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RESEARCH ARTICLE Open Access

Distinct gene signatures in aortic tissue from
ApoE-/- mice exposed to pathogens or Western
diet
Carolyn D Kramer1†, Ellen O Weinberg1†, Adam C Gower3, Xianbao He1,2, Samrawit Mekasha1,2, Connie Slocum1,
Lea M Beaulieu4, Lee Wetzler1, Yuriy Alekseyev5, Frank C Gibson III1,2, Jane E Freedman4, Robin R Ingalls1,2

and Caroline A Genco1,2,6*

Abstract

Background: Atherosclerosis is a progressive disease characterized by inflammation and accumulation of lipids in
vascular tissue. Porphyromonas gingivalis (Pg) and Chlamydia pneumoniae (Cp) are associated with inflammatory
atherosclerosis in humans. Similar to endogenous mediators arising from excessive dietary lipids, these
Gram-negative pathogens are pro-atherogenic in animal models, although the specific inflammatory/atherogenic
pathways induced by these stimuli are not well defined. In this study, we identified gene expression profiles
that characterize P. gingivalis, C. pneumoniae, and Western diet (WD) at acute and chronic time points in aortas
of Apolipoprotein E (ApoE-/-) mice.

Results: At the chronic time point, we observed that P. gingivalis was associated with a high number of unique
differentially expressed genes compared to C. pneumoniae or WD. For the top 500 differentially expressed
genes unique to each group, we observed a high percentage (76%) that exhibited decreased expression in
P. gingivalis-treated mice in contrast to a high percentage (96%) that exhibited increased expression in WD
mice. C. pneumoniae treatment resulted in approximately equal numbers of genes that exhibited increased
and decreased expression. Gene Set Enrichment Analysis (GSEA) revealed distinct stimuli-associated phenotypes,
including decreased expression of mitochondrion, glucose metabolism, and PPAR pathways in response to P. gingivalis
but increased expression of mitochondrion, lipid metabolism, carbohydrate and amino acid metabolism, and PPAR
pathways in response to C. pneumoniae; WD was associated with increased expression of immune and inflammatory
pathways. DAVID analysis of gene clusters identified by two-way ANOVA at acute and chronic time points revealed a
set of core genes that exhibited altered expression during the natural progression of atherosclerosis in ApoE-/- mice;
these changes were enhanced in P. gingivalis-treated mice but attenuated in C. pneumoniae-treated mice. Notable
differences in the expression of genes associated with unstable plaques were also observed among the three
pro-atherogenic stimuli.

Conclusions: Despite the common outcome of P. gingivalis, C. pneumoniae, and WD on the induction of vascular
inflammation and atherosclerosis, distinct gene signatures and pathways unique to each pro-atherogenic stimulus were
identified. Our results suggest that pathogen exposure results in dysregulated cellular responses that may impact
plaque progression and regression pathways.

Keywords: ApoE-/- mice, Porphyromonas gingivalis, Chlamydia pneumoniae, Western diet, Gene expression profiling,
GSEA, Atherosclerosis, Vascular inflammation, Vulnerable plaque, PPAR
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Background
Atherosclerosis is a chronic disease characterized by endo-
thelial dysfunction and inflammation [1-3]. In addition to
the significant monetary burden, atherosclerotic vascular
disease undermines functional capacity, leads to a greater
dependence on hospitalizations and long-term care, and is
a risk factor for the development of myocardial infarction
and heart failure [4]. A greater understanding of mecha-
nisms and mediators of vascular dysfunction and inflam-
matory processes in the aortic vasculature that manifest as
atherosclerotic disease are needed in order to promote the
development of novel prevention and treatment strategies.
Clinical studies have shown that atherosclerotic plaque

in the aortic arch and innominate arteries is commonly
observed in patients at risk for stroke, myocardial infarc-
tion, atrial fibrillation, and peripheral artery disease and
that plaque in the aorta is an indication of generalized
atherosclerosis [2]. While retention of lipoprotein into
the sub-endothelial vascular layer is believed to be the
initiating stimulus leading to the development of athero-
sclerosis, activation of multiple pathways related to vas-
cular inflammation and dysfunction sustain the process
by stimulating recruitment of leukocytes and immune
cells into the sub-endothelial layer [1]. Differentiation of
monocytes into tissue resident macrophages that engulf
and oxidize lipids to become inflammatory foam cells is
also a hallmark of atherosclerosis [1].
One of the well-defined risk factors for the development

of atherosclerosis is diet-induced obesity, which is on
the rise in Western societies [4]. Mounting evidence in
humans supports an etiological role for the microbiota in
inflammatory atherosclerosis. Recent studies have estab-
lished that common chronic infections may account for
up to 40% of newly developed atherosclerosis independent
of genetic risk factors [5]. The Gram-negative bacteria,
Porphyromonas gingivalis (P. gingivalis) and Chlamydia
pneumoniae (C. pneumoniae), have been associated with
the development and acceleration of plaque burden in
humans and these observations have been validated in
animal models [1,6-19]. Both of these pathogens have a
high prevalence of infection in the general population.
P. gingivalis is an oral pathogen strongly associated with
periodontal disease, one of the most common chronic
diseases with a prevalence between 10-60% of adults [20].
P. gingivalis promotes chronic systemic inflammation by
disrupting host immune responses and altering the com-
position of microbial communities [21-24]. C. pneumoniae
is an obligate intracellular bacterium that infects the re-
spiratory tract and is a major cause of pneumonia in
humans. An estimated 2-5 million cases of pneumonia
each year in the United States are attributed to C. pneu-
moniae infection [25]. Approximately 50% of adults have
evidence of past infections by age 20 and re-infection
throughout life is common [25].

Although extensive research has shown endogenous me-
diators arising from excessive dietary lipids and the patho-
gens P. gingivalis and C. pneumoniae are pro-atherogenic
[5,8,9,12,13], the specific inflammatory/atherogenic path-
ways induced by these individual stimuli in plaque pro-
gression are not well defined. In this study, we examined
how exposure to two pathogens associated with athero-
sclerosis induces modulation of gene expression in aortic
tissues using ApoE-/- mice that spontaneously develop ath-
erosclerosis in the absence of an additional pro-atherogenic
stimulus. ApoE-/- mice are the most widely used mouse
model for the development of atherosclerosis in the ab-
sence of additional stimuli and are characterized by
increased total plasma cholesterol levels [1,26-28]. Fur-
thermore, we compared pathogen-induced gene signa-
tures to ApoE-/- mice fed a Western diet. Comparison of
gene expression profiles obtained from pathogen treated
mice at the acute and chronic time points was also exam-
ined to define how these pathogens modulate gene ex-
pression during the natural progression of atherosclerosis
in ApoE-/- mice.

Results
PCA and qRT-PCR analysis
Principal Component Analysis (PCA, Additional file 1:
Figure S1) performed using all genes across all samples
showed that there was strong separation between chronic
and acute P. gingivalis treatment samples (dark and light
orange) along the PC1 axis, indicating that there was
strong time-dependent differential gene expression in this
treatment group. Mean fold changes (relative to chronic
control) obtained by Taqman real time RT-PCR analysis
for 10 genes were in good agreement with microarray
results (Additional file 2: Table S1 and Additional file 3:
Figure S2).

