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Research

Complex expression dynamics and robustness
in C. elegans insulin networks
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Bart Deplancke,2,3,7 Arnab Mukhopadhyay,2,3,8 Jian Xu,4 Monica Driscoll,4

Heidi A. Tissenbaum,2,3,9 and Albertha J.M. Walhout1,3,9

1Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; 2Program in Gene

Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; 3Program in Molecular

Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; 4Department of Molecular Biology

and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA

Gene families expand by gene duplication, and resulting paralogs diverge through mutation. Functional diversification
can include neofunctionalization as well as subfunctionalization of ancestral functions. In addition, redundancy in which
multiple genes fulfill overlapping functions is often maintained. Here, we use the family of 40 Caenorhabditis elegans insulins
to gain insight into the balance between specificity and redundancy. The insulin/insulin-like growth factor (IIS) pathway
comprises a single receptor, DAF-2. To date, no single insulin-like peptide recapitulates all DAF-2-associated phenotypes,
likely due to redundancy between insulin-like genes. To provide a first-level annotation of potential patterns of re-
dundancy, we comprehensively delineate the spatiotemporal and conditional expression of all 40 insulins in living animals.
We observe extensive dynamics in expression that can explain the lack of simple patterns of pairwise redundancy. We
propose a model in which gene families evolve to attain differential alliances in different tissues and in response to a range
of environmental stresses.

[Supplemental material is available for this article.]

Organisms must respond appropriately to physiological and en-

vironmental cues to develop, locate food, stave off toxic or path-

ological insults, and survive stress. The ability to adjust to the

environment or to overcome stress requires the use of robust reg-

ulatory mechanisms that coordinate systems-level physiological

responses. For instance, growth, reproduction, and lifespan can be

adjusted in response to changes in food availability and environ-

mental conditions such as temperature (Riddle et al. 1997; Marsh

and May 2012; MacNeil et al. 2013).

Expanded gene families often accompany an increase in or-

ganismal complexity. After duplication, the resulting identical

paralogs diverge in both sequence and function. Neofunctionaliza-

tion occurs when one paralog adopts a novel function that is not

shared by the ancestral gene (Ohno 1970), while in subfunctionali-

zation the ancestral function(s) are divided between the two

paralogs (Force et al. 1999). In addition to functional divergence, it

can also be beneficial for paralogs to maintain (partial) redundancy,

for instance, to provide a buffer under adverse genetic or environ-

mental conditions (Burga et al. 2011; MacNeil and Walhout 2011).

Numerous gene families have been identified by whole-

genome sequencing and gene annotation. So far, only a few families

have been analyzed at a systems level, and the balance between

divergence and redundancy is only beginning to be illuminated.

For example, in C. elegans, basic helix-loop-helix transcription

factors have extensively diverged in multiple functional parame-

ters (Grove et al. 2009). However, ETS transcription factors func-

tion redundantly in the mouse by binding and regulating the same

target genes (Hollenhorst et al. 2007).

The highly conserved insulin/insulin-like growth factor sig-

naling (IIS) pathway plays a critical role in development, lifespan,

stress resistance, and metabolism (Kenyon 2011). The C. elegans IIS

pathway includes insulin-like peptides, a receptor (DAF-2), and

a downstream signaling cascade that impinges on the DAF-16

transcription factor (Kenyon 2011). Loss-of-function mutations in

daf-2 confer a range of phenotypes affecting lifespan, reproduc-

tion, metabolism, stress, and dauer formation, and a complete loss

of the receptor is lethal (Gems et al. 1998; Tissenbaum and Ruvkun

1998). Dauer is a diapause stage that is evolutionarily conserved

among nematodes (Sommer and Streit 2011). When growth con-

ditions are suboptimal, C. elegans pheromone levels increase and

can utilize the IIS pathway to enter dauer (Riddle et al. 1997). Al-

though dauer formation has been studied extensively by modu-

lating downstream IIS signaling components, less is known about

the role of insulin-like genes in this process.

