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Infection of ectocervical tissue 
and universal targeting of T-cells mediated 
by primary non-macrophage-tropic and highly 
macrophage-tropic HIV-1 R5 envelopes
Paul J Peters1*, Maria Paz Gonzalez‑Perez1, Thomas Musich1, Tiffany A Moore Simas2, Rongheng Lin3, 
Abraham N Morse2, Robin J Shattock4, Cynthia A Derdeyn5 and Paul R Clapham1

Abstract 

Background: HIV‑1 variants carrying non‑macrophage‑tropic HIV‑1 R5 envelopes (Envs) are predominantly trans‑
mitted and persist in immune tissue even in AIDS patients who have highly macrophage‑tropic variants in the brain. 
Non‑macrophage‑tropic R5 Envs require high levels of CD4 for infection contrasting with macrophage‑tropic Envs, 
which can efficiently mediate infection of cells via low CD4. Here, we investigated whether non‑macrophage‑tropic 
R5 Envs from the acute stage of infection (including transmitted/founder Env) mediated more efficient infection of 
ectocervical explant cultures compared to non‑macrophage‑tropic and highly macrophage‑tropic R5 Envs from late 
disease.

Results: We used Env+ pseudovirions that carried a GFP reporter gene to measure infection of the first cells targeted 
in ectocervical explant cultures. In straight titrations of Env+ pseudovirus supernatants, mac‑tropic R5 Envs from late 
disease mediated slightly higher infectivities for ectocervical explants although this was not significant. Surprisingly, 
explant infection by several T/F/acute Envs was lower than for Envs from late disease. However, when infectivity for 
explants was corrected to account for differences in the overall infectivity of each Env+ pseudovirus (measured on 
highly permissive HeLa TZM‑bl cells), non‑mac‑tropic early and late disease Env+ pseudoviruses mediated signifi‑
cantly higher infection. This observation suggests that cervical tissue preferentially supports non‑mac‑tropic Env+ 
viruses compared to mac‑tropic viruses. Finally, we show that T‑cells were the main targets for infection regardless of 
whether explants were stimulated with T‑cell or monocyte/macrophage cytokines. There was no evidence of mac‑
rophage infection even for pseudovirions carrying highly mac‑tropic Envs from brain tissue or for the highly mac‑
tropic, laboratory strain, BaL, which targeted T‑cells in the explant tissue.

Conclusions: Our data support ectocervical tissue as a favorable environment for non‑mac‑tropic HIV‑1 R5 variants 
and emphasize the role of T‑cells as initial targets for infection even for highly mac‑tropic variants.
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Background
HIV-1 R5 strains that use CCR5 as a coreceptor are 
predominantly transmitted [1] overcoming a tight bot-
tleneck during heterosexual transmission. Frequently, 
only a single virus variant (often a minor variant in the 
donor) establishes infection in the new host [2]. HIV-1 
R5 viruses infect both T-cells and macrophages and have 
been described as macrophage-tropic (M-tropic) [3]. 
However, many studies show that HIV-1 R5 viruses vary 
extensively in their ability to infect macrophages [4–12].

HIV-1 Env determinants previously identified to 
increase or modulate mac-tropism lie within or proxi-
mal to the CD4bs [13–15] and in the V1V2 and V3 loops 
[13, 16, 17]. Residues at these sites can enhance Env: CD4 
interactions by several different mechanisms including (1) 
a direct increase in gp120:CD4 affinity [14, 15], (2) better 
access to the CD4 binding site (CD4bs) for CD4 [10] and 
(3) by enhancing the efficiency with which the Env trimer 
undergoes conformational changes induced by CD4 [18]. 
The ability of mac-tropic R5 Envs to efficiently interact 
with CD4 and trigger entry means that such Envs are 
more functional for entry compared to non-mac-tropic 
R5 Envs. The scarcity of mac-tropic R5 Envs in immune 
tissue and the periphery generally [5, 11, 19], strongly sug-
gests that these highly functional Envs are selected against 
in vivo. It is possible that the increased exposure of the 
CD4bs on such Envs renders them sensitive to neutraliz-
ing antibodies, in immune tissue, although other mecha-
nisms may also be involved [18].