Chronic treatment with P. gingivalis, C. pneumoniae, and
WD induces distinct gene expression patterns in aortic
tissue
Genes with significant differential expression (FDR q < 0.25)
in response to the three pro-atherogenic stimuli are tabulated
in Figure 1. P. gingivalis treatment resulted in a 2-3 times
greater number of unique differentially expressed genes com-
pared to the other two treatments. The number of differen-
tially expressed genes common to the two pathogen-treated
groups was also substantially larger than the number com-
mon to either pathogen-treated group and the WD group.

Identification of pathways altered by chronic treatment
with P. gingivalis, C. pneumoniae, or WD
To provide insight into the biological pathways and pro-
cesses that are altered in response to each treatment, we
used Gene Set Enrichment Analysis (GSEA) [29-31] to
determine whether the members of gene sets involved in
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curated pathways and processes (as obtained from the
Molecular Signatures Database, MSigDB) were nonran-
domly distributed across all genes interrogated by the
array with respect to each treatment.
The gene sets that were coordinately upregulated (posi-

tively enriched) in response to P. gingivalis were related to
proliferative signaling, matrix remodeling, execution of
apoptosis, PDGF signaling, the secretin G-protein recep-
tor family, and the lysosome (Table 1 and Additional
file 4: Table S2). The gene sets with the strongest co-
ordinate downregulation (negative enrichment) with
P. gingivalis treatment were involved in mitochondrial
function and glucose metabolism (Table 2 and Additional
file 4: Table S3), suggesting that P. gingivalis treatment
may lead to mitochondrial dysfunction and metabolic im-
balance in the aorta. C. pneumoniae treatment was associ-
ated with the coordinate upregulation of genes involved
in redox signaling, lipid metabolism, carbohydrate and
amino acid metabolism, the mitochondrion, and vitamin
metabolic processes (Table 3 and Additional file 4: Table S4),
and the downregulation of genes related to muscle con-
traction and differentiation and channel activity (Table 4
and Additional file 4: Table S5). These findings suggest
that C. pneumoniae treatment alters the redox state and
metabolism of lipids that may promote the dedifferenti-
ation of smooth muscle cells in aortic tissue. The majority
of gene sets that were coordinately upregulated in response
to WD were those involved in defense and immune func-
tion; others included pathways related to macromolecu-
lar degradation and cell cycle regulation (Table 5 and
Additional file 4: Table S6). Gene sets that were negatively
enriched in response to WD included tight junction regu-
lation, receptor signaling, muscle proteins and channel
activity (Table 6 and Additional file 4: Table S7). These
findings suggest that dietary lipids and cholesterol are

sensed by the innate and adaptive immune system in aor-
tic tissue in a manner that promotes inflammation and
loss of vascular barrier function.

Functional classification of clusters of genes differentially
expressed with respect to chronic atherogenic stimuli
The 1000 genes with the greatest significance by one-
way ANOVA across the four chronic treatment groups
(control, P. gingivalis, C. pneumoniae, and WD) were
assigned to several groups using hierarchical clustering
(Figure 2A-C). At the arbitrary cutoff of 1000 genes, the
chronic time point ANOVA FDR q value was < 0.019
and the p value was < 8.73 × 10-4. The DAVID functional
classification tool was used to extract biological meaning
from each of the clusters (Figure 2B). The three pro-
atherogenic stimuli produced strikingly different pat-
terns of differential gene expression. Genes involved in
immunity and inflammation (Cluster 1) were coordi-
nately upregulated in response to WD, but were largely
unchanged in response to either pathogen. By contrast,
genes involved in lipid synthesis and PPAR signaling
(Cluster 3) were markedly increased in response to C.
pneumoniae treatment but were unchanged in the other
groups. Finally, two smaller clusters suggest that the
Hedgehog pathway is suppressed in WD mice (Cluster 5)
and that treatment with either pathogen decreased the ex-
pression of contractile proteins (Cluster 2); however, these
results were based on a small number of genes and should
be interpreted with caution (Figure 2A and Additional
file 5: Figure S3A and B).

Time-dependent changes in aortic gene expression in
mice treated with P. gingivalis or C. pneumoniae
To examine the acute response in aortic tissue following
pathogen exposure, RNA samples were obtained one day

Figure 1 Chronic time point Venn diagrams. Venn diagrams depicting the number of genes with significantly increased (left) or significantly
decreased (right) expression vs. the chronic control group for each chronic treatment group. The sets of differentially expressed genes result from
differential expression analyses for each chronic treatment group vs. the chronic control group using the R environment for statistical computing
(version 2.15.1) with a cut off of FDR q < 0.25 as described in Methods.
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after the last treatment with P. gingivalis or C. pneumoniae
(see Methods). Genes with nominally significant differential
expression (p < 0.05) between the chronic and acute time
points in untreated or P. gingivalis- or C. pneumoniae-
treated ApoE-/- mice are tabulated in Figure 3. Differential
expression in all three groups was greater than expected
by chance, and as in the comparison between groups at
the chronic time point alone (Figure 1), P. gingivalis treat-
ment produced the largest amount of differential gene ex-
pression, and the genes regulated by the two pathogens
overlapped substantially. For the top 500 differentially
expressed genes observed at the acute to chronic time points,

aortic tissue from ApoE-/- mice fed a normal chow diet was
characterized by a balance of genes with increased and de-
creased expression; P. gingivalis treatment was skewed to-
wards decreased expression (see Additional file 6: GeneLists).
Because time-dependent differential expression was less ro-
bust in the C. pneumoniae-treated group, these changes may
reflect inhibition of natural changes that occur with time in
the aortic tissue from ApoE-/- mice fed a normal chow diet.

Functional classification of genes with varying kinetics of
response to P. gingivalis or C. pneumoniae treatment
Using two-factor ANOVA, we then analyzed the capacity
of either pathogen to alter normal time-dependent changes

Table 2 Gene set enrichment analysis

Rank Gene set

2 Reactome integration of energy metabolism

4 KEGG oxidative phosphorylation

5 KEGG parkinsons disease

7 Mitochondrial part

8 Mitochondrian

10 Mitochondrial membrane

11 Mitochondrial envelope

17 Mitochondrial membrane part

9 KEGG citrate cycle tca cycle

12 KEGG alzheimers disease

13 Organelle inner membrane

16 Mitochondrial inner membrane

14 KEGG huntingtons disease

15 Reactome pyruvate metabolism and TCA cycle

18 Reactome citric acid cycle

19 KEGG cardiac muscle contraction

20 Reactome diabetes pathways

1 Reactome glucose regulation of insulin secretion

3 Reactome electron transport chain

6 Reactome regulation of insulin secretion

21 Reactome glucose metabolism

22 Energy derivation by oxidation of organic
compounds

23 Cellular respiration

24 Regulation of heart contraction

25 KEGG PPAR signaling pathway

Negative enrichment: chronic P. gingivalis-treated group vs. chronic
control group.
The top 25 P. gingivalis gene sets whose member genes are predominantly
downregulated with respect to the chronic control group. Column 1 indicates
the rank of the gene set based on Normalized Enrichment Score (NES).
Column 2 lists the gene set name (bold) as provided by MSigDB. Gene set
names and ranks that are not in bold are gene sets that are redundant or
partially redundant and included within larger bolded gene sets. The NES
ranged from -3.24 (for REACTOME Integration of Energy Metabolism, the top
ranked gene set) to -2.33 (KEGG PPAR Signaling Pathway, the 25th-ranked
gene set). FDR q < 1 × 10-30.