The human genome encodes 10 insulin-like peptides, in-

cluding insulin, insulin-like growth factors (IGFs), and relaxins

(Claeys et al. 2002). Drosophila melanogaster has eight insulin-like

peptides, or DILPs (Colombani et al. 2012). Remarkably, the C.

elegans genome encodes 40 insulin-like genes (Duret et al. 1998;

Pierce et al. 2001; Li et al. 2003; Li and Kim 2008). Hereafter, we

refer to insulin-like peptides or genes as ‘‘insulins.’’ To date, no

single insulin mutation or deletion completely recapitulates the

phenotypes associated with perturbation of daf-2 (Supplemental

Table S1). In Drosophila, genetic interaction analyses have revealed

Present addresses: 5Division of Endocrinology, Children’s Hospital
Boston, Harvard Medical School, Boston, MA 02115, USA; 6Institut für
Tropenmedizin, University of Tübingen, 72074 Tübingen, Germany;
7Laboratory of Systems Biology and Genetics, Institute of Bio-
engineering, School of Life Sciences, École Polytechnique Fédérale
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functional redundancy between a subset

of DILPS (Broughton et al. 2008; Gronke

et al. 2010). The lack of loss-of-function

phenotypes for most insulins indicates

that they also likely act redundantly in

C. elegans, although to what extent is

unknown.

Genes that act redundantly are often

coexpressed, at least in part. Therefore,

we decided to annotate spatiotemporal

and conditional insulin expression as a

starting point to indicate which insulins

may function together. C. elegans are

transparent, and transgenic animals car-

rying promoter-driving green fluorescent

protein (GFP) constructs can be used to

annotate spatiotemporal gene expres-

sion in living animals (Chalfie et al. 1994;

Reece-Hoyes et al. 2007; Martinez et al.

2008; Grove et al. 2009). Here, we com-

pare spatiotemporal insulin expression

during development, aging, and under

a variety of nutritional and stress condi-

tions. We observed both specific and over-

lapping insulin expression patterns, as well

as numerous dynamic expression changes.

Altogether, our data indicate a potential for

complex alliances between insulins.

Results

Lack of pairwise redundancy between
C. elegans insulins in dauer formation

We used dauer diapause, one of the main

outputs of the IIS pathway, to explore the

putative extent of redundancy and spec-

ificity in the insulin family. Loss-of-

function mutations in the DAF-2 receptor

result in a dauer-constitutive (Daf-c) phe-

notype (Kenyon 2011). We found that

neither deletions in 12 insulins nor

knockdown of any of the 40 insulins re-

sults in dauers (Fig. 1A; Supplemental

Table S2). As some insulins have been

reported to have antagonistic effects on

the IIS pathway, we asked whether loss of

individual insulins would prevent dauer

formation. After dauer-inducing condi-

tions, all mutants analyzed were capable

of forming dauers, indicating that they

are not dauer defective (Fig. 1B). Together,

these results indicate that no single in-

sulin is the sole agonist or antagonist for

coordinating dauer formation through

the DAF-2 receptor. Next, we asked whether

insulins may function in redundant pairs

by knocking down each of the 40 insulins

in the 10 insulin mutants. However, none

of the combinations of insulin mutants

and insulin RNAi resulted in the forma-

tion of dauers (Fig. 1A). This suggests that

Figure 1. Examination of dauer formation upon insulin perturbation. (A) Neither loss of individual
insulins (columns), nor pairwise insulin perturbation by combined mutation and knockdown (rows)
results in dauer formation. (B) Individual insulin mutants form dauers in starvation-induced conditions
similar to wild type (N2), indicating that they are not dauer defective. Dauer formation is illustrated as
the average of duplicate experiments; data is normalized to wild-type (N2) dauer formation. Additional
data can be found in Supplemental Table S2.
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there is no simple pairwise redundancy between insulins in regu-

lating dauer formation, but rather that more complex patterns of

redundancy may be involved.

Complex patterns of insulin expression

To determine spatiotemporal insulin expression patterns during

development and under a variety of relevant physiological and

environmental conditions, we cloned the promoters of each of the

40 C. elegans insulins upstream of an open reading frame encoding

GFP, and generated transgenic animals as described (Praitis et al.

2001). Promoter activity is often a faithful proxy of endogenous

gene expression (Reece-Hoyes et al. 2007; Martinez et al. 2008;

Grove et al. 2009); therefore, we refer to insulin promoter activity

as ‘‘insulin expression.’’

We annotated insulin expression using a controlled vocabu-

lary to enable the direct comparison between different genes and

between different tissues (Martinez et al. 2008; Grove et al. 2009).

In hermaphrodites, 36 of 40 insulin promoters conferred GFP

expression in six major tissue types: nervous system, muscle, re-

productive tissue, epithelia, the alimentary system, and coelomo-

cytes (Fig. 2A). These were subcategorized into specific cells/tissues,

totaling 19 different tissue/cell types (Fig. 2B). We found that most

tissues express multiple insulins (Fig. 2B), and, conversely, that

most insulins are expressed in multiple tissues (Fig. 2C). Four in-

sulin promoters did not drive GFP expression in hermaphrodites:

ins-19, ins-24, ins-31, and ins-37. However, ins-19 and ins-31 did

exhibit GFP expression in males (Thoemke et al. 2005; Supple-

mental Fig. S1). Altogether, we detected activity for 38 of 40 pro-

moters (95%).

