occur in the medulla for a longer period of time than CD8+

SP cells in the thymi of wildtype mice, causing them to completely downregulate HSA

and upregulate CD44, all before exit to periphery. This is an interesting and attractive



hypothesis. However, whether this excessive exposure to maturational signals in the

thymus would alter the response to cytokine signals enough to generate the results

obtained in Figure 2.7 is a matter of debate. It is also possible that the phenotype seen in

the Itk -/- and Itk -/- Rlk -/- mice are a combination of these and previously mentioned

events. These studies are the subject of ongoing experiments.



CHAPTER III

ITK AND RLK IN CD8 T CELL SIGNALLING AND

FUNCTION



INTRODUCTION

T cell antigen receptor (TCR) signalling plays a critical role in the generation of

adaptive immune responses. Signals mediated by the TCR are required to activate nai"ve

antigen-specific T cells , thereby initiating gene expression programs that result in T cell

proliferation and the acquisition of distinct T cell effector functions. This same TCR

signallng pathway is then required for the reactivation of effector T cells following their

migration out of lymphoid organs to the site of infection. Within the two major classes of

T cells, CD4+ helper T cells and CD8+ cytolytic T cells, there is substantial , if not

complete , overlap in their expression of TCR signalling proteins. In spite of this overlap,

CD4+ and CD8+ T cells translate the signals mediated by these proteins into functionally

distinct responses. Previous studies have also demonstrated that, even when CD4+ and

CD8+ T cells share effector functions such as the secretion of the cytokines IFNy and

TNFa , the two cell types have distinct methods of regulating the expression of these

genes. For example , production of IFNy from CD4+ T cells requires expression of T -bet

a transcription factor that is a master regulator of TH 1 development. CD8+ T cells do not

require T -bet to produce IFNy, but instead seem to require expression of a newly

discovered regulator of CD8+ T cell differentiation , eomesodermin to produce effector

cytokines and to develop cytolytic function(107-110). Until recently, most studies of

TCR signalling were performed in tumour cell lines , and thus did not lend themselves to

a comparison of signalling pathways between CD4+ and CD8+ T cells. However, with

the availability of numerous lines of knockout mice , it has now become feasible to assess



the precise function(s) of individual signalling proteins in the two major subsets of T

cells.

Our studies have focused on the Tec family tyrosine kinases, Itk and Rlk.

Previous data have demonstrated an important role for Itk downstream of the TCR.

Specifically, Itk is critical for the activation of Phospholipase C-yl (PLCyl) in response

to TCR stimulation , and thus , plays a role in calcium mobilization as well as in the

activation of the ERK and JNK MAP-kinases (18 , 92, 93 , 100). Itk has also been shown

to be important for actin polymerization and cytoskeletal reorganization following TCR

stimulation (138). In contrast to Itk, the precise role of Rlk in T cell signallng is less

clear. While Rlk interacts with many of the same T cell signalling proteins as Itk, e.g. the

SLP- , GADS, LAT , PLC-yl complex , Rlk-deficient T cells have only minimal defects

in TCR signalling (93, 98). Nonetheless , a combined deficiency in Itk plus Rlk results in

a substantial exacerbation of the signallng defect observed in Itk-/- T cells, suggesting

that at the very least, Rlk function is somewhat redundant with that of Itk.

The biochemical defect in Itk-/- T cells leads to impaired T cell activation and

effector functions. Primarily, the studies performed to date have focused on CD4+ T cell

responses. For instance, purified CD4+ T cells from Itk-/- and Itk-/- Rlk-/- mice produce

greatly reduced amounts of the T cell growth factor, IL- , and thus proliferate poorly to

mitogenic stimuli (93). In addition , Itk-/- CD4+ T cells show reduced effector functions

including substantial defects in secretion of effector cytokines IL-4 and IFN y, as well as

impaired activation-induced cell death responses due to reduced induction of Fas ligand

expression (99, 100). In the case of effector cytokine secretion , again Itk-/- Rlk-/- CD4+



T cells show more profound defects than CD4+ T cells lacking only Itk. Overall , these

defective responses have been attributed to substantial defects in the activation of latent

transcription factors NFA T and NF- , as well as to reduced induction of additional

transcription factors such as Egr-2 and Egr-3 (94, 100). To date , no comparable studies

have been performed with isolated Itk-/- or Itk-/- Rlk-/- CD8+ T cells.

A relatively small number of studies have addressed the ability of Itk-/- and Itk-

Rlk-/- mice to mount protective responses to pathogenic infections , and again these

studies have primarily focused on CD4+ T cell responses. For instance, Fowell and

colleagues first showed the somewhat paradoxical finding that Itk-/- Balb/c mice

mounted a protective THI response to infection with Leishmania major, in contrast to

wild type Balb/c mice that succumb to this infection. These investigators concluded that

this unexpected resistance to L. major by Itk-/- mice was due to the inability of Itk-

CD4+ T cells to produce IL- , a conclusion that was further supported by their finding

that Itk-/- mice could not generate a protective TH2 response to the parasite

Nippostrongylus brasiliensis. Supplementing these studies, Schaeffer and colleagues

found that Itk-/- mice were also unable to generate a TH2 response to the helminthic

parasite , Schistosoma mansoni. However, in this study, the Itk-/- mice also succumbed to

infection by Toxoplasma gondii, an intracellular protozoan that is normally cleared by a

THI-mediated immune response. Together, these data indicate that Itk-/- mice are

particularly susceptible to parasitic infections requiring TH2 cytokine-mediated

responses, but in some cases , are also unable to mount protective THI cytokine-

dependent responses. Finally, this latter study examined the response of Itk-/- Rlk-



mice to these two pathogens, T. gondii and S. mansoni. Interestingly, while the Itk-

Rlk-/- mice succumbed even more rapidly to the T. gondii infection than the Itk-/- mice

and produced only very low levels of the critical effector cytokine IFNy, these doubly-

deficient mice showed a paradoxical ability to clear the parasitic infection by S. mansoni

(93, 94).

One limitation of the studies described above is the inability to track the

pathogen-specific T cells responding in each of these infectious disease models. Thus,

the inability of the Itk-/- or Itk-/- Rlk-/- mice to mount an appropriate CD4+ T cell

effector response , or in some cases, their paradoxical ability to mount such a response

cannot be dissected at the cellular or molecular level. For instance , in the cases where

protective immunity fails to arise, is this due to impaired T cell activation , impaired T

cell expansion, impaired production of effector cytokines , or potentially, impaired

migration of effector T cells to the site of infection? Such information wil be critical in

resolving the interesting and sometimes confusing outcomes from these infectious disease

studies.

In contrast to the studies described above, only a single study has so far examined

CD8+ T cell responses in Itk-/- mice , and none have examined CD8+ T cell function in

Itk-/- Rlk.,/- mice. In addition, no studies have yet directly addressed the potential

biochemical defects in purified CD8+ T cells lacking Itk or Itk and Rlk. In the one study

that did examine the function of Itk-/- CD8+ T cells, mice were infected with three

different viruses, lymphocytic choriomeningitis virus (LCMV), vaccinia virus , and

vesticular stomatitus virus (105). In this report, the investigators found that Itk-/- mice



were mildly impaired in their ability to generate functional CTL responses to LCMV

infection , and although able to clear a vaccinia virus infection, did so with delayed

kinetics. While this study provides the only evidence to date that CD8+ T cell function is

also affected by the loss of Itk, no evidence was provided to address the mechanism(s)

that might have contributed to the impaired CD8+ T cell responses seen in the Itk-/- mice.

Further, these data did not address the role of Itk in other aspects of the CD8+ T cell anti-

viral response , such as CD8+ T cell expansion and attrition , or the ability to generate an

efficient and protective recall response. Finally, as mentioned above , the additional role

of Rlk in CD8+ T cell-mediated antiviral immune responses has never been explored.

To address these issues , we first examined both biochemical and functional

responses of Itk-/- and Itk-/- Rlk-/- CD8+ T cells in vitro. To assess CD8+ T cell

responses to virus infection, we then took advantage of the well-characterized mouse

model of LCMV infection. These studies demonstrated that CD8+ T cells from mice

lacking Itk or both Itk and Rlk show greatly impaired TCR signallng, resulting in

substantial defects in T cell activation and cytokine production in vitro. Furthermore

both Itk-/- and Itk-/- Rlk-/- mice have significantly impaired CD8+ T cell responses to

LCMV infection , characterized by substantial reductions in T cell expansion , survival

and IFNy production. We also show that the impaired expansion of virus-specific CD8+

T cells lacking Itk or Itk and Rlk cannot be rescued by providing WT LCMV -specific

CD4+ T cell help, thereby substantiating the important role of Tec kinases in CD8+ T

cell signallng.



RESULTS

CD8+ T cells lacking Itk or Itk and Rlk have impaired responses to TCR stimulation

Initial studies characterizing Itk-/- and Itk- Rlk-/- mice indicated that the absence

of these two Tec kinases did not result in a deficit in peripheral CD8+ T cell numbers.

For instance , in contrast to the situation for CD4+ T cells , the CD8+ T cell compartment

in Itk-/- and Itk-/- Rlk-/- mice contains a similar fraction of cells in both lymph nodes and

spleen, and has a comparable total cellularity, as that found in wild type mice (93). One

difference that is observed , however, is that the surface phenotype of CD8+ T cells in Itk-

/- and Itk- Rlk-/- mice resembles that of memory or activated T cells, rather than naIve

cells. For instance, Itk-/- and Itk- Rlk-/- CD8+ T cells are predominantly CD44hi

CD62Lhi , Ly6Chi and CD122hi (Figure 2. 1). Together with the known signalling

defects in Itk-/- and Itk- Rlk-

/- 

CD4+ T cells, these observations raised Issues

concerning the functional competence of Tec kinase-deficient CD8+ T cells.

As a first step in addressing this issue , I examined several biochemical responses

of CD8+ T cells from Itk-/- and Itk- Rlk-/- mice to in vitro stimulation. For these

studies, CD8+ T cells were isolated from wild type, Itk- , and Itk-/- Rlk-/- mice and

stimulated by anti-CD3 antibody crosslinking. Cells were then assessed for calcium

mobilization , ERK, JNK and p-38 MAP-kinase activation and PLCyl tyrosine

phosphorylation. Interestingly, despite their activated/memory phenotype , CD8+ T cells

from Itk-/- and Itk- Rlk-/- mice are impaired in their response to TCR stimulation. As

shown in Figure 3. 1A, following anti-CD3 antibody crosslinking, CD8+ T cells lacking



Itk or Itk and Rlk show impaired phosphorylation of the PLCy. In addition, Itk -/- and Itk

/- Rlk -/- CD8+ T cells are also impaired in their ability to sustain the phosphorylation of

the p38 and ERKI and ERK2 MAP-kinases following TCR stimulation. Surprisingly,

the unstimulated WT CD8+ T cell controls had a high basal level of phosphorylation of

PLCy, despite being serum starved for five hours before analysis of PLCy

phosphorylation levels. As this result was seen in all experiments done to look at PLCy

phosphorylation in CD8+ T cells, it is possible that this was a condition of the WT CD8+

T cells having been previously stimulated with PMA and Ionomycin and then expanded

in media containing IL-2 before the analysis. These results raise the interesting

possibility that CD8+ T cells regulate PLCy phosphorylation through a variety 

different means including serum receptor activation. Interestingly, the unstimulated Itk -

/- and Itk -/- Rlk -/- CD8+ T cells responded to the serum starvation more readily than the

WT CD8+ T cells and had no detectable levels of PLCy phosphorylation. This suggests

that Itk -/- and Itk -/- Rlk -/- CD8+ T cells may not be as capable of WT CD8+ T cells at

maintaining phosphorylation of PLCy in response to other stimuli such as serum receptor

activation. These are interesting possibilities that should be further investigated. As

would be expected from these defects, CD8+ T cells lacking Itk and both Itk and Rlk fail

to generate a sustained calcium flux following TCR cross-linking (Figure 3. 1B). These

results demonstrate that in the absence of Itk and both Itk and Rlk, CD8+ T cell fitness -

the ability to mount an optimal response to TCR stimulation , is impaired. These data

suggested that loss of Itk and both Itk and Rlk would affect the ability of CD8+ T cells to

mediate effector functions.



