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The human intestine is a large and delicately balanced organ, responsible for efficiently
absorbing nutrients and selectively eliminating disease-causing pathogens. The gut archi-
tecture consists of a single layer of epithelial cells that forms a barrier against the food
antigens and resident microbiota within the lumen.This barrier is augmented by a thick layer
of mucus on the luminal side and an underlying lamina propria containing a resident popu-
lation of immune cells. Attempted breaches of the intestinal barrier by pathogenic bacteria
result in the rapid induction of a coordinated innate immune response that includes release
of antimicrobial peptides, activation of pattern recognition receptors, and recruitment of
various immune cells. In recent years, the role of epithelial cells in initiating this immune
response has been increasingly appreciated. In particular, epithelial cells are responsible
for the release of a variety of factors that attract neutrophils, the body’s trained bacterial
killers. In this review we will highlight recent research that details a new understanding
of how epithelial cells directionally secrete specific compounds at distinct stages of the
inflammatory response in order to coordinate the immune response to intestinal microbes.
In addition to their importance during the response to infection, evidence suggests that
dysregulation of these pathways may contribute to pathologic inflammation during inflam-
matory bowel disease.Therefore, a continued understanding of the mechanisms by which
epithelial cells control neutrophil migration into the intestine will have tremendous ben-
efits in both the understanding of biological processes and the identification of potential
therapeutic targets.

Keywords: hepoxilin, eicosanoids, neutrophil migration, Salmonella, intestinal inflammation, lipoxygenase, MRP2,
lipid chemoattractant

NEUTROPHILS: CRITICAL EFFECTORS OF THE INNATE
IMMUNE RESPONSE
Most microbes encountered are non-pathogenic, and the human
intestine is host to trillions of harmless or beneficial bacteria. The
challenge for the gut immune system is to detect and defend against
pathogenic invaders, while protecting commensals and host cells
from a potentially damaging inflammatory response. Neutrophils
are phagocytic innate immune cells that provide a first line of
defense against bacterial infection [reviewed in (1)]. These cells
are characterized by their polymorphic nuclei and short half-life,
surviving approximately 9 h in circulation (2). Neutrophils are
key components of the inflammatory response and are recruited
following infection or sterile wounding. In addition to provid-
ing immune protection when barriers are breached, it has been
suggested that neutrophils may contribute directly to resolution
and recovery (3, 4). Genetic deficiencies in neutrophil function,
such as mutations in the NADPH oxidase genes in patients with
chronic granulomatous disease, result in severe immune defects
and increased sensitivity to microbial infection (5). After migrat-
ing to effector sites, neutrophils kill pathogens in two distinct
ways. Intracellular killing occurs by engulfment of bacteria and
formation of a phagosome, which then fuses with intracellular
granules to create a phagolysosome where microbes are killed by

oxidative and non-oxidative mechanisms. Neutrophils also con-
tribute to extracellular killing by discharging granular contents,
releasing proteases, iron-binding proteins, defensins, and enzymes
that catalyze formation of reactive oxygen and nitrogen species
[reviewed in (1, 6)]. Additionally, neutrophils release “neutrophil
extracellular traps” (NETs), structures made up of bacteria, his-
tones, and attached granule enzymes that combine to disable and
kill bacteria (7, 8). Once they have achieved their function, neu-
trophils die via apoptotic or non-apoptotic means and are cleared
by macrophages during resolution of infection, although recent
studies have challenged this paradigm of one-way neutrophil
migration (9).

NEUTROPHIL MIGRATION INTO THE INTESTINE: GETTING TO
THE SITE OF INFECTION
Leukocytes migrate to their sites of activity via a carefully regulated
multistep adhesion cascade [reviewed in (4, 10–12)]. Activated
neutrophils first adhere to the endothelial cells that line the blood
vessels, and then migrate across the endothelium and through
the extracellular matrix to arrive at effector sites within the tis-
sues. This occurs via a stepwise process consisting of tethering
and rolling, activation, adhesion, and finally diapedesis. The exit
sites for leukocyte emigration are the post-capillary venules, which
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are lined with endothelial cells expressing ligands that facilitate
leukocyte adhesion. Neutrophils move through the bloodstream
at a high flow rate, and the initial tethering process serves to
slow the neutrophil’s movement and allow it to “roll” along the
endothelial cell surface in order to sample for other potential sig-
nals. This tethering occurs via interaction of lectins and lectin
receptors, and in the intestine is mediated primarily by the bind-
ing of endothelial P-selectin to neutrophil P-selectin glycoprotein
ligand 1 (PSGL-1) (13–15). Rolling neutrophils become activated
when they encounter endothelium-bound chemokines, leading
to signaling through G protein-coupled receptors (GPCRs). This
results in activation of β2 (CD18) integrins on the neutrophil sur-
face, which interact with cell adhesion molecules (e.g., ICAM-1)
and cause firm adhesion to the endothelium. This binding, though
reversible, is stable for many hours and allows the cell to extravasate
through the endothelial cell layer in order to reach its target site.