The sequences of transmitted viruses have been 
deduced from multiple viral sequences that were PCR 
amplified from acute stage plasma of newly infected 
women, heterosexually and homosexually infected males 
and neonates [20–22]. Several studies of HIV-1 transmis-
sion events have investigated the properties of the enve-
lope glycoproteins (Envs) of these transmitted/founder 
(T/F) viruses, while additional studies exploited HIV-1 
envs derived from early, acute stage plasma by PCR 
[23–26]. These reports confirm that HIV-1 R5 viruses are 
predominantly transmitted and indicate that T/F Envs 
require high levels of CD4 for infection and do not con-
fer efficient infection of macrophages [21, 22, 25, 27, 28]. 
Evidence from HIV-1 infection of ectocervical and other 
mucosal tissue explants [29–31] as well as SIV infection 
of macaques [32–34] demonstrate that initial cells tar-
geted in mucosa are CD4+ T-cells consistent with trans-
mission of non-mac-tropic R5 viruses.

Prior studies of cervical explant infections have shown 
no advantage for transmitted/founder/acute viruses over 
those from later in disease [31, 35]. However, these ear-
lier studies were limited to small panels of viruses. In 
addition, they contained few primary R5 Envs that were 

highly mac-tropic and did not reveal whether preferential 
transmission of non-mac-tropic R5 variants is due to a 
cervical tissue block to infection by mac-tropic variants. 
It is therefore currently unclear whether mac-tropic R5 
Envs can initiate infection of cervical tissue and whether 
they could preferentially target macrophages. The isolate, 
BaL has frequently been used as a prototype mac-tropic 
HIV-1 R5 isolate [31, 35]. However, this strain has been 
passaged through macrophages in vitro and is unlikely 
to be representative of primary mac-tropic envs derived 
directly from patient tissue.

Here, we compared a large panel (35 Envs) of HIV-1 
T/F, acute and late stage non-mac-tropic R5 Envs with 
highly mac-tropic R5 Envs from late disease for infection of 
ectocervical explant cultures. The inclusion of a strong set 
of highly mac-tropic Envs thus allowed us to assess whether 
a transmission bottleneck for mac-tropic R5 HIV-1 acts at 
the level of cervical tissue infection and to assess whether 
such Envs confer infection of tissue macrophages in situ. 
We used Env+ pseudoviruses carrying GFP reporter genes 
to identify the initial cells targeted following infection of 
explants. In straight titrations of Env+ pseudoviruses, mac-
tropic Envs mediated slightly higher infectivity for cervical 
explants, although this was not significant. However, when 
infectivity for explants was corrected to account for dif-
ferences in the overall infectivity of Env+ pseudoviruses 
(measured on the highly permissive HeLa TZM-bl cells), 
non-mac-tropic early and late disease Env+ pseudoviruses 
mediated significantly more efficient infection. This obser-
vation suggests that cervical tissue preferentially supports 
non-mac-tropic Env+ viruses compared to mac-tropic 
viruses. Finally, we also confirm that T-cells are the univer-
sal initial target for infection in ectocervical tissue even for 
highly mac-tropic R5 Env+ viruses.

Results
T/F/acute Envs confer low levels of infection on primary 
macrophages
We first confirmed the levels of macrophage infectiv-
ity mediated by each of the different Envs to be studied 
here. Envs were derived from molecular clones of trans-
mitted/founder (T/F) and acute stage envs, as well as late 
disease stage macrophage-tropic and non-macrophage-
tropic envelopes (Table  1). We measured their capacity 
to confer infection of macrophages using GFP reporter 
pseudovirions (Figure  1). We first plotted infectivity as 
focus-forming units (FFUs) (GFP+ macrophages) to 
show the maximum infection for each Env+ pseudovi-
rus (Figure  1a). However, to correct for different levels 
of Env+ pseudovirus infectivity (as revealed by titration 
on highly permissive TZM-bl cells), we also plotted 
infectivity for macrophages as a percent of TZM-bl 
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infectivity (Figure  1b). As we reported previously [4, 5, 
36, 37], pseudovirions carrying mac-tropic R5 Envs con-
ferred significantly higher levels of macrophage infection 
(thousands of fold higher) compared to non-mac-tropic 
R5 Envs and most T/F and acute Envs. This is consistent 
with CD4+ T-cells (that express high amounts of CD4) 
being the major targets for infection by non-mac-tropic 
T/F viruses during transmission.

