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Abstract

Endemic Burkitt’s lymphoma (eBL) arises from the germinal center (GC). It is a common tumor of young children in tropical
Africa and its occurrence is closely linked geographically with the incidence of P. falciparum malaria. This association was
noted more than 50 years ago. Since then we have learned that eBL contains the oncogenic herpes virus Epstein-Barr virus
(EBV) and a defining translocation that activates the c-myc oncogene. However the link to malaria has never been explained.
Here we provide evidence for a mechanism arising in the GC to explain this association. Accumulated evidence suggests
that eBL arises in the GC when deregulated expression of AID (Activation-induced cytidine deaminase) causes a c-myc
translocation in a cell latently infected with Epstein-Barr virus (EBV). Here we show that P. falciparum targets GC B cells via
multiple pathways to increase the risk of eBL. 1. It causes deregulated expression of AID, thereby increasing the risk of a c-
myc translocation. 2. It increases the number of B cells transiting the GC. 3. It dramatically increases the frequency of these
cells that are infected with EBV and therefore protected from c-myc induced apoptosis. We propose that these activities
combine synergistically to dramatically increase the incidence of eBL in individuals infected with malaria.
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Introduction

Endemic Burkitt’s lymphoma (eBL) is an extremely common

tumor of young children in tropical Africa [1]. Genetic,

phenotypic and transcriptional analysis suggests that it originates

from germinal center (GC) cells [2,3] although it actually grows in

extrafollicular locations. It is defined by a well described

chromosomal translocation between the c-myc oncogene and

one of the immunoglobulin loci that results in constitutive

activation of the oncogene leading to uncontrolled growth of the

cell [4,5,6]. Recent studies indicate that this translocation may be

mediated as a consequence of deregulated expression of the

enzyme AID (Activation-induced cytidine deaminase) [7,8,9]. AID

is highly expressed in GC B cells and is normally responsible for

the processes of somatic hypermutation and class switch recom-

bination of immunoglobulin genes as they undergo affinity

maturation in the GC [10]. This restricted expression of AID

further supports the notion that eBL originates in the GC.

eBL is also closely associated with two infectious agents, P.

falciparum malaria and Epstein-Barr virus (EBV) [1,11,12]. The

distribution of the tumor in Africa closely matches that of hyper-

and holoendemic malaria [12] while EBV was originally

discovered in eBL tumor biopsies. Subsequently, we have

learned a great deal about the molecular mechanism behind

eBL pathogenesis and the transforming ability of EBV. EBV is a B

lymphotropic herpes virus that can drive the activation and

proliferation of newly infected B cells by expressing a series of

latent proteins and noncoding RNAs that collectively are referred

to as the growth transcription program[13,14]. In vivo, however,

EBV establishes a lifelong, quiescent, persistent infection in resting

memory B cells [15,16]. The virus makes the transition in vivo from

a newly infected activated B cell blast to a resting memory B cell

via passage through the GCs of the tonsillar lymphoid tissue

[[17,18]. In doing so it recapitulates the mechanism by which

normal B cells become memory B cells (for a detailed description

of the mechanism see [14]).

Normally deregulation of c-myc expression such as is found in

eBL would lead to apoptotic death of the cell; however, evidence

suggests that exposure to the EBV growth program prior to entry

into the GC [14,19] and viral genes expressed in the GC [20,21]

are sufficient to convey a level of resistance to this apoptosis. Thus,

the cells in the GC most likely to tolerate the c-myc translocation

are the ones already latently infected with EBV. This also places

EBV at the site of eBL origin, the GC. Interestingly GC cells

carrying EBV express only a limited subset of the latent proteins

(default transcription program) and even these become silenced as

the infected cells enter the memory compartment [16,17,22]. Here

the virus only expresses small non-coding RNAs including ,40
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miRNAs. The exception is that they also express the viral DNA

tethering protein EBNA1 when the cells occasionally divide as part

of normal memory B cell homeostasis [23]. Viral gene expression

in eBL resembles the infected dividing memory B cells, not the GC

cell: i.e. viral gene expression is limited to the viral DNA tethering

protein (EBNA1) and the non-coding RNAs. This led us to

propose that eBL is a tumor of a GC cell that has left the lymph

node to become a resting memory B cell but is unable to do so

because it continues to proliferate, driven by the deregulated c-

myc oncogene.

While understanding the function of c-myc and EBV in eBL has

progressed, the role of P. falciparum malaria has remained poorly

understood. P. falciparum malaria is immunosuppressive [24] and

there is considerable evidence that this leads to much higher viral

burdens of EBV [25,26]. However it is well documented that

increased EB viral loads associated with immunosuppression [27]

predispose to EBV positive immunoblastic lymphoma not Burkitt’s

lymphoma [28]. We hypothesize that malaria plays multiple roles

in eBL pathogenesis. First, we propose that malaria has the

capacity to induce deregulated expression of AID thereby

increasing the likelihood of the translocation event. Second, we

suggest that the higher viral burdens lead to an increased

frequency of newly infected B cell blasts in the tonsils. This results

in more EBV infected B cells transiting the GC and consequently a

higher frequency of cells in the GC able to tolerate a c-myc

translocation. Taken together malaria infection would both

increase the likelihood of c-myc translocations in the GC and

the probability that it will occur in a cell that can tolerate it,

namely an EBV infected cell. In this paper we have sought to test

this hypothesis.

Results

Malaria parasites induce AID in B cells in vitro
To provide direct support for our hypothesis we have sought in

vitro evidence that P. falciparum can stimulate AID expression.