During inflammation of the intestinal mucosa, neutrophils
that migrate across the endothelium and through the extracellular
matrix to the base of the epithelial layer must undergo an addi-
tional transepithelial migration step in order to reach the lumen.
Epithelial cells form a tight barrier whose permeability is regulated
by the apical junction complex, which consists of proteins from
adjacent cells interacting to form the tight junctions and adherens
junctions [reviewed in (16)]. Crossing this barrier is necessary for
neutrophils to defend against extracellular pathogens in the lumen,
and also plays an important role in inflammatory pathology. Infil-
tration of neutrophils is associated with tissue damage at mucosal
surfaces via mechanisms that include increased barrier perme-
ability, epithelial apoptosis, and the release of damaging effectors
such as reactive oxygen species and proteases (3, 17). Neutrophil
accumulation on the basolateral side of the epithelium is insuffi-
cient to induce this pathology (18, 19), suggesting that the specific
process of transepithelial migration is critical to the development
of inflammatory pathology. Transepithelial migration shares some
features with transendothelial migration, such as involvement of
the CD11b/CD18 (Mac-1) integrin (20, 21), but also relies on
unique interactions such as binding of CD47 and Sirp-α (22,
23). Meanwhile, neutrophil proteases such as elastase transiently
degrade the epithelial tight junctions to permit movement across
the paracellular space (24). Following migration, evidence suggests
that specific ligands mediate neutrophil adherence to the apical
surface before they actively detach in order to enter the lumen (25,
26). The importance of apical attachment of neutrophils is not
fully understood, but it may be a strategy to encounter and destroy
bacteria that are tightly attached to the epithelium. Indeed, api-
cally attached PMN release inflammatory mediators that modulate
epithelial responses (27). Apical attachment may also contribute
to pathology during inflammation and promote the formation
of crypt abscesses during inflammatory bowel disease (IBD) (25,
26, 28). Moreover, detachment of cells from the apical epithe-
lium may be an important step in the resolution of neutrophilic
inflammation (29).

RECRUITMENT OF NEUTROPHILS BY EPITHELIAL-DERIVED
CHEMOKINES
In addition to acting as the physical substrate for transepithe-
lial migration, epithelial cells play a critical role in migration

by producing chemotactic signals that recruit neutrophils out
of the vasculature. CXC chemokines are the main class of
chemoattractant ligands that recruit neutrophils and include
CXCL1, CXCL2, CXCL5, CXCL6, and CXCL8, also known as IL-
8, the prototypical neutrophil-attracting chemokine. These CXC
chemokines bind to the two IL-8 receptors on the neutrophil
surface, CXCR1 and CXCR2, with varying affinities and speci-
ficities (30). CXC chemokines can be released by a variety of cell
types, including neutrophils themselves (31), but the prototypical
pathway involves stimulation of epithelial cells resulting in secre-
tion of IL-8. For example, infection of intestinal epithelial cells
(IECs) with pathogenic bacteria results in flagellar stimulation
of TLR5, followed by activation of NFkB signaling and upregu-
lation of inflammatory pathways and subsequent IL-8 secretion
(32, 33).

