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Time-resolved schlieren visualization and transonic wind tunnel are used to investigate tip

leakage flows (TLFs) over several generic blade tip models. Focus is on the generation and

evolution of the over-tip shock waves in the clearance region. A multi-cutoff superposition

technique is developed to improve the schlieren system for better visualization. Unsteady

flow structures such as over-tip shock oscillation, shear-layer flapping, and vortex shedding

are revealed by Fourier analysis and dynamic mode decomposition. To predict the gener-

ation and decaying of over-tip shocks, a simplified model is proposed by analogizing the

shock system to be an N-shaped sawtooth wave. The results show that: (1) The proposed

model is able to capture the main features of the generation and decaying of over-tip shock

waves. The processes of shock generation, decaying and fading-out are dominated by the

mean background flow, the shock state and the flow fluctuations, respectively. Adding ex-

tra coming flow fluctuations can be an efficient way to control the evolution of over-tip

shock system. (2) The shock-oscillating frequency is kept the same with the shear-layer

flapping, and shock waves with a given oscillating frequency range is constrained to a spe-

cific position range. This is termed the "lock-in effect", which is also observed in TLFs

over contoured blade tips. The non-uniformity generation and the nonlinear propagation

of shock waves are responsible for this effect. Constrained by this effect, the evolution of

over-tip shock waves is separated into four discrete phases. Thus, this effect can be applied

for the control of TLFs.

a)Authors to whom correspondence should be addressed: tangxl@shu.edu.cn
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NOMENCLATURE

a passing height of schlieren image bi DMD mode amplitude

c tip clearance c0 acoustic wave speed

d spanwise extent of the model DMD dynamic mode decomposition

f frequency fm focal length of schlieren mirror

fs sample rate g grayscale of images

h height of slit light source hb height of separation bubble

H height of wind tunnel I intensity of turbulence

K constant of schlieren system Ksv,Ksh vertical, horizontal schlieren constants

lturb turbulence length scale L length of schlieren extent

Me Mach number at the exit Mmax maximum Mach number

nc ×nw grid size in the clearance np number of images

Pout static pressure at x = 350 mm P∗ atmospheric pressure

∆P = P∗−Pout , pressure difference rp = ∆P/P∗, ratio of pressure difference

P̄∗
re f total pressure at x =−100 mm P̄∗(x) averaged total pressure at x

Stc Strouhal number by clearance T ∗ total temperature

T1-T3 four time labels vx,vy velocities

w width of the model x,y coordinates

γ(x) normalized grayscale at x δi DMD mode growth rate

κ Gladstone–Dale coefficient ρ density

ρx,ρy normalized density gradient ρ∗
x ,ρ

∗
y density gradient

φi DMD eigenvector φx,φy scaled density gradient

Subscripts, Overlines and Superscripts:

a1–a4 four DMD modes from vertical left cutoff

b1–b4 four DMD modes from horizontal down cutoff

h1–h4 four Fourier modes from horizontal down cutoff

v1–v4 four Fourier modes from vertical left cutoff

b background, separation bubble c clearance, compensated

p pure grayscale r reference images

·̄ temporal or spatial averaging ·∗ total or original variables
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I. INTRODUCTION

In most cases, rotor-blade tip clearance is inevitable in ducted turbomachinery (such as rotors

of turbines or compressors in aero-engine) to avoid blade-tip abrasion. Figure 1 shows a schematic

drawing of a single generic blade contained by a casing wall. Due to the aerodynamic loading,

a pressure difference is imposed between the pressure side (PS) and the suction side (SS) of the

clearance. This leads to pressure-driven tip leakage flows and related flow–flow interactions, such

as the rolling-up of tip leakage vortices (TLVs). TLFs are profoundly important for the perfor-

mance of rotors because of their significant influence on rotor efficiency loss,1,2 heat transfer and

corrosion fatigue,3 flow instability4 and cavitation.5 The loss introduced by TLFs constitutes about

one-third of the total stage loss,1 and about half of this loss occurs in the gap region.6 Severe blade

tip heat loads are the main cause of turbine blade degradation. This is closely related to tip heat

transfer that is very sensitive to the tip flow structures. Research has shown that the blade-tip heat

load within a high-pressure turbine varies by up to 50% when switching from sub- to supersonic

operating conditions.7

PS

SS

D

x
z

y

B

C

FIG. 1. Schematic view of leakage flows over the blade tip. Tip clearance is the gap between blade tip and

the casing wall. Section ABCD indicates a slice along the leakage flow.

The unsteadiness of tip flow structures outside the clearance region (such as the breaking-down

of TLVs) has been widely discussed.8–11 However, the origin of such flow structures is the clear-

ance. Aiming at better understanding the mechanisms of blade tip loss and heat load, TLFs in
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the clearance region are to be further discussed. Limited by the narrow space in the tip region, it

remains difficult to obtain detailed flow measurements in the clearance. Feng et al.12 studied the

unsteady formation of TLFs in the gap. They observed that the over-tip shock system was estab-

lished within 0.65s through five stages. In their study, the shock system is dominated by oblique

shocks. It becomes relative stable after its quick formation, i.e., no systematical displacement or

topology change are observed in it. Hampered by the testing difficulties, very few experimen-

tal results for TLFs in the clearance are available in the open literature. These difficulties have

been partially overcome by high-fidelity numerical simulations. By direct numerical simulations

(DNS), Wheeler and Sandberg3 observed that TLFs in the clearance are intermittent (neither lam-

inar nor fully turbulent). They also found that the free-stream turbulence intensity is significantly

suppressed by the flow acceleration in the clearance. Similar with Feng’s observations,12 the shock

system observed in their study is dominated by oblique shocks and is relatively stable upon for-

mation. We observed that the oblique over-tip shock system turned into an unstable shock system

when the averaged tip Mach number was reduced to a specific value (Still transonic). We call this

state the "critical state", at which the over-tip shocks emerge, travel and decay constantly in the

clearance. Figure 2 shows an example of this state. Many aspects of TLF structures and the related

motions at the critical state are yet to be clarified.

FIG. 2. An example view along section ABCD under transonic condition with an unsteady shock system.

TLFs are identified by streamlines and density gradient in the x-direction along section ABCD in Fig. 1.
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Flows around ducted rotors are complex, but the TLFs in the clearance can be featured as

relatively isolated sub-flow structures bounded by the blade tip and the casing wall. This enables

detailed investigations of such flows based on generic wall-bounded blocks with a gap. TLF ranges

from subsonic to transonic depends on the clearance size and the imposed pressure difference

between the PS and the SS. Highly unsteady over-tip shock waves are expected at the critical

state. This may lead to strong interaction between the over-tip shock waves, shear layers and

other flow structures. Lock-in effects or coupling effects, such as cavity resonance13 and vortex

induced vibrations,14 are common in flow interactions. Some kind of lock-in effect is expected in

wall-bounded TLFs under the critical state. A possible strong coupling pair is the highly unsteady

shock waves and the separated boundary layer. The details of how such flow interactions happens

in the clearance region, and how strong they are, are yet to be discussed.

In the past a few years, several flow field visualization techniques, such as oil-film,15,16

schlieren,12,17 laser Doppler velocimetry,18,19 and particle image velocimetry,20 have been used

to study TLFs. The effects of clearance size and tip contouring on the TLF-induced unsteadiness

patterns, turbulent kinetic energy, and passage blockage have subsequently been reported. Fischer

et al.21 proposed a frequency-modulated Doppler global velocimetry method to cope with the lim-

ited measuring space and high unsteadiness in the tip region. Recently, a time-resolved schlieren

visualization technique was used by Feng et al.12 to investigate the rapid establishment of the

in-gap TLF under transonic operating conditions. Time-resolved schlieren visualization can also

be used for quantitative analysis through Fourier transforms and dynamic mode decomposition

(DMD). These methods have been widely used to analyze wakes22 and confined gap flows.23 Rao

and Karthick24 have discussed the influence of image parameters on the DMD of time-resolved

schlieren images. These studies provide effective methods for detailed investigations of the TLFs

generated by various tip models.

The main objective of this study is to investigate the formation and evolution of over-tip shock

waves in the pressure-driven tip leakage flow, resulting in a better understanding of the high un-

steadiness of TLFs at the critical state. This goal is achieved by wind-tunnel testing with time-

resolved schlieren visualization and image processing, and is supported by additional numerical

simulations. Multiple schlieren cutoffs are applied, which enables the quantitative visualization of

flow structures in both the horizontal and vertical directions. The experimental configurations are

described in Sec. II. The post-processing techniques are presented in Sec. III. In Secs. IV–VI, the

results are analyzed and discussed. A simplified model for the prediction of over-tip shock waves
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is proposed in Sec. IV. The lock-in effect of over-tip shock waves is discussed in Sec. V. The life

cycle of the over-tip shock waves is illustrated in Sec. VI. Finally, the conclusions to this study are

presented in Sec. VII.

