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ABSTRACT

 Innate immunity is the first line of defense against invading pathogens. It 

functions to eliminate pathogens and also to control infections.  The innate 

immune response is also important for the development of pathogen-specific 

adaptive immune responses.  As a result, the study of innate immune signaling 

pathways is crucial for understanding the interactions between host and 

pathogen.  Unlike mammals, insects lack a classical adaptive immune response 

and rely mostly on innate immune responses.  

Innate immune mechanisms have been widely studied in the fruit fly, 

Drosophila melanogaster.  The genetic and molecular tools available in the 

Drosophila system make it an excellent model system for studying immunity.  

Furthermore, the innate immune signaling pathways used by Drosophila show 

strong homology to those of vertebrates making them ideal for studying these 

pathways.  Drosophila immunity relies on cellular and humoral innate immune 

responses to fight pathogens.  The hallmark of the Drosophila humoral immune 

response is the rapid induction of antimicrobial peptide genes in the fat body.  

The production of these antimicrobial peptides is regulated by two immune 

signaling pathways-Toll and Immune Deficency  (IMD) pathways. 

The Toll pathway responds to many Gram-positive bacterial and fungal 

infections , while the IMD pathway is potently activated by DAP-type 

peptidoglycan (PGN) from Gram-negative bacteria and certain Gram-positive 

bacteria.  Two receptors, PGRP-LC and PGRP-LE, are able to recognize DAP-
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type PGN at the cell surface or in the cytosol, respectively, and trigger the IMD 

pathway.  Upon binding DAP-type PGN, both PGRP-LC and PGRP-LE dimerize/ 

multimerize and signal to the downstream components of IMD pathway.  It is 

unclear how the receptor activates its downstream components. 

My work has focused on understanding the molecular events that take 

place at the receptors following there activation.  In these studies I have identified 

a common motif in the N-terminal domains of both the receptors, known as the 

RHIM-like domain.  The RHIM-like domain is critical for signaling by either 

receptor, but the mechanism(s) involved remain unclear.  IMD, a downstream 

component of the pathway, associates with both PGRP-LC and -LE but the 

interaction of PGRP-LC with IMD is not mediated through its RHIM-like domain.  

Also, mutations affecting the PGRP-LC RHIM-like motif are defective in all known 

downstream signaling events.  However, the RHIM-like mutant receptors are 

capable of serving as a platform for the assembly of all known components of a 

receptor proximal signaling complex.  These results suggest that another, 

unidentified component of the IMD signaling pathway may function to mediate 

interaction with the RHIM-like motif.  

I performed a yeast two-hybrid screen to identify proteins that might 

interact with the receptor PGRP-LC through its RHIM- like domain.  With this 

approach, two new components of the IMD pathway were identified.  The first 

component I characterized is called Rudra and it is a critical feedback inhibitor of 

peptidoglycan receptor signaling.  The other factor is known as RYBP, it includes 

 
 xiv



a highly conserved ubiquitin binding motif (NZF), and RNAi studies suggest it is a 

critical component of the IMD pathway.  The identification and characterization of 

these two new components of the IMD pathway  has provided a new insight into 

the molecular events that take place proximal to the receptor.  

 
 xv



PREFACE TO CHAPTER I

Portions of this chapter have been published separately in:

1. Deniz Ertürk–Hasdemir, Nicholas Paquette, Kamna Aggarwal, and Neal Silverman. 
Bug versus Bug: Humoral Immune Responses in Drosophila melanogaster. Chapter in 
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volume 21, Edited by Holger Heine

Kamna Aggarwal, Deniz Erturk Hasdemir, Nicholas Paquette and Neal Silverman all 
contributed to the manuscript equally. 

2. Kamna Aggarwal and Neal Silverman. Positive and negative regulation of the 
Drosophila immune response. BMB Rep. 2008 Apr 30;41(4):267–77.
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Insects rely primarily on innate immune responses to fight pathogens, and have 

developed multiple mechanisms to recognize and respond to infection.  Even without an 

adaptive immune response, insects respond effectively to a wide range of pathogens.  

The insect and mammalian innate immune responses exhibit a great deal of 

evolutionary conservation.  One of the best examples of this conservation was provided 

by the discovery of the Toll pathway as a key component of the immune system in the 

fruit fly Drosophila melanogaster, and the subsequent identification of the mammalian 

Toll–like Receptors (TLRs).  In addition, both the insect and mammalian immune 

response relies on the evolutionarily conserved NF–κB signaling cascades for the 

control of immune system induced gene expression.  Drosophila employ several distinct 

effector mechanisms for immune protection including clotting, melanization, 

encapsulation, cell–based phagocytosis and the inducible production of a battery of 

antimicrobial peptides (AMPs).  This AMP response is critical for protection against 

many microbial pathogens.  Two signaling pathways regulate the production of these 

AMPs in Drosophila – the IMD and Toll pathways. 

Drosophila is a favorite model system for studying the immune response.  

Although Drosophila are evolutionarily separated from vertebrate organisms, many 

major pathways, including those involved in immunity, DNA damage repair, and 

neurodegeneration, are reasonably well conserved.  Further, while vertebrate systems 

have multiple redundant proteins which can make analysis difficult, Drosophila often do 

not employ the same level of redundancy, thus making the analysis easier. A variety of 

genetic, genomic, and molecular tools are also available for studying Drosophila.  Well 

established tools such as balancers and P–elements allow for easy genome wide 
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screening.  A number of well established Drosophila cell culture lines are also available. 

Finally, Drosophila have a short generation time and are both cheaper and easier to 

maintain than most mammals.  Overall Drosophila provide versatility and control that 

are ideal for scientific research.

Overview of the Drosophila Immune Response

The immune response against microbes in Drosophila is a multi–layered system.  

Structural barriers such as a chitin–based exoskeleton and the endothelia form the first 

layer of defense.  If a pathogen breaches these barriers, several immune effector 

mechanism are activated, including cellular responses (i.e. phagocytosis, 

encapsulation, melanization) and humoral responses (i.e. AMPs).   This AMP response 

is critical for protection against many microbial pathogens.  AMPs are found both locally, 

at the site of infection, and systemically in the insect sera, or hemolymph.  The local 

response induces AMP gene expression in epithelial tissues, like the trachea and the 

gut while the systemic humoral response induces AMP production in the fat body.  Other 

tissues, including the malphigian tubules and circulating blood cells, known as 

hemocytes also contribute to AMP production during the humoral response (Ferrandon 

et al., 1998; Liehl et al., 2006; Tzou et al., 2000).  

The Drosophila humoral immune system responds to microbial challenge by 

triggering the expression of anti-microbial peptide genes through NF-κB signaling 

pathways.  In fact, NF-κB/Rel proteins control the transcription of almost one half 

(162/400) of the immune responsive genes, including the collection of cationic 

antimicrobial peptides (AMPs) (Irving et al., 2001; De Gregorio et al., 2001; De Gregorio 

et al., 2002).  Genes from many different functional classes are up-regulated in 

4



response to immune challenge.  These categories included actin-associated, calcium 

binding, cell adhesion, chaperones, heat-shock proteins, enzyme inhibitors, growth 

factors, carrier proteins, motor proteins, nucleic acid-binding factors, structural proteins 

(cytoskeleton, cuticle, and muscle), transcription factors, and others.  As a result of 

infection-induced NF-κB activation, AMPs that are undetectable in the hemolymph 

(blood) of unchallenged flies are rapidly elevated to concentrations up to 100µM 

(Hoffmann and Reichhart, 2002).  As best we know, the regulation of AMP production 

occurs at the level of gene expression.  AMP genes are direct targets of NF-κB 

activation and their transcription is induced to very high levels rapidly after infection.  

Although the bulk of AMP production occurs in the insect fat body (similar to the 

mammalian liver), AMP genes are also expressed in circulating phagocytic hemocytes 

and local epithelial tissues, particularly, the gut and the trachea (Ferrandon et al., 1998; 

Liehl et al., 2006; Tzou et al., 2000).  Two NF-κB signaling pathways control AMP gene 

expression– the Toll and the IMD pathways.  These pathways are activated by microbial 

cell walls and/or other virulence determinants by circulating, cell surface, and/or 

cytosolic receptors.  Each pathway responds to distinct microbial components and 

induces the expression of somewhat overlapping subsets of AMP and other immune 

responsive genes.  For example, the anti fungals Drosomycin and Metchnikowin are 

strongly induced by the systemic Toll pathway, while the IMD pathway induces 

antibacterial peptides such as Diptericin (Lemaitre et al., 1997)(Tzou et al., 2002).  On 

the other hand, some AMP genes such as Cecropin and Attacin are co-operatively 

regulated by both the pathways (Manfruelli et al., 1999).  Details on these regulatory 

events are discussed in more detail below.
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The main focus of this thesis is to understand how the receptor signals to its 

downstream components.  The introduction to this work is designed to provide an 

overview of each component of the two different immune signaling pathways and how 

they are activated and regulated, in insects.  Also included are some aspects of how 

these signaling pathways function in mammals.

Microbial Recognition–the Peptidoglycan Recognition Proteins

Recognition of pathogens is the first step in a cascade of events that leads to 

either the Toll or IMD–driven immune responses.  Microbial products, often cell wall 

components, are detected by recognition receptors, which in turn stimulate signaling 

pathways that culminate in the induction of AMP gene expression.  Peptidoglycan 

recognition proteins (PGRPs), are the key receptors that recognize peptidoglycan 

(PGN) and trigger the Toll and IMD pathways. 

PGRP was first identified as a PGN binding factor from the hemolymph of the 

silkworm Bombyx mori, and was shown to be involved in activating the melanization 

cascade in vitro (Yoshida et al., 1996).  PGRPs were subsequently cloned from both 

Bombyx mori and the moth Trichoplusia ni (Kang et al., 1998; Ochiai and Ashida, 1999). 

Drosophila encodes 13 PGRP genes that are spliced into at least 17 PGRP 

proteins (Werner et al., 2000).  All PGRP proteins contain a domain homologous to 

bacteriophage type–2 amidases, enzymes that cleave the lactyl group in acetylmuramic 

acid and L–alanine in the stem–peptide of PGN (Mellroth et al., 2003) (Figure 1.1a).  

Six of the Drosophila PGRPs (PGRP–SB1,–SB2,–SC1a/b,–SC2,–LB) are either known 

or predicted to be type 2 amidases that are involved in degrading PGN and dampening 

immune activation.  The other seven lack type 2 amidase activity but function through 
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binding PGN.  In particular, 4 PGRPs (PGRP–SA,–SD,–LC, and–LE) function as 

receptors in the IMD or Toll pathways, as detailed below (Mellroth et al., 2003; Bischoff 

et al., 2004)(Zaidman-Remy et al., 2006).  PGRP–LF seems to function as a decoy 

receptor, binding PGN but not activating immune signaling (Persson et al., 2007; Maillet 

et al., 2008), while the functions of PGRP–LA and–LD remain elusive (Royet and 

Dziarski, 2007).

The Drosophila PGRPs can also be classified as either short PGRP proteins 

(seven different genes encoding seven proteins) or long PGRP proteins, with extended 

N–termini (ten genes encoding thirteen proteins; (Werner et al., 2000)).  Most short 

PGRP proteins have a signal sequence, lack a transmembrane domain, and are likely 

to be secreted (SA, SB1, SB2, SC1a, SC1b, SC2, SD).  Some long PGRP proteins 

have a single–pass transmembrane domain and are likely transmembrane proteins 

(LAa, LAb, LCa, LCx, LCy, LD, LF).  However, some long PGRP proteins lack both a 

signal peptide and a transmembrane domain (LAc, LB, LE), and are likely intracellular 

proteins, or they could be secreted by a non–canonical mechanism (Takehana et al., 

2002).

Mammals encode four PGRPs, termed PGRP–S, PGRP–L, PGRP–Iα, PGRP–Iβ 

(also referred to as PGLYRP–1, PGLYRP–2, PGLYRP–3, PGLYRP–4).  Of these, only 

PGRP–L has amidase activity (Gelius et al., 2003; Kim et al., 2003).  Mammalian 

PGRPs are expressed in a variety of tissues including bone marrow (PGRP–S), skin 

and intestinal tract (PGRP–Iα, PGRP–Iβ) and liver (PGRP–L; (Kang et al., 1998; Lo et 

al., 2003; Lu et al., 2006; Mathur et al., 2004)).  Unlike the insect PGRPs, the non–

catalytic mammalian PGRPs are bactericidal (Cho et al., 2005; Dziarski et al., 2003; 
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Gelius et al., 2003; Liu et al., 2000; Lu et al., 2006; Tydell et al., 2002; Wang et al., 

2003).  Mice deficient for PGRP–S display increased susceptibility to intraperitoneal 

infections with non–pathogenic Gram–positive bacteria (Dziarski et al., 2003).  PGRP–S 

is present in neutrophil granules and is involved in the intracellular killing of bacteria.  It 

is also found associated with DNA nets released by activated neutrophils, where it is 

implicated in direct bacterial killing, acting synergistically with lysozyme (Cho et al., 

2005; Liu et al., 2000).  PGRP–Iα and–Iβ are secreted as di–sulfide hetero–and 

homodimers that are bactericidal against both pathogenic and non–pathogenic Gram–

positive bacteria but are only bacteriostatic against other normal–flora bacteria.  They 

are also bacteriostatic against some Gram–negative bacteria (Lu et al., 2006).  The 

bactericidal and bacteriostatic mechanisms of the mammalian PGRPs are not yet 

clearly defined.  PGRP–L is produced by the liver and secreted into the bloodstream 

(Zhang et al., 2005).  Recent work by Dizarski and colleagues demonstrates that 

PGRP-L also functions to modulate the immune response by co-operating with other 

innate immune pathogen recognition receptors.  In contrast to previous speculations, 

Saha et al., demonstrate that PGRP–L is pro inflammatory and along with Nod2 and 

TLR4 is required for the development of peptidoglycan induced local inflammation and 

arthritis (Saha et al., 2009)(Fritz et al., 2007; Uehara et al., 2006).

Peptidoglycan

Drosophila recognizes bacteria by detecting specific forms of bacterial PGN via 

the PGRP receptors.  PGN is a polymeric glycopeptide that forms the cell wall of most 

bacteria.  PGN contains long glycan chains usually composed of alternating residues of 

N–acetylglucosamine and N–acetylmuramic acid (MurNAc), with short stem–peptides of 
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Figure 1.1: Peptidoglycan structure. 
(a) As shown, peptidoglycan has a common core structure with a great deal of inherent 
variation. Most notably, the constituent of the third position of the stem–peptide can vary, and 
are most commonly L–lysine or meso–DAP. In addition, the amount and exact chemical nature 
of the crosslinking bridges can vary, with some examples noted in the box below. TCT is a 
monomeric unit of the DAP–type peptidoglycan chain, and is indicated in the dashed box. 
(b) Structures of lysine and DAP.



alternating L–and D–amino acids attached to the lactyl group of MurNAc.  These stem–

peptides are often cross–linked to each other to stiffen the cell wall; the precise 

nature of these cross–linking structures is highly variable.  The stem–peptides also 

display a great deal of variation in their amino acid constituents.  The carbohydrate 

backbone is more constant but also can be modified by various chemical 

substitutions, such as acetylation (Schleifer and Kandler, 1972; Mengin-Lecreulx and 

Lemaitre, 2005).  PGN from Gram–negative bacteria and certain Gram–positive 

bacteria (e.g. Bacillus spp, L. monoctyogenes) contain meso–diaminopimelic acid 

(DAP) at the third position of the stem–peptide chain, while other Gram–positive PGN 

contain lysine at this position (Figure 1.1).  Also, the structure and degree of cross–

bridging peptides is highly variable.  The difference in the amino acid at position 3 in the 

stem peptide along with the amount and type of cross–linking accounts for much of the 

variability in the structure of PGN produced by different bacteria (Schleifer and Kandler, 

1972).  Another major difference between Gram–positive and Gram–negative bacteria is 

the localization of the PGN in the cell wall.  Gram–negative bacteria include a thin layer 

of PGN, which is concealed in the periplasmic space between the inner and outer 

membranes.  In contrast, Gram–positive bacteria contain a thick, multilayered PGN cell 

wall at their surface.

The Toll pathway is activated by lysine–type PGN, while the IMD pathway is 

activate by DAP–type PGN (Kaneko et al., 2004; Leulier et al., 2003).  Also, the IMD 

pathway is activated by both polymeric DAP–type PGN and a monomeric fragment of 

DAP–type PGN, known as tracheal cytotoxin [TCT; (Kaneko et al., 2004; Stenbak et al., 

2004)].  TCT is a disaccharide tetra–peptide fragment of DAP–type PGN with a 1,6 
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anhydro–arranged muramic acid that is released in large quantities by some Gram–

negative bacteria, like Bordetella pertussis, Neisseria gonorrhoeae, and Vibrio fischeri 

[(Cookson et al., 1989a; Goldman et al., 1982; Melly et al., 1984; Rosenthal, 1979); 

Figure 1.1].  TCT is linked to the cytopathology caused by Bordetella and Neisseria 

infection, and it is implicated in the developmental tissue degeneration caused by 

successful symbiosis of the squid Euprymna scolopes with V. fischeri (Koropatnick et 

al., 2004).

Recent data show that PGRPs employ several strategies to recognize and 

discriminate between different types of PGN.  One strategy discriminates between DAP 

versus lysine in the third position of the stem–peptide, while another detects the 

presence or absence of a cross–bridging peptide.  The C–terminal PGRP domain of 

PGRP–Iα (PGRP–IαC) binds lysine–type PGN, with or without a penta–glycine cross–

bridge [as seen in S. aureus; (Schleifer and Kandler, 1972)].  PGRP–S and PGRP–LCx 

preferentially recognize uncross–linked DAP–type PGN (Swaminathan et al., 2006; 

Takehana et al., 2002).  PGRP–IαC forms several van der Waals contacts with the 

lysine through two amino acids, Asn236 and Phe237.  By comparison, the 

corresponding residues that recognize DAP–type PGN are Gly–Thr (in PGRP–LCx,–LE 

and human PGRP–S).  Swap experiments demonstrated that these positions are 

involved in determining lysine versus DAP–type binding properties.  In addition, the 

structures of PGRP–LC or PGRP–LE bound to TCT indicate that another important 

residue making specific contact with the DAP residue is a highly conserved arginine 

found at the bottom of the PGN docking groove.  The side–chain carboxylate of DAP 

forms a bidendate salt bridge with the guanidium group of this Arg (residue 254 in
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PGRP–LE, 413 in –LC).  All PGRPs that have the conserved Gly–Thr also have this Arg 

residue.  Thus, these residues likely function together to stabilize the interaction with 

DAP–type PGN (Chang et al., 2006; Guan and Mariuzza, 2007; Lim et al., 2006).

The Toll Pathway

The Toll pathway responds to Gram–positive bacterial and fungal infections 

(Lemaitre et al., 1996).  Unlike human TLRs, Drosophila Toll does not directly bind 

pathogens or microbe–derived compounds.  Instead, Toll functions more like a cytokine 

receptor, binding a processed form of the cytokine Spätzle, a member of the cysteine 

knot family of growth factors and cytokines (Weber et al., 2003; Hu et al., 2004; 

Hoffmann et al., 2008).  Spätzle is made as a pro–protein that circulates in the 

hemolymph.  Upon immune activation (or the perception of developmental cues), serine 

protease cascades are triggered that culminate in the cleavage of Spätzle.  Once 

processed, mature Spätzle binds to and dimerizes the transmembrane receptor Toll, 

initiating the intracellular signaling pathway.  Four different serine protease cascades 

appear to converge on the cleavage of Spätzle.  In early development, the protease 

Easter is responsible for cleaving Spätzle.  During the immune response, bacterial 

PGN, fungal β–glucans, and microbial proteases are sensed by three distinct 

mechanisms, but converge upon activation of one serine protease, known as the 

Spätzle processing enzyme (SPE), which in turn cleaves and activates Spätzle (Figure 

1.2).

The serine protease Persephone appears to function as a sensor for proteases 

secreted by both fungal and bacterial pathogens (Gottar et al., 2006; El Chamy et al., 

2008).  Persephone is likely activated by cleavage after a histidine residue, unlike the 
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other proteases involved in the Toll signaling pathways, and maybe a good target for 

subtilisin–like proteases produced by microbial pathogens (El Chamy et al., 2008).  The 

activation of the Persephone–Toll pathway by microbial proteases occurs independently 

of recognition of microbial cell wall material, which can also stimulate the Toll pathway 

through more classical receptor–mediated recognition.

For example, β–glucans from the cell wall of yeast are recognized by Gram–

negative binding protein 3 (GNBP3) (Gottar et al., 2006), while two secreted PGRP 

receptors and GNBP1 are involved together in PGN recognition (Gobert et al., 2003; 

Bischoff et al., 2004; Wang et al., 2006; Wang et al., 2008).  Despite their name, none of 

the GNBPs are known to recognize Gram–negative bacteria, but GNBP1 and GNPB3 

are involved in the recognition of fungal or Gram–positive bacterial cell walls.  The N–

terminus of GNBP3 binds to long β–1,3 glucans, common to the cell walls of many 

types of fungi, especially yeast (Mishima et al., 2009).  GNBP1, on the other hand, is 

involved in PGN recognition, although its role is controversial.  Lysine–type PGNs, 

common to many Gram–positive bacteria, are potent agonist of the Toll pathway.  As in 

the IMD pathway, PGRP receptors are critical for the recognition of lysine–type PGN.  In 

particular, two secreted PGRPs, PGRP–SA and–SD, are involved in the Toll pathway.  

Genetic studies have shown that some Gram–positive bacteria and the PGN from these 

same species, such as M. luteus, are sensed through PGRP–SA (Michel et al., 2001).  

In fact, the structure of PGRP–SA bound to a lysine–containing muropeptide has been 

solved.  PGRP–SA can also bind DAP–type PGN, albeit to a lesser degree.  However, 

PGRP–SA appears to be able to specifically cleave DAP–type muropeptides, removing 

the final amino acid in the stem–peptide.  It has been postulated that this 
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Figure 1.2:  Toll signaling pathway. 
The Toll signaling pathway and its multiple modes of activation in the Drosophila immune 
response. Three distinct mechanisms of microbial recognition, leading to the cleavage of 
Spätzle and activation of Toll, are illustrated.  The mechanisms include peptidoglycan 
detection, by PGRP–SA, PGRP–SD and GNBP1, β–glucan detection through GNBP3, and 
protease activity sensing via the serine protease Persephone.  All these detection modalities 
lead to the activation of the Spätzle processing enzyme (SPE) which converts this cytokine into 
its active form, for binding and activating Toll. The intracellular signal transduction downstream 
of Toll is very similar to the MyD88–dependent pathway, which functions downstream of most 
mammalian TLRs.  The key features of this pathway include a trimeric receptor associated 
complex, containing MyD88, Tube and Pelle, which ultimately lead to the phosphorylation and 
degradation of the IκB homolog Cactus and the nuclear translocation of NF–κB homologs DIF 
and Dorsal.  In this schematic representation of the Toll pathway.  Red arrows indicate the Toll 
signaling cascade, including the three microbial recognition systems and the intracellular 
signaling cascade, while the black arrows highlight the negative regulators and their likely 
targets.  See text for more details.



carboxypeptidase activity prevents DAP–type PGN from stimulating the Toll pathway via 

PGRP–SA (Chang et al., 2004).

Interestingly, not all lysine–type PGN require PGRP–SA to trigger the Toll 

pathway.  In particular, S. aureus, E. faecalis, S. pyogenes, and S. saprophyticus 

infections still produce strong AMP gene responses in PGRP–SA mutant (seml) flies.  

Response to these bacteria or their PGNs instead requires either PGRP–SA or PGRP–

SD (Bischoff et al., 2004).  The mechanism of PGRP–SD–mediated recognition of 

some, but not all, lysine–type PGN producing bacteria remains unclear.  One possibility 

is a structural difference common to those PGNs sensed by PGRP–SD, which prevents 

detection by PGRP–SA, or vice versa.  However, biochemical studies of PGRP–SD do 

not support the notion that it is involved in recognizing lysine–type PGN.  

Crystallographic studies show that PGRP–SD has a deep PGN binding cleft, typical of 

all PGRPs, and this binding cleft includes an arginine (Arg90) in the key position typical 

of DAP–PGN specific recognition.  In fact, binding studies confirm that PGRP–SD binds 

DAP–type PGN, from B. subtilis, but not lysine–type from S. aureus (Leone et al., 

2008).  In addition, the moderate induction of Drosomycin observed following either B. 

subtilis or E. coli infection, which is Toll dependent (Leulier et al., 2003), required both 

PGRP–SA and PGRP–SD.  So, somehow PGRP–SA and PGRP–SD function together 

in the recognition of DAP–type PGN, for moderate Toll induction, but function in a more 

redundant manner for the recognition of certain lysine–type PGN, for robust Toll 

induction.  However, the recognition of M. luteus PGN appears to be more simple and 

requires only PGRP–SA.  The molecular mechanisms involved in the recognition of 

various PGNs by PGRP–SA and/or PGRP–SD remain to be determined.  As mentioned 
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above, GNBP1 also functions in PGN recognition and Toll signaling.  In fact, PGRP–

SA,–SD, and GNBP1 form a trimeric complex together in the presence of PGN 

fragments (Wang et al., 2008).  Some groups have reported that GNBP1 provides a 

critical PGN processing activity to this complex, required to generate small PGN 

fragments which are bound by PGRP–SA and/or PGRP–SD for Toll activation (Filipe et 

al., 2005; Wang et al., 2006).  However, another group has reported that they do not 

observe a similar PGN digesting activity associated with GNBP1, in Drosophila or 

Tenebrio molitor (Buchon et al., 2009).  Instead, this group proposes that GNBP1 serves 

to link the PGRPs with the downstream serine protease cascade, described below.  

Thus, it appears that GNBP1 functions in a complex with the PGN sensing receptors 

PGRP–SA and PGRP–SD, but the biochemical mechanism by which it contributes to 

immune recognition or Toll signaling are not yet clear.

Both the GNBP3–mediated recognition of β–glucans and the PGRP–SA/SD/

GNBP1–mediated recognition of bacterial PGNs trigger Toll signaling through the same 

serine protease cascade.  This cascade involves the modular serine protease (ModSP), 

which is probably directly activated by these microbial sensing receptor complexes, and 

at least two downstream CLIP–domain serine proteases–Grass and SPE.  As 

mentioned above, SPE cleaves and thereby activates Spätzle, the ligand for Toll.  

Another protease, known as Spirit may function between Grass and SPE, and other 

non–catalytic serine–protease homologs, Sphinx 1/2 and Spheroide, are also implicated 

in this pathway by RNAi based studies (Kambris et al., 2006).  However, the assignment 

of these factors to this pathway requires further genetic and biochemical 

characterization.  The pathways presented in Figure 1.2 suggests a protease cascade 
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that is consistent with the genetic analysis of mutants in Drosophila and the biochemical 

analysis of the cascade from the hemolymph of Tenebrio.  However, biochemistry of the 

Drosophila serine protease cascade still requires further study, as several issues remain 

unresolved, including the role of Spirit.  In addition, the predicted specificity of the 

Drosophila ModSP does not match the predicted cleavage site of the downstream 

serine protease Grass, and ModSP does not cleave Grass in vitro (Buchon et al., 2009).  

Thus, it remains possible that other factors may be involved.  Currently, it is not clear 

how (or even if) PGN binding to PGRP–SA/SD/GNBP1 leads to the activation of 

ModSP, and, as mentioned above the exact biochemical role of GNBP1 remains 

controversial.  The protease cascade culminates in SPE directly cleaving pro–Spätzle, 

releasing the active C106 fragment (Jang et al., 2006; Kambris et al., 2006).

Spätzle binding induces dimerization of the Toll receptor.  Although the ligand is a 

symmetric dimer, biophysical studies indicate that the Spätzle–induced Toll dimer is 

asymmetrical (Weber et al., 2003).  It is not yet clear whether the asymmetric aspect of 

the ligand–induced Toll dimer is critical for the activation of intracellular signaling.  

Dimerization of the Toll receptor is believed to recruit a pre–existing Myeloid 

differentiation primary response gene 88 (Myd88)/Tube complex that ultimately recruits 

the kinase Pelle, which is homologous to the mammalian IRAK family of kinases.  The 

assembly of the resulting receptor complex occurs via two distinct functional domains.  

While the interaction between Toll and Myd88 occurs via their Toll/IL–1R (TIR) domains, 

Myd88, Tube and Pelle interact in a trimeric complex via death domains (DD) found in 

each protein (Sun et al., 2002b; Sun et al., 2002a; Tauszig-Delamasure et al., 2002; 

Towb et al., 1998).  Although the DDs of these proteins are necessary for their 
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interactions, Myd88 and Pelle do not interact directly; Tube acts as the core of the 

trimeric complex (Sun et al., 2002a).  Thus the activated Toll receptor interacts directly 

with Myd88, which interacts with Tube, which ultimately recruits the kinase Pelle.  

Similar IRAK–kinase recruitment via an adapter complex is seen in mammalian Myd88–

dependent TLR signaling.

Drosophila TNF–receptor–associated factor 2 (dTRAF2), the homolog of 

mammalian TRAF6, may also play a role in Toll signaling; however its role is unclear.  In 

transiently transfected Drosophila cells, Pelle interacts with dTRAF2 and co–expression 

of Pelle and dTRAF2 synergistically activates the Toll pathway target gene Drosomycin 

(Shen et al., 2001).  However RNAi to dTraf2 shows no suppression of AMP gene 

expression after stimulation of the Toll or IMD pathways (Sun et al., 2002a; Zhou et al., 

2005).  In adult flies, over–expression of dTRAF2 is able to induce AMP gene 

expression and nuclear translocation of DIF as well as Relish.  Interestingly, dTraf2 null 

larvae exhibited reduced, but not abolished, levels of AMP gene expression following E. 

coli infection (Cha et al., 2003).  These data suggest that dTRAF2 may function in both 

the IMD and Toll pathways, but bypass mechanisms may be present which circumvent 

dTRAF2 in both cases.

