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Abstract

Invariant natural killer T (iNKT) cells are activated during infection, but how they limit microbial growth is unknown in most
cases. We investigated how iNKT cells suppress intracellular Mycobacterium tuberculosis (Mtb) replication. When co-cultured
with infected macrophages, iNKT cell activation, as measured by CD25 upregulation and IFNc production, was primarily
driven by IL-12 and IL-18. In contrast, iNKT cell control of Mtb growth was CD1d-dependent, and did not require IL-12, IL-18,
or IFNc. This demonstrated that conventional activation markers did not correlate with iNKT cell effector function during
Mtb infection. iNKT cell control of Mtb replication was also independent of TNF and cell-mediated cytotoxicity. By
dissociating cytokine-driven activation and CD1d-restricted effector function, we uncovered a novel mediator of iNKT cell
antimicrobial activity: GM-CSF. iNKT cells produced GM-CSF in vitro and in vivo in a CD1d-dependent manner during Mtb
infection, and GM-CSF was both necessary and sufficient to control Mtb growth. Here, we have identified GM-CSF
production as a novel iNKT cell antimicrobial effector function and uncovered a potential role for GM-CSF in T cell immunity
against Mtb.
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Introduction

CD1 restricted T cells were first proposed to have a role in

antimicrobial immunity based on the observations that CD42CD82

(DN) T cells restricted by group 1 CD1 (CD1a, CD1b, and CD1c)

recognized unique and complex lipids from the Mtb cell wall [1,2].

Similarly, invariant natural killer T (iNKT) cell antimicrobial function

was originally based on the recognition of microbial lipid or glycolipid

molecules presented by the MHC-like molecule CD1d. iNKT cells

are now recognized to influence many different immunological

conditions including autoimmune disease, asthma and allergy, anti-

tumor response, graft-versus-host disease, and infection [3].

There are several pathways by which iNKT cells can be activated.

Classically, high affinity antigens that are potent agonists, typified by

the synthetic lipid a-galactosylceramide (aGalCer), trigger TCR

activation in a CD1d-dependent manner. Several infectious agents

produce microbial lipids that are presented on CD1d and recognized

by iNKT cells including Borrelia burgdorferi and Sphingomonas capsulata

[4,5,6]. Activation can also occur when iNKT cells recognize a weak

lower affinity self or microbial ligand, insufficient by itself to induce

activation, in the context of costimulatory signals. This mode of

activation has been shown for pathogens, such as Salmonella

typhimurium, viruses such as Influenza A, and fungi such as Aspergillus

fumigatus [7,8,9]. There is strong evidence that a major driver of this

type of iNKT cell activation is IL-12, which is produced when

microbial danger signals stimulate pattern recognition receptors such

as Toll-like receptors (TLRs) or dectin-1 [7,9,10].

One of the remaining unanswered questions in iNKT cell

biology is what specific role these cells have during infection and

whether their activation by different pathways leads to the

expression of diverse functions. To address the role of iNKT cells

during infection, many of these studies have used mouse models

that lack iNKT cells (Ja182/2, CD1d2/2) or administered

aGalCer, a potent activator of iNKT cells. While this strategy

has been useful for determining whether iNKT cells are required

for host resistance, and for revealing potential antimicrobial

effector functions induced after strong activation, much less is

known about the physiological role of iNKT cells during infection.

Tracking iNKT cell function in vivo has relied extensively on

CD69 upregulation and IFNc production. Interestingly, in the

absence of exogenous aGalCer treatment, there is little evidence

that IFNc production by iNKT cells is protective during infection

[11]. Given that iNKT cells are capable of producing a variety of

different cytokines and chemokines including IL-4, IL-10, IL-17,

TNF, GM-CSF, MIP-1a, MIP-1b as well as having immuno-

modulatory effects via expression of CD40 and other costimula-

tory ligands [12], it is surprising that it is still unknown for most

infections whether iNKT cells have a direct antimicrobial role.

Only in select cases have protective mechanisms been defined. For

example, iNKT cells are important for neutrophil recruitment to
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the lung during Pseudomonas infection [13] and IFNc is required for

protection by iNKT cells against Streptococcus pneumoniae, although

this could represent a direct or indirect effect [11].

There are several lines of evidence that activated iNKT cells

enhance host resistance to Mtb. Administration of aGalCer, which

activates iNKT cells in vivo, significantly prolongs the survival of

susceptible mouse strains following Mtb infection and this effect is

synergistic with antibiotics [14,15]. aGalCer activates human iNKT

cells to lyse Mtb-infected macrophages and kill intracellular bacteria

[16]. Even BCG vaccination is more effective when it is conjugated

with aGalCer [17]. Although aGalCer is used as a pharmacological

activator of iNKT cells in this context, it is not required. iNKT cells

cultured with Mtb-infected primary macrophages stimulate antimi-

crobial activity that restricts bacterial growth and adoptive transfer

of iNKT cells limits bacterial growth in vivo [18]. Finally, several

clinical studies find that a decrease of iNKT cells in the periphery is

a marker of active disease compared to latent infection or healthy

controls [19,20,21]. Despite these findings of iNKT cell activation

leading to enhanced control, iNKT cells are dispensable in the

murine model of chronic tuberculosis infection [22,23,24,25].

Our model, in which iNKT cells activate infected macrophages

to control Mtb infection in the absence of exogenous stimulation

(e.g., aGalCer), provided a unique opportunity to define the direct

effector functions of iNKT cells. This model allowed us to study

the interaction between iNKT cells and Mtb-infected macrophag-

es and provided the opportunity to perturb specific signaling and

effector pathways and then measure subsequent changes in

bacterial control. Greater insight into the effector function of

iNKT cells during Mtb infection could lead to novel therapeutic

approaches for augmenting their antimicrobial capacity and

boosting the host immune response during infection [14,15].

Here we report that iNKT cells upregulated activation markers

and produced IFNc during Mtb infection in vitro and these

markers of activation were driven largely by IL-12 and IL-18.

Blocking these cytokine signals almost completely inhibited IFNc
production, but surprisingly had little effect on the ability of iNKT

cells to control Mtb growth. In contrast, the antimicrobial function

of iNKT cells required CD1d signaling and was mediated by a

soluble factor, GM-CSF. Blocking GM-CSF abrogated restriction

of bacterial growth by iNKT cells and GM-CSF was sufficient to

inhibit mycobacterial growth in vitro. We identified GM-CSF as

an antimycobacterial effector molecule produced by iNKT cells

with the ability to suppress Mtb infection.