Figure 3.1: Analysis of CD8+ T cell signallng and function.

(A) To assess activation of PLCy and the MAP-kinase signallng pathways S x 10 CD8+

T cells were labelled with 25f-g/ml of biotinylated anti-CD3. The CD8+ T cells were

then activated for various times by cross-linking with strepavidin. As a positive control

cells were stimulated with PMA at a concentration of 2.5ng/ml and Ionomycin at 375

ng/ml. Lysates were then assessed for activation of PLCy, p-ERK and p-38 MAP-kinases

as described in the Materials and Methods. These experiments are one representative of

five for PLCy phosphorylation , three for p-38 phosphorylation and two for ERK

phosphorylation. (B) For calcium flux analysis 1 x 10 cells were loaded with the

calcium sensitive dyes Fluo-3 and Fura Red for Ihr at 37 C. 100f-1 was removed to serve

as unstimulated controls. The remaining cells were first labelled with biotinylated anti-

CD3 for 45s then crosslinked with strepavidin for 6 mins. As a positive control the cells

were stimulated with Ionomycin for 2 mins. The calcium flux was calculated by ratioing

the intensities of the dyes over time. This experiment is one representative of four similar

experiments.
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To determine if these signalling deficiencies translate into functional defects , I

assessed the ability of CDS+ T cells from Itk-/- or Itk-/- Rlk-/- mice to proliferate and to

produce effector cytokines in response to TCR stimulation. Figure 3. 1C shows that

freshly isolated CD8+ T cells from mice lacking Itk or Itk and Rlk are virtually unable to

produce IFNy or TNFa in response to TCR crosslinking. However , if the cells are

stimulated with PMA and ionomycin , and then cultured for three days in excess IL-

CD8+ T cells from both Itk-/- and Itk-/- Rlk-/- mice regain some functional

responsiveness when restimulated. For example, as shown in Figure 3. 1 C, approximately

1 - 2% of the Itk -/- and Itk -/- Rlk -/- CDS+ T cells stimulated directly following

isolation respond by making IFNy and TNFa. However, following secondary

stimulation, approximately IS - 25 % of the Itk -/- and Itk -/- Rlk -/- CD8+ T cells are

capable of making IFNy and TNFa. Next, I looked at the ability of CDS+ T cells from

the Itk -/- and Itk-/- Rlk -/- mice to undergo proliferation. I measured this ability using

CFSE labelling which, due to the halving of the dye content of the cells with every round

of cell division , allows the proliferation history of the cells to be visualized. As can be

seen in Figure 3. , the CDS+ CD44hi cells from the Itk -/- and Itk -/- Rlk -/- CDS+

mice are more impaired at proliferation in response to TCR stimulation , as compared to

WT CDS+ CD44hi T cells (Figure 3. 1D). So, removal of Itk and Rlk from the TCR

signallng cascade profoundly impairs CDS+ T cell function.
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Figure 3.1 2: CD8+ T cell signallng and function.

(C) CD8+ T cells were stimulated with the indicated concentrations of plate-bound anti-

CD3 and cytokine secretion analysed by intracellular cytokine staining as detailed in

Materials and Methods. For primary stimulation , CD8+ T cells were activated

immediately following isolation. For secondary stimulation, the isolated CD8+ T cells

were first stimulated with PMA and Ionomycin , and then expanded in RPMI-

containing IL- , before being restimulated and assessed for effector function.

(D) Cells were labeled with 1 uM CFSE and then stimulated:! lOug/ml plate-bound anti-

CD3 for 48hrs. The CFSE content of CD8+ T cells was then assessed by F ACS

Analysis.
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The Kinetics of LCMV clearance is delayed in ltk-/- and Itk- /Rlk-/- mice

To determine whether loss of Itk and the cumulative loss of both Itk and Rlk

would also disrupt CD8+ T cell function in-vivo, I utilized the well-characterized cellular

response system of LCMV infection. Viral infection of healthy C57BL/6 mice with

LCMV Armstrong results in robust replication of the virus by day 2 post-infection and

subsequent clearance of the virus five days hence. The clearance of LCMV is mediated

largely by the perforin and granzyme cytolytic mechanisms of virus specific CD8+ T

cells (44, 139). The activation of these cytolytic mechanisms is reportedly influenced by

the generation of a sustained calcium flux downstream of TCR signallng in CD8+ T

cells (139, 140). Since loss of Itk and Rlk has a substantial impact on the generation of a

calcium signals in CD8+ T cells in-vitro, I first asked whether loss of these proteins

would affect the ability of CD8+ T cells from these mice to mount an antiviral immune

response and mediate viral clearance. To do this I infected Itk -/- and Itk-/- Rlk-/- mice

intraperitoneally (i. ) with approximately 4 x 10 PFU of LCMV Armstrong, and looked

at a time-course of viral replication and clearance by plaque assay analysis of viral

supernatants collected from the spleens of infected mice at various days post-infection.

As can be seen in Figure 3. , at two days post-infection, viral titres in the

spleens of WT mice averaged 5.3 .: 0.58 log pfu/ml. In comparison , viral titres in the

spleens of day 2 infected Itk -/- and Itk-/- Rlk-/- mice are approximately five-fold (4.8 .:

62 log pfu/ml) and ten-fold (4.3 .:o.97 log pfu/ml)) lower respectively. However, this

difference disappears one day later as viral titres in the spleens of Itk -/- mice are similar

to that seen in the spleens of WT mice by day three post-infection and like the titres in
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WT mice , peaks at day four post-infection. Viral titres in the spleens of Itk-/- Rlk-/- mice

peak one day later, at day five post-infection. In addition to the slight delay in viral

replication , Itk -/- and Itk -/- Rlk -/- mice have a slight delay in clearance of LCMV as

compared to WT mice. While viral titres in the spleens of WT mice undergo an almost 2

log decline by day six post infection, the viral titres in Itk -/- and Itk -/- Rlk -/- spleens are

only ten-fold and five-fold reduced respectively as compared to tha of WT mice at this

timepoint. Despite these differences in viral replication and clearance , like WT mice , the

spleens of Itk -/- mice are completely clear of LCMV by day eight post-infection.

However, some virus is still detectable at day eight post infection in the spleens of Itk -

Rlk -/- mice.

Since the clearance of LCMV is largely perforin dependent, this result suggested

that WT , Itk -/- and Itk -/- Rlk -/- CD8+ T cells may have similar cytolytic activity. To

test this hypothesis a chromium release assay was done using gp 33 (an MHC Class I

restricted immunodominant LCMV epitope) loaded RMA target cells and splenocytes

from day eight infected mice at various E: T ratios. As shown in Figure 3.

splenocytes from day eight infected Itk -/- and Itk -/- Rlk -/- mice are able to clear

infected targets as well as WT splenocytes in the timeframe tested. As another approach

to this question , I looked at the ability of Itk -/- and Itk -/- Rlk -/- mice to clear antigen

specific target cells in-vivo at day eight post-infection. Naive splenocytes were loaded

with gp 33 or left unloaded to serve as controls and were labelled with 0.3 !AM and 0.

!AM CFSE respectively. They were then mixed in a 1: 1 ratio and adoptively transferred

into day eight infected WT , Itk -/- and Itk -/- Rlk -/- and uninfected control mice for five
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hours. WT , Itk -/- and Itk -/- Rlk -/- splenocytes were able to clear an equal proportion of

target cells in an antigen-specific manner (Figure 3.2C).

These results, along with an analysis of the granzyme B content of WT , Itk -/ - and

Itk -/- Rlk -/- CD8+ T cells day eight post-infection , which showed that Itk -/- and Itk -

Rlk -/- mice generate a similar frequency of granzyme B+ cells as WT LCMV infected

mice at the peak of the immune response , suggest that despite the impairment of the

calcium signal seen in in-vitro analyses , Itk -/- and Itk -/- Rlk -/- CD8+ T cells no defect

in their cytolytic abilities. These results suggested that the delay in viral clearance seen

in the spleens of Itk -/- and Itk -/- Rlk -/- mice was not due to an impairment in the

cytolytic activity of the CD8+ T cells from these mice, but were potentially due to other

defects in the CD8+ T cell response in the absence of Itk and both Itk and Rlk such as an

impairment in CD8+ or CD4+ T cell numbers.
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Figure 3.2: Viral Replication and Viral Clearance.

(A) For analysis of viral replication , viral supernatants were generated from infected

spleens harvested at various times post LCMV infection. For assessment of viral titres

an aliquot of viral supernatant was thawed, serially diluted and titres assessed by plaque

assay as described in the Materials and Methods. The results shown are the average of

the log:! SD of titres obtained from the infected spleens of individual mice. 4 mice were

used for the D2 timepoint, while 2 mice were used for the remaining timepoints. WT

mice are depicted by the striped bars, while Itk-/- and Itk-/- Rlk-/- mice are represented

by the solid black and the white bars respectively. (B) 1 x 10 gp 33 loaded RMA target

cells were incubated with splenocytes from day eight LCMV infected mice at various E:

T ratios in a 96 well plate. The cells were incubated for 5 hrs at 37 C and supernatant

removed for analysis of Cr release. This is one representative experiment of three.

(C) The granzyme B content of WT, Itk -/- and Itk -/- Rlk -/- CD8+ T cells from day 8

post infection was assessed by intracellular stain analysis. (D) Splenocyte suspensions

from WT uninfected animals were labelled with 0.3 f!M and 0.9 f!M CFSE and then

loaded with 1 f!m of gp 33 or a reference peptide respectively. The labelled cells were

mixed at a 1:1 ratio and injected into either WT , Itk -/- or Itk -/- Rlk -/- mice at day eight

post-infection or uninfected controls. Spleens were harvested 5 hrs after injection and

specific killing assessed. This experiment was done once with two mice per timepoint.
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Impaired Accumulation ofCD8 T cells from Itk-/- and Itk- Rlk-/- in response to LCMV

infection

To investigate the impact of loss of Itk and both Itk and Rlk on the CDS+ T cell

response , I followed the T cell response in WT , Itk -/- and Itk -/- Rlk -/- mice over a time

course of LCMV infection. Murine LCMV infection causes a characteristic and

reproducible expansion of mainly CDS+ T cells to generate a pool of antigen-specific

effectors (32, 141). This peak of expansion is followed by an equally characteristic and

reproducible decline in effector CDS+ T cell numbers and in the generation of LCMV

specific memory CDS+ T cells.

To examine expansion of the CDS+ T cell subset in response to infection , the

spleens of WT, Itk -/- and Itk -/- Rlk -/- were harvested at various days post infection.

