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ABSTRACT 

 

In multicellular organisms, determining when and where genes will be 

expressed is critical for their development and physiology. Transcription factors 

(TFs) are major specifiers of differential gene expression. By establishing 

physical contacts with the regulatory elements of their target genes, TFs often 

determine whether the target genes will be expressed or not. These physical 

and/or regulatory TF-DNA interactions can be modeled into gene regulatory 

networks (GRNs), which provide a systems-level view of differential gene 

expression. Thus far, much of the GRN delineation efforts focused on metazoan 

development, whereas the organization of GRNs that pertain to systems 

physiology remains mostly unexplored.  

My work has focused on delineating the first gene regulatory network of 

the nematode Caenorhabditis elegans metabolic genes, and investigating how 

this network relates to the energy homeostasis of the nematode. The resulting 

metabolic GRN consists of ~70 metabolic genes, 100 TFs and more than 500 

protein–DNA interactions. It also includes novel protein-protein interactions 

involving the metabolic transcriptional cofactor MDT-15 and several TFs that 

occur in the metabolic GRN. On a global level, we found that the metabolic GRN 

is enriched for nuclear hormone receptors (NHRs). NHRs form a special class of 

TFs that can interact with diffusible biomolecules and are well-known regulators 
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of lipid metabolism in other organisms, including humans. Interestingly, NHRs 

comprise the largest family of TFs in nematodes; the C. elegans genome 

encodes 284 NHRs, most of which are uncharacterized. In our study, we show 

that the C. elegans NHRs that we retrieved in the metabolic GRN organize into 

network modules, and that most of these NHRs function to maintain lipid 

homeostasis in the nematode. Network modularity has been proposed to 

facilitate rapid and robust changes in gene expression. Our results suggest that 

the C. elegans metabolic GRN may have evolved by combining NHR family 

expansion with the specific modular wiring of NHRs to enable the rapid 

adaptation of the animal to different environmental cues. 
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Preface to Chapter I 
 

This chapter introduces the concept and significance of gene regulatory 

networks (GRNs), and those that pertain to systems physiology. Also introduced 

is the use of Caenorhabditis elegans as a model system to study physiological 

GRNs, and the role of transcriptional regulation on energy homeostasis with the 

emphasis on nuclear hormone receptors.  

Most of this chapter has been published separately in: 

Arda, H. E., and Walhout, A. J. (2009). Gene-centered regulatory networks. Brief 
Funct Genomic Proteomic 9, 4-12.  

 
Arda, H. E., Taubert, S., MacNeil, L. T., Conine, C. C., Tsuda, B., Van Gilst, M., 

Sequerra, R., Doucette-Stamm, L., Yamamoto, K. R., and Walhout, A. J. 
M. (2010). Functional modularity of nuclear hormone receptors in a 
Caenorhabditis elegans metabolic gene regulatory network. Mol. Syst. Biol 
6, 367. 
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CHAPTER I  
 

Gene-centered Regulatory Networks  
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Introduction 
 

Differential gene expression is essential for the establishment of body 

plans and physiology of multicellular organisms. Genes need to be turned on or 

off at the right place and the right time in order to instruct organogenesis and to 

maintain post-developmental physiology. In the developing mouse embryo, Oct4, 

Sox2, Klf4 and c-Myc genes are expressed early during development and 

function to preserve the pluripotency of uncommitted stem cells (Takahashi et al., 

2007). Their expression is sufficient to preserve or induce this unique cellular 

property, while their misexpression later in life can cause cancer. On the other 

hand, a different group of genes is activated upon cellular differentiation, such as 

the Pax6 gene that is required for eye development in a variety of organisms 

(Gehring and Ikeo, 1999). Likewise, in Drosophila embryos, the spatiotemporal 

expression of gap and pair-rule genes is crucial for defining segmentation 

patterns and development (St Johnston and Nüsslein-Volhard, 1992). Finally, yet 

another group of genes is expressed in specialized, fully differentiated tissues to 

enable post-developmental functions in physiology throughout the lifetime of an 

organism. A textbook example is the insulin precursor gene, which is specifically 

expressed in the pancreas and regulates the level of glucose in the blood after 

food intake.  

Differential gene expression is a highly regulated and controlled process. 

It occurs at the first level by the action of regulatory transcription factors (TFs): 
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proteins that recognize specific nucleotide sequences and initiate contacts with 

genomic DNA at regions containing these sequences. These sites on genomic 

DNA are referred to as ‘cis-regulatory elements’, and are usually located in the 

promoter or enhancer regions of target genes [reviewed in (Walhout, 2006)]. The 

interactions between TFs and cis-regulatory elements often result in either 

activation or repression of target gene transcription, depending on the cellular 

context. In addition to TFs, transcriptional cofactors, proteins that interact with or 

are part of the core transcriptional machinery or protein complexes that modify 

chromatin (e.g. histone acetylation, methylation, etc.) can modulate the function 

of TFs by forming physical interactions with TFs (Näär et al., 2001; Rando and 

Chang, 2009). Also, RNA binding proteins, mRNA stability, export and splicing, 

microRNAs [reviewed in: (Ambros, 2004)], and post-translational modifications all 

contribute to differential gene expression. However, it is transcriptional regulation 

which first and foremost determines where and when a gene is expressed, 

whereas other types of regulation often modulate and dampen gene expression, 

rather than to determine it. 

 

What are gene regulatory networks? 

Physical and regulatory interactions between genes and their regulators, 

as well as the interactions within the regulators can be visualized as graph 

models. These models often have the form of a network, and are collectively 

referred to as gene regulatory networks (GRNs) (Erwin and Davidson, 2009). In 
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these networks, the regulatory components and targets are the ‘nodes’, and the 

relationships between them are the ‘edges’ of the network (Walhout, 2006; Arda 

and Walhout, 2009) (Figure 1.1). The availability of genome sequences of 

diverse organisms and the development of genome-scale, high-throughput 

technologies allowed researchers to collect large amounts of information 

regarding differential gene expression. The GRN models generated using high-

throughput data reveals recurring patterns of gene regulation on a global scale 

across different species (see below), and provides novel insights into the 

mechanisms of transcriptional regulation by connecting global and local network 

organization to network functionality (Milo et al., 2002; Segal et al., 2003; Babu et 

al., 2004; Vermeirssen et al., 2007a; Martinez et al., 2008). 

GRNs are often highly complex, particularly when large numbers of 

interactions are incorporated, which makes them difficult to interrogate by eye 

(Figure 1.2A). Instead, a variety of computational and mathematical tools for 

network analysis need to be used. These tools can inform us about the 

properties of the network as a whole, or identify important network 

neighborhoods such as 'modules', or find overrepresented network building 

blocks, such as 'motifs' (Figure 1.2B). At the level of whole networks, measures 

that are often used are the degree and degree distribution (Barabási and Oltvai, 

2004). The degree is defined as the connectivity of individual nodes, i.e. the 

number of TFs bound by a DNA fragment or the number of DNA fragments 

bound by a TF. These are referred to as incoming and outgoing degree, 



6 

respectively. The degree distribution provides information about the overall 

network connectivity. In the majority of biological networks, the degree 

distribution follows a power law, rather than a normal distribution: most nodes 

have a relatively low degree, but a small number are disproportionally highly 

connected (Barabasi and Albert, 1999). These TFs and promoters are referred to 

as ‘hubs’. TF hubs interact with many genes, from many different tissues or 

organs. They are often essential, indicating their overall importance in gene 

regulation and development (Yu et al., 2004; Deplancke et al., 2006). 

‘TF modules’ are highly interconnected network neighborhoods that occur 

in GRNs. Such modules can contain functionally related genes and TFs. Several 

measures can be used to identify TF modules, including topological overlap 

coefficient (TOC) analysis, which essentially determines the similarity between 

TFs based on the target genes they share in the network (Ravasz et al., 2002; 

Vermeirssen et al., 2007a). Each pair of TFs is given a similarity or a TOC score. 

These scores are then used to generate a hierarchical clustering dendogram in 

which TFs with similar connections are positioned next to each other and this 

allows the identification of TF modules (Figure 1.2B). Vermeirssen et al. 

previously identified TF modules in a neuronal GRN and found that one of these 

was enriched for paired-type homeodomain TFs (Vermeirssen et al., 2007a). 

Interestingly, these TFs associate predominantly with genes that are exclusively 

neuronal and these TFs are themselves neuronally expressed. Moreover, the 

neuronal expression of paired-type homedomain TFs is conserved between C. 
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elegans and mice. This example illustrates how TF modules can be used to 

functionally annotate sets of TFs at a systems level. 

Network motifs are small building blocks composed of two or more 

interactions that are overrepresented in GRNs compared to randomized 

networks (Milo et al., 2002). Thus, such motifs represent successful mechanisms 

of gene regulation. One of the best-studied motifs is the feed-forward loop in 

which a TF regulates another TF and both share a downstream target (Mangan 

and Alon, 2003) (Figure 1.2B). This motif is found in GRNs from bacteria, yeast 

and C. elegans (Deplancke et al., 2006; Milo et al., 2002). Martinez et al. recently 

delineated the first genome-scale GRN that contains interactions between 

microRNA promoters and TFs, and predicted interactions between microRNAs 

and the 3’UTRs of TF-encoding mRNAs. Interestingly, this network contains a 

novel type of network motif: a feedback loop in which microRNAs and TFs 

reciprocally regulate each other (Figure 1.2B). The microRNAs and TFs that 

participate in these loops have a high flux-capacity: a combined high in-and 

outgoing degree. This indicates that such motifs may provide adaptable and 

robust gene expression programs [reviewed in (Martinez and Walhout, 2009)]. 

 

Experimental approaches to map GRNs: TF-centered vs. gene-centered 

methods  

Physical TF-DNA interactions can be experimentally delineated using two 

conceptually different but highly complementary approaches (Figure 1.3 and 
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Table 1.1). TF-centered (protein-to-DNA) methods start with a TF or set of TFs of 

interest and identify genomic DNA fragments with which these TF(s) interact. 

Chromatin immunoprecipitation (ChIP), protein binding microarrays (PBMs), and 

DamID are the most widely used TF-centered methods (van Steensel et al., 

2001; Mukherjee et al., 2004; Kim and Ren, 2006). ChIP has been particularly 

powerful for the identification of TF-DNA interactions in homogeneous systems 

such as yeast, and in mammalian tissue culture cells, including primary cells or 

stem cells. Although powerful, it is technically difficult to systematically apply 

ChIP to most TFs in heterogeneous and complex metazoan systems such as 

intact worms. Especially if the TFs are expressed at low levels, and some TFs 

may be expressed in a limited number of cells, or during a narrow developmental 

interval, therefore complicating the detection of specific signals. Further, the 

analysis of TF-DNA interactions in complex systems has been limited to a 

handful of TFs, due to the availability of antibodies that are suitable for ChIP 

assays. Therefore, complimentary approaches are needed for the delineation of 

GRNs. 

Gene-centered (DNA-to-protein) methods start with one or more 

regulatory DNA fragments and identify the TFs that can interact with these 

fragments (Walhout, 2006; Arda and Walhout, 2009). Seminal work from Eric 

Davidson and colleagues, who characterized the wiring of endo-mesodermal 

gene regulation in the sea urchin embryo, epitomizes the concept of gene-

centered regulatory network mapping (Davidson et al., 2002). This work focused 
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on the identification of cis-regulatory DNA elements to understand where and 

when genes are expressed during development, followed by the discovery of TFs 

that may regulate this process. The endo-mesodermal network has been 

delineated over the course of many years because the work required laborious 

assays that were not amenable to use in high-throughput settings in complex 

animals. In addition, the interactions identified are not necessarily direct, as 

physical associations are not immediately revealed. To provide a gene-centered 

method that can detect physical interactions between sets of genes and multiple 

TFs in a relatively short amount of time, we have developed a high-throughput 

version of the yeast one-hybrid (Y1H) system (Deplancke et al., 2004). With this 

method, interactions identified are strictly physical, as Y1H assays do not 

immediately reveal in vivo regulatory consequences (see also below). 
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Table 1.1 Advantages and limitations of TF-centered versus gene-centered 
methods  

TF-centered 
method (ChIP)

Gene-centered method 
(Y1H)

Start with a TF and find all 
possible genomic regions the 
TF can bind

Start with a genomic fragment 
(e.g. a gene promoter) and 
find TFs that can interact with 
the DNA fragment

Interactions captured in vivo Interactions captured are  
‘in levuro’

Powerful for the identification 
of protein-DNA interactions in 
unicellular or homogenous 
systems

Powerful for the identification 
of protein-DNA interactions 
that pertain to complex 
tissues or processes

Powerful for capturing 
interactions when TF activity 
depends on post-
transcriptional modifications 
or TF functions as a 
heterodimer

May miss interactions that 
involve TFs that are post-
transcriptionally modified, and 
cannot yet detect 
heterodimers

Limited by the endogenous 
expression level and/or 
spatio-temporal expression 
pattern of TFs, i.e. TFs that 
are expressed at high levels, 
or in a large number of cells 
can be assayed

Not limited by the 
endogenous expression level 
and/or spatio-temporal state 
of TFs, interactions found are 
‘condition-independent’

Limited by the availability of 
TF-specific antibodies No antibody is required
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Gateway-compatible yeast one-hybrid assays 

Y1H assays are conceptually similar to yeast two-hybrid (Y2H) assays, 

which have been used to identify thousands of protein-protein interactions in 

many systems, including C. elegans (Walhout et al., 2000; Li et al., 2004). 

Instead of using two hybrid proteins (a protein bait and a protein prey), the Y1H 

system uses a DNA bait and a single hybrid protein prey (Figure 1.4). The Y1H 

system was first developed to facilitate the identification of proteins that can bind 

to multiple copies of a short DNA sequence of interest (Li and Herskowitz, 1993). 

However, the comprehensive mapping of GRNs needs to be unbiased, as most 

small cis-regulatory DNA elements that control gene expression are not yet 

discovered. Instead, larger genomic fragments that likely harbor many of these 

elements such as gene promoters and enhancers need to be interrogated. 

Further, the original Y1H system used conventional, restriction-enzyme-based 

cloning methods for DNA bait generation and was therefore not amenable for 

system-level analyses. To alleviate these limitations, we have developed a Y1H 

system that uses Gateway recombinational cloning to rapidly transfer multiple 

DNA baits into Y1H Destination vectors in parallel (Deplancke et al., 2004). We 

have demonstrated that this Y1H system can be used with both small elements 

and with large, complex DNA fragments such as gene promoters.  

Gateway-compatible Y1H assays start with a set of DNA fragments (DNA 

baits) of interest (Figure 1.4). Briefly, the DNA bait is Gateway-cloned upstream 

of two Y1H reporter genes (HIS3 and LacZ) and the two DNA bait::reporter 
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constructs are integrated into the yeast genome. This ensures that DNA baits are 

chromatinized which minimizes background and, therefore, reduces false positive 

interactions. To enable the identification of a wide variety of DNA binding 

proteins, including transcriptional repressors, a strong heterologous activation 

domain (AD – Figure 1.4) is added to the prey proteins. If the prey protein 

contains a DNA binding domain that can interact with the DNA bait, reporter gene 

expression is activated. Activation of HIS3 expression is assessed on media 

lacking histidine and containing 3-aminotriazole (3-AT), a competitive inhibitor of 

the His3 enzyme. Activation of LacZ is assessed by a colorimetric (‘blue-white’) 

assay (Figure 1.4). So far, we have used both a cDNA library and TF library as 

prey resources in our Y1H screens. It was important to include a low-complexity 

TF library because TFs that are expressed at low levels or in only a few cells in 

an organism are difficult to retrieve from screens that employ high-complexity, 

non-normalized cDNA libraries. One can also perform mating or transformation 

experiments with arrays of TFs to directly test TF-DNA interactions (an example 

of five TFs is shown in Figure 1.4) (Vermeirssen et al., 2007b). In addition to 

predicted TFs, we have also retrieved several proteins that do not possess a 

recognizable DNA binding domain. These proteins robustly interact with their 

Y1H targets in yeast, and for 11 of them we have confirmed direct promoter 

interactions by ChIP from yeast using an anti-AD antibody (Deplancke et al., 

2006; Vermeirssen et al., 2007a).  
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GRNs pertaining to systems physiology 

Thus far, much focus has been on mapping GRNs related to animal 

development and understanding the establishment of body plans of multicellular 

organisms; even though differential gene expression continues to play an 

important role after embryonic development (Harbison et al., 2004; Levine and 

Davidson, 2005; Resendis-Antonio et al., 2005; Sandmann et al., 2007). Indeed, 

numerous human diseases, such as obesity, diabetes and cancer are 

characterized by profound changes in gene expression. 

The delineation of GRNs that pertain to systems physiology has been 

limited to those of unicellular organisms such as E.coli and yeast (Ihmels et al., 

2004; Barrett et al., 2005; Salgado et al., 2006) but has been a grand challenge 

for multicellular organisms. One of the reasons is that maintenance of energy 

homeostasis is an extremely complex process, and involves multiple 

physiological systems that function at the level of the whole organism. In 

vertebrates for instance, substantial crosstalk exists between the sites of energy 

storage and utilization (adipose and muscle systems) that gauge the energy state 

of the organism and the sites that modulate nutrient seeking behavior (nervous 

and endocrine systems).  

 

C. elegans as a model system to study GRNs pertaining to systems physiology 

Systems level studies of differential gene expression are greatly advanced 

by the use of genetically tractable model organisms such as the nematode 
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Caenorhabditis elegans. Below is an overview of features that make C. elegans a 

powerful model organism to study GRNs pertaining to systems physiology. 

Functional genomics aspect: C. elegans is a free-living nematode with a 

relatively simple body plan and a fixed lineage of 959 somatic cells (Figure 1.5A). 

Under laboratory conditions, lifecycle can be completed approximately in three 

days. Once hatched from an egg, the animal goes through four larval molts 

before it reaches adulthood. A single adult hermaphrodite can produce ~300 

progeny in its lifetime. Hermaphrodites (XX) are the predominant sex in a C. 

elegans population, while male C. elegans (XO) can occur with ~0.1% frequency 

due to sex chromosome non-disjunction in the hermaphrodite germline (Wood, 

1988). The short lifecycle and the existence of both sexes enabled C. elegans 

researchers to perform numerous genetic screens, isolate many mutants and 

generate genetic tools to study gene function and regulation. 

The C. elegans genome is fully sequenced and annotated, and is compact 

compared to the human genome: even though both contain ~20,000 genes, the 

100 Mb worm genome is 30 times smaller (International Human Genome 

Sequencing Consortium, 2004; C. elegans Sequencing Consortium, 1998). 

Consequently, ~26% of the worm genome is exonic, compared to 1-2% in 

humans. In addition, the majority of intergenic regions are shorter than 2 kb 

(Dupuy et al., 2004), and introns are much shorter with a median length of 65 bp, 

whereas the median length of human introns is 3 kb (Spieth and Lawson, 2006). 

Thus, the potential regulatory genomic ‘space’ that needs to be considered in 
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studies of differential gene expression is much smaller. The C. elegans genome 

also encodes fewer TFs (~940) than the human genome (~1,500) (Reece-Hoyes 

et al., 2005; Vermeirssen et al., 2007b; Vaquerizas et al., 2009). There are also 

several invaluable ‘omic’ resources, such as the ‘Orfeome’, a collection of 

~12,500 verified C. elegans open reading frames, the ‘Promoterome’, which 

contains ~5,000 C. elegans promoters, and the RNA interference (RNAi) library 

with 16,000 clones for reverse genetics studies (Lamesch et al., 2004; Dupuy et 

al., 2004; Kamath et al., 2003). Finally, studies about the mechanisms of 

differential gene expression at a systems level are greatly facilitated by the fact 

that C. elegans is a transparent animal. By using reporters such as the green 

fluorescent protein (GFP) one can elucidate where and when genes are 

expressed in living animals, and determine how different perturbations affect 

gene expression (Chalfie et al., 1994; Reece-Hoyes et al., 2007; Martinez et al., 

2008) 

Physiological aspect: C. elegans is a cholesterol auxotroph and feeds on 

E. coli, although its complete dietary range is yet to be determined. In the 

laboratory, it can be cultivated on either solid agar plates or in liquid medium 

supplemented with cholesterol and its bacterial diet (Brenner, 1974). The 

digestive tract of C. elegans consists of the ‘pharynx’, through which the bacteria 

are ingested and mechanically disrupted by the pharyngeal pumping action and 

passed to the intestine (Figure 1.5B). The intestine is a multifunctional organ that 

is responsible for the digestion and absorption of nutrients, synthesizing 
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macromolecules, clearing toxins, and defending against pathogens by initiating 

innate immune response (McGhee, 2007).  

Importantly, C. elegans maintains its energy balance through diverse 

physiological systems that include neuroendocrine signaling, storing, mobilizing 

and utilizing energy stores (Ashrafi, 2007). C. elegans does not have specialized 

adipocytes, however it is capable of storing its body fat mainly in the form of 

triglycerides, which is similar to the mammalian body fat (Mullaney and Ashrafi, 

2009). Whole animal staining assays using lipophilic dyes revealed that C. 

elegans body fat is mostly stored in the intestinal and skin-like hypodermal cells 

(Figure 1.5C). Despite the lack of extensive compartmentalization and tissue 

specialization that exist in mammalian metabolic systems, many pathways that 

are essential for mammalian metabolism can be found in C. elegans to some 

degree; for instance, the components of the insulin-like signaling, the serotonin 

signaling, target of rapamycin signaling and enzymes that function in core 

metabolic pathways including mitochondrial β-oxidation and fatty acid synthesis, 

elongation and desaturation (Ogg et al., 1997; Srinivasan et al., 2008; Soukas et 

al., 2009; Van Gilst et al., 2005b; Watts and Browse, 2002). 

The ease of forward and reverse genetic screens, and the availability of 

molecular tools to dissect lipid metabolism enabled C. elegans researchers to 

identify hundreds of genes in less than a decade of time. By combining genome 

wide RNAi screening with vital lipid staining, Ashrafi et al. identified ~400 genes 

that when knocked down, alter the intensity of the staining of wild-type animals, 
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which encode for enzymes that function in lipid synthesis or breakdown 

pathways, membrane receptors, vesicle transporters, and notably TFs (Ashrafi et 

al., 2003). In addition to the effects of gene inactivations observed in wild-type 

animals, when the authors tested these 400 genes by RNAi knockdown in 

different neuroendocrine mutant strains, including daf-2 (insulin-like signaling 

receptor mutant), tub-1 (tubby ortholog) and tph-1 (serotonin pathway mutant), 

they found that 32 of them caused reduced staining in all mutant animals. These 

genes were referred as ‘core fat genes’, and based on their RNAi phenotype 

across diverse neuroendocrine mutant strains; the authors suggested that these 

genes might be key to lipid homeostasis. 

C. elegans is also equipped with systems necessary for nutrient sensing 

and starvation response. Van Gilst et al. surveyed the transcript levels of an 

extensive list of C. elegans glucose and lipid metabolism genes under well fed 

and short term fasting conditions (Van Gilst et al., 2005b). The authors found that 

expression of several genes that function in mitochondrial and peroxisomal β-

oxidation, fatty acid desaturation, and fatty acid binding and transport were 

markedly altered as the animals were switched between the two nutrient states. 

