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ABSTRACT 

Canavan’s Disease is a fatal Central Nervous System disorder caused by genetic defects 

in the enzyme – aspartoacylase and currently has no effective treatment options. We 

report additional phenotypes in a stringent preclinical aspartoacylase knockout mouse 

model. Using this model, we developed a gene therapy strategy with intravenous 

injections of the aspartoacylase gene packaged in recombinant adeno associated viruses 

(rAAVs). We first investigated the CNS gene transfer abilities of rAAV vectors that can 

cross the blood-brain-barrier in neonatal and adult mice and subsequently used different 

rAAV serotypes such as rAAV9, rAAVrh.8 and rAAVrh.10 for gene replacement 

therapy. A single intravenous injection rescued lethality, extended survival and corrected 

several disease phenotypes including motor dysfunctions. For the first time we 

demonstrated the existence of a therapeutic time window in the mouse model. In order to 

limit off-target effects of viral delivery we employed a synthetic strategy using 

microRNA mediated posttranscriptional detargeting to restrict rAAV expression in the 

CNS. We followed up with another approach to limit peripheral tissue distribution. 

Strikingly, we demonstrate that intracerebroventricular administration of a 50-fold lower 

vectors dose can rescue lethality and extend survival but not motor functions. We also 

study the contributions of several peripheral tissues in a primarily CNS disorder and 

examine several molecular attributes behind pathogenesis of Canavan’s disease using 

primary neural cell cultures. In summary, this thesis describes the potential of novel 

rAAV-mediated gene replacement therapy in Canavan’s disease and the use of rAAVs as 

a tool to tease out its pathological mechanism. 
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CHAPTER I: Introduction 

Canavan Disease 

Canavan disease [CD] is a fatal pediatric leukodystrophy in which the Central 

Nervous System [CNS] white matter shows progressive spongy degeneration. It results 

from deficiency of aspartoacylase [N-acetyl-L-aspartoacylasertate amidohydrolase; EC 

3.5.1.15] (Matalon et al., 1988), an enzyme required for catabolism of N-acetylaspartate 

(NAA), the second most abundant amino acid derivative in the CNS.  

Clinical Presentation 

The first CD patient was reported by Myrtelle Canavan (Canavan, 1931) 

describing a prominent enlargement of the head and cerebral and cerebellar spongy 

degeneration as “Schilder’s encephalitis periaxialis diffusa” which was later acclaimed as 

a clinical entity (Van Bogaert L, 1949). Three clinically distinct variants exist (Adachi et 

al., 1973) namely:  

─ Congenital form: severe symptoms recognizable in the first few weeks of life,  

─ Infantile form: most common form where symptoms appear by 6 months of age  

─ Juvenile form: mildest form in which symptoms manifest by age 4 or 5.  

These early reports included a comprehensive description of the clinical and 

pathological features of the disease and the predilection for its occurrence in Ashkenazi 

Jews of Eastern European extraction. Currently however a growing number of non-

Jewish patients have been identified worldwide (Elpeleg and Shaag, 1999; Mizuguchi et 
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al., 2009; Stenson PD, 2003; Unalp et al., 2008; Zeng et al., 2006a; Zeng et al., 2006b; 

Zhang et al., 2010). 

Patients show vacuolization in the subcortical white matter (which becomes 

gelatinous), edema and demyelination and thin delicate meninges. Swollen cortical 

protoplasmic astrocytes containing membrane-bound cytoplasmic vacuoles, elongated 

mitochondria with distorted cristae, degraded axonal medullary sheaths and a prominent 

increase in protoplasmic astrocytes characterize the diseased brain. There also seems to 

be a significant loss of proteolipid protein and lipids in the white matter (Beaudet, 2001). 

Clinical manifestations include weak neck muscles, loss of muscle tone, severe 

psychomotor and mental retardation, seizures, NAAduria, blindness and megalencephaly.  

Characterization of the enzyme: Aspartoacylase 

CD was described as an enzyme deficiency disease (Matalon et al., 1988) when 

NAA-rich patient plasma and urine samples were incubated with normal fibroblasts 

extracts and subsequently showed increased aspartate levels suggesting a block in NAA 

catabolism in patients. Intensive genetic studies identified human aspartoacylase cDNA 

from kidney based on sequence information from bovine aspartoacylase. The gene was 

localized to 17p13-ter, comprises 6 exons encoding a 313 amino acid long polypeptide 

chain with a molecular mass of 36kD (Kaul et al., 1993). Aspartoacylase deacetylates 

NAA (Birnbaum et al., 1952 ) with a Km of 8.5 x 10-4 mol/L and Vmax of 43000 nmol/min 

per mg of protein (Kaul et al., 1991). Isolation of the aspartoacylase cDNA sequence led 

to identification of causative mutations for CD and hence was a landmark in the field as it 

made molecular diagnosis and gene therapy of CD possible (Kaul et al., 1994). Currently, 
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>54 mutations are associated with Canavan disease (Hershfield et al., 2007) with new 

mutations being identified on a regular basis. Transient transfection of COS cells shows 

that only some missense mutations in the ASPA gene have negligible aspartoacylase 

activity (Hershfield et al., 2007).  

Genetic analyses have identified two major CD mutations in Ashkenazi Jewish 

patients namely a missense mutation in codon 285 [exon VI] causing substitution of 

glutamic acid to alanine. It accounts for 83.6% mutations identified in 104 alleles from 52 

unrelated Ashkenazi Jewish patients (Kaul et al., 1994). Another one is a nonsense 

mutation on codon 231 [exon V] which converts tyrosine to a stop codon, found in 13.4% 

of the alleles from Jewish patients (Kaul et al., 1994). Among non-Jewish patients, the 

mutations are more diverse, the most common being a missense mutation substituting 

alanine for glutamic acid in codon 305. This mutation was observed in 35.7% of the 70 

alleles from 35 unrelated non-Jewish patients (Kaul et al., 1994). The diverse mutations 

associated with CD limit the use of DNA analysis for prenatal diagnosis to known 

carriers with previously described mutations are among those that are known. Patients 

seem to follow a similar course of disease irrespective of residual aspartoacylase activity. 

For instance, children carrying the Tyr231X mutation that has no residual activity cannot 

be clinically distinguished from those with mutation Glu285Ala that has some residual 

enzyme activity. Patients homozygous for the most common mutation Ala305Glu, with 

no residual enzyme activity, have a clinical course similar to patients with the two Jewish 

mutations (Matalon, 1997). A patient heterozygous for mutations Glyl23Glu, and 

Ala305Glu was phenotypically a severe Canavan patient in spite of being a double 



5 
 

heterozygote with residual aspartoacylase activity of 26.9% (Matalon, 1997). 

Interestingly, life expectancy is variable in patients with Canavan disease with the same 

genotype (Matalon and Michals-Matalon, 1999) . Since aspartoacylase has been 

structurally resolved (Le Coq et al., 2006), correlation between the location of disease-

specific mutations and functional protein domains could allow an insight in mutational 

analysis. For example, ATRX mutations cause a broad spectrum of X-linked mental 

retardation syndromes; however, major urogenital abnormalities are associated with 

truncating mutations at the C-terminal part of the protein (Gibbons and Higgs, 2000). 

Again, mutations in the plant homeodomain (PHD)-like domain are associated with more 

severe phenotypes than mutations in the helicase domain (Badens et al., 2006). If the 

disease-causing mutations are mapped onto functional substructures of proteins, a clearer 

picture of genotype-phenotype correlations may emerge. 

Studies reported cellular localization of aspartoacylase in the white matter of the 

corpus callosum and cerebellum along with the thalamus (Klugmann et al., 2005). 

Another  study showed that the staining was more intense in large white matter bundles 

(e.g., corpus callosum, anterior commissure, optic chiasma, corticospinal tract) where 

oligodendroglia are known to be present in greater density than in grey matter regions 

(Kirmani et al., 2002). Aspartoacylase was detected by immunohistochemistry in 

oligodendrocytes and non-reactive microglia but not neurons (Madhavarao et al., 2004). 

Neurons were largely unstained in the forebrain, although a few large reticular and motor 

neurons and many ascending and descending neuronal fibers were moderately stained in 

the brainstem and spinal cord. Most of the staining was confined to the cell body and 
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proximal processes of oligodendrocytes (Klugmann et al., 2005). Co-localization studies 

with labeled lectins indicated that aspartoacylase is also present in microglial cells 

(Madhavarao et al., 2004). Studies showing aspartoacylase activity restricted to the 

cytoplasm (Kirmani et al., 2002; Klugmann et al., 2003) and the nucleus (Hershfield et 

al., 2006) have implied a specific subcellular localization, but this remains to be 

established definitively.  

Characterization of the substrate: N acetyl aspartic acid (NAA) 

NAA is an abundant [5–10mM] amino acid derivative in the vertebrate CNS with 

a molecular mass of 175.1 Da. Most neuropsychiatric disorders like schizophrenia show a 

decrease in NAA levels (Mondino M, 2013), however CD is one of the few diseases 

along with sickle cell disease (Steen RG, 2005) that show high levels. It averages 5.7 

µmol/g of brain in eight mammalian species with a range of 1.6-10.08 µmol/g (Birken 

and Oldendorf, 1989). NAA is generally absent from the cerebrospinal fluid (CSF) 

(Tallan et al., 1956) but present in very high amounts in the aneural and avascular lenses 

(Baslow and Yamada, 1997). Absence of functional aspartoacylase creates a pool of 

NAA in the brain and also results in NAA aciduria. NAAduria is a reliable and specific 

biochemical index for CD (Matalon et al., 1988). Additionally CD patients show very 

high amounts of NAA in their blood and CSF (Matalon et al., 1988).  

NAA serves as a marker of neuronal integrity as high levels indicate brain injury 

and disease; however, the biological function of NAA remains enigmatic. It is 

metabolically compartmentalized; being exclusively produced in neuronal mitochondria 
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by L-aspartate N-acetyltransferase (Asp-NAT) [EC 2.3.1.17] (Ariyannur et al., 2010); 

and metabolized in oligodendrocytes (Madhavarao et al., 2003) by aspartoacylase.  

Animal Models 

Several animal models have been reported showing symptoms similar to CD 

notably foxes (Hagen and Bjerkas, 1990; Hagen et al., 1990), goats (Obermaier et al., 

1995) dogs (Kleiter et al., 2011; Zachary and O'Brien, 1985) and a naturally occurring 

mouse (Azzam et al., 1984); however aspartoacylase activity in the latter was not studied. 

Studies on Canavan disease were initially performed on two rodent models - the naturally 

existing Tremor rat (Kitada et al., 2000) and an artificially engineered Canavan Mouse 

(Matalon et al., 2000). 

The tremor rat is a naturally occurring mutant isolated from an inbred 

Kyoto:Wistar colony that has a large deletion (200kb) spanning 4 genes including the 

aspartoacylase gene, exhibits absence-like seizures and shows spongiform degeneration 

in the CNS (Kitada et al., 2000). Matalon et al genetically engineered a mouse model 

(ASPAKO or CD mouse) that had a specific 10bp deletion in exon IV of the 

aspartoacylase gene (Matalon et al., 2000). Additionally, the phenotype and biochemical 

characteristics of the homozygous knock-out mice indicate that it is a stringent preclinical 

model for evaluating gene therapy for congenital CD and for studying the role of NAA 

and aspartoacylase in the brain. 

Newer studies have created two interesting models one with a single point 

mutation in Nur7 (Traka et al., 2008) and the other - a knock in model (Mersmann et al., 

2011) making development of therapeutic modalities much easier. The Nur7 mouse 
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model shows spongy neurodegeneration, vacuolization and NAA accumulation like 

patients however myelin rich regions in the brain appear normal (Traka et al., 2008). 

LacZ knock-in mice have a targeted deletion in aspartoacylase and have a mild 

phenotype (Mersmann et al., 2011). These mice are not severely affected and have a 

longer lifespan than the CD mice and could serve as a model for the infantile form of CD 

(Mersmann et al., 2011). 

Theories behind the Molecular Etiology of CD 

A comprehensive investigation of aspartoacylase regulation in oligodendrocytes is 

essential to understand CD pathogenesis because the specific connection between 

aspartoacylase deficiency and the failure of proper CNS development and myelination 

remains unclear. Listed here are existing hypotheses that attempt to offer an explanation. 

Molecular Water Pump and Osmolyte Imbalance Theory 

The adult brain is a major source of metabolic water and uses ~20% of the daily 

caloric intake. Additionally, the two major CD symptoms- increased CSF pressure and 

intramyelinic edema, being hallmarks of profound fluid imbalance, suggest the existence 

of an efficient Molecular Water Pump (MWP) (Baslow, 1999). 

The theory propounds that NAA accumulation could result in osmolytic 

imbalance in the brain since it is similar to taurine (Taylor DL, 1995), an important CNS 

osmolyte. Furthermore, NAA has two juxtaposed anabolic (neurons) and catabolic 

(oligodendrocytes) compartments that suggest a mechanical framework for a MWP in the 

brain. The MWP involves the synthesis and facilitated diffusion of a hydrated 

intracellular osmolyte [NAA with its ion-dipole and dipole-dipole associated water] down 
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its gradient. At maturity, intraneuronal NAA concentration is ∼10±14mM while the 

interstitial concentration is only 80-100µm (Sager TN, 1997), indicating a large outward-

directed transport gradient. The osmolyte [NAA] is rapidly hydrolyzed [by 

aspartoacylase to form aspartate and acetate] to maintain tissue-ECF osmotic balance [in 

the periaxonal space]. The metabolic products are dehydrated as they are once again 

taken up by an active transport mechanism to complete the cycle (Baslow, 1999).  

Presumably, the acetate is taken up by astroglial processes at axon internodes and 

synapses (Tsacopoulos M, 1996) recycling the hydrolyzed products to produce more 

NAA [Figure 1.1]. 

Paranodal seals that connect oligodendrocytes to axons could serve as the site for 

the NAA inter-compartmental bidirectional cycle (Baslow, 1999). Aspartoacylase 

deficiency would lead to accumulation of NAA and water and resulting in an increased 

hydrostatic pressure. This could loosen the tight junctional seals separating interlamellar 

spaces from the extracellular periaxonal and parenchymatous spaces resulting in 

intramyelinic edema (Hirano, 1981). Subsequent demyelination could create vacant 

spaces within the white matter leading to the spongy brain phenotype.  
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Figure 1.1 Molecular Water Pump Theory. NAA is synthesized within neurons by the 

Aspartate-N-Acetyl Transferase (AspNAT) creating a large concentration gradient with 

the interstitial space. NAA and associated dipole water accumulate therein. Under normal 

conditions, aspartoacylase metabolizes the NAA and removes it. Absence of 

aspartoacylase results in accumulation of NAA and its associated water causing 

intramyelinic edema. 
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Figure 1.1 Molecular Water Pump Theory.  
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Dysmyelination Theory 

NAA-derived acetyl groups were shown to be involved in fatty acid synthesis as 

acetyl-labeled NAA injection into rats resulted in maximum fatty acid incorporation just 

before and during myelination (D'Adamo AF Jr, 1968). Later studies indicated that NAA 

was transferred from the axon to myelin and NAA-derived acetate was incorporated into 

myelin lipids (Chakraborty et al., 2001). 

This theory proposes that deficiency of NAA-derived acetate decreases the synthesis of 

myelin-associated lipids in CD leading to dysmyelination (Madhavarao et al., 2005) 

[Figure 1.2]. Additionally, temporal correlations have been shown between 

developmental increases in aspartoacylase activity and myelination (Bhakoo et al., 2001). 

Similar to human CD patients, brain acetate levels are reduced by ∼80% in CD mice 

during peak postnatal myelination while myelin lipids such as cerebrosides and sulfatides 

are reduced (Ahmed SS, 2013; Madhavarao et al., 2005). These data speculate that NAA-

derived acetate is essential during postnatal myelination to supply substrate for some 

proportion of the lipids that make up myelin sheaths in the developing brain. 

Studies on the Nur7 KO mouse (Traka et al., 2008) suggest that spongy 

degeneration is not dependent on disrupted myelin synthesis. Even though Nur7 mice are 

heterozygous for a null allele of a galacto-lipid synthesizing enzyme which could further 

reduce brain cerebroside content, they do not show more severe myelin pathology 

implicating additional mechanisms in the pathophysiology of CD (Madhavarao et al., 

2009). Animal models lacking functional aspartoacylase show abundant albeit  
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Figure 1.2 Dysmyelination Theory. Under normal conditions, aspartoacylase 

metabolizes NAA to provide acetate for myelin synthesis. Deficiency of aspartoacylase 

causes inadequate myelin synthesis leaving gaps in the interstitium where normal sheaths 

would have existed causing vacuolation. 
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Figure 1.2 Dysmyelination Theory.  
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structurally abnormal myelination probably because the initial stages of myelinogenesis 

have redundant pathways (Wang et al., 2009). 

Compromised Epigenetic Regulation of Oligodendrocyte Differentiation 

Studies on oligodendrocyte maturation have highlighted the importance of 

epigenetic control in differentiation (Copray S, 2009). Acetate is derived from NAA in 

oligodendrocytes (Chakraborty et al., 2001) and this acetate is probably important  for 

histone acetylation reactions that regulate chromatin structure and gene transcription. 

Dramatic reduction of acetate resulting from aspartoacylase deficiency could impact 

histone reactions required for epigenetic gene regulation preventing normal 

differentiation leading to oligodendrocyte cell death and neuronal injury possibly 

contributing to vacuole formation.  

Protein Misfolding Theory 

Cells like oligodendrocytes, which have active protein secretory pathways, are 

sensitive to disorders of protein misfolding. Acetyl CoA is an important substrate for 

acetylation and deacetylation of nascent polypeptide chains in the endoplasmic reticulum 

[ER] required for stabilization and correct folding of proteins (Spange S, 2009). Reduced 

acetyl CoA availability due to aspartoacylase deficiency could negatively impact protein 

folding and stabilization, targeting proteins for degradation. Oligodendrocytes are highly 

susceptible to ER stress associated with disruptions in protein synthesis and trafficking 

(Lin W, 2009). In the CD mouse, a severe loss of myelin basic protein and PLP/DM20 
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proteolipid proteins has been observed combined with a decrease in myelinated fibers 

(Kumar et al., 2009).   

Oxidative Stress Theory  

Intracerebroventricular administration of NAA induces seizures in normal rats, 

probably by neuronal overexcitation (Akimitsu T, 2000); further, tardive dyskinesia 

patients also have significantly higher CSF concentrations of NAA like CD patients (Tsai 

G, 1998). Animal studies show that epileptic seizures result in free radical production and 

oxidative damage to cellular proteins, lipids and DNA (Bruce AJ, 1995) implicating 

oxidative stress as one of the possible causes of neurological impairment. Recent work 

suggests that chronic mitochondrial oxidative stress and resultant dysfunction can render 

the brain more susceptible to epileptic seizures (Patel, 2004). Hence it seems that there is 

a role for oxidative stress both as a cause and a consequence of epileptic seizures. 

NAA may promote oxidative stress by reducing non-enzymatic antioxidant 

defenses and stimulating oxidative damage to both lipids and proteins by enhancing 

reactive species in cerebral cortex [Figure 1.3]. In a study, NAA was found to inhibit the 

functions of catalase and glutathione peroxidase (GPX) indicating impaired 

detoxification of hydrogen peroxide but it had no effect on superoxide dismutase [SOD]. 

Acute administration of NAA also enhanced levels of hydrogen peroxide in vitro which 

could possibly be involved in the progression of the characteristic neurodegeneration in 

CD (Pederzolli CD, 2007). Though these results could not be extrapolated to humans, 

they do reveal probable mechanisms since the oxidative stress parameters occurred with 

concentrations of NAA  (∼4fold higher) observed in plasma and CSF of patients affected 
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by CD (Tsai and Coyle., 1995). Based on the supposition that NAA may promote 

oxidative stress in vitro and in vivo both by enhancing reactive species and diminishing 

antioxidant defenses, administration of antioxidants, especially vitamins E and C, could 

be considered as a potential adjuvant therapy for patients affected by CD (Pederzolli CD, 

2007). 

A previous study linked NAA accumulation to nitric oxide [NO] toxicity as it 

upregulates inducible nitric oxide synthase [iNOS] and stimulates neuronal and 

endothelial nitric oxide synthase (Surendran, 2009). Increased NO levels lead to 

disturbances in DNA structure and enhance protein interaction (Lee DH, 2007). 

Discrepancies in the molecular weight of aspartoacylase when prepared using different 

methods (Kaul et al., 1993) suggest that it may dimerize based on its concentration. It is 

possible that upregulation of NO synthase as a direct result of NAA accumulation may 

nitrosylate aspartoacylase causing it to dimerize. This hypothesis proposes that NAA 

upregulation and aspartoacylase malfunction could be cyclically linked. 
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Figure 1.3 Oxidative Stress Theory. Accumulation of NAA in the interstitium due to 

the absence of aspartoacylase gives rise to Reactive Oxygen Species (ROS) that cause 

inflammation and result in vacuolation and degeneration of white matter. 
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Figure 1.3 Oxidative Stress Theory.  
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Palliative Measures: Past and present 

CD was described as one of the few neurological diseases which manifests 

increased NAA levels in the brain; most other neurological diseases like schizophrenia 

show low NAA levels (Mondino M, 2013). Since an increasing number of substances can 

affect NAA levels in the brain (Baslow and Resnik, 1997); slowing down the anabolic 

portion of the NAA cycle using pharmaceuticals  may allow the existing, albeit enzyme-

deficient oligodendrocytes to produce a stable myelin sheath and restore neurological 

function.  

A large number of preclinical proof-of-concept studies have been performed on 

various CD animal models (described above) making development of therapeutic 

modalities much easier. Though currently the patients are mostly supported by palliative 

measures; existing treatment modes focus on different aspects of the disease phenotypes 

and are described below. 

Managing symptoms in the clinic 

Most of the palliative measures for patients of Canavan’s disease follow the care 

provided for patients of other pediatric neurodegenerative diseases (Hunt and Burne, 

1995). Current palliative measures for Canavan patients with respiratory issues include 

suction and cough assist machines to clear secretions and mucous from the  mouth, 

throat, nose and upper lobes of the lungs; the Vesta system for airway clearance and 

oxygen concentrators to provide a continuous flow of oxygen for easy breathing.  

Hypotonia being a major Canavan symptom requires positioning equipment 

which may include foam supports, feeder seats, specialized strollers and bath chairs to 
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help patients with their positioning needs. Feeding pumps are also used to assist in 

dispensing liquid nutrients at predetermined rates for feeding. Nebulizers help to 

administer medication as aerosols for these patients. 

Symptomatic treatment of disease 

The earliest human clinical trials on CD patients used acetazolamide to reduce 

water concentration and NAA levels in white matter for a period of 5 months. The drug 

reduced intracranial pressure, but did not reduce water content or NAA levels (O. Bluml, 

1998). A ketogenic diet increased levels of β-hydroxybutyrate in the brain but did not 

affect the elevated levels of NAA (Novotny EJ Jr, 1999). These treatment strategies were 

primarily targeted to alleviate edema; however there was little to no benefit for the 

patients.  

In recent years, intraperitoneal injections of lipoic acid (that can cross the blood 

brain barrier,BBB  (Samuel S, 2005)) have also been tried in preclinical studies using 

tremor rats, the naturally occurring animal model for CD (Pederzolli CD, 2007) based on 

the fact that NAA induces oxidative stress in the CNS. The encouraging results suggest 

that this might be a good therapeutic approach for symptomatic treatment.  

Addressing the Missing Metabolite by Dietary Supplementation 

Dietary supplementation of acetate in newborn patients was proposed as a 

therapeutic for CD since the primary pathogenesis is postnatal and deficiency of 

aspartoacylase and acetate are concurrent (Madhavarao et al., 2009). This group reported 

phenotypic improvements in myelin galactocerebroside content and brain vacuolation 

and also showed a partial reversion in motor dysfunction in GTA-treated tremor rats over 
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a course of 4 months (Madhavarao et al., 2009). In conclusion, dietary supplementation 

may not totally alleviate an inherent genetic metabolic disorder but definitely offers 

partial symptomatic alleviation. Clinical translation of GTA to human infants showed no 

significant side effects or toxicity but showed no motor improvement (Segel R, 2011). 

A recent study proposed dietary triheptanoin supplementation in Nur7 mice to 

support fatty acid synthesis and TCA cycles and improve the redox status in diseased 

animals. It showed phenotypic improvements suggesting that the underlying pathological 

mechanism of CD may be a combination of several factors (Francis et al., 2013). 

Addressing the Elevated Substrate by Neuroprotective Strategies 

Neuroprotective strategies may be needed to counteract neurological damage 

caused by oxidative stress possibly by the accumulated NAA. Intra-peritoneal lithium 

administration caused a significant drop in brain NAA levels in wild type rats (O'Donnell 

T, 2000) and tremor rats (Baslow et al., 2002). After 1 year of treatment in patients, NAA 

levels in both urine and brain were decreased. Patients showed improved alertness and 

visual tracking; however axial hypotonia and spastic dysplegia were unaffected (Solsona 

MD, 2012). Pharmacologically, lithium is neuroprotective for dementia patients (Kessing 

LV, 2008) possibly by reducing expression of pro-apoptotic proteins (Chen RW, 1999) 

and increasing the levels of anti-apoptotic proteins (Chang YC, 2009). 

