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Abstract

TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one
mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis
machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-
starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of
constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently,
knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational
activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB
derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to
suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any,
role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP
mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of
TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in
microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum
stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.
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Introduction

TOP mRNAs encode more than ninety proteins of the

translational apparatus and are characterized by the presence of

an oligopyrimidine tract at their 59 terminus (59TOP motif), which

comprises their core translation cis-regulatory element [1]. The

translation of these mRNAs is selectively regulated by mitogenic

and oxygen signals that converge at the tuberous sclerosis complex

(TSC) dimer, TSC2-TSC21 [2,3]. The TSC1-TSC2 acts as a

GTPase-activating protein (GAP) for Ras-homolog enriched in

brain (Rheb), and thereby blocks Rheb activity toward its own

target, mammalian target of rapamycin (mTOR) [4,5]. mTOR

operates within two functionally and structurally distinct com-

plexes, mTOR complex 1 (mTORC1) and mTORC2 (reviewed in

[6,7]). The essential core components of mTORC1 are raptor

(regulatory-associated protein of mTOR) and mLST8 (mamma-

lian lethal with SEC thirteen 8), whereas, those of mTORC2 are

rictor (rapamycin-insensitive companion of mTOR), SIN1 (SAPK-

interacting 1) and mLST8.

Rheb-GTP operates as an activator of mTORC1 (reviewed in

[8]). Accordingly, deficiency in either TSC1 or TSC2 renders

mTORC1 activity completely refractory to mitotic arrest or

anoxic signal [3,9]. Most of the effects of mTORC1 are abolished

by rapamycin, an allosteric inhibitor, which exerts its inhibitory

effect when complexed with its intracellular receptor, the

immunophilin FKBP12 (FK506-binding protein) [10].

Once mTORC1 is activated it regulates protein synthesis by

direct phosphorylation of: (a) eukaryotic initiation factor (eIF) 4E-
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binding proteins (4E-BPs) at multiple sites, which consequently

dissociates from and derepresses eIF4E [11]; and (b) ribosomal

protein S6 kinase (S6K) at T389 [12], which becomes fully active

and affects protein synthesis machinery [1]. A third protein,

eukaryotic elongation factor 2 kinase (eEF2K), seems to be

indirectly phosphorylated and inactivated by mTORC1, thus

leading to dephosphorylation and activation of its substrate eEF2

(reviewed in [13])].

The mTORC2 complex has been implicated in the activation of

Akt and protein kinase C [14,15]. Although only mTORC1 is

acutely sensitive to the allosteric inhibitor, rapamycin, newly

developed competitive inhibitors that target the catalytic site of

mTOR have been shown to potently and directly inhibit both

complexes (reviewed in [16]).

Translational control of TOP mRNAs by mitogens or oxygen

relies on TSC1, TSC2 and Rheb, as deletion of either of the two

TSC proteins or overexpression of Rheb, renders TOP mRNAs

refractory to serum deprivation [3,17,18]. Accordingly, mTOR is

essential for transduction of mitogenic or oxygen signals to

translation efficiency of TOP mRNAs, as its knockdown represses

the insulin-induced translational activation of TOP mRNAs.

However, this mode of regulation appears to rely neither on

mTORC1 nor on mTORC2, as deficiency of raptor or rictor

exerts marginal or no inhibitory effect, respectively, on the

translation efficiency of TOP mRNAs [3,18].

TOP mRNAs are translationally regulated also by amino acid

sufficiency [19,20]. Amino acid starvation leads to rapid dephos-

phorylation of S6K1, which can be restored upon readdition of

amino acids in an mTORC1-dependent fashion ([6] and

references therein). Members of the Rag subfamily of Ras small

GTPases (RagA, B, C and D) and the trimeric complex,

Ragulator, are essential transducers of amino acids signals to

mTORC1 activity [8]. Amino acid stimulation elicits movement of

mTORC1 to the lysosomal surface, where Rheb and Ragulator

reside. The latter recruits Rag GTPases to the lysosomes in a p62-

and vacuolar H+-ATPase-dependent manner [21,22], and thereby

participates in mTORC1 activation [9,23]. In contrast, the

pentameric complex, GATOR1, inhibits the mTORC1 pathway

by functioning as a GAP for RagA, whereas the trimeric complex,

GATOR2 negatively regulates GATOR1 [24].

MicroRNAs (miRs) are short oligonucleotides that function as

major regulators of gene expression and function at the

posttranscriptional level [25]. It has previously been reported that

miR-10a binds the CG-rich sequence immediately downstream of

the 59TOP motif in TOP mRNAs. Furthermore, overexpression

of miR-10a selectively enhanced the synthesis of ribosomal

proteins in untreated cells and increased the polysomal association

of the respective mRNAs in amino-acid-starved cells [26]. These

results, therefore, imply that overexpressed miR-10a exerts its

positive role in the translational control of TOP mRNAs in a

59TOP motif-dependent manner.

Here, we set out to establish the pathway that transduce amino

acid signal to translation efficiency of TOP mRNAs. Our results

show that this pathway relies on TSC and mTOR, exhibits distinct

requirement for the small GTPase – RagB. Moreover, amino acid-

induced translational activation of these mRNAs, does not depend

on either of the two canonical complexes, mTORC1 and

mTORC2, or on microRNAs.

Materials and Methods

Materials used for treating cells, FK506 (20 mM) and puromycin

(3 mg/mL) were obtained from Sigma-Aldrich. Rapamycin

(20 nM) was from Sigma-Aldrich or Calbiochem. Torin-1

(50 nM) was kindly provided by N. Gray and D. Sabatini,

Whitehead Institute for Biomedical Research, Cambridge, MA.