II. EXPERIMENTAL AND NUMERICAL CONFIGURATIONS

A. Simplified tip models

Simplified blade tip models with a stationary casing wall are used. The model profile, which is

illustrated by section ABCD in Fig. 1, is representative of the transverse section of the tip part of

rotor blades. This enables detailed observations of the flow structures in the clearance region.

The reason why this simplification can be made is explained by Fig. 3, in which the internal

flow field of the Aechen 1-1/2 turbine rig stage is predicted by solver EuranusTurbo. The inlet

boundary condition is set based on the radial distributions of total pressure and total temperature

of Gallus’ experiments.25 The outlet boundary is solved by radial equilibrium equation with static

pressure Pout = 106000 Pa at r = 0.288 m. The back pressure is lower than the experiment to

boost stronger TLFs. A cutting plane is made to show the tip leakage flows across the blade tip.

Ignoring the change of blade thickness, a quasi two-dimensional (2D) feature can be established

in the clearance. Based on this consideration, several similar simplifications have been applied in

PS SS

psP ssP

ps ssP P PD = -

Driving pressure:

Cutting plane

Casing wall

Streamtraces

Blade

FIG. 3. Tip leakage flows in the Aachen 1-1/2 turbine rig stage with 2 mm tip clearance (solved by Reynolds

Averaged Navier-Stokes equations with Spalart-Allmaras turbulence model and enlarged for better view).

Cutting plane is flooded with static pressure and the streamtraces are colored by velocity magnitude.
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the literature.3,12,26,27

In this study, we do not focus on a specific position along the blade chord, because the position

of the strongest TLF varies along the chord in different applications. This position tends to be

near the leading edge in compressors/fans,28 at the mid-chord for propeller rotors,29 and near the

mid-to-trailing-edge chord for turbines.30

As shown in Fig. 4, the simplified two-dimensional profile was stretched along the depth direc-

tion and enlarged to fit into the wind tunnel that has a rectangular working section. The overall

X

Y

O(0,0)

Base

TopFlow

65mm

39.8mm

Upper Wall Slope : x = 2.6:90

90mm

37.2mm

32.8mm

PS SS

125mm

126mm

2
2

0
m

m

8 8mm

2 4mm

Flow X

Z

Pressure Tap

Fluctuation trigger block

FIG. 4. Schematic view of the model mounted in the wind tunnel, with a frontal view (upper) and top view

(lower). The black dots represent the pressure tapping holes. The 13 taps along the X-axis are equally

distributed at 8 mm intervals, except for the first and the last three, which have smaller intervals of 4 mm.

The five taps along the Z-axis are equally distributed at intervals of 20 mm. A fluctuation triggering block

is placed to generate extra flow disturbances for cases discussed in Sec. IV.

model height at the pressure side (PS) is 102.2 mm, which is composed of a 65 mm base and a

37.2 mm top. On the suction side (SS), the top measures 39.8 mm, giving a model height of 104.8

mm at the SS edge (with a height difference of 2.6 mm). This height difference is conformal with

the upper wall of the wind tunnel (see subsection II B) to maintain a constant tip clearance. The

model width and the tip clearance are 90 mm and 32.8 mm, respectively. This yields a clearance

to blade-thickness ratio of 36.44% (2–5% chord), which is within the typical clearance ratio range

in fans, compressors, and turbine blades.6,31 Moore et al.32 pointed out that the influential area of

the core part is limited to twice the tip clearance for transonic TLFs. This value is taken as the cri-

terion for the lower limit. Thus, the present tunnel height to clearance ratio is set to approximately

8
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4.2 at the clearance exit, which is more than twice the core-part size and does not lead to severe

tunnel blockage. Seventeen pressure taps are placed on the top surface. Details of the pressure

taps are illustrated in Fig. 4. The five taps along the Z-axis are used to monitor the spanwise effect

to ensure a two-dimensional flow pattern.

B. Wind tunnel and operating condition

The transonic wind tunnel17,33 of the Whitehead Aeronautical Laboratory at Queen Mary, Uni-

versity of London, was used for the investigations. Figure 5 shows a photo of the wind tunnel and

part of the schlieren system, and a profile with the dimensions of the working section. This is a

closed-circuit transonic wind tunnel. The working section used in this study has a width of 126

mm and a height of 135 mm. [The upper wall of the tunnel is slightly divergent in this section, with

a slope ratio of about 2.89% (2.6:90), so the model top surface is machined to have a small slope

and maintain a constant tip clearance.] The gap between the tip and the upper (casing) wall ranges

from 31.3% to 32.1% of the wind tunnel working section height. Steady operation of the wind

tunnel is ensured under this clearance ratio. The nominal working Mach number without models

ranges from 0–1.4, which enables the generation of transonic flow in the clearance. The small gap

between the quartz screen and the model is sealed with a sponge. The small gaps between the

tunnel floor and the model parts were sealed with aluminum tape.

The driving pressure, termed the pressure demand (PD), is the pressure supply of the wind

tunnel driving system. It ranges from 0 to 827.37 kPa (0–120 psi) for currents tests. The inlet

total pressure P∗ is measured in the settling chamber immediately before the test section, which

has a constant atmospheric pressure. The outlet static pressure Pout is measured at the tunnel

floor, 350 mm downstream of the model center (x = 0 mm), where the static pressure becomes

relatively uniform. Consequently, the ratio of pressure difference imposed on the model is defined

as rp = (P∗−Pout)/P∗, which ranges from 0.0–0.297. Applying the simplified tip model at PD =

120 psi, the critical state is achieved when the mean flow in the clearance is accelerated to about

Mmax = 1.2 near the separation bubble and to Me,max = 0.84 at the center of the clearance exit.

The average Mach number at the clearance exit is Me = 0.63. The instantaneous Mach number

before shock can be up to Mmax = 1.6. The Reynolds number at the exit of the tip gap [calculated

using the clearance and the mass-weighted average speed] is approximately Rec = 3.7×105. The

environmental pressure and temperature are relatively stable during the tests. The total temperature

9

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
4
7
2
1
6



Accepted to Phys. Fluids 10.1063/5.0147216

Knife edge(image plane)
Flow

Camera

Pressure Tapping Tubes

W
ea

k
 d

isp
la

ced
 im

a
g
e

a

K
n

ife ed
g
e

V
L

-C
u

to
ff

U
n

d
istu

rb
ed

 im
a
g
e

h aD

(a) Photo of the wind tunnel.

126mm

Flow120mm 150mm135mm
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185mm 163.5mm
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(b) Profile of the wind tunnel.

FIG. 5. Wind tunnel: (a) photo of the closed-circuit transonic wind tunnel with the simplified model and

part of the schlieren system (see subsection II C); (b) frontal- and top-view profiles of the wind tunnel.

varies from 290.8–293.3 K. The inlet total pressure is calibrated to be P∗ =101.33 kPa at the total

temperature of T ∗ = 288.15 K.

C. Time-resolved schlieren visualization system

A symmetric z-type schlieren system was applied in this study (see Fig. 6). Thus, the comma er-

ror of schlieren systems is avoided by the symmetry. The component parameters of this system are

listed in Table I. The angular deflection of the light ray is linearly proportional to the grayscale cap-

tured by a camera that saves the image without gamma correction.34 Thus, the grayscale measured

by the camera, (φx,φy), has a linear relationship with the flow density gradient, i.e., φx = K∂ρ/∂x,

φy = K∂ρ/∂y, where K is a constant determined by the light-source illuminance and parameters

of the camera. Assuming the environment refractive index of n0 ≈ 1, the flow density gradient is

expressed as
∂ρ(x)

∂x
∼= h[γ(x)−a/h]

κL fm

, (1)

10

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
4
7
2
1
6



Accepted to Phys. Fluids 10.1063/5.0147216

where γ(x) is the normalized grayscale. As shown in Fig. 5, h = 0.3 mm is the height of the slit

light source and a is the passing height of the image at the knife-edge plane. Thus, a/h represents

the cutoff ratio. Generally, the value of a varies from 0.2h–0.8h depending on the camera’s need

for proper exposure and the balance between the schlieren sensitivity and the measuring range.