A complete inhibition or even a significant reduction in NAA production may 

thus be a viable option in controlling demyelination and improving the quality of life in 

CD patients.  However solely controlling brain NAA levels for CD (Assadi et al., 2010) 
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may not be a highly effective therapeutic strategy since the NAA system is not 

universally present in neurons (Baslow, 1997). 

Addressing the Enzyme deficiency by Enzyme Replacement 

Using enzyme replacement as a therapeutic for neurological disorders has been 

difficult because of the challenging blood–brain-barrier. Surface lysyl groups of human 

aspartoacylase were modified through PEGylation to decrease immune response and 

increase circulation half-life with the intention of treating CD patients (Zano et al., 2010). 

Most of these modalities as CD therapeutics showed good tolerance but did not 

cause any significant improvement in the quality of life in the patients. However, as CD 

is a monogeneic defect with pathology being most evidently localized in the CNS, it 

presents an attractive target for gene therapy.  
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Gene Therapy for Canavan Disease 

Gene therapy is a promising area of experimental medicine wherein 

supplementation or alteration of DNA is used as a therapeutic in organisms to alleviate a 

genetic disease. The most common approach involves replacement of a non-functional or 

absent gene by an artificial cassette that would restore functionality of the gene. 

Therapeutic DNA is packaged into a "vector" that delivers DNA in cells after which the 

cellular machinery takes over and produces the deficient protein to correct the disease. 

Non Viral Gene therapy  

Non-viral gene delivery system is a conventional approach for gene therapy; 

however it is limited by efficiency of gene transfer. Direct injections of plasmids (naked 

or in complexes) are also inefficient because of limited uptake due to aggregate 

formation, low rates of diffusion, endotoxin contamination and transient expression 

necessitating improvements in design (O'Mahony et al., 2013). Therefore, there are 

ongoing efforts to achieve safe, efficient and specific non-viral vectors which match the 

efficacy of viruses. 

The first clinical trial for CD used a non-viral gene transfer technique with 

intracerebroventricular injections of a non-aggregating lipid plasmid formulation LPD. 

This was composed of a recombinant plasmid with a condensing agent [poly-L-lysine or 

protamine sulfate] and a liposomal formulation [DC-CHOL/DOPE] on two Canavan 

patients (Leone et al., 2000). The study established that the gene transfer technique 

worked and was safe but differences in the responses of the patients made it difficult to 

conclude if the gene therapy was successful.  
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Viral Gene therapy  

Viral vectors have been widely used as gene delivery systems as they can 

introduce their genetic material into recipient cells. Desired properties of a viral vector 

include replication deficiency, non-immunogenicity, non-toxicity and the ability to 

deliver its genetic material to the nucleus of a target cell (Ruitenberg et al., 2002). Gene 

therapy viral vectors mediating specific delivery into the CNS range in capacity from 

4.5kb to 150kb (Davidson and Breakefield, 2003).  

Preclinical viral gene therapy studies involved stereotactical adenovirus-mediated 

delivery of aspartoacylase in tremor rats that showed reduction of seizures (Seki et al., 

2002) and AAV2 mediated delivery that showed significant improvement in motor 

abilities and elevation of aspartoacylase expression (McPhee et al., 2005). 

One of the more popular viral vector choices for CD gene therapy is the Adeno 

associated virus (AAV) that is described in more detail in the next section. 

Adeno-Associated Virus (AAV) 

Adeno-associated virus (AAV) is one of the smallest nonpathogenic mammalian 

viruses discovered as a contaminant of adenovirus culture resulting in its name (Mayor et 

al., 1965). It belongs to the family Parvoviridae in the genus Dependovirus (as it depends 

on a helper virus e.g. adenovirus for replication) (Daya and Berns, 2008). 

Structure  

The wildtype virus is a 4.7kb non-enveloped single stranded DNA (ssDNA) virus 

reported to be 25nm in diameter with a molecular weight of 1.4x106 Da. It is 

characterized by 2 open reading frames (ORFs) coding for a total of 7 viral proteins 
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important for replication and capsid production respectively. The left ORF encodes 4 Rep 

proteins Rep78, Rep68, Rep52 and Rep40 produced as unspliced and spliced transcripts 

using the P5 and P19 promoters respectively. They are regulatory proteins that are 

important in production of single stranded viral DNA for packaging. The right ORF 

encodes three viral capsid proteins from the P40 promoter namely VP1 (87kD), VP2 

(72kD) and VP3 (62kD). 60 viral capsid proteins are produced in a defined ratio that has 

been variously described as 1:1:10 (Vandenberghe et al., 2009) and 1:1:18 (Opie et al., 

2003) to form an icosahedral structure. The 2 ORFs are flanked by 145bp inverted 

terminal repeats (ITRs) where the first 125 nucleotides being palindromic can fold on 

themselves to form a T-shaped hairpin. The unpaired 20 bases constitute the D sequence 

(Wang et al., 1997).  The hairpin helps in DNA replication in the presence of a helper 

virus by serving as a primer for second strand synthesis. The ITRs also contain Rep 

binding elements and a terminal resolution site that are critical for AAV replication. 

Additionally, ITRs are essential for AAV genome packaging, transcription, negative 

regulation under nonpermissive conditions and site-specific integration (Daya and Berns, 

2008). 

There are several rate determining factors that contribute to efficiency of 

transduction including entry into the nucleus and uncoating of DNA from the capsid 

(Sipo et al., 2007; Thomas et al., 2004). However, the most important rate limiting step 

involves conversion of the single-strand DNA (ssDNA) vector genome into double-

stranded DNA (dsDNA) prior to gene expression (Ferrari et al., 1996; Fisher et al., 1996).  
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This critical step can be entirely circumvented by packaging both strands as a single 

molecule through the use of self-complementary AAV (scAAV) vectors [Figure 1.4]. 

scAAV vectors can be packaged like conventional AAV genomes, when the two 

halves of the ssDNA molecule fold and base pair to form a molecule of half the length 

(McCarty et al., 2003). In order to enhance vector transduction efficiency and accelerate 

gene expression, the terminal resolution site (trs) from one end was deleted thus 

preventing the initiation of replication. These constructs generated single-stranded, 

inverted repeat genomes, with a wt TR at each end, and a mutated TR in the middle. 

After uncoating, the viral DNA folds through intramolecular base pairing within the 

mutant TR, which then proceeds through the genome to form a double-stranded 

molecule. As conversion from single to double strand does not depend on vector 

concentration or host cell assisted DNA replication, scAAV vectors result in efficient and 

fast transgene expression even though this measure further restricts the transgene size in 

an already small vector.  
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Figure 1.4 Advantages of self complementary rAAVs over single stranded AAVs. 

ssAAVs show delayed expression since they require intermolecular hybridization as 

either a plus or a minus strand is packaged into a capsid. scAAVs on the other hand 

require intramolecular hybridization that speeds up the time of gene expression. 
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Figure 1.4 Advantages of self complementary rAAVs over single stranded AAVs.  
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Preclinical Applications 

 AAVs are almost completely nontoxic after CNS delivery in non-preexposed 

mammals (Afione et al., 1995; Samulski RJ, 1999) and have sustained gene expression in 

non-dividing cells (Samulski RJ, 1999). Recombinant AAVs are gutted versions that do 

not contain any coding sequences from the naturally occurring viruses but carry a 

complete transcription cassette with the gene of interest flanked by ITRs. rAAVs are a 

preferred vector of choice for a lot of CNS gene therapy applications as they mediate 

persistent and safe  neuronal transduction (Kaplitt et al., 1994). Such CNS transduction is 

quite consistent through several species of mammals like mice, cats, dogs and monkeys 

(Asokan et al., 2012; Cotugno et al., 2011; Foust et al., 2010; Gagliardi and Bunnell, 

2009; Gray et al., 2011). Clinical trials using rAAV are ongoing for different neurological 

diseases (Asokan et al., 2012), and available data suggests that these vectors are capable 

of mediating long-term stable gene expression in the human brain as well (Hwu et al., 

2012; Muramatsu et al., 2010). 

AAV2 was the first serotype to be successfully used for gene transfer (Hermonat 

PL, 1984); however, it is has limited applications in CNS directed therapy since the brain 

is refractory to systemic delivery of rAAV2. This is due to the presence of the BBB 

(which physically excludes foreign molecules and microorganisms based on size, charge, 

and lipid solubility from the blood to the brain) efficiently blocking rAAV entry into the 

CNS (Zlokovic, 2008) and rendering it incapable of marked therapeutic benefit for global 

neurological disorders like CD which have no cure to date. 
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Need for Different Serotypes 

AAV2 vectors sparked a widespread interest in the gene therapy field since they 

were able to effect a persistent transgene expression, apparent lack of pathogenicity and 

an affinity for multiple organs like the liver (Snyder et al., 1997), eye (Guy et al., 1999), 

intestine (During et al., 1998) and muscle (Pruchnic et al., 2000). Recombinant AAV2 

vectors have been used therapeutically in preclinical studies for a wide variety of diseases 

(Flotte et al., 1993; Gasmi et al., 2007) and several clinical trials with hundreds of 

patients have been completed or initiated (Mingozzi and High, 2011). Although the safety 

and efficacy of AAV2 vectors for in vivo gene transfer have been widely acclaimed, 

research suggests that the transduction efficiency of AAV2 vectors in organ-specific 

transgene expression leaves a lot to be desired (Nakai et al., 2002; Zabner et al., 2000). 

Another important consideration is the negative effect of neutralizing antibodies in the 

serum on AAV transduction efficiency (Janelidze et al., 2014). This alone would 

jeopardize any application requiring repetitive therapeutic administration. Moreover, 

since the transduction efficiency of AAV is substantially dependent on capsid structure, it 

generated a widespread interest in the identification, characterization and isolation of 

additional AAV capsids. A lot of research is also focused on modifying vector genomes 

as well as capsid proteins to improve the transduction efficiency of AAV2-based vectors.  

AAV capsid determines biodistribution and transduction efficiency in addition to 

being the focal point of contact between the therapeutic gene and the host (Grimm and 

Kay, 2003; Grimm et al., 2006). Research has indicated that hybrid vectors generated by 

cross packaging the genetic backbone of AAV2 with the capsid component of other AAV 
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serotypes are more efficient than the natural variants in transducing organs and tissues 

suggesting the need for studying serotype-specific vector distribution (Rabinowitz et al., 

2002). A case in point is that AAV4 and 5 target ependymal cells in the CNS at a higher 

efficiency compared to AAV2 (Davidson and Breakefield, 2003; Davidson et al., 2000). 

Capsids presumably also affect the interactions of AAVs with anatomical barriers like the 

BBB (Vandenberghe et al., 2009).  

Need for a therapeutic time window 

An important issue would be to determine how far along in disease progression 

can the treatment be administered to patients to achieve substantial therapeutic benefits. 

Neurometabolic diseases like globoid cell leukodystrophy show favorable outcomes for 

presymptomatic intervention but not later indicating the existence of a restricted 

therapeutic time window (Escolar ML, 2005). Similar outcomes were seen in preclinical 

studies (Ahmed SS, 2013) and follow up study on CD clinical trials (Leone et al., 2012) 

indicating that future gene therapy interventions should begin before irreversible neuro-

structural changes occur underlining importance of rodent studies. 

Looking ahead 

It has been more than 8 decades since CD was first described in 1931 (Canavan, 

1931) and there was little progress in understanding its pathogenesis until it was 

identified as an aspartoacylase deficiency almost 5 decades later (Matalon et al., 1988). 

Description of the human aspartoacylase cDNA sequence led to a huge leap in molecular 

diagnosis for CD patients (Kaul et al., 1993); however, the molecular etiology has 

remained controversial. To resolve this, strong efforts in modeling CD in animals 
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significantly broadened avenues to investigate pathological mechanisms. Preclinical 

studies began with the naturally existing tremor rats and then expanded to include the CD 

mouse and later the Nur7 and the LacZ knock-in mouse models.  

Discovery of rAAV serotypes that can cross the BBB revolutionized the field 

(Foust et al., 2009; Yang et al., 2014; Zhang et al., 2011); however, an important issue in 

translation of the intravenous rAAV therapeutic dose from mice to humans is the huge 

vector manufacturing burden, making treatment costs prohibitive. Codon optimization of 

the expression cassette would increase expression efficiency and lower therapeutic doses. 

Moreover delivery of vector to the CSF directly would enhance diffusion in the CNS and 

lesser spread in peripheral organs. Again surprisingly the kidney expresses high levels of 

aspartoacylasebut has low NAA levels suggesting additional catalytic functions for 

aspartoacylase. Thus, alternate approaches may be needed to deal with the pathological 

consequences of loss in aspartoacylase activity in such peripheral tissues. 

Long term studies on rAAV gene therapy- treated patients have documented that 

it is safe and risk-free. CD is a monogenic genetic disorder with very distinct core clinical 

features that is amenable for gene therapy. Inclusion of newer CD animal models, 

continuously expanding viral vector repertoire and less invasive delivery methods for 

pan-CNS delivery make it likely that gene therapy for CD and other such diseases will 

advance rapidly in the near future. Efficient translation of the comprehensive data-driven 

validation of effective therapy in mouse models to humans would push forward the 

successful development of therapeutics like rAAVs and provide a viable treatment for 

patients who previously had none.  
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Focus of this dissertation 

This dissertation focuses on developing an efficacious gene therapy for Canavan disease 

using recombinant AAVs in the aspartoacylase knockout mouse model in a preclinical 

setting. In Chapter 2, we characterize novel variants of AAVs that can cross the blood 

brain barrier becoming effective tools for treatment of neurological disorders. An 

intravascular delivery of these vectors also targets peripheral tissues to cause potential 

detrimental effects; hence we also describe construction of tissue-specific, endogenous 

microRNAs (miRNAs) to repress rAAV expression outside the CNS, by engineering 

perfectly complementary miRNA-binding sites into the rAAV9 genome. In Chapter 3, we 

show that a single intravenous injection of 3 AAV variants can ameliorate disease 

symptoms in a bona fide mouse model. We also for the first time document that 

microRNAs can be used to restrict transgene expression in the CNS using AAVs as 

vectors. Additionally, we define a therapeutic time window for delivery of vectors in CD 

showing that vector administration as late as P20 can rescue lethality in the animal 

model. In Chapter 4, we further try to increase efficiency by intracerebroventricular 

delivery of rAAVs to minimize systemic viral load, potential systemic toxicity, off target 

expression and lower vector manufacturing burden yet achieve widespread transgene 

expression. We extensively describe peripheral pathology in the animal model and report 

for the first time that the immune system may be severely compromised in CD. We also 

shed light on the role of neural cell types on the disease pathophysiology. 
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CHAPTER II: CHARACTERIZATION OF AAV VARIANTS THAT CAUSE 

WIDESPREAD CNS TRANSDUCTION FOLLOWING INTRAVENOUS 

DELIVERY 

The following chapter contains parts of the manuscripts 

Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R, Wang H, Mueller C, Sena-Esteves M, 

Brown R, Xu Z, Gao G. (2011). Several rAAV vectors efficiently cross the blood-brain 

barrier and transduce neurons and astrocytes in the neonatal mouse central nervous 

system. Molecular Therapy Aug; 19(8):1440-8 [PMID: 21610699]. 

 

Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, Su Q, Kramer J, Zhong L, Ahmed SS, 

Zhang H, He R, Desrosiers RC, Brown R, Xu Z, Gao G. (2014) Global CNS transduction 

of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman 

primates by rAAVrh.10. Molecular Therapy Jul; 22(7):1299-309. [PMID: 24781136] 

 

The studies were a large part of my rotation project and I was involved in perfusing, 

embedding, sectioning of the mice used. All the staining for mouse tissues was done on 

these sections. 
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CHAPTER II: Characterization of AAV variants that cause widespread CNS 

transduction following intravenous delivery 

Introduction 

Monogenic neurodegenerative disorders where gene mutations cause loss of 

function or gain of a deleterious new property/function are ideal candidates for gene 

therapy.  This may be either through the delivery of the normal gene, in the former case, 

or vehicles that can silence a miscreant gene and protein by RNA interference 

(Manfredsson and Mandel, 2010; Urbaniak Hunter et al., 2010). Though targeted vector 

delivery into discrete structures in the central nervous system (CNS) is highly effective 

for diseases with a localized lesion, or those where localized transgene expression is 

sufficient to alleviate disease phenotype (Cearley et al., 2008), it comes at a cost of 

surgical risks and clinical costs. Moreover such an approach is not suitable for global 

CNS diseases that require more dispersed transduction. 

Among non viral and viral vectors, recombinant adeno-associated viruses 

(rAAVs) have demonstrated a great potential in CNS gene transfer (Davidson and 

Breakefield, 2003).  In human clinical trials, direct injection of AAV vectors gave rise to 

sustained transgene expression and therapeutic effect (Kaplitt et al., 2007). Emerging 

self-complementary AAV (scAAV) vectors hold extra advantages over their single strand 

counterparts due to higher gene delivery efficiency (McCarty, 2008). 

An ideal approach to address widespread CNS disorders would harness the 

vasculature since the brain is a highly vascularized organ. A critical impediment to 
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widespread CNS gene transfer via the vasculature is the blood–brain barrier (BBB), 

which is a complex anatomical barrier including endothelial tight junctions, astrocytic 

end-feet, pericytes, and cellular basement membrane (Bradbury, 1985). The barrier 

precludes the entry of >98% of small molecule and almost all macromolecules including 

therapeutic proteins and gene delivery vectors into the CNS (Pardridge, 2002).  

In order to overcome the restricted entry of viral particles into the CNS and low 

transduction efficiency, discovery of new clades of novel primate AAVs with unique 

tissue/cell tropisms and varying efficiencies of in vivo gene transfer is important (Gao et 

al., 2004; Gao et al., 2002). One of these novel primate serotypes, rAAV9, can achieve 

robust transduction of neuronal and glial cell types in the CNS of murine neonates 

following intravenous injections (Foust et al., 2009) and has shown encouraging results in 

treating a number of CNS diseases that require early life intervention (Falk et al., 2013; 

Hinderer et al., 2014; Jiang et al., 2006).This is an important breakthrough in CNS gene 

therapy, although the host-serological response to AAV9 may preclude its widespread 

use.  

There are however other challenges to rAAV-mediated systemic gene delivery to 

the CNS. The first challenge is to deliver rAAV specifically to the CNS. The viral capsid 

is the principal determinant for AAV tissue tropism (Vandenberghe et al., 2009), and the 

liver is the major target for AAV vectors (Nakai et al., 2005). Systemic administration of 

some rAAV serotypes transduces the liver and other tissues, including the CNS, skeletal 

muscle and heart (Wang et al., 2005; Zincarelli et al., 2008). Such off-target transduction 
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raises the spectre of overexpression of transgenes outside the CNS, potentially eliciting 

toxic responses. The other challenge is to confine transgene expression to the CNS. 

Historically, CNS-specific promoters have been used for this purpose; however, tissue-

specific, strong CNS promoters like the neuron-specific enolase (NSE) and neuron-

specific human platelet-derived growth factor-β (PDGF-β) chain are too large to be 

packaged into the rAAV genome (Hioki et al., 2007). 

We first report a survey of nine scAAV vectors for their CNS gene transfer 

properties after systemic administration in neonatal mice using rAAV9 as a control. We 

investigated enhanced permeation of the BBB and improved delivery of enhanced green 

fluorescent protein (EGFP) to the CNS following facial vein injection on P1. Our data 

document that the ability to cross the BBB in neonatal mice is not restricted to rAAV9. 

We then characterized highly CNS tropic rAAV(s) with naturally reduced peripheral 

tissue tropism for systemic gene delivery to the CNS in adult animals. We compared the 

CNS transduction efficiencies of 12 different rAAVs (rAAV 1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, 

rh.10, rh.39, and rh.43) in 10-week-old mice following systemic delivery.  
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Material and Methods 

Vector design and construction: The EGFP reporter vector genome uses a hybrid 

cytomegalovirus enhancer/CB promoter cassette; AAV2 inverted terminal repeats, rabbit 

beta globin intron, eGFP cDNA and a rabbit globin poly A. The miRNA-regulated EGFP 

construct was created by inserting three copies each of miR-1 and miR-122 target sites in 

tandem in the 3′ UTR of EGFP reporter gene as previously described (Xie et al., 2012).  

AAV production: All scAAV vectors were produced by trans-encapsidation of rAAV 

vector genome flanking by inverted terminal repeats from AAV2 with the capsids of 

different AAVs using the method transient transfection of 293 cells and CsCl gradient 

sedimentation as described previously (Sun et al., 2010). Vector preparations were titred 

by quantitative PCR. Purity of vectors was assessed by 4–12% SDS-acrylamide gel 

electrophoresis and silver staining (Invitrogen, Carlsbad, CA). Morphological integrity of 

each vector used in the study was examined by transmission electron microscopy of 

negative stained recombinant AAV virions at Electronic Microscopy Core, University of 

Massachusetts Medical School, Worcester, MA.  

Animal procedures: All animal procedures were approved by the Institutional Animal 

Care and Use Committees of University of Massachusetts Medical School.  

For neonatal injections, wild-type C57BL/6 mice littermates were used. Breeding 

were conducted using programmatic timing. Pregnant mice were monitored daily from 

embryonic day 17 to 21 to ensure the newborn pups could be dosed with vectors on P1. 

Vectors were injected in P1 pups at a concentration of 4 × 1012 genome copies/ml in PBS 
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(Stoica et al., 2013).  Each pup received 4 × 1011 genome copies of different 

scAAVCBEGFP vectors (rAAV1, rAAV2, rAAV5, rAAV6, rAAV6.2, rAAV7, rAAV9, 

rAAVrh.10, rAAVrh.39, rAAVrh.43; n = 6–8 mice per group).  

For adult injections, 10-week-old C57BL/6 mice (n = 3) with an average body weight of 

20 g were treated with rAAV vectors via tail vein injections at a dose of 4 × 1012 

GCs/mouse in 100μl PBS.  

Histological processing: Mice were anesthetized 21 days postinjection and transcardially 

perfused with 15 ml of cold phosphate-buffered saline (PBS) followed by 15 ml of 

fixation solution containing 4% paraformaldehyde (v/v) in PBS. Brain and spinal cord 

were extracted and postfixed in 4% paraformaldehyde overnight (n = 3). The mouse 

tissues were cryoprotected in 30% sucrose (w/v) in PBS, embedded in Tissue-Tek OCT 

compound (Sakura Finetek, Torrance, CA) and frozen in a dry ice/ethanol bath. Serial 40-

μm floating sections of the entire brain as well as 3-mm segments from cervical, thoracic, 

and lumbar regions of the spinal cord were cut with a Cryostat (Thermo Microm HM 

550; Thermo Scientific, Walldorf, Germany). 

Immunohistochemistry: Brain and spinal cord sections were stained as floating sections 

in 12-well plates. Sections were washed three times in PBS for 5 minutes each time, and 

then incubated in blocking solution containing 0.1% Triton-X100 (v/v) (Fisher, Pittsburg, 

PA) and 10% goat serum (v/v) (Invitrogen, Frederick, MD) for 1 hour at room 

temperature. Sections were then incubated with primary antibodies diluted in blocking 

solution at 4 °C overnight. The following day tissue sections were washed twice in 0.05% 
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Tween-20 (v/v) in PBS (PBST) and once with PBS, with each washing step lasting 10 

minutes. Sections were subsequently incubated with appropriate secondary antibodies in 

blocking buffer for 1 hour at room temperature. Sections were washed again as above. 

For fluorescent detection, sections were mounted with Vectashield with 4',6-diamidino-2-

phenylindole (DAPI; Vector Laboratories, Burlingame, CA) and analyzed using an 

epifluorescent microscope (Nikon Eclipse Ti; Nikon Instruments, Melville, NY) or a 

Leica TSC-SP2 AOBS confocal microscope equipped with a ×63 oil lens and a DM-

IRE2 inverted microscope.  

For avidin biotin complex-3,3′-diaminobenzidine detection, sections were incubated in 

0.1% peroxide/PBS and biotin/avidin blocking solution prior to primary antibody 

incubation to quench endogenous peroxidase and biotin activity. After incubation with a 

biotinylated secondary antibody, sections were washed and incubated in ABC reagent 

(PK-6200; VectorLabs) for 30 minutes at room temperature. After a quick wash in PBS, 

sections were developed with DAB solution (SK-4105; VectorLabs) for 60 seconds 

followed by three consecutive washes in PBS lasting 5 minutes each. Sections were 

subsequently dehydrated in a graded ethanol series of 50, 70, 95, and 100%. After two 

changes of xylene, sections were coverslipped with permount mounting media (Fisher) 

and left overnight to dry.  

The primary antibodies used in this study were as follows: anti-APC (OP80, Calbiochem, 

Billerica, MA) rabbit anti-GFP (Invitrogen), goat anti-ChAT and mouse anti-NeuN (both 

from Millipore, Billerica, MA), mouse anti-glial fibrillary acidic protein (Cell Signaling, 
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Danvers, MA), rat anti-CD34, rabbit anti-CD31 (both from Abcam, Cambridge, MA), 

mouse anti-Calbindin D-28k (Sigma, St Louis, MO), and mouse anti-tyrosine 

hydroxylase monoclonal antibody (Millipore). The secondary antibodies used in the 

study included: DyLight 488 AffiniPure Donkey antirabbit IgG; DyLight 549 AffiniPure 

Donkey Anti-Goat IgG; DyLight 549 Affinipure Goat antirat IgG; DyLight 594 

AffiniPure Goat antimouse IgG (all from Jackson ImmunoResearch, West Grove, PA); 

goat antirabbit IgG-Alexa fluro 488 and goat antimouse IgG-Alexa fluro 568 (both from 

Invitrogen). 