The size of the CD4+ and CDS+ T cell compartments was determined by quantitation of

total splenocyte numbers and percentages of CD4+ and CDS+ T cells present at various

days post-infection , by staining with anti-CD4 and CDS antibodies and subsequent FACS

analysis. Total cell numbers/spleen was calculated from the product of the percentage

and total cell numbers. Interestingly, in Itk -/- and Itk -/- Rlk -/- mice, the magnitude and

the kinetic of accumulation of the CDS+ T cell subset was impaired in response to

infection as compared to that of WT mice (Figure 3.3). The WT CDS+ T cell response

peaks at about dS post infection , with about 2S.7% of the spleen being CD8+. At this

time-point, CDS+ T cells make up approximately IS% of the spleen in Itk-/- mice , and

22% of the spleen in Itk-/- Rlk-/- mice. These percentages correspond to approximately

1.0 X 10 , 2.9 X 10 and 3.7 x 10 CDS T cells per spleen respectively. CDS+ T cell
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numbers in Itk -/- and Itk-/- Rlk-/- mice peak instead at about day 9 - day 10 post-

infection (Figure 3.3). Interestingly, and in keeping with observations previously made

by James M. McNally, at day three post-infection, there is a greater reduction in the

frequency of the CD8+ T cells in the spleens of the Itk -/- and Itk -/- Rlk -/- mice as

compared to that of WT mice. As only CD8+ CD44hi cells are lost at this point, this is

likely due to the fact that most of the CD8+ T cells in the spleens of Itk -/- and Itk -/- Rlk

/- mice are CD44hi. Despite the delay in the accumulation of CD8+ T cell numbers in

Itk -/- and Itk -/- Rlk -/- mice , attrition of the CD8+ T cell response appears to occur at

the same rate in Itk -/- and Itk-/- Rlk-/- mice. In Figure 3.3B , the total spleen cell counts

are tabulated , followed by tabulation of the total numbers of CD8+ T cells responding

over the course of the infection in WT , Itk -/- and Itk -/- Rlk -/- mice.

These results showed that the loss of Itk and both Itk and Rlk impaired the ability

of CD8+ T cells to mount an optimal response to infection with LCMV , particularly in

their ability to accumulate following activation. Given this interesting kinetic delay and

decreased magnitude of the CD8+ T cell compartment in Itk -/- and Itk -/- Rlk -/- mice , I

next looked at the antigen specific response to LCMV infection.



111

Figure 3.3: The CD8+ T Cell Response in WT, Uk -/- and Uk -/- Rlk -/- Mice

(A) WT, Itk -/- and Itk-/- Rlk-/- mice were infected intraperitoneally (IP) with 4 x 10

PFU of LCMV Armstrong. The kinetics of the cellular response was followed by the

assessing the percent of CD4+ and CD8+ T cells in the spleens of infected mice over the

course of the infection. CD8+ T cell numbers are noted. This experiment is

representative of nine such experiments looking at the T cell response to LCMV infection

in WT , Itk-/- and Itk-/- Rlk-/- mice.

In (B), the total spleen numbers and the numbers of CD8+ T cells responding are

quantitated. Results shown are the averages of the total number of spleen cells and total

numbers of CD8+ T cells/spleen +/- standard deviation respectively for one experiment

of five. Statistics done using the Kruskal- Walls and Dunn s Multiple Comparisons Test

on data from five separate experiments indicated that the difference in total CD8+ T cell

numbers between WT and Itk -/- mice (P.. 0.0001) and between WT and Itk -/- Rlk -

mice (P.. 0.05) were statistically significant at day eight and day nine post-infection.
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The Antigen Specific Response to LCMV is Imvaired in Itk 

/- 

and Itk-/- Rlk-/- mice

LCMV infection results in the amplification of CD8+ T cells specific for the

MHC 1 restricted immunodominant epitopes gp 33 and np 396. T cells are also generated

to the subdominant epitopes gp 276 and np 205 among others (41). The epitope specific

response to LCMV has been extensively characterized, and the combination of tetramer

staining and intracellular cytokine staining has proven powerful in allowing the dynamics

of the LCMV antigen specific response to be followed at a single cell level (32 , 141). To

look at antigen specific responses in WT, Itk -/- and Itk -/- Rlk -/- mice , splenocytes from

infected mice were stimulated with epitope specific peptides and the antigen specific

response followed by analysis of the generation of cells producing the effector cytokine

IFNy.

As shown in Figure 3.4A , splenocytes from Itk -/- and Itk-/- Rlk-/- mice generate

a slightly smaller frequency of IFNy+ CD8+ T cells in response to stimulation with the

immunodominant peptides np 396 and gp 33. Specifically, in this experiment,

approximately 13.6% of CD8+ T cells in the spleen of WT mice make IFNy in response

to gp 33 stimulation while Itk -/- mice have about 10% and Itk-/- Rlk-/- mice about 6%

IFNy+ CD8+ T cells (Figure 3.4). The same is true of the stimulation with the

subdominant peptides np 205 and gp 276 (Figure 3.7). The CD8+ T cells from Itk -/- and

Itk -/- Rlk -/- mice are also less efficient at making the effector cytokine IFNy as shown

by analysis of the median fluorescent intensity (MF!) of the cytokine producing cells

(Figure 3.4A). The impact of the absence of Itk and Itk and Rlk on the antigen-specific

response to infection is further ilustrated when the reduction in the percentages of
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antigen specific cells responding to peptide stimulation is combined with the lowered

magnitude of the CD8+ T cell response. Itk -/- and Itk-/- Rlk-/- mice have a significant

reduction in their overall antigen-specific response to LCMV infection as compared to

WT mice. These data showed , that like the in-vitro analyses , loss of Itk and both Itk and

Rlk had a significant impact on the ability of T cells to respond to TCR stimulation

showing that these TEC kinase family members are important for the generation of an

optimal CD8+ T cell mediated immune response (Figure 3.4B).
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Figure 3.4: The LCMV Antigen Specific Response

(A) The antigen specific response was assessed by intracellular cytokine staining. 2 - 4 x

splenocytes from WT, Itk-/- and Itk-/- Rlk -/- mice were incubated with the

immunodominant LCMV specific epitopes np 396 and gp 33 for 5 hrs at , in

medium containing Brefeldin A and Monensin. Following incubation, cells were spun

down and stained first for sUIface expression of CD4 and CDS and then intracellularly for

IFNy. The np396 IFNy response is shown.

(B) Quantitiation of the antigen specific IFNy response to stimulation with np 396 and gp

33 over a time course of LCMV infection.
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Tetramer vositive CD8+ T cells from Itk 

/- 

and ltk-/- Rlk-/- are imvaired at vroduction

of effector cytokine

The data show that Itk and Rlk are important in the transduction of signals

downstream of TCR cross-linking that regulate both T cell responsi veness and the

activation of factors needed for the transcription of cytokine genes including IFNy. This

impacted the antigen specific response by impairing the accumulation of CD8+ T cells

following infection and the ability of the T cells to make effector cytokines.

The impaired accumulation of Itk -/- and Itk -/- Rlk -/- antigen specific CD8+ T

cells , instead of being due to the impaired TCR responsiveness of CD8+ T cells in the

absence of both Itk and Rlk, may alternatively be due to a reduction in the precursor

frequency of CD8+ T cells capable of responding to LCMV. To distinguish between

these possibilities , I analyzed the np 396 and gp 33 antigen specific response by tetramer

staining and compared this to the frequencies of IFNy and TNFa antigen specific cells

detected by intracellular cytokine staining following stimulation of the infected

splenocytes with the corresponding peptide epitopes. The technology now available for

the analyses of the antigen specific response, i.e. tetramer staining and intracellular

cytokine staining, has been shown to detect similar frequencies of antigen specific cells

(32). As such, these two technologies can be used interchangeably in WT mice to look at

the precursor frequencies of T cells responding to an immune stimulus.

The data show that at eight days post-infection , the frequency of gp 33 and np 396

tetramer positive antigen specific CD8+ T responding to LCMV infection in the Itk-

and Itk-/- Rlk-/- mice are comparable to those seen in WT mice (Figure 3.5). However,
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there are fewer total numbers of gp 33 and np 396 specific CD8+ T cells in the spleens of

Itk -/- and Itk -/- Rlk -/- mice as compared to WT mice , possibly due to the impaired

accumulation of these cells in the Itk -/- and Itk -/- Rlk -/- mice. Furthermore , upon

stimulation of the Itk -/- and Itk -/- Rlk -/- CD8+ T cells with the corresponding gp 33

and np 396 peptides respectively, fewer Itk -/- and Itk -/- Rlk -/- CD8+ T cells were

capable of making the effector cytokines IFNy and TNFa than were detected by tetramer

stain analysis. Although fewer total effector cytokine producing cells are also generated

from stimulation of WT infected splenocytes , the difference is far smaller than in the Tec

kinase knockout samples (Figure 3.5).

Extrapolating from these data suggest that the initial repertoire of cells capable of

responding to LCMV is similar in the spleens of uninfected Itk -/- and Itk -/- Rlk -/- mice

and that the accumulation of antigen specific CD8+ T cells is impaired in Itk -/- and Itk-

Rlk-/- mice. In addition , fewer of the antigen specific cells that do accumulate in Itk -

and Itk -/- Rlk -/- mice are able to be activated to make an effector cytokine response to

infection, suggesting that the ability of CD8+ T cells to respond to antigen stimulation is

impaired in the absence of Itk and both Itk and Rlk. This experiment also demonstrated

that, while WT mice were able to generate a cells making IFNy (single - producers) as

well a fraction of cells making both IFNy and TNFa (double -producers), very few Itk -

and Itk -/- Rlk -/- CD8+ T cells could make TNFa during the acute LCMV response.

This result led to experiments to determine whether the impaired accumulation of

Itk -/- and Itk -/- Rlk -/- CD8+ T cells during the course of LCMV infection might be due
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either to defects in CD8+ T cell proliferation and or survival in the absence of Itk and

both Itk and Rlk.
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Figure 3.5: Impaired Cytokine Response of Antigen Specific CD8+ T Cells

The frequency of the antigen specific response as measured by tetramer staining and

intracellular cytokine staining was compared. Tetramer stain analysis was done on

splenocytes from day eight infected mice as described in the Materials and Methods.

Intracellular cytokine staining was done on separate samples from the same mice.

Results shown are the percent of total CD8+ T cells that bind the gp 33 and np 396

tetramers and the cytokine profie generated in response to stimulation with the

corresponding peptides. Results are one representative experiment of three. There were

two mice per group.
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Loss of Itk and Rlk modulate CD8 T Cell Proliferation and Apovtosis during LCMV

Infection

During acute LCMV infection , the spleens and CD8+ T cell compartments of Itk -

/- and Itk-/- Rlk-/- mice do not expand to the size seen in WT mice (Figure 3.3). This did

not seem to be due to a lower precursor frequency of antigen specific cells in the Tec

kinase deficient mice (Figure 3.5). Generally, the massive expansion of CD8+ T cells

that occurs during the LCMV infection is caused by extensive proliferation of antigen

specific CD8+ T cells during the acute response. This proliferative capacity is very

characteristic of CD8+ T cells , and there is an extensive body of literature showing that

CD8+ T cells proliferate profusely in response to stimulation with antigen , and that this

initial stimulation is suffcient to sustain an autonomous program of clonal expansion and

differentiation (37 , 142). We hypothesized that the impaired expansion of the CD8+

T cell compartment in Itk -/- and Itk-/- Rlk-/- mice could be caused by either an impaired

proliferation of those cells in response to LCMV infection or by impaired survival of the

CD8+ T cells in the Tec deficient mice. To this end, I first looked at CD8+ T cell

turnover in-vivo , by assessing the ability of WT , Itk -/- and Itk -/- Rlk -/- CD8+ T cells to

incorporate BrdU during a time course of LCMV infection

I used the activation marker CD44 to identify the fraction of activated CD8+ T

cells proliferating during the acute response. Briefly, cells were gated on the CD8+

CD44hi population and then analyzed for BrdU incorporation (Figure 3.6A). The results

show that early in the CD8+ T cell response, at approximately day 5 post infection , a

smaller fraction of Itk -/- and Itk -/- Rlk -/- CD8 CD44hi T cells incorporate BrdU as



123

compared to WT CD8+ CD44hi T cells (Figure 3.6A). However, there was no statistical

significance to the difference in BrdU incorporation seen between WT , Itk -/- and Itk -

Rlk -/ - CDS+ T cells.