The length of the schlieren extent is L = 126 mm (width of the wind tunnel). The focal length of

the mirror is fm = 1828.8 mm, and the Gladstone–Dale coefficient is κ ≈ 0.23 cm3· g−1.

z

y
x

Light source

1st Mirror

Tip model

Wind tunnel

2nd Mirror

Knife edge

Camera

Pressure scanner

Synchronizer

Computer

R
azo

r B
lad

e

VL

R
azo

r B
lad

e

Background at the image plane Knife edge)

VR

Razor Blade

HU

Razor Blade

HD

Focused and overlapped image at the image plane

θ

Mid-plane

FIG. 6. Schematic drawing of the symmetric z-type schlieren and pressure testing system.

TABLE I. Parameters of the schlieren components.

Light Source KEYMED slit source Slit height 0.3 mm

Mirrors Focus 1828.8 mm Diameter 203.2 mm

Knife edge Razor blade Extent Length 126 mm

Lens 55-80 mm

Camera

Model Phantom V4.3 Sample rate 8510 Hz

Exposure 10 µs Sample time 1.888 s

Resolution (pixels) 512×128

The application of a cutoff is essential for schlieren measurements. The cutoff type denotes the

direction from which the slit light at the knife-edge plane is partly blocked, as shown in Fig. 6. Four
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types of schlieren cutoffs are used. They are the vertical-left (VL), vertical-right (VR), horizontal-

down (HD), and horizontal-up (HU) cutoffs. The schlieren cutoff works as follows: if the axis

is set pointing to the outer-normal direction of the knife-edge, the light is deflected to the knife-

edge and is blocked at the presence of negative density gradient, resulting in low grayscale in the

image and vice versa. The slit light source and the edge of the razor blade are placed vertically

or horizontally according to the vertical- or horizontal-cutoff types. Multiple cutoff directions of

a schlieren system are necessary for quantitative measurements, though only one cutoff direction

is used12,35 when forming a qualitative visualization of the flow. This is important because the

sensitivity and the effective measuring range of a schlieren system are controversial.36 To extend

the effective measuring range, a superposition technique is applied. The cutoff ratio η = (h−a)/h

varies within a range of [20%,80%] in the experiments. The superposition of two images measured

by two cutoffs in opposite directions is used to achieve a larger measuring range.

TABLE II. Relationships between cutoff type and flow structures that can be revealed by schlieren patterns

in compressible flows (verified in subsection III B).

Cutoff Good at capturing Possible flow structures revealed

VL ∂ρ/∂x > 0 Shocks, vortex–shock interaction

VR ∂ρ/∂x < 0 Expansion wave, separation bubble

HD ∂ρ/∂y > 0 Separation bubble, vortex shedding

HU ∂ρ/∂y < 0 Separation bubble, vortex shedding

The flow patterns revealed by schlieren images are essentially the flow compression or expan-

sion in the x- or y-direction. Flow structures such as shock waves, separation bubbles, expansion

waves, and shear layers are accompanied by strong density gradients. Thus, the schlieren pat-

terns in turn reveal such flow structures. According to preliminary knowledge about TLFs,32 the

mappings between the schlieren cutoff type and the revealed flow structures are listed in Table II

(Numerical simulations in subsection III B are performed to verify such statements.). The flow

structures that exhibit an abrupt density increase near the upper wall can be identified as shock

waves. Abrupt density changes near the pressure side edge are identified as the boundaries of

separation bubbles. Strong density gradients in the y-direction denote the core-trajectory of vortex

shedding. The periodic shedding of negative–positive density gradient patches in the x-direction
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is identified as vortex shedding, and these negative–positive density gradient zones along the core-

trajectory are identified as vortices.

III. IMAGE POSTPROCESSING AND FLOW STRUCTURE IDENTIFICATION

A. Postprocessing of schlieren images

The image postprocessing tasks include averaging, cropping, resizing, and compensating. First,

the averaged images are generated from the raw images in grayscale, calculated by ḡ(i, j) =

∑
np

n=1 gn(i, j)/np, where g(i, j) is the grayscale at pixel index (i, j) and np =16 064 is the num-

ber of images sampled in a period of 1.888 s at 8510 images per second. Second, the images

are cropped and resized. Third, image compensation is applied to improve the accuracy. The

compensated grayscale gc is calculated from the original grayscale g by

gc = (g−gb)
ḡr −gr,b

gr −gr,b
, (2)

where gb, gr, ḡr, gr,b are the grayscale of the background (grayscale measured at the solid model),

reference (measured without flow), averaged reference, and reference background, respectively.

Examples of the compensated unsteady images are displayed in Figs. 7(a) (Multimedia view) and

7(c) (Multimedia view). The averaged images are displayed in Figs. 7(b) and 7(d).

The averaged pure reference grayscale ḡr,p = ḡr − gr,b is subtracted from the compensated

grayscale to obtain a new variable. Due to the linear relationship between the grayscale and the

density gradient in the x- or y-direction, this new variable is termed the scaled density gradient,

Ksvρ∗
x or Kshρ∗

y . It is calculated as Ksvρ∗
x = gc − ḡr,p in the case of vertical cutoff and Kshρ∗

y =

gc − ḡr,p in the case of horizontal cutoff, where Ksv and Ksh are the coefficients of the schlieren

system in the case of vertical and horizontal cutoffs, respectively. The images are saved with

8-bit unsigned integers (uint8, 0–255); thus, the accuracy is limited to ±Ksvmax(|ρ∗
x |)/256 or

±Ksh|max(ρ∗
y )|/256. Theoretically, if the properties of the light source and the cutoff ratio remain

unchanged, the coefficients Ksv and Ksh should be the same for all cases. However, they are not

exactly equal because the dimensions of the light source change slightly when switching from

vertical to horizontal cutoff, and the cutoff ratio is adjusted to give a better view. However, the

assertion Ksv ≈CKsh is valid, where C is a case-sensitive constant. To eliminate this difference, the

density gradients in both directions are normalized based on the maximum value, and the result is

recorded as the dimensionless density gradients ρx and ρy.
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(a) (b)

(c) (d)

FIG. 7. Compensated unsteady (gc) and averaged (ḡc) grayscale images of the simplified model in the

cases of VL- and HD-cutoffs at rp = 0.297 (PD120): (a) unsteady view of VL-cutoff (Multimedia view);

(b) averaged view of VL-cutoff; (c) unsteady view of HD-cutoff (Multimedia view); (d) averaged view of

HD-cutoff. Slope of the model top surface is omitted.

Limited by the measuring range of the schlieren system, some areas in the sampled images may

exceed the measuring range and become invalid, such as the lower-bound areas in the VL- and HD-

cutoff cases or the upper-bound areas in the VR- and HU-cutoff cases. The measuring zone, Ω,

is composed of the valid zone, Ωv, and the invalid zone, Ωi. Thus, Ω = Ωv ∪Ωi. The validity is

determined by the measuring range of the schlieren system. The zone is labeled "invalid" when

the grayscale distribution in this region reduces to the lower limit (the background grayscale) or

increase to the upper limit. In the invalid zone, the grayscale distribution becomes locally constant,

losing the details of flow structures. Fortunately, results from two parallel cutoff-types (VL- and

VR-cutoff, or HD- and HU-cutoff) are complementary. Thus, the cases of parallel cutoff-types

form a pair. The valid zones of pair cases satisfy the following relation

Ω′
v = Ωv,V L ∪Ωv,V R = Ωv,HD ∪Ωv,HD = Ωv ∪Ωi,

Ωv,V L ∩Ωv,V R 6= /0, Ωv,HD ∩Ωv,HD 6= /0.
(3)

where Ω′
v is the whole measuring zone without invalid patches, the subscript VL, VR, HD or HU

denotes results from corresponding cutoff case. Thus, it is able to remove the invalid region of

each single-cutoff case by superposing results from the case from the paired case. There exists

an overlapped region, Ωv,V L ∩Ωv,V R or Ωv,HD ∩Ωv,HU , in which results from both cases should be

14
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valid. A simple averaging step is performed in this area to avoid discrepancies. Thus, the density

gradient in the x-direction is expressed as







ρx(X, t) = ρx,V L(X, t), X ∈ Ωv,V L −Ωv,V L ∩Ωv,V R,

ρx(X, t) = ρx,V R(X, t), X ∈ Ωv,V R −Ωv,V L ∩Ωv,V R,

ρx(X, t) = [ρx,V L(X, t)+ρx,VR(X, t)]/2, X ∈ Ωv,V L ∩Ωv,V R.

(4)

Similarly, the density gradient in the y-direction is written as







ρy(X, t) = ρy,HD(X, t), X ∈ Ωv,HD −Ωv,HD ∩Ωv,HU

ρy(X, t) = ρy,HU(X, t), X ∈ Ωv,HU −Ωv,HD ∩Ωv,HU

ρy(X, t) = [ρy,HD(X, t)+ρy,HU(X, t)]/2, X ∈ Ωv,HD ∩Ωv,HU .