Infections by Gram–positive bacteria and fungi culminate in the nuclear 

translocation of NF–κB proteins DIF and/or Dorsal.  DIF is the main regulator of Toll 

signaling in both adults and larvae, whereas Dorsal is specifically required for the 

immune response in larvae.  Dorsal was first identified for its role in dorso–ventral 

patterning in the developing embryo (Santamaria and Nusslein-Volhard, 1983).  The 

intracellular signaling components that lead to activation of Dorsal are the same in both 
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early embryo and in the immune response (Drier and Steward, 1997).  DIF/Dorsal is 

sequestered in the cytoplasm by its interaction with the IκB protein Cactus.  In the 

embryo, Cactus and Dorsal are found in a complex in which one homodimer of Dorsal 

interacts with one molecule of Cactus (Isoda and Nusslein-Volhard, 1994).  Upon 

signaling, Cactus is degraded and DIF or Dorsal translocate to the nucleus (Belvin et 

al., 1995; Bergmann et al., 1996; Gillespie and Wasserman, 1994; Reach et al., 1996; 

Wu and Anderson, 1998).  Cactus degradation, like IκB degradation, is controlled by 

phosphorylation and ubiquitin/proteasome–mediated degradation (Bergmann et al., 

1996; Reach et al., 1996; Fernandez et al., 2001; Liu et al., 1997).  However, neither of 

the two Drosophila IKK–related kinases (IKKε, IKKβ) are required for Toll–mediated 

Cactus phosphorylation and degradation.  Although Drosophila IKKβ can phosphorylate 

Cactus in vitro (Kim et al., 2000), it is not required for Drosomycin expression in cells or 

in flies (Silverman et al., 2000; Lu et al., 2001; Rutschmann et al., 2000).  Although the 

sequence motifs that are phosphorylated are very similar to those critical for IκBα 

phosphorylation in human cells, the kinase that phosphorylates Cactus is yet to be 

identified.  Once phosphorylated, Cactus is likely ubiquitinated via the Slimb–SCF E3–

ligase complex.  Drosophila embryos mutant for slimb, the βTrCP homolog, are unable 

to activate the Dorsal target genes twist and snail (Spencer et al., 1999).  Interestingly, 

Cactus degradation is required but not sufficient for efficient nuclear translocation of 

Dorsal during development (Bergmann et al., 1996).

Degradation of Cactus and nuclear translocation of DIF (and Dorsal) leads 

directly to the transcriptional induction of many immune responsive genes (De Gregorio 

et al., 2001; De Gregorio et al., 2002; Irving et al., 2001).  For example, the well 
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characterized AMP genes Defensin, Drosomycin, Cecropin and Metchnikowin are 

activated by Toll signaling.  The promoter/enhancer regions of all these AMP genes 

include κB–sites where DIF or Dorsal bind (Senger et al., 2004).  In addition, Toll 

signaling leads to the activation of other less well characterized genes, some of which 

may be AMPs while others may control different facets of the immune response.  For 

example, Toll signaling is linked to the activation of the cellular immune response and 

the proliferation of hemocytes (Zettervall et al., 2004; Qiu et al., 1998).  Also, many 

components of the Toll pathway are regulated by Toll signaling itself (De Gregorio et al., 

2002; Lemaitre et al., 1996).  Most notably, Cactus is up–regulated in response to 

immune challenge via the Toll pathway.  This generates a negative feedback loop to 

down–modulate the cascade (Nicolas et al., 1998). 

The Toll and IMD pathways are thought to be activated independently and initiate 

specific responses to different microorganisms.  However, some AMPs are activated by 

both the Toll and IMD pathways.  Tanji et al. (2007) have demonstrated that some AMP 

genes have distinct κB elements in their enhancer region (e.g. Drosomycin).  These 

elements respond to either Relish or DIF, with optimal gene induction occurring only 

when both the Toll (DIF) and IMD (Relish) pathways are activated, suggesting 

synergistic regulation of AMPs by two pathways (Tanji et al., 2007).

The IMD Pathway

The IMD pathway is potently activated by DAP–type PGN derived from Gram–

negative bacteria and certain Gram–positive bacteria, such as Bacillus spp.  Initial 

studies suggest that the IMD pathway is activated preferentially by Gram–negative 

bacteria, which lead many to assume that LPS, the most potent activator of the 
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mammalian innate immune response, would be the main agonist of this pathway 

(Werner et al., 2003; Samakovlis et al., 1992).  However, a careful analysis of published 

results suggested otherwise.  In addition to Gram–negatives, certain Gram–positive 

bacteria, e.g., Bacillus spp, are also IMD pathway activators (Lemaitre et al., 1997).  

Subsequently, Lemaitre’s group showed that DAP–type PGN, from E. coli or B. 

thurengensis, activate the IMD pathway, while our group demonstrated that purified LPS 

samples are unable to trigger the IMD pathway, and IMD agonistic activity could be 

traced to DAP–type PGN (Leulier et al., 2003; Kaneko et al., 2004).  Lemaitre’s group 

also show that the Toll pathway is activated by PGN, but in this case lysine–type PGN 

from Gram–positives like M. luteus and E. fecalis was more potent (Leulier et al., 2003). 

Recognition of DAP–type PGN involves the receptors PGRP–LC and PGRP–LE 

(Takehana et al., 2002; Leulier et al., 2003; Ramet et al., 2002; Gottar et al., 2002; Choe 

et al., 2002).  PGRP–LC encodes three alternatively spliced transcripts PGRP–LCa,–

LCx,–LCy.  All three isoforms encode single–pass transmembrane cell surface 

receptors.  They each have distinct extracellular domains, which include a PGRP motif, 

anchored to the identical transmembrane and cytoplasmic domains (Werner et al., 

2000).  PGRP–LE encodes only one protein, which lacks both a signal sequence and a 

transmembrane domain.  Although PGRP–LC null flies, which lack all three isoforms, 

produce dramatically reduced levels of AMPs following infection with Gram–negative 

bacteria such as E. coli and A. tumefaciens, they are not particularly susceptible to 

infection by all Gram–negative bacteria.  For example, PGRP–LC mutants are sensitive 

to A. tumefaciens, E. carotovora carotovora, and E. cloacae, but not E. coli and B. 

megaterium. (Gottar et al., 2002; Choe et al., 2002; Takehana et al., 2002).  In contrast, 
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mutants that abolish signaling through the IMD pathway, such as null alleles in IKK 

genes, are highly susceptible to all Gram–negative bacteria.  Therefore, it was 

hypothesized that another receptor must also recognize and respond to Gram–negative 

bacteria.  Moreover, it was suggested that relatively low levels of AMP gene induction, 

as observed in PGRP–LC mutants, are sufficient to protect against infection with many 

Gram–negative bacteria.  Genetic experiments suggested that PGRP–LE is the 

alternate receptor for the IMD pathway.  Double PGRP–LC, PGRP–LE mutants are 

hypersusceptible to most Gram–negative bacteria, similar to other null mutants in the 

IMD pathway, and these double mutants do not induce detectable level of AMP genes 

following infection.  Over–expression of either PGRP–LC or PGRP–LE, in flies or in cell 

culture, is sufficient to drive AMP expression through the IMD pathway.  PGRP–LE 

over–expression also activates the phenoloxidase cascade (Park et al., 2007; Takehana 

et al., 2002).  While both PGRP-LC and PGRP-LE are potent activators of the IMD 

pathway, PGRP-LE can also trigger an autophagic response through a Relish (NF-κB)-

independent pathway that is critical to protect the animal against intracellular pathogens 

like Listeria (Yano et al., 2008). 

 TCT binds PGRP–LCx directly, and then this ligand/receptor complex interacts 

with PGRP–LCa (Chang et al., 2005; Mellroth et al., 2003).  The crystal structure of 

TCT bound to the ectodomains of PGRP–LCx and –LCa has been solved.  TCT binds in 

the deep PGN binding cleft of PGRP–LCx, typical of PGRP–muropeptide interactions.  

The disaccharide unit of TCT makes important contributions to the interactions between 

PGRP–LCx (bound to TCT) and PGRP–LCa (Chang et al., 2006).  The interactions 

responsible for TCT–induced PGRP–LE multimerization are very similar in molecular 
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Figure 1.3:  IMD signaling pathway.  
This pathway is preferentially triggered by DAP–type peptidoglycan, common to Gram–negative 
bacteria and certain Gram–positives, especially Bacillus spp.  DAP–type peptidoglycan can be 
recognized by different receptors, depending on its location and size.  In addition, DAP–type 
peptidoglycan that reaches the cytosol can trigger another receptor, PGRP–LE.  Both PGRP–
LC and PGRP–LE trigger a similar intracellular signal transduction pathway, as outlined here, 
that culminates in the activation of the NF–κB precursor Relish.  In addition, recognition of 
intracellular DAP–type peptidoglycan by PGRP–LE also triggers an autophagic response, which 
is important in the protection against intracellular bacteria.  After activation of the receptor, IMD 
is cleaved by the caspase DREDD.  Cleavage of IMD leads to its interaction with the ubiquitin 
E3 ligase DIAP2 and in concert with the E2 conjugating enzymes IMD is then K63–
polyubiquitinated.  K63 poly–ubiquitnated IMD acts as a scaffold to recruit TAK1 and IKK.  
TAK1/TAB2 are responsible for the activation of the NF–κB/Relish branch of the IMD pathway 
which is critical for the induction of AMP gene expression.  In this schematic representation of 
the IMD pathway.  Red arrows indicate the IMD signaling cascade while the black arrows 
highlight the negative regulators and their likely targets.  The dashed black line suggests a 
hypothetical interaction between Caspar and the SCF complex, as discussed in the text.



detail to those responsible for the TCT–mediated PGRP–LCx/LCa dimer.  Because 

PGRP–LCa cannot bind TCT in a typical PGN binding cleft [the LCa cleft is occluded;

(Chang et al., 2006; Chang et al., 2005)], the LC complex is limited to a dimeric form, 

while PGRP–LE forms a head–to–tail multimer, with each subunit binding to TCT and 

interacting with another subunit (Lim et al., 2006).  The molecular mechanism by which 

PGN binding to either PGRP–LC or PGRP–LE leads to activation of the IMD pathway is 

the subject of my thesis work.  

 Upon binding PGN, the PGRP–LC receptor leads to the activation of downstream 

signaling events in which the adaptor protein IMD is cleaved by the caspase Death 

related ced–3/Nedd2–like protein (DREDD).  Cleavage of IMD exposes an Inhibitor of 

apoptosis (IAP) binding motif allowing IMD to interact with the Baculovirus IAP Repeat 

(BIR) 2 & 3 domains of the ubiquitin E3 ligase Drosophila Inhibitor of apoptosis 2 

(DIAP2).  In concert with the E2 conjugating enzymes, Uev1a, Bendless and Effete, the 

E3 ligase DIAP2 leads to K63 polyubiquitination of IMD.  In a manner similar to 

mammalian NF–κB signaling, it is then proposed that this K63–polyubiquitin chain acts 

as a scaffold to recruit downstream kinase TGFβ activating kinase 1 (TAK1 (Paquette et 

al., 2010)).  TAK1 binding protein (TAB2) contains a highly conserved K63–polyubiquitin 

binding domain and is required for the activation of the downstream Janus kinase (JNK) 

and Relish/NF–κB arms of the IMD pathway.  TAB2 is spliced into two different splice 

forms, while both arms can utilize the long (full length) TAB2 isoform, the short isoform 

is only able to promote activation of the Relish/NF–κB pathway (Alain C unpublished).  

In addition, auto–phosphorylation of S176, within the activation loop of TAK1, is also 

required for activation of the kinase (Paquette N unpublished).  In concert with TAB2, 
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activated TAK1 can then initiate signaling to one or both downstream arms of the IMD 

pathway.

 The JNK arm of the IMD pathway is activated by the TAK1–mediated signaling to 

Hemipterous, the Drosophila MKK7/JNKK homolog (Sluss et al., 1996; Holland et al., 

1997; Chen et al., 2002).  Hemipterous then goes on to phosphorylate the basket 

protein (JNK), which activates Drosophila Activator protein 1 (AP–1).  Signaling through 

the IMD/JNK pathway has been linked to the up–regulation of wound repair and stress 

response genes (Boutros et al., 2002; Silverman et al., 2003).  Yet, the precise role that 

JNK signaling plays in the IMD pathway is controversial.  Several reports have 

concluded that JNK signaling is not involved in AMP gene induction.  Instead, AMP gene 

expression relies entirely on the NF–κB/Relish branch of the IMD pathway (Boutros et 

al., 2002; Silverman et al., 2003).  In fact, it is proposed that an unidentified product of 

the Relish branch of the IMD pathway inhibits JNK signaling (Park et al., 2004), while 

the JNK pathway is proposed to directly inhibit AMP gene expression by recruiting 

histone deacetylases (Kim et al., 2005).  However, Delaney and colleagues (2006) have 

demonstrated that the TAK1/JNK branch of the IMD pathway is critical for AMP gene 

induction, at least in clones of JNK–deficient cells within the larval fat body (Delaney 

and Mlodzik, 2006).  The role of the JNK pathway in antimicrobial gene expression 

remains controversial and further work will be necessary to clarify whether JNK has a 

positive and/or, negative role in the process.

 In parallel to JNK activation TAK1 is also required for induction of the NF–κB/

Relish branch of the IMD pathway, through activation of the Drosophila IKK complex 

(Vidal et al., 2001; Silverman et al., 2003).  The Drosophila IκB kinase (IKK) complex 
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contains two subunits: a catalytic kinase subunit encoded by ird5 (IKKβ) and a 

regulatory subunit encoded by kenny (IKKγ; (Silverman et al., 2000; Rutschmann et al., 

2000)).  In S2 cells, it was clearly demonstrated that the IKK complex is activated 

rapidly following immune stimulation and this activation requires TAK1 (Silverman et al., 

2003; Silverman et al., 2000).  Activated IKK complex can directly phosphorylate Relish.  

Relish is a bipartite protein similar to mammalian NF–κB precursors p100 and p105.  It 

contains an N–terminal Rel homology domain (RHD) and an inhibitory IκB domain with 

six ankyrin repeats that retain the protein in the cytoplasm.  Upon infection with Gram–

negative bacteria, Relish expression is strongly induced in adult flies (Dushay et al., 

1996).  Relish mutant flies show extreme sensitivity to infections and fail to induce 

antimicrobial genes after bacterial infection (Hedengren et al., 1999).  Although the 

Relish locus encodes an embryo specific isoform, Relish does not appear to have a role 

in development as homozygous Relish mutants continue to be viable and fertile.  

In mammals, the NF–κB precursors p100 and p105 are processed by the 

proteasome and their C–terminal region is degraded to produce p50 and p52, 

respectively.  This processing is regulated by phosphorylation of C–terminal serine 

residues, which leads to ubiquitination and partial proteasome degradation of the C–

terminus (Perkins et al., 1997).  In contrast, Relish processing does not depend on 

proteasomal degradation.  Relish is instead endo–proteolytically cleaved by a caspase, 

producing a N–terminal RHD transcription factor module that translocates to the nucleus  

to activate immune genes, while the stable C–terminal domain remains in the cytoplasm 

(Stöven et al., 2000).  Relish cleavage occurs after residue D545, within a typical 

caspase target motif, 542LQHD545.  DREDD, in addition to its previously mentioned role 
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upstream in the pathway, also appears to function downstream and is a likely candidate 

for the caspase responsible for cleavage of Relish.  DREDD and Relish physically 

interact under cell culture conditions and Dredd RNAi prevents AMP gene expression 

induced by an activated allele of TAK1 (Zhou et al., 2005).  Dredd mutants also fail to 

cleave Relish, are unable to induce AMP gene expression and are highly sensitive to 

Gram–negative bacterial infections (Stöven et al., 2003; Leulier et al., 2000).  

Furthermore, over expression of DREDD is sufficient to cause Relish cleavage and 

purified DREDD cleaves Relish in vitro (Erturk-Hasdemir et al., 2009).

Phosphorylation of Relish occurs in a signal dependent manner by the 

Drosophila IKK complex and the C–terminus of Relish is required for both its 

phosphorylation and cleavage (Stöven et al., 2003).  2 serine residues, (528 and 529), 

in the N–terminal of Relish are phosphorylated by Drosophila IKKβ.  However, these 

residues are not required for Relish cleavage.  Instead, phosphorylation of these 

residues appears critical for the proper transcriptional activation of Relish targets via 

efficient recruitment of RNA polymerase II to the promoters of AMP genes.  Apart from 

its role in phosphorylation, the IKK complex also functions non–catalytically in the 

cleavage of Relish (Erturk-Hasdemir et al., 2009).  In total, Relish activity is coordinately 

regulated by 2 distinct mechanisms; cleavage by DREDD and phosphorylation by the 

IKK complex (Figure 1.3). 

Many questions remain unanswered about molecular mechanisms required for 

IMD signaling.  It is clear that DAP–type peptidoglycan is the major activator of this 

pathway, through PGRP–LC and PGRP–LE.  It is also well established that many of the 

components involved are homologous to factors involved in mammalian NF–κB 

27



pathways.  In particular the involvement of a RIP1–like molecule, IMD, highlights 

similarity to the TNFR and TRIF–dependent TLR pathways.  However, more study is 

needed to elucidate the molecular events proximal to the receptor as well as 

mechanisms required for TAK1 activation, Relish cleavage, and the transcriptional 

activation of AMP genes, all of which occurs very rapidly after PGN recognition.

Recent work has shown that the intensity and duration of the Drosophila immune 

response is tightly regulated.  As in mammals, hyper–activated immune responses are 

detrimental, and the proper down–modulation of immunity is critical for protective 

immunity and health.  In order to keep the immune response properly modulated, the 

Toll and IMD pathways are controlled at multiple levels by a series of negative 

regulators.  In the next few pages, we focus on recent studies identifying and 

characterizing the negative regulators of these pathways.

Down–regulation of Immune Signaling Pathways by PGN Digesting Enzymes

The PGRP family of proteins are similar in structure to N–acetylmuramoyl–L–

alanine amidases (NAMLAA), enzymes that degrade PGN by removing the stem–

peptide from the glycan backbone of PGN (Mellroth et al., 2003).  The PGRP proteins 

that function as receptors in the IMD and Toll pathways lack a critical cysteine residue 

that is required for catalysis and thus function only as PGN binding receptors.  On the 

other hand, PGRP–LB,–SB1, and–SC1 encode active amidases, and PGRP–SB2 and–

SC2 are predicted amidases (Royet and Dziarski, 2007; Mellroth et al., 2003; Werner et 

al., 2000).  Digestion of PGN with type 2 amidases, like these PGRPs, significantly 

reduces its immunostimulatory activity (Werner et al., 2003; Kaneko et al., 2004).  

PGRP–LB digests only DAP–type PGN, whereas PGRP–SC digests both DAP–type 
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and lysine–type PGN (Zaidman-Remy et al., 2006)(Mellroth et al., 2003).  Depletion of 

PGRP–SC1/2 or PGRP–LB by RNAi in vivo leads to markedly higher levels of Diptericin 

expression following infection.  PGRP–LB and PGRP–SC are expressed in the gut 

epithelial and PGRP–LB regulates the immune reactivity of the gut to ingested bacteria.  

In the gut, the IMD pathway is activated only when the PGN–degrading activity of 

PGRP–LB is saturated or inactivated.  Also in infected larvae, RNAi knockdown of 

PGRP–SC1/2 leads to increased developmental defects and lethality (Bischoff et al., 

2006).  This further supports the idea that PGN–degrading PGRPs prevent potentially 

pathological consequences to host tissues because of prolonged immune activity.  

PGRP–LB and PGRP–SC are both targets of IMD signaling (like the AMP genes) 

and thus form a critical link in a negative feedback loop whereby activation of IMD 

signaling, by PGN, leads to the production of enzymes which digest this stimulating 

microbial compound.  Additionally, another report shows that PGRP–SC1 mutants affect 

Toll signaling and may also play a role in phagocytosis of S. aureus (Garver et al., 

2006).

Although PGRP–LF is a non–catalytic PGRP, it also seems to play an inhibitory 

role in immunity.  PGRP–LF is a transmembrane receptor but it contains only a 23 

amino acid intracellular tail.  PGRP–LF encodes two PGRP domains in its extracellular 

portion, which show different affinity for DAP–type PGN and low affinity towards lysine–

type PGN.  Depletion of PGRP–LF leads to infection independent activation of the IMD 

pathway in cells and flies.  It also leads to the activation of the JNK pathway and hence 

developmental deffects (Persson et al., 2007; Maillet et al., 2008).
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Negative Regulation in the Toll Pathway 

In addition to the control of the upstream serine proteases by the serpin necrotic, 

the Toll pathway is repressed by an intracellular negative feed–back loop controlled by  

wnt inhibitor of Dorsal (WntD), a member of the wnt family of ligands.  Activation of the 

Toll pathway leads to the transcription of wntD (Gordon et al., 2005; Ganguly et al., 

2005).  The earliest role of WntD in the embryo is to restrict the field of Dorsal activation 

by inhibiting its translocation into the nucleus.  This ensures the establishment of a 

proper boundary between the developing ventral and terminal domains.  WntD is able to 

block the translocation of Dorsal in cactus mutants.  Therefore, WntD blocks nuclear 

translocation of Dorsal downstream of, or in parallel to Cactus.  In addition to its role in 

embryonic patterning, WntD also regulates the Toll pathway in the context of immunity.  

For example, wntD mutants induce higher levels of some AMP genes.  wntD mutants 

are also more sensitive to infection with L. monocytogens.  It is hypothesized, that the 

wntD mutants have a higher mortality following infection due to the hyper–activation of 

Dorsal target genes (Gordon et al., 2005).

Negative Regulation in the IMD Pathway

Recent work has demonstrated that IMD is cleaved in a signal dependent 

manner and then K63 polyubiquitnated.  K63 polyubiquitnation of IMD is required for the 

activation of downstream signaling (Paquette et al., 2010).  Thevenon et al (2009) have 

characterised a deubiquitnating enzyme, Drosophila Ubiquitin specific protease 36 

(dUSP36), that negatively regulates the IMD pathway.  dUsp36 mutant flies show 

constitutive activation of the IMD pathway and are more sensitive to infection.  dUSP36 

is required for immune tolerance in that it prevents the activation of IMD pathway in 
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response to environmental bacteria.  Further, they show that dUSP36 blocks signaling 

at the level of IMD.  dUSP36 interacts with the N terminus of IMD removing K63 

polyubiquitin chains from IMD and promoting K48 polyubiquitnation and subsequent 

degredation (Thevenon et al., 2009). 

TAK1 plays a critical role in the IMD pathway, serving as the branch point for JNK 

and NF–κB/Relish activation.  In turn, these two modules of the IMD pathway negatively 

regulate each other.  IMD regulates the JNK branch by inducing certain genes, via 

Relish, that lead to the degradation of dTAK1 (Park et al., 2004).  JNK activation is 

prolonged when the Relish branch of the IMD pathway is inhibited.  Relatedly, Tsuda et 

al. (2006) showed that Plenty of SH3 (POSH) regulates the termination of IMD–>JNK 

signaling.  POSH mutant flies also exhibit increased mortality following E.coli infection, 

possibly because of a hyperactive immune responses (Tsuda et al., 2006).  POSH 

encodes a Really interesting new gene (RING) finger, a signature ubiquitin E3–ligase 

motif, and is auto–ubiquitnated.  Also POSH immunoprecipitates with TAK1 and over–

expression of POSH reduces the stability of TAK1.  Thus, it is hypothesized that POSH 

negatively regulates the IMD–>JNK pathway by regulating the stability of TAK1 via the 

ubiquitin/proteosome degredation pathway.  On the other hand, JNK signaling also 

inhibits Relish–mediated transcriptional activation, via the recruitment of a 

‘repressosome’ to AMP genes, as discussed in more detail below (Kim et al., 2007; Kim 

et al., 2005).

The IMD pathway may also be inhibited by another E3 protein, know as Defense 

repressor 1 (Dnr1), a conserved protein with an N–terminal ezrin/radixin/moesin domain 

and a C terminal RING finger.  Dnr1 RNAi stimulated a diptericin–lacZ reporter, even in 
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the absence of immune stimulation, in Drosophila cells.  Dnr1 appears to have a 

complex relationship to the caspase DREDD.  On one hand, Dnr1 is believed to function 

as an inhibitor of DREDD.  On the other hand, immune stimulation stabilizes Dnr1, in a 

DREDD–dependent manner.  Therefore, Dnr1 may provide another feedback loop 

where immune stimulation, via DREDD, promotes accumulation of a DREDD inhibitor 

(Foley and O'Farrell, 2004)(Guntermann et al., 2009).

Another negative regulator of IMD signaling is Caspar.  Interestingly, Caspar is 

homologous to human Fas associated factor 1 (hFAF1), which associates with various 

components of the TNF/NF–κB pathway like FAS, Fas–Associated protein with Death 

Domain (FADD), caspase–8 and NF–κB (Park et al., 2004; Chu et al., 1995; Ryu et al., 

2003).  caspar mutant flies show constitutive expression of Diptericin, even in the 

absence of infection.  And, mutation of caspar actually protects flies against mildly 

pathogenic bacteria (Kim et al., 2006), unlike several other mutants where hyper–

activation of IMD signaling causes hyper–susceptibility to infection (Kim et al., 2007; 

Thevenon et al., 2009; Tsuda et al., 2006)(Zaidman-Remy et al., 2006).  Over–

expression of Caspar inhibits AMP gene induction and causes decreased viability after 

infection with these same mildly pathogenic bacteria.  It is hypothesized that Caspar 

blocks Relish cleavage by interfering with DREDD.  Caspar contains two ubiquitin 

related domains:  a so–called UAS (or UBA) domain  and a ubiquitin–like domain (UBx), 

as well as FAS–and DED–interaction domains, all of which are found in hFAF1.  These 

later two domains may mediate interaction between Caspar and either DREDD or 

dFADD, but this has not yet been demonstrated.  The ubiquitin related domains suggest 

that Caspar may regulate protein degradation of IMD pathway components, but this also
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awaits experimental data. 

The possible connection between Dnr1 or Caspar and the Ub/proteasome 

mediated degradation of IMD components is reminiscent of an earlier publication.  

Khush et al., (2002) found that mutations in skpA constitutively induce IMD signaling, 

but not the Toll pathway (Khush et al., 2002b).  SkpA is the homolog of the human Skp1 

protein, a subunit of SCF–E3 ubiquitin ligase which targets substrates for K48–

polyubiquitination and degradation by the 26S proteasome.  Other mutants that also 

effect the Drosophila SCF component, i.e. slimb and dCullin1, also induce Diptericin 

expression in the absence of infection.  In cells, RNAi targeting skpA or slimb leads to 

the accumulation of both the full length and cleaved forms of Relish. Therefore, it was 

hypothesized that the SkpA, Slimb and dCullin regulate the IMD pathway by controlling 

Relish stability.  Potentially these SCF–dependent effects  could be mediated through 

Caspar (see dashed line in Figure 1.3).  

Transcriptional regulation of the Drosophila immune response

Proper regulation of NF–κB transcription factors is critical for health.  The lack of 

NF–κB signaling or inappropriate activation of NF–κB can lead to serious conditions 

such as cancer, (auto) inflammatory diseases or developmental defects.  Consequently, 

animals have evolved complex mechanism to keep NF–κB, per se, in–check once it is 

activated.  For example, the JNK branch of the IMD pathways appears to induce the 

formation of a repressing complex, the ‘repressosome,’ that inhibits AMP genes. 

As mentioned above the JNK and Relish branches of the IMD pathway are 

thought to mutually inhibit each other (Park and Gambhir, 2005).  The down–regulation 

of the IMD pathway by the JNK pathway involves the transcription factor dAP–1, a well 
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established target of JNK signaling in flies and mammals (Kim et al., 2005; Davis, 

1999).  AP–1 functions together with the Drosophila Signal transducers and activator of 

transcription (STAT) protein, Stat92E, to negatively regulate Relish and AMP gene 

expression.  Stat92E is a transcription factor that is activated by the JAK/STAT pathway.  

Bacterial infections are known to induce this transcription factor via the production of 

Unpaired–3 (UPD3), a ligand for the JAK/STAT pathway receptor Domeless.  UPD3 

production following infection requires IMD–>Relish signaling in hemocytes (Agaisse et 

al., 2003).  Several Relish–dependent AMP genes, especially AttacinA, have AP–1 and 

Stat92E binding sites, in addition to κB sites, in their promoter/enhancer regions. In 

some cases the Stat92E site overlaps the Relish binding site.  Mutation of the AP1 or 

Stat92E binding site leads to 3–fold higher levels of an AttacinA reporter (Kim et al., 

2007).  AP1 and Stat92E bind the AttacinA promoter cooperatively, with the aid of the 

High mobility group (HMG) protein Dispersed 1 (Dsp1), and then recruit the histone 

deacetylase dHDAC1 to form a repressosome complex.  Flies with reduced levels of 

Stat92E, Jun (known as Jun related antigen, Jra, in Drosophila) or Dsp1 induce higher 

levels of AttacinA transcript following bacterial infection.  Also, these mutants display 

reduced survival following infection with mildly pathogenic bacteria like E.coli.  

Heterozygosity for a Relish null allele suppresses these phenotypes, consistent with the 

idea that the respressosome competes with Relish.  For example, Relish is recruited 

quickly to the AttacinA promoter, within 15 minutes of PGN stimulation.  But, after longer 

periods of stimulation, loss of Relish binding is observed while the repressosome shows 

sustained binding.  Repressosome recruitment to the AttacinA promoter also leads to its 

hypoacetylation.  The repressosome–mediated down regulation of Relish–mediated 
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transcription of AttacinA is not unique; the AMP genes AttacinB, Cecropin A1, Drosocin 

and Metchnikowin show a pattern similar to AttacinA.  Thus, the inhibitory affect of the 

repressosome complex on NF–κB is important for maintaining a balanced immune 

response (Kim et al., 2005; Kim et al., 2007).