Results

iNKT cells are activated by Mtb-infected macrophages
CD69 and CD25, both classic T cell activation markers, as well

as IFNc production, were chosen to track the activation of iNKT

cells by Mtb-infected macrophages. Primary mouse iNKT cell

lines were co-cultured with thioglycollate-elicited peritoneal

macrophages infected with increasing multiplicity of infection

(MOI) of H37Rv, a virulent strain of Mtb. After 24 hours, iNKT

cells cultured with Mtb-infected macrophages expressed higher

levels of CD69 and CD25 and produced more IFNc compared to

iNKT cells cultured with uninfected macrophages (Figures 1A and

1B). A similar activation pattern was observed when hepatic

mononuclear cells (HMNC), a source of primary uncultured

iNKT cells, were used (Figure S1A) or when iNKT cells were

cultured with H37Rv-infected bone marrow derived macrophages

(BMDM) (Figure S1B). These data indicate that iNKT cells

become activated after stimulation with Mtb-infected APCs.

iNKT cell activation by Mtb-infected macrophages
requires a combination of cytokine and CD1d-dependent
signals

Infection by various microbes including Salmonella, Aspergillus,

and E. coli LPS, induce iNKT cell activation by a combination of
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Figure 1. iNKT cells are activated by Mtb-infected mw. (A) iNKT
cells were cultured either alone, with uninfected thioglycollate-elicited
peritoneal mw, or H37Rv-infected mw for 24 hours. Cells were stained
for CD69 and CD25 and mw were distinguished from iNKT cells by F4/80
staining. (B) Fold change in CD69 and CD25 MFI on iNKT cells cultured
with uninfected or H37Rv-infected mw compared to iNKT cells alone.
Supernatant was harvested at 24 hours and IFNc measured by ELISA.
Error bars indicate mean 6 SEM. *P,.05, **P,.01, ***P,.001. (One-way
ANOVA with Dunnet’s post-test, compared to iNKT cells alone). Data are
representative of eight independent experiments. Mw, macrophage; UI,
uninfected; , MOI titration, 1.5:1, 3:1, 6:1.
doi:10.1371/journal.ppat.1003805.g001

Author Summary

Mycobacterium tuberculosis (Mtb) is the cause of tubercu-
losis, a leading cause of sickness and death worldwide.
Although much is known about CD4+ and CD8+ T cell
responses to Mtb, the role of other T cell subsets is poorly
understood. Invariant natural killer T (iNKT) cells are innate
lymphocytes that express a semi-invariant T cell receptor
and recognize lipid antigens presented by CD1d. Although
iNKT cells participate in the immune response to many
different pathogens, little is known about how iNKT cells
directly kill microbes. We previously showed that when co-
cultured with Mtb-infected macrophages, iNKT cells inhibit
intracellular Mtb replication. Now, we used this model to
dissociate the signals that induce iNKT cell activation
markers including IFNc production, from the signals that
activate iNKT cell antimicrobial activity. This allowed us to
uncover a novel antimicrobial effector function produced
by iNKT cells: GM-CSF. GM-CSF is essential for immunity to
Mtb, but its role has never been defined. This study is the
first report to demonstrate a protective function of GM-
CSF production by any T cell subset during Mtb infection. T
cell production of GM-CSF should be considered as a
potential mechanism of antimicrobial immunity.

iNKT Cell Production of GM-CSF Controls Mtb

PLOS Pathogens | www.plospathogens.org 2 January 2014 | Volume 10 | Issue 1 | e1003805



IL-12, IL-18, and/or TCR stimulation through interaction with

CD1d [7,9,10,26]. To determine whether these signals were

required for the activation of iNKT cells by Mtb-infected

macrophages, we added neutralizing antibodies to cell co-cultures

and measured iNKT cell activation after 24 hours. We found that

CD25 and IFNc were inhibited to varying degrees by blockade of

the activating signals (Figures 2A and 2B). CD69 expression was

more variable and blocking antibodies had little effect on its

expression (data not shown). Blocking cytokine signals (IL-12p40,

IL-18) had a greater inhibitory effect on the markers than blocking

the TCR-CD1d interaction. For example, anti-IL-12p40 reduced

CD25 surface expression by 45.763.3%, and inhibited IFNc
production nearly completely (91.464.4%) (mean 6 SEM, n = 4

experiments) (Figures 2A and 2B). In contrast, anti-CD1d had no

effect on CD25 expression and only a modest effect on IFNc
production (37.566.4% reduction) (mean 6 SEM, n = 3–4

experiments). The failure of anti-CD1d to block iNKT cell

activation was not due to a problem with the experimental

conditions since anti-CD1d blocked induction of CD25 and

abrogated IFNc production after a-GalCer stimulation of iNKT

cells (Figures 2A and 2B). To verify that cytokines were driving

iNKT cell activation, iNKT cells were cultured with MyD882/2

macrophages, which do not produce IL-12 after H37Rv infection

[27] (Figure 2C). When co-cultured with Mtb-infected MyD882/2

macrophages, iNKT cells did not upregulate CD25 or secrete

IFNc. These results indicated that IL-12 and IL-18 produced by

macrophages during Mtb infection drove the activation of iNKT

cells as measured by induction of CD25 surface expression and

IFNc production. Thus, these conventional markers of iNKT cell

activation were not reliable indicators of CD1d-dependent TCR-

mediated signaling during Mtb infection.

Control of intracellular Mtb growth by iNKT cells requires
CD1d but not IL-12 and IL-18

As shown previously, iNKT cells cultured with H37Rv-infected

macrophages reduced intracellular bacterial growth over a 5 day

infection [18] (Figure 3A). We used this co-culture model to

evaluate how the different activation signals affected iNKT cell

antimicrobial activity.

We first tested the requirement for IL-12 and IL-18 signaling.

The addition of anti-IL-12p40 and/or anti-IL-18 blocking

antibodies to co-cultures of iNKT cells and H37Rv-infected WT

macrophages did not affect the ability of iNKT cells to inhibit

bacterial growth (Figure 3A). We confirmed this result using

MyD882/2 macrophages, which did not induce upregulation of

CD25 or IFNc by iNKT cells (Figure 2C). iNKT cells were able to

inhibit bacterial growth in H37Rv-infected MyD882/2 macro-

phages (Figure 3B). These findings were unexpected because they

suggested that the traditional markers of activation did not

correctly predict iNKT cell antimycobacterial function.

We next addressed whether CD1d expression by the infected

macrophages was required. iNKT cells were able to limit

intracellular bacterial growth only if the infected macrophages

expressed CD1d (Figure 3C). Normalizing the bacterial growth in

each experiment allowed us to determine the requirement for

CD1d across multiple experiments (see Experimental Procedures

for details). When Mtb growth inhibition by iNKT cells in WT

and CD1d2/2 macrophages were compared in this manner,

iNKT cells suppressed growth of Mtb in WT macrophages

significantly more than in CD1d2/2 macrophages (73.164.7%

CFU reduction vs. 31.569.3%) (mean 6 SEM, n = 6 experiments,

p = 0.0002) (Figure 3D). To confirm the dependence on CD1d for

bacterial control by iNKT cells, and to show that the culture

conditions of the primary cell lines had not significantly altered the

effector functions of the iNKT cells, we repeated this experiment

using HMNC as a source of primary uncultured iNKT cells. We

found that HMNCs also required CD1d signaling for inhibition of

bacterial growth (Figure 3E).

Since CD1d expression by macrophages was required to elicit

optimal iNKT cell effector function, we considered whether Mtb

infection altered the CD1d surface expression on macrophages.

After 24 hours, H37Rv infection led to a modest increase in CD1d

surface expression on macrophages (1.560.1 fold change) (mean

6 SEM, n = 13 experiments, p,0.0001) (Figure 3F). Co-culture

with iNKT cells led to a slight increase in CD1d expression during

H37Rv infection (1.960.1 fold change) (mean 6 SEM, n = 22

experiments, p,0.0001) (Figure 3F). These increases were

averages for the bulk culture and may have underestimated the

increase for individually infected macrophages, because not every

macrophage was infected.