(5)

The time-domain superposing in Equ. (4-5) is valid only if the measurements of the cutoff-pair

are performed simultaneously. However, the measurements are usually performed subsequently

under similar operating conditions. In this case, one can perform Fourier transform to accomplish

the superposing in the frequency domain to get ρ̃x(X,ω) and ρ̃y(X,ω). The simple averaging in

the overlapped region is also valid by ignoring possible phase difference. Or else, one can perform

time-averaging to get ρx(X) and ρy(X).

Taking the time-averaged density gradient as an example, as shown in Fig. 8, each of these

invalid areas is marked by a circled cross. To remove the invalid areas, the overall field of the

density gradient is regenerated by the superposition of the VL- and VR-cutoff cases for ρx(X),

and by the superposition of the HD- and HU-cutoff cases for ρy(X). The density gradients in the

invalid areas are replaced by the value from the opposite cutoff type. For instance, the invalid

area of the VL-cutoff case [see Fig. 8(a)] is replaced by that of the VR-cutoff case [see Fig. 8(b)].

The average value of these two cases is adopted in the contact area. Thus, the VL- and VR-cutoff

cases collapse into the vertical cutoff case, and the HD- and HU-cutoffs turn into the horizontal

cutoff case. The time-averaged field is displayed in Fig. 9. The superposing of the cutoff-pair

yields the overall distribution of density gradient in the clearance, resulting in the identification of

the separation bubble [Label A in Fig. 9(a-b)], the shock waves [Label B in Fig. 9(a)], several

compression region [Label C and D in Fig. 9(a)], and the trajectory of vortex-core [The streak

after label A in Fig. 9(b)].
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(a) (b)

(c) (d)

FIG. 8. Averaged density gradient from four cutoff cases at rp = 0.297 (PD120) with coordinates in pixels.

The invalid region is marked by a circled cross: (a) VL-cutoff; (b) VR-cutoff; (c) HD-cutoff; (d) HU-cutoff.

(a) (b)

FIG. 9. Mean density gradient (ρx,ρy): (a) measured ρx; (b) measured ρy. Maximum values are selected

to normalize the density gradient based on the measurement in case PD120 (rp = 0.297). The vertical and

horizontal cases are normalized independently.

B. Verification of schlieren-observed flow structures

The relation list in Table II is an assertion to be verified by additional numerical simulations.

The goal of such simulations is to qualitatively prove that the observed flow structures are what we

expected (shocks, vortex shedding or shear-layer flapping) instead of other flow structures. There-

fore, the numerical resolution is designed aiming at this target. Moreover, the flow is assumed to

be uniform along the span, thus, two-dimensional (2D) simulations are performed.

The IDDES model37,38 is applied under the finite volume framework with unstructured mesh.
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Details of this model is given in Appendix Sec. VII, in which the model equations, turbulence

models and corresponding coefficients are given. Second order finite volume method is applied

with the gradients reconstructed by a compact least-squares method.39 The fluxes are treated by

Roe’s approximate Riemann solver for the inviscid terms and by direct discontinuous Galerkin

(DDG) method40 for the viscous terms. Spatial discretization is performed by second-order up-

wind scheme. Time-marching is achieved by dual-time stepping. Following the physical flow

domain in the experiment, the computational domain is set as illustrated in Fig. 10. It extends

from x = −0.164 m (5c upstream the model) to x = 0.426 m (13c downstream), and the model is

centered at x = 0 m (model center, see Fig. 4). Two grid nodes are applied to the span. The ref-

erence pressure tap is set at x = 0.35 m (9.3c downstream). Thus, the outlet condition is adjusted

to match the pressure at the reference tapping position with that measured from the experiment.

Non-reflection characteristic inlet and outlet boundary conditions are applied. We assume the

h
Inlet

Outlet

FIG. 10. The computational domain. No-slip wall boundary conditions are applied on the floor, the blade

tip and the casing. The pressure outlet boundary is set at 13c downstream the model.

turbulence is fully developed in the tunnel. So, the in-coming turbulence intensity and length scale

are evaluated by

I =
u′

uavg
≈ 0.16Re

− 1
8

tunnel, lturb ≈
0.07H

C
3/4
µ

,

where Cµ = 0.09 is a parameter that is consistent with Cµ as used in the k−ε model. Thus, a mild

in-flow turbulence is applied to be 3.2% with a length scale of lturb = 57.5 mm.

The results of grid sensitivity tests and flow validation are displayed in Fig. 11. The time-

averaged pressure distribution is in good agreement with the test data when the clearance grid is

finer than nc×nw×nd = 800×3200×2. Thus, the mesh in the gap region is set to nc×nw×nd =

800×3200×2. Mesh details in the start region of the PS-side separation bubble are illustrated in
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Fig. 12. A subsonic case, rp = 0.166 (PD80, Mmax < 1.0, Me = 0.51, Rec = 3.2×105), is displayed

as a reference. The instantaneous vorticity magnitude is shown as an indicator of the boundary of

the separation bubble started from the PS-edge. The mesh is fine enough to resolve the separation

X (m)

P
/P

in
*

-0.04 -0.02 0 0.02 0.04
0.3

0.4

0.5

0.6

0.7

0.8
Flat Exp. Data

200 x 400

200 x 800

400 x 1600

800 x 3200

800 x 6400

FIG. 11. Comparisons of the predicted and measured static pressure distributions (time-averaged) at the tip

surface at rp = 0.297 (PD120). Five sets of clearance grids were tested.

(a) (b)

FIG. 12. Computational mesh in the start region of the PS-side separation bubble, showing every fourth

grid line. Instantaneous vorticity magnitude is displayed: (a) vorticity magnitude at rp = 0.166 (PD80); (b)

vorticity magnitude at rp = 0.297 (PD120).
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bubble. The height of this separation bubble is suppressed under the transonic condition. The final

mesh has a dimensionless scale of Y+ ≈ 1 and X+ ≈ 28 (Based on Reynolds number Rec, which

is calculated by the clearance and averaged flow speed at the exit of the clearance), resulting in

a total grid cells of about 4.4 million. Based on this grid configuration, the timestep is set to be

2×10−7 s.

Figure 13(a) displays four time steps of the unsteady flow measured with the vertical cutoff

at rp = 0.297 (PD120, Me = 0.63). In the region labeled 3 , several vertical-line structures are

present with their motions marked by dashed lines. These structures are verified to be shock waves

using the IDDES simulations, as compared with Fig. 13(b). At timestep T1, unstable shock waves

are generated in the compression region behind the third shock, labeled 0 . As the shock wave

grows stronger, it propagates upstream with decreasing strength and travel speed. This process

(a) (b)

FIG. 13. Time-resolved density gradient distributions at rp = 0.297 (PD120): (a) measured ρx; (b) predicted

ρx. Shock motions are indicated by dashed lines. Starting time T1 is a time anchor. Aiming at identifying

the classification of flow structures, the starting time T1 is not necessary to be the same for the simulation

and the experiment. Time interval in both cases is δ t = 1/8510 s.
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continues until it stops moving and gradually fades out when reaching the upstream limit, as

marked by the first dashed line. A separation bubble labeled 1 is formed near the pressure-side

edge. The low-high-paired pattern at the boundary of the bubble indicates the vortex shedding that

generates the main shear-layer flapping. The shear layer wraps around the separation bubble. The

periodic vortex shedding and the resulting shear layer flapping are the main driving forces for the

unsteadiness of the shock waves. This process is more clearly captured by the footprints along

the line y = 121 mm, as plotted in Fig. 14. Each of the first few spikes indicates a shock wave.

These shock waves are generated in the region enclosed by the rectangular box where grayscale

spikes start to emerge. After their formation, the shock waves travel upstream and gradually fade

out until they vanish at the upstream limit.

X (mm)

G
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y
s
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g
 ∝

 ρ
x
)
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T1
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T4

Upstream Limit

100

Shock  Generation Region

FIG. 14. Measured grayscale along line y = 121 mm [see Fig. 13(a)-T3] with VL-cutoff at rp = 0.297

(PD120). Curves are evenly redistributed in the vertical direction with an increment of 170. Timesteps

T1–T3 are the same as in Fig. 13(a).

