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ABSTRACT

The synapse is the primary locus of cell-cell communication in the

nervous system. The elaboration of a functional synapse requires both a

specialized structure and an efficient communication system. For my

thesis work, I studied proteins implicated in each of these functions:
the structural molecules dystroglycan and dystrophin, and the signaling

elements Insulin Receptor Substrate p58/53 and insulin receptor.

The a/ dystroglycan complex, believed to be the heart of cell-

matrix adhesion in muscle and other tissues, provides a link between

dystrophin, a cytoskeletal protein at the base of the muscle cell'

Dystrophin Associated Protein Complex, and the extracellular matrix. In

addition, dystrophin is found at central synapses, tightly associated

with the postsynaptic density. The absence of dystrophin and the

secondary loss of its associated proteins causes the genetic disease

Duchenne Muscular Dystrophy. DMD affects both muscle and brain, causing

a severe muscular dystrophy and lower IQs than control groups.

In the first portion of my thesis work, I sought to determine the

role of dystroglycan, dystrophin I s peripheral partner, at central
synapses. I probed Northern blots of brain regions to delineate the

distribution of brain dystroglycan mR and to uncover any 
dystroglycan-related transcripts in brain. Then, using subcellular brain
fractions, and cultured hippocamal neurons, I determined that whereas

dystroglycan is associated with central synapses, dystroglycan is
not. This discovery is surprising, and differs from the finding that

dystrophin and a- and dystroglycan colocalize at the presynaptic

memrane of retinal photoreceptors.

In the course of the above mentioned work, using the anti-

dystroglycan antiseru Ab98, I discovered a pair of proteins that were
tightly associated with the postsynaptic density. These polypeptides of

58 kDa and 53 kDa (pS8/53) were highly enriched in postsynaptic density
(PSD) fractions from rat cerebral cortex, hippocampus, and cerebellum.

In pursuit of a potential synapse-specific dystroglycan relative, I

purified p58 and p53 by a combination of hydrophobic interaction



chromatography and two-dimensional gel electrophoresis. Mass
spectroscopy and peptide microsequencing revealed that pS8/S3 is

identical to the insulin receptor tyrosine kinase substrate pS8/S3

(IRSpS3). Whereas IRSpS8/53 has no significant homology to ~-

dystroglycan other than the one span of peptides that confers its

antibody cross-reactivity, its localization to the PSD newly implicates
insulin signaling at synapses.

Analysis of IRSpS8/S3 mass profiles, peptides, and mR indicated
that IRSpS8 and IRSp53 are the product of the same coding sequence.

Immunolocalization showed that IRSpS8/S3 is expressed in the synapse-

rich molecular layer of the cerebellum. Immunostaining of cultured

hippocampal neurons showed that both IRSpS8/S3 and insulin receptor are

highly concentrated at synapses. Like IRSpS8/S3, insulin receptors are a

component of the PSD fraction. Together, these data suggest that the

synapse is a specialized site for insulin signaling in the brain.
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CHAPTER I
DYSTROGLYCAN'S NONTRADITIONAL ASSOCIATIONS IN THE BRAIN

Introduction

Muscle and brain are two of the may tissues that contain the
protein dystroglycan. In muscle, the a/~-dystroglycan complex works in

at least two capacities. Along the muscle memrane, dystroglycan is 

component of the dystrophin associated protein complex (DAPC). Within

the sarcolema, ~-dystroglycan associates with dystrophin, a

cytoskeletal protein that is aberrant in some forms of muscular

dystrophy. The absence of dystrophin and the associated DAPC causes the

muscle pathology, and perhaps the CNS abnormalities, characteristic of

many muscular dystrophies. Dystroglycan is also a component of a

modified DAPC that is specifically expressed at the neuromuscular

junction (NM). Whereas a-dystroglycan interacts with the extracellular

matrix protein lamnin all along the surface of the muscle cell, it

exhibits a particularly high binding affinity for agrin, a matrix

molecule secreted by motor neurons exclusively at the site of the NM.
At both synaptic and nonsynaptic sites, dystroglycan links

elements of the muscle cytoskeleton to components of the extracellular

matrix. It is believed that dystroglycan participates in the maintenance

of healthy muscle cells and has a role in norml brain development and
function. The exact actions of dystroglycan in muscle continue to be

elusive, and dystroglycan I s role in the brain appears to be even more
complex. The investigation of dystroglycan I s role in the brain, and
specifically at synapses, is therefore compelling. In this portion of my

thesis work, I learned that what is true for dystroglycan in muscle is

not necessarily true for dystroglycan in the brain. In brain, dystrophin

is not ubiquitously associated with ~-dystroglycan, and a- and ~-

dystroglycan are not invariably co-distributed. My findings indicate

that the rules governing dystroglycan in muscle do not appear to be in

effect in some brain regions, and forecast an unconventional role for

dystroglycan at central synapses.



Background

Dystroglycan was first identified as a muscle protein that

associates with dystrophin. Soon after, dystroglycan emerged as a 

protein with high binding affinity for laminin and agrin. Today, these

associations are well established, but the ways in which dystroglycan

contributes to the pathophysiology of muscular dystrophy, or to the

, .

development and maintenance of the NM, remain largely unknown.
Exression of dystroglycan is not limited to muscle: many tissues
contain this protein, including brain. Below is a sumry of what is
known about dystroglycan in muscle, in some non-muscle tissues, and in

the CNS.

2. 1 Dystroglycan in the Periphery
Dystroglycan is encoded by one gene, which is located on mouse

chromosome 9 and human chromosome 3. The coding sequence includes two

exons, 285 bp and 2400 bp, separated by a large intron. The 5. 8 kb

dystroglycan transcript encodes a 97 kDa precursor protein that is

cleaved to produce a- and ~-dystroglycan (Ibraghimov et al. , 1992;

Ibraghimov-Beskrovnaya et al., 1993; Gorecki et al., 1994).

Dystroglycan is a peripheral memrane protein that associates
with the extracellular matrix. The primary sequence of a-dystroglycan
predicts a 72 kDa protein, but tissue-specific post-translational
carbohydrate additions give a-dystroglycan an apparent molecular weight

that ranges from 120 kDa in brain to 156 kDa in muscle and to 190 kDa in

Torpedo electric organ (Ibraghimov et al., 1992; Bowe et al. , 1994). a-
dystroglycan is tethered to the memrane by its noncovalent association

with ~- dystroglycan. dystroglycan is a 43 kDa transmemrane protein

that acquires carbohydrate additions on its extracellular portion as

well. Additionally, an intrachain disulfide bond forms within the

extracellular domain of ~-dystroglycan, between Cys669 and Cys713 (Deyst
et al., 1995) (Figure 1).



1 Dvstrocrlvcan is a DvstroDhin Associated Protein.
Dystroglycan is a prominent memer of the dystrophin associated

protein complex (DAPC), a group of proteins that remain tightly
associated with dystrophin in muscle extracts purified on wheat germ

agglutinin colums (Ervasti et al., 1990). To date, the DAPC includes
laminin, a/~-dystroglycan, the sarcoglycan complex, the syntrophins, and

the dystrobrevins (Figure 2) 
Inside the muscle cell, the N-terminus of dystrophin associates

with the actin cytoskeleton. The C-terminal tail of dystrophin contains

a cysteine-rich region that binds to ~-dystroglycan I s proline-rich C-
terminus (Jung et al., 1995). Outside the cell, a-dystroglycan binds
the extracellular matrix molecule laminin-2. In this capacity, the a/~-

dystroglycan unit links extracellular matrix to the cytoskeleton. This

connection is thought to stabilize the myomemrane during the stress of
muscle fiber contraction (Petrof, 1998).

In 1986, Dr. Lou Kunkel and colleagues discovered that defects in

the gene for the 427 kDa protein dystrophin are responsible for the most

well-studied of the muscular dystrophies, Duchenne and Becker (Monaco et
al., 1986) (Table 1). Duchenne Muscular Dystrophy (DMD) is a severe X-

linked genetic disorder that affects 1 in 3, 500 boys. The disease is

characterized by a progressive muscle degeneration that causes an

affected boy to lose the ability to walk, potentially lose lung and

cardiac function, and suffer an early death (Worton , 1995). In skeletal

muscle from DMD patients, dystrophin is absent and levels of DAPC

proteins are significantly decreased (Ohlendieck anq Cambell, 1991). It
is hypothesized that when some or all of the DAPC is missing, the

myomemrane is more likely to tear and be damaged, but the exact

pathophysiology of muscular dystrophy remins unknown.
Following the identification of the dystrophin gene as the primary

defect in DMD, all memers of the DAPC came under consideration as
candidate genes for muscular dystrophies. It is now clear that genes

encoding at least five of the DAPC proteins are responsible for muscular

dystrophies. A defect in alpha, beta, gama, or delta sarcoglycan can

cause types of Limb Girdle Muscular Dystrophy (Table 1). The function of



the sarcoglycan complex in muscle remains unknown, however. Laminin-2 is
a heterotrimer that is composed of one alpha-2 chain, which can bind a-

dys troglycan as well as a beta-1 and gam-1 chain. Laminin-2 is highly
expressed in striated mus le and peripheral nerve and is also found in

the brain. Laminins participate in cell adhesion and migration, as well

as in axon guidance and neurite outgrowth. Defects in the alpha-2 chain

of laminin-2 are responsible for a type of muscular dystrophy as well

(Bonneman et al., 1996). Although exression of dystroglycan and the
other components of the DAPC is reduced in most of the muscular

dystrophies, no further DAPC components have been implicated in muscular

dystrophies to date. Indeed, no disease has been linked to defects in

the dystroglycan gene. Notably, "knocking out" the dystroglycan gene in
mice is emryonically lethal (Williamson et al., 1997).

2 Dvstrocrlvcan is associated with the Neuromuscular Junction.

Dystroglycan is also associated with a complex of proteins at the

NM (Figure 2). This peripheral point of cell-cell contact encompasses a
motor neuron terminal, which secretes the neurotransmitter

acetylcholine, and at the apposing muscle cell memrane, a specialized
postsynaptic apparatus. This specialization develops as components of

the synaptic machinery, including acetylcholine receptors (AChRs),

cluster together under the nerve terminal. At this exceptional site the

concentration of AChRs in particular swells to several thousand times

that along the cell' s non-synaptic memrane. At the NM, ~-dystroglycan
binds utrophin, an autosomally-encoded relative of dystrophin

(Camanelli et al., 1994). Exression of beta- syntrophin and the form

of dystrobrevin that contains a phosphotyrosine tail (dystrobrevin+PYCT)
is restricted to the NM (Balasubramanian et al., 1998). Further, a-
dystroglycan abandons its association with laminin-2, and is instead the

maj or agrin binding protein (Bowe et al., 1994).

Agrin is secreted into the extracellular matrix by peripheral

motor neurons. As the neuron approaches its target muscle, agrin works

to shape and maintain the NM. First, agrin induces the clustering of
AChRs and other molecules that contribute to the postsynaptic



specialization (Bowe and Fallon, 1995). Whereas agrin has high affinity
for dystroglycan, agrin specifically activates MuSK, a 

scle ecific
tyrosine kinase (Glass et al., 1996). Agrin and MuSK are both essential
in NM synaptogenesis: mice with homozygous mutations in either agrin or
MuSK die at birth. There is poor postsynaptic differentiation in muscle

from these animals, with few to no AChR clusters at the NM. Since the
communication system between nerve and muscle fails to develop, these

mice canot take their first breath (DeChiara et al., 1996; Gautam et

al., 1996).

The steps that follow the agrin-MuSK interaction and lead to the

special molecular organization of the NM are slowly being dissected.
The activation of MuSK by agrin initiates multiple signaling pathways.

The retrograde signal that instructs the incoming neuron to terminate

its progression and form a presynaptic terminal depends on agrin.

Similarly, the preferential transcription of AChR mRAs by the muscle
cell' s sub-synaptic nuclei requires agrin and MuSK. This pathway
requires the binding of ARIA, a neuregulin released by the nerve

terminal, to its receptor tyrosine kinase erbB, which is clustered at

the postsynaptic apparatus (Wells and Fallon, 1996). As mentioned, agrin
also induces the clustering of postsynaptic components, including AChRs

and some memers of the DAPC. This phenomenon requires rapsyn, an AChR-

associated protein. Since a-dystroglycan does not directly transduct

the agrin signal that initiates this clustering of the postsynaptic

apparatus, the function of a-dystroglycan at the NM remains undefined
(Wells and Fallon, 1996).

There is some evidence that portends a role for ~-dystroglycan in
such signaling pathways, however. The juxtamemrane region of 

dystroglycan binds rapsyn, the 43 kDa cytosolic protein that is required

for agrin-induced AChR clustering (Cartaud et al., 1998). In addition,

the proline-rich C-terminus of dystroglycan interacts with the SH3

domain of Grb2, a small adapter protein that links receptor tyrosine

kinases to small GTP binding proteins (Yang et al., 1995). Although the

details of the complex mechanisms that coordinate the development and



maintenance of the NM remain unknown, a- and ~-dystroglycan undoubtedly
participate.

3 Dvstrocrlvcan in non-muscle tissues
Dystroglycan exression is also high . in non-muscle tissues,

including heart, brain, placenta, lung, liver, and pancreas. A prominent
role for dystroglycan in emryonic development as well as during tissue
epithelium morphogenesis is emerging. When the dystroglycan null mouse

was created, it was abruptly evident that the dystroglycan gene product

has important functions in development. Dystroglycan is required for the

elaboration of Reichart' s extra-emryonic basement memrane. Disruption

of this structure causes gross abnormalities in the affected emryo

development that are incompatible with life (Williamson et 
al., 1997).

Dystroglycan also has a major role in the maternal mouse uterus

during the peri implantation stage of pregnancy. The amount of
dystroglycan mR in the decidual layer of the uterus 8. 5 days after
conception is 100 times higher than in a non pregnant uterus or in a

mature placenta 12. 5 days after conception. This dystroglycan expression
is specifically localized to the decuidual cells that surround the

implantation site. It is thought that dystroglycan mediates adhesion

between decidual cells or between maternal decidual and placental

trophoblast cells at this early stage in pregnancy 
(Yotsumoto et al.,

1996). The associations that dystroglycan forms during the development

of the emryo I s Reichart I s memrane and temorally in maternal decidual
cells remin to be elucidated.

In several non-muscle tissues, dystroglycan is exressed on the
basal side of epithelial cells and may help to affix these cells to

basement memranes. In the kidney for examle, dystroglycan is
implicated in the morphogenesis of renal epithelium 

(Durbeej et al.,
1995). Although epithelial cells express no dystrophin, the short

dystrophin isoform DP71 (Figure 3) is exressed by all studied emryonic
epithelial cells (Cullen et al., 1998; Stevenson et al., 1998).

Interestingly, another short dystrophin isoform, DP140, is transiently
expressed in a subset of kidney epithelial cells 

(Durbeej et al. , 1997).



It appears that dystroglycan acts as to link one of these short form of
dystrophin to the extracellular matrix. The extracellular matrix protein

that binds dystroglycan may be a non-muscle type of laminin: the E3

fragment of lamnin-1 has been found to be involved in epithelial

morphogenesis (Durbeej et al., 1998). Another extracellular matrix

molecule that is expressed in kidney is agrin. In fact, a-dystroglycan
from kidney binds agrin with a higher affinity than laminin-

1, and agrin
can coimunoprecipitate a- and dystroglycan (Gesem et al., 1998).

Indeed, in epithelia of various cell types, dystroglycan appears

to provides a link between the cytoskeleton and the extracellular

matrix. This may be dystroglycan I s role early in development, in
Reichart' s memrane, and in the maternal uterus as well. The specificity
of dystroglycan I s cytoskeletal and extracellular matrix associations in
these developmentally regulated contexts requires more thorough

investigation.

2 Dystroglycan in the CNS

Dystrophin, dystroglycan and other selected DAPC memers are
expressed in the CNS. Interestingly, a substantial fraction of the

muscular dystrophy phenotypes manifest a CNS component. This suggests a

role for dystroglycan and other DAPC memers in brain. Agrin is also
expressed throughout the brain, although its role there is as yet

unknown. It is therefore instructive to review what is known about

dystroglycan in the CNS in the context of disease 
maifestations and

dystroglycan s binding partners.

1 The CNS co onent of stro ino athies
Duchenne Muscular Dystrophy, Classical Congenital Muscular

Dystrophy, Walker-Warberg syndrome, and Fukuyar Congenital Muscular
Dystrophy are muscular dystrophies with CNS involvement (Table 1). In
addition , two animal mutants that have been used extensively as models

of DMD exhibit CNS involvement. DMD patients, and to a lesser extent BMD



patients, suffer a mild, non progressive mental retardation (Emery,
1993). In general, the verbal IQ of a DMD patient is more affected than

his performance or full scale IQ (Bushby et al., 1995). It is well

established that the mental retardation is a primry deficit, and is not
secondary to the child' s musculoskeletal deficit. In addition, abnorml
electroretinograms (ERGs), which indicate defective synaptic
transmission in the retina outer plexiform layer 

(OPL) , are seen in
patients with DMD (Cibis et al., 1993; Pillers et al., 1995). The

pathophysiology that leads to these CNS abnormalities in DMD is 
unknown.

Two animal mutants are available for studying the effects of these

disease genotypes in the 
CNS. One, the mdx mouse , has a defect in the

dystrophin gene. These mice exress a dystrophin protein that is
defective in its N-terminus. Correspondingly, the expression of DAPC

proteins in muscle of mdx mice is diminished (Ohlendieck and Campbell,
1991). These mice suffer only a mild muscular dystrophy, however. During

the first month of life, they experience muscle degeneration and extreme

weakness, but after this critical period they no longer exhibit

significant muscle impairment (Muntoni et al. , 1993). A few behavioral
studies reveal that mdx mice exhibit impaired passive avoidance

learning, and are deficient in the consolidation processes required for

long term memory in behavioral tasks (Muntoni et al., 1991; Vaillend et

al., 1995). Unlike in DMD, ERGs from mdx mice reveal no abnormalities

(Cibis et al., 1993). This raises the possibility that retinal function

as measured by ERG does not require a functional dystrophin N-terminus

or a complexed DAPC. The integrity of the dystrophin C-terminus in 

mice may allow for retention of much of dystrophin ' s function, however.
The most common mutations in the dystrophin gene 

(65% in DMD and
85% in BMD) involve the N-termnus and rod domains of dystrophin (Figure
3). In general, mutations in which the reading frame is disrupted cause

DMD, whereas mutations in which the reading frame is maintained cause

the less severe BMD. Thus, most of the DMD mutations create premature

stop codons, which presumably result in the expression of trucated
proteins that lack the dystrophin C-terminus 

(Monaco et al. , 1988).



The giant dystrophin gene has at least seven different promoters

(Figure 3). Products of the dystrophin gene include tissue specific

full-length dystrophins as well as trucated dystrophin isoforms. There
are at least three promoters producing full- length dystrophin proteins:
Muscle, rain, and rkinje. These three promoters each encode a

different first exon which is spliced in frame with the common

dystrophin second exon. The "Brain" promoter lies 5' to the muscle first
exon, and expresses dystrophin in the cerebral cortex, the cerebellar

Purkinje cell-specific dystrophin promoter s fir t exon is downstream of
the first muscle exon. The overall product of these promoters is

virtually identical, since the divergent first exons add only 3-

unique amino acids (Gorecki et al., 1992). DP240 is a retina-specific
transcript that uses a promoter located midway along the dystrophin gene

(D' Souza et al., 1995). DP140 is a brain and kidney specific isoform

with a start methionine in exon 51 (Lidov et al., 1995). A major brain

product of the dystrophin gene is the shortest isoform, DP71. This
transcript encodes seven new amino acids plus the very last 609 amino

acids of dystrophin (Blake et al., 1992; Lederfein et al., 1993).

Since the genetic defect in 
mdx is a point mutation in exon 23 of

the dystrophin gene, only the expression of full- length dystrophins is
disrupted and short dystrophin isoforms are expressed normally. In 

mdx
muscle, exogenous DP71 can reconstitute the missing DAPC (Cox et al.,
1994; Greenberg et al., 1994). It is likely therefore that in brains of

mdx mice, many of dystrophin ' s C-terminal associations can be achieved
by unaffected endogenous short dystrophin isofor.. The genetic defect
in the mdx 3CV mouse is different from that found in the classical 

mdx.
In 3CV, a mutation in intron 64 causes aberrant splicing and the gene

products are terminated early, presumably lacking the dystrophin C-

terminus. In 3CV no forms of dystrophin are expected to be expressed.

This mutant is somewhat leaky" however, and minor amounts of dystrophin

are expressed. Although no neuropathology is detectable on histologic

sections of 3CV brain and spinal cord (Cox et al., 1993), ERGs performed
on 3CV mice reveal abnormalities simlar to those observed in DMD
patients (Pillers et al., 

1995). In 3CV, it is expected that all
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dystrophin C-terminal associations are disrupted. Since the g neti
defect in 3CV is similar to those found in DMD, one anticipates that 3CV
mice will display a CNS phenotype more similar to that seen in DMD

patients than hat reported in mdx mice. The 3CV mouse is therefore a

valuable tool in furthering the understanding the role of dystrophins in

the CNS.

2 . 2 . 2 The CNS comDonent of other muscular dvstroDhies

Fukuyar-type Congenital Muscular Dystrophy is one of Japan s most

common autosomal recessive genetic disorders, affecting 1 per 10, 000
births. The FCM phenotype comprises a muscular dystrophy, mental
retardation, and brain malformation due to a defect in neuronal

migration that causes disruption of the orderly six layer neuronal

lamination of the cortex. The disease gene for FCM has recently been
identified. In 87% of individuals with FCM, the 3 ' UTR of a gene within

chromosomal region 9q31 is disrupted by a 3 kb retrotransposal insertion

of tandemly repeated sequences. This insertion is likely to cause a

decrease in the mRA I S transcription or stability and thereby produce a

loss of function phenotype. Two distinct point mutations in this gene

can also cause FCM (Kobayashi et al., 1998).
The predicted product of the FCM disease gene is fukutin, a 461

amino acid secreted protein, with one site for N-linked glycosylation.

Normally, fukutin mR is expressed predominantly in striated muscle,
brain, and pancreas (Kobayashi et al., 1998). The role of fukutin in

muscle and brain remains unknown. In FCM muscle, whereas dystrop in is
expressed at a normal level, the exression of laminin alpha-2 chain and
memers of the DAPC, especially ~-dystroglycan, are greatly reduced
(Hayashi et al., 1993; Matsumura et al., 1993). Electron microscopy of

FCM tissue reveals abnormlities in the basal lamina of muscle and
brain (Ishii et al., 1997).

There are at least two other muscular dystrophies that commonly

involve the CNS. Many patients with one form of congenital muscular

dystrophy exhibit abnormalities of white matter, a slowing of motor

nerve conduction velocities, and delayed somatosensory evoked
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potentials. The genetic mutation that causes this type of muscular

dystrophy occurs in the alpha-2 chain of laminin-2. As mentioned,

laminin-2 is a dystrophin associated protein due to the binding of the

alpha-2 chain to a-dystroglycan. Individuals with Walker-Warberg

syndrome may display severe CNS abrrations such as a cobblestone-
appearing cortex and cerebellar hypoplasia, and eye abnormalities

including retinal dysplasia (Bonnem et al., 1996). Muscle biopsies
from two Walker-Warberg patients exibit decreased imunostaining for
laminin alpha-2 chain and ~-dystroglycan (Kanoff et al., 1998). The
genetic basis of Walker-Warberg syndrome has not been identified.

Since its level of expression is affected in the above mentioned

disorders, dystroglycan is imlicated in the CNS abnormalities
associated with these disease. To determine the role of dystroglycan and

its associated proteins the CNS however, the distribution of these

proteins in the brain must first be detailed.

2 . 2 . 3 EXDress ion of dvs trocr l vcan and associated Droteins in the retina
The retina provides a useful window through which to begin an

examination of dystroglycan in the CNS. Dystroglycan rn is expressed
by photoreceptors and retinal ganglion cells. a- and ~-dystroglycan are
found in the outer plexiform layer (OPL) of the retina, along with short

dystrophin isoforms (DP240, DP140 and DP71) (Ueda et al., 1998). In
irnunostained mdx retina, the expression of a- and ~-dystroglycan and a
dystrophin isofor. in the photoreceptor synaptic memrane (OPL) is
unaffected. Additionally, mdx ERGs are normal (Montanaro et al., 1995).
In bovine retina, these proteins localize to the intracavital processes

of the photoreceptor that form the lateral boundary of the synaptic

cavity, distal from the synaptic vesicles but adjacent to the dendritic

ending of the bipolar cell, indicating a presynaptic localization. In

contrast, no irnunostaining for ~-dystroglycan or dystrophin is observed

at the postsynaptic triad (Figure 4). Agrin, which has been detected in
the chicken retina OPL (Kroger et al., 1996), may participate in a

dystroglycan-associated complex as well. It is likely that dystroglycan
and its traditionally associated proteins are involved in healthy



synaptic transmission between photoreceptor cells and bipolar cells in

the retina. (Schmitz and Drenckhah, 1997; Ueda et al., 1998).
Disruption of this complex may cause the ERG abnormalities seen in

DMD patients. A C-terminal missense mutation in the dystrophin gene

(cysteine 3340) has been identified in a DMD patient who exibits mental
retardation and abnorml ERG. This mutation, which is in the region of
dystrophin that binds ~-dystroglycan, causes decreased levels of

dystrophin in all tissues, and a concomitant decrease in the level of ~-

dystroglycan staining in muscle. The phenotype of this patient suggests

that a dystroglycan-dystrophin association is required for dystrophin to

function properly in muscle, retina, and brain (Lenk et al., 1996). A

causative role for this association could be shown by careful comparison

of the behavioral and biochemical characteristics of a mice genetically

engineered to express dystrophin defective only in its ~-dystroglycan
binding domain. An understanding of the exact role of the dystrophin and

dystroglycan association in mental retardation and abnormal retinal

function will require a deeper understanding of this relationship in the

heal thy CNS.

4 E ression of stro can and associated roteins in the brain

There is a significant level of dystrophin expression in the

healthy brain. In the hippocampus, pyramidal cells express dystrophin

whereas granule cells of the dentate gys do not. Throughout the
cerebral and cerebellar cortex, dystrophin imunoreactivity is localized
almost exclusively in neurons (Lidov, 1996). Surprisingly, dystroglycan
expression in brain does not match the pattern of dystrophin expression.

In situ hybridization studies show that dystroglycan mR does
colocalize with dystrophin rn in hippocampus, dentate gys, olfactory
bulb and cerebellar Purkinje neurons, but no dystroglycan message is

detectable in the cerebral cortex, a region in which significant amounts

of dystrophin rn and protein are observed. In contrast, significant
dystroglycan rn appears in neurons in the lateral septal nucleus of
the thalamus, where no dystrophin mR is observed (Gorecki et al.,
1994) .



Based on what is known about dystroglycan at the NM, one would
expect dystroglycan to link agrin to utrophin or PYCT+dystrobrevin at

the central synapse. While neurons do express utrophin, glial cultures

express significantly more (Khurana et al., 1992), and utrophin is
absent from central synapses. It appears that utrophin and dystroglycan

interact not at synapses but at the blood-brain interface. Utrophin, ~-

dystroglycan, and laminin imunoreactivities are found along brain-

penetrating blood vessels and the pial surface (Lidov, 1996). In
particular, both ~-dystroglycan and utrophin localize to the

perivascular endfeet of glial cells, and a-dystroglycan associates with

the basement memrane of brain blood vessels (Khurana et al., 1992; Tian
et al., 1996). Agrin is found associated with brain microvasculature as

well. In the cerebellum at least, dystroglycan appears to link laminin-

and utrophin, forming a complex that participates in the normal

maintenance of the blood-brain barrier (Figure 5) (Tian et al., 1996).