Infection of ectocervical explant cultures using Env+ 
pseudovirions carrying a GFP reporter gene
We next evaluated the ability of Env+ pseudovirions to 
confer infection of primary ectocervical explant cultures 
(Figure 2). Infections were done on five replicates of each 
cervical tissue sample per donor and for at least five 
donors for each Env+ pseudovirion. There was a low level 
of autofluorescence in the explants and no fluorescence 

Table 1 HIV-1 env clones used to prepare GFP reporter Env+ pseudovirions

env Clade Full name Origin References

Transmitted/founder (T/F)

 3T B p1054.TC4.1499 Plasma [20]

 6T B p63358.p3.4013 Plasma [20]

 15T B p700010040.C9.4520 Plasma [20]

 19T B pPRB958_06.TB1.4305 Plasma [20]

 R463F A1 R463FPL16MAR07EnvE44 Plasma [49]

 R880F A1 R880FPL12JAN07EnvA6 Plasma [49]

 R66M A/C R66MPL7MAR06.3A9Env Plasma Unpublished

 Z1792M C Z1792MPL18DEC07.3G7Env2 Plasma Unpublished

Acute stage

 Z185F C Z185FPB24AUG02ENV3.1 Blood [50, 51]

 Z205F C Z205FPB27MAR03ENV1.1 Blood [50–52]

 Z201M C Z201MPL7FEB03ENV2.1 Plasma [24]

 Z221M C Z221MPL7MAR03ENV2.1 Plasma [24, 50]

 Z153M C Z153MPL13MAR02ENV5.1 Plasma [24, 50]

Macrophage tropic

 BaL B BaL.26 Lung [53]

 JRFL B Brain [6]

 NA20 B59 B Brain [5]

 NA420 B33 B Brain [5]

 7766 FL2 B 7766 FL19‑56‑66 Brain [19]

 10017 FL1 B 10017 FL9‑1‑2 Brain [19]

 6568 FL1 B 6568 FL11‑1‑249 Brain [19]

 CA110 OC1 B CA110 OC58‑11‑57 Brain [19]

 CA110 SP1 B CA110 SP52‑13‑34 Spleen [19]

 E21 B37‑6 B Brain [40]

 E21 B100‑1 B Brain [40]

Non‑macrophage tropic

 JRCSF B CSF [6]

 NA20 LN8 B Lymph Node [5]

 NA420 LN40 B NA420 LN40/B33 Lymph Node [5]

 7766 SP1 B 7766 SP13‑33‑41 Spleen [19]

 10017 SP2 B 10017 SP10‑9‑65 Spleen [19]

 6568 SP1 B 6568 SP6‑11‑9 Spleen [19]

 CA110 SP2 B CA110 SP53‑23‑131 Spleen [19]

 CA110 SP3 B CA110 SP53‑6‑122 Spleen [19]

 E21 LN58‑3 B Lymph Node [40]

 KM21 BL1‑45 G Blood [5]

 KM21 S1‑20 G Semen [5]
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was present in the virus added. However, infected GFP+ 
cells became clearly visible after 4–5 days culture (Addi-
tional file 1: Figure S1) and were counted by microscopy 
on day 7 following infection (Figure 2a). Most infections 
were carried out in the presence of PHA and IL-2 stimu-
lation, although stimulation with anti-CD3, anti-CD28 
mabs resulted in similar levels of infection (not shown). 
In contrast, infection without stimulation resulted in 
infection on occasion, was mainly for BaL Env+ viruses 
and was at lower levels (Figure 2b). Infections in the pres-
ence of GM-CSF to support macrophage differentiation 
and activation also resulted in infection only on occa-
sion. Similarly, infections in the presence of GM-CSF and 
IL-4 to support dendritic cell differentiation and mainte-
nance also resulted in low or no infection. Infection with 
stimulation by GM-CSF or GM-CSF plus IL-4 was mainly 
with BaL+ viruses, and at similar levels to that observed 
without stimulation. Infection of PHA/IL-2 stimulated 
explants by BaL and non-mac-tropic R5 Env, LN40, was 

blocked by prior treatment with maraviroc (Figure  2c) 
verifying a CCR5-dependent route for infection. BaL and 
LN40 infectivity of cervical tissue were also blocked by 
the NNRTI nevirapine, a post-entry inhibitor (Figure 2c).