Tissue specific immune regulation

In most of the work discussed above, the systemic Drosophila immune response 

was studied.  This response relies primarily on the inducible expression of AMP genes 

in the fat body, the insect liver.  In addition, many studies have also been performed in 

immune responsive Drosophila cell lines, which are hemocyte–derived.  However, IMD 

and Toll signaling also occurs in many other tissues.  For example, the Toll pathway 

plays critical roles in hematopoeitic development and function.  The transcription factors  

DIF and Dorsal are required for hemocyte proliferation and to prevent apoptosis.  DIF 

and Dorsal also contribute to the control of systemic infections by regulating 

phagocytosis (Matova and Anderson, 2006).  The IMD pathway is present and 

functional in almost all epithelial cells.  However, the responses in these tissues are not 

identical to that observed in the fat body (or in cell culture).  In particular, the outputs of 

IMD signaling are significantly modified in the gut. 

Although Drosophila harbor a substantial number of resident bacteria in their 

alimentary tract (Ryu et al., 2008; Ren et al., 2007; Cox and Gilmore, 2007), AMP genes 

are not expressed in the gut epithelia of healthy animals.  Recent studies have shown 

that these resident microbes still induce IMD signaling in the gut–as assayed by Relish 

translocation and expression of the PGN–digesting PGRP–LB and–SC.  However, other 

Relish target genes, especially the AMP genes, are mostly silent.  Ryu et al. (2008) 
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further showed that the gut specific inhibition of AMP gene expression is mediated by 

the homeobox transcription factor Caudal (Cad).  Caudal is best known for the critical 

role it plays in development of the mesoderm and gut (Lengyel and Iwaki, 2002).  A 

Caudal–response element, essential for the suppression of CecropinA expression in the 

gut, was characterized in the promoter/enhancer region of this AMP gene.  Moreover, 

knockdown of caudal in the gut, by tissue–specific RNAi, caused constitutive expression 

of Cecropin in this tissue.  AMP gene expression required IMD signaling components, 

like TAK1 or DREDD, as well as resident gut bacteria.  Germ–free animals showed little 

or no AMP expression, even in the absence of Caudal.  Expression of AMPs in the gut, 

with caudal RNAi, caused a shift in the bacterial populations resident in the gut.  In 

particular, one Acetobacteraceae species was greatly reduced while a Gluconobacter 

species flourished.  The Gluconobacter sp. was pathogenic, causing significant gut 

epithelial apoptosis and reduced survival (Figure 1.4).  These findings not only 

characterized a novel means of regulating immune signaling in a tissue specific manner, 

but also highlight the critical importance that proper immune regulation plays in health 

and disease, even in the fruit fly (Ryu et al., 2008).

Several studies using a gut infection model system have shown that the redox 

system plays an essential role in host survival by generating microbicidal effectors such 

as reactive oxygen species (ROS) (Ha et al., 2005a; Ha et al., 2005b).  In this redox 

system, dual oxidase (DUOX), a member of the nicotinamide adenine dinucleotide 

phosphate (NADP)H oxidase family, is responsible for the production of ROS in 

response to gut infection (Ha et al., 2005a).  Following microbe–induced ROS 

generation, ROS is eliminated by immune–regulated catalase (IRC), thereby protecting 
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the host from excessive oxidative stress (Ha et al., 2005b).  The DUOX–dependent 

ROS serves on the front line of microbicidal function and the IMD pathway functions as 

a second line of defense in the gut.  DUOX expression and activity are regulated in 

response to the microbial fluctuation in the gut.

DUOX activity is regulated by the Gαq–PLCβ–Ca2+ signaling pathway.  Basal 

Gαq–PLCβ–DUOX activity is sufficient for host survival.  Under conventional conditions, 

PLCβ is constitutively active at a low level and this helps maintain a low DUOX activity.  

This DOUX activity is essential for normal host survival.  However, in the case of high 

bacterial burden the DOUX–ROS system is strongly activated for full microbicidal 

activity.  Flies that have an impaired Gαq–PLCβ–Ca2+–DUOX have a shorter life span 

under natural rearing conditions and also under gut infection studies.  However, flies 

with impaired Gαq–PLCβ–Ca2+–DUOX pathway survive normally following septic injury 

indicating that the systemic immune response is distinct from the mucosal immune 

pathway.  It is not clear how Gαq and PLCβ induced Ca2+ modulates DUOX enzyme 

activity (Ha et al., 2009a).  In addition to regulation of its enzymatic activity, DUOX 

expression is also regulated.

DUOX expression pathway is activated when the host encounters bacterial 

invasion in the gut epithelia.  p38 pathway is mostly responsible for the activation of 

DUOX expression through activation of the transcription factor ATF2.  p38 mediated 

activation of DUOX is critical, because loss of p38 pathway components leads to host 

death following oral infection.  Unlike the DOUX activity pathway, the DOUX expression 

is activated only in response to infection.  Another important difference between the two 

pathways is that the DOUX activity pathway functions in an IMD independent way.  
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However, the DOUX expression pathway functions in both IMD dependent and 

independent ways.  PLCβ mediates the PGN independent pathway and PGRP–LC and 

IMD but not Relish are required for the PGN mediated activation of the p38 pathway.  

Thus, the PGN independent PLCβ and PGN dependent IMD pathway merge at MEKK1 

(MAPKK) to create a new p38–dependent DUOX expression pathway.  Like the DOUX 

activation pathway the DOUX expression pathway is not required to fight systemic 

infections.  However, MEKK1 and p38 are indispensable for host resistance to gut 

infection (Figure 1.4).  

ROS is a highly toxic and diffusible molecule and thus ROS generation is tightly 

regulated.  Cross–talk between the DUOX expression and activity pathways help fine 

tune ROS production depending on whether the gut encounters infectious or 

commensal microbes.  In the presence of a normal bacterial burden, PLCβ is activated 

at low levels by the basal concentration of non–PGN ligands and it subsequently down–

regulates PGN–dependent activation of p38 through the sequential induction of 

calcineurin B (CanB) and MAP kinase phosphatase–3 (MKP3) (Ha et al., 2009b).  

Maintenance of DUOX expression at the basal level is important to reduce the oxidative 

damage that occurs during the commensal–gut interaction.  And under, high microbial 

burdens, DUOX–activity and DUOX–expression pathways co–operate for full activation 

of DUOX which leads to high levels of ROS production.

Recent studies have revealed striking similarities and dissimilarities in the 

signaling pathways used by humans and flies to activate their innate immune 

responses.  In both cases, infection leads to the activation of TLRs, which in turn initiate 

intracellular signaling cascades that culminate in the activation of NF–κB/Rel family of 
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Figure 1.4:  Gut immunity.  
(a) Schematic representation of the signaling cascade activated in the gut under normal and 
infectious conditions.  Under conventional conditions IMD and MEKK1–p38 pathway is 
activated by commensal bacteria and PLCβ is also activated at the basal level by non PGN 
ligand.  In this condition PGRP amidases, Caudal and PLCβ–CanB–MKP3 helps down regulate 
AMP and DUOX expression.  (b) However, under infectious conditions high concentration of 
PGN overcomes the negative regulation and leads to AMP production by IMD pathway and also 
DUOX expression.  In addition non PGN ligands increase ROS production by activating both 
DUOX activity and induction pathway.  See text for more detail.
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transcription factors.  However, the Drosophila Toll functions as a cytokine receptor 

while the mammalian TLRs are directly involved in microbial recognition.  To understand 

these similarities and dissimilarities better the next few pages, highlight the innate 

immune signaling pathways present in mammals.

Mammalian NF–κB signaling

Mammals utilize an arsenal of defense mechanisms to combat infection.  The 

innate immune system is the first line of defense.  Innate immunity functions to eliminate 

pathogens and also to control infections.  The innate immune response is also important 

for the development of pathogen specific adaptive immune response which is mediated 

by the B and T cells (Pasare and Medzhitov, 2004).

The immune cells express different Pathogen Recognition Receptors (PRRs) like 

Toll–like receptors (TLRs), Retinoic acid–inducible gene (RIG)–I–like receptors (RLRs) 

and Nucleotide oligomerization domain (NOD)–like receptors (NLRs) in various 

compartments and trigger the release of inflammatory cytokines and type I interferons in 

response to an infection (Beutler, 2009; Medzhitov, 2007; Janeway and Medzhitov, 

2002; Akira et al., 2006).

In mammals, 12 different members of the TLR family have been identified.  TLRs 

are type I integral member glycoproteins.  The extracellular N–terminal domain of TLRs 

contain Leucine Rich Repeats (LRR) which recognize and bind different Pathogen 

associated molecular patterns (PAMPs) and activate downstream signaling which 

culminates in the translocation of NF–κB into the nucleus.  Two other signaling 

pathways the tumor necrosis factor receptors (TNFR) and the interleukin–1 receptor 

(IL–1R) also signal through the canonical NF–κB pathway.  Unlike the TLRs, TNFR and 
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IL–1R do not bind PAMPs but instead bind the cytokines TNF and IL–1, respectively, 

which are produced during an infection.  Although the extracellular domains of TLRs 

and IL–1R show striking differences, there intracellular domain show striking homology 

and is called the Toll/IL–1 receptor (TIR) domain (O'Neill, 2003; Dunne and O'Neill, 

2003).  And even though these receptors bind different ligands they are able to activate 

similar downstream signaling pathways.

TLRs family members can be categorized into two sub–populations depending 

on their cellular localization.  TLR–1,–2,–4,–5,–6 and–11 are expressed exclusively on 

the cell surface and recognize microbial components like lipids, lipoproteins and 

proteins.  On the other hand TLR–3,–7,–8 and –9 are localized in intracellular vesicles 

such as endosomes and the endoplasmic reticulum and mostly recognize microbial 

nucleic acids (Nishiya et al., 2005; Latz et al., 2004).

Upon ligand binding TLRs oligomerize causing a conformational change which 

results in the recruitment of the downstream adaptor proteins such as Myeloid 

differentiation primary response gene 88 (MyD88), toll–interleukin 1 receptor (TIR) 

domain containing adaptor protein (TIRAP also called Mal), TIR–domain–containing 

adapter–inducing interferon–beta (TRIF), and TRIF–related adaptor molecule (TRAM) 

(Horng and Medzhitov, 2001; Fitzgerald et al., 2001; Yamamoto et al., 2003a; 

Yamamoto et al., 2002; Wesche et al., 1997; Muzio et al., 1997).  Binding of TLR–1,–2,–

4,–5,–6,–7,–8,–9 and–11 to their respective ligands recruits MyD88 (Wesche et al., 

1997; Burns et al., 1998).  In addition to MyD88, TLR1,–2,–4 and–6 recruit TIRAP which 

serves as a linker protein between the TIR domain of TLRs and MyD88 (Fitzgerald et 

al., 2001; Schilling et al., 2002; Yamamoto et al., 2002).  Ligand binding by TLR–3 and–
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4 leads to the recruitment of TRIF (Yamamoto et al., 2002; Yamamoto et al., 2003b).  

TLR–4 recruits TRIF through TRAM which again acts as a linker protein to bring 

together the TIR domains of TLR and TRIF (Fitzgerald et al., 2003; Yamamoto et al., 

2003a).  The TLR signaling pathways are categorized as MyD88 dependent and 

independent pathways.

The MyD88 dependent pathway is utilized by all TLR’s except TLR–3.  Ligand 

binding to the receptor leads to activation of IKK and NF–κB via tumor necrosis factor 

receptor associated factor 6 (TRAF6), which is recruited to the receptor in a MyD88 and 

IL–1 receptor–associated kinase (IRAK) dependent manner .(Cao et al., 1996a; Cao et 

al., 1996b).  IRAK4 is initially activated by phosphorylation followed by the sequential 

activation of IRAK1 and IRAK2 (Suzuki et al., 2002; Qin et al., 2004).  The activation of 

IRAKs results in TRAF6 activation which once activated interacts with the ubiquitin E2 

complex of Uev1A and Ubc13.  Using its own RING finger to act as an E3 ligase, 

TRAF6 promotes its own K63–polyubiquitination (Deng et al., 2000; Lamothe et al., 

2007; Wang et al., 2001; Wooff et al., 2004).

Polyubiquitinated TRAF6 acts as a scaffold to recruit downstream kinases.  The 

MAP3 kinase TGFβactivated kinase1 (TAK1) is recruited by ubiquitin–binding motifs in 

its binding partners TAK1–binding protein 2 (TAB2) and TAB3 (Kanayama et al., 2004).  

TAB2 and TAB3 serve as adaptors between TRAF6 and TAK1.  The TAB2 and TAB3 

proteins contain two ubiquitin–binding motifs, an N–terminal CUE domain and a C–

terminal nuclear protein localization four zinc finger (NZF) domain (Ishitani et al., 2003; 

Cheung et al., 2004; Kanayama et al., 2004; Takaesu et al., 2000).  Although the NZF 

appears to play a significant role in binding TAB2/3 to ubiquitinated TRAF6, the CUE 
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domain appears to be dispensable for NF–κB signaling (Kanayama et al., 2004; Kishida 

et al., 2005).

Binding of the TAB2/3–TAK1 complex to ubiquitinated TRAF6 leads to activation 

of TAK1, and initiation of downstream signaling pathways (Takaesu et al., 2001; Jiang et 

al., 2002; Wang et al., 2001; Sakurai et al., 2000; Kishimoto et al., 2000; Xia et al., 

2009).  TAK1 phosphorylates the multi–protein IKK complex composed of three 

proteins; two catalytic subunits, IKKα and IKKβ, and a scaffold protein IKKγ (NEMO) 

(Hacker and Karin, 2006; Mercurio et al., 1997; Rothwarf et al., 1998; Zandi et al., 

1997).  IKKγ is necessary for activation of the classical NF–κB pathway.  Of the two 

catalytic subunits IKKβ is the major kinase.  Once activated by phosphorylation and 

perhaps ubiquitination, the IKK complex phosphorylates the NF–κB inhibitory protein 

IκB leading to its K48–polyubiquitination and degradation by the proteosome (Chen, 

2005; Hacker and Karin, 2006).  NF–κB can then freely translocate into the nucleus 

where it binds any number of κB sites activating various inflammatory cytokines and cell 

survival genes (Hoffmann and Baltimore, 2006).

Activated TAK1 not only activates NF–κB signaling but also phosphorylates 

various MAP2 kinase proteins, such as MKK3,–4,–6, and–7 (Chang and Karin, 2001).  

Phosphorylation of these proteins leads to the activation of both p38 and c–Jun N–

terminal kinase (JNK).  This results in the activation and nuclear translocation of 

activator protein 1 (AP1), which promotes the induction of various pro–inflammatory 

cytokines (Chang and Karin, 2001; Shim et al., 2005).

MyD88–independent signaling pathways are also present downstream of TLR–4 

(and TLR–3).  The TLR–4 pathway can lead to the activation of NF–κB or the activation 
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Figure 1.5 Mammalian NF–κB signaling
Upon recognition of microbial products TLR4 dimerizes and leads to the recruitment of the 
adaptor proteins MyD88 and Mal.  MyD88 interacts with IRAK via homeotypic death domain 
interactions and binds TRAF6.  Activated IRAK auto–phosphorylates and TRAF6 is then 
released into the cytoplasm.  In the cytoplasm, TRAF6 interacts with the E2 enzymes Uev1a, 
Ubc13, and Ubc5 promoting its own K63–polyubiquitination.  K63–polyubiquitination of 
upstream pathway members leads to the recruitment of TAK1 via ubiquitin binding domains 
found in TAB2/3.  Activated TAK1 then phosphorylates and activates the IKK complex resulting 
in the phosphorylation and K48–polyubiquitin mediated degradation of IκBα, releasing NF–κB 
into the nucleus.  TAK1 also phosphorylates MKK3,–4,–6 and–7 activating JNK/p38 mediated 
AP1 signaling.  In a second MyD88 independent pathway TLR4 activation leads activation of 
NF–κB or the activation of the transcription factors IRF3 and IRF7.  It is unclear how TRAF6 or 
RIP1 activate NF–κB.



of the transcription factors interferon regulatory factor 3 and 7 (IRF3 and IRF7).  In case 

of IRF3 and IRF7 activation, the adaptors TRIF and TRAM associate with the proteins 

TRAF3 and TANK to induce signaling to the IKK–like proteins TBK1 and IKKε 

(Yamamoto et al., 2003b; Hacker and Karin, 2006; Oganesyan et al., 2006; Sato et al., 

2003).  However, recent work by Kawagoe et al shows that TANK is not required for the 

type I interferon pathway.  Analysis of Tank–/– mice shows TANK is instead an essential 

negative regulator of the canonical NF–kB signaling pathway (Kawagoe et al., 2009).  

Once activated IKK and TBK1 phosphorylate the transcription factors IRF3 and IRF7, 

causing them to dimerize and translocate into the nucleus where they activate the 

production of type I interferons (Sharma et al., 2003; Fitzgerald et al., 2003).

The MyD88–independent signaling pathway activates NF–κB signaling through 

TRAF6 or RIP1.  The N–terminal of TRIF contains 3 putative motifs that bind TRAF6 

and activates NF–κB signaling (Sato et al., 2003).  An alternative pathway leading to 

NF–κB activation involves the C–terminal of TRIF, which contains the RIP–homotypic 

interaction motif (RHIM).  TRIF interacts with RIP1 through its RHIM domain and 

recruits it to the receptor and activates NF–κB signaling.  RHIM mutant of TRIF is 

unable to activate NF–κB and IFN–β signaling.  RIP3 negatively regulates this signaling 

pathway by inhibiting the interaction of RIP1 and TRIF. RIP1 gets poly ubiquitnated 

when it is recruited to the receptor (Cusson-Hermance et al., 2005; Meylan et al., 2004).   

However, it is unclear how TRAF6 or RIP1 activate NF–κB.  

In addition to TLRs that detect PAMPs either on the cell surface or in the lumen 

of intracellular vesicles there are other PRRs present that detect intracellular PAMPs.  

NLRs and RLRs are two such family of proteins that recognize intracellular danger 

45



signals (Dinarello, 2002; Dinarello, 2005).  NLRs are a family of receptors that are 

characterized by the presence of NOD domains.  NLRs are tripartite proteins that have 

a C terminal leucine rich repeat domain, a central NOD domain and a variable N 

terminal domain that can be either a caspase activation and recruitment domain 

(CARD), a Pyrin domain (PYD) or a baculovirus inhibitor of apoptosis repeat domain 

(BIR) (Martinon and Tschopp, 2005; Franchi et al., 2009).  The leucine rich repeats are 

implicated in recognizing the ligands.  The NOD domains are similar to NB–ARC motif 

of APAF1.  APAF1 is a protein involved in apoptosis and the NB–ARC motif mediates 

ATP dependent oligomerization of APAF1 upon binding cytochrome c and activates the 

apoptosis cascade.  The CARD, PYD and BIR domains mediate protein–protein 

interaction and facilitate downstream signaling.  Most NLRs are involved in activating 

the inflammasome but some NLRs like NOD1 and NOD2 also activate NF–κB signaling 

pathway.  NOD1 binds γ–D–glutamyl–diaminopimelic acid (iE–DAP) and NOD2 binds 

muramyl dipeptide (MDP) and activate downstream signaling by recruiting RIP2 via the 

CARD domain.  RIP2 is polyubiquitinated by cIAP1 or cIAP2.  This modification of RIP2 

allows TAK1 binding which leads to IKK activation and subsequent activation and 

translocation of NF–κB (Inohara et al., 2003; Inohara et al., 1999; Ogura et al., 2001; 

Viala et al., 2004; Hasegawa et al., 2008)(Bertrand et al., 2009). 

Recent work has shown that DNA–dependent activator of IRFs (DAI) functions 

as a cytosolic receptor for DNA.  However, DAI is not the only cytosolic receptor that 

recognizes DNA since DAI knockout mice are not essential for either innate or adaptive 

immune responses to B-DNA or DNA vaccination.  DAI binds to transfected DNA and 

activates IFN and NF-κB signaling.  DAI interacts with TBK1 to activate IRF3 signaling.  
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DAI contains two RIP homotypic interaction motifs (RHIM) and these are important for 

recruitment of RIP1 and RIP3 and activation of NF-κB signaling.  DAI and RIP1/3 

interact with each other through the RHIM domain and both the RHIM domains of DAI 

are important for the activation of NF-κB signaling (Rebsamen et al., 2009; Ishii et al., 

2008).

RLRs recognize intracellular RNA patterns produced by viruses.  The RLR family 

has 3 members retinoic acid inducible gene I (RIG–I), melanoma differentiation–

associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP–2) 

(Meylan et al., 2006).  All the three proteins have a DExD/H box RNA helicase domain.  

In addition, RIG–I and MDA5 have two N terminal caspase activation and recruitment 

domains (CARD).  CARDs mediate the interaction of activated RIG–I and MDA5 with 

the adaptor mitochondrial antiviral signaling (MAVS, also known as IPS–1, VISA, and 

Cardif), which localizes to the outer mitochondrial membrane.  MAVS in turn mediates 

downstream signaling by activating the kinases TANK binding kinase 1 (TBK1) and IKKε 

which in turn activate the transcription factors IRF3, IRF7 and NF–κB (Meylan et al., 

2005)

Negative Regulation in the TLR Pathway

TLR signaling pathway is activated in response to various pathogens and stress 

proteins, hence if left unchecked TLR signaling pathways lead to an over–activated 

immune response.  Therefore, it is necessary to keep the TLR pathways under tight 

regulation.  To this effect TLR signaling pathways employ many different negative 

regulators.  In the following section I will summarize some of the important negative 
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regulators of TLR signaling based on there location and function (Lang and Mansell, 

2007; Wang et al., 2009; Liew et al., 2005).

 Extracellular regulation

The first line of regulation is provided by the soluble decoy receptors.  Soluble 

TLRs act as decoy receptors by competing with TLR agonists.  sTLR–2 is a naturally 

occurring soluble TLR2 that is constitutively released by normal monocytes and is 

present in the human plasma and breast milk.  sTLR–2 not only functions as a decoy 

receptor but also inhibits TLR signaling by binding CD14 the co–receptor for TLR2 

signaling (LeBouder et al., 2003; Iwaki et al., 2002).  Even though there is a single copy 

of the TLR–4 gene, multiple mRNA products have been detected in mouse and human.  

This includes an mRNA encoding a soluble TLR–4 (Qureshi et al., 1999).  In vitro 

studies using recombinant sTLR–4 have shown that it can block LPS induced NF–kB 

activation and TNF production.  The mechanism by which sTLR–4 inhibits signaling is 

unclear, however, it is hypothesized that like sTLR–2 it acts as a decoy receptor and 

also blocks the interaction between TLR–4 and its co–receptors CD14 and MD2 (Iwami 

et al., 2000).

Transmembrane Protein Regulators

 Another strategy involving negative regulators is transmembrane proteins that 

inhibit signaling by either sequestering the adaptor proteins or by interfering with binding 

of the ligand to the specific TLR.  Several transmembrane proteins like Suppressor of 

tumorigenicity 2 (ST2), Single immunoglobulin IL–1 related protein (SIGIRR), 

Radioprotective 105 (RP105) and TNF–related apoptosis–inducing ligand receptor 

(TRAILR) belong to this family (Brint et al., 2004; Schmitz et al., 2005; Divanovic et al., 
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2005a; Divanovic et al., 2005b; Diehl et al., 2004).  One of the best characterized 

member of this family is SIGIRR. 

SIGIRR is also a member of the TIR superfamily like ST2.  SIGIRR is expressed 

by epithelial cells and immature dendritic cells (Thomassen et al., 1999; Wald et al., 

2003; Garlanda et al., 2004).  Over–expression of SIGIRR by dendritic cells leads to 

inhibition of NF–kB activation by IL–1 and IL–8, and SIGIRR knockout mice have 

increased cytokine production in response to TLR–4 and TLR–9 ligands but not TLR–3 

(Garlanda et al., 2004).  Data suggests that SIGIRR interferes with the receptor 

proximal complex by interacting with TRAF6 and IRAK1 also, SIGIRR has been shown 

to interact with IL–IR and TLR–4 (Wald et al., 2003).  However, the exact mechanism is 

unclear and more work is needed to elucidate how SIGIRR functions as a negative 

regulator.

Intracellular Protein Regulators

The intracellular regulators down modulate TLR signaling using various different 

mechanisms.  For example IRAKM, MyD88s,Toll interacting protein (TOLLIP), and 

Sterile–alpha and armadillo motif protein (SARM) negatively regulate TLR signaling by 

interacting with various components of the TLR pathway and inhibiting there function 

(Janssens et al., 2002; Burns et al., 2003; Carty et al., 2006; Burns et al., 2000).

In particular, IRAKM is a member of the IRAK family of kinases that is composed 

of four members.  In contrast to IRAKM, the other three family members IRAK1, IRAK2 

and IRAK4 are activators of TLR signaling.  IRAKM shares about 30–40% homology 

with the other IRAK members and unlike the other IRAKs it has restrictive expression 

(Wesche et al., 1999).  IRAKM is expressed predominantly in the monocytes/
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macrophages and weakly in other tissues and IRAKM expression is upregulated in 

response to LPS.  In vitro, macrophages from IRAKM deficient mice produce higher 

levels of cytokines in response to TLR–4 and TLR–9 ligands.  Additionally IRAKM 

deficient mice have an impaired LPS tolerance against endotoxin shock when 

compared to wild–type mice.  Over–expression studies suggest that IRAKM 

downregulates TLR signaling by inhibiting the dissociation of IRAK1 and IRAK4 from the  

TLR complex by either stabilizing the TLR–MyD88–IRAK4 complex or by inhibiting the 

phosphorylation of IRAK1 and IRAK4 (Kobayashi et al., 2002).  In addition to IRAKM 

two of the four splice variants of IRAK2 (IRAK2c and IRAK2d) also down modulate TLR 

signaling when over–expressed in 3T3 fibroblasts.  IRAK2c and IRAK2d lack a death 

domain and IRAK2c is upregulated when RAW264.7 cells are stimulated with LPS for 1 

and 3 hours indicating a negative feedback mechanism (Hardy and O'Neill, 2004).

Another strategy utilized by intracellular proteins is to function as a transcriptonal 

repressor.  Activating transcription factor 3 (ATF3) is a member of the CREB family of 

basic leucine zipper transcription factors (Mayr et al., 2001).  ATF3 has been 

demonstrated to be both an activator or repressor of transcription depending on the cell 

type and stimulus (Kawauchi et al., 2002).  In the context of TLR signaling Gilchrist et al 

took a system biology’s approach and showed that ATF3 represses the transcription of 

Il6 and Il12b.  IL6 and IL12b among 30 other genes were identified to have a putative 

ATF3 site within 100 base pairs of a NF–κB site and 500 base pairs of a transcriptional 

start site.  They further demonstrated that ATF3 deficient mice have atleast 10 times 

higher levels of circulating IL6 and IL12 in response to LPS when compared to wild type 

mice.  Also ATF3 deficient mice succumb to endotoxic shock with 24 hours of 
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intrperitoneal LPS administration.  ATF3 exerts transcriptional repression by chromatin 

remodeling.  ATF3 in conjunction with HDAC deacetylates histones and thus alters 

chromatin structure to limit transcription factors like NF–κB from DNA (Gilchrist et al., 

2006).

Intracellular Proteins that negatively regulate TLR signaling by degradation

One of the most commonly utilized mechanisms for regulating TLR signaling is 

the degradation or destabilization of components of the TLR signaling pathway.  Several 

negative regulators of TLR signaling function as ubiquitin modifying enzymes.  For 

example, Suppressor of cytokine signaling–1 (SOCS–1), Pin1 and Triad3A negatively 

regulate TLR signaling pathways by targeting various components of the TLR pathway 

for polyubiquitnation followed by proteosomal degradation.  SOCS–1 is one of the best 

characterized negative regulator in this category and is described in detail below.

SOCS–1 is one of the 8 members of the SOCS family.  SOCS–1 was first 

identified as an intracellular protein that negatively regulates cytokine production by the 

JAK/STAT pathway (Alexander, 2002).  SOCS–1 deficient mice die within 3 weeks of 

birth due to multi– organ inflammation and this phenotype can be rescued by crossing 

to IFNγ deficient mice (Starr et al., 1998; Naka et al., 1998).  However, these double 

deficient mice are still hypersensitive to LPS.  Also, SOCS–1 deficient mice are highly 

susceptible to sepsis and SOCS–1 deficient macrophages produce elevated levels of 

cytokines such as IL–6 and TNF in response to LPS.  All this data together indicates 

that SOCS–1 negatively regulates TLR signaling pathway (Nakagawa et al., 2002; 

Kinjyo et al., 2002).  Work by Mansell et al shows that SOCS–1 negatively regulates 

TLR–2 and TLR–4 pathway by targeting the adaptor protein Mal for polyubiquitnation 
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followed by proteosomal degradation.  SOCS–1 inhibits Mal mediated phosphorylation 

of the p65 subunit of NF–κB and hence its transactivation (Mansell et al., 2006).

Intracellular Proteins that negatively regulate TLR signaling by deubiquitnation

Protein ubiquitination not only leads to the degradation of proteins but it also 

plays a key role in regulation of TLR signaling.  Like phosphorylation, protein 

ubiquitination is also reversible and involves deubiqitinases, specialized proteases that 

act on ubiquitin.  Several deubiquitinases like A20, deubiquitnating enzyme A (DUBA) 

and cylindromatosis protein (CYLD) also function in the TLR pathways.  A20 was the 

first deubiquitinase to be discovered in the TLR pathway (Kayagaki et al., 2007; 

Regamey et al., 2003; Trompouki et al., 2003; Yoshida et al., 2005).