Defects in CD8+ T cell survival during the primary immune response may also

affect the overall numbers of CDS+ T cells accumulating at the peak of the response. I

then asked whether activated CDS+ T cells in the Itk -/- and Itk-/- Rlk-/- mice were more

susceptible to apoptosis during the acute LCMV response. To do this I analyzed the

uptake of the vital dye 7-AAD and staining of the activated CD8+ T cell population with

the apoptosis marker Annexin-V. To evaluate apoptosis of activated CDS T cells, I

divided ungated cells into 7-AAD+ and 7-AAD- populations. I then quantitated the

7 AAD- CD8+ CD44 Annexin V - T cell populations in WT , Itk -/- and Itk-/- Rlk-/- mice.

I found that at the peak of the acute response, around day seven - day eight post

infection , there were fewer live (7 -AAD- Annexin V -) CDS+ CD44hi T cells in the

spleens of Itk -/- and Itk-/- Rlk-/- mice as compared to WT. At day eight post LCMV

infection , there was about an SO% /fourfold reduction in the numbers of CD8+ CD44

Annexin V- 7AAD- T cells in Itk -/- compared to WT mice (9.3 x 10 j: 7.0 X 10 inWT

mice to 1.9 x 10 j: 2.2 X 10 cells in Itk -/- mice). The reduction in the Itk-/- Rlk-/- CD8+

T cell compartment was about 50%/twofold (9.3 x10 j: 7.0 x Ie? in WT to 3.9 x10 j: 5.

X 10 in Itk-/- Rlk-/- mice) (Figure 3.6B). As a further determination of whether Itk -

and Itk-/- Rlk-/- CDS+ CD44 T cells were impaired in the activation of survival signals

during acute LCMV infection , I looked at expression of the anti-apoptotic molecules Bel-

2 and Bel-XL by flow cytometry in CD8+ T cells from WT , Itk -/- and Itk -/- Rlk -/- mice
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at day eight post infection. I could detect no differences in intracellular protein

expression of either Bel-2 or Bel-XL at day eight post LCMV infection in Itk -/- and Itk-

/- Rlk-/- CD8+ CD44hi cells as compared to WT (Figure 3.6C). These data suggest that

the defect in accumulation of Itk -/- and Itk -/- Rlk -/- CD8+ T cells at the peak of the

LCMV immune response, may result from a combination of impaired proliferation early

in the response (between day three and day five post-infection) and a defect in CD8+ T

cell survival of cells at the peak of the response. However, since there was no statistical

significance to the differences in BrdU incorporation seen between the ET , Itk -/- and Itk

/- Rlk -/- CD8+ T cells, the impaired accumulation of the CD8+ T cells seen in the

absence of Itk and Rlk may be due more to differences in survival rather that

proliferation. These observations wil be the subject of future studies.
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Figure 3.6: CD8+ T Cell Proliferation and Survival During LCMV Infection

(A) CDS T cell proliferation was analyzed by BrdU staining during a timecourse of

LCMV infection. Mice were all infected at the same time , and infected mice were

injected with 100"- of BrdU (15mg/ml in PBS) 12 hours before harvest on the indicated

day of infection. 4 x 10 cells were stained for surface expression of CDS, CD4 and

CD44 and BrdU incorporation was assessed by intracellular staining. This is one

experiment of three with two mice per timepoint. There was no statistical difference in

BrdU incorporation between WT, Itk -/- and Itk -/- Rlk -/- mice.

(B) To look at cell death during the immune response, splenocytes were stained

extracellularly with antibodies to Annexin- , CD4 or CDS , CD44 and also with the vital

dye 7-Amino-actinomycin D (7-AAD). To assess cell survival , the fraction of 7-AAD-

AnnexinV - CDS+ CD44hi cells was assessed. The kinetics of cell death during the

course of an LCMV infection is shown. This result is representative of three experiments

done to look at Annexin- V staining and one experiment looking at the double staining of

T cells with Annexin-V and 7-AAD. There were two mice per timepoint.

(C) Splenocytes from uninfected and day eight LCMV infected WT , Itk -/- and Itk -/- Rlk

/- mice were stained extracellularly for expression of CD4, CDS and CD44 and then

intracellularly for expression of Bel-2 or Bel-XL.
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Imvaired CD4 T cell function in Itk 

/- 

and Itk-/- Rlk-/- mice does not affect CD8 T cell

Expansion

In addition to intrinsic defects in T cell fitness, the accumulation of CD8+ T cells

following LCMV infection may also be affected by the quality of CD4+ T cell help

provided during the acute immune response. The role of CD4+ T cells in the viral

immune response in general , and the LCMV acute response in particular, has been a topic

of much discussion and dissent. It has been shown that CD4+ T cells are dispensable for

generation of an effective acute response to infection with LCMV (143- 145), and for

infection with vaccinia virus (146). Paradoxically, this is in spite of data demonstrating

that significant numbers of CD4+ THI (IFNy+ and IL-2+) type cells are generated in

response to LCMV infection (40); that CD4+ T cells are the main producers of IL-

during the anti-viral immune response (34) and that IL-2 is necessary for efficient

expansion of the CD8+ T cell subset during viral infections (35, 147 , 148). The CD4+

compartment is however necessary for the maintenance of viral clearance , for CD8+

cytolytic function during a chronic infection (149, 150) and for the generation of an

effective memory CD8+ T cell response to secondary infection (145, 150- 152).

As shown in Figure 3. , CD4+ T cells in Itk -/- and Itk-/- Rlk-/- mice are deficient

in their production of IL-2 (92, 93), and fewer CD4+ T cells in the spleens of Itk -/- and

Itk-/- Rlk-/- mice produce IL-2 in response to LCMV infection. To determine whether a

defective CD4+ T cell response in Itk -/- and Itk-/- Rlk-/- mice could account for the

impaired expansion of the CD8+ T cell subset during the anti-viral response, I adoptively

transferred 1 x 10 WT congenic LCMV memory CD4+ T cells into WT , Itk -/- or Itk-
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Rlk-/- mice , (I used memory CD4+ T ceOs to ensure a high precursor frequency of

LCMV specific CD4+ T cells). The mice were then infected with 4 - 5 X 10 pfu of

LCMV Armstrong and host CDS+ T cell expansion analyzed eight days post- infection

(Figure 3.8). Uninfected mice receiving donor memory CD4+ T cells only and mice

infected with LCMV alone were used as controls.

Transfer of LCMV specific memory CD4+ T cells did not rescue the defect in

expansion of the CDS T cell compartment in host Itk -/- and Itk -/- Rlk -/- mice (Figure

7A). This was despite the massive expansion of the transferred memory CD4+ T cell

population in these mice , and their secretion of wild-type levels of IL-2 in response to

infection (Figure 3.7B). This result suggests that the defect in CDS+ T cell accumulation

observed in the Itk -/- and Itk-/- Rlk-/- mice are not due to defects in the CD4+ TH

mediated response in the Itk -/- and Itk -/- Rlk -/- mice. These data suggest instead that

the defect in CDS+ T cell accumulation seen in Itk -/- and Itk -/- Rlk -/- mice are most

likely due to defects intrinsic to the CDS+ T cells themselves, most likely defects in

CDS+ T cell survival and/or CDS+ T cell proliferation during the primary immune

response. However, statistical analyses done on the BrdU incorporation of Itk -/- and Itk

/- Rlk -/- CDS+ T cells showed no significance difference in BrdU incorporation as

compared to WT CDS+ T cells, raising the issue that additional mechanisms may be

plying a role in the impaired accumulation of CD8+ T ells in the Itk -/- and Itk -/- Rlk -

mIce.
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Figure 3.7: The CD4+ T Cell response in WT, and Itk -/- mice and the CD8+

Subdominant T Cell Response

(A) CD4 and CDS T cell numbers over a timecourse of LCMV infection.

(B) The antigen specific IFNy and IL-2 cytokine response to the immunodominant CD4+

epitope gp 61 as well as the subdominant epitope np 309. The CD8+ T cell IFNy

response to the subdominant epitopes np 205 and gp 92 are also shown.
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Figure 3.8: Adoptive Transfer of LCMV Memory CD4+ T Cells

(A) 1 X 10 CD45. 1 WT CD4+ memory T cells were injected intravenously into WT , Itk-

/ or Itk-/- Rlk-/- mice. The host mice were then either infected with 4 - 5 X 10 PFU of

the LCMV Armstrong strain , or left uninfected to serve as controls for engraftment of

donor cells. Single cell suspensions were made from spleens harvested Sd post-infection

and stained for CD4, CDS , CD45. 1 and CD44. The expansion of the host CDS+ T cells

from the kinase deficient mice was then analyzed. This is one of two experiments done

with two mice per time point.

(B) Host and donor CD4+ cells were stimulated with gp 61 (an immunodominant LCMV

CD4+ T cell epitope) to assess IL2 production, and the extent of the TH response

supplied.



IMPAIRED ACCUMULATION OF CD8+ T CELLS IN Itk -/- AND Itk -/- Rlk -/- MICE IS
CD4 TH INDEPENDENT

ADOPTIVE TRANSFER OF CONGENIC WT MEMORY CD4 T CELLS INTO
, Itk -/- AND Itk -/- Rlk -/- MICE

iiWT
Itk -

D Itk -/- Rlk -

HOST CD8 T CELL EXPANSION

15.

10.

E- 

CD4 ONLY CD4+LCMV LCMV ONLY

B DONOR AND HOST CD4 T CELL IL-2 SECREfION TO GP61 PEPTIDE
STIMULATION

Itk - Itk -/- Rlk -

11.9

142

11.214.

:lt
156 120

.. CD4

it-



134

Imvaired Accumulation of Antigen specific Transgenic Cells in Response to Infection

The data show that removal of Itk and both Itk and Rlk from the TCR signalling

cascade diminishes the magnitude of CD8+ T cell accumulation in response to infection.

However, given the unique phenotype of the Itk -/- and Itk -/- Rlk -/- CD8+ T cells , there

is stil potential for factors extrinsic to CD8+ T cell signalling to influence CD8+ T cell

accumulation. For example , loss of a significant portion of CD8+ CD44hi T cells early

in LCMV infection may affect the precursor frequencies of LCMV responsive cells in the

Itk -/- and Itk -/- Rlk -/- repertoire. In addition , the environment of infected Itk -/- and Itk

/- Rlk -/- mice may be substantially different from that of WT mice undergoing a similar

immune response , given the poor effector cytokine producing properties of both the

CD4+ and CD8+ T cell populations in the Itk -/- and Itk -/- Rlk -/- mice. To address

these issues , I decided to analyse the response of Itk -/- CD8+ T cells using the well-

characterized OT -I transgenic adoptive transfer system.