Tonsil B cells were incubated with malaria extract prepared by

lysing red blood cells infected with P. falciparum. As controls we

used the known Toll like receptor 9 (TLR9) agonist CpG and

costimulation with IL-4 and CD40 ligand. Figure 1A shows a time

course of AID mRNA induction with various combinations of

stimulants. It is apparent that optimal induction requires a

combination of T cell help (CD40 ligand and IL-4) and the

TLR9 agonist CpG, with peak activation occurring after 5 days of

culture. In our hands, CpG alone had minimal or no effect on AID

induction although it was extremely potent in driving B cell

proliferation (not shown). These results are consistent with previous

reports [29]. Figure 1B shows the same experiment where extracts

from lysed red blood cells infected with P. falciparum were also tested.

Similarly to CpG, the parasite extract had minimal or no effect

when added alone but showed strong stimulation of AID expression

in combination with IL-4 and CD40 ligand. This suggests that the

parasite would only stimulate AID expression when T cell help is

available, i.e. in the GC. As with CpG activity peaked by day 5. At

this time, the parasite extract was three times as effective as CpG in

inducing AID mRNA. The parasite extract differed from CpG in

that when added alone it was not able to stimulate B cell

proliferation (not shown).

Optimal stimulation of AID expression by CpG requires

costimulation through the BCR. This is demonstrated in

Figure 2, where inclusion of sIg cross-linking increased stimulation

two and a half fold compared to CpG alone. Comparison to

parasite extract in the same experiment demonstrated that sIg

cross-linking plus CpG were about as effective as parasite extract

alone and that sIg cross-linking did not significantly enhance the

effect of parasite extract. Extracts from uninfected RBCs showed

no activity either alone or in combination with other stimuli

(Figure 2). We conclude that the parasite is able to generate a

signal that is as effective as the TLR9 and BCR signals combined.

To confirm that the increase in AID mRNA stimulated by the

parasite was reflected in increased AID protein expression, we

repeated the stimulation experiments and examined the resulting

cells for AID by flow cytometry. As may be seen in Figure 3A–C,

parasite extract induced comparable levels of AID protein

expression to that achieved with CpG when combined with sIg

cross-linking. It is noteworthy that in some cases the relative level

of protein expression measured by FACS did not match the levels

seen for the mRNA (see for example Unstimulated versus CD40L

+IL4). This likely reflects that the cells are newly stimulated in

culture and there is a lag between the synthesis of AID mRNA and

the production of the protein.

We conclude, therefore, that P. falciparum is a potent antigen

independent stimulator of AID expression. When combined with

T cell help signals it is at least as effective as the combination of

CpG and BCR cross-linking.

Hemozoin is an AID agonist
It has been reported that the P. falciparum metabolic product of

hemoglobin digestion, hemozoin [30], is a ligand for TLR9, but

this has only been tested with dendritic cells [31,32]. It has not

been shown for B cells. To test if hemozoin could be taken up by B

cells we have incubated hemozoin and CpG with two B cell lines,

BL2 (EBV negative BL line) and IM171 (spontaneous EBV

positive lymphoblastoid cell line). As may be seen in Figure 4A,

both were readily taken up by the B cells (Hemozoin crystals were

visualized using reflection microscopy and CpG is tagged with

Alexa-488). To test if hemozoin could thereby act to stimulate AID

expression we have compared the stimulatory activity of hemozoin

to CpG and sIg. The result is shown in Figure 4B. Hemozoin

alone had no effect, however in combination with sIg cross-linking

it was two and a half fold more effective than sIg alone,

comparable with CpG plus sIg. No appreciable increase was

observed when parasite DNA was added (3 ug/ml) either alone or

together with hemozoin. This suggests that the hemozoin

preparation alone was sufficient for the activity.

These results demonstrate that hemozoin is one component of

the P. falciparum extract that is capable of stimulating AID

expression however there must be another component that is

mimicked by sIg cross-linking to obtain the optimal stimulation

obtained with whole parasite extracts.

Author Summary

Endemic Burkitt’s lymphoma (eBL) is a common tumor of
young children in tropical Africa that is closely linked
geographically with P. falciparum malaria. This association
was noted more than 50 years ago. Since then we have
learned that eBL contains the oncogenic herpes virus
Epstein-Barr virus and a defining translocation that
activates the c-myc oncogene. However the link to malaria
has never been explained. Here we show that malaria has
multiple effects that all focus on germinal center (GC) B
cells that are known to be the origin of eBL. Together
these effects of malaria act synergistically to dramatically
increase the risk of developing eBL in individuals infected
with the parasite. Clinical interventions that lessen the
impact of malaria on GC B cells should dramatically
decrease the incidence eBL.

Role of Malaria in Burkitt’s Lymphoma
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Figure 1. P. falciparum extracts stimulate expression of AID mRNA in normal tonsil B cells. Tonsils lymphocytes were isolated and
incubated with the components indicated in the Figure for 3 (blue), 5 (red) or 7 (green) days. After the noted incubation times, B cells were isolated
and analyzed for AID mRNA expression. A. Induction of AID mRNA requires a combination of signals from IL-4, CD40 ligand and CpG. B. P. falciparum
extracts stimulate AID mRNA expression more effectively than CpG. AU – arbitrary units. The level of AID mRNA is expressed relative to that of b-actin.
doi:10.1371/journal.ppat.1004170.g001
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Higher levels of AID expression in GCs of malaria tonsils
To test the hypothesis that malaria is associated with higher

levels of AID expression in vivo, we have examined and compared

purified GC cells from tonsils obtained from malaria infected and

uninfected patients who were matched for age, sex and

socioeconomic class. The results are summarized in Figure 5A–

B. mRNA was isolated from similar numbers of GC B cells. For all

samples AID and c-myc mRNA levels were normalized to b-actin

and the level in the GC population is expressed relative to that in a

standard naı̈ve B cell population (calibrator) isolated from a single

Boston tonsil. The level of AID mRNA in the GC cells from the

control population are comparable with what has been reported

previously [33]. In comparison, the levels of AID mRNA in the

malaria tonsils were significantly higher, about 5 fold on average.