It is increasingly appreciated that neutrophils exhibit pref-
erential attraction to specific molecules over others, a con-
cept that has been critical to our understanding of how they
can integrate and prioritize multiple chemoattractant gradi-
ents. Additionally, the “strength” of a specific chemoattractant
to recruit neutrophils depends on the local environment (34).
For example, IL-8 and the other CXC chemokines are suffi-
cient to recruit neutrophils out of the vasculature, but once in
the tissues cells will preferentially migrate toward leukotriene
B4 (LTB4) or the C5a complement fragment. It seems there-
fore that IL-8 is an intermediate-stage chemoattractant, whereas
C5a and LTB4 are “end-stage” chemoattractants that guide neu-
trophils to their final destination (35, 36). Formylated peptides
such as fMLP are very strong neutrophil chemoattractants. It is
thought that, because eukaryotic cells do not synthesize formyl
peptides, these can serve as a unique bacterial signal to recruit
neutrophils to sites of bacterial infection. Interestingly, mito-
chondria can also synthesize formylated peptides, possibly as
a result of their early bacterial ancestry. Mitochondria-derived
formyl peptides are released from dying cells and serve as dam-
age associated molecular patterns (DAMPs) that can activate
the immune response (37). Indeed, formylated peptides released
by necrotic cells were found to serve as the critical end-stage
chemoattractant during sterile inflammation (38). It is similarly
possible that during inflammation, necrotic epithelial cells in
the intestine release mitochondria-derived formyl peptides that
attract neutrophils into the lumen, but this has not yet been
demonstrated.

RECRUITMENT OF NEUTROPHILS BY BIOACTIVE LIPIDS
It had long been assumed that IL-8 production by epithelial cells
was sufficient to drive neutrophil infiltration into the intestine.
However, IL-8 undergoes polarized secretion from the basolat-
eral surface of the epithelial cell and is too large to diffuse across
the tight junctions into the lumen. In vitro findings confirm
that although IL-8 is important for formation of a haptotac-
tic gradient that guides neutrophils through the tissue to the
basal epithelium, it is insufficient to drive the final transmigra-
tion step across the epithelial barrier (39, 40). In addition, mice
overexpressing IL-8 specifically in IECs had increased recruit-
ment of neutrophils to the epithelium, but in the absence of
further inflammatory stimulus cells did not cross into the lumen
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or induce pathology (19), suggesting that an additional end-
stage chemoattractant is required. This hypothesis was confirmed
by the discovery that colonization of the epithelium by Salmo-
nella typhimurium stimulates apical secretion of the eicosanoid
hepoxilin A3 (HXA3), which then recruits neutrophils into the
lumen (40, 41). Eicosanoids are bioactive lipids that are derived
from arachidonic acid and mediate a variety of diverse cellu-
lar processes. Arachidonic acid is liberated from the cell mem-
brane via the action of phospholipase A2 and converted into
a variety of eicosanoids, including the pro-inflammatory neu-
trophil chemoattractants such as leukotrienes and hepoxilins as
well as the anti-inflammatory lipoxins and resolvins (42). The
type of eicosanoid that is produced depends on the activity of
oxygenase enzymes with different specificities and sites of expres-
sion. For example, 5-lipoxygenase catalyzes the synthesis of pro-
inflammatory leukotrienes and is expressed primarily in leuko-
cytes, although there is some evidence that the 5-lipoxygenase
dependent precursor, LTA4, can be processed transcellularly to
generate active LTB4 (42, 43). Similarly, the anti-inflammatory
lipoxins are generated by one of two transcellular mechanisms.
LTA4 synthesized by 5-lipoxygenase in leukocytes can then serve
as a substrate for adherent platelet-expressed 12-lipoxygenase,
generating lipoxin A4 (LXA4) and LXB4. Alternatively, epithelial
cells expressing 12-lipoxygenase generate 12-HETE from arachi-
donic acid, which is then acted on by leukocyte 5-lipoxygenase to
generate LXA4 and LXB4 (44). Further work is needed to under-
stand the signals that regulate this process and which pathways
are functional during specific inflammatory and pro-resolving
conditions.

HEPOXILIN A3 IS AN ESSENTIAL PLAYER IN THE FINAL STEP
OF NEUTROPHIL MIGRATION INTO THE INTESTINE
In contrast, HXA3 is formed directly in epithelial cells, from which
it is secreted in order to create a chemoattractant gradient that
drives neutrophils into the lumen. Arachidonic acid is first con-
verted to 12-(S)HPETE by 12-lipoxygenase, and 12-(S)HPETE is
then converted to HXA3 by hepoxilin synthase (45). Specific api-
cal secretion of HXA3 is facilitated by multidrug resistant protein
2 (MRP2), an ATP-binding cassette transporter that is localized
specifically to the apical surface of IECs (46). The extracellular
HXA3 is freely diffusible across the paracellular space between
epithelial cells and forms an apical to basolateral gradient (41).
Neutrophils that have been recruited to the basolateral epithelium
by IL-8 and other CXC chemokines can therefore sense the HXA3

gradient and transmigrate across the epithelium into the intestinal
lumen. This can lead to host-protective clearance of bacteria dur-
ing infection, but may also result in localized tissue destruction by
neutrophil effectors (Figure 1).