Cell culture
Human embryonic kidney (HEK) 293 [27], HEK293T cells, as

well as MEFs from TSC2+/+/p532/2, TSC22/2/p532/2, [28],

TSC1+/+ and TSC12/2 [29], MDA-MB-231 (human breast

adenocarcinoma) [30] and RKO (human colon carcinoma) [31],

Dicer+/+ and Dicer2/2 hemangiosarcoma cells [3] were grown in

Dulbecco’s modified Eagle’s medium (DMEM) containing 10%

fetal calf serum, 2 mM glutamine, 100 u/ml penicillin and

0.1 mg/ml streptomycin. Mitotic arrest was achieved by incuba-

tion in serum-free medium for 48 h. Amino acid starvation was

carried out as previously described [20]. Serum and amino acid

starvation was attained by keeping the cells in DMEM (without

serum) for 32 h (TSC1 and TSC2) or 18 to 21 h (HEK293) and

then for additional 16 h (TSC1 and TSC2) or 3 to 6 h (HEK 293)

in Earle’s salt solution, MEM-Eagle vitamin solution, 0.37%

NaHCO3, 100 u/ml penicillin, and 0.1 mg/ml streptomycin.

HEK293 and HEK293T cells were transfected using polyethyle-

nimine (PEI) procedure. Briefly, 25 ml of 2 mg/ml PEI (Sigma-

Aldrich, average molecular weight 25,000) were added to 750 ml of

serum-free medium containing 12.5 mg of DNA. The solution was

mixed and kept for 5 min at room temperature prior to its

addition to 60 to 70% confluent cell culture in a 100 mm plate

containing 10 ml complete medium. The medium was changed

the next morning and cells were harvested about 48 h post-

transfection.

Polysomal fractionation and RNA analysis were performed as

previously described [3]. Typical polysomal profiles of cells with or

without amino acids and detailed distribution of rpL32 and actin

mRNA along these profiles have been previously shown [20].

Molecular probes
The isolated fragment probes used in the Northern blot analysis

were: a 0.97-kb fragment bearing the rpL32 processed gene, 4A

[32]; a 0.29-kb EcoRI-HindIII fragment containing mouse rpS16
cDNA; a 0.85-kb PCR generated fragment containing mouse rpS6
coding and flanking sequences [33]; a 1.15 kb PstI fragment

containing mouse a-actin cDNA [34]; 1.05 PstI fragment

containing rat ß-tubulin cDNA [35] and a 0.8-kb HindIII

fragment containing a hGH cDNA.

Western blot analysis
Immunoblotting was performed as described [36], using

antibodies against rpS6 (#2217), phospho rpS6 (Ser235/236

[#2211] or Ser240/244 [#2215]), phospho S6K1(Thr389)

[#9206], phospho Akt(ser473) [#4058], P-4E-BP(Thr37/46)

[#2855], ß-actin [#4967], a-tubulin [#2144], mTOR [#2972],

rictor [#2114] and raptor [#2280] (Cell Signaling Technology,

Beverly, MA, USA), as well as FLAG (F3165, Sigma Sigma-

Aldrich) and myc (SC-40, Santa Cruz). All antibodies were diluted

1:1000. Exposures were chosen so that the chemiluminescent

signals were within the linear response of the film and were

quantified by ImageMaster VDS (Amersham Pharmacia Biotech).

Knocking down and overexpression using lentiviral
vectors

Cloning of an shRNA for the non-relevant HcRed mRNA and

knockdown of mTOR and raptor were performed as previously

described [18]. The sequences of the HcRed sense and antisense

oligonucleotides are:

Translational Control of TOP mRNAs by Amino Acids
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GATCCCCGTATGCGCATCAAGATGTATTCAAGAGAT-

ACATCTTGATGCGCATACTTTTTGGAAA and AGCTTT-

TCCAAAAAGTATGCGCATCAAGATGTATCTCTTGAATA-

CATCTTGATGCGCATACGGG, respectively. Rictor was

knocked down using commercially available lentiviral vector that

confer puromycin resistance (TRCN0000074290, Sigma-Aldrich).

FLAG-pLJM1-based plasmids encoding FLAG-RagB and

FLAG-RagB (Q99L) were obtained from Addgene (No. 19313

and 19315, respectively) and utilized for generating the respective

lentiviruses for infection of HEK293 cells, as described above for

shRNA expressing lentiviruses.

The MICB coding sequence was inserted into the SIN18-

pRLL-hEFIap EGFP-WRPE instead of the GFP as previously

described [37].

Sponges anti-miR-10b and anti–miR-BART 1–5p (control)

were excised and cloned into the lentiviral vector SIN18-pRLL-

hEFIap EGFP-WRPE, downstream to the GFP cassette. Each

sponge consists of 6 adjacent binding sites for the relevant viral

miRNA, separated by a 4-nucleotide (AGAG) spacer [38].

Transfection and Luciferase assay
Dual luciferase PsiCheck2 reporter vectors containing either a

fragment from the 39-UTR of NCOR2 that bears miR-10a/10b

binding site (designated miR-10), or a negative control with a

mutated miR-10a/10b seed region (designated miR-10mut) [39]

were used. MDA-MB-231 cells expressing anti-miR-10b sponge or

a control sponge were grown in RPMI medium and plated in 6-

well format, at 66105 cells/well, just before the transfection took

place. Solution of 400 ml serum-free medium, linear PEI and

either 6 mg of miR-10 or miR-10mut DNA (in a ratio of 3:1) were

prepared and kept for 15 min. at RT before added to the cells.

