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ABSTRACT

Transcription by RNA polymerase II is a highly regulated

process requiring a numer of general and promoter specific
transcription factors. Although many of the factors involved

the transcription reaction are known , exactly how they
function to stimulate or repress transcription is not well

understood. Central understanding gene regulation
unders tanding the mechanism which promoter specific
transcription activators (activators) stimulate
transcription.

A group of factors called coactivators have been shown

to be required for activator function vi tro. The best
characterized coactivators to date are members of the TFIID

complex. TFIID is a multisubunit complex composed of the TATA

box binding protein ( TBP) and TBP associated factors
(TAFrrs). Results from numerous in vitro experiments indicate

that TAFns function by binding to activators and forming a
bridge between the activator and the basal transcription
machinery . In order to gain insight into the mechanism by

which activators stimulate transcription, we chose to analyze

the in vivo function of TAFrrs, their proposed targets.

Results from the genetic disruption of a numer of TAFrrs

the yeast Saccharomyces cerevisiae showed that most are



encoded by essential genes. In order to study their function,
temperature-sensitive and condi tional alleles were

constructed. Cells depleted of individual TAFrrs by either 

these two methods displayed no defect in global transcription

activation Inactivation of yTAFn 17, however, resul ted in a
promoter specific defect. addition, inactivation
yTAF 145, yTAF TSM1, resul ted inabi 1 i ty
cells to progress through the cell-cycle.

attempt identify genes whose expression
required yTAF 90, we performed subtractive hybridization on

strains containing wild-type and temperature- sensi ti ve
alleles. Al though this technique success fully identified
genes differentially expressed in the two strains, it failed

to identify genes whose expression required yTAF 90.

These results indicate that TAFrrs are not the obligatory
targets of activators, and that other factors must provide
this role vivo. Furthermore, that many TAFns are
required for cell-cycle progression.
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CHAPTER I

INTRODUCTION



Overview

Transcription activation is a highly regulated process

required throughout the life of an organism. It is essential
for the development and maintenance of an organism, as well

for it' s ability respond environmen tal stimuli.
Although there is a general understanding of how genes are

regula ted, the specifics are not completely understood. What
has become clear, however, is that the loss of regulation can

have catastrophic consequences. The importance of regulation,

and the detrimental effects which can result from its loss,

make it imperative that we understand the exact mechanism by

which genes are regulated.

There are many steps involved the accura te

transcription gene. begin with, preini tiation
complex (PIC) must be formed at the appropriate site on the

promoter. The double stranded DNA must then be separated to

expose the template for RNA synthesis. This followed by

formation of the first phosphodiester bond, detachment of the

RNA synthesis machinery from the promoter area, elongation of

the transcript, and termination. The whole process must then

be reini tiated to begin a new transcription cycle. Each of

these steps involve the function of many proteins, any one of

which could serve as a target for regulation. In vivo, the



repressive effects of chromatin create an additional level of

complexity, and additional targets for regulation.
In bacteria, transcription is carried out by single

RNA polymerase. Transcription eukaryotes, however
carried out by three distinct RNA Polymerases, each required
for the transcription different subset genes
(reviewed in Sentenac 1985). RNA polymerase II , which is the
focus of this thesis, is responsible for transcribing all of

the protein-encoding as wellgenes, small nuclearsome

RNAs.

The formation of a PIC onto the core promoter is thought

to constitute one of the most highly regulated steps in the

transcription reaction. Core promoters both prokaryotic
and eukaryotic contain distinctgenes elements which are
required for accurate transcription initiation.

In E coli, most core promoters contain a -35 and a -
hexamer sequence (reviewed in Busby and Ebright 1994). The -
35 hexamer is located approximately 35 bases upstream of the

start site sequencetranscription with the consensus
TTGACA. The located approximately sequence base
pairs upstream the sitestart and has the consensus
sequence TATAAT.

Core promoters of genes transcribed by eukaryotic RNA

polymerase II also contain two distinct elements, the TATA

box and the ini t ia tor. The presence of ei ther one of these



elements is sufficient for accurate transcription 
initiation,

and together they can greatly enhance promoter 
strength. The

TATA box A/T rich sequence with the consensus

TATAa/tAa/t. higher eukaryotes located 25- 30,

(Breathnach and Chamon 1981) and in yeast between 40 and 90,

base palrs ups tream the start site transcription

(reviewed in Struhl 1987). The second 
element, the initiator,

is a pyrimidine rich sequence which encompasses the start

site.
Both bacterial RNA polymerase and eukaryotic RNA

polymerase require auxiliary factors accurately

position RNA polymerase onto the promoter 
(Weil et al. 1979 ;

reviewed in Young 1991) . In bacteria a family of proteins

called sigma (cr ) factors carry out this function Lewin

1997) . Each factor recognizes different class

promoter. Mul tiple factors allow the polymerase

recognize different promoters response different

environmental stimuli. While only single factor

required to accurately position the bacterial 
enzyme, a group

six factors are required eukaryotes (Matsui al.

1980). These factors, TFI IA, TFIIB, TFIID, TFIIE, TFIIF and

TFIIH, are commonly referred to as the general transcription

factors ( GTF s) the presence the GTFs and RNA

polymerase II a low level (basal) transcription can be

obtained. Many of the GTFs are composed of multiple 
subunits.



Comparison of their amino acid sequences show that they are

highly conserved among eukaryotes (reviewed in Orphanides et

al. 1996; Nikolov and Burley 1997). In addition, many of the

GTFs have thethat similarreglons regionsare
bacterial cr factors.

The exact mechanism by which the GTFs assemble onto the

promoter, and the function of each of the polypeptides,

under in tense wereinvestigation. Al though the GTFs

originally shown to assemble onto the promoter in a stepwise
fashion in vi tro, (Buratowski et al. 1989 ) recent evidence
indica tes that this thenotmay case vo. RNA

polymerase II can be isolated in association with many of the

GTFs complex that has been termed the holoenzyme

(Koleske and Young 1994; Kim et al. 1994; Chao et al. 1996;
Maldonado et al. 1996). If this holoenzyme complex 

exists 

vivo, then it is possible that there are multiple pathways

leading to the formation of a PIC. On some promoters the GTFs

may be recruited individually, and on others, in a single
step much like that the bacterial core RNA polymerase

(Figure 1-1). The GTFs and the formation of a PIC will be

discussed in the following section.

Basal transcription reaction

TBP. In eukaryotes, the formation of a preinitiation
complex begins with the binding of the TBP (TATA box binding
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Figure 1- 1. Alternative pathways to PIC formation.

The GTFs may assemble into the PIC individually, in a
stepwise fashion, or many may enter as members of a preformed
complex called the holoenzyme. Potential components of the
holoenzyme are represented in light gray, and those of the
TFIID complex, in dark gray. The solid line represents the
promoter which is distorted upon TFIID binding, and the bent
arrow, the start site of transcription. Complexes are not
drawn to scale.



protein) subuni t of TFIID the TATA box. has beenTBP

highly conserved throughout evolution (reviewed in Hernandez

1993). Most TBPs examined display greater than 80% identity
in their C-terminal 180 amino acids. In addition, this domain

sufficient for viability in yeast (Gill and Tj ian 1991;

Poon et al. 1991; Reddy and Hahn 1991 ; Zhou et al. 1991) .

Unlike the C-terminus, the N-terminus highlyTBP

divergent and it' s function is not known. The high degree of
conservation between yeast and human TBP is evidenced by the

ability to interchange the two proteins in vitro (Buratowski

et al. 1988; Cavallini et al. 1988) and in vi (Cormack et

al. 1994) for transcription from box-TATA containing
promoters.

Crystallographic studies of TBP show that it folds up

into a unique saddle shape (Nikolov et al. 1992; Chasman et

al. 1993). The underside of the saddle straddles the DNA and

induces a 90 C bend (Kim et al. 1993a, b) . It is this bent

structure that is recognized by the remaining factors which

enter into the complex.

It has been believed for some time that most organisms,

yeas t , flies, singleand humans included, contain
functional species of TBP. Although this is still the case
for yeast, Drosophila appear to contain at least two highly

homologous species, one which is ubiquitous and one which 

cell specifictype (Crowley al. 1993) . The cell type



specific TBP, called TRF (TBP-related factor), is capable of

binding to the TATA sequence and of directing RNA polymerase

II transcription (Hansen et al. 1997).

TBP is a unique basal factor in that it is required for

transcription by all three RNA polymerases. The ability 

TBP to recognize and function on promoters transcribed by RNA

polymerase I, II and III, stems from the various factors with

which it associates. TBP is a component of SL1, TFIID, and

TFIIIB, complexes required for transcription RNA

polymerase I, II and III, respectively (Hernandez 1993).

TFIID. TFIID is a multisubunit complex composed of TBP

and 8- TBP associated factors (TAF (Dylacht al.

1991; Tanese et al. 1991). The analysis of TFIID has focused

almost exclusively on its role in activated transcription.

This not surprising since vi tro the T AF II s are

dispensable for basal transcription from TATA box containing

promoters (Hoey et al. 1990; Hoffman et al. 1990; Peterson et

al. 1990 ; Pugh and Tj ian 1990; Smale et al. 1990) . TFIID

does, however, play a role in basal transcription from many

promoters and appears function mainly through the

initiator element. TFIID is required for transcription from

TATA- less promoters, TBP alone is not sufficient (Pugh and

Tj ian 1990; Smale al. 1990 ; Pugh and Tj ian 1991) .

addition, required for enhanced basal transcription

from core promoters containing multiple elements, such as a



TATA box and ini tiator (Verrij zer al. 1995) . The

requirement for TFIID on these promoters has been explained
by the ability of TFIID, but not TBP, make extensi ve

contacts with core promoter elements in addition to the TATA

box. On the adenovirus maj late (ADML ) promoter DNaseI

footprinting assays have shown that TBP protects an area of
approximately twenty base palrs surrounding the TATA box.

TFIID, however, footprints over the TATA box, as well as the

start si te and downs tream sequences. ( Sawadogo and Roeder

1985; Nakajima et al. 1988; Zhou et al. 1992) . The extended

contacts made by TFIID are thought to stabilize the TFIID/DNA

complex. This theory is supported by experiments in which

removal the initiator and downstream elements from the
hsp70 promoter destabilized the TFIID/DNA complex, but had no

effect on TBP binding (Verrijzer et al. 1995).

Drosophila TAF 150 (dTAF 150) is the primary subunit of

TFIID believed responsible for the extended DNA contacts.
Although no human homologue for dTAF 150 has been found (see

Table 1-1), TSM1 has been identified as the yeast homologue

(Verrij zer et al. 1994). Numerous in vi tro experiments have

shown ' that dTAF 150 binds spec i f ically area which

includes the initiator and downstream sequences. (Verrij zer

et al. 1994) . In addition, the DNaseI footprint of dTAF 150

on DNA resembles that of the TFIID complex. Human TAF 250



Yeast Human Droso hila

TAF 130/145 TAF 250 TAF 230

TSMI TAF 150

None TAF 135 TAF ll0
TAF n TAF l00 TAF

TAF 68/61 TAF 20/15 TAF n30a

TAF TAF n5 5

TAF TAFn 70 TAF 60/62

TAF TAF n2 8 TAF

TAF 30/TFG3/ANCI AF- 9/ENL

TBP TBP TBP

TAF 25/23 TAF

TAF u 19 lFU81 TAF

TAF u l 7 TAF TAF 40/42

Table 1-1: TFIID subunits isolated from the yeast
Saccharo ces cerevisiae have homologues in both humn and
Drosophila



(hTAF 250) has also been shown to contact DNA (Verrij zer et
al. 1995). Furthermore, reconstitution experiments have shown

that both dTAF 150 and hTAF 250 are required for
discrimination between promoters containing lacking
initiator and downstream sequences (Verrijzer et al. 1995).

The experiments described above were performed in vitro.

Recent experiments performed in vivo also indicate that TAF

function, at least in part, through the core promoter. The

exac t promoter element is, however, under debate.
Experiments performed in the Struhl laboratory indicate that
yeast yTAF 145, the homologue Drosophila dTAF 250 ,

required for transcription from promoters containing non-

consensus TATA boxes (Moqtaderi et al. 1996a). These authors
found that upon depletion of yTAF 145 (also called yTAF 130),

yeast cells were incapable of transcription from the TRP3 and

HIS3+ promoters. These cells were, however, capable of global

transcription activation. Since the TRP3 and HIS3+ promoters

contain non-consensus TATA boxes, the Struhl laboratory
hypothesized that yTAF 145/yTAF 130 may be required for the

transcription of genes containing weak TATA boxes. However,

while yTAF 145 may be required for transcription some

genes whose promoters contain non-consensus TATA boxes,

weak TATA box not the only determinant. yTAF 145

required for the transcription genes, inc 1 uding CLN2,

whose promoters contain consensus TATA boxes (Walker et al.



1997). In addition, replacing the non-consensus TATA box from

the yTAF 145 dependent RPS5 promoter, with a consensus TATA

box, does not make it yTAF 145 independent ( Shen and Green

1997) .

Once TFIID is bound to the promoter the remaining GTFs

are capable of entering into the complex. These factors will

be described as though they assembled individually into the

PIC. However, one should keep in mind that in vivo, pa thways

may exist which PIC formed the recruitment
preassembled complex to the promoter (Figure 1).

TFIIB. TFIIB enters into the PIC recognizing the
unique structure the TBP/DNA complex (Nikolov al.
1995). Upon entering the complex it binds TBP and DNA both
ups tream and thesedowns tream the box.TATA Through

interactions it acts as clamp stabilize the TBP /DNA

complex. Genetic and biochemical data identified
additional role for TFIIB, that of marking the start site of

transcription. TFIIB was originally isolated as a suppressor

of the cyc1 phenotype associated with an aberrant ATG codon

the CYCl (Pinto . etyeas t al. 1992) . Suppressiongene

resulted from the utilization of a rarely used start site
downstream of the aberrant ATG. In vitro, TBP, TFIIB and RNA

polymerase sufficient for accurate transcriptionare
ini tiation on supercoiled templates (Parvin and Sharp 1993).

='. '-"- _. - -:-



The TFIIB gene has been cloned from a numer of species
inc 1 uding human (Ha et al. 1991) and yeas Pinto et al.
1992 ) and found to encode a small protein of approximately

34kD in humans and 38kD in yeast. Both proteins are highly
homologous sharing 52% similarity over their entirety, with
higher degrees of similarity found within various conserved

motifs.

TFIIA. TFIIA can enter into the complex either before

or after TFIIB. Upon entering the complex it stabilizes the
TFIID/DNA and TFIIB/TFIID/DNA complexes Orphanides al.
1996) . TFIIA always requirednot transcr iption
reactions vi tro: required reactions using
purified TFIID but not in those using recombinant TBP (Cortes

et al. 1992). The variable requirement for TFIIA is thought
to be due to its ability to remove inhibitors associated with

TBP (Merino et al. 1993; Auble et al. 1994; Ma et al. 1996).

When the inhibi tors such asare present, the purified
TFIID complex, TFIIA is required, when they are not, which is

the case with recombinant TBP, TFIIA is dispensable for basal

transcription.
Human TFIIA is composed of three subuni ts ex, and 

which encode proteins of 37kD, 19kD and 13kD respecti vely
(Orphanides et al. 1996). The ex and subunits are encoded by

a single gene whose product is proteolytically processed to

produce the two subuni ts . Yeast contain only two subunits,
TOA1 and TOA2, each encoded by a different gene. TOA1 and



TOA2 encode for proteins of 32kD and 13kD, respectively, and

each 1992) .essential for viabili ty (Ranish al.
Although varying in subunit composition, TFIIA from yeast and

humans are highly conserved. TFIIA from yeast can substitute
for human TFIIA in an in vi tro transcription reaction (Ranish

and Hahn 1992; Ranish et al. 1992).

The crystal structure of yeast TFIIA complexed with TBP

and DNA has been solved (Geiger et al. 1996 ; al.Tan

1996) . In the structure, the two subunits of TFIIA fold up

into a unique boot shape which is positioned upstream of TBP,

opposite TFIIB. Like the addition of TFIIB, the assembly of

TFIIA into the complex does not alter the structure of the
TBP/DNA complex. The addition of both of these factors does,

however, increasegreatly the surface available forarea
interactions with other proteins.

TFIIF. TFIIF is a heterodimer consisting of the RAP30

and RAP74 proteins. The genes encoding these subuni ts have

been cloned from many organisms and have been found to be

highly conserved throughout evolution Orphandides al.
1996). The yeast and human proteins exhibit approximately 50%

similarity and 30% identity (Henry et al. 1994). Both RAP30

and RAP74 encode essential in yeast Henry al.genes

1994) .