Spatiotemporal expression patterns have previously been

reported for 17 insulins (Pierce et al. 2001; Li et al. 2003; Murphy

et al. 2003, 2007; Michaelson et al. 2010; Cornils et al. 2011). Our

data recapitulate the expression patterns for nine of these (Sup-

plemental Table S3): ins-1, ins-3, ins-4, ins-7, ins-8, ins-9, ins-11,

ins-18, and ins-33. However, for all nine we observed expression in

additional tissues. For seven insulins we found different expression

patterns than reported previously. For example, we observed ins-22

expression in head neurons, but not in the ventral nerve cord,

body, and tail neurons as reported previously (Pierce et al. 2001).

Differences in insulin expression may result from the inclusion

or exclusion of particular regulatory sequences in the promoter

fragments used. Alternatively, expression pattern annotation may

not have been examined with the same resolution in different

studies and weak expression may have been missed. Indeed, for

two strains we observed additional expression patterns in pre-

viously published strains that were not reported (Supplemental

Fig. S2).

Next, we examined the expression patterns for the 36 insulins

expressed in hermaphrodites. Almost all insulins are expressed in

neurons, consistent with the reported importance of neuronal

insulin signaling in different organisms (Wolkow 2002). Head

neurons express the greatest number of insulins (n = 32) (Fig. 2B).

We grouped head neuron expression into three classes: sensory

(including amphid neurons), pharyngeal, and ring motor/inter-

neurons (Fig. 2D). As amphid sensory neurons are exposed to the

environment, many can be visualized by DiI staining (Tong and

Bürglin 2010). We stained all transgenic strains with DiI and an-

notated any overlap between DiI staining and GFP expression. DiI

staining was also used to provide orientation for determining

which insulins were expressed in each category of head neurons

(Fig. 2E). In total, 25 insulins are expressed in sensory neurons, 14

of which are expressed in amphid neurons, 23 insulins in ring

motor/interneurons, and 13 in pharyngeal neurons. Twenty-

two insulins are expressed in two or more general types of head

neurons (Fig. 2F).

Dynamic changes in insulin expression during development

To determine insulin expression changes during development, we

annotated GFP expression at each larval stage (L1–L4) in young

adults and mature adults. A value of 1 or 0 was assigned to each

tissue/cell type to indicate the presence or absence of GFP ex-

pression, respectively (Supplemental Table S4). To capture tissue

expression changes through development, we visualized the data

into bipartite expression networks (Martinez et al. 2008; Grove

et al. 2009). These networks contain two types of nodes: genes and

cells/tissues. Edges link the gene to the tissue in which it is ex-

pressed. We visualized insulin expression patterns into networks

for each of the developmental stages by using Cytoscape (Fig. 3A;

Shannon et al. 2003; Supplemental Fig. S3).

Several tissues showed loss of insulin expression as the ani-

mals progress through development. For example, in 11 transgenic

strains, GFP was expressed in the pharynx in early larval stages, but

only three insulin promoters remained active in the adult pharynx

(Fig. 3B). Most tissues showed increased insulin expression during

development, particularly when animals entered the L4 stage. For

example, 14 insulins are expressed in the distal tip cell at the young

adult stage but only one (ins-13) exhibited expression early, at

the L2 stage (Fig. 3B). Some tissues/cells are formed later in de-

velopment, which explains later expression; for instance, the

vulva, spermatheca, uterus, and gonad have not fully developed

until late-L4 and adult stages. Overall, insulins exhibit dynamic

stage- and tissue-specific expression patterns during development

(Supplemental Fig. S4).

Conditional dynamics of insulin expression

The IIS pathway not only modulates C. elegans development, it is

also utilized to respond to environmental conditions (Kenyon 2011).

We investigated insulin expression in young adult transgenic

strains exposed to relevant conditions including heat stress, dauer

diapause, starvation, aging, oxidative stress, and glucose, and vi-

sually examined changes in GFP expression (Fig. 4A; Supplemental

Fig. S5A).

Neither glucose nor oxidative stress affected insulin expres-

sion. However, we did observe changes in insulin expression with

the other conditions. The greatest number of insulins changed

expression in dauers (n = 14) and with age (n = 14), major phe-

notypic outputs of IIS pathway. Except for heat stress, increased

and decreased insulin expression was observed. For example, 10

insulins decreased in expression in dauer, whereas four increased.