Medium was changed in the next morning and 4 hours later cells

were washed twice with PBS. 150 ml of 16 Pasive Lysis Buffer

(Promega) were added to each well and cells were scrapped

vigorously with rubber policeman. The lysates were kept on ice for

10 minutes and then frozen at 270uC. Thawed lysates were

centrifuged at 9,300 g (4uC) for 10 minutes and aliquots contain-

ing 20 mg of protein were used for the assay. Luciferase assay was

performed using the Dual-Luciferase Reporter (DLR) Assay

System (Promega, USA) and Mithras LB 940 microplate (Berthold

Technologies).

Quantification of MICB and GFP expression
The expression of MICB on the cell surface was quantified by

flow cytometry using anti-MICB antibody (MAB1599, R&D

Systems), whereas that of GFP by its own fluorescence, using a

FACScan (Becton Dickinson Immunocytometry Systems, San

Jose, California, USA)

Quantification of miRs
Total RNA from Dicer+/+ and Dicer2/2 was prepared using

Ultraspec RNA (Biotecx Laboratories, Houston, Texas). miScript

Reverse Transcriptase kit and miScript SYBR Green PCR kit

(Qiagen, Duesseldorf, Germany) were used for relative quantifi-

cation of mature miRNA expression levels. Reverse transcription

for individual miRNAs or U6 snoRNA were performed according

to manufacturer’s instructions. Quantitative real-time PCR

(qPCR) of the cDNA products were performed using LightCycler

480 Real-Time PCR System (Roche). Analysis was performed

using the LightCycler 480 Software. A dilution series using a

known cDNA sample was used to generate a standard curve for

each assay. The threshold cycle (CT) was determined by automatic

assignment of the threshold at the exponential phase of the

amplification curves. The following primers were used for qPCR

of miR-10a TACCCTGTAGATCCGAATTTGT, miR-140

CAGTGGTTTTACCCTATGGTAG, and U6 GATGACACG-

CAAATTCGTGAA. Quantitative PCR analysis of mature

miRNA in RKO cells as described [40].

Results

The translation of TOP mRNAs is resistant to amino acid
deprivation in cells deficient of TSC1 or TSC2

The TSC1-TSC2 complex appears to mediate the translational

repression of TOP mRNAs upon starvation for serum or oxygen

[3,18]. However, conflicting results regarding the role of this

complex in transduction of amino acid signal to mTORC1 activity

[41–44], rendered questionable its involvement also in transducing

the signal of amino acid starvation to translational repression of

TOP mRNAs. To directly address this issue, we monitored the

translation efficiency of TOP mRNAs, as can be inferred from

their relative polysomal association, when TSC22/2 or TSC12/2

MEFs were deprived of amino acids. Fig. 1A demonstrates that

the translation of rpS6 mRNA was refractory to amino acid

starvation in TSC22/2 MEFs and rpL32 mRNAs in either of

these cell lines, in contrast to the apparent sensitivity of these

mRNAs in the wild-type counterparts. It is worth noting that the

pronounce decrease in the translation efficiency of actin or tubulin

mRNA upon amino acid starvation of TSC2+/+ and TSC22/2

MEFs (Fig. 1A), relative to that observed in other cell types

examined in this study, might simply reflect a cell type-specific

response.

Interestingly, the phosphorylation of 4E-BP as well as that of

rpS6, was rescued in amino acid-starved TSC22/2 MEFs

(Fig. 1B). Previous experiments with the same cell lines have

shown an inconsistent sensitivity of the phosphorylation of S6K1

and rpS6 when TSC22/2 MEFs were deprived of both serum and

amino acids [42–44]. Hence, we set out to examine the

translational behavior of rpL32 mRNA in TSC22/2 MEFs that

underwent combined starvation. Figs. 1 clearly shows that the

deficiency of either TSC1 or TSC2 can rescue the translation

efficiency of this mRNA in the absence of both serum and amino

acids. These results imply that translational repression of TOP

mRNAs by starvation for amino acids, or for amino acids and

serum, relies on both TSC1 and TSC2. It is likely therefore, that

silencing of the TSC1-TSC2 complex constitutes a critical step

toward translational activation of TOP mRNAs by amino acids.

mTOR is involved in translation control of TOP mRNAs
Rapamycin is a widely used tool for establishing the role of

mTOR in many biological processes. However, while this drug

inhibited mTORC1 activity with a half-time of about 2 min

(Fig. 2A and [45]), it repressed the translation of rpL32 mRNA

much more slowly, reaching its maximal effect after 2 h (Fig. 2B).

This and previous conflicting reports on the translational

repression of TOP mRNAs by rapamycin [2,18,20], prompted

us to verify the role of mTOR in signaling toward these mRNAs.

mTOR knockdown, using lentivirus expressing mTOR shRNA,

resulted in downregulation of both mTORC1 activity, as can be

judged by the phosphorylation status of S6K and translational

activation of rpL32 mRNA upon amino acid stimulation (Figs. 2C

and 2D).

The critical role played by mTOR during mouse development

has been demonstrated by the death of mTOR-deficient mice

shortly after implantation, due to impaired cell proliferation in

both embryonic and extraembryonic compartments [46]. It can be

argued, therefore, that the repressed translation of TOP mRNAs

might reflect a secondary response, due to a mitotic arrest in

Translational Control of TOP mRNAs by Amino Acids

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e109410



mTOR knocked down cells. To directly address this issue, we

utilized a hyperactive mutant of mTOR (FLAG-mTORSL1+IT)

that contains four amino acid substitutions within the kinase

domain (I2017T, V2198A, L2216H and L2260P), previously

shown to rescue mTORC1 activity in amino acid-starved HeLa

cells [47]. Indeed, expression of this mutant, but not of wild-type

mTOR, alleviated the inhibition of mTORC1 in amino acids-

starved HEK 293 cells (Fig. 2E), as well as relieved the

translational repression of rpL32 mRNA (Fig. 2F). Taken togeth-

er, these results imply that mTOR is involved in amino acid

signaling to translational efficiency of TOP mRNAs.