The cell-cell contact of the central synapse incorporates

dystrophin and not utrophin. Dystrophin immunostaining appears in a

punctate pattern around the cell bodies and along the dendrites of

cerebral cortical cells and cerebellar Purkinje cells (Lidov, 1996).
Unlike in the photoreceptors of the OPL, dystrophin is associated with

the postsynaptic specializations of cortical neurons (Lidov et al.,
1993) and is concentrated in mouse and human brain postsynaptic density

fractions (Kim et al., 1992). a-dystroglycan immunoreactivity appears

in a similar pattern on the surface of Purkinje cell bodies, dendrites,

and dendritic spines (Smalheiser and Kim, 1995; Tian et al., 1996).

Surprisingly, ~-dystroglycan immunoreactivity is not detected in these

localizations (Lidov, 1996). In no other region is a-dystroglycan
without p-dystroglycan (Figure 6).

In the periphery, agrin is made by both muscle cells and motor

neurons. Neurons produce the agrin (4 , 8), agrin (4, 11), and agrin (4 , 19 )
splice forms, which are secreted into the extracellular matrix at the

NM. In cultured chick my tubs , neuronal agrin possess much more

clustering AChR activity than muscle-produced agrin(o, O) and binds a-
dystroglycan with higher affinity (O' Toole et al., 1996). In the brain,



large amounts of agrin are made by neurons and glia and are secreted

into extracellular matrix. Neuronal-type agrin appears to bind to

cultured hippocampal neurons at synaptic sites. In contrast, other agrin

isoform do not demonstrate synapse-specific binding sites (David Wells,
Brown University). Unfortunately, the identity of these binding sites

has not yet been determined.

Thus, in some areas, brain dystroglycan continues to be involved

in linking the extracellular matrix to the cytoskeleton. At the blood-

brain barrier for example, a- and ~-dystroglycan .colocalize with
utrophin and laminin. In contrast, there appear to be brain regions in

which dystroglycan does not colocalize with its usual partners. The

presence of dystrophin and a-dystroglycan, and the absence of

detectable dystroglycan, in synapse-rich regions is quite remarkable,

and difficult to accept. Intrigued, I undertook a deeper examination of

dystroglycan s brain distribution, hoping to reconcile dystroglycan '

nontraditional arrangement at central synapses.



Methods

Northern blot hybridization
The 32P- labeled dystroglycan oligonucleotide probes (probe1 and

probe3) were synthesized by PCR using the dystroglycan clone DNI22

(provided by Yiu-mo Chan, Kunel Lab) as template and the following

primer pairs.
probel : Fl=GACTGCGACTCCAAGCCCCC R1=GGCTGTAGGGGGCATI
probe3 : F3 =AGCCCCCACCGCCCTTACAGTA R3=GGCATAGGAGGAGGTGACCG

The human Multiple Tissue Northern Blots 
(MTj CIon tech; Palo

Alto, CA) were prehybridized in ExressHyb for 30 minutes at 68 C. The

probe (probe1 or probe3) was denatured at 9S C, diluted in ExressHyb,

and incubated with the blot for 1. 5 hours at 68 C. After hybridization,

the blot was washed extensively; the most stringent wash performed was

lX SSC, 0. 1% SDS, at SSoC for 40 minutes. Probe hybridization was
analyzed by autoradiography.

Brain cDNA Library Screen and DNA sequencing
A random primed, rat hippocamus cDNA library constructed in the

vector Agt11 (Clontech) was plated and screened as per manufacturer

protocol. Screening by hybridization was performed first for probe1.

Positively hybridizing phage were plaque purified, and rescreened by

hybridization with probe3. PCR with Agtl1 primers was then used to

determine the insert length of phage that hybridized positively with

probe3. Each of the unique phage inserts was then sequenced at the

Children s Hospital/HHI sequencing facility (Boston, MA). Sequences
were analyzed using the software Sequencher.

Brain Subcellular Fractions
Postsynaptic density (PSD) fractions were prepared using a

modification of the procedures of Carlin and Dosereci (Carlin et al.,
1980; Dosereci and Reese, 1993). Frozen rodent brains were obtained as

follows: mdx mice and agel sex matched controls were obtained from the
Jackson Laboratory, frozen 3CV mice brain and muscle tissue was a



generous gift from Jeff Chamerlain, University of Michigan (Cox et al.
1993), and frozen adult rat brains were obtained from Pel-Freeze. Brain

tissue was homogenized with a motor operated, tight-fitting, Teflon-
glass homogenizer in homogenization solution (0. 32M sucrose, 1 mM MgC12,
1 mg/ml leupeptin). The homogenized tissue was centrifuged 1400 x for
10 minutes. The supernatant (Sl) was saved and the pellet was
resuspended, rehomogenized, centrifuged at 710 x 

for 10 minutes, and
the supernatant (S2) was collected and pooled with above (Sl). This
pooled material was spun 710 x for 10 minutes and this supernatant is

referred to as the "homogenate fraction " (H). The homogenate was
centrifuged 13800 x for 10 minutes, and the resulting pellet was

resuspended in O. 32M sucrose, and layered onto a discontinuous sucrose

gradient (1. 2/1. 0/0. 85 M sucrose). Following centrifugation at 82, 500 x
for 2 hours, the synaptosome-containing fraction was collected from

the 1. 2/1. 0 M sucrose interface. This material was resuspended in 1 mM
HEPES, pH 7. 4, and is referred to as the " synaptosomal fraction " (SX).
This was diluted with 1 volume of 1% Triton-X 100, 0. 32 M sucrose and
stirred on ice for 15 minutes. This solution was centrifuged 36,

000 x 

for 30 minutes. The Triton-insoluble pellet was resuspended in 0. 32M
sucrose with a Dounce homogenizer. This sample was layered onto a

discontinuous sucrose gradient (2. 1/1. 5/1. 0M). The gradients were
centrifuged at 200, 000 x for 30 minutes. The fraction enriched with

postsynaptic densities was collected from the 2. 1/1. 5M interface and
diluted with 1 mM HEPES, pH 7. 4. This fraction was then diluted with one

volume of 1% Tri ton-X 100, 150 mM KCI, and layered onto a 2. 1 M sucrose
cushion and spun 200, 000 x for 30 minutes. The material at the

interface was collected, resuspended in 20 mM HEPES, pH 7.
4, and further

purified on a final 2. 1M sucrose cushion. The resulting " PSD fraction
(PSDs) was resuspended in 20% glycerol and stored at -80

C. The absence
of presynaptic contaminants and presence of PSD proteins in the PSD

fraction was confirmed by western blotting with antibodies to 
NMAR1,

aCaMII, and synaptophysin (Wu et al., 1998).
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Antibodies and Western Blotting
Ab98 antiseru was raised by immunizing a rabbit with the peptide

KAPLPPPEYPSQ (a sequence in the cytosolic domain of dystroglycan that
was used for the production of antibody PA3a (Yoshida et al., 1993) and

affinity purified (Quality Controlled Biochemicals, Hopkinton, MA). The
anti-peptide antiseru 12031C to ~-dystroglycan was a generous gift of
L. Kunkel. The anti-~-dystroglycan and anti-dystrophin monoclonal

antibodies NCL-43DAG and DYS2, respectively, were obtained from

Novocastra. DYS2 recognizes full-length dystrophin, as well as short

forms of dystrophin. The anti-aCaMII (#6G9) and anti-synaptophysin
monoclonal antibodies were obtained from Boehringer Maneim, the anti-
NMAR1 monoclonal antibody was obtained from Pharmingen, and the
polyclonal anti-mouse CPEB antibody was obtained from Joel Richter,

University of Massachusetts, Worcester (Wu et al., 1998).

Protein concentrations were determined with the BCA protein assay

(Pierce , Rockford, IL), using bovine seru albumin (BSA) as a standard.
Equal quantities of muscle lysate (provided by Helene Sadoulet-Puccio,
Kunkel Lab), homogenate, synaptosomal, and PSD proteins were separated

by SDS-PAGE, and transferred onto nitrocellulose. The primry antibodies
used are described above. Species specific alkaline phosphatase-

conjugated goat anti-rabbit or anti-mouse IgG (Boehringer Maneim) was
used as the secondary antibody, and the bound antibody was visualized

using the BCIP/NBT substrate system (Promega, Madison, WI). For Western
blotting with DYS2 , horseradish peroxidase-conjugated anti-mouse IgG was
used as the secondary and the immunoreacti vi ty was visualized by ECL
chemiluminescence with equivalent exosures (Amersham).

Ligand Overlay Assay

Nitrocellulose blots of homogenate, synaptosome, and PSD proteins

were blocked for 4 hours at 4 C in Hanks Buffered Saline Solution, 5%

nonfat dr milk, 1% bovine seru albumin, 10% horse seru, pH 7. 4. Blots
were incubated overnight at 4 C in the presence of 1 ro EGTA or 1 ro

++ and heparin (1 mg/ml) or antibody IIH6 (1:5 , gift from Kevin
Campbell (Ervasti and Campbell, 1991)) where indicated. Recombinant rat
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agrin was collected from the conditioned medium from COS cells

transfected with cDNA clones encoding rat agrin(4, 8) or agrin(o, 0).
Blots were washed and incubated with a second layer containing 1 g/ml
iodinated (1251) (IODOEN, Pierce) anti-agrin monoclonal antibody 131
(Arersham) (12SI-MA-131) for 30 minutes. Blots were then washed and

dried, and agrin binding polypeptides were visualized by

autoradiography.

Hippocampal neuron cultures and immunohistochemistry
Low density cultures were created as previously described (Goslin

and Banker, 1991). Briefly, the hippocampus was removed from E18 rat

emryos, trysinized (0. 25%), dissociated by trituration, and plated
onto poly- lysine (1 mg/ml) coated glass coverslips in modified Eagle I s

medium (ME, Gibco) with 10% horse seru for 4 hours. The coverslips
were then transferred to dishes containing a monolayer of glial cells in

growth medium consisting of ME, ovalbumin (100 g/ml) pyrvate (1.
g/ml), glucose (0. 6%) and N2 supplement. The culture medium was changed

weekly. After 19-21 days, the cells were fixed with 4% paraformaldehyde

at 37 C for 20 minutes, covered with saponin (0. 05%) for 5 minutes and
then incubated in blocking solution (ME, 10% horse seru, 1% goat
seru, 1% BSA). The primary antibodies, mouse anti-synaptophysin
(Boehringer), NCL-43DAG (Novocastra), were applied overnight at 4 C and

species specific secondary antibodies, directly conjugated to either

FITC (Caltag) or Cy3 (Jackson Laboratory), were applied for 1 hour at
room temperature. The covers lips were mounted onto glass slides with
Citifluor (Ted Pella).

Neuron and glia cell lysates

Neuron and glia cultures were plated at high density (300, 000
cells/10 cm culture dish), and grown as described above. After 1 week in

culture, cells from 3-4 dishes were rinsed in 16 ro HEPES, pH 7. 4, lysed

for 20 minutes at 4 C in 20 ro HEPES, pH 7. 4, 1% Triton X-100, 150 ro

NaCi, 0. g/ml leupeptin, 1 ro PMSF, and collected by scraping.

Collected material was homogenized (10 strokes) in a small Dounce



homogenizer. Cell homogenate was spun at 36, 000 x for 45 minutes and

supernatant (trichloroacetic acid precipitate) and pellet were analyzed

by western blotting.



Results

In muscle, dystroglycan is both a memer of the DAPC and a 
protein with high affinity for agrin and laminin. At the presynaptic

memrane of photoreceptors in retina, dystroglycan and dystrophin
colocalize. Since dystrophin is also found concentrated at central

synapses, I hypothesized that brain dystroglycan or a dystroglycan- like
protein colocalizes with dystrophin at these synapses. I therefore

initiated a careful examination of dystroglycan ' s expression in the
brain and at synapses. I first assayed the exression of the
dystroglycan transcript (s) in various brain regions and pursued a
potential dystroglycan splice variant. Next, I established the

distribution of a- and dystroglycan in norml brain biochemical
fractions enriched for synaptic proteins, and assessed the effects of

dystrophic genotypes on dystroglycan ' s synaptic fractionation profile.
Lastly, I determined the pattern of dystroglycan expression in cultured

glial and hippocampal neuronal cells.

1 Distribution of dystroglycan mRNAs in regions of brain

I began my investigation of brain dystroglycan by determining the

distribution of dystroglycan transcripts among various regions of the

brain. I screened a human brain region Northern blot with two DNA

fragments, probe 1 and probe3, that corresponded to the proximal and

distal C-terminal regions of dystroglycan, respectively (Figure 7). Both

probes hybridized to an approximtely 6 kb rn that was highly
exressed in all brain regions. Hybridization with probe1, but not with
probe3, revealed other transcripts. A larger transcript (over 10 kb),
which was expressed in cerebral cortex as well as occipital and frontal

lobe, represented a potential splice variant of dystroglycan that lacked

the sequence encoding the dystroglycan C-terminus.

This observation suggested that in brain there is at least one

transcript in addition to dystr?glycan that contains sequence similar or
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identical to probe1 but not probe3. To pursue such brain-specific,

potentially dystroglycan-related transcripts, I used both probes to

screen a rat brain (hippocampal) library. By pursuing only plaques that

were positive for probe1 and negative for probe3, I avoided many

standard dystroglycan cDNAs that were positive for both dystroglycan

probes.
The proximal probel hybridized to approximtely SO plaques. I

plaque purified these, and found that the distal probe3 did not

hybridize to approximately 20 of the 49 probe1-positive phage. I

determined that 15 of these phage contained uniquely-sized cDNA inserts

and each was sequenced. I compared all of the cDNA insert sequences to

the published mouse dystroglycan cDNA (DAG1). With the exception of one

exceptionally large insert (4. 5 kb), which contained genomic sequence in
addition to dystroglycan coding sequence, there was complete sequence

identity to the published dystroglycan cDNA. Since many of the sequences

ended abruptly just upstream of the region corresponding to the distal

probe3, it appeared that in the course of the library s construction

this region of the dystroglycan cDNAs was disproportionately targeted

for cleavage. None of the cDNA fragments that I isolated contained

sequence that diverged from the dystroglycan sequence (Figure 8).

-- \

Y The 
Northern analysis verified the extensive dystroglycan

expression in all regions of hum brain. The extensive library screen
however furnished no evidence of alternative splicing in dystroglycan ' s

C-terminal region.

Distribution of dystroglycan and an inuunologically
related protein

Since dystroglycan ' s associations in muscle and retina suggested
that brain dystroglycan is present at central synapses , I then focused

my investigation on the potential synaptic distribution of brain

dystroglycan.



1 SvnaDtic Subcellular Fractions

Like the NM, central synapses have elaborate postsynaptic
apparatuses. At central synapses, just below the postsynaptic memrane,
is a dense parcel of proteins, the postsynaptic density (PSD). The

position and make-up of this neuronal specialization suggests that it is

important in the development, function, and plasticity of the synapse

(see Chapter II) .
Biochemical preparations that are enriched for this synaptic

machinery have proven valuable for investigating the synaptic structure.

Many molecules that have a role in synaptic function are concentrated in

preparations that successively enrich for synaptic memranes
(synaptosomes) and postsynaptic densities (PSDs) (Figure 9). To

determine if brain dystroglycan associates with synaptic components, I

biochemically prepared brain homogenate, synaptosome, and PSD-enriched
fractions and probed western blots of these subcellular fraction

proteins for a- and ~-dystroglycan.

2 Dvstrocrlvcan in SvnaDtic Subcellular Fractions
To first follow the subcellular fractionation profile of a-

dystroglycan I employed a well-described method for a-dystroglycan
detection, the ligand blot overlay (Deyst et al., 1995). I incubated a

blot of subcellular fraction proteins with in vitro produced rat agrin,

and then detected the agrin, specifically bound to a-dystroglycan, with
a radiolabeled anti-agrin monoclonal antibody.

I found that a-dystroglycan was present in brain homogenate and

was concentrated in the synaptosome fraction. In addition, a small

population of a-dystroglycan was detectable in the PSD fraction. The
agrin-binding properties of rat brain a-dystroglycan appeared to mirror
those of Tor.edo electric organ a-dystroglycan (Bowe et al., 1994;

Toole et al., 1996): the binding of the isoform agrin ( 0 , 0) exceeded
the binding of agrin(4, 8) (Figure IDA). a-dystroglycan s agrin-binding
capacity required the presence of Ca , was increased in the presence of

heparin, and was inhibited by the anti-a-dystroglycan antibody IIH6

(not shown).



Then, using standard western blotting techniques, I probed similar

blots of subcellular fractions with antibodies to ~-dystroglycan. Like

its associate a-dystroglycan, ~-dystroglycan was present in brain

homogenate and was concentrated in the synaptosomal fraction. This

pattern was observed in subcellular fractions isolated from rat cortex,
hippocampus, and cerebellum. In contrast, ~-dystroglycan was not

detected in the PSD fraction (Figure 10B, C).
One ~-dystroglycan antiseru, Ab98, recognized not only ~-

dys troglycan but also a pair of polypeptides of 58 kDa and 53 kDa that
were selectively enriched in PSD fractions from all brain regions. These

PSD-enriched polypeptides were designated pS8/S3. Antibodies NCL-
43DAG

and 12031C revealed a similar distribution of ~-dystroglycan in these

fractions, but these reagents bound neither pS8 nor p53 (not shown). The

presence of dystrophin and a-dystroglycan in the PSD fraction, and the

absence of detectable ~-dystroglycan in the PSD fraction, made these ~-

dystroglycan- like proteins intriguing.

stro can in s tic subcellular fractions from brains of mdx
and 3CV mutant mice

Whereas full-length dystrophin is concentrated in the PSD

fraction, I found that ~-dystroglycan was concentrated in the

synaptosome fraction. Interestingly, I determined that the brain-

specific short dystrophin isoform DP71 fractionated in a pattern like

that of ~-dystroglycan (Figure 11). In DMD mdx, and 3CV affected
muscle, the exression of the DAPC is diminished, presumly in response
to the absence of dystrophin. To assess the response of brain

dystroglycan to the absence of full-length dystrophin and to the absence

of all short dystrophin isoforms, I performed the exeriments described
above using subcellular fractions prepared from 

mdx and 3CV mice.
It has been shown that levels of ~-dystroglycan are unaffected in

mdx brain (Ibraghimov et al., 1992). To confirm this, I demonstrated
that levels of a- and ~-dystroglycan were normal in synaptosomes

prepared from mdx mice. Others have shown this as well (Greenberg et
al., 1996). Before examining the effect of the 

3CV genotype on the



expression of brain dystroglycan, I established that the synaptic

markers aCaMII and NMAR1 were unaffected in 3CV fractions, and

verified that DP71 was absent from 3CV mice subellular fractions (not
shown) .

Then, using ligand overlay exeriments, I found that the level of
dystroglycan was slightly lower in 

3CV brain as compared to mdx 

unaffected mice. By probing western blots with

antibody NCL-43DAG, I determined that levels of

the ~-dystroglycan
~-dystroglycan in the

(Figure 12). Greenbergbrains of 3CV mice were substantially decreased

et al. have obtained similar results (Greenberg et al., 1996). In

contrast, levels of pS8/53 were unaffected in 
mdx or 3CV mice,

suggesting that pS8/S3 does not interact with any form of dystrophin

(not shown).

The results from the mdx subcellular fraction studies suggest that

no population of a- or p-dystroglycan functionally interacts with full

length dystrophin in mouse brain. In contrast, the parallel distribution

and decrease of DP71 and a/~- dystroglycan in the fractions from 3CV
mouse brain suggests that, unlike in muscle, a population of a-

dystroglycan and a majority of ~-dystroglycan are associated with DP71

and/ or other short forms of dystrophin.

Dystroglycan in cultured neurons and glia

The concentration of the a- and ~-dystroglycan in the synaptosomal

fraction suggests that they cofractionate with synaptic memranes and
may be associated with synapses in vivo. Indeed, immunofluorescent

staining of cultured hippocamal neurons with an antibody directed
against brain a-dystroglycan (cranin) revealed a striking pattern of

staining that colocalizes with synapses (not shown; David Wells, Brown

University) .
The distribution of ~-dystroglycan did not parallel that of a-

dys troglycan however. Immunofluorescent staining with a b-dystroglycan-
specific monoclonal antibody revealed ~-dystroglycan imunoreactivity



throughout glia and hippocampal neurons in a pattern that was not

synapse-specific (Figure 13A). To corroborate this finding, I used
Western blotting to demonstrate large quantities of ~-dystroglycan in
cell lysates from cultured glia (not shown) and hippocamal neurons
(Figure 13B).

4 p58/53 is not a ~-dystroglycan-related protein

In contrast to ~-dystroglycan, pS8/S3 was not detected in glial or

hippocampal neuron lysates. However, pS8/S3 was found associated with

the neuronal detergent insoluble pellet (Figure 13C), while ~-

dystroglycanwas not (riot shown). Interestingly, pS8/S3 was found
specifically concentrated at synapses in the hippocampal neuron

cul tures .

amoun t

Resolved to determine if pS8/53 was a ~-dystroglycan relative, I

the identity of this polypeptide pair. I purified a sufficient

of p58/53 for MADI-TOF analysis and peptide microsequencing.
sought

Database searches with these data revealed that pS8/S3 is a known

protein, Insulin Receptor Tyosine Kinase Substrate pS8/S3, and its cDNA
has been cloned (IRSpS3) (see Chapter II). Sequence analysis exposed a
region of similarly between IRSpS8/53 and ~-dystroglycan that accounts

for their immunologic relatedness. In addition, both proteins possess

proline-rich regions that probably represent WW binding domains. This is
the extent of the similarity between IRSpS8/S3 and ~ dystroglycan,
however.



Discussion

The dystroglycan transcript, which is exressed throughout the
brain, encodes a single propeptide from which both a- and ~-dystroglycan
derive. Although a- and ~-dystroglycan are linked at the level of

translation, it appears that once cleaved into distinct proteins, their

association is customary but not compulsory. As a unit, a/~-dystroglycan
link matrix molecules to dystrophin-like cytoskeletal proteins. As a

complex or individually, the dystroglycans may have additional

associations .

The function of dystroglycan in muscle has been inferred by both

its protein-protein associations , and the cellular consequences of its

decreased expression in disease environments. For the most part,

dystroglycan I s protein associations are similar in brain and in muscle:
dystroglycan binds utrophin, dystrophin, and short dystrophin

isoforms, while its associate, a-dystroglycan, binds types of laminin

or agrin. Thus, one of dystroglycan ' s main biologic functions in muscle
and in some areas of the brain is to anchor cells to the basement

membrane. In many muscular dystrophies, the secondary loss of

dystroglycan contributes to the breakdown of the muscle cell. Thus,

dystroglycan is believed to participate in maintaining the integrity of

the muscle cell memrane. The CNS consequence of these disease states is
more complex, however. To understand the role of dystroglycan in

diseased brains, the associations and function of dystroglycan in the

healthy brain must first be understood.
At some brain sites, including the blood-brain barrier,

dystroglycan maintains typical associations and performs its usual

function, linking the cellular cytoskeleton to the extracellular matrix.

In retina, at the photoreceptor s presynaptic memrane, a/ dystroglycan
and a form of dystrophin colocalize, and appear to form a complex. At

central synapses however, traditional dystroglycan associations may be

abandoned. Here, dystrophin is concentrated at the postsynaptic

apparatus, and a-dystroglycan colocalizes to synapses as well , in the

absence of detectable ~-dystroglycan. These results indicate that at



brain synapses, neither a-dystroglycan nor full- length dystrophin is
associated with ~-dystroglycan. This atypical situation suggests that a-

and ~-dystroglycan may have functions distinct from their traditional

cell-matrix union work and that there may be dystroglycan associations
that have yet to be uncovered.

A variety of experimental strategies can be used to obtain further

information about dystroglycan ' s role in the brain. To directly assay
the physiologic role of dystroglycan in brain, the new technology of

tissue specific knockout animals is obviously attractive. Using the Cre

recombinase loxP system, with tissue specific, inducible promoters,

transgenic mice can be created that overexpress or underexpress a chosen

gene in a selected tissue during a given time. Careful examination of

the cells, tissue, and behavior of an animal whose brain lacks

dystroglycan is the most direct way to assess the effects of

dystroglycan on CNS development as well as during adulthood. Though this

method is enticing, it is not yet well tested, is labor-intensive, and
may yield nonviable pups or animals without an identifiable mutant

phenotype. Alternatively or additionally, more traditional biochemical,

immunochemical, and molecular methods can be used to establish further

insight into the role of dystroglycan in the brain.

1 A dystroglycan-utrophin complex at the blood-brain
barrier

At the blood-brain barrier, a- and ~-dystroglycan appear to
function in cell-matrix adhesion, linking glial utrophin to larinin in

the epithelial extracellular matrix. It appears that a "utrophin
associated protein complex" helps to enforce the blood-brain barrier.
One would thus predict a leaky blood-brain boundary in individuals with

the congenital muscular dystrophy caused by mutations in the gene for

the alpha-2 chain of laminin. This hypothesis could be directly tested

by analyzing the integrity of the blood-brain interface in the dy mouse,
which carries a mutation in the gene for the alpha-2 chain of laminin.



since there are many types of laminin, it is likely that other laminins

can partially compensate for the loss of the alpha-2 chain. Thus, in

individuals or mice that lack alpha-2 laminin, the matrix defects may be

subtle. The phenotype exhibited by patients with abnormal expression of

alpha-2 chain indicates that the role of this larinin in brain is
complex.

2 Dystroglycan and DP71: A brain "DAPC"?

The above-mentioned results from experiments using tissue from mdx
and 3CV mice indicate that a population of a- and dystroglycan are
associated with one or more of the short form of dystrophin. Mice
lacking full- length dystrophin (mdx) exhibit normal levels of brain

dystroglycan, whereas mice with diminished expression of all forms of

dystrophin (3CV exhibit a decreased expression of dystroglycan. The

retention of dystroglycan in mdx mice may be partially explained by a

compensation for full- length dystrophin by short dystrophin isoforms.

Alternatively, it may be that dystroglycan does not associate with any

of the full-length dystrophin in brain, and the major dystroglycan-
associated cytoskeletal components are utrophin and short dystrophins

such as DP71.

Indeed, new results indicate that the 3CV mouse is a more

appropriate model than classical mdx for studying the CNS effects of

DMD. This is not surprising in light of the observation that, unlike DMD

patients and 3CV mice, mdx mice have normal ERGs. New data shows that

microsomes isolated from DMD affected brains exhibit greatly reduced

levels of ~-dystroglycan (Finn et al., 1998). This result parallels the
finding that 3CV synaptosomes have decreased levels of ~-dystroglycan
and a-dystroglycan. These results implicate dystroglycan I s relationship
with short dystrophins in the cognitive impairment seen in DMD. One
would thus expect 3CV mice to suffer from mild " cognitive" deficits.
However, no cerebral abnormalities have been identified to date.

In order to pursue the existence of this putative dystroglycan-

DP71 complex in brain, the brain regions and cell types in which the



presumed dystroglycan-DP71 complex exists must be established. In situ

hybridization studies show that DP71 mR is specifically expressed in
the granule cells of the dentate gys in the hippocampus, as well as in
olfactory bulb, cerebral cortex, and the CA-3 region of the hippocampus

(Gorecki and Barnard, 1995). Thus, DP71 and dystroglycan transcripts are

found together in at least the dentate gys and olfactory bulb. Do the
patterns of protein expression overlap as well? Although standard

immunofluorescence studies would be well suited to this task,
distinguishing amongst the dystrophin isoforms is, at present,

difficult. One way to simplify this investigation would be to utilize

tissue from mdx mice. Dystroglycan levels are unaffected in these

mutants and, since full-length dystrophin is not expressed, antibodies

directed against the C-terminus of dystrophin will identify only short

forms. SDS-PAGE can be used to subsequently determine the relative

isoform exression in the region or cell types studied.