However, although all the values for the malaria tonsil were above

the range of the controls, the spread was large such that some

samples had levels 8–13 fold higher than controls. The results for

c-myc transcripts were less striking. Most of the malaria samples

showed little or no significant difference from controls with the

exception that two of the nine samples tested clearly had a

markedly elevated level of c-myc mRNA. The level of c-myc

mRNA did not correlate with the levels of AID mRNA. These

results confirm our prediction that the levels of AID expression are

higher in the tonsil GC B cells of individuals infected with malaria.

Higher levels of GC cells and EBV infected GC cells in
malaria tonsils

To test the hypothesis that malaria is associated with higher

levels of EBV infected cells in the GC, the GC cells from the same

sets of tonsils described above were also analyzed for the presence

of EBV. We recovered similar numbers of cells from both sets of

tonsils and the fraction of B cells was also similar (Figure 6A). The

fraction of GC cells in the control tonsils was ,32% (Figure 6B),

consistent with what we have seen in previous studies. However,

the frequency in the malaria tonsils was unusually high ,50%.

When we analyzed the frequency of EBV infected cells in the two

sets of tonsils, an even more dramatic difference was observed

(Figure 6C and Table 1– note the log-scale in the Figure), with the

level being ,50 fold higher on average in the malaria tonsils

compared to controls (log mean: 2,275/107 versus 51/107; median

2,580/107 versus 52/107). Taking the increased numbers of GC

cells into account, this means that the malaria tonsils have

approximately 70 fold more EBV infected cells in their GCs.

These results confirm our prediction that the levels of EBV

infected GC B cells should be higher in the tonsils of individuals

infected with malaria.

As may be seen in Figure 6D, although both EBV infection and

AID expression were elevated in all of the malaria tonsils there was

no correlation between the levels of EBV infection and the level of

AID in either malaria or control samples. We conclude that

individuals infected with malaria have an increased level of EBV

infected cells and AID mRNA expression in their tonsil GC cells,

but these levels are not correlated.

c-myc expression in the GC
We have shown above that the level of c-myc transcripts is

significantly elevated in GC cells from the tonsils of a subset of

individuals with malaria. However, there has been controversy as

to whether c-myc is actually expressed in the GC [34,35,36,37].

Therefore, to confirm that we were detecting c-myc expression in

Figure 2. P. falciparum extracts stimulate AID expression at levels equivalent to CpG combined with surface Ig cross-linking. The
assay was performed after incubation for 5 days as described in Figure 1.
doi:10.1371/journal.ppat.1004170.g002

Role of Malaria in Burkitt’s Lymphoma
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GC cells we performed several experiments as shown in Figure 7.

GC cells (CD10+ tonsil B cells) were positive for c-myc expression

when stained with a c-myc specific antibody and analyzed by flow

cytometry (Figure 7A). The presence of c-myc protein in our GC

cell preparations was confirmed by Western blot (Figure 7B),

where the signal was specifically blocked by the myc specific

peptide used to raise the antibody. The specificity and correct

location of the protein in the nucleus was confirmed by analysis

with the ImageStream (Figure 7C). We conclude, therefore, that

our studies support the current opinion that c-myc is expressed in

GC cells.

Discussion

It is now more than 50 years since the association between P.

falciparum malaria and eBL was first proposed [11,12]. Since that

time, confirmation of a direct link and a mechanism to explain it

has been lacking. Here we have presented studies on the effect of

malaria in the context of the GC and provided evidence for a

multifactorial effect of malaria that can account for the increase

risk of eBL. These include the activation of AID expression,

possible heightened c-myc transcription, increasing the numbers of

B cells transiting the GC and increasing the fraction of these cells

that are EBV infected. The common component linking these

effects is the GC. The GC is the structure where immunoglobulin

genes undergo somatic hypermutation and class switch recombi-

nation [38,39], mediated by AID [10], as the cells undergo affinity

maturation. It is this enzyme that is responsible for causing the c-

myc translocation characteristic of eBL [7,8,9]. However, the GC

is also the site where newly infected EBV blasts undergo the

transition to become resting latently infected memory B cells

[14,16,22]. Therefore, in the presence of malaria the number of

cells able to tolerate a c-myc translocation (EBV infected) in the

GC are increased and the probability of a c-myc translocation is

also increased (AID activation). Thus, it is the increased

probability of a fortuitous collision of AID and EBV in GC cells,

both exacerbated by malaria that leads to eBL. A further

observation confirming that these events occur within the GC

was the finding that the P. falciparum extract alone had little or no

ability to induce AID. Maximal induction required co-stimulation

Figure 3. P. falciparum extracts stimulate expression of AID protein in normal tonsil B cells. The same protocol was followed as described
in Figure 1, except the cells were analyzed by staining for AID protein expression and FACS analysis after a 5 day incubation period. - Flow cytometry
histograms of cell populations demonstrate equivalent levels of AID expression in B cells activated by CpG or P. falciparum extracts. MFI = Mean
fluorescence intensity. A. and C. Percentage of all B cells expressing AID (B) and percent of B cells expressing high levels of AID (C) suggest equal
levels of AID expression in B cells activated by CpG or P. falciparum extract. We observed two overlapping populations of cells staining positive for
AID. An arbitrary gate imposed on the brighter population defined high level expressers. The same gate was applied to all samples.
doi:10.1371/journal.ppat.1004170.g003

Role of Malaria in Burkitt’s Lymphoma
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Figure 4. Hemozoin is taken up by B cells and activates AID expression. A. Hemozoin (sHz) (red) and CpG (green) were incubated with two
different B cell lines. Note presence of red granules inside both cell types. BL2 is an EBV negative BL line and IM171 a spontaneous EBV positive
lymphoblastoid line. B. Hemozoin stimulates expression of AID mRNA to an equivalent level to that obtained with surface Ig cross-linking and CpG.
The stimulation was independent of hemozoin being complexed with parasite DNA. The same protocol was followed as described in Figure 1. The
cells were analyzed after a 5 day incubation period.
doi:10.1371/journal.ppat.1004170.g004
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with CD40 ligand and IL-4. This means that the malarial parasite

can only work to induce AID expression if T cell help is also

provided. Since T cell help is specifically provided in the GC

[40,41], this firmly places the role of P. falciparum in the induction

of AID in the GC and would seem to rule out fortuitous activation

elsewhere. This would explain why eBL is uniquely a tumor of GC

cells.