Translational activation of TOP mRNAs by amino acids is
resistant to raptor or rictor deficiency

Establishing the role of mTOR in amino acid-mediated

translational activation of TOP mRNAs has further underscored

the discrepancy between the promptness and sensitivity of

mTORC1 response to rapamycin and the relative rapamycin

resistance exhibited by TOP mRNAs (Fig. 2 and [20]). To

examine whether mTORC1 is involved at all in amino acid-

induced translational activation of these mRNAs, we knocked

down its core constituent, raptor, in HEK293 cells. This silencing,

indeed, led to a pronounced decrease in raptor level and

mTORC1 activity, as exemplified by the hypophosphorylation

of S6K1 and rpS6 (Figure 3A). However, despite this efficient

elimination of raptor, the translational activation of rpL32 mRNA

by amino acids was unaffected (Fig. 3B).

The lack of an effect of raptor knockdown prompted us to

examine the role ofmTORC2 in this mode of regulation. The

results presented in Figure 3A and 3B clearly show that amino

acid-induced translational activation of rpL32 mRNA was

completely refractory to the loss of rictor, and consequently to

that of mTORC2 activity (as can be judged by the hypopho-

sphorylation of Ser473 in Akt in rictor knocked down cells).

Notably, we have previously utilized inducible raptor and rictor

cell lines (iRapKO and iRicKO, respectively) to demonstrate the

dispensability of mTORC1 or mTORC2 in insulin or oxygen

induced mTOR translational activation of TOP mRNAs [3,18].

However, these cell lines exhibit an inherent resistance to

prolonged amino acid starvation (data not shown), and therefore

could not be used here. Nevertheless, collectively our results imply

that amino acid-stimulated translational activation of TOP

mRNAs does not rely on raptor or rictor.

Figure 1. TSC2 or TSC1 deficiency rescues TOP mRNAs from translational repression in amino acid-starved cells. (A) TSC2+/+ and
TSC22/2 as well as TSC1+/+ and TSC12/2 MEFs, were amino acid-starved for 16 h (2AA), amino acid-starved and then refed for 2 h, or amino acid
staved during the last 16 h of 48 h serum starvation (2AA 2serum). Subsequently cells were harvested and cytoplasmic extracts were prepared.
These extracts were centrifuged through sucrose gradients and divided into polysomal (P) and subpolysomal (S) fractions. RNA from equivalent
aliquots of these fractions was analyzed by Northern-blot hybridization with cDNAs for rpL32 mRNA (a TOP mRNA) and actin mRNA (a non TOP
mRNA) (in the case of TSC2 also with cDNAs corresponding to rpS6 and tubulin). The radioactive signals were quantified, and the relative translational
efficiency (% of the P signal relative to the P+S signals) of each mRNA is numerically presented beneath the autoradiograms as percentage of the
mRNA engaged in polysomes. These figures are expressed as an average 6 SEM of the number of determinations in parenthesis, or the average with
the individual values in parenthesis, if only two determinations are presented. (B) TSC2+/+, TSC22/2 MEFs were untreated or amino acid-starved for
16 h and then harvested. The cytoplasmic proteins were subjected to Western blot analysis using the indicated antibodies.
doi:10.1371/journal.pone.0109410.g001

Translational Control of TOP mRNAs by Amino Acids
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mTOR regulates TOP mRNA translation through its kinase
activity

One plausible explanation for the apparent ability of mTOR to

regulate TOP mRNA translation in an either mTORC1- or

mTORC2-independent fashion might be its role as a scaffold

protein, rather than an active kinase. Indeed, such a role has

previously been proposed for regulation of dystrophin gene

expression by mTOR [48]. Two complementary experimental

approaches were used to directly address this possibility: a)

HEK293 cells were transfected with wild type mTOR [49],

rapamycin-resistant mTOR mutant (mTOR-rr) that contains

S2035I substitution, or catalytically inactive version of mTOR-rr

that contains an additional D2338A substitution (mTOR-rr-kd)

[50]. Cells were amino acid-starved and then were refed in the

absence or presence of rapamycin. The results show that

overexpression of mTOR-rr, but not mTOR-rr-kd or wild type

mTOR, can rescue both mTORC1 activity (Fig. 4A) and the

translation efficiency of TOP mRNAs (Fig. 4B). b) HEK293 cells

were amino acid-starved and then were refed with or without

Torin1, a selective ATP-competitive mTOR inhibitor that can

block all examined mTOR activities [3,51]. Indeed, this inhibitor

fully suppresses the amino acid-induced translational activation of

rpL32 mRNA, to the same degree (about 50% in polysomes) as do

rapamycin and mTOR knockdown (compare Fig. 4D with

Figs. 2B and 2D). Taken together, these results clearly attest to

the positive regulatory role of mTOR catalytic activity in amino

acid-induced translational activation of TOP mRNAs.

The relative resistance of amino acid-induced TOP mRNAs

translation to raptor or rictor knockdown on the one hand (Fig. 3),

and the apparent requirement for mTOR activity on the other

(Fig. 4), posed a question whether FKBP12, which is known to

mediate the inhibition of mTOR by rapamycin, is also involved in

the translational repression of these mRNAs. To this end, we

utilized FK506, a small molecule that competes with rapamycin

for binding to FKBP12. Indeed FK506 can relieve mTOR

inhibition, as monitored by phosphorylation of S6K1 and rpS6

(Fig. 5A), as well as the translational repression of TOP mRNAs

(Fig. 5B).