Another piece of evidence supporting the existence of a

dystroglycan-DP71 complex exists. When solubilized brain samples are run

on sucrose gradients, the majority of the DP71 and ~-dystroglycan
cofractionate, whereas in liver samples , only a fraction of the DP71

co fractionates with p-dystroglycan (Greenberg et al., 1996). Despite the
likelihood of a physical interaction between p-dystroglycan and DP71,

coimmunoprecipitation attempts have failed (Greenberg et al. , 1996).
Upon identification of cell types that express both dystroglycan and

DP71, that cultures of these or similar cells can be examined.

Successful coimmunoprecipitation might be accomplished from sources

enriched for these two molecules, such as synaptosomes or an appropriate

cell lysate. It is possible that ~-dystroglycan associates with other

short forms of dystrophin such as DP140, instead of or in addition to

DP71. As mentioned, the antibodies that recognize the C-terminus of

dystrophin canot distinguish amongst the short isoforms. Thus,
isolation of a native dystroglycan-dystrophin isoform complex would

verify which of the isoforms interacts with dystroglycan, since the

molecular weight of the dystrophin form can be determined by SDS-PAGE.

Methods for the isolation of such a complex are discussed below.



What is the role of a dystroglycan-DP71 complex in the brain?

Although the absence of short dystrophins in causes abnorml retinal
findings, in 3CV no additional CNS dysfunctions have been identified.

When this brain complex is disrupted in 
3CV, what is the consequence?

These mice must be carefully examined and compared to 
mdx and norml

mice in behavioral and learning paradigms. In addition, the subcellular
expression of dystroglycan and DP71 (DP140) in norml and affected cells
must be examined. Primary neuronal and glial cultures from dystrophin

mutant mice (mdx and 3CV or from their heterozygous litter mates (which

express both dystrophin positive and negative cells) can be generated.

Using this system, the glial as well as synaptic and nonsynaptic

expression of a- and dystroglycan, full-length dystrophin, and short

dystrophin isoforms can be compared in normal and affected cells.

Does this putative dystroglycan-DP71 complex represent the core of

a brain DAPC? Although one expects the DAPC to be recapitulated

centrally, such a complex has not yet been isolated from brain.

Standardly, the DAPC is isolated from muscle extracts using affinity

chromatography (WGA) methods. Presumably, these techniques can be
optimized to isolate dystroglycan-DP71 complexes from brain fractions

such as synaptosomes, or from cell cultures of neurons or glial cells.

Similarly, immunoaffinity chromatography might yield a non denatured

dystroglycan-dystrophin isoform complex. Successful biochemical
isolation of a dystroglycan-DP71 complex from brain would indicate

whether or not a brain DAPC that resemles the muscle DAPC exists.
Indeed, the identification of any brain proteins that associate with

dystroglycan and DP71 would shed light on this current question.

It may be that the complex formed by dystroglycan-DP71 and

associated proteins canot withstand biochemical isolation. If this is
the case, then associated proteins must be identified individually.

Overlay methods are commonly used to successfully identify binding

proteins for a protein of interest. It is often difficult to uncover

interacting brain proteins because of the complexity of this protein

source. On a standard protein blot of brain homogenate, many bands will

appear to bind a protein such as dystrophin. To successfully identify



brain proteins that specifically interact with dystroglycans or

dystrophins, the complexity of the protein source must be lessened. One

way to achieve this end employs standard biochemcal techniques.
Synaptosomes represent a brain protein source that is likely to be

concentrated for proteins which interact with synaptic dystrophin forms.

The powerful separation technique of two dimensional (2D) gel
electrophoresis can then be used to increase the electrophoretic

resolution of the synaptosome fraction (see chapter II). One might

successfully identify brain DAPC memers by probing a blot of
synaptosomes, separated by 2D gel electrophoresis, for protein spots

which bind dystroglycan and/or form of dystrophin. since 2D separated
proteins have a characteristic shape and isoelectric mobility, binding

proteins exposed in this way would be readily identified.

Alternatively, valuable information about dystroglycan ' s protein-
protein interactions might be obtained through the use of molecular

methods. The yeast two hybrid assay has been used extensively by many

labs to screen muscle cDNA libraries for interactions among DAPC

proteins. In this case, one would screen a brain cDNA library for

protein fragments that interact with regions of dystroglycan and/or

DP71. A cDNA that interacts with one of these "baits " may represent a

novel protein, or may encode a brain protein that had not yet been

appreciated as a dystroglycan or DP71 binding partner. Identification of

dystrophin-DP71 associated proteins would provide valuable information

about the nature of this alliance.

Dystroglycan at central synapses

It is increasingly evident that in many regions of the CNS, a/~-

dystroglycan interacts with short forms of dystrophin, including DP240,

DP140, and DP71. In retina, this complex has been implicated in healthy

retinal synaptic transmission. In brain homogenate and synaptosomes,

there are substantial amounts of both dystroglycan and DP71, and a

similar complex is now thought to exist in vivo in some regions of the



brain. In the DMD and 3CV (but not mdx) genotypes, the level of brain

dystroglycan expression is affected, indicating that dystroglycan and

forms of dystrophin are likely to interact. Additionally, the CNS

component of many muscular dystrophies suggests a role for dystroglycan

in cognition. Dystroglycan appears to have many roles in the CNS. Of

these however, its role in neurons is the most mysterious.

Large amounts of ~-dystroglycan are produced by rat hippocampal

neurons in culture. Does neuronal dystroglycan have a role at synapses?

Indeed, dystroglycan appears to be engaged in atypical associations at

central synapses. Here, the localization, makeup, and perhaps function

of dystroglycan and its associated proteins is altered. The results

presented above show that at synapses, ~-dystroglycan is not detected,
while a-dystroglycan and full-length dystrophin are colocalized. One
surprising conclusion may be that synaptic a-dystroglycan does not

associate with ~-dystroglycan, and ~-dystroglycan does not associate

with full-length dystrophin. This would suggest that, individually, a-
and ~-dystroglycan may find alternate associations and have distinct

functions. The observation that a- and ~-dystroglycan do not coexist at

synapses must be validated with further investigation, since this is the

first instance in which a- and ~-dystroglycan are not found together. Is

the synapse site extraordinary, or are there other sites in which a-

and p-dystroglycan do not coexist? Often, evidence for the presence of

one dystroglycan species has been considered sufficient proof that the

other is present as well. Now, at all sites, both a- and ~-dystroglycan
must be accounted for before it is concluded that the two coexist.

What is the role of DAPs at synapses? In the healthy brain,

dystrophin is localized to the postsynaptic apparatus, and a-

dystroglycan colocalizes with dystrophin at synapses in vivo. First, the

role of dystrophin at synapses can be examined. In 
mdx mice, disruption

of full- length dystrophin expression may affect memory. At 
mdx synapses,

is dystrophin replaced by an alternate such as DP71 or utrophin? What

are the physical or functional consequences from the absence of

dystrophin s N-terminus in mdx? If compensation does occur, mice that

express no dystrophins (3CV) or neither dystrophin nor utrophin



(mdx/utrophin null) must be examined for functional synapses. To achieve

this, neurons from mutant mice can be grown in culture, and the

development of spines and the function of the synapses can be assayed.

Both a- and ~-dystroglycan are associated with the synaptosomal

subcellular fraction. At least two explanations for this finding must be

considered. High levels of ~-dystroglycan have been demonstrated in the

pia mater layer of the brain (see above). If memranous pial material
co-fractionates with synaptic memranes in the synaptosomal fraction
this subset of brain a-dystroglycan may be that associated with pial ~-

dystroglycan. This question could be answered by comparing the standard

synaptosome preparation to one that includes a simple filtering step to

trap the pial material.

Alternatively, ~-dystroglycan may be associate with a subset of a-

dystroglycan at a synaptic location. Interestingly, only a-dystroglycan
is concentrated at synapses in culture. This synaptic population of a-

dystroglycan may correspond to the small subpopulation of a-

dystroglycan that associates with the PSD fraction. What is the role of

the synaptic a-dystroglycan? There is not yet enough data to form a

convincing conclusion. Currently there is no evidence for an agrin

activated, brain specific kinase analogous to MuSK. However, blot

immobilized brain a-dystroglycan has the capacity to bind in vitro

expressed agrin(o, O) and agrin(4, 8). Interestingly, the pattern of a-
dystroglycan immunostaining on cultured hippocampal neurons overlaps the

pattern of agrin(4 8) binding sites, but not that of agrin(o, O) binding
sites. Demonstration of a physical or functional association between

neuronal agrin and a-dystroglycan has yet to be firmly established,

however.

In some way, a-dystroglycan is associated with the synaptic

memrane. Whether this association is pre- or postsynaptic could be
resolved with immuno-electron microscopy, as it was for dystrophin. More

importantly perhaps, is the question of whether or not synaptic a-

dystroglycan and dystrophin are functionally linked. Although there is

no apparent change in the level of a-dystroglycan expression in brains

from mice that lack dystrophin (mdx) , it may be that only a very small



population of a-dystroglycan associates with dystrophin. Thus, synapses
from these mutants must be assayed for the presence of a-dystroglycan.

If a-dystroglycan remains associated with the synapse in the

absence of dystrophin, there is little reason to suspect that the two

are physically linked. Otherwise, a fascinating question arises: what

links a-dystroglycan and dystrophin if not dystroglycan? The

successful isolation of a synaptic dystrophin complex or the

identification of new a-dystroglycan or dystrophin interacting proteins

might resolve this question. The C-terminus of dystrophin contains a WW

domain, a protein-protein interaction module. This region is distinct

from dystrophin ' s dystroglycan binding site. Dystrophin has a site
available for interaction with the proline-rich (WW binding) region of a

potential binding protein. To date, no proteins have been identified

that interact with dystrophin ' s WW domain. This region of dystrophin
therefore represents a potentially fruitful bait for the yeast two

hybrid assay.
Although a-dystroglycan and dystrophin are each associated with

synapses, a relationship between the two has not been established. If

there is a physical association, the mechanism by which this occurs

remains unknown; the traditional physical link, dystroglycan, is

missing at synapses. Could there be a ~-dystroglycan-like protein at
synapses? Seemingly not. The Northern analysis and a cDNA library screen

presented above provided no evidence for brain-specific splice forms of

dystroglycan. Two proteins that are immunologically related to ~-

dystroglycan have been identified in the PSD fraction. Mumery et al.
describe a 164 kDa protein in PSD fractions that is recognized by a ~-

dystroglycan antibody (Mumery et al., 1996). No further similarities

between the 164 kDa PSD polypeptide and dystroglycan have been shown

since, however. I have identified the PSD polypeptide pair, pS8/S3, that

is bound by our ~-dystroglycan antiseru and determned that it is
decidedly not a dystroglycan-like protein.



Novel dystroglycan associations

There may be dystroglycan binding partners that have yet to be

realized at synapses, as well as at nonsynaptic sites. One potential

dystroglycan associated protein may be fukutin, the product of the FCM
disease gene. In muscle, a functional association between dystroglycan

and fukutin is probable. Muscle levels of ~-dystroglycan and laminin

alpha-2 chain are reduced when fukutin is absent, and the basal lamina
surrounding the muscle is abnorml. Fukutin is expressed in brain too,
where the basal lamina of FCM brain is similarly disrupted (Hayashi et
al., 1993; Matsumura et al. , 1993).

If indeed an association between dystroglycan and this novel

protein is established in vitro and in vivo, a new role for dystroglycan

in muscle and brain may emerge. Antibodies specific for fukutin have not

yet been successfully generated. Once this tool is available, the

pattern of overlap between fukutin and dystroglycan expression can be

determined and perhaps a fukutin protein complex can be isolated. Then,
an examination of the effect of fukutin deficiency on dystroglycan

expression in brain may indicate a relationship between dystroglycan and

fukutin. The identification of any fukutin-associated proteins will

further our knowledge about how fukutin deficiency causes the CNS

abnormalities seen in FCM. The potential association between fukutin
and dystroglycan is intriguing. If dystroglycan-fukutin associations are

detected, the understanding of one of dystroglycan ' s roles in the brain
will advance significantly.

Conclusion

The functions of dystroglycan in the brain and at synapses remain

largely undiscovered. It seem likely that in the brain, alternative
associations occur among proteins known to interact with dystroglycan.

As information regarding the cellular and subcellular brain expression

profiles of proteins such as DAPC memers and agrin are obtained, the



functions of these proteins in the brain can be considered. Further

studies of disease phenotypes such as FCM should provide insights
concerning the function of affected gene products and their partners.

Brain specific dystroglycan knockouts are likely to provide functional

information as well. The presence of CNS pathologies in a variety of

muscular dystrophies, and the potential nontraditional associations of

dystroglycan in the brain and at synapses, suggest that an understanding

of dystroglycan ' s role in the brain will provide deep insights into
brain development and function.



Tables and Figures

1 Figure Legends

Figure 1. Dystroglycan
The dystroglycan coding sequence includes two exons separated by one

large intron. The dystroglycan mR is 5. 8 kb. The regions of the
transcript that correspond to the two DNA probes (probe1 and probe3)

used for the Northern blotting and cDNA library screen (discussed in

Results) are indicated. The dystroglycan transcript encodes a 97 kDa

precursor protein that undergoes posttranslational modifications

including cleavage and carbohydrate additions. a-dystroglycan contains
a short signal peptide and a mucin-like region in its midsection. Other

sites of potential glycosylation and glycosarinoglycan (GAG) additions

are indicated. dystroglycan ' s transmemrane region is noted. Within
its intracellular C-terminus are binding sites for rapsyn and

dystrophin. regions. The C-terminal regions that correspond to the

peptides against which the polyclonal antiseru Ab98 and the monoclonal
antibody NCL-43DAG are directed are indicated.

Figure 2. The Dystrophin Associated Protein Complex (DAPC)

The details of the DAPC, as well as the differences between the

extrajunctional (A) and the NM (B) complex, continue to be elucidated.
The following represents the current understanding of these complexes.

Along the muscle memrane, dystrophin, an actin binding cytoskeletal
molecule, associates with the DAPC memers, while at the neuromuscular
junction, a similar complex associates with the dystrophin related

protein utrophin. a-dystroglycan (also known as the 156 kDa Dystrophin
Associated Glycoprotein, lS6DAG) and ~-dystroglycan (43DAG) are
expressed in many tissues and form the dystroglycan complex 

(DG). The

memers of the sarcoglycan complex (SG) are expressed in skeletal and
cardiac muscle and include alpha SG (also known as adhalin and SODAG),

beta SG (A3b, 43DAG, the only SG expressed in brain), gam SG (35DAG),



and delta SG. Recently, the cardiac-specific epsilon SG was identified.

There are at least three 59 kDa syntrophins, with different patterns of

expression. Alpha syntrophin is expressed only in muscle, beta1

syntrophin is ubiquitously expressed, and beta2 syntrophin is restricted

to the NM. Two major dystrobrevins (also known as AD or tOrPedo 87
kDa), alpha and beta, head a family of dystrobrevin isoforms with

varying tissue expressions. Dystrobrevin containing a phosphotyrosine

tail (PYCT) is specifically localized to the NM. Neuronal nitric oxide
synthase (nNOS) is a DAPC memer as well. In fast twitch myofibers, a1
and/or b1 syntrophin bind nNOS. Slow twitch myofibers lack nNOS. Other

dystrophin associated molecules include caveolin and the transmemrane
sarcospan.

Figure 3. Dystrophin and Isoforms

The dystrophin gene (white rectangle) comprises 2. 4 million bases of the
chromosome and has 79 exons (note that there are three different

promoter-specific first exons, B1 , M1, and PI, each encoding a full-
length dystrophin). A total of seven promoters (arrows) have been

identified. Thus, the dystrophin gene encodes dystrophins of 427 kDa,

260 kDa, 140 kDa, 116 kDa, and 71 kDa. Protein domains include the N-

terminal actin binding domain, present only in full-length forms and the

rod domain, present in all but DP71.

Figure 4. Dystroglycan in Retina: Outer Plexiform Layer

dystroglycan interacts with one of the short dystrophin isoform in
the presynaptic memrane of photoreceptor cells. a- and ~-dystroglycan
and a short dystrophin are found along the intracavital processes of the

photoreceptor that form the lateral boundary of the synaptic cavity but

not at the postsynaptic triad.

Figure 5. Dystroglycan at the Blood-Brain Barrier

This schemtic depicts likely dystroglycan associations at the blood
brain barrier. A dystroglycan complex is found at brain-penetrating
blood vessels and the pial surface. p-dystroglycan and utrophin localize



to the perivascular endfeet of glial cells, and a-dystroglycan
associates with the basement memrane of brain blood vessels.

Figure 6. Dystroglycan at Central Synapses

Unlike at the photoreceptor OPL, dystrophin is associated with the

postsynaptic (and not presynaptic) specializations of cortical neurons
and is concentrated in mouse and human brain postsynaptic density

fractions. a-dystroglycan immunoreactivity appears on the surface of

Purkinje cell bodies, dendrites, and dendritic spines. ~-dystroglycan
immunoreactivity is not detected in these localizations, however.

Figure 7. Northern Blot analysis of dystroglycan rnAs
Northern blots of human tissues and brain regions were probed with

probe1 and probe3, which correspond to the proximal and distal C-

terminal regions of dystroglycan, respectively (see Figure 1). Both

probes hybridized to an approximately 6 kb mR that was highly
expressed in all tissues and brain regions. Hybridization with probe 1 ,

but not with probe3, reveals a larger transcript (over 10 kb), in

cerebral cortex as well as occipital and frontal lobe.

Figure 8. Rat brain cDNA library screen " contig
From a rat brain cDNA library, 15 phage that contained uniquely-sized
cDNA inserts to which probe1 but not probe3 hybridized were isolated and

sequenced. Using the Sequencher software, each of the phage insert

sequences was compared to the mouse dystroglycan cDNA (DAG1). Each
sequence obtained was found to be identical to a region of the DAG1

cDNA. The location of each of insert-DAG1 homologies is depicted

graphically in this " contig. II Epitope1 = probe1, epitope3 
= probe3.

Figure 9. Brain subcellular fraction proteins

A. Subcellular fractions (H, homogenate; SX, synaptosomes; PSD

postsynaptic densities) were separated by SDS-PAGE and protein stained

(CB) , revealing enrichment for many proteins in the PSD fraction.



B. Western blots (WE) of subcellular fractions were probed with

antibodies against presynaptic components (synaptophysin) and components

of the postsynaptic density, including the NMAR1 subunit, the mR
3 ' UTR binding protein CPEB , and aCaMII.

Figure 10. a/~-dystroglycan distribution in subcellular fractions
A. Ligand overlay with agrin isoforms on blots of subcellular fractions

reveals that a-dystroglycan is present in brain homogenate (H),
concentrated in the synaptosome fraction (S), and is detectable in the

PSD fraction (PSD). The binding of the agrin (0, 0) isoforr exceeds the
binding of agrin (4, 8) .

B. Western blots of subcellular fractions were probed with ~-

dystroglycan antibody Ab98. ~-dystroglycan is present in brain

homogenate and is concentrated in the synaptosomal fraction in

subcellular fractions isolated from rat cortex (as well as from brain
ster, cerebellum, and hippocampus, not shown). Ab98 also recognizes a

pair of polypeptides that are selectively enriched in the PSD fraction,
p58/53.
C. Western blots of synaptosomal fractions prepared from brain stem

(BS), cerebellum (CB), and hippocampus (HP) were probed with NCL-43DAG.

Different amounts of ~-dystroglycan are detected in each of the regional

synaptosomal fractions examined (equal protein loading) 

Figure 11. Comparison of dystrophin, DP71, and ~-dystroglycan
distribution in subcellular fractions. Equivalent western blots probed

with DYS2 (A) or NCL-43DAG (B). Whereas full- length dystrophin is
concentrated in the PSD fraction, ~-dystroglycan and DP71 are

concentrated in the synaptosome fraction. (M, muscle extract)

Figure 12. a- and p- dystroglycan expression in. mdx, 3CV and control

mice brain fractions.

Ligand overlay with agrin(o, O) shows that the level of a-dystroglycan
(aD) in 3CV synaptosomes is similar to control. Western blot with the



antibody NCL- 43DAG shows diminished dystroglycan DG) expression in

fractions isolated from 3CV mouse brain.

Figure 13. dystroglycan in glia and hippocampal neurons and lysates

A. Inverse images of immunofluorescent staining with anti ~-

dystroglycan antibody NCL-43DAG reveals ~-dystroglycan immunoreactivity

throughout glia and hippocampal neurons. This pattern is not synapse-

specific.
B. Western analysis of cell lysates from cultured hippocampal neurons

shows large quantities of soluble ~-dystroglycan.
C. Western analysis with Ab98 comparing the p58/53 in the detergent-

insoluble pellet from hippocampal neuronal cell lysate to PSDs.

Tables and Figures
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CHAPTER I I

INSULIN RECEPTOR TYROSINE KINASE SUBSTRATE p58/53 AND

INSULIN RECEPTOR ARE COMPONENTS OF THE SYNAPSE

Introduct ion

I have characterized the protein IRSpS8/S3, a known substrate of

the insulin receptor tyrosine kinase, and determined that it is

selectively concentrated in the rat brain postsynaptic density (PSD)

fraction, is localized to the synapse-rich layers of the cerebellum, and

is concentrated at synapses in cultured hippocampal neurons. The insulin

receptor is also concentrated at synapses in cultured hippocampal

neurons. In addition, I have found that a population of brain insulin

receptors is localized to the postsynaptic density fraction. I expect

that other components of a synaptic insulin receptor pathway will be

found at the postsynaptic apparatus in vivo, and a regulatory role for

insulin signaling at the central synapses will emerge.



Background

The importance of peripheral insulin as a regulator of the body

energy balance is undisputed. More contested however, is the consequence

of insulin in the brain. Whereas the signaling pathways that execute the

biological effects of insulin in the periphery are quickly being

dissected, the mere presence of insulin signaling systems in the brain

has not been appreciated until recently. A brief overview follows of

insulin-dependent signaling pathways and their biologic consequences in
peripheral tissues, the current understanding of these systems in the

brain, as well as a review of the central synaptic signaling apparatus

that lies below the postsynaptic memrane of glutamatergic synapses, the
postsynaptic density (PSD).

1 Insulin Signaling Peripheral Tissues

Insulin plays an essential role in the regulation of the body

glucose metabolism. An increase in the level of circulating glucose

causes pancreatic beta cells to release the anabolic hormone insulin

into the bloodstream. Insulin stimulates the uptake of glucose into

muscle, liver, and adipose cells, and the synthesis of protein,

glycogen, and triglycerides in these cells. At these target cells,
insulin initiates a series of signaling events that result in multiple

biologic outcomes. In target cells that express the GLUT4 glucose

transporter, insulin dependent signaling processes lead to a

translocation of GLUT4 from intracellular sites to the plasma memrane,
enabling the cell to rapidly import circulating glucose. Insulin can

have other types of cellular effects as well, such as affecting gene

transcription. For example, chronically low insulin states, such as in

insulin dependent diabetes or during sustained fasting, lead to a

reduced expression of the gene that encodes GLUT4.



1 Insulin and Diabetes

Close to 5% of the United States ' population suffer from diabetes.

This chronic disease is characterized by hyperglycemia (high levels of

circulating glucose), a condition that can adversely affect virtually

every organ in the body. At the cellular level, diabetes is caused by

target cells ' insufficient response to insulin. Despite high levels of

circulating glucose, the absence of effective insulin causes glucose

uptake by target cells to dwindle. This shifts the body into a catabolic

state wherein protein, glycogen, and fat are broken down. Chronic

hyperglycemia and inappropriate catalysis have harmful effects on the

body. Complications of diabetes can include nephropathy which can lead

to kidney failure, retinopathy which can lead to blindness, neuropathy

and extensive vascular disease which can lead to limb amputation.

Diabetes is caused by either an absolute deficiency of insulin

secretion (type I or insulin-dependent diabetes mellitus (IDDM)) or
resistance of peripheral target tissues to insulin (type II, or non-

insulin-dependent diabetes mellitus (NIDDM)). IDDM develops following
the destruction of the insulin-producing beta cells by auto-antibodies.

The cause of the beta cell autoimmunity is unknown. Once more than 90%

of an individual' s beta cells have been destroyed, diabetes becomes

clinically apparent. Patients with IDDM require exogenously supplied

insulin to maintain their body 
I s homeostasis.

It is NIDDM that accounts for -90% of the diabetes cases in the

United States. In these patients, despite sufficient insulin secretion,

the effects of insulin on target tissues are blunted. Often, even

elevated levels of insulin are unable to maintain the body s normal

glucose levels, and a state of relative insulin deficiency results.

Unlike IDDM patients, NIDDM patients do not depend on exogenous insulin.

For many type II diabtics, their condition can be greatly or even

completely overcome by weight loss and diet control. Some patients

however canot control their diabetes in this way, and they require
treatment with oral hypoglycemic agents or even insulin injections

(Lieberman, 1996). The cause of type II diabetes is not yet well



understood and is likely to involve many levels of insulin
s signaling

pathways.

2 The Insulin Rece tor is a Rece tor osine Kinase

For insulin to achieve its biological effects, it must bind to a

functional insulin receptor on the surface of the target cell. The human

insulin receptor (IR), cloned in 1985 (Ullrich et al., 1985), is one of

a large family of growth factor receptors. Generally speaking, these

receptors are group I memrane proteins. They span the cell memrane

once, the N-terminal protein domain is on the extracellular side of the

memrane, and the C-terminus is on the cytoplasmic side of the memrane.

Some growth factor receptors are single polypeptides, like the epidermal

growth factor (EGF) receptor. Others, including the insulin receptor,

are disulfide bonded dimers (Figure 1). Some of these receptors have

phosphatase activity, and all of them possess protein kinase activity.

Protein kinases transfer phosphate groups onto their target

proteins. They exist either within the memrane, as receptor protein

kinases, or within the cytoplasm as cytosolic protein kinases. There are

two major types of kinases, categorized by the amino acids on which they

phosphorylate their target proteins. The majority of the receptor

kinases, including EGF and insulin receptors, phosphorylate substrates

tyrosines. More than 50 receptor tyrosine kinases (RTKs) are known.

Al though there are many cytosolic tyrosine kinases, and some dual

specificity cytosolic kinases, serine/threonine kinases are the most

common type of cytosolic kinases, and are responsible for the maj 
ori ty

of cellular phosphorylation events. In addition, tyrosine and

serine/threonine phosphatases are available to reverse the

phosphorylation events procured by RTKs.

Enzymatic activity can activate two types of signaling pathways.

For one, small second messengers can be activated by phospholipases,

which cleave lipids from larger substrates, or kinases, which

phosphorylate lipids. phosphatidyl inositol 3' kinase (PI3-K) works by

phosphorylating the lipid inositol. Alternatively, enzymatic activation

can initiate a cascade of interacting proteins. Usually, these proteins



are kinases, each activating the next by phosphorylating it. The

ultimate kinase in the relay typically acts on proteins that elicit

global changes in the cell, such as transcription factors. These

signaling pathways amplify the initial stimulus as it passes from one

component to the next. If a component of the pathway has multiple

downstream targets, the signal may branch into multiple pathways. In

this way, an initial stimulus can elicit diverse biologic responses

(Lewin, 1997).