Although many important features of the HXA3 biosynthetic
pathway have been elucidated, intriguing questions remain. The
HXA3 pathway was first identified as a response of epithelial cells
to colonization with S. typhimurium, and was found to be essen-
tial for neutrophil transepithelial migration in this model (40, 41).
Careful experiments identified SipA, a bacterial type III secreted
protein, as an inducer of HXA3 secretion and showed that treat-
ment with the purified protein alone was sufficient to induce

FIGURE 1 |The HXA3 inflammatory pathway. (A) Infection of the
epithelial cell (blue) surface by pathogenic bacteria (red) induces signaling
through pattern recognition receptors, including TLR5, and activation of
NFkB, leading to pro-inflammatory responses including basolateral
secretion of IL-8. An IL-8 gradient forms that is imprinted in the subepithelial
extracellular matrix, and IL-8 binds to endothelial cell (green) surface in order
to recruit neutrophils out of the vasculature. Meanwhile, bacterial infection
activates phospholipase A2-mediated liberation of arachidonic acid from the
plasma membrane. Arachidonic acid is converted to HXA3 via the action of
12/15-lipoxygenase and secreted from the apical surface via the action of
MRP2. HXA3 released into the lumen diffuses across the paracellular
junction between epithelial cells to create a concentration gradient that will
recruit neutrophils across the epithelium. (B) Neutrophils extravasate
through endothelial cells into lamina propria, where they sense the HXA3

gradient, and migrate across the epithelial paracellular junction into the
lumen. There, they encounter bacteria and release effectors including ROS
and proteases, which can also lead to collateral damage to epithelial cells
(dying cell shown in orange).

neutrophil transepithelial migration (47, 48). Colonization with S.
typhimurium leads to a SipA-dependent induction of HXA3 syn-
thesis and concurrent upregulation of MRP2 (46). Further details
of this pathway continue to be elucidated, including an impor-
tant role for epithelial caspase-3 in processing SipA into its active
form and the importance of both protein kinase C activity and
ezrin activation in localizing MRP2 to the apical surface (49–51).
Unlike IL-8 and fMLP, which also stimulate neutrophil activation,
HXA3 seems to act as a pure chemoattractant for neutrophils in the
absence of further activation (41). Binding of HXA3 to neutrophils
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induces calcium flux (52) and like other chemokine-receptor inter-
actions, the signal is transduced through a pertussis toxin-sensitive
GPCR (40).

While S. typhimurium infection of IECs is the best-studied
model of HXA3 secretion, this pathway is in fact a far more uni-
versal mechanism by which epithelial cells respond to infection by
driving inflammation and neutrophil recruitment. Other intesti-
nal bacterial pathogens, including Shigella flexneri and enteroag-
gregative Escherichia coli O42 (EAEC), are also able to trigger
12-lipoxygenase and MRP2 dependent synthesis and secretion
of HXA3 to drive neutrophil transepithelial migration (53–55).
These bacteria do not possess homologs of SipA, and the crit-
ical bacterial effectors that activate HXA3 secretion remain to
be identified. In the case of EAEC, it has been demonstrated
that the aggregative adherence fimbriae (AAF) are necessary
for the induction of HXA3-mediated neutrophil migration, and
trans-expression of the AAF subunits was sufficient to confer
an inflammatory phenotype on non-pathogenic E. coli (55).
Interestingly, EAEC do not express a Type III secretion sys-
tem, while S. flexneri do, but unlike S. typhimurium invade
through the basolateral rather than the apical surface. These
data suggest that divergent bacterial effectors must converge at
some point leading to HXA3 synthesis and secretion, and the
mechanisms underlying this convergence are an area of active
investigation.