A20 is a negative regulator that down modulates both TNFR1 and TLR mediated 

NF–κB pathways.  A20 is expressed in many cell types and its expression is rapidly 

upregulated by LPS and TNF (Krikos et al., 1992; Opipari et al., 1990).  Work by Ma and 

colleagues shows that TNFR1 and A20 doubly deficient mice develop spontaneous 

inflammation like the A20 deficient mice indicating that A20 regulates TNF independent 

pro–inflammatory signals.  Also, mice reconstituted with hematopoietic stem cells from 

A20 deficient mice rapidly die following LPS stimulation.  This data shows that A20 is 

important for protecting the host from endotoxic shock.  However, A20 does not play an 

important role in LPS tolerance.  A20 is a cysteine protease deubiquitinating enzyme 

and it removes K63–linked ubiquitin molecules from TRAF6 and hence down modulates 

TLR signaling.  TRAF6 is a component used by all TLR signaling pathways hence A20 

regulates both TLR–dependent and independent pathways (Boone et al., 2004).

52



53

!"#$

%
&
'

%
()
*
*

!&+,

!"#$%&'

!"#$(

)*+

!$$

NF-!B

,-$

!

"

#

./0123/45

712890:;

!<<9=> ?>=>;#7@%!<<9=> ?>=>;NF-!B

AB"

C/?=45/=?

!"&%

!

"

#

!<<9=> ?>=>;
!"DE

!"D*
7

7

AF$%
!$$"

A"#D*
A#-$

A"#DG

!"DE

!"D*
7

7

CHIC@%

#'J

#AD*

!"#$@.

$

%

&

%

#

#

;AB"'& (

"
!7%

A
"
#
D
G

Figure 1.6: Negative Regulators of Toll–like receptor.  Schematic representation of the TLR 
pathway showing only the basic outline.  The black arrows highlight the negative regulators that 
are discussed in the text and their likely targets.



Thesis objective

Currently there are a lot of open questions about what regions of the innate 

immune receptors are important for signaling and how the signal is transmitted to it 

down stream components.  In the work presented here I use Drosophila as a model 

system to try and answer some of these questions.  In particular, this thesis elucidates 

some receptor proximal events that regulate IMD signaling both positively and 

negatively.  

In these studies I have identified a common motif in the N-terminal domains of 

both the receptors, known as the RHIM-like domain.  The RHIM-like domain is critical 

for signaling by either receptor, but the mechanism(s) involved remain unclear.  IMD, a 

downstream component of the pathway, associates with both PGRP-LC and -LE but the 

interaction of PGRP-LC with IMD is not mediated through its RHIM-like domain.  Also, 

mutations affecting the PGRP-LC RHIM-like motif are defective in all known 

downstream signaling events.  However, the RHIM-like mutant receptors are capable of 

serving as a platform for the assembly of all known components of a receptor proximal 

signaling complex.  These results suggest that another, unidentified component of the 

IMD signaling pathway may function to mediate interaction with the RHIM-like motif.  

I performed a yeast two-hybrid screen to identify proteins that might interact with 

the receptor PGRP-LC through its RHIM- like domain.  With this approach, two new 

components of the IMD pathway were identified.  The first component I characterized is 

called Rudra and it is a critical feedback inhibitor of peptidoglycan receptor signaling.  

The other factor is known as RYBP, it includes a highly conserved ubiquitin binding motif 

(NZF), and RNAi studies suggest it is a critical component of the IMD pathway.  The 
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identification and characterization of these two new components of the IMD pathway 

has provided a new insight into the molecular events that take place proximal to the 

receptor. By studying Drosophila innate immune signaling I hope to contribute to the 

ever growing body of knowledge regarding innate immunity.
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PREFACE TO CHAPTER II

This chapter was previously published in Nature Immunology (2006):

Takashi Kaneko, Tamaki Yano, Kamna Aggarwal, Jae-Hong Lim, Kazunori Ueda, 
Yoshiteru Oshima, Camilla Peach, Deniz Erturk-Hasdemir, William E Goldman, Byung-
Ha Oh, Shoichiro Kurata & Neal Silverman.  PGRP-LC and PGRP-LE play essential yet 
distinct roles in the Drosophila immune response to monomeric DAP-type 
peptidoglycan. Nat Immunol. 2006 Jul;7(7):715-23.

Kamna Aggarwal performed all PGRP-LE RHIM-like domain related cell culture 
experiments (Figure 2.7d, Figure 2.8b) and characterized the PGRP-LCx transgenic 
flies (Figure 2.9c).  Also, I wrote the manuscript with Takashi Kaneko and Neal 
Silverman.
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CHAPTER II

PGRP-LC and PGRP-LE play essential yet distinct roles in the Drosophila immune 
response to monomeric DAP-type peptidoglycan 
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Abstract
Studies of Drosophila immunity in tissue culture suggest that recognition of 

polymeric peptidoglycan (PGN) requires only peptidoglycan recognition protein-LCx 

(PGRP-LCx), while recognition of monomeric PGN requires a heterodimeric complex of 

PGRP-LCa and PGRP–LCx.  Here we present in vivo studies indicating that either 

PGRP-LC or PGRP-LE is sufficient to mediate responses to monomeric PGN, while 

recognition of polymeric PGN depends solely on PGRP-LC.  In addition, we 

demonstrate that full-length PGRP-LE acts as an intracellular receptor for monomeric 

PGN.  However, a version of PGRP-LE containing only the PGRP domain functioned 

extracellularly, as a CD14-like accessory factor capable of enhancing PGRP-LC-

mediated PGN recognition.  Interaction with IMD was not required for PGRP-LC 

signaling.  Instead, PGRP-LC and PGRP-LE signal through a RHIM-like motif.
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Introduction
Infection with gram-negative bacteria results in activation of the Drosophila IMD 

signaling pathway, which, via activation of the NF-κB homolog Relish, drives expression 

of genes encoding antimicrobial peptides(Kaneko and Silverman, 2005).  Bacterial 

peptidoglycan (PGN) are responsible for the activation of the IMD pathway (Leulier et 

al., 2003; Kaneko et al., 2005; Kaneko et al., 2004).  Specifically, diaminopimelic acid-

containing PGN (DAP-type) potently activates the IMD pathway while lysine-containing 

PGN (Lys-type) activates the Toll innate immune signaling pathway.  Host cell 

recognition of PGN requires peptidoglycan recognition proteins (PGRPs).  PGRP-SA 

and PGRP-SD recognize Lys-type PGN, which is produced by many Gram-positive 

bacteria, and PGRP-LC and PGRP-LE recognize DAP-type PGN, which is produced by 

Gram-negative bacteria (Kaneko and Silverman, 2005).  

The Drosophila genome encodes 17 PGRP gene products which are often 

characterized as either short or long form PGRPs.  Short form PGRPs consist solely of 

a PGRP domain, and usually contain a signal sequence, which results in production of 

secreted proteins such as PGRP-SA and PGRP-SD.  Long form PGRPs contain an 

extended N-terminal region, which often includes a transmembrane domain, in addition 

to their C-terminal PGRP domain.  For example, PGRP-LC encodes three distinct 

proteins, generated via alternative splicing, each of which contain identical N-terminal 

cytoplasmic signaling and transmembrane domains but unique C-terminal extracellular 

PGRP domains (Werner et al., 2003).  

In contrast, the long form PGRP-LE contains no predicted transmembrane 

domain or signal sequence, and is thus predicted to be an intracellular PGRP.  With the 
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exception of their PGRP domains, PGRP-LC and PGRP-LE share little apparent 

homology (Werner et al., 2003) .  PGRP-LE binds specifically to DAP-type but not to 

Lys-type PGN (Takehana et al., 2002).  Surprisingly, the PGRP-domain of endogenous 

PGRP-LE (PGRP-LEpg) can be found outside the cell, in the hemolymph.  Consistent 

with this extracellular localization of  PGRP-LEpg, IMD signaling induced by PGRP-LE 

over-expression occurs in a non-cell autonomous manner and depends in large part on 

PGRP-LC (Takehana et al., 2004).  PGRP-LE also exhibits PGRP-LC-independent 

activity, but it is not clear if this occurs within the cell or via an alternate cell surface 

receptor.  

PGRP-LC mutant flies exhibit greatly reduced antimicrobial peptide gene 

expression following infection with E. coli (Gottar et al., 2002; Choe et al., 2002; Ramet 

et al., 2002), and are hyper-susceptible to infection with some gram-negative bacteria, 

such as Erwinia caratova.  However, PGRP-LC mutant flies exhibit normal resistance to 

infection with E. coli (Gottar et al., 2002).  PGRP-LE mutant flies display normal 

antimicrobial peptide gene expression after, and are resistant to, E. coli infection.  

However, flies expressing mutant forms of both PGRP-LC and PGRP-LE are highly 

susceptible to E. coli and other DAP-type PGN-containing bacteria (Takehana et al., 

2004).  These results suggests that PGRP-LC and PGRP-LE have some redundant 

functions and are individually capable of preventing E. coli-induced lethality, although 

why PGRP-LC mutants withstand E. coli infection, even when their antimicrobial peptide 

gene expression is severely reduced, is not clear.   

In addition, the mechanisms by which PGRP-LE- or PGRP-LC-induced signals 

are transmitted through the cell interior are not completely understood.  A recent report 
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suggested that the first 263 amino acids of the cytoplasmic domain of PGRP-LC are 

required for signaling, and that this cytoplasmic domain of PGRP-LC interacts with IMD 

(Choe et al., 2005).  However, the inactive mutant analyzed in this report lacks almost 

the entire PGRP-LC cytoplasmic domain.  Therefore, specific motif(s) involved in 

PGRP-LC signaling were not defined.  Moreover, interaction between IMD and PGRP-

LC was shown only when these proteins were over-expressed, and this interaction was 

not functionally linked to PGRP-LC signal transduction.  

Here, we demonstrate that recognition of the monomeric DAP-type PGN tracheal 

cytotoxin (TCT) requires either PGRP-LC or PGRP-LE.  PGRP-LE-mediated recognition 

of TCT can occur intracellularly, and extracellular PGRP-LEpg may stimulate IMD 

signaling by facilitating the interaction of PGN with PGRP-LC, in a CD14-like manner.  

In addition, we define a previously-undetected RHIM-like motif in the cytoplasmic 

domains of PGRP-LC and PGRP-LE that is essential for signaling, but dispensable for 

interaction with IMD, suggesting that interaction with IMD is not critical for PGRP-LC 

and PGRP-LE signaling.

Results

PGRP-LE and PGRP-LC recognize TCT 

TCT is a dissacharide-tetrapeptide fragment of PGN that contains a 1,6-anhydro 

arranged muramic acid and a DAP residue at the third position of the stem-peptide 

(Cookson et al., 1989b), and activates the IMD pathway in Drosophila and in a 

Drosophila cell line (S2*) (Kaneko et al., 2004).  RNA interference studies demonstrated 

that TCT-mediated IMD activation in S2* cells requires two splice-isoforms of PGRP-LC, 
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PGRP-LCa and PGRP–LCx.  To examine the role of various PGRP-LC isoforms in TCT 

recognition in vivo, two PGRP-LC mutant strains were injected with TCT.  PGRP-LC1 

contains an 858 base pair insertion in the exon encoding the common N-terminal 

domain of PGRP-LC, and is therefore thought to be a null allele.  PGRP-LC2 contains a 

point mutation specifically affecting the PGRP-LCx isoform (Choe et al., 2002).  Both 

mutants responded to TCT challenge with induction of the antimicrobial peptide genes 

diptericin (Figure 2.1a), cecropin and attacin (data not shown).  In contrast, both PGRP-

LC mutants failed to upregulate antimicrobial gene expression after infection with E. coli 

or injection of polymeric E. coli PGN.  It remained possible that neither mutation 

generated a complete null PGRP-LC allele.  Therefore, we assessed flies carrying the 

PGRP-LC∆E allele, which lacks the entire PGRP-LC locus, and noted similar 

responsiveness to monomeric TCT (Figure 2.1b).  Dose response analysis 

demonstrated that the PGRP-LC mutants were approximately 50% less responsive to 

TCT, compared to wild-type (WT) flies (Figure 2.2).  However, TCT responsiveness was 

completely dependent on the IMD pathway.  Neither kenny1 nor imdShadok mutant flies 

both null alleles of essential components in the IMD pathway) responded to TCT 

challenge (Figure 2.1c). These results suggest the existence of another receptor 

capable of recognizing TCT and activating IMD signaling.  PGRP-LE is known to bind 

DAP-type PGN and also protect flies from gram-negative infection, thus it is a candidate 

for this alternate TCT receptor.

To test the possibility that PGRP-LE is also capable of recognizing TCT and 

activating IMD signaling, PGRP-LE mutant and PGRP-LE, PGRP-LC double mutant 

flies were injected with TCT.  While PGRP-LE mutants exhibited normal responses, the 
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Figure 2.1:  PGRP-LE is a second receptor for monomeric DAP-type peptidoglycan.

(a-c) Indicated adult flies (2-5 days old) were injected with monomeric DAP-type peptidoglycan 
(TCT), polymeric DAP-type peptidoglycan (PGN) or live E. coli.  RNA was extracted 24 h after 
injection, and expression of genes encoding the antimicrobial peptide gene diptericin and the 
ribosomal protein RpL32 (loading control) was assessed by Northern blot. PGRP-LC1 and 
PGRP-LC∆E, PGRP-LC null alleles; PGRP-LC2, PGRP-LCx-specific allele; PGRP-LE112, PGRP-
LE null allele; imdshadok, imd null allele; key1, kenny null allele.  WT strain in panel b is an 
isogenic white strain.  (d)  Oligomerization of recombinant purified PGRP-LEpg was assessed in 
the presence (solid line) and absence (dashed line) of TCT by size exclusion chromatography 
(Superdex 75). Lighter solid lines indicate elution of (1) BSA (67kDa), (2) ovalbumin (43kDa) 
and (3) chymotripsinogen A (25kDa) controls.  For all panels, results typical from at least two 
independent experiments.
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Figure 2.2  TCT-induced immune activation is reduced but not eliminated in PGRP-LC 
mutant flies.
(a)  Northern blots depict diptericin induction following injection of increasing doses of TCT into 
PGRP-LC1 homozygous mutants or their heterozygous (PGRP-LC1/TM6B) siblings. (b)  
Phosphoimager quantification of the data presented in (a).  Representative of two independent 
experiments.
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double PGRP-LC, PGRP-LE mutants failed to respond to TCT, E. coli PGN or live E. 

coli (Figure 2.1b).  These results suggest that PGRP-LE is a second receptor for TCT.  

S2* cells do not express PGRP-LE.  Therefore, in S2* cells, the response to TCT is 

strictly dependent on PGRP-LC (Figure 2.3a). 

Consistent with the notion that PGRP-LE is a second TCT receptor, recent 

studies demonstrated that PGRP-LEpg binds TCT, with an apparent Kd of ~27 nM.  In 

addition, the recently-solved structure of a co-crystal of PGRP-LEpg bound to TCT 

suggested that TCT binding results in PGRP-LEpg multimerization (Lim et al., 2006).  To 

determine whether TCT binding induced PGRP-LEpg multimerization, PGRP-LEpg, with 

or without TCT, was fractionated by gel filtration chromatography.  In the presence of 

TCT, PGRP-LEpg eluted near the void volume with the molecular weight marker 

thyroglobulin on a Superdex 75 column, suggesting a molecular weight of at least 669 

kDa (the molecular weight of thyroglobulin), while in the absence of TCT, PGRP-LEpg 

eluted at ~25 kDa, near the predicted monomeric size of 20 kDa.  Together, the results 

presented here and in our previous report clearly show that TCT-binding induces 

PGRP-LEpg oligomerization, and suggest that ligand-induced oligomerization may play a 

role in PGRP-LE signaling (Lim et al., 2006). 

PGRP-LE, an intracellular TCT receptor

PGRP-LE functions independently of PGRP-LC in responding to TCT (Figure 

2.1b), and PGRP-LE encodes neither a signal peptide nor a transmembrane domain.  

Therefore, PGRP-LE might function as an intracellular receptor for TCT.  However, a 

previous report clearly demonstrated that PGRP-LE can function in a cell non-

autonomous manner when over-expressed in the fat body, and PGRP-LEpg can be 
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Figure 2.3:  PGRP-LE is not expressed in cultured S2* cells.
(a)  Total RNA was extracted from adult flies or S2* cells, and PGRP-LE transcripts were 
detected by RT-PCR. RpL32, PGRP-LCx and PGRP–LCa are presented as controls.  No 
reverse transcriptase (RT(–)) control is indicated. (b)  Diptericin (top), PGRP-LE (middle) and 
PGRP-LC (bottom) transcripts were detected by real-time RT-PCR (normalized to RpL32 
transcripts) in  S2 cells stably transfected with a metallothionein promoter driven PGRP-LE 
expression construct.  PGRP-LE was expressed in two quantities, by addition of either 10 or 
100 µM copper sulfate for 40 hours, then cells were stimulated (or left unstimulated) with 100 
nM TCT for 12 hours.  RNAi to PGRP-LC and/or PGRP-LE was used to determine the relative 
contribution of these two receptors to TCT-mediated diptericin induction, as indicated.  In these 
conditions, the response to TCT is almost entirely dependent on PGRP-LC, even when PGRP-
LE is expressed in either low or high amounts.  Representative of least three independent 
assays.



found in the hemolymph despite lacking a predicted signal sequence (Takehana et al., 

2004).  These data do not preclude the possibility that PGRP-LE also functions, in other 

situations, intracellularly in a cell-autonomous manner.  To examine this possibility, 

PGRP-LE was expressed within clones of cells in the malphigian tubules (the insect 

kidney) using a combination of the flp-FRT and GAL4-UAS systems (Ito et al., 1997).  

Malphigian tubules are an immune responsive organ with autonomous IMD signaling 

activity (McGettigan et al., 2005).  In this system, an actin promoter-driven GAL4 

transgene is nonfunctional due to the insertion of transcriptional termination signals 

flanked by two FRT sequences in the initial state (Ay-GAL4).  Expression of the flp 

recombinase induces recombination between these the two FRT sequences and 

removes the terminator, generating a functional actin-GAL4 that drives the expression of 

PGRP-LE and GFP transgenes, which are controlled by a UASGal promoter.  Expression 

of flp recombinase is controlled by the hsp70 promoter and is induced clonally by a brief 

heat shock.  Diptericin expression was monitored with a dipt-LacZ reporter transgene, 

while PGRP-LE expression was reported by a UAS-GFP transgene.  In malphigian 

tubules, expression of PGRP-LE was sufficient to induce diptericin expression, which 

occurred exclusively in a cell-autonomous manner (Figure 2.4a). The dipt-LacZ reporter 

was only expressed in cells expressing PGRP-LE, suggesting that PGRP-LE may 

function as an intracellular TCT receptor in this tissue.

To directly test this possibility, whole organs were collected from dipt-LacZ larvae, 

washed extensively to remove all hemolymph, and stimulated with TCT.  IMD activation 

was assayed by staining for β-galactosidase activity (Yajima et al., 2003).  TCT induced 

dipt-LacZ reporter expression in 96% of malphigian tubules from WT flies (Figure 2.4b).  

67



This response was completely dependent on the addition of TCT (Figure 2.4c).  

Moreover, this response was strongly dependent on PGRP-LE and only mildly involved 

PGRP-LC.  27% of PGRP-LE, and 79% of PGRP-LC, mutant malphigian tubules 

exhibited dipt-LacZ expression (Figure 2.4d).  Expression of the diptericin reporter was 

detected in only 6% of malphigian tubules from double PGRP-LC, PGRP-LE mutants.  

The data in Figure 2.4d represent the percentage of tubules that contained one or more 

cells expressing the dipt-lacZ reporter.  Consistent with these results, anti-PGRP-LE 

antisera detected full length (45 kDa) PGRP-LE in immunoblots from lysates from WT, 

but not PGRP-LE112, malphigian tubules (Figure 2.4e).

S2 cells do not express PGRP-LE (Figure 2.3a).  In most cases, expression of 

PGRP-LE was not sufficient to allow them to respond to TCT, independently of PGRP-

LC, when TCT was added directly to the culture media (Figure 2.6a and Figure 2.3b).  

We speculated that this poor response was due to a failure of S2 cells to import TCT 

into the cytoplasm, where it can be recognized by intracellular PGRP-LE.  To test this 

hypothesis, TCT was delivered directly into the cytoplasm of S2 cells by transfection 

with calcium phosphate.  TCT induced diptericin and drosomycin transcription only in S2 

cells expressing PGRP-LE (Figure 2.4f).  In the copper treated cells, the response to 

TCT was largely independent of PGRP-LC, consistent with intracellular recognition 

(data not shown).  Note that the relatively unresponsive S2 cells, not the highly 

responsive S2* sub-line, were used for these experiments (Samakovlis et al., 1990). 

Next, we directly demonstrated that PGRP-LE is expressed within cells of the 

malphigian tubules and in the cytoplasm of S2 cells.  PGRP-LE was detected 

intracellularly in malphigian tubules by confocal immunofluorescence with anti-PGRP-
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Figure 2.4:  PGRP-LE is an intracellular receptor for TCT.
(a)  Immunofluorescence analysis of diptericin expression (via diptericin-LacZ reporter 
transgene) following clonal expression of  PGRP-LE (monitored via UAS-GFP reporter 
transgene) in malphigian tubules.  Representative of ten mosaic tubules.  (b-d)  After extensive 
washing to remove hemolymph, malphigian tubules from diptericin-LacZ larvae were challenged 
in culture with 10 µM TCT.  The immune response was monitored by staining with X-gal and 
DAPI.  Malphigian tubules from WT or mutant were compared, and the percentage of tubules 
with one or more LacZ expressing cells is indicated in (d).  48 tubules were examined for each 
genotype. (e)  PGRP-LE expression in WT and PGRP-LE112 malphigian tubules was monitored 
by immunoblotting with anti-PGRP-LE.  Representative of at least two independent 
immunoblots.  (f)  Parental (PGRP-LE-deficient) S2 cells and S2 cell lines stably transfected 
with a metallothionein-PGRP-LE construct were treated with 100 µM copper sulfate for one hour 
(or left untreated), after which they were transfected with the indicated amounts of TCT.  Twelve 
hours later RNA was extracted and expression of diptericin, drosomycin and RpL32 
(normalization control) was assessed by real-time RT-PCR.  Note, the sub-line of S2 cells used 
in this experiment responded poorly to TCT, compared to the S2* cells used elsewhere in this 
study and previously2.  Error bars indicate s.d.  Representative of two independent experiments, 
each in duplicate.  (a-c) , magnification 200x.



LE (Figure 2.5a).  When expressed in S2 cells, V5-tagged PGRP-LE was observed in 

the cytoplasm, as detected by whole cell immunofluorescent microscopy (Figure 2.5b).  

When expressed in S2* cells, YFP-tagged PGRP-LE was found to be cytoplasmic by 

confocal fluorescent microscopy (Figure 2.5c).  These localization and functional data 

clearly illustrate that full-length PGRP-LE can function as an intracellular receptor for 

TCT. 

CD14-like activity of PGRP-LEpg

Unlike full-length intracellular PGRP-LE, a truncated form of PGRP-LE, which 

consists of the PGRP-domain (PGRP-LEpg), is easily detected extracellularly in 

hemolymph (Takehana et al., 2004).  To compare the activity of full-length PGRP-LE and 

PGRP-LEpg, both forms were stably expressed from a copper-inducible promoter in S2 

cells (Figure 2.6a).  Full-length PGRP-LE potently induced diptericin expression, in a 

manner independent of PGRP-LC but dependent on IMD (Figure 2.6, left).  In contrast, 

PGRP-LEpg did not induce diptericin expression, but instead robustly enhanced TCT-

mediated diptericin induction in a PGRP-LC-dependent manner (Figure 2.6a, right).  

Full-length PGRP-LE did not enhance TCT-mediated diptericin induction (Figure 2.6a, 

left).  

The requirement for PGRP-LC in the PGRP-LEpg-enhanced response to TCT 

suggests that PGRP-LEpg functions outside the cell.  Consistent with this possibility, 

PGRP-LEpg was detected in significant quantities in the conditioned media of PGRP-

LEpg-expressing S2 cells (Figure 2.6b).  Moreover, after addition of TCT, soluble PGRP-

LEpg associated with S2 cells (Figure 2.6c), and this cell association required PGRP-LC 

(data not shown).  Serine 232 in PGRP-LE and serine 391 in PGRP-LCx are critical for 
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Figure 2.5:  Intracellular localization of PGRP-LE. 
(a)  Endogenous PGRP-LE in WT or PGRP-LE112 malphigian tubules was detected by staining 
with anti-PGRP-LE (which was pre-absorbed with PGRP-LE112 tissues).  Staining was visualized 
by confocal microscopy.  Magnification 200x. Representative of two independent experiments 
(b)  S2 cells engineered to express high amounts of V5-tagged PGRP-LE were stained with 
anti-V5 (to detect PGRP-LE), DAPI, and phalloidin (to detect the actin network).  Staining was 
visualized by whole cell microscopy.  Magnifcation 1200x. Representative of six independent 
experiments (c)  S2* cells engineered to express YGP-tagged PGRP-LE were stained with 
Hoechst.  Staining and YFP expression was visualized by fluorescent confocal microscopy.  
Magnification 63x and then enlarged another 3.44x.  Representative of three independent 
experiments.
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TCT-induced dimerization of two PGRP-domains (Lim et al., 2006) (Chang et al., 2006).  

The PGRP-LEpgS232E mutant failed to enhance TCT-induced diptericin expression 

(Figure 2.6d) and failed to associate with S2 cells after addition of TCT (data not 

shown).  However, PGRP-LEpgS232E was detected in the cell culture media in amounts 

similar to WT PGRP-LEpg (Figure 2.6b).  These results suggest that PGRP-LEpg 

functions in a CD14-like manner by binding TCT in solution and carrying it to the cell 

surface, where it interacts with PGRP-LC to induce signal transduction.  

PGRP signaling through a RHIM-like motif

The molecular mechanisms by which PGRP-LC and PGRP-LE activate 

intracellular signaling are unclear.  Overexpression of either PGRP-LC or PGRP-LE in 

S2* cells or in vivo is sufficient to activate IMD signaling and drive antimicrobial peptide 

expression in the absence of microbial challenge.  Using PGRP-LC overexpression-

induced diptercin expression as an assay, we identified regions within the intracellular 

domain of PGRP-LCx that are required for signaling.  A series of seven internal 

deletions, each removing approximately 50 amino acids, and in total spanning the entire 

intracellular domain, were expressed using a copper-inducible promoter in stable S2* 

cell transfectants.  Two adjacent deletions, ∆5 and ∆6, failed to induce diptericin, while 

the other deletions behaved similarly to WT PGRP-LCx (Figure 2.7a).  These results 

are supported by and expand upon the recent findings of Choe et al, who assayed the 

effects of large N-terminal PGRP-LC deletions (Choe et al., 2005).  All deletion mutants 

presented here were expressed on the cell surface, as analyzed by live cell flow 

cytometry (data not shown).  The region defined by the two signal deficient deletions 

(residues 175-243) was further dissected with five additional ~20 amino acid deletions 
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Figure 2.6:  CD14-like activity of the PGRP domain of PGRP-LE.

(a)  S2 cells stably transfected with metallothionein promoter-driven transgenes encoding either 
full length PGRP-LE (PGRP-LEfull) or the PGRP domain of PGRP-LE (PGRP-LEpg), were 
transfected with the indicated dsRNAs and treated with copper for 40 h, followed by TCT 
stimulation for an additional 12 h, as indicated.  RNA was extracted and diptericin and RpL32 
were quantified by real-time RT-PCR.  PGRP-LEfull induced diptericin expression and this 
activity did not require PGRP-LC.  Expression of PGRP-LEpg did not activate diptericin 
expression but robustly enhanced the PGRP-LC-dependent response to TCT.  Representative 
two independent experiments, both performed in duplicate.  (b)  Extracellular  PGRP-LEpg was 
detected by anti-V5 immunoblot of lysates and culture medium from S2 cells stably expressing 
V5-tagged PGRP-LEpg or PGRP-LEpgS232E.  Representative of two independent assays. (c)  
TCT-induced cell surface association PGRP-LEpg was detected by staining S2 cells stably 
expressing V5-tagged PGRP-LEpg, in the presence or absence of 1µM TCT, with anti-V5 and 
DAPI.  Representative of five experiments.  (d)  Requirement for interaction between TCT-
bound PGRP domains was detected treating S2 cells stably expressing copper-responsive 
transgenes encoding PGRP-LEpg and PGRP-LEpgS232E as in (a).  Error bars indicate s.d. 
Representative of three independent experiments, each performed in duplicate.
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(∆11-∆15).   Deletions 13, 14 and 15 failed to induce diptericin when overexpressed 

(Figure 2.7b).  These results clearly define a region, within residues 205-242, as critical 

for IMD pathway activation.  Interestingly, this region contains a stretch of amino acids 

bearing similarity to other PGRP proteins, including the Anopheles mosquito PGRP-LC 

homolog and Drosophila PGRP-LAa and PGRP–LE (Figure 2.7c).  The homology 

between these proteins, outside of their C-terminal PGRP domains is limited to just this 

short stretch.  A PGRP-LE deletion mutant removing 15 residues spanning this 

conserved motif (∆98-113), failed to induce diptericin expression when overexpressed in 

S2* cells (Figure 2.7d).  WT and mutant versions of PGRP-LE were expressed in 

similar amounts in these stable transfectants.  These results define a conserved motif 

found in PGRP-LC and PGRP-LE which is required for signal transduction.