The insulin receptor is very similar in size and structure to the

insulin-like growth factor-I receptor (IGF-I) and the insulin-receptor

related receptor. These receptors have some affinity for each other

ligands, but the insulin receptor exhibits a pharmacological preference

for insulin. The insulin receptor is a dimer of units each composed of

an a and a ~ subunit linked together by disulfide bonds. The

extracellular a subunit contains the ligand binding domain and the ~

subunit, a group I memrane protein, comprises a short extracellular

domain and the cytoplasmic tyrosine kinase activity (Fujita-Yamaguchi,

1984) (Figure 1).
When insulin binds to the extracellular domain of its receptor, it

induces a conformational change that affects the overall organization of

the receptor, which activates the kinase activity of the cytoplasmic

domains. The receptor then autophosphorylates; the kinase activity of

one subunit phosphorylates the other, and vice versa.

Autophosphorylation has at least two consequences. For one,

phosphorylation within the receptor s kinase region can increase its

catalytic activity. Alternatively, receptor phosphorylation at other

cytoplasmic tyrosine residues leads to transfer of the signal to

downstream components as target proteins associate with these

phosphorylated tyrosines of the receptor s cytoplasmic domains. The

quintessent function of RTKs is tyrosine phosphorylation; a receptor

with a mutated kinase domain is biologically inactive, despite its

preserved ability to bind ligand (Lewin, 1997).

Activated receptors may interact with several types of signaling

proteins. In one type of association, a target protein is activated by



binding the intracellular domain of the receptor, but is not

phosphorylated. This tethered target protein then activates an 
enzyme,

which amplifies and continues the pathway. Second, proteins that are

substrates of the receptor s kinase activity can bind to and become

phosphorylated by the receptor. If the substrate itself is a kinase,

this phosphorylation event may activate it, and in turn the pathway will

proceed by activating successive kinases. Finally, some receptor

substrates, such as a cytoskeletal proteins, are end targets of the

pathway. Phosphorylation of such proteins alters their physical state

and leads to assemly of a new structure.

3 Insulin s actions are mediated dockincr Droteins

In many cases, the primary interaction between signaling proteins

and an activated receptor kinase is mediated by SH2 domains. Either the

autophosphorylated tyrosines bind grc homology 2 (SH2) domains of

signaling proteins, or the increased activity of the kinase mediates

tyrosine phosphorylation of cytosolic substrates known as "
docking

proteins " that recruit SH2 proteins. The signaling pathway is continued
through other protein-protein or protein-lipid interaction domains

including 2hosphotYosine inding (PTB) and 2leckstrin homology (PH),

grc homology 3 (SH3) , PDZ, and WW domains (see below). The first

identified memer of this famly of proteins, which link RTKs to
downstream signaling molecules, is the insulin receptor substrate, IRS-

(White and Yenush, 1998) (Figure 2).

These functionally-related docking proteins, IRS-I, IRS-2, and

IRS-3, and Gab-1 and p62dok, share several protein motifs. At the N-

terminus is a PH and/or PTB domain; at their C-terminus are proline-rich

regions which mediate binding of SH3 or WW domains, multiple tyrosine-

containing sequences which can bind SH2 domains, and serine/threonine-

rich regions which may regulate function as well. Shc is a memer of

another group of docking proteins. It has an N- terminal PTB domain, a

C-terminal SH2 domain, a proline-rich region, and a few phosphotyrosine

sites through which it binds the SH2 domain of Grb2. SH2 domains mediate

high affinity interactions, close to three orders of magnitude tighter



than the usual kinase substrate interaction. Tyically, the site that
binds an SH2 domain contains only a phosphotyrosine and a few amino

acids C-terminal to it. Whereas Shc interacts with the insulin receptor

by its PTB domain, its SH2 domain allows Shc to interact with another

RTK, the activated EGF receptor.

Docking proteins are useful for coordinating flexible and diverse

signaling systems. Receptors that specifically interact with IRS

proteins can achieve an amplified signal: since the docking interaction

is transient, many IRS proteins can be phosphorylated by one receptor.

In addition, they escape the fate of internalization that is likely to

await ligand-bound receptors, and can carry the signal to downstream
signaling components. Lastly, many receptors have the specificities to

engage different IRS proteins. By engaging multiple pathways, one

receptor can initiate diverse signals. Similarly, different RTKs share

specifici ties for the same IRS proteins. This allows for the integration

of multiple signals (White and Yenush, 1998).

The biologic effect of insulin and insulin receptor substrates is

dependent on a specific insulin receptor motif. A decade ago, the

importance of the juxtamemrane NPXY motif of the insulin receptor was

revealed: mutations here reduce the tyrosine phosphorylation of IRS-

while diminishing insulin I s biologic effects. It is now understood that

the tyrosine phosphorylated NPXY motif can bind PTB domains. In fact,
many IRS proteins achieve specific and transient docking through their

PTB domain. This domain binds weakly but specifically to the

phosphorylated NPXY motifs of the insulin receptor, the IGF-1 receptor,

and the IL-4 receptor. The interaction of several residues N-terrinal to

the NPXY motif adds specificity to individual PTB:NPXY associations.

In addition to the PTB domain, this family of docking proteins

utilizes another protein motif in its interactions with RTKs. The PH

domain of IRS-1 is important for its interaction with the insulin

receptor. The PH motif is similar to the PTB domain, yet its specific

three dimensional structure cannot be predicted based by primary amino

acid sequence alone. PH domains bind a diverse set of ligands, yet this



motif does not bind the insulin receptor directly, suggesting that other

docking protein domains participate in this interaction. The presence of

IRS- 1' s PH domain and not its PTB domain is sufficient for its
activation by the activated insulin receptor. However, IRS- 1 lacking its

PH domain undergoes little tyrosine phosphorylation following insulin

s timula tion.
Activated IRS proteins generate downstream signals by engaging SH2

domains of other signaling proteins. IRS-1 interacts with PI3-K, as well

as with others including Grb2, SHP2, Fy, and a numer of proteins that
do not contain SH2 domains, including 14- 3. IRS-1 and PI3-K are

implicated in many biologic effects including insulin-stimulated
translocation of GLUT4 and subsequent glucose transport (Figure 3). The

heterodimer PI3-K: is composed of an 85 kDa regulatory subunit and a 110
kDa catalytic subunit. The p85 subunit contains an SH2 domain that binds

phosphotyrosine residues of IRS-1. This interaction causes activation of

the associated catalytic subunit' s kinase activity and phosphorylation

the 3 I position on inositol molecules. since IRS-1 and IRS-2 contain

about nine phosphotyrosine motifs with which to bind SH2 domains, and

PI3-K activation is maximal when both of the p85 SH2 domains are bound,
these IRS proteins are ideal for signal transmission via PI3-K.

IRS-1 also interacts with the phosphotyrosine phosphatase SHP2,

which contains two SH2 domains. During insulin stimulation, SHP2 binds

IRS-1 as well as the insulin receptor itself. It is likely that SHP2

regulates insulin signaling. SHP2 may diminish the insulin signal by

reversing the tyrosine phosphorylation of IRS-I. SHP2 may be important

for some downstream insulin signaling events: when Shpt' s phosphatase

activity is inactivated, insulin stimulated MAP Kinase and c- fos
transcription is disrupted (White and Yenush, 1998).

Insulin stimulation is linked to intranuclear events by Grb2, a

small, SH2 containing adapter molecule. Tyosine phosphorylated docking
proteins IRS-lor Shc bind Grb2. Once associated, the Shc/Grb2 complex
recruits SOS, a Ras guanylnucleotide exchange factor, to the memrane
through one of Grb2' s two SH3 domains. SOS can then interact with Ras, a

small GTP-binding protein which is confined to the memrane, causing 



to exchange its GDP for GTP and regain its activated state. Activated

Ras can then react with its target molecule. The signaling component

that follows Ras in this signaling pathway is the cytosolic

serine/threonine kinase Raf. It is known that ras and Raf interact at

the memrane, but the events that cause the activation of Raf are

unknown. Raf directly phosphorylates two serine residues on ME, a dual

specificity cytosolic kinase. The activation of ME represents a point

where pathways can converge. ME Kinase, which is activated by G

proteins, can activate ME as well. Activation of MAP Kinase, a
serine/threonine kinase with several targets, requires both tyrosine and

threonine phosphorylation by MEK. From this step on, the cascade

continues along various branches through serine threonine

phosphorylation events. Ultimately, this pathway of kinases activate or

inactivate nuclear transcription factors which can modulate

transcription events.

It is clear that subcellular localization plays an important role

in executing signaling pathways. Components require close proximity for

interaction. IRS- (pp60), like IRS-1 and IRS-2, has a PH and a PTB

domain and phosphotyrosine motifs that interact with the SH2 domains of

PI3-kinase and Grb2, yet IRS-3 is much smaller than its relatives and

has regions of sequence dissimilar from IRS-1/2. Interestingly, IRS-

exhibits a different subcellular distribution than IRS-1/2. In rat

adipocytes, IRS-1/2 are primarily associated with the low density

microsome and cytosol fractions, yet IRS-3 remains associated with the

plasma memrane fraction (Anai et al., 1998).
It is clear that insulin accomplishes its many biologic effects by

employing an array of substrates, diverse in their domain structure,

binding specificities, and their cellular and subcellular localizations,
to initiate a variety of complex signaling pathways.

2 . 1. 4 IRS and Dia etes
The relationship between insulin signaling components and NIDDM is

not well understood. Persons who express one of the known IRS-

polymorphisms are twice as likely to develop type II diabetes as control



individuals (Laakso et al., 1994), yet in mice, the absence of IRS-
does not lead to type II diabetes. Mice lacking IRS-1 are only mildly

insulin resistant, since insulin secretion increases to compensate for

the resistance (Araki et al., 1994; Taremoto et al., 1994). The
functional relationship between the insulin receptor and its substrate

IRS-1 may have a role in type II diabetes however.

Mice that are double heterozygous for null alleles in both the

insulin receptor and IRS-1 genes are, at birth, slightly more insulin

resistant that mice heterozygous for either the enzyme or substrate

alone. During their first 4-6 months however, about half of these mice

develop type II diabetes (Bruing et al., 1997). This is one piece of

evidence for the importance of the enzyme-substrate relationship between

the insulin receptor and insulin receptor substrates in glucose

metabolism.
IRS- 1 and IRS-2 are highly homologous, yet have different

interactions with activated insulin receptors and distinct tyrosine

phosphorylation motifs in their C-termini (Miele et al., 1999). These

findings portend unique signaling patterns for these insulin receptor

substrates. Indeed, recent work has shown that disrUption of IRS-

causes diabetes in mice. These mice suffer progressive deterioration of

glucose homeostasis and, at 10-16 weeks of age, develop severe NIDDM due

to end-tissue insulin resistance and beta cell failure (Withers et al.,

1998) .

Mutations in insulin signaling at more than one level may

contribute to the development of diabetes in some individuals. Despite

much research, the genes responsible for the majority of NIDDM cases

have not yet been identified (Kah, 1998).

Insulin Signaling in the Brain

The presence of insulin in the CNS was first recognized two

decades ago by immunohistochemical staining of the brain with anti-

insulin antibodies (Havrankova et al., 1978). Later studies documented
the expression of insulin in neurons (Darn et al., 1981). The relevance



of insulin signaling in the brain suffered years of controversy however,

primarily because the origin of this brain insulin was disputed.

Substantial evidence now exists for the transport of peripheral insulin

across the blood-brain barrier by GLUT1 and GLUT3 (Frank et al., 1986;

Duffy and Pardridge, 1987; Pardridge et al., 1990) as well as for the

local production of insulin in neurons (Clarke et al., 1986; Young,

1986; Wozniak et al., 1993). Today, the distributions of components of

the insulin signaling pathways are being characterized, and the effects

of insulin on the brain and on neuronal cells in culture are being

dissected. The consequence of insulin in the brain has yet to be

elucidated, however.

2 . 2 . 1 The Insulin Rece tor in Brain

The presence of insulin receptors in the CNS is now well

documented (Havrankova et al., 1978; Wozniak et al., 1993; Kenner et

al., 1995; Smit et al., 1998). Immunocytochemistry, binding studies, and

other experiments indicate that insulin receptors are dispersed

throughout the brain. The highest densities of insulin receptor are in

the olfactory bulb, cerebral cortex, hypothalamus, and hippocampus. In

situ hybridization studies show insulin receptor mR distributed in
various parts of the olfactory bulb, cerebral cortex, cerebellum,

hypothalamus, and brain stem (Wozniak et al., 1993).

Two types of insulin receptors are found in brain. Studies in

primary cell culture indicate the glial insulin receptor, like the

insulin receptor in peripheral tissues, has a higher apparent molecular

weight than the neuronal insulin receptor. Denaturing gel

electrophoresis demonstrates that the apparent molecular weight of the

neuronal insulin receptor about 5-10 kDa lower than those of their

peripheral counterparts: 115 kDa for the a subunit and 85 kDa for the 

subunit. This distinct feature of brain insulin receptors is conserved

in mamals, birds, reptiles, and amphibians (Wozniak et al., 1993;

Kenner et al., 1995).

Peripherally, two forms of the insulin receptor have been

identified. These are generated by alternative splicing of exon 11,



which differ by a 12 amino acid insert at the C-terrinus of the a

subunit. This does not reflect the difference between peripheral and

neural insulin receptors, however. Careful sequence analysis of the

entire coding region of brain insulin pro-receptor cDNA has shown that

neural and peripheral insulin receptors have identical primry
structures, and has ruled out the possibility of alternative splicing as

the origin of the lower apparent molecular weight of brain insulin

receptors (Kenner et al., 1995)
Biochemical studies support the conclusion that the brain insulin

receptor differences are due to distinct carbohydrate additions. The a

subunit of the insulin receptor contains multiple N-linked glycosylation

sites, and the ~ subunit contains a numr of these sites as well.
\1-ereas endoglycosidase H (cleavage of N- linked manose) and

endoglycosidase F (cleavage of N- linked manose and complex
carbohydrates) treatments affected both brain and peripheral insulin

receptor a subunits equally, treatment of insulin receptors with

neuraminidase, an enzyme that cleaves N-linked terminal sialic acid

residues, had no effect on the molecular weight of brain insulin

receptor a subunit but it reduced the molecular weight of the

peripheral insulin receptor a subunit by approximately 10 kDa

(Hendricks et al., 1984; McElduff et al., 1988; Wozniak et al., 1993).

Despite the structural difference between the glial and neuronal

insulin receptor, the insulin binding characteristics and the ligand

induced autophosphorylation of these receptors are the same. However,

the insulin-induced cell biological response achieved by these cells is
not the same (Wozniak et al., 1993). For examle, chronic insulin
exposure causes expression of the glial insulin receptor to be down-

regulated, an effect not observed in neuronal cells (Clarke et al.,

1984). In glial cells, insulin binding to its receptor stimulates

glucose uptake, a biologic consequence that does not occur in neurons

(Wozniak et al., 1993). Insulin has different effects on neurons. For

example, insulin stimulates the uptake of serotonin, while it inhibits

the uptake of norepinephrine. Although neurons exress both insulin
receptor and IGF-I receptor, this effect is not achieved with IGF-I



treatment. Similarly, immunodepletion of neuronal IGF-I receptors has no

effect on insulin-stimulated insulin receptor kinase activity (Boyd et

al., 1985). These results indicate that the neuronal effects of insulin

are specifically mediated by the insulin receptor.

2 The Insulin Rece tor Si alin Pathw in Brain

Since both insulin and insulin receptor are present in brain, and

insulin binding appears to exact biological responses in neurons and

glia, one expects to locate downstream elements of the insulin-signaling
pathway to be present in the brain as well.

In situ hybridization reveals that the patterns of insulin

receptor mR and IRS-1 mR are similar in both distribution and
relative intensity. In most regions, hybridization is observed primarily

in neuronal cell body layers. In olfactory bulb and hippocampus, IRS-

and insulin receptor mR are also concentrated in synaptic layers
(Baskin et al., 1994) suggesting that there may be a role for insulin

signaling processes at synapses.
Significant amounts of IRS- 1 and insulin receptor proteins are

expressed in brain as well. Immunocytochemical studies ascertained that

a large numer of neurons in the adult CNS express IRS-1, insulin
receptor and/ or IGF- I receptor, and PI3 - kinase. No staining for IRS-1 is
detected in glial cells. Although IRS-1 and insulin receptor staining

patterns tend to overlap, in a few areas of the brain the expression

patterns of IRS-1 and PI3-K do not parallel the insulin receptor and/or

IGF-I receptor expression patterns. In general, IRS-1 and insulin

receptor imunoreactivity is restricted to cell bodies, although in

certain regions including the cerebellar cortex, staining is appreciated

in the initial portions of proximal dendrites (Baskin et al., 1994;

Folli et al., 1994).

Although IRS-1 and the insulin receptor have been localized to

neurons, it appears unlikely that IRS-1 acts discriminately in the brain

as a substrate in the insulin signaling pathway. In cultured cerebral

cortical neurons, IRS-1 and its close relative IRS-2 participate in the

neurotrophin signaling pathway. In these cultures, IRS-1/2 are tyrosine



phosphorylated, and associated with PI3-kinase, in response to brain-

derived neurotrophic factor (BDNF) treatment. This response is mediated

by the BDNF /NT3 receptor tyrosine kinase TrkB. There is no direct

interaction between TrkB and PI3-kinase in response to BDNF treatment,

so the binding of BDNF to TrkB induces the activation of PI3-kinase in

an IRS-1/2 dependent maer (Yamada et al., 1997).

2 . 3 Insulin Sicralina at SvnaDses

Although the expression of insulin signaling proteins, including

insulin receptor, IGF-I receptor, IRS-1/2, and PI3-kinase, is primarily

concentrated at cell bodies, new experiments suggest a role for insulin

at synapses.

Synaptosomal preparations, rich in sealed synaptic terminals,

contain -200 pg of insulin per mg of protein, a four- fold enrichment

from whole brain extracts (Wei et al., 1990). The depolarization of

synaptosomes (elicited by raising the extracellular K+ concentration
from 5 ro KCl to 60 ro KC1) induces a four-fold greater release of

insulin than the amount of basal insulin release, measured by

radioimmunoassay. Removing Ca++ from the medium, or blocking voltage-

dependent Ca++ entry with elevated Mg++ or Co++ concentrations, inhibits

this release. Synaptosomes can also be depolarized by the activation of

neuronal voltage-gated Na+ chanels by the drug veratridine. This

treatment induces an even greater increase in insulin release, eight-

fold greater than basal levels. Tetrodotoxin treatment, which blocks Na

chanels, inhibits this effect. It is well-established that depolarizing
synaptosomes with high K+ levels or with veratridine leads to increased

intrasynaptosomal Ca++ levels and neurotransmitter release. Thus,

elevated intra-synaptosomal Ca++ levels induce insulin release as well
(Wei et al., 1990). A similar result occurs following the depolarization

of cultured neuronal cells, but not of astrocyte or glial cells (Clarke

et al., 1986). These authors propose that the brain is "capable of

restricting and controlling the availability of insulin in a maner

consistent with that of neurotransmitters and modulators (Wei et al.,

1990) .



Theories about the biologic response to insulin at synapses

converge on learning and memory. A recent Science note (Wickelgren,

1998) proposes a link between insulin and memory, citing several new

publications. Rats that receive brain injections of streptozotocin, a

drug that damages the insulin receptor, exhibit an impaired ability to

rememer the compartment in which they had received a shock (Hoyer,

1997). Further, a study in human subjects finds that insulin mediates

improvements in verbal memory in both early stage Alzheimer 
I s disease

patients and controls (Craft et al., 1996). Exeriments in neuronal cell
cultures show that insulin inhibits the hyperphosphorylation of tau, a

process that has been linked to the formation of neurofibrillary

tangles, a hallmark of Alzheimer 
I s disease (Hong and Lee, 1997).

Linking insulin s action to learning and memory is intriguing, yet

direct evidence for this is scant. It must be first demonstrated that

insulin receptor signaling elements are localized to synapses, and

subsequently, that such signaling pathways play role in the mechanisms

of synaptic plasticity. One compelling piece of evidence for a direct

insulin effect at synapses establishes that insulin induces a rapid

recrui tment of functional type A GABA receptors, the principal
neurotransmitter at inhibitory synapses, from intracellular to

postsynaptic and dendritic memranes. Inhibition of protein tyrosine
kinases by the drg genistein blocked this translocation, suggesting
that an activated insulin receptor is required to execute insulin '
effect. This translocation of GABAA receptors is observed in HE cells,

hippocampal neurons in culture, and neurons in hippocampal slices (Wan

etal., 1997).

The postsynaptic Density

It is becoming clear that, at excitatory synapses in particular,

an elaborate signaling machine rests just below the postsynaptic

memrane, in the form of the postsynaptic density. It is reasonable to

propose that, if insulin has a role at excitatory synapses, then the



downstream effectors of the insulin signal are likely to be tethered at

the PSD, positioned to transform the presynaptic insulin signal into a

pas tsynaptic, biologic consequence.

1 Hi and descri tion
The postsynaptic density, or PSD as it has since become known, was

remarked upon in the 1950' s by an electron microscopist, Sanford Palay.

He stained CNS synapses with osmium tetra ide and described what he saw,

a prominent thickening on the cytoplasmic side of the postsynaptic

memrane of synapses, as a ' postsynaptic density. ' Microscopists
observed that these PSDs varied in thickness, and a classification

system developed wherein PSDs were subdivided morphologically, the

thicker being classed as ' asymetric, I or type I, and the thin, sparse

PSD as I symetric, ' or type II. This morphologic classification was

later paired with the observation that the thicker, type I PSDs were at

excitatory, or glutamatergic synapses, whereas the thinner, type II PSDs

were correlated with inhibitory, or GABAergic, synapses (Kennedy, 1993).
In the 1970 ' s, cell biologists advanced biochemical methods for

the subcellular fractionation of brain tissue into fractions enriched

for structures morphologically similar to type II PSDs. From brain

homogenate, Philip Siekevitz ' group purified synaptosomes (synaptic
memranes), treated these with 0. 5% Triton X-100, and purified this
extract by further centrifugation. This PSD-enriched fraction, when

separated by SDS-PAGE, appears to contain about 15 major and 10 minor

protein bands. Carl Cotm used a similar technique, but extracted with

3% N-lauroyl sarcosinate, a harsher detergent. SDS-PAGE of this PSD

fraction revealed about 10 maj or bands (Cotman et al., 1974) (Cotman et

al., 1974 (Kennedy, 1993)).

The PSDs isolated with our procedure are apparently
derived from the asymetric type of synapse (type I). They
are generally similar in size to the PSDs from cortical
asymetric synapses, and no structures in these fractions
resemle the thin sparse PSDs often present at symetric
(type II) synapses. On this basis, the purified PSDs most
likely arise predominantly from excitatory axodendritic
synapses. Thus our PD fraction represents the distinctive



organelle of this specific synaptic type in isolation
(Cotman et al., 1974).

These techniques are the basis of today
' s protocols for the

preparation of PSD fractions. Often, aD. 5% Triton extraction is

referred to as yielding a PSDI fraction, this followed by a second 0.

Triton extraction as PSDII, or followed by a 3% N-
lauroyl sarcosinate

extraction as PSDIII, or ' core PSD' (Kennedy, 1997). Today,

biochemically purified PSD fractions are generally believed to be

enriched for the dense thickenings of proteins that lie apposed to

excitatory, glutaratergic, active zones.

During the early days of PSD investigation, there were two major

impediments to working with the PSD 
fraction. First, the PSD was

regarded by some as a morphological entity that was not physiologically

significant. Moreover, the PSD structure was technically challenging,

disruptable only by treatment with 
SDS, a harsh detergent. Nonetheless,

tubulin, actin, and fodrin (brain spectrin), as well as calmodulin were

identified as PSD components. In the 1980'
s the ' major PSD protein ' was

identified as a subunit of the brain calcium/calmodulin dependent

protein kinase (aCaMII). This discovery ushered in growing support for

the hypothesis that the PSD organizes signaling molecules.

Though some PSD characterization proceeded, it was not until the

first half of the 1990' s, when the techniques of peptide microsequencing

were widely available, that biochemsts were able to begin to 
identify

individual components of the PSD. In many cases, the fraction was

separated by SDS-PAGE, individual protein bands were excised and

trytically digested, and the peptide sequence obtained was used to
identify or clone the abundant protein.

During this time, the first novel PSD protein was identified and

cloned: PSD-95 (Cho et al., 1992; Kistner et al., 1993). The lack of

known interactions for this protein spurred the utilization of a newly

emerging technique for discovering protein-
protei interactions, the

yeast two hybrid assay. In 1995, using this technique, investigators

selected regions of PSD-95 to use as ' bait' and uncovered an interaction

between one portion of PSD-95 and the C-terminal tail of the 2B subunit



of the NMA receptor (Kim et al., 1995; Kornau et al., 1995). Meanwhile,

a biochemical approach had led to the discovery that a protein that had

previously had been observed to be phosphorylated by kinase activity

inherent to the PSD, the concavalin-A binding PSD protein gp180, was the

2B subunit of the NMA receptor (Gurd, 1985).

Evidence of interactions between neurotransmitter receptors,

kinases, and novel proteins at the PSD greatly advanced the appreciation

of the PSD as a functional unit, as well as significantly modified the

way in which researchers approached dissecting the components of the

PSD. Today, due to the continued successes of the yeast two-
hybrid

technique, molecular biologists regularly fish the PSD and uncover new

protein-protein interactions that occur within this clearly significant
density of proteins.

2 The excitatorY DostsvnaDtic aDDaratus

Ion channels and a cohort of receptors dive through the

postsynaptic memrane and are anchored to the PSD. Glutamate binds to

and activates several types of receptors on the postsynaptic 
memrane of

excitatory synapses. NMA and AMA receptors are ligand gated ion

chanels that transduce ligand binding into cation influx. Metabotropic
glutamate receptors are G-protein coupled seven transmemrane receptors

that mediate the slower action of glutamate by intracellular second

messengers. Communication depends on these receptors being concentrated

at the postsynaptic apparatus where they can respond to presynaptically

released glutamate. Glutamte receptors maintain a specific topological

relationship there: AMA receptors are central, facing the presynaptic

zone, and metabotropic receptors lie at the edges. The mechanisms that

lead to their specific clustering are beginning to be understood 
(Sheng,

1997; Ziff, 1997).

One of the proteins that clusters glutamate receptors and connects

them to cytoplasmic proteins is the above mentioned 95 kDa protein

isolated from PSD fractions, PSD95 (Ziff, 1997). PSD9S is the prototype

for a family of memrane ssociated gyanylate kinase (MAGUK) proteins 

These proteins contain at the N-terminus, three PDZ domains, an SH3



domain and a guanylate kinase domain at the C-terrinus. The cloning of

PSD95 revealed the existence of the PDZ domain, named after the three

proteins in which it was first identified, ESD9S, giscs large (dig), and

zona occulens (ZO-l). PSD95 contains three PDZ domains that specifically

bind to peptide sequences at the C-terrinus of interacting proteins. The

PDZ domain creates a hydrophobic pocket in which rests the C-terminal

motif T/SXV-COOH. A diverse set of proteins bears this peptide motif at

their C-terminus, including Fas.