The primary role of TFIIF in transcription initiation is

that polymeraseRNA into theensure enters
TFIID/TFIIA/TFIIB Thiscomplex. accomplished TFIIF



associating with RNA polymerase II (Sopta et al. 1985; Flores

et al. 1988) and inhibiting its binding to nonspecific sites

Conaway and 1990) . additionConaway its role
transcr ipt ion initiation, has alsoTFIIF been shown

stimulate transcription elongation vitro (Flores et al.
1989; Bengal et al. 1991).

TFIIE/TFIIH. TFIIE is composed of a heterotetramer of

34kD and 56kD subunits (Ohkuma et al. 1990; Inostroza et al.
1991). TFIIH is a complex composed of nine subunits ranging

in size from 35-89kD (reviewed in Zawel and Reinberg 1995).

Subuni t s this complex mul tiple enzymaticpossess

activities which include a DNA-dependent helicase, an ATPase,

and a kinase terminalwhich can phosphorylate the carboxy

domain (CTD) of the subuni t of RNA polymeraselargest II.
TFIIE and TFIIH are thought to function, at least in part, to

separate the double stranded DNA (DNA melting) This process

requires hydrolysis (Wang al.ATP 1992 ) TFIIEand

capable of stimulating the ATPase activity of TFIIH ( Ohkuma

and Roeder 1994) . Furthermore, nei ther factor, nor ATP

required when supercoiled templates are used as substrate
Parvin and Sharp addition1993) . its role

transcription, TFIIH also functions in DNA repair reviewed

in Drapkin 1994) .

RNA polymerase largepolymeraseII. RNA

multisubunit complex composed of 10-12 subunits (reviewed in
Woychik and Young 1990). Some of these subunits are unique to



RNA polymerase II while others are shared among the three RNA

polymerases. Like many the GTFs, the subuni ts RNA

polymerase II have been highly conserved from yeast to human.

Similarly, the two largest subunits of the eukaryotic enzyme

(RPB1 and RPB2) share a high degree of conservation with the

and subunits of bacterial RNA polymerase. The largest
subunit of eukaryotic RNA polymerase contains a unique

structure at its carboxy terminal domain referred to as the

CTD. This domain consists of a heptad repeat of the consensus

sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. The numer of repeats
contained in the CTD correlates with the complexity of the

organism: the more complex the organism the grea ter the

numer repeats. Yeast contain repeats while

humans contain 52. The CTD is required for viability (Nonet

et al. 1987b; Allison al. 1988 ; Zehring al. 1988 ;

Bartolomei al. 1988) . Cells can survive with partial
deletions, but display defects in growth and the response to

transcription activators (Nonet et al. 1987b; Bartolomei et

al. 1988 ; Allison and Ingles 1989 ; Scafe al. 1990 ;

Peterson et al. 1991). vivo, the CTD exists in two forms,

nonphosphoryla ted and highly phosphoryla ted form.

Conversion between these two forms is believed to result in

the transition from initiation to elongation ( Payne et al.
1989; Laybourn and Dahmus 1990). The nonphosphorylated form
is preferentially associated with the promoter (Laybourn and



Dahmus 1990; Lu et al. 1991), while the phosphorylated form

is found associated with elongating polymerases (Cadena and

Dahmus 1987; Laybourn and Dahmus 1990; O'Brien et al. 1994) .

Kinases capable of phosphorylating the CTD vi tro include

TF I IH (Feaver al. 1991; al. 1992; Serizawa al.
1992) and SRBI0 (Liao al. 1995), two components the
preinitiation complex. Whether these kinases are responsible
for phosphorylation the CTD vivo remains

determined.

Holoenzyme. RNA polymerase II has been purified from

yeas t (Koleske and Young 1994; Kim e t al. 1994)

1996 )

and human

cells (Chao et al. 1996; Maldonado et al. as a large
multisubunit complex. This complex, called the holoenzyme, is
believed to be the form of RNA polymerase involved in
transcription initiation vivo (Koleske and Young 1994 ;

Thompson and Young 1995; Koleske and Young 1995; Svej strup 

al. 1997). Among the identified components of the holoenzyme

are a subset of the basal factors (Koleske and Young 1994;

Kim et al. 1994; Chao et al. 1996; Maldonado et al. 1996) ,

and a subcomplex called the mediator (Kim et al. 1994). The

mediator will be discussed in a subsequent section of this
introduction.

The composition of the holoenzyme varies depending on

the procedure and group by which it is isolated. The yeas t
hOloenzyme purified by the Young group contains the general
factors TFIIB, TFIIF, TFIIH, and substoichiometric amounts of



TBP (Koleske and Young Kornberg1994) , while that the

group contains humanonly (KimTFIIF al. 1994) . The

holoenzyme purified by groupsthe andYoung the Reinberg

contain substoichiometric amounts of TFIIE and TFIIF (Chao et

al. 1996; Maldonado et al. the Reinberg1996) . In addition,

group found al.limiting amounts TFIIH (Maldonado

1996). Whether different subcomplexes of the holoenzyme exist

vivo, are lostwhether weakly associated subuni ts

during purification remains to be determined. In any case,
each complex contains features which have become

characteristic of the holoenzyme. Each contains a subset of
the theGTFs, SRBs and capable responding
transcription activators.

SRBs. The SRBs (II) (suppressor of RNA polymerase B

were originally suppressorsidentified the cold
sensitive phenotype associated with truncation the CTD

(Nonet and Young 1989). These proteins have since been shown

exist complex associated with the holoenzyme

(Thompson et al. Kim et al.1993 ; 1994 ; Koleske and Young

1994; Liao et al. 1995; Hengartner et al. 1995). At this time

nine SRBs have been isolated and cloned. SRB4, SRB6 and SRB7

encode essential genes (Thompson et al. 1993 ; Hengartner et
al. 1995; Chao et al. 1996) , while cells deleted of SRB2,

SRB5, SRB8, SRB9, SRB10 and displaySRBll conditional
phenotypes like those observed with CTD truncations (Nonet

and Young 1989; Thompson et al. 1993; and Liao et al. 1995;



Hengartner et al. 1995). At least three of the SRBs have been

shown importantplay role basal and activated
transcription. Cells expressing temperature-sensitive alleles

display RNAtranscriptionalSRB4 global defects
polymerase directed the non-permissivetranscription at
temperature (Thompson and Young 1995). In addition, both SRB2

and SRB5 are required for basal and activated transcription
in vi tro (Koleske et al. 1992; Thompson et al. 1993).

While a low level of transcription can be obta1.ned

vi tro the presence the GTFs and RNA polymerase II,
addi tional transcription factors required modula teare

this whichlevel. These factors, bothare presen t

eukaryotes increase (activators)and prokaryotes, can

decrease (repressors) the level of transcription in response

stimuli. transcription obtainedThe level from

particular uniqueresul ts combinationfrom thegene

activators itsand bound promoter.repressors

Transcriptional will discussedactivators the next

section.

Transcription activators

Transcription activators are proteins.modular They

contain a DNA binding domain which allows them to bind

sites their called enhancers ups treamtarget genes,

regulatory sequences (UAS) , and an activation domain, which



stimulates transcr ipt ion ptashne 1988 ; Mi tchell and Tj ian

1989). Activators can be targeted to different promoters by

simply swapping the DNA binding domain of one activator for
that ano ther . Activation domains have generally been

classified according to their amino acid composition. Classes

of activators found in higher eukaryotes include those rich
in acidic, proline, and glutamine residues. Yeast, however,

are believed to possess only acidic activators. The mechanism

transcription activation appears conserved from

yeast to humans. Activators from yeast, including GCN4 and

GAL4, function mamal ian cells and activators from

mamalian cells, such as Jun and the retinoic acid receptor,

function in yeast (Struhl 1989).
How activators function in eukaryotes is not completely

unders tood . Since transcription can proceed in their absence

basal transcription) , activators are not believed

required for promoter function, but rather to overcome a rate

limiting step in the reaction. In bacteria, activators have

been shown aid the binding RNA polymerase low

affinity sites (reviewed in Gralla 1996). They have also been
shown to stimulate RNA polymerases which have been bound to

their sites inacti ve form. Similar mechani sms are

believed to occur in eukaryotes. In eukaryotes, however, the

activator has a far greater numer of potential targets and
possible mechanisms of action.
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In eukaryotes, the most intensely studied andone

highly regulated step in the transcription reaction the

formation Acti vatorsPIC. thought functionare

primarily this increasestep the numer

transcriptionally competent PICs. Since the same set of basal

factors is required for transcription from all genes,

believed that activators function by contacting one or more
of the basal factors. Interaction between an activator and a

basal factor could resul t the recrui tmen t factor,
which limi ting , into therate PIC. support this
theory, artificial recruitment of TBP (Chatterjee and Struhl

1995 ; Klages Strubinand Xiao1995; al. 1995),

components of the holoenzyme (Barberis et al. 1995) to the

promoter via fusion with a heterologous DNA binding domain

overcomes the need for an activator.

Alternatively, the interaction of an activator with a
basal factor could result in a conformational change or a

covalent modification which facili tates the assembly

additional members into the or whichPIC theconverts PIC

into a more transcriptionally competent complex.

The first indication activator-basal factor
interaction came in 1985. Sawadogo and Roeder used DNase I

and chemical footprinting show increase the

stability of TFIID binding to the TATA box of the adenovirus

major late promoter the presence activatorthe USF

(Sawadogo and Roeder 1985). In these experiments the binding



of the activator was also enhanced. The footprints of the two

factors were in close proximity and on the same face of the

DNA. These results indicated that the cooperative binding of

USF and TFIID was due physical interaction. Direct

evidence supporting interaction between TFIID and

activator was obtained 1990 using affinity chromatography

(Stringer et al. 1990). TBP was shown bind directly the

activation domain the acidic activator VP16. This

interaction was shown to be functionally important in that a

single point mutation in the activation domain of VP16 which

abolished its ability activate transcription, also

abolished its ability to interact with TBP Ingles et al.
1991) .

Subsequen t studies have demonstrated interactions
between activators and a numer of basal factors Triezenberg

1995). The significance of many of these interactions remains

to be determined. One such interaction which appears to be

important is the interaction between TFIIB and VP16 (Lin and

Green 1991; Lin et al. 1991) . The recruitment of TFIIB into

the PIC was shown to be a rate limiting step in PIC formation

(Lin and Green 1991). Using an immobilized template assay,

Lin and Green (1991) showed that the presence

activator, TFIIB was recrui ted into the PIC. addition,
recrui tmen t TFIIB facilitated the assembly the

remaining factors into the complex. The significance of this
interaction was demonstrated through the use mutant



proteins. VP16 mutants defective in transcription activation

were unable to bind TFIIB. Likewise, TFIIB mutants defective
in activated but not basal transcription were unable to bind
VP16 (Roberts et al. 1993).

While an important step, recruitment of TFIID and TFIIB

sufficientnot for transcription activation from all
promoters. First, someconstituitivelyTFIID bound

promoters in vivo in the absence of transcription activation

( Chen al. 1994a; Weber and Gilmour 1995) . Second,

recruitment of TFIIB occurs in the presence of TBP or TFIID,

however, transcription activation requires the T AF II s (Choy

and Green 1993). These results may be explained, in part,

the conformational changes observed in the TFIID/DNA complex

in the presence of an activator ( Sawadogo and Roeder 1985 ;

Horikoshi et al. 1988a, b; Chi and Carey 1996). In the absence
acti vator footprintsTFIID small regionover

surrounding the TATA box of the adenovirus E4 promoter.
the presence of an activator the footprint extended
include downs tream. Furthermore, thesequences extended
footprint associated with increased recruitment
addi tional factors into the and increasedPIC,

transcription activation (Hai et al. 1988 ; Horikoshi et al.
1988a, b) . the ADML the extendedpromoter, footprint
observed in the absence of an activator ( Sawadago and Roeder

1985), however, it is altered in its presence. It is possible



that this alteration is the result a conformational change

which leads to increased transcription initiation.
TFIIB also appears to undergo a conformational change in

the presence of an activator. In the absence of an activator
TFIIB was found to exist in a conformation which precluded

the association of TFIIF and RNA polymerase II (Roberts and

Green 1994). The presence of an activator altered the TFIIB

conformation such that the andTFIIF PolymeraseRNA

interacting surface was exposed. Additional factors could now

assemble into the complex.

Although activators are believed to function primarily
at the step of PIC formation, this is certainly not the only

step at which they might function. Activators may function at

any step the transcription reaction. addition
facilitating PIC formation, activators have been shown

increase the clearancerate promoter (Narayan al.
1994) . The mechanism by which activators function at this
step is not promoterknown . possible that enhanced

clearance is due the covalent modification basal
factor. prime candidate for role this process
TFIIH. contains kinase which capable

phosphorylating the CTD of RNA polymerase II (Feaver et al.
1991 ; Lu et al. 1992) , and phosphorylation of the CTD 

believed to convert the polymerase from an ini tiating to an
elongating form ( Payne al. 1989 ; Laybourn and Dahmus

1990) .



Activators have also been shown to enhance processivity

(Cullen 1993; Yankulov et al. 1994) . Again, how this occurs

is not known. However, it is possible that the interaction of

an activator with a factor capable of stimulating elongation,

such as TFIIF, is involved.

The ability activators interact with many

different basal factors and to affect multiple steps in the

transcription reaction seems contradictory times.

However, it may simply indicate that different mechanisms are

required for the expression of different genes. In addition,

may explain synergistic activation, the phenomenon

which two or more activators enhance transcription more than

the sum of each individually.

In eukaryotes, the addition of transcription activators

the basal reaction not sufficient obtain
transcription activation. A third class factors, called
coactivators, adapters, or mediators, have been shown to be

required for activated but not basal transcription in vitro.

These factors are believed to function by forming a bridge
between the activator and the basal transcription machinery.

The best characterized coactivators to date are components of

the TFIID complex (TAF s). In addition to the TAF s, a second

group of coactivators have been identified. These factors are

not tightly associated with TBP and can be grouped into two

categories, general and activator specific. General



coactivators will discussed along with TAF II the
following section.

Coactivators

TAF The first whereindication that coactivators
required for activated transcription came with the cloning of

the subuni tTBP TheTFIID. cloned protein from yeas t

(Cavallini et al. 1989; Hahn et al. 1989 ; Horikoshi et al.
1989; Schmidt et al. 1989) , human (Hoffman et al. 1990; Kao

et al. 1990; Peterson et al. 1990) , and Drosophila (Hoey et
al. 1990) was found to encode a small polypeptide of 27- 38kD.

This was a surprising result since TFIID from mamalian and

Drosophila cells fractionated large complex. (Nakaj imaas a

et al. 1988; Dynlacht et al. 1991; Tanese et al. 1991). Even

more surprising was the finding that the cloned protein could

substitute for purified TFIID basal transcription
reaction vi tro, but could not support activated
transcription (Hoey al. 1990; Hoffman al. 1990;

Peterson et al. 1990 ; Pugh and Tj ian 1990 ; Smale al.
1990) . Together, these results lead to the hypothesis that
there existed coactivators within the TFIID fraction which

were required to form a bridge between activators and the
basal transcription machinery. TFIID was subsequen t ly

purified from human and Drosophila cells and found to consist

andTBP associated factors calledgroup T AF II s



(Dylacht et al. 1991; Tanese et al. 1991). The addition of

purified TFIID to an in vi tro transcription reaction restored

transcription activation, indicating that the TAF II were

providing the coactivator activity (Dynlacht al. 1991 ;

Tanese et al. al.1991; Zhou et al. 1992, 1993 ; Hoey

1993) . Since fromTFIID fractionatedyeas t single
polypeptide, yeast were not believed -to possess TAF This

notion was proved wrong by the isolation of TAF s from yeast

(Reese et al. 1994 ; Poon et al. 1995) . Not only were the
yeast TAF s found to be highly homologous to TAF s of higher

eukaryotes (Table 1- Verrij zer et al. 1994 ; Reese et al.
1994; Po on et al. 1995; Moqtaderi et al. 1996 a, b), but they

were also vi trorequired for activated transcription
(Reese et al. 1994; Poon et al. 1995). Most of the TAF s have

since been purified and cloned. They range in size from 15kD

to 250kD, and most are essential for viability (Burley and

Roeder 1996) .

deal generatedvi trogrea t data has been

supporting the role coacti vators .TAF Indi vidual

TAF s have been shown to interact with specific activators,
as well as basal transcription factors (Burley and Roeder

1996) . Furthermore, reconsti tutionTFIID experiments have

demonstrated a requirement for particular T AF II s to support

activation by specific classes of activators (Chen et al.
1994b). In addition, synergistic activation has been shown to



resul t from interactionthe mul tiple activators with
multiple TAF (Sauer et al. 1995a , b) . Despi te the plethora

of in vi tra data clear in vi va data supporting a role for
TAF s as coactivators is lacking. This deficiency compelled
our group and others T AF II sanalyze the function
vivo. The data generated thus far both supports and
contradicts the role of TAF

s as coactivators in vivo.