The horizontal flow structures are captured by the horizontal schlieren-cutoff. As shown in

Fig. 15, flapping motions of the flow structures labeled 2 can be observed. These structures are

verified by the IDDES results to be vortex shedding and the over-tip shear layer and the trajectory

of vortex shedding. Thus, flow structure 2 reveals the footprints of vortex shedding, and it con-

tains a series of vortices shed from the PS-edge. Additionally, a smaller vortex shedding footprint

labeled 6 is generated from the suction-side edge. The flapping of the shear layer is clearly

revealed by the footprints along the line x = 0 mm plotted in Fig. 16. The high platforms indicate

the density recovery from the vortex core. The upper boundary is closely related to the shear layer

of Vx, and the lower boundary of these high platforms is composed of the loci of vortex cores. The
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(a) (b)

FIG. 15. Time-resolved density gradient distributions at rp = 0.297 (PD120): (a) measured ρy; (b) predicted

ρy. The time interval in both cases is δ t = 1/8510 s.
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On the Model Tip Clearance
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Flat Model

Upper boundaryLower boundary

FIG. 16. Measured grayscale, g ∝ ρy, along the line x = 0 mm [see Fig. 15(a)-T3] with VL-cutoff at

rp = 0.297 (PD120). T1–T3 are the same as in Fig. 15(a).

shear layer and vortex train are observed to flap up and down.
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IV. DISTRIBUTION OF OVER-TIP SHOCKS AND A SIMPLIFIED PREDICTION

MODEL

We focus on the transonic case, rp = 0.297 (PD120, critical state, Mmax = 1.6, Me = 0.63, Rec =

3.7×105). Looking back at Fig. 14, one observes that the over-tip shocks exist in the form of a

dynamic shock system instead of a single shock cell. Unlike the shock system under supersonic

conditions, this shock system is highly unstable. This is revealed by the global movement and

the locally oscillation of shock waves at the same time. The over-tip shock system are composed

of a series of up-propagating near-normal shocks. Such motion of shock system reminds us the

evolution of repeated sawtooth waves. Based on the assumption of sawtooth waves and the weak

shock theory, a simplified model is proposed to describe the distribution of over-tip shocks.

Before describing the model, the density gradient, ρx, measured by the schlieren is related to

the strength of shocks, Π, by the following expression.

Π =
A1ρ2

x +A2ρx +A3

√

(A4 −ρx)ρx

(ρx+A5)2
. (6)

This equation is derived in the Appendix Sec. VII, and the coefficients are evaluated to be, A1 =

−7, A2 = 592702703, A3 = 331330883, A4 = 76204633, A5 = −63503861, at the condition with

parameters: ν = 1.48×10−5 m2 ·s−1, a0 = 340 m ·s−1, ρ1 = 1.29 kg ·m−3. Plotting Equ.(6) as Fig.

17, one can find that the shock strength is almost linearly proportional to the density gradient in

the range of [5000,1×107] kg ·m−4, which covers the shock strength Π ∈ [0.05,4.8]. This range is

able to cover the shock strength discussed in this article (Fig. 18). Therefore, the density gradient

measured by schlieren holds a quasi-linear relation with the strength of shock waves. This makes

it possible to discuss the evolution of over-tip shock waves by the results from the schlieren.

Assume the over-tip shock waves form a shock system described by repeated sawtooth wave

and the shock system as a whole travels at the speed of sound in undisturbed fluid, thus, the shock

strength is a function of travel time that can be expressed as

Π =

[
1

Π0
+

a0t

λ
· γ +1

2γ

]−1

, (7)

where a0 is the background sound velocity, γ is the specific heat ratio, λ is the wave length of the

repeated sawtooth wave.41 For current flow configuration, the shock waves propagate along the

reversed direction of the x-axis. Thus, the travel distance of shock front from the initial position is

written as

x0 − xs =

∫ t

0
(Ms−M f )a0dt, (8)
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FIG. 17. Relation between the density gradient, ρx, and the shock strength Π.
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FIG. 18. Relation between the Mach number, Ma, and the density gradient ρx of a normal shock. For

current transonic case, the Ma ∈ [1.02,1.6]. The plot for very weak shock is enlarged in the sub-figure.

where x0 and xs are the initial and current shock positions, respectively. Ms is the Mach number of
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the shock front expressed as a function of the shock strength Π, which is written as

Ms =

√

1+
γ +1

2γ
Π, (9)

and M f is the Mach number of fluid expressed as

M f = M̄+
n

∑
i=1

cicos(2π fit), (10)

in which M̄ is the mean flow Mach number and the summation term indicates the velocity fluctu-

ations with frequency fi and amplitude ci. Substitute Equ. (7), Equ. (9) and Equ. (10) to Equ. (8),

and let x′s = x0 − xs, K = 2γ/(γ +1), the travel distance can be derived from the integration as

x′s =−λ ln
λ

λ +a0Π0Kt
+(1− M̄)a0t −a0

n

∑
i=1

cisin(2π fit)

2π fi
. (11)

The travel time is also a function of the shock strength. Thus,

t =
λ

a0K

(
1

Π
− 1

Π0

)

. (12)

Substitute Equ. (12) to Equ. (11), one can get the shock travel distance expressed as

x′s = −λ ln
Π

Π0
︸ ︷︷ ︸

Initial shock state, xsi

+
(1− M̄)

K
λ

(
1

Π
− 1

Π0

)

︸ ︷︷ ︸

Mean background f low, xsm

− a0

2π

n

∑
i=1

ci

fi
sin

[
2π fiλ

a0K

(
1

Π
− 1

Π0

)]

︸ ︷︷ ︸

Background f low f luctuations, xs f

. (13)

The movement of shocks is driven by three factors, the initial shock state, xsi, the mean background

flow, xsm and the background flow fluctuations, xs f . The background flow fluctuations are also a

driving force for the over-tip shock oscillations. The term, xs f , is self-eliminated at full cycles

and the term ci/ fi is observed to be small. Therefore, this term can be omitted if the shock is

not very weak, then, one can find a linear relation between shock position and the wave length of

the saw-tooth wave. In practice, the sawtooth wave is irregular and shock merging happens when

weaker shock is overtaken by stronger one. At the merging point, the strength and wavelength of

two N-shape waves are superposed. Assume shock overtaking occurs at a constant rate. Thus, the

superposing process allows us to describe it by linearly growing wavelength, λ = λ0 +Ax′s, and

linearly growing shock strength Π0 = Π00 +Bx′s (λ0 and Π00 are the initial state of the sawtooth

wave, A and B are two empirical constants to be determined by the testing data, for current case,

A ≈ 1.0 and B ≈ 500.).

To validate this model, schlieren data along line y = 128 mm are extracted and superposed

by 16043 time steps. The superposed dark-dot cluster in Figure 19 reveals the overall strength
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evolution of the over-tip shock waves (calculated from the observed density gradient). Thus, the

envelope curve, fitted from the top-ten samples at each position, is a proper description of the

movement of over-tip shock waves. It shows that the shock strength satisfies a tooth-like dis-

tribution. Centered at the peak position (set the peak position as the initial/reference state), we

find that both the generation and the decaying branches satisfy a logarithmic function with the

travel distance of over-tip shock waves. For the generation branch, Π ≈ −0.286ln(−x′s)+1.069,

if x′s < 0, and Π ≈ 0.181ln(∆x−x′s)+0.096, if x′s ≥ 0 for the decaying branch. Averaged through

timesteps, the initial wave length, initial/reference shock strength (peak strength) and background

Mach number are λ0 = 0.008 m, Π00 = 0.8 and M̄ = 1.2, respectively. The first two flow fluctua-

tions have amplitudes and frequencies of (c1,c2) = (0.1,0.05) and ( f1, f2) = (960 Hz,2480 Hz).

The prediction agrees well with the experiment when shock strength is greater than Π = 0.2. The

vast deviation for Π < 0.2 is because the shock overtaking and merging occurs frequently near the

upstream limit of shock propagation, the linear superposing model fails in this region. The pro-

posed model is not aimed for the prediction of the generation branch, nevertheless, the left-branch

predicted by the contribution of background flow, xsm + xs f , agree quite well with the data. This

ln( )sx¢¢Õ µ

ln( )sx¢Õ µ -

0 0.012mx =

0s sx x x¢ = -

s sx x x¢¢ ¢= D -

0.027mxD =

FIG. 19. Case with normal inflow fluctuations: Superposed Π-x′s plotting (dark dot cluster), its envelop

curves (blue dashed line) and the predicted curves (red dash-dotted line, left branch by xsm + xs f and right

branch by x′s). The peak is translated to be x′s = 0. ∆x = 0.027 m is the distance between the upstream limit

and the peak position of the over-tip shocks (distance between two dark vertical dashed lines).
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implies that the background flow effects may dominate the shock generation process.