These results indicated that the cytokines (IL-12, IL-18) that

drive expression of CD25 and IFNc production were not required

to stimulate iNKT cell antimycobacterial effector functions. In

contrast, CD1d expression, which played only a small role in

stimulating IFNc production, was required for iNKT cell

mediated control of intracellular Mtb growth. The dissociation

between standard measurements of iNKT cell activation from

iNKT cell effector function in response to Mtb infection was

unexpected.

iNKT cells exhibit an antimycobacterial function
independent of IFNc

Since IL-12 and IL-18 blockade largely inhibited IFNc
production but had little impact on CFU control, we considered

whether iNKT cell antimicrobial effector function was indepen-

dent of IFNc. To test this, we derived an IFNc2/2 iNKT cell line.

When IFNc2/2 iNKT cells were added to H37Rv-infected

macrophages, they inhibited bacterial growth similar to WT iNKT

cells (Figure 4A). Over multiple experiments, WT and IFNc2/2

iNKT cells reduced bacteria growth similarly by d5 by 60.064.7%

versus 60.164.0%, respectively (mean 6 SEM, n = 13 experi-

ments, p = NS) (Figure S2). A similar result was found by d7 post-

infection (Figure S2).

IFNc plays an important antimicrobial role during Mtb

infection. To be certain that iNKT cells were controlling bacterial

growth independently of IFNc signaling, WT and IFNc2/2 iNKT

cells were cultured with H37Rv-infected IFNcR2/2 macrophages.

The iNKT cells still limited bacterial growth by d5 in these cells

(Figure 4B). We also examined whether iNKT cells controlled Mtb

growth through nitric oxide, an important mediator of anti-

mycobacterial immunity produced during infection by IFNc
stimulation of the enzyme inducible nitric oxide synthase (iNOS)

[28]. Neither IFNc nor nitrite, a stable breakdown product of

nitric oxide, were detected after addition of IFNc2/2 iNKT cells,

while both were detected when WT iNKT cells were present

(Figure 4C). Furthermore, naı̈ve splenocytes (as a source of iNKT

cells [18]) inhibited bacterial replication similarly in WT,

IFNcR2/2, and iNOS2/2 macrophages (data not shown). We

next tested whether the IFNc2/2 iNKT cells also required CD1d

to mediate their antimicrobial effector function. Similar to WT

iNKT cells, IFNc2/2 iNKT cells inhibited growth of Mtb in WT

macrophages significantly more than in CD1d2/2 macrophages

by 73.367.2% versus 34.4610.6% (mean 6 SEM, n = 5

experiments, p = 0.0043) (Figure 4D). These data demonstrated

that iNKT cells were capable of controlling Mtb growth

independently of IFNc and nitric oxide and that the IFNc-

independent effector function required CD1d-mediated activation.

iNKT Cell Production of GM-CSF Controls Mtb
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Figure 2. Production of IL-12 and IL-18 by Mtb-infected mw induce traditional markers of iNKT cell activation. (A) iNKT cells were
cultured either alone, with uninfected mw, H37Rv-infected mw, or aGalCer-loaded mw for 24 hours in the presence of blocking antibodies against IL-
12p40 (20 mg/ml), IL-18 (10 mg/ml), CD1d (20 mg/ml), or respective isotype controls. Cells were stained for CD25 and mw were distinguished from

iNKT Cell Production of GM-CSF Controls Mtb

PLOS Pathogens | www.plospathogens.org 4 January 2014 | Volume 10 | Issue 1 | e1003805



iNKT cell antimicrobial function is independent of
cytolytic activity and TNF

Human iNKT cells stimulated with aGalCer were shown to

control Mtb infection in human monocyte-derived macrophages

through granulysin-mediated cytolytic activity [16]. Based on this

finding, we determined whether iNKT cells, in the absence of

additional stimulation, inhibited Mtb growth through cytolytic

activity. To block the major pathways of cytolysis, we added

Perforin2/2 (Pfn2/2) iNKT cells to H37Rv-infected WT macro-

phages (Figure 5A). In addition, we added either WT or IFNc2/2

iNKT cells by F4/80 staining. Supernatant was harvested at 24 hours and IFNc measured by ELISA. (B) % reduction calculated as 100*[(iNKTH37Rv-

mw2iNKTalone)2(iNKTAb+H37Rv-mw2iNKTalone)]/(iNKTH37Rv-mw2iNKTalone). Conditions with aGalCer stimulation calculated similarly. (C) iNKT cells were
cultured with uninfected or H37Rv-infected WT or MyD882/2 mw for 24 hours. Cells were stained for CD25 and mw were distinguished from iNKT
cells by F4/80 staining. Supernatant was harvested at 24 hours and IFNc and IL-12p40 measured by ELISA. Error bars indicate mean 6 SEM. **P,0.01
compared to isotype control. (One-way ANOVA with Dunnet’s post-test). #P,0.05, ##P,0.01 compared to isotype control (data not shown)
(unpaired Student’s t-test). +P,0.05, ++P,0.01, +++P,0.001 (unpaired Student’s t-test). Data are representative of, or compiled from, (A,B) three
(anti-CD1d), four (anti-IL-12), two (anti-IL-18) and (C) two independent experiments.
doi:10.1371/journal.ppat.1003805.g002

Figure 3. iNKT cell mediated control is CD1d-dependent but does not require IL-12 or IL-18. (A) Colony forming unit (CFU) assay
measuring Mtb bacterial growth in H37Rv-infected WT mw on d1 and d5 post-infection. iNKT cells, anti-IL-12p40, anti-IL-18 blocking or isotype
control antibodies were added on d1 after infection. (B) CFU assay d1 and d5 post-infection for H37Rv-infected MyD882/2 mw with iNKT cells added
on d1. (C, E) CFU assay d1 and d5 post-infection for H37Rv-infected WT and CD1d2/2 mw with iNKT cells added on d1 at a ratio of 1:1 (C) or HMNC at
a ratio of 3:1 (E). (D) Compiled data from 6 independent experiments as described in (C). (F) H37Rv-infected mw after 24 hours. CD1d MFI fold change
over uninfected mw either without or with iNKT cells. Error bars indicate mean 6 SEM. *P,0.05, **P,0.01, ***P,0.001 (One-way ANOVA with
Dunnet’s post-test, compared to d5 untreated mw). +++P,.001 (unpaired Student’s t-test). Data are representative of two (A, B) six (C, D), and one (E)
independent experiment(s) with three or more replicates, or more than 12 independent experiments (F).
doi:10.1371/journal.ppat.1003805.g003

iNKT Cell Production of GM-CSF Controls Mtb

PLOS Pathogens | www.plospathogens.org 5 January 2014 | Volume 10 | Issue 1 | e1003805



iNKT cells to Fas2/2 macrophages (Figure 5B). Under these

conditions, iNKT cells still significantly suppressed Mtb growth in

macrophages. To eliminate the possibility of redundancy between

cytolytic pathways, Pfn2/2 iNKT cells were added to H37Rv-

infected Fas2/2 macrophages, and despite elimination of both of

the dominant CTL pathways, iNKT cells were still able to

significantly inhibit bacterial growth (data not shown). These data

show that the major cytolytic pathways were not required for

iNKT cell antimicrobial function in this system.