To define more precisely which residues within this PGRP signaling motif are 

critical for signaling, a series of alanine substitution mutants in PGRP-LC and PGRP–LE 

were similarly assayed.  Using stable transfectants and a copper inducible promoter, 

thirteen PGRP-LC substitution mutants, focusing on the conserved residues indicated in 

Figure 2.7c, were overexpressed in S2* cells.  Five residues (L210, T217, F218, G219 

and G226) were found to be absolutely essential for IMD signaling.  In addition, three 

other residues (V216, D220, and V228) appeared to contribute to IMD signaling, as S2* 

cells expressing these mutants produced significantly fewer diptericin transcripts when 

compared to S2* cells expressing WT PGRP-LCx (Figure 2.8a).  Note, V228A was 

variable, ranging from reduced to abolished diptericin induction.  These results clearly 

define a core motif of four amino acids (216VTFG219) as well as some outlying residues 

(L210, D220, G226, and V228) that are critical for PGRP-LC-induced IMD activation.  
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Figure 2.7:  PGRP-LC and PGRP-LE signal via a conserved motif.  
(a)  S2* cells stably expressing metallothionein promoter-driven transgenes encoding T7-tagged 
full length and deleted versions (diagram, bottom) of PGRP-LCx were treated with copper, and  
diptericin expression was assayed by Northern blot.  Expression of each transgene-encoded 
construct was detected by anti-T7 immumoblot.  All deletion mutants carried a C-terminal T7 
tag, and WT PGRP-LCx was tested without a tag as well as with either N-or C-terminal T7 tags, 
as indicated. (b)  S2* cells stably expressing metallothionein promoter-driven transgenes 
encoding a PGRP-LC genes containing smaller deletions spanning the region deleted in Δ5 and 
Δ6 constructs were analyzed as in (a). (c) Conservation of this signaling motif in mosquito 
PGRP-LC1 and in Drosophila PGRP-LE and PGRP-LAa.  Clustal X alignments are shown and 
the regions of the deletions used in (b) are indicated.  (d)  S2* cells stably transfected with 
metallothionein promoter driven transgenes encoding Flag-tagged WT PGRP-LE or PGRP-LE 
lacking the conserved signaling motif were analyzed as in (a).  (a) and (b-c) representative of at 
least three independent assays.



Alanine substitutions of PGRP-LE revealed similar requirements (102VHIG105 in PGRP-

LE), further highlighting the importance of this conserved core motif (Figure 2.8b).

This core motif displays sequence similarity with the recently-defined RIP 

homotypic interaction (RHIM) motif (Figure 2.8c).  This domain was identified in TRIF 

and RIP1 and is required for the interaction between these two proteins and for TRIF 

and TLR3-induced NF-κB activation (Meylan et al., 2004; Sun et al., 2002b).  The RHIM 

core amino acid motif (VQIG) resembles the motif in the center of the signaling region of 

PGRP-LC (VTFG).  Additional similarities between the RHIM domain and the PGRP-LC 

signaling domain are found outside this core motif, including identity at residues L210, 

N212, S213, and T214.  Likewise, the region of PGRP-LE that is homologous to PGRP-

LC and is required for LE-mediated IMD activation contains similar homologies to the 

RHIM motif, including a VHIG motif, with homology extending beyond this core motif.  

Although the homologies between Drosophila PGRPs and the mammalian RHIM 

domain proteins are weak, the fact that they coincide with residues required for 

signaling is highly suggestive of a conserved structural element involved in signal 

transduction in mammalian TLR3 (MyD88-independent) and Drosophila IMD signaling 

pathways.

IMD–PGRP-LC interaction is dispensable for signaling
Among the known intracellular components of the IMD pathway, the IMD protein 

is thought to function most proximal to the receptor(s).  To examine the potential 

interaction between IMD and PGRP-LC more precisely, the collection of in-frame 

PGRP-LC deletion mutants (Figure 2.7a) was co-expressed with IMD in S2* cells by 

transient transfection, and their interaction was examined by co-immunoprecipitation.  In 
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Figure 2.8:  RHIM-like features of the conserved PGRP signaling motif.  
(a,b)  S2* cells stably transfected with metallothionein promoter-driven transgenes expressing 
PGRP-LC (a) or PGRP-LE (b) genes containing the indicated alanine substitutions were 
analyzed as in Figure 2.7a.  (c)  Clustal alignment of the signaling motif conserved in PRGP-
LC and PGRP–LE with the RHIM motifs in human RIP1 and TRIF.  Box shading depicts 
degree of conservation (gray, similar amino acid; black, identical amino acid).  Amino acids 
critical for signaling are highlighted in bold, as determined in (a) and (b).  (a) and (b) 
representative of at least three independent assays.
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Figure 2.9:  The interaction between PGRP-LC and IMD is not essential for signal 
transduction.
(a,b)  S2* cells were transiently transfected with metallothionein promoter expression plasmids 
for T7-tagged PGRP-LCx (a) or T7-tagged PGRP-LE (b) and Flag-tagged IMD, and treated with 
copper, where noted.  Cell lysates were subjected to indicated immunoprecipitations and 
immunoblotting.  (c) E. coli was injected, where noted, into PGRP-LC1 adult flies carrying UAS 
promoter-driven transgenes encoding indicated PGRP-LC mutants.  Strong expression was 
achieved with the C564 Gal4 driver, and low expression without a Gal4 driver.  Eight hours after 
infection, RNA was isolated, and diptericin and RpL32 expression was assessed by Northern 
blot.  All panels representative of at least three independent assays.



agreement with previous reports (Choe et al., 2005), we detected a clear interaction 

between IMD and WT PGRP-LC (Figure 2.9a).  IMD also interacted with PGRP-LE, 

although not as robustly as with PGRP-LC (Figure 2.9b).  However, PGPR-LC 

deletions that interrupt the RHIM-like domain (∆5 and ∆6) interacted with IMD, while a 

deletion removing amino acids 87-148 (∆3), which retained the ability to induce 

diptericin expression (Figure 2.7a), failed to interact with IMD (Figure 2.9a).   Similarly, 

strong expression of the ∆3 PGRP-LC deletion, but not the RHIM-like mutants ∆14 and 

F218A, in adult flies drives robust diptericin expression (Figure 2.9c).  Moreover, when 

expressed in lower amounts, the ∆3 PGRP-LC deletion, but not the ∆14 or F218A 

mutants, supported E.coli infection-induced diptericin expression.  These results 

demonstrate that IMD–PGRP-LC interaction is not essential for activation of IMD 

signaling, while the RHIM-like motif is critical in vivo.

Discussion

In our model (Figure 2.10), intracellular PGRP-LE oligomerizes following TCT 

binding and is sufficient to mediate TCT-induced IMD activation, while extracellular 

PGRP-LEpg serves to enhance PGPR-LC-mediated TCT-induced IMD activation.  The 

RHIM-like domains of PGPR-LC and PGRP-LE play an important role in activation of 

the IMD signaling pathway. 

In cultured Drosophila cells, TCT is recognized by a heterodimeric PGRP-LCa–

PGRP-LCx receptor complex (Kaneko et al., 2004).  TCT binds to the PGRP domain of 

PGRP-LCx and recruits the PGRP-LCa PGRP domain (Chang et al., 2006; Chang et 

al., 2005; Mellroth et al., 2005).  In addition to inducing this dimerization of PGRP-LCa 

and PGRP-LCx, TCT induced oligomerization of PGRP-LEpg.  These TCT-induced 
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Figure 2.10:  Model of PGRP-LC and PGRP-LE-mediated recognition of monomeric and 
polymeric DAP-type peptidoglycan.
Monomeric DAP-type PGN (TCT) is recognized by a heterodimer of PGRP-LCa and PGRP–
LCx on the cell surface, or by PGRP-LE within the cell.  TCT binding to PGRP-LCx causes its 
dimerization with PGRP-LCa, while TCT binding to PGRP-LE causes its oligomerization.  
Subsequent intracellular signaling is transduced through the RHIM-like motif found in all PGRP-
LC isoforms and in PGRP-LE, although the function and/or binding partner (factor ‘X’ in 
diagram) of this motif is not yet identified.  PGRP-LC and PGRP-LE also interact with IMD, 
although this interaction does not appear to be essential for signal transduction.  Polymeric PGN 
requires only PGRP-LCx for signaling, and the polymeric repetitive nature of this ligand may be 
sufficient to cluster this receptor and activate signaling.  The PGRP-domain of PGRP-LE can 
also function outside of the cell in a CD14-like manner, by presenting PGN to cell surface 
PGRP-LC receptors.
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oligomers are very large, fractionating in (or near) the void volume during gel filtration, 

and, like the PGRP-LC dimers, they may play an important role in activating IMD signal 

transduction.

The data presented here clearly demonstrate that PGRP-LE functions by two 

distinct mechanisms.  Unlike PGRP-LC and the mammalian Toll-like receptors, PGRP-

LE is not a transmembrane protein.  PGRP-LE was predicted to reside in the cytoplasm 

(Werner et al., 2000).  Here, we demonstrated that PGRP-LE is found in the cytoplasm 

and can function as an intracellular TCT receptor.  In addition, we showed that a 

fragment of PGRP-LE, corresponding to the PGRP domain alone, was found and 

functioned extracellularly to enhance PGRP-LC dependent recognition of TCT.  This is 

consistent with the non-autonomous manner in which PGRP-LE acted when 

overexpressed in the fat body.  In fact, the predominant form of PGRP-LE found in the 

cell-free fraction of hemolymph in vivo was a fragment consisting of the PGRP domain.  

Full-length PGRP-LE is found in the malphigian tubules as well as in hemocytes.  We 

propose that the extracellular activity of PGRP-LE is transduced to the cytoplasm by 

PGRP-LC.  As an extracellular PGN receptor, PGRP-LEpg appears to function 

analogously to CD14, in that it can bind PGN in the circulation (or culture media) and 

carry it to the appropriate cells (fat body and hemocytes), where the PGN–PGRP-LE 

complex then binds the cell surface receptor PGRP-LC and activates IMD signaling 

(Gioannini et al., 2004; Visintin et al., 2003).  

As an intracellular receptor, PGRP-LE functions independently of PGRP-LC.  It is  

not clear how TCT gains access to intracellular PGRP-LE.  Perhaps certain cell types 

(e.g. malphigian tubules) express transporters capable of importing small fragments of 
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PGN across the plasma membrane.  As intracellular receptor, PGRP-LE may have 

evolved to detect intracellular bacteria, bacteria that pump PGN into the cytoplasm via 

specialized secretions systems, and/or PGN actively imported into certain cell types, in 

a manner similar to that proposed for mammalian NOD proteins (Strober et al., 2006).  

PGRP-LE must have its own intrinsic ability to interact with and activate Imd pathway 

components.  This notion is supported by the essential role of the conserved RHIM-like 

motif of PGRP-LE.  

Surprisingly, the interaction between IMD and PGRP-LC, which is detected in 

transfection experiments, is not physiologically relevant or is superfluous for PGRP-LC-

mediated antimicrobial peptide gene induction.  Interaction with IMD requires a region 

(residues 87-148) within the cytoplasmic domain of PGRP-LC that is not required for 

PGRP-LC-mediated IMD pathway activation.  The RHIM-like domain of PGRP-LCx is 

also not required for PGRP-LCx homodimerization (data not shown).  Instead, we 

predict that in order to transduce a signal, the RHIM-like motifs of PGRP-LC and PGRP-

LE interact with an unidentified component of the IMD pathway, whose characterization 

will be the focus of future work.

Methods

Reagents

Insoluble peptidoglycan from E.coli was purchased from Invivogen.  Isolation of 

TCT from Bordetella pertusis was described previously reported (Cookson et al., 

1989a).  
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Fly stocks and microinjections

All fly strains used were previously published: PGRP-LC1 and PGRP-LC2 9,  

PGRP-LC∆E, imdshadok, key1, and DD1 strains (Rutschmann et al., 2000; Gottar et al., 

2002),  and the PGRP-LE112 and double PGRP-LC and PGRP-LE mutant flies (PGRP-

LC∆E,PGRP-LE112, PGRP-LC7454,PGRP-LE112) (Takehana et al., 2004).  Microinjections 

into 2- to 5-day-old adults were performed as described previously (Kaneko et al., 2004; 

Wu et al., 2001).  Twenty-four hours after infection, flies were harvested and stored at 

-80°C.  

RNA analysis

Total RNA from flies or cultured cells was isolated using the TRIzol reagent 

(Invitrogen), as described previously, and expression of the antimicrobial peptide gene 

diptericin and control RpL32 genes was analyzed by Northern blot, as previously 

described (Kaneko et al., 2004; Silverman et al., 2000).   Quantitative analysis of 

diptericin expression was analyzed by phosphoimager (Fuji) normalizing to the level of 

RpL32 expression.  In all S2* based experiments, cells were pretreated with 1 µM 20-

hydroxyecdysone for 24-40 h prior to a 7-8 h treatment with 500 µM copper sulfate, to 

induce expression of PGRPs and/or IMD.  Real-time RT-PCR using Light Cycler (Roche 

Diagnostics) was performed as described previously (Choe et al., 2002).

DNA cloning

A DNA fragment encoding the PGRP domain of PGRP-LE (residues 173-339) 

was amplified from a Berkeley Drosophila Genome Project cDNA EST clone and 

subcloned into a bacterial expression vector for recombinant protein production.  DNA 
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fragments encoding C-terminal V5-tagged WT PGRP-LE and PGRP-LEPG (residues 

172-345) were subcloned into pMT-V5-His vector (Invitrogen).  These vectors were 

cotransfected with pCoHygro (Invitrogen), and stably transfected cells were selected 

with Hygromycin B (Invitrogen) according to the manufacturer’s protocol. 

C- or N-terminal T7-tagged WT PGRP-LC, N-terminal Flag-tagged imd, or C-

terminal T7- or Flag-tagged PGRP-LE were PCR amplified from cDNA clones and 

subcloned into pRmHa3 (Bunch et al., 1988), for copper inducible expression, by 

standard techniques.  These constructs were transfected into the Drosophila S2* cells 

and stably transfected cells were selected with G418 (Invitrogen) or Hygromycin 

(Calbiochem) as described previously (Wu et al., 2001). 

Mutagenesis of the PGRP-LC and PGRP-LE RHIM-like domains was performed 

using PCR-based QuikChange® II XL Site-directed Mutagenesis Kit (Stratagene) 

according to the manufacturer’s protocol.  Mutagenesis of PGRP-LES232E was 

performed with PCR-based LA PCR in vitro Mutagenesis kit for pBluescript II (TAKARA 

BIO Inc.), and subcloned into pMT-V5-His vector.  All constructs were verified by 

sequencing.

The YFP-PGRP-LE fusion was constructed by standard protocols, by cloning the 

PGRP-LE coding region into a modified version of pPAC-PL that contains mYFP at the 

N-terminus, which allowed expression of the YFP-PGRP-LE fusion from the actin 

promoter.  The modified version pPAC-PL containing mYFP was constructed by 

standard protocols subcloning mYFP (gift of E. Latz) into pPAC-PL.
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To create PGRP-LES232E site-directed mutagenesis was performed with LA PCR 

in vitro Mutagenesis kit for pBluescript II (TAKARA BIO Inc.). The mutagenized fragment 

was subcloned into pMT-V5-His vector, and stably transfected in S2 cells.

Protein production and purification

The detailed procedure for the production of PGRP-LEpg was recently reported 

(Lim et al., 2006).

Gel filtration

Samples were injected into a Superdex 75 10/300 GL column (Amersham 

Phamacia) pre-equilibrated with buffer A. The protein content was monitored by 

absorbance at 280 nm. 

Clonal analyses and immunohistochemistry

Clonal analysis of PGRP-LE over-expression and immunohistochemistry of 

malpighan tubules were performed as previously described (Takehana et al., 2004).

Whole organ culture

Whole organ culture of Diptericin-LacZ-carrying third instar larvae were 

performed as previously described16.  TCT, to a final concentration of 10 µM, was added 

directly to the culture.  LacZ staining was performed as previously described (Takehana 

et al., 2004).

Localization studies

 A cell line stably expressing YFP-PGRP-LE was generated, via G418 selection.  

For confocal microscopy, stable cells were treated for 24 h with 20-hydroxyecdysone, 

then plated on Concanavalin A-treated 35 mm glass-bottom culture dishes, and 
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observed by fluorescent microscopy under the 63X objective of a Leica SP2 AOBS laser 

scanning microscope.  Nuclei were stained with Hoechst 34580 (Invitrogen), and 

images were produced by sequential scanning with a 514 nm laser excitation and a 

522-599 nm emission window for YFP and 405 nm laser excitation and a 523-600 nm 

emission window for Hoechst 34580.

For immunohistochemistry of V5-tagged PGRP-LE, the protein was induced by 

24 h treatment with 100 µM CuSO4 in stably transfected S2 cells. The cells were 

cultured for 1.5h on Concanavalin A-treated glass slides, fixed with 2% PFA, treated 

with PBS containing 1% BSA and 0.1% Triton X-100 for 1h, and stained with mouse 

monoclonal anti-V5 (Invitrogen), FITC-labeled anti-mouse IgG (Jackson 

Immunologicals), DAPI (Sigma), and rhodamine-labeled phalloidine (Molecular Probes). 

V5-tagged PGRP-LEpg was induced in stably transfected S2 cells with 24 h 

treatment with 100 µM CuSO4, after which cells were subjected to treatment of 1µM 

TCT for 4 h. Cells were then fixed with 2% PFA, incubated with PBS containing 1% 

BSA for 1h, and stained with anti-V5 (Invitrogen), FITC-labeled anti-mouse IgG, and 

DAPI.

RNAi, TCT transfection and real-time RT-PCR

dsRNAs used in RNAi experiments were synthesized and purified as described 

previously (Silverman et al., 2000).  Templates for dsRNA for PGRP-LE were amplified 

using primers 5’-

TAATACGACTCACTCACTATAGGGAGACCACAAAGTTGAGCCAGG-3’ and 5’-

TAATACGACTCACTCACTATAGGGAGACCACGA-3’.  dsRNAs were transfected into 
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S2* cells cultured in Schneider’s Drosophila medium containing 10% fetal bovine 

serum, as previously described (Silverman et al., 2000).  After 42 h, cultures were 

diluted to 1×106 cells/ml and treated with 1 µM 20-hydroxyecdysone and 100 µM CuSO4 

for 40 h prior to treatment with 100 nM TCT.  Twelve hours later, total RNA was isolated, 

as described above, and expression of antibacterial peptides was quantified by RT-PCR 

using a Light Cycler (Roche Diagnostics) as described previously(Takehana et al., 

2002).

For TCT transfections, pMT-V5-PGRP-LE stable S2 cells were first stimulated 

with copper sulfate (100 µM) for 1h or left untreated.  TCT was prepared by dilution into 

BBS pH 6.94, followed by the addition of CaCl2, and thoroughly vortexed, per standard 

transfection protocols.  After 15 min incubation at room temperature the suspension was 

added dropwise to the copper-treated or untreated S2-PGRP-LE cells. Total RNA was 

extracted from the cells after 12 h incubation at 25°C and assayed by real-time RT-

PCR.

Immunoblot and coimmunoprecipitation 

Cell lysates from S2* cells stably transfected with epitope-tagged PGRPs were 

prepared and protein expression was monitored by immunoblot using monoclonal anti-

Flag (M2 or M5, Sigma) or anti-T7 (Novagen) and anti-IgG-HRP secondary antibody 

(Amersham).  Images were visualized with West Pico SuperSignal (Pierce). 

For the analysis of the interaction between PGRPs and IMD, S2* cells were 

transiently co-transfected with both pRmHa3-PGRPs-T7 and pRmHa3-Flag-IMD for 3d 

and stimulated with 500 µM of copper for 5-7h. After preparing cell lysates in a non-ionic 
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detergent lysis buffer, coimmunoprecipitations were performed as described previously 

with Flag-M2-agarose (Sigma) or anti-T7 agarose (Novagen) (Silverman et al., 2000). 

Transformation and analysis of UAS-PGRP-LC mutants 

Mutated PGRP-LC genes were amplified by PCR and subcloned into the EcoRI 

and BglII sites of pUAST (Brand and Perrimon, 1993).  After sequence verification, P-

element mediated transformation was carried by standard techniques, at the Model 

Systems Genomic Center (Duke University).   For strong expression in the fat body, the 

C564 Gal4 driver was used (Harrison et al., 1995). For low expression no Gal4 driver 

was used.  Flies were infected, by pricking with an E. coli laden needle, RNA was 

extracted 8 h later and assayed by Northern blot for diptericin and RpL32 expression 

(Choe et al., 2002).
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CHAPTER III

Searching for new interactors of the RHIM-like motif through a yeast two-hybrid 
screen
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Abstract

Two receptors, PGRP-LC and PGRP-LE both activate the IMD signaling pathway 

in response to DAP-type PGN.  These two receptors utilize a common motif in their N-

terminal domains, known as the RHIM-like domain, to trigger signal transduction.  

Genetic studies indicate that the IMD protein functions immediately downstream of the 

PGRP-LC receptor, yet the RHIM-like motif is not essential for IMD association with 

PGRP-LC.  Thus, the mechanism by which the RHIM-like domain functions in signaling 

is unclear, and I hypothesize that the RHIM-like domain interacts with an unidentified 

protein to mediate downstream signaling.  To test our hypothesis, I performed a yeast 

two-hybrid screen with the N-terminal, cytosolic domain of PGRP-LC as bait.  24 strong 

positive interactors were then counter screened with baits lacking a functional RHIM-

motif, thereby identifying 5 potential RHIM-interactors for further study.
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Introduction

Insects rely primarily on innate immune responses to fight pathogens and one of 

the key features of this response is the production of antimicrobial peptides (AMP) 

following an infection.  In Drosophila, two signaling pathways regulate the production of 

these antimicrobial peptides - the IMD and Toll pathways (Aggrawal and Silverman, 

2007).  Two receptors, PGRP-LC and PGRP-LE, are able to recognize DAP-type PGN 

at the cell surface or in the cytosol, respectively, and trigger the IMD pathway (Kaneko 

et al., 2006; Werner et al., 2000; Gottar et al., 2002; Ramet et al., 2001; Choe et al., 

2002; Takehana et al., 2002).

Upon binding DAP-type PGN, both PGRP-LC and PGRP-LE get activated and 

signal via a common motif in their N-terminal domains, known as the RHIM-like domain 

(Kaneko et al., 2006; Choe et al., 2005; Lim et al., 2006).  The RHIM-like domain is 

critical for signaling by either receptor, but the mechanism(s) involved remain unclear 

(Kaneko et al., 2006).  Genetic experiments suggest that the imd protein functions 

immediately downstream of PGRP-LC and upstream of all other known components of 

the pathway (Georgel et al., 2001).  IMD associates with both PGRP-LC and -LE but the 

interaction of  PGRP-LC with IMD is not mediated through its RHIM-like domain 

(Kaneko et al., 2006).  Therefore I hypothesize that an unidentified protein interacts with 

the RHIM- like domain of PGRP-LC and is important for signaling.  

In this study I performed a yeast two-hybrid screen to identify proteins that might 

interact PGRP-LC through its RHIM- like domain.  With this approach, I have identified 

five new proteins as potential RHIM-dependent PGRP-LC interactors.
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Results and Discussion

In order to find potential partners and regulators of the IMD pathway receptors, a 

yeast two-hybrid screen was performed with the cytoplasmic domain of PGRP-LC as 

bait and a Drosophila third instar cDNA library as prey (James et al., 1996; Silverman et 

al., 2000).  The Drosophila genome has approximately 15000 genes .  The cDNA library 

is composed of approximately 1 x 107 cDNA clones and we screened about 3x107 

clones.  From this, 242 PGRP-LC interacting clones were identified with a Ade2 reporter 

gene selection scheme.

A second round of assays was performed on all 242 interacting clones, taking 

advantage of a LacZ reporter gene to provide a more quantitative metric of interaction.  

In this case, β-galactosidase activity (produced from LacZ) is proportional to the 

strength of the protein-protein interaction monitored in the two-hybrid assay.  

Colorimetric X-gal  (5-bromo-4-chloro-3-indolyl-β-D-galactoside) substrate was used to 

monitor β-galactosidase activity, and the degree of blue X-gal staining was recorded, as 

indicated in the chart in Figure 3.1b.  The 24 strongly interacting clones were analyzed 

further.

A third round of screening was performed, on these 24 strongest hits to confirm 

the interaction was dependent on the PGRP-LC bait and to determine if the interaction 

involved the RHIM Type to enter text-like domain.  For this,  the clones were selected on 

FOA plates.  The presence of URA3 containin Type to enter text g plasmids allows for 

negative selection. URA3 encodes orotidine-5’phosphate decarboxylase, an enzyme 

which is required for the biosynthesis of uracil. Ura3- (or ura5-) cells can be selected on 

media containing FOA. The URA3+ cells are killed because FOA is converted to the 
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Figure 3.1: X gal screening
(a) Schematic representation of the yeast two hybrid screen and also the markers and reporters 
that are utilized in the screen.
(b) Quantitative analysis of X-gal screening.  Clones that interacted with cytoplasmic domain of 
PGRP-LC were plated on X-gal plates and categorized as strong, medium or weak interactions 
depending on how blue the colonies turned.
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toxic compound 5-fluoro deoxyuracil by the action of decarboxylase, whereas ura3- cells 

are resistant.  Thus, yeast that spontaneously lose the URA3 containing plasmid grow 

on FOA plates allowing for the selection of yeast cells that have lost the bait plasmid.  

The 24 clones were then re-transformed with wild-type PGRP-LC to confirm the 

interaction from the primary screen.  In addition, the clones were separately transformed 

with three different RHIM mutant baits to identify clones that interact only with wild type 

PGRP-LC but not the RHIM mutant.  And finally, irrelevant baits (IKKβ) or empty vector 

where used as additional negative controls.  Ten clones interacted strongly with both 

wild type and RHIM mutant PGRP-LC and were not studied further.  One clone 

interacted weakly even with wild type PGRP-LC and also was not pursued.  For 2 

clones, number 20 and 21, the retransformation failed and no useful data is available.  

The nine remaining clones interacted strongly with wild type PGRP-LC but not with the 

RHIM-like mutant baits, the irrelevant bait, or empty vector  (Table 3.2).  I was able to 

PCR amplify only six of these nine genes, and successfully obtained sequence from 

only five amplicons.  I then analyzed if they function in IMD signaling, through RNAi 

knockdown in immune responsive S2* cells.  Two of the five genes had marked 

phenotypes in these RNAi-based assay, and their role in IMD pathway will be discussed 

in detail in chapters IV and V.  Thus, by performing a yeast two hybrid screen we have 

identified two new regulators of the IMD pathway.  The other three hits from the 2-hybrid 

screen [Clone 4 (RfaBg) Clone 17 (Scylla) and Clone 24 (CG12935)] do not appear to 

affect IMD signaling, at least in these RNAi-based assays and have not been further 

explored (Figure 3.3).
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Table 3.2:  Interaction analysis to identify clones that interact with the RHIM-like motif of 
PGRP-LC 
24 clones that interacted strongly with the cytoplasmic domain of PGRP-LC were tested for 
interaction with several deletion and point mutants that alter the RHIM-like domain of PGRP-
LCx.  ++++, robust growth; ++, slow growth, - no growth.

Baits LCx WT LCx !172- 212 LCx !213- 242 LCx F218A DmIKK Empty vector

Clone 1 ++++ ++++ ++++ ++++ X X

Clone 2 ++++ ++++ ++++ ++++ X

Clone 3 (CG15678) ++++ ++ ++ ++ X X

Clone 4 (RfaBg) ++++ ++ X X X X

Clone 5 ++++ ++++ ++++ ++++ X X

Clone 6* ++++ ++ X X X X

Clone 7$ ++++ X X X X X

Clone 8 ++++ +++ ++ +++ X X

Clone 9 ++++ ++++ ++++ ++++ X X

Clone 10 ++++ ++++ ++++ ++++ X X

Clone 11 ++++ ++++ ++++ ++++ X X

Clone 12 (RYBP) ++++ ++ X X X X

Clone 13 ++++ ++++ ++++ ++++ X X

Clone 14$ ++++ ++ X + X X

Clone 15 ++++ ++++ ++++ ++++ X X

Clone 16 ++++ ++++ ++++ ++++ X X

Clone 17 (Scylla) ++++ ++ X X X X

Clone 18 $ ++++ ++ X ++ X X

Clone 19 ++ ++ + + X X

Clone 20 ++++ no data no data no data X X

Clone 21 ++++ no data no data no data X X

Clone 22 ++++ ++++ ++++ ++++ X X

Clone 23 ++++ ++++ X +++ X X

Clone 24 (CG12935) ++++ ++ X + X X

     : Clones for which no sequencing data was obtained
: Clones for which PCR amplification did not work

  : Clones that do not play a role in the IMD pathway
       : Clones that play a role in the IMD pathway
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Figure 3.3:  RfaBg, Scylla and CG12935 are not regulators of IMD signaling in cells.
Northern blot of Diptericn and rp49 expression in S2* cells treated with lacZ dsRNA or RfaBg, 
Scylla or CG12935 dsRNA, and then stimulated with PGN for 6 hours.
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Materials and Methods 

Yeast strains, transformations and media

The bait plasmid was transformed into PJ69- 4A.  All yeast transformations were done 

using the high efficiency LiAC method of Gietz and Woods and all media was prepared 

as per manufacturer’s instructions (Gietz and Woods, 2002). For X-gal plates (200ml), 

YPAD Agar in 175 ml water was autoclaved and supplemented with 25 ml 0.7M 

Potassium Phosphate Buffer pH 7.0 (KPO4) and X- gal (20mg/ ml in DMF) which was 

either added (50µl) on top of the plate and spread or was added (2ml) directly to the 

YPAD Agar before pouring the plates.  And for FOA plates (200ml), -Ura-Leu Agar in 

180 ml was was autoclaved and supplemented with 10 ml FOA (0.1%) and 10 ml uracil 

(10mM).

