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ABSTRACT 

 

Newcastle disease virus (NDV) is a member of the genus Avulavirus of 

the Paramyxoviridae family of enveloped negative-stranded RNA viruses. The 

virus causes respiratory, neurological, or enteric disease in many species of 

birds, resulting in significant losses to the poultry industry worldwide. Strains of 

the virus are classified into three pathotypes based on the severity of disease in 

chickens. Avirulent strains that produce mild or asymptomatic infections are 

termed lentogenic, whereas virulent strains are termed velogenic. Strains of 

intermediate virulence are termed mesogenic.  

The envelope of NDV virions contains two types of glycoproteins, the 

hemagglutinin-neuraminidase (HN) and fusion (F) proteins. HN mediates three 

functions: 1) virus attachment to sialic acid-containing receptors; 2) 

neuraminidase activity that cleaves sialic acid from progeny virions to prevent 

self-aggregation; and, 3) complementation of the F protein in the promotion of 

fusion. 

Though it is widely accepted that cleavage of a fusion protein precursor is 

the primary determinant of NDV virulence, it is not the sole determinant. At least 

two other proteins, HN and the V protein, contribute to virulence. The V protein 

possesses interferon (IFN) antagonistic activity.  The long-range goal of these 

studies is to understand the roles of HN and V in the differential virulence 

patterns exhibited by members of the NDV serotype. 
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The first aim is to compare the IFN antagonistic activity of the V protein 

from a lentogenic and a mesogenic strain of the virus. The results of this study 

demonstrate that the V protein of the mesogenic strain Beaudette C (BC) exhibits 

greater IFN antagonistic activity than that of the lentogenic strain La Sota. Hence, 

the IFN antagonistic activities of the two V proteins correlate with their known 

virulence properties.  

Comparison of the C-terminal regions of La Sota and BC V proteins 

revealed four amino acid differences. The results demonstrate that the IFN 

antagonistic activity of La Sota V increases when any one of these residues is 

mutated to the corresponding residue in BC V. Conversely, the IFN antagonistic 

activity of BC V decreases when any one of these four residues is mutated to the 

corresponding residue in La Sota V. However, no single residue accounts for the 

difference in IFN antagonistic activity between the two V proteins. Also, analysis 

of La Sota V and BC V proteins with multiple mutations in these positions 

revealed that the four residues are collectively responsible for the difference in 

the IFN antagonistic activity of the two V proteins. Finally, characterization of 

chimeric La Sota/BC V proteins showed that the N-terminal region also 

contributes to the IFN antagonistic activity of V. 

Contrary to an earlier report, results described here demonstrate that the 

NDV V protein does not target STAT1 for degradation. However, both La Sota 

and BC V proteins target interferon regulatory factor (IRF)-7 for degradation and 

promote the conversion of full-length IRF-7 to a lower molecular weight form 
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(IRF-7∗). This is the first demonstration that IRF-7 is targeted by a paramyxovirus 

V protein. The amount of IRF-7∗ decreases in a dose-dependent manner in the 

presence of a proteasome inhibitor, suggesting that IRF-7∗ is a degradation 

product of IRF-7. Furthermore, the BC V protein promotes complete conversion 

of IRF-7 to IRF7∗, whereas the La Sota V protein does so less efficiently. Again, 

this is consistent with the difference in IFN antagonistic activity of the two V 

proteins, and in turn, with their virulence. 

The second aim is to characterize an HN-specific monoclonal antibody 

called AVS-I. A previous study suggested that AVS-I recognizes an epitope that 

is conserved in lentogenic strains and raises the possibility that this epitope may 

colocalize with a determinant of virulence in HN. To further characterize antibody 

AVS-I and the epitope it recognizes, we (i) determined its specificity for several 

additional strains of the virus, (ii) mapped its binding to HN in competition with 

our own antibodies, (iii) determined its functional inhibition profile, and (iv) 

isolated and sequenced an AVS-I escape mutant. The results demonstrate that 

AVS-I binds to a conformational epitope at the carboxy terminus of HN. This 

suggests that this region of HN may define a determinant of virulence.  However, 

it was also shown that AVS-I, which was previously thought to be specific for 

avirulent strains of NDV, actually recognizes individual mesogenic and velogenic 

strains. 

In conclusion, the data presented in this dissertation contributes to a 

greater understanding of the molecular basis for NDV virulence and may aid in 
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development of antiviral strategies and generation of recombinant NDVs suitable 

for use in cancer and gene therapy. 
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CHAPTER  I 

Introduction 

 

1.1       Newcastle Disease Virus 

1.1.1    Classification and Overview 

Newcastle disease is one of the most devastating avian diseases and 

causes substantial economic losses in the poultry industry worldwide (Alexander, 

1988). The causative agent of the disease is Newcastle Disease Virus (NDV), a 

member of the genus Avulavirus in the subfamily Paramyxovirinae within the 

Paramyxoviridae family (Mayo, 2002). Paramyxoviruses are enveloped viruses 

with a non-segmented single-stranded RNA genome of negative polarity (Lamb 

and Kolakofsky, 2001). Other members of this family include animal pathogens 

such as Sendai virus (SV), simian virus 5 (SV5), canine distemper virus (CDV), 

rinderpest virus (RPV) and peste-des-petits-ruminants virus, and human 

pathogens such as measles virus, mumps virus, respiratory syncytial virus (RSV) 

and various parainfluenza viruses. The newly emerged Hendra and Nipah 

viruses also belong to this family (Table 1). 

NDV can infect a wide variety of domestic and wild birds, but chickens 

seem to be the most susceptible species. Vaccines against NDV are based on 

avirulent strains of the virus and are administered to birds through drinking water, 

aerosols, or eye drops or by parenteral routes. However, these methods are 

labor intensive. The in ovo method, which allows automated   vaccine delivery in  
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embryonated eggs, provides a labor saving alternative to posthatching 

vaccination. At present, there is no live NDV vaccine licensed for use in 

embryonated eggs due to high embryo mortality and low hatchability. Despite 

availability of live attenuated vaccines, the inherent ability of attenuated strains to 

revert in virulence makes control of this disease difficult. Virulent strains of NDV 

have been classified as select agents by the Centers for Disease Control (CDC) 

and the United States Department of Agriculture (USDA) because of their 

potential as agents of agricultural bioterrorism. These issues have led to a 

continued effort to develop alternative vaccination strategies and antiviral 

treatments.  

NDV is not only an economically important pathogen, but is also being 

developed as a vaccine vector. Several characteristics of NDV make it suitable 

for the latter. NDV grows well in a wide variety of cells and elicits strong humoral 

and cellular immune responses in vivo. It also naturally infects the respiratory 

tract, making it especially useful for delivery of protective antigens from other 

respiratory disease pathogens. Unlike vaccine vectors that are based on human 

pathogens, such as measles virus and adenovirus, NDV is expected to be more 

immunogenic in adults due to the absence of existing host immunity, which 

reduces immunogenicity of the vector. NDV replicates in the cytoplasm without a 

DNA intermediate, which eliminates the problem of integration of viral DNA into 

the host genome. In addition, the availability of a reverse genetics system to 

create recombinant viruses that express foreign proteins has enhanced the 
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development of NDV as a vaccine vector (reviewed in Huang et al., 2003). 

Several studies have already shown some success in using NDV as a vector to 

express proteins from other viruses such as infectious bursal disease virus 

(Huang et al., 2004), influenza virus (Nakaya et al., 2001), human parainfluenza 

virus type 3 (Bukreyev et al., 2005), respiratory syncytial virus (Martinez-Sobrido 

et al., 2006) and severe acute respiratory syndrome-associated coronavirus 

(SARS-CoV) (DiNapoli et al., 2007). 

NDV can selectively kill tumor cells making it a good candidate for use in 

anticancer therapy. Some strains of NDV (natural or derived) caused regression 

of human tumors without affecting the surrounding normal tissue (Cassel and 

Garrett, 1965; Schirrmacher et al., 2001; Pecora et al., 2002). Several Phase I/II 

studies in patients with tumors also demonstrated the oncolytic ability of NDV 

(Cassel et al., 1983; Freeman et al., 2006; Pecora et al., 2002). It has also been 

shown that the oncolytic properties of NDV can be improved by using reverse 

genetics to generate recombinant NDV that expresses immunostimulatory 

molecules such as interleukin-2 (Vigil et al., 2007). 

1.1.2    Virion Structure and Genome Organization 

The RNA genome of NDV is 15,186 nucleotides in size (de Leeuw and 

Peeters, 1999) and contains six genes in the order 3’-NP-P-M-F-HN-L-5’, which 

encode six major structural proteins: nucleocapsid protein (NP), phosphoprotein 

(P), matrix protein (M), fusion protein (F), hemagglutinin-neuraminidase protein 

(HN) and the large (L) RNA-dependent RNA polymerase (Lamb and Kolakofsky, 
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2001). In addition to these gene products, NDV produces two additional proteins 

(designated V and W proteins) by an RNA editing event that occurs during 

transcription of the P gene (Steward et al., 1993).  

NDV particles are pleomorphic as revealed by electron microscopy (Figure 

1A). Generally, they are rounded and vary in diameter from 100-500 nm, 

although filamentous forms of about 100 nm across and of variable length are 

often seen (Alexander, 1988). The virion (Figure 1B) consists of a core of 

genomic RNA encapsidated by nucleocapsid protein to which is bound an RNA 

polymerase complex composed of L protein and phosphoprotein. This core is 

surrounded by a lipid envelope coated with matrix protein on its inner surface. 

The F and HN glycoproteins form spike-like protrusions on the outer surface of 

the virion. Both proteins play important roles in the initiation of infection (Nagai et 

al.,1989). 

1.1.2.1    NP, L, P and M proteins 

NP Protein 

The nucleocapsid protein (NP) is the most abundant protein in NDV-

infected cells and in virus particles. The NP gene is 1.747 kb in size and is 

located at the 3’ end of the genome adjacent to a 53-nucleotide leader sequence 

in the genomic RNA of NDV (Ishida et al., 1986; Krishnamurthy and Samal, 

1998; de Leeuw and Peeters, 1999). The NP protein is composed of 489 amino 

acids with a predicted molecular weight of 53 kDa (Ishida et al., 1986; Errington 

and Emmerson, 1997). The  N-terminal  region of the NP protein  is involved with  
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encapsidation of RNA and forms the helical nucleocapsid, whereas the C- 

terminal region binds P (Buchholz et al., 1994).  The NP protein is essential for 

viral replication and serves several functions, including encapsidation of the 

genomic RNA into an RNase-resistant nucleocapsid which acts as the template 

for RNA synthesis, interaction with P and L proteins during transcription and 

replication, and association with M protein during virus assembly (Lamb and 

Kolakofsky, 2001). 

L protein 

The L protein is the least abundant protein in virus particles. The L gene is 

the last to be transcribed in the viral genome and encodes a protein consisting of 

2200 amino acids (Lamb and Kolakofsky, 2001). The L protein associates with P 

to form the active viral polymerase (Hamaguchi et al., 1983). The polymerase 

complex recognizes the helical nucleoprotein complex wherein the NP protein is 

tightly associated with the genomic RNA (Poch et al., 1990). L also has 5’ 

capping and poly(A) polymerase activities on the nascent mRNA (Ishihama and 

Barbier, 1994). 

Phosphoprotein 

The phosphoprotein of NDV is composed of 395 amino acids and has a 

predicted molecular weight of 42 kDa (McGinnes et al., 1988; Daskalakis et al., 

1992; Steward et al., 1993). However, it has a relative mobility of 53 kDa by 

SDS-PAGE analysis (Collins et al., 1980; Chambers and Samson, 1980; 

Morrison and Simpson, 1980). P is an essential subunit of the viral RNA-
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dependent RNA polymerase (Lamb and Kolakofsky, 2001). In complex with the L 

protein, the P protein plays multiple roles during transcription and replication of 

the viral genome. The P protein acts as a chaperone to prevent uncontrolled 

encapsidation of non-viral RNA by NP (Errington and Emmerson, 1997).  

Matrix Protein 

The M protein is composed of 341 to 375 amino acids with a molecular 

weight of approximately 38.5 to 42.5 kDa. It is a basic protein (net charge at 

neutral pH of +14 to +17) and somewhat hydrophobic. M proteins are 

peripherally associated with membranes and are seen underlying the viral lipid 

bilayer (Lamb and Kolakofsky, 2001). The M protein is thought to orchestrate the 

assembly of virus particles at the plasma membrane of infected cells through 

interactions with the plasma membrane, the viral glycoproteins and the 

nucleocapsid (Peeples, 1991). 

1.1.2.2   Viral Glycoproteins 

A. Structure and Function of HN 

The HN glycoprotein is a type II integral membrane protein with a 

molecular weight of 74 kDa (Schuy et al., 1984). The ectodomain consists of a 

stalk region that supports a terminal globular head. HN exists on the surface of 

virions and infected cells as a tetramer consisting of pairs of homodimers 

(Thompson et al., 1988). HN is a multifunctional protein. It is responsible for 

attachment of the virus to sialic acid-containing cell surface receptors. It also 

possesses neuraminidase (NA) activity that cleaves sialic acid from progeny 
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virus particles to prevent viral self-aggregation. HN also promotes the fusion 

activity of the F protein (Scheid and Choppin, 1974).  

The attachment and neuraminidase activities of HN reside in the globular 

head (Thompson and Portner, 1987; Mirza et al.,1993). The crystal structure of 

the globular head region (residues 124-570) of HN from the Kansas strain of 

NDV was solved both ligand-free and in complex with either sialic acid or a NA 

inhibitor (Crennell et al., 2000). The ligand-free HN dimer was crystallized at pH 

4.6, whereas the liganded dimer was co-crystallized at pH 6.5. (Figure 2). 

Comparison of these structures led the authors to conclude that both receptor 

binding and NA activities are mediated by a single site, which is able to switch 

between two different states through a conformational change. However, the 

ligand-free structure poses a problem because the distance between amino acid 

residues at position 124 of each monomer is too large to allow disulfide bond 

formation between cysteine residues at position 123 in several NDV isolates 

(Sheehan et al., 1987). This led the authors to believe that the ligand-free 

structure may be an artifact of the low pH at which the crystals were grown. 

Subsequent studies by the same group showed evidence for a second sialic acid 

binding site, composed of residues from each monomer at the membrane-distal 

end of the dimer interface (Figure 2) (Zaitsev et al., 2004).  

Our lab previously characterized a panel of monoclonal antibodies (MAbs) 

raised against the HN glycoprotein of the Australia-Victoria (AV) strain of NDV. 

These  MAbs  have  been  used  in  competition   antibody  binding  assays  and  
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additive neutralization assays to delineate several antigenic sites on HN. Initially, 

we identified four antigenic sites: 1, 2, 3 and 4. Subsequent MAbs were shown to 

map to sites, which overlap two of the original four sites. Hence, they were 

named to reflect this. Three additional sites (12, 14, 23) were identified resulting 

in a total of seven antigenic sites that form a continuum in the three dimensional 

conformation of the molecule (Figure 3)(Iorio et al., 1986; Iorio and Bratt, 1983; 

Iorio et al., 1989). Escape mutants were selected with MAbs to each site and 

sequenced to identify the following epitopes: site 1 (residue 345), site 2 (residues 

513, 514, 521 and 569), site 3 (residues 263, 287 and 321), site 4 (residues 332, 

333 and 356), site 12 (residues 494 and 516), site 14 (residues 347, 350 and 

353) and site 23 (residues 193, 194 and 201) (Iorio et al., 1991). Only site 14 

MAbs recognize a linear epitope, defined by residues 341 to 355; all other sites 

are conformational (Iorio et al., 1991). In addition, antibodies to sites 1, 4 and 14 

recognize a broad range of strains, while those to the other sites exhibit various 

degrees of strain specificity (Iorio et al., 1986; Iorio et al., 1984).  

B. Structure and Function of  F 

The F glycoprotein is a type I integral membrane protein composed of 553 

amino acids. It is synthesized as an inactive precursor, F0, which must be 

proteolytically cleaved to produce the active fusion protein, which consists of 

disulfide-linked F1 and F2 polypeptides (Scheid and Choppin, 1974). Cleavage of  

F0 to F1 and F2 by host cell proteases is required for progeny virions to become 

infectious (Garten et al., 1980; Nagai et al., 1976). 
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The crystal structure of F from the Queensland strain (V4) of NDV has 

been  solved  (Chen  et  al., 2001).  The  structure  revealed  that   F  exists  as  a  

homotrimer organized into head, neck and stalk regions. The head region is 

composed of a highly twisted β domain and an immunoglobulin-like β domain. 

The neck consists of the C-terminal extension of the heptad repeat region HR-A, 

capped by a bundle of four α helices. The C-terminus of HR-A is enclosed by 

helix HR-C and a four-stranded β domain. The stalk is composed of the 

remaining portion of the HR-A coiled coil and by a polypeptide immediately N-

terminal to HR-B (Figure 4). 

1.1.2.3    Accessory Proteins V and W 

Two accessory proteins, designated V and W, are produced from the P 

gene of NDV by an RNA editing event that occurs during transcription (Steward 

et al., 1993). RNA editing, which involves insertion of pseudotemplated G 

residue(s) occurs by a polymerase stuttering mechanism (Hausmann et al., 

1999; Hausmann et al., 1999; Vidal et al., 1990). The P gene mRNA of NDV is 

edited by insertion of one or two G residues into a run of G residues within the 

conserved editing site (5′-AAAAAGGG) (Mebatsion et al., 2001; Steward et al., 

1993). Insertion of one G residue generates the V-encoding mRNA, whereas 

insertion of two G residues gives rise to the W-encoding mRNA. The unedited 

mRNA codes for P. As a result, P, V and W proteins are amino coterminal, but 

vary at their carboxyl termini in both length and amino acid composition (Figure 

5A). Analysis  of  mRNAs  generated  from the  P  gene  showed  that  68% were  
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P-encoding mRNA, 29% were V-encoding mRNA, and 2% were W-encoding 

mRNA (Mebatsion et al., 2001).  

The V protein of NDV is composed of 239 amino acids and has a 

molecular weight of 36 kDa (Samson et al., 1991). The NDV V protein, like other 

paramyxovirus V proteins, has a cysteine-rich C-terminal domain that binds two 

atoms of zinc (Steward et al., 1995). The sequence of the C-terminal domain of 

the V protein is highly conserved among paramyxoviruses (Figure 5B). This 

domain, which contains seven cysteine residues, is similar to a classic zinc finger 

domain (Klug and Rhodes, 1987). The V protein of NDV, SV5 and mumps virus 

is incorporated into virions, unlike that of Sendai virus and measles virus (Kubota 

et al., 2001; Mebatsion et al., 2001; Paterson et al., 1995; Horikami et al., 1996; 

Valsamakis et al., 1998). The V protein plays a role in viral replication and 

virulence of NDV (Mebatsion et al., 2001; Huang et al., 2003). The W protein of 

NDV consists of 181 amino acids (Steward et al., 1993). Its function is currently 

unknown. 