5 X 10 OT- l WT and Itk -/- CD8+ T cells were adoptively transferred into WT

CD45. 1 congenic mice. The host mice were infected one day post transfer with 1 x 10

pfu of the recombinant vaccine construct containing the OT - 1 + CD8+ T cell specific

epitope SINFEKL (Vaccinia -OVA). The accumulation of CD8+ T cells and the antigen

specific effector cytokine responses were assessed at various times post infection. 

shown in Figure 3.8, loss of Itk -/- impaired the sustained accumulation of the transgenic

CD8+ T cells at the peak of the response, which occurred approximately four days post

infection with the V accinia-OV A construct. In addition to the defect in CD8+ T cell

accumulation, the Itk -/ - OT - 1 + CD8+ T cells were also impaired in their ability to
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produce the effector cytokines IFNy and TNFa during the course of the response. This

result demonstrates that even in a WT environment and given similar precursor

frequencies of responding cells , loss of Itk impairs the ability of the CD8+ T cell to

mount an efficient immune response to infection. These data show that loss of Itk and

both Itk and Rlk impairs the intrinsic ability of CD8+ T cells to mount an optimal antigen

specific immune response to infection , demonstrating the importance of these Tec kinases

in CD8+ T cell signalling and function.
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Figure 3.9: Impaired Accumulation ofItk -/- OTl+ T Cells in Response to Infection

5 X 10 WT and Itk -/- CD8+ CFSE labelled T cells were adoptively transferred into WT

CD45. 1 congenic hosts , and mice infected intraperitoneally with 1 X 10 pfu of the

recombinant Vaccinia-OVA construct. (A) Accumulation of responding CD8+ T cells

and the antigen specific IFNy response (B) are shown. This is the result of one

experiment done with two or three mice per timepoint.
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Itk 

/- 

and ltk-/- Rlk-/- mice have an altered cvtokine vrofile during the Memory Immune

Resvonse

The last phase of the anti-viral immune response is the generation of memory

CD8+ T cells , and the generation of an efficient memory response has been shown to be

affected by the magnitude of the acute response (153). To determine whether a

deficiency in Itk or in both Itk and Rlk, and the impaired accumulation of CD8+ T cells

seen in the acute response in the absence of these kinases would affect the establishment

of effective long-term memory, I looked at the gp 33 and np 396 epitope specific

responses of LCMV immune mice or LCMV immune mice that were re-challenged with

4 - 5 xl 0 pfu of LCMV Armstrong.

In both Itk -/- and Itk -/- Rlk -/- immune mice, and in similarly deficient LCMV

immune mice undergoing a secondary challenge with LCMV , similar percentages of

CD8+ T cells respond to stimulation with gp 33 (Figure 3. 10). The total numbers of

antigen-specific responders are also similar during the memory response. Unlike during

the primary response, there is no defect in expansion of the CD8+ T cell compartment in

LCMV immune Itk -/- and Itk-/- Rlk-/- mice.

Analysis of the IFNy and TNFa cytokine profies of the memory response

however, reveals a defect in the Itk -/- and Itk-/- Rlk-/- memory CD8+ T cell effector

cytokine response as compared to WT CD8+ T cells. In WT LCMV immune mice

peptide stimulation results in mainly a population of IFNy+ TNFa+ "double-producers

This cytokine profile was shown to be characteristic of CD8+ T cells undergoing a

memory response (154). In contrast, Itk -/- and Itk-/- Rlk-/- CD8+ T cells from LCMV
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immune mice have an almost 50:50 distribution of CD8+ T cells producing both IFNy

and TNFa (double-producers), and cells producing IFNy only (single-producers) (Figure

10). This result is also true of CD8+ T cells from LCMV immune Itk -/- and Itk-/- Rlk-

/- mice undergoing a secondary challenge with LCMV. Paradoxically, unlike during the

acute response , when CD8+ T cells from Itk -/- and Itk-/- Rlk-/- mice failed to make

much TNFa , they seem to recover this capacity during the memory response. In

addition , unlike the cytokine response profile of WT memory CD8+ T cells , the cytokine

profile of Itk -/- and Itk -/- Rlk -/- memory CD8+ T cells is more characteristic of that

seen during a primary immune response. These data show , that while Itk and Rlk are

required for the generation of an optimal antigen specific acute CD8+ T cell immune

response , loss of these Tec kinases had no apparent effect on the quantity of the CD8+ T

cell memory immune response and only slightly affected the quality of that response , the

significance of which is questionable.

The data in this study show that Itk and Rlk are important in the regulation of

CD8+ function and provide an important analysis of the ways in which the

programmed" CD8+ T cell response can be modulated. An analysis that is potentially

important for our understanding of how this response can be controlled and manipulated

in the design of vaccination strategies that seek to optimize the CD8+ T cell response.
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Figure 3.10: The LCMV Specific Memory CD8+ T Cell Response

Mice were infected and then rested for at least two months to generate LCMV immune

mice. Single cell suspensions were generated from spleens harvested 63 days post

infection (memory pool), 8 days post secondary infection (secondary response), or 8 days

post primary infection (acute response). 4 X 10 cells were then stimulated with the

epitope specific peptides gp 33 and np 396, and the antigen specific response analyzed by

intracellular cytokine staining for IFNy and TNFa.
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DISCUSSION

The Tec kinase family members Itk and Rlk are known to be important in

signallng downstream of the TCR in CD4+ T cells and in the CD4+ T cell response to

various pathogens. Our study details a role for the Tec kinase family members Itk and

Rlk in CD8+ T cell signalling and function. We demonstrate for the first time the effect

of loss of Itk and both Itk and Rlk on the biochemical and functional responses of

purified CD8+ T cell in-vitro and on the CD8+ T cell immune response in-vivo.

Removal of Itk and Rlk from the TCR signallng cascade greatly impaired the

activation of signalling pathways downstream of CD8+ T cell signalling. As shown in

Figure 3. , in-vitro stimulation of CD8+ T cells lacking Itk and both Itk and Rlk resulted

in the diminished phosphorylation and activation of PLCy 1 , and the subsequent

generation of a sustained calcium flux. Itk -/- and Itk -/- Rlk -/- CD8+ T cells were also

impaired in activation of the ERK and p-38 MAP-kinase pathways, resulting in

impairment of CD8+ T cell effector function. Loss of Itk and the additive deficiency of

Rlk attenuated the proliferative capacity of CD8+ T cells, demonstrating that Itk and Rlk

are very important for the fidelity of signalling downstream of CD8+ T cell activation , as

CD8+ T cells are normally very responsive to activation signals. In addition, fewer cells

were able to respond to TCR stimulation in the absence of Itk and Rlk by making the

effector cytokines IL- , IFNy and TNFa.

These data reinforce the importance of Itk and Rlk in T cell signalling and

function, and are in keeping with previous results showing that CD4+ T cells lacking Itk
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and both Itk and Rlk are deficient in activation of PLCy and consequently the ERK and

JNK MAP-kinase pathways (1S , 92, 93 , tOO). Subsequent impairment in activation of

latent transcription factors like NFA T and NFkB resulted in diminished production of the

effector cytokines IL- , IL-4 and IFNy (99).

Loss of Itk and Rlk also negatively impacted the ability of CDS+ T cells to

generate an efficient antigen specific immune response. In-vivo, loss of Itk and Rlk

resulted in a decline in the frequency of antigen specific cells able to make the effector

cytokine IFNy and loss of the ability to make TNFa (Figure 3.5). In addition , loss of Itk

and Rlk resulted in deficient accumulation of CDS+ T cells in response to LCMV

infection (Figure 3.3). This diminished accumulation of CDS+ T cells was not a result of

the weak CD4+ T cell response in Itk -/- and Itk -/- Rlk -/- mice , as supplementation of

the CD4+ TH response in Itk -/- and Itk -/- Rlk -/- mice by adoptive transfer of LCMV

specific WT memory CD4+ T cells, did not rescue expansion of the CDS+ T cell

compartment in the kinase deficient mice (Figure 3.7).

CDS+ T cells are normally very responsive to antigenic stimuli. Numerous data

show that CDS+ T cells undergo a massive and autonomous program of expansion and

proliferation in response to antigenic stimuli (32, 141). To explore a mechanism by

which removal of Itk and Rlk from the T cell signallng cascade may have attenuated this

normally very sensitive CDS+ T cell response to antigenic stimulation, we investigated

CD8+ T cell turnover and apoptosis during the anti-LCMV immune response in Itk -

and Itk -/- Rlk -/- mice. This data showed that loss of Itk and both Itk and Rlk impairs

CDS+ T cell proliferation in the early phases of the LCMV immune response (Figure
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3.4). In addition , in the absence of Itk and both Itk and Rlk, a smaller fraction of CD8+ T

cells survive as compared to WT CD8+ T cells (Figure 3.6). These data suggest that

defects in CD8+ T cell proliferation early in the LCMV immune response and later

defects in CD8+ T cell survival at the peak of the response synergise to affect the

accumulation of CD8+ T cells in response to LCMV infection.

This interpretation of the data is however subject to several potential caveats. For

example , an important factor affecting CD8+ T cell expansion is antigen load. It has

been demonstrated in several experimental systems that the magnitude of CD8+ T cell

expansion is dependent on viral load. The antigen dose affects the recruitment of naIve

CD8+ T cells into the immune response, thereby affecting the final magnitude of the

response (51). While we did not expressly examine this mechanism, we did observe that

early in viral infection, Itk -/- and more so Itk -/- Rlk -/- mice have approximately 0.5 log

and 1.0 log lower viral titres than WT mice, suggesting that there is a decreased viral

burden in these mice early in infection (Figure 3.2). It is possible that this lowered viral

burden and the subsequent lowered strength of antigenic stimulation resulted in the

impaired expansion of the CD8+ T cell subset in Itk -/- Rlk -/- mice. Contrary to this

observation however, analysis of the recruitment of antigen specific responders in Itk -

and Itk -/- Rlk -/- mice by tetramer analysis revealed no significant difference in the

percentages of np 396+ and gp 33+ cells recruited into the LCMV response as compared

to WT mice (Figure 3.5). Since this analysis was done at later stages of the infection

when cells are at the peak of their expansion programs , it is conceivable that Itk -/- and

Itk -/- Rlk -/- mice contained fewer LCMV specific precursors initially. Moreover, a
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significant fraction of the CD8+ CD4+4hi T cells present in the Itk -/- and Itk -/- Rlk -

mice are lost day two - day three post-infection as previously reported by James M.

McNally (155). This loss resulted in a more substantial reduction in total CD8+ T cell

numbers in the Itk -/- and Itk -/- Rlk -/- (whose CD8+ T cells are nearly all CD44hi) than

in WT mice at this time (Figure 3.3). As such, it is conceivable that Itk -/- and Itk -/- Rlk

/- mice contain an altered and smaller repertoire of LCMV specific precursors than WT

at this timepoint, affecting the final accumulation of CD8+ effectors. It is also possible

that Itk -/- and Itk -/- Rlk -/- mice may have a higher innate immune response initially,

which may affect the early viral replication of LCMV. Also to be considered is the

altered splenic environment of the Itk -/- and Itk -/- Rlk -/- mice that have larger germinal

centers than the spleens of WT mice.

To address these caveats, WT and Itk -/- OT - 1 + CD8+ T cells (which have similar

low levels of CD44) were adoptively transferred into WT can genic mice that were

subsequently infected with recombinant V accinia-OV A. The results of this experiment

demonstrate that even in a WT environment and with similar precursor frequencies of

responding cells , loss of Itk affected the accumulation of CD8+ T cells responding to the

infection (Figure 3.8).

Mathematical models have long since predicted that factors extrinsic to the CD8+

T cell can affect CD8+ T cell expansion (156, 157). Loss of Itk and both Itk and Rlk had

a distinct impact on CD8+ T cell proliferation. As shown in Figure 3.3, CD8+ CD44hi T

cells in Itk -/- and Itk -/- Rlk -/- mice incorporated less BrdU than WT CD8+ CD44hi

cells in the early stages of the LCMV anti-viral immune response (Figure 3.6). Crude
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mathematical calculations on our part suggest that these defects in proliferation , over the

course of the exponential response to the viral infection, may be sufficient to result in the

defect in CD8+ T cell accumulation seen in Itk -/- and Itk -/- Rlk -/- mice.