Semiquantitative analysis of EGFP-positive cells: To provide a semiquantitative 

measure of the amount and type of cells that were transduced by rAAVs in the CNS, we 

used a previously described scoring system (Cearley et al., 2008). Briefly, the number of 

(+) corresponds to the number of EGFP-positive cells where (+) means very few positive 

cells, (++) some positive cells, (+++) many positive cells, (++++) large areas of positive 

cells, and (+++++) saturated with positive cells. Regions with no EGFP expression are 

marked as (−). Mean scores were calculated by averaging plus signs for all brain and all 

spinal cord areas (n = 3).  

Next, we selected 12 subanatomical, functionally important regions in the brain as well as 

cervical, thoracic, and lumbar sections of the spinal cord for quantitative analysis of 

images that were taken on a Nikon Eclipse Ti inverted microscope equipped with a 

Retiga 2000-RV CCD cooled camera. Nikon NIS elements AR software version 3.2 was 

used for intensity quantification. Prior to quantification, optimal light source intensity and 
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exposure times were obtained by plotting an intensity/exposure time curve using 

fluorescence reference slides (Ted Pella, prod. 2273; Ted Pella, Redding, CA). It was 

found that the intensity and exposure times had linear correlation. In addition, 

overexposure and extreme underexposure distorts the linear correlation. We have 

therefore used the maximum intensity (ND1) and a 20ms exposure for all sections to 

avoid overexposure. For quantification, fixed region of interest was used to quantify the 

brightest area of any given brain region. A mean intensity (total intensity/size of region of 

interest) was obtained for each region of all serotypes. Statistical analysis was performed 

using one-way analysis of variance test for comparison of semiquantitative scores as well 

as biodistribution data.  
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Results 

Intravenous injection of rAAVs mediated widespread transduction in neonatal mouse 

CNS  

We compared the CNS transduction profiles of the following recombinant AAV 

vectors encoding EGFP: rAAV1, rAAV2, rAAV5, rAAV6, rAAV6.2, rAAV7, rAAV9, 

rAAVrh.10, rAAVrh.39, and rhAAVrh.43 21 days post injection in P1 pups. As assessed 

by the scoring system (Cearley et al., 2008), rAAV9 was indeed among the best 

performers; seven out of nine other rAAVs tested (rAAV1, rAAV6, rAAV6.2, rAAV7, 

rAAVrh.10, rAAVrh.39, and rAAVrh.43), but not rAAV2 and rAAV5, also gave rise to 

widespread EGFP expression in the CNS [Table 2.1]. However, the apparent number of 

EGFP-positive cells varied between CNS structures in a vector dependent manner. The 

region with the highest EGFP transduction was the hypothalamus followed by medulla, 

striatum, hippocampus, cortex, and cerebellum. In contrast, the transduction efficiency in 

olfactory bulb and thalamus was relatively low [Table 2.1]. We also assessed average 

EGFP signal intensity/pixel in 12 different CNS regions to derive a more quantitative 

assessment of gene transfer efficiency of each rAAV [Figure 2.1a]. For the eight rAAV 

vectors that achieved CNS transduction after intravenous injection, the mean EGFP 

signal intensity/pixel was relatively low in cortex, habenular nucleus, cornu ammonis, 

dentate gyrus, thalamus, cerebellum, and olfactory bulb, moderate in choroid plexus and 

caudate- putamen, but high in hypothalamus, medulla and amygdala [Figure 2.1a]. Next, 

the average EGFP signal intensity/pixel in the brain (average of 12 regions) for different  
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Table 2.1 Semi Quantitative evaluation of vector performance. Based on the Cearley 

system, we established a scoring system to evaluate efficiency of vector transduction (See 

Materials and Methods).  

Scoring: (−) no transduction, (+) very few positive cells, (++) some positive cells, (+++) 

many positive cells, and (++++) region is almost saturated with EGFP-positive cells. The 

number of animals (n) is given to the right of the score. 
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Table 2.1 Semi Quantitative evaluation of vector performance. 
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Figure 2.1 Quantification of GFP intensity levels in brain and spinal cord. 4 × 1011 

genome copies of ten different rAAV vectors were injected into neonatal P1 pups via the 

superficial temporal vein. Mice were killed 21 days after injection, and 40 μm brain and 

spinal cord cryosections were stained with an anti-EGFP antibody for 

immunofluorescence. (a) EGFP signal intensity/pixel in different brain and spinal cord 

regions was measured for each rAAV vector. (b) Average EGFP signal intensity/pixel in 

brain and spinal cord corresponds to the average value across all respective structures 

analyzed individually in (a). CSP, cervical section of spinal cord; D, dorsal region; 

EGFP, enhanced green fluorescent protein; LSP, lumbar section of spinal cord; rAAV, 

recombinant adeno-associated virus; TSP, thoracic section of spinal cord; V, ventral 

region. 
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Figure 2.1 Quantification of GFP intensity levels in brain and spinal cord.  
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rAAVs were compared [Figure 2.1b]. AAVrh.10, AAVrh.39, and AAVrh.43 stood out 

for their overall gene transduction efficiency in brain, followed by AAV7, AAV9, and 

AAV1 [Figure 2.1b]. 

These eight effective serotypes also mediated EGFP expression throughout the 

spinal cord, to different degrees. The same quantitative analysis was performed for each 

rAAV in the cervical, thoracic and lumbar sections of the spinal cord [Figure 2.1a]; the 

average EGFP signal intensity/pixel of the three sections for different rAAVs were also 

compared [Figure 2.1b]. Overall, rAAV1, rAAV9, rAAVrh.10, rAAVrh.39, and 

rAAVrh.43 displayed stronger transduction in the spinal cord with the highest EGFP 

signal intensity/pixel observed in cervical, followed by thoracic and lumbar sections of 

the spinal cord [Figure 2.1]. For rAAV2 there were only a few EGFP-positive cells in 

hippocampus, cortex, and hypothalamus, while none was observed in most CNS regions 

in AAV5-injected mice except in the hypothalamus.  

The following is a more detailed description of our findings. Selection of CNS 

structures was based on their relevance to neurodegenerative diseases in humans (e.g., 

striatum in Huntington’s disease, hippocampus, and cortex in Alzheimer’s disease, 

cerebellum in spinal-cerebellar ataxias, spinal cord in amyotrophic lateral sclerosis, and 

spinal cord injury), and distinct transduction profiles by different rAAVs.  

Striatum. Previous studies have shown that systemic injection of rAAV9 in neonatal mice 

yields robust striatal transduction (Foust et al., 2009). In this study, a large number of 

neurons were also transduced by rAAVrh.10, confirmed by costaining with a neuronal 
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marker [Figure 2.2]. Other vectors, including rAAVrh.39, rAAVrh.43 and rAAV7, also 

mediated moderate transduction in striatum. In contrast, rAAV6, rAAV6.2, and rAAV1 

resulted in relatively lower EGFP expression in this structure [Figure 2.2].  

Hippocampus. Large numbers of EGFP-positive neurons were observed bilaterally in all 

regions of the hippocampus, namely dentate gyrus, hilus, CA1, CA2, and CA3 for the 

mice that received intravenous rAAVrh.10, rAAV9, rAAV7, rAAVrh.39, and rAAVrh.43 

(ranked by transduction efficiency in this structure, Table 2.1 and Figures 2.1 & 2.2). In 

addition to the neuronal transduction pattern, we also observed EGFP-positive cells that 

morphologically resembled astrocytes [Figure 2.2]. This was further confirmed by double 

staining with antibodies against EGFP and GFAP, an astrocyte marker. For intravenously 

delivered rAAV1, rAAV6, and rAAV6.2 only a small proportion of EGFP-positive cells 

in the hippocampus [Figure 2.2].  

Cortex. AAV7, AAV9, AAVrh.10, AAVrh.39, and AAVrh.43 vectors achieved moderate 

EGFP transduction in cortex targeting mainly neurons and astrocytes [Table 2.1 and 

Figures 2.1 & 2.2]. Prominent EGFP-positive cells were typically observed in the 

ventrolateral regions of the cortex, including posterior agranular insular cortex, piriform 

cortex, lateral entorhinal cortex, posterolateral cortical amygdaloid nucleus, and 

posteromedial cortical amygdaloid nucleus [Figure 2.2]. The cortical transduction 

efficiency of rAAVrh.10, rAAV9, rAAVrh.39, and rAAVrh.43 was comparable. AAV1, 

AAV6, and AAV6.2 vectors also transduced cortical cells, albeit at considerably lower 

levels than the rAAV vectors mentioned above [Figure 2.2]. 
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Figure 2.2 Strong and widespread EGFP expression in mouse brain after neonatal 

injections. 4 × 1011 genome copies of rAAVs vectors were injected into neonatal 

postnatal day 1 (P1) pups, and distribution of EGFP expression in the brain was analyzed 

at 21 days post-injection. 40 micrometer thick cryosections were stained with an anti-

EGFP antibody for immunofluorescence. The regions shown are: olfactory bulb, 

striatum, hippocampus, cortex, hypothalamus, cerebellum, and medulla. Representative 

sections are shown for each rAAV. Bars = 100 μm. EGFP, enhanced green fluorescent 

protein; rAAV, recombinant adeno-associated virus. 
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Figure 2.2 Strong and widespread EGFP expression in mouse brain after neonatal 

injections.  
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Hypothalamus. The most impressive EGFP signal was observed in the hypothalamus for 

all eight effective vectors. Intravenous administration of rAAVrh.10 resulted in EGFP 

expression in the entire hypothalamus, followed by rAAVrh.39, rAAV7, rAAV6.2, 

rAAVrh.43, rAAV9, rAAV1, and rAAV6 [Table 2.1 and Figures 2.1 & 2.2]. Interestingly 

most EGFP-positive cells in this structure have an astrocytic morphology which was 

confirmed by immunostaining. The strong and widespread astrocytic EGFP signal tended 

to obscure direct examination of morphological details of other transduced cells.  

Cerebellum. EGFP-positive cells and fibers were easily detected in cerebellum for all 

rAAV vectors except for AAV2 and AAV5 [Table 2.1 and Figures 2.1 & 2.2]. A large 

number of EGFP-expressing cells were found in the Purkinje and granule cell layers for 

rAAV7, rAAV9, rAAVrh.10, rAAVrh.39, and rAAVrh.43 [Figure 2.2]. Interestingly, the 

transduction profile of rAAV1 vector was restricted to cells in the granule cell layer, 

while rAAV6 and rAAV6.2 were localized in cells in the Purkinje cell layer [Figure 2.2].  

Medulla. As above, all rAAVs, except for rAAV2 and rAAV5, mediated moderate to 

robust EGFP expression in medulla with most green cells being present in the outer rim 

[Figure 2.2]. Transduction efficiencies of these rAAV in this region are ranked in the 

following order: rAAVrh.39 = rAAVrh.43 > rAAV.rh10 > rAAV1 > rAAV9 > rAAV7 > 

rAAV6.2 > rAAV6 [Table 2.1 and Figures 2.1a]. Most EGFP-transduced cells had an 

astrocytic morphology.  

Spinal cord. rAAVrh.10, rAAV9, rAAVrh.39, and rAAVrh.43 gave rise to robust EGFP 

expression in cervical gray and white matter, while rAAV1, rAAV6.2, and rAAV7 
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showed moderate EGFP expression [Table 2.1 and Figures 2.1 & 2.3]. The EGFP signal 

was observed only in white matter for rAAV1. The transduction ability of all rAAVs 

decreased from cervical to lumbar spinal cord, although EGFP-positive cells were still 

visible in the latter region. Large populations of EGFP-positive cells with astrocytic 

morphology were observed throughout the spinal cord [Figure 2.3]. Additionally, 

rAAVrh.10, rAAV9, rAAVrh.39, rAAVrh.43, and rAAV7 also transduced cells with 

motor neuron morphology in the ventral regions of the spinal cord [Figure 2.3]. 

Ascending dorsal column fibers and dorsal root ganglia displayed remarkable 

transduction with strong EGFP expression in dorsal root ganglia neurons [Figures 2.4a & 

b]. The identities of rAAV transduced cell types in the spinal cord were characterized by 

co-immunofluorescence staining with antibodies against EGFP and cell-specific markers. 

Seven rAAV vectors can achieve efficient global transduction of the adult mouse CNS 

where AAVrh.8 is the best 

 To determine the transduction efficiency of each serotype after intravenous 

injection in adult mice, we detected and quantified the enhanced green fluorescent protein 

(EGFP) signal from the coronal sections of brains and transversal sections of cervical, 

thoracic, and lumbar spinal cords [Figures 2.5, 2.6 & 2.7]. Based on the density of the 

transduced cells, we grouped 12 rAAVs into four groups [Figures 2.5, 2.6; Table 2.2]. 

Group 1 consisted of rAAVrh.8, rAAVrh.10, and rAAV9. This group ranked consistently 

as the top three in the transduction levels in both brain and spinal cord; the only exception 

being the spinal cord neurons, where the top seven vectors showed similar levels of  
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Figure 2.3 EGFP expression in mouse spinal cord after neonatal intravenous 

injection of rAAVs. 4 × 1011 genome copies of rAAVs were injected into neonatal 

postnatal day 1 (P1) pups, and distribution of EGFP expression in the spinal cord was 

analyzed at 21 days post-injection. Forty micrometer thick cryosections from cervical, 

thoracic and lumbar regions were stained with an anti-EGFP antibody for 

immunofluorescence. Representative sections are shown for each rAAV. Bars = 100μm. 

EGFP, enhanced green fluorescent protein; rAAV, recombinant adeno-associated virus. 

 

 

 



56 
 

Figure 2.3 EGFP expression in mouse spinal cord after neonatal intravenous 

injection of rAAVs.  
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Figure 2.4 Transduction of dorsal root ganglia after neonatal intravascular infusion 

of rAAVs Neonatal P1 pups received 4×1011 GCs of rAAVs and EGFP expression in 

dorsal root ganglia analyzed at 21 days post-injection. (a) EGFP expression in dorsal root 

ganglia neurons was analyzed by double immunofluorescence staining for EGFP (green) 

and a neuronal-specific marker (NeuN, red) for systemically delivered rAAVs 7, 9, rh.10 

and rh39.  (b) Transduction of neonatal mouse dorsal root ganglia by systemically 

delivered rAAVs 1, 6, 6.2 and rh43 was stained only using anti-EGFP antibody. Scale 

bars represent 75μm. 
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Figure 2.4 Transduction of dorsal root ganglia after neonatal intravascular infusion 

of rAAVs.  

a. 

 

b. 
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Figure 2.5 General transduction characteristics of 12 rAAVs in the adult mouse 

brain. rAAVEGFPs were injected into the tail vein of 10-week old mice at 4×1012 

genome copies (GCs) per mouse (n = 3). Forty micrometer frozen sections of central 

nervous system (CNS) tissues were obtained 21 days postinjection and stained with 

antibody against EGFP. Staining was visualized with an avidin–biotin complex/3,3′ -

diaminobenzidine substrate system. Shown are composite images of bregma -2.00 mm 

brain sections of rAAV-injected mice organized into four groups based on EGFP 

semiquantitative score and extend of distribution. Bar = 1,000 μm. EGFP, enhanced 

green fluorescent protein. 
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Figure 2.5 General transduction characteristics of 12 rAAVs in the adult mouse 

brain.  
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Figure 2.6 General transduction characteristics of 12 rAAVs in the adult mouse 

spinal cord. rAAVEGFPs were injected into the tail vein of 10-week old mice at 4 × 1012 

genome copies (GCs) per mouse (for further description, see Figure 1, n = 3). Shown are 

composite images of cervical spinal cord, thoracic spinal cord, and lumbar spinal cord 

sections of rAAV-injected mice organized into four groups based on EGFP 

semiquantitative score and extent of distribution. Bar = 250μm. 
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Figure 2.6 General transduction characteristics of 12 rAAVs in the adult mouse 

spinal cord. 
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Figure 2.7 Quantification of transduced cell types in the central nervous system 

(CNS) of adult mice.  EGFP-positive CNS cell types are microscopically scored, and the 

means of (e,h) rAAV transduced astrocytes, (d,g) neurons, and (f,i) oligodendrocytes in 

the (b,d–f) brains and (c,g–i) spinal cords are shown (n = 3). **P < 0.0033, ***P < 0.001, 

****P < 0.0001. ns, not significant. 
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Figure 2.7 Quantification of transduced cell types in the central nervous system 

(CNS) of adult mice.   
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transduction [Figures 2.7g & 2.8]. Group 2 had four vectors, rAAV7, rAAV8, 

rAARrh.39, and rAAVrh.43 and ranked lower than the group 1; however their overall 

transduction levels were still excellent. In some cases (e.g., total spinal cord and spinal 

cord neurons), the differences between this group and group 1 were small and 

insignificant [Figures 2.5, 2.6 & 2.7c&g; Table 2.2]. All group 1 and group 2 vectors 

transduced spinal cord motor neurons robustly [Figure 2.8]. Group 3 consisted of three 

vectors, rAAV1, rAAV6, and rAAV6.2. The transduction levels by this group were lower 

than groups 1 and 2. In most instances, rAAV6.2 ranked the highest and the AAV1 the 

lowest within this group [Figures 2.5, 2.6, 2.7 & 2.8]. Group 4 consists of two vectors, 

rAAV2 and rAAV5.This group had the lowest transduction levels [Figures 2.5, 2.6 & 

2.7]. Based on these assessments, we focused our detailed analysis on the group 1 vectors 

and some representatives of group 2 and group 3 vectors. The group 1 vectors transduced 

cells in wide areas of the CNS, including cortex, striatum, hippocampus, thalamus, 

hypothalamus, amygdala, corpus callosum [Figures 2.5, 2.9, 2.10 & 2.11], the choroid 

plexus [Figure 2.12], and all three spinal cord regions (i.e., cervical, thoracic, and lumbar) 

[Figures 2.6 & 2.8]. Overall, rAAVrh.8 appeared to transduce most robustly relative to 

other vectors. rAAVrh.8 consistently ranked first in different regions and in different cell 

types [Figure 2.7] by a semiquantitative scoring system (see Materials and Methods). The 

only exceptions were the spinal neurons, where the top seven serotypes had the same 

transduction efficiency [Figure 2.7g]. 
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Table 2.2 Groups of rAAVs based on transduction efficiency. 
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Figure 2.8 Motor neuron transduction patterns of different rAAVEGFPs in the 

lumbar spinal cords of adult mice.  

rAAVvectors were injected into the tail vein of 10-week-old mice at 4×1012 genome 

copies per mouse. Staining for EGFP was carried out as described in Figure 1 legend. 

Shown are the compilation of high-magnification images of central nervous system 

(CNS) cell transduction and their corresponding locations in a low-magnification view    

Bars, 20µm. 
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Figure 2.8 Motor neuron transduction patterns of different rAAVEGFPs in the 

lumbar spinal cords of adult mice. 
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Figure 2.9 Transduction profiles of various neuronal populations by rAAVrh.8. 

rAAVrh.8 vectors were injected into the tail vein of 10-week-old mice at 4×1012 genome 

copies per mouse. Staining for EGFP was carried out as described in Figure 1 legend. 

Shown are the compilation of high-magnification images of central nervous system 

(CNS) cell transduction and their corresponding locations in a low-magnification view at 

bregma -2.00 mm (a–i) as well as some other clinical relevant brain regions (i.e., 

olfactory bulb (OB), substantia nigra (SN), and lateral septal nucleus (LSN) and 

cerebellum) that were not present in the lower magnification view of the selected brain 

section. CC, corpus callosum; CA2, CA2 region of hippocampus; DG, dentate gyrus; PC, 

piriform cortex. Scale bars in a, c, h = 10µm; in d, f, i = 15µm, and b, e, g = 20µm. 
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Figure 2.9 Transduction profiles of various neuronal populations by rAAVrh.8. 
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Figure 2.10 Regional transduction patterns of rAAVs in the adult mouse brains. 

rAAV vectors were injected into the tail vein of 10-week-old mice at 4×1012 genome 

copies per mouse. Staining for EGFP was carried out as described in Figure 1 legend. 

Shown is the compilation of low-magnification images of central nervous system (CNS) 

regions. Bars = 20µm.  
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Figure 2.10 Regional transduction patterns of rAAVs in the adult mouse brains.  
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Figure 2.11 Transduction profiles of various neuronal populations by rAAVrh.10 

and 9. rAAVvectors were injected into the tail vein of 10-week-old mice at 4×1012 

genome copies per mouse. Staining for EGFP was carried out as described in Figure 1 

legend. Shown is the compilation of high-magnification images of central nervous system 

(CNS) regions. Bars = 20µm.  
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Figure 2.11 Transduction profiles of various neuronal populations by rAAVrh.10 

and 9. 
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Figure 2.12 Choroid plexus transduction pattern of different I.V. delivered rAAV 

serotypes in mouse. rAAV vectors were injected into the tail vein of 10-week-old mice 

at 4×1012 genome copies per mouse. Staining for EGFP was carried out as described in 

Figure 1 legend. Shown is the compilation of low-magnification images of the choroid 

plexus above the third ventricle. Bars = 20µm.  
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Figure 2.12 Choroid plexus transduction pattern of different I.V. delivered rAAV 

serotypes in mouse. 
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Intravenous rAAV administration leads to transduction of different cell types in the 

CNS 

Neonatal injections: To confirm the identity of transduced cells in different regions of the 

CNS, we performed double immunofluorescent staining with antibodies against EGFP 

and NeuN (generic neuronal marker), glial fibrillary acid protein (GFAP; astrocyte 

marker), calbindin-D28K (Purkinje cell marker), choline acetyl transferase (ChAT; motor 

neuron marker), and tyrosine hydroxylase (TH; marker of dopaminergic neurons) [Figure 

2.13]. The immunostaining results showed that a large number of NeuN positive cells 

expressed EGFP throughout the mouse brain, which indicated widespread neuronal 

transduction. The regions with high density of transduced neurons included striatum, 

hippocampus, cortex, and hypothalamus. rAAVrh.10, rAAV9, rAAV7, and rAAVrh.39 

vectors are very efficient in mediating neuronal transduction, followed by rAAV6.2, 

rAAV1, and rAAV6 [Figures 2.2 & 2.13]. The most abundant transduced cells 

throughout the CNS were the GFAP-positive astrocytes with small cell bodies and highly 

ramified processes [Figure 2.13]. The calbindin-D28K immunostaining confirmed the 

identity of a large number of transduced cells in the cerebellum as Purkinje cells, with 

robust EGFP expression in both cell body and their tree-like processes [Figure 2.13]. The 

rAAVs proficient in transducing Purkinje cells include: rAAVrh.10, rAAV9, rAAVrh.39, 

rAAV7, rAAV6.2, and rAAVrh.43. rAAV1 and rAAV6 only transduced a small portion 

of Purkinje cells with low EGFP intensity [Figure 2.2]. Transduction of motor neurons 

was confirmed by the presence of large EGFP+/ChAT+ cells in the ventral spinal cord 

for several rAAV vectors [Figure 2.13]. rAAVrh.10, rAAV9, rAAV7, rAAVrh.39 
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showed comparable high efficiency transduction of motor neurons [Figure 2.3]. TH+ 

dopaminergic neurons in the substantia nigra were also transduced [Figure 2.13]. 

Adult injections: The group 1, 2, and 3 vectors transduce multiple cell types and various 

neuronal populations in the CNS. To identify the cell types that the vectors transduce, we 

first carried out morphological analysis on the CNS tissue sections stained for GFP. By 

high-magnification microscopy, we observed extensive transduction of neurons, 

astrocytes, and oligodendrocytes in various areas of the CNS [Figures 2.7, 2.8, 2.9, 2.10 

& 2.11]. For example, the group 1 vectors transduced granular cells in dentate gyrus 

[Figure 2.9b, 2.10 & 2.11b], pyramidal neurons in CA2 [Figure 2.9d, 2.10 & 2.11d], 

medial spiny neurons and astrocytes in striatum [Figure 2.9e, 2.10 & 2.11e ], Purkinje 

neurons in cerebellum [Figure 2.9, 2.10 &2.11j], neurons and astrocytes in thalamus 

[Figure 2.9h, 2.10 & 2.11h], hypothalamus  [Figure 2.9g & 2.11g], amygdala  [Figure 

2.9i & 2.11i], layer 3–6 of the cortex  [Figure 2.9a, f, 2.10 & 2.11a, f], substantia nigra  

[Figure 2.9 & 2.11k] and lateral septal nucleus (LSN) [Figure 2.9h & 2.11l]. 

Additionally, they also transduced oligodendrocytes in corpus callosum  [Figure 2.9c, 

2.10 & 2.11c]. A similar cellular transduction pattern was also observed for group 2 and 3 

vectors, albeit that the density of transduced cells was lower than group 1 vectors 

[Figures 2.5, 2.6 & 2.10].  

To verify the transduced cell types, we performed double fluorescence staining on 

the rAAVrh.8-treated CNS tissues. Using markers for specific cell types, including NeuN 

for neurons, glial fibrillary acidic protein for astrocytes, adenomatous polyposis coli for 
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oligodendrocytes, Iba1 for microglia, and CD31 for blood vessels, we verified that EGFP 

was expressed in neurons, astrocytes, oligodendrocytes, and blood vessels but not in 

microglia [Figure 2.14].We also verified EGFP expression in several specific neuronal 

subpopulations, including Purkinje cells (calbindin), motor neurons (ChAT), medial 

spiny neurons (Darpp-32), and dopaminergic neurons (tyrosine hydroxylase) [Figure 

2.15]. 