Table 1 Gene set enrichment analysis

Rank Gene set

1 Basal cell carcinoma

3 Nucleachromosome part

5 Regulation of gene expression epigenetic

6 KEGG melanogenesis

8 DNA replication

2 DNA dependent DNA replication

11 Regulation of DNA replication

9 Proteinaceous extracellular matrix

4 Extracellular matrix part

7 Basement membrane

13 Extracellular matrix

10 KEGG hedgehog signaling pathway

12 Reactome cell extracellular matrix interactions

14 Reactome E2F mediated regulation of DNA
replication

15 Reactome apoptotic execution phase

16 Collagen

17 Reactome inactivation of APC via direct inhibition
of the AP complex

19 Reactome smooth muscle contraction

20 Reactome conversion from APC CDC20 to APC CD1
in late anaphase

21 Reactome signaling by PDGF

22 KEGG lysosome

23 Microtubule cytoskeleton

24 Cell division

18 Cytokinesis

25 Reactome class B2 secretin family receptors

Positive enrichment: chronic P. gingivalis-treated group vs. chronic
control group.
The top 25 P. gingivalis gene sets whose member genes are predominantly
upregulated with respect to the chronic control group. Column 1 indicates the
rank of the gene set based on Normalized Enrichment Score (NES). Column 2 lists
the gene set name (bold) as provided by MSigDB. Gene set names and ranks that
are not in bold are gene sets that are redundant or partially redundant and
included within larger bolded gene sets. The NES ranged from 2.32 (for Basal Cell
Carcinoma, the top ranked gene set) to 1.66 (REACTOME Class B2 Secretin Family
Receptors, the 25th-ranked gene set). FDR q range: 0.001-0.186.
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in gene expression that occurred in ApoE-/- mice. A clus-
tering heat map of the 1000 genes with the strongest inter-
action effect between time and treatment is shown in
Figure 4. At the arbitrary cutoff of 1000 genes, the
ANOVA interaction (group:timepoint) FDR q value was <
0.117 and the p value was < 5.52 × 10-3. The expression of
genes encoding myofibril, cytoskeletal, and ion binding/
transport proteins (cluster 2) greatly increased over time in
untreated ApoE-/- mice. However, treatment with either

pathogen prevented or reversed this effect: the expression
of these genes was increased and subsequently downregu-
lated in the acute or chronic P. gingivalis-treated groups,
respectively, and was unchanged in either C. pneumoniae
treatment group. Conversely, the expression of a number
of zinc-finger transcription factors (cluster 5) was down-
regulated over time in untreated mice, but was decreased
and then subsequently upregulated in the acute or chronic
C. pneumoniae-treated groups, respectively, and was un-
changed in either P. gingivalis treatment group. A third
noteworthy pattern was defined by a group of genes with
functions in fatty acid metabolism and PPAR signaling
whose expression was moderately downregulated over

Table 4 Gene set enrichment analysis

Rank Gene set

1 KEGG hypertrophic cardiomyopathy

2 KEGG dilated cardiomyopathy

3 Reactome muscle contraction

4 Reactome striated muscle contraction

5 Muscle development

21 Skeletal muscle development

6 Actin cytoskeleton

8 Structural molecule activity

7 Structural constituent of muscle

9 Regulation of multicellular organismal process

12 Regulation of heart contraction

25 Regulation of muscle contraction

10 KEGG cardiac muscle contraction

11 Cytoskeletal protein binding

23 Actin binding

13 KEGG arrhythmogenic right ventricular
cardiomyopathy ARVC

14 Contractile fiber

15 Contractile fiber part

19 Myofibril

16 Heart development

20 Gated channel activity

17 Voltage gated channel activity

18 Voltage gated cation channel activity

22 Cation channel activity

24 Cytoskeletal part

Negative enrichment: chronic C. pneumoniae-treated group vs. chronic
control group.
The top 25 C. pneumoniae gene sets whose member genes are predominantly
downregulated with respect to the chronic control group. Column 1 indicates
the rank of the gene set based on Normalized Enrichment Score (NES). Column 2
lists the gene set name (bold) as provided by MSigDB. Gene set names and ranks
that are not in bold are gene sets that are redundant or partially redundant and
included within larger bolded gene sets. The NES ranged from -2.79 (for KEGG
Hypertrophic Cardiomyopathy, the top ranked gene set) to -2.23 (Regulation of
Muscle Contraction, the 25th-ranked gene set). FDR q < 1 × 10-30.

Table 3 Gene set enrichment analysis

Rank Gene set

1 Microbody

2 Peroxisome

20 Peroxisome organization and biogenesis

7 KEGG propanoate metabolism

3 KEGG peroxisome

12 Reactome peroxisomal lipid metabolism

4 Kegg PPAR signaling pathway

5 Reactome metabolism of lipids and lipoproteins

6 Reactome regulation of lipid metabolism by
peroxisome proliferator activated receptor alpha

22 Reactome cholesterol biosynthesis

23 Reactome synthesis of bile acids and bile salts via
7 alpha hydroxycholesterol

8 KEGG valine leucine and isoleucine degradation

7 Kegg propanoate metabolism

9 KEGG fatty acid metabolism

10 Reactome metabolism of vitamins and cofactors

11 KEGG pyruvate metabolism

7 KEGG propanoate metabolism

13 KEGG glycerolipid metabolism

15 Lipid catabolic process

24 Cellular lipid catabolic process

16 Mitochondrion

14 Mitochondrial lumen

17 Mitochondrial matrix

7 KEGG propanoate metabolism

18 Reactome branched chain amino acid catabolism

19 Cofactor metabolic process

21 KEGG biosynthesis of unsaturated fatty acids

25 Vitamin metabolic process

Positive enrichment: chronic C. pneumoniae-treated group vs. chronic
control group.
The top 25 C. pneumoniae gene sets whose member genes are predominantly
upregulated with respect to the chronic control group. Column 1 indicates the
rank of the gene set based on Normalized Enrichment Score (NES). Column 2
lists the gene set name (bold) as provided by MSigDB. Gene set names and
ranks that are not in bold are gene sets that are redundant or partially
redundant and included within larger bolded gene sets. The NES ranged from
2.64 (for Microbody Peroxisome, the top ranked gene set) to 2.03 (Vitamin
Metabolic Process, the 25th-ranked gene set). FDR q range: 0-0.001.
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time in untreated animals (cluster 3); this downregulation
was greatly amplified in mice treated with P. gingivalis but
was completely abrogated in mice treated with C. pneumo-
niae (Additional file 7: Figure S4).