This model is further applied to over-tip shock prediction under larger background flow fluc-

tuations. As shown in Fig. 4, for this case, a block is placed upstream the clearance inlet. The

block has 5.33 mm in height, 17 mm in width and was placed 70 mm upstream of the clearance

inlet. As a result, additional flow fluctuations are generated as (c3, f3) = (0.03,1026Hz). This

has great impact on the evolution of over-tip shock waves. Figure 20 shows that this additional

flow fluctuation postpones the emerge of shock peak from x0 = 0.012 m to x0 = 0.003 m, the

upstream propagating distance is also reduced from ∆x = 0.027 m to ∆x = 0.019 m. Applying the

proposed model to this case, good agreement is achieved for the shock decaying branch; while the

left branch starts to deviate from prediction because the shock generation process is significantly

disturbed by upstream fluctuations. Predicted distributions of shock strength are plotted in Fig.

21. The overall propagation distance x′s is split into three contributions that represent three mecha-

nisms of over-tip shock dynamics. For both the normal-fluctuation and the extra-fluctuation cases,

the initial shock state (dashed green line) dominates the shock motions. The related curve satisfies

an exponentially decaying law, Πi = Π0e−xsi/λ . When the shocks decay to be weaker than 0.2, the

ln( )sx¢¢Õ µ
ln( )sx¢Õ µ -

0 0.003mx =

0s sx x x¢ = -
s sx x x¢¢ ¢= D -

0.019mxD =

FIG. 20. Case with additional inflow fluctuations: Superposed Π-x′s plotting (dark dot cluster), its envelop

curves (blue dashed line) and the predicted curves (red dash-dotted line, left branch by xsm + xs f and right

branch by x′s). The peak is translated to be x′s = 0. ∆x = 0.019 m is the distance between the upstream limit

and the peak position of the over-tip shocks (distance between two dark vertical dashed lines).
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(a) Normal flow fluctuations. (b) Extra flow fluctuations.

FIG. 21. Relationship between the shock position x′s and shock strength Π. The shock position involves

contributions from the initial state xsi, the mean background flow xsm and the background flow fluctuations

xs f . (a): Fluctuations (c1 = 0.1, f1 = 960 Hz),(c2 = 0.05, f2 = 2480 Hz); (b) Fluctuations (c1 = 0.1, f1 =

960 Hz),(c2 = 0.05, f2 = 2480 Hz),(c3 = 0.03, f3 = 1026 Hz).

background flow (dash-dotted blue line) takes control of the shock motions. The related curve sat-

isfies an inversely proportional function, Πm = 1/x′sm, where x′sm is a scaling and translation of xsm

by x′sm = Kxsm

(1−M̄)λ
+ 1

Π0
. The effect of background flow fluctuations (dotted purple line) is relatively

weak for stronger shocks. However, its impact increases significantly as the shock becomes very

weak. This leads to the strong oscillation in the prediction in the range of Π < 0.2.

Therefore, the proposed model provides a method to predict the distribution of over-tip shock

waves. The overall prediction is reliable, though this model is violated for very weak shock waves

near the upstream limit of shock propagation. Three essential factors, the initial state, the mean

back ground flow and the flow fluctuations, are identified. The motion of over tip shock waves are

governed by a dynamic balance among such factors.

V. FOURIER MODES AND THE LOCK-IN EFFECT OF OVER-TIP SHOCK WAVES

The vortex-shedding and shear-layer flapping motions are primary flow patterns in tip clear-

ance flows that exist under low-subsonic, transonic, and supersonic conditions. When the TLF is
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accelerated to the critical state (such as current state: rp = 0.297,Mmax = 1.2,Me = 0.63), it be-

comes highly unstable, resulting in the generation and evolution of over-tip shock waves. Fourier

analysis and DMD are used to understand the dynamics of over-tip shocks.

The schlieren image captures an integrated measure of the density gradient across the depth of

the tip model. In order to perform Fourier or DMD analysis, it is necessary for the shock structures

to be uniform along the depth. To achieve this, we assume two-dimensional flows in the clearance

and control the spanwise distortions of the shock structures within an acceptable range, ensuring

that they are nearly aligned. This is confirmed by examining the static pressure signature at the tip

surface along the spanwise direction, and the thickness of observed structures. A case is deemed

valid if the discrepancy among five-spanwise pressure taps (as shown in Fig. 4) are less than

1%. The spanwise shock distortions cause the vertical stripes observed in the schlieren images

to appear thicker. According to Equ. (20), the thickness of shock waves is approximately the

order of 10−6 m, which is imaged by a pixel size of about 4×10−4 m. Shock spanwise distortion

can affect up to two pixels, resulting in shock widths of 1 to 3 pixels. This length scale is much

smaller than the average distance between two shocks, which is around 8× 10−3 m. Therefore,

the schlieren image can be considered as an averaged density gradient across the testing section

with reduced resolution (a shock represented by one pixel is resolution-reduced to three pixels).

Consequently, the Fourier and DMD analysis can be taken as the analysis of uniformly distributed

shock structures with slightly-reduced resolution.

Fourier transforms are applied pixel-by-pixel to the measured images. The locations and fre-

quencies of the periodic flow structures are revealed by the resulted Fourier modes. As shown

in Fig. 22, three shock oscillation (SO) modes are present on the upper part (y ≥ 115 mm) of

the line x = −4 mm. The Strouhal number is defined as Stc = f c/Vx,avg, with Vx,avg ≈ 206.7

m/s being the averaged x-velocity at the gap exit and c = 32.8 mm being the clearance. The

strength of the SO rises as the y-coordinate increases. In the lower part of the line x = −4 mm,

a vortex shedding mode appears when y ≤ 115 mm. Distinct SO and vortex-shedding modes

are visible at (x,y) = (−4,115) mm. This indicates that shock/shear-layer/vortex-shedding in-

teractions occur in this region. The three observed SO modes are consistent with the first three

shear-layer flapping (SLF) modes in Fig. 23, and the vortex-shedding mode coincides the fourth

SLF mode. This implies that the SO and vortex-shedding modes are almost locked-in with the SLF

modes through these interactions. Side-lobes are observed near the second SO and the second SLF

modes. This is due to the interactions of shock waves and shear-layer with the second harmonic
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FIG. 22. Spectra and dominant Fourier mode patterns (embedded subfigures) of ρx measured by vertical cut-

off at five probes along line x =−4 mm, which is the location of the strongest shock oscillation. Amplitude

is normalized by the maximum peak. Peaks at Stc,s1 = 0.01 and Stc,s2 = 0.02 are system vibrations.
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FIG. 23. Spectra and dominant Fourier mode patterns of ρy measured by horizontal cutoff at five probes.

of system vibration at Stc,s2 = 0.02, yielding the sub-modes at Stc,v2±∆Stc and Stc,h2 ±∆Stc. Ad-

ditionally, the coupling effect between the SO and SLF disappears at the third SO mode. This
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implies some intermittency exists in the third SO mode, resulting in the unstable frequency of

Stc,v3 ∈ [Stc,h3−0.04,Stc,h3+0.04] = [0.37,0.45].

The above-discussed four discrete modes can also be observed under subsonic conditions. They

are the SLF modes measured by the horizontal cutoff; however, measured by the vertical cutoff,

they are no longer a composition of the SO modes and the vortex shedding mode but pure vortex

shedding modes. The change of four modes with the Reynolds number is plotted in Fig. 24. As

indicated by the dash-dotted lines, these curves fall into three zones, A, B, and C. Each zone

is assigned a sub-figure (Fourier transform of the density gradient) to illustrate corresponding

mode pattern. One observes only the SO modes in zone A, in which a vertical shock pattern is

observed in the sub-figure. Both the SO and the vortex-shedding modes are observed in zone

B, indicating the interaction of these modes. Almost-pure vortex-shedding modes are observed

in zone C. Therefore, this zonal feature is determined both by the flow speed and the order of

unsteadiness modes. The flow field tends to be dominated by shock waves as flow speed increases,

and by vortex shedding as the mode order (frequency) increases. Near-constant patterns (flat

lines) are observed for the first and the second modes. This implies that steady coupling of vortex
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c/ν

S
t c 

=
 f

c/
V
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,a

vg

1 1.5 2 2.5 3 3.5 4
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x10
5
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B

C

1

2

3

FIG. 24. Change of four Fourier modes with Reynolds number. Squared letters indicate three zones split by

dash-dotted lines. Zone A: dominated by shock/compression waves. Zone B: dominated by vortex–shock

coupling. Zone C: dominated by vortex shedding. Circled numbers indicate curve segments that carry the

same flow mechanism.
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shedding and the oscillation of shock/compression waves is established. As indicated by curve

segments 2 and 3 , the flow mechanism of the third mode switches when the pressure ratio

increases beyond rp = 0.063 (Me = 0.31, Rec = 2.2×105). This switching may be an underlying

mechanism of the intermittency feature as observed by the third mode in Fig. 22. Details of this

feature are to be discussed by high-fidelity simulations in the near future.