Due to the observed transcriptional response the authors referred these genes 

as ‘fasting response genes’.  
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The role of transcriptional regulation in C. elegans lipid homeostasis 

The finding that C. elegans actively adjusts the expression of its metabolic 

genes during starvation led to the hypothesis that dynamic transcriptional 

programs must exist, which integrate external and internal nutrient signals to 

accommodate the energy needs of the animal. Remarkably, several TFs that 

have been characterized in mammalian systems that function in lipid 

homeostasis are found to be orthologous in C. elegans (Ashrafi, 2007). For 

instance, the sterol regulatory element binding protein (SREBP) in mammals 

regulates cholesterol production and fatty acid synthesis (Brown and Goldstein, 

1997). Although C. elegans does not synthesize its own cholesterol, the worm 

ortholog, SBP-1 controls the expression of fatty acid Δ9 desaturase, elongase 

and synthase genes in C. elegans (McKay et al., 2003). Animals that do not have 

a functional sbp-1 gene have decreased amount of body fat, exhibit growth 

defects and are sterile (Yang et al., 2006). These phenotypes can partially be 

rescued by adding specific fatty acids to the nematode growth medium; indicating 

that observed defects are direct consequences of impaired metabolic gene 

expression (Yang et al., 2006). 

Another C. elegans metabolic TF is NHR-49, which belongs to the nuclear 

hormone receptor (NHR) family of TFs. NHR-49 is required for the expression of 

several fasting response genes, including acs-2, acs-11, and hacd-1 

(mitochondrial β-oxidation), fat-7 (fatty acid desaturation), and lbp-8 (lipid 

binding) (Van Gilst et al., 2005a). nhr-49 mutants store abnormally high body fat 
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due to the decreased expression of β-oxidation genes and are short-lived 

because of the reduced expression of Δ9 desaturases (Van Gilst et al., 2005a).  

Transcriptional coactivator complexes can modulate the regulatory output 

of TFs. Using a directed approach that aimed to find the components of the 

regulatory complexes with which NHR-49 engages, Taubert et al. found that 

MDT-15, the C. elegans ortholog of the human ARC105/MED15 subunit of the 

Mediator complex, interacts with NHR-49, potentially through its conserved KIX 

domain, and is required for the expression of several NHR-49 targets (Taubert et 

al., 2006). Contemporaneously, Yang et al. found that MDT-15 also interacts with 

SBP-1 and in the absence of MDT-15, the expression of SBP-1 targets is 

severely impaired (Taubert et al., 2006; Yang et al., 2006). mdt-15 mutants also 

display noticeable growth defects, are sterile and short-lived.  

Although NHR-49 and MDT-15 function together and are required for the 

expression of several fasting response genes, not all MDT-15 targets are 

regulated by NHR-49; indicating that MDT-15 likely interacts with additional TFs 

(Taubert et al., 2006).  

 

NHRs are global regulators of metabolism 

NHRs are a family of ligand-gated TFs. The canonical structure consists of 

two conserved domains; an N-terminal zinc finger DNA binding domain (DBD) 

and a C-terminal ligand binding domain (LBD) (Rastinejad et al., 1995; Huang et 

al., 2010). NHRs bind to DNA sequences called hormone response elements 
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(HREs) and can do so as monomers, homodimers or heterodimers (Sonoda et 

al., 2008). HREs consist of the typical sequence RGGTCA where R is a purine. 

NHR ligands are usually small hydrophobic molecules, such as steroids, fatty 

acids and xenobiotics (Chawla et al., 2001). Ligand binding can modulate the 

transcriptional output by switching the NHR from a transcriptionally inactive state 

to an active state or vice versa. Mechanistically, ligand binding causes a 

conformational change at the 12th helix of the LBD, which essentially alters the 

receptor’s ability to contact transcriptional coactivator or repressor complexes 

(Nagy and Schwabe, 2004; Sonoda et al., 2008). The evolution of the NHR 

superfamily, which can specifically recognize and bind small molecules and 

directly alter gene expression, is thought to have allowed metazoans to rapidly 

integrate signals from the metabolic state of the body as well as signals from the 

environment into gene expression. Having the ability to act as molecular 

switches, NHRs regulate almost all aspects of animal physiology; including 

carbohydrate and lipid metabolism, toxin metabolism, development and 

reproduction (Sonoda et al., 2008). 

Based on phylogenetic analysis, NHRs are grouped into six subfamilies; 

NR1-NR6 (Nuclear Receptor Committee, 1999). Steroid receptors, such as the 

estrogen receptor (ER), and the androgen receptor belong to the NR3 subfamily, 

and are capable of binding their ligands with high-affinity (Chawla et al., 2001; 

Nagy and Schwabe, 2004). NR3 subfamily exists in vertebrate genomes, and 

has one member in the Drosophila genome; however it is absent in C. elegans. 
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Another notable absence in the C. elegans genome is the NR2B family, which 

includes retinoid X receptors (RXR) that bind to a variety of ligands (dietary lipids, 

xenobiotics) with low affinity (Chawla et al., 2001). RXRs are obligate 

heterodimers and partner with several other nuclear receptors from other 

subfamilies such as the peroxisome proliferator-activated receptors (PPARs), 

liver X receptor (LXR) and the farnesoid X receptor (FXR), which all belong to the 

NR1H group (Van Gilst et al., 2002). 

Despite the losses of these subfamilies, remarkably the C. elegans 

genome encodes a total of 284 NHRs compared to 21 in Drosophila and 48 in 

humans (Maglich et al., 2001). Interestingly however, only 15 of these C. elegans 

NHRs show significant sequence similarity to the conserved vertebrate 

homologs, while the remaining 269 of them have diverged significantly. Most C. 

elegans NHRs are homologs of hepatocyte nuclear factor 4 (HNF4). HNF4 was 

initially found in crude rat liver extracts and later purification and cloning efforts 

showed that HNF4 presents a new class of nuclear receptors (NR2A) (Sladek et 

al., 1990). Hnf4 null mouse fails to complete gastrulation in the early embryo, 

which results in embryonic lethality (Watt et al., 2003). Tissue specific Hnf4 null 

mice have impaired liver function, and lipid homeostasis (Hayhurst et al., 2001). 

There are two variants of HNF4 in humans and only one in Drosophila (Palanker 

et al., 2009). In humans, HNF4α mutations lead to an early onset diabetic 

disorder, MODY1 (maturity onset diabetes of the young) (Yamagata et al., 1996). 

In Drosophila, dHNF4 mutants are sensitive to starvation and store higher levels 
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of fat, suggesting that dHNF4 responds to nutrient availability (Palanker et al., 

2009). Thus, HNF4 likely plays an important role in post-developmental, 

metabolic GRNs in humans and flies. So far, only few C. elegans NHRs have 

been characterized, and for most their physiological and molecular functions 

remain unknown. Further, the evolutionary advantages of NHR family expansion 

have remained elusive, and the organization and functionality of C. elegans 

NHRs in the context of GRNs remain completely uncharacterized. 
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Synopsis 
 

Physical and/or regulatory interactions between TFs and their target 

genes are essential to establish body plans of multicellular organisms during 

development, and these interactions have been studied extensively in the context 

of GRNs. The precise control of differential gene expression is also of critical 

importance to maintain energy homeostasis, and many metabolic disorders such 

as obesity and diabetes coincide with substantial changes in gene expression. 

Much work has focused on the GRNs that control metazoan development; 

however, the design principles and organization of the GRNs that control 

systems physiology remain largely unexplored. 

In the following chapters, we present the mapping of the first gene-

centered GRN that relates to C. elegans metabolism and physiology. This 

network contains numerous interactions between metabolic gene promoters, TFs 

and a cofactor. We describe the local architecture of the metabolic GRN and how 

that relates to the lipid homeostasis of the nematode. We also investigate several 

mapped interactions in vivo, and show their biological relevance. Lastly, we 

discuss the significance and implications of our findings, and comment about 

future perspectives of C. elegans metabolic GRNs.  
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Figure 1.1 Cartoon illustrating hypothetical interactions in a GRN. 
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Figure 1.2 Features of GRNs. 
 
(A) A compiled GRN of ~200 C. elegans gene promoters (Deplancke et al., 
2006; Vermeirssen et al., 2007a; Arda et al., 2010). This model reflects the 
complexity of systems level gene regulation. The visualization was done using 
Cytoscape v.2.6 software with ‘random layout’ settings, which randomly 
distributes the nodes in a given network (Shannon et al., 2003). 
 
(B) Analysis of incoming or outgoing degrees of individual nodes reveals 
network hubs (top). TOC analysis and clustering can identify TF modules 
(middle). Examples of network motifs that are overrepresented in GRNs (bottom, 
hairpin structure – miRNA gene promoters). 
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Figure 1.3 GRNs can be delineated using two conceptually different, but highly 
complementary approaches.  
 
TF-centered methods start with a TF of interest and identify DNA fragments this 
TF binds to. Gene-centered methods start with a set of DNA fragments and 
identify the TFs these fragments interact with. 
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Figure 1.4 Gateway-compatible Y1H assays provide a convenient gene-centered 
method for GRN mapping.  
 
A yeast DNA bait strain contains two reporter constructs integrated into its 
genome. Each construct contains the same DNA fragment, but different reporter 
genes, such as HIS3 and LacZ. A cDNA or TF mini-library can be used as a prey 
resource, or collections of TFs can be tested individually. The panel on the right 
shows the readout of a Y1H experiment. AD alone indicates the negative control 
used to assess DNA bait background growth on media lacking histidine and 
containing 3-AT, and background bait coloring on a βGal assay. Different 
interacting TFs confer different interaction phenotypes; i.e. light blue versus dark 
blue. 
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Figure 1.5 C. elegans as a model organism to study energy metabolism. 
 
(A) Nomarski image of a C. elegans young adult hermaphrodite. 
 
(B) Cartoon illustrating the alimentary system of C. elegans. 
 
(C) Oil-Red-O lipid staining of a well fed or a starved nematode. Red droplets 
indicate stored body fat, which are visible in the well fed animal but not in the 
starved animal. Black arrowhead points to the posterior bulb of pharynx. 
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Preface To Chapter II 

 
This chapter describes mapping of the first gene-centered regulatory 

network of C. elegans metabolic genes, analysis of its network organization, and 

functional role of nuclear hormone receptors that occur in this network in the 

maintenance of C. elegans lipid homeostasis. The work presented here was a 

collaboration with Drs. Stefan Taubert, Marc Van Gilst, and Keith Yamamoto, 

who provided the list of fasting response genes, and shared technical and 

scientific expertise. Ben Tsuda contributed to the optimization and generation of 

the Oil-Red-O lipid staining of data.  

This chapter is a part of the following published manuscript, which was 

written by Dr. A.J. Marian Walhout and myself: 

 

Arda, H. E., Taubert, S., MacNeil, L. T., Conine, C. C., Tsuda, B., Van Gilst, M., 
Sequerra, R., Doucette-Stamm, L., Yamamoto, K. R., and Walhout, A. J. 
M. (2010). Functional modularity of nuclear hormone receptors in a 
Caenorhabditis elegans metabolic gene regulatory network. Mol. Syst. Biol 
6, 367.  
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CHAPTER II 
 

Gene regulatory network of C. elegans 
metabolic genes 
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Abstract 

 

Gene regulatory networks (GRNs) provide insights into the mechanisms of 

differential gene expression at a systems level. GRNs that relate to metazoan 

development have been studied extensively. However, little is still known about 

the design principles, organization and functionality of GRNs that control 

physiological processes such as metabolism, energy homeostasis and 

responses to environmental cues. Here, we report the first experimentally 

mapped metazoan GRN of Caenorhabditis elegans metabolic genes. This 

network is enriched for nuclear hormone receptors (NHRs). The NHR family has 

greatly expanded in nematodes; humans have 48 NHRs but C. elegans has 284, 

most of which are uncharacterized. We find that the C. elegans metabolic GRN is 

highly modular and that two GRN modules predominantly consist of NHRs. 

Network modularity has been proposed to facilitate a rapid response to different 

cues. Since NHRs are metabolic sensors that are poised to respond to ligands, 

this suggests that C. elegans GRNs evolved to enable rapid and adaptive 

responses to different cues by a concurrence of NHR family expansion and 

modular GRN wiring. 
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Introduction 

 

Differential expression of metazoan genes in space and time is of critical 

importance to many biological processes, including the maintenance of energy 

balance. Differential gene expression is, at the first level, carried out by TFs that 

control the expression of their target genes by physically interacting with cis-

regulatory DNA sequences, such as promoters and enhancers. Altogether, 

interactions between genes and their transcriptional regulators can be graphically 

represented in GRN models. 

C. elegans is a powerful model organism to study metazoan GRNs. 

Several GRNs have been characterized to various degrees in C. elegans. These 

include protein-coding gene sets of endoderm, digestive tract, neurons, the C-

lineage and the vulva, as well as microRNA and bHLH TF-encoding genes 

(Maduro and Rothman, 2002; Baugh et al., 2009; Deplancke et al., 2006a; 

Vermeirssen et al., 2007a; Martinez et al., 2008; Ririe et al., 2008; Grove et al., 

2009). Despite these efforts however, little is known about the networks that 

control systems-level, post-developmental physiology in the nematode.  

Investigation of the C. elegans energy pathways identified numerous 

genes that function in these pathways, and underscored the importance of 

transcriptional control in the regulation of C. elegans metabolism (Ashrafi et al., 

2003; Van Gilst et al., 2005; Taubert et al., 2006). NHRs are important regulators 

of metabolism, and therefore are expected to control crucial aspects of 
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physiology in C. elegans as well. To date, few C. elegans NHRs have been 

characterized, despite the fact that C. elegans genome has 284 NHRs. In this 

chapter, we describe the mapping and the network analysis of the first gene-

centered GRN that relates to C. elegans metabolism and physiology. We show 

that NHRs indeed are essential for the C. elegans energy homeostasis and they 

organize into functional TF modules. 
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Results 

 

Compiling a set of metabolic genes 

To gain insight into the organization and functionality of GRNs involved in 

systems physiology, we first selected a set of genes that have been implicated in 

C. elegans metabolism. Two thirds of the genes were identified in a genome-

wide RNAi screen to find gene inactivations that caused an altered lipophilic dye 

staining pattern in both wild type animals and animals with multiple genetic 

backgrounds (Ashrafi et al., 2003). The lipophilic dye of choice was Nile Red. 

When used as a vital dye as opposed to fixative methods, Nile Red stains 'fat-

containing lysosome-like organelles' in the C. elegans intestine (Schroeder et al., 

2007; Rabbitts et al., 2008). Thus, the genes uncovered in the RNAi study may 

be involved in lipid metabolism, and/or in other types of metabolism such as the 

general catabolism of biomolecules. The other third of our gene set was identified 

in an effort to find metabolic genes whose expression is affected by food 

availability. These 'fasting response genes' give a robust transcriptional response 

upon short-term food withdrawal, and the regulation of some, but not all of these, 

is dependent on the nuclear receptor, NHR-49 (Van Gilst et al., 2005). Hereafter 

we collectively refer to these genes as 'metabolic genes' (Figure 2.1). 
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Mapping the gene-centered metabolic GRN 

To identify TFs that can interact with metabolic genes, we cloned the 

promoters of 71 metabolic genes upstream of the Y1H reporter genes HIS3 and 

lacZ, and integrated the resulting promoter::reporter constructs into the yeast 

genome to create Y1H 'bait' strains (Deplancke et al., 2004, 2006b) (Table 2.1). 

We screened each bait strain versus a cDNA library (Walhout et al., 2000b), and 

a TF mini-library (Deplancke et al., 2006a). Subsequently, we tested each bait 

strain versus each TF identified by direct transformation, both to confirm 

interactions and to identify additional ones that were missed in the library screens 

(Table 2.2). We then scored and filtered the Y1H interactions as described 

(Vermeirssen et al., 2007a) to minimize the inclusion of false positives. Finally, 

we used Cytoscape (Shannon et al., 2003) to combine all interactions into a GRN 

graph model (Table 2.3 and Figure 2.2A). 

 In total, the metabolic GRN contains 508 interactions between 69 

metabolic gene promoters and 100 TFs (Figure 2.2A). 

 

Network analysis of the metabolic GRN 

 All components in the metabolic GRN are connected in a single graph due 

to the presence of both highly connected promoters and highly connected TFs. 

The network is densely wired and the global structure is similar to that of other 

gene-centered GRNs (data not shown) (Deplancke et al., 2006a; Vermeirssen et 

al., 2007a; Martinez et al., 2008). However, we did observe a striking difference: 
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more than a quarter of the TFs retrieved here are NHRs, which is significantly 

more than in the digestive tract, neuronal and microRNA networks (Deplancke et 

al., 2006a; Vermeirssen et al., 2007a; Martinez et al., 2008) (Figure 2.2B). 

This is exciting because, as mentioned above, NHRs can function as 

metabolic sensors. The retrieval of many NHRs suggests that the expansion of 

this family relates to metabolic functionality. The difference with the digestive 

tract network is relatively modest (p=0.05), which is probably because the 

intestine is the most important metabolic tissue. Overall, 41 of the 69 promoters 

(~60%) interacted with one or more NHR, suggesting that the promoters of C. 

elegans metabolic genes may have an inherent preference for NHRs, and that 

multiple NHRs may regulate metabolic gene expression.  

 

NHRs organize into functional modules 

Systems-level GRNs can capture hundreds of interactions between 

numerous genes and their regulators, and such networks are often too complex 

for manual analysis. Instead, mathematical and computational methods can be 

used to investigate the design principles and organization of GRNs. These 

principles can then be related to biological functionality. For instance, GRNs can 

be decomposed into 'modules'; highly interconnected network neighborhoods 

consisting of nodes with similar functions (Ravasz et al., 2002; Vermeirssen et 

al., 2007a). Such modular network organization has been proposed to increase 
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the adaptability of a system and to allow rapid and robust informational flow 

through the network (Ravasz et al., 2002; Babu et al., 2004). 

To examine whether the C. elegans metabolic GRN has a modular 

architecture we performed topological overlap coefficient (TOC) analysis (Figure 

1.2) (Vermeirssen et al., 2007a). For each TF pair, we calculated a TOC score 

based on the number of target genes they share in the metabolic GRN, and 

clustered the TFs with similar TOC scores to identify TF modules. After TOC 

clustering, we found that the metabolic GRN is highly modular as it contains five 

TF modules (I-V) (Figure 2.3A).  

This is more than we have observed previously; the neuronal network 

consisted of only two TF modules, whereas the microRNA network did not 

contain any, (Vermeirssen et al., 2007a; Martinez et al., 2008) data not shown). 

Interestingly, ~60% (16 of 27) of all NHRs in the network are located in either one 

of two modules (modules II and III), and each of these modules consists 

predominantly of NHRs (66% each, Table 2.4, Figure 2.3B and Figure 2.4).  

 

Lipid phenotype analyses of the NHRs that occur in modules 

The observation that NHRs are wired into GRN modules that share target 

genes leads to the prediction that either: 1) one or few of them are involved in 

metabolic regulation in vivo; 2) they all act redundantly, or 3) they all function in 

the regulation of systems physiology. The majority of the target genes of the 

NHRs that participate in modules have a metabolic phenotype as judged by an 
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increase or decrease in Nile Red staining (Ashrafi et al., 2003). Thus, we 

performed systematic Nile Red staining upon reduction of the activity of different 

NHRs by RNAi. Several NHRs in module II are essential for C. elegans 

development (Kamath et al., 2003) and could therefore not be examined. 

Nonetheless, RNAi of one NHR in module II and most NHRs in module III 

resulted in an increase in Nile Red staining (Figures 2.5A and 2.5B). To further 

analyze changes in fat depots, we performed Oil-Red-O staining of animals 

subjected to nhr(RNAi). We found that RNAi of most NHRs resulted in increased 

Oil-Red-O staining, indicating that most of these NHRs indeed regulate fat 

storage or catabolism (Figures 2.6A and 2.6B). In Drosophila the single HNF4 

homolog is responsible for the regulation of fat storage (Palanker et al., 2009). In 

contrast, our findings indicate that, in C. elegans, multiple HNF4-type NHRs 

share this function, even after duplication and divergence. Altogether these 

findings demonstrate that module III contains functionally related NHRs that all 

regulate C. elegans physiology. The fact that the NHRs in module III are 

dispensable for development suggests that these function in post-developmental 

physiology, for instance to respond to environmental or dietary cues, whereas the 

NHRs in module II may regulate metabolic gene expression during development. 
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Discussion 

 

In this chapter, we present the first experimentally mapped, metabolic 

GRN in a metazoan model system. This network contains hundreds of protein-

DNA interactions between several metabolic genes and several TFs. We find that 

the GRN is enriched for NHRs compared to other gene-centered networks and 

that it is highly modular. Two modules mainly contain NHRs, and remarkably, 

most of these NHRs confer a metabolic phenotype. 

It is important to note that the metabolic GRN is not yet complete. First, we 

used only a subset of metabolic genes. Second, we have so far exclusively 

focused on gene promoters and it is likely that other cis-regulatory elements such 

as enhancers may be involved in differential metabolic gene expression as well. 

Third, not all interactions are detectable by Y1H assays; i.e. TFs for which we do 

not have a (correct) clone or that are underrepresented in the cDNA library will 

not be retrieved, and the system is not yet adapted to identify TF heterodimers. 

This may explain, at least in part, why we did not retrieve NHR-49, which 

dimerizes with more than 20 other NHRs (Vermeirssen et al., 2007b) (see also 

below). 

 In addition to missing interactions, the network may also contain 

interactions that are not biologically relevant. These may be false positives, or 

alternatively do occur in vivo, but do not lead to an observable biological 

consequence. Indeed, it has been observed that TFs can interact with genomic 
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locations without an apparent regulatory effect (Zeitlinger et al., 2007; Li et al., 

2008). Further, it may be that interactions do have a biological effect but that this 

cannot be detected in vivo (i.e. it could be a false negative of the validation 

assay). For example, interactions that occur in a few cells, only under specific 

environmental conditions, or with small regulatory effects may be difficult to 

detect. Finally, it is of course also possible that some interactions that we 

retrieved really do not occur in vivo and are actual false positives. We have 

aimed to minimize the inclusion of false interactions in our network by ensuring 

the technical quality of our experiments; the DNA baits are integrated into the 

yeast genome and are, therefore, both present at fixed copy number and in a 

chromatinized state. This is essential to avoid spurious interactions (Deplancke 

et al., 2004). In addition, we scored and filtered all our Y1H data to minimize the 

inclusion of 'sticky' TFs or interactions that were retrieved with highly autoactive 

promoters (Vermeirssen et al., 2007a). Despite some of these potential 

limitations, the results presented here, and in our other studies, demonstrate the 

use of Y1H assays to identify meaningful TF-target gene interactions (Deplancke 

et al., 2004, 2006a; Vermeirssen et al., 2007a; Martinez et al., 2008; Reece-

Hoyes et al., 2009).  Most importantly, the Y1H system uniquely enabled us to 

delineate a GRN pertaining to physiology because it can be used with multiple 

genes to retrieve multiple TFs. Indeed, more than 10% of all predicted C. elegans 

TFs (Reece-Hoyes et al., 2005) were retrieved in our network. 
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NHRs are known regulators of metabolic gene expression and this 

enrichment, therefore, provides global support for the overall quality of our 

network. We found that NHRs organize into two TF modules in the network. 

Network modularity has been proposed to facilitate rapid and robust changes in 

gene expression (Ravasz et al., 2002; Babu et al., 2004). Previously, it has been 

shown that biochemical networks composed of reactions between metabolic 

enzymes and their substrates are modular as well (Ravasz et al., 2002). Thus, 

we propose that C. elegans has acquired modularity in multiple layers of its 

physiological networks.  
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Materials and Methods

 

Promoter cloning 

Gene promoter was defined as the intergenic region upstream of the 

translational start site with a minimum length of 300 bp and a maximum length of 

2 kb. The promoters were cloned as described (Dupuy et al., 2004). Briefly, 

promoters were amplified from C. elegans (N2) genomic DNA by PCR, cloned 

into two Y1H reporter Destination vectors via Gateway cloning and integrated 

into the genome of S. cerevisiae (YM4271) to create Y1H bait strains as 

described (Deplancke et al., 2006b). In total, 71 Y1H bait strains were 

successfully generated and screened in Y1H assays. Primer sequences and 

detailed information about Y1H bait strains are provided in Table 2.1. 