1.1.2.4    Replication 

Replication of NDV (Figure 6) is initiated by binding of HN to sialic acid-

containing receptors on the host cell surface. Fusion of the viral and cell 

membranes is mediated by the F protein with the help of the HN protein. 

Transcription, protein synthesis, and replication of the genome take place in the 

host cell’s cytoplasm. The genome is transcribed into messenger RNAs (mRNAs) 

and a full-length positive-sense RNA strand. The viral mRNAs are translated to  
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produce viral proteins. The full-length positive-sense strand is used as a template 

for  full-length  negative-sense  strand  synthesis. New  full-length negative-sense 

strand may serve as templates for replication or transcription, or they may be 

packaged into new virions. The viral glycoproteins (HN and F) are transported to 

the cell membrane. New genomes associate with the L, P and NP proteins to 

form nucleocapsids. The M protein enables nucleocapsids to interact with 

regions of the cell membrane that had been modified with the viral glycoproteins. 

Mature virions then bud from the cell membrane and exit the cell (Lamb and 

Kolakofsky, 2001).  

1.2       Pathotypes and Determinants of Virulence 

1.2.1    NDV strains and pathogenicity tests 

NDV causes respiratory, neurological, or enteric disease in many species 

of birds. Strains of the virus are classified into three pathotypes based on the 

severity of disease in chickens. Avirulent strains that produce mild or 

asymptomatic infections are termed lentogenic, whereas virulent strains that 

cause acute infections with high mortality are termed velogenic. Strains of 

intermediate virulence are termed mesogenic. Velogenic strains are further 

subdivided into two categories: viscerotropic velogenic (VV) strains that cause an 

acute lethal disease with frequent visceral hemorrhage, and neurotropic 

velogenic (NV) strains that cause an acute lethal disease preceded by 

neurological signs (Alexander, 1988).  
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The pathogenicity of a given NDV isolate can be determined using several 

assays.  One way is to measure the mean embryo death time (MDT). In this 

assay, virus is injected into embryonated chicken eggs and the average time it 

takes for the virus to kill the embryo is used as a measure of virulence. The MDT 

for lentogens is >90 hours, for mesogens is 60-90 hours and for velogens is <60 

hours. Another way is to assess the intracerebral pathogenicity index (ICPI). 

Virus is injected intracerebrally into 1-day-old, specific-pathogen-free (SPF) 

chickens. The birds are scored for disease symptoms and mortality (0 if normal, 

1 if sick, and 2 if dead) over a period of 8 days. The ICPI value is the mean score 

per bird per observation. Isolates with an ICPI value of ≤0.5 are classified as 

lentogenic whereas those with ICPI values of 1.0-1.5 and 1.5-2.0 are classified 

as mesogenic and velogenic strains, respectively. Another method is to 

determine the intravenous pathogenicity index (IVPI). Virus is inoculated 

intravenously into 6-week old SPF chickens. The birds are scored for disease 

symptoms and mortality (0 if normal, 1 if sick, 2 if paralyzed, and 3 if dead) over a 

period of 10 days. The IVPI value is the mean score per bird per observation. 

Isolates with IVPI values of ≤0.5 are categorized as lentogens and those with 

IVPI values of 0.5-2.0 and 2.0-3.0 are classified as mesogens and velogens, 

respectively (Alexander, 1988; Saif, 2003). Examples of NDV strains and their 

pathotypes are shown in Table 2. 
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1.2.2    Role of the F protein in virulence 

It has been established that cleavage of the fusion protein precursor (F0) 

is the primary determinant of NDV virulence. F0 is cleaved at a basic amino acid-  

rich region, resulting in the formation of the active fusion protein consisting of 

disulfide-linked F1 and F2 polypeptides (Scheid and Choppin, 1974). Virulent 

strains have two pairs of basic amino acids (RRQRR or RRQKR) at the cleavage 

site  (Glickman et al., 1988; Toyoda et al., 1989). This structural feature permits 

host proteases such as furin and PC6 (Gotoh et al., 1992; Sakaguchi et al., 

1994), which are found in a wide range of tissues, to cleave F0 and render the 

virus infectious and able to spread to various organs, leading to fatal systemic 

infection. In contrast, avirulent strains do not possess a pair of dibasic amino 

acids at the cleavage site. The F0 of avirulent strains is cleaved only by trypsin-

like proteases secreted by a limited number of tissues in the respiratory and 

intestinal tracts, so that these strains only produce localized infections, resulting 

in mild or asymptomatic infection (Nagai et al., 1976). 

1.2.3    Role of HN and V proteins in virulence 

Although cleavage of F is the major determinant of virulence, several 

studies have shown that it is not the sole determinant. Modification of a 

lentogenic F cleavage site to a velogenic one increased virulence, but not to the 

level of velogenic strains (Panda et al., 2004;  Peeters et al., 1999). This 

indicates that other viral proteins in addition to F also contribute to virulence. 

Huang et al. (2004) showed that the HN protein plays a role in viral tropism and 
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virulence. The HN gene of the mesogenic recombinant Beaudette C (BC) strain 

was exchanged with that of the lentogenic recombinant La Sota strain, creating a 

BC virus having the HN of La Sota and a La Sota virus having the HN of BC. 

Pathogenicity studies showed that the BC virus having the HN of La Sota 

decreased in virulence and the La Sota virus having the HN of BC increased in 

virulence, indicating that HN plays a role in this process. 

 Srinivasappa et al. (1986) previously isolated a monoclonal antibody 

(AVS-I) raised against the avirulent La Sota strain of NDV. In a hemagglutination 

inhibition (HI) assay, they found that AVS-I reacted exclusively against lentogenic 

strains of NDV (B1-Hitchner, La Sota, Queensland V4, and Ulster), though it did 

not react with two other lentogenic strains (ENG F and NEB GOL). AVS-I also 

exhibited HI activity towards ten commonly employed commercial B1-Hitchner 

and La Sota vaccine strains. Most importantly, AVS-I did not react with three 

mesogenic (ENG P3R10, Roakin and Kimber) or six velogenic (GB Texas, Largo, 

Calif 1083, KM, P1307, and P5658) strains tested. These data suggested that 

this antibody recognizes an epitope that is more conserved in lentogenic strains 

and have led to its use in identifying strains of NDV belonging to this pathotype. 

These findings raise the possibility that antibody AVS-I may identify a domain on 

HN that contributes to virulence. 

 Several studies have shown that the V protein also plays a role in virus 

replication and virulence. Recombinant viruses lacking V protein expression have 

impaired growth in cell cultures and 6-day-old chicken embryos, and no growth in 
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9- to 11-day-old embryonated chicken eggs (Mebatsion et al., 2001; Huang et al., 

2003). In addition, pathogenicity studies showed that V-deficient recombinant 

viruses were highly attenuated in 1-day-old and 6-week-old chickens, indicating 

that the V protein plays an important role in NDV virulence.  These mutant 

viruses also showed increased sensitivity to the antiviral effects of exogenous 

interferon (IFN) (Huang et al., 2003). Using an IFN-sensitive NDV-GFP-based 

assay, it was demonstrated that the V protein of NDV exhibits IFN antagonistic 

activity and that this activity is located in the carboxy-terminal region of the 

protein (Park et al., 2003). Therefore, the mechanism by which V protein plays a 

role in NDV virulence is presumably due, at least in part, to its ability to 

antagonize interferon. 

1.3       IFN signaling 

1.3.1    Overview of type I IFN  signaling 

The interferon response is the first line of host defense against viral 

infection. When a virus infects a host cell, double-stranded RNA (dsRNA) is 

generated during transcription and /or replication. One of the signaling pathways 

activated by dsRNA results in induction of type I IFN (IFNα/β) (Goodbourn et al., 

1985; Ryals et al., 1985). Double-stranded RNA is recognized by pattern 

recognition receptors (PRR), such as retinoic acid-inducible gene I (RIG-I),  

melanoma differentiation-associated gene 5 (MDA-5) and Toll-like receptor (TLR) 

3 (Yoneyama et al., 2004; Yoneyama et al., 2005; Kato et al., 2006; Alexopoulou 
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et al., 2001). Recognition of dsRNA triggers a cascade that leads to 

phosphorylation of transcription factors called interferon regulatory factor (IRF)-3 

and IRF-7 (Figure 7). Activated IRF-3 and IRF-7 homodimerize  or  

heterodimerize  and  translocate  to  the  nucleus  and   induce expression of 

small amounts of IFNα and IFNβ. Secreted IFNα/β bind to the type I IFN receptor 

and activate the receptor-bound kinases Jak1 and Tyk2, which phosphorylate 

signal transducer and activator of transcription (STAT)1 and STAT2. The 

activated STAT proteins associate with IRF-9 to form a transcription factor 

complex known as IFN-stimulated gene factor 3 (ISGF3). The ISGF3 complex 

then translocates to the nucleus and induces transcription of more IRF7. 

Following recognition of dsRNA, newly synthesized IRF-7 is activated and leads 

to induction of large amounts of type I IFN, creating a positive feedback loop. The 

ISGF3 complex also binds to IFN-sensitive response elements (ISRE) within the 

promoters of IFN-stimulated genes (ISGs), resulting in transcriptional 

upregulation of these genes and establishment of an antiviral state (reviewed in 

Honda and Taniguchi, 2006). Among the antiviral proteins induced in response to 

IFN are 2’,5’-oligoadenylate synthetase (OAS), RNA-dependent protein kinase 

(PKR), and the Mx proteins (Clemens, 1997; Floyd-Smith et al., 1981; Haller et 

al., 1998). 

The IFN response is also induced by DNA derived from pathogens or the 

host. Recent studies demonstrate the existence of a cytosolic DNA-sensing 

machinery   which  is  independent  of  that  mediated  by  TLR9,  the  membrane  
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receptor activated by hypomethylated DNA.  Martin and Elkon (2006) showed 

that DNA transfection of dendritic cells (DCs) resulted in production of IFNα in a 

TLR9-independent manner. Ishii et al. (2006) demonstrated that TLR9-deficient 

mouse embryonic fibroblasts (MEFs) produced IFNβ upon transfection with 

genomic DNA isolated from viruses, bacteria or mammals. Synthetic double-

stranded DNA (dsDNA), but not single-stranded DNA (ssDNA), stimulated 

stromal cells and DCs, leading to production of type I IFN. In addition, DNA-

transfected cells were resistant to DNA (modified vaccinia virus Ankara) and 

RNA (vesicular stomatitis virus) viral infection. Shirota et al. (2006) also showed 

that dsDNA-transfected MEFs were protected against herpes simplex virus-2 

infection.  Takaoka et al. (2007) have identified DAI (DNA-dependent activator of 

IFN regulatory factors) as a cytosolic DNA sensor that can activate type I IFN 

and other immune responses. DAI binds to dsDNA from a variety of sources and  

associates, either directly or indirectly, with IRF-3 and TANK-binding kinase 1 

(TBK1). 

1.3.1.1    Some components of IFN signaling 

A. STAT proteins 

The STAT proteins are a family of cytoplasmic transcription factors 

consisting of seven mammalian members (STAT1, 2, 3, 4, 5a, 5b and 6). STATs 

range in size from 748 to 851 amino acids (90-115 kDa) and share a conserved 

structure consisting of six domains.  The amino terminal domain stabilizes STAT 

dimer-to-dimer interactions. The coiled coil domain is important for interaction 
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with other proteins. The DNA binding domain contains several residues 

conserved in all members of the family. The linker domain separates the DNA-

binding domain from the Src homology 2 (SH2) domain and plays a role in 

transcription. The SH2 domain is important for receptor binding and dimerization. 

It contains a conserved tyrosine residue. Phosphorylation of this residue 

activates the STAT protein and allows it to interact with the SH2 domain of 

another STAT. The transcriptional activation domain (TAD) mediates interactions 

with nuclear coactivators to facilitate chromatin modifications and transcriptional 

activation (reviewed in Brierley and Fish, 2005). 

Although type I IFN induces activation of all members of the STAT family, 

STAT1 and STAT2 are the ones that are important in type I IFN signaling. 

Binding of type I IFN to its receptor activates a cascade that leads to 

phosphorylation of STAT2 on Y690 and STAT1 on Y701. The activated STAT1 

and STAT2 associate with IRF-9 (also known as p48 or ISGF3γ) to form the 

ISGF3 complex that localizes to the nucleus. STAT1 and IRF-9 of the ISGF3 

complex bind the ISRE AGTTTN3TTTC to induce gene transcription.  STAT2 of 

this complex does not contribute to DNA binding but provides a potent TAD 

(reviewed in Brierley and Fish, 2005). 

B. p38 

P38 is a member of the mitogen-activated protein (MAP) kinase 

superfamily. Protein kinases are critical players in a variety of signaling events. 

Studies showed that the p38 MAP kinase is activated in cells treated with IFNα 
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and that inhibitors of the p38 MAP kinase signaling pathway block IFN-inducible 

transcription in luciferase promoter assays. Binding of IFNα to the type I IFN 

receptor triggers a cascade that leads to activation of the p38 MAP kinase which 

in turn, activates downstream substrates that play important roles in  transcription 

of genes that mediate the IFN response (reviewed in Katsoulidis et al., 2005). 

C. RNA helicases 

The RNA helicases RIG-I and MDA-5 are cytoplasmic sensors of viral 

RNA (Yoneyama et al., 2004; Yoneyama et al., 2005). It has been shown that 

RIG-I binds to 5’-triphosphate RNA (Hornung et al., 2006). Many of the RNA 

species in the cytosol of eukaryotic cells do not have a free 5’-triphosphate 

group. Hence, RIG-I is able to distinguish viral RNA from self RNA. RIG-I and 

MDA-5 are members of the DexD/H box-containing RNA helicase family. They 

share a conserved structure consisting of two N-terminal caspase recruitment 

domains (CARD) and a C-terminal DexD/H box helicase domain. The CARD is 

responsible for activation of downstream signaling and the helicase domain 

regulates CARD. It is believed that the helicase domain is activated upon binding 

to dsRNA, resulting in a conformational change that exposes CARD to 

downstream effectors. 

Studies using knock-out mice lacking either RIG-I or MDA-5 demonstrated 

that these helicases are not redundant in their ability to recognize viral RNA. 

RIG-I is essential for the recognition of negative-strand RNA viruses such as 

Sendai virus, vesicular stomatitis virus and influenza A virus, and the positive- 
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strand Japanese encephalitis virus (Kato et al., 2006). The absence of MDA-5 

did not affect the IFN response to these viruses. MDA-5 is required for the 

recognition of picornaviruses such as encephalomyocarditis virus, Mengo virus 

and Theiler’s virus (Gitlin et al., 2006; Kato et al., 2006). The basis for the 

differential detection of these viruses is poorly understood, although some 

evidence suggests that it is due to differences in viral RNA. Uncapped 5’-

triphosphate RNA is present in viruses recognized by RIG-I, but absent in viruses 

recognized by MDA-5 (Sumpter et al., 2005; Neumann et al., 2004; Lee et al., 

1977). 

D. Interferon regulatory factors (IRFs) 

IRFs are a family of transcription factors that play important roles in host 

defense, immune cell development, cell cycle regulation, apoptosis and 

oncogenesis (Taniguchi et al., 2001; Barnes et al., 2002). The mammalian IRF 

family consists of nine members (IRF-1 to IRF-9) (Taniguchi et al., 2001). They 

share a conserved DNA-binding domain located at the N-terminus. This domain 

recognizes a consensus DNA sequence known as the IFN-stimulated response 

element (ISRE) which was first identified in the promoters of genes that are 

induced by type I IFN (reviewed in Honda and Taniguchi, 2006). The carboxy 

terminal regions of IRFs, except IRF-1 and IRF-2, contain an IRF-associated 

domain (IAD) that mediates homomeric and heteromeric interactions with other 

IRFs or transcription factors such as STATs (Taniguchi et al., 2001). 
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IRF-3 and IRF-7 have gained much attention as the key regulators of type 

I IFN gene expression induced by viruses. IRF-3 is expressed constitutively in 

most cell types and resides in the cytoplasm in an inactive form (Au et al., 1995). 

Viral infection leads to phosphorylation of specific serine residues in its C-

terminal region (Lin et al., 1998). Two kinases involved in activation of IRF-3 are 

IκB kinase-ε (IKK-ε) and TBK1 (Fitzgerald et al., 2003; Sharma et al., 2003). 

Phosphorylated IRF-3 forms a homodimer or a heterodimer with IRF-7, and 

interacts with the co-activators CBP (cyclic-AMP-responsive-element-binding 

protein (CREB)-binding protein) or p300 (Weaver et al., 1998; Yoneyama et al., 

1998). This complex translocates to the nucleus and binds its target DNA 

sequence in type I IFN genes and presumably alters the local chromatin structure 

through the histone acetyltransferase activity of the coactivators. Other 

transcription factors are recruited to initiate transcription of target genes. Unlike 

IRF-3, IRF-7 is produced in small amounts in most cells but is strongly induced 

by type I IFN signaling, making it a key factor in the positive feedback loop that 

enhances IFNα/β expression (Au et al., 1998; Marie et al., 1998; Sato et al., 

1998).  Similar to IRF-3, IRF-7 resides in the cytoplasm and is phosphorylated at 

serine residues in the C-terminal region following viral infection (Marie et al., 

1998). IRF-7 is also activated by kinases TBK1 and IKK-ε (Fitzgerald et al., 2003; 

Sharma et al., 2003). 

 

 



 31 

1.3.2    Virus strategies for evading the interferon response 

Viruses have acquired a variety of strategies to evade the interferon 

response. These strategies fall into three categories: 1) suppression of IFN 

production, 2) interference with IFN signaling, and 3) inhibition of IFN-induced 

antiviral proteins (reviewed in Gotoh et al., 2002). Several IFN antagonists have 

been identified in both DNA and RNA viruses. The large T antigen of murine 

polyoma virus binds to Jak1 and renders it inactive (Weihua et al., 1998). The E6 

oncoprotein of human papilloma virus (HPV)-18 interacts with Tyk2 and impairs 

its activation (Li et al., 1999). The immediate early protein BZLF-1 of Epstein-Barr 

virus associates with IRF-7 and prevents it from activating type I IFN promoters 

(Hahn et al., 2005). The NS1 protein of influenza virus suppresses IFN 

production by inhibiting activation of IRF-3 and blocks activation of the IFN-

induced antiviral proteins PKR and OAS (Li et al., 2006; Min and Krug, 2006; 

Talon et al., 2000). The VP35 protein of Ebola virus inhibits activation of IRF-3 

and PKR (Basler et al., 2003; Feng et al., 2007). The E3L protein of vaccinia 

virus blocks phosphorylation of IRF-3 and IRF-7 and inhibits activation of PKR 

(Smith et al., 2001;  Chang et al., 1992). The NSP1 protein of rotavirus induces 

degradation of IRF-3, IRF-5 and IRF-7 (Barro and Patton, 2005; Barro and 

Patton, 2007). 