The first 2 PDZ domains of PSD9S interact with the C-terrinus of

the NMA receptor subunit NR, as well as with the Shaker K+ chanel.
MAGUK proteins also can link receptors to cell adhesion molecules that

are concentrated at synapses. The third PDZ domain of PSD95 binds

neuroligan, a cell surface protein (Ziff, 1997). PDZ domains have also

been shown to bind intracellular proteins. PSD95 and chapsyn110/PSD93

interact with neuronal nitric oxide synthase (nNOS) through a PDZ-PDZ

interaction. As mentioned in Chapter I, nNOS can similarly interact with

a PDZ domain in syntrophin.

Following the identification of the PSD fraction protein PSD95,

two other synapse-associated glutamate receptor interacting proteins

were identified. The AMPA receptor subunits GluR2 and GluR3 bind the

synaptic glutamate eceptor interacting urotein (GRIP) and bMPA inding

urotein (ABP). This theme continues for the metabotropic glutamate
receptor. Homer, which contains a single PDZ-like domain, binds mGluR1a

and mGluRS. The level of Homer expression is dramatically upregulated by

synaptic activity. It appears likely that these types of proteins couple

receptors to downstream signaling pathways (Sheng, 1997).

PSD9S and chapsyn110 not only bind, but also cluster NMAR

receptors and Shaker chanels. It is now known that MAGUK proteins can

multimerize through disulfide bridges between pairs of cysteines located

at the N-terrnus (Hsueh et al., 1997). It is likely that PSD9S and
other MAGUKs use this mechanism to cluster their target proteins.

Although GRIP and ABP represent a different class of PDZ proteins (they
lack the SH3 and GK domains of MAGUK proteins) it is likely that they

multimerize as do MAGUKs (Ziff, 1997). The existence of separate



proteins for the postsynaptic clustering of glutamate receptor types may

allow for their differential distribution within the postsynaptic

apparatus.
The GK domain enables MAGUK proteins to serve as intermediaries

between chanels and Guanylate Kinase domain Associated Proteins

(GKAPs). While the GK domain exibits high homology to guanylate

kinases, and can bind GMP, it has no catalytic activity. The GK domain

binds the PSD fraction associated protein GKA, three other SAPAPs (SAP-

associated proteins) and two DAP (hDLG and PSD9Sassociated protein)
proteins. To date, no interactions have been found for MAGU proteins

SH3 domain.

3 A DostsvnaDtic sicrnalina aDDaratus

The excitatory synapse rapidly obtains and transmits information.

As scientists map the interconnections among postsynaptic proteins, it

is becoming clear that the PSD is a relay station on this information

highway that encompasses the synapse I s elaborate signaling machine.

CaMII, the major PSD protein, has been shown to be involved in
synaptic plasticity, namely in LTP. Numerous regulatory molecules reside

in the PSD, including calmodulin. Calmodulin binds to CaMII until the
kinase becomes autophosphorylated. CaMII then trans locates to the PSD
and is poised to serine/threonine phosphorylate glutamate receptors.

Al though there is as yet no known functional role for the serine
threonine phosphorylation of NMA receptors by CaMII, tyrosine
phosphorylation of NMA receptor has been shown to regulate ion channel
function under certain conditions (Kennedy, 1997).

Other enzymes, including the non receptor tyrosine kinase Fy, and
the neurotrophin RTK TrkB, are found in PSD preparations. TrkB has been

shown to binds its ligand BDNF at PSDs (Wu et al., 1996). The substrates

of this RTK at the postsynaptic apparatus are not yet known. NMA

receptor subunits NRA/B have been shown to bind SH2 domains in a
tyrosine phosphorylation dependent maner, but the identity of such SH2
domain containing proteins are not known.



Several cytosolic serine/threonine kinases are tethered near to or

within the PSD by adapter proteins. Tye II PKA is anchored at the PSD
by b kinase gnchoring roteins AK79 and AK1S0. AKP79 also anchors
PKC, a cytoplasmic serine/threonine kinase found at the PSD (Ziff,
1997). Other types of signaling elements are found in PSD fractions,
including rotein hosphatase 1 (PP1) and G proteins. The Ras-GTPase

activating protein Syn-GAP is a component PSD fractions. Sy-GAP binds
to ras-GTP and decreases the signal by turning on ras ' GTPase activity.

PSD fractions also contain the downstream signaling component ERK2-type

MAP Kinase and its substrates.
These signaling pathways are likely anchored by the cytoskeletal

elements of the PSD. Actin and a-actinin-2 are abundant in PSD
fractions, and fodrin (non-erythroid brain spectrin) is a major

calmodulin binding protein in PSD preparations. Other less abundant

cytoskeletal components that are found in the PSD fraction include

dystrophin, amyloid precursor protein- like protein-1, and a-adducin. a-
actinin-2 binds to the cytoplasmic tails of NR1 and NRB through its
central rod domain. This interaction is antagonized by Ca

++ 

/calrodulin
binding to NR1. Ca++ fluxes through the NMAR may activate calmodulin
and release the receptor from the cytoskeleton. The reduction in NMAR

channel currents that result from Ca

++ 

/calmodulin binding to the NR1 C-

term may occur due the channel dissociating from the cytoskeleton. In

sum, a variety of discrete signaling pathways are woven into the PSD,

placed to elicit the coordinated functions required at the synapse.

4 SvnaDse re lation
While the cytoplasm of most cells is filled with signaling

pathways that coordinate and intersect to allow for diverse coordinated

functions, it appears that these tools are specifically enriched

locally, for short term plasticity, and are locally modified, for the

construction of long term changes. How can the crucial structure of the

postsynaptic apparatus change to reflect its active environment?

The latest hypothesis focuses on local mR regulation and
translation. This type of self-contained mechanism would be necessary if



all of the synapse s signaling machinery was locally arranged. Perhaps

at the postsynaptic signaling apparatus, the signal that originates in

the synaptic cleft and migrates to the postsynaptic memrane, weaves
about the PSD and induces, in conjunction with the PSD protein CPEB

(cytoplasmic polyadenylation element binding protein), synthesis of new

synaptic components. This inducible, local, new synthesis, allows for

maintenance or modulation of the synaptic structure. Indeed, the

polyadenylation of CaMII mR is regulated in a CPEB dependent maner,
and activity can induce CaMII synthesis at the synaptic apparatus (Wu

et al., 1998). Other PSD protein mRs also possess these 3' UTR CPEB
binding consensus sequences, and thus may have the potential for local

translation. Whether or not these mRs are locally translated remains
to be tested.

The PSD, a small subcellular structure, is dense with the tools

that cells use to elicit change and the potential to modify and modulate

the strength of an individual synapse. As PSD proteins continue to be

identified, the diverse signaling pathways that the postsynaptic

signaling apparatus comprises can be carefully reconstructed, aiding our

understanding of how mechanisms at this small structure lead to such

complex biologic outcomes as learning and memory.

The Postsynaptic Density and Insulin Signaling

Indeed, it appears that insulin and its signaling pathways are at

excitatory synapses. The experimental data that I proffer in this

chapter implicate the insulin receptor and the insulin receptor

substrate IRSp58/S3 in insulin dependent signaling mechanisms at the

synapse.



Methods

Brain Subcellular Fractions
Brain homogenate, synaptosome, and postsynaptic density (PSD)

fractions were prepared as described in Chapter I, Section 3 (Methods).

Frozen porcine brain tissue was provided by Susan Lacy (Children

Hospital, Boston, MA).

Antibodies
Ab98 antisera was raised by imunizing a rabbit with the peptide

KALPPPEYPSQ (a sequence in the cytosolic domain of ~-dystroglycan that

was used for the production of antibody PA3a (Yoshida et al., 1993) and

affinity purified (Quality Controlled Biochemicals, Hopkinton, MA). The
anti-IRSpS8/S3 polyclonal antibody was raised by injecting a rabbit with
the MAP-conjugated peptide DKDDLAPPPDYGT (Research Genetics, Inc.,
Huntsville, AL) and was affinity purified. Irnunoabsorption experiments

were performed by mixing the primary antibody with its corresponding

peptide for 2 hours to overnight at 4 C then western blotting or

immunostaining as described below. H720, an anti-IRSp53 monoclonal

antibody, was generously provided by Dr. Roth and is described elsewhere

(Yeh et al., 1996).

The anti-dystrophin monoclonal antibody DYS2 was obtained from

Novocastra, the anti-aCaMII (#6G9) and anti-synaptophysin monoclonal
antibodies were obtained from Boehringer Maneim, the anti-NMAR1
monoclonal antibody was obtained from Pharmingen, and the polyclonal

anti-mouse CPEB antibody was obtained from Joel Richter, University of

Massachusetts, Worcester (Wu et al., 1998). Insulin Receptor subunit

polyclonal (C-19) antibody was obtained from Santa Cruz Antibodies. Fas

Ligand monoclonal (33) antibody was obtained from Transduction

oratories. Insulin Receptor ~ subunit polyclonal antibody (#C-19) was

obtained from Santa Cruz Biotechnology, Inc. An anti -peptide antiseru
to ~-dystroglycan (12031C) was a generous gift of Lou Kunkel (HHI,

Children s Hospital, Boston, MA). Monoclonal anti-~-dystroglycan

antibody NCL-43DAG was obtained from Novocastra.



Western Blotting
Protein concentrations were determined with the BCA protein assay

(Pierce, Rockford, IL), using bovine seru albumin (BSA) as a standard.

Equal quantities of homogenate, synaptosomal, and PSD proteins were

separated on a 10% or a 5-15% gradient gel by SDS-PAGE, transferred onto

nitrocellulose memranes, and incubated with primary antibodies followed
by alkaline phosphatase-conjugated goat anti-rabbit or anti-mouse IgG

(Boehringer Maneim). Bound antibody was visualized using the BCIP/NBT
substrate system (promega, Madison, WI). In some experiments, lysates of

CHO. T cells, which overexpress insulin receptors (generous provided by

M. Czech, Univ. of Mass Medical Center), were also analyzed. For Western

blotting with DYS2, horseradish peroxidase-conjugated anti-mouse IgG was

used as the second layer, and bound antibodies were visualized by ECL

chemiluminescence (Arersham).

2D gel electrophoresis
Isoelectric focusing (IEF) was performed essentially as instructed

by the manufacturer (Pharmacia Biotech). Briefly, IEF strips (Immobiline

Dry Strips, pH 3-10L, 11 cm) were rehydrated for 6 hours to overnight at

room temperature in 2D sample/rehydration buffer (8M urea, 2% CHAPS, 2%

IPG buffer 3-10L (Pharmacia), 0. 3% DT). Strips were stored at -

after rehydration , Samples were diluted or resuspended to 100 l 2D

sample buffer. The soluble fraction was loaded at the anodic end of the

IEF strip (pH 3-10 linear gradient, Pharmacia). IEF was performed at

C on a Multiphor II apparatus (Pharmacia) for 1 hour at 300V, 15

hours at 1400V. Following IEF, the strips were equilibrated at room

temperature for 10 minutes in 20 mg DT per ml equilibration buffer (50

ro Tris-HC1, pH 6. 8, 8M urea, 35% glycerol, 0. 3% SDS) , followed by 10

minutes in 25 mg iodoacetamide per ml equilibration buffer. Strips were

then placed horizontally (cathode to anode, left to right) on aD. 5 mm

thick 10% SDS-polyacrylamide gel and anchored with a stacking solution

(0. 5% agarose, 125 ro Tris, pH 6. 8, 1% SDS). Sample or protein standard

was loaded into one lane on the gel and was separated by SDS-PAGE only.



The samples were electrophoresed in the second (SDS-PAGE) dimension and

gels were either silver stained (Morrissey, 1981), stained with
commassie blue, or transferred to nitrocellulose (10 volts, 16 hours)

for western blotting.

Hydrophobic Interaction Chromatography
For hydrophobic interaction chromatography (HIC) , PSDs were

solubilized overnight at 4 C in 8M urea, 1M NaCl, 5 ro dithiothreotol

(DT), SO ro sodium phosphate buffer, pH 7. 5. The soluble fraction was

then made 4M in urea and incubated with HIC matrix (high performance

phenyl sepharose, Pharmacia Biotech) for 3 hours at 4 C. The HIC matrix

was then washed, pre-eluted in the same buffer with 0. 8M NaCl, and

eluted with the same buffer in a. 1M NaCI. Apomyoglobin (Sigma Chemicals,

St. Louis, MO) was added to the eluate as a carrier protein, and the

solubilized proteins were subsequently precipitated with trichloroacetic

acid.

MALDI-TOF Mass Spectrometry and peptide s equenc ing

HIC eluates separated by 2D electrophoresis were visualized by

cornassie stain and the bands corresponding to pS8 and pS3 were excised

from the gel. The polypeptides were recovered from the gel and subj ected

to trysin digestion. Peptide masses were determined by Matrix Assisted
Laser Desorption Ionization Time-of-flight Mass Spectrometry (MADI-TOF
MS). MS-Fit search software was then used to compare the pS8 and pS3

mass profiles to known proteins. Trytic fragments from pS8 and pS3 were
separated by HPLC and peptide sequence was obtained from 3 fragments of

pS8 (J. Leszyk, Worcester Foundation Protein Sequencing Facility,
Worcester, MA).

In vitro phosphorylation of PSD fraction proteins
The method used is a modification of a procedure described

elsewhere (Dosemeci et al., 1994). PSDs were pretreated on ice for 3
hours with occasional mixing in 20 ro HEPES, pH 7. 4, 100 ro DT. PSDs

were diluted to a final concentration of 0. 4 mg protein/ml in



phosphorylation solution (5 ro MgC12, 50 g/ml leupeptin, 20 ro DT, 
ro HEPES, pH 7. 4, 1 ro CaC12, 1 ro orthovanadate, +/- 100 

ATP)) , and

incubated at 37 C for 5 minutes. The reaction was quenched by the

addition of SDS sample buffer.

Northern blot hybridization
The 32p labeled IRSp58/S3 oligonucleotide probe was synthesized by

PCR using the IRSpS3 cloned DNA (provided by Roth, described in (Yeh et

al., 1996)) as temlate and the primer pair:
F1:

R1:

AAGAGCGTGACCCCGAAGAACAGC

AACCAGCCCCGCATT .

The rat Multiple Tissue Northern Blot (MT; Clontech, Palo Alto, CA) was

prehybridized in ExressHyb for 1 hour at 55 C. The IRSp58/S3 probe was

denatured, diluted in ExressHyb, and incubated with the blot overnight
at 55 C. After hybridization, the blot was washed extensively; the most

stringent wash performed was O. lX SSC, 0. 1% SDS, at 65 C for 40 minutes.

The 32p labeled human ~actin cDNA control probe was generated

using random hexamer labeling (Gibco). The blot was prehybridized in

ExressHyb for 1 hour at 68 C. Hybridization with the actin cDNA probe

was performed overnight at 68 C. The blot was then washed extensively;

the most stringent wash performed was O. 5X SSC, 0. 1% SDS at 60 C for 60

minu tes .

RNA isolation and RT-PCR

RNA was isolated from 20 mg of rat cerebral cortex by the RNeasy

mini kit (Qiagen). cDNA was synthesized by reverse transcription of 30

g of the RNA, using either oligo- (dT) or random primers and reverse

transcriptase (Gibco). Conditions for reverse transcription were 40 X 
minutes at 94 C, 1. 2 minutes at 37 C, 4. 3 minutes at 60 C). The product

of this reaction was used as the template for PCR. The PCR conditions

were 3 minutes at 94 C, 40X (30 sec. at 94 C, 1 minute at S5 C; 4

minutes at 68 C) , 8 minutes at 68 C. The sequences of the primers used

are as follows:



(UTR/C):

(MIDF):

C (F1):
D (R1):

(MIDR):

F (ENR):

5' GTGTAGCCGGACCCAGGACCAT 3 

5' CGAGGGCGGAGGAGGTITGC 

5' AAGAGCGTGCCCCGAAGAACAGC 

5' AACCAGCCCCGCATT 3'

5' ACGGCACACTGTAGGTCTCTGC 3 I .

5' TCTAGTCAGGGCTCAATC 3'

Tissue sections and immunohistochemistry
Brains were dissected out of adult female rats, and immersed in

freezing isopentane, mounted in OCT emedding medium and equilibrated to
C. 8 frozen sections were cut, air-dried onto glass slides, fixed

in MeOH at - 2 DoC for 10 minutes, and rehydrated in PBST (PBS , O. 1 

Triton-X 100). The sections were blocked for one hour at room
temperature with PBST, 1% BSA, 10% horse seru, 1% goat seru. The

primary antibodies, anti-IRSp58/53 (1 ug/ml +/- peptide (1 mg/ml)),

rabbi t anti -synapsin- I (1: 3000, pietro DeCamilli, HHI (Malgaroli et

al., 1989)), or control rabbit IgG (Sigma, 1 ug/ml) were diluted in

blocking solution and were applied overnight at 4 C. The slides were

washed at room temperature for 2 hours in PBST with stirring and one

wash solution change. Cy3-conjugated goat anti-rabbit IgG (1:500-1:4000,

Jackson ImmunoResearch) or FITC-conjugated goat anti-mouse IgG, rat

absorbed (1:100, Vector Laboratories, Burlingame, CA) was applied for 3
hours at room temperature. The sections were washed as above, dehydrated

in - C MeOH for 10 minutes , allowed to air dr, and mounted in

Citifluor (Ted Pella Inc., Redding, CA). Immunostaining was visualized
by indirect fluorescence using a Nikon E800 fluorescent microscope.

Images were recorded with a Photometrics CCD camera using IP Lab systems

software.

Hippocampal neuron cultures and immunohistochemistry
Low density cultures were maintained primarily by David Wells, a

postdoctoral fellow in the lab (Wu et al., 1998)), as described in

(Goslin and Banker, 1991). Briefly, the hippocampus was removed from E18

rat emryos, trysinized (0. 25%), dissociated by trituration, and plated



onto poly- Iysine (1 mg/ml) coated glass coverslips in modified Eagle

medium (ME, Gibco) with 10% horse seru for 4 hours. The coverslips
were then transferred to dishes containing a monolayer of glial cells in

growth medium consisting of ME, ovalbumin (100 g/ml) pYrvate (1.
g /ml) , glucose (0. 6%) and N2 supplement. The culture medium was changed

weekly. After 19-21 days, the cells were fixed with 4% paraformaldehyde

at 37 C for 20 minutes, covered with saponin (0. 05%) for 5 minutes and

then incubated in blocking solution (ME, 10% horse seru, 1% goat

seru, 1% BSA). The primary antibodies, mouse anti- synaptophysin

(Boehringer, diluted 1: 20), mouse anti- insulin receptor ~ subunit (Santa

Cruz, diluted 1:100), and rabbit anti-IRSp58/53 (diluted 1:5) were

applied overnight at 4 C and the second layer antibodies, directly

conjugated to either FITC (Caltag) or Cy3 (Jackson ImmunoResearch), were

applied for 1 hour at room temperature. The coverslips were mounted onto

glass slides with Citifluor (Ted Pella) .

In vitro transcription/translation and immunoprecipitation
IRSp53 was subcloned from the Bluescript vector into the Bam1

site of the expression vector pMGT. The clones C2797 and DP71 (in pMGT,

provided by L. Kunkel CAlm and Kunkel, 1995; Chan and Kunkel, 1997)),

encode a dystrophin fragment from bp 2797 to the C-terminal end, and the

small dystrophin isoform that is highly expressed in brain,

respectively. The clone aO is in the expression vector pMGT and
encodes a dystroglycan fragment from bp 345 to 653. These plasmids were

used for in vitro transcription/translation (TN Quick Coupled In Vitro

Transcription and Translation System, Promega) using 35S-methionine. In

vi tro expressed proteins were diluted in TEST (10 ro Tris pH 7. 8, 150 ro
NaCI, 0. 1% Tween-20) and incubated with each other on ice for 1 hour.

The mixtures were then incubated with the immunoprecipitating monoclonal

antibody (DYS2 or H720) for one hour. The samle-antibody mixture was
then incubated with Protein G-sepharose (Sigma Chemicals) for 1 hour.

The beads were washed with TBST and then incubated in protein sample

buffer at 100 C for 10 minutes. The supernatants were analyzed by SDS-

PAGE and autoradiography.



Biotinylation and solubilization of PSDs
Purified PSDs (2 mg) were resuspended in 1 ml 50 ro HC03, pH 8.

Following the addition of 74 ul biotin (1 mg/ml), PSD proteins were

incubated for 30 minutes at room temperature and then solubilized as

described in (Blackstone et al., 1992). Briefly, PSDs were reisolated by

centrifugation, and resuspended in 10 ro Tris, pH 7. 4. 1/10 volume of

10% DOC, 500 ro Tris pH 9. 0 was added to the PSD and the mixture was

incubated at 37 C for 30 minutes with occasionalvortexing. 1/10 volume

of 1% Triton X-100, 50 ro Tris pH 9. 0 was added, and the PSD solution

was dialyzed overnight against 50 ro Tris pH 7. 4, 0. 1% Triton-X100. The

following day, the PSD solution was centrifuged at lOOK x 
for 30

minutes This supernatant was used for imrunoprecipitations and for

incuba tion wi th GST- tagged proteins.

GST-tagged IRSp53

PCR mutagenesis was used to introduce EcoR1 sites that flanked the

coding region of IRSp58/53 using the primers:

F= 5' CGGAATTTCGCTCTCACGCTCGGAG 

R= 5' GGAA'ICATCTGCAC'I 3'
The PCR product was gel-purified (Qiagen), and linearized pGEX- 1AT

(Pharmacia), was ligated with or without the insert (T4 ligase). BL21

(and DH10B cells for plasmid maintenance) were electroporated with the

ligation products and screened for inserts. I isolated DNA isolated from

several colonies, and performed PCR with a IRSp58/S3 specific primer

pair to determine the presence or absence of the IRSpS8/S3 insert. The

restriction enzymes Sph1 and Bam1 were then used to determine the

orientation of the insert. Identification of a clone with a correctly

oriented IRSp58/53 insert was verified by sequencing the plasmid from

each end of the ligation. Sequencing primers were:

F= 5' GGCTGAAGCCACG'I'I 3'
R= 5' CCGGAGC'ICA'I'ITCAGAGG 3' .



Fusion Proteins
BL21 cells were grown overnight in Luria broth with 1 g/ml

ampicillin (LBA). The overnight cultures were diluted 1: 10 in fresh LBA
and grown until the absorbance at OD600 = 0. 8. Protein exression was

induced by adding IPTG to the cultures to a final concentration of 1 ro.
Induced cultures were incubated with agitation at 2S C for 3 hours. The

cells were pelleted and resuspended in 1/100th culture volume with SO ro

Tris, 150 ro NaCl. Triton X-100 was added to the resuspended cells to a

final concentration of 1% and DT was added to 1 ro. The cell suspension
was sonicated for 3 x 10 seconds and the sonicate was centrifuged for 5

minutes at 14, 000 rpm. The supernatant was collected and placed on ice.
The pellet was resuspended as above and sonicated 2 x 10 seconds. The

sonicate was centrifuged for 5 minutes at 14, 000 rpm and the supernatant

was pooled with above. The pooled supernatants were spun and the

supernatant was incubated for 1. 5 hours at 4 C with glutathione-

sepharose beads that had been rinsed with 20 volumes of PBS. The beads

were washed with 50 ro Tris, 150 ro NaCI, 1% Triton X-100 and packed for

elution. Glutathione elution buffer (10 ro reduced glutathione, 50 ro

Tris-HC1, pH 8. 0) (1 ml) was added, the beads were incubated for 10

minutes at room temperature, the eluate was collected, and elution was

repeated. Eluate fraction were pooled and dialyzed overnight at 4

against 50 ro Tris pH 7. 5, 0. 1% Triton X-100. Following dialysis, salt

was added to a final concentration of 150 ro NaCl. The purified GST

protein solutions were then tumled with an equal volume of solubilized,
biotinylated PSDs or synaptosomes for 4 hours at 4 C. This mixture was

then incubated with fresh, rinsed glutathione-sepharose beads for 1.

hour incubation at 4 C, and subsequently washed thoroughly. GST-sample

complexes were released from the glutathione sepharose by boiling the

pellet for 10 minutes in sample buffer. Eluates were analyzed by western

blot, and biotinylated PSD proteins were identified by incubating the

blot in ABC reagent and visualizing the reaction with the BCIP/NBT

system (Vector).



35S labeled in vitro expressed IRSp58/53 blot overlay

The subcellular fractions were separated by SDS-PAGE and blotted

to nitrocellulose. The blot was immediately rinsed in wash buffer 
(Hanks

Buffered Saline Solution (HESS), 0. 1% BSA, pH 7. 4) for 30 minutes with

multiple wash changes. The blot was blocked for 3 hours at 4
(HESS, 1%

BSA, 1 ro DT, 5 ro HEPES, pH 7. 4). 35S-labeled proteins (IRSp58/53,

aD) were made as described above. The radiolabeled proteins were
diluted in block and incubated with the blot overnight at 4

C. The blots

were washed for 1 hour with multiple changes of wash buffer, dried, and

exposed to film for 6 hours to overnight.



Results

The postsynaptic density is a structure that appears to be the

morphological consequence of a complex scaffold of signaling molecules

that rests just below the postsynaptic memrane of 
central synapses. I

have identified a protein that is selectively enriched in the PSD

fraction as the insulin receptor substrate IRSpS8/53. The protein

IRSp58/53 was recently identified in a non neuronal cell line and found

to be an insulin receptor substrate (Danielsen and 
Roth, 1996; Yeh et

al., 1996; Yeh et al., 1998). I have determined that the IRSpS8/53 

is most highly expressed in brain, and that alternative splicing of the

transcript does not appear to account for IRSp58/53' s appearance as 

doublet following electrophoresis, nor do traditional post-translational

modifications. Additionally, I have shown that IRSp58/53 is concentrated

at synaptic sites: in cerebellar tissue and in cultured hippocampal

neurons. I have found that the ~ subunit of the insulin receptor,

IRSp58/53' s functional partner, is a component of the PSD fraction as

well. I have uncovered no interaction between IRSp58/53 and the

potential binding partners dystrophin or FasL in 
vitro. I have

identified a potential binding partner for IRSpS8/53, PSD255. The

resul ts that I present here provide evidence for a synaptic insulin

receptor signaling pathway.

1 polypeptides pS8 and pS3 are enriched in the 
postsynaptic

density fraction

While surveying adult rat brain homogenate, synaptosome, and PSD

fractions to determine the relative enrichment of 
dystroglycan in

subcellular fractions (see Chapter I), I discovered that one 
antiseru,

Ab98, cross-reacted with a pair of polypeptides of 58 kDa and 53 
kDa,

termed p58 and p53, that were highly concentrated in the PSD fraction

(Figure 4). p58 and p53 were highly enriched in the PSD 
fraction,

these polypeptides were not detected in blots of homogenate and

since



synaptosomes that contained the same amount of total protein 
(Figure

4A). p58 and pS3 were enriched in PSD fractions isolated from rat

cerebral cortex, cerebellum, and hippocampus (Figure 
4B). In contrast,

dystroglycan (migrating at 43 kDa) was present in brain homogenate and

was modestly enriched in synaptosomes, but was not detected in the PSD

fraction from cerebral cortex (Figure 4A) or other brain regions 
(not

shown, see Chapter I).
Like other components of the PSD fraction, p58 and p53 were

virtually insoluble in all non-ionic detergents tested. In addition,

these polypeptides were not extracted in 3% N-
lauroyl sarcosinate (not

shown). Such solubility properties indicate tight association with the

core ' PSD (Kennedy, 1993). Relatively few proteins have been found

specifically enriched in the postsynaptic density fraction. This feature

of p58/53 suggested that it was a synapse specific protein. Since the

identification of the components of the synapse is essential to

understanding its structure and function, I was resolute to determine

whether p58 and p53 were relatives of ~-
dystroglycan, proteins not yet

localized to the PSD fraction, or novel proteins. Since p58 and p53 were

observed as immunologically related to ~-
dystroglycan, I first pursued

the identification of these polypeptides in that context. Although I

found no evidence of alternative splice 
form of dystroglycan in brain

(see Chapter I), I concluded that, in order to positively discount the

possibility that p58 and p53 were related to dystroglycan, and to make a

conclusive identification, I must obtain peptide microsequence from

these polypeptides.

purification of p58 and p53

Protein staining of SDS-PAGE separated PSD fraction proteins

demonstrated that, within the molecular weight range of 50-
60 kDa, pS8

and p53 were interdigitated among at least three major PSD proteins

(Figure 4C). When I carefully extracted the p58 and p53 bands from blots

of PSD fractions and obtained MADI-TOF masses, it was clear that within



the bands there was overwhelming contamination from at least one of

these major PSD proteins, tubulin. To achieve an improved gel separation

of pS8 and p53 from the 50-60 kDa major PSD proteins, and to further

investigate their biochemical properties, I separated the PSD sample

proteins by charge and by size using two-dimensional gel

electrophoresis. This method yielded substantial improvement in the

isolation of p58 and p53: unlike the maj ori ty of the PSD proteins, this
doublet migrated to a basic isoelectric point (pI -9), free from the

bulk of PSD proteins (Figure 5A). The pS8 and p53 bands each migrated as
a series of closely spaced spots of differing isoelectric points,

suggesting that these polypeptides may be post-translationally modified

(see below) .