 

Y1H assays 

Y1H assays were performed as described (Deplancke et al., 2006b; 

Vermeirssen et al., 2007a; Martinez et al., 2008). Two different prey libraries AD-

wrmcDNA (Walhout et al., 2000b), and AD-TF mini library (Deplancke et al., 

2006a) were used to screen each Y1H bait strain to identify interacting TFs. All 

interactions were retested in fresh yeast by PCR/gap repair. The ORFs of preys 

that retested were PCR amplified from corresponding yeast strains and were 

sequenced by Agencourt Bioscience Corporation. Interacting TFs were identified 

using the BLASTX algorithm. In total, 306 unique Interaction Sequence Tags 
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(ISTs) were obtained (Walhout et al., 2000a). Y1H matrix experiments were 

performed by transforming available prey clones of all interacting TFs obtained in 

the screens, and several TFs found previously (Deplancke et al., 2006a; 

Vermeirssen et al., 2007a; Martinez et al., 2008) into each Y1H bait strain 

individually (174 preys were used in total, Table 2.2). Each fat gene promoter-TF 

interaction was evaluated using a standardized and stringent Y1H scoring and 

filtering system (Vermeirssen et al., 2007a). Only interactions with a score ≥ 5 

were considered (Table 2.3). All interactions are available in the EDGEdb 

database (Barrasa et al., 2007). 

 

Topological overlap coefficient analysis 

TOC analysis and clustering was performed as described (Vermeirssen et 

al., 2007a). 

 

RNAi experiments 

We generated RNAi constructs for nhr-86, nhr-234, nhr-109, nhr-273, nhr-

41, nhr-178, nhr-79, nhr-12, nhr-28, nhr-70, and nhr-102 by transferring the full-

length ORFs from ORFeome v3.1 into pL4440-Dest-RNAi (Rual et al., 2004) via 

Gateway cloning. Additional RNAi clones were cherry-picked from the C. elegans 

RNAi library (Kamath et al., 2003). HT115(DE3) bacterial strains carrying RNAi 

constructs were grown in Luria Broth containing ampicillin (50 µg/mL) at 37°C for 

8-10 hours until they reach OD600 ~1.0. Bacteria were pelleted by centrifugation, 
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washed once with M9 buffer, resuspended in M9 buffer, and seeded on NGM 

plates containing 5 mM IPTG and 50 µg/mL ampicillin. Bacteria were induced 

overnight at 22°C. The next day ~30 synchronized L1 larvae were placed on the 

plates. All RNAi clones were verified by sequencing. 

 

Microscopy 

Nomarski and fluorescence images were obtained using a Zeiss 

Axioscope 2+ microscope. Nile Red fluorescence images were taken using a 

rhodamine filter (excitation 525-555 nm, emission 575-630 nm). Animals were 

placed into a drop of 0.1% sodium azide in M9 buffer on a fresh 2% agarose pad 

for observation. Oil-Red-O images were acquired using Zeiss AxioCam HRc 

color CCD camera. 

 

Vital Nile Red staining and quantification 

Nile Red staining was performed as described (Ashrafi et al., 2003). 

Briefly, Nile Red powder (N-1142 Molecular Probes, Invitrogen) was dissolved in 

acetone to make a 0.5 mg/mL stock solution, which was kept at -20°C. This stock 

solution was then diluted 1:500 in 1X phosphate buffered saline (PBS), and 

overlaid on top of NGM plates either seeded with OP50 or with RNAi bacteria 

(HT115). After the plates were equilibrated overnight at 22°C, synchronized L1 

stage animals were placed onto these plates. When animals reached the L4 

stage (approximately 36 hours later at 20°C), the phenotype assessment was 
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done by fluorescence microscopy (see below for details). To quantify Nile Red 

pixel intensities, we followed the procedure outlined in (Srinivasan et al., 2008). 

Identities of images were masked while recording data to prevent observer bias. 

Statistical analysis of RNAi coupled Nile Red experiments of multiple NHRs was 

done by one-way ANOVA, followed by Dunnett’s Multiple Comparison post-test, 

using GraphPad Prism v.5.00 software. 

 

Oil-Red-O staining and quantification 

Oil-Red-O staining was performed as described in (Soukas et al., 2009). 

Quantification of Oil-Red-O staining by image processing: RGB images of stage-

synchronized, 1-day old adult animals (n=3) were acquired using identical bright 

field settings to keep background illumination constant across different samples. 

These images were digitally oriented and cropped to include only the anterior 

part of each worm, standardizing the area to be processed. The RGB composite 

images were then split into each contributing color channel; red, green and blue. 

Of the three, the green channel was selected to further analyze pixel intensities, 

since it gives the best contrast for the red Oil-Red-O stain. The images were 

inverted to make the background dark, and thresholded to separate stained 

areas from the background using ImageJ software. The number of pixels 

corresponding to various pixel intensities from the thresholded areas were 

counted and plotted.  
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Figure 2.1 Schematic overview of this study. 
 
Numbers in parentheses indicate NHRs that specifically bind to a single target 
that is part of the module.  
 

32 core genes
Ashrafi et al

25 transcription factor genes
Ashrafi et al, this study

29 promoters

71 Y1H strains MDT 15 (bait)
Taubert et al

755 TFs (preys)
Vermeirssen et al

508 TF promoter interactions 13 MDT 15 and TF interactions

10 MDT 15 and NHR interactionsTopological overlap analysis

Module II
6 (+1) NHRs 10 (+5) NHRs

12 NHRs with Nile Red phenotype

Module III

Module II
NHRs

Module III
NHRs

MDT 15 
interacting

 NHRs

25 promoters 17 promoters

23 fasting response genes
Van Gilst et al, Taubert et al

Gateway cloning into Y1H vectors

Integration into YM4271

Y1H assays + filtering 
Y2H matrix experiments 

RNAi + Nile Red experiments

41 1156



48 

Figure 2.2 A C. elegans metabolic GRN. 
 
(A) Protein-DNA interaction network of C. elegans metabolic genes. Red 
circles - TFs, yellow diamonds - promoters of genes with Nile Red phenotypes, 
blue diamonds - promoters of fasting response genes, green triangles - TFs 
whose promoters were also analyzed, grey lines - protein-DNA interactions 
identified by Y1H assays. 
 
(B) Pie charts representing the percentage of NHRs in different gene-centered 
GRNs. Neuro – neuronal (Vermeirssen et al., 2007a), miRNA – microRNAs 
(Martinez et al., 2008), DT - digestive tract (Deplancke et al., 2006a). Putative 
novel TFs (that were specifically retrieved but that do not possess a known DNA 
binding domain (Deplancke et al., 2006a) were omitted. 
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Figure 2.3 Modularity analysis of the metabolic GRN. 
 
(A) TOC clustering matrix of TFs in the metabolic gene network identifies 
GRN modules (Roman numbers). The matrix is symmetrical across the white 
diagonal. Each cell that is at the intersection of two TFs represents the calculated 
TOC score for that TF pair. TOC scores are color coded as shown at the bottom 
of the panel. 
  
(B) Enlarged views of Modules II and III, which predominantly contain NHRs.  
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Figure 2.4 A Y1H experiment using NHRs (preys) and target NHR promoters 
(baits) that occur in Module III. 
 
Each yeast spot contains indicated Gal4AD-NHR plasmid transformed into Y1H 
baits Pnhr-86 (top), and Pnhr-178 (bottom). The spots labeled as AD have no 
inserts, hence are negative controls. All spots grow on permissive plates 
(permissive); however only the AD-NHRs that bind either Pnhr-86 or Pnhr-178 
enable growth on selective plates (HIS3) and activate lacZ reporter (lacZ). Y1H 
baits Pnhr-86 and Pnhr-178 have common (left) as well as specific interacting 
TFs (right). 
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Figure 2.5 Analysis of vital Nile Red staining of NHR knockdowns. 
 
 
(A) Examples of Nile Red phenotypes observed upon NHR inactivation by 
RNAi. Asterisks indicate significant changes in Nile Red fluorescence compared 
to control animals (notice the increased fluorescent intensity). 
 
(B) Quantification of Nile Red staining coupled RNAi experiments. Red box 
plots - statistically significant changes in Nile Red staining, white box plots - no 
significant change, dashed line - median Nile Red fluorescence in control RNAi 
animals. In each box plot, the central bar indicates the median, the edges of the 
box indicate the 25th and 75th percentiles, and the whiskers extend to the most 
extreme data points. For details of the statistical analysis, see Materials and 
Methods.  
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Figure 2.6 Oil-Red-O staining analysis of NHR knockdown experiments. 
 
(A) Examples of Oil-Red-O stained animals. Anterior part of each animal is to 

the left. Black arrowheads point to the posterior bulb of the pharynx.  
 
(B) Quantifications of Oil-Red-O staining experiments. The inset at the bottom 
right of the figure describes graph axes. Error bars indicate the standard error of 
the mean (SEM). The two graphs at the bottom are negative (mdt-15 RNAi) and 
positive controls (daf-2 RNAi). 
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Table 2.1 Information on the metabolic gene promoters analyzed in this study 

Promoter 
name WB Gene ID Public 

name 
Sequence 

name 

1
GW-Forward 

Primer 

2
GW-Reverse 

Primer 
Comments Promoter 

cloned? 

Y1H 
interactions 

after 
filtering? 

Pacs-11 WBGene0001
8269 acs-11 F41C3.3 

GGGGACAACTT
TGTATAGAAAA
GTTGAAAAGTT
CAGGATCTTCC

CA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTCTG
AAATATCTAATT

TTCTGT 

 yes yes 

Pcyp-35A3 WBGene0001
9565 cyp-35A3 K09D9.2 

GGGGACAACTT
TGTATAGAAAA

GTTGAAAGTTTA
CTTTTATATTTG

GTGCTA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTGA
GAATTAAAATTG

AAATA 

 yes yes 

Pech-6 WBGene0000
1155 ech-6 T05G5.6 

GGGGACAACTT
TGTATAGAAAA
GTTGAAATTTTT
TGTAGTGGCCT

ATGAAAGT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATCCTG

AAAATCAAAAAA
AAATTAAATAA 

 yes yes 

Pnhr-8 WBGene0000
3607 nhr-8 F33D4.1 

GGGGACAACTT
TGTATAGAAAA

GTTGAACTTTCA
TCTTTGTTATAG

AACCGA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGGAA
TGACGAAATTTT

TGTTTTAG 

 yes yes 

Pgei-7 WBGene0000
1564 gei-7 C05E4.9 

GGGGACAACTT
TGTATAGAAAA
GTTGAAGGTAT
AAATTTTACAAC
AAAAAAATCGAT

G 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGTGT
GTGTCTTTGTAT

AATAAGC 

 yes yes 

PF59F5.2 WBGene0001
0341 F59F5.2 F59F5.2 

GGGGACAACTT
TGTATAGAAAA
GTTGAAGTACA
TATAATTCACTT

TGCC 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTGA
ACGAGTTTACC

TG 

 yes yes 

Pnhr-88 WBGene0000
3678 nhr-88 K08A2.5 

GGGGACAACTT
TGTATAGAAAA

GTTGAATGATTA
AACGTTATTTTG

GAAAAAT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGATG
CTGCAAAAAAA

AGAAGATG 

 yes yes 

Pepn-1 WBGene0000
1329 epn-1 T04C10.2 

GGGGACAACTT
TGTATAGAAAA
GTTGAGCACAC
AGAGTCTAATA

GCTAA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGTTTG
CTCCCCGCCT 

 yes yes 

PZK593.3 WBGene0001
4003 ZK593.3 ZK593.3 

GGGGACAACTT
TGTATAGAAAA
GTTGAGGCAGA
TCAATCAATTTT

TAGGT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTGA
TTAACGAATGA

CT 

 yes yes 

Pmdt-15 WBGene0000
7016 mdt-15 R12B2.5 

GGGGACAACTT
TGTATAGAAAA

GTTGATACTAAC
CACCACATATCT

TCC 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATCTTTC
TACTCTGCTCTT

GTTTTT 

 yes yes 

PC06E7.3 WBGene0001
5540 C06E7.3 C06E7.3 

GGGGACAACTT
TGTATAGAAAA
GTTGATATATG
GCTCGGAACTT

T 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTAT
TTCGTTGATGG

ATGTTT 

 yes yes 

Pacdh-1 WBGene0001
6943 acdh-1 C55B7.4 

GGGGACAACTT
TGTATAGAAAA

GTTGATCTTTAC
TTTCTAATTTCT

ATATAATTT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGTG
AAGGTGAAAGT

AATTAGTG 

 yes yes 

                                            
1 attB4tail: GGGGACAACTTTGTATAGAAAAGTTG 
2 attB1R tail: GGGGACTGCTTTTTTGTACAAACTTGTCAT 
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Promoter 
name WB Gene ID Public 

name 
Sequence 

name 

1
GW-Forward 

Primer 

2
GW-Reverse 

Primer 
Comments Promoter 

cloned? 

Y1H 
interactions 

after 
filtering? 

Pnhr-49 WBGene0000
3639 nhr-49 K10C3.6 

GGGGACAACTT
TGTATAGAAAA
GTTGATCTTTCT
CTACCTCTTTTC

ATCT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGACT
GAAACAATTAA
ACTTTTTACAAC 

 yes yes 

PT09F3.1 WBGene0001
1661 T09F3.1 T09F3.1 

GGGGACAACTT
TGTATAGAAAA

GTTGATCTTTTG
GCAAGTCTAGA

AATCTGT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTTG
AGTGTGTGTCA

GGT 

 yes yes 

Psrj-34 WBGene0000
5619 srj-34 T07C12.5 

GGGGACAACTT
TGTATAGAAAA
GTTGATGTCTT
GGGTTGAATAA

TG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGTGA
GCTGACCCTAG

AGATTT 

 yes yes 

PF55B11.4 WBGene0001
0086 F55B11.4 F55B11.4 

GGGGACAACTT
TGTATAGAAAA

GTTGATTATACT
GATTGTTTTCTA

TATTTG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTTC
TGAAAATATAAA

CATTTTGA 

 yes yes 

Pelo-2 WBGene0000
1240 elo-2 F11E6.5 

GGGGACAACTT
TGTATAGAAAA
GTTGATTGGTG
AGACCAAATGT

GTAT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGTG
ATTACCTGCAA
ATTTCCACGA 

 yes yes 

Plbp-8 WBGene0000
2260 lbp-8 T22G5.6 

GGGGACAACTT
TGTATAGAAAA
GTTGATTTTCAT
ATTCAATAAACC

TTGT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATAAGG
AAGGACTGAAT

TAATTGAG 

 yes yes 

PC09G9.7 WBGene0000
7496 C09G9.7 C09G9.7 

GGGGACAACTT
TGTATAGAAAA

GTTGCAATATCT
GCGGCCGTAAA

CTTT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTGA
CAGAATTATGA

TGATAAA 

 yes yes 

PF13D11.1 WBGene0001
7427 F13D11.1 F13D11.1 

GGGGACAACTT
TGTATAGAAAA

GTTGCATCTAAA
CTACTTGTCCG

CT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTATAA
GGAGTTTTTGG

AG 

 yes yes 

Pfat-6 WBGene0000
1398 fat-6 VZK822L.1 

GGGGACAACTT
TGTATAGAAAA
GTTGCCGGAAG
TTGCAGAAAGT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTAC
TGTCTGTTTTCT
TTCTGAAAATTT

TG 

 yes yes 

Pnhr-25 WBGene0000
3623 nhr-25 F11C1.6 

GGGGACAACTT
TGTATAGAAAA
GTTGCCGGTTG
TTGCGCAGCCC

TT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTATT
TCTGGAACAGA

TCTCGGATT 

 yes yes 

Pfat-4 WBGene0000
1396 fat-4 T13F2.1 

GGGGACAACTT
TGTATAGAAAA

GTTGCCTTATAA
TAAAATAAAAAG

TGTTTTCAAT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTGA
TATCACAGCGG

T 

 yes yes 

Pacdh-2 WBGene0001
5894 acdh-2 C17C3.12 

GGGGACAACTT
TGTATAGAAAA

GTTGCGGGTGC
CTAATAATCAGA

AA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTCTGA
ATCAGAACTGA

GTAGTTA 

 yes yes 

Pfat-7 WBGene0000
1399 fat-7 F10D2.9 

GGGGACAACTT
TGTATAGAAAA
GTTGCTTGATT

GTAGATAAAAAA
GTTTTG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTAC
CGTTTGTTTTCT

GAAAAGTATT 

 yes yes 

PM01B12.5 WBGene0001
9698 M01B12.5 M01B12.5 

GGGGACAACTT
TGTATAGAAAA
GTTGCTTTTTTA
AATAAAAACTCA

GATAAAAT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGTTTG
TTACCCACTGA

A 

 yes yes 
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Promoter 
name WB Gene ID Public 

name 
Sequence 

name 

1
GW-Forward 

Primer 

2
GW-Reverse 

Primer 
Comments Promoter 

cloned? 

Y1H 
interactions 

after 
filtering? 

Pfat-3 WBGene0000
1395 fat-3 W08D2.4 

GGGGACAACTT
TGTATAGAAAA
GTTGGATTACG
ATTAATTAATCA

ATTTATTTT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTGG
TTGAGCGGCGG

C 

 yes yes 

Pstr-47 WBGene0000
6112 str-47 F07C4.1 

GGGGACAACTT
TGTATAGAAAA
GTTGGGAAAAT
CTTGATATTTTC

GT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGGAG
GATATGGAAGA

A 

 yes yes 

PZK686.4 WBGene0002
2794 ZK686.4 ZK686.4 

GGGGACAACTT
TGTATAGAAAA
GTTGGGAGAGT
CGGAAGTTGAT

GT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATCATG
AGCCTCCGATT 

 yes yes 

PY57A10A.
27 

WBGene0001
3267 

Y57A10A.
27 Y57A10A.27 

GGGGACAACTT
TGTATAGAAAA
GTTGGGGAATT
TCGGCGGATTC

T 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATAGCT
GAAAAAATTGG
ATATTTATTCG 

 yes yes 

Phis-14 WBGene0000
1888 his-14 ZK131.8 

GGGGACAACTT
TGTATAGAAAA

GTTGGGGCGGT
TTGCTTAGTAC

GA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGTTG
ACAATTGATGA

AGACTC 

 yes yes 

Pgpd-3 WBGene0000
1685 gpd-3 K10B3.7 

GGGGACAACTT
TGTATAGAAAA

GTTGGTTTTGAT
GTGCTTTTCATT

TTGTACT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATCTGTT
TTGATTTCCTG

GAAATGAAC 

 yes yes 

Pnhr-242 WBGene0002
2097 nhr-242 Y69A2AR.26 

GGGGACAACTT
TGTATAGAAAA

GTTGTAACCATT
CAAAACGGTGC

AG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTTT
TGCAAGAGCTT

CTCTCA 

 yes yes 

PF08F8.2 WBGene0001
7268 F08F8.2 F08F8.2 

GGGGACAACTT
TGTATAGAAAA

GTTGTAATAATA
CTAATTCTTGTA

ATGTTC 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTGG
TTTCCACCTGA

AA 

 yes yes 

Pceh-60 WBGene0001
7690 ceh-60 F22A3.5 

GGGGACAACTT
TGTATAGAAAA
GTTGTACCGAT
TTTTATATTTCT

TATAAACT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTCA
ATAATCTTCGT

GAATTT 

 yes yes 

PH32C10.3 WBGene0001
9257 H32C10.3 H32C10.3 

GGGGACAACTT
TGTATAGAAAA

GTTGTCACATTT
TGGATCAAAAA

ATAAATA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATACATT
GCATCAGTTTC 

 yes yes 

PT23F11.4 WBGene0001
1956 T23F11.4 T23F11.4 

GGGGACAACTT
TGTATAGAAAA
GTTGTCCCTTG
TTATTCCATATA

TAAA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTAA
GTCTGAAATAG

AAAAATTTA 

 yes yes 

Pnhr-140 WBGene0001
6366 nhr-140 C33G8.9 

GGGGACAACTT
TGTATAGAAAA
GTTGTGAAAGA
TGCAAACCTTTT
CTCAGAGCTTC

TA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATCTGA
AAATTGCAATTT

TATTTTA 

 yes yes 

Pdop-3 WBGene0002
0506 dop-3 T14E8.3 

GGGGACAACTT
TGTATAGAAAA
GTTGTGAGAGT
CATTGTGATGG

AAGG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTCTGA
TTTTAGACGAC

GGATT 

 yes yes 

Plpd-2 WBGene0000
3059 lpd-2 C48E7.3 

GGGGACAACTT
TGTATAGAAAA
GTTGTGCAATG
AAAACGTGTGG

AAAGAA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTTAG
TTGAAGAAACT

AGGCTCAAT 

 yes yes 
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Promoter 
name WB Gene ID Public 

name 
Sequence 

name 

1
GW-Forward 

Primer 

2
GW-Reverse 

Primer 
Comments Promoter 

cloned? 

Y1H 
interactions 

after 
filtering? 

Pptc-1 WBGene0000
4208 ptc-1 ZK675.1 

GGGGACAACTT
TGTATAGAAAA

GTTGTTCAAAAA
ATAATTTAAATA

GATAACTG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGCT
GCCGACTTGTC

A 

 yes yes 

PC46E10.9 WBGene0001
6713 C46E10.9 C46E10 9 

GGGGACAACTT
TGTATAGAAAA
GTTGTTGATAA

GATTCTACTGCT
TAAT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATCGCA
TTCAATAACTCC

CCT 

 yes yes 

Plin-1 WBGene0000
2990 lin-1 C37F5.1 

GGGGACAACTT
TGTATAGAAAA

GTTGTTGTTAAA
ATGACAGTTTCA

AATA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGTAA
ACTGTAGAGTG

TCGGC 

 yes yes 

Popt-2 WBGene0000
3877 opt-2 K04E7.2 

GGGGACAACTT
TGTATAGAAAA
GTTGTTTCAAG

GAATTCTTACCT
G 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATAGTG
GCGATACTGAC

GA 

 yes yes 

PC49C3.3 WBGene0000
8193 C49C3.3 C49C3.3 

GGGGACAACTT
TGTATAGAAAA
GTTGTTTGGAG
CATCAACTGAA

ATTTTTAG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATAATTG
ACTGACCCTAG

TTCC 

 yes yes 

Pdhs-25 WBGene0000
0988 dhs-25 F09E10.3 

GGGGACAACTT
TGTATAGAAAA

GTTGTTTGTGAA
AATGCCCAGCA

CTGTAT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATAATTA
CCGACTGCTCG

TTGCC 

 yes yes 

Papm-3 WBGene0000
0164 apm-3 F53H8.1 promoterome   yes yes 

Pfar-7 WBGene0000
1391 far-7 K01A2.2 promoterome   yes yes 

Pfat-2 WBGene0000
1394 fat-2 W02A2.1 promoterome   yes yes 

Phlh-15 WBGene0000
1959 hlh-15 C43H6.8 promoterome   yes yes 

Plbp-1 WBGene0000
2253 lbp-1 F40F4.3 promoterome   yes yes 

Pnhr-68 WBGene0000
3658 nhr-68 H12C20.3 Deplancke et al.   yes yes 

Pnhr-86 WBGene0000
3676 nhr-86 Y40B10A.8 

GGGGACAACTT
TGTATAGAAAA
GTTGTAGTTTG
GGATGGAAAAC

TAAATTGA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGTTA
GGCGGCGAAC

AAGG 

 yes yes 

Pnhr-137 WBGene0000
3727 nhr-137 C56E10.4 promoterome   yes yes 

Pref-2 WBGene0000
4335 ref-2 C47C12.3 promoterome   yes yes 

Psbp-1 WBGene0000
4735 sbp-1 Y47D3B.7 

GGGGACAACTT
TGTATAGAAAA
GTTGCCAGGAG
TTTTTGAAAAAA
TTCAAAATTCAA

T 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTCTGA
AAAAAAAAAGT
CAAATTTTGAG 

 yes yes 

PC36A4.9 WBGene0000
7969 C36A4.9 C36A4.9 promoterome   yes yes 

PF13D12.6 WBGene0000
8741 F13D12.6 F13D12.6 promoterome   yes yes 

Pacs-2 WBGene0000
9221 acs-2 F28F8.2 promoterome   yes yes 

PC15C7.5 WBGene0001
5791 C15C7.5 C15C7.5 promoterome   yes yes 

PC30F12.1 WBGene0001
6260 C30F12.1 C30F12.1 promoterome   yes yes 

Pnhr-178 WBGene0001
7510 nhr-178 F16B4.9 promoterome   yes yes 

Ptag-257 WBGene0001
8516 tag-257 F46G11 3 promoterome   yes yes 
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Promoter 
name WB Gene ID Public 

name 
Sequence 

name 

1
GW-Forward 

Primer 

2
GW-Reverse 

Primer 
Comments Promoter 

cloned? 