We observed no difference in the percentage of total B cells per

tonsil between the malaria-endemic and the non-malaria regions,

however, GC cells are ,2 fold higher in the malaria background.

This suggests that malaria (or malaria background) does not

disrupt the size of the B cell pool but increases the likelihood that

more B cells, and therefore EBV-infected cells, either enter the GC

or that the cells stay longer in the GC. Either way, this increases

the chances that some B cells, including EBV infected cells, will

develop deleterious mutations and translocations. In individuals

with malaria we detected a wide range in the number of GC cells

containing EBV and in the degree of AID expression. It is

tempting to speculate that those with the rare fortuitous

coincidence of extremely high levels for both may be the likely

candidates for tumor development.

We have provided compelling in vitro evidence to support the

claim that P. falciparum induces AID expression, the first such

evidence. Importantly, the parasite induces AID in an antigen

independent, i.e. deregulated fashion. Such expression is known to

be a predisposing factor for the c-myc translocation. EBV infection

of B cells in vitro, as well as EBV associated proteins, have also been

shown to induce AID expression [42,43,44]. It is conceivable

therefore that EBV and malaria could even cooperate in the

induction of AID.

We have shown that P. falciparum is capable of eliciting AID

expression at least as effectively as the combination of CpG and

BCR cross-linking, suggesting that the parasite can provide both

signals. We have identified hemozoin, the crystalline by product of

P. falciparum digestion of hemoglobin [30] and a reported TLR9

ligand [31,32], as one of the parasite components responsible.

Consistent with its signaling through TLR9, hemozoin is only

effective at inducing AID in the presence of BCR cross-linking.

Thus, it is likely that there is a second, as yet unidentified, parasite

derived ligand that provides the surrogate BCR signal. A likely

candidate for this is the P. falciparum specific protein PfEMP1

encoded by the var gene family [45], which has been shown

previously to bind to and activate B cells through the BCR [46].

This would also explain the specific link of P. falciparum with eBL

since only this species of malaria expresses PfEMP1. The

prediction is therefore, that a combination of hemozoin and

PfEMP1 are providing the requisite TLR9 and sIg signals. Since

TLR9 is a receptor for polynucleotides it was somewhat surprising

that hemozoin was able to stimulate AID expression in the absence

of parasite DNA. It is controversial as to whether hemozoin does

[32] or does not [31] need or be associated with DNA in order to

signal through TLR9. It is possible that hemozoin may be

signaling via a TLR9 independent mechanism in our system since

it has been reported that it can signal through other pathways

including the inflammasome [47,48]. However, there was a high

death rate in our in vitro assays therefore it is possible that

endogenous unmethylated DNA from the dead cells was being

trafficked into the endosomal compartment by hemozoin to

stimulate TLR9 and consequently lead to AID induction.

Demonstration of an increased viral burden of EBV in

individuals with P. falciparum malaria is not a new observation

[25,26], however in this paper we have shown a direct mechanistic

consequence of this elevation that provides a risk factor for eBL

namely an increased number of latently infected cells in the GC.

This effect is not modest, with the mean frequency of EBV

infected GC B cells from the malaria tonsils being about 50 fold

more than the frequency of EBV infected GC B cells from the

controls. Combined with the increase in the number of total GC

Figure 5. Higher levels of AID and c-myc mRNA in tonsil GC B cells from individuals infected with P. falciparum malaria compared to
controls. A. AID mRNA expression is significantly increased in GC B cells from the malaria tonsils. (** p = 0.005). B. c-myc RNA is significantly elevated
in GC B cells from some malaria tonsils. (* p = 0.031). AID and c-myc mRNA levels were normalized to b-actin and the level in the GC population is
expressed relative to that in a standard naı̈ve B cell population (calibrator) isolated from a single Boston tonsil.
doi:10.1371/journal.ppat.1004170.g005
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cells this results on average in there being 70 times more EBV

infected cells in the GCs of individuals with malaria compared to

controls. We have shown previously that healthy individuals have

at any time on average approximately 3 EBV infected cells per GC

[49]. Our results here indicate that this would increase to around

150–200 per GC for an individual with malaria. This is a

significant increase in risk since the consequence is an extremely

high number of (EBV infected) cells each of which are primed to

tolerate the c-myc translocation that emanates from overexpressed

AID.

The increased frequency of latently infected cells seen in the

malaria samples (,50 fold) is very similar to what we have

reported previously for immunosuppressed patients and patients

with SLE [27,50]. Indeed, it has been reported previously that

malaria is immunosuppressive for T cell responses [51], including

those directed against EBV [24]. It is tempting therefore to

speculate that children with malaria are immunosuppressed and

that this explains the risk for eBL. However, we have pointed out

previously that immunosuppression is a risk factor for post-

transplant lymphoproliferative disorder (PTLD)-like disease, i.e.

immunoblastic lymphoma not eBL [14,22]. Thus, immunosup-

pression alone is not sufficient to explain eBL.