Intravenous administration of AAV vectors in neonates mediated robust transduction 

in ventricles and brain blood vessels 

Strong EGFP expression was observed in choroid plexus cells in lateral, 3rd and 

4th ventricles of the animals infused with rAAVrh.39, rAAVrh.10, rAAVrh.43, rAAV7, 

and rAAV9 (ranked by transduction efficiency) [Table 2.1 & Figure 2.16]. Ependymal 

cells lining the ventricles were also transduced. An interesting observation was an 

apparent gradient with the highest number of eGFP transduced cells in periventricular 

regions and progressively lower numbers with increasing distance from the ventricles. 

This was more obvious around the 3rd and 4th ventricles than the lateral ventricles 

[Figure 2.16]. Extensive EGFP signal was also found associated with blood vessels 

throughout the brain and spinal cord. This was verified by dual immunofluorescence 

staining for EGFP and a blood vessel endothelium specific marker, CD34. [Figure 2.17a 

& b]. Unlike the distinct rAAV transduction profiles in different regions of the brain 

parenchyma, the EGFP transduction of blood vessels throughout the CNS seemed to be 

quite uniform for any given vector.  
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Intravenous injection of AAV vectors did not cause microgliosis in neonates 

Brain sections were stained for microgial cells using Iba1. Iba-1-positive cells in 

the brain of rAAVrh.10-infused mice were comparable to PBS-injected mice [Figure 

2.18]. This result suggested that intravascularly delivered rAAVs do not cause sustained 

inflammation in the CNS of mice 3 weeks after the injection of P1 neonates. However, it 

remains to be determined if facial vein injection of rAAVs caused any acute microgliosis 

in the CNS at the neonatal stage since the present analysis was performed 3 weeks later.  

rAAVrh.8 injections result in reduced peripheral tissue dissemination in adult mice 

In addition to strong and widespread transduction in the CNS, low peripheral 

tropism is an important property of an ideal viral vector for systemically delivered CNS-

targeted gene therapy. To characterize biodistribution profiles of intravenous delivered 

rAAV in various tissues of the injected mice, qPCR quantification of rAAV genomes was 

carried out for the group 1 vectors in brain, spinal cord, lung, kidney, pancreas, skeletal 

muscle, heart, and liver tissues [Figure 2.19a]. Persistent rAAVrh.8 genomes were similar 

in amounts to those of rAAV9 and rAAVrh.10 in the brain but significantly lower in the 

liver. To assess the degree of transduction in the brain relative to peripheral tissues, we 

calculated ratios between the genome copies in the brain and periphery. There was no 

significant difference between the vectors in the group 1 probably due to a high degree of 

variation among the injected animals [Figure 2.19b]. Nevertheless, we observed a trend 

toward relatively high CNS transduction over the periphery for rAAVrh.8 compared with 

rAAVrh.10 and rAAV9.  
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Figure 2.13 Analysis of transduced cell phenotype in mouse CNS after neonatal 

intravascular delivery of rAAVs. 

Forty micrometer thick sections of brain and spinal cord from AAV-injected mice were 

stained for immunofluorescence using antibodies against EGFP and cell-type specific 

markers for neurons [neuronal-specific marker (NeuN)], astrocytes [glial fibrillary acid 

protein (GFAP)], cerebellar Purkinje cells (calbindin-D-28k), spinal cord motor neurons 

[choline acetyl transferase (ChAT)], and dopaminergic neurons in the sustantia nigra 

[Tyrosine hydroxylase (TH)]. All rAAVs were examined, but for each cell type, only one 

representative picture is shown. Scale bars sizes are indicated in each picture. AAV, 

adeno-associated virus; CNS, central nervous system. 

 



82 
 

Figure 2.13 Analysis of transduced cell phenotype in mouse CNS after neonatal 

intravascular delivery of rAAVs.  



83 
 

Figure 2.14 Identification of cell types transduced in the CNS of adult mice injected 

with rAAVrh.8EGFP. Sections were stained with antibodies against EGFP, NeuN 

(neurons), GFAP (astrocytes), APC (oligodendrocytes), Iba1 (microglia), CD31 (blood 

vessels). Objective ×60. Bar = 20 µm. APC, adenomatous polyposis coli; GFAP, glial 

fibrillary acidic protein. 
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Figure 2.14 Identification of cell types transduced in the CNS of adult mice injected 

with rAAVrh.8EGFP. 
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Figure 2.15 Identification of neuronal populations transduced in the CNS of adult 

mice injected with rAAVrh.8EGFP Sections were stained with antibodies against 

EGFP, calbindin (Purkinge cells); ChAT (Motor neurons); Darpp32 (medial spiny 

neurons) and TH (dopaminergic neurons Objective ×60. Bar = 20 µm. ChAT, Choline 

acetyl trasnferase; TH, Tyrosine hydroxylase. 
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Figure 2.15 Identification of neuronal populations transduced in the CNS of adult 

mice injected with rAAVrh.8EGFP. 
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Discussion 

Though it is well documented that intravascular-delivered rAAVs are excellent 

vectors for CNS gene therapy in neonatal animals (Foust et al., 2009; Rahim et al., 2011), 

there is no comprehensive characterization of such vectors. We characterized the CNS 

transduction profile of 10 different rAAV vectors delivered by intravascular infusion in 

neonatal mice and found eight out of ten rAAVs can cross the BBB and mediate gene 

transfer to the neonatal mouse CNS with varying degrees of efficiency [Figures 2.1, 2.2 

& 2.3 and Table 2.1]. After systemic administration, rAAVrh.10, rAAVrh.39, 

rAAVrh.43, and rAAV9 are the most effective rAAVs with similar transduction 

capabilities and cellular tropism, as assessed by overall EGFP expression in the CNS. 

Specifically, a number of regions in the mouse CNS, including striatum, hippocampus, 

cortex, hypothalamus, cerebellum, medulla, and cervical spinal cord, all revealed 

substantial EGFP expression. In addition, rAAV6.2 and rAAV7 were also very effective, 

but the efficiencies of EGFP transduction in the targeted regions were consistently lower 

than those obtained with the four top vectors. Still further down the spectrum were 

rAAV1 and rAAV6, which did achieve some CNS transduction, but their efficiency was 

quite low. Finally, rAAV2 and rAAV5 revealed little or no CNS gene delivery after 

systemic administration [Table 2.1]. It is worth noting that native EGFP expression was 

clearly detectable in brain and spinal cord sections for most of the rAAVs without 

immunostaining, which further demonstrates the robustness and extensiveness of CNS 

transduction in our study [Figure 2.20]. 
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In addition to the global delivery properties of several rAAVs described above, 

some rAAVs showed unique transduction profiles in the CNS. For instance, rAAV1 

primarily transduced granule cells in the cerebellum, while rAAV6 and rAAV6.2 mostly 

transduced Purkinje cells, and yet others transduced both [Figure 2.2]. This suggests that 

once across the BBB, the rAAVs display different tropisms, which can be attributed to 

the capsid given that the vector genome used in all vectors was the same. 

 The situation however would be different in adult mice where intravenous 

injected rAAVs would generate limited CNS transduction due to the advanced BBB 

development (Fu et al., 2003; Manfredsson et al., 2009). We demonstrate that several 

rAAVs are capable of crossing the BBB efficiently following intravenous injection in 

adult animals using a semiquantitative scoring system (Cearley et al., 2008). We do, 

however, recognize that this system has disadvantages in assessing absolute differences 

between serotypes and more extensive quantitative analyses are needed. Another caveat 

of this study is the number of animals per group (n = 3). Although, three to four animals 

per group are widely used to evaluate the transduction efficiency of rAAV (Cearley and 

Wolfe, 2006; Fu et al., 2003; Gray et al., 2011; Zincarelli et al., 2008), animal-to-animal 

variations even with inbred animals may influence the final results. To minimize this 

possibility, we exclusively injected male mice. Despite the limitations of the method, the 

semiquantitative characterization provides useful reference points for the future use of 

these AAV serotypes for intravenous delivery. 
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Figure 2.16 Efficient transduction of brain ventricular structures after intravascular 

delivery of rAAVs in neonatal mice. The choroid plexus appears to be transduced at 

high efficiency for multiple rAAV. Bars = 100 μm. 
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Figure 2.16 Efficient transduction of brain ventricular structures after intravascular 

delivery of rAAVs in neonatal mice. 
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Figure 2.17 Transduction of the brain capillary vessels by intravascularly delivered 

rAAVs. Sections were stained with antibodies against EGFP to show staining of blood 

vessels. Lower panel shows representative brain section showing specificity of staining 

by using antibodies against both eGFP and CD34 (blood vessels). Objective ×60. Bar = 

20 µm. 
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Figure 2.17 Transduction of the brain capillary vessels by intravascularly delivered 

rAAVs. 
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Figure 2.18 Evaluation of microgliosis in mice brain after systemic delivery of 

rAAVs to P1 neonates. Forty micrometer brain sections were stained with antibodies 

against Iba1 for microgliosis (blood vessels). Objective ×60. Bar = 20 µm. 
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Figure 2.18 Evaluation of microgliosis in mice brain after systemic delivery of 

rAAVs to P1 neonates. 
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Figure 2.19 Biodistribution Profiles in mice. (a) Biodistribution profiles of 

rAAVEGFPs in the adult mice after intravenous injections. Persistent rAAV-EGFP 

vector genomes in eight different tissues of rAAV-treated mice were quantified by 

quantitative polymerase chain reaction using primers/probe set targeting poly A region of 

the vector genome (n = 3). (b). Ratios of vector genomes detected in the brains to those in 

the liver, heart, lung, and pancreas tissues respectively (n = 3). ****P < 0.0001. ns, not 

significant. 
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 Figure 2.19 Biodistribution Profiles in mice. 
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Figure 2.20 Native EGFP expression in mice CNS after systemic delivery of rAAVs 

to P1 neonates. Neonatal P1 pups received 4×1011 GCs of rAAVs and EGFP expression 

analyzed at 21 days post-injection. Forty micron thick cryosections were mounted on 

slides and EGFP expression observed without immunostaining. The exposure times for 

each image are indicated. 
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Figure 2.20 Native EGFP expression in mice CNS after systemic delivery of rAAVs 

to P1 neonates. 
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Of all the rAAV serotypes tested in adult animals, the most robust in crossing the 

BBB are the group 1 vectors consisted of rAAV8, rh.10, and 9 [Figures 2.5, 2.6, 2.7 & 

Table 2.2]. Although less robust than the group 1 vectors, the group 2 vectors, consisted 

of rAAV8, 7, rh.43, and rh.39, also show strong capability of transducing cells in broad 

CNS areas following intravenous injection. These results suggest that the group 1 and 

group 2 vectors achieve similar results and expand the repertoire to be used as alternative 

vectors to deliver therapeutic genes for treating CNS diseases via intravenous injection. 

Among the top vectors, one that particularly stands out is the rAAVrh.8. With its 

global and robust transduction of the CNS cells, rAAVrh.8 consistently ranked first in 

broad CNS areas and in different cell populations [Figure 2.7]. A particularly attractive 

feature for rAAVrh.8 is its naturally lower peripheral tissue dissemination than other 

vectors, particularly in the liver [Figure 2.19], which enhances the safety profile of 

systemic gene delivery to the CNS. These qualities suggest that rAAVrh.8 is a top 

candidate vector for the treatment of the CNS diseases that afflict broad areas of the CNS. 

The robust transduction of the CNS cells following intravenous injection is a 

surprising but useful character of some rAAV vectors. How these rAAVs cross the BBB 

remains elusive (Daya and Berns, 2008; Di Pasquale et al., 2003; Manfredsson et al., 

2009). The fact that different AAV serotypes can efficiently transduce brain capillary 

endothelial cells, neurons, and astrocytes in neonatal animals strongly suggest that these 

vectors are able to extravasate from the circulation and reach the CNS parenchyma, 

possibly by crossing the BBB (Wolburg and Paulus, 2010). Our results in adult animals 
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suggest two possible routes for the rAAVs to enter and transduce the CNS. First, the 

rAAVs may cross the BBB by exploiting the fenestrated capillary vessels of 

circumventricular organs (Duvernoy and Risold, 2007). This is supported by the fact that 

we consistently observed strong EGFP expression in or near circumventricular organs 

such as the choroid plexus, ventricles [Figures 2.12 & 2.16] specially the third ventricle 

[Figure 2.10] and ependymal cells (e.g., see ventricle below corpus callosum in the 

rAAVrh.43 and rAAVrh.10 panels in Figure 2.10]. The second possibility is direct 

transcytosis of rAAVs via the innermost layer of blood vessels (Di Pasquale et al., 2003). 

In the neonatal study too, choroid plexuses and their surrounding parenchymal tissue 

were efficiently transduced. In addition, there was an apparent gradient of EGFP intensity 

from periventricular (higher) to deep parenchymal (lower) tissue. These observations 

suggest an alternate route for AAV entry into the neonatal murine CNS through the 

choroid plexus (Wolburg and Paulus, 2010), followed by widespread distribution via CSF 

and/or interstitial fluid flow to transduce neuronal and glial cells. Perivascular astrocytes 

have been shown to regulate the tightness and exchange of molecules across the BBB 

(Abbott et al., 2006; Janzer and Raff, 1987). Therefore, the presence of intensely stained 

blood vessels and their surrounding astrocytes suggest that rAAVs use this second route 

of entry into the CNS [Figures 2.14 & 2.17]. Further studies will be needed to understand 

the transduction mechanism of rAAVs. 

In summary, our study has revealed that many rAAVs are capable of crossing the 

BBB and transducing the CNS cells in both neonates as well as in adults. Of these, the 

group 1 vectors, including rAAVrh.8, rAAVrh.10, and rAAV9 have demonstrated the 
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strongest capacity for transducing CNS cells after the systemic intravenous injection. 

Importantly, rAAVrh.8 appears superior to its group 1 peers in its global CNS 

transduction and decreased peripheral tissue targeting, and thus, is currently the best 

option for delivering CNS gene therapy via intravenous injection in adult animals. 
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CHAPTER III: A SINGLE INTRAVENOUS rAAV INJECTION AS LATE AS P20 

ACHIEVES EFFICACIOUS AND SUSTAINED CNS GENE THERAPY IN 

CANAVAN MICE 

The following chapter contains the manuscript: 

Ahmed SS, Li H, Cao C, Sikoglu EM, Denninger AR, Su Q, Eaton S, Liso Navarro AA, 

Xie J, Szucs S, Zhang H, Moore C, Kirschner DA, Seyfried TN, Flotte TR, Matalon R, 

Gao G.(2013) A single intravenous rAAV injection as late as P20 achieves efficacious 

and sustained CNS Gene therapy in Canavan mice. Molecular Therapy Dec; 

21(12):2136-47 [PMID: 23817205]. 

The study was devised and results were interpreted by me under the supervision of Dr 

Gao. All experiments except for the ones listed below have been performed by me. 

Figure 3.2c was prepared by Dr Huapeng Li. Figures 3.2 f,g and were prepared by Dr Elif 

Sikoglu, Ana Navarro and Dr Constance Moore while data for Figures 3.3c, d was 

provided by them; figures were analyzed and assembled by me. Figure 3,2 h was 

provided by Sylvia Szucs. Figure 3.6 c, d , Fig 3.7, Tables 3.1 and 3.2 were contributed 

by Dr Thomas Seyfried and Samuel Eaton. Figure 3.8 was contributed by Andrew 

Denninger and Dr Daniel Kirschner. Viral vectors were made by Qin Su. CD mice were 

provided by Dr Reuben Matalon. Electron Microscopy was done by the EM Core at 

UMass Medical School. The manuscript was prepared by me and Dr Gao. 
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CHAPTER III: A Single Intravenous rAAV Injection as Late as P20 Achieves 

Efficacious and Sustained CNS Gene Therapy in Canavan Mice 

Introduction 

Canavan disease (CD) is a rare lethal pediatric leukodystrophy characterized by 

extensive demyelination, edema, and progressive spongy degeneration of the central 

nervous system (CNS) (Van Bogaert L, 1949). Currently, there is no effective treatment. 

Clinical symptoms include blindness, severe psychomotor retardation and early death 

(Beaudet, 2001; Matalon and Michals-Matalon, 2000; Traeger and Rapin, 1998). CD is 

caused by autosomal recessive mutations in aspartoacylase (AspA) (EC 3.5.1.15) (Kaul et 

al., 1993; Matalon et al., 1988); an enzyme that deacetylates N-acetyl aspartic acid 

(NAA) to produce aspartic acid and acetate (Baslow and Resnik, 1997; Birnbaum et al., 

1952 ). Since the NAA accumulates mainly in the urine, NAA aciduria provides a unique 

biomarker for CD (Matalon et al., 1988).  

The first AspA knockout mouse strain was engineered by an insertional 

interruption in exon 4 of the AspA gene. These mice, also known as CD mice, have a 

short lifespan (<4 weeks), hydrocephaly, NAA aciduria, extensive white matter 

vacuolation and motor dysfunction providing a bona-fide model to study the severest 

forms of CD (Matalon et al., 2000). In addition, there is a naturally occurring CD model, 

called tremor rat with a large deletion spanning four genes including AspA as well as two 

other more recently created mouse models, all of which have less severe phenotypes and 

near normal lifespans (Kitada et al., 2000; Mersmann et al., 2011; Traka et al., 2008). 
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Gene replacement therapy is a promising clinical intervention for inborn errors 

like CD. Novel recombinant adeno associated viruses (rAAVs) derived from primates 

represent a promising gene delivery platform because of their wide range of tissue 

tropism, low immunogenicity, highly efficient and sustained gene transduction, and 

clinically proven track record in safety (Gao et al., 2002; Mingozzi and High, 2007). In 

an earlier gene therapy attempt for CD, 23 patients were treated with multiple-site 

intracranial injections of the first-generation rAAV2 (Janson et al., 2002). A follow-up 

study on 13 of these patients revealed the safety of rAAV-mediated therapeutic gene 

transfer to the CNS over a decade. The treatment resulted in slight reductions of NAA 

levels in some brain regions; but importantly, it indicated the necessity of early 

intervention in CD patients. This study also suggests that a global CNS gene transfer is 

necessary for alleviating widespread neuropathology in CD patients (Leone et al., 2012). 

Thus, one potentially viable strategy for CD gene therapy to target the CNS 

globally is through intravenous (IV) gene delivery using novel rAAVs that can cross the 

blood-brain barrier (Foust et al., 2009). Based on the initial report on rAAV9, our 

expanded vector characterization study in neonatal mice as well as preliminary results 

from a separate comprehensive study to screen rAAVs for IV gene delivery to adult CNS 

(Yang et al., 2014; Zhang et al., 2011), we selected rAAV9, rAAVrh.8, and rAAVrh.10 

for our proof-of-concept gene therapy study. We also designed a therapeutic cassette 

containing microRNA-binding sites (miRNA-BS) to detarget rAAV expression from 

peripheral tissues to minimize potentially untoward consequences of IV delivery (Xie et 

al., 2010). 
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An interesting alternative is to use endogenous microRNAs (miRNAs) to suppress 

transgene expression outside the CNS. miRNAs are small, noncoding RNAs that regulate 

gene expression by post-transcriptional silencing. miRNAs silence genes by two 

mechanisms. When partially complementary to mRNA sequences, they typically reduce 

target mRNA stability and protein expression by two- to fourfold or less, probably to tune 

mRNA expression (Bartel, 2009). In contrast, when miRNAs are nearly perfectly 

complementary to their mRNA targets, they cleave the mRNA, triggering its wholesale 

destruction (Brennecke et al., 2005). 

miRNA-binding sites were first used in lentiviral vectors to suppress transgene 

expression in hematopoietic cells, thereby attenuating transgene immunogenicity (Brown 

et al., 2006). The strategy was subsequently used to regulate naked DNA-mediated gene 

transfer, detarget oncolytic viral therapeutics from noncancer tissues to reduce host 

toxicity, and develop attenuated virus-based vaccines to reduce toxicity in recipients 

(Brown and Naldini, 2009). Since the systemic delivery of rAAVs may lead to possible 

off-target peripheral tissue expression, we explored the use of miRNAs to detarget 

rAAV9 expression both separately and concurrently in the liver, heart, and skeletal 

muscle, the three tissues most efficiently targeted by intravenously delivered rAAV9 

(Pacak et al., 2006; Xie et al., 2010; Zincarelli et al., 2008). One consideration is that 

intravascularly administered rAAV for CNS-targeted transduction requires suppressing 

high levels of rAAV expression in multiple peripheral tissues even when transgene 

transcripts are successfully expressed in the brain (Xie et al., 2010). Hence in addition to 

such endogenous miRNA-regulated restriction of transgene expression, an expanded 
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repertoire of rAAV vectors with strong tropism for the CNS and reduced affinity for 

peripheral tissues would also be important. This would limit potential peripheral toxicity, 

allow for greater therapeutic control and flexibility as well as bypass possible pre-existing 

immunity to rAAV9 in patient populations (Calcedo et al., 2009; Mingozzi and High, 

2007). 

Here, we documented progressive neuropathology and retinopathy in CD mice 

during early postnatal development. For gene therapy, we tested rAAV9, carrying the 

human AspA cDNA with and without miRNA regulation in CD mice by IV injections at 

postnatal day 0 (P0), which restored AspA activity, normalized NAA metabolism, 

alleviated neuropathy and retinopathy, and improved motor functions. We expanded P0 

injection study in CD mice to include rAAVrh.8 and rAAVrh.10, which improved their 

growth and extended survival up to 2 years (for rAAV9 and rAAVrh.8 groups thus far). 

Early lethality of CD mice (<4 weeks) was also completely rescued with rAAV9 

administration at P6, P13, and even P20, a few days before their death. We also 

demonstrate that AspA helps to maintain integrity of myelin sheaths and affects the 

content and distribution of myelin-enriched brain lipids. Most importantly, our study 

demonstrates, for the first time, an efficacious and sustained IV gene therapeutic for 

treating terminal stage CD mice as well as successful preclinical in vivo application of 

miRNA-regulated peripheral tissue detargeting in CNS-directed rAAV gene therapy. 
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Materials and Methods 

Viral production: All rAAV vectors were produced by transient transfection of 293 cells 

and CsCl gradient sedimentation as previously described (Sun et al., 2010) Vector 

preparations were titered by quantitative PCR, purity of vectors was assessed by 4–12 % 

SDS-acrylamide gel electrophoresis and silver staining (Invitrogen, Carlsbad, CA) and 

morphological integrity of virions was assessed by Transmission electron microscopy of 

negative stained recombinant AAV virions at Electron Microscopy Core, UMass Medical 

School, Worcester.  

Animal procedures: All animal procedures were approved by the Institutional Animal 

Care and Use Committee (IACUC) of UMass Medical School. AspA+/- Sv129/Ev mice 

littermates were bred using programmatic timing and newborn pups were dosed on P0. 

Vectors were injected in the facial vein of P0 pups at doses of 4X1011 GC/mouse. P6, P13 

and P20 pups were injected in the retro-orbital sinus with 8X1011, 1.2X1012 and 4X1012 

GC/mouse respectively. After the injection pups were cleaned, rubbed with bedding, and 

then returned to their cage. The dam was reintroduced after brief nose numbing using 

ethanol pads. 

Immunohistochemistry: Animals were anesthetized, transcardially perfused with 4% 

paraformaldehyde (v/v) in PBS. Whole carcasses were postfixed in fixative for 1 day. 

Organs were extracted, rinsed in PBS, and sagitally sectioned. One half was 

cryoprotected in 30 % sucrose (w/v) in PBS at 4°C, embedded in OCT compound 

(Sakura Finetek, Torrance, CA) and frozen in a dry ice/ethanol bath. 40 μm floating 
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sections of the entire brain were cut in a Cryostat (Thermo Microm HM 550) for 

immunostaining. The other half was processed for Hematoxylin and Eosin staining for 

morphological studies.  

Floating sections were stained in 12-well plates. Sections were washed once in 

PBS for 5 mins, and incubated in blocking solution containing 0.05 % Tween-20 (v/v) 

(Fisher, Pittsburgh, PA), and 10 % goat serum (v/v) (Invitrogen) for 1 hour at room 

temperature. Sections were incubated with primary antibodies at 4°C overnight, washed 

twice in 0.05 % Tween-20 in PBS (PBST) for 15 mins each followed by incubation in 

appropriate secondary antibodies at room temperature for 1 hour. Sections were washed 

twice in PBST for 10 mins each before mounting on glass slides. Vectashield with 4ʹ,6 -

diamidino- 2-phenylindole (Vector Laboratories, Burlingame, CA) was used to mount all 

slides. Omission of either the primary or the secondary antibody in single-label 

experiments resulted in no labeling.  

The ABC stain was performed according to standard kit instructions (Elite ABC 

kit, Vectastain, Burlingame, California). DAB was used as the substrate for the 

peroxidase enzyme reaction (Vectastain).  

The primary antibodies used were as follows: mouse aspartoacylase (Abmart, 

New Jersey), rabbit aspartoacylase (provided by Dr Aryan Namboodiri); mouse NeuN 

(MAB-377, clone A60; Millipore); rabbit NeuN (ABN-78, Millipore) and appropriate 

secondary antibodies from Invitrogen. 