By now, we have achieved that the shock-oscillation frequency is kept the same with the shear-

layer flapping. This effect is termed "locked-in by frequency". We are going to prove that, in

the meanwhile, shock waves with a given oscillation frequency range is constrained to a specific

position range. This effect is termed "locked-in by position". Measured from the Fourier mode

patterns, the normalized over-tip shock positions are displayed with respect to the Strouhal number

in Fig. 25. Qualitatively identification of three sub-zones, the shock decaying zone, the shock

generation zone and the vortex-shock interaction zone, are achieved with the help of two additional

operating conditions. As labeled by the squared letters A and B, a clear boundary is observed

between the two sub-zones. This implies that not only the frequency, but also the position of the
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FIG. 25. Shock spatial position changes with oscillation frequency. Positions are measured from Fourier

modes, as shown by the subfigures in Fig. 22. xs, xps, and w are the x-coordinate of the center fo the SO

mode located at position of the maximum mode amplitude, the x-coordinate of the pressure side, and the

width of tip clearance, respectively. Color-flooded regions indicate three shock-motion zones (qualitative).
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SO mode is locked-in by the SLF mode. Thus, we termed this feature the "lock-in effect", which is

essential for blade heat transfer, and is a key factor to be considered in the development of control

techniques for TLFs.

This lock-in effect implies that the interaction of vortex-shedding and the over-tip shock waves

is governed by some relation between the location and frequency. The frequency synchronizing

feature between two related flow structures is easy to understand. The frequency consistency

between the SO mode and the SLF mode exists because the vortex motion is a main source

for the generation of over-tip shock waves and the shear-layer flapping. The mechanism of the

lock-in effect can be explained by the schematic drawing in Fig. 26. Flow structures such as

shocks, vortices, separation bubble and the main shear-layer are schematically presented with the

schlieren-measured density gradient as the reference background. As one knows, under almost all

flow conditions, over-tip vortex shedding happens. Starting from subsonic flow, acoustic waves

are generated along with the motion of vortices. As the flow speeds up to transonic, several super-

sonic cells emerge near the separation bubble and the upper-side of vortices shed from the PS-side.

This leads to the generation of shocks that travel upstream. Thus, the frequency of vortex shed-

ding is proportional to the number of shock generation events at a given time scale. If the strength

Shock Merging IShock Merging II

Sub-region ISub-region IISub-region III

Separation Bubble
Vortex

Acoustic 

Waves

Shock Waves

Supersonic cells around vortex 

Vortex

Shocks

Flow

Shock Propagation

Shear-layer Flapping
Blade 

Tip

Clearance

Sub-regions of Shocks

FIG. 26. Schematic view to illustrate the mechanism of the lock-in effect. The schematic flow structures

are created based on Fig. 25 and the understanding of TLFs. The schlieren-measured density gradient is set

as the background for reference.
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of the vortices and background flow is uniformly distributed over time, the so-generated shocks

should be uniform. In this case, the shock oscillation frequency should change continuously in

the shock region. However, as observed in Fig. 25, the flow field with shocks is partitioned into

several sub-regions. The boundary between regions is defined by a frequency jump. The shock

oscillation frequency varies in a mild and continuous way until reaching the boundary of two sub-

regions when frequency jump occurs. This special feature is schematically illustrated in Fig. 26

by sub-regions. The zonal pattern is explained by the non-uniformity of vortices and the merging

of shocks. The non-uniformity of vortex strength and scale leads to the formation of non-uniform

shocks. Thus, shock overtaking occurs between the weak-strong shock pairs during the propa-

gation. The boundaries of sub-regions are the locations where shock merging occurs frequently.

At the presence of shock merging, the number of shocks decreases and the strength of shocks in-

creases, resulting in more steady shocks (less affected by background flow fluctuations) and lower

frequency. At the merging positions, flow speed difference is enlarged by the shock-merging event.

This increases the difficulties for downstream shock formation. Consequently, an abrupt observed

frequency reduction (wavenumber reduction) occurs at this position.

Following the above discussion, the lock-in effect should widely exist in transonic TLFs at the

critical state. To verify this, different blade tip configurations are applied. Together with the flat tip

model, as shown in Fig. 27, TLFs over three contoured blade tip models were investigated in the

X

Y

O(0,0)

Base

TopFlow

65mm

39.8mm

Upper Wall Slope : x = 2.6:90

90mm

37.2mm

32.8mm

PS SS

9mm

18mm

4.5mm

18mm

18mm

18mm

Winglet                                          Cavity Step

FIG. 27. Blade tip contouring is applied by modifying the top part of the model. The winglet model is

designed by extending the tip platform of the flat model. The cavity model is designed as a shallow cavity.

The step model is generated by cutting the second squealer of the cavity model.
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same wind tunnel under similar operation conditions. The change of blade tip surface termed blade

tip contouring (BTC) is a widely used technique to elaborate the TLFs for better performance.

Figure 28 shows the zonal jumping patterns are also observed over the winglet and the cavity

model (the step model carries no shocks.). This implies lock-in effects exist for contoured blade tip

models. Compared with the flat model, the position of frequency lock-in is similar in the winglet

case. For the cavity tip configuration, shock waves are formed much closer to the exit. Position

jumping is also observed near St = 0.2 and St = 0.5. Except for the jumping frequencies, shock

positions for other frequencies in contoured blade tips are more stable than the flat model.
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FIG. 28. Shock position changes with oscillation frequency over: (a) winglet model; (b) cavity model.

VI. DMD MODES AND THE LIFE CYCLE OF OVER-TIP SHOCK WAVES

The Fourier modes reveal the location and frequency of the dominant flow structures; however,

the spatial details are not sufficiently clear. Thus, DMD analysis is performed to obtain more

detailed information. In the case of schlieren images, the main idea of the DMD method is as

follows. Assume the schlieren images are saved as a set of pixels with dimension n = p× q in

the time series t = t0, t1, ..., tm. The grayscale image snapshots, xt ∈ R
p×q, t = t0, t1, ..., tm, can be

described as a superposition of DMD modes as

xt j
=

r

∑
i=1

biφie
(δi+iωi)( j−1)∆t , j = 1,2, ...,m, (14)
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where r is the maximum order of the mode after high-order truncation, bi is the mode amplitude,

φi is the mode eigenvector, δi is the mode growth rate (defined as δi = Real[log(µi)]/∆t), ωi is

the mode angular frequency (defined by ωi = Imag[log(µi)]/∆t), ∆t is the time interval, and µi

is the eigenvalue of the i-th mode. These image snapshots can be rearranged into two sets, X =

{x0,x1, ...,xm−1} ∈ R
n×m and Y = {x1,x2, ...,xm} ∈ R

n×m, which have a constant time interval of

∆t = 1/ fs, where fs is the sampling rate. Given enough time, the lagged set Y is considered to be

a linear mapping of the base set X .42 Thus, Y = AX . The flow field is then decomposed into DMD

modes that are described by the eigenvectors and eigenvalues of the matrix A. In this study, the

streaming DMD (SDMD) algorithm43 is applied.

A quasi-linear DMD mapping is achieved with about 2000 snapshots for current study. The

mode eigenvector is obtained after applying SDMD. A set of over-determined equations is then

constructed from Eq. (14), and the mode amplitude bi is solved by the least-squares method. There-

after, the flow field of a single mode is reconstructed by xt j
= biφie

(δi+iωi)( j−1)∆t , j = 1,2, ...,m.

For each case, the DMD mode spectrum concerning the first 200 modes is calculated from 16 064

snapshots. For each model, the mode spectra of the vertical and horizontal cutoffs are displayed,

and the mode shapes of the dominant modes are given in terms of the mode spectra. The DMD

amplitude is defined as the multiple of the norm of the eigenvector and the absolute value of the

eigenvalue, ||φi||2|µi|. This is normalized by the maximum value to reflect the overall and relative

energy of the i-th mode. As a result, the mode amplitude is a measure of the total energy carried

by a single mode structure across the distributed area.

As our focus is the transonic operating conditions, we present the critical-state case PD120

(a) (b)

FIG. 29. DMD spectra and the related mode shapes at rp = 0.297 (PD120): (a) VL-cutoff; (b) HD-cutoff.
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(rp = 0.297, Me = 0.63, Rec = 3.7× 105). Figure 29 shows the DMD mode spectrum from the

VL-cutoff and the HD-cutoff. An overall broadband feature is revealed, which implies that the

tip clearance flow under transonic conditions is dominated both by periodic flow structures and

turbulent flows. Four relatively dominant modes are labeled under the broadband background.