Tj ian and colleagues have presented data supporting a

coactivator function for T AF II s during Drosophi eye
development. These authors found that the presence
transdominant alleles of dTAF 60 and dTAF 110 lead to reduced

levels of transcription from genes under the control of the
transcription activators bicoid and hunchback

(Sauer et al.
1996). The mutant TAF s were incapable of assembling into the

TFIID complex, but retained their ability to bind to bicoid

and hunchback, respectively This resul ted the
sequestration the activators into non -produc t i ve

complexes. Interestingly, the presence the mu tan t T AF II s

did leadnot global transcriptional defect
developmental defects in the Drosophila embryo. In contrast,

genetic disruption of Spl, an activator believed to function
via an interaction with dTAF 11 0 , caused severe developmental

defects in mice. Emryos in which Spl had been inactivated
died at around day eleven of gestation 

(Marin et al. 1997).



In mamalian cells, overexpression of hTAF II2 8 enhanced

transcription activation directed by the viral activator Tax

(Caron et al. 1997) . hTAF overexpression also partially
alleviated the squelching observed when Tax was

overexpressed. hTAF 28 has been shown to interact with Tax as

well Furthermore, its abilityTBP. potentiate
transcription activation correlated with the ability of Tax

to interact with both of these proteins.

hTAF 28 has also been shown to potentiate ligand induced

transcription activation by numer nuclear receptors
when overexpressed in cells in which believed to be

presen t limiting quantities (May al. 1996) . hTAF II2 8

functioned mainly with class I nuclear receptors though

was also theable enhance transcription activation
vi tamin D receptor, a class II nuclear receptor. Unlike the
case wi th Tax, no interaction between hTAF 28 and a nuclear

receptor could did,detected. Transcription activation
however, depend on the ability of hTAF to interact wi 
TBP.

Overexpression of hTAF 135 was also shown to potentiate
igand induced transcription activation subset

nuclear vivo Mengus al. 1997) . Unlikereceptors
hTAF 28, hTAF 135 enhanced activation of mainly the class II

nuclear receptors. hTAF 135 appeared to function, at least in

part, by enhancing the ability of the receptors to recruit



TFIID to the TATA box. Experiments in which cells had been

transfected with a reporter containing five GAL construct
DNA binding sites upstream of a low affinity TATA (TGTA) box,

failed to show transcription activation in the presence of a

fusion protein containing the GAL4 DNA binding domain fused
to various class II nuclear receptors. However, when hTAF 135

was overexpressed inducedthese cells, ligand
transcription activation was obtained in the presence of the

fusion proteins. The ability hTAF 135 enhance

transcription specific for the class nuclearwas

receptors. Enhancement was wasobtainednot when hTAF II 13 5

overexpressed in the presence of fusion proteins containing a

numer of unrelated transcription activation domains. These

resul ts demonstrate that hTAF 135 enhances transcription
activation only subset activators, al though

interaction between hTAF 135 and an activator could not be

detected. There is no known homologue for hTAF 135 in yeast,
however, a yeast homologue has been identified for hTAF 28.

It will be interesting to determine if this yTAFII is required
for activation by class I nuclear receptors in yeast.

While the majority data generated higher
eukaryotes supports a role for TAF s as bridging factors or

coacti vtors, resul tsrecent have challenged thisyeas t

belief. cells lackingYeast the function of any one

numer fail displayTAF defects global



transcription activation (Apone et al. 1996; Walker et al.
1996; Moqtaderi et al. 1996a). Even when the largest subunit

the TFIID complex,yeas t yTAF 145, condi tionally
depleted, global transcriptional defects are observed
(Walker et al. 1996; Moqtaderi et al. 1996a). This result 

surprising since yTAF 145 believed form a scaffold
which holds the TFIID complex together. Although no global
transcriptional defects are observed, the inactivation of at

least three of the yeast TAF results ln an inabili ty 

progress through the cell cycle. The loss of yTAF 145 results

in a (Walkerarres t al. 1996) , while the loss
yTAF 90 and TSM1 result in a G2/M arrest (Apone et al. 1996;

Walker et al. 1996). The cause of the cell cycle arrest in
the yTAF 90 and TSM1 mutant cells has yet to be determined.

In the yTAF 145 mutant cells, however the cell-cycle arrest
is believed to be due to an inability of the cells to express

G1 and S phase cyclins upon TAFII inactivation (Walker et al.
1997) . Transcription of these cyclin genes is required for
progression through the G1 phase of the cell cycle reviewed

Koch and Nasmyth 1994) . Interestingly, replacing the
upstream activating sequence of CLN2, a yTAF 145-dependent

gene, with that of ADH1 a yTAF 145- independent gene, did not
convert CLN2 to a yTAF 145- independent gene ( Shen and Green

1997) . These indicateresul ts that the requirement for
yTAF 145 was not due to the upstream activator, but rather



the core promoter. yTAF 145 also required for the

expression of ribosomal genes in yeast (Shen and Green 1997).

The yTAF 145-dependent region of these genes also mapped to

the core promoter. These results further substantiate the

idea that yTAF 145 functions not as a coactivator, but rather

to facilitate core promoter activity.

Mamal ian cells con taining temperature- sensitive
allele of hTAF 250 also display gene-specific, but not global

transcriptional defects the non-permissive temperature.

(Liu et al. 1985; Wang and Tj ian 1994). The defects observed

are similar to those observed in yeast cells containing a
temperature-sensi ti ve allele yTAF 145. the non-

permissive temperature they arrest at the G1/S boundary and

are incapable transcribing cyclin genes required for

progression through this phase of the cell cycle (Wang and

Tj ian 1994 ; Suzuki - Yagawa al. 1997) . Interestingly,
experiments designed to identify the elements required for

hTAF 250-dependence point to both the core promoter and the

upstream activator (Suzuki - Yagawa et al. 1997 ; Wang et al.
1997) .

Some of the most compelling data challenging the belief

that T AF II s act bridging factors interacting with

specific classes activators was obtained from recent

studies of yTAF 17. yTAF 17 is the homologue of human hTAF

and Drosophila dTAF 40. Both the Drosophila and human TAF



have been shown to interact with the acidic activator p53

vi tro (Thut al. 1995) . thesupport functional
significance of this interaction neither TAF II could interact
with a transcriptionally inactive form of p53. dTAF has

also been shown to interact with the acidic activator VP16 as

well the basal transcription factor vi troTFIIB

(Goodrich al. 1993) . Likewise, the acti vator-TAF

interaction appears to be significant: the addition of anti-
dTAF antibodies vi tro transcription reaction

, abolished transcription activation by the activation domain
of VP16. Although hTAF 32/dTAF AO is capable of interacting
wi th acidic activators, it , is incapable of interacting with
the proline rich activation domain of CTF (Goodrich et al.
1993 ) potentiating transcription activation
glutamine rich activation domain of 

Sp1, (Thut et al. 1995) .

the

Taken together, the data described above supports a role for

hTAF 32/dTAF 40 as a coactivator required for transcription
activation by acidic activators. Since yeast are believed to

possess only acidic activators, the homologueyeas t

hTAF 32/dTAF 40 is a prime candidate to possess coactivator
activity. In fact, if the theory is correct one would expect
to observe global transcriptional defects in the absence of
this TAFII. Interestingly, these are not the resul ts obtained
when yeast cells were examined for their ability to activate
transcription the absence functional yTAF 17. Yeast



cells con taining a temperature- sensi ti ve allele YTAF

displayed global defects transcription the non-
permi s s i ve temperature. Ra ther , they displayed promoter
specific defect this thesis Chapter IV) . the non-
permissive temperature cells containing temperature-
sensitive allele yTAF incapable induc ingwere

transcription of the GALl gene in the presence of the inducer

galactose, but were competent to induce the expression of the

CUPl gene in the presence of the inducer copper sulfate. As

would be expected for theyeast, transcription activators
required for induction of the GALl (GAL4 ) and CUPl (ACE1 )

genes both acidic activators . Whileare this data
preliminary, contradicts the TAF / one activatorone

theory.

The picture that appears emerging from these
studies that T AF II are not required for global
transcription activation vivo, but rather that specific
TAF s are required for the transcription of subsets of genes.
It is possible that some TAF s function as coactivators and

other facili tate activity.promotercore The

identification hTAF 250 histone acetyl trans ferase

(Mizzen et al. 1996) opens the possibility that it functions
facilitate bindingTFIID whichpromoters are

inaccessible due the nucleosomes. hTAF 250presence

also contains kinase domain which capable



phosphorylating (DiksteinTFIIF al. 1996) . The

phosphorylation of TFIIF may be important for the formation

transcr ipt ionally for stimulatingcompeten t PIC,

elongation, In addition, the ability ofon some promoters.

hTAF II31 /hTAF II3 2, hTAF II 8 0, hTAF 15/hTAF and their
Drosophi la homologues form a nucleosome like 'structure
(Hoffmann et al. 1996; Xie et al. 1996) , and the nucleosome

like pattern of DNase I digestion observed on some promoters

in the presence of TFIID (Roeder and Sawadago 1985) indicate
that topology play importan tDNA role T AF IImay

function. isolation oftheIn any case, fromT AF II yeas t

(Reese et al. 1994; Poon et al. 1995) and the ease with which

this organism can be genetically manipulated have created a

unique opportunity to determine the physiologically relevant

functions of individual TAF

Al though required achieveTAF II activatedare

transcription in some in vi tro systems they are dispensable
in others. They are dispensable for transcription activation
in reactions using TBP, RNA polymerase II, the remaining GTFs

and a subcomplex of the holoenzyme called the mediator (Kim

et al. 1994).

Mediator. Exposure of the holoenzyme to an anti-CTD

antibody liberates a complex of approximately 20 polypeptides

called the mediator (Kim et al. 1994). Though the identity of

many of the peptides remain to be determined, the mediator



was shown to contain SRB2 SRB4 SRB5 SRB6, TFIIF, and a

numer of other proteins involved in transcription, but not

TBP or the In additionTAF IIS . supporting transcription
activation the media tor capable enhanc ing basal
transcription in the presence of TBP, RNA polymerase II and

the missing basal factors (Kim et al. 1994). While TAF s are

not required for activated transcription in the presence of
the mediator, they can substitute for it.

USA. The first usedvi tro transcription reactions
crude fractions isolated from Hela cells which contained many

polypeptides. In an attempt to identify and analyze the role

indi vidual werefactors, these fractions purified
homogenei ty and themany components cloned.
Transcription reactions reconsti tuted with highly purified
components, however, were incapable of adequately responding

transcription groupactivators. Roeder used this
observation to purify activity, called ups tream factor
stimulatory activity (USA) , which could facili tate high
levels of transcription aotivation in reactions using highly
purified (Meisterernstcomponents al. 1991) . the
presence wasUSA and an activator, basal transcription
repressed, while activated transcription was stimulated,
resul t ing large increasenet the level
transcription activation. Partial purification USA

identified repressive referredcomponents NC' and



stimulatory components called PC' The repressive activity

of USA could function with TBP, but the stimulatory activity

required TBP and the TAF IIS. Analysis of NC1 showed that 

functioned by binding to TBP and inhibi ting the entry

additional factors into the PIC (Meisterernst et al. 1991) .

This activity could be inhibited by TFIIA. Interestingly, the

positive factors which have been identified encode proteins

which are capable binding DNA. PC3 encodes

topoisomerase (Kretzschmar al. 1993) , and PC4

homologous to a mouse single stranded DNA binding protein 
(Ge

and Roeder 1994) . How these factors facilitate activated

transcription is not known, however, PC4 has been shown to

interact with the acidic activator VP16 as well as 
TFIIA, and

may required form bridge between the basal

transcription machinery and the activator. The remaining

factors must be purified and cloned before a clear picture of

how USA functions can be obtained. However, it appears that

the presence of USA in an in vi tro transcription reaction

more closely recapitulates that which is seen vivo.

vivo, basal transcription is normally repressed, while the

presence acti vator induces high levels

transcription. will important understand the

mechanism by which USA functions.

Chroma tin



In the cell DNA found associated with his tones and
nonhistone proteins highly compact structure called
chromatin reviewed paranj ape al. 1994) . While the
packaging of DNA into chromatin ensures that the genome fits
into the small space allotted to it in the nucleus, it 
repressive to transcription (reviewed in Adams and Workman

1993) . In order for a gene to be acti vated, the chromatin
must first be altered to allow transcription factors access

the thisDNA. How known derepression,process,
achieved regula ted known .not However, the recent
isolation numer complexes which capableare
altering chromatin structure, ATP-dependent manner,

have shed new light on this process (reviewed in Kingston et

al. 1996 ; and 'PetersonBurns 1997a) . The most extensively
studied chromatin remodeling complex to date is the SWI/SNF

complex.

SWI/SNF. SWI / SNF large multisubunit complex

composed subunits which have been highly conserved
throughout evolution (reviewed in Peterson and Tamun 1995;

Kingston et al. 1996 ; Burns and Peterson 1997a). SWI/SNF

complex has been isolated from yeast Cairns et al. 1994 ;

Cote et al. 1994) and human (Kwon et al. 1994), and factors
which are highly homologous to SWI/SNF components have been

identified in other chromatin remodeling complexes Tsukiyama

et al. 1995; Cairns et al. 1996 ; Varga-Weisz et al. 1997) .

The first indication that SWI/SNF may function by altering
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chromatin from genetic swi snfstudiesstructure came

mutants cerevisiae. whichSaccharomyces Cells

components complex had deleted werebeenthe SWI / SNF

unable numer highly inducible genesexpress

including al. Neigeborn andSUC2 1984 ;SternHO and

Carlson 1994; Peterson and Herskowitz 1992; Kingston et al.
1996). Mutations in genes encoding the chromatin components

histone H3, H4, H2A, H2B and the HMG-1 like protein SIN1 were

found to alleviate the transcriptional defects in these cells

(Kruger and Herskowitz 1991; Hirschhorn et al. 1992 ; Kruger

et al. 1995). Further indications that SWI/SNF functioned by

altering chromatin, glimpse into its roleand

transcription activation, obtained biochemicalwas from

studies. Purified SWI / SNF was shown al ter nucleosomal

structure ATP-dependent manner (Cote al. 1994;

Imbalzano al. 1994; Kwon al. 1994). addition,

purified SWI/SNF was shown to facilitate the binding of an

activator (Cote et al. 1994; Kwon et al. or the GTF1994) ,

TBP (Imbalzano et al. to their DNA binding sites when1994 )

these sites were present in nucleosomes. Recent data from the

Peterson laboratory indicates functionsthat SWI / SNF

similarly in vivo. SWI/ SNF was shown to be required for the

activator GAL4 to bind to and activate transcription from two

low affinity binding sites encompassedwhen they were

nucleosomes (Burns and Peterson 1997b) . they were made



nucleosome- free by the insertion of a nucleosome positioning

element, however, SWI / SNF was no longer required.
SWI/SNF is not required for transcription of all genes.

Exactly how targeted to particular promoters is not

understood. possible that SWI/SNF is targeted via an

association with the holoenzyme (Wilson al. 1996) .

Previous work has shown that mutations chromatin
components which suppressed defects in SWI/SNF mutants also

suppressed defects caused by CTD truncations (Peterson et al.
1991) . There also evidence that SWI/ SNF functions
concert with the ADA/ GCN5 complex, known histone
acetyltransferase (Pollard and Peterson 1997) . Possibly
SWI/SNF is targeted via its association with this complex.

The intricacies as to how SWI/SNF functions remain to be

determined. identificationtheHowever, the SWI / SNF

complex as well as a numer of related complexes from yeast
and higher eukaryotes has opened the door for identifying how

the repressive effects chromatin are overcome allow
gene specific transcription activation. It will be important
to keep these advances in mind when reading this thesis.



CONTRIBUTIONS

During my graduate smallmemberI wascareer

group within the laboratory working on yeast TAF The work

performed by each member of the team was relevant to, and

greatly influenced that, of the others. In order to present

my data in a this and it' sthat reflects interplay,way

relevance to the field of transcription, I have included some

of the work of my collaborators in my thesis. At this time I

would like to describe these contributions.

chapter analyze vivo functionthetwo,

yTAF n90. I am responsible for the cloning, genetic disruption

and generation of conditional alleles, of yTAF 90. I am also

responsible for the analysis of transcription and cell-cycle

progression containing conditionalstrains alleles
yTAF 90. Joseph theresponsible forReese

immunoprecipitation and immobilized DNA template analysis of

yTAF 90 and Amy Virbasius for the analysis of LexA-yTAF

fusion proteins. In addition, Stephen Doxsey is responsible

for light micrographs and Rose Tam for immunofluorescence.