Imaging and Image Analysis: Stained sections were examined using DM 5500B Upright 

microscope (Leica Microsystems, Wetzlar, Germany), and images were captured with 
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Leica DFC365 FX high-sensitivity monochrome digital camera. Regions of interest were 

identified according to the mouse brain atlas. Z stack of images were taken with a 63X 

objective and 1.6X additional magnification for each channel and overlaid to obtain a 

multicolor image at 100.8X. Deconvolution was performed using Leica Application Suite 

Advanced Fluorescence software. 

Electroretinography (ERG): Mice were dark-adapted overnight and anesthetized with 

100 mg/kg ketamine and 20 mg/kg xylazine in saline before testing. Both pupils were 

topically dilated with phenylephrine hydrochloride and 1 % tropicamide, and mice were 

placed on a heated platform. Rod-dominated responses were elicited in the dark with 10 

μs flashes of white light (1.37 × 105 cd m−2) presented at intervals of 1 min in a Ganzfeld 

dome. ERGs were monitored simultaneously from both eyes with a silver wire loop 

electrode in contact with each cornea wetted with celluvisc containing Carboxy Methyl 

Cellulose Sodium 1 %. 

Western blot: Mice were sacrificed and their tissues were extracted and homogenized as 

described (Xie et al., 2010) . Protein in equal quantities was loaded into a 12% Tris–HCl 

gel well (Bio-Rad Laboratories, CA) and transferred to a nitrocellulose membrane (Bio-

Rad). The membrane was incubated in blocking buffer for 1hr followed by AspA 

polyclonal antibody overnight. After three washes in 0.1 % PBST, it was incubated with 

secondary antibodies conjugated to LI-COR IRDye for 1 hour at room temperature. After 

two washes with 0.1 % PBST signal was detected using the Odyssey Imager (LI-COR). 

Genome copy number:  rAAV genomes were quantified in 1µg of genomic DNA 

extracted from mouse tissues using the QIAamp DNA mini kit for quantitative detection 
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of vector genome copies by Taqman® probes (Applied Biosystems) with a single-copy 

endogenous GAPDH gene) as the diploid cell number reference. The Taqman® real-time 

PCR kit was run with primer sets which amplified regions of the nRBG poly A (Probe, 

6FAM-ATG AAG CCC CTT GAG CAT CTG ACT TCT-TAMRA; Fwd, GCC AAA 

AAT TAT GGG GAC AT; Rev, ATT CCA ACA CAC TAT TGC AAT G). The 

sensitivity of the assay was 10 copies/µg gDNA. 

AspA activity assay: Mice were sacrificed 3 months after injection, and brain 

homogenates were used for the enzyme assay (Matalon et al., 2000) . Briefly, the brain 

was homogenized and incubated with 50mM Tris–HCl (pH 8.0), 0.5% (w/v) NP-40, 50 

mM NaCl, 1 mM CaCl2, 2.8 mM NAA in a total volume of 600 µl. After incubation at 

37°C for 3h, the assay mixture was centrifuged and the supernatant was incubated with 

malic dehydrogenase, glutamic oxalacetic transaminase, and NADH for 10 min at 37°C. 

The amount of L-aspartate released was estimated by decrease in absorbance due to the 

conversion of NADH to NAD using a spectrophotometer (Shimadzu, MD) at 340 nm. 

One milliunit of aspartoacylase activity is equivalent to 1 nmol of aspartate released in 1 

min. Values were calculated using ANOVA. P <0.05 was considered significant. 

1H Magnetic Resonance Imaging and Spectroscopy study: Mice were anesthetized with 

2% isofluorane and constantly monitored for vital signs. All experiments were carried out 

on a Bruker 4.7T/40 cm horizontal magnet (Oxford, UK) equipped with 250 mT/m 

magnetic field gradient and interfaced with a ParaVision 4.0 console. A 1H 

radiofrequency (RF) coil configuration (Insight NeuroImaging Systems, MA) with inner 

diameter (ID) of 4 cm was used for the experiments.  
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T2-weighted anatomical images were acquired using a fast spin-echo sequence 

(RARE) (TR=3000 msec, TE=48 msec, matrix size=256×256, FOV=2.5 cm×2.5 cm, 

slice number=16, slice thickness=1 mm). 1H MRS Data was acquired using single voxel 

(Pont Resolved Spectroscopy Sequence (PRESS) (TR=2500 msec, TE=20 msec, 

Naverage=1024, voxel size=3 mm×3 mmX3 mm). 

Proton spectra were fit using LCModel (Version 6.2-2B) which  analyzed in vivo 

proton spectrum as a linear combination of model in vitro spectra from individual 

metabolite solutions (Provencher, 2001) and generated data as absolute fits (in 

institutional units) and standard deviations (SD%). Standard deviation was used as a 

measure of the reliability of the fit. The spectral inclusion criteria were SD less than 20% 

for NAA, Cr and Ins. 

Behavioral studies: Negative geotaxis test was performed on P7-P17 pups where they 

were placed on a 45° inclined plane; head facing downwards and their latency to turn 

with the head pointing upwards was recorded.  

For the beam balance test, animals were placed in the middle of a horizontal 

wooden balance beam (1.5 cm × 100 cm) with pads underneath to protect mice that might 

fall off the beam.  Latency to fall was recorded, with a 3min time limit for each trial.  

Neuromuscular function of the mice was assessed by testing grip strength on an 

inverted screen. Mice were placed in the center of a screen (30 cm2 square-wire mesh, 25 

mm2 holes) until they gripped the mesh. The screen was then inverted above a cushioned 

surface for a 2sec period with the mouse’s head declining. Latency to fall from the screen 

was recorded, with a 2min time limit for each trial.  
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Mice were subject to a rotarod test to evaluate motor coordination and balance. 

Each animal was placed on the rotarod after which speed was adjusted to 3 rpm. The 

latency to fall off the rotarod within this time period was recorded for fixed speed. 

Animals were also tested for their latency to fall off at accelerated speeds going from 4 to 

40 rpm in 5mins.  

Animals were tested for each experiment 3 times with an inter-trial interval of 

approximately 30 min for each animal and mean of 3 trials was used to plot the graphs.  

Transmission Electron Microscopy: Mice were anesthetized and perfused with a solution 

of 2.5 % glutaraldehyde in 0.05 M Sodium Phosphate buffer, pH 7.2. The brain was 

extracted and incubated in 2.5 % glutaraldehyde in 0.05 M Cacodylate buffer overnight at 

4°C. It was sectioned into 1 mm thick sections, rinsed twice in the same buffer and post-

fixed with 1 % osmium tetroxide for 1h at room temperature.  Sections were washed in 

DH2O (heavy water) for 20 mins at 4°C and then dehydrated in graded ethanol series of 

20% increments, before two changes in 100 % ethanol.  Sections were infiltrated with 

two changes of 100% Propylene Oxide and then with a 50%/50% propylene oxide / SPI-

Pon 812 resin mixture overnight.  After three changes of fresh 100 % SPI-Pon 812 resin, 

sections were polymerized at 68°C in plastic capsules. Regions of interest were cut out 

and thick-sectioned for toluidine blue. Chosen regions were reoriented and approximately 

70nm thin sections were placed on copper support grids and contrasted with Lead citrate 

and Uranyl acetate.  Sections were examined using the FEI Tecani 12 BT with 80Kv 

accelerating voltage, and images were captured using a Gatan TEM CCD camera. 
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Total Lipid Isolation: Total brain lipids were evaluated from the frozen cerebrum, 

cerebellum, and medulla of P25 and P60 WT, CD/PBS, and CD/rAAV9 mice. Tissues 

were homogenized in water and lyophilized for 24 hr.   After desiccation, the dried tissue 

was weighed, rehydrated in water (0.05 ml), and lipids were extracted overnight in 

CHCl3:CH3OH (1:1; v/v) according to standard procedures (Baek et al., 2009; Hauser et 

al., 2004).  Lipids were further separated into a neutral (F1) and acidic/ganglioside (F2) 

fraction via ion exchange chromatography over a Sephadex column (Baek et al., 2009; 

Macala et al., 1983). Neutral lipids and cholesterol were eluted with a 

CHCl3:CH3OH:dH2O (30:60:8; v/v/v) solution, while acidic phospholipids and 

gangliosides were eluted with a CHCl3:CH3OH:0.8M CH3COONa (30:60:8; v/v/v) 

solution.  Gangliosides were separated from acidic phospholipids by Folch partitioning, 

base treated, and desalted as previously described (Folch et al., 1957).  Neutral lipids 

were dried by rotary evaporation and resuspended in 10 ml CHCl3:CH3OH (2:1; v/v).    

Sialic acid quantification: Total ganglioside content was quantified before and after 

desalting using the resorcinol assay (Hauser et al., 2004; Svennerholm, 1957).  Three 

aliquots of each ganglioside sample were dried under vacuum. Resorcinol reagent: water 

(1:1 v/v) solution (resorcinol reagent – HCl:0.2M resorcinol: DH2O: 0.1 M CuSO4, 

40:5:5:0.125 v/v/v/v) was added to each sample, followed by submersion in a boiling 

water bath for 15 min.  After cooling on ice, the reaction was stopped with butyl acetate: 

N-butanol (85:15; v/v) (Seyfried et al., 1978).  Each sample was vortexed and centrifuged 

at 700x g for 2 min.  The absorbance of the upper aqueous layer was recorded at 580 nm 
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using a Shimadzu UV-1601 Spectrophotometer (Shimadzu, Torrance, CA).  Sialic Acid 

values were fit to a standard curve using N-acetylneuraminic acid as a standard.  

Thin-Layer Chromatography: All lipids were analyzed by high-performance thin-layer 

chromatography (HPTLC) as previously described (Kasperzyk et al., 2004; Macala et al., 

1983). Neutral and acidic lipids were spotted using a Camag Linomat II auto-TLC spotter 

(Camag Scientific Inc., Wilmington, NC, USA.). The amount of neutral lipid spotted 

corresponded to 70μg dry weight. The plate was developed in solvent system I to 4.5 cm 

which contained Chloroform:Methanol: acetic acid: formic acid:H2O (70:30:12:4:2 by 

vol.) and solvent system II to the top which contain hexane: isopropyl ether: acetic acid 

(65:35:2 by vol.). The amount of acidic lipid spotted corresponded to 200 μg of dry 

weight and was developed in solvent system I to 6.0 cm and in solvent II to the top.  

Bands for both neutral lipids and acidic lipids were visualized by charring with 3 % 

cupric acetate in 8% phosphoric acid solution in an oven at 160°C for 7 min. 

Gangliosides were spotted based on 1.5 μg of sialic acid and were developed in 

chloroform:methanol:0.02% calcium chloride (C:M:.02%CaCl2).  Individual lipid bands 

were scanned using Camag TLC Scanner 4 and the concentration of cerebrosides and 

sulfatides were calculated from a standard curve (Baek et al., 2009). The total brain 

ganglioside distribution was normalized to 100 % and the percentage distribution values 

were used to calculate sialic acid concentration of GM1. 

X-ray Diffraction Analysis: X-ray diffraction was performed as described (Avila et al., 

2005). Briefly, optic nerves and spinal cords were dissected from mice sacrificed using 

isoflurane. Optic nerves and sagitally bisected segments of cervical spinal cord were 
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maintained in physiological saline (154mM NaCl, 5mM phosphate, pH 7.4) and loaded 

into thin-walled, quartz capillary tubes which were then filled with saline and sealed with 

wax and enamel. X-ray diffraction experiments were carried out using nickel-filtered, 

single-mirror focused CuKα radiation from a fine-line source on a 3.0 kW Rigaku X-ray 

generator operated at 40 kV by 10 mA. Exposure times were 30 min. Diffraction patterns 

were collected using a linear, position-sensitive detector (Molecular Metrology, Inc., 

Northampton, MA) and analyzed using PeakFit (Jandel Scientific, San Rafael, CA). 

Myelin period was calculated from the positions of the intensity maxima in the 

diffraction patterns. The relative amount of myelin in each sample was calculated by 

measuring the total integrated intensity of all maxima over background, excluding small-

angle scatter around the beam stop and wide-angle scatter. 

Statistical Analyses: Statistical calculations included Log rank Mantel Cox test for the 

survival table and one way ANOVA followed by Tukey’s Multiple Comparison test for 

all other experiments. *P < 0.05; **P < 0.01; ***P < 0.001, NS not significant. 
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Results 

AspA deficiency causes progressive neuropathy and retinopathy in early postnatal mice  

Histologic examination of the brains from wild-type (WT) and CD mice (n = 4 

each) at P0, P6, P13, P20, and P25 showed appearance of vacuoles in the CNS of CD but 

not WT mice at P13, which gradually increased in size and number with age. 

Neurodegeneration was considered severe by P25 [Figure 3.1a] with afflicted mice dying 

shortly afterwards. Quantification of intact tissue areas showed progressive pathology in 

the striatum, thalamus and brainstem [Figure 3.1b], suggesting that AspA helps to 

maintain CNS integrity.  

After full eye opening at P16, WT and CD mice (n = 4) were evaluated for retinal 

response to light flickers by scotopic electroretinography (ERG) at P16, P20, P23, and 

P27. The ERG trace is produced by the electrophysiological action of the retinal cells and 

typically consists of a- and b-waves that indicate photoreceptor and glial cell activities 

respectively. Sequential ERGs revealed progressive reductions in retinal responses of CD 

mice [Figure 3.1c] indicating the importance of AspA for maintaining visual acuity. 

IV injections of rAAV9hAspA and rAAV9hAspAmiRNA-BS reconstitute AspA in the 

CNS 

CD mice injected with rAAV9hAspA (CD/rAAV9) at P0 were killed at 3 months 

to evaluate brain AspA levels by western blot. AspA levels in the gene-corrected (GC)  
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 Figure 3.1 Progressive neuropathology and retinopathy in postnatal CD mice.  

(a) Representative images of hematoxyline and eosin (H&E) stained brain sections (n = 

4). Bars: 4.8 mm. (b) Semiquantitative analyses of neuropathology normalized to WT 

animals using Image J. Ob, olfactory bulb; Cx, cortex; Hp, hippocampus; St, striatum; 

Th, thalamus; Ce, cerebellum; BS, brain stem. (c) Scotopic ERGs of overnight dark-

adapted WT and CD mice (n = 4 each) to test the response of rods recorded as waveforms 

(μV) to flickers of light in increasing intensity called steps. CD, Canavan disease; ERG, 

electroretinography; WT, wild-type. 
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Figure 3.1 Progressive neuropathology and retinopathy in postnatal CD mice. 
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Figure 3.2 Enzymatic and metabolic correction of AspA deficiency by systemically 

delivered rAAV-mediated gene therapy in CD mice. (a) Western blot of brain 

homogenates from WT (P90), Het (P90), and CD mice treated with PBS (P27) or 

rAAVhAspA (P90). Loading control: GAPDH. (b) Aspartoacylase activity in brain 

homogenates of the study groups. (c) Persistent vector genomes (by quantitative PCR) 

and aspartoacylase expression (by western blot) in P90 CD/rAAV9hAspA and 

CD/rAAV9hAspAmiRBS. (d) Representative images of avidin-biotin-complex (ABC) 

stained brain sections. (e) Immunofluorescence images of brain sections from P90 WT 

and CD/rAAV9 for AspA (green) and neuronal marker, NeuN (red) and colocalization 

(yellow). Bars: 10 μm. (f) Representative MRS spectra of brain NAA levels in WT and 

CD/PBS mice at P26 (n = 3 each) showing NAA peaks at 2.018 ppm. (g) Quantification 

of in vivo brain metabolite levels from the proton spectra as ratio to total creatine. Ins: 

inositol, tCho: total choline, tNAA: total NAA, tCr: total creatine, Glx: glutamate + 

glutamine. (h) Mass spectrometry of urine from P27 WT, Het and CD/PBS or 

CD/rAAV9 mice. WT, wild-type; Het, heterozygote; CD/PBS, CD/rAAV9, CD mice 

treated with PBS or rAAV9 respectively. CD, Canavan disease; MRS, magnetic 

resonance spectroscopy; NAA, N-acetyl aspartic acid; NS, not significant; PBS, 

phosphate-buffered saline; rAAV, recombinant adeno-associated virus. 
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Figure 3.2 Enzymatic and metabolic correction of AspA deficiency by systemically 

delivered rAAV-mediated gene therapy in CD mice. 
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mice were similar to age- matched phenotypically normal heterozygous (Het) mice 

[Figure 3.2a]. Protein levels depicted in the blot were typical of the trend observed, 

although there was significant variability in the level of protein expression among the 

different vector-treated animals. 

AspA enzyme activity (normalized to WT mice) in brain homogenates of GC 

mice were similar to Het mice (P > 0.05) [Figure 3.2b]. To reduce transduction in 

peripheral tissues such as liver, heart, and skeletal muscle by systemically delivered 

rAAV9 hAspA, a miRNA-regulated vector genome was designed for CNS-restricted 

gene transfer (Xie et al., 2012). Equal doses of rAAV9hAspA and rAAV9hAspA-(miR-

1BS)3-(miR-122BS)3 (i.e., rAAV9hAspAmiRBS) with three copies each of the miRNA-

BS specific to miR-1 and miR-122 (enriched in heart, skeletal muscle, and liver, 

respectively) were infused into CD mice at P0. Both vectors targeted brain, liver, heart, 

and muscle tissues equally; but the miRNA-regulated vector abolished AspA expression 

only in peripheral tissues not the brain [Figure 3.2c], establishing specificity of miRNA-

regulated therapeutic expression from rAAV. 

Immunohistochemistry illustrated similar numbers and distribution patterns but 

different staining intensities of AspA positive cells in the brains of WT and GC mice 

[Figure 3.2d]. Large vacuoles in CD mouse brain sections made detection of residual 

AspA difficult. Double immunofluorescence staining showed efficient neuronal AspA 

gene transfer by rAAV9 in the cortex, hippocampus, and thalamus in GC mice [Figure 

3.2e]. 



122 
 

Spectral peak integrals for total NAA (2.02 ppm) and total creatine (tCr, 3.05 

ppm) (Grodd et al., 1990; Matalon and Michals-Matalon, 2000) were determined by 

acquiring 1H 1H proton magnetic resonance spectroscopy data from live animals (n = 3). 

Abnormally high endogenous NAA levels were detected in CD mice relative to WT mice 

as expected (Matalon et al., 2000; Pioro et al., 1998) [Figure 3.2f]. Integrated values of 

NAA/creatine ratios were significantly different between WT (0.886 ± 0.03), and CD 

(2.63 ± 0.16) (P > 0.001); such values were reduced in GC mice (2.18 ± 0.64) [Figure 

3.2g]. N-acetylaspartic aciduria (excretion of NAA in the urine), a biomarker of CD 

(Matalon et al., 1988)  was significantly reduced in GC mice (P > 0.001) compared with 

CD mice [Figure 3.2h]. 

AspA gene therapy in CD mice alleviates neuropathology, cerebral edema, and 

retinopathy  

Hematoxylin and eosin stained coronal sections of brain and spinal cord from 

terminal stage (P27) CD and P90 GC mice were examined [Figure 3.3] and quantified 

[Figure 3.3b] for neuropathology. Our data suggest significant improvements in all 

regions of spinal cord and most regions of the brain. 

T2-weighted magnetic resonance imaging was used to detect cerebral edema 

(Matalon et al., 1993) in WT (P60, n = 3), CD (P27, n = 3), and GC animals treated with 

rAAV9hAspA and rAAV9hAspA-miRBS (P60 and P365, n = 3). CD brains exhibited 

widespread high signal intensities, indicating water accumulation particularly in the 

thalamus (mainly midbrain) and brainstem [Figure 3.3c], which mirror conditions in 
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patients (Matalon, 1997); but T2-weighted hyperintensity in both groups of GC mice was 

generally reduced [Figure 3.3c]. More importantly, reduction of edema seemed to be 

sustained in P0-treated GC mice for 1 year [Figure 3.3c]; however, NAA levels in 

rAAV9hAspA-treated mice were lower than in AAV9hAspAmiRBS–injected mice 

[Figure 3.3d]. Thus, single rAAV injections were able to partially, but sustainably, 

relieve cerebral edema.  

Retinal responses of GC mice were similar to those of age-matched WT mice even after 1 

year, although amplitudes of both a- and b-waves were lower, suggesting partial but 

sustained correction of visual acuities [Figure 3.3e].  
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Figure 3.3 Intravenous (IV) gene therapy using rAAV9 mitigates neuropathology, 

reduces water accumulation in the brain and improves visual acuity. (a) 

Representative images from hematoxylin and eosin (H&E) stained paraffin sections (n = 

4 for each group). (b) Quantification of neuropathology by ImageJ. Ob, olfactory bulb; 

Cx, cortex; Hp, hippocampus; St, striatum; Th, thalamus; Ce, cerebellum; BS, brain stem; 

CSP cervical spinal cord; TSP, thoracic spinal cord; LSP, lumbar spinal cord. (c) 

Representative T2-weighted magnetic resonance imaging images showing water 

accumulation (white) in P25, CD/PBS; P60, P365 GC; and WT animals. (d) 

Quantification of MRS data for metabolites in brains of mice injected with rAAV9 or 

rAAV9BS at P0 at age P90. (e) Scotopic ERG of WT, CD/PBS and CD/rAAV9 at P25 

and P365, respectively, to test visual acuity. WT, wild-type; CD/PBS, CD/rAAV9, CD 

mice treated with PBS or rAAV9 respectively. CD, Canavan disease; ERG, 

electroretinography; MRS, magnetic resonance spectroscopy; NS, not significant; PBS, 

phosphate-buffered saline; rAAV, recombinant adeno-associated virus. 
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Figure 3.3 Intravenous (IV) gene therapy using rAAV9 mitigates neuropathology, 

reduces water accumulation in the brain and improves visual acuity 
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Systemic and CNS-restricted AspA gene therapy by different rAAVs is therapeutic for 

CD mice 

In addition to rAAV9, two other rAAVs (i.e., rAAVrh.8 and rh.10) were selected 

for this proof-of-concept gene therapy study in CD mice. Therapeutic efficacies of these 

vectors (i.e., rAAV9hAspA, rAAV9hAspA-miRBS, rAAVrh.8hAspA or 

rAAVrh.10hAspA) were evaluated in CD mice by comparison of growth, survival and 

negative geotaxis (all four vectors) as well as other motor functions (rAAV9hAspA and 

rAAV9hAspA-miRBS only) All these vectors were delivered intravenously at P0.  

Growth profiling showed that CD mice were phenotypically similar to WT 

littermates until P13 after which they steadily lost weight until their death [Figure 3.4a, 

inset]. Compared to rAAV9, GC mice treated with other vectors showed no significant 

differences in survival or growth [Figure 3.4a]. 

Since survival is an important criterion for therapeutic benefits, survival of >50 

GC mice was examined using the Kaplan–Meier curve [Figure 3.4b]. There was a 

uniform rescue of lethality with extended survival as long as 2 years for rAAV9- and 

rAAVrh.8-injected animals. Long-term study of rAAVrh.10 was initiated about 1 year 

later; the animals have survived well for 11 months thus far. The negative geotaxis test 

for early postnatal spatial locomotive behavior showed that GC mice but not CD mice 

performed similar to their WT littermates [Figure 3.4c]. CD/rAAV9 mice were compared 

with CD/ phosphate-buffered saline (PBS) mice at P27 and WT at P27, P90, and P180 to 

further evaluate motor functions. GC mice significantly improved in balance (P < 0.001) 
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[Figure 3.4d], and grip (P < 0.001) [Figure 3.4e] over CD mice at P27. Data from later 

timepoints revealed that the treatment fully and sustainably restored grip strength but not 

balancing abilities in GC mice [Figure 3.4 d & e]. GC animals performed significantly 

better than CD mice on the rotarod at P27 [Figure 3.4 f & g] but were significantly 

behind WT mice at later timepoints [Figure 3.4 f & g]. The GC mice that received the 

miRNA-regulated vector performed similar to rAAV9hAspAtreated mice in the fixed 

speed rotarod test but not in balance (P< 0.001), inverted screen (P < 0.05) and 

accelerated rotarod (P <  0.01) tests at P90 (Figure 4h). We noticed variability in the 

performance of P1 treated mice on the inverted screen and balance beam in later 

generations of CD mice. This suggests that genetic modifiers in the Sv129 background 

strain may alter the penetrance of the gene knockout, as has been observed with other 

gene knockouts [Flotte, personal communication]. Overall, our data suggest that IV gene 

therapy can largely restore motor functions of CD mice. 
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Figure 3.4 Intravenous (IV) gene therapy using novel rAAVs improves growth 

profile, rescues early lethality and corrects motor function defects of CD mice. (a) 

Weight of animals at 2-week intervals plotted as a function of time. Early growth rate 

was assessed by weights at 2-day intervals for the first month (inset). (b) Kaplan–Meier 

survival curves for groups treated with different vectors at P0 (“closed circles” = WT, 

“closed squares” = CD/PBS, “closed triangles” = CD/rAAV9, “closed up-side down 

triangles” = CD/rAAV9mirBS, “closed diamonds” = CD/rAAVrh.8, and “closed 

hexagon” = CD/rAAVrh.10, respectively). (c) Negative geotaxis test at intervals of 1 day 

from P7 (day 8) to P17 (day 16). Motor functions of study groups were tested at P27, 

P90, and P180 based on their performance on the (d) balance beam, (e) inverted screen 

and rotarod moving at (f) fixed speed (3 rpm) and (g) accelerated speed (4–40 rpm in 5 

minutes). The same tests were performed on (h) P90 CD/rAAV9 and CD/rAAV9mirBS. 