Several paramyxoviruses encode IFN antagonists.  The nonstructural 

proteins, NS1 and NS2, of respiratory syncytial virus cooperatively counteract the 

antiviral effects of IFN (Bossert and Conzelmann, 2002; Shlender and 
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Conzelmann, 2000). The C proteins of Sendai virus inhibit IFN signaling by 

blocking phosphorylation of STAT2 and dephosphorylation of STAT1 (Gotoh et 

al., 2003; Komatsu et al., 2002; Saito et al., 2002). The V proteins of SV5, SV41, 

NDV and mumps virus block IFN signaling by targeting STAT1 for degradation 

(Didcock et al., 1999; Nishio et al., 2001; Huang et al., 2003; Kubota et al., 2001), 

whereas the V protein of hPIV2 targets STAT2 for degradation (Nishio et al., 

2001; Parisien et al., 2001). The V proteins of measles virus, Nipah virus and 

Hendra virus inhibit IFN signaling by blocking STAT1 and STAT2 nuclear 

accumulation (Palosaari et al., 2003; Rodriguez et al., 2002; Rodriguez et al., 

2003; Takeuchi et al., 2003). The V protein of SV5 also blocks nuclear 

translocation of IRF-3 (He et al., 2002). The V proteins of 13 paramyxoviruses 

(SV5, hPIV2, SV, mumps virus, Hendra virus, measles virus, NDV, Menangle, 

Mapuera, Salem, Tioman, Nipah and Porcine rubulavirus) bind to MDA-5 and 

block its activation of the IFNβ promoter in response to dsRNA (Andrejeva et al., 

2004; Childs et al., 2007).  

1.3.2.1   Mechanisms by which SV5 V protein counteracts the IFN    

               response 

The V protein of SV5 is one of the most well studied IFN antagonists. 

Unlike the NDV V protein, the crystal structure of the SV5 V protein in complex 

with the UV-damaged DNA binding protein 1 (DDB1) has been solved (Li et al., 

2006). DDB1 is a cellular protein that was first identified as a subunit of a protein 

complex that recognizes the UV-induced DNA lesions in the nucleotide excision 
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repair pathway (Chu and Chang, 1988). DDB1 is also a subunit of the Cul4A-

based ubiquitin ligase complex. Several studies show that paramyxoviruses such 

as SV5, hPIV2 and mumps virus are able to hijack the DDB1-Cul4A-Roc1 E3 

complex to promote degradation of STATs (Didcock et al., 1999; Parisien et al., 

2001; Ulane and Horvath, 2002). The V proteins of these viruses bind to DDB1 

and recruit STATs to the Cul4A-based ubiquitin ligase complex (Andrejeva et al., 

2002; Lin et al., 1998; Ulane and Horvath, 2002). DDB1 has a multidomain 

structure consisting of three β propellers (BPA, BPB and BPC) and a helical C- 

terminal domain (Figure 8A).  The SV5 V protein binds to DDB1 using both its N- 

terminal extension and the globular core domain. It inserts its N-terminal helix 

into the pocket formed between BPA and BPC while the core domain interacts 

extensively with the BPC domain. By this interaction, the V protein is able to 

hijack the DDB1-Cul4A E3 complex to promote degradation of STAT proteins 

and block IFN signaling.  

The V protein of SV5, as well as that of hPIV2 and mumps virus, facilitate  

degradation of STAT proteins by coordinating the assembly of a ubiquitin ligase 

(E3) complex consisting of cellular factors such as DDB1, cullin 4A and both 

target and nontarget STATs (Andrejeva et al., 2002; Ulane et al., 2003). This 

complex, with the components V, DDB1 and Cul4A is called V-dependent 

degradation complex (VDC). It has been shown that the V proteins of SV5, 

hPIV2, mumps, measles, Nipah and Hendra viruses can oligomerize 

homotypically and heterotypically. Oligomerization is  mediated by the conserved  
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C-terminal domain of the V protein (Ulane et al., 2005). In addition, the purified V 

protein of SV5, can self-assemble to form large spherical particles. These 

particles were also found in VDC preparations isolated from transfected cells. 

Based on these studies, Ulane et al. (2005) proposed a model for VDC assembly 

and function (Figure 8B). V proteins  can interact  with  STATs or with 

components of the ubiquitylation machinery (DDB1, Cul4A and Roc1). These 

subcomplexes are brought together through V protein oligomerization via the C-

terminal domain to form spherical particles that act as a scaffold for E3 ubiquitin 

ligase activity.  

1.3.2.2 Mechanisms by which NDV V protein counteracts the IFN 

response 

The mechanism by which the NDV V protein antagonizes IFN has been 

studied by two groups. Huang et al. (2003) created a recombinant virus with a 

carboxyl-terminus truncated V protein (rBC/V-stop) and a recombinant virus 

which is deficient in expression of both the V and W proteins (rBC/edit). Human 

2fTGH cells were infected with these mutant viruses and the parental virus (rBC). 

By Western blot of cell lysates, they showed that infection with rBC resulted in 

degradation of STAT1, whereas infection with either rBC/V-stop or rBC/edit failed 

to degrade STAT1. In addition, transfection of a plasmid encoding the C-terminus 

of the V protein resulted in degradation of STAT1 in 2fTGH cells. From these 

results, the authors concluded that the C-terminus of the V protein inhibits IFN 

signaling by targeting STAT1 for degradation. Childs et al. (2007) showed that 



 36 

the V protein of the La Sota strain of NDV, as well as 12 other paramyxoviruses, 

interacts with the RNA helicase MDA-5 via the conserved cysteine-rich C-

terminal domain. To test whether this interaction correlated with inhibition of IFNβ 

induction, plasmids encoding each of the V proteins were co-transfected with an 

IFNβ promoter reporter plasmid in cells that were stimulated with the synthetic 

dsRNA poly(rI)-poly(rC). Their results demonstrated that all the V proteins were 

able to inhibit IFNβ induction. 

The exact mechanism by which the NDV V protein achieves degradation 

of STAT1 has not been studied. The crystal structure of the NDV V protein also 

has not been solved. To date, MDA-5 is the only cellular factor known to interact 

directly with the NDV V protein. Although it is clear from pathogenicity studies 

that the V protein plays a role in NDV virulence, its role in the differential 

virulence exhibited by different pathotypes of the virus has not been studied. 

1.4       Objectives of dissertation 

The mechanisms by which HN and V proteins contribute to NDV virulence 

have not been completely elucidated. Therefore, the goal of this dissertation is to 

further investigate this process. The first project involves comparison of the IFN 

antagonistic activity of the V protein from a lentogenic and a mesogenic strain of 

the virus. The second project involves characterization of an HN-specific 

monoclonal antibody called AVS-I. Data from Srinivasappa et al. (1986) 

suggested that AVS-I recognizes an epitope that is conserved in lentogenic 

strains and raises the possibility that this epitope may colocalize with a 
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determinant of virulence in HN. A more complete understanding of these 

mechanisms will contribute to a greater understanding of the molecular basis for 

NDV virulence and may aid in development of antiviral strategies and generation 

of recombinant NDVs suitable for use in cancer and gene therapy. 
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CHAPTER II 

Materials and Methods 

 
2.1 Comparison of the IFN antagonistic activity of V proteins from two   

            different pathotypes of NDV 

2.1.1    Plasmid constructs and site-directed mutagenesis 

The P genes of La Sota and Beaudette C (BC) were gifts from Dr. Siba 

Samal (University of Maryland).  The La Sota and BC viruses were obtained from 

Veterinary Services Laboratory in Ames, Iowa. The P genes were cloned from 

these viruses within a few egg passages of the original stock (personal 

communication, Dr. Siba Samal). The La Sota P gene was released from the 

vector in which it was supplied by KpnI/SpeI digestion and ligated into 

pBluescript SK(+) (pBSK) (Stratagene, La Jolla, CA). The BC P gene was 

released by NcoI/StuI digestion and ligated into pBSK, which was previously 

modified to contain NcoI and StuI sites. pBSK-La Sota P and pBSK-BC P 

constructs were transformed into Escherichia coli strain CJ236 (New England 

Biolabs, Beverly, MA) and single-stranded DNA (ssDNA) was rescued by R408 

helper phage (Stratagene). To generate the V gene from the P gene, pBSK-La 

Sota P ssDNA template was mutated using primer 5’CGTCCAATGCTAAAAA 

GGGGCCCATGGTCGAG3’ (Integrated DNA Technologies, Coralville, IA), while 

pBSK-BC P ssDNA template was mutated using primer 5’CGTCCAATGCT 

AAAAAGGGGCCTATGGTCGAG 3’ (Integrated DNA Technologies). This allows 

insertion of a G nucleotide into the editing site. The mutagenic primers were 



 39 

phosphorylated with T4 polynucleotide kinase (New England Biolabs), annealed 

to the ssDNA template, extended with T4 DNA polymerase and ligated with T4 

DNA ligase  (Roche, Indianapolis, IN). The mutagenesis reactions were 

transformed into E. coli strain MV1190 (Bio-Rad, Hercules, CA) and plated onto 

LB/Ampicillin plates. Several colonies were picked and DNA was prepared using 

the QIAprep Spin Miniprep Kit (Qiagen Inc., Valencia, CA). The presence of the 

desired mutation was identified by DNA sequencing. To generate mutant V 

proteins, pBSK-La Sota V and pBSK-BC V ssDNA templates were prepared and 

mutagenesis was performed using mutagenic primers (see appendix for list of 

primers). Mutagenic primers were designed to either introduce or delete a 

restriction site to facilitate screening for mutants. DNA sequencing was 

performed to confirm the presence of the desired mutation(s). The wild type (wt) 

La Sota and BC V genes, and their mutants were subcloned into pCAGGS (a gift 

from Dr. Anne Moscona, Weill Medical College, Cornell University) by blunt-end 

ligation. Briefly, La Sota wt and mutant V genes were excised from pBSK by 

KpnI/SpeI digestion, and BC wt and mutant V genes were excised by NcoI/StuI 

digestion. These genes were blunt-ended by treatment with DNA polymerase I, 

large (Klenow) fragment (New England Biolabs) and T4 DNA polymerase 

(Roche), and ligated into pCAGGS at SmaI. The wt La Sota and BC V genes 

were also subcloned by blunt-end ligation into the bicistronic pIRES2-AcGFP1 

vector (Clontech Laboratories, Inc., Mountain View, CA) to make it possible to 

sort untransfected (GFP-) and transfected (GFP+) cells by flow cytometry.  
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2.1.2    Preparation of chimeric V genes 

Chimeric La Sota/BC V proteins were created by taking advantage of a 

unique NgoMIV restriction site. This made it possible to swap the N-terminal and 

C-terminal regions of the V protein. The pCAGGS-La Sota V and pCAGGS-BC V 

plasmids were digested with Sac I/NgoMIV and NgoMIV/Xho I to excise the N-

terminal and C-terminal regions, respectively. The resulting fragments were run 

on a 1% agarose gel and purified using QIAquick gel extraction kit (Qiagen Inc.). 

The purified fragments were ligated to pCAGGS at SacI and XhoI sites using T4 

DNA ligase and transformed into E. coli strain DH5α. The colonies were selected 

by ampicillin resistance and chimeric DNA constructs were confirmed by DNA 

sequencing. 

2.1.3    Cell culture 

DF1 cells (chicken embryo fibroblast cell line) (a gift from Dr. Siba Samal) 

were maintained in Dulbecco’s Modified Eagle medium (DMEM) with high 

glucose and L-glutamine supplemented with 10% fetal calf serum (FCS), 2 mM 

L-glutamine, 4 U/ml penicillin and 4 µg/ml streptomycin. The tissue culture 

reagents were obtained from Invitrogen. 

2.1.4    Transient Expression  

DF1 cells were seeded in 6-well plates at 3 x 105 cells per well one day 

prior to transfection. Two µg of each plasmid construct were transfected into DF1 

cells using 5 µl of Lipofectamine 2000 (Invitrogen, Carlsbad, CA) or 7 µl of 

Genejuice Transfection Reagent (Novagen, Madison, WI) according to the 



 41 

protocols provided by the manufacturers. Assays were performed at 24 or 48 

hours post-transfection. 

2.1.5    Western blots 

Western blots were performed to check expression of wt, mutant and 

chimeric V proteins in DF1 cells. Lysates were prepared from DF1 cells 24 hours 

post-transfection. Briefly, transfected cells were washed once with cold 

phosphate buffered saline (PBS). After adding 1 ml cold PBS, the cells were 

scraped on ice using a cell scraper. The cells were centrifuged for 5 min at 

13,000 rpm and the pellet was lysed on ice for 30 minutes using 50 µl NP-40 cell 

lysis buffer (Biosource International, Inc., Camarillo, CA) supplemented with 1 

mM phenylmethylsulfonyl fluoride (PMSF) and protease inhibitor cocktail (Sigma 

Chemical Co., St. Louis, MO). The lysate was centrifuged for 5 min at 13,000 

rpm and 20 µl of the supernatant was loaded onto a NuPAGE 4-12% Bis-Tris gel 

(Invitrogen). The gel was run under reducing conditions using the Xcell SureLock 

Mini-Cell Electrophoresis System (Invitrogen). Proteins were transferred onto an 

Immobilon-P transfer membrane (Millipore, Bedford, MA) and blocked overnight 

at 4°C with Detector Block (Kirkegaard and Perry Laboratories, Gaithersburg, 

MD). A polyclonal antibody (a gift from Dr. Siba Samal) raised against the C-

terminal 18 amino acids of the V protein of BC was used as primary antibody to 

detect La Sota and BC wt and mutant V proteins. This antibody was diluted at 

1:480 in Detector Block. Horseradish peroxidase-conjugated goat anti-rabbit 

antibody (Kirkegaard and Perry Laboratories) was used as the secondary 
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antibody at a dilution of 1:10,000 in Detector Block. Proteins were visualized 

using the Amersham ECL Western Blotting Analysis System (GE Healthcare, 

Buckinghamshire, UK). The membrane was stripped using Re-Blot Plus Strong 

Solution (Chemicon International, Temecula, CA) and blocked overnight at 4°C 

with 5% nonfat milk in PBS-Tween 20. As a loading control, the membrane was 

re-probed with anti-actin (Sigma) at a 1:1000 dilution in 0.5% nonfat milk in PBS-

Tween 20.  

2.1.6    NDV-GFP assay 

The IFN antagonistic activity of the wt, mutant and chimeric V proteins 

were tested by their ability to rescue growth of an IFN-sensitive recombinant 

NDV (strain BC) tagged with green fluorescent protein (NDV-GFP) (a gift from 

Dr. Siba Samal). The enhanced GFP gene was inserted between the P and M 

genes of the BC cDNA and the NDV-GFP virus was rescued from cDNA 

(Elankumaran et al., 2006). The assay was done using the protocol described by 

Park et al. (2003) with some modifications. Briefly, DF1 cells were seeded in 6-

well plates and transfected at 80% confluence with 2 µg plasmid construct and 5 

µl Lipofectamine 2000. Each plasmid was transfected in triplicates. After 24 

hours, cells were washed three times with warm PBS and infected with NDV-

GFP at an moi of 0.001. The growth of the virus was monitored at 24 hours post-

infection by counting the number of fluorescent cells in 3-5 fields at 20x 

magnification. The medium was removed and cells were lysed in 300 µl NP40 

lysis buffer supplemented with 1 mM PMSF and protease inhibitor cocktail. 
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Lysates were loaded onto a NuPAGE 4-12% Bis-Tris gel which was run under 

reducing conditions using the Xcell SureLock Mini-Cell Electrophoresis System. 

Proteins were transferred onto an Immobilon-P  membrane. Western blot was 

performed to monitor levels of different components of the IFN response. 

Proteins probed for include STAT1, STAT2, p38, IRF-3 and IRF-7. Primary 

antibodies were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA) 

and were used at the concentrations recommended by the manufacturer. These 

include STAT1α p91 (sc-345), STAT2 (sc-476), p38 (sc-535), IRF-3 (sc-9082) 

and IRF-7 (sc-9083). Horseradish peroxidase-conjugated goat anti-rabbit 

antibody (Kirkegaard and Perry Laboratories) was used as the secondary 

antibody at a dilution of 1:10,000. For some blots, Detector Block and/or 

Amplicruz  Western Blot Signal Enhancement System (Santa Cruz 

Biotechnology, Inc.) were used as blocking reagents and dilution buffers. 

Densitometry was performed to quantitate the protein levels. 

2.1.7    Flow cytometry 

Flow cytometry was performed to sort untransfected (GFP-) and 

transfected (GFP+) DF1 cells. At 24 or 48 hours post-transfection, cells were 

washed with 2 ml DMEM supplemented with 5% FCS. The cells were incubated 

for 4 minutes at room temperature with 1 ml of 0.0625 mM EDTA in PBS and 

detached from the plate by pipetting several times and transferred to a tube. The 

remaining cells were washed off the plate by using 400 µl DMEM supplemented 

with 5% FCS and transferred to the same tube. The cells were centrifuged for 2 
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minutes at 13,000 rpm and the pellet was washed with DMEM supplemented 

with 5% FCS. The cells were resuspended in 500 µl DMEM supplemented with 

1% FCS and sorted using the FACSVantage SE flow cytometry system (Becton 

Dickinson, Franklin Lakes, NJ). The GFP- and GFP+ cell populations were 

collected, washed with cold PBS and lysed using 50 µl NP40 lysis buffer 

supplemented with 1 mM PMSF and protease inhibitor cocktail. The lysates were 

run on a NuPAGE 4-12% Bis-Tris gel under reducing conditions. The proteins 

were transferred onto an Immobilon-P membrane and Western blot was 

performed as described before to monitor levels of STAT1 and IRF-7. 