In chapter three, the analysis of transcription in cells

lacking TAF s is examined. In this chapter I am responsible

for analysis transcription containingstrainsthe

condi tional and alsoyTAF tsml.alleles
responsible for the cell-cycle analysis of strains containing
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temperature- sensitive alleles tsml. Scott Walker

responsible for the transcription and cell-cycle analysis of
strains containing conditional alleles of yTAF 145 and Joseph

Reese for the analysis of transcription in cells containing
condi tional alleles of yTAF 68, YTAF and in strains
which yTAF 30 has been deleted.

chapter four, analyze the vivo function
yTAF II I 7 . responsible for the cloning, and genetic
disruption of yTAF 17. I am also responsible for the analysis

of transcription in cells containing a temperature- sensitive
allele of yTAF 17. Under my guidance, Jing Wang and Lij ian
Chiang responsible for the isolationare temperature-
sensi ti ve alleles of yTAF 17.

In chapter five I am responsible for the generation of

yTAF 90 temperature-sensitive strains containing temperature-
sensitive alleles of CDC28 and those in which RA9 has been

genetically deleted. In addition, I am responsible for all
work presen ted appendix namely the subtracti ve

hybridization performed on strains containing wild-type and

temperature-sensitive alleles of yTAF 90.

I would like forthank each 0 individualsthese

their generous contributions.
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CHAPTER I I

Yeast TAF 90 is required for cell cycle progression through

G2/M but not for general transcription activation



In 1994 a TFIID complex composed of TBP and a numer of
TAF s was isolated from Saccharomyces ce:revisiaethe yeas 

(Reese et al. 1994). Not only could the yeast TFIID complex

support activated transcription vitro, but also
contained homologues higher eukaryotic thisTAF II S .

time, a great deal of data had been generated regarding the
function the complexTFIID vitro. The analysis
indi vidual subuni ts, however, had been hampered their
tight association in the complex, as well as the difficulty
of performing genetics in higher eukaryotes.

The isolation of a TFIID complex from yeast created an

enormous opportuni ty indi vidualstudy the function
TAF in vivo. In addition, the high degree of conservation
between the transcription machinery yeas t , and higher
eukaryotes (Struhl 1989) indicated that the data generated in
the yeast system would be applicable to higher eukaryotes.

The first yTAF identified by our group was yTAF 90.

yTAF 90 has been highly conserved throughout evolution and is

the homologue of hTAF 100 and dTAF (Burley and Roeder

1996) . In this chapter we describe the in vi analysis of
yTAF 90. Interestingly, and unexpec tedly , yTAF not
required for global transcription activation. It is, however,

required for progression through the G2/M phase of the cell
cyc le .



Results
The in vi tro analysis of TFIID indicates that it plays

an essential role in transcription activation. We therefore,

wanted to determine if individual subunits of the complex,

yTAF in particular, were required for cell growth.

order this constructquestion genera tedanswer

containing disrupted (Fig. 1A) . ThisTAF90copy

construct was then used to create diploid strains of yeast

which contained one wild-type and one disrupted copy of the

gene. Disruptions were confirmed by Southern blotting (Fig.

2 - lB) . Tetrads sporulation the diploidgenerated

strains were dissected and the resulting spores analyzed for

viability. viablethan twowas more sporescase

obtained from a single (Fig 2- 1C). In addition,tetrad
viable spore contained the HIS3 disruption marker (data not

shown). These results indicate that yTAFrr90 is essential for
cell viability.

To determine the cellular defects associated with the

loss its isolated twofunction, constructed and

temperature- sensi ti ve TAF90 alleles. The plasmid shuffle

technique (Boeke et al. 1984) was then used create strains
yeas t bearing only mu tan t TAF90 allele. Figure

shows that both yTAFrr90 temperature-sensitive strains grew at

C but not 37 Figure 2-2B shows that in liquid culture
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Figure 2- 1. yTAFrr90 is essential for viability.

(A) Scheme used to disrupt yTAF90 in S. cerevisiae. A segment
of yTAF90 (BglII-BamI) was replaced with a larger fragment
containing the HIS3 gene.
(B) The disruption of yTAF90 is confirmed by Southern
blot ting. DNA isolated from wild-type (WT) cells, or cells
transformed with the disruption construct (HIS+), were used
for Southern blotting. The appearance of two additional bands
confirms the proper disruption.
(C) Sporulation and dissection of diploid strains containing
one disrupted and one wild-type copy of yTAF90 results in two
viable spores per tetrad.
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Figure 2-2. Temperature-sensitive alleles of yTAF 90.

(A) Growth of strains containing wild-type (LY3) and
temperature-sensitive alleles of yTAF90 (ts2- 1 and ts3-1) at

C and 37
(B) Growth curve of wild-type and yTAFrr90 temperature-

sensitive strains at 37
(C) Sequence of ytaf 90 temperature-sensitive alleles. The

segment of the yTAFrr90 WD40 domain containing the
temperature-sensitive mutations is compared with the
corresponding sequence in the Drosophila homologue dTAF 80.
Mutated residues are marked with a dot. The amino acid
changes and the strains containing the mutations are
indicated above.



these strains displayed a rapid growth-arrest upon transfer
from the permissive to the non-permissive temperature. Even

at the permissive temperature the yTAFrr90 mutant strains grew

more slowly than wild-type (data not shown).

Sequencing the identifiedmutants double-point
yTAFn 90ts2-substi tutions each the two alleles.

(strain LY20) contains an asparagine substituted for a serine

at amino acid 703 and an arginine substituted for a glycine

position yTAF 90t 3-1793 ; strain L Y21 ) con tains
glutamic acid and serine substi tuted for glycines
posi tions 713 and 714, respecti vely (Figure 2C) .

Significantly, all the mutations are within the highly
conserved WD40 domain.

To gain insight into the thenature temperature-
sensitive growth defect, the cells analyzed forwere

morphological differences at the non-permissive temperature.
Within four hours after shifting to 37 C there was a striking
difference the the wild-type and mutantappearance

strains. Cells from both mutant strains were twice as large
wild-type, cellsand consisted mostly large budded

(Figure 2-3A). Approximately 62% of ts2-1 and 84% of ts3-
cells contained large buds, whereas only 20% of the wild-type

strain possessed large buds (Figure 2-3B) .

Cells arresting with large buds could be blocked in 

G2 or M phase (Pringle and Hartwell 1981). To distinguish
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Figure 2-3. Cell cycle phenotype of strains bearing
temperature- sensitive alleles of yTAF 90.

(A) Nomarski optics or Hoechst staining was used to visualize
the morphology and DNA, respectively, of wild-type and
strains harboring temperature-sensitive yTAFrr90 mutants 4 hr
after transfer from 25 C to 37
(B) Percentage of unbudded, small, medium and large budded
cells after 4 hrs at 3 C. (Light bars) Wild-type; (medium
bars) ts2-1; (dark bars) ts3-
(C). FACS analysis of strains containing wild-type andtemperature-sensitive alleles of yTAF 90 immediately before
and 4 hrs after transfer from 25 C to 37
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between these possibilities, we performed Hoechst staining

and analysis. Hoechs t staining performed cellsFACS

incubated for four hours at C identified a single nucleus
cells localized the neck the budthe mutant near

(Figure 2-3A). The FACS analysis of Figure 2-3C shows that

following incubation for four hours at C the majority of

wild-type cells contained a iN content while theDNA,

majority of ts2- 1 cells and virtually all of the ts3-1 cells

contained a 2N DNA content. On the basis of these combined
data conclude that the cells capablemu tan t are

replicating their DNA and of nuclear migration to the neck of

the bud, consistent with a G2/M block.

Even at the permissive temperature it was evident that

a much greater than normal percentage of mutant cells had a

2N DNA content. The inability of these cells to efficiently

progress through G2 helps explain their slow growth phenotype

and in addition indicates that yTAFn90 function is impaired

even under permissive conditions. Lack of viability at higher

temperatures could be explained either by a complete loss of

yTAFn function, inability unheal thy cells

survive additional stress.
In cerevisiae there are several phases of the cell

cyc le which transcription required properfor

progression (Koch and Nasmyth 1994) . , Therefore, seemed

unlikely that a general transcription defect would result in



specific cell cycle phenotype. To verify this notion we

inhibited RNA polymerase II-directed transcription by several

strategies and analyzed the effect on cell cycle progressio

shown in Figure 2- 4A, when transcription was inhibi ted

using RNA polymerase II (Nonet e al. 1987a) , TBP Cormack

and Struhl 1992) or SRB2 (Koleske et al. 1992 ) temperature-

sensitive strains, or with the RNA polymerase chemical

inhibitor thiolutin (Parker et al. 1991) , the cells did not

uniformly arrest at a specific stage of the cell 
cycle.

several ins tances there was modes t shift, probably

reflecting the elaborate transcriptional program required to

traverse G1 (Koleske et al. 1992; Rowley et 
al. 1993) . Thus,

specific cell cycle phenotype cannot explained by

genera defect in RNA polymerase II-directed transcription.

The experiment Figure involved mu tan t GTFs,

which are completely defective in 
supporting RNA polymerase

II-directed transcription. ask whether interfering

specifically with transcription activation affected cell

cycle progression, we analyzed several previously 
described

TBP mutants that are unable support activated

transcription of some or all genes (Arndt et al. 1995 ; Lee

and Struhl 1995). The FACS analysis of Figure 2-
4B shows that

cells harboring three such TBP mutants did not 
arrest at a

specific stage the cell cyc le . Thus, the cell cyc le

phenotype of yTAFrr90 mutants is also not readily explained by
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Figure 2-4. Inhibition of RNA polymerase II-directed
transcription does not lead to a cell cycle phenotype.

(A) FACS analysis was performed on strains before and 4 hrs
after transfer from 25 C to 37 C, or 4 hrs after addition of
thiolutin to wild-type strain CY245.
(B) FACS analysis was performed on strains harboring
activation-defective TBP mutants grown to mid- log phase at



an activation-specific defect in RNA polymerase II-directed

transcription.
Numerous experiments have shown that 

in vi tro TAFrrs are

required for activated, but not basal, transcription (Burley

and Roeder 1996). We therefore sought to determine whether

cells bearing the yTAFrr90 temperature-sensitive mutants were

responsive to activators. We first chose to analyze the well

characterized acidic activator GAL 4 according the

experimental strategy outlined in Figure 2- 5A. As expected,

Figure 2-5B shows that transcription of the GALlO gene was

induced in all strains under permi s s i ve condi tions (2 5 C) .

Under non-permissive conditions ( 37 OC) , the wild-type (LY3) ,

but the polymerase mutant strain (rpb1- 1) ,not RNA

supported GALlO transcription. Significantly, in both yTAFrr

temperature- sensitive strains (ts2 - and ts3 - GALlO was

transcriptionally activated at C. We note that in strain

ts3- 1 there was an - 50% decrease of GALlO transcription four

hours following the temperature-shift, time at which the

cells had been arrested for at least three hours. This modest

effect most likely reflects a general deterioration of all

activities in dying cells. In particular, RNA polymerase 111-

directed transcription also undergoes a comparable decrease

at this time point (data not shown) 

next asked whether yTAFrr required for thewas

function of another, unrelated activator. The acidic
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Figure 2- 5. Transcription in strains bearing ytaf

temperature-sensitive mutants.

(A) Experimental design.
(B) Transcriptional activation of 

GALlO was measured by

primer-extensi analysis in cells 60 minutes after induction

by 3% galactose.
(C) Transcription activation of 

CUPl was measured by Sl
nuclease analysis in cells 30 minutes after induction by 100
uM copper sulfate.
(D) Transcription of indicated endogenous genes was measured
by Sl nuclease analysis before and at the indicated times
after transfer from 25 C to 3 



1":

activator ACE1 induces transcription of the 
CUPl gene in the

presence of copper (Butt et al. 1984 ; et al. 1988) .Furs t

The experimental design was analogous to the 
GALlO experiment

except that the cells were grown in glucose and the inducer

was 100um copper sulfate (see Figure 2 - 5A) . The resul ts 

Figure 2-5C show that all strains supported copper- inducible

transcriptional activation of the 
CUPl gene at 25 C. At 37

only the rpb1- strain failed normal CUPlsupport

transcription.
Figure 2- 5D analyzes four other endogenous genes whose

transcription is controlled by a diverse set of activators:

PMAl is regulated by the activators MCM1 and RAP1 Capieaux

et al. 1989; Kuo & Grayhack 1994); TRP3 is regulated by the

activator GCN4 (Aebi et al 1984; Hope and Struhl 1985; Arndt

and Fink 1986); DEDl is under the control of the activator

ABF1 Buchman and Kornberg 1990) ; and EN02 glucose-

regulatable (Johnston and Carlson 1992) . again,Once

transcription these unaffected followinggenes was

inactivation of yTAF 90. We conclude that in vivo yTAFrr90 is

dispensable for normal transcription of many yeast genes.

Immunoblot analysis strains bearing the yTAFn

temperature- sens i ti ve revealed that the non-mutants

permissive these strains contained significanttemperature

levels of yTAFrr90 as well as several other yTAFrrs (data not

shown) . Therefore, a possible explanation for the lack of a



transcriptional defect the experimentsabove was that
yTAF contained themul tiple functional domains and

mutations were within a domain not required for transription
those tested. rule this possibili ty,outgenes

constructed a strain in which yTAFrr90 could be conditionally
depleted. In this strain (LYC- TAF90 was under the control
of the galactose- inducible GALl promoter. The immunoblot of

Figure shows that transfer from galactose-upon

glucose-containing medium, yTAFrr90 was rapidly depleted, and

by undetectable.hours quantitative immunoblotThewas

analysis of Figure 2-6B shows that by 12 hours yTAFII90 was

below our level of detection, which was 2% of the wild-type

level. expec ted, YC- cells the presencegrew

galactose but not glucose (Figure 6C) and upon transfer to

glucose-containing medium, the LYC-1 cells displayed a rapid

growth arrest (Figure 2- 6D) .

We next analyzed the effect depletionof yTAFII90

cell cycle progression and transcription. Analogous to the

resul ts with mutants, cellstemperature- sensi ti vethe

depleted of yTAFrr90 arrested with large buds (Figure 2-7A).

After incubation in glucose for 12 hours, 80% of strain LYC-

consisted of budded cells, 74% of which contained large buds.

By comparison, the wild-type strain possessed only 47% budded

cells, only 18% of which contained large buds (Figure 2-7B) .
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Figure 2- 6. Characterization of strains conditionally
expressing yTAFrr90.

(A) Immunoblot analysis of whole-cell extracts prepared from
wild- type (LY3) and LYC- 1 (GAL1-HA-yTAF 90) at the indicated
times following transfer from galactose- to glucose-
containing medium.
(B) Quantitative immunoblot analysis. Extracts prepared from
the wild-type strain (right) were undiluted (8 and 12 hr) or
diluted 1: 20 (Ohr) following transfer from galactose- to
glucose-containing medium. HA-tagged yTAFrr90, expressed from
the GALl promoter, was detected by immunoblotting. The
proteins are indicated by arrows.
(C) Growth of wild-type and LYC- 1 on plates containing
galactose or glucose at 3 OOC.
(D) Growth curve of wild-type and LYC-1 before and after
transfer from galactose- to glucose- containing medium.
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Figure 2-7. Cell cycle and transcriptional properties of
strains conditionally expressing yTAFrr90.

(A) Wild-type and LYC- 1 cells were visualized by light
microscopy 12 hr after transfer from galactose- to glucose-
containing medium.
(B) Percentage of unbudded, small, medium, and large budded
cells was determined for wild-type (light bars) and LYC-
(dark bars) immediately before and 12 hrs after transfer from
galactose- to glucose-containing medium.

(C) Transcription was measured by Sl nuclease analysis of RNA
isolated from wild-type and LYC- 1 cells after transfer from
galactose- to glucose-containing medium.



Transcription was determined by Sl nuclease analysis of RNA

isolated following from glucose-galactose-transfer
containing medium. The half-life of each of these mRAs is

less than thirty minutes (Cormack and Struhl 1992;
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transcriptional regulation of RA23 is not well understood.

Figure 2-7C shows that following yTAFrr90 depletion, each gene
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tested was transcribed at wild-type levels (lanes 6- 10) even 11'/111

at 12 hours, a time at which there was no detectable yTAFn90
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(Figures 2-6A and B). In some cases, a small transcriptional
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decrease was observed 14 hours after transfer, time

which had arres ted approxima tely six

""",

forbeencellsthe

hours. these times, and I " I ,polymerase 111-late RNA

directed transcription was also modestly impaired. Thus, this

small transcription generalreflectsdecrease

deterioration of function in dying cells, and not a specific

defect in RNA polymerase II-directed transcription.