Y1H 
interactions 

after 
filtering? 

PF52C6.12 WBGene0001
8669 F52C6.12 F52C6.12 promoterome   yes yes 

Pcyp-35A5 WBGene0001
9473 cyp-35A5 K07C6.5 promoterome   yes yes 

Pegg-2 WBGene0001
9811 egg-2 R01H2.3 promoterome   yes yes 

Phlh-30 WBGene0002
0930 hlh-30 W02C12.3 

GGGGACAACTT
TGTATAGAAAA
GTTGGTGTCTA
AACTTTCTGATC

GGGACCT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGAAT
GCTCTTATTCG

CTG 

 yes yes 

Ppeb-1 WBGene0000
3968 peb-1 T14F9.4 Deplancke et al.   yes yes 

Pdaf-12b WBGene0000
0908 daf-12b F11A1.3b Vermeirssen et al.   yes yes 

PK11D12.4 WBGene0001
9644 cpt-4 K11D12.4 

GGGGACAACTT
TGTATAGAAAA
GTTGAATTAAAA
TAGTTGTTTTTT

CGGAGGTG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGTTT
GTCTGAAAGAA

AAACGTG 

promoter bait 
too self-
active 

yes N/A 

PY40H7A.7 WBGene0001
2745 Y40H7A.7 Y40H7A.7 

GGGGACAACTT
TGTATAGAAAA
GTTGTGTGCAG
GTGGAGTACGG

TAGA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGCC
ACGCCGCTTTC
GGCCTCCTT 

 yes no 

PC29F3.1 WBGene0000
1150 ech-1 C29F3.1 

GGGGACAACTT
TGTATAGAAAA
GTTGTTGCGTG
ACACGTGGCAT

TT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATCTGTA
ATAATGAGGTT
TGAAGTAATAT

A 

cloning 
unsuccesful 
after multiple 

attempts 

no N/A 

PC34G6.4 WBGene0000
3996 pgp-2 C34G6.4 

GGGGACAACTT
TGTATAGAAAA
GTTGCAAAAGA
AGTAGAAACAC

CA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATCAGTT
AGATAATAATA
GAAAATAAT 

cloning 
unsuccesful 
after multiple 

attempts 

no N/A 

PF08A8.2 WBGene0000
8565 F08A8.2 F08A8.2 

GGGGACAACTT
TGTATAGAAAA
GTTGAAAGGAA
CTTTTCATAATC

ATCA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATACTAA
AACTGACAAAG
TTTTAAAAATTT

GA 

considered 
the promoter 
of F08A8.1 

instead 

no N/A 

PF08A8.4 WBGene0000
8567 F08A8.4 P08A8.4   

considered 
the promoter 

of 
F08A8.1inste

ad 

no N/A 

PF15H10.4 WBGene0000
8871 tag-314 F15H10.4 

GGGGACAACTT
TGTATAGAAAA
GTTGAAAATTG
ATTTTTCTCTTT

GTGG 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTGTC
GAAGAATGATA

CGAATCTG 

cloning 
unsuccesful 
after multiple 

attempts 

no N/A 

PK09H11.2 WBGene0000
6014 srx-123 K09H11.2   pseudogene no N/A 

PR09B5.6 WBGene0001
9978 hacd-1 R09B5.6 

GGGGACAACTT
TGTATAGAAAA
GTTGGTGACAA
GTTGGTGACAT

GCTA 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATGTTTT
GTGGGGGAAAA

TTTCTGA 

cloning 
unsuccesful 
after multiple 

attempts 

no N/A 

PY48G9A.1
0 

WBGene0002
1703 cpt-3 Y48G9A.10 

GGGGACAACTT
TGTATAGAAAA
GTTGTCCATAAT
GTTTATTTTTGT
TTTTCTGTGCCT 

GGGGACTGCTT
TTTTGTACAAAC
TTGTCATTTCAA
CAATCTTAAAC

CGGTT 

promoter 
region too 
repetitive 

no N/A 
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Promoter 
name WB Gene ID Public 

name 
Sequence 

name 

1
GW-Forward 

Primer 

2
GW-Reverse 

Primer 
Comments Promoter 

cloned? 

Y1H 
interactions 

after 
filtering? 

aattB4tail: 
GGGGACA
ACTTTGTA
TAGAAAAG

TTG 

        

battB1R tail: 
GGGGACT
GCTTTTTT
GTACAAAC
TTGTCAT 
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Table 2.2 List of preys used in Y1H matrix experiments 
 

Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

cfi-1 T23D8.8 WBGene00000476 ARID/BRIGHT screen 

F09G2.9 F09G2.9 WBGene00017317 AT Hook x3 other 
studies 

hlh-15 C43H6.8 WBGene00001959 bHLH Ashrafi et 
al 

sbp-1 Y47D3B.7 WBGene00004735 bHLH Ashrafi et 
al 

hlh-30 W02C12.3 WBGene00020930 bHLH Ashrafi et 
al/screen 

ref-1 T01E8.2 WBGene00004334 bHLH - 2 domains other 
studies 

lpd-2 C48E7.3 WBGene00003059 bZIP McKay et 
al 

zip-2 K02F3.4 WBGene00019327 bZIP screen 

zip-4 Y44E3B.1 WBGene00021552 bZIP other 
studies 

ces-2 ZK909.4 WBGene00000469 bZIP other 
studies 

cey-2 F46F11.2 WBGene00000473 COLD BOX screen 

lin-28 F02E9.2 WBGene00003014 COLD BOX other 
studies 

T13C5.4 T13C5.4 WBGene00020485 HD other 
studies 

ceh-48 C17H12.9 WBGene00015934 HD - CUT other 
studies 

mab-5 C08C3.3 WBGene00003102 HD - HOX screen 

pal-1 C38D4.6 WBGene00003912 HD - HOX screen 

php-3 Y75B8A.1 WBGene00004024 HD - HOX screen 

lim-6 K03E6.1 WBGene00002988 HD - LIM other 
studies 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

ceh-43 C28A5.4 WBGene00000463 HD - NK screen 

tab-1 F31E8.3 WBGene00006380 HD - NK screen 

ceh-23 ZK652.5 WBGene00000446 HD - NK screen 

mls-2 C39E6.4 WBGene00003377 HD - NK other 
studies 

ceh-6 K02B12.1 WBGene00000431 HD - POU screen 

ceh-10 W03A3.1 WBGene00000435 HD - PRD screen 

unc-30 B0564.10 WBGene00006766 HD - PRD other 
studies 

C09G12.1 C09G12.1 WBGene00015651 HD - PRD other 
studies 

dsc-1 C18B12.3 WBGene00001096 HD - PRD other 
studies 

ceh-36 C37E2.4 WBGene00000457 HD - PRD other 
studies 

ceh-37 C37E2.5 WBGene00000458 HD - PRD other 
studies 

ceh-17 D1007.1 WBGene00000440 HD - PRD other 
studies 

unc-42 F58E6.10 WBGene00006778 HD - PRD other 
studies 

alr-1 R08B4.2 WBGene00044330 HD - PRD other 
studies 

unc-4 UNC-4 WBGene00006744 HD - PRD other 
studies 

ttx-1 Y113G7A.6 WBGene00006652 HD - PRD other 
studies 

ceh-45 ZK993.1 WBGene00022837 HD - PRD other 
studies 

ceh-8 ZK265.4 WBGene00000433 HD - PRD - 2 domains screen 

Y53C12C.1 Y53C12C.1 WBGene00013147 HD - PRD, Paired Domain - 
CPAX 

other 
studies 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

pax-3 F27E5.2 WBGene00003939 HD - PRD, Paired Domain - 
FULL 

other 
studies 

vab-3 F14F3.1 WBGene00006870 HD - PRD, Paired Domain - 
FULL screen 

ceh-26 K12H4.1 WBGene00000448 HD - PROX screen 

ceh-20 F31E3.1 WBGene00000443 HD - TALE screen 

ceh-60 F22A3.5 WBGene00017690 HD -TALE Ashrafi et 
al 

daf-3 F25E2.5 WBGene00000899 MH1 screen 

sma-3 R13F6.9 WBGene00004857 MH1 screen 

B0261.1 B0261.1 WBGene00015091 MYB screen 

B0238.11 B0238.11 WBGene00015075 Novel screen 

C32D5.1 C32D5.1 WBGene00016310 Novel screen 

prx-5 C34C6.6 WBGene00004194 Novel screen 

C44F1.1 C44F1.1 WBGene00008091 Novel screen 

F08G12.3 F08G12.3 WBGene00008587 Novel screen 

H02I12.5 H02I12.5 WBGene00010353 Novel screen 

lin-54 JC8.6 WBGene00003037 Novel screen 

T20F10.2 T20F10.2 WBGene00011864 Novel screen 

Y17G7B.20 Y17G7B.20 WBGene00012471 Novel screen 

Y17G9B.9 Y17G9B.9 WBGene00021206 Novel screen 

Y38C9A.1 Y38C9A.1 WBGene00021411 Novel screen 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

Y53G8AM.8 Y53G8AM.8 WBGene00021808 Novel screen 

Y62E10A.14 Y62E10A.14 WBGene00013380 Novel screen 

ZC204.12 ZC204.12 WBGene00022562 Novel screen 

C34C12.4 C34C12.4 WBGene00007923 Novel other 
studies 

C39F7.2 C39F7.2 WBGene00016539 Novel other 
studies 

ftt-2 F52D10.3 WBGene00001502 Novel other 
studies 

sdz-24 K07E8.3 WBGene00019495 Novel other 
studies 

T06A10.4 T06A10.4 WBGene00020287 Novel other 
studies 

Y52E8A.2 Y52E8A.2 WBGene00021795 Novel other 
studies 

cec-1 ZK1236.2 WBGene00000414 Novel other 
studies 

pax-2 K06B9.5 WBGene00003938 Paired Domain - FULL other 
studies 

C09G9.7 C09G9.7 WBGene00007496 Paired Domain - NPAX Ashrafi et 
al 

F26H9.2 F26H9.2 WBGene00009174 RPEL - 2 domains other 
studies 

tbx-8 T07C4.2 WBGene00006545 T-box screen 

egl-44 F28B12.2 WBGene00001208 TEA/ATTS screen 

Y65B4BR.5 Y65B4BR.5 WBGene00022042 UNKNOWN screen 

mig-5 T05C12.6 WBGene00003241 WH screen 

T28D9.9 T28D9.9 WBGene00020898 WH screen 

lin-1 C37F5.1 WBGene00002990 WH - ETS Ashrafi et 
al 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

fkh-2 T14G12.4 WBGene00001434 WH - Fork Head screen 

Y47D3B.9 Y47D3B.9 WBGene00012943 ZF - BED screen 

F55B11.4 F55B11.4 WBGene00010086 ZF - C2H2 - 1 finger Ashrafi et 
al 

T09F3.1 T09F3.1 WBGene00011661 ZF - C2H2 - 1 finger Ashrafi et 
al 

T23F11.4 T23F11.4 WBGene00011956 ZF - C2H2 - 1 finger Ashrafi et 
al 

ZK686.4 ZK686.4 WBGene00022794 ZF - C2H2 - 1 finger Ashrafi et 
al 

ztf-3 C53D5.4 WBGene00016905 ZF - C2H2 - 1 finger screen 

lir-1 F18A1.3 WBGene00003044 ZF - C2H2 - 1 finger screen 

rabs-5 Y42H9AR.3 WBGene00021538 ZF - C2H2 - 1 finger other 
studies 

ztf-6 W06H12.1 WBGene00012317 ZF - C2H2 - 2 fingers screen 

ref-2 C47C12.3 WBGene00004335 ZF - C2H2 - 3 fingers Ashrafi et 
al 

ztf-2 F13G3.1 WBGene00008762 ZF - C2H2 - 3 fingers 
direct 

transforma
tion 

die-1 C18D1.1 WBGene00000995 ZF - C2H2 - 3 fingers screen 

ztf-8 ZC395.8 WBGene00022598 ZF - C2H2 - 3 fingers screen 

sptf-3 Y40B1A.4 WBGene00012735 ZF - C2H2 - 3 fingers other 
studies 

C46E10.9 C46E10.9 WBGene00016713 ZF - C2H2 - 4 fingers Ashrafi et 
al 

ces-1 F43G9.11 WBGene00000468 ZF - C2H2 - 4 fingers screen 

ztf-1 F54F2.5 WBGene00018833 ZF - C2H2 - 4 fingers screen 

F10B5.3 F10B5.3 WBGene00008640 ZF - C2H2 - 4 fingers other 
studies 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

syd-9 ZK867.1 WBGene00044068 ZF - C2H2 - 4 fingers other 
studies 

lsy-2 F49H12.1 WBGene00003087 ZF - C2H2 - 5 fingers screen 

pag-3 F45B8.4 WBGene00003909 ZF - C2H2 - 5 fingers other 
studies 

ztf-11 F52F12.6 WBGene00009939 ZF - C2HC 2 fingers other 
studies 

F38B7.1 F38B7.1 WBGene00009532 ZF - CCCH - 2 domains screen 

pie-1 Y49E10.14 WBGene00004027 ZF - CCCH - 2 domains screen 

Y57G11C.25 Y57G11C.25 WBGene00013319 ZF - CCCH - 2 domains screen 

mex-5 W02A2.7 WBGene00003230 ZF - CCCH - 2 domains other 
studies 

H32C10.3 H32C10.3 WBGene00019257 ZF - DHHC Ashrafi et 
al 

K08B12.2 K08B12.2 WBGene00019521 ZF - DM other 
studies 

flh-2 C26E6.2 WBGene00016138 ZF - FLYWCH screen 

flh-1 Y11D7A.12 WBGene00012435 ZF - FLYWCH screen 

elt-7 C18G1.2 WBGene00015981 ZF - GATA screen 

elt-2 C33D3.1 WBGene00001250 ZF - GATA screen 

elt-6 F52C12.5 WBGene00001253 ZF - GATA screen 

egl-18 F55A8.1 WBGene00001186 ZF - GATA screen 

elt-3 K02B9.4 WBGene00001251 ZF - GATA screen 

elt-4 C39B10.6 WBGene00001252 ZF - GATA other 
studies 

end-1 F58E10.2 WBGene00001310 ZF - GATA other 
studies 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

end-3 F58E10.5 WBGene00001311 ZF - GATA other 
studies 

med-2 K04C2.6 WBGene00003181 ZF - GATA other 
studies 

elt-1 W09C2.1 WBGene00001249 ZF - GATA - 2 domains screen 

lin-40 T27C4.4 WBGene00003025 ZF - GATA, MYB other 
studies 

Y74C9A.4 Y74C9A.4 WBGene00022278 ZF - GATA, MYB (2x) other 
studies 

nhr-140 C33G8.9 WBGene00016366 ZF - NHR Ashrafi et 
al 

nhr-137 C56E10.4 WBGene00003727 ZF - NHR Ashrafi et 
al 

daf-12b F11A1.3b WBGene00000908 ZF - NHR Ashrafi et 
al 

nhr-178 F16B4.9 WBGene00017510 ZF - NHR Ashrafi et 
al 

nhr-8 F33D4.1 WBGene00003607 ZF - NHR Ashrafi et 
al 

nhr-68 H12C20.3 WBGene00003658 ZF - NHR Ashrafi et 
al 

nhr-88 K08A2.5 WBGene00003678 ZF - NHR Ashrafi et 
al 

nhr-49 K10C3.6 WBGene00003639 ZF - NHR Ashrafi et 
al 

nhr-12 R04B5.4 WBGene00003611 ZF - NHR 
direct 

transforma
tion 

nhr-273 T12C9.1 WBGene00020460 ZF - NHR 
direct 

transforma
tion 

nhr-114 Y45G5AM.1 WBGene00003704 ZF - NHR 
direct 

transforma
tion 

nhr-112 Y70C5C.6 WBGene00003702 ZF - NHR 
direct 

transforma
tion 

nhr-10 B0280.8 WBGene00003609 ZF - NHR screen 

nhr-23 C01H6.5 WBGene00003622 ZF - NHR screen 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

nhr-67 C08F8.8 WBGene00003657 ZF - NHR screen 

nhr-28 C11G6.4 WBGene00003624 ZF - NHR screen 

nhr-136 C13C4.3 WBGene00003726 ZF - NHR screen 

nhr-43 C29E6.5 WBGene00003633 ZF - NHR screen 

nhr-2 C32F10.6 WBGene00003601 ZF - NHR screen 

nhr-6 C48D5.1 WBGene00003605 ZF - NHR screen 

nhr-179 F16B4.11 WBGene00017512 ZF - NHR screen 

nhr-45 F16H11.5 WBGene00003635 ZF - NHR screen 

sex-1 F44A6.2 WBGene00004786 ZF - NHR screen 

nhr-111 F44G3.9 WBGene00003701 ZF - NHR screen 

nhr-34 F58G6.5 WBGene00003627 ZF - NHR screen 

nhr-207 R07B7.14 WBGene00011098 ZF - NHR screen 

nhr-102 T06C12.6 WBGene00003692 ZF - NHR screen 

nhr-66 T09A12.4 WBGene00003656 ZF - NHR screen 

odr-7 T18D3.2 WBGene00003854 ZF - NHR screen 

nhr-79 T26H2.9 WBGene00003669 ZF - NHR screen 

nhr-91 Y15E3A.1 WBGene00003681 ZF - NHR screen 

nhr-65 Y17D7A.3 WBGene00003655 ZF - NHR screen 

nhr-86 Y40B10A.8 WBGene00003676 ZF - NHR screen 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

nhr-237 Y46H3D.6 WBGene00021610 ZF - NHR screen 

nhr-70 Y51A2D.17 WBGene00003660 ZF - NHR screen 

nhr-13 Y5H2B.2 WBGene00003612 ZF - NHR screen 

nhr-246 ZK1037.4 WBGene00014192 ZF - NHR screen 

nhr-35 C07A12.3 WBGene00003628 ZF - NHR other 
studies 

nhr-46 C45E5.6 WBGene00003636 ZF - NHR other 
studies 

nhr-141 F25E5.6 WBGene00017787 ZF - NHR other 
studies 

nhr-4 F32B6.1 WBGene00003603 ZF - NHR other 
studies 

nhr-142 F44E7.8 WBGene00018430 ZF - NHR other 
studies 

fax-1 F56E3.4 WBGene00001400 ZF - NHR other 
studies 

nhr-3 H01A20.1 WBGene00003602 ZF - NHR other 
studies 

nhr-22 K06A1.4 WBGene00003621 ZF - NHR other 
studies 

nhr-98 M02H5.6 WBGene00003688 ZF - NHR other 
studies 

nhr-123 M02H5.7 WBGene00003713 ZF - NHR other 
studies 

nhr-1 R09G11.2 WBGene00003600 ZF - NHR other 
studies 

nhr-14 T01B10.4 WBGene00003613 ZF - NHR other 
studies 

nhr-84 T06C12.7 WBGene00003674 ZF - NHR other 
studies 

nhr-109 T12C9.5 WBGene00003699 ZF - NHR other 
studies 

nhr-69 T23H4.2 WBGene00003659 ZF - NHR other 
studies 
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Public/CGC 
name Sequence name Wormbase ID DNA binding domain (wTF2.1) source 

nhr-61 W01D2.2 WBGene00003651 ZF - NHR other 
studies 

nhr-41 Y104H12A.1 WBGene00022423 ZF - NHR other 
studies 

nhr-234 Y38E10A.18 WBGene00012596 ZF - NHR other 
studies 

peb-1 T14F9.4 WBGene00003968 ZF - FLYWCH Ashrafi et 
al 
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Table 2.3 High confidence promoter-TF interactions (normalized score ≥ 5.0) 
 

Promoter 
(bait) 

Interacting 
TF (prey) 

Self-
active 
lacZ 

Self-
active 
HIS3 

wTF2.1 Sticky 
HIS3/lacZ 

Found 
multiple 
times 

Found 
once 
from 

AD-TF 
mini 

library 

Found 
with 
both 

libraries 

Retest 
HIS3 

Retest 
lacZ 

Normalized 
score 

Pacs-11 CEH-10 1 1 1 1 1 1 0 0 0 5.0 

Pacs-2 MIG-5 1 1 1 0 1 1 0 N/A N/A 5.0 

PC06E7.3 PHP-3 1 1 1 1 1 1 0 0 0 5.0 

PC49C3.3 Y57G11C.25 1 1 1 1 1 1 0 0 0 5.0 

Pceh-60 NHR-6 1 1 1 1 1 1 0 0 0 5.0 

PF52C6.12 C32D5.1 0 1 0 1 0 0 0 1 N/A 5.0 

PF52C6.12 Y17G7B.20 0 1 0 1 0 0 0 1 N/A 5.0 

PF55B11.4 CFI-1 1 1 1 1 1 1 0 0 0 5.0 

Pfar-7 NHR-6 1 1 1 1 1 1 0 0 0 5.0 

Pfat-2 EGL-44 1 1 1 0 0 1 0 1 0 5.0 

Phlh-30 C32D5.1 0 1 0 1 0 0 0 1 N/A 5.0 

Plin-1 DIE-1 0 1 1 1 1 1 0 0 N/A 5.0 

Plin-1 H02I12.5 0 1 0 0 1 1 0 1 N/A 5.0 

Plin-1 PAL-1 0 1 1 1 1 1 0 0 N/A 5.0 

Pnhr-178 TBX-33 1 1 1 1 0 0 0 N/A N/A 5.0 

Pnhr-49 H02I12.5 0 1 0 0 1 1 0 1 N/A 5.0 

Popt-2 F26H9.2 1 1 1 0 1 1 0 N/A N/A 5.0 

Popt-2 T20F10.2 1 1 0 0 1 1 0 1 0 5.0 

Pptc-1 C32D5.1 0 1 0 1 0 0 0 1 N/A 5.0 

Pptc-1 LIN-54 0 1 0 1 0 0 0 1 N/A 5.0 

Psbp-1 C32D5.1 0 1 0 1 0 0 0 1 N/A 5.0 

Psbp-1 DIE-1 0 1 1 1 1 1 0 0 N/A 5.0 

Psbp-1 LIN-54 0 1 0 1 0 0 0 1 N/A 5.0 

Psbp-1 PHP-3 0 1 1 1 1 1 0 0 N/A 5.0 

PT23F11.4 C32D5.1 0 1 0 1 0 0 0 1 N/A 5.0 

PT23F11.4 LIN-54 0 1 0 1 0 0 0 1 N/A 5.0 
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HIS3 
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lacZ 