Collectively, our results indicate that rapamycin suppresses the

amino acid-induced translational activation of TOP mRNAs by

the availability of FKBP12, as it does for mTORC1 and

Figure 2. mTOR mediates amino acid-induced translational activation of TOP mRNAs. (A) Kinetics of the effect of rapamycin on mTORC1
activity. 293 cells were amino acid-starved for 2 h and then refed for the indicated time in the presence or absence of 20 nM rapamycin, after which
cells were harvested. The cytoplasmic proteins were subjected to Western blot analysis with anti-rpS6 or anti-Phospho-rpS6 antibodies. The
chemiluminescent signals of phospho rpS6 were quantified and normalized to those obtained for rpS6 within the same protein extract. The results
are numerically presented relative to those obtained for amino acid-starved cells (time zero), which were arbitrarily set at 1. (B) Kinetics of the effect of
rapamycin on polysomal association of TOP mRNAs. HEK293 cells were amino acid-starved for 3 h (time zero), and then refed in the absence (open
symbols) or presence (filled symbols) of 20 nM rapamycin (rapa). At the indicated times cells were harvested and cytoplasmic extracts were subjected
to polysomal analysis. The percentage of mRNA in polysomes at each time point is presented as an average of at least 2 measurements. (C) HEK293
cells were infected with viruses expressing HcRed (Red) shRNA or mTOR shRNA1. Cells were amino acid-starved for 3 h followed by 3 h amino acid
stimulation on day 4 post-infection. The abundance of mTOR and its activity were monitored by Western blot analysis of cytoplasmic proteins with
the indicated antibodies. (D) Cytoplasmic extracts from cells described in (C) were subjected to polysomal analysis. (E) and (F) HEK293 were
transiently transfected with plasmid-based vectors expressing either wild-type (WT) mTOR or enhanced (En) mTOR. 48 h later cells were amino acid-
starved for 3 h and harvested. Cytoplasmic proteins were subject to Western blot analysis (E) and cytoplasmic extracts to polysomal analysis (F). The
percentage of mRNA in polysomes is presented as an average 6 SEM of three experiments.
doi:10.1371/journal.pone.0109410.g002
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mTORC2 activity [52], even though both raptor and rictor seems

dispensable for the translational activation.

Over expression of constitutively active RagB can
derepress the translation of TOP mRNAs in amino acid-
starved, but not in oxygen-deprived cells

Rag GTPases bind raptor and thus mediate amino acid

signaling to mTORC1 [9]. Accordingly, expression of constitu-

tively active mutant forms of RagA or B (GTP-bound) can protect

mTORC1 activity in amino acid-deprived cells [9,53]. However,

the establishment of raptor as dispensable for amino acid- or

oxygen-mediated translational activation of TOP mRNAs (Fig. 3B

and [3]), raised a question regarding the role of Rag in this mode

of regulation. To examine this issue, we measured the effect of

FLAG-tagged wild type RagB or a mutant [RagB (Q99L)] that

constitutively binds GTP (RagBGTP), on the translation efficiency

of TOP mRNAs under stress conditions. Our results show that

RagBGTP, but not wild type RagB, exerts complete, partial or no

protective effect on rpS6 phosphorylation in cells that were amino

acid-starved, starved for both serum and amino acids, or oxygen-

deprived cells, respectively (Figs. 6A). Notably, RagBGTP exerts a

similar stress-specific relief of the translational repression of rpL32

and rpS6 mRNAs (Fig. 6B), suggesting that RagB primarily

mediates signals emanating from amino acids.

TOP mRNAs are not positively regulated by microRNAs
The demonstration that overexpression of miR-10a increases

the polysomal association of TOP mRNAs in amino acid-starved

cells has implied that this miR positively regulates the translation

of TOP mRNAs [26]. However, based on multiple examples of

erroneous conclusions regarding the function of an overexpressed

protein [19], we set out to examine the role of miRs in this mode

of regulation by a loss-of-function approach. Notably, miR-10a

and miR-10b differ by just one nucleotide at a non-seed sequence,

yet display a similar enhancing effect on the translation of a

reporter TOP mRNA [26]. Likewise, miR-10a and miR-10b are

potent inducers of neuroblastoma cell differentiation through

targeting of nuclear receptor corepressor 2 (NCOR2) [39]. Hence,

we initially used the miRNA sponge technique that can block the

activity of miR-10b and conceivably that of miR-10a as well [54].

The location of the sponge sequence downstream of the GFP

open reading frame enabled us to assess the sponge activity. Thus,

the sequestration of the relevant miRNA in MDA-MB-231 cells

indeed led to reduced GFP fluorescence intensity (Fig. 7A).

Moreover, miR-10b has been implicated in downregulation of

the stress-induced cell surface molecule, MICB (MHC class I chain

related gene B) [38], and therefore, titrating out this miR resulted

in increased expression of MICB (Fig. 7A). Next, we set to

examine the ability of miR-10b sponge to derepress the expression

of a luciferase encoded by an mRNA that contained in its 39

untranslated region (39 UTR) the wild-484 bp-long 39 UTR from

NCOR2 mRNA (designated as miR-10a) [39]. To this end, MDA-

Figure 3. Raptor and rictor are dispensable for translational activation of TOP mRNAs by amino acids. (A) HEK293 cells were infected
with viruses expressing Red shRNA, raptor shRNA (Rap) or rictor shRNAs (Ric). The abundance of raptor or rictor, as well the phosphorylation status of
direct and indirect substrates of the respective complexes, mTORC1 and mTORC2 (left and right, respectively), was monitored by Western blot
analysis. (B) HEK293 cells infected with viruses expressing HcRed, raptor or rictor shRNA were amino acid starved for 3 h (2AA) or starved and then
refed for 3 h (2AAR+AA). Cytoplasmic extracts from these cells were subjected to polysomal analysis and the data are presented as described in the
legend to Fig. 2F. Numbers above bars are individual values, when only two measurements were performed.
doi:10.1371/journal.pone.0109410.g003
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MB-231 cells were transiently transfected with miR-10a luciferase

reporter. This reporter construct showed a small (about 19%), yet

statistically significant, increase in luciferase activity expressing

mir-10b sponge, but not a control sponge. Moreover, a reporter

containing NCOR2 39 UTR with mutated miR-10a binding motif

(designated miR-10a mut), failed to respond to the expression of

the miR-10b sponge (Fig. 7B).