The results presented here also provide further support for the

GC model of EBV persistence. This model, which is now generally

accepted, holds that EBV establishes a persistent infection by

driving newly infected blasts through the GC to become latently

infected resting memory B cells [14,16,22]. A direct prediction of

this model is that a higher viral burden should produce a higher

number of EBV infected cells transiting the GC and that

prediction has been fulfilled in this study. Furthermore, the studies

presented here provide a powerful functional confirmation of

the model in that they provide an explanation for the link

between malaria and eBL. Thus, the model predicts that it is the

elevated rate of passage of virus infected cells through the GC,

together with deregulated AID expression, that explains the origin

of eBL.

Our studies suggest that malaria may also induce heightened

expression of c-myc in the GC, at least in some individuals. c-myc

is a non-traditional transcription factor with a very complex

regulation. High c-myc expression in the GC could account for the

observed high rate of proliferation, as well as the high apoptotic

tendency of GC B cells [34,37]. However, the question of whether

c-myc is even expressed in the GC has been controversial in the

past. Martinez-Valdez et al. [37] and Cutrona et al. [34] report

Figure 6. Higher levels of EBV infected cells in tonsil GCs from individuals infected with P. falciparum malaria compared to controls.
A. The percentage of B cells (CD19+) is unchanged. (ns p = 0.18). B. The percentage of GC B cells (CD10+) is significantly elevated in the malaria tonsils
(*** p,0.001). C. The frequency of GC B cells latently infected with EBV is dramatically increased in the malaria tonsils (*** p = 0.001). For details see
Table 1. D. The level of EBV infected GC B cells and AID expression do not directly correlate.
doi:10.1371/journal.ppat.1004170.g006
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that c-myc is highly expressed in GC B-cells, whereas Klein et al.

[36] were unable to confirm these findings. Recently, Dominguez-

Sola et al. [35] have presented compelling evidence that c-myc is

expressed in GC cells, specifically by B cells selected for reentry

into the dark zone, a conclusion supported by our work.

Furthermore, for AID to target c-myc in GC B cells, c-myc must

be expressed since AID deaminates transcribed substrates and acts

on selected highly transcribed genes when they are over-expressed.

Thus, higher than normal levels of c-myc transcription driven by

malaria could further increase the risk that AID would target the

c-myc gene for a translocation event.

In conclusion, we have presented the first direct evidence for a

mechanism to explain the link between eBL and holoendemic

malaria. If correct, these observations imply that reducing the

exposure to P. falciparum malaria or the development of drugs to

block the ability of malaria to induce AID should dramatically

reduce the incidence of eBL in young children in tropical Africa.

Specifically this should act as a spur to agencies interested in

reducing the incidence of exposure to P. falciparum in young

children.

Methods

Ethical statement
This study was approved by the Institutional Review Board of

the Tufts Medical Center, Boston, USA and the Committee on

Human Research and Ethical Publications of the School of

Medical Sciences, Kwame Nkrumah University of Science and

Technology (KNUST), and Komfo Anokye Teaching Hospital

(KATH), Kumasi Ghana. The material used was deidentified,

discarded tonsil tissue and was deemed exempt from informed

consent by the IRB. The tonsil material was obtained indirectly

either through the Pathology Department at Tufts Medical Center

or the EENT Clinic at Komfo Anokye Teaching Hospital.

Cells, cell lines and tissues
The EBV-positive lymphoblastoid cell line IB4 (gift of Elliott

Kieff) and Namalwa Burkitt’s lymphoma cell line were used as

positive controls for DNA PCR of the W-repeat region of the EBV

genomes. The EBV-negative cell line CB60, a mouse T-cell

hybridoma cell line (gift of Miguel Stadecker) was used as a

Figure 7. c-myc is expressed in GC B cells. A. Flow cytometric analysis demonstrating c-myc expression in tonsil GC cells (CD10+). The arrow
indicate the CD10+, c-myc positive GC population. B. Western blot analysis confirming c-myc expression in 3 independent tonsil GC B cell preparation
(GC1-3). Raji and Rael are EBV positive BL cell lines. The molecular weight in KD is shown to the left. C. ImageStream analysis of c-myc positive tonsil
GC B cells. Staining for a known nuclear protein bcl-6 is shown for comparison. N.B. For this study only Boston control tonsils were used.
doi:10.1371/journal.ppat.1004170.g007
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negative control in all W-PCR experiments. The Burkitt’s

lymphoma cell lines Raji and Rael were used as positive controls

for c-myc western blot. The EBV negative BL2 Burkitt’s

lymphoma cell line and SP-IM 171 spontaneous EBV lympho-

blastic cell line were used in hemozoin-DNA complex internali-

zation assays. All cell lines were cultured at 37uC with 5% CO2 in

RPMI 1640 supplemented with 10% fetal bovine serum, 2 mM

glutamine, 2 mM sodium pyruvate, 100 IU of penicillin-strepto-

mycin, and 10 mg/ml ciprofloxacin hydrochloride (RPMI-com-

plete). Palatine tonsils were obtained from patients 14 years or

younger undergoing routine tonsillectomy. Twelve tonsil samples

were obtained from patients at the EENT Clinic Komfo Anokye

Teaching Hospital, Kumasi, Ghana. These were processed at the

Kumasi Center for Collaborative Research in Tropical Medicine

(KCCR), Kumasi, Ghana, stored in liquid nitrogen and shipped to

Tufts University School of Medicine, Boston, USA on dry ice

(under the supervision of Prof. Karen Duca, KNUST, Kumasi,

Ghana). The presence of the parasite was confirmed based on

detection of P. falciparum DNA and/or antigens (see below).