We also took an alternative approach to inhibit cytolytic activity

by blocking an important downstream effector of cytolytic activity,

caspase-3. Using a specific peptide inhibitor to inhibit caspase-3

activity and apoptosis in target cells, we found that addition of

caspase-3 inhibitor to co-cultures of IFNc2/2 iNKT cells and

H37Rv-infected macrophages, at concentrations that block

apoptosis of infected macrophages [29], did not affect the ability

of IFNc2/2 iNKT cells to inhibit bacterial growth (Figure 5C).

TNF plays an important antimicrobial role during Mtb

infection [30] and we detected TNF, albeit at low levels, in our

co-culture system (data not shown). Therefore, we used TNFR1/

22/2 macrophages, which lack both TNF receptors, to test

whether TNF signaling was required for iNKT cell control of Mtb.

Both WT and IFNc2/2 iNKT cells inhibited bacterial growth

when cultured with H37Rv-infected TNFR1/22/2 macrophages,

indicating that TNF did not mediate the antimicrobial effector

function of IFNc2/2 iNKT cells (Figure 5D). Finally, based on the

newly appreciated role of IL-1b in limiting growth of Mtb in

macrophages [31,32], we determined whether IL-1b mediated

iNKT cell control of bacterial growth. IFNc2/2 iNKT cells

cultured with IL-1R2/2 macrophages controlled Mtb growth,

ruling out a role for IL-1b signaling (data not shown).

These data showed that iNKT cells controlled Mtb growth

independently of cytolytic activity and cytokines previously identified

as antimycobacterial, TNF and IL-1b. They suggested that iNKT

cells limit bacterial growth through a non-classical effector function.

iNKT cells secrete a soluble factor with antimicrobial
properties

We next determined whether the antimicrobial activity was a

soluble factor or cell contact dependent. Using a transwell system,

Figure 4. iNKT cell mediated control is independent of IFNc. (A)
CFU for H37Rv-infected WT mw with WT and IFNc2/2 iNKT cells added
on d1 post-infection. CFU were measured on d0 (mw alone) and on d1,
d3, d5 and d7 post-infection. (B) CFU assay d1 and d5 post-infection for
H37Rv-infected IFNcR2/2 mw with WT and IFNc2/2 iNKT cells added on
d1. (C) IFNc and nitrite, a stable breakdown product of NO2, measured
for H37Rv-infected WT mw with WT and IFNc2/2 iNKT cells added on d1
post-infection. (D) Compiled data from 5 independent experiments of
the CFU assay d1 and d5 post-infection with H37Rv-infected WT and
CD1d2/2 mw with IFNc2/2 iNKT cells added on d1. Error bars indicate
mean 6 SEM. *P,0.05, **P,0.01, ***P,.001 (One-way ANOVA with
Dunnet’s post-test, compared to d3, d5, or d7 untreated mw). ++P,.01
(Unpaired Student’s t-test). Data are representative of or cumulative
from 13 (d5) and four (d7) (A), two (B) three (C), or four (D) independent
experiments with three or more replicates.
doi:10.1371/journal.ppat.1003805.g004

Figure 5. IFNc-independent antimicrobial effector function of
iNKT cells is independent of cytolytic activity. (A–D) CFU assay
d1, d5, and/or d7 post-infection with H37Rv-infected WT mw (A, C),
Fas2/2 mw (B), or TNFR1/22/2 mw (D) with WT iNKT cells (A, B, D),
IFNc2/2 iNKT cells (B–D), or Prf2/2 iNKT cells (A) added on d1 post
infection at a 1:1 ratio. (C) H37Rv-infected mw were treated with 0.1–
10 mM of caspase-3 inhibitor peptide (Z-DEVD-FMK) 2 hours prior to
addition of iNKT cells. Error bars indicate mean 6 SEM. *P,0.05,
**P,0.01 (One-way ANOVA with Dunnet’s post-test, compared to d5 or
d7 untreated mw.) Data are representative of three (A, C, D) or two (B)
independent experiments with three or more replicates.
doi:10.1371/journal.ppat.1003805.g005
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we found that both WT and IFNc2/2 iNKT cells placed in trans

from H37Rv-infected macrophages were able to suppress Mtb

growth (Figure 6). Importantly, this effect was only observed if the

iNKT cells were in contact with other macrophages in the

transwell, but not when the iNKT cells were cultured alone. This

was consistent with our observation that induction of the iNKT

cell effector function required CD1d signaling via macrophage

contact. The finding that contact between iNKT cells and

uninfected macrophages was sufficient to induce the antimicrobial

activity raised the possibility that a mediator secreted by infected

macrophages (e.g., in trans) augmented iNKT cell activation,

either by increasing macrophage CD1d expression or by

costimulating iNKT cell activation. Most importantly, this

experiment confirmed that iNKT cells required cell contact and

CD1d expression for their activation, and indicated that their

antimicrobial activity was mediated by a soluble factor.

We also found that aGalCer stimulation of IFNc2/2 iNKT

cells cultured in trans boosted their ability to control bacterial

growth (data not shown). Furthermore, conditioned media

produced from IFNc2/2 iNKT cells stimulated with aGalCer-

loaded WT but not CD1d2/2 macrophages stimulated bacterial

control when added to macrophages (Figure S3). We then used

conditioned media samples derived from IFNc2/2 iNKT cells

stimulated by unloaded or aGalCer-loaded WT or CD1d2/2

macrophages for screening purposes. These samples were size

fractionated at 10 kDa and 50 kDa MW cutoffs. We identified

several cytokines present at high levels only in the fractions that

had antimicrobial activity: GM-CSF, TNF, and IL-4 (Figure S3).

Since TNF had been previously eliminated and IL-4 is not known

to enhance bacterial control [33], we investigated whether iNKT

cells produced GM-CSF after co-culture with Mtb-infected

macrophages and whether it had antimycobacterial activity.

iNKT cells produce GM-CSF during Mtb infection in a
CD1d-dependent manner and it is critical for controlling
Mtb growth

We detected GM-CSF production 24 hours after co-culture of

both WT and IFNc2/2 iNKT cells with H37Rv-infected

macrophages (Figure 7A, Figure S4). Because we had already

established that the IFNc-independent antimicrobial function was

CD1d-dependent, we tested whether GM-CSF production by

iNKT cells required CD1d expression. We found that IFNc2/2

iNKT cells produced significantly more GM-CSF when cultured

with Mtb-infected WT macrophages than with Mtb-infected

CD1d2/2 macrophages; however, some GM-CSF was produced

even in the absence of CD1d, especially at higher Mtb MOI

(Figure 7B).