2.2       Characterization of AVS-I antibody 

2.2.1    Enzyme-linked immunosorbent assay (ELISA) 

To test the avirulent specificity of AVS-I, an ELISA was performed using 

intact virions of several additional strains of the virus not tested previously with 

this MAb. These include lentogenic, mesogenic, and velogenic strains. The two 

lentogenic strains are B1-Hitchner/48 (B1) and Ulster/64 (U). The mesogenic 

strains include NJ-Roakin/FRB/46 (F) and Massachusetts-4F/46 (M). The 

velogenic strains include Australia-Victoria/32 (AV), Texas-GB/48 (GB), Iowa-

Salsbury/49 (IS), Kansas-Leavenworth/48 (L), and California-RO/44 (RO). Each 

purified virus stock was diluted to 20 µg/ml with phosphate-buffered saline (PBS), 

and 50 µl of this solution were placed into each well of a 96-well microtiter plate. 

The wells were allowed to dry overnight and blocked with 2% agamma horse 

serum. Fifty microliters of a 1:2,700 dilution of AVS-I-containing ascites fluid were 
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added to each well and incubated at 37°C for 1 h. Horseradish peroxidase-

conjugated goat anti-mouse antibody (Kirkegaard and Perry Laboratories) was 

added at a 1:1,000 dilution and incubated at 37°C for 1 h. Following the addition 

of SureBlue TMB microwell peroxidase substrate (Kirkegaard and Perry 

Laboratories), the absorbance was measured at 650 nm. Antibody to site 1 was 

used as a positive control. This antibody has previously been shown to have 

broad specificity for a variety of NDV strains (Iorio et al., 1984). Antibody to site 

23, previously shown to be highly specific for the AV strain (Iorio et al., 1989), 

was used as a negative control.  

2.2.2    Hemagglutination Inhibition (HI) 

The ability of AVS-I to inhibit the hemagglutinating (HA) activity of our 

panel of NDV strains was also determined as described previously (Iorio and 

Bratt, 1984) with some modifications. Serial two-fold dilutions of ascites fluid (25 

µl) were incubated with four HA units of purified virus in 25 µl PBS with Ca2+ and 

Mg2+ at 37°C for 30 min. After adding chicken erythrocytes (Biolink Inc., 

Liverpool, NY), plates were incubated at 4°C for 1 h. An antibody to site 1, which 

exhibits hemagglutination inhibition (HI) activity (Iorio and Bratt, 1984), was used 

as a positive control, while antibody to site 4, which has no detectable HI activity 

(Iorio and Bratt, 1984), served as a negative control. 

2.2.3    Neutralization assay 

To test the ability of AVS-I to neutralize our panel of NDV strains, 107 

PFU/ml of each virus was incubated at 25°C for 1 h with an equal volume of 
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AVS-I ascites fluid diluted to an antibody concentration of 50 µg/ml in Hanks' 

balanced salt solution (Invitrogen). Aliquots of this mixture were plated on 

chicken embryo cells and plaque assays were performed as described previously 

(Iorio and Bratt, 1985). For avirulent strains that require trypsin to form plaques, 

cells were overlaid with medium 199 (Invitrogen) supplemented with 0.1% 

NaHCO3, 2.5% tryptose phosphate broth, 0.9% agar, and 10 µg/ml trypsin. 

Treatment with rabbit anti-mouse immunoglobulin (RAM Ig) (Litton Bionetics, 

Kensington, MD) was carried out to reduce the persistent fraction of non-

neutralized virus. 

2.2.4    Competition antibody binding assay 

To map the binding site of AVS-I on HN relative to our panel of MAbs, 

reciprocal competition antibody binding assays were performed using B1 virus. 

By necessity, competing MAbs in this experiment are restricted to those 

members of our panel that recognize this strain. These include antibodies to sites 

1, 14, 4, and 2, but not those to sites 12, 23, and 3. All antibodies were adjusted 

to an initial concentration of 2.5 mg/ml. In the first set of experiments, microtiter 

plates were coated with 1 µg/well of B1 virus and blocked with 2% agamma 

horse serum. A serial dilution of the first antibody (unlabeled AVS-I) was added 

and the plate was incubated at 37°C for 1 h. After several washes with PBS, the 

second antibody (biotinylated AVS-I or biotinylated antibody to either site 1, 14, 

4, or 2) was added at a 1:2048 or 1:4096 dilution and again incubated at 37°C for 

1 h. Finally, streptavidin-horseradish peroxidase (Zymed Laboratories Inc., South 
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San Francisco, CA) was added at a 1:5,000 dilution for 1 h at 37°C and 

absorbance measured as described before.  

2.2.5    Neuraminidase (NA) inhibition 

To further characterize the functional inhibition profile of AVS-I, its ability 

to inhibit the NA activity of avirulent strain B1 was determined. Virus was diluted 

to 0.35 mg/ml in 0.1 M sodium acetate (pH 6.0). Forty microliters of this solution 

was incubated at 37°C for 1 h with an equal volume of 0.2 mg/ml affinity-purified 

AVS-I antibody. Twenty microliters of this mixture was incubated with 0.5 ml of 

625 µg/ml of neuraminlactose (Sigma) at 37°C for 1 h. The amount of N-acetyl-

neuraminic acid released was determined by the method of Aminoff (Aminoff, 

1961). The antibody to site 2 was used as a positive control. This antibody has 

previously been shown to inhibit the NA activity of the AV strain. A MAb specific 

for the nucleocapsid protein (NP) was used as a negative control.  

2.2.6    Western blot 

To determine whether the epitope recognized by AVS-I is linear or 

conformational, a Western blot was performed. Polyacrylamide gel 

electrophoresis was carried out under reducing conditions using 20 µg of viral 

proteins from either the B1 or U strain. The proteins were transferred to a 

nitrocellulose membrane and probed with MAbs to site 14 or 4 or AVS-I. Antibody 

to site 14 (positive control) recognizes a conserved, linear epitope, while antibody 

to site 4 (negative control) recognizes a conserved, conformation-dependent 

epitope (Iorio et al., 1984; Iorio et al., 1986; Iorio et al., 1991). 
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2.2.7    Chimera construction and functional assays 

To begin to map the epitope recognized by AVS-I, HN chimeras consisting 

of domains from the velogenic strain AV and the lentogenic strain B1 were 

constructed by taking advantage of a unique NspI restriction site. This made it 

possible to exchange amino acids 344-571 of AV HN with amino acids 344-577 

of B1 HN, creating the HN chimeras AV-B1 and B1-AV. These chimeras were 

expressed in BHK-21 cells (American Type Culture Collection, Manassas, VA) 

using the T7 RNA polymerase expression system (Fuerst et al., 1986). To 

determine whether the chimeras are functional, a hemadsorption (HAd) assay 

was performed. Briefly, HN chimera-expressing monolayers were incubated for 

30 minutes with a 2% suspension of guinea pig erythrocytes (Biolink, Inc.) in PBS 

supplemented with 1% CaCl2 and 1% MgCl2 (PBS+). The cells were washed 3-5 

times with PBS+ and adsorbed erythrocytes were lysed in 50 mM NH4Cl. Lysates 

were cleared by centrifugation and HAd activity was quantitated by measuring 

the absorbance at 540 nm. To assess binding of AVS-I to the HN chimeras, flow 

cytometry was performed. A cocktail of antibodies to sites 1, 14, and 2 was used 

to confirm that the chimeras are, indeed, expressed at the cell surface.  

2.2.8    Isolation and characterization of an escape mutant virus to AVS-I 

To begin to identify the HN amino acid residues in the epitope recognized 

by AVS-I, an escape mutant virus was isolated.  Virus (strain B1) was passaged 

three times in eggs. The allantoic fluid was treated with AVS-I and plated on 

chicken embryo cells in the presence of trypsin. A plaque assay was performed 
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as described previously (Iorio and Bratt, 1985). Treatment with AVS-I resulted in 

a 5-10% persistent fraction of non-neutralized virus. The neutralization studies 

with this strain suggest that, despite its escape from neutralization, this persistent 

fraction does have antibody bound to it. Thus, to make variant selection possible, 

AVS-I-neutralized virus was treated with RAM Ig. This reduces the persistent 

fraction to 0.1% and makes possible the isolation of escape mutants. One 

escape mutant, AVS-B1, was isolated and plaque purified. Genomic RNA 

sequencing of the HN gene of escape mutant AVS-B1 revealed the presence of 

a single mutation, G570R. The presence of this mutation, and only this mutation, 

in AVS-B1 HN was confirmed by reverse transcription-PCR. To establish that 

residue G570 is important for the binding of AVS-I, the G570R mutation was 

introduced into B1 HN through site-directed mutagenesis using the mutagenic 

primer 1696-CTCAAAGATGATAGGGTTCGCGAGGCCAGGTC-1727 with the 

mutated codon in bold. Screening for the mutant was facilitated by the 

introduction of an NruI site (underlined). DNA sequencing was performed to 

confirm the presence of the G570R mutation. The G570R-mutated HN was 

expressed in BHK cells using the vaccinia T7 RNA polymerase expression 

system (Fuerst et al., 1986) and HAd inhibition and flow cytometric analyses 

were performed to assess the ability of AVS-I to recognize it. HAd inhibition was 

performed using 300 µl of AVS-I ascites fluid with the amount of HAd quantitated 

by lysing of the adsorbed guinea pig erythrocytes in ammonium chloride and 

measurement of absorbance at 540 nm. For flow cytometry, a cocktail of 
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antibodies to sites 1, 14, and 2 was used to confirm that the G570R-mutated HN 

is expressed at a level comparable to that of wild-type HN. 
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CHAPTER III 

Comparison of the IFN antagonistic activity of the V proteins from a 

lentogenic and a mesogenic NDV strain 

 

Introduction 

The evidence that the V protein plays a role in the virulence of NDV 

comes from several studies. Mebatsion et al. (2001) used the lentogenic NDV 

Clone-30 as the parent virus to create recombinant viruses lacking V protein 

expression. By deleting 6 nucleotides in the editing site and creating a stop 

codon in the V open reading frame (ORF), they were able to generate 

recombinant V-deficient viruses, which they called NDV-Δ6 and NDV-Vstop, 

respectively. To be able to grow these mutants in vitro without the addition of 

proteases, the F cleavage site was modified to that of a virulent strain (GGRQGR 

to GRRQKR). They found that NDV-Δ6 and NDV-Vstop viruses had impaired 

growth in cell cultures and 6-day-old chicken embryos and no growth in 9- to 11-

day-old embryonated chicken eggs. Subsequently, Huang et al. (2003) used the 

mesogenic strain BC as the parent virus to create recombinant viruses lacking 

expression of the V protein or both the V and W proteins. By introducing a stop 

codon in the V frame, they were able to generate a recombinant virus with a 

carboxyl-terminus truncated V protein which they called rBC/V-stop.  By 

introducing two silent nucleotide mutations in the editing site of the P gene, they 

were able to create a recombinant virus, which is deficient in expression of both 
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the V and W proteins, which they called rBC/edit. These mutant viruses showed 

impaired growth in cell cultures, but not in Vero cells, which lack an intact IFNα/β 

system. In addition, their pathogenicity studies showed that these mutant viruses 

were highly attenuated in 1-day-old and 6-week-old chickens.  

Although these studies show that the V protein contributes to virulence, its 

role in the differential virulence patterns exhibited by the pathotypes of NDV has 

not been studied. Therefore, the aim of this chapter is to compare the IFN 

antagonistic activity of the V proteins of avirulent and virulent strains of NDV. The 

hypothesis to be tested is that the IFN antagonistic activity of the V protein of a 

virulent strain is greater than that of an avirulent strain. The rationale for this 

hypothesis is that if the V protein plays a role in the virulence of NDV, then its 

ability to antagonize IFN should be greater in virulent strains than in avirulent 

strains. The approach is to compare the IFN antagonistic activity of the V protein 

of avirulent or lentogenic strain La Sota and mesogenic strain BC using a 

modification of the NDV-GFP assay developed by Park et al. (2003). Ideally, the 

V protein of a lentogenic strain should be compared with that of a velogenic 

strain. However, these studies will eventually lead to pathogenicity studies in 

animals. Some virulent strains of NDV are classified as select agents. They 

cannot be used in animal studies at BL-3. Thus, the mesogenic strain BC was 

used instead. 

 

 



 53 

Results 

3.1       La Sota and BC V proteins are expressed in DF1 cells 

The V genes of La Sota and BC were generated from the P genes by site-

directed mutagenesis using primers that insert one G nucleotide into the editing 

site. The V genes were subcloned into pCAGGS vector and expression of the V 

proteins was tested by transient transfection of the plasmid constructs into DF1 

cells. Lysates were prepared from transfected cells and a Western blot was 

performed using a rabbit antipeptide serum specific for the C-terminal 18 amino 

acids (RLCASDDVYDGGNITESK) of the BC V protein (V18 Ab). Figure 9A 

shows that both La Sota and BC V proteins are expressed, although the intensity 

of the band corresponding to the V protein is less for La Sota as compared to 

BC. Densitometric analysis showed that the intensity or density of the BC V 

protein band is 1.4 times greater  than that of La Sota (Figure 9B). There are two 

possibilities to explain this result. Either La Sota V is expressed at a lower level 

than BC V or the V18 Ab recognizes La Sota V less efficiently than it does BC V. 

Comparison of the C-terminal 18 amino acids of the V proteins reveals an amino 

acid difference between La Sota and BC at position 234. La Sota V has an 

aspartic acid (D), whereas BC V has an asparagine (N) at this position. It is 

possible that this amino acid difference affects the ability of the serum to 

recognize the V protein, so that the V18 Ab is not able to bind La Sota V as well 

as it does BC V. To test this possibility, La Sota V was mutated at position 234 to 

the corresponding residue in BC V. Likewise, BC V  was mutated  at position 234  
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to the corresponding residue in La Sota V. Figure 9 shows that the La Sota V 

D234N mutant was recognized by the V18 Ab at a level similar to wild type BC V. 

Conversely, the BC V N234D mutant was recognized by the V18 Ab at a reduced 

level, similar to wild type La Sota V. Hence, the amino acid difference at position 

234 accounts for the differential recognition of the two V proteins by the V18 Ab.  

3.2 The IFN antagonistic activity of the V protein of BC is greater than   

            that of La Sota 

The IFN antagonistic activity of the La Sota and BC V proteins were tested 

by their ability to rescue growth of an IFN-sensitive recombinant NDV-GFP. The 

assay was done using the protocol described by Park et al. (2003) with some 

modifications. The chicken embryo fibroblast cell line DF1 was used instead of 

chicken embryo fibroblasts (CEFs). In addition, the recombinant NDV-GFP virus 

was derived from mesogenic strain BC instead of lentogenic strain B1-Hitchner. It 

should also be noted that both of these NDV-GFP viruses have an intact V ORF. 

However, the IFN-induced inhibition of NDV-GFP growth occurs before infection, 

so within the time frame of the assay, an antiviral state has already been 

established before the V protein is expressed from the virus. Thus, the V protein 

expressed by the virus is a minimal factor. 

Figure 10A shows uninfected DF1 cells. Figure 10B shows that the NDV-

GFP virus grows very well in these cells. However, treating the cells with chicken 

IFNα (1000 U/ml) 24 hours before infection inhibits growth of the virus (Figure 

10C). This result shows that  the NDV-GFP virus (strain BC) is  susceptible to the  
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antiviral effects of IFN within the time frame of the assay, consistent with the 

results of Park et al. (2003) for NDV-GFP virus (strain B1-Hitchner).  Hence, this 

system is useful for screening proteins that exhibit IFN antagonistic activity. In 

addition, using the cell line DF1 instead of isolating CEFs is a cheaper and easier 

way to do the assay. Figure 11 shows that the virus also grows well in mock-

transfected cells. However, transfection with the empty vector pCAGGS inhibits 

growth of the virus, consistent with the results of Park et al. (2003). Based on the 

experiments done by Park et al. (2003), the proposed explanation for this 

inhibition of viral growth is that transcription from the expression plasmid, in this 

case pCAGGS, can lead to generation of double-stranded RNA which induces 

the production of IFN and establishment of an antiviral state. Another possible 

explanation is that plasmid DNA is recognized by a cytosolic DNA sensor (i.e. 

DAI), which triggers IFN production. Transfection with either La Sota V or BC V 

plasmid construct rescues growth of the NDV-GFP virus, but at different 

efficiencies. As shown in Figure 11, the V protein of the mesogenic strain BC 

rescues growth of the NDV-GFP virus more efficiently than that of the avirulent 

strain La Sota. To quantitate this result, the number of fluorescent cells from 3 

different fields (each field contains approximately 3000 cells) was counted. As 

shown in Figure 12, the ability of the BC V protein to rescue growth of the NDV-

GFP virus is four times greater than that of the La Sota V protein. One caveat is 

that this difference in rescue of viral growth could be due only to differences in 

expression  levels  of  these  two  V  proteins. However,  this possibility is unlikely  
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because the expression levels, as determined by Western blot using the V18 Ab, 

do  not  correlate  with  the  ability  of La Sota and BC V mutants and chimeras to 

rescue viral growth, as will be discussed in the next chapter. Overall, these 

results are consistent with the V protein having a role in NDV virulence and that 

the mechanism by which it does so, is due, at least in part, to its IFN antagonistic 

activity. 
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CHAPTER IV 

Identification of amino acid residues responsible for the difference in IFN 

antagonistic activity between the La Sota and BC V proteins 

 

Introduction 

In the previous chapter, it was shown that the IFN antagonistic activity of 

the V protein of mesogenic strain BC is significantly greater than that of 

lentogenic strain La Sota. However, the basis for this difference in IFN 

antagonistic activity is not known. Therefore, the aim of this chapter is to identify 

amino acid residues in the V protein that will account for the difference between 

the IFN antagonistic activity of the La Sota and BC V proteins. The hypothesis 

to be tested is that amino acid differences in the C-terminal region of La Sota V 

and BC V account for their difference in IFN antagonistic activity. The rationale 

for this hypothesis is that the C-terminal region of the NDV V protein is necessary 

and sufficient for its IFN antagonistic activity. Evidence to support this comes 

from a study done by Park et al. (2003). Plasmids encoding either the full-length 

V protein, or the amino-terminal region of V (amino acid residues 1-135), or the 

carboxy-terminal region of V (amino acid residues 136-239) were transfected into 

chicken embryo fibroblasts and their IFN antagonistic activities were determined 

using the NDV-GFP assay. The results showed that the carboxy-terminal region 

of V was able to rescue growth of the NDV-GFP virus as efficiently as the full-

length V protein. The amino-terminal region did not rescue growth of the virus. 
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This indicates that the IFN antagonistic activity of the NDV V protein resides in its 

carboxy-terminal region. To test the hypothesis, the approach is to compare the 

C-terminal regions of the La Sota and BC V proteins, identify amino acid 

differences in this region, mutate the two V proteins at these positions, and test 

the IFN antagonistic activity of the mutated proteins using the NDV-GFP assay. 