The results described above raised the possibility that

yTAFn90 might be required not for transcription in general

but the transcription genessubsetforrather
involved in progression through the G2/M phase of the cell



cycle. As a first test of this possibility, we analyzed the
transcription key required for progressiontwo genes

through G2/M. encodes cyc 1 CLB2 invol ved G2/M

progression and is transcribed only during G2/M (Sur ana 

al. 1991) . proteinCSE4 encodes required for proper

chromosome segregation significantlyand the phenotype

cells bear ing identicalCSE4 thatmutants the

yTAFrr90 mutant strains described here (Stoler et al. 1995) .

The Northern blot of Figure 2-8 shows that transcription of

CLB2 and CSE4 and as control, whichCLN3, encodes

constitutively expressed G1 cyclin (Nash et al. 1988) , was

unaffected following temperature- sensi ti ve inactivation
yTAFrr90. Thus, failure to transcribe the CLB2 and CSE4 genes

cannot explain the cell cyc le arrest phenotype of strains
harboring yTAFrr90 mutants.

A possible explanation for the lack of a transcriptional
effect in the above experiments was that yTAFn90 was not a

component polymerase address thisRNA PIC.

possibility biochemicalperformed both vivoand

transcription experiments. First, we asked whether yTAFn90
was associated TAFns . Thewith and otherTBP