THE HXA3 PATHWAY ALSO DRIVES INFLAMMATION IN THE
LUNG MUCOSA
Further evidence that HXA3 secretion is an important defense
mechanism by which epithelial cells communicate to the immune
system is evident from the discovery that this pathway is also
functional in the lung mucosa. Bacterial pathogens including
Pseudomonas aeruginosa and Klebsiella pneumoniae induce neu-
trophil transepithelial migration in an in vitro model of lung
infection (56). Like S. typhimurium, P. aeruginosa induces IL-8
secretion from the basolateral side of the epithelium, and this IL-
8 is similarly insufficient to drive migration across the epithelial
layer. As in the intestine, bacterial infection of the lung epithelial
cells triggers PKC activation, 12-lipoxygenase activity, and secre-
tion of HXA3 (56, 57). The discovery of the shared reliance on
apical secretion of HXA3 to drive the neutrophil inflammatory
responses at different mucosal epithelial sites represents a para-
digm shift in our understanding of how the epithelium controls
the inflammatory response.

A POTENTIAL ROLE FOR HXA3-MEDIATED INFLAMMATION
DURING INFLAMMATORY BOWEL DISEASE
Bacterial infection of the mucosal epithelium triggers a protec-
tive acute inflammatory response with neutrophil infiltration, and
successful resolution of inflammation involves a dampening of the
pro-inflammatory response and apoptotic clearance of inflamma-
tory cells (3, 4). However, continuing pathologic inflammation is a
hallmark of chronic inflammatory conditions such as IBD. While
IBD is thought to result from the combination of an underlying
genetic susceptibility and an environmental trigger, a specific bac-
terial pathogen has yet to be associated with the disease. More

recently, it has been hypothesized that IBD may be associated with
a“keystone pathogen,”a low abundance member of the microbiota
that induces or promotes a dysbiotic state that results in inflam-
matory pathology (58). Patients with ulcerative colitis (UC) and
Crohn’s disease exhibit specific pathology associated with contin-
ued damaging neutrophil infiltration, including crypt abscesses
in Crohn’s and mucosal ulceration in UC (59). We have identi-
fied a role for the HXA3 pathway in mouse models of IBD as
well as in association with human disease, suggesting that this
pathway is a universal driver of intestinal inflammation beyond
the acute response to infection with pathogenic bacteria. MRP2
expression at the epithelial surface is upregulated during chronic
intestinal inflammation induced by CD45RBhi T cell transfer coli-
tis in mice. Similarly, colonic biopsies from patients with active UC
and Crohn’s disease demonstrate increased MRP2 staining at the
epithelial surface (46). Furthermore, inhibition of 12-lipoxygenase
activity with baicalin significantly reduced inflammatory pathol-
ogy in T cell transfer colitis (46). These data suggest that HXA3

is in fact a critical driver of the continued infiltration of neu-
trophils into the intestine during colitis that leads to damaging
inflammatory pathology.

A critical question, then, is what are the pathways that nor-
mally regulate HXA3-induced inflammation, and how do these
pathways become dysregulated during chronic inflammation? It
is increasingly appreciated that resolution of inflammation is not
a passive process, but rather an active one that relies on specific
pro-resolving mediators. This category includes a wide variety of
lipid mediators derived from arachidonic acid or polyunsaturated
fatty acids, including the lipoxins, resolvins, neuroprotectins, and
maresins [reviewed in (44, 60)]. These lipids are largely synthesized
by macrophages and monocytes that infiltrate during the resolu-
tion phase, some by way of a two-part transcellular biosynthesis
as described above. It has not been conclusively demonstrated
whether resolvins can be generated transcellularly or directly by
mucosal epithelial cells. Several of these compounds, including
LXA4 and resolvin D1, seem to act in opposition to the classical
chemoattractant pathway by binding to GPCRs and transducing
a stop signal for migratory cells (61, 62). It will be interesting
to determine whether this stop signal is functional in the case
of HXA3-mediated migration. In vitro, IECs express ChemR23,
the receptor for resolvin E1 (RvE1), and RvE1 binding can induce
anti-inflammatory effects (29, 63). It would be interesting to deter-
mine whether RvE1 also suppresses HXA3 biogenesis. Known
anti-inflammatory cytokines such as IL-10 are other potentially
interesting candidates. It is clear that a major area of continuing
research interest lies in understanding how secretion of pro- and
anti-inflammatory mediators by epithelial cells is regulated during
inflammation. These studies will contribute to our further under-
standing of how the epithelium plays a critical role in initiating
and sustaining the inflammatory immune response, with poten-
tial therapeutic implications for a wide variety of inflammatory
conditions.
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