Functional classification of clusters of genes differentially
expressed with respect to acute atherogenic stimuli
As before, the 1000 genes with the greatest significance
by one-way ANOVA across the three acute treatment
groups (control, P. gingivalis, and C. pneumoniae) were
assigned to several groups using hierarchical clustering
(Additional file 8: Figure S5-1A). Acute treatment with
P. gingivalis produced little differential gene expression,

whereas acute treatment with C. pneumoniae resulted in
large changes in gene expression. Genes whose expres-
sion increased with C. pneumoniae treatment (cluster 1)
represented G-protein coupled signaling, viral myocardi-
tis, antigen processing and presentation, and membrane
genes. By contrast, nearly half of the genes whose expres-
sion decreased with C. pneumoniae treatment (cluster 5)
encoded phosphoproteins, with the remainder encoding
proteins involved in alternative splicing, the endoplasmic
reticulum, and glycoproteins and secreted proteins. The
remaining clusters were not remarkable due to lack of an-
notation to a DAVID pathway or of marginal significance
(Additional file 8: Figure S5-1B). The three remaining clus-
ters were not noteworthy (Additional file 9: Figure S5-2).

Table 6 Gene set enrichment analysis

Rank Gene set

1 G protein coupled receptor activity

6 Rhodopsin like receptor activity

14 Peptide receptor activity

2 Apical junction complex

3 Apicolateral plasma membrane

4 Neurotransmitter binding

5 Neuropeptide receptor activity

7 Neurotransmitter receptor activity

10 Neuropeptide binding

9 KEGG neuroactive ligand receptor interaction

11 Reactome amine ligand binding receptors

24 Amine receptor activity

12 Intercellular junction

8 Tight junction

13 Structural constituent of muscle

15 Calcium channel activity

16 Feeding behavior

18 Voltage gated channel activity

17 Voltage gated potassium channel activity

20 Voltage gated cation channel activity

19 KEGG basal cell carcinoma

21 Contractile fiber

22 Anion transmembrane transporter activity

23 Reactome tight junction interactions

25 Digestion

Negative enrichment: Western diet group vs. chronic control group.
The top 25 Western diet gene sets whose member genes are predominantly
downregulated with respect to the chronic control group. Column 1 indicates the
rank of the gene set based on Normalized Enrichment Score (NES). Column 2 lists
the gene set name (bold) as provided by MSigDB. Gene set names and ranks
that are not in bold are gene sets that are redundant or partially redundant and
included within larger bolded gene sets. The NES ranged from -3.43 (for G Protein
Coupled Receptor Activity, the top ranked gene set) to -1.92 (Digestion, the
25th-ranked gene set). FDR q range: 0 – 0.015.

Table 5 Gene set enrichment analysis

Rank Gene set

1 KEGG lysosome

2 Reactome signaling in immune system

10 Reactome innate immunity signaling

24 Cell surface interactions at the vascular wall

3 KEGG natural killer cell mediated cytotoxicity

4 KEGG systemic lupus erythematosus

6 KEGG B cell receptor signaling pathway

7 Leishmania infection

8 KEGG toll like receptor signaling pathway

9 Immune system process

5 Immune response

11 Reactome toll receptor cascades

13 Reactome S phase

15 Reactome synthesis of DNA

14 KEGG FC gamma R mediated phagocytosis

16 Reactome host interactions of HIV factors

17 Reactome M G1 transition

12 DNA replication pre initiation

18 KEGG T cell receptor signaling pathway

19 Defense response

20 KEGG nod like receptor signaling pathway

21 KEGG hematopoietic cell lineage

22 Reactome G1 S transition

12 DNA replication pre initiation

23 KEGG chemokine signaling pathway

25 Reactome cell cycle checkpoints

Positive enrichment: Western diet group vs. chronic control group.
The top 25 Western diet gene sets whose member genes are predominantly
upregulated with respect to the chronic control group. Column 1 indicates the
rank of the gene set based on Normalized Enrichment Score (NES). Column 2 lists
the gene set name (bold) as provided by MSigDB. Gene set names and ranks that
are not in bold are gene sets that are redundant or partially redundant and
included within larger bolded gene sets. The NES ranged from 2.97 (for KEGG
Lysosome, the top ranked gene set) to 2.42 (REACTOME Cell Cycle Checkpoints,
the 25th-ranked gene set). FDR q < 1 × 10-30.
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Figure 2 Chronic time point cluster analysis. The top 1000 differentially expressed genes at the chronic time point with 5 distinct clusters.
A. Heat map shows relative expression among all groups. Clusters are color-coded by row sidebars: red (cluster 1), chartreuse (cluster 2), mint green
(cluster 3), blue (cluster 4), and magenta (cluster 5); and dendrogram is left of the color-coded sidebars. Each row corresponds to a gene (gene symbols
are listed to the right of each row) and each column to a sample. The colors are scaled by row; red and blue indicate 2 standard deviations above or
below the mean (white), respectively. At the arbitrary cutoff of 1000 genes, the chronic time point one-way ANOVA FDR q value was < 0.019 and the
p value was < 8.73 × 10-4. B. DAVID analysis of clusters 1 and 3. Gene enrichment is indicated by p values (EASE scores, a modified Fisher exact p value).
C. Box and whisker plots of the mean expression (log2) for Clusters 1 and 3 reflect patterns seen on heat map. *** = p < 0.0001 chronic treatment
group vs. chronic control group by Mann-Whitney test.

Figure 3 Acute to chronic time point Venn diagrams. Venn diagrams depicting the number of genes with significantly increased (left) or
significantly decreased (right) expression vs. the acute group for each chronic group. The sets of differentially expressed genes result from
differential expression analyses for each acute group vs. its corresponding chronic group using the R environment for statistical computing
(version 2.15.1) with a cut off of p < 0.05 as described in Methods.
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Analysis of genes associated with unstable plaque
A recent study identified 22 genes whose expression in
the aortic tissue of ApoE-/- mice was associated with un-
stable plaque [32]. We observed increased expression of
several of these genes in aortic tissue from untreated
ApoE-/- mice fed a normal chow diet, which represents
the natural progression of atherosclerosis (Figure 5 and
Additional file 10: Figure S6); and, in ApoE-/- WD mice,
we observed an even greater increase in expression of
some of these genes. P. gingivalis treatment blunted the
increase in expression of some genes and induced the ex-
pression of others. Treatment with C. pneumoniae pre-
vented the increase in all of the unstable plaque genes
with the exception of Mmp9, which was increased over
time in the C. pneumoniae-treated group but decreased
over time in untreated ApoE-/- mice.