Next, I established conditions for the solubilization of pS8 and

p53 in the absence of detergents. Many chromatographic methods did not

contribute to the purification of p58 and pS3. Affinity chromatography

with the antibody Ab98 was far too inefficient to attain significant

quantities of p58 and p53; anion and cation exchange chromatography, and

fast performance liquid chromatography (FPLC) provided no separation of

p58 and p53 from other components of the fraction. In contrast,

hydrophobic interaction chromatography (HIC) provided an excellent

separation of p58 and p53 from the majority of other PSD components. HIC

yielded a protein fraction that was highly enriched in pS8 and p53.

Comparison of silver stained gels of HIC starting material (total PSD

fraction proteins) and HIC eluate, both separated by 2D gel

electrophoresis, demonstrated that the hydrophobic subpopulation of PSD

proteins, including p58 and p53, is a small component of the total PSD

fraction (Figure SB). Ultimately, to obtain a quantity of p58 and p53
sufficient for peptide microsequencing, I exploited a purification

scheme which combined subcellular fractionation, HIC, and 2D gel

electrophoresis.



Mass Spectrometry Analysis and Peptide Microsequencing of

p58 and p53

To identify p58 and p53, I used MADI-TOF mass spectrometry to

analyze trytic digests of the purified polypeptides. Comparison of the
profile of masses obtained from both p58 and p53 to computer-

generated

mass profiles of protein sequences in the NCBI database showed that p58

and p53 from rat were highly homologous to hamster Insulin Receptor

TYosine Kinase Substrate p53 (IRSp58/S3, Figure 6). This pair of

polypeptides had been isolated from CHO cells by Yeh et 
al., and the

cDNA encoding IRSp53 was cloned (Yeh et al., 1996). The precise

relationship between IRSp58 and IRSp53 was not established in that

study, but it seems likely that they are encoded by the same sequence

(see below) .

Sixty-five percent of both the p58 masses (15/23) and the p53

masses (13/20) matched the trytic digest masses computed from the
deduced IRSp53 amino acid sequence (Table 1). There were eight p58

masses that did not correspond to an IRSp53 mass, but six of these

masses were shared by p53. Two p58 masses and one p53 mass were unique.

Only slight differences were observed when the HPLC chromatograms of the

p58 and p53 trytic digests were compared (not shown). Together, these

data indicate that the primary structures of p58 and pS3 are very

s imi lar .
To verify the identification of p58 and p53 as IRSpS3, I obtained

amino acid sequence from three of the p58 trytic fragments. Of the 33
amino acids obtained, all perfectly matched the published sequence of

the IRSpS3 cDNA (Table 1, Figure 6). I further confirmed the

identification of pS8 and p53 as IRSp53 by western analysis of PSD

fractions with monoclonal antibody H720 (not shown). Hereafter, p58 and

p53 will be referred to as IRSp58/53.
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4 Relationship of IRSp58 and IRSp53

In the course of my biochemical studies of IRSp58/S3, I have

consistently encountered a -5 kDa difference in the molecular weights of

IRSp58 and IRSpS3. However, neither mass spectrometry nor HPLC analysis

indicated differences in the primary structures of these polypeptides.

One modification that could potentially account for this difference is

phosphorylati . Indeed, in vitro phosphorylati
of PSD proteins caused

an upward shift in the electrophoretic mobility of both IRSp58 and

IRSp53, suggesting that they are substrates of a kinase(s) in the PSD

fraction. However, this shift did not account for the 5 kDa difference

(Figure 7A). Similarly, enzymatic deglycosylatio
did not yield any

consolidation of the doublet (not shown). Thus, I found no evidence that

these posttranslational modifications cause the 5 kDa apparent molecular

weight difference between IRSp58 and 
IRSp53.

To further investigate the relationship between IRSp58 and 
IRSp53,

I analyzed their expression in brain tissue from 
rat, mouse, and porcine

PSD fractions. Western analysis revealed that in the rat and mouse PSD

fractions, the IRSp58/53 pair was indistinguishable 
(not shown) 

However, in the porcine PSD fraction the IRSp58 species was prominent,

and the IRSp53 species was barely detectable 
(Figure 7B). This

observation raises the possibility that IRSp53 is a proteolytic cleavage

product of IRSp58. However, it should be noted that the relative levels

of IRSp58 and IRSp53 remains stable when PSD fractions are stored for

prolonged periods at - C or incubated overnight at room 
temerature

(not shown).

5 Distribution of IRSp58/53 mRNA

Hoping to learn more about the molecular relationship between

IRSp58 and IRSp53, I investigated the possibility that IRSp58/53

represent alternative splice forms. To examine the distribution and

configuration of the IRSp58/53 transcript, I probed rat tissue Northern
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blots with a radiolabeled oligonucleotide probe that corresponded to the

putative SH3 domain (see below) of the IRSp53 clone (Yeh et al., 1998).

This probe hybridized predominantly to transcripts of two sizes, 2.
4 and

5 kb (Figure 8). The mR tissue exression pattern revealed in this

experiment is more extensive than the tissue exression of the IRSpS8/53

protein. Yeh et al. showed that IRSpS8/53 exression is significant 
brain, and is undetectable in spleen, muscle or liver (Yeh et 

al.,

1996). Brain contained the highest level of IRSpS8/53 
mR, with the 3.

kb transcript predominating. Varying amounts of the two transcripts were

observed in other tissues. Notably, neither transcript was detected in

skeletal muscle. Thus, there appear to be at least two IRSp58/53 
mRs,

and the highest hybridization is to the 3. 5 kb IRSp53 transcript, which

is most prevalent in brain.

6 Organization of IRSp58/53 rnRNA

Considering the possibility that the two transcripts observed in

the Northern blots might correspond to alternatively spliced 
mRs, I

then searched the EST database using the BLAST algorithm 
(Altshcul,

1990) for sequences that might represent IRSp53 homologues. I identified

a large set of IRSp53-homologous ESTs that spaned the entire open

reading frame of IRSp53 (not shown). However, this analysis revealed no

divergences from the reported IRSp53 cDNA sequence, and thus provided no

evidence for the existence of alternatively spliced transcripts.

To determine whether the size difference between the 3.
5 kb and

the 2. 4 kb mRs was due to variation in their coding sequence, I

performed RT-PCR. I isolated RN from rat cortex and used random primers

to reverse transcribe the RNA. I then used an array of primers that

spaned the IRSp53 coding region for PCR analysis. Each of the generated
RT-PCR products corresponded in size to a product obtained using IRSp53

cDNA as template: no major additional products were detected 
(Figure 9) 

Together, these RT-PCR products covered the entire coding region of

IRSp53. Thus, in rat brain I found no evidence of alternative splicing



within the coding region of IRSpS3 mRA, suggesting that both IRSp58 and

IRSpS3 are products of a highly similar or identical rn.

Localization of IRSp58/53 to synapses

The enrichment of IRSp58/53 (pS8 and p53) in the synaptic

subcellular fractions suggested that IRSp58/53 is a component of the

synapse. Since the antisera Ab98 cross-reacts with 
dystroglycan, and

the IRSp58/53 monoclonal antibody H720 was unsuitable for

immunohistochemistry, I raised and affinity purified a specific anti-

IRSp58/53 antiseru. Importantly, this antiseru did not recognize ~-
dystroglycan. The specificity of this reagent for IRSp58/53 was verified

by western blotting and immunoabsorPtion (Figure 10).

To determine it IRSp58/53 has a synaptic distribution in intact

brain, I performed immunohistochemistry on frozen sections (Figure 11A).

In the cerebellum, a zone of granule cells lies next to a band of

Purkinje cells, whose synapse-laden dendrites lie in the adjacent

molecular layer. Staining with this anti-IRSp58/53 antibody demonstrated

that IRSp58/53 immunoreactivity is prominent in the synapse-rich

molecular layer as well as in the granule cell layer of this tissue. The

specificity of the IRSp58/53 antibody staining was demonstrated by

peptide immunoabsorPtion. This pattern of staining suggested that

IRSp58/53 may be expressed selectively at synaptic sites.

Therefore, to assess the distribution of IRSpS8/53 in further

detail, I exploited a system in which individual synapses can be

resolved. Primary hippocampal neurons in low density cultures have well-

differentiated axons and dendrites, and numerous functional synapses.

These synapses can be reliably visualized using antibodies to synaptic

vesicle proteins such as synaptophysin. Double labeling with anti-

synaptophysin and anti-IRSpS8/53 antibodies showed that IRSp58/53

immunoreactivity was localized at the majority of synapses on these

cells (Figure lIB). Together, the findings from my biochemical and
immunohistochemical studies indicate that IRSpS8/S3 is a component of



central synapses. I exect that this finding will verified by future
imuno-electron microscopy studies.

IRSp58/53 binding partners

IRSpS8/53 contains several potential protein-protein binding

domains: an src homology 3 (SH3 ) domain, as well as an SH3 binding and a

WW-binding domain (Figure 6) (Yeh et al., 1998). . In light of IRSp58/S3 '
potential for protein-protein interactions, I searched for binding

partners for IRSp58/53. I both used a candidate partner approach and

pursued novel protein binding interactions.

1 Fas Licrand Associated Factor 3 is a human homolocre of IRSD53

A BLAST search with the IRSpS3 cDNA reveals a NCBI database entry

that is 95% identical to the N-terminal 320 amino acids (60%) of

IRSp58/53 (Hachiya et al., 1997). The entry s annotation states that

this cDNA, Fas Ligand Associated Factor 3 (FLA3) , encodes a large

portion of a human homologue to IRSp53. The FLA3 cDNA was obtained

using the intracellular tail of Fas Ligand (FasL) as bait in a yeast two

hybrid screen of a human placental cDNA library. FasL, a 37 kDa type II

transmemrane protein, is known to wield the " death domain " which

initiates Fas-mediated apoptosis. Whereas the extracellular portion of

FasL and its role in apoptosis are well studied, little is known about

the endodomain of this molecule.

To determine if FasL has a distribution that coincides with that

of IRSpS8/53, I probed western blots of brain subcellular fractions with

an antibody directed against FasL. Following reducing gel

electrophoresis of subcellular fractions proteins, FasL is observed in

predominantly in brain homogenate and synaptosome fractions (Figure

12A). The immunogen against which this FasL antibody was made is the

extracellular, C-terminal portion of FasL. This portion of FasL is often

cleaved however, producing a soluble factor and presumly leaving
behind a transmemrane " root. " One explanation for the absence of FasL



in the PSD fraction is that the portion of FasL reported to interact

with IRSpS3, the intracellular " root" does in fact fractionate with the

PSD, while the epitope containing extracellular portion is cleaved. The

intracellular fragment is thus rendered virtually invisible, since

antibodies directed against the less studied intracellular portion of

FasL are currently unavailable. Such antibodies would be valuable for

pursuing this potential interaction between FasL and IRSp58/S3.

2 Dvstrophin: a PSD Drotein with an available WW domain

The cytoskeletal PSD protein dystrophin (see Chapter I) is

localized to the PSD and contains a WW domain (Bark and Sudol, 1994).

The WW or WWP domain, identified in 1994, is a protein-protein

interaction module which likely functions is a way analogous yet

distinct from SH3 domains. This module contains approximately 40 amino

acids and contains two highly conserved trytophans and an invariant

proline (Rotin, 1998). I hypothesized that at synapses, IRSp58/53 might
interact with this protein-protein interaction domain within

dystrophin s C-terminus. I attempted to co- immunoprecipitate in vitro

expressed dystrophin fragments that contained the WW binding domain with

vitro expressed IRSp58/53. I observed no interaction between these

proteins, however (Figure 12B).

3 A search for novel IRS 53 rotein- rotein interactions

I continued to pursue IRSpS8/53 interacting proteins by screening

the conglomerate PSD fraction for binding proteins. First, to

investigate the possibility that IRSpS8/S3 are tightly associated with

other proteins in the PSD fraction, I immunoprecipitated IRSp58/53 under

non-denaturing conditions from a preparation of biotin- labeled,

solubilized PSD proteins. However, no PSD proteins co- immunoprecipitated

with native IRSp58/53 (Figure 12C).

I next screened the PSD fraction for components that possessed

affinity for IRSp58/53. I generated a glutathione s-transferase-tagged

IRSp58/53 (GSTp53) and co-incubated GSTp53 with a preparation of biotin-

labeled, solubilized PSD proteins. The GSTp53 precipitated a numer of



biotinylated PSD proteins, while few PSD proteins bound to the GST

control (Figure 13, left). To enhance this finding, I used an
alternative approach and performed a blot overlay experiment. I probed a

blot of subcellular fraction proteins with 3SS- thionine labeled in

vitro expressed IRSp58/53. Again, IRSp58/53 appeared to bind a numer of

PSD proteins (Figure 13, right). To verify the specificity of these

interactions, I also performed the overlay with an in vitro expressed

fragment of a-dystroglycan, another synaptic protein. Each method

revealed multiple binding proteins. However, by coordinating these two

methods and directly comparing the results, I found one PSD-
fraction

protein, PSD22S, that was identified by both fusion protein affinity and

blot overlay. Thus, PSD225 is significantly more likely to be a true

binding partner for IRSp58/53 than the many proteins identified using

one of the two binding assays. If the interaction shown in this pair of

experiments is shown to withstand increasingly stringent conditions,

then this binding interaction should be pursued. Further studies will

then be required to determine if PSD225 is a true IRSp58/53 binding

partner in vivo.

Localization of the insulin receptor to synapses

Although a binding partner for IRSp58/53 has not yet been

substantiated, a functional partnership has been established. IRSp58/53

has been shown to be an insulin receptor substrate in cultured

fibroblasts. Further, IRSp58/53 isolated from brain can be tyrosine

phosphorylated in vitro by insulin receptor (Yeh et al., 1996). Insulin

receptor is known to be expressed in brain, and other components of

insulin signaling pathways have been localized to brain regions as well

(see above). I thus sought evidence for the presence of the insulin

receptor at postsynaptic apparatus in vivo. Indeed, staining specific

for the subunit of the insulin receptor is concentrated at synapses in

cultured hippocampal neurons (Figure 14A; David Wells, Brown

University). This evidence is in agreement with recent findings of Beju



and Schechter. Using irnuno-gold electron microscopy, they demonstrate
insulin and insulin receptor within the axon and dendrites of

hippocampal neurons in brains of rats 10 days old. They have localized

insulin ultrastructurally to presynaptic regions, and the insulin

receptor to presynaptic and postsynaptic memranes (Beju and Schechter,
1998) .

10 The Insulin Receptor is a component of the PSD fraction

After determining that a population of inulin receptor is

concentrated at synapses in culture, I was interested in whether the

insulin receptor is associated with the pre- or postsynaptic

specialization. I probed western blots of brain subcellular fractions

with an antibody to the ~ subunit of the insulin receptor. The insulin

receptor was detected in homogenate, and was enriched in both

synaptosome and PSD fractions (Figure 14B). Thus, both the ~ subunit of

the insulin receptor tyrosine kinase and its substrate IRSp58/53 are

components of the PSD fraction. Indeed, using EM, Beju and Schechter

have localized insulin ultrastructurally to the PSD structure itself (D.

Beju, personal communication). Taken together with other data showing a

functional relationship of the insulin receptor and IRSpS8/S3, this co-

localization suggests that these molecules are part of an insulin-

dependent signaling pathway at the postsynaptic apparatus.

The co-fractionation of the insulin receptor and its tyrosine

kinase substrate IRSp58/S3 strongly suggests that their established

functional relationship is maintained within the synaptic signaling

structure of the PSD.



Discussion

In this portion of my thesis work, I show that a substrate of the

insulin receptor, and insulin receptors themselves, are localized at CNS

synapses and are components of the postsyn
pti density. Insulin is

likely to have diverse roles in the CNS, including but not restricted to

the regulation of glucose metabolism. Interestingly, there is a growing

body of evidence that implicates insulin signaling in processes other

than homeostasis (reviewed in (Wickelgren, 1998)). The multivariate

downstream effects of insulin signaling may be coordinated through

spatially regulated expression of the insulin receptor tyrosine kinase

substrate molecules. signaling via a synapse-specific substrate,

IRSp58/53, may define a subset of the insulin signaling pathway.

1 IRSp58/53 and Insulin Receptor are 
localized to synapses

I began my investigation of synaptic insulin signaling proteins at

the level of the PSD, an electron-dense conglomeration of proteins that

lies just below the postsynaptic memrane of 
central synapses. I have

characterized and purified a pair of proteins of unknown 
identity, p58

and p53, that is selectively concentrated in the biochemical fraction

enriched for PSDs. Using MADI-TOF mass spectrometry, peptide

sequencing, two-dimensional electrophoresis, and western blotting,
' I

have identified these PSD proteins as the Insulin Receptor Substrate

p58/53 (IRSp58/53). A small numer of p58 and p53 peptide masses

obtained by MADI-TOF analysis do not match computed IRSp53 masses

(Table 1). This presumly reflects species-dependent divergences

(hamter versus rat) or posttranslational modifications. Notably, IRSp53

has sites for N-linked glycosylation, two potential tyrosine

phosphorylati sites, and 25 potential serine/threonine phosphorylati

si tes.
I have shown that another key insulin signaling protein, th

insulin receptor, is also a component of the PSD fraction. Generally,
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transmemrane proteins such as the insulin receptor do not remain

associated with the Triton X-100 insoluble PSD. There are significant

exceptions however, and the most well-studied of these is the NMA

receptor. Specific subunits of the NMA receptor are thought to be

tethered to the PSD through an interaction between the NMAR C-terrinus
and the second PDZ domain within PSD-95 (Kornau et al., 1995j Kim et

al., 1996). The receptor tyrosine kinase TrkB has also been localized to

the PSD fraction (Wu et al., 1996).

Although the PSD fraction is a powerful tool for identifying

molecules that are specifically localized to the synaptic apparatus,

this biochemical preparation can not precisely reflect the constitution

of the synapse in vivo. Thus, with the help of David Wells (Brown

University) " I demonstrated the presence of insulin signaling
components at intact CNS synapses in culture. IRSp58/53 is expressed in

the synapse-rich layers of the cerebellum, and both IRSp58/53 and

insulin receptor are concentrated at synapses of hippocampal neurons.

Structure of IRSp58/53

I consistently observed that IRSp58/53 migrates as a pair of

polypeptides. However, I could find little evidence that IRSpS8 and

IRSp53 differed in their primary sequences. HPLC chromatograms of

trytic fragments from p58 and pS3 were virtually identical. MADI-TOF

analysis of purified p58 and p53 also revealed similar profiles - only

two p58 masses and one pS3 mass were unique. Although these masses could

represent divergent primary sequences, they could also be due to
posttranslational modification or proteolysis. Indeed, the relative

expression of IRSpS8 and IRSpS3 is cell and tissue specific.

Transfection of the IRSpS3 cDNA into fibroblasts results in expression

of only the IRSp53 species (Yeh et al., 1996). Further, I detected only

IRSp58 in PSD fractions from porcine brain. Finally, using RT-PCR I

detected only a single species of IRSp53 mRA in the brain, and a survey

of the EST database yielded no evidence of multiple mR species.
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However, my comparative analysis of the IRSp53 cDNA to total rat brain

cDNA does not exclude the possibility that differences exist 5' or 3' to

the IRSp53 coding region. Such differences could be uncovered by

performing 3' and 5' rapid amlification of cDNA ends (RACE).

The IRSpS3 cDNA clone was the only cDNA isolated from a CHO

library screened for cDNAs that encoded amino acid sequences matching

two peptides obtained from IRSpS8. It encodes a predicted protein with a

molecular weight of 57. 6 kDa. However, transfection of this cDNA into

fibroblast cell lines induces overexression of only the IRSp53 species,

so Yeh and colleagues reached the conservative conclusion that the cDNA

encoded only IRSpS3, and surmised that IRSp58 was a related splice form

of IRSp53 (Yeh et al., 1996). In contrast, I used a rabbit reticulocyte

system to in vitro translate IRSp53, and observed that the product was a

tight doublet of approximately 60 kDa (see Figure 12B) 

Analysis of the IRSp53 cDNA reveals an open reading frame that

encodes for a predicted protein of 57. 6 kDa (Yeh et al., 1996).

Interestingly, downstream of this first ATG codon are at least six

subsequent potential start sites. Utilization of one of these in

particular would yield a polypeptide with a predicted molecular weight

of 53. 6 kDa. Therefore, it is possible that use of alternative

initiation sites is the basis for the observation of this pair of

polypeptides of 58 kDa and 53 kDa. Nevertheless, my data are most likely

to fit scenario whereby IRSpS8 and IRSp53 derive from an identical mRA

coding region, and the difference in these polypeptides is the result of

a species and cell background-dependent, post translational process.

This investigation of IRSp58/53 was a outgrowth of my use of an

antiseru directed against ~-dystroglycan (Ab98). Comparison of the
IRSp53 and dystroglycan sequences revealed that these proteins have

little to no homology. The immunological cross-reactivity that Ab98

demonstrated for IRSpS8/S3 is presumably due to a proline-rich stretch

of amino acids within its amino acid sequence (KPLPVPPELAPF) that is

similar to the ~-dystroglycan peptide used to generate Ab98

(KAPLPPPEYPSQ). Notably, another group has reported a PSD fraction

protein (not IRSpS8/53) that is immunologically related ~-dystroglycan
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(Mumery et al., 1996). To date however, neither the identity of this

164 kDa PSD fraction protein, nor its homology/relationship to ~-

dystroglycan, have been shown.

Interactions of IRSp58/53

There is compelling evidence in support of the functional

classification of IRSp58/53 as an insulin receptor substrate. Yeh and

colleagues demonstrated that IRSp58/53 isolated from brain can be in

vi tro tyrosine phosphorylated by insulin receptors isolated from CHO. T

cells (Yeh et al., 1996). I have found that, following in vitro
phosphorylation of the insulin receptor-containing PSD fraction,

IRSp58/53 experiences a gel shift consistent with phosphorylation by an

endogenous kinase (s). These data implicate IRSp58/S3 as a brain-derived

substrate of the insulin receptor.

The downstream molecules that orchestrate insulin s potential

action at the synapse are unknown. The predicted domain structure of

IRSp53 (Figure 6) indicates may potential sites for protein-protein

interactions including an SH3 domain, an SH2-binding domain, and a

proline-rich WW-binding domain (Yeh et al., 1998). I asked whether
IRSp58/53 interacts with the WW domain of dystrophin, a PSD-enriched

cytoskeletal protein, but I was unable to co-immunoprecipitate in vitro

expressed dystrophin fragments and IRSp58/53. I noted a report of a

human homologue of IRSp53 (FLA3) that interacts with the intracellular
domain of Fas Ligand (FasL) in a yeast two hybrid assay, and I found

that FasL is expressed in brain, but I found no evidence of IRSp58/53

binding to native brain FasL. Lastly, I did not detect co-

immunoprecipitation of any native PSD fraction proteins with IRSp58/53.

Other investigators have similarly been unable to demonstrate binding

partners for IRSp58/53 (Yeh et al., 1996).
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Insulin signaling at synapses

Insulin is likely to have many roles in the brain. One expects

insulin signaling in the brain to playa role in glucose metabolism as
well as in currently unidentified processes. Insulin signaling pathways

may in fact be implicated in the progression of some disease states,
including Alzheimer s disease (Hong and Lee, 1997; Frolich et al., 1998;

Hoyer, 1998; Qiu et al., 1998). Key components of the insulin signaling

mechanism, such as insulin receptor, phosphatidyl inositol-3 kinase, and

IRS-1, are widely expressed and often co-distributed throughout the

brain. These elements are found in various regions of the brain, in
neurons and in some synapse-rich regions (Baskin et al., 1994; Folli et

al., 1994; Yamada et al., 1997). Recent data, including those presented

here, strongly support the tenet that insulin signaling occurs

throughout the brain, as well as specifically at synapses.

One compelling piece of evidence for a direct insulin effect at

synapses is the finding that insulin induces a rapid recruitment of

functional type A GABA receptors, the principal neurotransmitter at

inhibitory synapses, from intracellular to postsynaptic and dendritic

memranes (Wan et al., 1997). Inhibition of protein tyrosine kinases
blocks this translocation, suggesting that an activated insulin receptor

is required to execute insulin 
I s effect. This translocation of GABAA

receptors is observed in HEK cells, hippocampal neurons in culture, and

neurons in hippocampal slices (Wan et al., 1997).

IRSpS8/S3 may define a synapse-specific insulin signaling

pathway

The expression of the insulin receptor is neither restricted to

the brain nor restricted to the synaptic apparatus. Similarly, IRS-1 and

IRS-2 are expressed both in the periphery and in the CNS: brain IRS-

(and perhaps IRS-2) is localized in neuronal cell bodies, and some

proximal dendrites (Baskin et al., 1994; Folli et al., 1994; Yamada et
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al., 1997). In contrast, IRSp58/ 53 expression is restricted to brain, to

neurons, and specifically to the PSD-enriched biochemical fraction.

Interestingly, IRSpS8/S3 is not the first examle of an insulin receptor
substrate that displays a subellularly restricted exression pattern.

In adipocytes, another substrate of the insulin receptor IRS-3, has been

shown to have a subcellular distribution pattern that distinguishes it

from IRS-1 and IRS- (Anai et al., 1998). The spatial coordination of

IRS proteins may contribute to the determination of tissue, cell, or

subcellular variations in insulin s action.

Thus, the selective expression of different insulin receptor

substrates may facilitate a careful control of insulin-activated

signaling. Indeed, IRSp58/53 may define a special type of insulin

signaling in the brain. The discovery that IRSp58/53 is a synapse-

specific substrate for the insulin receptor tyrosine kinase provides the

first evidence for an insulin signaling mechanism at synapses. It is

likely that other elements of this synaptic insulin signaling pathway

will soon emerge. One expects that the effect of insulin at synapses is

distinct from its global, metabolic control. However, the nature of this

effect, and its effectors, remain to be elucidated.