To determine if GM-CSF was required for iNKT cell-mediated

control in vitro, we added anti-GM-CSF blocking antibodies to the

co-culture of IFNc2/2 iNKT cells and Mtb-infected macrophag-

es. GM-CSF blockade impaired bacterial control by IFNc2/2

iNKT cells leading to a significant increase in CFU compared to

both an isotype control and untreated conditions (Figure 7C). This

suggested that GM-CSF was required for iNKT cell mediated

control of Mtb infection in this model. When we added anti-GM-

CSF blocking antibodies to co-cultures of WT iNKT cells and

Mtb-infected macrophages, we observed a modest decrease in

bacterial inhibition by WT iNKT cells in the GM-CSF blockade

condition compared to untreated or isotype control, although it

was not significant (Figure S5). These results suggest that either the

antimicrobial functions of GM-CSF are less crucial in the presence

of IFNc or that there is redundancy in the antimicrobial

mechanisms of these two cytokines.

To determine if this iNKT cell effector pathway was also relevant

for human cells, we tested the human iNKT cell clone J3N.5. The

iNKT cells produced significantly more GM-CSF after co-culture

with H37Rv-infected U937 cells, a human monocytic line, than with

uninfected U937 cells and this was inhibited by addition of an anti-

CD1d blocking antibody (Figure 7D). J3N.5 also produced IFNc in

response to H37Rv-infected U937 cells, and this was similarly

inhibited by an anti-CD1d blocking antibody (data not shown). Next,

we determined whether iNKT cells produced GM-CSF during

aerosol infection in vivo. We isolated cells from the lungs of mice

infected with virulent Mtb at serial time points after infection.

Pulmonary iNKT cells were identified by TCRb and CD1d

tetramer staining and their production of GM-CSF and IFNc was

assessed by intracellular cytokine staining (ICS) directly ex vivo

without further stimulation. The frequency of iNKT cells in the lung

did not change greatly over the course of infection, although the total

number of iNKT cells increased in parallel with the overall increase

in T cell recruitment to the lung (Figure S6A and S6B). Similar to

our in vitro observations, CD69 expression increased on iNKT cells

in the lung over the course of infection (Figure S6C). A small

percentage of iNKT cells in the lungs of naive mice secreted GM-

CSF. By two weeks post-infection, there was an increase in both the

percentage and absolute number of iNKT cells producing GM-CSF;

this was not the case for IFNc (Figure 7E and 7F). At all time points

examined post-infection, a significantly greater percentage of iNKT

cells in the lung produced GM-CSF than IFNc. For example, at

week 2, 11.061.3% iNKT cells were GM-CSF+ compared to

1.060.3% IFNc+ iNKT cells (mean 6 SEM, p,0.0001). These

data demonstrated that iNKT cells are an early source of GM-CSF

in the lung during Mtb infection and underscored our in vitro

observation that GM-CSF and IFNc production by iNKT cells are

regulated differently during Mtb infection.

In order to evaluate the role of CD1d signaling in the

production of GM-CSF by iNKT cells in vivo, we used an

adoptive transfer model, in which fluorescently-labeled iNKT cells

were injected iv into Mtb-infected WT or CD1d2/2 recipients.

Downregulation of the iNKT cell TCR usually limits the ability to

detect iNKT cells in vivo. This transfer model allowed monitoring

of iNKT cells in vivo without the need for CD1d tetramer staining.

Figure 6. The antimicrobial effector function of iNKT cells is a
soluble factor. Transwell CFU assay for H37Rv-infected WT mw in a 24-
well plate with either WT or IFNc2/2 iNKT cells added directly (cis) or
0.4 mm transwell inserts with WT or IFNc2/2 iNKT cells in the presence
of uninfected WT mw (trans) added on d1. Error bars indicate mean 6
SEM. *P,0.05, **P,0.01 (One-way ANOVA with Dunnet’s post-test,
compared to d5 untreated mw.) Data are representative of two
independent experiments with four replicates each.
doi:10.1371/journal.ppat.1003805.g006
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We detected significantly less GM-CSF and IFNc production by

iNKT cells transferred into Mtb-infected CD1d2/2 hosts com-

pared to WT hosts, while CD69 expression was induced on iNKT

cells transferred into both WT and CD1d2/2 recipients

(Figure 7G). Interestingly, we observed a strong CD1d-dependent

IFNc response by the transferred iNKT cells, which we did not

detect in the intact mice (Figure 7E and 7F). The transferred

iNKT cells were likely to have a stronger response and a lower

threshold for activation due to their prior stimulation in vitro.

There is recent data, discussed below, that epigenetic modifica-

tions at the IFNG locus of iNKT cells may explain why IFNc is

only detected after priming by a strong stimulus [34]. The

observation that the in vivo IFNc response was almost entirely

CD1d-dependent suggests that our in vitro infection model may be

over-estimating the effect of cytokine-driven stimulation. This

experiment also confirmed our in vitro results that activation

marker expression and effector functions could be elicited by

distinct activating pathways in iNKT cells.

These data showed that both murine and human iNKT cells

produced GM-CSF upon recognition of Mtb infection in a

CD1d-dependent manner and GM-CSF was a critical component

of iNKT cell antimycobacterial function in vitro.

GM-CSF is sufficient to inhibit Mtb growth
We next determined whether GM-CSF alone was sufficient to

mediate control of Mtb growth. In a dose-dependent manner,

recombinant GM-CSF added to infected macrophages was

sufficient to inhibit Mtb growth (Figure 8). Recombinant GM-

CSF has also previously been reported to inhibit the growth of

mycobacterium in human monocyte-derived macrophages

(MDM) [35,36,37]. The data showed that GM-CSF was sufficient

to inhibit bacterial growth in murine macrophages.

Discussion

We find that iNKT cells cultured with Mtb-infected macro-

phages inhibit intracellular bacterial growth [18]. This is the only

model of which we are aware that allows investigation of the direct

antimicrobial effector function of iNKT cells. In the presence of

Mtb-infected macrophages, iNKT cells became activated and

Figure 7. iNKT cells produce GM-CSF during Mtb infection in a CD1d-dependent manner and it is critical for controlling Mtb
growth. (A, B) IFNc2/2 iNKT cells added to uninfected or H37Rv-infected WT (A, B) and CD1d2/2 mw (B). Murine GM-CSF measured in supernatant
harvested after 24 hours. (C) % CFU reduction calculated from CFU assays for H37Rv-infected WT mw with IFNc2/2 iNKT cells added on d1 in the
presence of anti-GM-CSF blocking antibody (10–50 mg/ml) or isotype control. (D) J3N.5 human iNKT cell clone added to uninfected or H37Rv-infected
U937 cells in the presence of anti-human-CD1d blocking antibody or isotype control. Human GM-CSF measured in supernatant harvested after
24 hours. (E, F) Lung mononuclear cells from WT Mtb-infected mice were incubated with brefeldin A for four hours at 37uC and then stained. iNKT
cells were identified as TCRb+ and CD1d-tetramer+. Percentage (E) and number (F) of iNKT cells producing GM-CSF and IFNc. (G) % GM-CSF+, % IFNc+,
and CD69 MFI for iNKT cells transferred iv into WT or CD1d2/2 Mtb-infected hosts and iNKT cells cultured for 20 hours in basic media. Lung
mononuclear cells were treated and stained as in (E, F). Transferred iNKT cells were distinguished from host cells by eFluor 450 staining. Error bars
indicate mean 6 SEM. +P,.05, ++P,.01, +++P,.001 (unpaired Student’s t-test, GM-CSF+ versus IFNc+ for respective time points (E, F), WT versus
CD1d2/2 hosts (B, G)). **P,0.01, ***p,0.001 (One-way ANOVA with Tukey post-test (C), and Dunnet’s post-test (A, D), compared to uninfected mw).
Data are representative of or compiled from four (A, C), two (B), and three (D, G) independent experiments with three or more replicates each or two
independent experiments with 5 mice each (E, F). , MOI titration approximately 0.5:1–3:1 (A, B) and 2:1–10:1 (D).
doi:10.1371/journal.ppat.1003805.g007
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upregulated the activation markers, CD69 and CD25, and

produced IFNc. While IL-12 and IL-18 produced by infected

macrophages induced CD25 and IFNc expression by iNKT cells,

these cytokine signals were not required for iNKT cell control of

Mtb. In addition, macrophage expression of CD1d was dispens-

able for the upregulation of CD25 and only a minor factor in

promoting IFNc production, yet was essential to elicit iNKT cell

antimycobacterial activity.