Discussion
In this study, we applied microarray analysis to define
gene signatures in aortic tissues obtained from mice fed a
Western diet (WD) or in mice treated with the oral patho-
gen P. gingivalis (P. gingivalis), or with the pulmonary
pathogen C. pneumoniae (C. pneumoniae). Examination
of gene expression profiles at the chronic time point en-
abled us to identify treatment-specific pro-atherogenic
pathways rather than simply the genes expressed in estab-
lished plaque. Our results in untreated ApoE-/- mice are
consistent with a recent microarray study by Papadodima
et al. [26] that documented changes in gene expression in
aortic tissue of ApoE-/- mice at three time points during
the natural progression of atherosclerosis in the absence
of additional pro-atherogenic stimuli. We identified com-
mon core sets of genes that were either increased or

Figure 4 Acute to chronic time point cluster analysis. The top 1000 differentially expressed genes for acute and chronic time points: the
effect of group, time, and group x time interactions determined by two-way ANOVA are grouped into 5 distinct clusters. A. Heat map depicts
relative expression among all groups and time points. Clusters are color-coded by row sidebars: red (cluster 1), chartreuse (cluster 2), mint green
(cluster 3), blue (cluster 4), and magenta (cluster 5); and dendrogram is left of the color-coded sidebars. Each row corresponds to a gene (gene symbols
are listed to the right of each row) and each column to a sample. The colors are scaled by row; red and blue indicate 2 standard deviations above or
below the mean (white), respectively. At the arbitrary cutoff of 1000 genes, the two-way ANOVA interaction (group:timepoint) FDR q value was < 0.117
and the p value was < 5.52 × 10-3. B. DAVID analysis of clusters 2 and 5. Gene enrichment is indicated by p values (EASE scores, a modified Fisher exact
p value). C. Box and whisker plots of the mean expression (log2) for Clusters 2 and 5 reflect patterns seen on heat map. ***p < 0.0001 vs. acute control;
###p < 0.0001 vs. chronic control; +++p < 0.0001 vs. acute treatment; ++p < 0.001 vs. acute treatment by Mann-Whitney test.
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decreased in response to each of these pro-atherogenic
stimuli.
Contemporary analysis tools including GSEA and

DAVID analysis were then applied. GSEA approach is
more powerful than single gene analysis, which merely
highlights the top up- or downregulated genes and may
overlook effects on specific pathways [29]. Pathway ana-
lysis showed a markedly greater number of gene sets that
were different among the three pro-atherogenic stimuli,
suggesting that underlying vascular inflammation and dys-
function leading to atherosclerosis differ mechanistically
and in the functional pathways leading to atherosclerosis
progression depending upon stimulus. These findings are
significant in that this is the first study that has performed
direct, side-by-side, comparison of genome-wide aortic
gene expression changes in three well-recognized models
of atherosclerosis development.
Treatment with WD, P. gingivalis or C. pneumoniae has

pro-atherogenic effects that include alterations in macro-
phage function, cholesterol homeostasis, and endothelial
dysfunction [13,33]. Signaling through innate immune
Toll-like receptors (TLRs) expressed on immune cells and
the endothelium may be a common link among the three
stimuli; however, notable differences in TLR usage as well
as features unique to each of the two pathogens may ac-
count for the differences in signaling pathways activated
and repressed. TLR1, TLR2, and TLR4 RNA and protein

are expressed at high levels in endothelial cells and macro-
phages in human atherosclerotic plaque biopsies and the
lipid-rich atherosclerotic lesions in the aortic root of mice
[34,35]. A role for TLRs in high-fat-diet-induced athero-
sclerosis in animal models has been shown in studies using
ApoE-/- TLR2-/- and ApoE-/- TLR4-/- mice. Interestingly
specificity in TLR2 and TLR4 signaling by P. gingivalis
and C. pneumoniae has been proposed to define specific
inflammatory pathways unique to each organism [36-43].
P. gingivalis expresses heterogeneous LPS lipid A struc-
tures that weakly activate TLR4 but can also act as a TLR4
antagonist [44,45], resulting in alterations in signaling
through TLR4 that promote low-grade, chronic inflamma-
tion at distant sites including the aorta [46]. C. pneumo-
niae induces its proinflammatory signaling primarily
through TLR2 but also expresses LPS and signals through
TLR4 [47]. The unique feature of C. pneumoniae is that it
gains entry into monocytes as elementary bodies (EBs),
which are infectious but metabolically inert. After entering
macrophages or monocytes, EBs can rapidly differenti-
ate to a replicative form known as reticulate bodies
(RBs), and start bacterial replication [48]. RBs use the
host’s metabolic metabolism and may find a favorable
environment within a lipid-laden plaque to complete
its replication. Infected monocytes may circulate to
distant sites to promote vascular inflammation [49].
C. pneumoniae may increase adherence of macrophages
to endothelial cells through expression of its virulence
factor, HSP 60, which has been shown to promote
monocyte attachment to endothelium, and to promote ex-
travasation to sub-endothelial layer, where it oxidizes LDL
and promotes foam cell formation [50,51], a hallmark of
atherosclerosis.
Most published studies involving animal models of ath-

erosclerosis have used high dietary lipids and cholesterol
(various modifications of Western style diets), and these
studies have formed the basis for consensus around the
mechanisms underlying the development of atheroscler-
osis. As a result, the use of statin drugs, which target chol-
esterol and lipid handling, are the most widely used class
of drugs in the field of cardiovascular medicine. A recent
study in Circulation [3] showed that despite the im-
provement of risk with optimum statin therapy in patients
with cardiovascular disease, many patients demonstrate
atheroma progression and additional cardiovascular
events, suggesting that additional mechanisms are at
play, highlighting the need to identify novel therapeutic
strategies that combat the additional cardiovascular risk.
Recent research implicates vascular inflammation and
endothelial dysfunction as a factor involved in the ini-
tiation, progression, and instability of atherosclerotic pla-
ques and elevations of serum inflammatory biomarkers
consistently associated with the risk of experiencing a car-
diovascular event, providing further evidence for systemic

Figure 5 Genes associated with unstable plaque. Heat map
showing expression of genes associated with unstable plaque
identified in Chen, et al. [32].
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inflammation involvement in atherosclerotic cardiovascu-
lar disease [4].
Given the prevalence of diet-induced obesity and infec-