Results 

4.1 La Sota and BC V mutated proteins are recognized by the V18  

            antibody at different efficiencies 

Comparison of the C-terminal regions of La Sota and BC V proteins 

revealed four amino acid differences at positions 144, 153, 161 and 234 (Figure 

13). La Sota V has a serine (S), glutamic acid (E), serine and aspartic acid (D) at 

positions 144, 153, 161 and 234, respectively, whereas BC V has a proline (P), 

lysine (K), proline and asparagine (N) at these positions. To test the contribution 

of each of these amino acid differences to the difference in the IFN antagonistic 

activity of the two V proteins, La Sota V was mutated at each of these positions 

to the corresponding residue in BC V. Reciprocal changes were also made in BC 

V. In addition, double, triple and quadruple mutants of La Sota and BC V proteins 

were also created. To test expression of these mutated proteins, the plasmid 

constructs were transfected into DF1 cells and Western blots were performed 

using the V18 antibody as previously described for the wt V proteins.  

Figure 14 shows that La Sota V carrying a mutation of S144P, E153K or 

S161P  are expressed at levels  similar  to  wt La Sota V (90%, 90% and 110% of  
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La Sota V, respectively). The D234N-mutated La Sota V protein was recognized 

more efficiently by the V18 Ab as compared to wt La Sota V (170% of La Sota V). 

The S161P/D234N-doubly mutated La Sota V protein was also recognized more 

efficiently by the V18 antibody as compared to wt (130% of La Sota V). The La 

Sota V double mutant S144P/E153K was expressed at 80% of La Sota V. The La 

Sota V triple mutant S144P/E153K/S161P was expressed at 80% of La Sota V. 

The La Sota V quadruple mutant S144P/E153K/S161P/D234N was expressed at 

150% of La Sota V.  

Figure 15 shows that the BC V single mutants P144S, K153E and P161S 

are expressed at levels similar to wt BC V (110%, 100% and 100% of BC V, 

respectively). The BC V N234D mutant was recognized by the V18 Ab at 80% of 

BC V. The BC V double mutant P161S/ N234D was recognized by the V18 Ab at 

a lower level as compared to wt BC V (40% of BC V). The BC V double mutant 

P144S/K153E was expressed at 90% of BC V. The BC V triple mutant 

P144S/K153E/P161S was expressed at 110% of BC V. The BC V quadruple 

mutant P144S/K153E/P161S/N234D was recognized by the V18 Ab at 20% of 

BC V.  

There are two possibilities to explain the differences in the intensity of the 

band corresponding to the V protein in the Western blots. For mutated V proteins 

that show an increased signal as compared to wt, one possibility is that they are 

expressed at a higher level than wt. Another possibility is that the V18 antibody 

recognizes  the  V  protein  more  efficiently  when  N  is  present  at position 234.  
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Conversely, for mutant V proteins that show a decreased signal as compared to 

wt, one possibility is that they are expressed at a lower level than wt. Another 

possibility is that the V18 antibody recognizes the V protein less efficiently when 

D is present at position 234.  

4.2       No single amino acid substitution accounts for the difference in IFN  

            antagonistic activity between the La Sota and BC V proteins. 

The IFN antagonistic activities of the La Sota and BC V mutated proteins 

were tested using the NDV-GFP assay. Figures 16 and 18A show that all of the 

individually mutated La Sota V proteins have an increased ability to rescue 

growth of the NDV-GFP virus as compared to wt. The number of fluorescent cells 

for La Sota V was 393. The number of fluorescent cells for La Sota V carrying 

S144P, E153K, S161P or D234N mutation increased to 657, 761, 620 and 511, 

respectively. Figures 17 and 18B show that all of the individually mutated BC V 

proteins have a decreased ability to rescue growth of the virus as compared to 

wt. The number of fluorescent cells for BC V was 1753. The number of 

fluorescent cells for BC V P144S, K153E, P161S and N234D mutants decreased 

to 861, 1329, 569 and 713, respectively. From these data, it can be seen that no 

single mutation of La Sota V results in rescue of viral growth at the same level as 

BC V, and  no  single  mutation  of  BC V  results in  rescue  of viral growth at the 

same level as La Sota V. These results indicate that no single residue accounts 

for the difference in IFN antagonistic activity between the La Sota V and BC V 

proteins. 
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To test whether the presence of multiple mutations has an additive effect, 

the IFN antagonistic activities of the La Sota and BC V double, triple and 

quadruple mutated proteins were tested using the NDV-GFP assay. Figures 16 

and 19A show that the double mutated proteins of La Sota V are better than the 

single mutated proteins in rescue of viral growth. The number of fluorescent cells 

for La Sota V S144P/E153K (D1) and S161P/D234N (D2) mutated proteins was 

1144 and 896, respectively. However, the triple and quadruple mutated proteins 

of La Sota V are not better than the double mutated proteins. The number of 

fluorescent cells for La Sota V S144P/E153K/S161P and S144P/ E153K/ S161P/ 

D234N mutated proteins was 877 and 859, respectively. Figures 17 and 19B 

show that the BC V P144S/K153E double mutated protein has a decreased 

ability to rescue the virus as compared to the proteins carrying individual P144S 

and K153E mutations. The number of fluorescent cells for BC V P144S/K153E 

(D1) mutated protein was 645. The BC V P161S/N234D double mutated protein 

rescues viral growth at almost the same level as the P161S and N234D mutated 

proteins. The number of fluorescent cells for BC V P161S/N234D (D2) mutated 

protein was 615. Surprisingly, the triple and quadruple mutated proteins of BC V 

are better than the double mutated proteins. The number of fluorescent cells for 

BC V P144S/K153E/P161S  and  P144S/K153E/P161S/N234D  mutated proteins 

was 999 and 850, respectively.  

It is important to note that the expression levels as determined by Western  
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blot using the V18 antibody do not correlate with the ability of the V mutants to 

rescue growth of the NDV-GFP virus. For instance, even though the BC V 

P144S/K153E/P161S/N234D quadruple mutated protein was recognized by the 

V18 antibody at only 20% of BC V, it rescues growth of the virus at a greater 

level than that of other mutated proteins that are recognized more by the V18 Ab 

(i.e. BC V P161S mutated protein which is recognized at 100% of BC V).  

As seen from these data, the La Sota V S144P/E153K/S161P/D234N 

quadruple mutated protein failed to rescue viral growth at the same level as BC 

V.  The BC V P144S/K153E/P161S/N234D quadruple mutated protein also failed 

to rescue viral growth at the same level as  La Sota V. This indicates that the four 

amino acid differences in the C-terminal region of V do not account entirely for 

the difference in IFN antagonistic activity of the La Sota and BC V proteins. 

These results suggest that amino acid residues in the N-terminal region of the V 

protein may be important.  

4.3       The N-terminal region of the BC V protein contributes to its IFN  

             antagonistic activity 

To test the possibility that the N-terminal region of the V protein 

contributes to its IFN antagonistic activity, the N- and C-terminal regions of La 

Sota V and BC V were exchanged to create chimeric V proteins (Figure 20). The 

LS-BC  chimera  contains  the  N-terminal region of La Sota V and the C-terminal 

region of BC V. The BC-LS chimera contains the N-terminal region of BC V and 

the  C-terminal  region  of  La Sota  V.  In  addition,  as  a  control,  the N-  and C- 
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terminal regions of the La Sota V S144P/E153K/S161P/D234N quadruple 

mutated protein (LS-4BCmut) and the BC V P144S/K153E/P161S/N234D 

quadruple mutated protein (BC-4LSmut) were also exchanged. The LS-BC-4LSmut 

chimera contains the N-terminal region of LS-4BCmut and the C-terminal region of 

BC-4LSmut and thus, has the same amino acid sequence as La Sota V. The BC-

LS-4BCmut chimera contains the N-terminal region of BC-4LSmut and the C-

terminal region of LS-4BCmut and has the same amino acid sequence as BC V. 

The chimeric V plasmid constructs were transfected into DF1 cells and Western 

blot was performed using the V18 antibody to test expression. Figure 21 shows 

that the LS-BC and BC-LS-4BCmut chimeras were recognized by the V18 

antibody at a level similar to that of BC V. The BC-LS and LS-BC-4LSmut 

chimeras were recognized by the V18 antibody at a level similar to that of La 

Sota V. Again, this is consistent with previous results indicating that the V18 

antibody recognizes the V protein better when N is present at position 234. The 

IFN antagonistic activity of the chimeric V proteins was tested using the NDV-

GFP assay. Figure 22 shows that the LS-BC chimera (172 fluorescent cells) has 

a decreased ability to rescue growth of the virus as compared to BC V (556 

fluorescent cells). The BC-LS chimera rescues viral growth at the same level as 

La Sota V (both 222 fluorescent cells). The LS-BC-4LSmut chimera (283 

fluorescent  cells)  rescues  viral  growth   at  a  level  similar  to  La  Sota  V,   as 

expected. The BC-LS-4BCmut chimera (479 fluorescent cells) rescues viral 

growth at a level similar to BC V, as expected. All together, these results suggest 
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that the N-terminal region contributes to the IFN antagonistic activity of the BC V 

protein.  

Overall, the results indicate that amino acid residues 144, 153, 161 and 

234 modulate the IFN antagonistic activity of the V protein of NDV. However, 

these four residues in the C-terminal region do not account completely for the 

difference in IFN antagonistic activity of the La Sota and BC V proteins. The 

decreased ability of the LS-BC chimera, relative to BC V, to rescue growth of the 

NDV-GFP virus suggests that the N-terminal region contributes to the IFN 

antagonistic activity of the BC V protein. There are five amino acid differences 

between the La Sota and BC V proteins in the N-terminal region (Figure 23). 

Further studies need to be done to determine which of these residues are 

important for the IFN antagonistic activity of the V protein. This is the first 

evidence that the N-terminus of NDV V contributes to its IFN antagonistic activity. 
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CHAPTER V 

Mechanism for the difference in IFN antagonistic activity of the La Sota and 

BC V proteins 

 

Introduction 

The V protein of NDV has been shown to inhibit the IFN response in two 

ways. Huang et al. (2003) showed that the level of STAT1 was significantly lower 

in human 2fTGH cells infected with a recombinant BC (rBC) virus as compared to 

mock-infected cells. However, mutant viruses deficient in the expression of the V 

protein failed to decrease the level of STAT1. In addition, transient transfection of 

a plasmid encoding the C-terminus of the V protein (amino acid residues 136-

239) resulted in STAT1 degradation in 2fTGH cells at 20 hours post-transfection. 

These results led the authors to conclude that the C-terminus of the V protein 

inhibits IFN signaling by targeting STAT1 for degradation. Another study showed 

that the V protein of La Sota interacts with MDA-5 via the C-terminal domain and 

that this interaction correlates with inhibition of IFNβ induction (Childs et al., 

2007). In both studies, only one strain of NDV was used. Hence, it is not clear 

whether different strains of the virus affect components of the IFN response to 

varying extents. Therefore, the aim of this chapter is to determine the molecular 

basis for the difference in IFN antagonistic activity of the La Sota V and BC V 

proteins. The hypothesis to be tested is that the La Sota V and BC V proteins 

differ in their ability to degrade one or more components of the IFN response. 



 81 

The rationale for this hypothesis is that the NDV V protein has been shown to 

antagonize IFN by affecting some components of the IFN response such as 

MDA-5 and STAT1. The approach is to determine the levels of components of 

the IFN response by Western blot using lysates from cells expressing the La 

Sota or BC V protein. 

Results 

5.1       The NDV V protein does not target STAT1 for degradation. 

Huang et al. (2003) previously showed that the V protein of BC targets 

STAT1 for degradation in human 2fTGH cells. As a prelude to comparing the 

activities of BC V and La Sota V, a plasmid encoding BC V was transfected into 

2fTGH cells. Lysates were prepared 20 hours post-transfection and Western blot 

was performed to determine the level of STAT1. As a control, a plasmid encoding 

BC P was also transfected into these cells. Figure 24A confirms that BC V is 

expressed in 2fTGH cells. In addition, the level of STAT1 in BC P-transfected 

cells was equal to vector-transfected cells (100% of vector), whereas the level of 

STAT1 in BC V-transfected cells was slightly reduced (70% of vector). The 

decrease in the level of STAT1 is not nearly as significant as that demonstrated 

by Huang et al. (2003) who showed that transfection of the C-terminus of BC V 

reduced the level of STAT1 to below the detection limits of the assay (Western 

blot). To test whether detection of the V protein-induced degradation of STAT1 is 

temporally dependent, cells were lysed at various times post-transfection (12, 14,  
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16, 36, 42, 48 and 60 hours post-transfection). In addition,  293  cells  were used 

because of their relatively high transfection efficiency. Despite these efforts, the 

results obtained by Huang et al. (2003) could not be reproduced at any of these 

time points (data not shown).  

The IFN antagonistic activities of La Sota V and BC V were tested in DF1 

cells using the NDV-GFP assay as described in Chapter 3. In addition to 

quantitating the fluorescent cells, lysates were also prepared and Western blots 

were performed to further examine whether the NDV V protein targets STAT1 for 

degradation. Figure 24B shows that the level of STAT1 in La Sota V-transfected 

cells is similar to that in vector-transfected cells (average of 85% of vector for two 

experiments). The level of STAT1 in BC V-transfected cells is slightly reduced 

(average of 75% of vector for two experiments), consistent with the results in 

2fTGH cells (Figure 24A). Although there is a small difference in the levels of 

STAT1 between the La Sota V- and BC V- transfected cells, this difference is 

insufficient to account for the difference in IFN antagonistic activity between the 

two V proteins.  

Thus, several different approaches were used to attempt to reproduce the 

results of Huang et al. (2003). These include: 1) transfection of BC V plasmid into 

2fTGH cells and preparation of lysates at different times post-transfection, 2) 

transfection of BC V plasmid into 293 cells that have a relatively high transfection 

efficiency, and 3) use of lysates that were prepared from the NDV-GFP assay. 
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Despite these efforts, the level of STAT1 degradation obtained by Huang et al. 

could not be reproduced. 

As a final attempt to examine whether the NDV V protein targets STAT1 

for degradation, the La Sota V and BC V genes were subcloned into the 

bicistronic vector pIRES2-AcGFP1, which contains an internal ribosome entry 

site (IRES), and expresses the green fluorescent protein (AcGFP1) and the 

protein of interest from the same transcript in transfected cells. The plasmids 

encoding the V proteins were transfected into DF1 cells. At 24 hours post-

transfection, cells expressing the V protein were identified by screening for green 

fluorescence by flow cytometry. Cells that do not express the V protein (GFP-

negative cells) were also collected as controls. Lysates were prepared from the 

GFP-negative and GFP-positive cells and Western blot was done to determine 

the level of STAT1. This method is more stringent because it enables one to 

focus exclusively on those cells that express the V protein. In addition, chicken 

cells (DF1), which are the natural host of NDV, were used. Figure 25 shows that 

the level of STAT1 in La Sota V-GFP+ cells (lane 4) is actually slightly increased 

(120%) relative to that of vector-GFP+ cells. The level of STAT1 in BC V-GFP+ 

cells (lane 6) is equal to that of vector-GFP+ cells (100% of vector). These results 

confirm that neither La Sota V nor BC V targets STAT1 for degradation. 

Taken together, these results show that the STAT1 levels in La Sota V- 

and BC V-transfected cells are not significantly different and cannot account for 

the  difference  in  IFN  antagonistic  activity  between  the  two  V  proteins.  This 
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suggests that the difference in IFN antagonistic activity of the two V proteins 

involves other component(s) of the IFN response. 

5.2       The levels of STAT2, p38 and IRF-3 in vector-, La Sota V- and BC V- 

            transfected  DF1 cells are not significantly different. 

To determine whether the NDV V protein affects other components of the 

IFN response and whether La Sota V and BC V differ in this regard, Western 

blots were performed using cell lysates collected from the NDV-GFP assay to 

determine the levels of STAT2, p38 and IRF-3 in DF1 cells. Figure 26 shows that 

the levels of STAT2 in La Sota V- and BC V-transfected cells are similar to that in 

vector-transfected cells (both are 90% of vector). The level of p38 in La Sota V-

transfected cells is equal to that in vector-transfected cells (100% of vector), 

whereas the level of p38 in BC V-transfected cells is slightly reduced (80% of 

vector). The level of IRF-3 is slightly increased in La Sota V-transfected cells 

(120% of vector), whereas the level of IRF-3 in BC V-transfected cells is equal to 

vector-transfected cells (100% of vector). Thus, the levels of STAT2, p38 and 

IRF-3 are not significantly different between the La Sota V- and BC V-transfected 

cells. This indicates that neither STAT2, nor p38, nor IRF-3 contributes to  the  

difference  in  IFN  antagonistic  activity of the two V proteins. 

5.3       The levels of IRF-7 in La Sota V- and BC V-transfected DF1 cells are  

            slightly reduced as compared to vector-transfected cells 

To determine whether La Sota V and BC V differ in their ability to degrade 

IRF-7,  Western  blots  were  performed  using  cell  lysates   collected  from  the 
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NDV-GFP assay. There was a noticeable change in the level of IRF-7 among the 

samples (Figure 26). In untreated DF1 cells, IRF-7 was not detectable. However, 

when cells were infected with the NDV-GFP virus, IRF-7 was increased 

significantly. This is consistent with IRF-7 being an inducible protein. When cells 

were transfected with either La Sota V or BC V, and then infected with the NDV-

GFP virus, the level of IRF-7 is slightly decreased as compared to vector-

transfected cells (80% of vector for both La Sota V-transfected and BC V-

transfected cells). 

5.4       Both La Sota and BC V proteins target IRF-7 for degradation. 

In the previous section, it was shown that expression of either NDV V 

protein resulted in a reduction in the level of IRF-7 relative to the control. 

Encouraged by this result, another strategy was used to compare the effects of 

La Sota V and BC V on the level of IRF-7. Because the transfection efficiency of 

DF1 cells is not high (approximately 40% transfection efficiency), it is possible 

that dramatic changes in IRF-7 levels may not be detectable when using lysates 

prepared from a mixture of transfected and untransfected cells. To overcome this 

problem, the La Sota V and BC V genes were expressed in DF1 cells from the 

bicistronic vector pIRES2-AcGFP1. At 24 hours post-transfection, GFP-negative 

and GFP-positive cells were sorted by flow cytometry. Lysates were prepared 

from the GFP-negative and GFP-positive cells and Western blot was performed 

to determine the levels of IRF-7. Figure 27A shows that there is a remarkable 

change in IRF-7 levels among the samples at 24 hours post-transfection. Again,  
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IRF-7 is not detectable in any of the untransfected samples (GFP-negative cells) 

(lanes 1, 3, 5). However, the level of IRF-7 is significantly increased in cells 

transfected with the vector (lane 2). This is consistent with the earlier results 

indicating that IRF-7 is an inducible protein. It is also consistent with the idea that 

transcription from a plasmid generates dsRNA that triggers induction of IRF-7.  