WT, wild-type; CD/PBS, CD/rAAV9, CD/rAAV9mirBS, CD/rAAVrh.8, and 

CD/rAAVrh.10: CD mice treated with PBS, rAAV9hAspA, rAAV9hAspA-mirBS, 

rAAVrh.8hAspA, and rAAVrh.10hAspA at P0, respectively. CD, Canavan disease; NS, 

not significant; PBS, phosphate-buffered saline; rAAV, recombinant adeno-associated 

virus. 
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Figure 3.4 Intravenous (IV) gene therapy using novel rAAVs improves growth 

profile, rescues early lethality and corrects motor function defects of CD mice. 
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Figure 3.5 Intravenous (IV) gene therapy with rAAVs as late as P20 improves 

growth profile, rescues early lethality and corrects motor function defects of CD 

mice. (a) Kaplan–Meier survival curves for all groups treated with different vectors at P0. 

(b) Weight of animals at 2-week intervals plotted as a function of time. (c) Early growth 

rate assessed by weights at 2-day intervals for the first month. (d) Negative geotaxis test 

at intervals of 1 day from P7 (day 8) to P17 (day 16). Motor functions of study groups 

were tested at P90 based on their performance on the (e) balance beam, (f) inverted 

screen and rotarod moving at (g) fixed speed (3 rpm) and (h) accelerated speed (4–40 

rpm in 5 minutes). WT, wild-type; CD/PBS, CD/P0, CD/P6, CD/P13, and CD/P20: CD 

mice treated with PBS and rAAV9hAspA at P0, P6, P13 and P20 respectively.  
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Figure 3.5 Intravenous (IV) gene therapy with rAAVs as late as P20 improves 

growth profile, rescues early lethality and corrects motor function defects of CD 

mice
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Figure 3.6 Intravenous (IV) gene therapy using rAAV9 improves myelin synthesis 

and partially corrects lipid profile of myelin in CD mice. (a) Electron microscopy of 

the motor cortex of P27 age-matched mice (n = 3 for each cohort). Bar: 2 μm. Inset: 

higher magnification. Black arrows: unmyelinated axons; white arrows: myelin sheath. 

(b) G ratios of myelinated axons calculated from toluidine blue stained sections of the 

cortex using ImageJ. (c) High-performance thin-layer chromatography of gangliosides in 

cerebrum, cerebellum, and medulla of different mouse groups (n = 3 for each group). 

Lower panel: quantification of the plate. (d) Quantification of the high-performance thin-

layer chromatography plate. 
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Figure 3.6 Intravenous (IV) gene therapy using rAAV9 improves myelin synthesis 

and partially corrects lipid profile of myelin in CD mice.  
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rAAV-mediated intravascular AspA gene delivery to the CNS as late as P20 is 

therapeutic 

 To define a therapeutic window, CD mice were systemically injected with only 

rAAV9hAspA at P0, P6, P13, and P20 (n = 6 each). IV injections at all the timepoints 

resulted in 100% rescue of early lethality, extended survival [Figure 3.5a] and improved 

growth profiles [Figure 3.5 b & c]. There was significant variability in the performance of 

the facial injection, as judged by direct observation of blanching of the vein during 

injection.  A number of the animals in which poor blanching was observed died within 28 

days, in a manner similar to the non-injected animals.  While the number of suboptimal 

injections decreased over time, certain animals experienced early mortality (less than 28 

days) even with what appeared to be robust blanching of the vein.  Because of this 

variability in the injection procedure, all vector-treated animals dying prior to 28 days 

were excluded. Tests for negative geotaxis [Figure 3.5d], balance [Figure 3.5e], grip 

strength [Figure 5f], and abilities to stay on the rotarod [Figure 3.5g & h] at P90 clearly 

showed that early intervention was more beneficial to the diseased animals, although 

injections as late as P20 were sufficient to completely rescue early lethality and partially 

restore growth and mobility [Figure 3.5]. 

Hypomyelination and abnormal brain lipid profiles are improved by IV gene therapy 

 Electron microscopy on the brain cortices of P25 mice (n = 3 each) showed 

demyelination around neurons in CD/PBS mice (Adachi et al., 1972; Beaudet, 2001). In 

contrast, the myelin sheaths in GC mice were similar to those of WT in most of analyzed 
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regions [Figure 3.6a]. A highly reliable structural index of optimal myelination is the 

ratio of inner axonal diameter to the outer diameter of the myelin sheath known as the g-

ratio (Chomiak and Hu, 2009). A higher ratio indicates less myelin and altered 

conduction capabilities. A semiquantitative comparison of the g ratios between mouse 

groups further supports the crucial role of AspA in maintaining axonal integrity and 

myelination [Figure 3.6b].Neurochemistry in CD and GC mice was studied by 

quantitative high-performance thin-layer chromatography (HPTLC) on 21 brain lipids in 

the cerebrum, cerebellum and medulla collected from WT (P25 and P60), CD (P25 only), 

and GC (treated at P0, analyzed at P25 and P60) mice (n = 3 each). Compared with WT 

mice, at P25, the total concentration of gangliosides was lower in the cerebrum and 

cerebellum of CD mice whereas gene therapy largely corrected this defect [Figure 3.6 c 

& d]. Concentrations of neuronal-enriched gangliosides (GD1a, GT1b, and GQ1b) at P25 

were significantly lower in CD mice than the WT mice but were largely corrected in the 

GC mice [Figure 3.6c, Table 3.1]. Although the concentrations of all major gangliosides 

were lower in the GC mice compared with WT mice, none of these reductions was 

significant except for GM1 in the cerebrum [Table 3.1]. CD mice had significantly lower 

cholesterol content in the cerebrum and medulla compared with WT mice. Though 

largely corrected in the GC mice at P25, significant reduction was still seen in the 

cerebrum and cerebellum of GC mice at P60 [Figure 3.6c, Table 3.1]. 

 It is noteworthy that deficiencies in cerebrosides and sulfatides were not 

completely corrected in the GC mice at either age [Table 3.2]. Cerebrosides and 

sulfatides migrate as double bands on the HPTLC due to differences in their hydroxyl 
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fatty acid content [ Figure 3.7 a & b] (Baek et al., 2009). The slower (lower, L) migrating 

band mostly contains short-chain hydroxylated fatty acids; whereas, the faster (upper, U) 

band mostly contains longer chain nonhydroxylated fatty acids(Baek et al., 2009). Our 

HPTLC data [Table 3.2] suggests that the increased L/U (lower/upper band) ratio in the 

CD and GC mice is due to a greater deficiency of the non-hydroxylated fatty acids. 

Myelin structure in optic nerves and spinal cords from WT (n = 4), CD/PBS (n = 

5), and CD/rAAV9 mice at P26 (n = 4) [Figure 3.8] was examined using X-ray 

diffraction to quantify structural parameters like myelin period and relative amount of 

myelin(Agrawal et al., 2009; Avila et al., 2005). Diffraction from both tissues yielded 

strong intensity maxima, indicating the presence of significant amounts of multilamellar 

myelin [Figure 3.8a & b]. Each group displayed similar relative amounts of myelin 

[Figure 3.8c & d]. Myelin period is defined as the distance between subsequent pairs of 

bilayers. Any aberration in periodicity indicates inadequate insulation and subsequent 

neurological impairment. Spinal cords from CD/rAAV9 mice displayed a significantly 

higher myelin period (160.3 ± 0.5 Å) (P < 0.04) compared with CD/PBS mice (159.1 ± 

0.8 Å). Optic nerves, CD/rAAV9 samples had a significantly higher period (157.7 ± 0.7 

Å) than WT (156.6 ± 0.7 Å) (P < 0.006) [Figure 3.8c & d]. Other differences in myelin 

period and amount were not statistically significant. The I2/I4 ratio is a measure of the 

relative intensity of the 2nd order X-ray reflection over the 4th order reflections. 

Comparison of the I2/I4 ratios revealed a statistically significant decrease in the 

CD/rAAV9 mice compared with WT [Figure 3.8e & f], indicating a small change in 

membrane structure. 
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Table 3.1 Regional brain ganglioside distribution in 25 day old normal (WT), 

Canavan disease (CD), and CD mice treated with AAV gene therapy (GC) and 

60day old normal (WT) and CD mice corrected by gene therapy (GC).
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Figure 3.7 HPTLC of neutral and acidic lipids in cerebrum, cerebellum, and 

medulla of WT, CD/PBS, and CD/rAAV9. HPTLC of (a) neutral and (b) acidic lipids 

in cerebrum, cerebellum, and medulla of WT, CD/PBS, and CD/rAAV9 mice. The 

amount of neutral and acidic lipids spotted per lane was equivalent to approximately 70 

µg and 200 µg brain dry weight respectively. The plate was developed to a height of 4.5 

cm for neutral lipids and 6 cm for acidic lipids The bands were visualized by charring 

with 3% cupric acetate in 8% phosphoric acid solution. WT, wildtype; CD/PBS, GC; CD 

mice treated with rAAV respectively. Statistical tests include one way ANOVA followed 

by Tukey’s Multiple Comparison Test. *P < 0.05; **P < 0.01; ***P < 0.001, NS not 

significant. 
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Figure 3.7 HPTLC of (a) neutral and (b) acidic lipids in cerebrum, cerebellum, and 

medulla of WT, CD/PBS, and CD/rAAV9 mice. 
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Table 3.2 Molecular species composition of cerebrosides and sulfatides in normal 

(WT), Canavan disease (CD) and CD mice treated with AAV gene therapy (GC). 

Brain from mice of different ages was isolated, homogenized and subject to High 

Performance Thin layer chromatography for isolation of molecular species of 

cerebrosides and sulfatides. 
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 Table 3.2 Molecular species composition of cerebrosides and sulfatides in normal 

(WT), Canavan disease (CD) and CD mice treated with AAV gene therapy (GC). 
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Figure 3.8 X-ray diffraction patterns collected from optic nerves and spinal cords 

isolated from P26 mice. X-ray diffraction patterns collected from (a) optic nerves and 

(b) spinal cords isolated from P26 WT (n = 4), CD/PBS (n = 5), and CD/rAAV9 (n = 4) 

mice. The spectra, which represent averaged patterns from one spinal cord or two optic 

nerves from each animal in the group, have been offset along the y-axis for clarity. The 

Bragg orders for each reflection are indicated by numerals above their maxima. Scatter 

plots of M/(M+B) versus myelin period for (c) optic nerves and (d) spinal cords from 

WT, CD/PBS, and CD/rAAV9 mice. Error bars represent ±1 standard deviation centered 

on the average for each group. Comparison of the relative intensities of Bragg reflections 

measured from (e) optic nerves and (F) spinal cords among groups. Relative intensities 

are presented as the intensity of the 2nd order Bragg reflection divided by that of the 4th 

order reflection (I2/I4), normalized by myelin period. *P < 0.05; **P < 0.01 (Student’s t-

test). 
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Figure 3.8 X-ray diffraction patterns collected from optic nerves and spinal cords 

isolated from P26. 
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Discussion 

Our study aims to develop efficacious therapeutics for CD using the AspA−/− KO 

mouse model and systemically delivered rAAVs for CNS-targeted AspA gene therapy as 

well as address off-target transgene expression in peripheral tissues. The AspA−/− mouse 

model in SV129/Ev background (Matalon et al., 2000) recapitulates the severest form of 

CD. Animals show progressive neuropathology and retinopathy, severe developmental 

delay, difficulties in mobility and whole body tremors around P19, which gradually 

worsens until their death around P27 [Figures 3.1 & 3.4a] making them a stringent 

preclinical model to study the molecular etiology of AspA deficiency and evaluate 

efficacious therapeutics, primarily based on the rescue of early lethality. Our study 

clearly demonstrated the feasibility of completely rescuing the early lethality, slowing 

down the disease progression, and extending the survival of CD mice [Figure 3.4b].  

Our findings address several critical issues in systemically delivered CNS gene 

therapy. First, IV injections of rAAVrh.8 and rAAVrh.10 to CD mice at P0 are 

therapeutically equivalent to rAAV9, significantly improving their early motor function 

and growth, and effectively rescuing early lethality, which expands options in the existing 

rAAV repertoire to select serologically suitable vectors for patient populations. Our data 

also provide the first evidence of harnessing endogenous miRNA to regulate therapeutic 

expression of rAAV tissue specifically, which is shown to be safe, not disturbing 

homeostasis or function of endogenous miRNAs (Xie et al., 2010). In addition, the 

success of IV gene therapy as late as P20 in CD mice represent a clinically relevant 
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advance from the documented therapeutic benefit at P10 in a mouse model for spinal 

muscular atrophy (Foust et al., 2010). However, we did observe reduced mobility in the 

later treated animals [Figure 3.4d–g], which indicates that early intervention is 

therapeutically more beneficial, echoing the results of a recently concluded CD gene 

therapy study on patients (Leone et al., 2012). 

Robust neuronal transduction in GC mice [Figure 3.2e] suggested that rAAV9 

delivered AspA may improve myelin structures by hydrolyzing NAA at its source but 

may not help myelination by oligodendrocytes. Our detection of aspartoacylase-

expressing neurons in the WT animals also differs from published data (Madhavarao et 

al., 2003; Madhavarao et al., 2004) but would explain the widespread activity detected in 

cerebral hemispheres [Figure 3.2d], although we cannot discount possible cross-reactivity 

of our AspA antibody with amidohydrolase I that has only 7% reactivity toward NAA 

(Goldstein, 1976; Mehta and Namboodiri, 1995). 

Improved motor functions [Figures 3.4d–h & 3.5e–h] might result from 

reconstituted AspA and mitigated neuropathology in the pyramidal nuclei of the 

hindbrain and spinal cord of treated mice [Figure 3.3 a & b]. However, we did see partial 

hind limb paralyses with dragging of hind limbs and decline in mobility starting around 8 

months post-injection [Video 3.4], although the animals still have intact righting reflexes, 

move around and eat with no obvious weight losses. One possible cause for the late-onset 

motor dysfunctions could be due to a gradual loss of rAAV-mediated AspA expression as 

a consequence of glial cell transduction and regeneration. Around 14 months, the animals 
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started showing infrequent and brief seizures. Readministration of serologically different 

rAAVs by a different route may help to sustain correction of myelin neurochemistry and 

motor function as CNS-directed rAAV gene. 

 Lipid abnormalities for myelin-enriched cerebrosides in CD mice were largely 

similar to those in the tremor rat model of CD (Saher et al., 2005; Wang et al., 2009). 

Since cholesterol is a major component of the myelin sheath, its reduction can be 

attributed to defects in myelin content (Saher et al., 2005). CNS-targeted AspA gene 

transfer by rAAVs appears to correct abnormalities in ganglioside and cholesterol levels 

but not the myelin-specific (cerebrosides) or myelin-enriched (sulfatides and GM1 

ganglioside) lipids [Figure 3.6d & Table 3.2). The subtle differences in electron density 

distribution within the myelin sheath detected among all groups [Figure 3.8] are also 

consistent with altered lipid profiles. Further studies are warranted to compare the 

physiochemical properties and biophysical structures of myelin in the CD and GC mice. 

X-ray diffraction analysis, however, did not detect differences in relative amount of 

myelin between WT, CD, and GC mice. It is unclear whether this is a result of changes in 

axon diameter, lower total scatter from affected animals or region-specific differences in 

optic nerves and spinal cords. In addition, the dramatic loss of vision in CD mice [Figure 

3.1c] might arise from demyelination of optic nerves, retinal degeneration, and 

pathological changes in cell types responsible for visual acuity, or all of the above. 

When translated into human applications, the vector dose regimen used in our 

study is ~2 × 1014 vector genomes/kg. Even though similar doses have recently been 
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approved for systemic delivery of rAAV9 to pediatric patients of spinal muscular atrophy 

(2012); lower doses would reflect a more favorable risk-to-benefit ratio clinically and 

reduced vector manufacturing burden.  

In conclusion, our study demonstrates the crucial role of AspA in myelination and 

early neurodevelopment as well as the feasibility of treating CD by CNS-targeted gene 

therapy using systemically delivered rAAVs. A more comprehensive comparison of three 

leading vectors (i.e., rAAV9, rAAVrh.8 and rAAVrh.10) in CD mice may be warranted 

to select a clinical candidate vector. Afterwards, a formal toxicology, safety and 

biodistribution study of the clinical candidate vector in nonhuman primates may 

constitute a critical path leading to human clinical applications for gene therapy of CD 

and other untreatable CNS diseases. 
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CHAPTER IV: CNS-RESTRICTED GENE DELIVERY USING RAAVS 

RESCUES LETHALITY BUT NOT MOBILITY DEFECTS SUGGESTING 

PERIPHERAL TISSUE INVOLVEMENT AND INFLAMMATION-MEDIATED 

PATHOLOGY IN CD MICE 

 

The following chapter contains the manuscript: 

Ahmed SS, Schattgen S, Sikoglu ME, Su Q, Hampton TG., Fitzgerald K, Matalon R, 

Gao G. CNS-restricted gene delivery using rAAVs rescues lethality but not mobility 

defects suggesting peripheral tissue involvement and inflammation-mediated pathology 

in CD mice (manuscript under preparation) 

The study was devised and results were interpreted by me under the supervision of Dr 

Gao. All experiments except for the ones listed below have been performed by me and 

the manuscript was prepared by me and Dr Gao. Figure 4.6 c, d were contributed by 

Stefan Schattgen. Figure 4.1e was prepared by Dr Elif Sikoglu, Figure 4.5e upper panel 

was contributed by Dr Thomas Hampton. Dr Matalon kindly provided the mice. The 

manuscript was prepared by me and corrected by Dr Gao.  
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CHAPTER IV: CNS-restricted gene delivery using rAAVs rescues lethality but not 

mobility defects suggesting peripheral tissue involvement and inflammation-

mediated pathology in CD mice 

Introduction 

Progressive spongy white matter degeneration and edema in the brain are 

hallmarks of a rare fatal pediatric leukodystrophy- Canavan disease (CD). Clinical 

symptoms include low muscle tone, blindness, severe motor retardation and premature 

death (Traeger and Rapin, 1998). The disease occurs due to autosomal recessive 

mutations in the enzyme aspartoacylase (AspA) (EC 3.5.1.15) that metabolizes N-acetyl 

aspartic acid (NAA) to yield acetate for myelination (Birnbaum et al., 1952 ; Kaul et al., 

1993; Matalon et al., 1988; Mehta and Namboodiri, 1995). Aspartoacylase is known to 

regulate lipid synthesis in the brain and its substrate NAA is the second-most abundant 

metabolite in the brain. NAA is produced by neurons and used by oligodendrocytes to 

coordinate their differentiation, energy production, and lipid synthesis (Namboodiri et al., 

2006). Absence of AspA leads to accumulation of NAA in the body and subsequent 

NAAduria that is a unique to CD (Matalon et al., 1988). NAA has been known to induce 

seizures and generate reactive oxygen species (Akimitsu et al., 2000; Pederzolli et al., 

2009); however, it has not been studied if the NAA accumulated in the absence of AspA 

cause the activation of immune cells that result in the spongy degeneration of the brain. 

Since CD is a monogenic neurodegenerative disease, use of recombinant adeno-

associated viruses (rAAVs) promises to be an attractive therapeutic option. Additionally 

modulation of serotype and the route of delivery can enhance transduction specificity. 
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The first bona-fide animal model to study the disease was the aspartoacylase knockout 

mouse (CD mouse) (Matalon et al., 2000). In the Sv129/Ev background, these mice have 

a very short perinatal lifespan (<4 wks) and recapitulate clinical symptoms of the severest 

manifestation of CD (Ahmed et al., 2013; Matalon et al., 2000). Hence, they are a 

stringent preclinical model to evaluate therapeutics primarily based on the rescue of early 

lethality (Ahmed et al., 2013). 

 Our previous study used systemically delivered rAAVs for CNS-directed AspA 

gene therapy in the CD mouse model, a stringent preclinical model for the congenital 

form of the disease (Ahmed et al., 2013). The therapy completely rescued early lethality, 

slowed disease progression and extended survival of CD mice. rAAVrh.8 and rAAVrh.10 

were found to be  therapeutically equivalent to rAAV9, thus, expanding options in the 

existing rAAV repertoire for selection of serologically suitable vectors for patient 

populations. The vector dose used in the CD mice would translate to ~2×1014

2012

 vector 

genomes/kg in humans. Even though similar doses have recently been approved for 

systemic delivery of rAAV9 to pediatric patients of spinal muscular atrophy ( ); 

lower doses would reflect a more favorable clinical risk-to-benefit ratio and reduce vector 

manufacturing burden.  

The intravenous delivery route allows for transduction of the whole body wherein 

only a small fraction gets in the brain justifying the large vector dosage.  To make lower 

doses more effective, vectors should be delivered into the CNS. Intraparenchymal 

injections have been the most widely used delivery routes for the Central Nervous 

System (CNS) allowing the direct targeting of a defined cell population (Leone et al., 
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2000). Though useful for region specific corrections, intraparenchymal injections are not 

suited for global CNS corrections since there is limited diffusion of the therapeutic from 

the injection site. To ensure global CNS delivery, use a lower dose of vector yet avoid 

unnecessary transduction of peripheral tissues, a promising avenue is the 

intracerebroventricular route of vector administration. The injections rely on the ability of 

rAAVs to cross the ependymal lining and enter the brain parenchyma from the cerebral 

ventricles within the first 24 hours of birth (Passini and Wolfe, 2001). Intraventricular 

injection of rAAVs at this age results in widespread transduction of neurons throughout 

the brain (Kim et al., 2014). Our previous studies and early reports on the abilities of 

rAAVs in mediating CNS transduction by intravascular delivery (Foust et al., 2009; 

Zhang et al., 2011) prompted us to compare the relative therapeutic abilities of these 

vectors in enhancing survival using intracerebroventricular delivery.  

 For gene therapy, we administered rAAV9, rAAVrh.8 and rAAVrh.10 carrying 

the human AspA gene intravascularly and intracerebroventricularly in CD mice at P0. 

Here, we demonstrate that a 50-fold lower dose than previously described for intravenous 

therapy (Ahmed et al., 2013) can still ameliorate disease symptoms; however, correction 

of the motor functions does not persist until the end of life. Additionally the previous 

study provided the first evidence of harnessing miRNA binding sites to regulate 

therapeutic expression of rAAV in a safe, tissue-specific manner without perturbing 

endogenous miRNA homeostasis or function (Ahmed et al., 2013; Xie et al., 2010). We 

also examined these animals and the ICV injected animals to study the role of AspA in 

peripheral tissues. We examined several morphological and functional aspects of 
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peripheral tissues of untreated mice and found that peripheral tissues do express AspA 

and its deficiency does cause pathology in these tissues. Our in-depth analyses of 

neuronal cell types help to understand their contribution to CD pathogenesis. Most 

importantly, our study demonstrates, for the first time, involvement of the immune 

system in response to accumulation of NAA and the importance of targeting peripheral 

tissues in CD.  
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Materials and Methods 

Viral production: All rAAV vectors were produced by transient transfection of 293 cells 

and CsCl gradient sedimentation as previously described (Sun et al., 2010). Vector 

preparations were titered by quantitative PCR, purity of vectors was assessed by 4–12 % 

SDS-acrylamide gel electrophoresis and silver staining (Invitrogen, Carlsbad, CA) and 

morphological integrity of virions was assessed by Transmission electron microscopy of 

negative stained recombinant AAV virions at Electron Microscopy Core, UMass Medical 

School, Worcester.   

Animal procedures: All animal procedures were approved by the Institutional Animal 

Care and Use Committee (IACUC) of UMass Medical School. AspA
+/-

 Sv129/Ev mice 

littermates were bred using programmatic timing and newborn pups were dosed on P0. 

Vectors were injected in the facial vein of P0 pups at doses of 4X10
11

 GC/mouse and 

intracerebroventricularly at a dose of 2X10
10

Immunohistochemistry: Animals were anesthetized, transcardially perfused with 4% 

paraformaldehyde (v/v) in PBS. Whole carcasses were postfixed in fixative for 1 day. 

Organs were extracted, rinsed in PBS, and sagitally sectioned. One half was 

cryoprotected in 30 % sucrose (w/v) in PBS at 4°C, embedded in OCT compound 

(Sakura Finetek, Torrance, CA) and frozen in a dry ice/ethanol bath. 40μm floating 

sections of the entire brain were cut in a Cryostat (Thermo Microm HM 550) for 

immunostaining. The other half was processed for Hematoxylin and Eosin staining for 

 GC/mouse respectively. After the injection 

pups were cleaned, rubbed with bedding, and then returned to their cage. The dam was 

reintroduced after brief nose numbing using ethanol pads.  



154 
 

morphological studies.  

Floating sections were stained in 12-well plates. Sections were washed once in 

PBS for 5 mins, and incubated in blocking solution containing 0.05 % Tween-20 (v/v) 

(Fisher, Pittsburgh, PA), and 10 % goat serum (v/v) (Invitrogen) for 1 hour at room 

temperature. Sections were incubated with primary antibodies at 4°C overnight, washed 

twice in 0.05 % Tween-20 in PBS (PBST) for 15 mins each followed by incubation in 

appropriate secondary antibodies at room temperature for 1 hour. Sections were washed 

twice in PBST for 10 mins each before mounting on glass slides. Vectashield with 4,6-

diamidino-2-phenylindole (Vector Laboratories, Burlingame, CA) was used to mount all 

slides. Omission of either the primary or the secondary antibody in single-label 

experiments resulted in no labeling.  The primary antibodies used were as follows: mouse 

aspartoacylase (Abmart, New Jersey); mouse NeuN (MAB-377, clone A60; Millipore); 

rabbit NeuN (ABN-78, Millipore) and appropriate secondary antibodies from Invitrogen.  