tion with P. gingivalis and C. pneumoniae in the general
population and the likelihood of co-morbidity of obesity
with chronic or recurring infection with these common
pathogens, these findings suggest that the development of
atherosclerosis in humans is likely more complex and
multifactorial than previously appreciated. Atherosclerotic
plaques undergo both progressive and regressive changes,
which affect their size and stability; regression in lesion
area can increase plaque stability. Plasma cholesterol lower-
ing has been associated with regression, and a recent study
identified PPAR-gamma as a “master regulator” of regres-
sion in early lesions [52]. Our GSEA analysis showed that
C. pneumoniae treatment upregulated the PPAR pathway
while P. gingivalis treatment downregulated this pathway
and thus may indicate a role for C. pneumoniae in regres-
sion and stability of early lesions, while P. gingivalis may
inhibit plaque regression. P. gingivalis decreased path-
ways involved in mitochondrial function, suggesting that
P. gingivalis promotes mitochondrial dysfunction, which
is associated with cardiovascular risk, vascular dysfunction
and plaque development [53]. Western diet group had
significant reduction in tight junction pathways and ex-
pression of genes encoding claudins, proteins involved in
maintenance of cell-cell junctions. This finding is consist-
ent with a recent study that showed that Western diet
promotes atherosclerosis in part via loss of tight junction
control [54]. A surprising finding from the present study
was that immune and inflammatory pathways were mark-
edly upregulated in response to Western diet. It has re-
cently come to light that certain lipids in Western style
diets are either endogenous ligands of TLRs or assist with
pattern recognition of TLRs [55,56]. Consistent with this,
prior studies have shown that TLR2, TLR4, and MyD88
knockout mice on an ApoE-/- background had decreased
atherosclerotic aortic plaque in response to a Western diet
[36,38,39]. A recent microarray study by Hyvarinen et al.,
compared gene expression in adipose tissue following
chronic infection with C. pneumoniae and/or a periodon-
tal pathogen, A. actinomycetemcomitans (Aa) and revealed
significant enrichment in inflammation associated path-
ways by Aa or a combination of Aa and C. pneumoniae
but not by C. pneumoniae alone as compared to a control
group [57].
Of interest was the increased expression of a number

of genes associated with vulnerable plaque previously
identified by Chen et al. [32] in aortic tissues obtained
from mice at the chronic phase compared to tissues ob-
tained at the acute phase. These genes were Bmper, Hdc,
Ifitm1, S100a9, Upp1, Adamts7, Fpr2, Clec4n, Hmox1
and Irg1. Our findings demonstrate that expression of
these genes increases as part of the natural progression

of atherosclerosis in ApoE-/- mice in the absence of an
additional pro-atherogenic stimulus. Importantly, the in-
creased expression of these genes was blunted at the
chronic time point in mice treated with C. pneumoniae.
Expression of Kit was increased in the C. pneumoniae -
treated group compared to the chronic control group. In
addition, P. gingivalis treatment blunted the increase in
expression of Bmper, Hdc, Ifitm1, S100a9, Upp1 and
Hmox1. Expression of Egln3 was decreased in the P. gin-
givalis-treated group compared to the chronic control
group. Expression of Clec4n and Hmox1 was increased
in the Western diet group compared to the chronic con-
trol group. The identification of differences in the effects
of each of the pro-atherogenic stimuli on expression of
important vulnerable plaque genes may result in differ-
ences in the nature and composition of the atheroscler-
otic plaque, which will be explored in future studies.

Limitations of the study
Several limitations of the study should be noted. We could
not simultaneously perform a side-by-side quantification of
the degree of the aortic plaque and the pathological features
assessed by histology induced by the three atherogenic
stimuli. We also could not determine the contribution of
possible alterations in gut microbiota induced by each of
the pro-atherogenic treatments or following antiobiotics
pre-treatment in the P. gingivalis group. We could not
validate our findings with regard to establishing that
the pathways we identified are mechanistically linked to
each pro-atherogenic stimulus at the protein level. We
also acknowledge the limitations of using mouse models
to draw conclusions about human diseases, which are
more complex and multifactorial. Future studies will also
investigate the effects of comorbidity with 2 or more
pro-atherogenic stimuli, which resembles scenarios that
occur clinically.

Conclusions
The present study suggests that P. gingivalis treatment
may promote atherosclerosis by stimulating mitochon-
drial dysfunction and inhibiting the egress of endogen-
ous lipids from the vessel wall, whereas C. pneumoniae
may promote atherosclerosis by enhancing lipid uptake
and metabolism into the vessel wall, and WD may pro-
mote atherosclerosis by activation of inflammatory and
immune pathways that enhance leukocyte adhesion and
endothelial dysfunction.

Methods
Ethics statement
All experiments were carried out in accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and
study protocols were approved by the Boston University
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Institutional Animal Care and Use Committee. All experi-
mental procedures involving pathogenic bacteria were
carried out with approval from the Boston University
Institutional Biosafety Committee.

Mouse randomization and groups
Male ApoE-/- mice on C57BL/6 background (Jackson
Laboratories) of 8 weeks of age were randomly assigned
into a chronic exposure cohort and an acute exposure co-
hort. The chronic exposure cohort consisted of the follow-
ing groups: P. gingivalis treatment (chronic P. gingivalis,
N = 3), C. pneumoniae treatment (chronic C. pneumoniae,
N = 3), WD (chronic WD, N = 3), and Control (N = 3).
The acute exposure cohort consisted of the following
groups: P. gingivalis treatment (acute P. gingivalis, N = 3),
C. pneumoniae treatment (acute C. pneumoniae, N = 3),
and Control (N = 3). Mice were fed a normal chow diet
(Global 2018; Harlan Teklad, Madison, WI) with the
exception of the WD group. Control mice received no
additional treatment after randomization and assign-
ment to groups. Mice in the chronic exposure cohort
were euthanized 9 weeks after the last bacterial treat-
ment or after 9 weeks on WD; this represents a time
point prior to the development of overt aortic plaque
as observed approximately 13 weeks following P. gingiva-
lis, C. pneumoniae, or WD [8,11,12,46,58-64]. Mice in the
acute cohort were euthanized one day after the last bacter-
ial treatment. At the end of each study period, the aortas
were dissected and aortic RNA was isolated and used for
microarray analysis to compare the acute and chronic re-
sponses of the pro-atherogenic stimuli on transcriptional
profiles (For experimental protocol, see Additional file 11:
Figure S7).

Pro-atherogenic treatment
P. gingivalis strain 381 was grown anaerobically on blood
agar plates (Becton Dickinson) and used to seed-inoculate
brain heart infusion broth (pH 7.4; Becton Dickinson)
supplemented with yeast extract (Becton Dickinson),
hemin (10 μg/ml; Sigma), and menadione (1 μg/ml).
CFUs were standardized at an OD of 1 at 660 nm
(equivalent to 1 × 109 CFU/ml) by spectrophotometry
(ThermoSpectronic Genesys20). The protocol for P. gingiva-
lis oral infection of ApoE-/- mice was as previously de-
scribed by our group and characterized for the acceleration
of atherosclerosis progression [8,10,58]. Briefly, mice were
given antibiotics (Sulfatrim; Hi-Tech Parmacal) ad libitum
in the drinking water for 10 days followed by 2-day
antibiotic-free period. Mice were then given one hundred
μl of P. gingivalis (1 × 109 CFU) suspended in vehicle (2%
carboxymethylcellulose in PBS), topically applied to the
buccal surface of the maxillary gingiva 5 times a weeks for
3 weeks [65]. We have previously shown that oral treat-
ment with P. gingivalis using this protocol results in