Normalized 
score 

Pacs-2 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Papm-3 NHR-23 1 1 1 1 1 1 1 0 0 5.7 

PC30F12.1 ZTF-8 1 1 1 0 1 1 0 0 1 5.7 

PC36A4.9 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

PC36A4.9 ZTF-8 1 1 1 0 1 1 0 0 1 5.7 

Pceh-60 EGL-44 1 1 1 0 1 1 0 1 0 5.7 

Pcyp-35A5 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Pelo-2 ZTF-1 1 1 1 1 0 0 0 0 1 5.7 

Pfar-7 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Pfat-7 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Phis-14 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Phlh-15 H02I12.5 1 1 0 0 1 1 1 1 0 5.7 

Phlh-15 UNC-42 1 1 1 1 0 0 0 1 0 5.7 

Phlh-30 FLH-2 0 1 1 0 0 0 0 1 1 5.7 

Plpd-2 ZC204.12 1 1 0 1 0 1 0 0 1 5.7 

Pmdt-15 NHR-111 1 1 1 0 1 1 0 1 0 5.7 

Pmdt-15 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Pmdt-15 ZTF-8 1 1 1 0 1 1 0 0 1 5.7 

Pnhr-25 T20F10.2 1 1 0 0 0 0 0 1 1 5.7 

Pnhr-8 EGL-44 1 1 1 0 1 1 0 1 0 5.7 

Pnhr-8 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Popt-2 EGL-44 1 1 1 0 1 1 0 1 0 5.7 

Popt-2 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Psrj-34 EGL-44 1 1 1 0 1 1 0 1 0 5.7 

Psrj-34 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

Pstr-47 ZTF-8 1 1 1 0 1 1 0 0 1 5.7 

PT09F3.1 TAB-1 1 1 1 0 1 1 0 1 0 5.7 
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(bait) 

Interacting 
TF (prey) 

Self-
active 
lacZ 

Self-
active 
HIS3 

wTF2.1 Sticky 
HIS3/lacZ 

Found 
multiple 
times 

Found 
once 
from 

AD-TF 
mini 

library 

Found 
with 
both 

libraries 
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Retest 
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Normalized 
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Ptag-257 PAL-1 1 1 1 1 1 1 1 0 0 5.7 

PZK686.4 TAB-1 1 1 1 0 1 1 0 1 0 5.7 

PC46E10.9 CEH-48 0 1 1 1 0 0 0 1 N/A 5.8 

PC46E10.9 LSY-2 0 1 1 1 0 0 0 1 N/A 5.8 

PC46E10.9 ODR-7 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 CEH-48 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 DAF-3 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 DIE-1 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 END-3 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 K08B12.2 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 LIR-1 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 NHR-1 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 NHR-43 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 PAG-3 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 PHP-3 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 PIE-1 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 T09F3.1 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 TBX-8 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 VAB-3 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 HLH-30 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 FLH-1 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 Y47D3B.9 0 1 1 1 0 0 0 1 N/A 5.8 

PF52C6.12 ZTF-1 0 1 1 1 0 0 0 1 N/A 5.8 

Pfat-3 LSY-2 0 1 1 1 0 0 0 1 N/A 5.8 

Pgei-7 CEH-10 0 1 1 1 0 0 0 1 N/A 5.8 

Pgei-7 NHR-2 0 1 1 1 0 0 0 1 N/A 5.8 

Pgei-7 ODR-7 0 1 1 1 0 0 0 1 N/A 5.8 
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Normalized 
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Pgei-7 ZTF-1 0 1 1 1 0 0 0 1 N/A 5.8 

Phlh-30 DAF-3 0 1 1 1 0 0 0 1 N/A 5.8 

Phlh-30 ODR-7 0 1 1 1 0 0 0 1 N/A 5.8 

Phlh-30 TAB-1 0 1 1 0 1 1 0 1 N/A 5.8 

Plin-1 NHR-2 0 1 1 1 0 0 0 1 N/A 5.8 

Plin-1 NHR-91 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 CEH-10 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 CES-1 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 DSC-1 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 NHR-273 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 NHR-41 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 NHR-86 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 NHR-91 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 PAL-1 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 TBX-8 0 1 1 1 0 0 0 1 N/A 5.8 

Pnhr-49 ZTF-1 0 1 1 1 0 0 0 1 N/A 5.8 

Pptc-1 NHR-41 0 1 1 1 0 0 0 1 N/A 5.8 

Pptc-1 ODR-7 0 1 1 1 0 0 0 1 N/A 5.8 

Pptc-1 TBX-8 0 1 1 1 0 0 0 1 N/A 5.8 

Pptc-1 Y47D3B.9 0 1 1 1 0 0 0 1 N/A 5.8 

Pptc-1 Y53C12C.1 0 1 1 1 0 0 0 1 N/A 5.8 

Psbp-1 CEH-10 0 1 1 1 0 0 0 1 N/A 5.8 

Psbp-1 ELT-6 0 1 1 1 0 0 0 1 N/A 5.8 

Psbp-1 NHR-102 0 1 1 1 0 0 0 1 N/A 5.8 

Psbp-1 NHR-111 0 1 1 0 1 1 0 1 N/A 5.8 

Psbp-1 NHR-67 0 1 1 1 0 0 0 1 N/A 5.8 

Psbp-1 NHR-91 0 1 1 1 0 0 0 1 N/A 5.8 
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Psbp-1 ODR-7 0 1 1 1 0 0 0 1 N/A 5.8 

PT23F11.4 CEH-20 0 1 1 1 0 0 0 1 N/A 5.8 

PT23F11.4 DAF-3 0 1 1 1 0 0 0 1 N/A 5.8 

PT23F11.4 DSC-1 0 1 1 1 0 0 0 1 N/A 5.8 

PT23F11.4 LIN-1 0 1 1 1 0 0 0 1 N/A 5.8 

PT23F11.4 NHR-234 0 1 1 1 0 0 0 1 N/A 5.8 

PT23F11.4 ODR-7 0 1 1 1 0 0 0 1 N/A 5.8 

PT23F11.4 UNC-42 0 1 1 1 0 0 0 1 N/A 5.8 

PT23F11.4 ZTF-6 0 1 1 1 0 0 0 1 N/A 5.8 

PZK593.3 CES-2 0 1 1 1 0 0 0 1 N/A 5.8 

PZK593.3 NHR-41 0 1 1 1 0 0 0 1 N/A 5.8 

Ppeb-1 NHR-1 0 1 1 1 0 0 0 1 N/A 5.8 

Ppeb-1 NHR-2 0 1 1 1 0 0 0 1 N/A 5.8 

Ppeb-1 NHR-41 0 1 1 1 0 0 0 1 N/A 5.8 

Ppeb-1 ELT-1 0 1 1 1 0 0 0 1 N/A 5.8 

Ppeb-1 ELT-2 0 1 1 1 0 0 0 1 N/A 5.8 

Ppeb-1 ELT-3 0 1 1 1 0 0 0 1 N/A 5.8 

Plpd-2 Y37D8A.11 1 1 0 1 1 1 0 N/A N/A 6.0 

Pacs-11 EGL-44 1 1 1 0 0 0 0 1 1 6.4 

PC15C7.5 TAB-1 1 1 1 0 0 0 0 1 1 6.4 

PC36A4.9 ZTF-1 1 1 1 1 0 1 0 0 1 6.4 

PC49C3.3 TAB-1 1 1 1 0 0 0 0 1 1 6.4 

Pceh-60 FLH-2 1 1 1 0 0 0 0 1 1 6.4 

Pech-6 ZTF-8 1 1 1 0 0 0 0 1 1 6.4 

Pegg-2 NHR-111 1 1 1 0 0 0 0 1 1 6.4 

Pegg-2 ZC204.12 1 1 0 1 1 1 0 0 1 6.4 

Pelo-2 DIE-1 1 1 1 1 0 1 0 0 1 6.4 
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PF55B11.4 LIN-54 1 1 0 1 1 1 0 0 1 6.4 

PF59F5.2 NHR-111 1 1 1 0 0 0 0 1 1 6.4 

Pfat-2 MIG-5 1 1 1 0 0 0 0 1 1 6.4 

Pfat-2 ZTF-8 1 1 1 0 0 0 0 1 1 6.4 

Pfat-4 EGL-44 1 1 1 0 0 0 0 1 1 6.4 

Pgpd-3 NHR-111 1 1 1 0 0 0 0 1 1 6.4 

Plbp-8 TAB-1 1 1 1 0 0 0 0 1 1 6.4 

PM01B12.5 EGL-44 1 1 1 0 0 0 0 1 1 6.4 

PM01B12.5 ZC204.12 1 1 0 1 1 1 0 1 0 6.4 

Pnhr-140 LIN-54 1 1 0 1 1 1 0 1 0 6.4 

Pnhr-178 NHR-111 1 1 1 0 0 0 0 1 1 6.4 

Pnhr-25 F26H9.2 1 1 1 0 0 0 0 1 1 6.4 

Pnhr-68 NHR-111 1 1 1 0 0 0 0 1 1 6.4 

Pnhr-8 NHR-111 1 1 1 0 0 0 0 1 1 6.4 

Pnhr-86 MAB-5 1 1 1 1 0 1 0 1 0 6.4 

Popt-2 MIG-5 1 1 1 0 0 0 0 1 1 6.4 

Pptc-1 ZTF-1 0 1 1 1 0 1 0 1 N/A 6.7 

PF59F5.2 ZAG-1 1 1 1 1 1 1 0 N/A N/A 7.0 

Pacdh-2 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pacs-11 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pacs-11 LIN-54 1 1 0 1 0 0 0 1 1 7.1 

Pacs-11 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pacs-11 ZC204.12 1 1 0 1 1 1 1 0 1 7.1 

Papm-3 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Papm-3 LIN-54 1 1 0 1 0 0 0 1 1 7.1 

Papm-3 ZC204.12 1 1 0 1 0 0 0 1 1 7.1 

PC06E7.3 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 
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PC09G9.7 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

PC15C7.5 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

PC30F12.1 EGL-44 1 1 1 0 0 1 0 1 1 7.1 

PC36A4.9 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

PC36A4.9 PHP-3 1 1 1 1 1 1 0 1 0 7.1 

PC49C3.3 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

PC49C3.3 DIE-1 1 1 1 1 1 1 0 0 1 7.1 

PC49C3.3 LIN-54 1 1 0 1 0 0 0 1 1 7.1 

PC49C3.3 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pceh-60 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pcyp-35A3 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pcyp-35A3 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pcyp-35A3 ZC204.12 1 1 0 1 1 1 1 0 1 7.1 

Pdaf-12b C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pech-6 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pech-6 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pegg-2 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pegg-2 PIE-1 1 1 1 1 1 1 0 1 0 7.1 

Pegg-2 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pelo-2 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pepn-1 F08G12.3 1 1 0 1 0 0 0 1 1 7.1 

Pepn-1 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

PF08F8.2 PIE-1 1 1 1 1 1 1 0 1 0 7.1 

PF13D12.6 LIN-54 1 1 0 1 0 0 0 1 1 7.1 

PF52C6.12 CEH-8 0 1 1 1 0 0 0 1 1 7.1 

PF52C6.12 ELT-1 0 1 1 1 0 0 0 1 1 7.1 

PF52C6.12 ELT-2 0 1 1 1 0 0 0 1 1 7.1 
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PF52C6.12 NHR-111 0 1 1 0 1 1 0 1 1 7.1 

PF52C6.12 ODR-7 0 1 1 1 0 0 0 1 1 7.1 

PF55B11.4 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

PF55B11.4 DIE-1 1 1 1 1 1 1 0 0 1 7.1 

PF55B11.4 ELT-3 1 1 1 1 1 1 0 1 0 7.1 

PF55B11.4 MAB-5 1 1 1 1 1 1 0 1 0 7.1 

PF55B11.4 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

PF59F5.2 F08G12.3 1 1 0 1 0 0 0 1 1 7.1 

Pfar-7 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pfat-2 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pfat-2 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pfat-2 ZC204.12 1 1 0 1 0 0 0 1 1 7.1 

Pfat-4 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pfat-7 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pgpd-3 F08G12.3 1 1 0 1 0 0 0 1 1 7.1 

Phis-14 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Phlh-15 CEH-8 1 1 1 1 1 1 0 1 0 7.1 

Phlh-15 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Phlh-30 CEH-48 0 1 1 1 0 0 0 1 1 7.1 

Plbp-1 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Plbp-1 PAX-2 1 1 1 1 1 1 0 1 0 7.1 

Plbp-8 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Plpd-2 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

PM01B12.5 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

PM01B12.5 ZTF-6 1 1 1 1 1 1 0 1 0 7.1 

Pmdt-15 F08G12.3 1 1 0 1 0 0 0 1 1 7.1 

Pmdt-15 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 
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Pnhr-137 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-178 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-178 PRX-5 1 1 0 0 1 1 0 1 1 7.1 

Pnhr-178 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-25 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-68 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-8 ODR-7 1 1 1 1 1 1 0 1 0 7.1 

Pnhr-8 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-86 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-86 Y17G7B.20 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-86 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-86 ZC204.12 1 1 0 1 1 1 1 1 0 7.1 

Pnhr-88 ZTF-1 1 1 1 1 1 1 0 1 0 7.1 

Pref-2 TBX-8 1 1 1 1 1 1 0 0 1 7.1 

Pref-2 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pstr-47 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

PT09F3.1 LIN-54 1 1 0 1 0 0 0 1 1 7.1 

PT09F3.1 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

PY57A10A.27 C32D5.1 1 1 0 1 0 0 0 1 1 7.1 

PY57A10A.27 Y17G7B.20 1 1 0 1 1 1 1 1 0 7.1 

PY57A10A.27 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

PZK686.4 Y38C9A.1 1 1 0 1 0 0 0 1 1 7.1 

Pnhr-49 PHP-3 0 1 1 1 1 1 0 1 N/A 7.5 

PT23F11.4 DIE-1 0 1 1 1 1 1 0 1 N/A 7.5 

PZK593.3 SEX-1 0 1 1 1 1 1 0 1 N/A 7.5 

Pacdh-1 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Pacdh-1 NHR-10 1 1 1 1 0 0 0 1 1 7.9 
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Pacdh-1 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

Pacdh-2 ELT-2 1 1 1 1 0 0 0 1 1 7.9 

Pacdh-2 NHR-1 1 1 1 1 0 0 0 1 1 7.9 

Pacs-11 CEH-20 1 1 1 1 0 0 0 1 1 7.9 

Pacs-11 CEH-6 1 1 1 1 0 0 0 1 1 7.9 

Pacs-11 DIE-1 1 1 1 1 0 0 0 1 1 7.9 

Pacs-11 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

Pacs-11 Y47D3B.9 1 1 1 1 0 0 0 1 1 7.9 

Pacs-11 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pacs-11 ZTF-2 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 CEH-10 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 CEH-20 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 DIE-1 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 EKL-2 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 NHR-1 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 NHR-2 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 SEX-1 1 1 1 1 0 0 0 1 1 7.9 

Papm-3 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

PC06E7.3 MAB-5 1 1 1 1 1 1 1 1 0 7.9 

PC06E7.3 NHR-6 1 1 1 1 0 0 0 1 1 7.9 

PC15C7.5 CEH-10 1 1 1 1 0 0 0 1 1 7.9 

PC15C7.5 CEH-17 1 1 1 1 0 0 0 1 1 7.9 

PC15C7.5 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

PC15C7.5 DIE-1 1 1 1 1 0 0 0 1 1 7.9 

PC15C7.5 DSC-1 1 1 1 1 0 0 0 1 1 7.9 

PC15C7.5 NHR-273 1 1 1 1 0 0 0 1 1 7.9 
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PC15C7.5 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

PC15C7.5 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

PC36A4.9 MLS-2 1 1 1 1 0 0 0 1 1 7.9 

PC36A4.9 NHR-1 1 1 1 1 0 0 0 1 1 7.9 

PC36A4.9 NHR-69 1 1 1 1 0 0 0 1 1 7.9 

PC36A4.9 NHR-86 1 1 1 1 0 0 0 1 1 7.9 

PC36A4.9 PAL-1 1 1 1 1 1 1 1 1 0 7.9 

PC36A4.9 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 ALR-1 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 CEH-23 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 CEH-43 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 CEH-6 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 DSC-1 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 MAB-5 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 NHR-6 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 T13C5.4 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 TBX-8 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

PC49C3.3 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pceh-60 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Pceh-60 NHR-86 1 1 1 1 0 0 0 1 1 7.9 

Pceh-60 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pcyp-35A3 ODR-7 1 1 1 1 0 0 0 1 1 7.9 

Pcyp-35A3 Y47D3B.9 1 1 1 1 0 0 0 1 1 7.9 

Pcyp-35A3 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pcyp-35A5 MLS-2 1 1 1 1 0 0 0 1 1 7.9 
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Promoter 
(bait) 

Interacting 
TF (prey) 

Self-
active 
lacZ 

Self-
active 
HIS3 

wTF2.1 Sticky 
HIS3/lacZ 

Found 
multiple 
times 

Found 
once 
from 

AD-TF 
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library 

Found 
with 
both 

libraries 

Retest 
HIS3 

Retest 
lacZ 

Normalized 
score 

Pdaf-12b DIE-1 1 1 1 1 1 1 1 1 0 7.9 

Pdhs-25 NHR-1 1 1 1 1 0 0 0 1 1 7.9 

Pdhs-25 NHR-10 1 1 1 1 0 0 0 1 1 7.9 

Pdhs-25 NHR-111 1 1 1 0 1 1 0 1 1 7.9 

Pdhs-25 NHR-2 1 1 1 1 0 0 0 1 1 7.9 

Pdhs-25 NHR-41 1 1 1 1 0 0 0 1 1 7.9 

Pdhs-25 SEX-1 1 1 1 1 0 0 0 1 1 7.9 

Pdhs-25 TBX-8 1 1 1 1 0 0 0 1 1 7.9 

Pdop-3 TBX-8 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 CEH-10 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 CEH-17 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 CEH-6 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 LIN-54 1 1 0 1 0 1 0 1 1 7.9 

Pech-6 NHR-43 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 ODR-7 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 T13C5.4 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

Pech-6 VAB-3 1 1 1 1 0 0 0 1 1 7.9 

Pegg-2 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Pegg-2 NHR-86 1 1 1 1 0 0 0 1 1 7.9 

Pegg-2 TBX-8 1 1 1 1 0 0 0 1 1 7.9 

Pegg-2 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

Pegg-2 ZTF-2 1 1 1 1 0 0 0 1 1 7.9 

Pelo-2 CEH-10 1 1 1 1 0 0 0 1 1 7.9 

Pelo-2 TBX-8 1 1 1 1 0 0 0 1 1 7.9 

Pepn-1 CEH-8 1 1 1 1 0 0 0 1 1 7.9 
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Promoter 
(bait) 

Interacting 
TF (prey) 

Self-
active 
lacZ 

Self-
active 
HIS3 

wTF2.1 Sticky 
HIS3/lacZ 

Found 
multiple 
times 

Found 
once 
from 

AD-TF 
mini 

library 

Found 
with 
both 

libraries 

Retest 
HIS3 

Retest 
lacZ 

Normalized 
score 

PF13D12.6 CEH-10 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 CEH-17 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 DAF-3 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 DIE-1 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 DSC-1 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 ELT-2 1 1 1 1 1 1 1 1 0 7.9 

PF13D12.6 MLS-2 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 ODR-7 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

PF13D12.6 ZK867.1 1 1 1 1 0 0 0 1 1 7.9 

PF55B11.4 ALR-1 1 1 1 1 0 0 0 1 1 7.9 

PF55B11.4 CEH-17 1 1 1 1 0 0 0 1 1 7.9 

PF55B11.4 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

PF55B11.4 MLS-2 1 1 1 1 0 0 0 1 1 7.9 

PF55B11.4 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

PF59F5.2 CEH-20 1 1 1 1 0 0 0 1 1 7.9 

PF59F5.2 NHR-6 1 1 1 1 0 0 0 1 1 7.9 

PF59F5.2 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pfar-7 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Pfar-7 ELT-1 1 1 1 1 0 0 0 1 1 7.9 

Pfar-7 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

Pfar-7 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pfat-2 MAB-5 1 1 1 1 0 0 0 1 1 7.9 

Pfat-2 ODR-7 1 1 1 1 0 0 0 1 1 7.9 

Pfat-2 PHP-3 1 1 1 1 0 0 0 1 1 7.9 

Pfat-2 TBX-8 1 1 1 1 0 0 0 1 1 7.9 
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Promoter 
(bait) 

Interacting 
TF (prey) 

Self-
active 
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active 
HIS3 

wTF2.1 Sticky 
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Retest 
HIS3 

Retest 
lacZ 

Normalized 
score 

Pfat-2 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

Pfat-2 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pfat-4 NHR-10 1 1 1 1 0 0 0 1 1 7.9 

Pfat-4 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pfat-6 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pgpd-3 CEH-17 1 1 1 1 0 0 0 1 1 7.9 

Pgpd-3 K08B12.2 1 1 1 1 0 0 0 1 1 7.9 

Pgpd-3 ODR-7 1 1 1 1 0 0 0 1 1 7.9 

PH32C10.3 NHR-6 1 1 1 1 0 0 0 1 1 7.9 

PH32C10.3 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Phis-14 DAF-3 1 1 1 1 0 0 0 1 1 7.9 

Phlh-15 PAL-1 1 1 1 1 1 1 1 0 1 7.9 

Plbp-8 ALR-1 1 1 1 1 0 0 0 1 1 7.9 

Plbp-8 CEH-17 1 1 1 1 0 0 0 1 1 7.9 

Plbp-8 CEH-6 1 1 1 1 0 0 0 1 1 7.9 

Plbp-8 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Plpd-2 DAF-3 1 1 1 1 0 0 0 1 1 7.9 

PM01B12.5 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-137 DIE-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-137 NHR-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-137 NHR-67 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-137 TBX-8 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-137 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-140 DIE-1 1 1 1 1 1 1 1 1 0 7.9 

Pnhr-178 CEH-20 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 ELT-6 1 1 1 1 0 0 0 1 1 7.9 
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Promoter 
(bait) 

Interacting 
TF (prey) 

Self-
active 
lacZ 

Self-
active 
HIS3 

wTF2.1 Sticky 
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Found 
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times 
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Retest 
HIS3 

Retest 
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Normalized 
score 

Pnhr-178 MAB-5 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 NHR-12 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 NHR-142 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 NHR-178 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 NHR-273 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 NHR-28 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 NHR-79 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 PAG-3 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 PHP-3 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-178 Y53C12C.1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-242 CEH-17 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-242 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-25 ALR-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-25 PEB-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-25 TBX-8 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-25 ZK867.1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-25 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-68 CEH-10 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-68 CEH-17 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-68 MLS-2 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-68 NHR-234 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-68 PHP-3 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-68 UNC-42 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-68 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-8 ELT-2 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-8 NHR-102 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-8 NHR-34 1 1 1 1 0 0 0 1 1 7.9 
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Promoter 
(bait) 

Interacting 
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Self-
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Normalized 
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Pnhr-8 PAG-3 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-8 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 CEH-37 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 DAF-3 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 DIE-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 NHR-109 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 NHR-111 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 NHR-12 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 NHR-234 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 NHR-273 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 NHR-45 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 NHR-79 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 ODR-7 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 TTX-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