We also observed stage-specific responses in insulin expression. For

instance, GFP expression increased dramatically after heat stress in

L4 Pins-4TGFP hermaphrodites, but not in young adults (Supple-

mental Fig. S5B). In total, four genes, ins-3, ins-7, ins-11, and ins-30,

exhibited changes in GFP expression in three conditions tested;

four changed in two, 17 in one, and 14 did not change in any of the

conditions tested.

We also observed specific conditional changes in spatial ex-

pression (Supplemental Fig. S6). Pins-27TGFP, for example, ex-

hibits GFP expression in muscle in all stages of development, and

muscle expression decreased as the animals aged (Fig. 4B). This

could reflect a loss of muscle integrity known to occur during the

Ritter et al.
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Figure 2. Spatial expression of the 36/40 insulins expressed in C. elegans young adult hermaphrodites. (A, top) Cartoon of a C. elegans hermaphrodite
with colors illustrating insulin expression in six major tissue types: nervous system (green), reproductive tissue (blue), muscle (gray), epithelial tissue
(orange), coelomocytes (pink), and alimentary system (purple). (B) Number of insulins expressed in each tissue/cell type. Colors correspond to the six
major tissue types in A. (C ) Number of tissues/cell types in which each insulin is expressed. (D) Cartoon of three head neuron categories: sensory (red),
pharyngeal (black), ring motor/interneurons (green). (E ) Two examples: Pins-1TGFP exhibits GFP expression in many head neurons including amphid
sensory neurons (arrowheads) and ring interneurons (circle arrow). Pins-28TGFP exhibits GFP expression in pharyngeal, but not amphid neurons (arrows).
Amphid neurons were visualized by DiI staining (red). Yellow indicates that GFP expression (green) occurred in amphid neurons (red). (F ) Summary of
neuronal insulin expression in three types of head neurons: sensory, ring motor/interneuron, and pharyngeal. Insulins that exhibited overlapping GFP
expression and DiI staining are defined as having amphid expression.

Complexity in insulin expression networks
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aging process (Herndon et al. 2002), and perhaps the Pins-27TGFP

transgenic strain may provide a convenient marker to observe the

aging process in living animals. Another example is in Pins-4TGFP

animals, where GFP expression changes similarly in different con-

ditions; it increases dramatically in the hypodermis of young adults

after starvation and aging animals (Fig. 4B).

Comparing insulin expression patterns

We quantified the degree of expression overlap for pairwise com-

binations of insulins at each stage of development using a tissue

overlap coefficient (TsOC) similarity index (Fig. 5A; Martinez et al.

2008; Grove et al. 2009). TsOC values were clustered to visually

Figure 3. Insulin expression networks illustrate dynamic tissue activity. (A) Bipartite network connecting 35 insulins to cell/tissues at the young adult
stage. Pins-20TGFP animals did not exhibit GFP expression at the young adult stage and were excluded. Circles represent insulins; squares represent cells/
tissues. (S) Spermatheca; (C) ceolomocytes; (R) rectum; (HM) head muscle; (VM) vulva muscle; (DTC) distal tip cell; (U) uterus; (BM) body muscle; (H)
hypodermis; (EM) enteric muscle; (P) pharynx; (BN) body neuron(s); (VN) vulva neuron(s); (TN) tail neuron(s); (VNC) ventral nerve cord; (PN) pharyngeal
neuron(s); (RIM) ring/intermotor neuron(s); (SN) sensory neuron(s); (I) intestine. Purple circles indicate insulins that change in spatial expression through
development; orange circles are insulins that do not change. The network is organized as follows: (top to bottom) insulins with no neuronal expression; non-
neuronal tissues (excluding the intestine); insulins with neuronal and non-neuronal tissue expression; neuronal tissues and the intestine, insulins with only
neuronal and/or intestinal expression. (B) ‘‘Dartboards’’ depicting tissue-centered view of insulin expression. Each ring represents a developmental stage,
starting from the center: larval stages L1, L2, L3, and L4, young adult, and adult with eggs (;3- to 4-d-old adult). Each slice represents an insulin with strong
GFP (black), weak GFP (gray), or no GFP (white) expression. (Left) Dartboard profile of the pharynx (P); (right) dartboard profile of the distal tip cell (DTC).
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identify genes that share high overlap versus those with little to no

overlap in expression. At the young adult stage, we observed two

clusters of insulins that share high overlap (Fig. 5B). The lack of

pairwise gene expression clustering correlates with the lack of

pairwise phenotypic redundancy, indicating that there may be

more complex patterns of redundancy. We next investigated to

what degree expression overlap changes through development.