Collectively, these results indicate that miR-10b sponge can

titrate out both miR-10a and miR-10b, and thereby set the stage

for verifying the role of these miRs in controlling the translation

efficiency of TOP mRNAs. Fig. 7C, clearly demonstrates that

expression of a mir-10b sponge exerted no effect on the translation

efficiency of rpS6 mRNA, when compared to untreated cells or

cells transfected with a control sponge. It appears therefore, that

miR-10a or miR-10b are not critical for efficient basal translation

of TOP mRNAs. It can be argued that the positive effect of these

miRs can only be detected under stress conditions. Hence, we set

out to examine the effect of global deficiency of miRs on

translation efficiency of TOP mRNAs under such conditions.

First, we knocked down Drosha, the nuclear RNase III enzyme

that initiates the processing of miRs. The efficient silencing of

Drosha (Fig. 7D) indeed, nearly nullified the abundance of

representative miRs (Fig. 7E). This global deficiency in miRs

had no appreciable effect on the proliferation rate of the respective

cells (data not shown), yet it slightly decreased the basal

translational efficiency of rpL32 mRNA (see Control in Fig. 7F).

Nonetheless, it failed to block the translational activation of this

mRNA in response to refeeding of starved cell with either amino

acids or serum (Fig. 7F). These results imply that miRs are not

required for the recovery of TOP mRNA translation from the

nutritional stress. Unexpectedly, however, cells infected with the

empty vector were the ones that exhibited minor or incomplete

recovery of the translation efficiency of rpL32 mRNA following

amino acid or serum refeeding, respectively. The reason for this

effect of the empty virus is currently unclear.

The relative inefficient translation of rpL32 mRNA in Drosha

knockdown cells (Fig. 7F) could have reflected the requirement for

one or more miRs for efficient basal translation of TOP mRNAs,

or alternatively, a side effect of the infection by the respective

lentivirus. In order to distinguish between these two options, we

took advantage of a hemangiosarcoma cell line that had been

derived from mouse deficient for Dicer, the cytoplasmic RNase

that conducts the second processing step of miRs [55]. These cells,

indeed, exhibited an extensive decrease in the abundance of

representative miRs (Fig. 8A), yet showed an increase, rather than

a decrease, in the basal translation efficiency of both rpL32 and

rpS6 mRNAs. These results clearly show that if miRs play a role in

this mode of regulation, it is a negative one, rather than a positive

Figure 4. The kinase activity of mTOR is essential for translational control of TOP mRNAs. (A) HEK293 cells were transfected with vectors
expressing mTOR-wt, mTOR-rr or mTOR-rr-kd, two days later the cells were amino acid-starved for 3 h followed by 3 h refeeding without or with
20 nM rapamycin. Cytoplasmic proteins derived from the cells were subjected to Western blot analysis with the indicated antibodies. B) Cytoplasmic
extracts derived from cells treated as described in (A), were subjected to polysomal analysis. C) HEK293 cells were amino acid-starved for 3 h, or
amino acid-starved for 3 h followed by 3 h refeeding without or with 50 nM Torin1. Cytoplasmic proteins derived from the cells were subjected to
Western blot analysis with the indicated antibodies. D) Cytoplasmic extracts derived from cells treated as described in (C) were subjected to
polysomal analysis and the percentage of mRNA in polysomes is presented as an average 6 SEM of three experiments.
doi:10.1371/journal.pone.0109410.g004
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one. Consistently, TOP mRNAs were downregulated by serum

starvation of Dicer2/2 cells to a lesser extent than in their Dicer+/+

counterparts and underwent complete recovery following serum

refeeding (Fig. 8B). Evidently, the translational repression of TOP

mRNAs under serum starvation results from mitotic arrest [56].

However, the relative resistance of Dicer2/2 cells to serum

starvation cannot be ascribed to an acquired resistance to this

stress, as serum starvation had a similar inhibitory effect on the

proliferation of both cell genotypes (Fig. 8C). Moreover, it cannot

be attributed to the conversion of the mTOR in Dicer2/2 cell to a

constitutively active one, as it was readily inhibited by Torin 1

(Fig. 8B). Notably, Dicer2/2 cells, like iRapKO and iRicKO

MEFs, exhibit an inherent resistance to prolonged amino acid

starvation (data not shown), and therefore could not be used for a

study of the translational behavior of their TOP mRNAs under

amino acid deficiency. Collectively, our results with both Drosha

knockdown and Dicer knockout, indicate that miRs are not

required for efficient translation of TOP mRNAs or for their

translational activation following stimulation by either amino acid

or serum.