The ability to dissociate iNKT cell activation and IFNc
production from iNKT cell antimicrobial function uncovered a

novel antibacterial function of iNKT cells: GM-CSF production.

We showed that CD1d-mediated activation was crucial for the

production of GM-CSF in response to Mtb infection by both

murine and human iNKT cells in vitro, and by murine iNKT cells

in vivo. In the absence of IFNc, GM-CSF was essential for iNKT

cell mediated inhibition of Mtb growth, and GM-CSF alone was

sufficient for bacterial control in vitro. Interestingly, under

conditions where either CD1d signaling or GM-CSF was blocked

during iNKT cell co-culture there was still on average a 30%

reduction in CFU. In the case of antibody blocking, inefficient

inhibition during the five day assay may be a technical

confounder. In addition, this data points to two alternative

biological explanations. First, signals apart from TCR activation

may contribute to the production of GM-CSF by iNKT cells

(Figure 7B). Cytokines such as IL-12 plus IL-18 stimulate iNKT

cells to produce GM-CSF (data not shown). Second, there may be

molecules other than GM-CSF and IFNc that are produced by

iNKT cells and activate infected macrophages to inhibit bacterial

growth. While GM-CSF is unlikely to be the only iNKT cell

effector function that inhibits Mtb replication, our experiments

demonstrate that it is a dominant antimicrobial pathway during

Mtb infection.

Although signaling by IFNc is crucial for control of Mtb, clinical

data shows that IFNc present at the site of ongoing infection is

inadequate to clear bacteria and IFNc levels produced by CD4+ T

cells do not correlate with disease progression or protection

provided by BCG vaccination [38,39,40]. An implication of these

studies is that alternative pathways exist that control Mtb. A

number of studies have demonstrated IFNc-independent mecha-

nisms of control by CD4+ and CD8+ T cells [41,42,43]. Using

iNKT cells as a model, we evaluated IFNc-independent pathways

of control in the innate immune compartment.

Two previous studies find GM-CSF to be required for host

resistance in vivo based on the greater susceptibility of GM-CSF2/

2 mice compared to WT mice [44,45]. Although alveolar

macrophages and type II epithelial cells were presumed to be

the dominant source of GM-CSF in the lung, ectopic expression of

GM-CSF driven by the surfactant C promoter did not fully rescue

the susceptibility of GM-CSF2/2 mice, suggesting that GM-CSF

from other sources might be important for immunity. T cells are

an important source of GM-CSF, and in addition to iNKT cells,

other innate-like T cells produce GM-CSF during Mtb infection

(manuscript in preparation). We have also found that conventional

CD4+ T cells in the lungs of Mtb infected mice produce GM-CSF

and may replace innate lymphocytes as a source of GM-CSF as

the immune response to Mtb evolves. This may be one

explanation for why iNKT cells are redundant during Mtb

infection. Although GM-CSF restricts bacterial replication in

human macrophages, its role as an effector molecule during

clinical infection is harder to discern. Importantly, recent clinical

data indicates that the development of anti-GM-CSF neutralizing

antibodies are a form of acquired immunodeficiency associated

with cryptococcal meningitis and pulmonary tuberculosis in

otherwise normal individuals [46]. This suggests that inhibition

of GM-CSF signaling may increase clinical susceptibility to Mtb

and other pulmonary pathogens.

To put our in vitro experiments in context, cytokines induced by

Mtb-infected macrophages, which include IL-12 and IL-18, are

drivers of IFNc and other cytokine production by iNKT cells,

independent of TCR activation (e.g., in an antigen-independent

manner). An important question is whether this mechanism is

relevant in vivo. In vitro, our assays use numerous macrophages

that are uniformly infected, with the consequence that the effective

cytokine concentration that the iNKT cells are exposed to could

be higher than is relevant in vivo. Furthermore, the iNKT cell

lines are primed to produce IFNc because they have been

repeatedly stimulated in vitro with aGalCer (see below). Interest-

ingly, the iNKT cell lines produced both IFNc and GM-CSF after

short-term adoptive transfer into Mtb-infected mice, but only in a

CD1d-dependent manner. Cytokine production was only ob-

served when the iNKT cells were transferred into Mtb-infected

WT mice but not when transferred into infected CD1d2/2 mice.

Thus, although CD1d-independent GM-CSF and IFNc was

observed in vitro, TCR signaling is crucial in vivo during infection

to stimulate iNKT cells to produce cytokines.

After a strong stimulus such as aGalCer, human iNKT cell

clones produce both GM-CSF and IFNc; in contrast, GM-CSF

dominates after a weak or autoreactive stimulus [47]. GM-CSF

production by iNKT cells plays an important role in the

maturation of DC, which has been linked to effective T cell

priming [47,48]. Wang et al found that in resting human iNKT

cells the CSF2 (GM-CSF) locus already had high histone H4

acetylation, indicative of chromatin availability, while the IFNG

(IFNc) locus had low histone H4 acetylation, which was increased

only after strong stimulation [34]. In contrast to the iNKT cell

lines, we observed that endogenous polyclonal iNKT cells in the

lungs of Mtb-infected mice more frequently produced GM-CSF

than IFNc, consistent with the idea that iNKT cells are poised to

produce GM-CSF more readily than IFNc, particularly when

exposed to weak TCR agonists. This study further confirms that

different iNKT cell effector functions may require different stimuli

Figure 8. GM-CSF is sufficient for inhibition of Mtb growth. CFU
assay for H37Rv-infected murine WT mw treated with recombinant GM-
CSF from 0.001–10 ng/ml concentration on d1. Error bars indicate mean
6 SEM. *P,.05, **P,0.01 (One way ANOVA with Dunnet’s post-test,
compared to d5 untreated mw). Data are representative of four
independent experiments.
doi:10.1371/journal.ppat.1003805.g008
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and that epigenetic modifications may explain at least part of this

phenomenon.