immunoprecipitation experiment of Figure 2-9A shows that an

yTAFrr90 antiserum immunoprecipitated TBP and yTAFrr145, the

yT AFn that directly Reese al. 1994) .TBPcontacts

Likewise, an a-yTAFrr145 antiserum immunoprecipitated both



CLB2

CSE4

CLN3

ADH1

ts3-r b1- ts2-

~~~

4 0 4 0

It:



Figure 2-8. Transcription of genes required for progression
through G2/M following yTAFrr90 inactivation. Transcription of
the indicated genes was measured by Northern blot analysis.
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Figure 2- 9. yTAFrr90 is a component of the PIC and can

activate transcription as a LexA fusion 
protein.

(A) Immunoprecipitation analysis. Immunoprecipitates formed

with a-yTAFn90 or a-yTAFn145 antisera were analyzed by

immunoblotting for the presence of 
TBP, yTAFrr90, and

yTAFn145.
(B) Immobilized DNA template assay. Promoter 

(G5E4T) or

control (pGEM3) DNA was coupled to Dynal streptavidin 
beads,

and incubated in a yeast whole-cell extract under standard
transcription conditions. Factors associated stably were
detected by immunoblot analysis.
(C) Transcription activation by LexA-

yTAFrr90 fusion proteins.
wild- type strains containing an integrated lacZ reporter with
two LexA binding sites upstream of the GALl TATA box and the
DNA binding domain of LexA alone fused to full-

length yTAFrr

or amino- terminal (1-491) or carboxy-terminal (492-798)

portions of yTAFn 90 were analyzed for 
galactosidase

activity.
(D) LexA-yTAFrr90 fusion proteins containing wild-

type or

temperature-sensitive alleles of yTAFrr90 attached to the DNA

binding domain of LexA were transformed into strain 
EGY48.

Strain EGY48 contains a single chromosomal 

LEU2 gene whose

expression is controlled by three LexA-
binding sites.

Transformants were streaked on selective medium lacking
leucine and tested for growth at 25

C to 37

(E) Immunoblot analysis using an a-
LexA antibody was

performed on extracts prepared from strains harboring the
various LexA-yTAFrr90 fusion proteins. The proteins are

indicated by arrows.
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TBP and yTAFrr90. Thus, ln a yeast whole-cell extract yTAFrr

is associated with TBP and other yTAFns, as expected for a

component of the TFIID complex.

Second, and importantly, obtained directmore

evidence that yTAFrr90 was a component of an RNA polymerase II

PIC formed class havepromoter. previously
described methods for quantitating transcription factors that

are stable DNAusingcomponents II immobilized PICs

templates (Choy and Green, 1993) . Figure uses
immunoblot ting to' analyse the presence of several GTFs, RNA

polymerase and yTAFn90 in PICsII, formed under standard
transcription condi tions in yeast whole-cell extract.
expected, and consistent with resul ts ( Choy andprevlous

Green 1993; Kim et al. 1994), TBP, TFIIB, and RNA polymerase
II were stably associated with a DNA fragment containing a

class II promoter (G5E4T) but not an irrelevanat DNA (pGEM3).

Significantly, yTAFn90 also stably and specificallywas

associated with the promoter, indicating that yTAFn90 is a

component of the PIC.

Recent experiments have shown that PIC components, such

as TBP and GALli, can activate transcription when tethered to

the via heterologouspromoter binding domainDNA

(Chatterjee and Struhl 1995; Klages and Strubin 1995; Xiao et
al. 1995; Barberis et al. 1995). We used a similar strategy

determine whether vivo yTAFn intoentered



transcriptionally competent Fusion-proteins containingPIC.

the DNA binding domain wereattached yTAFLexA

assayed for their ability to activate transcription from an
integrated reporter bearing LexA binding sites upstream of ,I 'il

" "

.'01.' 1

:: : :;: 

111111
1I,1,1"lIlIj
IU'

II'"

::::'

III'I/II!I:I'

the GALl TATA box and the LacZ gene. Figure 2-9C shows that a

LexA-yTAF 90 fusion-protein activated transcription whereas

the LexA DNA binding domain alone (vector) did not.

importan t possibili ty

::::;,

:: ;:::1

;:::

i::::
rule the thatoutwas

yTAFn contained cryptic i"''' !II''''activation domain, which
1!11.111\11,1
11il11111111

yeas t short, acidic sequences (Ma and ptashne 1987 ;are

ptashne 1988). We therefore constructed LexA fusion-proteins
Iflldfll

1'1111

'11.111111111

containing N-terminal C-terminal

"'''''''

!lIltl'll!
(1-'491 ) (492- 798)

fragment of yTAF 90. Significantly, neither of these yTAF 'tI'II'11

,UiIH1;L'
'I 'I'

1'lnli
'"'It" !,'f

"'1.'-111
-'I'I
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fragments had yTAFrr90 function (data not shown). Figure 2-

shows that whereas the LexA fusion of full-length yTAFn
activated transcription, and C-terminal derivatives OII'II"

J"III II

the N-

did that activated I '111"11stronglyresul tsThese sugges tnot.

transcription due crypticLexA-yTAF notwas

activation domain in yTAF 90.

The results of Figure 2-9D provide additional support

for this conclusion. LexA-yTAF 90ts2- 1 and LexA-yTAF 90ts3-

fusion-proteins were constructed and tested for their ability

activate transcription bearing LexAfrom promoter

binding sites upstream of the GALl TATA box and LEU2 gene.

The ability to support growth on selective media provided a



sensitive assay for transcriptional activation. The resul ts

of this experiment demonstrate tha t when fused the DNA

binding domain of LexA, the temperature- sensitive alleles of

TAF90 supported growth on leucine-deficient media at 25 C but

not Therefore, these yTAFn intomutants enter

transcriptionally competent PIC at the permissive but not the

non-permissive temperature. The immunoblot analysis of Figure

9E indicates that all of the LexA-yTAF fusion-proteins

described above expressed at comparable levels. Takenwere

together, these results indicate that yTAFn is avivo

component of a PIC and further that the molecularsugges t

defect failurethe yTAFn90 mutants engage

protein-protein interaction (s) the non-permiss

temperature.

Discussion
Al though extensi ve vi tro data has demonstrated

requirement transcription activation,for theirTAFns

function (s) in vivo has not been critically evaluated. Here

report that highlywhichcells conserved and

essential inactivated eitheryTAF 90,TAFn, was

temperature-sensitive mutations or conditional depletion, had

general RNA polymerase II-directeddefect

transcription. estimate immunoblottingfrom that yeast
cells normally contain 3- 000 copies of yTAFrr90, which was



decreased greater than 98% by glucose-depletion (Figure 2-

and data shown) . Thenot maximal 120 copies yTAFn90

remaining is far below the -4, 000 actively transcribed genes

in a yeast cell (see Lewin 1990). Whereas our experiments do

not rule out that yTAFrr90 is required for transcription of a

particular subset of they do indicategenes, lack of a

general requirement for transcription activation.
Consistent with our in vivo results are in vitro experiments
demonstrating that partial TFIID complexes lacking TAFrr90 can

support transcription directed by several types of activators

(Chen et al. 1994b; Sauer el al. 1995a, b) .

Our resul ts are also not inconsistent with the limited
in vi analysis of other TAFns in higher eukaryotes. For

example, mamal ian cell lines harboring temperature-
sensitive TAFII250 allele, do not have a global defect in RNA

polymerase II-directed transcription under non-permissive
condi tions (see, for example, Liu et al. 1985). Furthermore,

inactivation TAFn250 did not preven t transcriptional
activation the whichc - Fos contains highlygene,

inducible and well characterized promoter (Wang and Tj ian,
1994) .

The results described in this study point to a role for

yTAFn specific stage the cell cycle.
Significantly, an identical cell cycle phenotype was observed

when yTAFrr90 was inactivated by two independent strategies:



temperature-sensitive inactivation or conditional depletion.

emphasize the cell cycle phenotype resul ting fromthat
yTAF inactivation typical transcriptionnot

defect. Blockage of transcription by exposure to chemical
'11111

inhibi tor, through the temperature-sensi ti ve IIIIIuse

alleles of RNA polymerase II, TBP, or SRB2 did not lead to a
If I

uniform cell cyc le Most significantly, strains ",/1arres t .

harboring activation-defictive mutants also failed
'1'

It"
11'

111\ 
I..! \

TBP

display a cell cycle phenotype. Interestingly, mamalian cell 'LIlt

lines expressing a temperature-sensi ti ve allele TAFn250
'I:tll

also displayed a cell cycle phenotype at the non-permissive jill,

11.11

temperature, although in this instance the arrest was in G1
't't,

Ll' 

Sekiguchi et al. 1988 ; Sekiguchi et al. 1991 ; Hisatake et

al. 1993; Ruppert et al. 1993). Taken together, these resul ts
U,1t

"~ll
"1'11

raise the intriguing possibility both and 1\.,yeastthat
.1, 

mamal ian cells have distinct and essential U'I'

TAFns may

functions in cell cycle progression, and that different TAFrrs

may act during different stages of the cell cycle.

It will be important to determine how TAFns facilitate

cell cyc le progression. yeas t , cell cycle progression

requires the temporally regulated transcription of particular

genes (reviewed in Koch and Nasmyth, 1994) . intriguing

possibili ty is that yTAFrrs are required not for transcription

in general, but rather for transcription of specific genes

involved in cell cycle progression. Although we have analyzed



! 1111

the ability yTAFn cells transcribe twomu tan t

important genes required for G2/M progression, our analysis

is far from exhaustive. Thus, it still remains possible that

yTAFn90 is required for transcription of one or more genes ll 

: : ::: :,

, 1'1 I' :;

III

I" 1.
1 h,

required for progression through G2/M and experiments to test

this idea are in progress. II, ,III"
II 

However, it remains possible that yTAF 90 does not act II: h
dJ !II

directly transcription activation. example,
II'
U, " \ I ,,,

1'\ I In

::' 

1'111 \'1
'Ii

I t ( 1'1

For

Drosophila TAFrr, dTAF 250, has been recently reported

have a protein kinase acti vi ty (Dikstein et al. 1996) . This

other biochemical acti vi ties could coordinate
n \ II,

, ! I
'I,

i I I I(

..'

JII

..'

Itl . 
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serve

transcription with cell division or other cellular processes.

Thus, yTAF 90 and other TAFrrs may function in the cell cycle II I I,

'H i II
II I II, 

11' tn' I
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111 

I T I

", "

mechanism that does operate directly throughnot

transcription pathway.

An additional suggestion that yTAFrr90 may be performing

a function other than as a coactivator is that the phenotype
.1 I

of yeast strains unable support activated transcription

differ substantially from that of the TAF90 mutant strains

described here. Activation-defective TBP mutant strains are

viable, do not support activated transcription several

genes tes ted (Kim et al. 1994 ; Arndt et al. 1995 ; Lee and

Struhl 1995; Stargell and Struhl 1995), and do not have

cell cycle phenotype (Figure 4B) ; conversely, the TAF90

mutant strains are inviable, support activated transcription



all genes tes ted, and specifically G2/M.arrest
Collectively, these observations raise the possibility that
yTAF 90 may function other than as a general coactivator.

yTAF activates thetranscr ipt ion when tethered

promoter through a LexA DNA binding domain. The portions of

yTAFn90 required to support activated transcripion this
assay are identical to those required for yTAF 90 function.

In particular, substitutions in the WD40 repeats, presumptive

protein-protein interaction sites, affected yTAFn90 activity
and activityLexA-yTAF comparably. interpret these

resul ts that activate transcriptionto mean LexA

fusion-protein, yTAFrr90 engages in the same interactions with
other PIC components as it does when it functions as yTAF 90.

Previous studies have shown that both TBP and GALli,

component of the holoenzyme, can activate transcription
analogous tethering experiments (Chatterjee and Struhl 1995;

Klages and Strubin 1995; Xiao et al. 1995; Barberis et al.
1995) . Thus, yTAF 90,TBP, GTF; component of the TAFn

complex; GALli, a component of the holoenzyme; and TFIIB (our

unpublished data) can all activate transcription when fused

binding domain. appropriateThus,DNA tethering
diverse PIC components can activate transcription, presumably

. by nucleating formation of a PIC on the promoter. Based soley
on these types of experiments, it is difficult to draw strong



conclusions about the target of an activator or the

an activator affects.
step (s)
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In vi tro, the TFIID complex is required for activator

function. Results presented in the previous chapter, however,

indica te that not all TAF s are required for transcription

activation in vivo. II t

The TFIID complex is composed of 8- Therefore, litlll
: I.

;: 

TAF II S .
IIII

while yTAF 90 did not possess coactivator activity in vivo, Ii.,

it is possible that one or more of the remaining TAF s did.
ll I

This possibility compelled us to analyze the ability of yeast 1'\1
,.1"1
11'
II,

cells to activate transcription in the absence of a numer of

additional TAFII In this chapter we present the results of -1\11

our analysis. Again we were surprised to discover that yeast
Inl

'1\11

cells were capable of transcription activation in the absence '1 

IHI

of any one of a numer of TAF IIS , including TAF 145, which is
HI'

believed structurally important the IH'component
-I 

complex. However, while the cells were competent to activate
lell
IIII

IL'j'

transcription, inactivation of TAF 145 or TSM1 resulted in an
'III

-oj 

inabili ty to progress through the cell cycle.

Results
The TBp-associated factor yTAFn145 is the homologue of

higher eukaryotic TAFn250, and is the only yTAFn known to

directly contact TBP (Reese et al. 1994). For these and other

reasons, yTAFrr 145/TAFrr250 is thought to be the core subunit

of the complex (Chen et al. 1994b; Burley and Roeder 1996).

isolated several tempera ture- sens i ti ve (ts) alleles



\!'

I!I.,

yTAFII145, which encoded essential gene (Reese

al. 1994; Poon al. 1995). Cells harboring these yTAFII145

mutant alleles did not grow and displayed rapid

cessation of cell division upon shifting from to the tn'l I II-

I 1,'1. 

L,-, 1 
II. , :hlllt:

l""

'!"

IIII;:li
non-permissive temperature (Figure 3- 1A). Immunoblot analysis

(Fig. 3 - lB ) shows that when shift the level

yTAFII145 rapidly decreased and four hours was

undetectable both temperature-sensiti strains. The

III"'"

.lill""'IliI.

: :::a I 
1"11

i,. , I \::::j

! \,11 

levels of several other yTAFrrs, and to a lesser extent 
yTBP, I!I I HIII

also decreased. In contrast, components that are not part of

-It I I I'
IIII

Iflllll!!l,

the yTAFrr complex, such as Sua (yTFIIB), were unaffected by
'lill 'HOII

the temperature shift. These data suggest that loss
::::;:1::'

yTAFII145 disrupts the yTAFII complex, resul t ing the
I!I I 1111'

, H I II'II'
.nlll

)lI\
In'I !llt
1111

1"11
11'lfl

::n '

::::

degradation of other yTAFIIS.

To investigate the consequences of yTAFII inactivation

transcription, initially examined strains bear ing ::j\\11

temperature-sensitive mutations in 
yTAFr 145 or TSM1, which is ,,11'.11

encoded by an essential gene and is the homologue the

higher eukaryotic TAFrr 150 (Verrij zer et 
al. 1994), or strains

which yTAFn have been deleted. The encodinggene

yTAFrr30, ANC1, is not essential, but cells lacking yTAFII30

grow slowly and are inviable at 37
(Welch et al. 1993).

Yeast strains containing these TAFn mutants or,

controls, a temperature-sensiti
GTF (TBP or RNA polymerase

Figure 3-
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Figure 3-1. Temperature-sensitive yTAFrr145 mutants.

(A) Rapid cessation of cell growth follows shifting yeast
strains containing temperature sensitive alleles of YTAF 145
from 23 C to 37
(B) Immunoblot of extracts from wild-type and yTAF 145
temperature-sensitive cells, before and after transfer from

C to 37



, .

II) were shifted to 37 C and RNA isolated at various times.

Transcription was measured by nuclease protection using

probes specific genes

1989 ;

fivefor endogenous yeast dri ven

diverse activators (Hamil et al. 1988; Capieaux et al.
Buchman and Kornberg 1990; Johnston and Carlson 1992; Kuo and
Grayhack 1994). For all five genes, as shown in Figure 3-2A,

in the tbp (lanes 17- 20) and rpb (lanes 21-24) temperature-

sensitive strains, shifting to the non-permissive temperature

substantially reduced transcription, which by four hours was

undetectable. Similar resul ts obtained with srb4were

temperature- sensi ti ve strain Thompson and 1995 andYoung

data not shown). In contrast, even after four hours at the

non -permi s s i ve transcriptiontemperature, was not

significantly affected in the wild-type strain (lanes 1-4),

strains bearing temperature-sensitive mutations in yTAFrr145

(lanes 5-12), TSM1 (lanes 13- 16) or in the strain deleted of

yTAFII30 (lanes 25-26).

The examined were acti velyFiguregenes

transcribed at timethe the temperature-shift, leaving

open the possibility that yTAFrrs might be required for the

initiation, main tenance ,but transcriptionallynot

active state. To examine this possibility we tested whether

yTAFrr inactivation affected the inducible transcription of

the yeast copper metallothionein gene, CUP1. Transcriptional
induction of CUPl is extremely rapid and involves the direct
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Figure 3-2. Unabated transcription after yTAFII 
inactivation.

(A) Transcription of several endogenous, chromosomal genes.
For the yTAFII, tbp, and 

rpb, temperature-sensiti
strains

culture samples were taken for RNA preparati
and analysis

before (0) and 1, 2, and 4 hr after temperature shift to 37
The yTAFII30 deletion 

) and parental, wild-type (WT) cells

were grown at 23 C before RNA was prepared for 
analysis. The

transcripts detected by Sl nuclease protecti
in each strain

are indicated on the left.
(B) Transcriptional activation of CUP1 

in yTAFII mutant

strains. The experimental scheme is shown below the
autoradiogram. Growth and induction of CUP1 transcription in
ytafII30 deletion and wild-type strains was performed at

- - - - - - - 



. -" ,

. ,r,

i;'

1 I

binding of Cu++ to the acidic activator ACE1, converting it
to an active form et al.( Bu t t 1984 ; et al.Furs t 1988) .

Cultures of cells containing temperature-sensitive mutations

in yTAFII145, TSM1, TBP, or RNA polymerase II were shifted to "11 it'lL

the non-permissive
:: II'"

. I I :::ii 

I I ::: 
II I 

tlltllfl
I I IIqH

for four hours,temperature exposed

copper sulfate wasfor min,mM) and transcription
d II

III

II'

):'

/11
IfloJ.

quantitated (Fig. 3-2B). At the permissive temperature (23 C),

activation of CUPl was similar in all strains

: :: 

:::IH
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I 1 :::1: I..

111"""
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(Fig. 3-2B). At

the non-permissive temperature (3 7 C) , induction of CUPl was

severely diminished in the tbp temperature-sensitive cells
(lanes 19 and 20), and was undetectable in rpb temperature-

I I 1 '!fIt! 

I., ,
r II IIIIIII

'" 

I ill!
sensitive cells (lanes 23 and 24). However, cells containing

the (ytafII145ts
! I I III fli I"I 

tsm1 tS)mutations andyTAFII supported

transcriptional induction level .. 4 :

;;;: \! 

111;1

:: II"II J!'

: !: ::::: ~~~

the CUPl gene

indistinguishable from that wild-type, even after
incubation for four hours at the non-permissive temperature

III::::J'

1111',(111"(lanes 7, 8, 11, 12, 15 and 16). CUPl transcription was also

normal in the ytafII30 strain (lanes 25-28).

To confirm and extend the results with the temperature-

sensitive depleted individually fouryTAFII mutants,

yTAFII (yTAFII145, yTAFII90, yTAFII68, and yTAFII47)

using another experimental strategy. Of these, yTAFII145 and

yTAFII90 have been previously described (Reese et al. 1994) ,

but yTAFrr47 and yTAFIr68 are new yTAFrrs, cloned on the basis

of microsequence analysis of the corresponding subunits of
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Figure 3-3. Activated transcription in cells depleted of
yTAFrrs.

(A) Transcriptional induction of CUPl was measured by Sl
nuclease protection 30 min. after the addition of 1mM copper
sulfate to the medium. yTAFrrs were depleted by growing the
strains in glucose-containing medium for 12 hrs.
(B) Transcriptional induction of SSA4 (HSP70) was measured by
primer extension analysis after shifting the cultures to 39
for 15 min. yTAFrrs were depleted by growing the appropriate
strains in glucose-containing medium for 12 hrs.
(C) Immunoblot detection of epitope (HA) tagged yTAFrrs in
wild-type (ytafrr145:: LEU2 /pyTAFrr145 (ARS/CENJ), and strain
YSW94 (ytaf 145:: LEU2/trp3: :pSW111 (GA lp-HA-yTAFrr145-CYC
HIS3 J) or
(D) strain LYC-1 (ytaf 90: :HIS3/Lp16 (ARS/CEN LEU2 GALlp-HA-

yTAF 90 J) 

(E) strain JR18 (ytafrr68: :hisG-URA-hisG/trp3: :pJE20 (GAL1p-HA-
yTAFrr 68-CYC HIS3 J) or

(F) strain JR11 (ytafrr47: :hisG-URA3-hisG/trp3: :pJR15 (GAL1p-
HA-yTAFrr47- CYC HIS3 J) for various times after transfer from
galactose- to glucose- containing medium.
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Transcriptional induction CUPl examined thesewas

condi tional strains hours after glucose-mediated yTAFII

shut-off (Fig. 3- 3A, B, bottom). In cells in which yTAFII145,

yTAFn 90, yTAFn68 yTAFn47 had been depleted, CUP1

,,'

transcription was identical to that of the wild-type strain
::;i

(Fig. 3-3A).
IIII
'III

Heat shock I''''ano ther well characterized inducible
transcription 1:::1Bienz and Pelham 1987) . Strainsresponse

hil
III!,

containing I""glucose-regulatable alleles yTAFII145,

yTAFII90, yTAFII68, yTAFII47 examined forwere
'1111

transcriptional induction of the SSA4 (Boorstein andgene

Craig 1990) . each strain,For depletionyTAFn did not
;II;

diminish transcriptional activation (Fig. 3- 3B).

Although temperature-sensitive inactivation of yTAFrr 145

or TSM1 did not result in a general transcription activation I'"

defect (Fig. 2A, rapid growthB) , evidentarrest was

(Fig. 3-1A; Mortimer and Schild 1980), and data not shown). I"r

The ability to rapidly inactivate these temperature-sensitive
yTAFns enabled us to gain insight into the nature the
growth When the ytafII145tsarrest. strain was shifted

there accumulation large, unbudded cellswas

(Fig. indicative3 - 4A) , G1-phase cell cyc 1 e arres t

(Herskowitz 1988). However, at the non-permissive temperature

the tsm1 ts strain arrested as budded cells characteristic of

the G2/M phase (Fig. 3-4A). To delineate the cell cycle block
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Figure 3-4. Inactivation of yTAFrr 145 and TSM1 leads to
distinct cell cycle phenotypes.

(A) Phase-contrast micrographs of wild-type, ytaf 145 and tsml
temperature- sensitive strains at 23 C, and after 4 hrs atC. All micrographs were taken at a magnification of
X1000.
(B) Flow cytometric (FACS) analysis, by propidium iodide
staining, of the DNA content of wild-type, ytaf 145 and tsm1
temperature-sensitive strains at 23 C and after 4 hr at 37
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more precisely, werethe arres ted cells subjected