Most importantly, IRF-7 is significantly decreased in cells transfected with 

either La Sota V (lane 4) or BC V (lane 6) relative to vector-GFP+ (lane 2) (Figure 

27A). These results suggest that both La Sota V and BC V may target IRF-7 for 

degradation. Indeed, the levels of IRF-7 in lanes 4 and 6 are below the detection 

limits of the system. This is the first evidence that IRF-7 is targeted for 

degradation by a paramyxovirus V protein. 

5.5       Expression of NDV V converts IRF-7 to a faster migrating form. 

Interestingly, Figure 27A also shows that a protein with a lower molecular weight 

(IRF-7∗ is approximately 39 kDa) is present in cells transfected with either La 

Sota V (lane 4) or BC V (lane 6), but not in cells transfected with the vector (lane 

2) at 24 hours post-transfection. To try to determine the identity of IRF-7∗, the  

Western  blot  was  aligned  with  a  Coomassie  stained  gel  and  the  band 

corresponding to IRF-7∗ was excised and sent for mass spectrometric analysis. 

The results showed that there are three possible peptides that could be from IRF-

7. Two peptides (residues 63-70 and 104-122) lie in the N-terminal region and 

one peptide (residues 352-363) lies in the C-terminal region of the protein. 

However,  these  peptides  have  weak  spectra  so  it  is  hard  to make a definite 
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conclusion from these results. Nevertheless, these results are consistent with 

IRF-7∗ being a degradation product of IRF-7. This suggests that both the La Sota 

and BC V proteins promote conversion of IRF-7 to the lower molecular weight 

form. It is also interesting to note that the amount of IRF-7∗ is 2.1-fold greater in 

cells expressing BC V (lane 6) as compared to cells expressing La Sota V (lane 

4), indicating that the extent of conversion of IRF-7 to IRF-7∗ correlates with the 

extent of IFN antagonistic activity of the V protein. 

To investigate if the conversion of IRF-7 to IRF-7∗ changes over time, the 

cells were also sorted at 48 hours post-transfection. The amount of IRF-7 at 48 

hours post-transfection (Figure 27B) shows a similar pattern to that at 24 hours 

post-transfection (Figure 27A). Again, the levels of IRF-7 in La Sota V-

transfected cells (lane 4) and BC V-transfected cells (lane 6) are below the 

detection limits of the system. Similar to the results at 24 hours, the amount of 

IRF-7∗ is 1.7-fold greater in cells transfected with BC V (lane 6) as compared to 

cells transfected with La Sota V (lane 4).  

At both time points, the amount of IRF-7∗ in BC V-transfected cells (lane 

6) is similar to the amount of full-length IRF-7 in vector-transfected cells (lane 2), 

whereas the amount of IRF-7∗ in La Sota V-transfected cells (lane 4) is 

significantly less than the amount of full-length IRF-7 in vector-transfected cells 

(lane 2). This suggests that BC V promotes complete conversion of IRF-7 to IRF-

7∗, whereas La Sota V does so less efficiently. 
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5.6       The amount of IRF-7∗ decreases in a dose-dependent manner in  

 the presence of a  proteasome inhibitor. 

To examine whether IRF-7∗ is a degradation product of IRF-7, DF1 cells 

were transfected with BC V in the absence or presence of the proteasome 

inhibitor clasto-lactacystin-β-lactone. Previously, it was found that clasto-

lactacystin-β-lactone inhibits the chymotryptic, tryptic and peptidylglutamyl 

activities of the 20S and 26S proteasomes (Craiu et al., 1997). Clasto-

lactacystin-β-lactone is a derivative of lactacystin which inhibits the proteasome 

by acting as a pseudosubstrate that becomes covalently linked to the hydroxyl 

groups on the active site threonine of the β subunits (Fenteany et al., 1995). 

Unlike peptide aldehyde proteasome inhibitors (i.e. MG132), clasto-lactacystin-β-

lactone does not inhibit lysosomal proteases, making it a more specific inhibitor 

of proteasomes (Craiu et al., 1997).  

DF1 cells were treated with clasto-lactacystin-β-lactone for 2 hours prior to 

transfection with the BC V plasmid. At 24 hours post-transfection, GFP-negative 

and GFP-positive cells were again sorted by flow cytometry. As a control, cells 

were also treated with only the solvent, dimethyl sulfoxide (DMSO). Figure 28A 

shows that, in cells transfected with BC V, the amount of IRF-7∗ is decreased by 

61% in the presence of 2 µM inhibitor compared to the amount of IRF-7∗ in the 

untreated control (compare lanes 6 and 8). Surprisingly, the amount of full-length 

IRF-7 did not increase in the presence of the inhibitor. Figure 28B shows that, in 

cells  transfected  with BC V, the  amount of IRF-7∗ is decreased by 87% relative 



 93 

 

 



 94 

to the untreated control in the presence of a higher concentration (5 µM) of the 

inhibitor (compare lanes 6 and 8). Hence, the amount of IRF-7∗ decreases in a 

dose-dependent manner in the presence of the proteasome inhibitor. This result 

is consistent with IRF-7∗ being a degradation product of IRF-7. 

Overall, the results indicate that the V proteins of La Sota and BC target 

IRF-7 for degradation, and demonstrate an additional mechanism by which the 

NDV V protein antagonizes the IFN response. Both La Sota and BC V degrade 

IRF-7 to undetectable levels. In addition, the results indicate that BC V promotes 

complete conversion of IRF-7 to the lower molecular weight form (IRF-7∗), 

whereas La Sota V does so less efficiently. These findings correlate with the 

difference in IFN antagonistic activities of the two V proteins and in turn with the 

virulence of the viruses from which they were derived.  
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CHAPTER VI 

Characterization of AVS-I monoclonal antibody 

(Alamares et al., 2005) 

 

Introduction 

The evidence that the HN protein plays a role in virulence of NDV comes 

from a study done by Huang et al. (2004). The HN gene of the mesogenic 

recombinant Beaudette C (BC) strain was exchanged with that of the lentogenic 

recombinant La Sota strain, creating a BC virus having the HN of La Sota (rBC 

LaSoHN), and a La Sota virus having the HN of BC (rLaso BCHN). Pathogenicity 

studies were done in chicken embryos and chickens. They found that the mean 

embryo death time (MDT) for rLaSo BCHN virus was decreased (84 hours) as 

compared to the parental rLaSota virus (96 hours), indicating that the virulence of 

the chimeric virus was increased. The MDT for rBC LaSoHN virus was increased 

(72 hours) as compared to the parental rBC virus (62 hours), indicating that the 

virulence of the chimeric virus was decreased. In chickens, the rLaso BCHN virus 

had an intracerebral pathogenicity index (ICPI) of 0.75, whereas the rLaSota 

virus had an ICPI of 0.0, indicating increased virulence of the chimeric virus. The 

rBC LaSoHN virus had an ICPI of 1.02, whereas the rBC virus had an ICPI of 

1.58, indicating decreased virulence of the chimeric virus. The rest of the 

difference in virulence between La Sota and BC is thought to be contributed by 
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the F and V proteins. Although these results indicate that HN plays a role in 

virulence, the amino acid residues involved have not been identified.  

The monoclonal antibody AVS-I recognizes lentogenic strains of NDV (B1-

Hitchner, La Sota, Queensland V4, and Ulster) and ten commonly employed 

commercial B1-Hitchner and La Sota vaccine strains, as determined by 

hemagglutination inhibition (HI) assay. However, AVS-I did not react with three 

mesogenic (ENG P3R10, Roakin and Kimber) or six velogenic (GB Texas, Largo, 

Calif 1083, KM, P1307, and P5658) strains tested (Srinivasappa et al., 1986). 

These results suggested that AVS-I recognizes an epitope that is conserved in 

lentogenic strains and have led to its use in identifying strains of NDV belonging 

to this pathotype. These findings also raise the possibility that AVS-I may identify 

a domain on HN that contributes to virulence. Therefore, the aim of this chapter 

is to further characterize AVS-I and the epitope it recognizes. The hypothesis to 

be tested is that characterization of AVS-I and its epitope may identify a 

determinant of virulence in HN. The rationale for this hypothesis is that AVS-I 

recognizes only lentogenic strains but not mesogenic or velogenic strains. The 

approaches are to: 1) determine the specificity of AVS-I for several additional 

strains of NDV; 2) map its binding to HN in competition with a panel of 

monoclonal antibodies; 3) determine its functional inhibition profile; and, 4) 

isolate and characterize an AVS-I escape mutant virus. 
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Results 

6.1       AVS-I recognizes several lentogenic strains, as well as one  

            mesogenic   and  one velogenic strain of NDV. 

The specificity of AVS-I for avirulent strains of NDV was tested by ELISA 

using intact virions of several additional strains of the virus not tested previously. 

These include lentogenic, mesogenic, and velogenic strains. The two lentogenic 

strains are B1-Hitchner/48 (B1) and Ulster/64 (U). The mesogenic strains include 

NJ-Roakin/FRB/46 (F) and Massachusetts-4F/46 (M). The velogenic strains 

include Australia-Victoria/32 (AV), Texas-GB/48 (GB), Iowa-Salsbury/49 (IS), 

Kansas-Leavenworth/48 (L), and California-RO/44 (RO). Table 3 shows the 

ELISA results. Antibody to site 1 was used as a positive control. This antibody 

has previously been shown to have broad specificity for a variety of NDV strains. 

Antibody to site 23, previously shown to be highly specific for the AV strain, was 

used as a negative control. Consistent with the results of the original study 

(Srinivasappa et al., 1986), AVS-I recognizes the lentogenic strains B1 and U 

and does not recognize mesogenic strain F or velogenic strains GB, IS, L, and 

AV. However, most unexpectedly, AVS-I does recognize mesogenic strain M and 

velogenic strain RO. Hence, these strains are exceptions to the specificity of 

AVS-I for avirulent strains. This finding calls into question the suitability of AVS-I 

as a marker for avirulent strains of the virus. 
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6.2       Hemagglutination inhibition (HI) 

The ability of AVS-I to inhibit the hemagglutinating (HA) activity of our 

panel of NDV strains was determined (Table 3). An antibody to site 1 was used 

as a positive control, while antibody to site 4 served as a negative control (Iorio 

and Bratt, 1984). AVS-I inhibits the HA activity of avirulent strains B1 and U but 

not that of strain F or AV and only marginally that of GB, IS, or L, consistent with 

the ELISA results. AVS-I recognizes the virulent strain RO only at a low level, 

whereas it had bound to this strain quite efficiently in the ELISA. However, AVS-I 

does inhibit the HA activity of strain M at a very high titer. 

6.3       Neutralization 

The ability of AVS-I to neutralize our panel of NDV strains was tested.  

Table 3 shows that there are three categories of neutralization by AVS-I. 

Members of the first group are neutralized to a significant extent by AVS-I alone. 

This group includes strains B1 and RO, treatment of which with AVS-I results in 

persistent fractions of 5 to 10%. Addition of rabbit anti-mouse immunoglobulin 

(RAM Ig) results in complete neutralization of both strains. The addition of a 

second antibody specific for a nonneutralizing first antibody has long been known 

to result in an enhanced level of neutralization. This phenomenon has previously 

been demonstrated with antibodies to NDV (Iorio and Bratt, 1985). 

Members of the second group, which includes strains AV, F, L (Table 3), 

and Eng F (data not shown), are not neutralized by AVS-I, either alone or with 

RAM Ig, suggesting that the antibody does not bind at all to these strains. These 
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results are consistent with the ELISA data in Table 3 and the original HI data for 

Eng F (Srinivasappa et al., 1986). 

Members of the third group exhibit an apparently paradoxical 

neutralization profile. This group, which includes strains U and M (Table 3), as 

well as La Sota (data not shown), are not neutralized by AVS-I alone but are 

neutralized upon the addition of RAM Ig. NDV-AV mutants of this type selected 

with antibodies to HN sites 1, 2, and 4 have previously been characterized in our 

lab (Iorio and Bratt, 1985). A likely explanation for this is that AVS-I binds to 

these strains but the binding is not of sufficient avidity to result in neutralization. 

The RAM Ig second antibody stabilizes its binding, possibly by binding bivalently 

to two AVS-I molecules. Consistent with this, binding of AVS-I to both strain U 

and strain M can be detected by ELISA (Table 3). 

6.4       Neuraminidase (NA) inhibition 

The ability of AVS-I to inhibit the NA activity of avirulent strain B1 was 

determined (Table 4). The antibody to site 2 was used as a positive control. This 

antibody has previously been shown to inhibit the NA activity of the AV strain. An 

MAb specific for the nucleocapsid protein (NP) was used as a negative control. 

For the avirulent strain B1, the percentages of NA activity remaining are 97% ± 

7%, 25% ± 3%, and 68% ± 10% for the NP, site 2, and AVS-I antibodies, 

respectively. This indicates that AVS-I partially inhibits the NA activity of strain 

B1. To be certain that the effect is not dose dependent, a threefold higher 

concentration of  each antibody  was  also tested. The percentages of NA activity  
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remaining were not significantly different from those obtained with the lower 

antibody concentration, i.e., 102% ± 5%, 23% ± 3%, and 72% ± 8% for the NP, 

site 2, and AVS-I antibodies, respectively. As a control, the AVS-I antibody does 

not inhibit the NA activity of the virulent strain AV (106% ± 26% NA activity 

remaining), consistent with its inability to recognize this strain. The results with 

B1 suggest that, although the AVS-I epitope maps close to the epitope 

recognized by the site 2 MAb, it maps further from the NA active site than site 2. 

6.5       Mapping the binding site of AVS-I on HN relative to our panel of  

            MAbs 

To map the binding site of AVS-I on HN relative to our panel of MAbs, 

reciprocal competition antibody binding assays were performed using B1 virus. 

By necessity, competing MAbs in this experiment are restricted to those 

members of our panel that recognize this strain. These include antibodies to sites 

1, 14, 4, and 2 but not those to sites 12, 23, and 3 (Iorio et al., 1984; Iorio et al., 

1986). As shown in Figure 29A, AVS-I blocks itself and antibodies to sites 1 and 

2 at the same concentrations but does not block antibodies to either site 14 or 

site 4. Figure 29B shows the results of the reciprocal experiment in which the 

second antibody is biotinylated AVS-I. Again, AVS-I blocks itself and the antibody 

to site 2 also blocks AVS-I. The antibody to site 1 blocks AVS-I, but only at higher 

antibody concentrations. The antibodies to sites 14 and 4 do not block AVS-I. 

Thus, AVS-I and the antibody to site 2 compete with each other reciprocally. 

AVS-I  efficiently  blocks  the  antibody  to site 1, but  the antibody to site 1 blocks  
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AVS-I only at very high concentrations. These data suggest that the binding site 

of AVS-I is located closest to antigenic site 2 and also partially overlaps with site 

1. One possibility that could account for the nonreciprocal competition between 

AVS-I and the site 1 antibody is that the binding of AVS-I may induce a 

nonreciprocal conformational change in the protein that alters site 1. 

6.6       AVS-I recognizes a conformation-dependent epitope. 

To determine whether the epitope recognized by AVS-I is linear or 

conformational, a Western blot was performed. Viral proteins from either the B1 

or U strain were run on a polyacrylamide gel under reducing conditions. The 

proteins were transferred to a nitrocellulose membrane and probed with MAbs to 

site 14 or 4 or AVS-I. Antibody to site 14 recognizes a conserved, linear epitope, 

while antibody to site 4 recognizes a conserved, conformation-dependent epitope 

(Iorio et al., 1984; Iorio et al., 1986; Iorio et al., 1991). As expected, the site 14 

antibody, but not the site 4 antibody, binds to HN in the Western blot (Figure 30). 

AVS-I does not bind to HN, which suggests that it recognizes a conformation-

dependent epitope. 

6.7       AVS-I binds to an epitope in the C-terminal region of B1 HN. 

To begin to map the epitope recognized by AVS-I, HN chimeras consisting 

of domains from the virulent strain AV and the avirulent strain B1 were 

constructed. This made it possible to exchange amino acids 344 through 571 of 

AV HN with amino acids 344 through 577 of B1 HN, creating the HN chimeras 

AV-B1 and B1-AV (Figure 31). These  chimeras were expressed in BHK-21 cells.  
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To determine whether the chimeras are functional, a hemadsorption (HAd) assay 

was performed. Each of the HN chimeras hemadsorbs at a level comparable to 

that of wild-type (wt) HN (data not shown), indicating that they are expressed and 

are functional. To assess binding of AVS-I to the HN chimeras, flow cytometric 

analysis was performed. A cocktail of antibodies to sites 1, 14, and 2 was used to 

confirm that the chimeras are indeed expressed at the cell surface. Binding is 

expressed as a percentage of that of wild-type B1 HN. As shown in Figure 31, 

AVS-I binds to B1 HN and the AV-B1 chimera, whereas it does not bind to either 

AV HN or the B1-AV chimera. This suggests that AVS-I binds to an epitope in the 

C-terminal region of B1 HN between amino acids 344 and 577. 

6.8       An escape mutant virus is not recognized by AVS-I. 

To begin to identify the HN amino acid residues in the epitope recognized 

by AVS-I, an escape mutant virus was isolated. B1 virus was passaged three 

times in eggs. The allantoic fluid was treated with AVS-I and plated on chicken 

embryo cells in the presence of trypsin. A plaque assay was performed as 

described previously. Treatment with AVS-I resulted in the usual persistent 

fraction of nonneutralized virus. The neutralization studies with this strain (Table 

3) suggest that, despite its escape from neutralization, this persistent fraction 

does have antibody bound to it. Thus, to make variant selection possible, the 

passaged pool of B1 virus was treated with AVS-I antibody to sensitize the virus. 

Then, the antibody-sensitized virus was treated with RAM Ig. This reduces the 

persistent fraction to 0.1% and makes possible the isolation of escape mutants. 
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One escape mutant, AVS-B1, was isolated and plaque purified. To test whether 

antibody AVS-I recognizes the AVS-B1 virus, an ELISA was performed. Figure 

32 shows that the AVS-B1 virus is not recognized by AVS-I, consistent with its 

ability to escape neutralization by the antibody. Antibodies to sites 1 and 14 

serve as positive controls, and antibody to site 23 serves as a negative control. 