Of 630 possible insulin pairwise comparisons (of 36 insulins

Figure 4. Conditional dynamics of insulin expression. (A) Dartboard depicting conditional changes in insulin expression. Each ring represents a con-
dition; starting from the center, heat stress, dauer, starvation, aging, and development. Each slice represents a different insulin. For each condition, activity
is defined by at least one tissue exhibiting an increase (red) or decrease (blue) in GFP expression. Changes in expression pattern (gray) were recorded
throughout development. (B) Dartboards depicting gene-centered view of insulin expression. Each ring represents a developmental stage or condition,
starting from the center: L1, L2, L3, and L4, young adult, and adult (;3- to 4-d-old adult), heat stress, dauer, starvation, and aging. Each slice represents
a tissue with GFP expression (black), no GFP (white) expression. Compare conditional changes to the young adult stage (fifth ring). Red indicates a GFP
increase; black, no change in GFP expression; white, no GFP observed. (Left) Dartboard of ins-4 expression; (right) dartboard of ins-27 expression.

Complexity in insulin expression networks
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examined), 37 pairs, consisting of 22 genes, had a TsOC of zero

throughout development, illustrating their mutually exclusive

expression. There was no insulin that exhibited a unique expres-

sion pattern (i.e., with a TsOC = 0 with every other insulin). Fur-

ther, although 11 insulin pairs consisting of 19 insulins exhibited

complete overlap (TsOC = 1) in a single larval stage, none exhibited

complete overlap throughout development. Even though the de-

gree of overlap between insulins changed from one larval stage to

the next, most remained consistently higher or lower in their de-

gree of expression overlap (Supplemental Table S5).

To capture the overall degree of over-

lap of the insulin expression patterns

throughout the lifetime of the animal, we

averaged the TsOCs between all stages.

The top 5% TsOC values (TsOC $ 0.68)

were distributed among 18 genes (Fig.

5C). Some insulins (e.g., ins-4) shared high

overlap with many other genes in this

group, while others (e.g., ins-26) shared

high overlap with only two other genes.

Next, we quantified similarity in con-

ditional expression. We first assigned the

following values for each condition: �1

for a GFP decrease/loss, 0 for no changes,

and +1 for a GFP increase/additional tis-

sue expression. Then, using a Spearman

rank test, we compared all pairwise com-

binations to identify insulins that cor-

relate in their response. A conditional

overlap of 1, for example, indicates that

two insulins responded the same under

every condition tested. In contrast, a

score of �1 indicates that two insulins

responded oppositely. Of 325 pairwise

combinations (among 26 insulins that

exhibit a conditional change), 23 insulin

pairs, consisting of 18 genes, shared a

score of �1, thus responding oppositely.

Thirty-six pairs, consisting of 18 genes,

shared a score of +1, thus responding

the same under the conditions tested.

Finally, no pair exhibited high correla-

tion both during development and un-

der different conditions (Fig. 5D, red box).

This suggests that no insulins are com-

pletely coexpressed over all conditions

and stages.

ins-8 expression increases upon
loss of ins-7

Intuitively, one might expect that close

homologs that share high-expression

overlap may exhibit redundancy. When

we compared pairwise insulin protein

sequence identity with their average TsOC

scores, we did not observe a correlation

between sequence and expression simi-

larity (Fig. 6A).

One outlying pair of insulins, ins-7

and ins-8, is both similar in sequence and

in spatiotemporal expression (Fig. 6A,B).

To test putative redundancy between these insulins, we first

examined developmental timing and dauer formation in single

ins-7(tm1907) or ins-8(tm4144) mutants and found no differences

compared to wild-type animals (Fig. 1; data not shown). Close

paralogs can compensate each other’s loss by an increase in ex-

pression (Raj et al. 2010; Burga et al. 2011). We examined endoge-

nous ins-7 expression in an ins-8 mutant and vice versa and found

that while loss of ins-8 did not result in a change in ins-7 expression,

loss of ins-7 resulted in a ;15-fold increase in ins-8 expression (Fig.