We evaluated the maximum infectivity mediated by 
each Env by directly titrating each Env+ pseudovirion 
preparation on explants and estimating their infectiv-
ity titers by counting infected GFP+ cells. Env+ pseu-
dovirions (Table  1) were titrated on ectocervical tissue 
explants in groups of up to 23 in parallel with standards, 
JR-FL, JR-CSF and BaL Env+ pseudovirions. The highly 
mac-tropic BaL Env consistently mediated the highest 
infectivity for PHA/IL-2 stimulated explants. We found 
variable levels of infection of ectocervical explants within 
all three groups of Envs, T/F/acute, late disease stage 
mac-tropic and late disease non-mac-tropic (Figure  3a). 
Overall, there was no statistical difference in the ectocer-
vical explant infection between mac-tropic and non-mac-
tropic R5 Envs from late infection, or T/F/acute Envs. 
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Figure 1 Macrophage infectivity for Envs selected for cervical explant studies. a Infectivity for macrophages (FFU/mL) for Env+ pseudoviruses (left 
panel). Mac‑tropic Envs mediated significantly higher levels of macrophage infectivity compared to T/F/acute and late stage non‑mac‑tropic Envs (p 
values = <0.0001) right panel. b Macrophage infection plotted as a percent of TZM‑bl infectivity (left panel). Correction of Env+ pseudovirus infectiv‑
ity for different levels of infectivity on TZM‑bl cells confirms that mac‑tropic Envs mediated significantly higher levels of macrophage infectivity 
compared to T/F/acute and late stage non‑mac‑tropic Envs (p values = <0.0001) right panel. Left panel in a and b show means and standard errors 
from infectivities measured on macrophages derived from at least three donors, right panels show geometric means with 95% confidence intervals. 
p values were calculated using unpaired, two‑tailed t tests in Prism 6.0f.
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However, surprisingly, the geometric mean of infection 
for T/F/acute Envs was the lowest.

In a second analysis, we normalized ectocervical 
explant infectivity titers to their titers measured on the 
highly permissive HeLa TZM-bl cell line to correct for 
variation in overall Env+ pseudovirus infectivity. All 

Env+ pseudoviruses had respectable titers on TZM-bl 
cells, although some variation was noted. For example, 
we previously reported that mac-tropic R5 Envs generally 
mediated higher levels of infectivity for all CD4+ cells 
compared to non-mac-tropic Envs [37], including HeLa 
TZM-bl cells, although this was much more marginal 

Figure 2 GFP reporter virus infection of ectocervical tissue explants. a Infected GFP+ cells in explant cultures. Infected, GFP+ cells are readily 
observed and easily distinguished from low‑level auto‑fluorescence of the tissue. Note some are GFP+ infected emigrant cells. b BaL and NA420 
LN40 infection of explants without stimulation or in the presence of PHA/IL‑2, GM‑CSF, or GM‑CSF and IL‑4. Data are averaged from 2 or 3 replicate 
explants. c BaL and NA420 LN40 infection was efficiently inhibited following maraviroc blockade of CCR5 and by the post‑entry, NNRTI inhibitor, 
nevirapine. Data are averaged from at least two donors with five replicate explants per donor.
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compared to primary macrophages. As discussed in the 
Background section, the ability of mac-tropic Envs to 
bind CD4 efficiently and use low levels of CD4 for infec-
tion indicates that these Envs are probably more func-
tional during entry compared to non-mac-tropic Envs.

When we plotted ectocervical infectivity titers cor-
rected for TZM-bl infectivity, we found that non-mac-
tropic Envs (both T/F/acute and late disease) mediated 
significantly higher explant infection than mac-tropic 
Envs (Figure 3b). This analysis suggests that cervical tis-
sue preferentially supports infection mediated by non-
mac-tropic Envs. This observation is intriguing. However, 
it should be emphasized that non-mac-tropic R5 Envs 
did not confer higher levels of infection of explants over-
all (Figure 3a). Still, these observations suggest that cer-
vical tissue provides an environment that is favorable 
for HIV-1 carrying non-mac-tropic Envs (including T/F 
Envs) during transmission.