6.9       Amino acid residue G570 is important for binding of AVS-I. 

Genomic RNA sequencing of the HN gene of escape mutant AVS-B1 

revealed the presence of a G570R mutation. The presence of this mutation, and 

only this mutation, in AVS-B1 HN was confirmed by reverse transcription-PCR. 

To establish that residue G570 is important for the binding of AVS-I, the G570R 

mutation was introduced into B1 HN through site-directed mutagenesis. The 

G570R-mutated HN was expressed in BHK cells and HAd inhibition and flow 

cytometric analyses were performed to assess the ability of AVS-I to recognize it. 

Antibody AVS-I did not inhibit the HAd activity of G570R-mutated B1-HN, 

resulting in an absorbance of 104% of that obtained with untreated monolayers. 

As controls, AVS-I completely blocked the HAd activity of wt B1-HN and antibody 

to site 14 completely inhibited that of both the wt and mutated proteins. 

For flow cytometry, a cocktail of antibodies to sites 1, 14, and 2 was used 

to confirm that the G570R-mutated HN is expressed at a level comparable to that 

of wild-type HN (Figure 33). Unlike the HAd inhibition results, an interaction 

between AVS-I and G570R-mutated B1-HN was detected, although significantly 

decreased compared to the wt protein (39 ± 3%)  (Figure 33). This  finding, along  
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with our inability to identify another mutation in the mutant virus, suggests that 

the G570R mutation does not completely eliminate the ability of AVS-I to 

recognize the virus but does reduce the avidity of the interaction to a level 

insufficient to block infectivity or attachment to receptors on red blood cells. 
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CHAPTER VII 

Discussion 

 
The pathogenesis of a virus is a complex process that involves a variety of 

viral and host factors. With NDV, it is clear that several viral proteins play 

important roles in this process. It has been established that cleavage of the 

fusion protein precursor (F0) is the major determinant of virulence. Virulent strains 

of the virus have two pairs of basic amino acids at the cleavage site, allowing 

host proteases, which are found in a wide range of tissues, to cleave F0 and 

enable the virus to spread to various organs. Avirulent strains of the virus 

possess only two basic amino acids at the cleavage site. Hence, their F0 is 

cleaved only by trypsin-like proteases secreted by a limited number of tissues, 

resulting in localized infections (Nagai et al., 1976; Glickman et al., 1988; Toyoda 

et al., 1989). 

Although cleavage of the F protein is the primary determinant of virulence, 

several studies have shown that it is not the sole determinant. Modification of a 

lentogenic F cleavage site to a velogenic one increased virulence, but not to the 

level of velogenic strains, indicating that other viral proteins also contribute to 

virulence (Panda et al., 2004; Peeters et al., 1999). Two such proteins are the 

HN and V proteins. The evidence that the HN protein plays a role in virulence 

comes from a study done by Huang et al. (2004). The HN gene of the mesogenic 

recombinant BC strain was exchanged with that of the lentogenic recombinant 

strain La Sota. Pathogenicity studies demonstrated that the BC virus, having the 
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HN of La Sota, decreased in virulence, whereas the La Sota virus having the HN 

of BC increased in virulence, indicating that HN plays a role in this process. The 

evidence that the V protein also contributes to virulence comes from several 

studies. Recombinant viruses lacking the V protein have impaired growth in cell 

cultures and chicken embryos (Mebatsion et al., 2001; Huang et al., 2003). In 

addition, pathogenicity studies showed that V-deficient recombinant viruses are 

highly attenuated in chickens, indicating that the V protein plays an important role 

in virulence (Huang et al., 2003). 

The contributions of the HN and V proteins in NDV virulence are only 

beginning to be elucidated. First, the roles of HN and V in the differential 

virulence patterns exhibited by virulent and avirulent members of the NDV 

serotype have not been examined in detail. Second, the specific amino acid 

residues in the two proteins that contribute to virulence have not been identified. 

Third, the specific mechanisms by which these two proteins contribute to 

virulence have not been completely elucidated. A better understanding of these 

aspects will help in the development of antiviral strategies and production of 

recombinant viruses suitable for use in gene therapy.  

7.1       The IFN antagonistic activity of the V protein from the mesogenic  

           strain BC is greater than that from the lentogenic strain La Sota 

The importance of IFN antagonists in virulence has been demonstrated for 

several viruses. It was found that viruses with mutations in genes encoding HSV 

type 1 ICP34.5, vaccinia virus E3L, and influenza virus NS1 proteins have altered 
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pathogenicity in mice (Chou et al., 1990; Brandt and Jacobs, 2001; Talon et al., 

2000). Similarly, a mutant Sendai virus with a single mutation in the C protein is 

avirulent in mice (Garcin et al., 1997). The role of the V protein in virulence has 

also been demonstrated for several paramyxoviruses. A V-deficient recombinant 

Sendai virus was found to be remarkably attenuated in mice (Kato et al., 1997). 

Recombinant measles virus lacking the V protein undergoes limited replication 

and fails to spread in the brain of mice. In addition, this mutant virus causes 

lower mortality in mice relative to the parental virus (Patterson et al., 2000).  

Studies have also shown that NDV V-deficient recombinant viruses have 

impaired growth in cell culture and decreased pathogenicity in chickens 

(Mebatsion et al., 2001; Huang et al., 2003). In addition, these mutant viruses 

have increased sensitivity to the antiviral effects of exogenous interferon (Huang 

et al., 2003). Using the NDV-GFP-based assay, it was shown that the NDV V 

protein exhibits IFN antagonistic activity (Park et al., 2003). Hence, the 

mechanism by which the V protein plays a role in virulence is due, at least in 

part, to its IFN antagonistic activity.  

To begin to understand the role of the V protein in the differential virulence 

patterns exhibited by different pathotypes of NDV, the IFN antagonistic activity of 

the V protein from the lentogenic strain La Sota was compared with that of the 

mesogenic strain BC.  Ideally, one would like to compare the V protein of a 

lentogenic strain with that of a velogenic strain. However, these studies will 

eventually lead to pathogenicity studies in animals. All velogenic NDV strains are 
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classified as select agents and cannot be used in animal studies in BL-3. Hence, 

the mesogenic strain BC was used.  

Using the NDV-GFP-based assay, the V protein of the lentogenic NDV 

strain B1-Hitchner has been shown to antagonize IFN. In this assay, the ability of 

a protein to antagonize IFN is measured by its ability to rescue growth of the 

NDV-GFP virus. This assay has proven to be useful for screening proteins with 

IFN antagonistic activity. Other known IFN antagonists such as the influenza 

virus NS1 protein and the Ebola virus VP35 protein have been shown to rescue 

growth of the NDV-GFP virus in this assay. In addition, the Nipah virus V, W and 

C proteins also rescue growth of the virus. However, the Nipah C protein rescues 

viral growth less efficiently than either the Nipah V or W protein (Park et al., 

2003). 

To compare the IFN antagonistic activity of the V proteins of the 

lentogenic strain La Sota and the mesogenic strain BC, I modified the NDV-GFP 

assay developed by Park et al. (2003). The chicken embryo fibroblast cell line 

DF1 was used instead of chicken embryo fibroblasts (CEFs). In addition, the 

NDV-GFP virus was derived from strain BC instead of B1-Hitchner and was used 

at a lower moi (0.001 instead of 1). Using this assay, we showed that the BC V 

protein exhibits a 4-fold greater ability than the La Sota V protein to rescue 

growth of the NDV-GFP virus. This is consistent with the known virulence 

properties of these strains.  
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One caveat is that this difference in rescue of viral growth could be due 

only to differences in expression levels of these two V proteins. However, this 

possibility is unlikely because the expression levels, as determined by Western 

blot using the V18 antibody, do not correlate with the ability of the La Sota V and 

BC V mutated proteins and chimeras to rescue growth of the NDV-GFP virus.  

Our results demonstrate that the V protein of the mesogenic strain BC exhibits 

greater IFN antagonistic activity than that of the lentogenic strain La Sota. Hence, 

the IFN antagonistic activities of the two V proteins correlate with the known 

virulence properties of these strains.  Taken together, our results are consistent 

with the V protein having a role in the virulence of NDV and that the mechanism 

by which it does so is due, at least in part, to its IFN antagonistic activity. 

7.2       Identification of amino acid residues responsible for the difference  

in IFN antagonistic activity between the La Sota and BC V proteins 

7.2.1    Amino acid residues in the C-terminal region modulate the IFN  

            antagonistic activity of the NDV V protein 

The V proteins of paramyxoviruses show an overall homology of 44%. The 

region of highest homology is found in the C-terminus, which is approximately 

50% identical among all known paramyxovirus V proteins (Southern et al., 1990). 

The C-terminal region contains seven conserved cysteine residues capable of 

binding two zinc atoms. The contribution of this region to the IFN antagonistic 

activity of the V protein and virulence is well documented. A recombinant Sendai 

virus, which has a truncated V protein lacking the C-terminal region was shown 



 117 

to be attenuated in mice (Kato et al., 1997). Similarly, recombinant Sendai 

viruses with mutations in the C-terminus of the V protein showed impaired 

replication in mouse lungs and attenuated virulence in mice (Fukuhara et al., 

2002; Huang et al., 2000). A recombinant hPIV2 that expresses a truncated V 

protein lacking its C-terminal region was sensitive to inhibition by IFN (Kawano et 

al., 2001). In addition, it was demonstrated that cells expressing hPIV2 V protein 

are resistant to the antiviral effects of IFNα/β and that the cysteine-rich domain of 

the V protein is necessary for resistance to IFN (Nishio et al., 2001). Likewise, a 

recombinant SV5 that lacks the V protein C-terminal domain also failed to block 

IFN signaling (He et al., 2002).  All of these findings point to the importance of 

the C-terminus of the paramyxovirus V protein in virulence. 

Using the NDV-GFP assay, it was also shown that the C-terminus of NDV 

V (amino acid residues 136-239) is necessary and sufficient to antagonize IFN 

(Park et al., 2003). However, the specific amino acid residues involved have not 

been identified. Comparison of the C-terminal regions of the La Sota and BC V 

proteins revealed four amino acid differences at positions 144, 153, 161 and 234. 

In our study, it was shown that the IFN antagonistic activity of La Sota V 

increases when any of these residues is mutated to the corresponding residue in 

BC V. Conversely, the IFN antagonistic activity of BC V decreases when any of 

these residues is mutated to the corresponding residue in La Sota V. However, 

no single mutated La Sota V protein rescues viral growth at the same level as BC 

V, and no single mutated BC V protein rescues viral growth at the same level as 
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La Sota V. These results indicate that, no single residue accounts for the 

difference in IFN antagonistic activity between the La Sota V and BC V proteins. 

Having shown that single mutations in residues 144, 153, 161 and 234 

alter the ability of La Sota and BC V to antagonize IFN, we investigated whether 

the introduction of multiple mutations in these two V proteins has an additive 

effect. The double mutated proteins of La Sota V (S144P/E153K and 

S161P/D234N) are better than the single mutated proteins in rescue of viral 

growth. However, the triple (S144P/E153K/S161P) and quadruple (S144P/ 

E153K/S161P/D234N) mutated proteins of La Sota V are not better than the 

double mutated proteins. One of the double mutated proteins of BC V  

(P144S/K153E) has a decreased ability to rescue the virus as compared to the 

single mutated proteins. However, the other double mutated protein of BC V 

(P161S/N234D) rescues viral growth at almost the same level as the P161S and 

N234D mutated proteins. Surprisingly, the triple (P144S/K153E/P161S) and 

quadruple (P144S/K153E/P161S/N234D) mutated proteins of BC V are better 

than the double mutated proteins. These results demonstrate that the presence 

of multiple mutations in the V protein has a partial additive effect. It is not clear 

why the triple and quadruple mutated proteins of La Sota V do not rescue viral 

growth better than the double mutated proteins, or why the triple and quadruple 

mutated proteins of BC V do not exhibit decreased rescue of viral growth than 

the double mutated proteins. I speculate that different combinations of amino 

acid residues would have different effects on the conformation of the V protein, 
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which in turn affect the ability of the V protein to interact with other proteins 

involved in the IFN response. Taken together, the results of this study indicate 

that the amino acid residues 144, 153, 161 and 234 are collectively responsible 

for the difference in the IFN antagonistic activity of the two V proteins.  

The crystal structure of the NDV V protein has not been solved. To gain 

some insight as to the location of NDV V residues 144, 153, 161 and 234 in the 

three dimensional structure of the protein, the sequences of the La Sota and BC 

V proteins were aligned with that of the SV5 V protein for which the crystal 

structure is known (Li et al., 2006). Sequence alignment reveals that NDV V 

residues 144, 153 and 161 correspond to SV5 V residues 138, 147 and 155, 

respectively. NDV V residue 234 does not have a corresponding residue 

because SV5 V consists of only 222 amino acids. The crystal structure of SV5 V 

protein in complex with the UV damaged DNA binding protein 1 (DDB1) is shown 

in Figure 34. DDB1 has a multidomain structure consisting of three β propellers 

(BPA, B and C) and a helical C-terminal domain. The SV5 V protein binds to 

DDB1 using both its N-terminal extension and the core domain. It inserts its N-

terminal helix into the pocket formed between BPA and BPC while the core 

domain interacts extensively with the BPC domain. By this interaction, the SV5 V 

protein is able to hijack the DDB1-Cul4A E3 complex to promote degradation of 

STAT proteins and block IFN signaling. Another relevant finding is that 

paramyxovirus V proteins can oligomerize and that the cysteine-rich zinc-binding 

C-terminal domain is necessary and sufficient for oligomerization, allowing the V 
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proteins to form spherical particles that act as a scaffold for E3 ubiquitin ligase 

activity (Ulane et al., 2005).  

The location of residues 138, 147 and 155 in the crystal structure of SV5 V 

was determined (Figure 34). Analysis reveals that residue 138 is close to the 

pocket formed between BPA and BPC. Residue 147 is close to the conserved 

seven cysteines in the C-terminal domain of paramyxovirus V proteins. Residue 

155 is missing in the crystal structure. Given this, it is tempting to speculate that 

amino acids at these positions could modulate the ability of the V protein to 

interact with DDB1 and/or to oligomerize, either of which would result in a 

decreased ability to recruit components of the ubiquitin ligase complex and, in 

turn, to mediate the degradation of components of the IFN response. 

To determine whether the identity of NDV V residues 144, 153, 161 and 

234 correlates with the known virulence properties of different NDV strains, the 

nucleotide sequences of the P gene of 12 strains were obtained from the 

GenBank. One G nucleotide was inserted into the RNA editing site and the 

amino acid sequences of the putative V proteins were aligned (Figure 35). The V 

proteins of these strains are approximately 59% identical. Surprisingly, analysis 

revealed that lentogenic strains are more similar to velogenic strains than they 

are to mesogenic strains at positions 144, 153 and 234 (Table 5). There is no 

pattern for the identity of residue 161 for these strains. In addition, there are no 

amino acids that are specific for any of the three pathotypes. Given this, it would 

be informative to compare the V proteins of velogenic and lentogenic   strains  as  
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I   have  done   here.  There   may be other amino acid differences between the V 

proteins of these strains that could account, at least in part, for their wide 

difference in virulence.  

7.2.2       The N-terminal region of the BC V protein also contributes to its  

                IFN antagonistic activity 

The results of the NDV-GFP assay also showed that the La Sota V 

S144P/E153K/S161P/D234N quadruple mutated protein failed to rescue viral 

growth at the same level as BC V.  Similarly, the BC V P144S/K153E/ 

P161S/N234D quadruple mutated protein also failed to rescue viral growth at the 

same level as La Sota V. These results suggest that amino acid residues in the 

N-terminal region of the V protein may be important. Indeed, the decreased 

ability of the LS-BC chimera, relative to BC V, to rescue growth of the NDV-GFP 

virus suggests that the N-terminal region contributes to the IFN antagonistic 

activity of the BC V protein.  

These results are consistent with those obtained with other 

paramyxoviruses. A spontaneous SV5 mutant with mutations in the P/V N-

terminal common domain showed no anti-IFN activity, indicating that this domain 

contributes to its IFN antagonistic activity (Chatziandreou et al., 2002; Wansley 

and Parks, 2002; Young et al., 2001). Another study showed that tyrosine 110, 

which is located in the P/V N-terminal common domain, is important for inhibition 

of IFNα/β and IFNγ signaling by the V protein of measles virus (Fontana et al., 

2008). The amino acid sequence of the LS-BC chimera differs from that of BC V 
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at five positions in the N-terminal region. It is conceivable that these changes in 

the N-terminus could affect the three dimensional structure of the V protein, 

making the C-terminus less accessible to interacting proteins. Structure-function 

studies are required to verify this theory, but this awaits determination of the 

crystal structure of the NDV V protein. It is also plausible that residues in the N-

terminal region could contribute directly to the IFN antagonistic activity of the V 

protein. 

7.3       Mechanism for the difference in IFN antagonistic activity of the La  

            Sota and BC V proteins 

7.3.1    Contrary to an earlier report, NDV V does not target STAT1 for  

            degradation 

Huang et al. (2003) showed that infection of human 2fTGH cells with a 

recombinant BC virus results in degradation of STAT1. Moreover, they showed 

that transient transfection of a plasmid encoding the C-terminus of BC V also 

results in STAT1 degradation. In both experiments, endogenous STAT1 was 

degraded to a level below the detection limits of the system.  

The results of our study show that only 30% of endogenous STAT1 is 

degraded when 2fTGH cells are transiently transfected with BC V. This decrease 

in the level of STAT1 is not nearly as significant as that demonstrated by Huang 

et al. (2003). Thus, I was unable to reproduce the findings of Huang et al., using 

a transient transfection system. To be certain, I tried several other approaches to 

try to confirm these results. First, the levels of STAT1 at different times post-
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transfection were determined and total degradation could not be demonstrated at 

12, 14, 16, 20, 36, 42, 48 or 60 hours post-transfection. I also examined the level 

of STAT1 in 293 cells transfected with the NDV V protein.  Though these cells 

have a much higher transfection efficiency than 2fTGH cells, I was still unable to 

reproduce the results of Huang et al. (2003).  

The results of our NDV-GFP assay showed that both La Sota  and BC V 

exhibit IFN antagonistic activities, although at different extents. Thus, we wanted 

to examine further whether STAT1 is degraded under these conditions. Our 

results show that the level of STAT1 in La Sota V-transfected DF1 cells is similar 

to that in vector-transfected cells (average of 85% of vector), whereas the level of 

STAT1 in BC V-transfected cells is only slightly reduced (average of 75% of 

vector). Most importantly, the decrease in STAT1 under these conditions is not 

nearly as significant as that shown by Huang et al. (2003). 