However recent data has also shown that CD8+ T cells can undergo an

autonomous program of expansion and differentiation (37 , 38 , 142). In light of these and

other data, these models were recently revisited (158). The authors demonstrated

mathematically that, in keeping with these current data, factors both extrinsic and

intrinsic to the CD8+ T cell affect the program of CD8+ T cell expansion and

differentiation. While the influence of extrinsic factors such as cytokines and viral load

has been the subject of investigation, factors that affect the intrinsic program of CD8+ T

cell expansion remain largely uncharacterized. Our data suggests that signalling

molecules such as Itk and Rlk may have a role in maintaining the fidelity of that intrinsic

program.

In support of this hypothesis, the signalling molecule JNK- 1 has been implicated

in CD8+ T cell proliferation and survival. Dietrich Conze from the Rincon Lab showed

that JNK- 1 is important for CD8+ T cell proliferation , while Natalie Arbour from the

Oldstone Lab demonstrated that loss of JNK 1 resulted in the impaired expansion of the

CD8+ T cell compartment in response to LCMV due to increased T cell apoptosis (159

160). Activation of the JNK MAP-kinase signallng pathway is downstream of Itk in the

TCR signalling cascade and loss of Itk results in reduced activation of JNK in CD4+ T

cells (81 , 100). It is a reasonable possibility that loss of Itk would negatively affect



147

activation of JNK 1 and contribute to the increased cell death observed during the CD8+

T cell immune response in Itk -/- mice.

Loss of Itk has also been shown to affect activation of the NFkB signalling

pathway in CD4+ T cells (Micheal Li - unpublished data). In addition to being important

for T cell activation and effector functions such as proliferation, expansion and cytokine

production , NFkB is also important in T cell survival and maintenance (SO, 161). It is

conceivable that impairment of NFkB activation in Itk deficient CD8+ T cells could also

potentially affect CD8+ T cell survival during the LCMV immune response and

consequently impairs expansion of the CD8+ compartment in these mice. Since Rlk is

also supposed to be upstream of JNK activation , it is perplexing that the combined loss of

Itk and Rlk did not exacerbate the cell survival defect observed. However, it is a formal

possibility that Rlk is not as important as Itk for activation of the JNK MAP-kinase

signalling pathway.

Another factor contributing to the defective accumulation of Itk -/- and Itk -/- Rlk

/- CD8+ T cells during the immune response is impaired CDS+ T cell survival of the

responding populations of Itk -/- and Itk -/- Rlk -/- mice. This was not due to impaired

levels of anti-apoptotic molecules such as Bel-2 and Bel- , as analysis of the protein

expression levels in CDS+ T cells at the peak of the immune response , detected no

differences between WT , Itk -/- and Itk -/- Rlk -/- CD8+ T cells. However, the regulation

of cell survival versus cell death is very complex. The survival of CD8+ T cells

responding to infection depends not only on the expression of anti-apoptotic , but also on

the balance maintained between pro-apoptotic and anti-apoptotic molecules. As such it is
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possible that the ratio of pro-apoptotic to anti-apoptotic molecules may be higher in

CD8+ T cells lacking Itk and both Itk and Rlk than in WT CD8+ T cells. The regulation

of expression of these proteins, in addition to being regulated by the presence or absence

of growth factors such as cytokines , may also depend on the fidelity of the signal

downstream of the TCR activation (162, 163). This is an area of Itk -/- and Itk -/- Rlk -

CD8+ T cell biology that remains to be explored.

Loss of Itk and Rlk also affected the CD8+ T cell effector cytokine response. As

shown in Figure 3.4, a smaller proportion of Itk -/- and Itk -/- Rlk -/- CDS T cells respond

to np396 peptide stimulation by making IFNy. In addition , Itk -/- and Itk -/- Rlk -/- CD8

T cells make less of the effector cytokines IFNy and TNFa , as estimated by analysis of

Median Fluorescent Intensity (MFI). Combined with the defect in CD8+ T cell

expansion , loss of Itk and Rlk significantly affected the overall magnitude of the LCMV

antigen specific response (Figure 3.4). This was also true of the OT- l+ Itk -/- T cell

response to infection , where fewer cells were capable of producing effector cytokines in

response to antigen specific peptide stimulation , and also produced less cytokine as

determined by analysis of the MFI. These data reinforce, once again , the importance of

Itk and Rlk in the activation of transcription factors such as NFAT , NFKB and the AP-

complex that are important for the transcription of cytokine genes such as IFNy and

TNFa.

The impaired accumulation of CD8+ T cells during the primary immune response

in Itk -/- and Itk -/- Rlk -/- mice did not affect the expansion of the CD8+ T cell

compartment to in response to secondary infection, although the magnitude of the
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primary immune response has been shown to affect the burst size of the memory CD8+ T

cell response (153). Interestingly however, I observed differences in the cytokine profiles

of the memory CD8+ T cell response in the Itk -/- and Itk -/- Rlk -/- mice. Memory

CD8+ T cells secrete both IFNy and TNFa in response to peptide stimulation, while

effector CD8+ T cells have a predominant population of cells producing only IFNy and a

minor population producing both IFNy and TNFa (154). Unlike WT CD8+ T cells, Itk-

/- and Itk -/- Rlk -/- CD8+ T cells instead have a mixed population of cells producing

only IFNy and of double producers. This cytokine profile is indicative of WT cells

undergoing a primar immune response (Figure 3.8). This data suggests that in addition

to impacting the ability of CD8+ T cells to make these cytokines, loss of Itk and Rlk

impairs the co-ordinate regulation of IFNy and TNFa cytokine expression in CD8+ T

cells. Cytokine expression is in part governed by the accessibility of the cytokine locus

to transcription factors (164, 165). It has been shown that in previously activated cells

cytokine loci are permanently remodelled to permit faster activation of cytokine

expression in response to secondar stimulation (166). It is possible that loss ofItk and

Rlk affects the program of remodellng that cytokine loci undergo in previously activated

CD8+ T cells.

Despite being able to generate a population of IFNy+ TNFa+ CD8+ T cells

during the memory response, Itk -/- and Itk -/- Rlk -/- CD8+ T cells were unable to

produce TNFa during the primar immune response. Transcription ofTNFa in activated

T cells is dependent on an efficient calcium flux and the subsequent activation ofNF A 

(167, 168). There are also putative NFkB , AP- 1 and Egr 1 binding sites in the TNFa
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promoter region (169). Given the importance ofItk in the translocation ofNFATc to the

nucleus, and in the activation of pathways leading to efficient activation of NFkB, AP-

and Egr transcription factors, it is likely that both Itk and Rlk are involved in regulation

of transcription of TNFa. TNFa expression is also post-transcriptionally regulated and

activation of p38 MAP-kinase is important for stability of TNFa RNA(170). Since Itk

and Rlk are important for activation of the p38 MAP-kinase pathway, it is formally

possible that this pathway is affected. Given that tre memory cells are able to respond

to much lower levels of stimulation with cognate antigen, this may indicate that the TCR

induced signal necessar for transcription of the TNFa locus is qualitatively different in

memory versus naIve CD8+ T cells. Alternatively, it is possible that the small proportion

ofItk -/- and Itk 1- Rlk -/- CD8+ T cells that are capable of making both IFNy and TNFa

in the acute response , although very few, preferentially surive into the memory phase of

the response.

These experiments demonstrate the importance of signallng molecules such as Itk

and Rlk on the fidelity of the CD8+ T cell immune response, and the influence of the

strength of the signal transmitted downstream of the TCR on the fate of the responding

CD8+ T cell. These studies are in keeping with experiments showing that the strength of

the TCR stimulus sets the threshold of CD8+ T cell responsiveness , and affects the

capacity of CD8+ T cells in an immune response to accumulate in-vivo and to survive the

cytokine withdrawal of the later phases of the immune response (171).

Itk and Rlk were previously found to be important for CD4+ T cell development

activation and function. These results describe for the first time the effect of loss of Itk
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and Rlk specifically on CD8+ T cell signalling and on the CD8+ T cell immune response

at the single cell level. These studies extend our understanding of the role of Itk and Rlk

in the adaptive immune process, and are also potentially important for furthering our

understanding of factors that modulate vaccine based CD8+ T cell immune responses.
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CHAPTER IV

DISCUSSION AND FUTURE DIRECTIONS
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DISCUSSION AND FUTURE DIRECTIONS

An effective T cell mediated immune response requires that the T cell be capable

of integrating multiple signals from its external environment and generate the appropriate

effector functions for the situation at hand. The efficient transduction of signals from the

TCR is an integral part of T cell function and the T cell depends on the optimal

integration of signals transmitted through the mature TCR a complex for the fidelity of

the majority of its developmental and effector processes. This dependency begins in late

thymocyte development and ends when the mature T cell finally undergoes apoptosis in

response to homeostatic stimuli. Signalling molecules downstream of the TCR complex

play an important role in maintaining the fidelity of the T cell signalling program

following TCR activation. They do this by regulating the complex crosstalk between

TCR mediated signals and the signals to other stimuli such as cytokines that together

facilitate maximal T cell function. Itk and Rlk are two such important signalling

molecules. Itk and Rlk are first importnt in the later TCR dependent phase of thymocyte

development, when immature DP thymocytes undergo positive and negative selection

and lineage commitment, as removal of Itk and Rlk from the TCR signalling cascade

impairs the positive selection of CD4+ and CD8+ SP thymocytes. The data presented in

Chapter II of this thesis shows that in addition to modulating the TCR dependent

signallng thresholds that regulate thymocyte development, Itk and Rlk playa role in the

regulation of the IL-7 common yc dependent lineage maturation of CD8+ SP thymocytes.

Loss of Itk and Rlk modulates the signalling threshold downstream of the

common yc cytokines IL-7 and IL- 15 by making CD8+ T cells more sensitive to signals
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downstream of the IL 7R and the ILI5R, such as phosphorylation of ST AT-5. These data

are a first indication that Tec kinases are important for signalling downstream of cytokine

receptors in T cells and introduces the intriguing possibility that Itk and Rlk may either

regulate the crosstalk between the TCR dependent and cytokine receptor dependent

signals that drive thymocyte development, or are directly involved in the regulation of

signals downstream of cytokine receptor activation. These findings open up a potential

new area of study in the role of Itk and Rlk in T cell function: the activation and

regulation of signalling molecules downstream of cytokine receptor activation.

Itk and Rlk in Cytokine Signalling

As detailed in Chapter II , in the absence of Itk and Rlk, CD8+ SP thymocytes are

more sensitive to cytokine stimuli. For example, Itk -/- and Itk -/- Rlk -/- CD8+ SP

thymocytes have higher levels of phosphorylated STAT -5 after stimulation with the

common yc cytokines IL-7 and IL-15 than WT CD8+ SP thymocytes. These experiments

need to be repeated and extended to look at the effects of these cytokines on CD8+ SP

thymocyte survival, proliferation and effector cytokine production. There is precedence

for the involvement of the Tec kinases in cytokine signalling, as the Tec kinases Tec and

Btk have previously been shown to be phosphorylated and activated downstream of IL-

GM-CSF and IL-6 stimulation in myeloid and pro - B cells lines (132, 172). It is

possible, that lowering the strength of the TCR signal during the CD8+ SP lineage

maturation process negatively impacts the regulation of cytokine signals during this stage

of thymocyte development. The hyperresponse of the Itk -/- and Itk -/- Rlk -/- CD8+ SP
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thymocytes to cytokine signals suggests that these proteins are involved in the negative

regulation of cytokine signalling. The Suppressors of Cytokine Signalling (SOCS)

family of proteins negatively regulates cytokine signalling. SOCS- , the first member of

this family to be identified , is expressed throughout thymocyte development, with the

highest expression occurring in DP thymocytes. CD8+ SP thymocytes retain expression

of SOCS- , albeit at much lower levels than DP thymocytes, and SOCS- l is not

expressed in CD4+ SP thymocytes (26). In the absence of SOCS- , CD8+ 

thymocytes become hypersensitive to cytokine signals, particularly IL-7 and IL- 15, and

become CD44hi. As such, it would be interesting to look at SOCS- l expression at both

the RNA and protein level in Itk -/- and Itk -/- Rlk -/- thymi to determine whether Itk and

Rlk are important either directly or indirectly in the regulation of SOCS- l expression.