For CD45 staining, the Dako dual link system was used. Briefly paraffin sections of the 

brain were deparaffinized and subject to heat-induced epitope retrieval (BD Retrievagen 

A). Slides were cooled and endogenous peroxidase was blocked using 3% (vol/vol) H2O2

Imaging and Image Analysis: Stained sections were examined using DM 5500B Upright 

microscope (Leica Microsystems, Wetzlar, Germany), and images were captured with 

Leica DFC365 FX high-sensitivity monochrome digital camera. Regions of interest were 

 

for 15 min. They were incubated with primary antibody for 1hr at room temperature, 

washed and incubated with the secondary antibodies. The slides were then counterstained 

with haematoxylin, dehydrated and mounted. 
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identified according to the mouse brain atlas. Z stack of images were taken with a 63X 

objective and 1.6X additional magnification for each channel and overlaid to obtain a 

multicolor image at 100.8X. Deconvolution was performed using Leica Application Suite 

Advanced Fluorescence software.  

Electrocardiography (ECG): ECGs were recorded non-invasively in conscious mice 

similar to a method described previously for mice (Chu et al., 2001). Briefly, mice were 

removed from their cages and positioned inside the ECGenie™ recording enclosure 

(Mouse Specifics, Inc., Boston, MA, USA). A pair of silver-chloride ECG electrodes 

were embedded in the floor of the enclosure and spaced to provide contact between the 

electrodes and animals’ paws. Since even modest handling may induce alterations in 

heart rate, each mouse was permitted to acclimatize for ∼10 min prior to collection of 

data. The signals were digitized at a sampling rate of 2000 samples/s. When mice were 

positioned such that a forepaw and hind paw were not uniquely in contact with one of the 

electrodes, the output from the amplifier was discarded. Only data from continuous 

recordings were used in the analyses. Each signal was analyzed using e-MOUSE™, 

which incorporates Fourier analyses and linear time-invariant digital filtering of 

frequencies below 3 Hz and above 100 Hz to minimize environmental signal 

disturbances. The software uses a peak detection algorithm to find the peak of the R-

waves and to calculate heart rate. Subsequently, determination of first and second 

derivatives and algebraic “if-then” search the ECG signals for probable P-wave peaks and 

onset and termination of QRS complexes. The end of the T-wave of each signal was 

defined as the point where the signal returned to the isoelectric line (the mean voltage 
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between the preceding P-wave and QRS interval). The QT intervals were rate corrected 

(QTc) by application of an equation recommended for rodent electrocardiography 

(Mitchell et al., 1998). The software plots its interpretation of P, Q, R, S, and T for each 

beat so that spurious data resulting from unfiltered noise or motion artifacts may be 

rejected. e-MOUSE™ then calculates the mean of the ECG time intervals for each set of 

waveforms.  

Electroretinography (ERG): Mice were dark-adapted overnight and anesthetized with 

100 mg/kg ketamine and 20 mg/kg xylazine in saline before testing. Both pupils were 

topically dilated with phenylephrine hydrochloride and 1% tropicamide, and mice were 

placed on a heated platform. Rod-dominated responses were elicited in the dark with 10 

μs flashes of white light (1.37×105

Western blot: Mice were sacrificed and their tissues were extracted and homogenized. 

Protein in equal quantities was loaded into a 12% Tris–HCl gel well (Bio-Rad 

Laboratories, CA) and transferred to a nitrocellulose membrane (Bio-Rad). The 

membrane was incubated in blocking buffer for 1hr followed by AspA polyclonal 

antibody overnight. After three washes in 0.1 % PBST, it was incubated with secondary 

antibodies conjugated to LI-COR IRDye for 1 hour at room temperature. After two 

washes with 0.1 % PBST signal was detected using the Odyssey Imager (LI-COR).  

 cd m−2) presented at intervals of 1 min in a Ganzfeld 

dome. ERGs were monitored simultaneously from both eyes with a silver wire loop 

electrode in contact with each cornea wetted with celluvisc containing Carboxy Methyl 

Cellulose Sodium 1%. 

Cell Titer Glo Assay:  Brains were dissected from 1-month-old female mice, washed, and 
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homogenized in Krebs-Ringers bicarbonate buffer (125mM NaCl, 1.4mM KCl, 20mM 

HEPES [pH 7.4], 5mM NaHCO3, 1.2mM MgSO4, 1.2mM KH2,PO4, 1mM CaCl2

Evans Blue injection: Vascular permeability was quantitatively evaluated by fluorescent 

detection of extravasated Evans blue dye. Briefly, 2% Evans blue dye in saline was 

injected intravenously as a BBB permeability tracer. Mice were deeply anesthetized with 

isofluorane and transcardially perfused until colorless perfusion fluid was obtained from 

the right atrium. Samples were weighted and homogenized in 10-fold volume of 50% 

trichloroacetic acid solution. The supernatant was obtained by centrifugation and diluted 

4-fold with ethanol. Fluorescence intensity was determined by a microplate fluorescence 

reader (excitation 620 nm and emission 680 nm). Calculations were based on the external 

standards dissolved in the same solvent. The amount of extravasated Evans blue dye was 

quantified as micrograms per tissue. 

) 

containing 1% BSA. Protein concentrations were determined using the BCA assay 

(Pierce). 50μg of brain lysate was used to measure ATP concentration using the 

CellTiter-Glo Luminescent Cell Viability kit (Promega) in a 96-well format and assayed 

using manufacturer’s instructions. To measure the recovery of ATP from brain lysates, 

known amounts of ATP were used to measure ATP bioluminescence using the CellTiter-

Glo method as above. The recovery of ATP was calculated from these values. 

Macrophage stimulation: Immortalized C57BL/6 macrophages were seeded in 6-well 

plates at 2 x 106 cells/well one day prior to stimulation. Cells were stimulated with 200 

ng/mL LPS or 1, 10, and 100 uM NAA overnight.  RNA was purified using an RNeasy 

kit (Qiagen) 
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qRT-PCR analysis: RNA was extracted using Trizol (Invitrogen), according to 

manufacturer's instructions. Total RNA (0.5–1μg) was reverse-transcribed (Reverse 

Transcriptase, Applied Biosystems). Quantitative PCR reactions were performed in 

triplicate with 0.3 μM gene-specific primer pairs using the GoTaq qPCR master mix 

(Promega) in a StepOne Plus Real-time PCR instrument (Applied Biosystems). 

Flow cytometry and Splenocyte proliferation assay: Spleen and thymus were crushed 

with frosted glass slides, red blood cell lysis performed, and resulting suspension strained 

through 70 uM cell strainer (BD Biosciences) to make single cell suspensions. For 

splenocyte proliferation assays, cells were labeled with 5 uM CFSE for 15 minutes prior 

to plating in 96-well plate coated with 10 ug/mL anti-CD3e and soluble anti-CD28 added 

at 1 ug/mL.  Cells were allowed to proliferate for 5 days before surface staining. Prior to 

staining, Fc receptors were blocked using supernatant from 2.4G2 hybridoma cells (anti-

CD16/32). Cells were stained using anti-TCRb-PerCP-Cy5.5, anti-CD19-PerCP-Cy5.5, 

anti-B220-AlexaFluor 488, anti-CD11b-FITC, anti-CD11c-eFluor 450, anti-Ly6G-PE-

Cy7, anti-Ly6C-APC, anti-NK1.1-APC, anti-CD3e-PerCP-Cy5.5, anti-FoxP3-eFluor450, 

(eBioscience), anti-CD45-V500, anti-CD8a-PE (BD Biosciences), anti-F4/80-PerCP-

Cy5.5, and anti-CD25-APC (Tonbo Bioscience). Data acquisition was performed using a 

4-laser LSRII (BD Biosciences). Analysis was performed using FlowJo analysis software 

(TreeStar).  

Genome copy number: rAAV genomes were quantified in 10ng of genomic DNA 

extracted from mouse tissues using the QIAamp DNA mini kit for quantitative detection 

of vector genome copies by Taqman® probes (Applied Biosystems) with a single-copy 
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endogenous GAPDH gene) as the diploid cell number reference. The Taqman® real-time 

PCR kit was run with primer sets which amplified regions of the nRBG poly A (Probe, 

6FAM-ATG AAG CCC CTT GAG CAT CTG ACT TCT-TAMRA; Fwd, GCC AAA 

AAT TAT GGG GAC AT; Rev, ATT CCA ACA CAC TAT TGC AAT G). The 

sensitivity of the assay was 10 copies/cell.  

Assays for serum ALT and AST levels: Blood was collected from the ocular sinus of all 

of the animals in each group. ALT (serum glutamic pyruvic transaminase) or AST 

reagent (Teco Diagnostics, Anaheim, CA) was used, and the protocol was altered for use 

in 96-well flat-bottomed microplates. The plate was then read, and the aminotransferase 

concentrations were determined according to the manufacturer's instructions. 

Neural cell culture: The culture of primary hippocampal and cortical neurons was 

performed as described (Huang and Richter, 2007) in neurobasal media (Invitrogen) 

containing B27 supplement (B27 media) and glutamine (1μg/ml). Oligodendrocytes and 

astrocytes were cultured as reported (Albuquerque et al., 2009; Chen et al., 2007) 

AspA activity assay: Mice were sacrificed 3 months after injection, and brain 

homogenates were used for the enzyme assay. Briefly, the brain was homogenized and 

incubated with 50mM Tris–HCl (pH 8.0), 0.5% (w/v) NP-40, 50 mM NaCl, 1 mM 

CaCl2, 2.8 mM NAA in a total volume of 600 µl. After incubation at 37°C for 3-6h, the 

assay mixture was centrifuged and the supernatant was incubated with malic 

dehydrogenase, glutamic oxalacetic transaminase, and NADH for 10 min at 37°C. The 

amount of L-aspartate released was estimated by decrease in absorbance due to the 

conversion of NADH to NAD using a spectrophotometer (Beckman Coulter, DU 800) at 
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340 nm. One milliunit of aspartoacylase activity is equivalent to 1 nmol of aspartate 

released in 1 min. Values were calculated using ANOVA. The value P <0.05 was 

considered significant.  

1
H Magnetic Resonance Imaging and Spectroscopy: Mice were anesthetized with 2% 

isofluorane and constantly monitored for vital signs. All experiments were carried out on 

a Bruker 4.7T/40 cm horizontal magnet (Oxford, UK) equipped with 250 mT/m magnetic 

field gradient and interfaced with a ParaVision 4.0 console. A 1

Proton spectra were fit using LCModel (Version 6.2-2B), which analyzed in vivo 

proton spectrum as a linear combination of model in vitro spectra from individual 

metabolite solutions (Provencher, 2001) and generated data as absolute fits (in 

institutional units) and standard deviations (SD%). Standard deviation was used as a 

measure of the reliability of the fit. The spectral inclusion criteria were SD less than 20% 

for NAA, Cr and Ins.  

H radiofrequency (RF) 

coil configuration (Insight NeuroImaging Systems, MA) with inner diameter (ID) of 4 cm 

was used for the experiments. T2-weighted anatomical images were acquired using a fast 

spin-echo sequence (RARE) (TR=3000 msec, TE=48 msec, matrix size=256×256, 

FOV=2.5 cm×2.5 cm, slice number=16, slice thickness=1 mm). 1H MRS Data was 

acquired using single voxel (Pont Resolved Spectroscopy Sequence (PRESS) (TR=2500 

msec, TE=20 msec, Naverage=1024, voxel size=3 mm×3 mmX3 mm).  

Behavioral studies: For the beam balance test, animals were placed in the middle of a 

horizontal wooden balance beam (1.5 cm × 100 cm) with pads underneath to protect mice 

that fall off the beam.  Latency to fall was recorded, with a 3min time limit for each trial.  
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Neuromuscular function of the mice was assessed by testing grip strength on an 

inverted screen. Mice were placed in the center of a screen (30 cm2 square-wire mesh, 25 

mm2 holes) until they gripped the mesh. The screen was then inverted above a cushioned 

surface for a 2sec period with the mouse’s head declining. Latency to fall from the screen 

was recorded, with a 2min time limit for each trial.  

Mice were subjected to a rotarod test to evaluate motor coordination and balance. 

Each animal was placed on the rotarod after which speed was adjusted to 3 rpm. The 

latency to fall off the rotarod within this time period was recorded for a fixed speed. 

Animals were also tested for their latency to fall off at accelerated speeds going from 4 to 

40 rpm in 5mins.  

Animals were tested for each experiment 3 times with an inter-trial interval of 

approximately 30 min for each animal and means of 3 trials were used to plot the graphs.  

Transmission Electron Microscopy: Mice were anesthetized and perfused with a solution 

of 2.5 % glutaraldehyde in 0.05 M Sodium Phosphate buffer, pH 7.2. The brain was 

extracted and incubated in 2.5 % glutaraldehyde in 0.05 M Cacodylate buffer overnight at 

4°C. It was sectioned into 1 mm thick sections, rinsed twice in the same buffer and post-

fixed with 1 % osmium tetroxide for 1h at room temperature.  Sections were washed in 

DH2O for 20mins at 4°C and then dehydrated in graded ethanol series of 20% 

increments, before two changes in 100 % ethanol. Sections were infiltrated with two 

changes of 100% propylene oxide and then with a 50%/50% propylene oxide / SPI-Pon 

812 resin mixture overnight.  After three changes of fresh 100 % SPI-Pon 812 resin, 

sections were polymerized at 68°C in plastic capsules. Regions of interest were cut out 
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and thick-sectioned for toluidine blue. Chosen regions were reoriented and approximately 

70nm thin sections were placed on copper support grids and contrasted with lead citrate 

and uranyl acetate. Sections were examined using the FEI Tecani 12 BT with 80Kv 

accelerating voltage, and images were captured using a Gatan TEM CCD camera.  

X-ray Diffraction Analysis: X-ray diffraction was performed as described (Agrawal et 

al., 2009). Briefly, sciatic nerves were dissected from mice sacrificed using isoflurane 

and were maintained in physiological saline (154mM NaCl, 5mM phosphate, pH 7.4) and 

loaded into thin-walled, quartz capillary tubes which were then filled with saline and 

sealed with wax and enamel. X-ray diffraction experiments were carried out using nickel-

filtered, single-mirror focused CuKα radiation from a fine-line source on a 3.0 kW 

Rigaku X-ray generator operated at 40 kV by 10 mA. Exposure times were 30 min. 

Diffraction patterns were collected using a linear, position-sensitive detector (Molecular 

Metrology, Inc., Northampton, MA) and analyzed using PeakFit (Jandel Scientific, San 

Rafael, CA). Myelin period was calculated from the positions of the intensity maxima in 

the diffraction patterns. The relative amount of myelin in each sample was calculated by 

measuring the total integrated intensity of all maxima over background, excluding small-

angle scatter around the beam stop and wide-angle scatter.  

Statistical Analyses: Statistical calculations included Log rank Mantel Cox test for the 

survival table and one way ANOVA followed by Tukey’s Multiple Comparison test for 

all other experiments. *P < 0.05; **P < 0.01; ***P < 0.001, NS not significant.  
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Results 

Restoration of AspA by gene therapy systemically vs. in the CNS alone [IV vs. ICV] 

CD mice mirror the attributes of human patients showing early perinatal lethality 

(>28days) and severe neurodegeneration, hence benefits of a therapeutic intervention 

would be best measured by monitoring longevity of treated animals. Long term survival 

was monitored using the Kaplan-Meier curve for treated mice (n=10 per group) injected 

intravenously [Figure 4.1a, upper panel] as well as intracerebroventricularly [Figure 4.1a, 

lower panel] with all three serotypes. We focused on rAAV9 to compare differences 

between the routes of delivery. Weight gain was monitored daily for the first month 

[Figure 4.1b, upper panel] and subsequently every two weeks [Figure 4.1b, lower panel] 

to compare differences between the routes of delivery using rAAV9 until the animals 

(n=10) caught up with their wildtype (WT) littermates. There was a uniform rescue of 

lethality and extended survival as long as 2 years with all the treated animals and there 

was no significant difference in weight gain between routes of administration. 

As reported earlier, Hematoxylin & Eosin (H&E) staining of brain sections 

showed vacuoles that indicated severe neurodegeneration in untreated CD mice (Ahmed 

et al., 2013) (n=4) at postnatal day 25, P25. These were significantly reduced in mice 

treated both intravenously as well as intracerebroventricularly with rAAV9 [Figure 4.1c]. 

To evaluate changes in vision since CD patients eventually lose their sight, scotopic 

electroretinography (ERG) studies were performed on all groups of mice (n=4) at P90 to 

evaluate retinal response to light flickers as described earlier (Ahmed et al., 2013). 

Electrophysiological measurements of retinal cells produce the ERG trace consisting of 
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a-waves that indicate photoreceptor activity and b-waves that indicate glial cell activity b-

waves [Figure 4.1d]. Both intravenous and intracerebroventricular delivery methods 

correct vision to the same extent (depicted by rAAV9). Cerebral edema is an important 

pathological effect in CD patients and hence MRI was performed to evaluate the status of 

the brain. Intracerebroventricular injections relieved edema to a greater extent than 

intravenous injections delivery methods [Figure 4.1c]. Motor functions were evaluated 

for both the IV and ICV injected animals and even though the latter performed much 

better on all the 4 motor tests, they were not able to sustain the correction over time 

[Figure 4.1f]. Since it seemed that restricting the therapeutic vector to the CNS did not 

allow complete alleviation of the pathology, we tested the animals injected with a 

previously described miRNA-regulated vector genome designed for CNS-restricted gene 

transfer, called rAAV9hAspA(miR-1BS)3-(miR-122BS)3 (i.e. rAAV9hAspA-miRBS) 

which carries 3 copies each of the miRNA binding sites specific to miR-1 and miR-122 

(i.e. miRNAs enriched in heart and skeletal muscle, and liver respectively but not in the 

CNS)(Ahmed et al., 2013). These animals too showed a reduction in motor function 

abilities with the passage of time suggesting an involvement of peripheral tissues in CD 

pathology [Figure 4.2].  

Aspartoacylase is present in peripheral tissues and its deficiency leads to 

morphological and functional abnormalities in multiple peripheral tissues including 

the Peripheral Nervous System 

In order to investigate the importance of AspA in peripheral tissues we used fresh 

tissues from WT mice (n=4) powdered in liquid nitrogen to determine the presence of 
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AspA by qPCR [Figure 4.3a, upper panel] and western blot [Figure 4.3a, lower panel].  

AspA was indeed expressed in varying amounts in different peripheral organs. We then 

examined the morphology of the various peripheral organs starting with their gross 

weight normalized to their body weight [Figure 4.3b, upper panel]. 

We examined the complete differential count of blood (n=5) [Figure 4.3c] to 

discover that diseased mice have lymphocytopenia and a biochemistry profile of their 

serum (n=5) revealed a propensity of these mice for low blood glucose and defective 

pancreatic function evident by amylase levels [Figure 4.3d]. We then examined the effect 

of AspA deficiency on the Central and Peripheral nervous systems by closely examining 

the morphology of the optic, sciatic and vagus nerves by Electron Microscopy studies 

[Figure 4.4a] and myelination status of sciatic nerve by X-Ray Diffraction [Figure 4.4b]. 

We found abnormalities in the myelin structure for all nerves in CD mice validated by the 

myelin period and I2/I3 ratio determined by X-Ray Diffraction studies [Figure 4.4b & c] 

similar to the reported behavior of the optic nerve. The I2/I3 ratio is a measure of the 

relative intensity of 2nd order X-ray reflection over the 3rd order reflections indicating a 

small change in membrane structure This suggests that AspA deficiency does affect the 

peripheral nervous system to a certain extent however the effect may be mild. 



166 
 

Figure 4.1 Systemically and intracerebroventricularly delivered rAAV-mediated 

gene therapy rescues lethality and metabolic defects but not motor functions in CD 

mice. (a) Kaplan Meier Survival curves for all groups treated with rAAV9, rAAVrh.8 

and rAAVrh.10 at P0 (n=10) treated intravenously (upper panel) and 

intracerebroventricularly (lower panel)  (b) Early growth rate was assessed by taking 

weights at 2 day intervals for the first month (upper panel) and then at 2 week intervals 

(lower panel) plotted as a function of time. rAAV treated animals were shown as a 

representative of the serotypes.  (c) Hematoxylin & Eosin staining of brain sections 

showing neuropathology. (d) Scotopic ERGs of overnight dark-adapted WT and CD mice 

(n=4 each) to test the response of rods recorded as waveforms (µV) to flickers of light in 

increasing intensity called steps Upper panel, b wave; lower panel, a wave. (e) 

Representative T2 weighted MRI images showing water accumulation (white) in P25 

CD/PBS and P60 GC and WT animals. (f) Motor functions of study groups were tested at 

P30 and P90 based on their performance on the balance beam, inverted screen and 

rotarod moving at fixed (3 rpm) and accelerated speed (4-40 rpm in 5mins). 
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Figure 4.1 Systemically and intracerebroventricularly delivered rAAV-mediated 

gene therapy rescues lethality and corrects phenotype and metabolic defects but not 

motor function in CD mice. 
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Figure 4.2 rAAV gene therapy using miRNA-mediated CNS restriction does not 

cause long-term correction of motor function in CD mice. Motor functions of study 

groups (n=6) were tested at P90 based on their performance on the balance beam, 

inverted screen and rotarod moving at fixed (3 rpm) and accelerated speed (4-40 rpm in 

5mins).WT, wildtype; CD/PBS, CD/rAAV, CD mice treated with PBS or rAAV 

respectively.  
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Figure 4.2 rAAV gene therapy using miRNA-mediated CNS restriction does not 

cause long-term correction of motor function in CD mice.  
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Figure 4.3: Importance of Aspartoacylase in peripheral tissues and general malaise 

in CD mice in addition to CNS pathology. (a) qPCR of Aspartoacylase mRNA and 

representative Western blot for aspartoacylase from fresh tissue homogenates of WT 

animals at P30 (n=4) showing extensive aspartoacylase expression in peripheral tissues. 

(b) Ratio of the weight of peripheral organs normalized to body weight of the animals 

(n=4) from which the tissues were collected; lower panel pictures of gross morphology of 

organs (c) Complete differential count of blood for CD and WT mice (n=4). (d) Serum of 

CD and WT mice (n=4) was tested for various biochemical markers.  

WBC, White blood corpuscles; HCT, Hematocrit; MCV, Mean Corpuscular Volume; 

RBC, red blood corpuscles; HGB, Hemoglobin; MCH, Mean Corpuscular Hemoglobin; 

MCHC, Mean Corpuscular Hemoglobin Concentration; MPV, Mean Platelet Volume; 

PLT, Platelet; ALT, Alanine Aminotransferase; BUN, Blood Urea Nitrogen; Ca, 

Calcium; PO4, Phosphate; Na, Sodium; K, Potassium. 
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Figure 4.3 Importance of Aspartoacylase in peripheral tissues and general malaise 

in CD mice in addition to CNS pathology. 
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Figure 4.4 Examination of the Central and Peripheral Nerves. Nerves were isolated 

from perfused mice and sectioned. (a) Optic, Sciatic and Vagus nerves were processed 

for electron microscopy. Scale bars 200nm . Fresh sciatic nerve was isolated and used for 

X ray diffraction analysis (b) Myelin period and (c) Ratio of I2/I3 was estimated. 
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Figure 4.4 Examination of the Central and Peripheral Nerves. 
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Figure 4.5 Peripheral organs like kidney, muscle and heart reveal abnormalities in 

morphology and functions contributing to additional pathology in CD mice. (a) 

Representative images from H&E stained paraffin sections of the kidney and medulla for 

WT and CD animals (n=4) (b) Electron microscopy of the renal cortex and medulla of 

P21 age matched mice (n=3 for each cohort) (lower panel). (c) Representative H&E 

stained sections of P26 mice where CD animals show more nucleation in muscle fibres of 

the tibialis anterior (TA) muscle (n=3). (d) Neuromuscular junction staining of the TA 

muscle showing several collapsed NMJs in CD mice compared to WT animals (n=3). 

Inset shows higher magnification picture of an individual NMJ. (e) Electrocardiography 

(ECG) trace of WT and CD mice at P21 revealing bradycardia (upper panel) and 

quantitation of the heart wall thickness using Image J using H&E section (3 sections at 

different levels each for n=3 animals per cohort).  
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Figure 4.5 Peripheral organs reveal abnormalities in morphology and functions 

contributing to additional pathology in CD mice. 

 

.   
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We then looked at peripheral tissues beginning with the kidney, which showed 

AspA levels even higher than the brain. Morphologically, H&E stain showed a 

significant difference in the lumen sizes of the kidney tubules [Figure 4.5a] and EM 

studies revealed apoptosing cells in the distal convoluted tubule, loosened filtration 

membranes and loosely structured villi in the proximal convoluted tubule [Figure 4.5b]. 

Since the miRBS vector detargeted therapeutic AspA expression from the muscle, heart 

and liver; we examined these organs in detail. Examination of the skeletal muscle 

histology showed that CD mice show more nucleation [Figure 4.5c]. Staining for the 

neuromuscular junction (NMJ) reveals that in CD mice, some NMJs show denervation 

[Figure 4.5d] and while a majority do not have the healthy pretzel shape but instead are 

collapsed [inset, Figure 4.5d]. 