6C). In a recent study it was reported that endogenous ins-7 is

Figure 5. Comparing insulin gene expression illustrates specificity and overlap in expression. (A)
Tissue overlap coefficients (TsOCs) define the expression overlap between all pairwise insulins (A,B).
Insulins (circles) exhibit GFP expression (edges) in C. elegans tissues (squares). A TsOC of 1 indicates
complete overlap while a TsOC of 0 indicates no overlap in expression. (B) Tissue overlap matrix using
TsOC scores from the young adult stage. Red boxes highlight visually delineated clusters of highly
overlapping insulins. (C ) Coexpression network of insulins (circles) that share the top 5% average TsOC
scores through six larval/adult stages. An edge represents an average TsOC $ 0.68; maximum average
TsOC = 0.89 (ins-4 and ins-5). (D) No gene pairs (red box) share the same expression in both conditional
(as measured by a Spearman rank test) and developmental tissue expression. TsOC is presented as an
average of the six TsOC values for each developmental stage.
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expressed at higher levels than ins-8 throughout development

(Baugh et al. 2011). ins-7 and ins-8 are less than 1 kb apart in the

genome; therefore, in the ins-7(tm1907), the ins-8 gene resides in

closer proximity to the (stronger) ins-7 promoter (data not

shown). To test whether this could explain the observed increase in

expression, we examined ins-8 expression upon ins-7 RNAi in both

Figure 6. Divergence, overlap, and compensation in expression between ins-7 and ins-8. (A) There is no clear positive correlation between the degree of
overlap in expression through development (average TsOC) and sequence similarity of insulins. ins-7 and ins-8 (red dot) are the only pair that share both
high-sequence similarity and high TsOC. TsOC is presented as an average of the six TsOC values for each developmental stage. (B) ins-7 and ins-8 exhibit
high overlap in expression under standard laboratory conditions (first six rings, from L1 to adult), but exhibit different conditional changes in expression
(four outermost rings). (Red) GFP increase; (blue) GFP decrease; (black) no change in GFP expression; (white) no GFP observed. (C ) In the absence of ins-7
(orange), ins-8 (purple) expression is increased. (D) ins-8 increases in both wild-type (N2) (P < 0.0001) and rrf-3(pk1426) mutants (P = 0.054) upon RNAi
knockdown of ins-7. mRNA abundance was measured by qRT-PCR for C and D. Triplicate repeats from biological duplicate samples were measured. One
biological sample is illustrated here. The error bar indicates variation between triplicates. P-values were calculated using a Student’s t-test.
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wild-type (N2) and RNAi hypersensitive rrf-3(pk1426) mutants

(Simmer et al. 2002). Again, we observed an increase in ins-8 ex-

pression upon perturbation of ins-7, albeit to a lesser extent (Fig.

6D). Therefore, the up-regulation of ins-8 in the ins-7 mutant

background is not due to the close proximity of the two genes. This

data also illustrates that RNAi targeting ins-7 does not elicit

a complete knockdown.

ins-7 expression increases upon dauer formation (Fig. 6B).

However, ins-7 mutants do not have any defects in dauer forma-

tion (Fig. 1; data not shown). Since ins-8 expression increases upon

perturbation of ins-7, we asked whether ins-8 functions redun-

dantly with ins-7 in modulating dauer formation. The genomic

proximity of the two genes precludes the generation of double

mutants. However, neither RNAi of ins-7 in an ins-8 mutant, or vice

versa, either in wild-type or in rrf-3(pk1426) mutants conferred

a dauer formation phenotype or any other phenotypes including

lethality, L1 arrest, or developmental delay compared with vector

control RNAi or wild-type animals (data not shown).

Discussion
In this study, we report widespread and dynamic spatiotemporal

expression of C. elegans insulins during development and under

different physiological and environmental conditions. Not all ex-

pression patterns may completely capture endogenous insulin

expression for several reasons. First, the promoter fragments used

may lack regulatory elements required for expression in some tis-

sues or to repress expression in others. Second, expression was

annotated to the resolution of individual cells in some but not all

tissues. Annotating at the level of individual cells is challenging,

especially in neurons where insulins are abundantly expressed.

Thus, the overlap in expression for neuronal insulins may be lower

than estimated here. Third, we did not observe GFP expression in

the germline, most likely because of transgene silencing (Kelly

et al. 1997). Finally, insulins are secreted peptides that may act cell-

non-autonomously (Billing et al. 2011; Bai et al. 2012). Nonetheless,

we provide both a first comprehensive data set as well as a set of

transgenic strains, both of which enable future studies of the

functional dynamics of the entire C. elegans insulin gene family in

vivo.

Several examples illustrate how the insulin expression pat-

terns provide a resource for the derivation of functional hypoth-

eses. First, the expression patterns of individual insulins can likely

be used to predict specific functions. For instance, we found that

ins-3 is expressed in the distal tip cell, spermatheca, and the sper-

matheca-uterine valve. Previously, it has been shown that pertur-

bations of ins-3 result in defects in germline proliferation, and that

this is due to the function of ins-3 in the soma (Michaelson et al.