Kumasi is an area of holoendemic malaria therefore it was not

surprising/unexpected that all patient samples received tested

positive for the parasite. To obtain parasite free control samples we

therefore also collected twenty one tonsils from a malaria negative

region (Boston MA) through the Pathology Department at Tufts

Medical Center, Boston MA, USA. The identical procedure and

reagents were used for harvesting tonsils in Boston and Kumasi.

The malaria infected individuals who provided the tonsils are

genetically distinct from the controls and could be subject to a

wider range of infection and lower level of general hygiene. To

minimize this possible source of variation we collected the malaria

tonsils from age and sex matched donors in an area of high

socioeconomic status in Kumasi where economic and medical

standards were comparable to those in Boston.

Isolation of tonsil mononuclear cells
Tonsil tissue was cut into very small pieces in ice-cold PBSA (1x

PBS +0.5% BSA) and then minced. Supernatants were pipetted

through a cell strainer into 50 ml conical tubes to remove debris.

Supernatants were centrifuged at 1,600 rpm at room temperature

for 10 minutes and then aspirated. Pellets were re-suspended and

brought to 50 ml with PBSA. About 25 ml of cells was carefully

layered onto 20 mls of Ficoll-paque plus (GE Healthcare

Biosciences, Philadelphia, USA) and then spun at 2,000 rpm for

30 minutes at room temperature (with no brake). Mononuclear

cells were collected from the interface (buffy coat) and cell pellet

discarded. The volume of mononuclear cells was adjusted to 50 ml

with PBSA (and an aliquot taken for counting); cells were then

washed once by spinning at 1,500 rpm for 10 minutes. After

counting, cells were frozen in fetal bovine serum (FBS) (Sigma, St.

Louis, USA) plus 10% DMSO (dimethyl sulfoxide) at 16108 cells/

ml. Cells were aliquoted in cryotubes and kept on ice for about 5

minutes, stored at 280uC overnight and then transferred to liquid

nitrogen for long term storage. The identical procedure and

reagents were used for preparing tonsil cell suspensions in Boston

and Kumasi.

Extracellular and intracellular staining
Tonsil mononuclear cells were thawed in medium (RPMI/

FBS), and spun down at 1,500 rpm for 5 minutes. B cells were

either first purified using StemSep (StemCell technologies,

Vancouver, Canada) according to manufacturer’s instruction, or

cells were re-suspended in 0.5% BSA in 1x PBS (PBSA) i.e.

staining buffer. Cells were resuspended at 56106 cells/100 ml

PBSA either directly into FACs tubes or 15 ml tubes for staining.

For extracellular staining the appropriate concentration of

fluorochrome conjugated antibody was added to cells in appro-

priate tubes and incubated for 15 minutes at room temperature in

the dark, after thorough mixing. Cells were washed once with

PBSA, vortexed, and spun down at 1,500 rpm for 5 minutes.

Finally cells were re-suspended in 300 ml PBSA and stored at 4uC
until analyzed.

For intracellular staining tonsil cells were pelleted, washed in

Dulbecco’s PBS2 (without calcium or magnesium), and fixed

either with 4% formaldehyde or with BD Cytofix/Cytoperm

fixation and permeabilization solution (BD Biosciences, San Jose,

USA) and then incubated for 20 minutes at room temperature.

Cells were then washed twice either with 1x BD wash/perm buffer

(BD Biosciences, San Jose, USA) or with 0.04% saponin based

wash buffer and spun down at 1,500 rpm for 5 minutes.

Permeabilization buffer (0.5% saponin based buffer) was used to

re-suspend cells at 56106 cells/100 ml. Two microliters (2 ml) of

normal human serum (60 mg/ml, Thermo Fisher Scientific

Rockford, USA) was added in order to block against non-specific

antibody binding, and cells were incubated for 30 minutes at room

temperature. Primary antibodies for intracellular antigens were

added and incubated at room temperature for 30 minutes. Cells

were then washed once and re-suspended in 0.5% saponin based

buffer, 2 ml of normal human serum was again added and

incubated for 30 minutes at room temperature. Fluorochrome

conjugated secondary antibodies were then added at appropriate

dilutions and incubated for 15 minutes in the dark. Cells were

washed once with wash buffer, spun down at 1,500 rpm for 5

minutes and stored in 300 ml PBSA at 4uC until analysis. Cell

sorting was performed on a MoFLo or Influx cell sorter and

analysis on a FACSCalibur or Image Stream at Tufts University

laser cytometry core. Sorted populations were .90% pure.

A list of the antibodies and fluors used in this study is given in

Table S1.

Detection of P. falciparum in tissues
The presence of the parasite was confirmed based on detection

of P. falciparum DNA and/or antigens. Nested, parasite specific

DNA PCR was performed for a sequence in the 2nd exon of the

Chloroquine transporter (Pfcrt) gene as follows: First round (94uC,

3 min; 94uC, 30 sec; 56uC, 30 sec; 60uC, 1 min 30 cycles, 72uC,

3 min) forward primer CCGTTAATAATAAATACACGCAG,

reverse CGGATGTTACAAAACTATAGTTACC (95uC, 5 min;

92uC, 30 sec; 48uC, 30 sec; 65uC, 30 sec (25 cycles); 72uC, 3 min)

forward primer TGTGCTCATGTGTTTAAACTT reverse

ACAAAATTGGTAACTATAGTTTTG. PCR product sizes

were verified on 2% agarose gels. 1st round amplicon 527 bp,

2nd round 145 bp.

P. falciparum antigens were detected employing a rapid

diagnostic test (RDT) cassette (ACON Laboratories, Inc., San

Diego, USA) as directed by the manufacturer.