Pnhr-86 ZTF-8 1 1 1 1 0 0 0 1 1 7.9 

Pref-2 NHR-86 1 1 1 1 1 1 1 0 1 7.9 

Pref-2 ODR-7 1 1 1 1 1 1 1 0 1 7.9 

Pstr-47 ODR-7 1 1 1 1 0 0 0 1 1 7.9 

Pstr-47 ZTF-1 1 1 1 1 0 0 0 1 1 7.9 

PT09F3.1 T09F3.1 1 1 1 1 0 0 0 1 1 7.9 

Ptag-257 PHP-3 1 1 1 1 1 1 1 0 1 7.9 

PY57A10A.27 CEH-48 1 1 1 1 0 0 0 1 1 7.9 

PY57A10A.27 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

PY57A10A.27 MAB-5 1 1 1 1 0 0 0 1 1 7.9 

PY57A10A.27 PHP-3 1 1 1 1 0 0 0 1 1 7.9 

PY57A10A.27 Y47D3B.9 1 1 1 1 0 0 0 1 1 7.9 
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PZK686.4 CEH-8 1 1 1 1 0 0 0 1 1 7.9 

Phlh-30 FLH-1 0 1 1 1 1 1 1 1 N/A 8.3 

Pptc-1 DIE-1 0 1 1 1 1 1 1 1 N/A 8.3 

Psbp-1 ZTF-1 0 1 1 1 1 1 1 1 N/A 8.3 

PT23F11.4 ZTF-1 0 1 1 1 1 1 1 1 N/A 8.3 

PZK593.3 NHR-2 0 1 1 1 1 1 1 1 N/A 8.3 

PZK593.3 NHR-91 0 1 1 1 1 1 1 1 N/A 8.3 

PC09G9.7 TBX-8 1 1 1 1 0 1 0 1 1 8.6 

PC36A4.9 ZC204.12 1 1 0 1 1 1 0 1 1 8.6 

Pcyp-35A5 LIN-54 1 1 0 1 1 1 0 1 1 8.6 

Pech-6 ZC204.12 1 1 0 1 1 1 0 1 1 8.6 

Pegg-2 CEH-6 1 1 1 1 0 1 0 1 1 8.6 

Pegg-2 ODR-7 1 1 1 1 0 1 0 1 1 8.6 

Pegg-2 Y47D3B.9 1 1 1 1 0 1 0 1 1 8.6 

PF13D12.6 C18G1.2 1 1 1 1 0 1 0 1 1 8.6 

PF13D12.6 ELT-3 1 1 1 1 0 1 0 1 1 8.6 

Pfat-6 LIN-54 1 1 0 1 1 1 0 1 1 8.6 

PM01B12.5 LIN-54 1 1 0 1 1 1 0 1 1 8.6 

PM01B12.5 Y53G8AM.8 1 1 0 1 1 1 0 1 1 8.6 

PM01B12.5 ZIP-4 1 1 1 1 0 1 0 1 1 8.6 

Pnhr-137 LIN-54 1 1 0 1 1 1 0 1 1 8.6 

Pnhr-178 NHR-102 1 1 1 1 0 1 0 1 1 8.6 

Pnhr-178 NHR-45 1 1 1 1 0 1 0 1 1 8.6 

Pnhr-178 NHR-67 1 1 1 1 0 1 0 1 1 8.6 

Pnhr-25 CEH-26 1 1 1 1 0 1 0 1 1 8.6 

Pnhr-25 Y38C9A.1 1 1 0 1 1 1 0 1 1 8.6 

Pnhr-86 NHR-28 1 1 1 1 0 1 0 1 1 8.6 
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Pnhr-86 NHR-66 1 1 1 1 0 1 0 1 1 8.6 

Pnhr-86 PEB-1 1 1 1 1 0 1 0 1 1 8.6 

PC06E7.3 CEH-20 1 1 1 1 1 1 0 1 1 9.3 

PC30F12.1 CES-1 1 1 1 1 1 1 0 1 1 9.3 

PC49C3.3 CEH-10 1 1 1 1 1 1 0 1 1 9.3 

Pcyp-35A3 DIE-1 1 1 1 1 1 1 0 1 1 9.3 

Pdhs-25 DAF-3 1 1 1 1 1 1 0 1 1 9.3 

Pdop-3 ZTF-1 1 1 1 1 1 1 0 1 1 9.3 

Pech-6 ZTF-1 1 1 1 1 1 1 0 1 1 9.3 

Pegg-2 LIN-54 1 1 0 1 1 1 1 1 1 9.3 

Pegg-2 ZTF-1 1 1 1 1 1 1 0 1 1 9.3 

Pelo-2 CEH-6 1 1 1 1 1 1 0 1 1 9.3 

Pepn-1 LIR-1 1 1 1 1 1 1 0 1 1 9.3 

PF13D11.1 ODR-7 1 1 1 1 1 1 0 1 1 9.3 

PF13D12.6 EGL-18 1 1 1 1 1 1 0 1 1 9.3 

PF13D12.6 ELT-1 1 1 1 1 1 1 0 1 1 9.3 

PF13D12.6 ELT-6 1 1 1 1 1 1 0 1 1 9.3 

PF59F5.2 ODR-7 1 1 1 1 1 1 0 1 1 9.3 

Pfat-2 DIE-1 1 1 1 1 1 1 0 1 1 9.3 

Pgpd-3 ZTF-3 1 1 1 1 1 1 0 1 1 9.3 

Phlh-30 ZTF-1 0 1 1 1 1 1 1 1 1 9.3 

Plbp-8 MAB-5 1 1 1 1 1 1 0 1 1 9.3 

Plbp-8 UNC-42 1 1 1 1 1 1 0 1 1 9.3 

PM01B12.5 Y47D3B.9 1 1 1 1 1 1 0 1 1 9.3 

Pnhr-178 ODR-7 1 1 1 1 1 1 0 1 1 9.3 

Pnhr-25 F08G12.3 1 1 0 1 1 1 1 1 1 9.3 

Pnhr-68 LIN-54 1 1 0 1 1 1 1 1 1 9.3 
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Pnhr-68 ODR-7 1 1 1 1 1 1 0 1 1 9.3 

Pnhr-86 NHR-70 1 1 1 1 1 1 0 1 1 9.3 

Pnhr-86 NHR-86 1 1 1 1 1 1 0 1 1 9.3 

Psrj-34 NHR-86 1 1 1 1 1 1 0 1 1 9.3 

PY57A10A.27 ZTF-1 1 1 1 1 1 1 0 1 1 9.3 

PZK686.4 NHR-6 1 1 1 1 1 1 0 1 1 9.3 

Pacdh-2 ELT-1 1 1 1 1 1 1 1 1 1 10.0 

Pacdh-2 NHR-10 1 1 1 1 1 1 1 1 1 10.0 

Pech-6 DIE-1 1 1 1 1 1 1 1 1 1 10.0 

Pegg-2 DIE-1 1 1 1 1 1 1 1 1 1 10.0 

Pepn-1 ZTF-3 1 1 1 1 1 1 1 1 1 10.0 

PF55B11.4 ELT-2 1 1 1 1 1 1 1 1 1 10.0 

PF55B11.4 PHP-3 1 1 1 1 1 1 1 1 1 10.0 

PF55B11.4 ZTF-1 1 1 1 1 1 1 1 1 1 10.0 

Pfat-6 DIE-1 1 1 1 1 1 1 1 1 1 10.0 

Pgpd-3 ZTF-1 1 1 1 1 1 1 1 1 1 10.0 

PM01B12.5 DIE-1 1 1 1 1 1 1 1 1 1 10.0 

Pmdt-15 ZTF-1 1 1 1 1 1 1 1 1 1 10.0 

Pnhr-178 NHR-86 1 1 1 1 1 1 1 1 1 10.0 

Pnhr-25 LSY-2 1 1 1 1 1 1 1 1 1 10.0 

Pnhr-68 DIE-1 1 1 1 1 1 1 1 1 1 10.0 

Psrj-34 HLH-30 1 1 1 1 1 1 1 1 1 10.0 

PY57A10A.27 DIE-1 1 1 1 1 1 1 1 1 1 10.0 

 
 



89 

Table 2.4 List of interacting TFs identified in Y1H assays that occur in the 
modules 
 

Module I Module II Module III Module IV Module V 

T20F10.2 SEX-1 PAG-3 EGL-44 PHP-3 

ZK867.1 NHR-10 NHR-79 ZTF-3 ZTF-8 

LSY-2 NHR-41 Y53C12C.1 Y17G7B.20 ZTF-6 

F26H9.2 NHR-2 NHR-273 VAB-3 TAB-1 

MIG-5 NHR-1 NHR-12 NHR-43 NHR-6 

F08G12.3 NHR-91 NHR-86 FLH-1 T13C5.4 

PEB-1 PAL-1 NHR-28 PIE-1 ZTF-2 

ALR-1 CES-1 NHR-45 T09F3.1 Y47D3B.9 

 H02I12.5 NHR-234 HLH-30 ODR-7 

  MAB-5 LIR-1 TBX-8 

  NHR-111 K08B12.2 Y38C9A.1 

  NHR-67 CEH-48 ZC204.12 

  NHR-102 DAF-3 ZTF-1 

  ELT-6 FLH-2 UNC-42 

  CEH-20 ELT-3 CEH-10 

   ELT-1 LIN-54 

   ELT-2 C32D5.1 

    DIE-1 

    CEH-6 

    CEH-8 

    CEH-17 

    MLS-2 

    DSC-1 
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Preface to Chapter III 
 

 In this chapter, we describe the mapping of a protein-protein interaction 

network that consists of a specific cofactor and C. elegans TFs. We also describe 

the relevance of this network to C. elegans lipid metabolism and energy 

homeostasis. The work presented here includes contributions from Colin C. 

Conine, who generated the transgenic nematode strains used in this study. 

 

Most of this chapter has been published separately in the following manuscript: 

Arda, H. E., Taubert, S., MacNeil, L. T., Conine, C. C., Tsuda, B., Van Gilst, M., 
Sequerra, R., Doucette-Stamm, L., Yamamoto, K. R., and Walhout, A. J. 
M. (2010). Functional modularity of nuclear hormone receptors in a 
Caenorhabditis elegans metabolic gene regulatory network. Mol. Syst. Biol 
6, 367.  
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CHAPTER III 

 

A Cofactor-TF Network that Relates to           
C. elegans Lipid Metabolism 
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Abstract 

 

Upon binding to their genomic sites, NHRs nucleate the assembly of 

multifactor transcriptional regulatory complexes by recruiting gene- and cell-

specific cofactors. Studies using vertebrate models discovered several cofactor-

NHR interactions that are crucial for energy homeostasis and physiology. Despite 

the existence of numerous NHRs in C. elegans, only a few C. elegans cofactor-

NHR interactions have been identified. In this chapter, we investigate the protein-

protein interactions involving the Mediator subunit MDT-15 and C. elegans TFs 

using high-throughput yeast two-hybrid (Y2H) assays, and analyze how this ‘mini’ 

cofactor-TF network relates to C. elegans metabolism by testing some of the 

interactions in vivo.  
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Introduction 

 

In mammalian systems, transcriptional cofactor protein complexes, such 

as histone modifiers, chromatin remodelers and proteins that interact with the 

basal transcriptional machinery, can function as ‘molecular adaptors’ of 

physiologic pathways. Cofactors interact with several NHRs in a context 

dependent manner to mediate intra- and extra-cellular signals and modulate the 

transcriptional activity of NHRs on their target genes (Rosenfeld et al., 2006). For 

instance, by establishing physical contacts with mostly PPARs, PPAR coactivator 

1 (PGC-1) family of coactivators regulate mitochondrial biogenesis, and 

differentiation of brown fat tissue (Lin et al., 2005). Similarly, interactions 

involving members of the Mediator complex and mammalian TFs, such as 

MED1/PPARγ and MED15/SREBP-1, regulate adipogenesis, cholesterol and 

lipid homeostasis (Ge et al., 2002; Yang et al., 2006).  

Thus far, only two C. elegans transcriptional cofactors have been 

characterized in detail; DIN-1, and MDT-15 (Ludewig et al., 2004; Taubert et al., 

2006; Yang et al., 2006). MDT-15, the MED15 ortholog, interacts with NHR-49 

and the SREBP-1 ortholog, SBP-1 (Ludewig et al., 2004; Taubert et al., 2006; 

Yang et al., 2006). Expression profiling of mdt-15(RNAi) and nhr-49(RNAi) 

animals showed that there is not a complete overlap between the targets of the 

two factors. MDT-15 is required for the expression of several additional metabolic 
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genes that are not targets of NHR-49. This implicates that MDT-15 interacts with 

other TFs, possibly to regulate distinct sets of genes. 

In light of our findings in Chapter II, we hypothesized that MDT-15 may 

interact with the NHRs that we identified in the metabolic GRN. We used high-

throughput Y2H matrix experiments to survey the ability of C. elegans TFs to 

interact with MDT-15. Below, we present the results of these experiments and 

show their relevance in vivo. 
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Results 

 

MDT-15 specifically interacts with NHRs that occur in the metabolic GRN 

The observation that expression of several metabolic genes requires 

MDT-15 function but not NHR-49 led to the hypothesis that MDT-15 likely 

interacts with additional TFs to exert its metabolic functions. We performed 

comprehensive Y2H assays using MDT-15 as bait versus our array of 755 full-

length C. elegans TFs (80% of all 940, Figure 3.1A) (Reece-Hoyes et al., 2005; 

Vermeirssen et al., 2007). We did not have a functional clone for SBP-1, a known 

MDT-15 partner, (data not shown), but did confirm the interaction between MDT-

15 and NHR-49. Additionally, we identified 12 novel interactions between MDT-

15 and C. elegans TFs (Figure 3.1B and Table 3.1).  

MDT-15 plays a central role in systems physiology. Therefore, we 

predicted that the TFs it interacts with should occur in our network. Indeed, 

statistical analysis of the TFs that interact with MDT-15 revealed three distinct 

features: they are significantly enriched for NHRs, for TFs that confer a Nile Red 

staining phenotype by RNAi, and for TFs that occur in the metabolic GRN (Figure 

3.2 and Table 3.2). This confirms the prediction that MDT-15 interacts with many 

TFs and provides support for its central role in metabolic gene expression 

networks. 
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NHR-10 interacts with MDT-15 to regulate the expression of acdh genes 

The expression of the C. elegans short-chain acyl-CoA dehydrogenases 

acdh-1 and acdh-2 requires MDT-15, but not its partner NHR-49 (Taubert et al., 

2006). In the metabolic GRN that we described in Chapter II (Table 2.3), we 

identified NHR-10 as the single NHR that can bind to the promoters of both acdh-

1 and acdh-2 (Pacdh-1 and Pacdh-2). In addition, NHR-10 can interact with 

MDT-15 (Table 3.1). To determine if NHR-10 regulates acdh-1 and/or acdh-2 in 

vivo, we created transgenic animals expressing GFP under the control of Pacdh-

1 or Pacdh-2. We noticed that the promoter of acdh-1 is only active in the 

intestine, whereas the promoter of acdh-2 is active in the intestine, hypodermis 

and body wall muscle. We then used RNAi to knock down the activity of either 

mdt-15 or nhr-10. We observed that RNAi of mdt-15 greatly reduced GFP 

expression in the intestine of both Pacdh-1::GFP and Pacdh-2::GFP animals, 

confirming that these promoters are MDT-15 targets (Taubert et al., 2006) 

(Figures 3.3A and B). Importantly, knockdown of nhr-10 conferred an identical 

acdh expression phenotype strongly suggesting that NHR-10 and MDT-15 

together activate acdh-1 and acdh-2 expression by binding to their promoters in 

vivo (Figures 3.3A and B). Altogether, these data show that MDT-15 

preferentially associates with NHRs that occur in the metabolic GRN to exert its 

functions. 
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Discussion 

 

In this chapter, we showed that MDT-15, which was previously identified 

as a metabolic C. elegans transcriptional cofactor, preferentially associates with 

NHRs, and specifically with those that occur in the metabolic GRN.  

The observation that MDT-15 partners with only 13 TFs out of 755 

suggests that the protein-protein interactions that we have identified are specific 

and the network is of high quality. However, it is possible that due to context 

dependent post-translational modifications of TFs, we might have missed 

additional interactions, such as the previously reported interaction between MDT-

15 and SBP-1. Nevertheless, our assays successfully identified a novel 

partnership between MDT-15 and NHR-10, which regulates a distinct set of 

metabolic genes than the MDT-15/NHR-49 complex. Our findings support the 

initial hypothesis that MDT-15 acts as a central coactivator subunit that forms 

complexes with a diverse set of TFs to regulate various aspects of C. elegans 

metabolism. 

Homologs of PGC-1 family are found in vertebrates but not in yeast, flies 

or nematodes (Lin et al., 2005). Invertebrates also lack the conserved LXXLL 

motif that is found in vertebrate Mediator subunits; instead, most of the cofactor-

TF interactions are mediated by the ‘KIX domain’ (Näär and Thakur, 2009). 

Interestingly, a recent study describes a new interaction between PGC-1α and 

the murine TF, TWIST-1 that controls brown fat metabolism (Pan et al., 2009). In 
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our Y2H analysis, we found HLH-8, the C. elegans ortholog of Twist-1, as one of 

the MDT-15 interacting TFs. This suggests that although the domains necessary 

for these interactions are different, the interaction between a metabolic cofactor 

and the orthologous TF is conserved. 

In the future, it will be necessary to extend systematic protein-protein 

interaction mapping between C. elegans cofactors and TFs to genome-scale to 

further our understanding of cofactor-TF regulation in the nematode systems 

physiology. 
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Materials and Methods 

 

Y2H matrix assays 

Y2H matrix assays were performed by mating as described (Walhout and 

Vidal, 2001; Vermeirssen et al., 2007). The DB-MDT-15-NT construct (Taubert et 

al., 2006) was transformed into MaV103 yeast and used as bait. This bait strain 

was mated against the C. elegans TF array (wTF2.1), which consists of 755 TFs 

(Vermeirssen et al., 2007). Diploids were selected on permissive media (Sc-Leu-

Trp) and subsequently replica plated onto selective media (Sc-His-Leu-Trp + 

20mM 3-amino-1,2,4-triazole) to assay for HIS3 reporter gene activity. Diploids 

that grew on these plates were picked and assayed for LacZ reporter gene 

activation. Only TFs that conferred positive read-outs in both reporter gene 

assays were considered as interacting TFs. The identities of the interacting prey 

TFs were determined based on their position in the array, and confirmed by 

sequencing.

 

Generation of promoter::GFP transgenic C. elegans and quantification of GFP 

expression 

Transgenic animals were created by ballistic transformation into unc-

119(ed3) animals as described (Reece-Hoyes et al., 2007). The promoter 

sequences used to generate promoter::GFP constructs were identical to those 

used in Y1H assays. For each GFP construct we obtained up to ten independent 
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lines that all displayed identical GFP expression patterns (data not shown). When 

available an integrated, or alternatively the best transmitting line, was selected 

for subsequent experiments. GFP expression was scored for each genotype in at 

least 25 animals, and each experiment was repeated at least twice.  

 

RNAi experiments 

RNAi clones were cherry-picked from the C. elegans RNAi library (Kamath 

et al., 2003). HT115(DE3) bacterial strains carrying RNAi constructs were grown 

in Luria Broth containing ampicillin (50 µg/mL) at 37°C for 8-10 hours until they 

reach OD600 ~1.0. Bacteria were pelleted by centrifugation, washed once with 

M9 buffer, resuspended in M9 buffer, and seeded on NGM plates containing 5 

mM IPTG and 50 µg/mL ampicillin. Bacteria were induced overnight at 22°C. The 

next day, four to five L4 larvae were placed on the plates. All RNAi clones were 

verified by sequencing. 

 

Microscopy 

Nomarski and fluorescence images were obtained using a Zeiss Axioscope 2+ 

microscope. Images of GFP expression were captured using a digital CCD 

camera (Hamamatsu C4742-95-12ERG) and Axiovision (Zeiss) software. GFP 

fluorescence images were obtained using a FITC filter (excitation 460-500 nm, 

emission 510-565 nm). Animals were placed into a drop of 0.1% sodium azide in 

M9 buffer on a fresh 2% agarose pad for observation.  
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Figure 3.1 MDT-15 can interact with additional C. elegans TFs. 

(A) Example of a Y2H matrix experiment using DB-MDT-15 as bait. Indicated 
are the TFs that interact with MDT-15, which can grow on the selective plate, 
inset - permissive plate. Five spots at the bottom are Y2H controls.   
 
(B) The protein-protein interaction map of MDT-15 and C. elegans TFs. Each 
white node is a C. elegans TF, and orange lines represent mapped Y2H 
interactions. 
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Figure 3.2 Common characteristics of the MDT-15 interacting TFs. 
 
Protein-protein interaction maps of MDT-15 and C. elegans TFs are color coded 
to indicate different attributes. 
 
(A) TFs that have NHR type DNA binding domain - purple. 
 
(B) TFs that confer Nile Red staining phenotype - magenta. 
 
(C) TFs that occur in the metabolic GRN – green. 
 
(D) Bar graphs show the expected (solid bars) and observed (dashed bars) 
frequencies of MDT-15 interacting TFs that have indicated attributes. 
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Figure 3.3 MDT-15 and NHR-10 regulate the activity of Pacdh-1 and Pacdh-2. 
 
 
(A) Images showing GFP expression in Pacdh-1::GFP (left) and Pacdh-
2::GFP (right) transgenic animals that were subjected to control RNAi (top), nhr-
10 RNAi (middle), and mdt-15 RNAi (bottom). Remaining GFP expression in 
Pacdh-2::GFP animals occurs in body wall muscle. Insets in the top right corners 
correspond to the DIC image of the animal. 
 
(B) Bar graphs representing quantifications of intestinal GFP expression 
shown in (A). Error bars indicate the SEM. 



104 

Table 3.1 List of TFs that interact with MDT-15 in Y2H assays 

Bait TF Prey DNA-binding 
domain 

Confers a Nile Red 
phenotype? 

In the metabolic 
GRN as an 

interacting TF? 

DB-MDT-15-NT ZTF-2 ZF - C2H2 not 
tested  yes 

 NHR-10 ZF-NHR no   yes 

 NHR-69 ZF-NHR not 
tested  yes 

 NHR-12 ZF-NHR no   yes 

 F48B9.5 
Paired 

Domain - 
NPAX 

not 
tested  no 

 NHR-114 ZF-NHR not 
tested  no 

 NHR-86 ZF-NHR yes 1 (increased) yes 
 NHR-28 ZF-NHR yes 1 (increased) yes 
 NHR-273 ZF-NHR yes 1 (increased) yes 
 NHR-49 ZF-NHR yes 2  (increased) no 
 NHR-8 ZF-NHR yes 2 (increased) no 

 NHR-112 ZF-NHR not 
tested  no 

 HLH-8 bHLH not 
tested  no 

 

 
 
1 this study 
2 Ashrafi et al., 2003. 
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Table 3.2 Contingency table analysis of TFs that interact with MDT-15  

NHR association 

Binds MDT-15 
NHRs in 
wTF2.1 
array 

non-NHRs 
in wTF2.1 

array 
Yes 10 3 

No 195 547 

(Fisher's exact, two-tailed p=0.0002) 

   

Nile Red phenotype association 

Binds MDT-15 

TFs with Nile 
Red 

phenotypes 
in wTF2.1 

array 

TFs without 
Nile Red 

phenotypes 
in wTF2.1 

array 
Yes 5 8 

No 29 713 

(Fisher's exact, two-tailed p=0.0001) 

   

Metabolic GRN association 

Binds MDT-15 
In the 

metabolic 
GRN 

Not in the 
metabolic 

GRN 
Yes 7 6 
No 80 662 

(Fisher's exact, two-tailed p=0.0002) 
   



 106 

Preface to Chapter IV 
 

This chapter describes an integrated NHR network that regulates lipid 

metabolism of C. elegans as well as the in vivo analysis of protein-DNA 

interactions involving the NHRs in the integrated network. The work presented 

here includes contributions from Dr. Lesley T. MacNeil, who performed some of 

the genetic rescue experiments. 