Yeast Two Hybrid Screen

The third instar larval library was cloned in the ACT vector and the first 290 amino acids 

of PGRP-LC were cloned into pGBDU (Durfee et al., 1993) (James et al., 1996).  Two 

hybrid selection was performed as described (James et al., 1996) with modification. In 

brief, PGRP-LC was cloned into pGBDU.  Two hybrid selection was performed as 

described (James et al., 1996) with modification. In brief,

Day 0

1. Inoculated 10ml of bait strain (pGBDU cyto PGRP-LCx) in -Ura medium over night at 

30oC at 250 rpm.Day 1

1. Thawed an aliquot of the library in 50 ml -Leu medium and grew it for 4-6 hours at 

30oC at 250 rpm.
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2. Mixed 50 OD600 units of bait strain and 75 units of library in 100 YPAD (spin cells and 

then re-suspend in 50 ml YPAD and mix).

3. Grew the culture overnight at 30oC at 150 rpm.

Day 2

1. Tittered mating on -Ura-Leu plates.

2. Pelleted 50 ml of mating and resuspended in 500 ml of -Ura-Leu media and grew it 

for 5-6 hours at 30oC at 250 rpm.

3. Pellet the -Ura-Leu culture and resuspended in 50 ml of freezing media (8% glycerol 

YPAD) made 1 ml aliquots and froze it at -80oC.

Day 3

1. Thaw an aliquot of the frozen culture and plated various dilution on -Ura-Leu to titre 

mating.

Day 4

1. Thawed aliquots of the frozen culture and plated 3 X 107 colonies (3X complexity of 

the library) on -Ade plates at incubated them at 30oC.

Day 5

1. Observed plates for up to 10 days and picked colonies that grew on -Ade plates and 

re streaked on -Ade plates
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PREFACE TO CHAPTER IV

This chapter was previously published in Plos Pathogen (2008):

Kamna Aggarwal, Florentina Rus, Christie Vriesema-Magnuson , Deniz Ertürk-
Hasdemir, Nicholas Paquette & Neal Silverman.  Rudra interrupts receptor signaling 
complexes to negatively regulate the IMD pathway.  Plos Pathogen 2008 Aug 8, 4(8): 
e1000120.

Florentina Rus helped perform fly real-time PCR experiments

Christie Vriesema-Magnuson , Deniz Ertürk-Hasdemir and Nicholas Paquette 
provided reagents and tools for the experiments.
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CHAPTER IV

Rudra interrupts receptor signaling complexes to negatively regulate the IMD 

pathway.
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Abstract 

Insects rely primarily on innate immune responses to fight pathogens. In 

Drosophila, antimicrobial peptides are key contributors to host defense.  Antimicrobial 

peptide gene expression is regulated by the IMD and Toll pathways. Bacterial 

peptidoglycans trigger these pathways, through recognition by peptidoglycan 

recognition proteins (PGRPs).  DAP-type peptidoglycan triggers the IMD pathway via 

PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll 

pathway through PGRP-SA and PGRP-SD.  Recent work has shown that the intensity 

and duration of the immune responses initiating with these receptors is tightly regulated 

at multiple levels, by a series of negative regulators. Through two-hybrid screening with 

PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate 

that it is a critical feedback inhibitor of peptidoglycan receptor signaling.  Following 

stimulation of the IMD pathway, rudra expression was rapidly induced.  In cells, RNAi 

targeting of rudra caused a marked up-regulation of antimicrobial peptide gene 

expression.  rudra mutant flies also hyper-activated antimicrobial peptide genes and 

were more resistant to infection with the insect pathogen Erwinia carotovora carotovora.  

Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-LE, 

disrupting their signaling complex. These results show that Rudra is a critical 

component in a negative feedback loop, whereby immune-induced gene expression 

rapidly produces a potent inhibitor that binds and inhibits pattern recognition receptors.  
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Introduction 

Insects rely primarily on innate immune responses to fight pathogens.  The 

Drosophila immune response has proven to be an experimentally powerful and 

conserved model system for the study of innate immunity (Brennan and Anderson, 

2004; Cherry and Silverman, 2006; Hultmark, 2003; Lemaitre and Hoffmann, 2007). In 

particular, the insect immune response relies on evolutionary conserved NF-κB 

signaling cascades for the control of inducible antimicrobial peptide (AMP) gene 

transcription. This antimicrobial peptide response is critical for protection against many 

microbial pathogens (Lemaitre et al., 1997; Meister et al., 1997). 

In Drosophila, two signaling pathways regulate the production of these 

antimicrobial peptides - the IMD and Toll pathways (Aggrawal and Silverman, 2007). 

The Toll pathway responds to many Gram-positive bacterial and fungal infections 

(Lemaitre et al., 1996), while the IMD pathway is potently activated by DAP-type 

peptidoglycan (PGN) from Gram-negative bacteria and certain Gram-positive bacteria 

(Leulier et al., 2003; Kaneko et al., 2004).  Two receptors, PGRP-LC and PGRP-LE, are 

able to recognize DAP-type PGN at the cell surface or in the cytosol, respectively, and 

trigger the IMD pathway (Kaneko et al., 2006; Werner et al., 2000; Gottar et al., 2002; 

Ramet et al., 2001; Choe et al., 2002; Takehana et al., 2002).  

Upon binding DAP-type PGN, both PGRP-LC and PGRP-LE multimerize and 

signal via a common motif in their N-terminal domains, known as the RHIM-like domain 

(Kaneko et al., 2006; Choe et al., 2005; Lim et al., 2006).  The RHIM-like domain is 

critical for signaling by either receptor, but the mechanism(s) involved remain unclear 

(Kaneko et al., 2006).  Genetic experiments suggest that the imd protein functions 
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immediately downstream of PGRP-LC and upstream of all other known components of 

the pathway (Georgel et al., 2001). IMD associates with both PGRP-LC and -LE, 

although the PGRP-LC RHIM-like motif is not required for this interaction (Kaneko et al., 

2006).  Nonetheless, the complexes formed on these receptors are likely to be critical to 

trigger further signal transduction.

Recent work has shown that the intensity and duration of the immune response 

is tightly regulated in Drosophila.  As in mammals, over-exuberant immune responses 

can be detrimental, and the proper down modulation of immunity is critical for health 

and fecundity (Flatt et al., 2005; Lang and Mansell, 2007; Zerofsky et al., 2005).  In 

order to keep the immune response properly modulated, the Toll and IMD pathways are 

controlled at multiple levels by a series of negative regulators.  For example, the 

amidases PGRP-LB and PGRP-SC reduce the immunostimulatory activity of PGN by 

digesting it (Bischoff et al., 2006; Zaidman-Remy et al., 2006).  Intracellularly, the IMD 

signaling pathway is further down–regulated by Dnr1, POSH, Caspar and the E3-ligase 

complex containing SkpA, dCullin and Slimb (Foley and O'Farrell, 2004; Khush et al., 

2002a; Kim et al., 2006; Tsuda et al., 2006).  Additionally, the JNK and Relish branches 

of the IMD pathway are thought to mutually inhibit each other (Park et al., 2004; Kim et 

al., 2007; Kim et al., 2005).

In this study, we identify and characterize a negative feedback regulator of the 

IMD pathway, dubbed rudra.  Expression of rudra was rapidly induced following immune 

challenge.  Moreover, in flies and cells, rudra is critical for controlling immune-induced 

gene expression.  Following infection, rudra mutant flies hyper-activated antimicrobial 

peptide gene expression resulting in increased resistance to microbial infection.  Using 
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various biochemical and genetic techniques, Rudra was found to interact with the 

receptors PGRP-LC and PGRP-LE and disrupt the signaling complex assembled on 

these receptors.  Due to its ability to destroy this receptor signaling complex and inhibit 

immune responses, rudra was named for Shiva, the Indian god of destruction, who in 

his Rudra phase of mind causes inhibition and destruction of all life on earth. 

Results

Isolation of Rudra 

In order to identify potential partners and regulators of the IMD pathway 

receptors, a yeast two-hybrid screen was performed with the cytoplasmic domain of 

PGRP-LC as bait (James et al., 1996; Silverman et al., 2000).  25 strongly interacting 

clones were further analyzed with a set of baits that carried mutations in the RHIM-like 

domain of PGRP-LC (or irrelevant control baits).  One clone interacted strongly with the 

wild-type cytoplasmic domain of PGRP-LC but weakly with the RHIM-like mutant baits 

(Table 4.1).  This clone encoded amino acids 30-197 of CG15678, and will be referred 

to as rudra from hereafter. 

To confirm the yeast two-hybrid results, co-immunoprecipitation experiments 

were performed.  Using epitope tagged constructs and transient transfection in 

Drosophila S2* cells, both PGRP-LE and PGRP-LC were found to associate with Rudra 

(Figure 4.2a, e).  In a heterologous system (HEK cells), similar robust associations 

were observed between Rudra and PGRP-LE or –LC (Figure 4.2b,c).  The interaction 

between Rudra and PGRP-LE was also readily detectable, by co-immunoprecipitation, 

when these proteins were produced in a rabbit reticulocyte in vitro translation system
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Table 4.1: Rudra interacts with cytoplasmic domain of PGRP-LC by yeast two-hybrid
The cytoplasmic domain of PGRP-LC was used as bait and Rudra was used as the prey in 
yeast two-hybrid assays. Rudra interacted well with the full cytoplasmic domain of PGRP-LC 
and the yeast cells grew robustly on Ade selection plates. However, Rudra interacted weakly 
with several deletion and point mutants that alter the RHIM-like domain of PGRP-LCx. ++++, 
robust growth; ++, slow growth, - no growth.
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Figure 4.2: Rudra interacts with the receptors PGRP-LE and PGRP-LC
(a,b) Immunoprecipitation (IP) and immunoblot (IB) analysis of lysates from S2* or HEK cells 
transiently transfected with expression plasmids for FLAG-tagged PGRP-LE and/or T7-tagged 
rudra. In the Drosophila S2* cells, the copper inducible metallothionein promoter was used for 
expression and cells were treated with CuSO4 or left untreated, as indicated. (c) Similar co-
immunoprecipitation experiments from lysates of HEK cells transiently co-transfected with T7-
tagged PGRP-LCx and FLAG-tagged rudra expression plasmids. (d) Schematic representation 
of the PGRP-LCx deletions mutants used in (E).  (e) IP-IB analysis of lysates from S2* cells 
transiently transfected with metallothionein promoter expression plasmids encoding wild-type 
and deletion mutants of V5-tagged PGRP-LCx and FLAG-tagged rudra, with or without 
CuSO4treatment, as indicated.  Data are representative of at least three independent assays.
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Figure 4.3:  PGRP-LE and Rudra interact in vitro
Co-immunoprecipitation of in vitro co-translated PGRP-LE and Rudra.  Co-immunoprecipitation 
was performed using anti–FLAG antibodies with 35S-methionine labeled in vitro translated T7-
Rudra and FLAG-PGRP-LE.
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Figure 4.4: Rudra interacts with all the deletion mutants spanning the cytoplasmic 
domain of PGRP-LCx.
IP-IB analysis of lysates from S2* cells transiently transfected with metallothionein promoter 
expression plasmids encoding T7-tagged PGRP-LCx (wild-type and deletion mutants) and 
FLAG-tagged rudra with or without CuSO4 treatment, as indicated.  Lower diagram indicates 
the regions deleted in each mutant form of PGRP-LC.



(Figure 4.3).  These data demonstrate that Rudra interacts directly with the receptors 

PGRP-LC and PGRP-LE.

In order to determine which domain(s) of the receptors interact with Rudra, co-

immunoprecipitation assays were performed with various mutant versions of PGRP-LC 

or PGRP-LE.  Consistent with the yeast two-hybrid data, which indicated involvement of 

the RHIM-like domain for interaction, a mutant form of PGRP-LE lacking the RHIM motif 

(Δ98-113) showed little interaction with Rudra (Figure 4.2a,b). Using a set of large 

deletions (Figure 4.2d), the N-terminal cytoplasmic domain of PGRP-LC was found to 

be essential for association with Rudra.  Removal of the first 144 amino acids 

decreased Rudra interaction, while removal of nearly the entire cytoplasmic (Δ1-253) 

domain abolished interaction.  The PGRP-LC extracellular domain was not involved in 

the interaction (Figure 4.2e).  We then attempted to map the PGRP-LC interaction more 

finely with a set of mutants that span the entire cytoplasmic domain with sequential 50 

amino acid deletions.  However, Rudra co-immunoprecipitated with all of these deletion 

mutants, suggesting some redundancy in the interaction mechanism (Figure 4.4).  The 

yeast two-hybrid data suggest that some of the interacting activity involves the PGRP-

LC RHIM domain, while the larger deletions suggest another interaction motif likely lies 

in the first 144 amino acids (Figure 4.2d,e).  Overall, we conclude that Rudra directly 

interacts with the signaling domains of PGRP-LC and PGRP-LE.  The interaction with 

PGRP-LE is largely mediated by the RHIM motif while the interaction with PGRP-LC 

appears to involve multiple, partly redundant, mechanisms. 
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Figure 4.5:  rudra, a negative feedback regulator of IMD signaling in cells 
(a) Real-time RT-PCR analysis of rudra transcript from S2* cells which were stimulated with 
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Figure 4.6: Over-expression of rudra blocks IMD signaling in both cells and flies.
(a) Northern blot of Dpt and rp49 expression in S2* cells stably transfected with a 
metallothionein promoter–driven transgene expressing rudra.  Cells were treated with CuSO4 
for 1.5 hours and then stimulated with PGN for 5 hours, as indicated. (b) Northern blot of 
Diptericin and rp49 expression in adult flies carrying UAS promoter–driven transgenes 
expressing rudra (two independent transgenic lines).  Flies were heat shocked for 1.5 hours and 
then RNA was isolated 8 hours after septic infection with E.coli.  Data are representative of at 
least three independent assays.
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Induction of rudra expression

 Previous microarray studies have suggested that rudra is a target of the IMD 

signaling pathway (Park et al., 2004; Boutros et al., 2002; De Gregorio et al., 2002)

[29,34,35].  In order to confirm and extend these findings, the expression of rudra was 

analyzed at various times after immune stimulation of S2* cells, by qRT-PCR.  rudra 

transcript was rapidly induced, peaking in 30-60 minutes and returning to near baseline 

levels within 24 hours (Figure 4.5a).  The kinetics of rudra expression were markedly 

faster and more transient than the expression of AMP genes.  For example, Diptericin 

mRNA levels, as measured by Northern blotting, did not peak until 6 hours after PGN 

stimulation, and then remained elevated for at least 24 hours (Figure 4.5a).  Even 

though the expression profiles of rudra and AMP genes are distinct, they both require 

the NF-κB factor Relish (De Gregorio et al., 2002; Kleino et al., 2005).

Rudra is a negative regulator of IMD signaling

Next, RNAi was used to characterize the function of rudra in the IMD pathway.  

S2* cells were transfected with dsRNA for rudra, and then stimulated with PGN for 

various times.  As monitored by Northern blotting, antimicrobial peptide genes Diptericin 

(Dpt), Attacin (Att)  and Cecropin (Cec) were induced to markedly higher levels in cells 

treated with rudra RNAi, compared to cells transfected with a control lacZ dsRNA 

(Figure 4.5b). These data suggest that rudra is a negative regulator of IMD signaling. 

To further test if rudra is a negative regulator of the IMD pathway, stable cell lines 

expressing rudra from a copper-inducible promoter were selected. These cell lines were 

treated with copper for 1.5 hours, to induce rudra expression, and then stimulated with 

PGN for 5 hours, to stimulate the IMD pathway.  rudra over-expression potently inhibited 
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Survival data is presented in Kaplan-Meier plots and significance was analyzed by log-
rank test.  (a) and (b) are representative of at least 3 independent experiments, while 
(c) is representative of 2 independent trials, with 60 or 100 animals.



the induction of Dpt (Figure 4.6a).  Also, to test if rudra negatively regulates the Toll 

pathway, stable cell lines expressing rudra from the actin promoter were selected. 

These cell lines were treated with SPZ-C106 for 18 hours to stimulate the Toll pathway.  

rudra over-expression did not robustly inhibit the induction of Drosomycin, as compared 

to its ability to inhibit PGN-induced Diptericin expression (Figure 4.7).  These data 

demonstrate that rudra is potent inhibitor of the IMD pathway but has little effect on Toll 

signaling. 

Using the UAS system and a heat shock Gal4 ‘driver’, transgenic flies that 

ectopically express rudra were also characterized.  rudra expression was induced with a 

1.5 hour heat shock and then flies were challenged with E.coli.  In two independent 

UAS-rudra lines, IMD signaling was strongly inhibited by rudra expression, as monitored 

by Northern blotting for Dpt induction (Figure 4.6a).  These results are consistent with 

the data from cultured cells, and argue that rudra is a potent negative regulator of the 

IMD pathway in vivo.

In order to phenotypically characterize the loss of rudra, a strain carrying a P-

element at position 123 in the 5’ UTR of rudra (EY00723) was analyzed [37,38,39].  

First, the level of rudra transcript in this strain was compared to a back-crossed white 

strain, by qRT-PCR (Figure 4.8a).  [To generate back-crossed mutant and wild-type 

strains, EY00723 was crossed with the white strain for six generations prior to these 

analyses]. Similar to the cell culture data, rudra transcription was rapidly induced 

following infection in wild-type flies.  Again, the induction of rudra expression occurs 

more rapidly, and is resolved more quickly, than does AMP gene expression (compare 

Figure 4.8a to 4.8b).  The transposon insertion in the 5’ UTR markedly inhibited rudra 
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expression, with nearly undetectable levels at all time points, demonstrating that this 

allele of rudra is a strong hypomorph.  Also, a transgenic rescue strain was constructed, 

using a 4.5 Kbp genomic fragment (rudrarescue).  This genomic rescue construct partially 

restored immune-inducible expression of rudra, but it did not completely return to wild-

type levels (Figure 4.8a).

Next, the immune response of wild-type, rudraEY00723 , and the rudrarescue strains 

were compared.  Diptericin expression, as monitored by Northern blotting at various 

times following septic E. coli infection, was elevated at all time points in rudraEY00723 

compared to the isogenic wild-type strain (Figure 4.8b).  The rudrarescue transgenic line 

restored Diptericin to levels between that observed in the wild-type and rudra mutant 

flies, consistent with partially restored levels of rudra expression observed in this line.  

rudra heterozygotes also displayed elevated AMP gene expression (data not shown). 

These results, together with the data from ectopic expression, demonstrate that rudra is 

a potent negative regulator of the IMD pathway in flies, as well as in cultured cell lines. 

We then asked what consequence these elevated AMP levels might have during 

an infection.  To this end, wild-type and rudraEY00723 flies were infected with the Gram-

negative pathogen Erwinia carotovora carotovora (Ecc).  As reported previously, Ecc is 

a mildly pathogenic infection in wild-type animals, such that most flies succumb over the 

course ~10 days  (Figure 4.8c) (Kim et al., 2006; Basset et al., 2000).  As expected, 

PGRP-LE; PGRP-LC double mutant flies, which lack both receptors involved in 

detecting DAP-type PGN, were rapidly killed by this infection (P=0.0252, compared to 

wild-type animals).  On the other hand, rudra mutants showed significantly improved 

survival compared to wild-type flies (P= 0.0052).  These results show that loss of rudra, 
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Figure 4.9: Rudra functions upstream of IMD, Dredd and Relish.
(a) Analysis of lysates from S2* cells stably transfected with a metallothionein promoter plasmid 
expressing T7-tagged rudra, with or without treatment with CuSO4 and PGN, as indicated.  IMD 
cleavage was analyzed by IP-IB (upper panel), while Relish phosphorylation and cleavage were 
analyzed by immunoblotting (in the middle two panels).  The asterisk marks heavy chain 
detected by the secondary antibody.  The lowest panel confirms Rudra expression with anti-T7 
IB.  (b) Northern blot of Diptericin and rp49 expression levels in S2* cells stably transfected with 
metallothionein promoter–driven transgenes expressing PGRP-LCx, PGRP-LE, or imd, with or 
without concurrent expression of rudra.  Cells were treated with CuSO4 (+) or left untreated (-), 
and RNA was extracted after 6 hours.  (c) Immunoblot analysis of Relish cleavage from S2* 
cells stably transfected with metallothionein promoter expression plasmid for Dredd, with or 
without concurrent expression of FLAG-tagged rudra.  CuSO4 was added, for 5 hours, to 
induce transgene expression, as indicated. Data are representative of at least three 
independent assays.



and the ensuing increase in AMP levels, enhances resistance to this Gram-negative 

pathogen.

Rudra inhibits signaling at the receptor

We next sought to determine the molecular mechanism(s) used by Rudra to 

control signal transduction.  Relish, the NF-κB precursor protein essential for IMD 

triggered gene expression, is regulated by immune-induced cleavage and 

phosphorylation (Stöven et al., 2000; Stöven et al., 2003; Erturk-Hasdemir et al., 2009).  

Rudra expression prevented both the cleavage and phosphorylation of Relish (Figure 

4.9a).  Recently, we also discovered that imd protein is rapidly cleaved following 

immune stimulation (unpublished data, N.P. and N.S) and expression of rudra potently 

inhibits this cleavage (Figure 4.9a).  These results suggest that Rudra functions 

upstream of Relish activation and IMD cleavage.  

AMP gene expression can be triggered by ectopically expressing certain 

components of the IMD pathway.  In particular, over-expression of either of the 

receptors, PGRP-LC or PGRP-LE, or imd is sufficient to drive AMP gene expression.  

Likewise, over-expression of the caspase Dredd is sufficient to drive Relish cleavage.  

To further analyze the position that Rudra acts in the IMD pathway, it was over-

expressed with these signaling components in doubly selected stable cell lines.  Rudra 

potently inhibited signaling induced by over-expression of the receptors PGRP-LC or 

PGRP-LE, but had no effect on the induction of Diptericin expression caused by IMD 

over-expression (Figure 4.9b).  Likewise, Rudra did not inhibit Relish cleavage caused 

by over-expressing the caspase Dredd (Figure 4.9c). These results suggest that Rudra 

functions upstream of Dredd and IMD, but downstream of the receptors, and is 
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Figure 4.10: Rudra disrupts the interaction between PGRP-LCx and IMD.
(a) IP-IB analysis of lysates of HEK cells transiently transfected with expression plasmids for 
FLAG-tagged imd or FLAG-tagged dFADD and T7-tagged rudra.  Rudra interacted with IMD but 
not dFADD.  (b, c) Similar co-immunoprecipitation experiments from lysates of HEK cells (b) or 
S2* cells (c) simultaneously co-transfected with T7 tagged PGRP-LCx, FLAG tagged IMD and/
or FLAG-tagged rudra.  Rudra interfered with the association between PGRP-LC and IMD. Data 
are representative of at least three independent assays. Data are representative of 3 
independent experiments.
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consistent with binding data demonstrating an association between Rudra and either 

PGRP-LC or PGRP-LE. 

In addition to interacting with the receptors, Rudra avidly bound to IMD.  The IMD 

association was detected by transient transfection/co-immunoprecipitation assays, in 

either S2* cells (data now shown) or HEK cells (Figure 4.10a).  On the other hand, 

Rudra did not associate with dFADD, another factor known to interact with IMD.  In all, 

these data argue that Rudra directly interacts with both IMD and the receptors PGRP-

LC and PGRP-LE.  These results suggest two possible models for the inhibition of IMD 

signaling by Rudra:  (1) Rudra may associate with both the receptor and its signaling 

adaptor (IMD), holding them together in an inactive confirmation; or (2) Rudra may 

interact with both PGRP-LC and IMD separately, disrupting the association between the 

receptor and its adaptor.  To probe these possibilities, co-immunoprecipitation 

experiments were performed with lysates from cells co-transfected with PGRP-LC (T7 

tag), imd (FLAG tagged) and/or rudra (also FLAG tagged).  In assays with just the 

receptor and either IMD or Rudra, PGRP-LC interacted with either the adaptor or the 

inhibitor, in both Drosophila and human cells (Figure 4.10b,c).  However, when all three 

proteins were simultaneously co-expressed, PGRP-LC and Rudra still robustly co-

precipitated, but the association between IMD and the receptor was markedly reduced.  

These data suggest that Rudra interferes with the interaction between PGRP-LC and 

IMD, and this disruption provides a molecular mechanism explaining how Rudra down-

modulates IMD signaling at the level of the receptor, consistent with the functional and 

binding data presented.  
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Discussion

Recent work has shown that the intensity and duration of the immune response 

is tightly regulated in Drosophila (Tsuda et al., 2006; Kim et al., 2006; Foley and 

O'Farrell, 2004; Zaidman-Remy et al., 2006; Bischoff et al., 2004). Over-exuberant 

immune responses can be dangerous and the proper down modulation of immunity is 

important for health and fecundity (Flatt et al., 2005; Zerofsky et al., 2005).  To keep the 

immune response properly modulated, the Toll and IMD pathways are controlled at 

multiple levels by multiple negative regulators.  In this study, we have characterized a 

new negative feedback regulator of the IMD pathway. rudra transcript is rapidly induced 

following septic infection, and rudra mutant flies or rudra knockdown cells over-express 

antimicrobial peptides.  In the case of Erwinia carotovora carotovora infection, this 

elevated level of AMP production leads to increased survival.  A similar phenotype was 

reported for mutants lacking Caspar, which is thought to inhibit downstream signaling 

events (Kim et al., 2006).  The results presented here, in cells and flies, demonstrate 

that rudra is a key component in a negative feedback loop that keeps the IMD pathway 

in check.  

In addition to these loss-of-function results, over-expression of rudra potently 

blocked signaling through the IMD pathway, both in cells and in flies.  Moreover, we 

exploited this activity to analyze which steps in the IMD pathway are inhibited by Rudra.  

Using various molecular assays to monitor different PGN-induced events in the IMD 

pathway, we found that Rudra interfered with cleavage of IMD.  Signaling mediated by 

receptor over-expression was also inhibited by Rudra, but this was not the case for 

signaling induced by over-expression of downstream components.  Together, these data 
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strongly support the notion that Rudra interferes with receptor function and is consistent 

with the association between Rudra and the receptors PGRP-LC or PGRP-LE.

Using assays in yeast, Drosophila, human cells and in vitro, Rudra was shown to 

interact directly with PGRP-LC and PGRP-LE.  The interaction between PGRP-LE and 

Rudra required the RHIM-like domain of PGRP-LE, which is also critical for signaling by 

this receptor.  However, the region through which PGRP-LC interacts with Rudra is less 

clear and likely involves multiple, partly redundant interfaces.  Rudra also interacted 

with the imd protein.  Moreover, Rudra interfered with the interaction between the 

receptor PGRP-LC and IMD, destabilizing the receptor signaling complex.  From these 

results, we propose that Rudra is a negative feedback regulator that down modulates 

the IMD pathway by binding the receptors and interrupting the associations with their 

cognate signaling adaptor IMD.  This regulatory loop is critical to properly regulate the 

immune response.  

In agreement with the data presented here, Kleino et al. (2008) recently reported 

that rudra/CG15678 is a negative regulator of the IMD pathway, although they refer to 

this gene as poor Imd response upon knock-in (pirk). They showed that rudra/ pirk is 

rapidly induced following infection, similar to the data presented here, and further 

demonstrated that rudra induction is dependent on Relish, both in cells and in flies.  

Using reporter assays in S2 cells, they found that Pirk inhibits IMD signaling but not the 

Toll pathway.  With transgenic RNAi fly lines, they also found that knockdown of pirk 

caused the hyper-expression of the antimicrobial peptide genes.  Also, flies over-

expressing Pirk blocked the activation of the IMD pathway and were more susceptible 

infection.  These results are consistent with the data presented here, although we have 
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characterized a mutant allele of rudra and additionally show that this mutant exhibits 

enhanced protection against Erwinia infection. The data presented here also expand on 

the findings of Kleino et al. (2008) by showing that Rudra not only interacts with both 

PGRP-LC and IMD, but also that these interactions with Rudra disrupt the direct 

association between PGRP-LC and IMD.  Kleino et al. (2008) reported that central 

portion of Rudra consists of two repetitive amino acid elements of unknown function and 

structure, which they named the Pirk domain.  The Pirk domain is required for the 

interaction with IMD, but not with PGRP-LC. Rudra does not contain obvious homology 

to any other protein motifs, and no mammalian homologs are readily detected (Kleino et 

al., 2008).

Another recent study also showed that rudra/CG15678 is a negative regulator of 

the IMD pathway, although they refer to this gene as PGRP-LC interacting inhibitor of 

IMD pathway (pims).  Lhocine et al show that PIMS not only down-modulates the 

immune response following systemic infection but it is also required to suppress the 

IMD pathway in response to commensal bacteria.  pims knockdown flies produce AMPs 

in the gut and to some extent in the fat body even in the absence of an infection.  

However, no AMPs are produced when the pims knockdown flies are grown under germ 

free conditions, suggesting that the commensal bacteria trigger constitutive activation of 

the IMD pathway when PIMS is not present.  This study also shows that PIMS interacts 

with the receptor PGRP–LC and leads to the relocalization of the receptor from the 

plasma membrane to perinuclear structures (Lhocine et al., 2008).  However, it is 

unclear if and how PIMS mediates this relocalization.  More experiments need to be 

done to validate this data.
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Recently, multiple mechanisms involved in regulating the Drosophila immune 

response have come to light.  Given that it is well-established that immune activation in 

flies has a cost, such as reduced fecundity (Zerofsky et al., 2005; Flatt et al., 2005) and 

hypersensitivity to infection (Bischoff et al., 2006; Ryu et al., 2008; Kim et al., 2006; 

Gordon et al., 2005; Zaidman-Remy et al., 2006), it is not surprising that multiple 

negative regulatory circuits control the immune response.  Similarly, in mammals, innate 

and adaptive immune responses are held in check by multiple mechanisms, in order to 

prevent inflammatory and autoimmune diseases while at the same time allowing an 

effective response to infection.  Future studies will address the possible negative 

consequences of the lack of proper IMD regulation observed in the rudra mutant 

animals. 