We then looked at the heart for functional and morphological abnormalities 

[Figure 4.5e]. Electrocardiography (ECG) revealed bradycardia [Figure 4.5e, upper 

panel]. Closer examination of morphology revealed that the size of the heart was larger 

with respect to body weight [Figure 4.3b] and the heart walls were thinner in CD mice 

[Figure 4.5e, lower]. Also abnormalities in the vagus nerve [Figure 4.4a] could be linked 

to the bradycardia. We next examined the liver for structural abnormalities by H&E 

staining and tested serum for AST and ALT levels to check functions. The values though 

significantly different between the WT and CD mice fell within the normal range. In 

summary, the liver did not show any morphological or functional abnormalities [Figure 

4.6a &b]. In addition to these organs we decided to examine the spleen because of its 

abnormally small size [Figure 4.3b]. Phenotyping of splenocytes by FACS revealed that 



177 
 

diseased mice have a significantly lower count of several immune cells including but not 

limited to the TCR, CD4 and CD8 cells [Figure 4.3c] and CFSE staining revealed that 

splenocytes of CD mice are unable to proliferate when challenged by CD28 [Figure 

4.3d]. Hence, it appears that the immune system of CD mice is compromised. 

Additionally we examined the eyes for morphological changes by electron microscopy 

since blindness is one of the symptoms of CD patients and untreated mice have defective 

vision (Ahmed et al., 2013). EM analyses of the diseased mice showed disruption of the 

cellular matrix in several retinal layers [Figure 4.3e]. In CD mice, cells in the ganglion 

cells layer had a shrunken appearance while the inner plexiform layer showed an 

abundance of vacuoles. Cells were loosely arranged in the Outer Nuclear Layer. Regions 

like the Outer segment, transition cilia and the transition membrane externa showed 

apoptosing cells and disorganization. 

NAA acts as an inflammatory agent to secondarily result in neurodegeneration  

ICV administration of NAA gave rats seizures (Akimitsu et al., 2000), we decide 

to explore if NAA acts as an inflammatory agent. We performed in vitro studies on 

C57BL/6 bone marrow-derived macrophages that have been immortalized with CreJ2 

retrovirus treating them with increasing concentrations of NAA. We found that 100mM 

NAA kills off the cells whereas lower doses of NAA does induce inflammatory genes 

most notably IL6 [Figure 4.7a]. Interestingly, AspA was upregulated in the macrophages 

presumably to maintain homeostasis. Whole brain homogenates also showed a similar 

trend [Figure 4.7b]. Moreover, since peripheral immune cells showed an abnormal 

phenotype [Figure 4.6c] we decided to explore the immunologically privileged brain for  
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Figure 4.6 Peripheral organs like spleen and eyes but not liver reveal morphological 

abnormalities in CD mice (a) Hematoxylin & Eosin staining of paraffin embedded liver 

shows no morphological abnormality (b) AST and ALT levels were determined using 

serum to determine functional abnormalities of liver. (c) FACS of splenocytes for TCR, 

CD8, CD4 and Treg markers (d) Splenocyte proliferation was monitored by estimating 

dilution of fluorescence of the CFSE dye over a period of 72 hours. Histograms of 

individual animals (n=4) were stacked. (e) Representative images from Electron 

Microscopy studies of the retinal layers of the eyes of WT and CD animals (n=3) Scale 

bars, 1µm. 
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Figure 4.6 Peripheral organs like spleen and eyes but not liver reveal morphological 

abnormalities in CD mice
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Figure 4.7 NAA mediates inflammation in the brain leading to microglia activation. 

(a) In vitro C57Bl/6 macrophages were treated with varying doses of NAA and assayed 

for expression of inflammatory genes and aspartoacylase by qRTPCR. (b) Brain 

homogenates of WT and CD were assayed for inflammatory genes (n=3). (c) Brain 

sections were stained for CD45RO and analyzed under light microscope.  
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Figure 4.7 NAA mediates inflammation in the brain leading to microglia activation.
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Figure 4.8 Examination of blood brain barrier in CD mice. (a) Animals were injected 

with Evans Blue dye alone or in combination with mannitol. After their extremities 

turned blue, animals were sacrificed, perfused with PBS and their brains were isolated 

and photographed. (b) Brain homogenates were assayed spectrophotometrically for 

presence of Evans Blue. (c) Liver was extracted and assayed similarly as a control for 

amounts of dye in the periphery. (d) Amount of Evans Blue in the brain was measured as 

a ratio of body weight. NS, not significant; **P<0.01. 
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Figure 4.8 Examination of blood brain barrier in CD mice. 
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Figure 4.9 Involvement of caspases in CD pathogenesis. (a) Brain lysates were assayed 

for ATP consumption by Cell Titer Glo assay (n=5). (b) Brain homogenates were tested 

for presence of various caspases (n=3 in three experiments) (c) Brain sections were 

stained for cleaved caspase and microglia to test the presence of activated caspase in the 

corpus callosum. Scale 20µm. (d) Microglial cell culture isolated from CD mouse brains 

showed robust expression of cleaved caspase 3. 
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Figure 4.9 Involvement of caspases in CD pathogenesis.
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Figure 4.10 Behavior of in vitro neural cell cultures. (a) Immunofluorescence of in 

vitro primary cell cultures derived from WT mice to determine expression of 

aspartoacylase, AspA. (b) Electron Microscopy of oligodendrocyte cultures derived from 

WT and CD mice. Scale bars 1µm. (c) Electron microscopy of astrocyte culture of CD 

mice. Yellow arrows show centrosomes. Scale bars 0.5µm. 
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Figure 4.10 Behavior of in vitro neural cell cultures.  
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Figure 4.11 Malate-Aspartate Shuttle. Role of aspartate in generation of energy via 

production of NADH. NAD, nicotinamide adenine dinucleotide; NADH,reduced 

nicotinamide adenine dinucleotide, Cyt, cytosolic; Mt, mitochondrial. 
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Figure 4.11 Malate-Aspartate Shuttle.  
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activated microglia using CD45RO staining (Gonzalez-Scarano and Baltuch, 1999). The 

rationale for this was based on the hypothesis that activated microglia can mediate tissue 

damage causing CNS inflammatory disorders leading to neurodegeneration. We found 

profuse signal in the CD brain that indicates that activated microglia are indeed present 

[Figure 4.7c] which may be responsible for the extensive neuroinflammation causing the 

vacuolation in the brain.  

Blood Brain Barrier is not compromised at least at the onset of symptoms in CD mice 

To further explore the molecular pathogenesis of CD, we tested CD mice for permeability 

of their Blood Brain Barrier using Evans Blue (EB) injections. Control mice were 

injected with saline or EB combined with mannitol pretreatment (3ml/100g) since 

mannitol reversibly opens the BBB. Results showed no difference in the BBB 

permeability by appearance of the brain in both WT and CD mice [Figure 4.8a]. 

Spectrophotometric readings from brain homogenates showed no significant difference in 

BBB permeability between WT and diseased animals [Figure 4.8b]. All mice showed 

similar levels of EB retention in the liver [Figure 4.8c] indicating that similar amounts of 

dye was present in circulation. The results indicate that the BBB is not disrupted at least 

in early pathogenesis of CD. Examination of EB retention in the brain with respect to 

body weight (Figure 4.8d) however indicated that there may be more to the story since 

diseased mice weigh almost one-third of their littermates (Ahmed et al., 2013).  

Caspases are upregulated in CD mouse brains and in neural cell cultures 

We also investigated if there was significant loss in cellular components of the 

brain with the white matter degeneration. Cell Titer Glo assay to measure amounts of 
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actively  metabolizing cells by measuring ATP consumption also did not reveal 

significant differences [Figure 4.9a]. Since degeneration is a major feature in CD we 

investigated if apoptosis was significantly involved. Western blot of brain homogenates 

(n=3) did not show any significant upregulation in protein levels of either the initiator or 

the effector caspases [Figure 4.9b]. Brain homogenates, however, cannot represent 

differences in regional or transient caspase expression. Moreover activated microglia 

could be the source of such caspase expression. Hence, we performed 

immunofluorescence staining for cleaved caspase 3 and Iba1 in whole brain and primary 

cell cultures. We found robust expression of cleaved caspase 3 in microglia and the 

corpus callosum in the brain of CD mice [Figure 4.9c].  

Behavior of primary neural cell cultures isolated from CD mice 

Closer examination of neural cell types in culture revealed several interesting 

observations. First we saw expression of aspartoacylase by immunofluorescence in in 

vitro cultures of both neurons and oligodendrocytes isolated from WT mice [Figure 

4.10a]. By electron microscopy we examined mitochondria in cultured oligodendrocytes 

and found that they were osmolyzed and damaged [Figure 4.10b] similar to that reported 

(Ahmed et al., 2013). Additionally astrocyte cultures from CD mice showed the presence 

of abnormal number of centrosomes [Figure 4.10c], that possibly indicates motility; 

however the implication of this is unknown. 
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Discussion 

Intravenously administered CNS therapeutics requires administration of high 

doses to reach effective drug concentrations at CNS disease sites, resulting in a high 

systemic viral load and an increased manufacturing burden. The cogent next step in viral 

gene therapy targeting the CNS would be a more effective delivery method that lowers 

clinical risk-to-benefit ratio and reduces vector production costs without compromising 

efficiency of vector delivery. Based on our previous successful preclinical study in 

ameliorating CD (Ahmed et al., 2013), we used a 50-fold lower dose using 

intracerebroventricular injections. This would result in high CNS concentrations with 

minimal systemic exposure and toxicity and most importantly cause global CNS 

transduction.  

As intravenous injections of rAAV9 had been efficient in correcting major CD 

symptoms (Ahmed et al., 2013), we primarily examined animals injected 

intracerebroventricularly using AAV9 [Figure 4.1]. In most cases there was no significant 

difference between the two methods of delivery; however, ICV injections showed 

remarkable rescue of edema in the brain [Figure 4.1e]. To our surprise, we found that 

ICV injected animals had a significantly different profile when it came to motor 

functions. In the first month following injection, their motor function performance was 

equivalent to the intravenous treated animals however this declined by 3 months of age 

[Figure 4.1f]. We closely examined if restriction for peripheral tissue had any effect so 

we assessed motor function for older animals injected with the miRNA-BS vector 

described earlier (Ahmed et al., 2013) [Figure 4.2] and found a similar result. This led us 
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to examine if peripheral tissues expressed AspA or showed gross differences [Figure 

4.3b], suggesting that CD may not be corrected by restricting therapeutic vector 

expression to the CNS.  

Aspartoacylase expression has previously been reported in the periphery 

including the kidney and several other organs; however, a detailed analysis was never 

performed (Mersmann et al., 2011; Surendran et al., 2006). Another study reported low 

bone mineral density in CD mice arising as a consequence of the genetic defect 

(Surendran et al., 2003) that would explain the emaciated appearance of the untreated 

mice. Our study sheds light on the importance of aspartoacylase in the periphery through 

a detailed analysis of several organs [Figures 4.5 & 4.6]. Interestingly, we found that 

there was lack of central nucleation but more nuclei in muscle fibers that could be related 

to denervation. This hypothesis seems to be plausible since in the neuromuscular junction 

(NMJ) staining by immunofluorescence we do see a lot of the CD NMJs lacking 

innervation. Moreover denervation could lead to smaller myofiber size, which in turn 

would appear as more crowded nuclei. The function of the malate aspartate shuttle could 

probably be affected by the deficiency of aspartoacylase derived aspartate. Since the 

shuttle would mainly function in gluconeogenesis, the organs involved would primarily 

be the liver. Though we don’t see overt changes in the AST and ALT levels in the liver, 

the glycogen content might be worth a closer examination. Aspartoacylase was reported 

to be expressed in the sciatic nerve (Mersmann et al., 2011) hence we performed an 

extensive analysis on its morphology. Both X-ray diffraction and electron microscopy 

data confirmed that the deficiency of aspartoacylase indeed leads to morphological 
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differences [Figure 4.4]. The enteric nervous system has not been examined however the 

lowered glucose levels in the blood could indicate a role of aspartoacylase in glucose 

metabolism in the small intestine. This seems plausible since the small intestine shows 

high expression of aspartoacylase (Mersmann et al., 2011).It has been widely accepted 

that most CD pathology arises from deficiency of aspartoacylase; however, the damage 

perpetrated by the accumulated NAA cannot be underestimated. Studies have shown 

NAA administration to the rodent brain led to seizures (Akimitsu et al., 2000), which is a 

common symptom in CD patients (Beaudet, 2001). Additionally, the blood CDC revealed 

a disproportionate amount of granulocytes, indicating involvement of the immune system 

[Figure 4.3]. Splenocyte phenotyping by FACS suggests abnormalities in the bone 

marrow or even the thymus suggesting that production of lesser immune cells overall 

would lead to less mature immune cells in the spleen. Closer examination of the splenic 

architecture specifically the size of the pulp regions could shed light on the total 

proportions of immune cells. The lack of proliferation in CD splenocytes when 

challenged by CD28 indicates a lack of T cell response. These cells may be unable to 

proliferate due to a block in metabolism, perhaps in fatty acid synthesis in activated T 

cells. All these data indicate an involvement of the immune system that has never been 

reported before in the context of Canavan disease.  

Since the brain is an immune-privileged organ, the only immune arm would be 

the resident macrophages- the microglia. This prompted us to examine if the accumulated 

NAA, in addition to generation of free radicals (Pederzolli et al., 2009), causes an 

upregulation of immune components secondarily resulting in white matter degeneration 
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and vacuolation. On external supplementation of NAA, interestingly we found an 

upregulation of the IL6 genes in WT macrophages. The results were similar in fresh brain 

homogenates of CD mice indicating that the immune response is another probable cause 

of the severe pathology in CD mice. Studies suggest an involvement of IL6 in the 

induction of autoimmunity (Iwanami et al., 2008) which opens up an interesting avenue 

of explanation for CD neuropathology. Accumulation of NAA may also cause nitric 

oxide toxicity in the brain by upregulation of inducible nitric oxide synthase (iNOS) in 

neurons and endothelia (Surendran and Kondapaka, 2005). Imbalance in NO levels may 

give rise to neurodegeneration (Surendran and Kondapaka, 2005). Upregulation of NAA 

inhibited catalase and glutathione peroxidase activities and increased hydrogen peroxide 

levels (Pederzolli et al., 2010) which suggest a potential role for inflammation. Oral 

administration of NAA in rats led to several symptoms similar to Canavan Disease 

(Delaney, 2010). Our data also suggest that excess NAA may activate microglia via an 

immune response that may result in vacuolization.  

We would expect that the neuropathology and vacuolization would indicate a 

severe loss in cell numbers. To our surprise, we found that the cells present in the whole 

brain have comparable metabolic activities by quantifying the amount of ATP in brain 

lysates [Figure 4.9]. Though activated caspases were not evident in western blots of brain 

lysates [Figure 4.9b], immunofluorescence staining did show up massive upregulation of 

caspase 3 in the brain as well in primary neural cell culture [Figure 4.9b] indicating the 

involvement of apoptosis. The results can be reconciled since analysis of lysates might 

not detect localized or transient upregulation. 
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Another aspect that has been overlooked in the attempt to define CD pathogenesis 

is the characteristics of neural cells from CD mice. It may be argued that a proportion of 

stably transduced neuronal population may be enough to negate the toxicity which would 

probably explain why our previous preclinical therapy extended life to a great extent in 

spite of a single injection. The decline in quality of later life may indicate that the 

turnover of transduced glial cells reduces the overall aspartoacylase making “factories”. 

Again, if neurons are only transduced population, the homeostasis of NAA metabolism 

may be affected. Since the functions of NAA have not been defined it is unknown how 

such a disturbance would affect the brain microenvironment.  Hence we examined the 

individual characteristics of primary neural cultures. Neuronal cultures showed 

expression of aspartoacylase by immunofluorescence. Ultramicroscopic studies of 

oligodendrocytes showed abnormal mitochondria [Figure 4.10b] that resemble lysed 

mitochondria reported in the brain previously (Ahmed et al., 2013). Cell cultures of 

microglia derived from CD robustly expressed cleaved caspase 3 [Figure 4.9d], 

indicating their role in mediating apoptosis. Astrocytes showed the presence of multiple 

centrosomes [Figure 4.10c]; however, the significance of that is not known. As astrocytes 

are essential components of the blood brain barrier (BBB), and astrocytes may link 

spongy neurodegeneration and aspartoacylase deficiency, it was imperative for us to 

examine the BBB permeability of the CD mice more carefully. We did not find the BBB 

to be compromised in the CD mice at least at P20 when the pathology becomes more 

severe [Figure 4.8].  

An important fact is that aspartate generated by the action of aspartoacylase has 
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very important implications in the energy metabolism in addition to it being a 

neurotransmitter (Cavallero et al., 2009). The aspartate-malate shuttle is an essential 

aspect of glucose metabolism in the cell [Figure 4.11]. Aspartate and glutamate are 

closely linked with each other through transaminase reactions (Cooms, 1997). Glutamine 

produced by astrocytes is used by neurons to produce glutamate in the glutamine-

glutamate cycle (Newsholme et al., 2003). In astrocytes, the α-amino group of glutamate 

is transferred to oxaloacetate to yield aspartate by the catalysis of aspartate 

aminotransferase (Yudkoff et al., 1986). Aspartate aminotransferase [E.C 2.6.1.1] is 

involved in the aspartate-malate shuttle [Figure 4.11] that is essential in generating 

glucose and glutamate and occurs between the cytosol and mitochondria. Lack of 

aspartate may compromise the shuttle and lead to a decrease in glucose metabolism as 

observed in our serum biochemistry panel [Figure 4.3d]. Low blood glucose could also 

stem from issues in digestion that may possibly be caused by enzymatic defects or 

abnormalities in the intestine. 

Increasingly, it seems that CD pathogenesis might not be confined to the CNS but 

may also involve pathogenesis of the peripheral organs which is also essential for future 

therapeutic strategies. A lower dose of vector does indeed alleviate the severity of 

symptoms but is not palliative, indicating the need for more powerful codon-optimized 

vectors and dose-escalation studies of the same to elucidate the best means of targeting 

disease models that can be translated to clinical therapeutics. 

In conclusion, our study highlights the involvement of peripheral tissues in a 

primarily neurological disorder. We also suggest NAA-induced immune responses as a 
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likely mechanism for CD pathogenesis. In short our study points out new guidelines to be 

considered while designing newer and better therapeutics to target this fatal disease. 
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CHAPTER V: FINAL SUMMARY AND CONCLUDING REMARKS 

 The work in this Thesis investigates the development of an efficacious gene 

therapy strategy for the fatal pediatric autosomal recessive leukodystrophy Canavan 

disease. These studies first explore possible vectors to be used for such therapeutic 

applications and then translated them into preclinical applications in a bona-fide mouse 

model for the disease. The results of these investigations have a direct bearing in 

development of clinical therapeutics for afflicted patients. They also proffer a platform to 

investigate the molecular pathogenesis of the disease that will result in better and more 

efficacious palliative measures 

Chapter II reports several rAAVs are capable of crossing the Blood Brain Barrier 

and transducing the CNS cells in both neonates as well as in adults. The ability of rAAVs 

to transduce amounts of neuronal cells in different regions may be relevant for treating 

neurological diseases such as spinal muscular atrophies (Suzuki et al., 2009) and neuronal 

ceroid lipofuscinoses (Hobert and Dawson, 2006). Transduction of astrocytes by rAAVs 

expressing secreted neurotrophic factors may be also beneficial for a number of 

neurodegenerative diseases such as Canavan disease (Kumar et al., 2006). Potential 

clinical application of intravascular rAAV-mediated gene delivery extends to the 

peripheral nervous system (Federici and Boulis, 2007). Efficient transduction of dorsal 

root ganglia may open new therapeutic possibilities for patients suffering from chronic 

pain  (Beutler, 2010). From any of these perspectives, transduction patterns generated 

from our study may serve as initial proof-of-concept data for diverse neurological 

disorders. Our findings hold considerable clinical significance for gene therapy of CNS-
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related disorders, especially for young patients. For a variety of neurological diseases, 

treatment during infancy will be necessary to prevent irreversible CNS injury. 

rAAVrh.8 and rAAVrh.10 emerged as potent vectors with multiple strong areas 

of CNS transduction that can be developed into therapeutic strategies. Robust 

transduction throughout the spinal cord, brainstem, and cortex are characteristics 

desirable for treatment of disease with global CNS pathology like Canavan disease. 

Notably, rAAV9 displays similar transduction qualities in the spinal cord of adult mice 

by intravenous injection, as reported previously (Duque et al., 2009),  although it ranked 

slightly below the performance of rAAVrh.8 in side-by side comparisons [Figures 2.6 & 

2.7]. However, a direct comparison with previously published data is often complicated 

due to possible differences in vector production, dose, and quantification methods. 

Canavan Disease (CD) falls in a category of diseases, which if treated, could have 

wide implications in developing therapeutics for a vast group of leukodystrophies and 

neurodegenerative diseases. Being a monogenic defect, CD is a perfect target for gene 

therapy, which could also be utilized as tools to tease out the underlying pathology of 

leukodystrophies and develop efficient therapeutics for them. Mouse models that show a 

less severe phenotype resembling infantile and juvenile CD patients could be used to 

determine disease progression. Additionally, the unique symptom of elevated NAA levels 

in CD also makes it a perfect disease model to study functions of NAA. 

Chapter III and IV document the development of efficacious therapeutics for CD 

using the AspA−/− KO mouse model. The AspA−/− mouse model in SV129/Ev 



201 
 

background is a stringent preclinical model for the severest form of CD. In chapter III, 

investigations clearly demonstrated the feasibility of completely rescuing the early 

lethality, slowing down the disease progression, and extending the survival of CD mice 

as well as address off-target transgene expression in peripheral tissues using systemic 

delivery of rAAVs that can cross the BBB. The crucial role of AspA in myelination and 

early neurodevelopment as well as the feasibility of treating CD by CNS-targeted gene 

therapy using systemically delivered rAAVs is also highlighted. Chapter IV describes a 

more effective delivery method and lower vector dosage, reducing the clinical risk-to-

benefit ratio and vector production costs. The study focuses on intracerebroventricular 

delivery as a possible improvement on delivery system to the CNS where global CNS 

delivery is achieved without affecting the peripheral tissues. The study however indicated 

that a systemic therapeutic measure is needed for effective alleviation of Canavan disease 

symptoms since the data indicated the involvement of peripheral tissues in a primarily 

CNS disorder. Additionally it also reports the probable activation of the immune system 

presumably caused by NAA accumulation secondarily causing vacuolation, a phenotype 

in the disease.  

To achieve basic molecular understanding of CD pathogenesis, it is interesting to 

note that patients with mutations in the functionally similar aminoacylase I (hydrolyses 

N-acylated /N-acetylated amino acids (except L-aspartate)) have overlapping clinical 

features like encephalopathy, seizures, psychomotor dysfunction, hypotonia, and 

sensorineural hearing loss as well as excretion of N-acetylated amino acids in the urine. 

We report aspartoacylase expression in neurons both in the brain as well as in culture, 
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which was not reported before. From a cellular standpoint, to date, most of the expression 

and subcellular localization data for aspartoacylase have used a single RNA probe or 

single antibody which may fail to detect differences among aspartoacylase isoforms 

including aminoacylase I. An important element for translating observations from CD 

mice is coupling in vivo physiology and imaging in the mouse to functional neuroimaging 

in patients to help identify conserved neural circuit phenotypes and pave way to improve 

upon therapeutics.  

In addition to existing therapeutic modalities, alternative means of treatment for 

CD could include partial silencing of the NAA biosynthetic enzyme AspNAT 

(Madhavarao et al., 2003) to control the NAA metabolism cycle. Additionally inhibition 

of NAA export from the neuronal mitochondria could markedly decrease NAA 

accumulation in interstitial spaces that probably causes osmotic dysregulation in the 

CNS. Pharmacological protection of oligodendrocytes against damage in demyelinating 

diseases could also be a promising avenue of treatment (Waksman, 1999). Intravenous 

delivery of rAAV9 (Ahmed SS, 2013) in the CD model suggests that lowering NAA 

levels in the brain probably led to alleviation of NAAduria as well as a decrease in edema 

indicating that the MWP theory could partially explain pathogenesis. 

The utility of these newer AAVs is not confined to clinical application; systemic 

gene delivery to the CNS should also be useful as a convenient method to manipulate 

gene expression in the course of basic neuroscience research. Effective and stable 

transgene expression in the CNS by intravenous administration of rAAVs may be applied 

to establish somatic transgenic animal models, which is a potentially cheaper, faster, and 
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simpler method than conventional transgenesis. Somatic CNS gene knockdown animal 

models may also be created using the method described here (Siegel and Callaway, 

2004). The field currently seems poised for more revolutionary progress with the advent 

of newer serotypes and advances in capsid evolution for rAAVs that are specific for 

different neural cell types and can cross the BBB. It is worthwhile to point out that the 

grouping we introduce should not be interpreted as if there are absolute boundaries 

between the groups, but rather, it is used as a means to facilitate the description of the 

large number of AAV serotypes tested and to provide a useful guide for selecting the 

most suitable vectors in future experimentation. 

It should be noted however, in spite of newer serotypes there will still remain the 

issue of half-life of the transduced cells. All of these factors increasingly indicate the 

potential for combinatorial therapy strategies that could be translated to human patients. 
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