It is clear that there is great heterogeneity in iNKT cell

responses and that part of this variability comes from the diversity

in activating stimuli iNKT cells encounter. We observed two

distinct modes of activation that initiated different effector

functions: (1) the IL-12/IL-18 pathway activated iNKT cells to

produce IFNc, and (2) a TCR-dependent pathway elicited

antimycobacterial activity. Interestingly, in the context of Mtb

infection, the conventional markers of iNKT cell activation did not

correlate with effector function and our data indicate that GM-

CSF production may be a better marker of TCR-dependent

iNKT cell effector function than IFNc. Using transcriptional

profiling, Cohen et al elegantly showed that iNKT cells share

features of both NK cells and T cells [49]. Here we show that

during the host response to infection, different stimuli may trigger

different iNKT cell effector programs characteristic of NK cells

(e.g. activation by IL-12 and IL-18) or T cells (e.g. TCR

activation). Future insight into iNKT cell immunity will require

better understanding of how different activation stimuli can dictate

subsequent effector functions and may facilitate the discovery of

other novel antimicrobial roles for iNKT cells.

Materials and Methods

Ethics statement
All mice were bred and maintained using standard humane

animal husbandry protocols. All animal experiments were

performed in accordance with relevant guidelines for the care

and handling of laboratory animals and were approved by the

Dana Farber Cancer Institute Animal Care and Use Committee

(Animal Welfare Assurance number A3023-01) under Public

Health Service assurance of the Office of Laboratory Animal

Welfare guidelines. Human blood collected from healthy donors

was purchased from Research Blood Components (Boston, MA),

and its use was approved by the Institutional Review Board of

Brigham and Women’s Hospital (Human Subjects Assurance

FWA00000484). Written informed consent was obtained for each

donor by Research Blood Components.

Mice
C57Bl/6 WT, IFNc2/2, IFNcR2/2, TNFR1/22/2, Per-

forin2/2, and Fas2/2 mice were obtained from Jackson Labora-

tories. Va14-Ja281 transgenic mice were provided by Dr. Albert

Bendelac [50]. CD1d2/2 mice were provided by Dr. Mark Exley

[51]. MyD882/2 mice were provided by Dr. Koichi Kobayashi

[52].

Macrophage isolation and culture
Thioglycollate (TGL)-elicited peritoneal macrophages were

lavaged 4–5 days after 3% intraperitoneal TGL injection and

then isolated by positive selection with CD11b microbeads and

magnetic columns (Miltenyi Biotec). Purified cells were over 95%

F4/80+ CD11b+, as determined by flow cytometry. Bone marrow-

derived macrophages (BMDM) were differentiated from bone

marrow after 7 days in RPMI supplemented with 20% L929 cell

supernatant. U937 cell line was grown in complete media.

Macrophages were seeded at 56105 cells/well in 24-well culture

plates or 16105 in 96-well culture plates in complete RPMI 1640

medium (Invitrogen Life Technologies) supplemented with 10%

fetal calf serum (HyClone). For transwell assays, macrophages

were seeded at 26105 in 0.4 mm cell culture inserts for 24-well

plates (BD Bioscience).

iNKT cells and HMNC
iNKT cell lines were derived as previously reported [53]. T cells

were selected from splenocytes using the Pan T Isolation Kit

(Miltenyi Biotec) and then cultured overnight at 37uC. The next

day, T cells were labeled with PE-conjugated CD1d tetramer

loaded with PBS-57 lipid antigen (National Institutes of Health

Tetramer Core Facility) and sorted using anti-PE beads (Miltenyi

Biotec). The purity of iNKT cells was higher than 95%. iNKT

cells were then cultured with irradiated aGalCer-pulsed BMDCs

in 24-well plates in complete RPMI medium with 10% FBS.

Three to four days later, 1 ng/ml IL-2 (R&D Systems) and 10 ng/

ml IL-7 (PeproTech) were added. iNKT cells were rested for at

least 18 days before use. Human iNKT cell clones were derived

and cultured as previously described [7]. Hepatic mononuclear

cells (HMNCs) were isolated from mouse liver perfused with PBS

and homogenized through 70 um cell strainer to single cell

suspension. After centrifugation, the cells were resuspended in

30% Percoll and overlayed onto 80% Percoll layer (Sigma). The

interface containing the lymphocytes was collected and washed

before use.

Mtb in vitro culture and infection
H37Rv was grown and prepared as previously described [18].

Bacteria was counted and added to macrophages at an effective

multiplicity of infection (MOI) of 0.2 for CFU experiments (or

higher for ELISA and FACS assays) for two hours. Cultures were

washed three times to remove extracellular bacteria. Infected

macrophages were cultured overnight and iNKT cells or other

conditions were added on d1. For CFU measurement, cells were

lysed with 1% Triton X-100/PBS and lysate from quadruplicate

conditions were plated in serial dilutions on Middlebrook 7H10

agar plates (ThermoFisher Scientific), and cultured at 37uC for 21

days. Infected macrophages were treated with the following

reagents: caspase-3 inhibitor and caspase inhibitor negative

control (Calbiochem), anti-mouse-IL-12p40 (C17.8; Biolegend),

anti-mouse-IL-18 (93-10C; MBL), anti-mouse-CD1d (19G112.2)

[54], anti-human-CD1d (CD1d42; BD Pharmingen), anti-mouse-

GM-CSF (MP1-22E9; Biolegend), recombinant murine GM-CSF

(Peprotech), and IFNc (murine, Peprotech; human, Biolegend).

aGalCer was kindly provided by Gurdyal S. Besra.

% CFU reduction
To compare inhibition of bacterial growth across multiple

experiments, % CFU reduction was calculated. 100% CFU

reduction on d5 indicates complete inhibition of bacterial growth

to d1 levels while 0% CFU reduction indicates no change in

bacterial growth from untreated macrophages. % CFU reduc-

tion = 1006[CFU(untreated mf-d5)2CFU(treated mf-d5)]/[(CFU(untreated mf-

d5)2CFU(untreated mf-d1)]

In vivo aerosol infections
In vivo infections were performed using virulent Mtb (Erdman

strain). Mice infected with Mtb were housed under BSL3

conditions. For each infection, a bacterial aliquot was thawed,

sonicated twice for 10 s, and then diluted in 0.9% NaCl/0.02%

Tween 80. A 15-ml suspension of M. tuberculosis was loaded into a

nebulizer (MiniHEART nebulizer; Vortran Medical Technology)

and mice were infected via the aerosol route with a nose-only

exposure unit (Intox Products) and received ,50–100 CFU/

mouse. Mice were euthanized by CO2 inhalation and lungs were

aseptically removed after perfusion of 10 ml of sterile RPMI into

the right ventricle of the heart. Lung mononuclear cells were

obtained by mechanical disruption using a gentleMACS disso-
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ciator (Miltenyi Biotec) followed by incubation in collagenase

(Sigma-Aldrich) for 30 mins at 37uC. Cells were isolated by forcing

suspensions through a 70 mM cell strainer and then enumerated in

4% trypan blue with a hemacytometer. Samples used for ICS were

incubated for 4 hours at 37uC with IL-2 and Brefeldin A

(GolgiPlug, BD Biosciences).

Adoptive transfer of iNKT cell lines
3–56106 iNKT cells were stained with Cell Proliferation Dye

eFluor 450 (eBioscience) following the manufacturer’s protocol and

then iv injected via tail vein into Mtb-infected WT or CD1d2/2

mice. Twenty hours later, mice were euthanized and lungs were

removed and digested. Lung mononuclear cells were stained by

surface and ICS protocols and paraformaldehyde fixed. Untrans-

ferred iNKT cells cultured in standard media were similarly treated

to ascertain baseline activation. Flow cytometry gating strategies

allowed for separation of endogenous versus transferred iNKT cells

independent of tetramer staining by the presence of fluorescent dye.