Corresponding DMD mode shapes are displayed in Fig. 30. Based on the location and the mode

shape, the first mode in Fig. 30(a) is referred to as an extra SO modes. The second and third modes

are consistent with the first two Fourier SO modes shown in Fig. 22. The fourth mode is related

to the vortex-shedding mode. The shear-flapping modes are revealed by the labeled peaks in

(a) (b)

FIG. 30. DMD mode shapes at rp = 0.297 (PD120): (a) VL-cutoff; (b) HD-cutoff. Corresponding Fourier

mode frequencies are attached. Coupling effects are illustrated by the linking lines. The symbol -

indicates a subtraction operation. Equivalence is indicated by black linking lines.
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Fig. 29(b) with the mode shapes displayed in Figs. 30(b). These modes are consist with the Fourier

SLF modes shown in Fig. 23, which are coupled with the vortex-shedding or the SO modes.

By examining the Strouhal numbers, the possible coupling relations are Stc,a1 ≈ Stc,b2 − Stc,b1,

Stc,a3 ≈ Stc,b3 −Stc,b2, and Stc,a4 ≈ Stc,b4.

Due to the zonal features of shock motions, the generation and evolution of over-tip shock

waves carries a strong spatially distributing pattern. The life cycle of over-tip shock waves is illus-

trated in Fig. 31 by the four-phase spatial translation of the DMD modes. First, a dominant vortex-

shedding mode is observed downstream of position x = 5.77 mm (56.4%w from the PS edge) with

Stc ≈ 0.566. This mode is coupled with the shock generation by vortex/shear-layer/shock interac-

tions. The shock waves are highly unsteady in this region. Thereafter, the shock waves propagate

upstream, overtake one another, and merge with weaker shock waves, and the overall oscillation

frequency decreases. As shown in Figs. 31(b), the dominant intermediate mode has a frequency

of Stc ≈ 0.253. The intermediate modes should be broadband for shock waves propagation in a

free stream. The strong discrete pattern is caused by the interaction with the vortex-shedding and

SLF modes, which have almost-constant frequencies. At the final stage, as shown in Fig. 31(d),

the shock waves start to fade out and remain spatially still near x =−10.3 mm (38.5%w from the

PS edge). This yields a low frequency of Stc ≈ 0.053.

FIG. 31. DMD mode patterns illustrating the process of shock generation and evolution. Four stages are

labeled by letters a–d. The position of the shock wave is measured near the first phase-shifting line.
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VII. CONCLUSIONS

This paper has described an experimental investigation of common generic blade tip models in

a transonic wind tunnel as a means of studying the formation and evolution of the over-tip shock

waves in pressure-driven TLFs. The flow fields were measured by pressure taps and time-resolved

schlieren visualization. A novel technique, which superposes data from different schlieren cutoffs,

was applied to enhance the visualized flow details. The emphasis is on the critical state when the

over-tip shock system is highly unsteady. Image processing and additional IDDES simulations are

applied to reveal the dynamics of over-tip flow structures. The main conclusions are as follows:

(1) The shock strength satisfies a tooth-like distribution at the critical state. Based on the

assumption of sawtooth wave, a simplified model is proposed to predicted the evolution of over-

tip shock waves. Good agreements are achieved compared with the measurement. Thus, this

model implies that the strength of shock waves during the propagation is determined by the initial

shock state, the mean background flow and the flow fluctuations.

(2) Several SO, SLF, and vortex-shedding modes were revealed by Fourier analysis. The SO

modes were found to be locked-in with the SLF and vortex-shedding modes. Moreover, spa-

tial analysis implies that both the frequency and position of the SO mode are locked-in by the

shear-flapping modes. We termed this feature the "lock-in effect", which also exists in TLFs over

contoured blade tips, such as winglet and cavity tips. The mechanism for this effect is explained

by the non-uniformity and nonlinear propagation of over-tip shock waves.

(3) DMD analyses were performed to analyze detailed flow structure. Consistency is observed

between the DMD modes and the Fourier modes. The spatial information provided by DMD

modes reveals that the life cycle of over-tip shock waves is composed of four discrete stages.

They are generated in the compression region and propagate upstream. During this process, shock

overtaking occurs, resulting in discrete frequency reductions.
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APPENDIX: THE APPLIED IDDES MODEL

In order to suppress the Grid Induced Separation (GIS), the Improved Delayed Detached Eddy

Simulation (IDDES) model37,38 is applied under the finite volume framework. This turbulence

model enables the large eddy simulation (LES) of boundary layer to achieve scale-resolving simu-

lation (SRS) for high Reynolds number flow. Starting from the k−ω shear stress transport (SST)

background RANS model, a IDDES length scale is applied to the sink term in the k-equation while

the ω-equation remains unchanged.38 Thus, the k- and ω-equations becomes:

∂ρk

∂ t
+∇ · (ρUk) = ∇ · [(µ +σkµt)∇k]+Pk −ρ

√
k3/lIDDES,

∂ρω

∂ t
+∇ · (ρUω) = ∇ · [(µ +σω µt)∇ω]+Pk +2(1−F1)ρσω2

∇k ·∇ω

ω
+α

ρ

µt
Pk −βρω2,

(15)

in which, µt = ρ a1·k
max(a1·ω,F2·S) , a1 = 0.31, F1 and F2 denote the SST blending functions.44 Coef-

ficients σk,σω ,α,β are then achieved from the blending function g = g1 ·F1 + g2 · (1−F1) by

replacing the marker g to be σk,σω ,α or β . Coefficients in the boundary (•1, from Wilcox’s

model45) and in the free stream (•2, from the standard k− ε model46) are used with values list as:

α1 = 5/9, α2 = 0.44, β1 = 0.075, β2 = 0.0828,

σk1 = 0.85, σk2 = 1.0, σω1
= 0.5, σω2

= 0.856.

A simplified version of IDDES length scale is applied, which is blended from the RANS and

LES length scale as

lIDDES = f̃d · lRANS +(1− f̃d) · lLES, (16)
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where

lLES =CDES∆, lRANS =

√
k

Cµ ω
,

CDES =CDES1 ·F1 +CDES2 · (1−F1),

∆ = min{Cωmax[dω ,hmax],hmax},

f̃d = max{1− fdt , fb}.

fdt = 1− tanh[(Cdt1rdt)
Cdt2],

fb = min{2e−9·(0.25−dw/hmax)
2

,1.0}.
in which, dw is the distance to the nearest wall, hmax is the maximum edge length of the grid

element and the empirical coefficients are set as:

CDES1 = 0.78, CDES2 = 0.61, Cω = 0.15, Cdt1 = 20, Cdt2 = 3.

APPENDIX: RELATIONSHIP BETWEEN THE SHOCK STRENGTH AND DENSITY

GRADIENT

The density ratio across the shock can be derived from the Rankine-Hugoniot relation to be

ρ2

ρ1

=
(γ +1)(p2/p1)+(γ −1)

(γ +1)+(γ −1)(p2/p1)
. (17)

Following the definition of shock strength, Π = (p2 − p1)/p1 = p2/p1 −1, the strength of shock

is obtained as

Π =
2γ(1−ρ2/ρ1)

−(γ +1)+(γ −1)(ρ2/ρ1)
. (18)

The density gradient ρx across the shock can be estimated by

ρx = (ρ2 −ρ1)/δ , (19)

where δ is the thickness of shocks. As proposed by Puckett et al.,47 the thickness of shock can be

estimated by

δ =
8νγ

2(γ +1)a0

us/a0 +1

us/a0 −1
, (20)

where ν is the coefficient of viscosity, a0 is the background sound velocity, us is the moving speed

of a normal shock, which is related to the shock strength by

us/a0 =

√

1+
γ +1

2γ
Π. (21)
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Combine Equs. 18-21, one can find a cubic equation with one unknown, us/a0. This cubic

equation has two negative solutions (non-physical) and one positive that is expressed as

us/a0 =
−ρ1 −

√

m2 +mn−nρ1

m−ρ1
, (22)

where ρ1 is the density immediately before the shock; m,n are linear functions of density gradient

expressed as

m =
2γ(γ −1)ν

(γ +1)a0
ρx, n =−2γν

a0
ρx. (23)

Thus, the shock strength is related to density gradient by

Π =
2γ

γ +1

(

−ρ1 −
√

m2 +mn−nρ1

m−ρ1

)2

− 2γ

γ +1
. (24)
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(a) Normal flow fluctuations. (b) Extra flow fluctuations.
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