Most of this chapter has been published separately in the following 

manuscript: 

Arda, H. E., Taubert, S., MacNeil, L. T., Conine, C. C., Tsuda, B., Van Gilst, M., 
Sequerra, R., Doucette-Stamm, L., Yamamoto, K. R., and Walhout, A. J. 
M. (2010). Functional modularity of nuclear hormone receptors in a 
Caenorhabditis elegans metabolic gene regulatory network. Mol. Syst. Biol 
6, 367.  
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CHAPTER IV 

 

An Integrated Nhr Network that Regulates 
C. elegans Lipid metabolism 
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Abstract 

 
 Delineating physical protein-DNA or protein-protein interactions are 

essential for generating GRN models. However, current technologies to map 

these interactions tend to yield static networks that do not immediately reflect the 

dynamic state of the system. Therefore, it is important to generate ‘integrated 

networks’ by combining physical interaction maps with other types of data, such 

as expression and phenotype analysis. In this chapter we have generated an 

integrated NHR network using the protein-DNA and the protein-protein 

interaction data, as well as the lipid staining phenotypes of the NHRs that we 

have described in previous chapters. Using the integrated NHR network, we 

made several regulatory and functional predictions, which we further tested in 

vivo.  
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Introduction 
 

Arguably, one of the most important aspects of network biology studies is 

to be able to predict functional relationships between the components of a 

mapped network that can occur in biological context [reviewed in (Piano, 2006)]. 

To date, several types of networks relating to C. elegans biology have been 

mapped. These include but are not limited to, networks of strictly physical 

protein-DNA or protein-protein interactions, and phenotypic interactions 

(Deplancke et al., 2006; Vermeirssen et al., 2007a; Martinez et al., 2008; Grove 

et al., 2009; Li et al., 2004; Gunsalus et al., 2005). In order to find global 

correlations between different functional characteristics of a biological system, 

integrated networks are constructed in which different data types are 

incorporated into a single graph model [reviewed in (Lehner and Lee, 2008)]. 

Using this model, researchers can predict novel gene functions and phenotypes. 

Another related challenge in the network field is to translate mapped 

physical interactions into regulatory ‘edges’. The physical mapping methods that 

we have used reveal which interactions can happen, but they do not directly 

reveal when and where these interactions can occur in a biological setting. Thus, 

it is important to extend our efforts to investigate the regulatory consequences of 

mapped interactions in vivo, to further our understanding of the dynamic state of 

biological networks. 
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Motivated by these arguments, we generated an integrated NHR network 

that contains protein-DNA interactions, protein-protein interactions, as well as 

metabolic phenotypes relating to the NHRs that we have described in previous 

chapters. This network allowed us to visualize the relationships of these different 

parameters to each other, and make predictions regarding C. elegans energy 

homeostasis, which we then tested in vivo.  
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Results 

 
An integrated NHR network  

We visualized all NHR-promoter interactions that contribute to modules II 

and III, the protein-protein interactions involving MDT-15, as well as the 

metabolic phenotypes in a single, integrated NHR network (Figure 4.1). We also 

included previously identified protein-protein interactions between NHR-49 and 

any NHR that is present in the network (Vermeirssen et al., 2007b). Several 

observations can be made from this GRN. First, MDT-15 interacts with NHRs 

from both module II and III, and also interacts with TFs that receive inputs from 

either module. This further emphasizes the central role of MDT-15 in the 

regulation of metabolic gene expression. Second, three NHRs in module III can 

physically interact with NHR-49 (Vermeirssen et al., 2007b), and RNAi of all of 

them results in a fat storage phenotype, suggesting that NHR-49 shares different 

partners for its metabolic functions. Third, there are numerous interactions 

between NHRs and NHR-encoding genes, and several nhr gene promoters 

receive input from multiple other NHRs. For instance, Pnhr-49 interacts with four 

NHRs, both from module II and III. This ‘interregulation’ implies that NHRs may 

function in transcriptional cascades to execute appropriate gene expression 

programs, e.g. upon receiving intrinsic or extrinsic signals (Magner and Antebi, 

2008). Fourth, several NHRs interact with multiple promoters, which may ensure 

a coordinated response of these target genes. Fifth, there are multiple feed-
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forward loops in the network, in which an NHR controls another NHR, and both of 

these share a downstream target. Such loops likely enable a controlled signal 

response, and protect against fluctuations in gene expression (Alon, 2007). 

Finally, NHR-178 and NHR-86 can interact with their own promoters, suggesting 

that they may be auto-regulators.  

 

NHR-86: a metabolic TF with high flux-capacity 

The HNF4 homolog NHR-86 (module III) has a high flux-capacity 

(Martinez et al., 2008): its promoter is bound by twelve NHRs and it interacts with 

seven gene promoters. In addition, NHR-86 interacts with MDT-15 and with its 

own promoter (Figure 4.1). In the Saccharomyces cerevisiae GRNs, nodes with 

high incoming degree, i.e. ‘target hubs’, are key regulators of differentiation 

pathways (Borneman et al., 2006). Thus, we hypothesized that NHR-86 might be 

a novel regulator of C. elegans metabolic pathways. We showed in Chapter II 

that inactivation of nhr-86 results in increased Nile Red and Oil-Red-O staining. 

In order to further characterize nhr-86, we chose to use a deletion mutant, which 

we requested from the Japanese National Bioresource Consortium. 

 

tm2590 is a null allele of nhr-86  

 The tm2590 allele results from a 172bp deletion and insertion of the 

nucleotides “GG” at the 3’ end of the fourth exon of the nhr-86 gene (Figure 

4.2A). We determined by cDNA cloning and sequencing that this deletion and 
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insertion results in the production of a longer transcript in tm2590 animals due to 

abnormal splicing and retainment of the fourth intron. However, the inclusion of 

the fourth intron introduces a premature stop codon, which causes a truncation at 

the ligand binding domain of the NHR-86 protein (Figure 4.2B).  

We wanted to test if this truncated form of NHR-86 can still bind to its DNA 

target in Y1H assays. Using cDNA synthesized from mutant animals, we 

generated an AD-ΔNHR-86 plasmid by Gateway cloning (Walhout et al., 2000; 

Walhout and Vidal, 2001). We tested the interaction by transforming the plasmids 

that have either wild-type or mutant NHR-86 into the Pnhr-86 Y1H bait. We found 

that while wild-type NHR-86 can bind to its own promoter in Y1H assays, 

truncated NHR-86 cannot (Figure 4.2C), even though both forms of NHR-86 are 

stably expressed in yeast (Figure 4.2D). This may imply that the ligand binding 

domain of NHR-86 is necessary for its ability to bind its DNA target in yeast, or a 

more likely explanation is that the truncation impairs proper folding and 

consequently the DNA binding ability of NHR-86. 

We also raised peptide antibodies against NHR-86, and assayed total 

protein extracts from wild-type and nhr-86(tm2590) animals. Despite the fact that 

the truncated form of NHR-86 is expressed in yeast, we did not detect any NHR-

86-specific protein in the mutant by western blotting or immunoprecipitation 

assays, suggesting that the mutant protein might be subjected to surveillance 

programs (Figure 4.3A and B). Taken together, our results show that tm2590 
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animals cannot produce a wild-type NHR-86 protein and that tm2590 is likely a 

null allele of nhr-86.  

 

Is NHR-86 an autoregulator? 

The observation that NHR-86 interacts with its own promoter in Y1H 

assays suggests that it may have auto-regulatory activity. To test this, we created 

transgenic animals expressing GFP under the control of Pnhr-86 and examined 

GFP expression in wild-type and nhr-86(tm2590) mutant animals. Compared to 

wild-type Pnhr-86::GFP animals, we found that GFP expression was substantially 

upregulated in the pharynx and hypodermis in 100% of the nhr-86(tm2590) 

mutant (Figure 4.4A). This suggests that NHR-86 is an auto-repressor in these 

tissues. Negative auto-regulation is an important feature of regulatory circuits; it 

accelerates the response to outside signals and promotes transcriptional 

robustness (Alon, 2007).  

 

Determining the expression pattern and subcellular localization of NHR-86 

Determining the tissues or cellular compartments in which the genes are 

expressed often provides important clues to understanding their biological 

function (Reece-Hoyes et al., 2007; Hunt-Newbury et al., 2007). To further 

investigate the expression pattern of NHR-86, we tagged the full-length nhr-86 
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ORF with GFP and generated transgenic animals1. We found that NHR-86 is a 

nuclear protein, which is in agreement with its function as a TF. Predominantly, 

NHR-86 localizes to the nuclei of intestinal and excretory gland cells, as well as 

several head neurons, which are all important tissues for metabolism and 

homeostasis (Figure 4.4B). 

 

nhr-86(tm2590) animals have abnormal amount of body fat 

Next, we examined the body fat levels of nhr-86(tm2590) mutants by both 

Nile Red and Oil-Red-O assays. We found that nhr-86(tm2590) animals exhibit 

an increase in Nile Red, as well as Oil-Red-O staining, confirming the nhr-86 

RNAi result that we previously presented in Chapter II (Figures 2.6 and 4.5A, 

4.5B). We also found that the Oil-Red-O phenotype was rescued when we 

crossed the mutant animals to the nematodes carrying the wild-type nhr-86 

construct (Figure 4.5B). Altogether our results show that NHR-86 functions to 

regulate lipid storage and/or catabolism. 

 

nhr-86(tm2590) animals have normal mean lifespan 

Metabolic pathways are important determinants of lifespan across the 

animal kingdom (Narasimhan et al., 2009). In C. elegans, the insulin-like receptor 

mutant daf-2, has an abnormally high level of body fat and live two times longer 

than wild-type animals. On the other hand, nhr-49 mutants, which also 

1 See Appendix for nematode strain information 
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accumulate more body fat than wild-type animals, have shorter lifespan. 

Considering that nhr-86(tm2590) mutants have higher body fat content, we 

wanted to measure the average lifespan of nhr-86(tm2590) animals. 

Interestingly, unlike daf-2 or nhr-49, we found that loss of nhr-86 function did not 

affect the mean lifespan (Figure 4.5C).  

 

An NHR circuit that responds to nutrient availability 

The expansion of NHRs, their modular wiring in the network and the 

observation that they all contribute to systems physiology suggest that these 

NHRs may respond to physiological or environmental cues such as nutrient 

availability. In the integrated network, we showed that nhr-178 is part of several 

gene circuits that involve additional NHRs in module III (Figure 4.1), Also in 

Chapter II we showed that reduction of nhr-178 by RNAi results in increased 

body fat in the nematodes. One of the NHRs that interact with the promoter of 

nhr-178 is NHR-45 (Figure 4.1). We obtained an nhr-45(tm1307) mutant, which 

has a large deletion in the DNA binding domain of nhr-45 (Figure 4.6A). We 

found that the mutant recapitulates the Oil-Red-O staining profile observed with 

nhr-45 RNAi that we also presented in Chapter II (Figures 2.6 and 4.6B). 

In order to further investigate this NHR circuit, we created a transgenic C. 

elegans strain that expresses GFP under the control of Pnhr-1782, and found that 

this promoter mainly drives expression in the pharynx and the first anterior 

2 See Appendix for nematode strain information 
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intestinal cells (Int1) (100±0% of the animals, Figure 4.7A). When we crossed the 

Pnhr-178::GFP strain into the nhr-45(tm1307) animals, loss of nhr-45 greatly 

reduced GFP expression in the pharynx and eliminated it in the Int1 cells 

(100±0%, Figure 4.7A). Microinjection of an nhr-45 rescuing construct restored 

the intestinal and pharyngeal GFP expression (80±1% of the animals), 

demonstrating that NHR-45 activates the promoter of nhr-178 in these tissues 

(Figure 4.7B). Interestingly, however, under standard well-fed conditions, in a 

small but reproducible number of nhr-45(tm1307) mutant animals (3.5±0.7%), we 

observed additional nhr-178 promoter activity in the hypodermis, suggesting that 

NHR-45 may repress Pnhr-178::GFP expression in the hypodermis (Figure 

4.7C). This observation, together with NHRs ability to act as molecular sensors, 

and the hypodermis being a lipid storage tissue led us to hypothesize that nhr-

45/nhr-178 gene circuit might be responsive to the nutrient state of the 

nematode. 

Indeed, when we challenged wild-type animals with food withdrawal, Pnhr-

178::GFP expression was specifically upregulated in the hypodermis (in 84±1% 

of the animals, Figure 4.8A), suggesting that this alternative expression pattern is 

part of a dynamic transcriptional program that responds to starvation. Supporting 

our conclusion, when we provided starved animals with food, GFP expression in 

the hypodermis rapidly disappeared (Figure 4.8A). In the case of nhr-45(tm1307) 

mutants, the starvation response was similar to that of wild-type animals. 

However, when they were provided with food after starvation the mutants failed 
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to completely suppress hypodermal Pnhr-178 activity (90±0.3% of the animals 

still exhibited hypodermal expression, Figure 4.8A), again indicating that NHR-45 

function is necessary for proper repression of Pnhr-178 in this tissue. 

Altogether, these observations reveal a gene circuit that involves multiple 

NHRs which function to rapidly respond to nutrient availability. In this circuit, 

Pnhr-178 activity is kept off in the hypodermis under well-fed conditions. When 

animals starve, NHR-45 may be repressed, thereby allowing other TFs, again 

potentially NHRs, to activate hypodermal nhr-178 expression (Figure 4.8B). 
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Discussion 

 
In this chapter, we presented an integrated NHR network through which 

we analyzed regulatory interactions involving several previously uncharacterized 

NHRs, and showed that they are biologically relevant in the maintenance of C. 

elegans lipid homeostasis.  

NHR-86, a TF with high-flux capacity, is an auto-repressor and required 

for keeping normal levels of body fat in the nematode. We also found that it is 

expressed in metabolically important tissues, such as the intestine. In addition, 

we have generated specific polyclonal antibodies for NHR-86, which work 

efficiently in immunoblotting and immunoprecipitation assays. In the future, these 

antibodies can be used for further biochemical characterization of the NHR-86 

protein, and for the identification of its in vivo DNA targets using TF-centered 

methods, such as ChIP. 

The integrated NHR network model, combined with our phenotypic 

analysis of the NHRs in modules led us to predict and uncover a novel NHR 

circuit involving nhr-45 and nhr-178 that responds to nutrient availability. 

Strikingly, we found that NHR-45 has two distinct transcriptional roles on the 

Pnhr-178 activity; an activator in the intestine, yet a repressor in the hypodermis. 

It is important to note that, both of these NHRs engage in several other 

connections with additional NHRs, which we have not investigated. Thus, one 

explanation for the low penetrance of the hypodermal GFP expression in nhr-
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45(tm1307) animals under well-fed conditions could be that the repression of 

Pnhr-178 in this tissue is controlled by multiple TFs. Losing only the nhr-45 

activity might be enough to stagger the circuit, but not enough to completely 

inactivate it. As more mutant strains become available, it will be interesting to 

investigate the role of other NHRs in this nutrient sensing circuit by combining 

genetics and more rigorous phenotype testing, and delineate the combinatorial 

transcriptional regulation governed by these NHRs. 
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Materials and Methods 

 
Microscopy 

Nomarski and fluorescence images were obtained using a Zeiss 

Axioscope 2+ microscope. Images of GFP expression or Nile Red fluorescence 

were captured using a digital CCD camera (Hamamatsu C4742-95-12ERG) and 

Axiovision (Zeiss) software. GFP fluorescence images were obtained using a 

FITC filter (excitation 460-500 nm, emission 510-565 nm). Nile Red fluorescence 

images were taken using a rhodamine filter (excitation 525-555 nm, emission 

575-630 nm). Animals were placed into a drop of 0.1% sodium azide in M9 buffer 

on a fresh 2% agarose pad for observation. Oil-Red-O images were acquired 

using Zeiss AxioCam HRc color CCD camera. 

 

Generation of promoter::GFP transgenic C. elegans and quantification of GFP 

expression 

Transgenic animals were created by ballistic transformation into unc-

119(ed3) animals as described (Reece-Hoyes et al., 2007), with the exception 

that Pnhr-86::nhr-86ORF::GFP was cloned by multi-site Gateway LR reaction into 

pDEST-MB14 (Dupuy et al., 2004). The promoter sequences used to generate 

promoter::GFP constructs were identical to those used in Y1H assays. For each 

GFP construct we obtained up to ten independent lines that all displayed 

identical GFP expression patterns (data not shown). When available an 
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integrated, or alternatively the best transmitting line, was selected for subsequent 

experiments. GFP expression was scored for each genotype in at least 25 

animals, and each experiment was repeated at least twice.  

 

Genetic rescue experiments 

The nhr-86 rescue strain was generated by crossing nhr-86(tm2590) 

mutants to the VL505 strain, which carries the Pnhr-86::nhr-86ORF::GFP 

construct. The nhr-45 rescuing fragment was PCR amplified using the forward 

primer CTCTTCATTATGCATTTTTGTTC and the reverse primer 

TCACTGGAAACGTGAGAGTCA from C. elegans (N2) genomic DNA. This 

fragment consists of the genomic sequences 2kb upstream of the translational 

start site of nhr-45, nhr-45 gene itself, and 487 bp downstream of the 3’end of 

nhr-45. The PCR band corresponding to the expected size was gel purified and 

sequence verified. Transgenic animals were generated by microinjecting 10 

ng/µL of the purified PCR product along with 80 ng/µL of the coinjection marker 

plasmid pRF4, which carries the marker gene rol-6(su1006) into the germline of 

the VL739 strain (see Appendix for a list of C. elegans strains generated in this 

study) (Mello et al., 1991). 

 

Antibodies 

We raised a polyclonal anti-NHR-86(NT) antibody using an N-terminal 

peptide (SQFRPEKKEKSTCSIC) and an anti-NHR-86(IN) antibody using an 
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internal peptide (SVGDGYPPTTSAQSALC) in rabbits (AnaSpec, Inc., San Jose, 

CA). anti-NHR-86(NT) was used at a final concentration of 1 µg/mL in 

immunoblotting assays. For detecting Gal4AD-fusions from yeast extracts, an 

anti-Gal4AD antibody from Sigma (cat #: G9293) was used. 

 

Immunoblotting 

C. elegans total protein extract preparation: L4 stage animals were 

collected and washed with sterile water. Animals were homogenized by 

sonicating in lysis buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 1mM EDTA, 1% 

Triton-X, 1mM DTT, and Roche Complete protease inhibitors). The lysates were 

cleared by centrifugation and protein concentrations were determined using Bio-

Rad Dc Protein Assay (cat. #: 500-0116). 100 µg of total protein extract was 

loaded in each lane. Yeast sample preparation: Yeast strains were grown in 

YEPD liquid medium at 30°C with a starting density of OD600 ~0.1 until they 

reach an OD600 ~0.6-0.8. For each sample, 1 mL of liquid culture was pelleted 

and washed with sterile water. The pellet was then resuspended in freshly made, 

ice-cold 150 mM NaOH solution. After incubating on ice for 15 min, the cells were 

pelleted, resuspended in 20 µL of 2X Laemmli buffer, boiled for 5 minutes and 

loaded in equal amounts onto the gel. In both cases, proteins were separated 

using NuPAGE 4-12% Bis-Tris gels (Invitrogen, cat #: NP0323), and transferred 

onto PVDF membranes. The membranes were incubated overnight at 4°C with 



 124 

primary antibodies, followed by standard immunoblotting techniques (Maniatis et 

al., 1982).  

 

Immunoprecipitation (IP) assays 

 Total protein extracts of the nematodes were prepared and quantified as 

described above. 100 µg of each extract was saved as input samples. IP assays 

were performed with protein extracts adjusted to a final concentration of 5mg/mL. 

Extracts were pre-cleared with Sepharose A/G beads (Santa Cruz) at 4ºC for 1 

hour, and transferred to fresh tubes for antibody incubation. 2 µg of antibody was 

added to each IP sample, and incubated on a nutator at 4ºC overnight. The next 

day, antibodies were bound to Sepharose A/G beads by nutating at 4ºC for an 

hour. The antibody bound beads were collected by brief centrifugation, boiled for 

5 minutes in 2X Laemmli buffer, and loaded onto a 10% SDS-PAGE gel 

(Maniatis et al., 1982). The electrophoresis procedure is performed as described 

above. 

 

Lifespan assays  

Lifespan assays were performed as described (Oh et al., 2005). For each 

strain, approximately 70 late L4 larvae of each strain per experiment (15-20 

animals/plate) were examined on nematode growth medium (NGM) plates 

containing 100µg/ml FUDR (5-fluoro-2′-deoxyuridine), and that were seeded with 

OP50 E. coli bacteria. Every two days, animals were examined for their ability to 
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respond to tapping with a platinum wire pick. The animals were scored dead 

when no movement could be observed. Each assay was repeated four times, 

and the identities of the strains were concealed while scoring to prevent observer 

bias.  

 

Starvation assays 

 The assays were done as described (Van Gilst et al., 2005a, 2005b). 

Briefly, animals were collected and washed several times with M9 buffer to 

remove residual bacteria. The animals were then plated onto NGM plates that did 

not contain food, and allowed to fast on these plates for 12 hours at 20°C, and 

then scored for hypodermal GFP expression. After the starvation period, animals 

were transferred back on NGM plates with food and allowed to recover for 24 

hours at 20°C, and then scored for hypodermal GFP expression. The data 

reported in Figure 4.8 was obtained by using synchronized L1 stage animals for 

starvation assays. Similar results were obtained with L3 stage animals (data not 

shown). 
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Figure 4.1 An integrated NHR network. 

Interactions involving NHRs that are in module II (right, beige background) and 
module III (left, green background), their targets and MDT-15 are represented. 
NHRs that specifically bind a single target gene that is part of either module were 
also included.  Circles - NHRs; numbers depict NHR identity, i.e. ‘1’ is NHR-1; 
NR - Nile Red staining, ORO - Oil-Red-O staining. 
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Figure 4.2 tm2590 is a deletion allele of nhr-86. 

(A) Gene model of nhr-86 indicating the tm2590 deletion. Boxes - exons, lines 
- introns - red, DNA binding domain - green, and ligand binding domain - blue.  
 
(B) Cartoon illustrating the protein structure of wild-type and the truncated 
NHR-86, DNA binding domain (DBD), and ligand binding domain (LBD). 
 
(C) Truncated NHR-86 protein fails to bind Pnhr-86 in Y1H assays: growth on 
permissive media (top), HIS3 reporter (middle), and LacZ reporter expression 
(bottom). 
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(D) Western blot using anti-Gal4AD antibody shows expressed Gal4AD 
fusions of NHR-86 wild type (AD-NHR-86) and truncated (AD-∆NHR-86) forms in 
the Pnhr-86 Y1H bait (arrows). Extracts from yeast cells harboring Gal4AD (AD) 
and Gal4DB (DB) vectors with no inserts were used as positive and negative 
controls respectively. 
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Figure 4.3 tm2590 animals cannot produce wild type NHR-86 protein 

(A) Western blot using anti-NHR-86(NT) antibody shows that nhr-86(tm2590) 
mutant animals do not produce full-length NHR-86 protein (46 kDa): total protein 
extracts from wild-type, or nhr-86(tm2590) mutant animals were used; (asterisk) 
non-specific band. 
 