Identification of the infected GFP+ cells
We used an immunomagnetic selection to separate 
GFP+ infected cells from explant cultures into T-cell or 

monocyte/macrophage fractions as described in “Meth-
ods”. We included the cells present in collagenase digested 
explant cell suspensions as well as emigrant cells that had 
migrated out of the explant. We focused on infections using 
pseudoviruses that carried highly mac-tropic Envs to pro-
vide the best chance of detecting infection of cells other 
than T-cells. Using this approach, we clearly demonstrated 
that T-cells were the main cell type infected in PHA/IL-2 
stimulated ectocervical explant cultures (Figure  4). Posi-
tive selection of T-cells pulled out the vast majority of 
GFP+ cells from explants infected with lab-adapted mac-
tropic BaL or primary mac-tropic R5 Envs 7766 FL2, 6568 
FL1, 10017 FL1, CA110 OC1 and CA110 SP1 (Figure 4). A 
minority of GFP+ cells was detected in the unbound frac-
tion and it is unclear what these cells are. However, since 
very few GFP+ cells were detected in monocyte/mac-
rophage-enriched fractions (Figure  4b), they are unlikely 
to be macrophages and are most likely infected T-cells that 
have leaked through the positive selection strategy. In some 
experiments, we investigated only the GFP+ emigrant cells 
from PHA/IL-2 stimulated explants and these cells were 
also predominantly T-cells (Additional file 2: Figure S2).
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Figure 3 Ectocervical explant infectivity. a Ectocervical explant infection (FFU/mL) is shown for all Env+ pseudoviruses (left panel). No significant 
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For most experiments, explants were cultured in the 
presence of PHA and IL-2, which is likely to greatly 
increase the numbers of target T-cells as well as 

enhance their susceptibility. However, we also infected 
explants that were stimulated with GM-CSF and cul-
tured in the presence of human plasma to support 
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macrophage differentiation and activation. In these 
experiments, infectivity was low with only BaL Env+ 
pseudoviruses mediating significant infection. Immu-
nomagnetic separation of explant cells showed that 
T-cells were the predominant cell type infected in these 
cultures (Figure 4c, d).

Discussion
Here, we investigated the capacity of HIV-1 R5 Envs to 
confer infection of ectocervical explant tissue. We used 
Env+ pseudoviruses to specifically focus on the first cells 
infected. We show that a range of HIV-1 Envs designated 
as T/F/acute or late stage non-mac-tropic and mac-
tropic R5 Envs all mediated infection, although the extent 
of infection varied. Although ectocervical mucosa have 
been shown to contain abundant macrophages, den-
dritic cells and T-cells [38], we confirm that T-cells are 
the major target for HIV-1 infection in cervical tissue [30, 
31], even for mac-tropic Envs.

We took two approaches to assess the infectivity of 
mac-tropic and non-mac-tropic R5 Env+ pseudovi-
ruses. First, we titrated different Env+ pseudoviruses on 
explants to compare the maximum infectivity mediated 
by each Env. This approach showed that mac-tropic Envs 
mediated the highest average infectivity although this 
was not significant (Figure 3a).

In a second approach, we standardized our ectocer-
vical infectivity data by plotting them as percentages 
of their titers on the highly permissive HeLa TZM-bl 
cell line as we previously reported [4, 5, 37]. This latter 
approach corrects for variation in the amount of infec-
tious virus produced by 293T cells. For example, while 
all Env+ pseudoviruses mediated respectable infectiv-
ity titers on HeLa TZM-bl cells, some of the non-mac-
tropic Envs mediated lower levels of infectivity for these 
cells [5, 37]. Plotting ectocervical infectivity as a percent 
of TZM-bl infectivity showed that many non-mac-tropic 
Envs were more efficient for explant infection compared 
to mac-tropic Envs i.e. they required less input of virus 
infectivity (measured on TZM-bl cells) to mediate the 
same level of explant infection as mac-tropic Envs (Fig-
ure 3b). Although this observation is interesting, it does 
not override the higher maximal infectivities mediated 
by mac-tropic Env+ viruses (Figure  3a) since Envs that 
confer less infectious virions in vitro are also likely to 
produce less infectious virions in vivo. Nevertheless, this 
result does suggest that cervical tissue provides preferen-
tial support for non-mac-tropic Env+ viruses.