Interestingly, SOCS- l expression is maintained in peripheral CD8+ T cells but not in

peripheral CD4+ T cells. As such , these experiments can also be done on peripheral

CD8+ T cells, to see whether Itk and Rlk are involved in the regulation of cytokine

signalling in peripheral CD8+ T cells, or in the integration of TCR dependent and

cytokine dependent pathways in these cells. A potential caveat to these investigations is

the CD44hi phenotype of the CD8+ SP thymocytes in Itk -/- and Itk -/- Rlk -/- mice , as a

similar population of cells is not present in the thymus of WT mice. As such , it may be

useful to do these investigations using a MHC Class I restricted transgenic system. It

would also be interesting to use MHC Class I restricted transgenics that have different

efficiencies of positive selection, to see whether modulation of the strength of the TCR

signal in the absence of Itk and Rlk affects CD44 expression on the Itk -/- and Itk -/- Rlk
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/- thymocytes. One might predict that an MHC Class I transgenic TCR with a high

avidity TCR and high selection efficiency would be less affected by the loss of Itk and

Rlk and would have WT levels of CD44 expression , while a transgenic with a lower

avidity would be more dependent on the presence of Itk and Rlk and may have higher

levels of CD44 expression in the absence of these signalling molecules. CD8+ SP

thymocytes and peripheral T cells from these different transgenic models can then be

used to ask questions about the influence of cytokines such as IL-7 and IL- 15 on CD8+ T

cell development and function.
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Figure 4.1: Model of Itk and Rlk in CD8+ SP Thymocyte Development

This model ilustrates how lowered TCR dependent signals in the absence of Itk and both

Itk and Rlk affect CD4+ SP thymocyte positive selection and CD8+ SP thymocyte

maturation during lineage commitment.

In the absence of Itk and Rlk, the strength of the TCR signal DP thymocytes receive is

lowered. This shifts the signalling threshold for positive selection such that fewer CD4+

SP thymocytes are generated.

WT CD8+ SP thymocyte development depends on a lower strength of signal than WT

CD4+ SP thymocyte development. A further lowering of this threshold in the absence of

itk and Rlk could affect the regulation of IL-7 and possibly IL- 15 cytokine signals upon

which CD8+ SP thymocytes maturation seems more dependent. The expression of

molecules such as SOCS- , which negatively regulates cytokine signallng, and Pim -

which regulates the stability of SOCS- 1 protein levels , may be negatively affected by a

lowering of the TCR signals developing CD8+ SP thymocytes receive. This would make

the Itk -/- and Itk -/- Rlk -/- CD8+ SP thymocytes more sensitive to stumulation with IL-

and IL- 15 and lead to their accumulation and subsequent upregulation of CD44, two of

the effects caused by exposure of CD8+ cells to these common yc cytokines.

TCR dependent signals received in the absence of Itk or both Itk and Rlk are indicated by

the dashed arrows, while WT TCR dependent signals are ilustrated by the filed arrows.
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Itk and Rlk in CD8+ T Cell Survival

The in-vivo experiments in Chapter III show that in the absence of Itk and Rlk

CD8+ T cell proliferation and cell survival are diminished, leading to the cumulative loss

of T cell numbers at the peak of the LCMV response. In addition , fewer CD8+ T cells

make less of the effector cytokine IFNy, while the ability to make TNFa is lost during the

primary immune response. Accumulation of CD8+ T cells at the peak of the response is

also impaired in the OT -I TCR transgenic response to infection with a recombinant

Vaccinia virus expressing the OVA OT-I epitope. The frequency of cells making IFNy

and the amount of IFNy made on a per cell basis is also reduced. These data, together

with the in-vitro data showing that Itk -/- and Itk -/- Rlk -/- CD8+ T cells are impaired in

the activation of signalling pathways downstream of TCR activation show that removal

of Itk and Rlk from the TCR signalling cascade impairs CD8+ T cell fitness. This

impaired fitness is also demonstrated in-vitro as these cells are also impaired in their

ability to mediate effector functions such as CD8+ T cell proliferation and cytokine

production. One explanation for the impaired accumulation of CD8+ T cells at the peak

of the LCMV immune response is that these cells are impaired either in their ability to

proliferate or to survive after activation. Our data in the LCMV system , although

indicating that Itk -/- and Itk -/- Rlk -/- CD8+ T cells were indeed impaired both in their

ability to proliferate and survive in response to LCMV infection, was subject to several

caveats. These included diminished precursor frequencies of Itk -/- and Itk -/- Rlk -

LCMV responsive cells , as a significant fraction of the CD8+ CD44hi cells from Itk -

and Itk-/- Rlk -/- mice undergo apoptosis between day two - day three of the LCMV
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immune response as has been previously demonstrated. In addition , there seemed to be

lower LCMV titres in the spleens of Itk -/- and Itk -/- Rlk -/- mice early in infection

raising the possibility that a differential antigen load may have influenced the CD8+ T

cell response in the Tec kinase deficient mice. To circumvent these caveats , I looked at

the WT and Itk -/- OT- 1 T cell response to Vacc-OV A in an adoptive transfer system.

The OT - 1 experiment showed that in the absence of Itk, CD8+ T cells are impaired in

their ability to accumulate in response to infection and to produce the effector cytokines

IPNy and TNFa , reinforcing the importance of the Tec kinases in modulating T cell

fitness. This result once again raised the question of the role of Itk and Rlk in CD8= T

cell survival.

The processes regulating T cell survival are complex. Some of the molecules

regulating T cell survival include activation of NFKB downstream of TCR activation and

modulation of the ratio of pro-apoptotic to anti-apoptotic molecules that is controlled

both by TCR dependent processes and by growth factor stimuli such as cytokines.

Although I did not observe a difference in Bcl-2 or Bcl-XL expression levels in Itk -

and Itk -/- Rlk -/- CD8+ T cells in response to LCMV infection, it is possible that while

the expression of these particular anti-apoptotic molecules are similar, the expression

levels of pro-apoptotic molecules such as Bim may be differentially affected by the loss

of Itk and Rlk. This hypothesis can be tested by western blot or FACS analysis of the

relative expression levels of these and other pro and anti-apoptotic molecules in activated

, Itk -/- or Itk -/- Rlk -/- CD8+ T cells. It is intriguing to think that given the apparent

sensitivity of Itk -/- and Itk -/- Rlk -/- CD8+ cells to IL-7 and IL- , that the withdrawal
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of one or the other of these cytokines that occurs during the peak phase of the immune

response , would affect the regulation of Bcl-2 family members in Itk -/- and Itk -/- Rlk -

CD8+ T cells. It would be interesting therefore to look at the influence of these cytokines

in-vitro on the survival of activated Itk -/- and Itk -/- Rlk -/- CD8+ T cells.
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CHAPTER V

MATERIALS AND METHODS
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Mice

Itk -/- mice were generated previously in our lab and are backcrossed at least nine times

to the C57 /Bll 0 (H- ) background. Itk -/- Rlk -/- deficient mice were a kind gift from

Pamela Schwartzberg, and were backcrossed at least 5 times to the H- background.

C57/BllO non-litter mate mice were used as controls. IL- I5 -/- mice on a B6 background

were obtained from the Immunex Corporation through Dr. Joonsoo Kang and were

crossed to the Itk -/- mice. All mice used were between 6 - 12 weeks of age and were

maintained at the University of Massachusetts Medical Center mouse facility where they

were housed under pathogen free conditions.

CDS T Cell Isolation and Stimulation

Single cell suspensions were made from spleens and lymph nodes of WT , Itk -/- and

Itk -/- Rlk -/- mice. After RBC lysis and washing, the cells were spun down and

resuspended in 90A. Macs Bfr (IX PBS/2mmEDTA/0.5%BSA) per lx10 cells and then

labelled with lOA. of CDS Macs Beads/Ix 10 cells. The cells were then incubated in the

refrigerator for 12 - 15 mins and washed before being run over the AutoMacs columns

and positively selected. After selection , the CDS T cells were stimulated with PMA (1.25

- 2.5ng/ml) and Ionomycin (187.5 - 375 ng/ml) at a concentration of 5 x 10 cells/ml for

36 - 48 hrs. At the end of this time period , the cells were spun down and washed with

RPMI- lO to remove the PMA/Ionomycin and then expanded in RPMI- I0 containing 20%

IL-2 supernatant. These cultured CD8+ T cells were then used for various in-vitro

analyses.
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3H Proliferation

1 - 2 X 10 purified and cultured CDS T cells were incubated with a titration of

platebound anti-CD3 and anti-CD28 at 37 C in duplicate or triplicate in a 96 well plate.

To coat plates, wells were initially incubated with 50A of 5 f-g/ml goat anti-hamster

antibody in carbonate buffer pH 9.5 for I - 2 hrs at 37 C. Following incubation , the

wells were washed with IX PBS and then incubated with 75A of a titration of anti-CD3

(2CII clone) and anti-CD28 for 1 - 2 hrs at 37 C. 48 hrs after stimulation, the cells were

pulsed with 3H at I f-Ci/well. The cells were harvested 20 hrs later using a TOMTEC

harvester and proliferation assessed by measuring 3H incorporation using a Microbeta

scintillation counter.

CFSE Labellng

Whole lymph node suspensions , cultured CD8+ T cells or CD8+ T cells isolated directly

ex-vivo were labelled with If-M CFSE in IX serum free PBS at a concentration of 2.5 x

cells/ml for 20 mins at 37 C. The cells were then spun down and resuspended in

media containing 10% serum, and were ready for use in multiple assays.

Intracellular Cytokine Staining

Whole lymph node suspensions, cultured CD8+ T cells or CD8+ T cells isolated directly

ex-vivo were stimulated with a titration of plate-bound antibodies in media containing

Brefeldin A and Monensin (golgi-plug and golgi-stop). The incubations were done for

5hrs at 37 C. Following incubation, the cells were spun down and stained first for
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surface antigens and then for the cytokines IFNy, TNFa and IL-2 using the intracellular

stain Cyto-fix/Cyto-perm kit from Pharmingen.

Calcium Flux Analysis

For calcium flux analysis I x 10 isolated WT , Itk -/- and Itk -/- Rlk -/- CDS T cells were

removed from culture and resuspended in Iml RPMI-O. The cells were loaded with the

calcium sensitive dyes Fluo-3 and Fura Red for Ihr at 37 C. 1 x 10 cells were removed

to serve as unstimulated controls. The remaining cells were first labelled with 25 g of

biotinylated anti-CD3 for 45s then crosslinked with 40 g of strepavidin for 5 mins. As a

positive control the cells were stimulated with Ionomycin for 6 mins. The calcium flux

was calculated by ratioing the intensities of the fluo-3 and Fura-Red dyes over time using

the Facs Assistant Software (BD Biosciences).