increased serum levels of P. gingivalis-specific IgG1,
IgG2b, IgG2c and IgG3 [8]. C. pneumoniae strain AO3,
initially isolated from a human atheroma, was provided by
Dr. Charlotte Gaydos (Johns Hopkins University, Balti-
more, MD). Cp were propagated in L929 fibroblasts
grown in RPMI 1640 medium supplemented with 10%
FBS at 35°C in a 5% CO2 environment as described
[66,67]. Following infection of fibroblasts, cells were
harvested and disrupted by glass beads or sonication
(Sonicator 4000, Misonix Sonicators, Newtown, CT)
and Cp separated from cell debris by ultracentrifuga-
tion through 32% Renografin. Bacterial titers were cal-
culated as inclusion forming units (IFU) per milliliter.
Chlamydia stocks were negative for Mycoplasma contam-
ination [66]. ApoE-/- mice were inoculated as previously
described [66] with C. pneumoniae via the intranasal
route under light anesthesia using a ketamine/xylazine
mix (60–100/5–10 mg/kg i.p., respectively). Mice re-
ceived 20 μl bacterial suspensions in phosphate buffered
saline (PBS) containing 2 × 106 IFU gradient purified
Chlamydia. Mice received intranasal infection once a
week for 3 weeks. Others have previously shown that
intranasal treatment with C. pneumoniae using this
protocol results in dissemination of C. pneumoniae
from the lung to aortic plaques as detected by immuno-
histochemistry and PCR [63,64]. The WD ApoE-/- mouse
group received Teklad Adjusted Calorie Diet (42% from
fat) (Harlan Catalog # 88137; 0.2% cholesterol) ad
libitum, a diet that accelerates atherosclerosis in ApoE-/-

mice [59-62].

Dissection of aorta and RNA extraction
Following euthanasia, the thoracic aortic with the three
major branches (innominate, left common carotid, left
subclavian arteries) was removed for RNA extraction as
follows. On ice, the thoracic aorta was dissected from
extraneous tissue. Immediately following dissection, the
aorta was placed in a cryotube and stored at -80°C for
RNA extraction and analysis. Total aortic RNA was iso-
lated using TriZol extraction reagent (Invitrogen) follow-
ing homogenization using TissueLyser II in pre-cooled
blocks (Qiagen, Valencia, CA). RNA was further purified
using the RNAeasy kit (Qiagen, Valencia, CA). Sample in-
tegrity was verified using RNA 6000 Pico Assay RNA chips
run in Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA). Total RNA (5 ng) was reverse-transcribed
using Ovation Pico WTA System V2 (Nugen, San Carlos,
California). The obtained SPIA-amplified cDNA was
purified using Agencourt RNA clean XP Purification
Beads and fragmented (5 ng) and labeled with biotin
using the Encore Biotin Module (NuGEN, San Carlos,
California). SPIA-amplified cDNA and fragmented cDNA
quality controls were performed by running an mRNA
Pico assay in the Agilent 2100 Bioanalyzer.
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Microarray analysis
Labeled, fragmented DNA was hybridized to a Mouse
Gene 1.0 ST Array (Affymetrix, Santa Clara, CA) for
18 hours in a GeneChip Hybridization oven 640 at 45°C
with rotation (60 rpm). The hybridized samples were
washed and stained using an Affymetrix fluidics station
450. After staining, microarrays were immediately scanned
using an Affymetrix GeneArray Scanner 3000 7G Plus.
Raw Affymetrix CEL files were normalized to produce
log2-transformed, Entrez Gene-specific expression values
using the implementation of the Robust Multiarray Average
(RMA) in the affy package in the Bioconductor software
suite (version 2.12) and an Entrez Gene-specific probeset
mapping from the Molecular and Behavioral Neuroscience
Institute (Brainarray) at the University of Michigan
(version 14.0.0). Array quality was assessed by com-
puting Relative Log Expression (RLE) and Normalized
Unscaled Standard Error (NUSE) using the affyPLM
Bioconductor package (version 1.34.0); all arrays had
median RLE and NUSE values less than 0.1 and 1.05,
respectively, indicating that they were of sufficient
quality. Principal Component Analysis (PCA) was per-
formed using all genes after z-normalizing expression
values to a mean of zero and a standard deviation of one
across all samples.
Differential gene expression between each experimental

treatment group and the control group within each time
point (acute time point: P. gingivalis or C. pneumoniae vs.
control; chronic time point: P. gingivalis or C. pneumoniae
or WD vs. control) was assessed using the empirical
Bayesian (moderated) t test from the limma package (version
3.14.4). Differential gene expression between chronic and
acute time points within each applicable treatment group
(control, P. gingivalis and C. pneumoniae) was assessed as
above. Analyses of variance were performed using the f.
pvalue function in the sva package (version 3.4.0). Correc-
tion for multiple hypothesis testing was accomplished
using the Benjamini-Hochberg false discovery rate (FDR)
[68,69]. Human homologs of mouse genes were identified
using HomoloGene (version 65) [PubMed ID 23193264].
All microarray analyses were performed using the R envir-
onment for statistical computing (version 2.15.1).

Taqman validation
Ten genes were selected for validation of microarray
expression levels using Taqman Inventoried Assays
and Real Time RT-PCR. RNA isolated from the same
aortic tissue used for the microarray was converted to
cDNA using the High Capacity cDNA Synthesis Kit
(Life Technologies). Real-time relative PCR was performed
on cDNA using Taqman-validated exon-spanning as-
says and Gene Expression Master Mix (Invitrogen) on
a StepOne System and software (Life Technologies
Applied Biosystems). Genes chosen for validation were

those with expression levels that were representative of
various patterns of expression (increased expression, de-
creased expression, no change in expression) in each of the
treatment groups relative to control. Validated genes and
their assay number were peroxisome proliferator-activated
receptor gamma (PPAR-gamma, Mm01184322_m1), CD5
molecule-like (CD5l, Mm00437567_m1), lipocalin 2
(Lcn2, Mm01324470_m1), hedgehog interacting protein
(Hhip, Mm00469580_m1), C-type lectin domain fam-
ily 3, member A (Clec3a, Mm01240105_m1), chemokine
(C-X-C motif) ligand 13 (Cxcl13, Mm00444533_m1), G-
protein signaling modulator 2 (Gpsm2, Mm00512842_m1),
uncoupling protein 1 (Ucp1, Mm01244861_m1), creatine
kinase, mitochondrial 2 (Ckmt2, Mm01285553_m1), Toll-
like receptor 13 (Tlr13, Mm01233818_m1). Gene expres-
sion was normalized to expression of beta-actin for each
sample and expressed as fold change to a control sample.
Expression levels of beta-actin were similar in all samples
(ANOVA p = 0.65, NS).