Limiting dilution analysis to measure the frequency of
EBV infected cells

For limiting dilution analysis, GC B cell (CD19+CD10+)

populations were isolated by flow cytometry and usually 10

replicates each of 26105, 16105, 56104, 2.56104, 1.256104,

0.6256104, 0.31256104 (higher or lower dilutions were added as

needed) were placed in a 96 V bottom plate for subsequent EBV

W-repeat DNA PCR. The plate was spun at 1,200 rpm for 10

minutes at 4uC and the supernatant aspirated. To each well was

then added 20 ml of digestion mix (10X PCR buffer, 100 ml; Igepal

(NP-40) 100 ml; Tween-20 100 ml; Proteinase K 50 ml of 20 mg/

ml stock and 650 ml of water). The plate was sealed air-tight and
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incubated at 55uC overnight. This was followed by proteinase K

deactivation at 95uC for 10 minutes. Ten microliters (10 ml) of water

was then added to all the sample wells. The fraction of EBV positive

wells was then assessed by W-repeat EBV DNA PCR for each

replicate and the frequency of EBV infected cells in the starting

population calculated using Poison statistics. The EBV-positive cell

lines IB4 and Namalwa were used as positive controls and the EBV-

negative cell line CB60 was used as a negative control.

W-repeat EBV DNA PCR
DNA real-time PCR specific for the W-repeat sequence of the

EBV genome was performed as described [52]. For each reaction,

a master mix was prepared, containing 12.5 ml IQ Supermix

(Biorad cat 170-8862), 2.5 ml of 900 nM primers and 2.5 ml of

250 nM fluorogenic probe. Five microliters (5 ml) of DNA was

added to 20 ml of master mix with a final reaction volume of 25 ml.

(See Table S2 for primer and probe sequences). The PCR

reactions were performed on a Biorad iCycler. The protocol was

as follows: Step 1 (1 cycle): 39 at 95uC; Step 2 (50 cycles): 150 at

95uC, 19 at 60uC.

Purification of RNA and RT-PCR
RNA was purified by TRIzol extraction (Invitrogen, Life

Technologies, Grand Island, USA) and then treated with TURBO

DNase (Ambion, Life Technologies, Grand Island, USA) to

eliminate DNA prior to RNA amplification (where necessary).

cDNA was made from the RNA using a cDNA synthesis kit

(Invitrogen iScript cDNA synthesis kit). For the cDNA synthesis

reaction, a master mix was prepared which included 4 ml of 5X

iScript reaction mix, 1 ml of iScript reverse transcriptase, and 8 ml

of nuclease-free water. Seven microliters (7 ml) of purified RNA

was added to 13 ml of master mix. All reactions were performed on

an Applied Biosystems PCR machine (Thermal cycler). The

protocol was as follows: one cycle that included 5 minutes at 25uC,

30 minutes at 42uC, and 5 minutes at 85uC. For real time PCR a

master mix was prepared, containing 12.5 ml of IQ Supermix (Bio-

Rad), 2.5 ml of 900 nM primers, and 2.5 ml of 250 nM fluorogenic

probe, except when Taqman pre-developed assays were being

used in which case, 12.5 ml Supermix, 1.25 ml 20x primer-probe

mix and 6.25 ml water. Five microliters (5 ml) of cDNA was added

to 20 ml of master mix with a final reaction volume of 25 ml. All

real time PCRs were performed on a Bio-Rad iCycler. The

protocol was as follows: step 1, one cycle of 3 minutes at 95uC; step

2, 55 cycles of 15 seconds at 95uC and 1 minute at 60uC. All our

real time PCR assays were optimized to detect down to the single

cell level (See Supplemental Information for a list of primers and

probes).

Preparation of Plasmodium falciparum extract
P. falciparum parasites (3D7 line) were cultured using standard

procedures as described [53]. Parasites were grown at 5%

hematocrit in RPMI 1640 medium, 0.5% AlbuMAX II (Invitro-

gen), 0.25% sodium bicarbonate, and 0.1 mg/ml gentamicin.

Cultures were incubated at 37uC in an atmosphere of 5% oxygen,

5% carbon dioxide, and 90% nitrogen. Parasite extracts were

prepared by selective lysis of the host RBC membranes through

the addition of saponin. Infected RBCs were suspended in 0.01%

saponin in PBS and incubated at room temperature for 5 min.

Host cell free parasites were pelleted by centrifugation, washed

twice with PBS and stored frozen at 280 degrees C. Parasite

extracts were prepared by 3 freeze-thaw cycles of frozen parasites,

sonicated and stored at 280 degrees Celsius until needed. The

protein concentration was determined by the Bicinchoninic assay

(BCA assay – see below).

Stimulation assay
Fresh tonsil mononuclear cells (MNC) were isolated as

described above and re-suspended at ,16106 cells/ml in pre-

warmed PBSA. Two microliters of 5 mM CFSE (carboxyfluor-

escien diacetate, succinimidyl ester) in DMSO (Invitrogen, Life

Technologies, Grand Island, USA) was added per ml of cells (final

concentration 10 mM CFSE). The cells were then incubated for 10

minutes at 37uC. Cells were spun down and re-suspended in 2

volumes of ice-cold culture medium and incubated on ice for 5

minutes. Cells were re-pelleted and re-suspended in 2 volumes ice

cold culture medium (2 times). Washing was done one more time

in 2 volumes of pre-warmed medium and cells were finally re-

suspended in fresh pre-warmed cell culture medium (described

above). A final concentration of 3 mM of CpG-2006 (Hycult

Biotech, Plymouth Meeting, USA), 0.25 mg/ml CD40 ligand

(eBioscience, San Diego, USA), 5 ng/ml IL-4 (eBioscience, San

Diego, USA), 2.5 or 5 mg/ml Anti-human IgG+IgM, (Jackson

ImmunoResearch, West Grove, USA) 10 mg/ml of crude parasite

extract, and hemozoin (InvivoGen, San Diego, USA) 50 mg/ml

were used in the tonsil mononuclear cell stimulation. Cells were

harvested on days 3, 5, 7 and 10, stained with CD19 and then B

cells were sorted with the MoFlo.