Discussion

Biogenesis of the protein synthesis machinery, and particularly

of ribosomes, is a highly resource-consuming process [57]. Thus,

cells that encounter unfavorable conditions attenuate the produc-

tion of components of the translational machinery and cease to

grow [58]. Indeed, the present report demonstrates that mTOR-

sensitive translational repression of TOP mRNAs is one mecha-

nism that is exploited by cells to selectively downregulate wasteful

biogenesis of the protein synthesis machinery under nutritional

stresses.

mTOR operates as a translation activator of TOP mRNA
translation outside of its canonical complexes

The positive regulatory role of mTOR in translational

activation of TOP mRNAs is supported by results obtained by

two complementary experimental approaches: a) the inhibition of

amino acid-induced recruitment of TOP mRNAs into polysomes

in mTOR knockdown cells or by Torin 1 treatment (Figs. 2D,

4D); and b) the ability of a hyperactive mutant of mTOR to

protect the translation of these mRNAs from amino acid

deficiency (Fig. 4B). Moreover, the fact that mTOR must be

enzymatically active to exert this role indicates that it does not

function merely as a scaffold protein (Fig. 4B). However, data

presented here demonstrate that the involvement of mTOR in

amino acid-activation of TOP mRNA translation depends on

neither of the two canonical complexes, mTORC1 and mTORC2

(Figs. 3B). These results coincide with our previous reports on the

minor, if at all, reliance of insulin- and oxygen-induced

translational activation of TOP on either of these complexes

[3,18]. Not surprisingly, therefore, the role assigned to either S6K

or 4E-BP, the two best-characterized mTOR effectors, in

translational control of TOP mRNAs has been refuted [59,60].

A question can be raised as to how amino acid-induced

translational activation of TOP mRNA is repressed by rapamycin

(Fig. 2) if it does not involve raptor. However, we have already

demonstrated that TOP mRNA translation is rendered rapamy-

cin-hypersensitive in raptor-deficient cells [18]. Furthermore,

mTOR has been shown to doubly phosphorylate IMP2, another

mTOR target, in a raptor-independent fashion. Thus, knockdown

of mTOR strongly inhibited IMP2 phosphorylation in cells,

whereas depletion of raptor had no effect on this modification in
vitro or in vivo [61]. In light of these supportive data, we propose

that mTOR regulates TOP mRNAs translation, and possibly a

subset of other targets, through as yet unidentified third complex,

or in a complex-independent fashion, and therefore neither raptor

nor rictor is critical for its activity toward these targets.

TSC mediates translational repression of TOP mRNAs
under any stress, whereas the RagB transduces only a
subset of stimuli to translation efficiency of TOP mRNAs

TOP mRNAs translation, like mTORC1 activity, is protected

from oxygen or serum starvation in cells lacking either TSC1 or

TSC2 [3,18]. Contrarily, it has been widely argued that the

TSC1-TSC2 complex plays no role in transducing the negative

signal resulting from amino acid starvation to mTORC1 activity

(reviewed in [62,63]. However, a recent study has shown that

inhibition of mTORC1 by amino acid deprivation is indeed

mediated by the TSC1-TSC2 complex. The latter is required for

the release of mTORC1 from its site of action, the lysosomal

membrane, and therefore, cells lacking TSC fail to efficiently turn

off mTORC1 and consequently their response to amino acid

starvation is compromised [64]. Results presented here clearly

demonstrate that both TSC1 and TSC2 are critical, not only for

mTORC1 inhibition, but also for translational repression of TOP

mRNAs upon amino acid starvation (Fig. 1). It should be pointed

out, however, that since amino acid-induced translational activa-

Figure 5. Rapamycin represses the translation of TOP mRNAs
in an FKBP-12-dependent fashion. (A) HEK293 cells were amino
acid-starved for 3 h and then refed for 3 h in the absence or presence
of rapamycin (20 nM), FK506 (20 mM), or both. Cytoplasmic proteins
were subjected to Western blot analysis. (B) HEK293 cells were amino
acid-starved for 3 h (2AA), refed for 3 h (2AAR+AA) in the absence or
presence of rapamycin (20 nM), FK506 (20 mM) or both. Cytoplasmic
extracts were subjected to polysomal analysis.
doi:10.1371/journal.pone.0109410.g005
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tion of TOP mRNAs does not rely on mTORC1 (Fig. 3), it is

conceivable that also TSC1-TSC2 complex exerts its repressive

effect on TOP mRNA translation in an mTORC1-indepndent

fashion.

Unlike TSC1-TSC2 complex, that convey inhibitory signals to

TOP mRNA translation or to mTORC1 activity emanating from

all examined stress conditions, RagBGTP can partially derepress

TOP mRNAs in cells starved for amino acids or amino acids and

serum, but not cells subjected to anoxic conditions (Fig. 6).

Evidently, RagBGTP is able to confer on mTORC1 complete

resistance to amino acid starvation, and it does so in a raptor-

dependent fashion [9]. However, the hierarchical relationships

between RagB and mTOR in transduction of amino acids to TOP

mRNA translation, a pathway that does not rely on raptor, is yet

to be established.

The nature of the translational trans-acting factor of TOP
mRNAs is still elusive

The discrete translational behavior of TOP mRNAs implies that

the 59 TOP motif is recognized by a specific translational trans-
acting factor that transduces physiological cues into a selective

translational control of these mRNAs. However, more than two

decades of a search for such a regulator(s) have mostly yielded

candidates that have failed to withstand the test of time.