(B) Western blot using anti-NHR-86(NT) antibody shows that anti-NHR-86(IN) 
antibody can specifically immunoprecipitate (IP) NHR-86 protein from a wild-type 
extract, and the corresponding band in the nhr-86(tm2590) extract is absent. 
Anti-GFP antibody was used as a negative control for the IP experiment. 



 130 

Figure 4.4 NHR-86 is an auto-repressor, and is expressed in metabolic tissues. 
 
(A) Pnhr-86 activity determined by GFP expression in wild-type (top) or nhr-
86(tm2590) mutant animals (bottom), indicating auto-repression by NHR-86 in 
head hypodermis and in the pharynx (white arrowheads). 
 
(B) Expression pattern and subcellular localization of NHR-86 as shown by 
GFP expression in transgenic animals carrying a Pnhr-86::nhr-86ORF::GFP 
reporter construct. The anterior is to the left. 
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Figure 4.5 nhr-86(tm2590) animals have higher amount of body fat.  
 
(A) Nile Red staining of wild-type and nhr-86(tm2590) animals (left panel), 
shows that nhr-86(tm2590) animals have increased Nile Red phenotype. The 
box-plot graph shows the quantification of Nile Red assays as (right) Red box 
plot indicates changes in Nile Red staining are statistically significant. 
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(B) Oil-Red-O staining of wild-type, nhr-86(tm2590), and nhr-86(tm2590) 
animals expressing the wildtype transgene (rescue). Black arrowheads point to 
the posterior bulb of the pharynx. The graph on the right shows the quantification 
of Oil-Red-O staining assays. nhr-86(tm2590) animals accumulate more 
intensely stained lipid droplets, and this phenotype is rescued by the wild-type 
nhr-86 gene. Error bars indicate SEM. 
 
(C) Survival curve of wild-type and nhr-86(tm2590) animals shows that loss of 
nhr-86 does not affect mean lifespan. 
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Figure 4.6 tm1307 is a null allele of nhr-45. 

(A) Gene model of nhr-45 depicting the tm1307 deletion/insertion. Boxes - 
exons, lines - introns, green - DNA binding domain, blue - ligand binding domain. 
 
(B) Oil-Red-O staining of wild-type and nhr-45(tm1307) animals (left). 
Quantification of the Oil-Red-O staining (right) shows that nhr-45(tm1307) 
animals have more intensely stained lipid droplets. Error bars indicate SEM. 
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Figure 4.7 nhr-45 regulates the promoter activity of nhr-178. 

(A) Images showing Pnhr-178 activity in wild-type and nhr-45(tm1307) 
animals in the well-fed nutrient state. Graphs next to each group of images show 
the percentage of animals that exhibit GFP expression in the int1 cells. Error bars 
indicate the SEM. Top panels - Nomarski images, bottom panels - GFP 
fluorescence. White arrowheads – first anterior intestinal cells (Int1). 
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(B) GFP image showing Pnhr-178 activity when nhr-45(tm1307) mutants were 
injected with a rescuing nhr-45 genomic fragment along with the dominant co-
injection marker rol-6(su1006), which causes the animals roll along their long 
axes (left). Wild-type nhr-45 restores the GFP expression in the int-1 cells and 
pharynx (white arrowheads). The rescuing transgene is maintained as a high-
copy extrachromosomal array, which results in the mosaic expression in the 
intestine (orange arrows). Quantification of intestinal GFP expression in the 
mutant animals that carry the rescuing transgene (rollers) versus the ones that 
don’t (non-rollers). Error bars indicate SEM. 
 
(C) Images showing hypodermal Pnhr-178 activity in nhr-45(tm1307) mutants 
under well-fed conditions, while it is not detected in wild-type animals (yellow 
arrowheads). Graph on the right shows the percentage of animals that exhibit 
hypodermal GFP expression. Error bars indicate SEM.  
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Figure 4.8 An NHR gene circuit that responds to nutrient availability. 
 
(A) Images showing Pnhr-178 activity in wild-type and nhr-45(tm1307) 
animals in the under different feeding conditions. Graphs next to each group of 
images show the percentage of animals that exhibit GFP expression in the 
indicated tissues or cells. Error bars indicate the SEM. Top panels - Nomarski 
images, bottom panels - GFP fluorescence. 
 
(B) Cartoon depicting effects of NHR-45 and different feeding states on Pnhr-
178 activity.  
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Preface to Chapter V 
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M. (2010). Functional modularity of nuclear hormone receptors in a 
Caenorhabditis elegans metabolic gene regulatory network. Mol. Syst. Biol 
6, 367. 
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CHAPTER V 

Summary and Perspectives 
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The data presented in the previous chapters provide the first insights into 

the organizing principles of C. elegans GRNs that pertain to systems physiology 

(Figure 5.1). Our results show that multiple NHRs function in the maintenance of 

C. elegans metabolism, and that they organize into TF modules in the metabolic 

GRN. We also show that the metabolic cofactor MDT-15 interacts with several of 

the NHRs that we have identified in the metabolic GRN, and that most of these 

NHRs confer a lipid staining phenotype. 

Below I discuss the broader implications of our findings, and comment on 

future perspectives about the nematode NHR biology, and physiology. 

 

Expansion of the NHR family in nematodes 

After the completion of the C. elegans genome sequencing, it was 

surprising to find that the C. elegans genome encodes over 250 predicted NHRs 

(C. elegans Sequencing Consortium, 1998). Phylogenetic analysis of the 

divergent C. elegans NHRs suggests that they share a common HNF4-like 

ancestor, which had undergone a lineage specific duplication and expansion 

during the evolution of C. elegans (Robinson-Rechavi et al., 2005). In the same 

study the authors also calculated the evolutionary rates of the divergent C. 

elegans NHRs and found that they evolve much faster than the conserved NHRs. 

However, even the evolutionary rates of the conserved nematode NHRs are 

comparably higher than the non-nematode orthologs. Intriguingly, the remarkable 



 140 

abundance and diversity of NHRs have also been observed in other 

Caenorhabditis species. Haerty et al. showed that the genomes of both 

Caenorhabditis briggsae (232 NHRs) and Caenorhabditis remanei (256 NHRs) 

encode similar numbers of NHRs (Haerty et al., 2008). While the authors could 

identify a three-way reciprocal orthology for about half of the NHRs from the 

three Caenorhabditis species, the remaining NHRs seem to have diverged 

substantially such that no orthology could be assigned, and are unique to each 

species. This demonstrates, yet again, the fast evolving feature of the divergent 

NHRs. Interestingly however, extensive duplication and divergence of the NHR 

family is not observed in parasitic nematodes [reviewed in (Taubert et al., 2010)]. 

For instance, the genome of the filarial parasite Brugia malayi encodes only 37 

NHRs, which is comparable to that of Drosophila (21 NHRs) (Ghedin et al., 2007; 

Scott and Ghedin, 2009). This may suggest that the expansion of the NHR family 

is a non-parasitic nematode feature, and has been conserved because of the 

selective pressure on these nematodes in their natural habitats. 

C. elegans is a pseudocoelomate with a simple alimentary system 

composed of the pharynx, intestine and rectum. This is in contrast to animals that 

have specialized organ systems for digestion, detoxification and endocrine 

signaling; e.g. liver, kidney and pancreas. C. elegans live in soil and need to 

rapidly respond to changes in nutrient status and environmental conditions, 

including toxins or pathogens. Along this line, it is interesting to note that in adult 

mice HNF4 is highly expressed in the liver, kidneys, the adipose tissue and the 
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gastroenteric system, where HNF4 is necessary for the expression of genes 

involved in the fatty acid metabolism and detoxification of xenobiotics (Watt et al., 

2003; Bookout et al., 2006). 

 

Modularity of NHRs in the C. elegans metabolic GRN 

Modularity is an essential component of biological network architecture. 

Modules consist of nodes that have distinct and separable functions. Yet, each 

module is not completely independent from the other and they are connected via 

nodes that have many links or high in-betweenness (Ravasz et al., 2002; Girvan 

and Newman, 2002). The implications of modularity in biological networks are 

that it increases the robustness and adaptability of the system (Babu et al., 

2004). The discovery of modularity in biological networks spurred researchers to 

find out how modularity could have emerged at the first place [reviewed in 

(Wagner et al., 2007)]. One theory suggests that modularity arises by gene 

duplications followed by mutations that allow new genes to gain or lose links, 

which under certain parameters eventually leads to modularity. However, this 

theory does not take natural selection into account and therefore was later 

claimed inadequate because it fails to explain how modularity is maintained once 

acquired (Wagner et al., 2007). As an alternative, by using simulation algorithms, 

Alon and colleagues showed that spontaneous evolution of modularity can occur 

in response to ‘modularly varying environment’ (Kashtan and Alon, 2005). In 

other words, when a system is presented with varying ‘subproblems’ of a 
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common goal, rather than randomly changing goals, networks with modular 

topology were better at finding a solution. By simply rewiring existing modules 

that can carry out specific tasks, the system can adapt faster to changing 

environments without making major alterations in the network structure. In 

addition, when they analyzed reconstructed metabolic networks of different 

bacterial species, they found that there is a correlation between the network 

topology and their habitats; the more variable the environment, the more modular 

the networks are (Parter et al., 2007).  

Our results show that the C. elegans metabolic GRN is highly modular, 

and at least two of these modules consist mainly of NHRs. It is interesting to 

think that similar environmental pressures might have pushed C. elegans 

metabolic GRNs to acquire this modular structure. Thus, by expanding the NHR 

family, which is known to act as metabolic sensors and organizing them into TF 

modules, C. elegans metabolic GRNs have a dual mechanism to rapidly respond 

to physiological or environmental cues. 

It is hard to conclude with absolute confidence that nematodes are 

constantly subjected to changing conditions in their natural habitats, but we can 

speculate that our findings are consistent with the idea that higher modularity 

allows higher adaptability and increased fitness. As we continue mapping the 

GRNs pertaining to C. elegans systems physiology, we will likely discover 

additional modules involving other NHRs, gain more insights into the global 

architecture of these networks. Together with the functional characterization of 
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these NHRs we can start addressing how the existence of TF modules and their 

wiring in the network increase the adaptability of the nematodes to the changing 

environmental conditions. 

 

Biological functions of the divergent C. elegans NHRs 

 The finding that the C. elegans genome encodes for unprecedented 

numbers of NHRs initially led to the speculations that majority of these divergent 

NHRs might not be expressed or could be pseudogenes. However, in the years 

following the genome sequencing, several studies showed that, to the contrary, 

most C. elegans NHRs are expressed and believed to be functional (Miyabayashi 

et al., 1999; Sluder et al., 1999; Lamesch et al., 2004; Baugh et al., 2009). To 

date, detailed phenotypic characterizations have been mainly limited to the 

conserved NHRs, and the functional analysis of divergent NHRs has been 

challenging mostly due to the overwhelming numbers.  

Our study demonstrates that several divergent C. elegans NHRs are 

essential for normal lipid metabolism and nutrient response, and that they are not 

necessarily functionally redundant. Supporting this notion, in a recent study 

Baugh et al. compared the gene expression profiles of L1 larvae under fed and 

fasted conditions using high-density microarrays and found that the transcript 

levels of numerous NHRs changed significantly, suggesting that the nematode 

metabolic system employs multiple NHRs to maintain its energy balance and 

survival (Baugh et al., 2009).  
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In the future, it will be important to obtain more information about the 

biological roles of the divergent C. elegans NHRs by designing systems-level 

assays to systematically address their functionality. For example, analysis of the 

spatio-temporal expression pattern of the remaining C. elegans NHRs may be 

informative to understand the evolution of gene function. Do these NHRs all have 

distinct or mostly similar expression patterns, and how does that relate to their 

position in the phylogenetic tree? Other functional assays may include perturbing 

the ‘normal environment’ with xenobiotics, metabolic and oxidative stress, or 

pathogens and analyze the contribution of NHRs to the fitness of the nematode 

under these conditions. 

 

Extent of dimerization of C. elegans NHRs 

NHRs can bind to their DNA targets in the form of homo or heterodimers. 

Heterodimerization is a molecular strategy to increase DNA binding site 

complexity and the diversity of functional TFs without increasing the number of 

individual components (Grove and Walhout, 2008; Grove et al., 2009). For 

instance, the mammalian nuclear receptor RXR functions as a heterodimerization 

partner/hub for large number of other mammalian NHRs (Mangelsdorf and 

Evans, 1995). Being a liganded nuclear receptor itself, RXR heterodimerization 

adds another layer of complexity and versatility to hormone signaling pathways, 

although ligand dependent RXR activation in these heterodimer complexes is 

context dependent. When RXR is dimerized to retinoic acid or vitamin D nuclear 
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receptors, RXR ligands alone cannot induce transcription and RXR is considered 

to be a ‘silent’ partner. In contrast, when partnered with LXR, FXR or PPARs, 

ligand induced activation of RXR is permitted, and these NHRs become 

transcriptionally active, even though they are not bound by their cognate ligands 

(Blumberg and Evans, 1998; Gronemeyer et al., 2004).  

As mentioned earlier in Chapter I, despite having 284 NHRs, the C. 

elegans genome does not have an RXR ortholog, even though RXRs belong to 

the evolutionarily ancient NR2B class (Escriva et al., 2000). In addition, HNF4 

nuclear receptors, from which most C. elegans NHRs have expanded, are only 

known to homodimerize (Sladek et al., 1990; Watt et al., 2003). This raises the 

question of whether in C. elegans NHRs work predominantly as monomers or 

homodimers. Given the high evolutionary rates of divergent C. elegans NHRs, it 

is also thought that the requirement of an obligate dimerization partner to 

become transcriptionally active is a less plausible evolutionary scenario than 

functioning as a homodimer (Robinson-Rechavi et al., 2005). Nevertheless, 

studies using high-throughput Y2H assays suggest that at least a few C. elegans 

NHRs can interact with several other NHRs, and may function as heterodimer 

hubs (Li et al., 2004; Vermeirssen et al., 2007). For example, NHR-49, an HNF4-

like NHR, dimerizes with 25 NHRs, and in Chapter II we showed that at least 

three of them have a fat storage phenotype when knocked down by RNAi. It is 

possible that the extensive divergence of HNF4-like C. elegans NHRs could have 

evolved novel and unique contact interfaces for heterodimerization that do not 
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exist in the ancestor. Systematic analysis of NHR-NHR interactions would be 

essential to determine the extent of NHR dimerization in the nematode, and to 

further our understanding of the role of NHRs in C. elegans physiology. 

 
Ligand binding ability of C. elegans NHRs 

Perhaps the most important feature of NHRs is their ability to interact with 

diffusible ligands, which can modulate their transcriptional output. Due to the 

therapeutic potential, substantial effort had been made to identify ligands of the 

mammalian nuclear receptors and understand the molecular basis of ligand 

binding. Currently, ligands for more than half of the human NHRs have been 

identified, and several synthetic ligands are being tested in clinical trials for the 

treatment of diabetes, obesity and hypertension (Gronemeyer et al., 2004; 

Sonoda et al., 2008). 

 Despite the abundance of C. elegans NHRs, thus far, only the ligand for 

the vitamin D receptor ortholog DAF-12 has been identified (Motola et al., 2006). 

DAF-12 regulates several aspects of nematode physiology, including fat 

metabolism, developmental timing and adult lifespan (Magner and Antebi, 2008). 

Under favorable conditions, the C. elegans neuroendocrine pathways trigger the 

production of dafachronic acid, the DAF-12 ligand, to promote reproductive larval 

fate. Conversely, when the environment is unfavorable, the dafachronic acid 

production is believed to be repressed, and in the absence of its ligand, DAF-12 
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associates with its corepressor DIN-1, which pushes the nematodes into the 

dauer state (Magner and Antebi, 2008).  

 Dafachronic acid is a cholesterol derivative, and an endogenously 

synthesized hormone (Motola et al., 2006). The discovery of these hormone 

synthesis pathways in C. elegans revealed the fact that they are conserved from 

nematodes to humans. Combined with powerful genetics, studies of the C. 

elegans hormone pathways may provide insights into the regulation of steroid 

signaling. 

 DAF-12 does not belong to the group of divergent HNF4-like NHRs, and it 

remains to be determined whether the rest of the C. elegans NHRs are liganded 

or not. Initial phylogenetic analyses argued that ancient NHRs are mostly 

orthologs of orphan receptors and in case of the mammalian NHRs, there is no 

relationship between the position of the NHRs in the phylogenetic tree and the 

chemical nature of the ligands that they bind (Escriva et al., 2000; Gronemeyer et 

al., 2004). Therefore, it was suggested that the first nuclear receptor was likely 

not liganded and that ligand binding was acquired independently several times 

during the course of NHR evolution. Certainly, phylogenetic analyses are limited 

by the availability genome sequences, and the thoughts on the origins of 

liganded nuclear receptors are anticipated to change as researchers continue to 

complete sequencing the genomes of diverse species. In addition, the fact that 

no ligand has been identified for the ‘orphan receptors’ should not necessarily 

lead to the conclusion that they are truly incapable of binding any small molecule. 
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For instance, the mammalian HNF4 was believed to be an orphan receptor until it 

was co-crystallized with endogenous fatty acids inside its ligand binding domain 

(Wisely et al., 2002). 

 Considering the biological roles of the C. elegans NHRs, which include 

molting, fat metabolism, longevity, reproduction and nutrient sensing, it is 

reasonable to speculate that C. elegans NHRs other than DAF-12 can also bind 

specific ligands. Interestingly, there is less sequence conservation in the ligand 

binding domain than in the DNA binding domain among the C. elegans NHRs 

(Sluder and Maina, 2001; Robinson-Rechavi et al., 2005). This indicates that 

perhaps expression of numerous NHRs with divergent ligand binding domains 

gives the nematodes the ability to recognize and respond to a variety of signals 

and provides a better adaptability to their environment. Future experiments will 

uncover additional ligands and reveal whether each NHR responds to a single 

ligand, or if there may be redundancy or even modularity at this level as well. 

 

DNA binding specificity of C. elegans NHRs 

 NHRs bind to hormone response elements through the ‘P-box’ region, a 

conserved string of amino acid sequence that exists in the DNA binding domain 

(Zilliacus et al., 1995). The P-box sequences of several divergent C. elegans 

NHRs are very different than those of the vertebrates, and most of them are only 

found in nematodes (Van Gilst et al., 2002). Therefore, predicting the DNA 

binding specificity of the C. elegans NHRs based on P-box sequence 
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conservation alone is not going to be feasible. Thus far, no ChIP data is available 

for any of the C. elegans NHRs and DAF-12 remains as the only nematode NHR 

whose DNA binding motif has been experimentally characterized (Shostak et al., 

2004).  

Y1H assays provide a valuable resource for the identification of TF binding 

sites. Previously, by using our Y1H data and a combination of available 

computational algorithms, we have successfully delineated the consensus 

binding site for several C. elegans TFs from different families, and showed that 

these binding sites are both necessary and sufficient for the binding event to 

occur (Deplancke et al., 2006; Ow et al., 2008; Reece-Hoyes et al., 2009). In this 

study, by using Y1H assays, we have identified promoter targets for 27 C. 

elegans NHRs, which is approximately 10% of all the NHRs in the nematode. 

This demonstrates the power of gene-centered network mapping. Further 

analyses of these promoter fragments will be instrumental in determining the 

DNA binding specificities of the C. elegans NHRs that occur in the metabolic 

GRN. 

 

Cofactor-NHR interactions 

Transcriptional cofactors are important regulators of mammalian 

physiology, and several cofactor complexes have been discovered that work in 

conjunction with NHRs (Rosenfeld et al., 2006). Biochemical analyses showed 

that one of the key structural determinants of the cofactor-NHR interactions is the 
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presence of a conserved LXXLL motif in the cofactors. Often, this motif enables 

vertebrate cofactors to interact with the ligand binding domain of the NHRs, 

either in the presence or absence of their cognate ligands depending on the 

cellular context.  

Initial survey of the C. elegans genome could not identify orthologous 

cofactors proteins with known LXXLL cofactor-NHR interfaces (Taubert et al., 

2006; Näär and Thakur, 2009). In fact, most of the well-characterized vertebrate 

cofactors, such as PGC-1α, and the p160 family of coactivators are absent from 

the yeast, worm and fruitfly genomes. Nevertheless, MDT-15 and DIN-1 are two 

examples of C. elegans transcriptional cofactors that can interact with NHRs to 

regulate important physiological processes, suggesting that cofactor-NHR 

interactions are ancient mechanisms for metabolic gene regulation. Given the 

sequence divergence of the ligand binding domains of the nematode NHRs, it is 

possible that they might employ different regulatory mechanisms and novel 

interaction surfaces to interact with cofactors. It is also likely that cofactors that 

are unique to the nematodes might exist, complementing the expansion of the 

NHR lineage. The use of systems-level approaches, such as high-throughput 

Y2H assays, to systematically identify cofactor-NHR interactions will be pivotal 

for reconstructing and expanding on current metabolic gene regulatory networks, 

and undoubtedly will advance our understanding of the evolution of cofactor:NHR 

interactions. 
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Final word 

In this chapter, I sought to discuss the broader implications of our findings, and 

comment on future perspectives about the nematode NHR biology, and 

nematode physiology. The networks described in this study are only the first 

steps to start experimentally delineating metazoan metabolic GRNs. It is 

necessary to continue our efforts to get a better understanding of the C. elegans 

NHR biology. Identification of ligands, dimerization networks, and cofactor 

interactions will ultimately help us comprehend the complexities of the 

physiological networks. Despite the considerable progress that had been made 

using vertebrate models, studies of C. elegans systems physiology provide a 

unique opportunity to investigate the evolution of metazoan metabolic GRNs, and 

discover the novel mechanisms that organisms invent to address common 

problems, such as energy balance and homeostasis. 
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Figure 5.1 Model for the organizing principles of C. elegans metabolic networks.  
 
Circles are NHRs, and hues of purple represent the evolution of HNF4 family 
NHRs in C. elegans. These NHRs are organized into TF modules in the 
metabolic GRN. NHRs regulate their metabolic target genes (blue diamonds) by 
interacting with ligands (hexagons), and with other proteins (orange lines) such 
as the cofactor MDT-15 (orange oval) and dimerization partners. 
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APPENDIX 

List of C. elegans strains generated in this study 

Strain Name Genotype* 

VL220 unc-119(ed3) III; wwEx52[Pnhr-86::GFP unc-119(+)] 

VL484 nhr-45(tm1307) X, (x4) 

VL491 nhr-86(tm2590) V, (x6) 

VL505 unc-119(ed3) III; wwIs22[Pnhr-86::nhr-86ORF::GFP unc-119(+)] 

VL510 nhr-86(tm2590) V; wwEx52[Pnhr-86::GFP unc-119(+)] 

VL584† nhr-86(tm2590) V; wwIs22[Pnhr-86::nhr-86ORF::GFP unc-
119(+)] 

VL600‡ unc-119(ed3) III; wwIs23[Pnhr-178::GFP unc-119(+)] 

VL714 unc-119(ed3) III; wwEx53[Pacdh-2::GFP ] 

VL717 unc-119(ed3) III; wwEx54[Pacdh-1::GFP ] 

VL739 nhr-45(tm1307) X; wwIs23[Pnhr-178::GFP unc-119(+)] 

VL752 nhr-45(tm1307) X; wwIs23[Pnhr-178::GFP unc-119(+)]; 
wwEx55[Pnhr-45::nhr-45genomic::nhr-45 3'UTR rol-6(su1006)] 

 

                                            

* all strains were generated using out-crossed alleles, and the number of out-crosses is 
indicated after each allele name 
† transgene is integrated into the genome of the nematodes 
‡ transgene is integrated into the genome of the nematodes 
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