Flow cytometry and ICS
Cells were first incubated with CD16/CD32 (FcBlock; BD

Biosciences). Surface staining for in vitro experiments included

antibodies for mouse CD69 (H1.2F3), CD25 (PC61), F4/80

(BM8), CD1d (1B1), and isotype controls (all from Biolegend).

Surface staining of lung mononuclear cells included antibodies for

mouse TCRb (H57-597), CD69, CD3 (17A2), CD19 (6D5) and

isotype controls (all from Biolegend). PBS-57-loaded and control

PE- and APC-conjugated CD1d tetramers were provided by the

National Institute of Allergy and Infectious Diseases Tetramer

Facility (Emory University Vaccine Center). After tetramer

staining, ICS with antibodies specific for mouse GM-CSF (MP1-

22E9; eBioscience) and IFNc (XMG1.2; Biolegend) was per-

formed following fixation with 4% paraformaldehyde and

permeabilization with Perm/Wash buffer (BD Biosciences). Data

were collected using FACSCanto (BD Biosciences) and analyzed

with FlowJo (Tree Star, Inc.).

ELISA, nitric oxide, and Bioplex immunoassays
Culture supernatants were filtered through 0.2 mm filter to

remove any bacteria. IFNc, IL-12p40, and GM-CSF ELISAs were

done in accordance with the manufacturer’s instructions (Biole-

gend), and absorbance was recorded at 450 nm on SoftMax Pro

ELISA analysis software (Molecular Devices). Nitric oxide (NO)

production was measured using the Griess reaction to detect

nitrite, a stable breakdown product of NO, as described previously

[18]. For size fractionation, Amicon Ultra-15 Centrifugal Filter

Units with 10 kDa and 50 kDa cutoff were used (EMD Millipore).

Bioplex immunoassay was done in accordance with the manufac-

turer’s instructions (BioRad).

Statistical analysis
Data was analyzed by one-way ANOVA (95% confidence

interval) with Dunnett’s post-test (for comparison against a single

control) or Tukey post-test (for comparison between all conditions)

or unpaired Student’s t-test. Analysis was performed using

GraphPad Prism software.

Supporting Information

Figure S1 iNKT cell activation after Mtb infection is
observed with primary iNKT cells and bone marrow
derived-macrophages (BMDM). (A) HMNC were cultured

either alone, with uninfected thioglycollate-elicited peritoneal mw
(TGL-PM), or H37Rv-infected TGL-PM for 24 hours and gated on

CD1d-tetramer+CD3+ population. Fold change in CD69 MFI

measured over HMNC cultured alone. Supernatant was harvested

at 24 hours and IFNc measured by ELISA. (B) iNKT cells were

cultured with uninfected or H37Rv-infected WT bone marrow

derived macrophages (BMDM) for 24 hours. Fold change in CD69

MFI over iNKT cells cultured alone. Supernatant was harvested at

24 hours and IFNc measured by ELISA. Error bars indicate mean

6 SEM. The data is from a single experiment. Note that the IFNc
release is less than in Figure 1. This difference is likely to arise from

the use of primary HMNCs in Figure S1A and different APCs in

Figure S1B. Figure S1A uses hepatic mononuclear cells (HMNC), as

a source of primary uncultured iNKT cells, to demonstrate that the

culture conditions of the primary iNKT cell lines did not alter the

behavior of the cells. iNKT cells are a small fraction of conventional

T cells in most sites of the body. In the liver, iNKT cells make up

about 10–20% of the total lymphocytes; therefore, the difference in

the magnitude of the IFNc response may be due to the use of a

lower number of iNKT cells. Secondly, the use of cultured iNKT

cells (in Fig. 1) may generate a stronger response because they act as

if ‘primed’ because they are repeatedly stimulated in the presence of

cytokines. Fig. S1B used BMDM to show that Mtb-infected APCs

other than TGL-PM stimulate iNKT cells. BMDM are not as

activated as TGL-PM, which contributes to the difference in the

level of responses in this experiment.

(EPS)

Figure S2 WT and IFNc2/2 iNKT cells both inhibit Mtb
growth in vitro at comparable levels. Compiled data from

CFU assays d5 and d7 post-infection for H37Rv-infected WT mw
with WT or IFNc2/2 iNKT cells added on d1. The CFU reduction

for WT and IFNc2/2 iNKT cells on d5 was 60.064.7%, and

60.164.0%, respectively. On d7, the CFU reduction was

81.965.4%, and 67.966.2%, respectively. Error bars indicate

mean 6 SEM. (Unpaired Student’s t-test, p = NS). The data are

compiled from 13 (d5) and four (d7) independent experiments.

(EPS)

Figure S3 Conditioned media fractions from a-GalCer
stimulated IFNc2/2 iNKT cells inhibit bacterial growth.
(A) Size fractionation strategy for conditioned media samples using

50 kDa and 10 kDa Amicon Ultra-15 Centrifugal Filter Units. (B)

CFU assay for H37Rv-infected WT mw treated on d1 with whole

and size fractionated conditioned media samples from IFNc2/2

iNKT cells stimulated for 24 hours with untreated or aGalCer-

loaded WT or CD1d2/2 mw at 1:50 dilution. (C) Cytokines

measured in whole and size fractionated conditioned media

samples from IFNc2/2 iNKT cells stimulated for 24 hours with

untreated or aGalCer-loaded WT or CD1d2/2 mw. Cytokines

were measured using Bioplex immunoassay. Error bars indicate

mean 6 SEM. *P,0.05, **P,0.01 (One-way ANOVA with

Dunnet’s post-test, compared to d5 untreated mw). The data are

representative of two independent experiments.

(EPS)

Figure S4 WT iNKT cells produce GM-CSF following
Mtb infection. Murine GM-CSF measured in supernatants after

24-hr co-culture of WT iNKT cell line with uninfected and

H37Rv-infected WT mw. ***P,0.001 (One-way ANOVA with

Dunnet’s post-test, compared to uninfected mw). The data are

representative of three independent experiments.

(EPS)

Figure S5 Control of intracellular Mtb replication by
WT iNKT cells in the presence of anti-GM-CSF blocking
antibody. WT iNKT cells were added to H37Rv-infected WT

mw on d1 without additives, or in the presence of anti-GM-CSF

iNKT Cell Production of GM-CSF Controls Mtb
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blocking antibody or nonspecific isotype control antibody (25 mg/

ml). CFU were determined on d5. The data are compiled from

three independent experiments with four replicates per condition,

and normalized to calculate the percent CFU reduction. Statistical

analysis was performed using a one-way ANOVA and was not

significant. Error bars indicate mean +/2 SEM.

(EPS)

Figure S6 iNKT cells are found in the lung after aerosol
Mtb infection. Lung mononuclear cells from WT Mtb-infected

mice were stained and fixed. iNKT cells were identified as TCRb+

and CD1d-tetramer+. Number (A) and percentage (B) of iNKT

cells in the lung were measured. (C) CD69 MFI measured on

iNKT cell subset. The data are representative of two independent

experiments with 5 mice each.

(EPS)
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