The microRNA, miR-10a, was claimed to play both a selective

and a positive role in translational control of TOP mRNAs in

response to fluctuations in amino acid sufficiency [26]. However,

this conclusion has been based primarily on overexpression

experiments, which are subject for erroneous conclusions (dis-

cussed in [19]). Indeed, data based on loss-of-function approach

failed to support the role of miR-10a or its functionally tween,

miR-10b, as a determinant of basal translation efficiency of TOP

mRNAs (Fig. 7C). Moreover, global microRNA deficiency in

Drosha knockdown cells, failed to suppress translational activation

of TOP mRNAs upon readdition of either amino acids or serum to

starved cells (Fig. 7F). Likewise, experiments conducted with Dicer
knockout cells revealed that translational activation of TOP

mRNAs upon serum refeeding or resuming oxygen supply was not

affected by microRNA deficiency (Fig. 8 and [3]). Collectively,

these observations appear to disprove a positive role of micro-

RNAs in translational control of TOP mRNAs. Nevertheless,

based on the apparent higher translation efficiency of TOP

mRNAs in Dicer2/2 cells, we cannot exclude the possibility that

the basal translation efficiency of these mRNAs is downregulated

by one or more microRNAs. Indeed, we have previously shown

that Dicer deficiency leads to constitutive activation of mTOR [3],

and therefore the higher translation efficiency reported here

(Fig. 8B) for Dicer2/2 cells might reflect this phenotypic change.

A previous report has demonstrated that two stress granule

(SG)-associated RNA-binding proteins, T-cell intracellular anti-

gen-1 (TIA-1) and TIA-1-related (TIAR), assembled onto the first

39 nucleotides of TOP mRNAs in amino acid-starved cells. This

interaction resulted in a selective accumulation of TOP mRNAs in

SG and their unloading from polysomes, as well as decreased

synthesis of TOP mRNA-encoded proteins [65]. Furthermore,

simultaneous knockdown of both proteins derepressed TOP

mRNA translation in amino acid-, but not oxygen-, deprived

cells, implying their critical, yet selective, role in amino acid

starved cells [3,65].

The translational repressor, 4E-BP, is yet another candidate

proposed to carry out the translational repression of TOP mRNAs

[66]. However, a recently published report, has shown that the

Figure 6. Overexpression of RagBGTP can derepress TOP mRNA translation in amino acid-starved cells, but not in cells deprived of
oxygen. (A) HEK293 cells were infected with lentiviral expression vectors encoding FLAG-RagB or FLAG-RagBGTP. 48 h post infection cells were
subjected to selection by puromycin and 48 h later were either kept untreated (+), amino acid-starved for 8 h (2AA), amino acid starved during the
last 3 h of 24 h serum starvation (–Ser/AA) or deprived of oxygen (2O2) for 16 h. Cells were harvested and their cytoplasmic proteins were subjected
to Western blot analysis using the indicated antibodies. (B) Polysomal analysis of cytoplasmic extracts from cells treated as describe in (A).
doi:10.1371/journal.pone.0109410.g006
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Figure 7. Knockdown of miRs fails to suppress translational activation of TOP mRNAs. (A) MDA-MB-231 cells were infected with lentivirus
expressing either anti-miR 10b sponge or anti-miR-BART 1–5p sponge (control). The fluorescent signals of MICB and GFP were analyzed by FACS. The
mean intensity of MICB or GFP in the control miR–transduced cells was arbitrarily set up to be 1, and the relative increase in the MICB expression or
the decrease in the GFP fluorescence in sponge-10b–transduced cells was calculated accordingly (individual numbers are presented within the bars).
(B) MDA-MB-231 cells infected with lentiviruses described in (A) were transiently transfected with Dual luciferase PsiCheck2 reporter vectors. These
vectors contained within the 39 UTR of the Renilla luciferase either a fragment from the 39-UTR of NCOR2 that bears miR-10a/10b binding site
(designated miR-10), or a negative control with a mutated miR-10a/10b seed region (designated miR-10mut). The Renilla to Firefly activity ratio (R/FF)
was calculated for each sample and the average obtained for the miR-10b sponge-infected cells was normalized to that obtained for the control
sponge-infected cells, which arbitrarily was set at 1.0. (*) p,0.001 versus miR-10a transfected cells (n = 8). (C) MDA-MB-231 cells that were either kept
uninfected (None), expressed anti-miR 10b sponge or control sponge (Control) were kept untreated and cytoplasmic extracts from these cells were
subjected to polysomal analysis. (D) and (F) RKO cells infected with Sin 18, an empty lentiviral vector (EV), or by lentivirus expressing shDrosha RNA.
Cells were either untreated [Control in (F)], starved for serum for 19 h and during the last 3 h also for amino acids and then either kept without serum
and amino acids [2 in (D); 2AA in (F)] or refed for just amino acid for additional 2 h [+ in (D); 2AAR+AA in (F)]. Similarly infected cells were serum
starved for 48 h [2in (D); –Serum in (F)] or serum starved for 48 h and then serum refed for 3 h [+ in (D); –Ser R+Ser in (F)]. Cells were harvested and
subjected to Western blot analysis with the indicated antibodies (D) or subjected to polysomal analysis (F). (E) Total RNA was prepared from RKO cells
infected with either empty lentiviral vector (EV) or lentivirus expressing shDrosha RNA. The abundance of each of the indicated miRs in Drosha
knockdown cells was normalized to that in cells infected with empty vector, which was arbitrarily set at one.
doi:10.1371/journal.pone.0109410.g007
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TOP mRNAs are translationally regulated by physiologically

relevant stresses, like anoxia or serum starvation, in a 4E-BP-

independent manner [3].

Finally, LARP1, an RNA-binding protein, has been implicated

as positive regulator of TOP mRNA translation [67]. Thus,

LARP1 deficiency led to a selective reduced recruitment of TOP

mRNAs to polysomes, relative to non-TOP mRNAs, which was

accompanied by a decrease in the abundance of TOP mRNA-

encoded proteins. However, the selectivity of LARP1 is still

questionable, since its silencing reduced the rate of global protein

synthesis by 2 to 2.5-fold [67]. Moreover, its activity has not been

examined under any physiological stress.

In summary, in light of the conflicting results and the missing

information, the nature of the proximal trans-acting factor and its

mode of action in translational control of TOP mRNAs still

remains elusive.
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