PLCy AND MAPK Phosphorylation

To assess activation of MAP-kinase signalling pathways, 2.5 - 5 x 10 , Itk -/- and Itk

/- Rlk -/- CD8+ T cells were labelled with 25 g/ml of biotinylated anti-CD3. The CD8+

T cells were then activated for various times by cross-linking with strepavidin. As a

positive control , cells were stimulated with PMA at a concentration of 2.5ng/ml and

Ionomycin at 375 ng/ml. The reactions were quenched by addition of Iml of ice-cold

stop solution (IX PBS containing 20mM NaF and ImM Na . The cells were spun

down , the supernatants were removed and the cell pellets lysed for 15 mins on ice using

50", of protein lysis buffer containing 25mM HEPES (pH 7.5), 150mM NaCl , ImM
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EDT A, 1mM EGT A, 1 % Triton- , 1mM PMSF, 1mM Na and 10!-g/mlleupeptin.

50)" of 2X protein loading buffer was then added to each cell lysate. 25)" of total cell

lysate was resolved on a 10% SDS-page gel , transferred to Immobilon-P membrane

blocked and then blotted for phosphorylated PLCy, p42/44 MAPK (ERK), p-38 and p-

JNK MAP-kinases. Membranes were then either blotted for the PI3K subunit p85 or

stripped and reprobed for total PLCy1 , p42/44 ERK, p38 or JNK as protein loading

controls.

Antibodies, Other Reagents and F ACS Analysis

CD8-fitc , CD4- , CD44-cy, TNFa-apc, IFNy-pe, Granzyme B-pe and CD3-bn were all

purchased from BD Pharmingen. Immobilon-P membrane was purchased from Milipore

(Bedford, MA). Antibodies to phospho PLCy- 1783, ERK , p38 and SAPK/JNK were all

purchased from Cell Signalling Technologies , Beverly, MA. BrdU was purchased from

Sigma Aldrich (St. Louis, MO. Anti-BrdU-fitc Ab was obtained from BD Biosciences.

CFSE was purchased from Molecular Probes (Eugene , OR). For FACS Analysis , cells

were as indicated , stained at 4 - 12 C in the refrigerator, washed and resuspended in Facs

Buffer (IX HBSS, 2% FCS). Antibody staining was analysed using a FACSCalibur (BD

Biosciences) and data analyzed using Flowjo software (Treestar).

LCMV Infection

To generate acutely infected mice, WT, Itk -/- and Itk -/- Rlk -/- mice were infected

intraperitoneally with 100)" of LCMV Armstrong at 2 - 5 X 10 pfu/ml. Spleens were
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harvested on various days post infection (d2 - dll for acute infection and d63 for

analysis of the memory response) and single cell suspensions generated. The red blood

cells were lysed by incubation in buffered ammonium chloride for two to five minutes.

Cells were then washed and resuspended in RPMI - 10 for further analysis.

Plaque Assay

V iral supernatants were generated from infected spleens harvested at various times post

LCMV infection. The spleens were cut in half and ground in Iml of media. The

resulting tissue suspension was spun at 1500 rpm for 15 mins and supernatants removed

and frozen in 500 ml aliquots. For assessment of viral titres , an aliquot of viral

supernatant was thawed and then serially diluted. Briefly, 100"- of each serial dilution

was added to one well of a six-well plate containing an approximately 70% confluent

monolayer of Vero cells. The plates were incubated at 37 for 90 mins and then each

well was overlaid with a 1: 1 mixture of agarose and EM EM complete (1 part O.

Seakem agarose: 1 part EMEM complete - 2X EMEM, 6 mls FCS, 5 mls Penn-Strep

Glutamine). 4 days later, the plaques were visualised by overlaying the current agarose

layer, with 2mls of the above-mentioned agarosemix containing 1 % neutral red.

CTL Assay

RMA target cells were incubated with lOuM gp 33 or np 396 peptide and 51Cr for Ihr at

C. After extensive washing, 1 x 10 targets were incubated with splenocytes from d7

, d9 and dll LCMV infected mice at various E: T ratios in a 96 well plate. The cells
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were incubated for 5 hrs at 37 C. At the end of the incubation period , the plate was spun

at 200g for 5 mins. and 70"A of supernatant removed for analysis of Cr release.

In- Vivo Cytotoxicity Assay

Splenocyte suspensions from WT uninfected animals were labelled with 0.
M and 0.3

M CFSE and then loaded with l M of gp 33 or a reference peptide respectively. The

labelled cells were then counted resuspended at 2 x 10 /ml and mixed at a 1: 1 ratio. 200"A

were then injected into either WT, Itk -/- or Itk -/- Rlk -/- mice at dS post-infection or

uninfected controls. Spleens were harvested 5 hrs after injection and specific kiling

assessed by calculating the percent loss of the peptide specific population by Facs

Analysis of the relevant CFSE labeled populations.

Peptide Stimulations and ICS analysis/Analysis of Epitope Specific 
Response

Intracellular cytokine staining was used to quantitate LCMV specific gamma interferon

(IFNy), (TNFa) and IL-2 producing T cells. 2 - 4 X 10 splenocytes from WT, Itk-/- and

Itk-/- Rlk -/- mice were incubated with LCMV specific peptides (2 g/ml; gp 33 , np 396

gp 276, np 205 (CD8 epitopes) and gp 61 , np 309 (CD4+ epitopesJ) in - vitro for 5 hrs at

, in medium containing Brefeldin A and Monensin (golgi-plug and golgi-stop).

After incubation , cells were spun down and stained first for surface expression of CD4

and CD8 and then intracellularly for IFNy, TNFa and IL- , using the Cytofix/Cytoperm

Kit from Pharmingen. Intracellular staining was also used to analyze Granzyme B

expression in CD8 T cells during LCMV infection.
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Tetramer Analysis

Tetramer stain analysis was done on splenocytes from dS and d9 infected mice. 2 x 10

cells were incubated in Fc-block (1/200) plus strepavidin for 20 mins. Cells were washed

twice and then 4"- of tetramer in 1Off of FACS buffer containing 0.01 % azide was

added to each sample. The samples were then incubated for Ihr at 4 - 12 , washed

twice, fixed for 5 mins in 100"- Cytofix reagent from Pharmingen , washed and then

resuspended in 200"- of buffer for FACS analysis. Tetramers used, gp 33-pe H2b and np

396-pe H2b were a kind gift from R. Welsh (UMass).

BrdU Labellng

LCMV infected mice were injected intraperitoneally with 100"- of BrdU (15mg/ml in

PBS) 12 hours before harvest. 4 x 10 splenocytes were then added to the wells of a 96

well plate , washed and then stained for surface antigens such as CD4, CDS and CD44.

The cells were then washed once in PBS and then fixed in Cytofix/Cytoperm

(Pharmingen) for 20 mins at 4 - 12 C. The cells were washed by spinning at 3000rpm

for 5 mins, and then fixed again with a freshly made solution of 1 % formaldehyde

containing 1 % Tween-20. Cells were usually left at this stage until the last time-point

was harvested. To stain for BrdU, cells were spun down and washed twice in PBS at

room temperature. All remaining steps were doneat room temperature. The cells were

resuspended in 200"- of Dnase Solution (750"- 5M NaCI , 105"- 1M MgCI2 , 250"- ImM

HCI , 24mg Dnase , 23.9 mls dH20), and incubated at RT for 10 - 30 mins. The cells

were then washed once and incubated in 50"- of a 1 :50 dilution of anti-BrdU for 30 mins.
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At the end of the incubation period the cells were washed twice and then analyzed using

the FACSCalibur BD Bioscicences and Aowjo software.

Annexin-V and 7-AAD Staining

2 - 4 X 10 splenocytes from LCMV infected mice were stained extracellularly for CD4

or CDS, CD44 and Annexin-V fitc in 100A of IX Annexin-V buffer (Pharmingen). To

these samples was added SA of the vital dye 7-amino actinomycin D (7-AAD). The cells

were incubated for 20 mins at 4 C, washed twice with 200A of Annexin- V buffer and

then resuspended in 200A of Annexin-V buffer for FACS analysis. Cells were not fixed

for extended periods as this resulted in lower levels of Annexin- V staining. If cells were

fixed, SA of Cytofix (Pharmingen) was added per IOOA of Annexin- V buffer.

Adoptive Transfer of Memory LCMV -specifc CD4 T Cells

WT CD4S. I congenic mice were infected with LCMV and rested for 2 months. CD4+ T

cells were then isolated using CD4+ beads and the Automacs. 1 x 10 donor CD4S. I CD4

T cells were injected into WT , Itk -/- and Itk -/- Rlk -/- CD4S.2 host mice. Host mice

were then infected with LCMV. Host mice receiving only CD4+ cells or host mice only

infected with LCMV were used as controls. Mice were harvested eight days post-

infection and WT, Itk -/- or Itk -/- Rlk -/- host CDS T cell expansion assessed.
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Adoptive Transfer ofOT- l WT and Itk CDS T cells

CD8+ T cells were isolated from pooled single cell suspensions of OT- l WT and Itk -

spleens and lymph nodes. The cells were than labelled with CFSE and 5 x 106 cells

injected intravenously into WT CD45. 1 congenic hosts. The hosts were infected 24

hours later with 1 x 107 pfu of the recombinant Vaccinia - OVA construct. Staining for

expression of CD45. , CD8 and Va2 identified cells responding to infection. The antigen

specific response was analysed by assessing the effector cytokine response to stimulation

with the OT -1 specific epitope SINFEKL.

Cytokine Stimulations and Analysis of STAT 5 phosphorylation

To look at the effect of cytokines on T cell effector function and Stat -5 phosphorylation

total thymocytes and total lymph node cells (1 - 20 x 105) were incubated with a 1 :20

dilution of IL-2 and IL-7 supernatant and 4Ong/ml of murine IL- 15 in media containing

Img/ml BSA and 0.5% FCS , for 48 - 72 hours at 37 C in 48 or 96 well culture plates.

Cytokine induced Stat-5 phosphorylation was examined by intracellular staining. Cells

were stimulated for 30 mins to allow for maximal Stat-5 phosphorylation. Immediately

following cytokine stimulation , an aliquot of cells were fixed in 2% PFA for 10 mins at

room temperature (RT) to serve as positive controls. The remaining cells were washed

and returned to culture without cytokine. Aliquots were drawn at different timepoints

and fixed. The fixed cells were then washed in IX PBS and incubated in

methanol:acetone (1: 1 vol/vol) for 30 mins on ice. Cells were rehydrated by washing in

IX PBS/2% FCS. They were then incubated with anti-phospho-Stat-5 antibody for 30
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mins in IX PBS/2% FCS, washed and then incubated with anti-rabbit IgG Oregon green

488 for 30 mins. To stain for expression of surface markers the cells were blocked in Fc

block and then incubated with CD4, CDS and CD44 antibodies in IX PBS/2% FCS.

Fetal Thymic Organ Culture (FTOC)

Thymi isolated from dI5 - d17 fetal mIce were cultured on round nitrocellulose

membranes (Milipore Corp. Bedford, MA) placed on inserts made of stainless steel mesh

(Small Parts Inc. Miami , FL). Thymi were cultured for 7 - 14 days at 37 C, and then

analysed for distribution of CD4, CDS and CD44.

Re-aggregate Thymic Organ Culture (RTOC)

For RTOC, thymi isolated from dI4 - dI5 mice were pooled and then digested for 4 - 6

mls of a pre-warmed enzyme mixture containing dispase (0. 8U/ml), collagenase

(0. U/ml) and DNAse (150U/ml) in serum free IX HBSS. The cells were incubated for

10 mins at 37 C, then cells were spun down and the pellet further resuspended in 3mls

enzyme mixture for another 10 mins. I ml FCS was added to stop the digestion. The

cells were then sedimented, the supernatant aspirated and the cells resuspended by lightly

tapping tube. The cells were then pi petted unto a dry fiter to form a standing drop using

a fine tipped glass capilary pipette. The filter was then placed on mesh inserts in 24 well

plates at the interface of media containing 10% FCS.
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