Materials and Methods

Reagents

Insoluble PGN from E. coli was purchased from Invivogen.

Fly stocks and survival experiment

rudra mutant line, EY00723, was originally isolated by the Drosophila Genome 

Project gene disruption consortium and provided by the Bloomington Drosophila Stock 

Center.  The flies were crossed for six generations to a w1118 strain in order to generate 

back-crossed stocks.  In all experiments, rudraEY00723 mutants were compared to back-

crossed w1118 animals.  PGRP-LE112 ;;PGRP-LC∆E, double mutant flies were reported 

previously (Takehana et al., 2004).  Survival experiments were performed with 60 flies 

at 29oC, following infection by pricking in the abdomen with a microsurgery needle 

dipped into a concentrated pellet of Erwinia carotovora carotovora 15 (Zaidman-Remy 
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et al., 2006).  Surviving flies were transferred to fresh vials and counted daily, until all 

wild-type flies died.  Kaplan-Meier plots are presented and P-values were calculated by 

log-rank test using GraphPad Sigma Plot.

RNA analysis and RT-PCR

Total RNA from flies or cultured cells was isolated with the TRIzol reagent 

(Invitrogen) as described previously (Silverman et al., 2000).  Expression of Diptericin, 

Attacin, Cecropin and the control rp49 (ribosomal protein) was analyzed by Northern 

blotting (Silverman et al., 2000).  Northern blots were quantified with a phosphoimager 

(Fuji) and AMP gene expression was normalized to rp49 levels.  For qRT-PCR, RNA 

was DNase treated and re-extracted with phenol-chloroform.  cDNA was synthesized 

using Superscript II (Invitrogen)  and quantitative PCR analysis was performed on a 

DNA engine Opticon 2 cycler (MJ Research, Watertown MA) using SYBR Green 

(Biorad).  The specificity of amplification was assessed for each sample by melting 

curve analysis and relative quantification was performed using a standard curve with 

dilutions of a standard.  The quantified data was normalized to rp49 levels. In all S2*-

based cell experiments, cells were pre-treated with 1 mM 20-hydroxyecdysone for 24 to 

40 hr before treatment with 500 mM CuSO4 and/ or PGN (100 ng/ ml).

RNAi experiments

dsRNA was generated and purified as reported previously (Di Nocera and Dawid, 

1983).  Cells were split 24 hours after transfection to 1.0 ×106/mL and then were treated 

with 1 mM 20-hydroxyecdysone.  After 24 hours, cells were treated (or left untreated) 

with PGN (100 ng/ml) for various time, as indicated. 
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Co-immunoprecipitation and immunoblotting assays

In vitro translation was performed following the protocol of the manufacturer 

(Promega).  Immunoprecipitations were carried out with rabbit anti-T7 (Bethyl labs) in 

lysis buffer (20 mM Tris at pH 7.6, 150 mM NaCl, 2 mM EDTA, 10% Glycerol, 1% Triton 

X-100, 1 mM DTT, NaVO4, glycerol 2-phosphate and protease inhibitors). For 

immunoprecipitation from cells, Schneider S2* cells were first transfected by calcium 

phosphate method with appropriate expression plasmids. Cells were split 24 hours after 

transfection to 1.0 ×106/mL and 24 hours later, were treated with 500 µM copper 

sulphate for 5 hr, when necessary, for expression from the metallothionein promoter.  

Immunoprecipitations were performed in lysis buffer and analyzed by SDS-PAGE 

followed by immunoblot analysis with anti-T7 MAb (Novagen), anti-V5 (Sigma), anti-IMD 

(gift of J.-M. Reichhardt) or anti-Flag (Sigma) antibodies.  Stable cell lines and 

immunoblotting were performed as described previously (Silverman et al., 2000).  The 

generation and characterization of phospho-specific Relish antibody will be detailed 

elsewhere (Erturk-Hasdemir et al., 2009).

Transgenesis and analysis of UAS-rudra and genomic rescue strains

For the UAS transgenic, the rudra ORF was amplified by PCR and subcloned 

into the EcoRI and BglII sites of pUAST.  For genomic rescue, a BAC clone (Drosophila 

Resource Center (Hoskins et al., 2002)) was used as a template to amplify a 4.5 Kbp 

genomic fragment containing the complete rudra locus plus flanking sequences, which 

was then cloned into the EcoRI and BamHI sites of pCaSpeR (Thummel et al., 1988).  

After sequence verification, standard techniques were used for P-element–mediated 

transformation at the MGH Drosophila transgenics facility.  For immune stimulation 
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assays, adults (males and females in equal numbers), were infected by pricking in the 

abdomen with a microsurgery needle dipped into a concentrated pellet of E. coli (1106), 

RNA was extracted 8 h later, and assayed by Northern blotting.

Stable cell lines

The rudra gene was cloned into pRmHa3 vector by standard methods to create 

constructs expressed from the metallothionein promoter. The constructs were then 

transfected into S2* cells in conjunction with pHs-Neo at a ratio of 50:1; stable 

transfectants were then selected with G418 (1 mg/ml). For double stable cell lines, the 

rudra expression plasmid was transfected into S2* cell lines that were previously 

selected to carry plasmids expressing either PGRP-LC, PGRP-LE, IMD or Dredd.  The 

rudra plasmid was selected with a second selectable marker, either G418 (1mg/ ml) or 

hygromycin (20 U/ml), as appropriate. 
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CHAPTER V

RYBP: a new component of the IMD pathway.

128



Abstract 

DAP–type peptidoglycan triggers the IMD pathway via PGRP–LC or PGRP–LE, 

while lysine–type peptidoglycan is an agonist for the Toll pathway through PGRP–SA 

and PGRP–SD.  The receptors PGRP–LC and PGRP–LE share a short region of 

homology called the RHIM–like motif in their N terminus, and this motif is critical for 

signaling.  However,the molecular mechanisms by which the RHIM–like motif functions 

to activate IMD signaling remain a mystery.  In this chapter, I show that mutations 

affecting the PGRP–LC RHIM–like motif are defective in all known downstream 

signaling events, including IMD cleavage and ubiquitination,and, Relish cleavage and 

phosphorylation.  However, the RHIM–like mutant receptors are capable of serving as a 

platform for the assembly of all known components of a receptor proximal signaling 

complex.  These results suggest that another, unidentified component of the IMD 

signaling pathway may function to mediate interaction with the RHIM–like motif and I 

have identified a candidate interactor through a yeast two–hybrid screen (See Chapter 

3).  This factor is known as RYBP, it includes a highly conserved ubiquitin binding motif 

(NZF), and RNAi studies suggest that it is a critical component of the IMD pathway.
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Introduction 

Bacterial infections can trigger either the Toll or the IMD pathway, depending on 

the structure of the peptidoglycan (PGN) found in their cell wall.  The Toll signaling 

pathway is most robustly triggered by lysine–type peptidoglycan, while the IMD pathway 

is activated by the DAP–type peptidoglycan (Kaneko et al., 2004; Leulier et al., 2003; 

Mengin-Lecreulx and Lemaitre, 2005; Lemaitre, 2004).  In the IMD pathway, DAP–type 

PGN is detected by PGRP–LC and PGRP–LE (Kaneko et al., 2006; Gottar et al., 2002; 

Choe et al., 2002; Leulier et al., 2003; Ramet et al., 2002; Takehana et al., 2002; 

Takehana et al., 2004).  Double mutants, lacking both PGRP–LC and LE, are unable to 

induce AMPs in response to most Gram–negative bacteria and are highly susceptible to 

these infections (Takehana et al., 2004).  PGRP–LC is a type 2 transmembrane 

receptor, with an extracellular PGRP domain that is critical for recognizing extracellular 

bacteria, while PGRP–LE lacks a transmembrane domain and functions as an 

intracellular receptor for DAP–type PGN (Kaneko et al., 2006).  Binding of polymeric/

monomeric DAP type PGN by PGRP–LC and/or PGRP–LE triggers IMD signaling 

pathway which leads to the activation of the NF–κB precursor protein Relish.  

PGRP–LC and PGRP–LE detect DAP–PGN through their C–terminal PGN–

binding PGRP–domain and transduce signals through their extended N–terminal 

domains (Choe et al., 2005; Kaneko et al., 2006).  PGRP–LC and –LE share 

approximately 50% homology in the their C–terminal PGRP domain but in their N–

termini only a short stretch of about 20 amino acids displays any homology between 

these two receptors.  In both receptors, deletion or mutation within this conserved 

domain abrogates signaling (Kaneko et al., 2006).  This conserved signaling motif has 
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weak homology to the RHIM domain found in the mammalian RIP1 and TRIF proteins.  

In these mammalian NF–κB signaling proteins, the RHIM domain mediates a homotypic 

interaction between them.  Given the weak similarity to the mammalian RHIM domain, 

we refer to this conserved signaling motif in PGRP–LC and PGRP–LE as the RHIM–like 

domain.  The molecular mechanism by which the RHIM–like domains in PGRP–LC 

and–LE function is unclear.  One factor that interacts with both PGRP–LC and –LE is 

IMD, a death domain containing protein with significant similarity to the death domain of 

RIP1 (Aggarwal et al., 2008; Georgel et al., 2001; Choe et al., 2005; Kaneko et al., 

2006).  In the case of PGRP–LE, IMD binding requires the RHIM–like domain and this is  

a possible explanation for the RHIM–like domains function (data not shown).  However 

the association between IMD and PGRP–LC maps to another region, not the RHIM–like 

motif.  Curiously, the IMD interacting region of PGRP–LC does not appear to be critical 

for signaling; it is only the RHIM–like domain that is essential.  Together, these data 

suggest that the RHIM–like domain has a function beyond that of IMD recruitment and 

that direct IMD recruitment to these receptors may not always be necessary for 

signaling.

In this study we show that PGRP–LCx RHIM mutant are unable to activate any of 

the known events downstream of the receptor.  We also show that a receptor proximal 

complex can be assembled on PGRP–LC but is not markedly influenced by the RHIM–

like motif.  In addition, I have also  characterized a new component of the IMD pathway, 

known as RYBP, which may function through the RHIM–like motif.  

RYBP, is an ancronym for Ring and YY1 binding protein  (Garcia et al., 1999) and 

is also referred to as DED–associated Factor (DEDAF) (Zheng et al., 2001) or YEAF1 
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(Sawa et al., 2002).  RYBP belongs to the RYBP/ YAF–2 family of small, basic, NZF–

domain containing ubiquitin binding protein and is highly conserved from invertebrates 

to mammals (Arrigoni et al., 2006).  RYBP was first identified in a yeast two hybrid 

screen as an interacting partner of Polycomb group (PcG) of proteins.  RYBP and YAF–

2 share about 78% homology in their NZF domain and are less similar in there C 

terminal domain.  RYBP interacts with the PcG proteins Ring 1A, Ring 1B and M33, 

these are all components of the PRC1 complex.  The PRC1 multi–protein complex 

functions as transcriptional repressors (Simon and Kingston, 2009).  RYBP and YAF2 

both interact with the transcription factors YY1, E2F6 and hGABP/ E4TF1 and are 

proposed to function as an adaptor protein/ cofactor that recruits PcG.  Though RYBP 

and YAF2 are structurally similar they are functionally distinct.  RYBP mediates 

transcriptional repression and in contrast YAF2 activates transcription.  (Sawa et al., 

2002; Schlisio et al., 2002).  Available data also suggests that RYBP binds ubiquitnated 

H2A and this ubiquitnated H2A is important for PcG mediated gene silencing (Arrigoni et 

al., 2006).

In addition to its role in transcriptional repression RYBP is also implicated in 

promoting apoptosis.  RYBP interacts with various death effector domain (DED) 

containing proteins like DED–containing DNA–binding protein (DEDD), FADD and pro–

caspase 8 and 10 (Zheng et al., 2001).  DEDD is a nucleolar protein and it promotes 

apoptosis both in the nucleolus and in the cytoplasm.  RYBP promotes the formation of 

the death inducing signaling complex composed of Fas, FADD and procaspase 8 in 

293T cells and it also enhances Fas and caspase 10 DED–mediated apoptosis in 

lymphoma cell lines.  In contrast to RYBP data in zebrafish suggests that YAF2 inhibits 
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apoptosis and functions as a survival factor during early zebrafish development and 

embryogenesis (Stanton et al., 2006).  RYBP has also been shown to interact with the 

viral proteins Apoptin and Hippi and both these proteins are also pro–apoptotic (Stanton 

et al., 2007; Danen-van Oorschot et al., 2004).

RYBP deficient mice die around embryonic day (E) 5.5– 6.0 and lack the normal 

apoptotic responses that accompany implantation.  And RYBP heterozygous null mice 

exhibit an ex encephalic phenotype because of disrupted neural tube closure (Pirity et 

al., 2007).  The neural phenotypes observed with RYBP heterozygous mice are similar 

to those observed with caspase 3, 9 or apaf1 heterozygous null mice (Lossi and 

Merighi, 2003).

The Drosophila RYBP is a 150 amino acid protein and is expressed maternally 

and ubiquitously throughout development (Bejarano et al., 2005).  dRYBP protein 

behaves like a Polycomb dependent transcriptional repressor throughout development.  

Over–expressed dRYBP produces homeotic like phenotypes that can be repressed by 

mutations in PcG/ trxG genes.  However, dRYBP loss–of–function mutant phenotypes 

are variable both in their expression and penetrance.  dRYBP mutation results in many 

defects including, progressive lethality during development, defects in morphogenesis, 

reduced size of wing and cell differentiation defects (Gonzalez et al., 2008). These 

findings have been interpreted to suggest that dRYBP functions together with the PcG  

proteins.  Whether this model is correct or not is not yet clear, and certainly the 

molecular function of RYBP is very opaque.  One obvious possibility, due to its highly 

conserved NZF domain, is that RYBP functions through ubiquitin binding.
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Like the mammalian RYBP Drosophila protein is also suggested to have pro–

apoptotic phenotype.  Over–expression of dRYBP induces apoptosis in the imaginal 

discs and this death depends on the pro– apoptotic genes reaper, hid and grim.  Also, 

dRYBP induced apoptosis is dependent on FADD and DREDD which are not 

components of the canonical apoptosis pathway.  However, no apoptosis related 

phenotype is observed with dRYBP mutant flies (Gonzalez and Busturia, 2009).  The 

role of DREDD and FADD in the RYBP–induced death suggested to us that the IMD 

pathway may be involved.  In fact, hyper–activation of the IMD pathway is known to 

induce cell death, probably through the JNK pathway (Georgel et al., 2001).  In our 

present study, we identified a new component of the IMD pathway called dRYBP 

through a yeast two hybrid screen.  We show that dRYBP is critical for IMD signaling in 

S2* cells; knockdown of dRYBP abrogates IMD signaling.  Also, dRYBP interacts with 

the receptor PGRP–LC through the IMD interaction domain and the RHIM– like domain.

Results

PGRP–LCx RHIM mutants fail to activate any downstream event 

Various PGR–LCx over–expressing cell lines were used to determine the 

molecular mechanism(s) that are not initiated by the PGRP–LC RHIM like mutants.  

Over–expression of wild– type PGRP–LCx is sufficient to activate IMD pathway, as 

assayed by AMP induction, while over–expressed PGRP–LCx RHIM mutants are 

inactive (Kaneko et al., 2006)(Chapter 2).  The PGRP–LC RHIM–like mutants must fail 

to initiate some events in the IMD pathway that results in failure of induction of AMPs 

like Diptericin.  Therefore, series of biochemical assays were done to determine the 

events of IMD pathway that fail to initiate when the PGRP–LC RHIM–like mutants are 
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over–expressed.  Recently, work by our lab shows that imd protein is rapidly cleaved 

following immune stimulation (Paquette et al., 2010), and the data in Figure 5.1a shows 

similar result that over–expression of wild type PGRP–LC leads to the cleavage of IMD.  

However, the , PGRP–LC RHIM–like mutants fail to cleave IMD (Figure 5.1a).  Relish, 

the NF–κB precursor protein essential for IMD triggered gene expression, is regulated 

by immune–induced cleavage and phosphorylation (Stöven et al., 2000; Stöven et al., 

2003; Erturk-Hasdemir et al., 2009) and over–expressed wild type PGRP–LC similarly 

drives Relish cleavage and phosphorylation.  On the other hand, PGRP–LC RHIM–like 

mutants fail to cleave and phosphorylate Relish (Figure 5.1a).  Together, these results 

indicate that PGRP–LC RHIM–like mutants possibly fail to activate all molecular events 

downstream of the receptor, suggesting they are deficient in one or more essential 

signaling activities that must occur immediately downstream of the receptor.  

In transient transfection/co–immunoprecipitation assays, IMD interacts with both 

PGRP–LC and –LE. In the case of PGRP–LE, IMD binding requires the RHIM–like 

domain (data not shown), while the association between over–expressed IMD and 

PGRP–LC is not mediated by the RHIM–like domain but maps to another distinct region 

(Kaneko et al., 2006) (Chapter 2).  I next sought to examine the association of PGRP–

LC, wild type and RHIM–like mutant, with endogenously expressed IMD.  Note, I have 

access to an excellent IMD antisera that easily detects endogenous IMD, but no useful 

PGRP–LC antibody is available.  Therefore, I used stably transfected cell lines that 

express various PGRP–LC genes, wild type and mutant, from the copper–inducible 

metallothionein promoter.  The analysis of the interaction of endogenous IMD and 

PGRP–LC revealed a different finding, as compared to the above mentioned studies 
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with transient transfection, over–expression of both PGRP–LC and IMD.  In particular, 

we find that IMD interacts robustly with wild type PGRP–LC but weakly with the RHIM–

like mutants.  Also the PGRP–LC lacking the IMD interaction domain interacts weakly 

with IMD (Figure 5.1a).  This result suggest that the transient transfection experiments 

may be misleading, and that the RHIM–like motif may have an important role recruiting/ 

binding IMD.  In addition the IMD interaction domain may also have a role in IMD 

interaction.

Signaling pathways often rely on the transient assembly of large multiprotein 

signaling complexes on the cytosolic domains of activated receptors–so called receptor 

proximal signaling complexes (Micheau and Tschopp, 2003).  The assembly of these 

signaling hubs relies on post translational modification and one such modification is 

ubiquitination.  Ubiquitination plays an important role in mammalian TNF–R1 and TLR 

signaling (Bianchi and Meier, 2009; Haas et al., 2009).  Recent work by our lab shows 

that IMD is K63–ubiquitinated in a signal–dependent manner and this is important for 

signaling by the IMD pathway.  IMD is also ubiquitnated when the IMD pathway is 

activated by over–expressing the receptor PGRP–LCx but the PGRP–LC RHIM–like 

mutants fail to ubiquitinate IMD (Figure 5.1b).  Surprisingly, the ∆3 mutant also failed to 

drive robust IMD ubiquitination.  This is perhaps expected, because ∆3 interacts poorly 

(or not at all) with IMD, however it is capable of inducing AMP gene expression.

To date, receptor associated polyubiquitin has not been examined..  For this, I 

performed an immunoprecipitation of PGRP–LC from stable cell lines over expressing 

the receptor both the wild type and RHIM–like mutant and probed for ubiquitination.  

PGRP–LC co–precepitated as a highly ubiquitinated protein and RHIM–like mutants 
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(∆5, ∆6, F218A) failed to coprecipitate with polyubiquitin.  On the other hand, ∆3 mutant, 

which lacks the IMD–interaction domain precipitated a robust polyubiquitin signal, even 

more robust then wild type.  Another deletion mutant, ∆1, with strong signaling activity 

and no known deficiencies, was also associated with a robust ubiquitin signal.  This 

data suggests that either the receptor itself gets ubiquitinated or it associates with a 

protein that is ubiquitinated.  However, this ubiquitinated protein cannot be IMD because 

no IMD ubiquitination is observed in stable cells over–expressing PGRP–LC ∆3 Thus, 

the receptor associated ubiquitin most closely correlates with the signaling activity, or 

lack thereof, observed in various PGRP–LC forms and may be key to understanding the 

molecular mechanisms underlying receptor–mediated signal transduction.  

A receptor proximal complex is assembled when components of the IMD pathway 

are over–expressed

In the TNFR–1 signaling pathway it is well established that a receptor proximal 

complex(es) is assembled following ligand binding, and this complex is critical for 

signaling (Micheau and Tschopp, 2003).  To test if a receptor proximal complex is also 

assembled in the case of the IMD pathway co–immunoprecipitation experiments were 

performed.  In this experiment, wild–type receptor PGRP–LCx was co– transiently 

transfected with various components of a putative receptor proximal complex – IMD, 

FADD and DREDD.  PGRP–LCx interacted with IMD and FADD and a very weak 

interaction was observed with DREDD.  The interaction of PGRP–LCx with DREDD was 

weak even when IMD or FADD were included in the transient co–transfection.  However 

the interaction between DREDD and PGRP–LCx was markedly increased when both 

IMD and FADD were included (Figure 5.2a).  This data suggests that a receptor
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Figure 5.1:  PGRP–LCx RHIM mutants fail to activate any downstream event 
(a) Analysis of lysates from S2* cells stably transfected with a metallothionein promoter plasmid 
expressing T7–tagged wild–type or mutant PGRP–LC, with or without treatment with CuSO4 as 
indicated.  IMD cleavage, Relish phosphorylation and cleavage were analyzed by 
immunoblotting.  The asterisk marks heavy chain detected by the secondary antibody.  The 
lowest panel confirms PGRP–LCx expression with anti–T7 IP– IB.  IMD interaction with PGRP–
LC was monitored by IP–IB analysis.  (b)  IP– IB analysis of the ubiquitination status of 
endogenous IMD from S2* cells stably transfected with metallothionein promoter expression 
plasmids encoding T7–tagged PGRP–LCx (wild–type and deletion mutants) with or without 
CuSO4 treatment, as indicated.  (c)  IP– IB analysis of the ubiquitination status of 
immunoprecipitated receptor from S2* cells stably transfected with metallothionein promoter 
expression plasmids encoding T7–tagged PGRP–LCx (wild–type and deletion mutants) with or 
without CuSO4 treatment, as indicated. Lower diagram indicates the regions deleted in each 
mutant form of PGRP–LC.
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Figure 5.2:  A receptor proximal complex is assembled when components of the IMD 
pathway are over– expressed.
(a) IP–IB analysis of lysates of S2* cells transiently transfected with metallothionein promoter 
plasmid expressing T7–tagged PGRP–LCx, FLAG–tagged imd, FLAG–tagged dFADD and V5 
tagged DREDD.  DREDD is recruited to the receptor PGRP–LC in a FADD and IMD 
dependent manner.
(b) Similar co–immunoprecipitation experiments from lysates of S2* cells transiently 
transfected with metallothionein promoter plasmid expressing T7–tagged PGRP–LCx or 
various PGRP–LCx mutants.  DREDD is recruited normally even to the PGRP–LC RHIM–like 
mutants.
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proximal complex, including the caspase–8 like DREDD, is assembled when the 

receptor and all the known components of the receptor proximal complex are all 

expressed together.  More experiments are required to establish if a similar receptor 

proximal complex is assembled under physiological conditions.  Surprisingly, receptors 

lacking the RHIM–like motif were able to productively assemble this receptor proximal 

complex, at least to the level I was able to monitor in these rather crude assays.  

Likewise, the ∆3 mutant, which fails to interact with IMD in a binary co–transfection 

assays, was also able to assemble this receptor proximal complex.  Only double 

mutants, which lacked both the RHIM–like motif and ∆3 region, failed in this receptor 

proximal complex assay (Figure 5.2b).

RYBP interacts with the receptor PGRP–LC and it is a new component of the IMD 

pathway 

Given that the RHIM–like mutants displayed nearly normal assembly of this 

receptor proximal complex and the receptor–associated ubiquitination is altered, the 

RHIM–like motif may function through an unidentified protein that is involved in this 

ubiquitination event.  In order to identify potential partners and regulators of the IMD 

pathway receptors, a yeast two–hybrid screen was performed with the cytoplasmic 

domain of PGRP–LC as bait (Chapter 3).  The 24 most strongly interacting clones were 

further analyzed with a set of baits that carried mutations in the RHIM–like domain of 

PGRP–LC (or irrelevant control baits), as detailed in Chapter 3.  One clone interacted 

strongly with the wild–type cytoplasmic domain of PGRP–LC but very weakly with the 

RHIM–like mutant baits (Table 3.1).  This clone encoded for a gene called RYBP. 
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Figure 5.3:  RYBP interacts with the receptor PGRP–LC and it is a new component of the 
IMD pathway 
(a) IP–IB analysis of lysates of S2* cells transiently transfected with metallothionein promoter 
plasmid expressing T7–tagged PGRP–LCx (wildtype and mutant), and FLAG–tagged RYBP.  
RYBP fails to interact with the receptor that lacks both the IMD interaction domain and RHIM– 
like domain.  (b) Northern blot of Diptericn and rp49 expression in S2* cells treated with lacZ 
dsRNA or two different Rudra dsRNA, and then stimulated with PGN for 6 hours.

! " ! " ! " ! " ! "#$%

&'() *+(, #$-#!./ -01# 345 -01# 36578-%9

!"#

$"%&

! " ! " ! "

#
$
-
#
!.
/
:
;<

"
=.
9
$
-
0
1
#

/'>>?@

!
"
#
!
$%
&
'
)*
+,

"
=.
9
$
-
0
1
#

!
"
#
!
$%
&
'
)-
+,

"
=.
9
$
-
0
1
#

! "

!
"
#
!
$%
&
'
).
+,

"
=.
9
$
-
0
1
#

"

!
"
#
!
$%
&
'
)*
/ )
-
+,

"
=.
9
$
-
0
1
#

! "

!
"
#
!
$%
&
'
)*
/ 0
12
34
+,

"
=.
9
$
-
0
1
#

!
5!6 7 +,

586 7 0%4"

5!6 7 +,

586 7 +,

586 7 0%4"

+

A



To confirm the yeast two–hybrid results, co–immunoprecipitation experiments 

were performed.  Using epitope tagged constructs and transient transfection in 

Drosophila S2* cells, both PGRP–LC and PGRP–LE were found to associate with 

RYBP (Figure 5.3a and data not shown).  In order to determine which domain(s) of 

the receptors are required for interaction with RYBP, co–immunoprecipitation assays 

were performed with various mutant versions of PGRP–LC.  Removal of the IMD 

interaction domain (∆3) or the RHIM–like domain (∆5, ∆6) alone did not abrogate the 

interaction of RYBP with the receptor PGRP–LC.  However, when both the IMD 

interaction domain and the RHIM–like domain were mutated (∆3∆6, ∆3F218A) RYBP 

failed to interact with the receptor (Figure 5.3a).  Overall, we conclude that RYBP 

interacts with the receptors PGRP–LC and PGRP–LE.  The interaction with PGRP–LC 

is mediated by the IMD interaction domain and the RHIM motif, in a redundant manner.  

These results may suggest that RYBP interacts with two different motifs of PGRP–LC, 

or it may indicate that RYBP interacts by direct and indirect mechanisms.

Next, RNAi was used to characterize the function of RYBP in the IMD pathway.  

S2* cells were transfected with two different dsRNA for RYBP, and then stimulated with 

PGN for 6 hours.  Knockdown of RYBP by RNAi markedly inhibited Diptericin induction 

almost to the level seen with knockdown of various components of the IMD pathway like 

PGRP–LC (Figure 5.3b).  These data suggest that RYBP is a new component of the 

IMD pathway and is important for signaling in S2* cells. 

Discussions

In the last few years we have advanced our understanding about the molecular 

events that take place in the cytoplasm when the IMD pathway is activated (Aggarwal 
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and Silverman, 2008; Lemaitre and Hoffmann, 2007; Paquette et al 2010).  However, 

we still lack a clear understanding of the events that take place at the receptor.  Our 

earlier work showed that the receptors PGRP–LC and PGRP–LE share a short region 

of homology called the RHIM– like motif in there N terminal domains, and this motif is 

essential for signaling, in cells and in animals.  However, it is unclear how this RHIM–

like motif functions to support signaling (Kaneko et al., 2006).  In this study, we now 

show that the RHIM–motif seems to be critical for all previously characterized molecular 

events downstream of PGRP–LC, including IMD cleavage, ubiquitination and Relish 

activation consistent with the severe defects observed at the level of AMP gene 

induction.  

However, the role of the RHIM–like motif in the association of the receptor with 

various downstream components is less clear.  Based on over–expression (transient 

transfection co–immunoprecipitation) assays, the RHIM–like motif is not critical for the 

association of PGRP–LC and IMD.  Instead this association involves the ‘IMD 

interaction domain’, defined by ∆3.  The RHIM–like motif is also not essential for the 

formation of a receptor proximal complex containing PGRP–LC, IMD, FADD, and 

DREDD.  On the other hand, the endogenously expressed IMD appears to interact 

much more weakly with the RHIM–deficient PGRP–LCs.  This lack of interaction with 

endogenous IMD is also observed with the ∆3 mutant, and together, this may suggest 

redundant mechanisms are involved in recruiting IMD to PGRP–LC.  The weak 

association of endogenous IMD and the RHIM–mutant receptors is consistent with the 

greatly diminished signaling capacity of these mutants. Interestingly, I also discovered 

that PGRP–LC may be ubiquitinated and this modification correlates with the presence 
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of the RHIM–like motif.  Clearly, the receptor ubiquitination data presented here does 

not differentiate between direction conjugation of ubiquitin to PGRP–LC and the 

association with another ubiquitinated protein.  However, if the later is the case, it does 

not appear to IMD that is responsible for the ubiquitin signal associating with PGRP–LC.  