Gene set enrichment analysis (GSEA)
GSEA was used to identify biological terms, pathways,
and processes that were overrepresented among the genes
that were up- or down-regulated with respect to various
pairwise comparisons. A list of all Entrez Gene identifiers
(Entrez Gene IDs) interrogated by the array was ranked
according to the moderated t statistic, and this list was
then used to perform a pre-ranked GSEA analysis using
the publicly available Molecular Signatures Database
(MSigDB, version 3.0, http://www.broadinstitute.org/gsea/
msigdb/). Gene sets corresponding to 1625 biologically de-
fined gene sets representing pathways, locations, or func-
tions were derived from the following public databases:
Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene
Ontology (GO), Biocarta, and Reactome [29-31,70].
To control for multiple comparisons in GSEA analysis,
Benjamini-Hochberg False Discovery Rate (FDR) correc-
tion (FDR q) was applied [68,69].

DAVID annotation
The Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.7 gene annotation tool was used to
understand biological meaning for gene lists identified by
clusters and GSEA [71,72].

Statistical analysis
Statistical analyses for non-microarray data (Taqman val-
idation, box and whisker plots, and analysis of vulnerable
plaque genes) were performed using GraphPad Prism 5.0
software. Comparisons among groups were performed
using ANOVA followed by a 2-tailed unpaired Student’s
t-test or Mann-Whitney U test.
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Availability of supporting data
The data set supporting the results of this article [73] is
available in the Gene Expression Omnibus (GEO) re-
pository, the Series record ID is GSE60086 and the pri-
vate link is: http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?token=mvchagcyhfgtrit&acc=GSE60086.

Additional files

Additional file 1: Figure S1. Principal Component Analysis (PCA).
Graph showing variance in global expression in each individual sample
array in relation to all 21 arrays. The first principal component (PC1, x axis)
had a variance of 25% and the second principal component (PC2, y axis)
had a variance of 19%. Note that the 3 replicates in each group cluster
near each other. Acute control group: light grey 1, 2, 3; chronic control
group: dark grey 1, 2, 3; acute P. gingivalis-treated group: light orange p1,
p2, p3; chronic P. gingivalis-treated group: dark orange P1, P2, P3;
acute C. pneumoniae-treated group: light green c1, c2, c3; chronic
C. pneumoniae-treated group: dark green C1, C2, C3; WD group:
purple W1, W2, W3. The group with the largest variance among the three
replicates is the acute C. pneumoniae-treated group.

Additional file 2: Table S1. Comparison of microarray and RT-PCR
expression results for 10 genes. Comparison of mean fold changes in
gene expression obtained by microarray analysis and real time RT-PCR
for 10 genes at the chronic time point. P. gingivalis = P. gingivalis-treated
group; C. pneumoniae = C. pneumoniae-treated group.

Additional file 3: Figure S2. Taqman validation of 10 genes. One-way
ANOVA p values across all groups: Gpsm2 p=0.088; CD5l p=0.025; Hhip
p=0.0003; Tlr13 p=0.047; Clec3a p=0.166; PPAR-gamma p<0.0001; Lcn2
p<0.0001; Ucp1 p=0.014; Cxcl13 p=0.097; Ckmt2 p=0.018. y-axis = relative
expression in arbitrary units. The Taqman analyses were performed on
individual samples and each dot on the graphs represents the gene
expression in the aorta from one mouse.

Additional file 4: Table S2. Gene Set Enrichment Analysis. Positive
enrichment: chronic P. gingivalis-treated group vs. chronic control group.
Table S3. Gene Set Enrichment Analysis. Negative enrichment: chronic
P. gingivali-streated group vs. chronic control group. Table S4. Gene Set
Enrichment Analysis. Positive enrichment: chronic C. pneumoniae-treated
group vs. chronic control group. Table S5. Gene Set Enrichment Analysis.
Negative enrichment: chronic C. pneumoniae-treated group vs. chronic
control group. Table S6. Gene Set Enrichment Analysis. Positive enrichment:
Western diet group vs. chronic control group. Table S7. Gene Set
Enrichment Analysis. Negative enrichment: Western diet group vs.
chronic control group.

Additional file 5: Figure S3. Chronic time point cluster analysis.
A. DAVID analysis of chronic time point clusters 2, 4, and 5. Gene
enrichment is indicated by p values (EASE scores, a modified Fisher exact
p value). B. Box and whisker plots of the mean expression (log2) for Clusters
2, 4, and 5 reflect patterns seen on heat map. *p < 0.003 chronic treatment
group vs. chronic control group; ***p < 0.0001 chronic treatment group vs.
chronic control group by Mann-Whitney test.

Additional file 6: GeneLists. Each excel sheet within this file contains
gene lists corresponding to the named figure. In addition, there are two
sheets that list the top 500 differentially-expressed genes: chronic time
point, acute vs. chronic time point.

Additional file 7: Figure S4. Acute to chronic time point cluster
analysis. A. DAVID analysis of acute to chronic time point clusters 1, 3,
and 4. Gene enrichment is indicated by p values (EASE scores, a
modified Fisher exact p value). B. Box and whisker plots of the mean
expression (log2) for Clusters 1, 3, and 4 reflect patterns seen on heat
map. *** = p < 0.0001 vs. acute control; ### = p < 0.0001 vs. chronic
control; +++ = p < 0.0001 vs. acute treatment by Mann-Whitney test.

Additional file 8: Figure S5-1. Acute time point cluster analysis. The
top 1000 differentially expressed genes at the acute time point with 5
distinct clusters. A. Heat map shows relative expression among all groups.

Clusters are color-coded by row sidebars: red (cluster 1), chartreuse
(cluster 2), mint green (cluster 3), blue (cluster 4), and magenta (cluster 5);
and dendrogram is left of the color-coded sidebars. Each row corresponds to
a gene (gene symbols are listed to the right of each row) and each column
to a sample. The colors are scaled by row; red and blue indicate 2 standard
deviations above or below the mean (white), respectively. At the arbitrary
cutoff of 1000 genes, the acute time point one-way ANOVA p value was <
1.5 × 10-2. B. DAVID analysis of clusters 1 and 5. Gene enrichment is
indicated by p values (EASE scores, a modified Fisher exact p value).
C. Box and whisker plots of the mean expression (log2) for Clusters 1 and 5
reflect patterns seen on heat map. ***p < 0.0001 acute treatment group vs.
acute control group; +++ p < 0.0001 vs. P. gingivalis by Mann-Whitney test.

Additional file 9: Figure S5-2. Acute time point cluster analysis. A. DAVID
analysis of acute time point clusters 2, 3, and 4. Gene enrichment is indicated
by p values (EASE scores, a modified Fisher exact p value) B. Box and whisker
plots of the mean expression (log2) for Clusters 2, 3, and 4 reflect patterns
seen on heat map. ***p < 0.0001 acute treatment group vs. acute control
group; +++p < 0.0001 vs. P. gingivalis by Mann-Whitney test.

Additional file 10: Figure S6. Genes associated with unstable plaque.
Individual expression values for each sample for genes associated with
unstable plaque as identified by Chen et al. [32]. Acute control group vs.
chronic control group: *p < 0.05; **p < 0.01, p < 0.001 by Student’s t-test.
Chronic control group vs. chronic treatment group: #p < 0.05, ##p < 0.01,
###p < 0.001 by Student’s t-test.

Additional file 11: Figure S7. Experimental protocol.
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