We show that cervical tissue explants are relatively 
insensitive to infection and usually require stimulation 
before infection can be detected. This is not surpris-
ing when considering the inefficiency of male-to-female 
HIV transmission [39]. Infection of cervical tissue in 

the absence of stimulation was only observed occasion-
ally. We suspect that T-cells in these (permissive) tissues 
may already be activated, but did not measure that. We 
compared other stimulation protocols to activate mac-
rophages and DCs, in addition to T-cells. However, only 
T-cell stimulation resulted in consistent infection. Our 
data supports the idea that T-cell stimulation (e.g. caused 
by inflammation resulting from other STD infections) 
in the female genital tract, would significantly increase 
the likelihood of HIV transmission. However, they also 
suggest that such inflammation may not increase the 
susceptibility of other potential target cells including 
macrophages and DCs.

Our study is the first that has investigated a large num-
ber of primary R5 Envs for infection of cervical tissue 
including a number that are highly mac-tropic. Highly 
mac-tropic R5 Envs have been detected in semen and 
will thus have the opportunity for mucosal transmis-
sion [36, 40]. In addition, the NA20 B59 Env and other 
primary R5 Envs have previously been shown to mediate 
infection and replication in macrophages derived from 
cervical tissue [41], indicating such cells are permissive. 
All the highly mac-tropic Envs conferred infection of 
cervical explants. However, infection was restricted to 
T-cells with no evidence of macrophage infection by the 
highly mac-tropic BaL or by primary R5 Envs, even when 
conditions favored macrophages. The lack of observed 
macrophage infection could be due to the low overall 
sensitivity of the cervical tissue infectivity system. How-
ever, we cannot rule out the presence of a putative intrin-
sic block for infection of cervical macrophages in situ. For 
example, an Env dependent post-entry restriction in cer-
vical macrophages has been described [42]. Also, innate 
immune activation of cervical macrophages may prevent 
HIV infection [43]. This could allow entry of HIV pseu-
dovirions into cervical macrophages but prevent produc-
tion of the LTR-dependent GFP reporter. Regardless, our 
data show emphatically that there is no selective block to 
highly mac-tropic R5 viruses carrying primary Envs for 
infection of cervical tissue.

Our study focused on cell-free virus infection of 
ectocervical tissue and did not address the possibility 
that HIV-1-infected cells present in semen may mediate 
infection of target cells in the vagina or cervix. Nor did 
we investigate whether macrophages became infected 
following the spread of infectivity by replication compe-
tent viruses. Both of these are possibilities and require 
further study.

Our study did not reveal the roles of myeloid DCs or 
trans-infection in explant infection. When purified PHA/
IL-2 stimulated CD4+ T-cells are infected with cell free 
GFP reporter viruses in vitro, infected GFP+ cells are 
fully visible within 2  days after infection. Here, GFP+ 
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T-cells were only apparent in explants after 4–5 days fol-
lowing infection. It is tempting to speculate that the delay 
involves sequestration by DCs and their interactions with 
T-cells. In support of this, Shen et al. [44] reported that 
DCs in vaginal and ectocervical mononuclear cells were 
the first to take up GFP-tagged virions. However, we have 
not yet been able to confirm a role for DCs in our assays.

Conclusions
In summary, our data show that R5 Envs that vary exten-
sively in tropism mediate similar levels of ectocervical 
explant infection and universally target T-cells. There is 
no selective barrier for highly mac-tropic R5 viruses even 
though T-cells rather than macrophages are targeted. 
However, our data suggest that cervical tissue preferen-
tially supports infection mediated by non-mac-tropic R5 
Envs generally, including T/F and acute stage R5 Envs as 
well as those from late disease.