fluorescence activated cell sorting (FACS). ytafII145ts cells

arrested with a iN DNA content (Fig. 3-4B), consistent with a

block in G1, and analogous to the results with the mamalian

TAFn250 homologue (Nishimoto al. 1982) ; conversely,

tsm1 ts cells had a 2N DNA content, consistent with a block in

G2.

Discussion
Taken together, indicateresul ts that activatedour

transcription can occur in the absence of multiple yTAFIIS.

This conclusion is based upon two independent strategies to
functionally inactivate yTAFns: temperature- sensitive
mutations condi tionaland depletion. similarMoreover,

conclusion has been obtained us ing third yTAFns

inactivation strategy (Moqtaderi et al. 1996a). Particularly
compelling are the results with yTAFn145. the only

yTAFrr known to contact TBP directly (Reese et al. 1994), and

its higher eukaryotic homologue, TAFrr250, is always required

to reconstitute TFIID activity in vitro (Chen et al. 1994b) .

Therefore, for those tes ted, are not theTAFIISgenes

obligatory targets of activators and so in these instances
another transcription component (s) , such TFIIB TBP

(Zawel and Reinberg 1995), must serve this function.



Al though inactivation didyTAFrrs not compromise

transcription those examined, inactivat iongenes

different yTAFrrs led to distinct cell cycle phenotypes. These

results are consistant with those presented in chapter one in

which inactivation of yTAFII90 was shown to result in a cell
cycle thearres t absence global transcriptional
defect. cellyeas t , cycle progression requires the
temporally regulated transcription of particular genes (Koch

and Naysmith 1994). An intriguing possibility is that yTAFrrs

are not required for transcription in general, but rather for

transcription of specific such as those invol vedgenes,

cell cycle progression.



CHAPTER IV

Promoter specific, but not global transcriptional defects in
,It

cells lacking functional yTAFrr
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In vitro TAFns function as coactivators to facili tate

acti va ted transcription. However, our in vivo analysis of a

numer of yTAFrrs had failed to identify one with coactivator

activity. introduction,described the eukaryotic 'II

activators are grouped into classes based on the prevalence lid.

:111"

particular ::::11"amino acid their activationtype

domain.
ql!

.r_
1I1II

1(1.,',-,

Al though higher eukaryotes possess classesmany

activation domains, yeast are believed to possess only the :itll!t,

:::I
UlIl

11111,

ljl

acidic class. Therefore, it is possible that our failure to

identify a yTAFn with coactivator activity was due to our

failure Hlt"I

oGf

'1I!

II::)

analyze - the which interacts with acidicTAFn

activators.
higher beeneukaryotes dTAFn and hTAFn have

1111110:1..

shown to interact with acidic activators ( r

"..

, 11"""
oIll

in vi tro (Goodrich

et al.
::::J

1995). With this fact1993 ; Thut et al. in mind,

reasoned

::;

that the yeast homologue of dTAFn and hTAFn Ulr;,

IIII.

would be an ideal candidate to possess coactivator activity ,illl'

,.,

in yeast.

this vivochapter analyze the function

yTAFII17, dTAFn Whilethe homologue and hTAFn32.

yTAFrr17 is required for transcriptional induction of the GALl

gene by the activator GAL4, for globalis not required
transcription activation. indicateThese resul ts that
single TAFrr is not the obligatory target of a specific class

of activator.



Results
We began our analysis of yTAFn by creating diploid

strains of yeast containing one wild-type and one disrupted

copy of the gene. The construct and scheme used to disrupt

yTAFn depicted andFigure Sporulation1A.

dissection of the diploid strain resulted in only two viable

spores per tetrad (Fig. 4-1B). In no case did the disruption

marker with viable ( da not shown) ,segregate spore

indicating essentialthat encodesyTAFn gene.

Furthermore, introduction of a wild-type copy of yTAFrr17 into

the diploid strain resulted in near 100% viability of spores

generated from this strain, demonstrating that yTAFn can

rescue the lethal phenotype (data not shown).

In order to study the in vivo function of yTAFn17 we

constructed a temperature- sensitive allele. Cells containing

the mutant allele grew at 25 C, but not 37 (Fig. and2A)

displayed a rapid cessation of growth when transferred from

the permissive to the non-permissive temperature (Fig. 4-2B).

Sequencing of the allele revealed that it possessed a single

point mutation. This mutation generated a premature stop at

amino acid 128 which resulted in the loss thirty amino

acids Interestingly, truncatedC-terminus. thefrom the

protein retained the highly conserved histone fold domain
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Figure 4- 1. YTAF 17 is essential for viability.

(A) Scheme used to delete yTAF 17 from the yeast genome. The
entire coding region of yTAF 17 (Bsm 1-Bsm 1) is replaced
wi th the LEU2 gene.
(B) Sporulation and dissection of diploid strains containing
one disrupted and one wild-type copy of yTAFrr17 results in
two viable spores per tetrad.
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Figure 4-2. Temperature-sensitive allele of yTAFrr17.

(A) Growth of strains containing wild-type (LY90) and
temperature- sensitive alleles, of YTAFrr17 (ts- l) at 25 C and

(B) Growth curve of wild-type and the temperature- sensitivestrain ts- 1 immediately after transfer from 25 C to 370C.

.,.

'I,

;;'
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(Burley and Roeder 1996) . This domain believed
involved pro te in -pro te in interactions. analyze the
effect inactivationyTAFn transcription used

Northern blotting to examine the ability of the temperature-
sensitive cells to respond to a numer of activators at the

non-permissive temperature. Figure 4-3A shows the results of
this analysis. Cells containing temperature-sensitive alleles
of the basal transcription factor TBP or RNA polymerase II
display a rapid decrease in transcription of all genes tested

upon trans fer non-permissivefrom the permissive the
temperature. Cells containing a temperature-sensitive allele

yTAFn 17, however show only modes t decrease

transcription at the non-permissive temperature. Furthermore,
this modes t decrease occurs only at the late time points.
Since the loss of a single yTAFn has been shown to disrupt
the TFIID complex (Walker et al. 1996) , it is possible that
the modest decrease in transcription observed in the yTAFn

temperature-sensi ti ve cells is due degradation of other
components of the complex such as TBP, and is not a direct
resul t of a loss of yTAFrr17 function.

The results from this experiment indicate that yTAFn

required fornot global transcription activation.
However, since only five out of the estimated 6, 000 genes in
the yeast examined, difficultgenome were

confidently draw this conclusion. An alternative approach to
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Figure 4-3. Transcription in strains containing wild-type and
YTAF 17 temperature-sensitive alleles.
(A) Transcription of the indicated endogenous genes was
measured by Northern blot analysis of RNA collected from
strains grown for various times after transfer from the
permissive (25 C) to the non-permissive temperature (37 C).(B) mRA levels were measured in wild-type and temperature-
sensitive strains immediately before, and for various times
after, transfer to the non-permissive temperature , by slotblot analysis of total RNA with an oligo (dT)2o probe.
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analyze the transcriptional competence of cells after yTAFrr

inactivation is to analyze their ability to transcribe bulk

mRA. this RNAexperiment slot blots containing total
isolated from cells variousfor times thegrown non-

permissi ve probed wi temperature oligonucleotidewere

which hybridizes to the polyA tail of mRA. Results from this
experiment are shown in Figure 4-3B. While mRA synthesis was

rapidly decreased cells containing temperature-sensitive
alleles of TBP or RNA polymerase II, it was unaffected in the

yTAFrr17 mutant cells.

The analysis described above was designed to determine

if transcription could be maintained at the non-permissive
temperature the absence functional yTAF 17.

possible significantthat transcriptional defect was

observed because yTAFrr17 is not required for the maintenance

transcription, initiation.but rather for transcription
In order to test this hypothesis the following experiment was

performed. Basically, cells were allowed grow the

permissive temperature mid- log phase. They were then

shifted the non-permissive temperature for one two

hours. After this time the appropriate inducer was added 

the media. Cells were allowed to incubate further at the non-

permissive temperature, then collected and analyzed for their

ability to respond to various activators. In Figure 4-4A the
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Figure 4-4. Transcription induction in strains bearing wild-
type and temperature-sensitive alleles of yTAF 17.

(A) Northern blot analysis was used to measure the induction
of the GALl gene, in the indicated strains, one hour after
the addition of galactose at a final concentration of 3% to
the medium.
(B) Induction of the CUPl gene was measured 30 minutes after
the addition of copper sulfate at a final concentration of
100uM to the medium.
(C) Induction of the HIS3 and HIS4 genes was measured three
hours after the addition of 3-Amino- Triazole at a final
concentration of 10mM to the medium.
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abili ty of the cells to respond to the well characterized
acidic activator GAL4 upon the addition of galactose to the
media shown . expected, both wild-type and YTAFn

temperature-sensitive cells capable transcriptionwere

induction of the GALl gene at 2 C. However , after incubation

at 37 C for two hours only the wild-type cells were capable

of inducing the GALl gene.

These results were very interesting and compelled us to

analyze the ability the yTAFn temperature- sensi ti ve

cells to induce the transcription of genes under the control
of other well characterized activators. We chose examine

the ability of the cells to induce the transcription of the
CUPl gene, by the activator ACE1, in the presence of copper
sulfate (Butt et al. 1984; Furst et al. 1988). The results of

Figure 4-4B show that both wild-type and yTAFrr17 temperature-

sensitive cells were capable of transcription induction of

CUP 1 at and after incubation at for two hours.
These results were not unique to activation by ACE1. Both

wild-type and yTAFn temperature-sensitive cells were

capable of transcription induction of the HIS3 and HIS4 genes

in the presence of the competitive inhibitor 3-Amino-

Triazole (3AT) at 25 C and (Fig. 4C) Transcriptional
induction of HIS3 and HIS4 under the control theare
activator GCN4 (Hope and Struhl 1985; Arndt and Fink 1986) .
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Discussion
The results presented in this chapter show that yTAFrr

not required global transcription butactivation,for

rather for the function of at least one specific promoter.

These results are consistent with those obtained from the 

vivo analysis hTAF 250. Human and yeastano ther TAF n ,

cells containing temperature-sensitive alleles of TAFrr250 are

incapable of transcription of a numer of genes at the non-

permissive temperature including the G1 cyclins, but display

no global transcriptional defect (Liu et al. 1985; Wang and

Tjian 1994; Walker et al. 1996)

These results, however, are not consistent with yTAFrr

being obligatory acidic Whilethe target activators.
yTAFn17 was required for activation by the acidic activator

GAL4 it was not required for the acidic activators ACE1 or
GCN4. These resul ts explained yTAFnthemay

temperature-sensitive alleles retained partial activity.
do not favor this explanation First, thefor two reasons.

cells show a rapid decrease in cell growth upon transfer from

the permissive to the non-permissive temperature, indicating

that an essential activity of yTAFn17 has been inactivated.

Second, analysis of mRA synthesis in the mutant cells at the

non-permissive failed identify any defect;temperature

indicating that transcriptional defects must be rare.
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Exactly what makes a gene dependent on yTAFn is not

require

known. However it is clear that not all acidic activators

Therefore,

functional yTAFrr transcription.stimulate

vivo to facilitate transciption acitvation.

activators must interacting with other 
factors 
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CHAPTER VI

Sumary
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The in vi tro analysis of TAF from higher eukaryotes

indicates that they are the obligatory targets of activators.
They are required for activator function (Hoey et al. 1990 ;

Hoffman et al. 1990 ; Peterson et al. 1990 ; Pugh and Tj ian

1990 ; Smale et al. 1990) , have been shown to interact with
specific activators (Goodrich et al. 1993; Hoey et al. 1993 ;

Jacq et al. 1994 ; Thut et al. 1995;) , and the function of
specific activators requires the presence of specific T AF II s

(Chen et al. 1994b) . Although numerous TAF -TAFII and TAF

activator interactions have been identified, precisely how

individual TAF s function in higher eukaryotes has failed to

progres s far protein-beyond identificationthe these
protein interactions.

In this thesis we have taken advantage of the isolation
of a TFIID complex from the yeast Saccharomyces cerevisiae

(Reese et al. 1994; Po on et al. 1995) to analyze the function

of individual TAF in vivo. We are confident that the data

generated in this system is applicable to higher eukaryotes
for the following reasons. First, there is a high degree of
conservation between the transcription machinery of yeast and

that of higher eukaryotes (Struhl 1989). Second, TFIID from

yeast con tains T AF II shomologues higher eukaryotic

(Verrij zer et al. 1994; Reese et al. 1994; Po on et al. 1995;

Moqtaderi et al. 1996a, b) .
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Our analysis of individual TAF s in yeast indicate that
they the obligatoryare no activators.targets Global

transcription activation occurs in the absence of any one of
a numer of TAF IIS , including yTAF 145, which is believed 

be an essential structural component of the TFIID complex.

These results directly contradict those obtained for higher

eukaryotic vi tro .TAF n theseHow inestwocan

evidence be reconciled? It is possible that over time TAF

have evo 1 ved different functions lower and higher
eukaryotes. Though possible, data generated in vivo indicate
that higher eukaryoti cTAF and lower cells function

!f.

similarly. Mamalian and yeast cells containing temperature-
sensitive alleles hTAF 250 and yTAF 145, respectively ,
arres t the displayphase the cell cyc le and

promoter-specific defects the non-permissive temperature
(Liu et al. 1985; Wang and Tjian 1994; Walker et al. 1996) .

In addition, TAF s from higher eukaryotes and yeast function
similarly in vitro, each is required for activator function
(Hoey et al. 1990; Hoffman et al. 1990; Peterson et al. 1990;

Pugh and Tj ian 1990; Smale et al. 1990 ; Reese et al. 1994 ;

Poon al. the1995) . These resul ts indicate that
discrepancies observed functionTAF dueare
differences between, in vi tro and vivo systems and not
mamalian and yeast TAF
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The discrepancies observed may be explained by factors
present in vivo, but lacking from in vitro systems, tha t are
capable of substituting for the TAF s on most promoters.

yeas t , the mediator complex is capable of forsubstituting
the yTAF s in reconstituted transcription reactions (Kim et

al. 1994) . Therefore, members the media tor are prime

candidates this function. Al though mediatorserve

complex has been identified highernot yet eukaryotic
cells, it is possible that components of this complex exist

and are capable of substituting for the TAF s. However, one

must keep in mind that each of the TAF examined in thi s

study, with the exception YTAF 0 , encodes for
essential gene. Therefore, even if redundant factors exist 

vivo, they cannot substitute for all of the TAFII activities.
alternative explanation that TAF n function

differently in vivo and in vitro. Results obtained from the

analysis of strains containing temperature-sensitive alleles
of yTAF 145 indicate that this may be the case, at least for

some promoters. theYTAF 145 requiredyeas t , for
expression of Gl and S phase cyclins (Walker et al. 1997), as

well as for the expression of ribosomal genes (Shen and Green

1997). Identification of the element within the CLN2 and RPS5

promoters responsible maps thefor yTAF 145 dependence

core promoter and upstreamthe activator site.not

Interestingly, similar experiments performed mamal ian
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cells containing a temperature-sensitive allele of hTAF 250

indicate that both the activator and the core promoter
contribute to the dependence of hTAF 250 for expression

the cyclin A promoter (Wang et al. 1997). It is possible that

yTAF 145/hTAF 250 is capable of functioning through multiple

promoter elements particularand those used depend on the
promoter. Alternatively, mamalianpossible that
hTAF 250 functions through mul tiple elementspromoter and

ast YTAF 145 only through the core promoter. This
possibility, however, unlikely since both TAF u are
required for activated transcription vi tro and both
perform similar functions vivo. Interestingly, YTAF 145

and it' s higher eukaryotic homologues have been shown

possess histone acetyltransferase activity (HAT) that
specific for histones H3 and H4 in vitro. It is possible that

on some promoters yTAF 145/hTAF 250 functions to antagonize

repression caused nucleosomes. Alternatively,
yTAF 145/hTAF 250 may acetylate factors other than histones,
such the basal transcription factors. Possibly, the
acetylation of one or more of these factors results in the
formation of a more productive PIC. In order to understand

the function of yTAF 145/hTAF 250 it will importan t

determine the in vi vo targets of the HAT acti vi ty .

At least three of the TAF s appear to play role in

cell cycle progression. the non-permissive temperature,
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cells containing temperature-sensitive alleles yTAF 145

arrest cellsthe phase the cell cycle, while

containing temperature-sensitive alleles of yTAF or TSM1

arres t G2/M. These resul ts led speculate that
indi vidual requiredmay beT AF II s for the transcription
subsets possibly those required for cell cyc legenes,

progression. The analysis of strains containing temperature-
sensitive alleles YTAF 145 revealed that they were

incapable of expressing G1 and S phase cyclins at the non-
permissive (Walkertemperature al. 1997) . contrast,
strains containing temperature-sensitive alleles of yTAF

were capable genes whoseexpressing least two

expression was required for progression through G2/M, CLB2

and CSE4 at the non-permissive temperature. In an attempt to
identify whose expression required yTAFgenes

comprehens i ve approach taken. First, cells whichwas

yTAF had inactivatedbeen temperature- sensi ti ve

mutation examined for their ability transcribewere

randomly selected genes at the non-permissive temperature. In
addition, these cells were subjected to PCR based subtractive
hybridization. This technique has the potential analyze

every gene expressed in the yeast genome (see appendix A). To

our surprise, nei ther of these strategies identified a gene

that required yTAF 90 for expression. It is possible that our

inability to identify a yTAF dependent duegene was
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limi tat ions techniquesthe employed. Al ternati vely,

yTAF 90 may function in activities other than transcription,

for example, cell cycle progression. Interestingly, cells
containing both temperature- sensi ti ve allele CDC28

(cdc28-1N), which arrests the phase the cell cycle

the non-permissive temperature-andtemperature,

sensitive allele of yTAF 90, are inviable. In contrast, cells
containing a temperature- sensitive allele of CDC28 (cdc28-

which arrests in the G1 phase of the cell cycle at the non-

permissive temperature and a temperature-sensitive allele of

yTAF II9 0 are viable (data not shown). These results indicate

that the synthetic lethality observed between cdc28-1N and

yTAF twosimply the resul t combiningnot

temperature- sensi ti ve alleles. Furthermore, these resul ts

suggest that CDC28 and yTAF 90 function in the same pathway.

They may function ensures progressionpathway that
through or possibly one that involvescellthe cyc le ,

check point controls.

If yTAF 90 functions in a check point control pathway it

does not appear invo 1 ve RA9. change the percentage

cells arrested the phase the cell cycle was

observed in yTAF temperature- sensi ti ve cells - in which RA9

had been deleted Identifying the vivo(data not shown).

function of yTAF 90 will require the use of highly sensitive

procedures identify genes,differentially expressed
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well analysisdepth the cell cycle defects
exhibited by cells lacking yTAF 90 function.

Al though transcriptional defects were not observed

the absence of any one of a numer of functional TAF cells
expressing temperature-sensitive allele yTAF II were

shown exhibi t specific defectpromoter the non-

permissive yTAF II i 7tempera ture . analyzed specificallywas

because of its homology to higher eukaryotic TAF s shown to

interact with acidic activators (Moqtaderi al. 1996b) .

Since yeast possess only acidic activators, yTAF 17 appeared

to be the perfect candidate to possess coactivator activity.
Interestingly, yTAF required for expression thewas

GALl but the HIS3, HIS4not CUPl genes. Thesegene,

resul ts are intriguing because they contradict the long held

belief that a single TAF functions interacting with a

specific class of activator. It is possible, however, that
there exists another TAF in yeast which will supply this
coactivator activity. also possible that our

classification activators incorrec t . Grouping

activators into classes based the preponderance

particular type of amino acid may be too simplistic. I f our

classifications are incorrect, then we would not expec t

find a single TAFII which functions as a coactivator for all
acidic activators. Furthermore, rule out thenotcan

possibility that the temperature-sensitive allele of yTAF
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examined in this study retained partial activity at the non-

permissive temperature. yTAF 17 contains a domain which has
similari ty to histone H3. In addition, the higher eukaryotic
homologues of yTAF hTAF 32 and dTAF AO, have been shown
to associate with hTAF 80 and dTAF 60, respectively, to form

a nucleosome like structure. Since the temperature-sensitive
allele of yTAF 17 contains a truncation which leaves the H3
homology domain tact, possible that this mu tan t

assemles into the TFIID complex the non-permissive
temperature and capable supporting transcription
activation most promoters. this true, then the