2010). Second, changes in expression of individual insulins can

likely be used to infer specific functions as well. For example, it has

been shown that daf-28 is involved in dauer formation, and we

find that its expression is turned off in dauers (Cornils et al. 2011;

this study). Third, the expression data can likely be used to derive

hypotheses about complex functional redundancies. For instance,

14 insulins change in expression as the animals age; eight of which

increase and six of which decrease in expression. Future studies of

which insulins are receptor agonists versus antagonists will be

important to derive hypotheses regarding combinatorial insulin

function in lifespan regulation.

Remarkably, pairwise combinations of insulin loss/knock-

down did not result in defects in dauer formation. This could be

due to inefficient insulin knockdown in neuronal tissues required

for dauer formation (Hu 2007). Alternatively, there may be more

complex patterns of redundancies between more than two in-

sulins. The lack of 1:1 insulin relationships is supported by the

observation of two clusters in the expression network, rather than

simple pairwise coexpression patterns.

Two insulins, ins-7 and ins-8, share high-sequence similarity

and expression overlap through development. We find that ins-8

levels increase in the absence of ins-7, but did not detect com-

pensatory changes in ins-7 expression upon loss of ins-8. Knock-

down of ins-7 in an ins-8 mutant or vice versa did not affect

dauer formation. However, loss of ins-7 slightly extends lifespan

(Murphy et al. 2007; Supplemental Fig. S7). This suggests that,

while ins-8 increases upon loss of ins-7, it cannot fully compensate

for the loss of ins-7 in modulating longevity, further illustrating

the lack of 1:1 relationships between insulins. Additionally, while

loss of ins-7 extends lifespan, it does not recapitulate the dramatic

lifespan extension caused by a loss-of-function in daf-2. Together,

this data suggests that ins-7 and ins-8 may genetically interact with

other insulins. Alternatively, it is conceivable that the overexpression

of ins-8 in the ins-7(tm1907) rather than the loss of ins-7 may be

responsible for the observed lifespan extension of ins-7 mutants,

which would suggest that ins-8 is an antagonist, whereas ins-7 is an

agonist. However, dauer formation was not observed upon loss of

ins-7 nor were ins-8(tm4144) mutants dauer defective (Fig. 1). This

illustrates that ins-8 is not likely an antagonist.

In the wild, C. elegans is exposed to a variety of environmental

conditions. Food and temperature serve as modulators of dauer

formation (Riddle et al. 1997). By entering dauer, development

ceases until a favorable environment becomes available. Intuitively,

differential insulin activity could ensure that a whole-organism re-

sponse, such as dauer formation, only occurs under specific condi-

tions and not in response to any type of stress. Remarkably, we

found that insulins that share high expression overlap during de-

velopment are distinct from those that share similarities under dif-

ferent conditions (Fig. 7A). This may reflect a need for specificity in

coordinating development versus responding to different stresses.

The expansion of the insulin family and its genetic wiring may

provide the animal with a complex and highly organized repertoire

of responses that can be tailored according to developmental or

environmental need. In biological systems, different components

can be interchangeable under certain conditions, but perform dis-

tinct functions under other conditions. Such redundancy, or de-

generacy, contributes to the robustness, complexity, and evolvability

of a system (Edelman and Gally 2001; Kitano 2004). We propose that

the C. elegans insulin family has evolved to attain a type of ‘‘block

design,’’ a term used in combinatorial mathematics. An evolved

block design can lead to the formation of different functional alli-

ances in different cells for different developmental versus environ-

mental conditions (Fig. 7B). Cooperative action between insulins

may provide a robust framework for interpreting physiological and

environmental cues and ensuring that the DAF-2 receptor initiates

the appropriate response. For instance, daf-28 and ins-6 cooperate in

modulating dauer formation. However, each insulin also functions

specifically in dauer entry or exit, respectively (Cornils et al. 2011).

C. elegans likely utilize 40 insulins to achieve both specificity

and redundancy to maintain fitness in a complex environment.

The total possible number of combinations in different sets, for

instance with three, four, or even more, is immense, and poten-

tially provides the animal with a large and flexible repertoire of

possibilities to recognize and respond appropriately to many

environmental stimuli. Future studies will illuminate the general-

ity of this observation for insulins in other nematodes, as well as
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other gene families in C. elegans and other complex multicellular

organisms such as humans.

Methods

Generation of PinsTGFP transgenic animals
We used gene predictions available in WormBase WS150 (http://
ws150.wormbase.org). In total, 22 of the 40 promoter constructs
were obtained from the Promoterome collection (Dupuy et al.