As a final attempt to determine whether the NDV V protein targets STAT1 

for degradation, DF1 cells were transfected with La Sota or BC V that were 

subcloned in a bicistronic vector that expresses GFP. This strategy allowed us to 

sort cells that express either of the two V proteins by using GFP as a marker. 

This approach is more stringent because it enables one to focus exclusively on 

those cells that express the V protein. In addition, chicken cells, which are the 

natural host of NDV, were used. The results showed that the level of STAT1 did 

not decrease in cells expressing either of the two V proteins, again confirming 

that neither La Sota V nor BC V targets STAT1 for degradation.   
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Hence, despite considerable efforts to reproduce the results of Huang et 

al. (2003), complete degradation of STAT1 could not be achieved.  In retrospect, 

the fact that human 2fTGH cells do not have a high transfection efficiency would 

seem to make it unlikely that STAT1 could be degraded completely in a culture 

transiently transfected with the V protein. Therefore, these results call into 

question the previous finding that the NDV V protein targets STAT1 for 

degradation. 

7.3.2    NDV V promotes the conversion of IRF-7 to a lower molecular  

            weight form   (IRF-7∗) 

A novel and interesting finding in our study is that the NDV V protein 

targets IRF-7 for degradation. Transfection of either La Sota V or BC V in DF1 

cells and examination of the levels of IRF-7 in GFP-sorted cells by Western blot 

reveal that IRF-7 is reduced to undetectable levels. Hence, both V proteins 

apparently target IRF-7 for degradation. This demonstrates an additional 

mechanism by which the NDV V protein antagonizes the IFN response. This is 

also the first evidence that IRF-7 is targeted by a paramyxovirus V protein. 

 IRF-7 is a very important player in the IFN response. Studies using IRF-7 

knockout mice showed that transcription of both IFNα and IFNβ is dependent on 

IRF-7, indicating that IRF-7 is the master regulator of type I IFN-dependent 

responses  (Honda et al., 2005). Hence,  it  is  advantageous  for  NDV  to  target  

IRF-7. This phenomenon has also been observed in several other viruses. The 

NSP1 protein of rotavirus induces degradation of IRF-7 (Barro and Patton, 2007). 
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The immediate early protein BZLF-1 of Epstein-Barr virus associates with IRF-7 

and prevents it from activating type I IFN promoters (Hahn et al., 2005). The E3L 

protein of vaccinia virus blocks phosphorylation of IRF-7 (Smith et al., 2001). It 

would be interesting to determine the exact mechanism by which the NDV V 

protein targets IRF-7 for degradation. 

Because the IRF-7 levels are undetectable in both La Sota V- and BC V-

transfected cells at 24 and 48 hours post-transfection, comparison of the ability of 

the La Sota and BC V proteins to target IRF-7 for degradation is difficult. It is 

possible that differences in the levels of IRF-7 are detectable earlier to which end 

sorting the cells at earlier time points might be informative. However, one 

limitation of our method is that GFP is expressed at 24 hours post-transfection, 

so it would be difficult to identify GFP-positive cells at earlier time points. Hence, 

an alternative system is necessary to further examine whether La Sota V and BC 

V differ in their ability to degrade IRF-7.  

A novel observation from our studies is that a protein of lower molecular 

weight (IRF-7∗) is detected by the IRF-7 antibody in both La Sota V- and BC V-

transfected DF1 cells, but not in vector-transfected cells. The antibody used in 

this experiment was raised against residues 1-126 of human IRF-7. In our 

experiments using chicken DF1 cells, this antibody recognizes full-length IRF-7, 

which migrates at approximately 66 kDa and IRF-7∗, which is approximately 39 

kDa. Mass spectrometric analysis of a band excised from a Coomassie stained 

gel that aligned with IRF-7∗  on the Western blot revealed that there are three 



 129 

possible peptides that could be from IRF-7. However, this result is not definitive 

because the peptides have weak spectra. One possibility that could account for 

the inability to identify IRF-7∗ as being a fragment of IRF-7 is the presence of 

very small amounts of IRF-7∗ in the excised gel band. Nevertheless, these 

results are consistent with IRF-7∗ being a degradation product of IRF-7. 

Furthermore, this suggests that both La Sota and BC V promote conversion of 

IRF-7 to IRF-7∗. 

7.3.3    The extent of conversion of IRF-7 to IRF-7∗ correlates with both 

             IFN antagonistic activity and virulence 

Our studies demonstrate that the amount of IRF-7∗ is significantly greater 

in BC V-transfected cells as compared to La Sota V-transfected cells. This 

indicates that the extent of conversion of IRF-7 to IRF-7∗ correlates with the 

extent of IFN antagonistic activity of the V protein and, in turn, with the level of 

virulence. This is consistent with the conversion of IRF-7 to IRF-7∗ playing a role 

in both IFN antagonistic activity and virulence. 

Indeed, most notably, the amount of IRF-7∗ in BC V-transfected cells is 

similar, while the amount in La Sota V-transfected cells is considerably less, than 

the amount of full-length IRF-7 in vector-transfected cells.  This suggests that BC 

V promotes complete conversion of IRF-7 to the lower molecular weight form, 

whereas La Sota V does so less efficiently.  
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7.3.4    Formation of IRF-7∗ is blocked by a proteasome inhibitor 

To examine whether IRF-7∗ is a degradation product of IRF-7, DF1 cells 

were transiently transfected with BC V expressed from the bicistronic vector 

pIRES2-AcGFP1 in the absence or presence of the proteasome inhibitor clasto-

lactacystin-β-lactone. At 24 hours post-transfection, GFP-negative and GFP-

positive cells were sorted by flow cytometry. Our results show that, in cells 

expressing BC V, the amount of IRF-7∗ is significantly decreased in the presence 

of 2 µM inhibitor relative to the untreated control. A further reduction in the 

amount of IRF-7∗ was observed when 5 µM inhibitor was used. Thus, the amount 

of IRF-7∗ decreases in a dose-dependent manner in the presence of a 

proteasome inhibitor. This is consistent with IRF-7∗ being a degradation product 

of IRF-7, whose formation is mediated by a proteasome-dependent pathway. 

Surprisingly, the amount of full-length IRF-7 did not increase in the 

presence of the inhibitor. It is possible that the amount of full-length IRF-7 

protected by treatment with the proteasome inhibitor is below the detection limits 

of the system. Another possible explanation for this result is that the steady-state 

synthesis of IRF-7 is insufficient to restore the level of IRF-7. A similar result was 

obtained by Andrejeva et al. (2002) who found that treatment of 2fTGH cells 

stably expressing SV5 V or PIV2 V with the proteasome inhibitor MG132 resulted 

in very little increase in the levels of either STAT1 or STAT2 in the respective 

cells. Nevertheless, these results provide support that IRF-7∗ is a degradation 

product of IRF-7. It is possible that IRF-7 is degraded in a progressive manner by 
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the proteasome and reaches a point where it can no longer proceed. A precedent 

for this is the role of the proteasome in the proteolytic processing of the 

transcription factor NF-κB. Palombella et al. (1994) demonstrated that the p50 

subunit of NF-κB is generated from the p105 precursor through a proteasome-

dependent process, wherein the C-terminal region of p105 is rapidly degraded, 

leaving the N-terminal p50 fragment intact.  This demonstrates that the 

proteasome functions both in the partial and complete degradation of proteins. 

There are several studies that demonstrate that viruses target IRFs for 

proteasomal degradation. The Npro protein of classical swine fever virus, ICPO 

protein of bovine herpesvirus 1 and NSP1 protein of rotavirus all induce 

proteasomal degradation of IRF-3 (Bauhofer et al., 2007; Saira et al., 2007; Barro 

and Patton, 2005). The RTA protein of Kaposi’s sarcoma herpesvirus and NSP1 

protein of rotavirus target IRF-7 for proteasomal degradation (Yu et al., 2005; 

Barro and Patton, 2007). However, the targeting of IRF-7 for proteasomal 

degradation by a paramyxovirus V protein has not been described previously. 

Hence, our results provide the first evidence for this as a mechanism for 

modulating the IFN response by a paramyxovirus. 

However, it cannot be ruled out that IRF-7∗ is a cleaved form of IRF-7 

whose formation is mediated by a proteasome-independent degradation 

pathway. There is evidence for the existence of IRF-1 species that have greater 

electrophoretic mobilities than the full-length protein in monocytic cell lines. 

These smaller IRF-1 species were recognized by a rabbit polyclonal antiserum 
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against human IRF-1 in a Western blot. In addition, the results suggested that 

these smaller IRF-1 species are generated by cleavage of intact IRF-1 by a 

serine protease in monocytes (Qiao et al., 2002). Given this, it is possible that La 

Sota V and BC V are promoting the cleavage of IRF-7 at one site and converting 

it to a lower molecular weight protein. There is no evidence that the NDV V 

protein possesses proteolytic activity so it might be recruiting a protease to 

cleave IRF-7. Since the antibody was raised against the N-terminal 246 residues, 

it seems likely that IRF-7 is being degraded at the C-terminal end of the protein. 

Additional experiments need to be done to confirm this. 

IRF-7 is activated by phosphorylation of specific amino acid residues in its 

C-terminal region. Marie et al. (1998) previously demonstrated that IRF-7 

containing mutations in serine 425 and serine 426 was not phosphorylated and 

did not activate IFNα gene expression. In addition, Sato et al. (1998) showed that 

a mutated IRF-7 with a deletion of the region containing the potential sites of 

phosphorylation (amino acids 411-453) no longer translocated to the nucleus 

after viral infection. Another study showed that serine 437 and serine 438 are the 

primary targets for virally induced phosphorylation (Caillaud et al., 2005). Our 

results demonstrate that the NDV V protein targets IRF-7 for degradation and 

promotes  conversion  of  full-length  IRF-7  to  a  lower   molecular   weight  form 

 (IRF-7∗).  Based on its apparent molecular weight of 39 kDa, IRF-7∗ is 

approximately 354 amino acids in length. Given that the antibody that we used 

was raised against the N-terminal 246 amino acids of IRF7, it seems likely that 
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IRF-7∗ no longer contains the sites of phosphorylation, which are important for 

IRF-7 activation and translocation to the nucleus to promote induction of IFN. 

Therefore, it is possible that the NDV V protein inhibits the IFN response by 

converting IRF-7 to a form that lacks the critical phosphorylation sites.  In this 

regard, it would be interesting to determine if IRF-7∗ is: a) phosphorylated and b) 

translocated to the nucleus. 

It would be worthwhile to examine the effect of the NDV V protein on the 

functional activity of IRF-7. One way to do this is to co-transfect the V protein with 

IRF-7 and examine the following: 1) phosphorylation status of IRF-7 by mobility 

shift assay; 2) dimerization of IRF-7 by non-denaturing PAGE; 3) nuclear 

translocation of IRF-7 by immunofluorescence assay; 4) DNA binding ability of 

IRF-7 by electrophoretic mobility shift assay; and 5) induction of IFN by real-time 

RT-PCR (to measure IFN mRNA levels) and luciferase reporter gene assays. 

7.3.4    Proposed model for inhibition of the IFN response by the NDV V  

            protein 

A model for the induction of the type I IFN response has been described 

by Honda and Taniguchi (2006). In the early phase of the response, double-

stranded RNA is generated upon virus infection, and recognized by pattern 

recognition receptors such as MDA-5 and RIG-I. Recognition of dsRNA triggers a 

cascade that leads to phosphorylation of IRF-3 and IRF-7. Activated IRF-3 and 

IRF-7 homodimerize or heterodimerize and translocate to the nucleus and induce 

expression of small amounts of type I IFN. In the late phase of the response, 
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secreted IFNα/β binds to its receptor and activates the Jak/STAT pathway 

leading to induction of transcription of more IRF-7. Following dsRNA recognition, 

the newly synthesized IRF-7 is again activated and leads to induction of large 

amounts of type I IFN, resulting in a positive feedback loop.  

Previously, the NDV V protein has been shown to bind MDA-5 and inhibit 

IFNβ induction (Childs et al., 2007). This indicates that NDV can act at an early 

step in the pathway to inhibit the IFN response. Our results demonstrate that the 

NDV V protein also acts at another step in the pathway. I propose that the NDV V 

protein inhibits the IFN response by targeting IRF-7 for degradation and 

converting it to a lower molecular weight form (IRF-7∗). The consequence of this 

is that the amount of IRF-7 available for activation is decreased. Additionally, 

IRF-7 is converted to a form that lacks the critical phosphorylation sites. Hence, 

IRF-7 is not activated and cannot translocate to the nucleus to induce IFN genes. 

As mentioned previously, IRF-7 is important at both the early and late phase of 

the IFN response. Additionally, IRF-7 is the master regulator of type I IFN-

dependent responses.  Hence, targeting IRF-7 through the action of the V protein 

provides a major advantage for NDV. Furthermore, this finding demonstrates that 

the NDV V protein is an IFN antagonist that acts at multiple levels of the IFN 

pathway. 

7.4       Characterization of AVS-I antibody 

The results of our functional inhibition studies with AVS-I are reminiscent 

of previous data obtained with antibody to site 2 (Iorio et al., 1984). Even though 
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the antibody to this site was made against the virulent strain AV, it has the same 

strain preference as AVS-I. The antibody to site 2 is better able to neutralize 

avirulent strains than virulent ones: the persistent fractions of avirulent strains B1, 

La Sota, and W are lower than those of virulent strains Italy-Milano/45, Israel-

HP/53, L, and F. A distinct exception to this is the virulent strain RO, which is 

neutralized to a threefold-greater extent than AV. Hence, the strain specificity of 

AVS-I is similar to that of antibody to site 2. Also, this represents another 

example of the HN of virulent strain RO being more similar to the HN proteins of 

avirulent strains. It also points to a relationship between the C-terminal end of HN 

and virulence. 

Given all of this, it would not be surprising for residue 570 to be part of a 

determinant of virulence in HN. Consistent with this possibility is the fact that it is 

situated close to the sialic acid binding site (Iorio et al., 2001). Furthermore, a 

cold-adapted temperature-sensitive B1 virus, which does not bind AVS-I (Gelb et 

al., 1996), has the identical G570R mutation (personal communication, Dr. Bruce 

Seal). However, the escape mutant, AVS-B1, does not exhibit an altered mean 

embryo death time relative to the wt virus, suggesting that the mutation does not 

affect virulence (data not shown). There is also not a consistent relationship 

between the nature of residue 570 and virulence. Though virulent strains 

Chiba/85 and Ibaragi/85 have an arginine at position 570, most virulent strains, 

including Beaudette C/45, Texas GB/48, Australia-Victoria/32, Herts/33, and 

Italien/45, have a glycine at this position (Sakaguchi et al., 1989). Thus, despite 
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being part of the AVS-I epitope, residue G570 appears not to be a major 

determinant of virulence. However, given the complexity of antibody-binding 

epitopes, other residues that make up the AVS-I epitope could certainly 

contribute to virulence. A complete understanding of the relationship between 

AVS-I recognition of a virus and virulence will require a complete fine mapping of 

each of the amino acids that contributes to the epitope. 
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APPENDIX 

Primers used for site-directed mutagenesis 

 

Table 6.   Primers for generation of mutated La Sota V proteins 

Mutation/s Enzyme Primer Sequence (5’ to 3’) 
 
S144P 
 
E153K 
 
S161P 
 
D234N 
 
S144P, 
E153K 
 
S161P, 
D234N 
 
S144P, 
E153K, 
S161P 
 
S144P, 
E153K, 
S161P, 
D234N 
 
 

 
SpeI 
 
None 
 
None 
 
None 
 
SpeI 
 
 
None 
 
 
SpeI 
 
 
 
SpeI 

 
GAGCCACCAAGAGGGGAACCACCAACTAGTGACTCAAC 
 
GACTCAACAGCAGGAAAGTCAACCCAGCCGCGCAAAC 
 
CAGCCGCGAAAACAGCCAGGAAAGACCGCAGAACCAAG 
 
GATGTCTATGACGGAGGCAATATCACAGAGAGTAAG 
 
GAGCCACCAAGAGGGGAACCACCAACTAGTGATTCA 
ACAGCAGGAAAGTCAACCCAGCCACGCAAAC 
 
Sequential (S161P and D234N primers) 
 
 
Sequential (S161P then S144P, E153K primer) 
 
 
 
Sequential (D234N primer then  
GAGCCACCAAGAGGGGAACCACCAACTAGTGATTCAACA 
GCAGGAAAGTCAACCCAGCCACGCAAACAGCCAGGAAAG 
ACCGCAGAAC) 
 
 

 
Mutation/s indicate the amino acid residues introduced into the La Sota V protein. 
Mutated codon(s) are highlighted in bold. Enzyme indicates the restriction 
enzyme site introduced into the gene. Restriction enzyme site in the primer 
sequence is underlined. 
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Table 7.   Primers for generation of mutated BC V proteins 

Mutation/s Enzyme Primer Sequence (5’ to 3’) 
 
P144S 
 
K153E 
 
P161S 
 
N234D 
 
P144S, 
K153E 
 
P161S, 
N234D 
 
P144S, 
K153E, 
P161S 
 
P144S, 
K153E, 
P161S, 
N234D 
 
 

 
SpeI 
 
None 
 
None 
 
EcoRV 
 
SpeI 
 
 
EcoRV 
 
 
SpeI 
 
 
 
EcoRV 
and 
SpeI 

 
CCAAGAGGGGAATCTCCAACTAGTGACTCAACAGCAG 
 
GACTCAACAGCAGGGGAATCAACACAGCCGCGCAAACAG 
 
CAGCCGCGAAAACAGTCAGGAAAGACCGCAGAACCAAG 
 
GATGTCTACGATGGAGGCGATATCACAGAGAGTAAG 
 
CCAAGAGGGGAATCTCCAACTAGTGACTCAACAGCAGGT 
GAATCAACACAGCCACGGAAACAGCCAG 
 
Sequential (P61S primer and then N234D primer) 
 
 
CCAAGAGGGGAATCTCCAACTAGTGACTCAACAGCAGGT 
GAATCAACACAGCCACGCAAACAGTCAGGTAAGACCGCA 
GAAC 
 
Sequential (N234D primer then 
CCAAGAGGGGAATCTCCAACTAGTGACTCAACAGCAGGT 
GAATCAACACAGCCACGCAAACAGTCAGGTAAGACCGCA 
GAAC) 
 

 
Mutation/s indicate the amino acid residues introduced into the BC V protein. 
Mutated codon(s) are highlighted in bold. Enzyme indicates the restriction 
enzyme site introduced into the gene. Restriction enzyme site in the primer 
sequence is underlined. 
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