temperature-sensitive defect must result in the rapid 

loss of

transcription of eas t essentialone willgene.
important to determine if yTAF 17 protein is present in the

temperature- sensi ti ve cells the non -permi s s i ve
temperature. Furthermore, if protein is detected,
capable assembling into the PIC the non-permissive
temperature. In addition, it will be important identify
the element which confers yTAF dependence the GALl

promoter. yTAF functioning coactivator
should map to the activator binding site.

The binding of TFIID the promoter constitutes the
first step in the formation of a PIC. Only after it is bound

are the remaining GTFs capable of entering into the 
PIC. The

finding that many of the basal factors may exist in a single
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complex, invokes interesting analogy between TFIID and

bacterial factors. Possibly functionsTFIID like the
bacterial cr factor to select a particular promoter to which
the holoenzyme then recrui ted. bacteria there are
multiple factors. Mul tiple complexesTFIID have recently
been found to exist in Drosophila (Hansen et al. 1997) .

least one of these complexes has been shown to be capable of

associating with the remaining andGTFs supporting
transcription activation subset transcription
activators (Hansen et al. 1997). Like the bacterial cr factor,
each of these complexes may be required for nucleating the

formation of a PIC on different promoters. Though multiple
TFIID complexes yeas t ,have not been identified
still possible that TFIID functions as a promoter specificity

factor this organism. The association with theTBP

TAF s is weaker in the TFIID complex isolated from yeast than

that from higher eukaryotes. It is possible that while there
are mul tiple TFIID complexes in higher eukaryotes, there are

multiple TAFII complexes in yeast. Each capable of associating
wi th TBP and selecting a different set of promoters. I t wi 11

be interesting to determine whether multiple TAFII complexes

exist in yeast.

The work presented this thesis has forced
reevaluate our views on TAF s and transcription activation.
While it was assumed from data generated in vitro that the
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TAF s would be required for global transcription activation

in vivo, this is not the case. In vivo, global transcription

activation is unaffected following inactivation or depletion

of numerous TAF IIS . In contrast, small numer of promoters

have been identified which require particular forT AF II s

expression. In order to understand how TAF s are functioning

in vivo it will be important to determine the elements which

confer TAF dependence on these promoters. In addition,

will important determine commonthere

requirement for TAF dependence, and what that requirement

is. This will require the identification of additional genes

that require specific for expression and the preciseTAF II

mapping of the elements which confer TAF II dependence.

In addition, the work presented in this thesis has led

to the identification of unexpected roles for three of the

TAF s in cell cycle" progression. While yTAF 145 is required

for the expression of G1 and S phase cyclins (Walker et 

1997), the roles played by yTAF 90 and TMS1 are not known. It

will be important to determine if these TAF nS are required

for the transcription required cell cyc legenes for

progression play direc t thisthey more role

process. An intriguing possibility is that they function in a

check point control pathway, ei ther directly, or indirectly

via transcription activation.

The work presented in this thesis has shed new light on

the function of and the mechanisms transcriptionTAF
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interesting

vivo. addition, has generated

orderaddres sedquestion which must

fully understand transcription activation in vivo.
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CHAPTER VI

Materials and Methods
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Yeast Strains
Strains CY245, LY3, L Y2 0, LY21, and L YC - YSW87 YSW90 ,

YSW93, YSW94, JR18, and JR11 are isogenic derivatives
S288C. Strains LY90, L Y7 2 2, and L Y7 4 0 are isogenic
derivatives of W303. Strains DDY555 (also called yTAF

Welch et al. 1993), tsm1 (Ray et al. 1991), rpb1- (Nonet et

al. 1987), Srb2 1 (Koleske et al. 1992), Egy48 (Gyuris et al.
1993), and strains harboring the TBP mutants, ts- (Cormack),

P109A (Arndt et al. 1995), N159L and V161A (Lee and Struhl
1995) have been previously described. taf90, taf145Mu tan t

and taf17 strains were made by the plasmid shuffle technique

(Boeke et al. 1984). Basically, strains LY3, YSW85, and LY90,

were transformed with(Ito al. 1983) , respecti vely,

various mutant plasmids, followed by screening for cells that

had lost the wild-type plasmid on fluoroorotic acid ( 5-

FOA) . The TAF17 disruption strain LY80 was constructed 

transformation of strain W303 with an EcoRl fragment from

plasmid Lp21 containing a disrupted copy of TAF17, followed

by selection on leucine-deficient medium. PCR and Southern

blotting were used confirm proper integration the

disruption construct. Strain LY80 was then transformed with
plasmid strainLp19 LY87.generate LY87 was then

sporulated, followed by dissection of the resulting tetrads.
Tetrads which grew on andselective media lacking uracil
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leucine were selected. One such strain, called LY90, was used

make temperature-the wild-type strain LY740 and the
sensitive strain LY722. Strain LY740 and LY722 were made by

transformation withLY90 plasmids Lp20 and Lp34

respectively, followed by plasmid shuffle. Strain LYC- 1 which

contains a glucose-repressible allele of TAF90 was also made

using the plasmid shuffle technique. Strains containing
glucose- repressible alleles of TAF145 (YSW94) , TAF68 (JR18 )

and TAF47 (JR11) were made by integration of the appropriate
constructs. Strain LGY7' was constructed by digestion of the
plasmid Jp167 (J. Pear lberg , unpublished) with ApaI

followed transformation into strainyeast JY45 (J.
Pear lberg , unpublished). Cultures were grown in YEPD unless

selection was in which all cul turesnecessary, case were

grown in the appropriate selective (SD) medium.

Plasmid Constructions
The TAF90 plasmid Lp7 that was mutagenized was constructed by

cloning the HindIII fragment of plasmid Lp6 ( Reese et al.
1994), which contains the entire coding region of TAF90, into
the HindIII Mutantssite (ChienpGAD al. 1991) .

generated ytafn90ts2- andplasmid Lp7, namely

ytaf 90ts3- liberated from the plasmid HindI IIwere

digestion and cloned into the HindIII site of plasmid Lp5, to
generate plasmids Lp12 and respectively .Lp11, Lp5
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derivative of the LEU2 marked CEN plasmid pRS415 Sikorski

and Hieter which con tains andthe ADHl promoter1989) ,

termina tor. Plasmid Lp16, in which TAF90 is under control of

the GALl promoter, was constructed by ligating the HindIII

fragment from plasmid Lp7 into the HindIII site of plasmid

Lp15. Lp15 is also a derivative of pRS415 with the addition

of the GALl-GALlO UAS. LexA- TAF90 fusions containing wild-

type and temperature-sensitive alleles were constructed by

cloning the XbaI/ XhoI fragment of plasmid Lp1, which contains

the entire coding region of TAF90 in- frame with LexA(1-87).

LexA-yTAF 90, N-terminal C-terminal deletionand

mutants were constructed by cloning the XbaI/ BglII fragment

and the BglII/ XhoI fragment of the wild-type TAF90 coding

region respectively, in frame with LexA(1-87). Expression of

all LexA-TAF90 under control ADHltheconstructs are

promoter cloned into plasmid Sikorski HieterpRS423 and

1989) . construct TAF17-containing plasmids fragment

containing wild-type TAF17 was generated by PCR using genomic

DNA and the primers ggcctgaat tcacctt ttaccg and

gcggaaagtgctctcaagaagatg. The primers designedwere

generate an EcoRl restriction site on both ends of the PCR

fragment. The EcoRl digested PCR fragment was cloned into the

EcoRl site of the HIS3-marked, single copy numer plasmid

pRS413 (Sikorski and Hieter 1989) to generate, plasmid Lp20,

into URA3 marked single numer plasmid pRS416the copy
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(Sikorski and Hieter 1989), to generate Lp19, and into the
plasmid Bluescript (Stratagene) plasmidgenerate Lp17.

Lp17 was then digested with BsmI, and the ends made bl un t
wi th T4 DNA polymerase. A DNA fragment containing the LEU2

gene isolated Prakashfrom plasmid pJJ282was (Jones and

1990) by digestion with and cloned intoSstI, the blunted

Lp17 plasmid to generate the TAF17 disruption construct Lp21.

The plasmid pSW104 used as subs tra te for mutagenesis of

TAF145 was constructed by inserting a DNA fragment containing
the and codingpromoter TAF145 intosequence the
multicloning si te pRS313 ARS/CEN)(HIS3, Sikorski and
Hieter 1989).

Isolation Temperature-Sensitive Alleles
Plasmids containing the coding regions TAF145 (pSW104) ,

TAF90 ( LP7 ) and TAF17 (LP20) trea ted with o .were

hydroxylamine for 1-2 hours at 70 The mutagenized DNA was

then transformed into the yeast strains YSW85, LY3, and LY90,

respectively , and grown temperature selecti veroom

plates. Transformants were then patched to selective plates,
grown at room temperature, and replica plated to two plates
con taining 5-FOA to select for cells which have lost the
wild-type plasmid. plateOne incubatedwas room

temperature and the other at Colonies which grew

room temperature but not 37 C were restreaked and rescreened
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for growth at the two temperatures. Mutagenized plasmids from

colonies that grew at room temperature but not at 37 C were

isolated, subcloned into fresh vectors, and rescreened for
the temperature-sensitive phenotype.

Temperature-Shift Experiments
Unless otherwise stated, cells were grown room temperature

log phas e followed by transfer either directly,
after the addition equal volume the appropriate
media which had been warmed to 3 C . Similar resul were

obtained by both methods. For galactose induction cells were

grown at room temperature in 3% raffinose to mid log phase.
Each culture was then divided into four flasks, two of the
flasks were incubated at room temperature and the other two

at 3 C. After two or three hours one of the two flasks at
each temperature received galactose to a final concentration

of 3% and the other remained as the uninduced control. The

cells were incubated for an additional 30 minutes to 1 hour

then harvested at 4 C, frozen on dry ice, and stored at -

Copper, and histidine induction was performed identically to

the galactose induction wi the following exceptions. For

copper induction the cells were grown in the presence of 3 %

glucose, the inducer was 100um copper sulfate, and the cells
were harves ted For histidineminutes after induction.
induction cells were grown in complete medium containing 
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glucose. Immediately before shifttempera ture cells were

collected, washed medi um lacking histidine, andonce

resuspended in the same medium if cultures were to be induced

and complete medi um for cul tures induced.not After
incubation at the appropriate temperature for one hour,
Amino-1- 4-Triazole (3AT) was added to a final concentration
of 10mm to cultures grown in medium lacking histidine. Cells

were then incubated additionfor three hours before
harvesting.

Conditional Depletion of yTAF:I:IS

Cultures were grown to log phase at 30 C in the presence of

galactose and 25% The cells were thensucrose.
harvested, washed two times with sterile water, resuspended
in selective media containing 3% glucose, and incubated for

addi tional were takenhours. Aliquots cells
throughout this time period, frozen on dry ice, and stored at

C to be used for protein and RNA analysis.

RNA Analysis
Total RNA was isolated as previously described (Peterson et
al. quanti tated and1991 ) and absorbence 260

visualization on an agarose gel. mRA was isolated using the

PolyATtract mRA Isolation system from promega (Madison, WI).

Sl nuclease analysis, primer extension analysis and Northern
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blotting were performed as previously described (McKnight and

Kingsbury 1982; Cormack and Struhl 1992). In each case, 10-

20 ug total used. ProbesRNA was for Northern blot
analysis us inggenerated the primer pairswere

CGGGATCCGGATCAAGCACTGAGGTAG CCCTCTTCTCATTCATGCAAG,

GCGGATCCGGAAGATCACTCAGTAACGTC

GAAGATCTGCGGAGAGCACTTGTCGAACC,

GCGTCTAGATCAGCGAGTTTTCTTGAGGTT

CGGGATCCAATGGCCATATTGAAGGATACC, and

ATCGTCTAGACGATTTTTTTCTAACCGTGGAATATTTCG

CTCGGGATCCGGACGGATTACAACAGGTATTGTCC to generate PCR fragments

CLB2, CSE4, The rRNA, tRNA ICLN3 and ADHl respectively.
DED1, RA23, TRP3 and GALlO probes have been reported
previously (Cormack and Struhl 1992; Peterson and Herskowi 

1992 ; Thompson and 1995) . TheYoung thesequence

remaining probes are listed below.

CUP1 GGCATTGGCACTCATGACCTTCATTTTGGAAGTTAATTAATTCGCACTTGG

EN02 CGGGAGTCGTAGACGGATCTAGCGTAACTTTAGAGACAGCCTAATAA

PMA1 GCAGGCTTTTCTTGAGTTGGCTGATGAGCTGAACAGAAGATGCACTTCT

Slot Blots
Analysis of polyA RNA was performed as follows. 5ug of total
RNA was transferred Products,to GeneScreen (NEN Research

Boston Ma. ) recommended the manufac turers (Hoefer
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Scientific Instruments, San Francisco Ca. ). RNA was fixed to

the filter by UV crosslinking, and the filter hybridized over

night in prehybridization buffer consisting of 5X SSC,

Denhardts, andSDS mg / ml salmon sperm DNA. The

filter was then hybridized over night (at least 18 hours)

fresh prehybridization buffer containing 5 X cpm/ml

end- labeled oligo dT probe. The filter was then washed once

for fifteen minu tes prehybridization buffer,
followed by three room temperature washes for twenty minutes

each in 1 X SSC, 0. 1% SDS.

Whole-Cell Extracts and Immunoblot Analysis
Cultures were grown to mid-log phase and aliquots harvested
by centrifugation for 5 minutes at 3. 4K. The cells were then

washed wi th cold ddH20, transferred to a microfuge tube, and

frozen at - C until all aliquots taken. The cellswere

were resuspended in 50ul of extraction buffer ( 0 . 1M Tr i s 
8 . 0, O. 5M NAC1, 5mM EDTA, 01% NP40 and 15% Glycerol) with

freshly added inhibi torsprotease ( 10mM DTT, 10ug/ml

leupeptin, 10ug/ml aprotinin, 2mM benzamidine-HCL, 1. 0mM PMSF

and 2ug /ml pepstatin), followed by vortexing six times for 

seconds with one minute of cooling on ice in the presence of

50- 75ul glass beads. The then clarifiedextracts were

twice for minu testen and protein concentration
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determined by the Bradford Assay (Bradford 1976). Proteins

were visualized by the ECL detection system from Amersham

Life Science.

Immunoprecipitation Analysis
Yeast whole cell extracts (Reese et al. 1994) were diluted to

10mg/ml protein and adjusted to 25M KOAc buffer plus
01% NP40. clarifiedThe and 100ulextracts were was

incubated with 2ul of rabbit polyclonal antisera for 4 hours

on ice. Immune complexes were recovered by the addition of
3ul protein-A agarose beads followed by a 4 hour incubation

at 4 C with rotation. The beads were recovered and washed 4

times ice-cold 75M Buffer plusKOAc 01% NP40.

Proteins were solubilized with SDS-PAGE loading dye.

Immobilized DNA Template Assays

Yeast whole wascell ( 600ug protein 10 Oul)extracts
incubated under transcription conditions (Reese et al. 1994)

wi th fragment of biotinylated pGEM3 or G5E4T (0. 15pmol)

complexed to Dyal strepavadin beads prepared as described

(Choy and Green 1993). 200ng of PolydI- added. Thewas

reactions con tainedwith G5E4T 200ng GAL4-VP16

stimulate the formation of the Pre initiation complex. After a

40 minute incubation at 23 the beads were collected and

washed 4 times with wash buffer (20 ro HEPES-KOH pH 7. 5, 10ro
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MgOac, 2. 5 mM EGTA, 100 mM KOAc, 1mM DTT, 0. 003% NP40 and 10%
glycerol) . The proteins eluted fromwere the beads
digestion with 5U of micrococcal nuclease for 15 minutes and

C, and analyzed by immunoblotting.

Analysis LexA-yTAF:r:r Fusion-Proteins
LexA-yTAF fusion-proteins con taining full length
terminal and C-terminal deletion were transformed into LGY7

which contains integrated lacZ withreporter LexA

operators ups tream the box. galactosidaseTATA

acti vi ties were assayed as described (Kaiser et al. 1994) .
Wild-type and LexA-yTAF 90 temperature-sensitive hybrids were

transformed into strain EGY 48 (Gyuris al. 1993) .
Trans formants restreaked minimalwere medi um wi thou t

leucine and tested for the ability to grow at 25 C and 30oC.

Flow Cytometry

Samples prepared forwere FACS analysis previously
described (Lew et al. 1992) , and FACS analysis performed by

the Flow Cytometry Facili ty the Uni versi ty
Massachusetts Medical Center.
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detailed the previous pages, the analysis
transcription activation in cells lacking functional yTAF

failed identify promoters which required yTAF for
expression. However, since it has been estimated that there
are between 4 000 and 6, 000 actively transcribed genes ln a

yeast cell and we had examined only a small numer of genes,
we could not rule out the possibility that such promoters
existed. Furthermore, we could not rule out the possibility
that the loss functional yTAF II9 0 protein caused
derepression, inappropr ia te expression, subset
genes.

identify genes whose proper expression required
yTAF n9 0, we performed two subtractive hybridizations us ing

the CLONTECH PCR- select cDNA subtraction kit (outlined
Figure A-i). This technique has the potential to identify a

small population of differentially expressed genes among a
large population of genes not differentially expressed. The

first subtraction was designed identify genes that
required yTAF for expression (plus subtraction) . The

second, identify genes whose expression increased upon

inactivation of yTAF 90 (minus subtraction). Each subtraction
was performed on mRA isolated from the wild-type strain LY3

and the yTAF temperature-sensitive strain ts2- (LY20) ,

one hour after transfer from the permi s s i ve the non-

permissi ve temperature. Resul ts the minus subtraction
failed to identify genes up regulated by the loss of yTAF
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Blunt ends by restriction digestion with Rsal
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Figure A-I. Subtractive hybridization scheme. Tester cDNAs
contain the differentially expressed products.
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Figure A-2. Differentially expressed genes in wild-type and
yTAF 90 temperature-sensitive strains.
(A) Products from the plus (lanes 2-4) and minus (lanes 5-
subtractions were run on an agarose gel. Candidates of
differentially expressed genes are designated by arrows. Lane
1 contains a control subtraction supplied by CLONTECH, lanes
4 and 7 contain unsubtracted controls from the plus and minus
subtraction respectively. Lanes 2 and 3 contain two dilutions
of the plus subtracted products, and lanes 5 and 6 two
dilutions of the minus subtracted products.
(B) Bands from the above gel, designated by arrows, were
cloned and used to probe Northern blots made from RNA
isolated from wild-type and yTAF 90 temperature-sensitive
strains two hours after temperature shift. Northern blots
for two of the cDNAs are shown above.
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function (Figure 2a, lanes 7) . single cDNA present
above background was visible among the subtracted products,
however, was also present the unsubtr ac ted control
(Figure A- , lanes 5-7), indicating that it represented a
highly abundan t cDNA that was amplified dur ing the PCR

reaction. contrast, least three differentially
expressed cDNAs were present in the subtracted, but not the

unsubtracted controls of the plus subtraction (Figure A-2a,
lanes 4) . addition, two bands were present the
subtracted and unsubtracted controls. Again, these cDNAs

probably represent highly abundant cDNAs amplified during the

PCR reaction.

In order to determine if these three cDNAs represented

differentially expressed genes they were cloned and used as
probes in Northern blot analysis. To ensure that we had not

isolated genes whose expression was decreased transiently, we

probed Northern blots made with RNA isolated from wild-type

and temperature- sensi ti ve strains two hours af ter
temperature-shift. Results from two such Northern blots are
shown in Figure A-2b. Both of the cDNAs used as probes were

expressed high levels the wild-type but not the
temperature- sensitive strains two hours after temperature
shi ft. Sequencing of the clones identified two as URA3 and

the other as lactamase. The differential expression of both

of these genes was easily explained by differences in the
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strains used in the subtraction. Although these results had a

trivial explaination they indicated that the technique worked

well and compelled us to isolate additional clones from the

background smear. Approximately forty cDNAs were cloned and
used to probe Northern blots. Seven these clones were

found to be differentially expressed in the two strains two

hours after transfer to the non-permissive temperature (data
not shown). However, analysis of these clones in a variety of

strains conditionally arrested in the G2/M phase of the cell-

cyc le , independent yTAF 90, showed that they were

differentially expressed in these strains as well (data not

shown) . In addi tion, many of them were also differentially
expressed in cells containing temperature-sensi ti ve alleles

variety yTAF ( da not shown) . These resul ts

indicate that differential expression of the isolated clones

was not due to inactivation of yTAF 90, but rather to the
cell cycle arrest exhibited by these cells, or to a general
defect in the ability of dying cells to express these genes.

It is possible that we failed to identify genes that
required yTAF 90 for proper expression because yTAF 90 is not

required for gene expression. It is also possible that our

failure was due to limitations in our technique. Our ability
to identify UR3 which is highly expressed in the wild-type
strain and absent from the temperature- sensi ti ve strain,
implies that this technique is capable of identifying highly

expressed genes, that are expressed at very different levels
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in the two strains. This technique may not be capable of

identifying low abundance genes, or genes which are expressed

at only slightly different levels in the two strains. If this

is the case, then it is possible that the loss of yTAF

function causes only a small change in the expression of a

numer of genes. Equally plausible, that genes requiring

yTAF for expression, are expressed a levels below that
which could be detected by this technique. In any case, there

are a numer of additional techniques, such as differential
display, which should be attempted and which may yield more

frui tful results.

' . ' -_ ._.__
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