Further experiments are necessary to discriminate between these possibilities.  Also, 

given the lack of antibody reagents, I have so far been able to examine only over–

expressed PGRP–LC for this ubiquitin modification/association.

Most notable is the fact that this receptor–associated ubiquitin correlates best 

with the signaling activities of various PGRP–LC mutants.  While the ∆3 receptor signals  

near normal levels in cells and in flies, even in response to infection, it showed defects 

in IMD association, IMD cleavage, IMD ubiquitination, and Relish ubiquitination.  

Sometimes these defects were not as severe as that observed with the RHIM–like 

mutant receptors, but clearly this mutant has some defects in inducing all these 

molecular events.  On the other, receptor associated ubiquitin was more robust with the 

∆3 receptor while it was completely abrogated with the RHIM–like mutants, ∆5, ∆6 and 

F218A.  This robust receptor associated ubiquitination may explain the ability of ∆3 to 

support signaling, while the RHIM mutants are inactive.  We hypothesize that this 

receptor associated ubiquitin may provide a platform for the signaling complex to be 

assembled and trigger sufficient signaling to activate AMP gene expression.  In the case 

of the RHIM–like mutant receptors, no ubiquitination is observed–neither associated 

with IMD nor associated with the receptor and  PGRP–LC RHIM mutant is unable to 

signal.  Further support for this hypothesis is provided by the finding that even though 

PGRP–LC ∆3 does not bind IMD, cleaved and phosphorylated Relish can still be 
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detected albeit at levels lower then observed wtih wild– type PGRP–LC.  However, 

more experiments need to be done to explore this possibility. .

Additionally a new component of the IMD pathway called RYBP was also 

identified.  RYBP interacts with both the receptors PGRP–LE and PGRP–LC and its 

interaction with PGRP–LC is mediated through the IMD interaction domain and the 

RHIM– like motif, in a redundant manner.  This redundancy may be because RYBP 

interacts with two different motifs of PGRP–LC, or it may indicate that RYBP interacts by 

direct and indirect mechanisms.  One possibility is that RYBP interacts with another 

component of the IMD pathway which in turn interacts with the receptor.  Mammalian 

RYBP is known to interact with proteins containing a DED domain.  Thus,RYBP might 

interact with FADD and DREDD as they both contain a DED domain and preliminary 

data suggests that RYBP interacts with DREDD.  Knock–down of RYBP in S2* cells 

inhibits IMD signaling.  RYBP is a new regulator of the IMD pathway and it may do so by 

interacting with the RHIM domain of PGRP–LC.  The presence of a NZF domain in the 

N terminal of RYBP suggests that it is a ubiquitin binding receptor.  A better 

understanding about the role of RYBP in IMD signaling might provide some insights into 

the receptor proximal events.  

Methods

RNA analysis

Total RNA from flies or cultured cells was isolated with the TRIzol reagent 

(Invitrogen) as described previously (Silverman et al., 2000).  Expression of Diptericin 

and the control rp49 (ribosomal protein) was analyzed by Northern blotting (Silverman 

et al., 2000).  In all S2*–based cell experiments, cells were pre–treated with 1 mM 20–
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hydroxyecdysone for 24 to 40 hr before treatment with 500 mM CuSO4 and/ or PGN 

(100 ng/ ml).

RNAi experiments

dsRNA was generated and purified as reported previously (Di Nocera and Dawid, 

1983).  Cells were split 24 hours after transfection to 1.0 ×106/mL and then were treated 

with 1 mM 20–hydroxyecdysone.  After 24 hours, cells were treated (or left untreated) 

with PGN (100 ng/ml) for approximately 6 hours.

Co–immunoprecipitation and immunoblotting assays

Immunoprecipitations were carried out with rabbit anti–T7 (Bethyl labs) in lysis 

buffer (20 mM Tris at pH 7.6, 150 mM NaCl, 2 mM EDTA, 10% Glycerol, 1% Triton X–

100, 1 mM DTT, NaVO4, glycerol 2–phosphate and protease inhibitors).  For 

immunoprecipitation from cells, Schneider S2* cells were first transfected by calcium 

phosphate method with appropriate expression plasmids.  Cells were split 24 hours 

after transfection to 1.0 ×106/mL and 24 hours later, were treated with 500 µM copper 

sulphate for 5 hr, when necessary, for expression from the metallothionein promoter.  

Immunoprecipitations were performed in lysis buffer and analyzed by SDS–PAGE 

followed by immunoblot analysis with anti–T7 MAb (Novagen), anti–IMD (gift of J.–M. 

Reichhardt), anti ankyrin, anti V5 (Sigma) or anti–Flag (Sigma) antibodies.  Stable cell 

lines and immunoblotting were performed as described previously (Silverman et al., 

2000).
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CHAPTER VI

DISCUSSION: 

Speculations on the regulation of IMD pathway via the RHIM–like motif and the 

connection with ubiquitination
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Overview

This thesis research has focused on understanding the molecular mechanisms of 

innate immune signal transduction in the Drosophila IMD pathway.  This work 

demonstrates that receptors PGRP–LC and –LE both recognize DAP type PGN and full 

length PGRP–LE acts as an intracellular receptor for monomeric PGN.  Microarray data 

suggests that PGRP-LE is expressed in all barrier and immune competent tissues in 

larvae and adults suggesting that it is critical for recognition of intracellular DAP type 

PGN (Chintapalli et al., 2007).  Additionally, we show that PGRP–LC and PGRP–LE 

signal through a RHIM–like motif (Chapter 2).  In this work, we also characterize two 

new members of the IMD pathway.  RYBP is a  new component of the IMD pathway and 

Rudra is a feedback negative regulator of the IMD pathway (Chapter 4 and 5).

As a whole, the work presented in this thesis adds more detail to the molecular 

events that take place proximal to the receptor (Figure 6.1).  Binding of PGN by the 

receptors PGRP–LC and LE activates downstream signaling.  I hypothesize that PGN–

induced receptor clustering or multimerization then activates downstream signaling.  

The RHIM–like motif of these two receptors is very important for this activation.  No 

downstream signaling events are initiated when the RHIM–like motif is mutated or 

deleted.  However, the RHIM–like mutant receptors are capable of serving as a platform 

for the assembly of all known components of a receptor proximal signaling complex.  

These results suggest that another, unidentified component of the IMD signaling 

pathway may function to mediate the function of , and perhaps interact with, the RHIM–

like motif. 
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Figure 6.1 Comprehensive IMD signaling pathway model
A comprehensive model of IMD pathway signaling as described in the text.



A yeast two–hybrid screen was performed to identify proteins that might interact 

with the receptor PGRP–LC through its RHIM–like domain (Chapter 3).  With this 

approach, two new components of the IMD pathway were identified.  The first 

component I characterized is called Rudra and it is a critical feedback inhibitor of 

peptidoglycan receptor signaling.  The other factor is known as RYBP, it includes a 

highly conserved ubiquitin binding motif (NZF), and RNAi studies suggest it is a critical 

component of the IMD pathway.  Further characterization of this protein might shed light 

on how the RHIM–like motif of PGRP–LC regulates the IMD pathway.  

Receptor activation leads to the cleavage of IMD.  Cleavage of IMD allows it to 

interact with the E3 ligase DIAP2.  In concert with the E2 conjugating enzymes, Uev1a, 

Bendless and Effete, IMD is then K63–polyubiquitinated.  In a manner similar to that 

seen in mammalian NF–κB signaling, it is then proposed that this K63–polyubiquitin 

chain acts as a scaffold for recruitment and activation of the downstream kinase TAK1.  

TAK1 then activates two different arms of the IMD pathway: the JNK and the NF–κB 

arms (Takaesu et al., 2001; Jiang et al., 2002; Wang et al., 2001; Sakurai et al., 2000; 

Kishimoto et al., 2000; Xia et al., 2009).

Recent work from our lab has exemplified the importance of ubiquitination in 

regulation of the IMD pathway, hence I provide a small overview of ubiquitination before 

proceeding to discuss my work (Paquette et al., 2010). 

Ubiquitination

Ubiquitin is a highly conserved 76 amino acid polypeptide and it is best characterized 

for its role in protein degradation.  However, a recent body of literature provides ample 
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evidence that ubiquitination is a critical regulator of cellular functions like chromatin 

dynamics, membrane trafficking, DNA repair, and protein kinase activation, independent

of its role in protein turnover (Chen and Sun, 2009; Pickart, 2004; Bianchi and Meier, 

2009; Hershko, 1983).  

The ubiquitin molecule itself has 7 lysine residues that can act as acceptor sites 

for the conjugation with additional ubiquitin molecules leading to ubiquitin polymers.  

The two most well studied ubiquitin polymers are K48 and K63.  In addition, recently it 

has been demonstrated that ubiquitin can also form linear chains, where one ubiquitin is 

conjugated to the next in a classic peptide–bond connecting the N–termini of one 

ubiquitin to the C–terminus of another (Tokunaga et al., 2009; Xu et al., 2009b; Hoeller 

et al., 2006).  K48–linked polyubiquitin chains promote protein degradation, by directing 

polyubiquitinated proteins to the proteasome.  On the other hand, K63–linked 

polyubiquitin chains are not linked to proteasomal degradation and is thought to function 

by serving as a scaffold in various biological contexts.  Recent work by Xu et al. 

provides evidence for the existence of free K63 chains that are not conjugated to a 

target protein and these unanchored chains are also serve as a scaffold in TLR 

signaling (Xia et al., 2009).  Similarly linear chains are also thought to function as scaffold 

for the regulation IL-1 and TNF signaling (Rahighi et al., 2009) (Haas et al., 2009).

The conjugation of ubiquitin is a three step process.  The first step involves the 

ubiquitin activating enzyme (E1) that binds to the processed ubiquitin via a thioester 

bond between the active cysteine of the E1 and the C–terminal glycine of the ubiquitin 

moiety.  This ‘activated’ ubiquitin is then transferred to a ubiquitin conjugating enzyme 

(E2) via the formation of another thioester bond.  Lastly the ubiquitin protein ligase (E3) 
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transfers the ubiquitin molecule from E2 to the lysine residue of the substrate.  The E3 

determines the substrate specificity, through its protein–target binding activity.  However, 

it is usually the E2 that determines what kind of ubiquitin chains will be added (Jin et al., 

2008; Kirkpatrick et al., 2006; Hofmann and Pickart, 1999; Windheim et al., 2008; Ye 

and Rape, 2009).  

Ubiquitin receptors recognize ubiquitinated proteins and recruit/ link them to 

downstream processes (Hoeller et al., 2006; Dikic et al., 2009).  All ubiquitin receptors 

have a small ubiquitin binding domain (UBD) which often detect distinct ubiquitin 

linkages.  For example, TAB2 contains a zinc finger type UBD called an NZF that 

specifically binds K63 polyubiquitin chains (Kulathu et al., 2009; Sato et al., 2009).  In 

contrast NEMO contains two UBD domains, a coiled–coil UBD called UBAN that 

specifically binds linear polyubiquitin chains and a zing finger type UBD that binds K63 

polyubiquitin chains (Laplantine et al., 2009; Lo et al., 2009; Komander et al., 2009; 

Yoshikawa et al., 2009).

Ubiquitination Regulates Innate Immune Signaling 

One of the pathways most well studied in the context of polyubiquitination is the 

TNF signaling pathway.  The most popular model of TNF signaling is that the TNF 

receptor upon activation leads to the recruitment of the adaptor protein TRADD, the E3 

ligases TRAF2, TRAF5, cIAP1 and cIAP2 and the kinase RIP1 (Micheau and Tschopp, 

2003).  RIP1, once recruited to the receptor, is K63–polyubiquitinated. by the E2 

enzymes Ubc13/ Uev1a and the E3 ligase TRAF2 (Ea et al., 2006; Li et al., 2006; Wertz 

et al., 2004; Newton et al., 2008).  The Ub chains on RIP1 then recruit TAK1 via the Ub 

receptor TAB2/ TAB3 and IKK complex via the Ub receptor NEMO.  The UBD domains 
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of both TAB2 and NEMO bind K63 polyubiquitin.  Once recruited to the scaffold, TAK1 

activates IKKβ which in turn phosphorylates IκB and targets it for K48 –linked 

polyubiquitination and proteasome–mediated degradation (Xu et al., 2009a)(Rothwarf et 

al., 1998; Mercurio et al., 1997; Zandi et al., 1997; Hacker and Karin, 2006; Chen et al., 

1996).  Degradation of IκB liberates NF–κB and leads to its translocation into the 

nucleus and activation of target gene transcription . 

Although the above mentioned model is a widely accepted model for TNF 

signaling, recent data challenges this model and suggest a different scenario.  Data 

from various groups suggests that that TRAF2 may play only a minor role as the E3 

ligase for RIP1.  Instead, TRAF2 seems to play a critical role as an adaptor linking 

cIAP1/2 to the TNFR complex, and these, in turn, functions as the E3 ligase in the TNF–

induced RIP1 K63–polyubiquitination reaction (Wu et al., 2007; Bertrand et al., 2008).  

cIAPs can bind to several different E2s like Ubc13/ Uev1 and UbcH5 and hence it is 

unclear which kind of polyubiquitin chains it synthesizes (Yang and Du, 2004; 

Varfolomeev et al., 2008).  Also, results from several groups suggest that K63 

polyubiquitin chains generated by Ubc13 are not required for TNF signaling, instead 

polyubiquitin chains generated by Ubc5 are required for IKK activation (Rahighi et al., 

2009; Tokunaga et al., 2009; Xu et al., 2009a).  The identity of these non–K63 

polyubiquitin chains is unclear, however linear ubiquitin chains are the leading 

candidate.

Several pieces of data support the possibility that linear chains are critical for 

TNF signaling.  First, NEMO binds linear chains with much higher efficiency as 

compared to K63 polyubiquitin chains (Rahighi et al., 2009).  Secondly, NEMO mutants 
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that fail to bind linear Ub are unable to complement NEMO knockout cells.  Finally, 

NEMO also gets conjugated with linear polyubiquitin.  The only E3 ligase known to 

generate linear chains is LUBAC (Linear Ub Assembly Complex) and it is composed of 

two RING finger proteins: HOIL–1L (heme–oxidized iron–regulatory protein 2 ubiquitin 

ligase 1) and HOIP (HOIL–1L–interacting protein) (Kirisako et al., 2006).  LUBAC can 

interact with several different E2 enzymes like UbcH5, E2–25K and UbcH10 to 

generates linear chains.  This data suggests that the E3 ligase rather than the E2  

enzyme determines linear polyubuqiutin chain synthesis (Kirisako et al., 2006; Haas et 

al., 2009).

A new working model for TNF–R1 suggests that the activated receptor recruits 

the adaptors TRADD and TRAF2 which in turn recruit the E3 ligase cIAP1/2.  cIAP then 

K63 ubiquitnates itself and RIP1 and maybe other components of this complex.  The 

K63 polyubiquitination leads to the recruitment of TAK1/TAB2/TAB3, NEMO/IKKα/IKKβ.  

LUBAC is also recruited to this scaffold through the UBD (NZF type) of HOIP.  Once 

recruited, LUBAC adds linear ubiquitin chains to NEMO and maybe other components 

(Haas et al., 2009).  These linear chains significantly stabilize the complex, which in turn 

leads to the activation of the downstream events. 

The role of ubiquitin in TNF signaling is complicated, but IL–1β signaling may 

provide a more simple example of the role of ubiquitin in NF–κB signaling.  Stimulation 

of cells with IL–1 leads to the recruitment of IRAK1 and IRAK4 to the IL–1R complex, 

which in turn recruit TRAF6.  TRAF6 is an E3 ligase, which in conjunction with the E2 

enzymes Uev1a/ Ubc13, mediates K63 polyubiquitination of target proteins including 

NEMO, IRAK and TRAF6 itself.  The K63 polyubiquitin chains provides a scaffold for the 
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recruitment of the Ub receptor TAB2/ TAB3 which lead to the recruitment and auto 

phosphorylation of TAK1.  IKKα/ IKKβ are also recruited to the scaffold via the ubiquitin 

receptor NEMO.  Possibly the proximity of IKKβ and TAK1 allows TAK1 to 

phosphorylate and activate IKK.  TAK1 also phosphorylates MKK4/7 which in turn 

activate the JNK and p38 kinase cascade (Chen, 2005; Rowe et al., 2006).  Unlike the 

TNFR pathway, K63 ubiquitin chains are essential for IL–1R signaling (Xu et al., 2009a).

The simple view of IL–1 signaling may not hold for very long as recent reports 

suggest that other kinds of ubiquitin chains also regulate this pathway.  Available data 

suggests that NEMO gets conjugated to linear ubiquitin and this is important for its 

ability to activate NF–κB and not the MAPK pathway (Tokunaga et al., 2009).  The role 

of linear chains in IL–1 signaling is controversial as recent work by Xu et al shows that 

only K63 polyubiquitination is essential for IKK activation.  Interestingly work by Chen 

and colleagues also suggests that unanchored K63 polyubiquitin chains, which are not 

conjugated to any target protein, are enough to activate TAK1 and NF–κB signaling.  

Recruitment of TAK1 to free K63 polyubiquitin through TAB2 leads to its 

autophosphorylation and hence activation. 

Though a lot is known about the role of polyubiquitination in the regulation of NF–

κB signaling a number of questions still remain.  First, it is still unclear which kind of 

linkages are involved in the regulation of TNF and IL–1 signaling.  The role of K63, 

linear and mixed linkages in each pathway is unclear.  Second, what are the 

components of the two pathways that are ubiquitinated, which specific conjugation 

targets, if any, are critical for signaling?.  Following stimulation, TNFR–1 and TRADD 

migrate as higher weight proteins and it is speculated that they get also ubiquitinated, 
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but no one has tested this hypothesis directly.  Third it is unclear what kind of 

polyubiquitin chains cIAP synthesizes under physiological conditions as it has the ability 

to interact with different E2s.  Fourth the specificity of all the ubiquitin receptors is 

unclear.  TAB2 specifically binds K63 polyubiquitin chains but the specificity of NEMO is 

still unresolved.  Additionally recent work by some groups suggest that K63–

polyubiquitination is not important for TNF signaling.  Therefore, it is unclear how TAB2 

functions as a ubiquitin receptor in TNF signaling.

Analysis of the role of ubiquitination in a less complex model system like 

Drosophila may help address some of the above questions.  The IMD signaling pathway 

provides an ideal platform for these studies.  Even though the receptor PGRP–LC is not 

homologous to TLRs, other components of the IMD pathway are conserved.  Also, the 

signaling components downstream of the receptor PGRP–LC share homology to both 

the MyD88–independent TLR signaling pathway and TNFR pathway.

Regulation of IMD signaling via the RHIM–like motif

PGRP–LC and PGRP–LE detect DAP–PGN through their C–terminal PGN–

binding PGRP domain and transduce signaling through their extended N–terminal 

domains (Choe et al., 2005; Kaneko et al., 2006).  PGRP–LC and LE share 

approximately 50% homology in the their C–terminal PGRP domain but there is only a 

short stretch of about 20 amino acids that is homologous in the N–terminal domains of 

PGRP–LC and –LE.  In both receptors, deletion or mutation within this conserved 

domain abrogates signaling (Figure 2.7).  This conserved signaling motif shows weak 

homology to the RHIM domain found in the mammalian RIP and TRIF proteins, which 
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mediates homotypic interactions between them.  The molecular mechanism by which 

the RHIM–like domains in PGRP–LC function is unclear.  

The receptor PGRP–LC interacts with the downstream protein IMD.  However, 

the interaction between IMD and PGRP–LC, which is detected in transfection 

experiments, does not map to the RHIM–like domain but maps to another distinct region 

(∆3) (Figure 2.9a).  Our data suggests that the IMD interaction domain of PGRP–LC is 

not important for signaling as flies expressing PGRP–LC∆3 are able support E.coli 

infection–induced diptericin (Figure 2.9c).  This data suggest that the RHIM–like domain 

has a function beyond the recruitment of IMD and that direct IMD recruitment to these 

receptors may not always be necessary for signaling.  However, a caveat of the 

transient transfection/co–immunoprecipitation experiment is that both the receptor and 

IMD are over–expressed and sometimes over–expression data does not reflect the 

actual interactions that occur under physiological conditions.  Therefore, to get a more 

physiologically relevant picture, I analyzed the interaction of over–expressed wild type 

and RHIM–mutant receptor with endogenous IMD.  We had to rely on stable cell lines 

over–expressing PGRP–LC because of the lack of a good PGRP–LC antibody, and, of 

course, the RHIM–mutant receptors must be expressed exogenously.  However, we 

have an excellent antibody to detect endogenous IMD.  I found that endogenous IMD 

interacts robustly with wild–type PGRP–LC, but weakly with the RHIM–like mutants 

(Figure 5.1a).  Also the PGRP–LC lacking the IMD interaction domain also interacts 

weakly with IMD.  This data differs from the transient transfection/ co–

immunoprecipitation experiments (Figure 5.1a) and suggests that the RHIM–like motif 

may play a significant role in recruiting IMD.
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In this study, moving back to the cotransfection/coimmuniprecipitaiton assays, I 

also show that a receptor proximal complex assembles on PGRP–LC.  In particular, 

DREDD is recruited to the receptor in a FADD–and IMD–dependent manner (Figure 

5.2a).  My data suggests that the RHIM–like mutant of PGRP–LCx is not defective in 

assembly of this receptor proximal complex (Figure 5.2b).  However, it is important to 

note that the biggest caveat of this experiment is that the analysis is based on over–

expression of various components of the IMD pathway.  In order to analyze the actual 

receptor proximal events, we are in the process of making antibodies against all the 

components of the IMD pathway.

Various biochemical assays were carried out to determine the molecular events 

that fail to initiate when PGRP–LC RHIM–like mutant receptors are over–expressed in 

S2* cells (Note, receptor over–expression is sufficient to drive signalign).  Analysis of 

downstream signaling events following receptor over–expression suggests that PGRP–

LC RHIM–like mutants fail to activate all the downstream molecular events including 

IMD cleavage, IMD ubiquitination, Relish cleavage and Relish phosphorylation (Figure 

5.1a).  This data again suggests that the RHIM–like motif is critical for signaling.  

Interestingly, when cell lines over–expressing PGRP–LC lacking the IMD interaction 

domain (∆3) were analyzed no cleaved or ubiquitinated IMD was detectable but low 

levels of cleaved and phosphorylated Relish could be observed.  This data suggests 

that PGRP–LC ∆3 might be a hypomorph.  To test if PGRP–LC∆3 is a hypomorph, flies 

expressing PGRP–LC∆3 will be infected with E.coli and then a time course of diptericin 

induction will be done.  It is unclear how PGRP–LC∆3 can cleave and phosphorylate 

Relish.  One possibility is that IMD is cleaved and ubiquitinated at low, nearly 
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undetectable, levels but this is enough for Relish cleavage and phosphorylation.  

Another possibility is that over–expressed PGRP–LC∆3 can somehow bypass the 

requirement for cleaved and ubiquitinated IMD, directly leading to the cleavage and 

phosphorylation of Relish.  If this hypothesis is correct, knockdown of IMD in cells over–

expressing PGRP–LC∆3 will not effect induction of AMPs genes.

Analysis of the receptor associated ubiquitination showed that PGRP–LC RHIM–

like mutants failed to associate with any poly ubiquitin signal whereas wild–type and 

PGRP–LC∆3 precipitated a robust ubiquitination signal (Figure 5.1c).  This data 

suggests that the either the receptor itself is ubiquitinated or it associates with a protein 

that is ubiquitinated.  However, this ubiquitinated protein cannot be IMD because no 

IMD ubiquitination is observed in stable cells over–expressing PGRP–LC∆3 (Figure 

5.1b).  Also, the receptor PGRP–LC associates with polyubiquitin signal even after imd 

has been knocked by RNAi.  The receptor associated ubiquitination most closely 

reflects the phenotype observed with AMP induction when the various PGRP–LC 

mutants are over–expressed (Figure 2.7a)  Therefore, a better understanding of these 

receptor associated ubiquitination events may provide an insight into the role of the 

RHIM–like motif.  One hypothesis that may explain why PGRP–LC∆3 induces AMPs but 

the RHIM mutants fail do so,  is that under wild–type conditions ubiquitinated IMD 

provides a platform for the assembly of a receptor proximal complex, however, in a 

situation where IMD cannot interact with the receptor (like PGRP–LC∆3) another 

component of the IMD pathway that also gets ubiquitinated provides the platform for the 

assembly of the signaling complex.  And in the case of the RHIM–like mutant, no 

molecular events down stream of the receptor are activated because no component of 
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the IMD pathway can be ubiquitinated and/or the ubiquitinated components fail to 

interact with the receptor.

Analysis of receptor associated ubiquitination raises many important questions.  

First what is the target protein that is getting detected in the receptor associated 

ubiquitination assays?  Second, what kind of ubiquitin chains are conjugated to this 

target protein and what are the E2 and E3 enzymes involved?

RYBP is a new component of the IMD pathway

I performed a yeast two–hybrid screen to identify new components of the IMD 

pathway that interact with the receptor PGRP–LC via the RHIM–like domain (Chapter 

3).  One protein that interacted with the receptor through its RHIM–like motif was RYBP 

(Figure 3.2).  RYBP is a 150 amino acid protein and contains an NZF domain in its N 

terminus.  Knock–down of RYBP in S2 cells inhibits signaling via the IMD pathway 

(Figure 5.3b).  Additionally, analysis of the interaction of RYBP with PGRP–LC in S2 

cells, showed that this interaction is mediated through both IMD interaction domain and 

the RHIM–like motif of PGRP–LC in a redundant manner (Figure 5.3a) [This is not the 

case in yeast, where the two–hybrid data suggest the PGRP–LC/RYBP interaction is 

strictly dependent on the RHIM–like motif].  This data suggests that RYBP may either 

mediate its interaction with the receptor through multiple domains, or that RYBP may 

interact directly with PGRP–LC via the RHIM–like motif and indirectly, through other 

components of the pathway, with the IMD interaction domain.  Interaction studies need 

to be done in an another heterologous system to tease apart direct interactions from 

indirect ones.  In mammals RYBP interacts with all death effector domain (DED) 

containing proteins, such as caspase 8, 10, FADD and DEDD (Zheng et al., 2001).  
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Therefore, it will not be surprising if we find that RYBP interacts with DREDD and/or 

FADD , because both proteins have a DED like domain.  Indeed preliminary data 

suggests that RYBP interacts with DREDD.

The presence of the NZF domain in the N terminal of RYBP raises the possibility 

that it is a ubiquitin receptor like TAB2 (which also has a NZF domain in its C terminus) 

(Bejarano et al., 2005; Arrigoni et al., 2006).  TAB2 specifically recognizes K63 linked 

polyubiquitin chains and this specificity is determined by residues that mediate 

interaction with the distal and proximal ubiquitin (Komander et al., 2009; Kulathu et al., 

2009; Sato et al., 2009).  Residues that allow TAB2 to specifically bind K63 polyubiquitin 

are not conserved in the NZF domains of HOIL–1L and HOIP (components of the E3 

ligase LUBAC).  HOIL–1 does not bind K48 Ub, but it binds linear Ub and K63 Ub 

chains and HOIP preferentially binds K63 chains (Haas et al., 2009).  Like the HOIL–1 

and HOIP NZF domains, the residues that mediate interaction with distal and proximal 

ubiquitins in K63 chains are not conserved in RYBP, hence it is possible that RYBP can 

interact with different polyubiquitin chains (Figure 6.2). 

Work in our lab suggests that ubiquitination plays an important role in the 

regulation of IMD pathway, however, the exact mechanisms are unclear.  One possible 

scenario, suggested from this work is that following ligand stimulation the receptor gets 

ubiquitinated (in addition to the ubiquitination of IMD).  These chains could be linear, 

K63, mixed or other.  The ubiquitinated receptor may then be detected by the ubiquitin 

receptor RYBP.  RYBP interacts with the receptor transiently through the polyubiquitin 

chains on the receptor but then forms more stable interactions through the RHIM–like 

motif.  Another possibility is that the interaction of RYBP with the polyubiquitin chains 
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and the RHIM–like motif of PGRP–LC are important for the assembly of a stable 

receptor proximal complex.  RYBP in turn recruits DREDD to the receptor.  IMD maybe 

interacts with the receptor PGRP–LC even before it is activated or IMD may be gets 

recruited to the receptor following stimulation.  FADD is an adaptor protein, interacting 

with both IMD and DREDD, and it helps stabilize the receptor proximal complex.  The 

recruitment of DREDD to the receptor somehow activates its proteolytic activity.  The 

proximity between DREDD and IMD then allows DREDD to cleave IMD and lead to its 

ubiquitination.  K63 polyubiquitinated IMD then acts as a platform to recruit downstream 

signaling complexes and lead to the activation of NF–κB and JNK signaling (Figure 6.3)

Recent work highlights the complexity of ubiquitination and its important role in 

the regulation of signaling pathways in mammals and Drosophila.  It will be exciting to 

learn in greater detail how ubiquitination regulates the IMD pathway and how this 

compares to mammalian NF–κB signalign pathways.  It will also be interesting to see 

how similar or different the regulation of IMD pathway is in comparison to TNF and TLR 

signaling.  Homologs of signaling pathway components involved in Drosophila innate 

immunity have been identified in humans and other organisms.  Lacking an adaptive 

immune response, Drosophila serves as an important model system for further 

understanding of innate immunity and host/pathogen interactions.  To that end, this 

research sheds light on the regions of the receptor that are important for immune 

signaling and it begins to illuminate the receptor proximal events that may play a role in 

insect NF–κB signaling.  A better understanding of the signaling events in the IMD 

pathway may help shed light on some of the prominent questions in the mammalian 

innate immune signaling pathways.
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Figure 6.3 Proposed model of IMD signaling pathway
A comprehensive model of the proposed IMD pathway signaling as described in the text.
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