2004). The remaining promoters were PCR amplified and cloned as
described (Dupuy et al. 2004). Primer sequences are provided in
Supplemental Table S6. Transgenic animals were generated by
microparticle bombardment as described (Reece-Hoyes et al.
2007). For each PinsTGFP reporter construct, two to six indepen-
dent lines were obtained. At least two lines were examined for GFP
expression, and the line that showed the highest transmission was
used further. Nineteen of 40 PinsTGFP strains harbored the GFP
construct integrated in the genome. For all nonintegrated lines,
50–100 animals were analyzed to capture each component of the

Figure 7. Model for complexity and robustness in gene families. (A) A coexpression network of the insulins (circles) that share the top 5% average TsOC
through six larval/adult stages (blue edge) and the top 5% of conditional overlap (COS; red edge). Distinct clusters are observed whereby no insulins are
both connected through high TsOC and high COS. (B) A model of ‘‘block design’’ or ‘‘alliances’’ in insulins under a given condition. A colored node
represents one insulin. An edge represents overlapping function. Different alliances allow for the appropriate response to different conditions (top row).
Although different conditions likely require different insulins, some (yellow node) may always be shared between conditions. Loss of single insulin activity
does not cause a phenotypic affect due to redundancy (bottom, left) and/or compensation (bottom, right) with other insulins.
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expression pattern. An increase in expression was recorded if the
level of GFP dramatically increased and/or if expression in addi-
tional tissues was observed, while an expression decrease was de-
fined by a dramatic reduction in GFP levels and/or a complete loss
of expression in at least one cell/tissue type. All strains are available
from the C. elegans Genetics Center, or upon request.

PinsTGFP expression pattern annotation

GFP expression was examined in 40–50 animals by fluorescence
microscopy using a Zeiss Axioscope 2 plus microscope as described
previously (Reece-Hoyes et al. 2007; Martinez et al. 2008; Grove
et al. 2009). Temporal expression patterns were classified into six
stages: four larval stages (L1–L4), young adult (no eggs), and ;3- to
4-d-old adult with eggs. Developmental stages were defined by the
length and number of cells in the gonad (wormatlas.org). Spatial
expression patterns were classified into 19 categories that correspond
to tissues, cell types, organs, and individual cells. Temporal and spa-
tial expression was standardized into a binary code, where ‘‘1’’ rep-
resents expression detected and ‘‘0’’ indicates no expression detected.

Tissue overlap analysis

Tissue overlap coefficient (TsOC) analysis was performed as de-
scribed (Vermeirssen et al. 2007; Martinez et al. 2008; Grove et al.
2009), with minor modifications. Nodes were defined as insulins and
the cell/tissue in which they are expressed. TsOC was analyzed for
each pair of nodes by a geometric formula (Goldberg and Roth 2003).

Conditional expression analysis

Each stress was determined sufficient by testing with genes known
to respond to the respective condition (see Supplemental Fig. S5).
Oxidative stress: 1 mL of 200 mM paraquat was added to 10 mL of
OP50-seeded NGM plates. Young adults were added and incubated
at 20°C for 6 h. Verified using Pgst-4TGFP transgenics (Tawe et al.
1998). Glucose: 1 mL of 2% glucose was added to 10 mL of OP50-
seeded NGM plates. Young adults were added and incubated at
20°C for 1, 6, 12, and 24 h. Verified using daf-16aTGFP transgenics
(Lee et al. 2009). Heat stress: L4 larvae and young adults were
placed on OP50-seeded NGM plates and incubated at 30°C for 6 h.
Plates were not stacked to assure that heat was equally distributed
among all plates. Verified using Phsp-4TGFP transgenics (Heschl
and Baillie 1990). Starvation: L4 and young adult animals were
washed twice using 1X M9 buffer then placed on peptone-free
plates without bacteria. Animals were incubated at 20°C for 24 h.
Verified using Pacdh-1TGFP transgenics (MacNeil et al. 2013).
Dauer: We obtained dauers by allowing plates to starve. Strains
were grown at 20°C until no food remained. Dauers were picked
3–4 d after plates were starved. Aging: 1-d-old adults were placed
on OP50-seeded 5-fluorodeoxyuridine (FuDR) plates. GFP expres-
sion was recorded on days 5, 10, and 15. In all experiments, the
presence of GFP expression was translated into numbers where ‘‘1’’
represents a GFP increase, ‘‘0’’ represents no change in GFP, and ‘‘�1’’
represents a GFP decrease. Correlations (i.e., conditional overlap)
were determined using the Spearman’s rank test.

Methods, including strain maintenance, genotyping, RNA
interference, dauer analysis, and quantitative RT–PCR can be
found in the Supplemental Material.
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