Future Directions

Work focused at the PSD has to date provided many insights into

the complexity of the synapse. Using the PSD biochemical preparation, I

have found two components of an insulin-dependent signaling pathway at

synapses. IRSp58/S3 and the insulin receptors are components of the PSD

fraction. The protein IRSp58/53 exists in two forms (IRSp58 and IRSp53)

which have similar primary structure and may not differ in

posttranslational additions. Most likely, IRSp58 and IRSpS3 are products

of two different start sites. There are at least two mR transcripts
that encode IRSp58/S3 that are likely to be different in their noncoding

regions. Levels of IRSp58/53 mR are highest in brain and testis.
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IRSpS8/53 is at synapses in vivo in cerebellum and cultured hippocampal

neurons.
The discovery that IRSpS8/S3 is a synapse-specific substrate for

the insulin receptor tyrosine kinase provides the first evidence for

insulin-dependent signaling at central synapses. Localization of the
insulin receptor to the PSD fraction supports this hypothesis. It is

likely that other elements of this synaptic insulin signaling pathway

are buried in the postsynaptic density as well; some may diverge from

the components that have been identified and characterized in peripheral

tissues, while others may be known components of this signaling pathway.

Future studies are required to determine the role of insulin

signaling at synapses. Technologies such as the yeast two hybrid assay

(see Chapter I) should now be exploited to uncover the other crucial

synapse-specific effectors of insulin s synaptic signal. Once a backbone

of signaling elements has been identified, a role for insulin in

learning and memory can be sought. There are numerous pharmacologic

methods that can be used to affect many levels of signaling pathways.

Enzymes that work downstream of the insulin receptor tyrosine kinase can

-- 

be inhibited and the effect of this treatment on the healthy development

and function of a synapse can be monitored. For example, the compounds

wortmannin and LY294002 specifically inhibit the kinase activity of

PI3K. Many mouse models with null mutations in various elements of the

traditional insulin signaling pathway have been and are being created

(Araki et al., 1994; Taremoto et al., 1994; Bruing et al., 1997).

Little attention has been paid to CNS function in these mice. Careful

evaluation of neuronal physiology and synaptic morphology and

functionality in these models and in future "knockouts " would contribute

substantially to the understanding of insulin s role in the brain.

The relationship between FasL and IRSpS8/S3 must be examined

further. An interaction between these proteins will suggest a role,

perhaps in intracellular signaling, for the little studied endodomain of

FasL. A protein-protein interaction between these two might be

demonstrated using in vitro expressed molecules. Similarly,

colocalization of FasL and IRSp58/53 might be appreciated upon co-
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transfection of these proteins in heterologous cells. If a relationship

is found, the domain of IRSp58/53 that mediates this interaction should

then be mapped, since no protein-protein interaction domains have been

identified within the region of IRSp58/S3' s putative FasL interaction. A

direct way to asses the role of IRSpS8/S3 in vivo is to generate

IRSp58/53 null mice. Analysis of brain (and other tissues) from these

animals is likely to indicate what types of biologic functions require

the work of this signaling molecule.

Discovering the focus of insulin signaling elements at synapses

would be a launching pad for future study. It is likely that insulin

role in the brain is important in homeostasis and, as suggested by these

data, in synaptic function. Results from the experiments proposed above

would contribute to dissecting this compelling synaptic signaling

pathway.
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Tables and Figures

1 Figure Legends

Figure 1. Insulin Receptor and Relatives (see Introduction)

Figure 2. Insulin Receptor Signaling (see Introduction)

Figure 3. Insulin Receptor activation, GLUT4 translocation (see

Introduction)

Figure 4. A 58 kDa and a 53 kDa polypeptide are enriched in PSDs

A. Homogenate, synaptosome, and PSD fractions from rat brain were

separated by SDS-PAGE, transferred to nitrocellulose, and probed with

Ab98 (left) or Ab98 that had been pre-incubated with peptide (right). ~-

dystroglycan is observed in the homogenate and synaptosomal fractions

DG) and a pair of polypeptides of 58 and 53 kDa is specifically

detected in the PSD fraction (p58 and p53). Binding of Ab98 to all three

polypeptides is eliminated when the antibody was preabsorbed (Ab98 +

peptide). Mobilities of molecular weight standards are indicated. (H,

homogenate; SX, synaptosomes; PSD, postsynaptic density fraction.
B. Western blots of homogenate, synaptosomes, and PSD fractions from

the indicated brain regions were probed with antibody Ab98. pS8 and p53

are selectively enriched in the PSD fractions from all areas examined.

C. Comparison of PSD blots stained for protein (ponceau S, PS) or

western blots (WE) probed with Ab98 indicates that pS8 and p53 (arrows)

are interdigited between three major PSD proteins (*

Figure 5. Purification of p58 and p53 by 2D gel electrophoresis and

hydrophobic interaction chromatography (HIC)

A. Two-dimensional gel electrophoresis was used to separate PSD

fraction proteins. Gels of equivalent samples were silver stained (left)

or blotted to nitrocellulose and probed with Ab98 (right). Comparison of
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these reveals that p58 and p53 are minor components of the complex PSD

fraction. The migration of pS8 and pS3 in the first dimension indicates

that these polypeptides are basic (pI -9).
B. The PSD fraction proteins were solubilized in urea, loaded onto a

HIC colum in 1M NaCl buffer, and then eluted in 0 . 1M NaCl salt buffer.

2D gels of the HIC eluates were either silver stained (left) or blotted

to nitrocellulose and probed with Ab98 (right). p58 and p53 are readily
visualized in silver stained gels of HIC eluate (arrows), indicating
that they are highly enriched by this procedure.

Figure 6. Structure of Insulin Receptor Tyrosine Kinase Substrate p53

IRSp53 is predicted to contain several protein-protein interaction

domains: one SH3 domain (SH3) , one SH3 binding domain, and one WW

binding domain (Yeh et al., 1998). Additionally, there are 25 potential

serine/threonine phosphorylation sites (protein kinase A, protein kinase

C, and casein kinase; not shown) and two potential tyrosine

phosphorylation sites (pY). The positions of the peptide microsequences

obtained from purified p58 are noted. The positions of the epitope that

is likely to be recognized by Ab98, and of the peptide used to generate

the polyclonal anti- IRSp58/53 antiseru are indicated. The region that
corresponds to the IRSp53 DNA .fragment used as a probe for Northern

blots is also shown.

Figure 7. Relationship of IRSp58 and IRSp53 from PSDs

A. PSD fractions from rat brain were incubated under conditions

promoting in vitro phosphorylation in the either the absence (left) or

presence (right) of added ATP (100 uM), as described in Methods. Western
blotting with Ab98 shows that IRSpS8 and IRSp53 undergo similar gel

shifts following in vitro phosphorylation.

B. Species differences in the expression of IRSp58 and IRSp53 in PSD

fractions. PSD fractions from rat (left) and pig (right) were probed

with antibody Ab98. Although similar amounts of IRSpS8 and IRSp53 are

detected in rat PSDs, only IRSpS8 is detected in porcine PSDs.
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Figure 8. Tissue distribution of IRSp58/53 rnAs
A. A multiple rat tissue Northern blot was probed with a radio labeled

IRSpS8/S3 oligonucleotide probe (248 bPi see Fig. 3) as described in
Methods. Transcripts of 2. 4, 3. 5, and 8 kb are observed. The highest

level of IRSpS8/S3 mR is detected in brain, with the 3. 5 kb transcript
predominating.
B. The blot was rehybridized with a probe for ~actin to verify the

integrity and quantity of the RN from each tissue.

Figure 9. Structural analysis of brain IRSpS8/53 rnA
A. RNA isolated from rat cerebral cortex was reverse transcribed using

random primers. The resulting cDNA was amplified by PCR using seven sets

(1-7) of six primers (A- F; see B. ). PCR products from the cerebral

cortex cDNA (' RT' ) are equivalent in size to those produced using the

cloned IRSp53 cDNA as a template (' c

B. The PCR products (numered 1-7) were generated using a set of three

forward and three reverse primers (A-F, arrows) that spanned the entire

coding region (thick line) of IRSp53.

Figure 10. Characterization of anti-IRSp58/53

Rabbits were immunized with a 13 amino acid peptide from the predicted

amino acid sequence of IRSp58/53 and the resulting antiseru was

affinity purified. On western blots, anti- IRSp58/53 antibody recognizes

polypeptides of 58 and 53 kDa, which are also bound by Ab98. However,

anti-IRSp58/53 does not recognize ~-dystroglycan. All anti- IRSp58/S3

imunoreactivity is abolished if the antibody is preabsorbed with

peptide.

Figure 11. Localization of IRSpS8/53 at intact synapses

A. Localization of IRSpS8/53 in the molecular layer of the cerebellum

Sections of rat cerebellum were imunostained with the affinity purified
anti-IRSpS8/S3 or with anti-synapsin-I antiseru (to reveal the
distribution of synapses). IRSp58/53 immunoreactivity is observed in the

synapse-rich molecular layer as well as in the granule cell layer. Anti-
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IRSp58/53 immunoreactivity is greatly reduced when the antibody was

preabsorbed with peptide. (Scale bar: 50 ; M, molecular layer; PC,

Purkinje cell layer; GC, granule cell layer)

B. Localization of IRSpS8/S3 at synapses in culture

Cultured rat hippocampal neurons were imunostained with the affinity
purified anti-IRSp58/53 antiseru (left). IRSp58/53 immunoreactivity is
distributed in a punctate pattern along the dendrites of the neurons.

The distribution of synapses in the same dendrite was visualized by

double- labeling with anti-synaptophysin (right). IRSp58/S3

immunoreactivity is selectively concentrated at synapses (arrows).

Figure 12. Candidate IRSp58 / 53 binding partners

A. Western blots of subcellular fractions were probed for Fas Ligand.

FasL is present in all brain fractions, and is not concentrated in the

PSD fraction.

B. 
35S labeled in vitro translated proteins (DYS, DP71, and IRSp53)

were co-incubated as indicated and immunoprecipitated with appropriate

antibodies as indicated (DYS2 and H720). The WW domain of dystrophin

(present in the DYS in vitro translated protein, shortened in the DP71

protein) does not coimmunoprecipitate IRSpS8/S3 (or vice versa). Probe

that was not labeled with 35S is indicated as -

C. A panel of antibodies was used to immunoprecipitate selected

proteins from the PSD fraction (biotin labeled). Only H720 (and neither

Ab98 nor anti-IRSp58/53) immunoprecipitates native IRSp58/S3. PY99 and

4G10 are anti-phosphotyrosine antibodies (Santa Cruz). No proteins co-

irnunoprecipitate with native IRSp58/53 (arrows).

Figure 13. A potential IRSpS8/53 binding partner

Biotin-labeled PSDs were incubated with a GST-tagged IRSpS3 colum. A

group of PSD proteins specifically bound the IRSpS3 colum (left).
Adjacent blots of equivalent PSD samples were probed with in vitro

expressed 3SS- labeled IRSp58/53, or aO as control (right). Comparison

of the two experiments reveals one band, PSD225, that binds both the

GST- IRSp53 colum and in vitro expressed IRSp53 ligand.
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Figure 14. Localization of Insulin Receptor at synapses and

in PSD fractions
A. Localization of insulin receptor at synapses

Cultured rat hippocampal neurons were immunostained with anti- insulin
receptor ~ subunit antibody (right). Immunoreactivity is distributed in

a punctate pattern along the dendrites of the neurons. The distribution

of synapses in the same dendrite was visualized by double-labeling with

anti-synaptophysin (left). Insulin receptor ~ subunit immunoreactivity
is selectively concentrated at synapses (David Wells, Brown University) 

B. The Insulin Receptor ~ subunit is a component of the PSD fraction

A western blot of rat brain subcellular fractions (homogenate,

synaptosome, PSD) and CHO.T (cell line engineered to overexpress insulin
receptors) cell lysate was probed.with an ant'i:'inslilin receptor 
subunit antibody. The ~ subunit of the insulin receptor is detected in

brain homogenate, synaptosome, and PSD fractions. High levels of insulin

receptor ~ subunit are seen in CHO. T cell lysate.

Tables and Figures



Table 1. Mass Spectrometry and Peptide Microsequence Analysis of p58/53

p58 and p53 trvctic fraaments predicted IRSc53 trvctic fraamentst peptide

c58 masses c53 masses IRSc53 masses position microseauencett

788. 788. 788. 6 - 11

1336. 1336.4 1336. 19 - 29

912. 913. 51 - 58 GYFDAL VK

1645. 1644. 71 - 84

1374. 1374. 85 - 95

1009. 1010. 123 - 130

912. 913. 129 - 136

1788.2 1789. 1788. 157 - 171 YSDKELQYIDAISNK

1374. 1374.4 161 - 171

1502. 1502. 1502. 172 - 184

1788. 1789. 1789. 201 - 214

877. 877. 207 - 214

2023. 2023. 2023. 223 - 239

1352. 1352. 1352. 334 - 345

1480. 1480. 334 - 346

1009. 1009. 365 - 374

1336. 1336.4 1336. 365 - 377

1426. 1426. 399 - 411

1208. 1208.4 1208. 412 - 421 DGWHYGESEK

1042. 1042.4 1044. 435 - 443

1042. 1042.4 1042. 444 - 452

2298. 2298. 489 - 509

1426. 1427. 510 - 521

804. 804.

824. 824.

842. 842.

942.
952.4
1155. 1155.

1572.

1754. 1754.

2607.4 2607.

t Calculated masses of IRSp53 tryptic fragments that correspond to p58 or p53 masses are listed.

. All masses are in Daltons.

.. Amino acid positions of the fragments are based on the numbering system of Yeh et. aI.
, 1996.

tt Peptide microsequences were obtained from three p58 tryptic fragments (underlined).

These were identical to deduced IRSp53 amino acid sequences.
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I The Insulin Receptor Tyrosine Kinase Substrate p58/53 and the
InSUlin Receptor Are Components of CNS Synapses
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The synapse is the primary locus of cell-cell communication in
the nervous system. It is now clear that the synapse incorpo-
rates diverse cell signaling modalities in addition to classical

. neurotransmission. Here we show that two components of the
insulin pathway are localized at CNS synapses, where they are
components of the postsynaptic density (PSD). An immuno-
chemical screen revealed that polypeptides of 58 and 53 kDa
(p58/53) were highly enriched in PSD fractions from rat cerebral
cortex, hippocampus, and cerebellum. These polypeptides

. were purified and microsequenced , revealing that p58/53 is
identical to the insulin receptor tyrosine kinase substrate

The Journal of Neuroscience, September 1 1999 , 19(17):7300-7308

p58/53 (IRSp53). Our analysis of IRSp58/53 mRNA suggests
that within rat brain there is one coding region for IRSp58 and
IRSp53; we find no evidence of alternative splicing. We dem-
onstrate that IRSp58/53 is expressed in the synapse-rich mo-
lecular layer of the cerebellum and is highly concentrated at the
synapses of cultured hippocampal neurons, where it co-
localizes with the insulin receptor. Together, these data suggest
that insulin signaling may playa role at CNS synapses.

Key words: insulin receptor; postsynaptic density; insulin re-
ceptor substrate; hippocampal neurons; brain; IRSp53

The synapse is the predominant site of cell-cell communication
in the nervous system. In both the central and peripheral nervous
systems , synapses are characterized by the precise apposition of

Ii the presynaptic nerve terminal and postsynaptic apparatus. Fast
.. synaptic transmission relies on the coordinated localization of
.. synaptic vesicles and neurotransmitter receptors at this site (Sal-

peter, 1987; Peters et al. , 1991). Synapses are also distinguished
by the presence of specialized molecular machinery for regulated
exocytosis, neurotransmitter receptor clustering, and signal trans-

, duction (Hall and Sanes, 1993; Sheng and Wyszynski, 1997; So-
mogyi et al. , 1998). Notably, synapses also support a range of
other cell-cell signaling modalities. For example, neurotrophins
and growth factors can modulate synaptic growth, plasticity, and
function (Lohof et al. , 1993; Kang and Schuman , 1995).

Insulin and its receptor are expressed in the brain, where they
are likely to regulate glucose homeostasis and gene expression
(Wozniak et al. , 1993). Moreover, a number of findings have also
suggested a relationship between insulin and Alzheimer s disease
(Craft et al. , 1996; Frolich et al. , 1998; Hoyer, 1998; Wickelgren
1998). For example, insulin action inhibits tau hyperphosphory-
lation and thus may block the formation of neurofibrillary tangles
(Hong and Lee , 1997). In addition, insulin and its receptor may
also playa role at synapses (Unger et al. , 1989; Wozniak et al.

, 1993; Schechter et al. , 1996). Destruction of insulin receptors by
, intracerebroventricular injection of streptozotocin leads to long-

term deficits in learning and memory (Lannert and Hoyer , 1998).
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Insulin can be released from both cultured neuronal cells and
synaptosomes in an activity-dependent fashion (Clarke et al.
1986; Wei et al. , 1990). Moreover, insulin can recruit GABA
receptors to postsynaptic domains (Wan et al. , 1997), suggesting
a role for this hormone in synaptic plasticity.

The insulin receptor is a tyrosine kinase , but many of its actions
require accessory molecules known as insulin receptor substrates
(e. , IRS- , IRS- , and IRS-3) (White and Yenush, 1998). In

peripheral tissues, these substrates become phosphorylated by the
insulin receptor and then coordinate flexible and diverse signal-
ing pathways (Shepherd et al. , 1998). In addition, IRS proteins
exhibit distinct subcellular localizations, raising the possibility
that they subserve spatially and qualitatively distinct intracellular
signaling events (Anai et al. , 1998). Therefore, characterizing

insulin receptor substrates and determining their localization in
the CNS may provide insights into diverse insulin actions in the
brain.

In the CNS, many synaptic signaling molecules are concen-
trated in the postsynaptic density (PSD) (for review, see Sheng,

1997; Ziff, 1997). In the current study, we show that the insulin
receptor substrate IRSp58/53 is highly enriched in PSD fractions.
Microsequencing of IRSp58 and IRSp53 polypeptides suggests
they difer only in some post-translational modification. A survey
of several tissues revealed that IRSp58/53 and its mRNA are most
highly expressed in the brain. IRSp58/53 is localized in the
dendritic layers of the cerebellum and is concentrated at synapses
in cultured hippocampal neurons. Finally, we show that the insu-
lin receptor is both concentrated at synapses and is a component
of the PSD fraction. Together , these data suggest that the synapse
is an important site of specialized insulin signaling in the brain.

MATERIALS AND METHODS
Brain subcellular fractions. PSD fractions were prepared according to the
method described elsewhere (Carlin et aI. , 1980; Dosemeci and Reese
1993; Wu et aI. , 1998). The absence of presynaptic contaminants and
enrichment of PSD proteins in this fraction was confirmed by Western
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blotting with antibodies to NMDA receptor subunit 1, ex-Ca 2+ /

calmodulin-dependent kinase II (ex- aMKII), and synaptophysin (Wu et
aI., 1998).

Antibodies. Ab98 antiserum was raised by immunizing a rabbit with the
peptide KAPLPPPEYPSQ (a sequence in the cytosolic domain 
f3-dystroglycan that was used for the production of antibody PA3a;
Yoshida et aI. , 1993) and was affnity-purified (Quality Controlled Bio-
chemicals , Hopkinton, MA). The anti-IRSp58/53 polyclonal antibody

- was raised by injecting a rabbit with the MAP-conjugated peptide DK-
DDLALPPPDYGT (Research Genetics, Inc. , Huntsvile, AL) and was

. affnity-purified. Immunoabsorption was performed by mixing the pri-
mary antibody with its corresponding peptide for 2 hr to overnight at 4
The IRSp53 monoclonal antibody H720 is described elsewhere (Yeh et

: aI. , 1996).
Insulin receptor f3-subunit polyclonal antibody (C-19) was obtained

. from Santa Cruz Biotechnology (Santa Cruz, CA). An anti-peptide
antiserum to f3-dystroglycan (12031C) was a generous gift of L. Kunkel
(Howard Hughes Medical Institute, Harvard Medical School). Monoclo-
nal anti-f3-dystroglycan antibody NCL-43DAG was obtained from Vector

, Laboratories (Burlingame , CA). Monoclonal antibodies to synaptophy-
sin (SY38) and to ex-CaMKII (6G9) were obtained from Boehringer
Mannheim (Irvine, CA). Antibody to NMDA receptor subunit NRI

; (54.1) was obtained from PharMingen (San Diego, CA).
Western blotting. Protein concentrations were determined with the

BCA protein assay (Pierce, Rockford, IL) using BSA as a standard.
Equal quantities of homogenate , synaptosomal, and PSD fraction pro-
teins were separated on 10 or 5-15% gradient gels by SDS-PAGE
transferred onto nitrocellulose membranes, and incubated with primary
antibodies followed by alkaline phosphatase-conjugated goat anti-rabbit
or anti-mouse IgG (Boehringer Mannheim, Indianapolis , IN). Bound
antibody was visualized using the 5-bromo-4-chloro- indolyl phosphate/
nitro blue tetrazolium substrate system (Promega, Madison, WI). In

. some experiments , Iysates of Chinese hamster ovary (CHO).T cells
, which overexpress insulin receptors (generously provided by M. Czech

University of Massachusetts Medical Center; Baltensperger et aI. , 1996),
were also analyzed.

Hydrophobic interaction chromatography. For hydrophobic interaction

Ii chromatography (HIC), PSDs were solubilized overnight at 4 C in 8 M

.. urea, 1 M NaCI, 5 mM dithiothreitol (DTT), 50 mM sodium phosphate
buffer, pH 7.5. The soluble fraction was then made 4 M in urea and
incubated with HIC matrix (high-performance phcnyl-Sepharose; Phar-

. macia Biotech, Piscataway, NJ) for 3 hr at 4 e. The HIC matrix was then
washed, preeluted in the same buffer with 0.8 M NaCl, and eluted with
the same buffer in 0. 1 M NaCI. Apomyoglobin (Sigma, St. Louis, MO)
was added as a carrier to the eluate, and the proteins were precipitated
with trichloroacetic acid.

Two-dimensional gel electrophoresis. Isoelectric focusing (IEF) strips
(Immobiline Dry Strips, pH 3- 11 em; Pharmacia) were rehydrated for

6 hr to overnight at room temperature in two-dimensional (2D) sample-
rehydration buffer (8 M urea, 2% 3-((3-cholamidopropyl)dimethyl-
ammonioj- propanesulfonic acid, 2% immobilized pH gradient buffer

10L (Pharmacia), and 0.3% DTT. Samples were loaded at the anodic
end of the IEF strip, and IEF was performed at 20 C on a Multiphor II
apparatus (Pharmacia) for 1 hr at 300 V and 15 hr at 1400 V. The strips
were then equilibrated and electrophoresed in the second dimension
(10% gel, SDS-PAGE), as per the manufacturer s instructions. The 2D
gels were stained with either silver (Morrissey, 1981) or Coomassie blue
or transferred (10 V, 16 hr) to nitrocellulose for Western blotting.

Matrx-assisted laser desorption ionization time-of-flight mass spectrom-
etry and peptide sequencing. HIC eluates separated by 2D electrophoresis
were visualized by Coomassie blue stain, and the bands corresponding to
p58 and p53 were excised from the gel. The polypeptides were recovered
from the gel and subjected to trypsin digestion. Peptide masses were
determined by matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI- TOF MS). MS-Fit search software was then
used to compare the p58 and p53 mass profiles to known proteins.
Tryptic fragments from p58 and p53 were separated by HPLC, and

peptide sequence was obtained from three fragments of p58 (J. Leszyk
Worcester Foundation Protein Sequencing Facility, Worcester, MA).

In vitro phosphorylation of PSD fraction proteins. The method used is
a modification of a procedure described elsewhere (Dosemeci et aI.
1994). PSDs were pretreated on ice for 3 hr with occasional mixing in 20
mM HEPES , pH 7.4, and 100 mM DTT. PSDs were diluted to a final
concentration of 0.4 mg of protein/ml in phosphorylation solution (5 mM
MgCI , 50 p.g/mlleupeptin, 20 mM DTT, 20 mM HEPES, pH 7.4 , 1 mM
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CaClz, and 1 mM orthovanadate, with or without 100 P.M ATP), and

incubated at 37 C for 5 min. The reaction was quenched by the addition
of SDS sample buffer.

Northern blot hybridization. A 32 Iabeled probe was synthesized by
PCR using the IRSp53 cDNA clone (provided by R. Roth, Stanford
University School of Medicine; described by Yeh et aI. , 1996) as tem-
plate, and the primer pair Fl , AAGAGCGTGACCCCGAAGAA-
CAGC; and Rl , AACCAGCCCCGCATTTTG.

The rat Multiple Tissue Northern Blot (Clontech, Palo Alto, CA) was
probed as instructed by the manufacturer. The most stringent wash
performed was O. IX SSC and 0. 1 % SDS at 65 C for 40 min.

RNA isolation and RT-PCR. RNA was isolated from 20 mg of rat
cerebral cortex by the RNeasy mini kit (Qiagen, Chatsworth, CA). The
total RNA (30 

p.g) 

was reverse-transcribed using random primers , and
this reaction product was used as the template for PCR. The PCR
conditions were 3 min at 94 , 40 cycles (30 see at 94 , 1 min at 55
and 4 min at 68 C), and 8 min at 68 e. The sequences of the primers used
are as follows, 5' to 3' : A , GTGTAGCCGGGACCCAGGACCAT; B
CGAGGAGCGGAGGAGGTTCTGC; C AAGAGCGTGACCCCG-
AAGAACAGC; D, AACCAGCCCCGCATTTTG; E, ACGGCCA-
CACTGTAGGGTCTCTGC; and F, TCTAGTCAGGGGCAGCTC-
AAAATC.

Tissue sections and immunohistochemistry. Brains from adult rats were
immersed in freezing isopentane, mounted in OCT embedding medium
and equilibrated to - e. Frozen sections (8 p.m) were cut, air-dried
onto glass slides, fied in MeOH at - C for 10 min, and rehydrated in
PBS with 0.1 % Triton X- I00 (PBST). The sections were blocked for 1 hr
at room temperature with PBST, 1 % BSA , 10% horse serum, and 1 

goat serum. The primary antibodies anti-IRSp58/53 (with or without
peptide) and rabbit anti-synapsin-I (1:3000; provided by Pietro DeCam-
ili , Howard Hughes Medical Institute, Yale University School of Medi-
cine; Malgaroli et aI., 1989) were diluted in block and were applied
overnight at 4 e. The slides were washed at room temperature for 2 hr in
PBST with stirring and one wash solution change. Cy3-conjugated goat
anti-rabbit IgG (1:500-1:4000; Jackson ImmunoResearch, WestGrove
PA) or FITC-conjugated goat anti-mouse IgG, rat-absorbed (1:100;

Vector Laboratories , Burlingame, CA) was applied for 3 hr at room
temperature. The sections were washed as above, dehydrated in -20
MeOH for 10 min, allowed to air dry, and mounted in Citifluor (Ted
Pella , Redding, CA). Immunostaining was visualized by indirect immu-
nofluorescence using a Nikon E800 microscope. Images were captured
with a Photometries CCD camera using IP Lab systems software.

Hippocampal neuron cultures and immunohistochemistry. Low-density
cultures were created as previously described (Goslin and Banker, 1991;
Wu et aI. , 1998). After 19-21 d , the cells were fied with 4% parafor-
maldehyde at 37 C for 20 min, covered with saponin (0.05%) for 5 min.
and then incubated in blocking solution (MEM, 10% horse serum, 1%
goat serum, and 1% BSA). The primary antibodies, mouse anti-
synaptophysin (1:20; Boehringer Mannheim), rabbit anti-IRSp58/53 (1:
5), and mouse insulin receptor f3-subunit (1:40, C-19; Santa Cruz Bio-
technology) were applied overnight at 4 e. Species-specific secondary
antibodies, directly conjugated to either FITC or Cy3, were applied for
1 hr at room temperature. Coverslips were mounted onto glass slides with
Citifluor.