Methods
Viruses
We selected a panel of HIV-1 R5 envs that were derived 
from transmitted/founder (T/F) and acute stage viruses 
and included macrophage-tropic and non-macrophage-
tropic R5 envs from AIDS patients in late disease 
(Table  1). Env or rev-env sequences were cloned into 
pSVIIIenv or pcDNA™ 3.1D/V5-His-TOPO® (Invitro-
gen Inc.) respectively. Pseudoviruses were prepared by 
cotransfection of 293T cells with an Env+ vector, env-
minus pNL4.3 and a GFP reporter vector, pHIVec2/GFP 
[45] at a ratio of 1:1:1.5. The cell supernatant was changed 
8–18  h post-transfection (4% FBS DMEM). Pseudoviri-
ons were harvested 48  h post-transfection, clarified by 
low-speed centrifugation, aliquoted into 0.5–1.0-mL por-
tions, and snap-frozen in liquid nitrogen.

Cells
293T cells were used to prepare Env-containing (Env+) 
pseudovirions by transfection. Env+ pseudovirions were 
initially titrated on HeLa TZM-bl cells [46]. 293T and 
HeLa TZM-bl cells were cultured in Dulbecco modi-
fied Eagle medium (DMEM) with 4% fetal bovine serum 
(FBS) and gentamicin (10 μg/mL).

Primary macrophages were prepared from blood 
monocytes. Briefly, 3 ×  107 elutriated monocytes were 
plated into 15  cm bacterial petri dishes and cultured in 
10% human AB+ plasma in DMEM for 5–7 days. Alter-
natively, 5 × 107 Ficoll-purified peripheral blood mono-
nuclear cells (PBMC) from a buffy coat (Research Blood 
Components LLC, Boston, MA) were plated into 15-cm 
bacterial culture dishes for 3 h before extensively wash-
ing away non-adherent cells, culturing overnight, and 
repeating the washes. The adhered monocytes were then 

cultured for 5–7 days in 10% human plasma in DMEM. 
The differentiated macrophages were treated with EDTA 
and transferred to 48-well tissue culture dishes the day 
prior to infection at 1.25 × 105 cell/well [4, 5].

Infectivity assays
We measured the infectivity of Env+ pseudoviruses for 
HeLa TZM-bl, macrophages and cervical explant cul-
tures (see below for details). We chose HeLa TZM-bl 
cells over PBMCs or primary T-cells to standardize Env+ 
pseudovirus infectivity. Our study focuses on mac-tropic 
and non-mac-tropic R5 Envs, which may vary in their 
ability to infect CD4+ T-cells, the main targets for infec-
tion in PBMCs. HeLa TZM-bl cells express high levels of 
CD4 and CCR5 and are highly permissive to a wide range 
of HIV-1 variants and isolates. They are stable and pro-
vide standard and repeatable reference data for infectivity 
measurements.

We titrated viruses in 10-fold dilutions on each tar-
get cell type. We titrated pseudoviruses on TZM-bl cells 
(without DEAE Dextran). We used the TZM-bl titers 
to standardize the infectivity of Env+ pseudoviruses on 
macrophages and cervical explant cultures. Here, we 
have presented primary infectivity data for macrophages 
and cervical tissue along with infectivity titers plotted as 
a percentage of the infectivity recorded on HeLa TZM-bl 
cells. The former approach reveals the maximum infec-
tivity possible for each Env, while the latter protocol cor-
rects for Env+ pseudovirus differences in HeLa TZM-bl 
infectivity. We have used this approach previously [5]. It 
avoids having to equilibrate viruses to the same infectiv-
ity titers, a process that can introduce additional error 
and limits the maximum infectivity used, to that of the 
virus with the lowest infectivity. It therefore allows us to 
cover the maximum range of Env+ pseudovirus infectiv-
ity of cervical tissue explants.

Macrophage infectivity
Macrophage infectivity was assessed on duplicate wells 
of at least 2 batches of macrophages from independ-
ent donors. Macrophages seeded in 48 well plates were 
pretreated with 100  µL DEAE dextran (10  µg/mL) in 
DMEM medium containing 10% human plasma for 
30  min at 37°C before Env+ pseudoviruses carrying a 
GFP reporter gene were added at 100  µL/well. Infected 
plates were spinoculated for 45  min at 1,200 RPM in a 
benchtop centrifuge at room temperature [47]. Infected 
macrophages were incubated for a further 3  h at 37°C 
before the addition of 300  µL of DMEM (10% human 
plasma) and incubating at 37°C for 7 days. DEAE dextran 
and spinoculation enhance virus infectivity by approxi-
mately 20-fold by increasing attachment [47] and entry 
[48]. Infection following this procedure does not bypass 



Page 10 of 12Peters et al. Retrovirology  (2015) 12:48 

the requirement of CD4 and CCR5 for infection, which 
remains sensitive to entry inhibitors including mara-
viroc (not shown). Env+ pseudovirions are capable of 
only a single round of replication so that focus-forming 
units (FFU) were estimated 5–7  days post-infection by 
counting infected GFP+ macrophages by fluorescent 
microscopy.

