University of Massachusetts Medical School eScholarship@UMMS

Open Access Articles

Open Access Publications by UMMS Authors

2013-09-19

Lv4, an activity that restricts nuclear entry of SIVMAC/SIVSM in human blood cells

Massimo Pizzato University of Geneva

Et al.

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Immunology and Infectious Disease Commons, Infectious Disease Commons, Molecular Biology Commons, and the Virology Commons

Repository Citation

Pizzato M, Neagu M, Pertel T, Ferrito C, Ziglio S, Zufferey M, Berthoux L, Luban J. (2013). Lv4, an activity that restricts nuclear entry of SIVMAC/SIVSM in human blood cells. Open Access Articles. https://doi.org/10.1186/1742-4690-10-S1-028. Retrieved from https://escholarship.umassmed.edu/oapubs/2451

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

ORAL PRESENTATION

Lv4, an activity that restricts nuclear entry of SIV_{MAC}/SIV_{SM} in human blood cells

Massimo Pizzato^{1,2}, Martha Neagu¹, Thomas Pertel¹, Claudia Firrito¹, Serena Ziglio², Madeleine Zufferey¹, Lionel Berthoux³, Jeremy Luban^{1,4*}

From Frontiers of Retrovirology: Complex retroviruses, retroelements and their hosts Cambridge, UK. 16-18 September 2013

SIV_{SM} is a lentivirus endemic to the West African sooty mangabey (Cercocebus atys). HIV-2 and SIV_{MAC} are zoonoses that resulted from SIV_{SM} transmission to humans and Asian rhesus macaques (Macaca mulatto), respectively. Human leukemia cell lines, human peripheral blood mononuclear cells and CD4⁺ T cells, were 4 to 50-fold less permissive for SIV_{MAC} and SIV_{SM} than for HIV-1. In contrast, SIV_{MAC} transduction of human adherent cell lines was equivalent to that of HIV-1. Consistent with adaptation to human cells, HIV-2 was not restricted as potently as was SIV_{MAC}. SIV_{MAC} transduction of human blood cells was rescued up to the level of HIV-1 by As₂O₃, a compound that increases the infectivity of viruses in the context of TRIM5-mediated restriction. Nonetheless, efficient knockdown of TRIM5 or cyclophilin A, a cytoplasmic factor that sometimes regulates TRIM5 restriction activity, did not rescue SIV-MAC tranduction of these cells. Substitution of HIV-1 CA with the CA from SIV_{MAC} rendered HIV-1 poorly infectious for Jurkat T cells. The block occurred after completion of reverse transcription and the formation of 2-LTR circles, but before establishment of the provirus. Heterokaryons resulting from fusion of permissive with restrictive cells exhibited the restrictive phenotype, indicating that SIV transduction of human blood cells is inefficient due to a dominant-acting restriction factor. These results demonstrate that the nucleus of human blood cells possesses a TRIM5-like restriction factor specific for the $\mathrm{SIV}_{\mathrm{MAC}}/\mathrm{SIV}_{\mathrm{SM}}$ capsid and that, by extension, cross-species transmission of SIV_{SM} to human cells necessitated adaptation of HIV-2 to this restriction factor.

¹Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland

Authors' details

 ¹Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland. ²Center for Integrative Biology, University of Trento, Trento, Italy.
³Laboratory of Retrovirology, University of Quebec, Trois-Rivières, Canada.
⁴Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, USA.

Published: 19 September 2013

doi:10.1186/1742-4690-10-S1-O28

Cite this article as: Pizzato *et al.*: Lv4, an activity that restricts nuclear entry of SIV_{MAC}/SIV_{SM} in human blood cells. *Retrovirology* 2013 10(Suppl 1):O28.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Pizzato et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Full list of author information is available at the end of the article