RESULTS

Polypeptides p58 and p53 are enriched in the
postsynaptic density fraction
We were initially interested in determining the distribution of a
known protein (J3-dystroglycan) in the rat brain. We performed
Western blot analysis on homogenate, synaptosomes, and PSD-
enriched fractions. Antiserum Ab98 recognized a polypeptide of

43 kDa in brain homogenate and synaptosome fractions (Fig.
1A). This polypeptide co-migrated with J3-dystroglycan from
muscle and was also bound by the anti-J3-dystroglycan antibodies
NCL-43DAG and 12031-C (data not shown). Thus we identified
this 43 kDa polypeptide as J3-dystroglycan.

Ab98 also recognized a pair of polypeptides, termed p58 and
p53 , in the PSD fraction (Fig. 1). p58 and p53 were highly
enriched in the PSD fraction, because they were not detected in
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Ab98 Ab98 + peptide

p58 
p53 
DG --

kDa

cerebllum cortex

NMDAR --

CaMKIl 

SYN --

PSD

Figure 1. Polypeptides of 58 kDa and 53 kDa are enriched in thc PSD
fraction. Homogenate , synaptosome , and PSD fractions from rat brain
were separated by SDS-PAGE , transferred to nitrocellulosc , and probed
with Ab98 (left) or Ab98 that had been preabsorbed with peptide (right).
f3-Dystroglycan is observed in the homogenate and synaptosomal frac-
tions (f3-DG). A pair of polypeptides of 58 and 53 kDa is specifically
detected in the PSD fraction (p58 , p53). Binding of Ab98 to all three
polypeptides is eliminated when the antibody was preabsorbed (Ab98 +
peptide). Mobilities of molecular wcight standards are indicated. Ho-
mogenate; synaptosomes; PSD postsynaptic dcnsity fraction. West-
crn blots of homogenatc, synaptosomes , and PSD fractions from the
indicated brain regions were probed with antibody Ab98. p58 and p53 are
selectively enriched in the PSD fractions from all arc as examined. C
Wcstcrn blot of homogenate, synaptosome, and PSD fractions from
cerebral cortcx probed with antibodies to NMDA receptor subunit NR1

CaMKII , and synaptophysin.

blots of homogenate or synaptosomes that contained the same
amount of total protein (Fig. lA). p58 and p53 were enriched in
PSD fractions isolated from rat cerebral cortex, cerebellum, and
hippocampus (Fig. IE). The selective enrichment of p58 and p53
closely parallels that of known PSD constituents such as

CaMKII and the NMDA receptor subunit NRI (Fig. lC). 

contrast, ,B-dystroglycan (migrating at 43 kDa) was present in
brain homogenate and was modestly enriched in synaptosomes

but was not detected in PSD fractions from cerebral cortex (Fig.
lA) or other brain regions (data not shown). Antibodies NCL-
43DAG and 12031- revealed a similar distribution of
,B-dystroglycan in these fractions. However, neither of these re-
agents bound either p58 or p53 (data not shown).

Abbott et al. . Insulin Signaling Components at Central Synapses

Purification of p58 and p53
We purified p58 and p53 to determine whether they were related
to ,B-dystroglycan or were unrelated yet immunologically cross-
reactive. Protein staining of one-dimensional SDS gels showed
that p58 and p53 are minor components of the PSD fraction;
moreover , they were not well resolved from other , more abundant
polypeptides (data not shown). To achieve improved separation
of p58 and p53 and to further investigate their biochemical
properties , we separated the PSD fraction proteins by charge and
size using 2D gel electrophoresis (Fig. 2A). This method yielded
substantial improvement in the isolation of p58 and p53: unlike
the majority of the PSD proteins, the doublet migrated to a basic
isoelectric point (pI 9) free from the bulk of PSD proteins. The
p58 and p53 bands migrated as a series of closely spaced spots of
differing isoelectric points, suggesting that these polypeptides
may be post-translationally modified (see below).

p58 and p53 were virtually insoluble in all nonionic detergents
tested. Furthermore, they were not extracted in 3% N-Iauroyl
sarcosinate (data not shown). Such solubility properties indicate
that these polypeptides are tightly associated with the "core" PSD
(Kennedy, 1997). However, p58 and p53 could be effciently
solubilized in 8 M urea. Thus , we fractionated the urea-solubilized
PSD proteins by HIe. p58 and p53 bound to the HIC matrix
whereas the majority of the PSD proteins did not. Elution of the
HIC column thus yielded a fraction that was highly enriched in
p58 and p53. We then used 2D electrophoresis to achieve the final
purification of p58 and p53 (Fig. 2B).

Mass spectrometry analysis and peptide
microsequencing of p58 and p53
To identify p58 and p53 , we used MALDI-TOF mass spectrom-
etry to obtain mass profiles of the gel-purified polypeptides.
Comparison of these profiles with computer-generated mass pro-
files of protein sequences in the National Center for Biotechnical
Information database showed that rat p58 and p53 were highly
homologous to hamster IRSp58/53 (Table 1 , Fig. 3). This pair of
polypeptides was first identified in CHO cells , and the cDNA
encoding IRSp53 was subsequently cloned (Yeh et a!. , 1996).
However, the precise relationship between IRSp58 and IRSp53
was not established in that study.

Sixty-five percent of both the p58 masses (15 of 23) and the p53
masses (13 of 20) we obtained by mass spectrometry matched the
tryptic digest masses computed from the deduced IRSp53 amino
acid sequence (data not shown). There were eight p58 masses that
did not correspond to a computed IRSp53 mass , but six of these
masses were shared by p53. Two p58 masses and one p53 mass
were unique. Only slight differences were observed when the
HPLC chromatograms of the p58 and p53 tryptic digests were
compared (data not shown). Together , these data indicate that
the primary structures of p58 and p53 are very similar to the
polypeptide encoded by IRSp53 and to each other.

To verify the identification of p58 and p53 as IRSp53 , we
obtained amino acid sequence from three of the p58 tryptic
fragments. Of the 33 amino acids obtained , all perfectly matched
the published sequence of the IRSp53 cDNA (Table 1 , Fig. 3;

data not shown). The predicted pI of IRSp53 is 8. , which

corresponds well to the basic pI we determined for p58 and p53.

Western blots of PSD fractions probed with monoclonal antibody
H720 further confirmed the identification of p58 and p53 as
IRSp58/53 (data not shown). We will hereafter refer to p58 and
p53 as IRSp58/53.
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A. PSD fraction sliver stain

B. HIC eluate sliver stain
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Ab98 western blot

Ab98 western blot

Figure 2. Purification of pS8 and pS3 by 2D gel electrophoresis and hydrophobic interaction chromatography. Two-dimensional gel clectrophoresis
was used to separate PSD fraction proteins. Gels of cquivalent samples were silver-stained (left) or blotted to nitrocellulose and probed with Ab98 (right).
Thc positions of pS8 and pS3 , as visualized by Western blotting, are indicated by the pair of arrows. Thc migration of pS8 and pS3 in the first dimension
indicates that these polypeptidcs arc basic (pI 9). Comparison of silver stain and Western blot shows that pS8 and pS3 are minor components of the
PSD fraction. The PSD fraction proteins werc solubilized in urca, loaded onto a HIC column in 1 M NaCI buffer , and then cluted in 0.1 M NaCl salt
buffcr. 2D gels of the HIC eluates wcrc either silver- stained (left) or blotted to nitrocellulose and probed with Ab98 (right). pS8 and pS3 are readily
visualized in silver-stained gcls of HIC eluate (arrows), indicating that they are highly enriched by this procedure.

Relationship of IRSp58 and IRSp53

In the course of our biochemical studies of IRSp58/53 , we con-
sistently encountered an 5 kDa difference between the molec-
ular weights of IRSp58 and IRSp53. However, neither mass

spectrometry nor HPLC analysis yielded any indication that the
primary structure of these polypeptides differed. Western analysis
revealed that IRSp58/53 was identical in rat and mouse (data not
shown). However, in the porcine PSD fraction the IRSp58 species
was prominent, and the IRSp53 species was barely detectable
(Fig. 4). In vitro phosphorylation of rat PSD proteins resulted in
an upward shift in the mobility of both polypeptides, suggesting
that they are substrates of a kinase(s) in the PSD fraction. How-
ever, this shift could not account for the 5 kDa difference between

IRSp58 and IRSp53 (Fig. 4). Similarly, enzymatic deglycosylation
did not yield any consolidation of the doublet (data not shown).
Thus, we could find no evidence that these post-translational
modifications are the basis for the difference in the apparent

molecular weights of IRSp58 and IRSp53.

Distribution of IRSp58/53 mRNA

We next examined the distribution and configuration of the
IRSp58/53 transcript. We probed Northern blots to determine the
tissue distribution of IRSp58/53 mRNA. Transcripts of 2.4 and

5 kb were detected (Fig. 5). Brain contained the highest level of
IRSp58/53 mRNA, with the 3.5 kb transcript predominating.
Varying amounts of these transcripts were observed in other
tissues. Neither transcript was detected in skeletal muscle.
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p58 and p53 tryptic fragments

Table 1. Mass spectrometry and peptide micro sequence analysis of PSD58/53

p58 masses p53 masses

912.

1788.

1208.

1789.

1208.4

Prcdicted IRSp53 tryptic fragments

IRSp53 masses Position Peptide microscquence

9131
1788.

1208.

51-
157-171

412- 421

GYFDALVK
YSDKELQYIDAISNK
DGWHYGESEK

The calculated masses of the IRSp53 tryptic fragments that correspond to p58 or p53 masses are listed.
All masses are in daltons.
The amino acid positions of these fragments are based on the numbering system of Yeh et al (1996).
peptide micro sequences obtained from the three p58 tryptic fragments were identical to deduced IRSp53 amino acid

sequences.

Ab98
epitope

IRSp58/53
epitope

Figure 3. Structure of IRSp53. IRSp53 is predicted to contain sevcral
protein-protein interaction domains: one SH3 domain , one SH3 binding
domain , and one WW binding domain (Yeh et aI. , 1998). Additionally,
there are 25 potential serine/threonine phosphorylation sites (protein
kinase A , protein kinase C, and casein kinase; data not shown) and two
potential tyrosine phosphorylation sites (pY). The positions of the pep-
tide microsequences obtained from purified p58 are notcd. The positions
of the epitopc that is likcly to be recognizcd hy Ah9R and the peptide used
to gcneratc the polyclonal anti- IRSp58/53 antiserum are indicated. The
region that corresponds to the IRSp53 DNA fragmcnt us cd as a probe for
Northern blots is also shown.

+ATP

53-
PSD PSD

rat pig

58-

PSD PSD

Figure 4. Relationship of IRSp58 and IRSp53 from PSDs. PSD
fractions from rat brain were incubated under conditions promoting 
vitro phosphorylation (see Materials and Methods) in either the absence
(left) or presence (right) of cxogenous ATP. Western blotting with Ab98
shows that IRSp58 and IRSp53 undergo similar gel shifts after in vitro

phosphorylation. Blots of PSD fractions from rat (left) and pig (right)
were probed with antibody Ab98. Comparison of these reveals species
diffcrcnccs in the expression of PSD fraction IRSp58 and IRSp53. Al-
though similar amounts of IRSp58 and IRSp53 arc detected in rat PSDs
only IRSp58 is dctcctcd in pig PSDs.

Organization of IRSp58/53 mRNA
We next considered the possibility that the multiple transcripts
observed in the Northern blots could corrcspond to alternatively
spliced mRNAs. Wc searched the Exprcssed Scqucnce Tag
(EST) databasc using the BLAST algorithm (Altschul et aI.
1990) for sequences that might represent IRSp53 homologs. We
identified a large set of IRSp53-homologous ESTs that spanned
the entire open reading frame of IRSp53 (data not shown).

1 = hear 5= liver
2= brain 6= skeletal muscle
3= spleen 7= kidney
4= lung 8= testis

Figure 5. Tissue distribution of IRSp58/53 mRNAs. A multiple rat
tissue Northern blot was probcd with a radio labeled IRSp58/53 oligonu-
cleotide probe (248 bp; see Fig. 3) as described in Matcrials and Methods.
Transcripts of 2.4, 3.5 , and 8 kb arc obscrved. The highcst level of
IRSp58/53 mRNA is dctccted in hrain , with the 3.5 kb transcript predom-
inating. Thc blot was rehybridized with a probe for f3-actin to verify the
intcgrity and quantity of the RNA from each tissue.

However, this analysis revealed no divergences from the reported
IRSp53 cDNA sequence and thus provided no evidence for

alternatively spliced transcripts.
As a further test for variations in the coding sequence of the

IRSp58/53 mRNAs, we performed RT-PCR. We isolated total
RNA from rat cerebral cortex and reverse-transcribed it using
random primers. We then used an array of specific primers that
spanned the IRSp53 coding region for PCR analysis. Each of the
RT-PCR products generated corresponded in size to a product
obtained using IRSp53 cDNA as template; no major additional
products were detected (data not shown). Together, these PCR
products covered the entire coding region of IRSp53. Thus , in rat

brain we find no evidence of alternative splicing within the coding
region of I RSp53 , suggesting that both IRSp58 and IRSp53 are
products of a highly similar or identical mRNA.
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Ab98
anti-

IRSp58/53

anti-
IRSp58/53
+ peptide

58 ..
53 ..
DG ..

H ax PSD H ax PSD H ax PSD

Figure 6. Characterization of the anti- IRSp58/53 antibody. Rabbits were
immunized with a 13 amino acid peptide from the predicted amino acid
sequence of IRSp58/53 , and the resulting antiserum was affnity-purified.
On Western blots, anti- IRSp58/53 antibody recognizes polypeptides of 58
and 53 kDa , which are also bound by Ab98. However, anti-IRSp58/53 does
not recognize f3-dystroglycan. All anti-1RSp58/53 immunoreactivity is
abolished if the antibody is preabsorbed with peptide. Homogenate;

synaptosomcs; PSD postsynaptic density fraction.

Localization of IRSp58/53 to synapses
To determine whether IRSp58/53 is expressed at intact synapses
we raised and affnity purified a specific anti- IRSp58/53 anti-
serum. The specificity of this reagent for IRSp58/53 was verified
by Western blotting and immunoabsorption (Fig. 6). In contrast
to Ab98, this antiserum did not recognize (3-dystroglycan.

To determine the distribution of IRSp58/53 in intact brain , we
performed immunohistochemistry on frozen sections. The cyto-
architecture of the cerebellum consists of granular and pyramidal
cell soma layers and a synapse-rich molecular layer. Staining with

--.

synapsin-
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the anti-IRSp58/53 antibody demonstrated that I RSp58/53 immu-
noreactivity is prominent in the synapse-rich molecular layer as
well as in the granule cell layer of this tissue (Fig. 7A). The
specificity of the IRSp58/53 antibody staining was demonstrated
by peptide immunoabsorption.

To assess the distribution of IRSp58/53 in further detail , we
exploited a system in which individual synapses can be resolved.
Primary hippocampal neurons in low density cultures have well
differentiated axons and dendrites and numerous synapses. These
synapses can be reliably visualized using antibodies to synapto-
physin (Fletcher et aI., 1991). Double labeling with anti-
synaptophysin and anti- I RSp58/53 showed that IRSp58/53 immu-
noreactivity was localized at the majority of synapses on these
cells (Fig. 7B). Little nonsynaptic localization was observed. To-
gether, these studies indicated that IRSp58/53 is a component of
CNS synapses.

Localization of insulin receptors at synapses
IRSp58/53 has been shown to be an insulin receptor substrate in
cultured fibroblasts. Furthermore , I RSp58/53 isolated from brain
can be tyrosine-phosphorylated in vitro by the insulin receptor

(Yeh et aI. , 1996). To determine whether the insulin receptor is
localized at synapses , we immunostained cultured hippocampal
neurons with an antibody directed against the insulin receptor

(3-subunit and with an anti-synaptophysin antibody. Figure 8
and shows that insulin receptors arc highly concentrated at
synapses on these cells. Insulin receptors are also localized at
nonsynaptic regions of the dendrite (Fig. 8B).

anti-IRSp58/53 anti-IRSp58/53 + peptide

anti-IRSp58/53

,- , .".

:!ttJ''''''' .

',. - .. ,. "

"16.".

, '

anti-synaptophysin

.,., .. " " .' " , '

ftL .

Figure 7. Localization ofIRSp58/53 in the cerebellar cortex. Sections ofrat cerebellum were immunostained with the affnity-purified anti-IRSp58/53
or with anti-synapsin-I antiserum. The synapsin-I immunoreactivity reveals the distribution of synapses. IRSp58/53 immunoreactivity is observed in the
synapse-rich molecular layer as well as in the granule cell layer. Anti-IRSp58/53 immunoreactivity is greatly reduced when the antibody was pre absorbed
with peptide. Scale bar , 50 !Lm. M Molecular layer; Purkinje cell layer; granule cell layer. Localization of IRSp58/53 at synapses. Cultured
rat hippocampal neurons were immunostained with the affnity-purified anti-IRSp58/53 antiserum (left). IRSp58/53 immunoreactivity is distributed in
a punctate pattern along the dendrites of the neurons. The distribution of synapses in the same dendrite was visualized by double labeling with
anti-synaptophysin (right). IRSp58/53 immunoreactivity is selectively concentrated at synapses (arrows).
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Insulin Recepor

97. subunit

CHO. SX PSD

Figure 8. Insulin receptor localization in cultured neurons and brain subcellular fractions. Cultured rat hippocampal neurons were double-
immunostained with anti-synaptophysin and anti-insulin receptor J3-subunit antibody (IR-J3). Insulin receptor immunoreactivity is distributed in a
punctate pattern along dendrites. Note that insulin receptor J3-subunit immunoreactivity is concentrated at synapses. Scale bar, 20 f.M. B High-
magnification view of a single dendrite of a cultured hippocampal neuron double labeled with antibodies to the insulin receptor J3-subunit and
synaptophysin. IR-J3 immunoreactivity is concentrated at both synaptophysin-positive regions (arrowheads) as well as distributed in apparently

nonsynaptic regions (arrows). Scale bar , 5 f.M. , A Western blot of rat brain subcellular fractions (homogenate, synaptosome , and PSD) and lysate from
CHO.T cells was probed with an anti-insulin receptor J3-subunit antibody. High levels of J3-subunit are seen in CHO.T cells (a cell line engineered to
overexpress insulin receptors). The J3-subunit of the insulin receptor is detected in brain homogenate and is enriched in synaptosome and PSD fractions.

Insulin receptors are a component of PSD fractions
We next wished to compare the biochemical fractionation profiles
of insulin receptor and IRSp58/53 from brain. In agreement with
earlier findings , the molecular weight of the insulin receptor
f3-subunit in brain is 5 kDa less than that expressed by periph-
eral tissues (Heidenrcich et aI. , 1983). Western blotting showed
that the insulin receptor f3-subunit was detected in homogenate
and was enriched in both synaptosome and PSD fractions (Fig.
8C). The degree of enrichment of insulin receptor in PSD frac-
tions was not as great as that obscrvcd for PSD components such
as NMDA receptor subunit NRl , a-CaMKII, and IRSp58/53
(Fig. 1). This observation is in agreement with the localization of
the insulin receptor to both nonsynaptic and synaptic regions
(Fig. 8B; see Discussion). Together , these findings show that both
the f3-subunit of the insulin receptor tyrosine kinase and its
substrate IRSp58/53 are components of the PSD fraction. This
co-localization suggests that these molecules are part of an
insulin-dependent signaling pathway at the postsynaptic
apparatus.

DISCUSSION
Insulin is likely to have diverse roles in the CNS. In addition to its
probable function in glucose mctabolism, there is a growing body
of evidence that insulin signaling may factor in cell-cell commu-

nication and plasticity (for reviewed, see Wickelgren , 1998). The
diverse outcomes of insulin signaling may be coordinated through
the spatially regulated expression of insulin receptor tyrosine

kinase substrates. Here , we show that the insulin receptor sub-
strate I RSp58/53 , and insulin receptors themselves, are localized
at synapses in the brain and are components of the postsynapti
density. Signaling via IRSp58/53 may define a synapse-specifi
role for insulin in the brain.

IRSp58/53 and insulin receptor are localized
to synapses
We began our investigation of synaptic insulin signaling protei
at the level of the PSD, an electron-dense conglomeration of
proteins that lies just below the postsynaptic membrane at exci-

tatory synapses. We purified a pair of previously unidentified
proteins that were selectively concentrated in PSD fractions.
MALDI-TOF mass spectrometry, peptide sequencing, two-
dimensional electrophoresis , and Western blotting demonstrated
that these PSD proteins , p58 and p53, are the insulin receptor

substrate p58/53 (IRSp58/53). The IRSp58/53 that we purified
from rat is very similar to that cloned from hamster (Table 1).

The striking enrichment of IRSp58/53 in PSD fractions sug-

gested that it may be predominantly expressed at excitatory
synapses. Indeed, immunocytochemistry showed that IRSp58/53
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is expressed in the synapse-rich layers of the ccrebellum. Further-
more , labeling of cultured hippocampal neurons dcmonstrated
that IRSp58/53 is selectively concentrated at synapses. Neither
Westcrn blotting nor immunocytochemistry detected IRSp58/53
expression in culturcd glial cells (our unpublished observations).
Thus , IRSp58/563 is selectively localized at synapses in the CNS.

The synaptic distribution of IRSp58/53 raised the possibility
that insulin receptors are also localized at these structures. Pre-

vious work has shown that insulin receptors have been detectcd in
both neurons and glia throughout the brain (Wozniak et aI.
1993). Howcvcr, their subcellular localization was not estab-
lished. Using immunocytochemistry and Western blotting of
brain fractions wc show that the insulin receptor is localized at
synapses. Togethcr, these findings support the proposal that in-
sulin signaling plays a role at synapses.

Structure of IRSp58/53
We consistently observed that IRSp58/53 migrates as a pair of
polypeptides. Howcvcr , we could find little evidence that IRSp58
and IRSp53 differed in their primary sequences. HPLC chro-
matograms of tryptic fragments from p58 and p53 were virtually
identical. MALDI-TOF analysis of purified p58 and p53 also
rcvcaled similar profiles; only two p58 masses and onc p53 mass
wcrc unique. Although thcse masses could represcnt divergent
primary sequences, they could also be attributable to post-
translational modification or protcolysis. Indeed , the relative cx-
pression of IRSp58 and IRSp53 is cell- and tissue-specific. Trans-
fection of thc IRSp53 cDNA into fibroblasts results in expression
of only the IRSp53 species (Yeh et aI. , 1996). Furthermore , we
detect only IRSp58 in PSD fractions from porcine brain. Finally,
using RT-PCR we detected only a singlc species of IRSp53
mRNA in the brain , and a survey of the EST database yielded no
evidence of multiplc mRNA species. Howcvcr, our comparative
analysis of thc I RSp53 cDNA and total rat brain cDNA does not
exclude the possibility that differences exist 5' or 3' to the IRSp53
coding region. Analysis of the IRSp53 cDNA reveals an open
reading frame that encodes for a predicted protein of 57.6 kDa
(Yeh et aI. , 1996). Intercstingly, downstream of this first ATG
codon are at least six subsequent potential start sites. Use of one
of these in particular would yield a polypeptide with a prcdicted
molecular weight of 53.6 kDa. Therefore , it is possible that use of
alternative initiation sites is the basis for the observation of this
pair of polypeptides of 58 and 53 kDa. Nevertheless , we think our
data best fit a scenario whereby IRSp58 and IRSp53 derive from
an identical mRNA coding region, and the difference in thcse

polypeptides is the result of a species- and cell background-

dependent , post-translational process.
Our investigation of I RSp58/53 was an outgrowth of our use of

an antiserum directed against ,B-dystroglycan (Ab98). However
comparison of the IRSp53 and ,B-dystroglycan sequences revealed
very limited sequence homology. The immunological cross-
reactivity that Ab98 demonstrated for IRSp58/53 is presumably
attributable to a proline-rich stretch of amino acids within its
amino acid sequence (KPLPVPPELAPF) that is similar to the
,B-dystroglycan peptide used to generate Ab98 (KAPLPPPEY-
PSQ). Notably, another group has reported a PSD fraction pro-
tein (not IRSp58/53) that is immunologically related to

,B-dystroglycan (Mummery et aI. , 1996). To date , however , neither
the identity of this 164 kDa PSD fraction protein nor its relation-
ship to ,B-dystroglycan has been shown. In sum, our data provide
no evidence for the expression of ,B-dystroglycan or a related
molecule in PSD fractions.
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Interactions of IRSp58/53
There is compelling evidence in support of the functional classi-
fication of IRSp58/53 as an insulin receptor substrate in cell lines
(Yeh et aI. , 1996). Furthermore , Yeh and colleagues (1996) dem-
onstrated that IRSp58/53 isolated from brain can be tyrosine-
phosphorylated in vitro by insulin receptors isolated from CHO.
cells. We have found that after in vitro phosphorylation of PSD
fractions, IRSp58/53 displayed a gel shift consistent with phos-
phorylation by an endogenous kinase(s). Moreover, the insulin
reccptor is localized at synapses and is a componcnt of PSD
fractions. Together, these observations suggest that IRSp58/53
acts as a substrate of the insulin receptor tyrosine kinase at

synapses. Studies are currently in progress to determine whether
insulin stimulation leads to phosphorylation of IRSp58/53 in
intact neurons.

The predicted domain structure of IRSp53 indicatcs many
potential sites for protein -protcin interactions , including an Src
homology region 3 (SH3) domain , an SH3-binding domain , and a
proline-rich WW-binding domain (Yeh ct aI. , 1998). An interac-
tion bctween an IRSp53 homolog and the intracellular domain of
Fas ligand (FasL) has been detected using a yeast two-hybrid
assay (GenBank accession U70669). However, we have been
unable to demonstrate an intcraction between IRSp58/53 and
FasL biochemically. We also tested whether IRSp58/53 intcracts
with the WW domain of dystrophin , a PSD-enriched cytoskelctal
protein , but we were unable to co-immunoprecipitate IRSp58/53
and in vitro-expressed dystrophin fragments. Finally, we did not
detect co- immunoprecipitation of any nativc PSD fraction pro-
teins with I RSp58/53 (our unpublished observations). Other in-
vcstigators have similarly been unable to dcmonstrate binding
partners for IRSp58/53 (Yeh et aI. , 1996).

IRSp58/53 may define a synapse-specific insulin
signaling pathway
In the periphery, the actions of insulin are effected by distinct sets
of signal transduction molccules with characteristic ccllular and
subcellular distributions (Anai et aI. , 1998). Similar compartmen-
talization may also occur in the CNS. Key components of the
insulin signaling mechanism, such as insulin receptors and IRS-
are widely expressed in the brain, where they are often co-

localized. However, there are several areas of the brain, including
regions of the cerebellum , in which insulin receptor but not IRS-
is detected (Baskin et aI. , 1994; Folli et aI. , 1994; Yamada et aI.
1997). In the current study we found that insulin receptors
although co-localized with IRSp58/53 at synapses , are also found
in nonsynaptic areas of the dendrite. It seems likely that the
insulin receptor will associate with other insulin receptor sub-
strates at these sites. These observations indicate that insulin
action in the brain is likely to be subserved by distinct sets of
downstream signaling elements.

The data presented here suggest that IRSp58/53 may define a
novel class of insulin signaling at excitatory synapses in the brain.
One expects that the effect of insulin at synapses is distinct from
its global, metabolic control. It seems likely that elucidating the
role of insulin signaling at synapses will provide important in-
sights into synaptic function and plasticity.
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