Ectocervical explant infectivity
Ectocervical explants were prepared from fresh tissue 
provided without identifiers from hysterectomy surger-
ies performed earlier in the day. Tissue came from sub-
jects whose prior Papanicolaou test (Pap smear) was 
normal. Small 2  mm3 pieces were seeded into 96 well 
plates, washed in growth medium [RPMI 1,640, 10% heat 
inactivated fetal calf serum with l-glutamine (2  mM), 
penicillin (50U/mL) and streptomycin (50 μg/mL)] and 
infected immediately. 100 μL of Env+ pseudoviruses was 
added to explants in growth medium containing 5 μg/
mL phytohemagglutinin and after 2 days, IL-2 (5 ng/mL, 
Roche Inc.). In some experiments, explants were infected 
without stimulation, with stimulation using anti-CD3/
antiCD28 Dynabeads (Life Technologies Inc.), in the 
presence of GM-CSF (100  ng/mL) to support mono-
cytes and macrophages, or in the presence of GM-CSF 
(100  ng/mL) and IL-4 (40  ng/mL) to support dendritic 
cells. Stimulation with the anti-CD3/antiCD28 Dyna-
beads gave similar results as stimulation with PHA/IL-2 
(not shown). Infections were done on five replicate wells 
for at least five donors. GFP+ cells were quantified by 
fluorescent microscopy after 7  days, by counting all the 
GFP+ cells in a well including those within the explant 
and the emigrants that had migrated from the tissue and 
were present on the bottom of wells. Inhibition assays 
were done with 100 ng/mL maraviroc or 2 μM nevirap-
ine added prior to infection and maintained until infec-
tivity was read.

Evaluation of the cell types of GFP+ cells in explants
GFP+ cells were present within the explant, although 
many had emigrated into the culture well and sur-
rounded the piece of cervical tissue following 7 days cul-
ture. To evaluate whether the GFP+ cells were T-cells 
or macrophages, we digested explants using collagenase 
Type IV (Gibco, Life Technologies) and pooled released 
cells with emigrants. In some assays we collected only the 
emigrant cells. We then used StemCell EasySep immu-
nomagnetic positive selection and enrichment proto-
cols. The Human CD3 Positive Selection Kit (typically 
achieves 99.4–99.8% purity from fresh peripheral blood 
mononuclear cells) was used to select for T-cells. While 
the Human Monocyte Enrichment Kit (negative selec-
tion, typically achieves 83–95% purity from previously 

frozen peripheral blood mononuclear cells), this protocol 
was chosen for monocytes/macrophages. This is because 
ectocervical tissue macrophages were reported to not 
express CD14 [41], which is the target for positive selec-
tion kits. Selected and depleted cell populations were 
evaluated for GFP+ cells by fluorescent microscopy.

Statistical analyses
Macrophage infectivity and ectocervical explant infectiv-
ity were evaluated in an unmodified format (FFU/mL) 
and a normalized format (% of TZM-bl). In both cases 
the data were summarized as mean and standard error of 
the mean for each pseudovirus. Comparisons were also 
made among three groups of pseudoviruses, late-disease 
macrophage-tropic, late-disease non-macrophage-tropic, 
and transmitted/founder/acute. To achieve normal-
ity within groups the data were log transformed. Then 
groups were compared by unpaired two-tailed t test in 
Prism 6.0f. Groups are presented with their geometric 
mean and 95% confidence intervals (Figures 1, 3).

Data for ectocervical explant stimulation methods 
and maraviroc and nevirapine treatment are mean and 
standard error (Figure 2). Data for ectocervical cell selec-
tions are presented with mean and 95% confidence inter-
vals with group comparisons tested by the Wilcoxon 
matched-pairs signed rank test in Prism 6.0f (Figure 4).
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