Hemozoin internalization assay
Five microgram of human CpG-2006 DNA with a phosphor-

othionate (PTO) backbone bound to Alexa-488 (Integrated DNA

Technologies, Coralville, USA) were mixed with 100 mg/ml of

sonicated synthetic hemozoin [32]and co-incubated with rocking

for 2 h followed by washing of the complex three times with PBS.

Bound and unbound DNA were determined by measuring the

DNA concentration in the collected supernatant, using the

Nanodrop. BL2 and IM 171 cells were each plated at 1 ml (with

approximately 500,000 cells per confocal plate). The CpG-Alexa-

488-hemozoin complex was added to the cell lines BL2 and SP-IM

171, and incubated for 2 hours after which confocal microscopy

was carried out. Confocal reflection microscopy for detection of

hemozoin was combined with fluorescence microscopy to detect

the Alexa-488 tagged CpG on a Leica SP2 AOBS confocal laser-

scanning microscope as described in detail in [54].

Western blot
Cells were spun at 1,500 rpm for 5 minutes and the

supernatant was aspirated. 56106 cells were re-suspended in

100 ml of RIPA buffer (Sigma, St. Louis, USA) with freshly

added protease inhibitors (Thermo Scientific, Rochford, USA).

The sample was pipetted up and down to dislodge cell clumps,

and then vortexed vigorously for 15 seconds then incubated on

ice for ,7 minutes, vortexed again for 15 seconds, spun at

13,200 rpm for 16 minutes at 4uC and the supernatant

transferred to a new eppendorf. Protein concentrations were

determined with either the Bio-Rad protein assay reagent (Bio-

Rad, Hercules, USA) or the bicinchoninic acid (BCA) protein

assay reagent mix (Thermo Scientific, Rockford, USA), accord-

ing to manufacturer’s instruction. To each protein sample was

added 12.5% beta mercaptoethanol and 16 SDS sample buffer

(Boston Bioproducts, Ashland, USA). Five microliters of protein

standard (Biorad, Hercules, USA) was added to designated

well(s). Samples were heated at 95uC for 5 minutes and resolved

on 4–20% Tris-Glycine gels (Invitrogen, Life Technologies,

Grand Island, USA). Immobilon-P polyvinylidene fluoride

(PVDF) transfer membrane (Millipore, Billerica, USA) was used

in a semi-dry electrophoretic transfer. The membrane was

blocked with either membrane blocking solution (Invitrogen, Life

Technologies, Grand Island, USA) or 5% milk in 1x Tris
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buffered saline with Tween 20 (TBST) (Cell signaling, Danvers,

USA) at room temperature for 1 hr. The PVDF membrane was

then incubated with primary antibody in appropriate blocking

buffer at 4uC overnight. The membrane was washed in TBST or

Invitrogen wash solution three times, 10 minutes each and

incubated with secondary antibody in 5% milk in TBST for 45

minutes at room temperature. The membrane was then washed

with Invitrogen wash solution 4 times, 10 minutes each at room

temperature and then enhanced chemiluminescence (ECL)

reagent SuperSignal west femto maximum sensitivity substrate

(Thermo Fisher scientific, Rockford, USA) was applied to the

membrane. Hyblot CL autoradiography film (Denville scientific,

Metuchen, USA) was then exposed to the membrane and

developed in a Kodak X-MAT 2000 processor.

Statistical analysis
Data are expressed as mean 6 SD. Differences between groups

were analyzed for statistical significance with Student two-tailed,

unpaired t test. Significance was considered achieved when the p

value was ,0.05.

Supporting Information

Table S1 The antibodies used in this study.

(DOCX)

Table S2 The primers and probes used in this study.

(DOCX)

Acknowledgments

We thank Paul Spindler, Mark Vecchiotti, Reuben Ayivor-Djanie, Stephen

Kusi, Benjamin Baffour Gyau, Anthony Awuah, Ahmed Rufahi, and Nat

Yawson for help in collecting tonsils. We also thank the EENT nursing staff

at KATH and PAKS Hospitals and Frank Agyeman and Nat Yawson of

the KNUST Clinical Analysis Laboratory for testing tonsils for malaria,

HIV, and Hep B. We thank Steve Kwok and Allen Parmelee for help with

flow cytometry.

Author Contributions

Conceived and designed the experiments: DATL KAD. Performed the

experiments: CT. Analyzed the data: CT DATL. Contributed reagents/

materials/analysis tools: PA KD PK. Wrote the paper: CT DATL.

References

1. Goldstein JA, Bernstein RL (1990) Burkitt’s lymphoma and the role of Epstein-

Barr virus. J Trop Pediatr 36: 114–120.

2. Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and

malignancy. Nat Rev Immunol 8: 22–33.

3. Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R,

et al. (2012) Identification of human germinal center light and dark zone cells

and their relationship to human B-cell lymphomas. Blood 120: 2240–2248.

4. Klein G (1983) Specific chromosomal translocations and the genesis of B-cell-

derived tumors in mice and men. Cell 32: 311–315.

5. Leder P (1985) Translocations among antibody genes in human cancer. In:

Lenoir GM, O’Conor GT, Olweny CLM, editors. Burkitt’s Lymphoma: a

human cancer model. New York: Oxford University Press. pp. 341–371.

6. Manolov G, Manolova Y (1972) Marker band in one chromosome 14 from

Burkitt lymphomas. Nature 237: 33–34.

7. Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen HT, et al. (2006)

Role of genomic instability and p53 in AID-induced c-myc-Igh translocations.

Nature 440: 105–109.

8. Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, et al.

(2004) AID is required for c-myc/IgH chromosome translocations in vivo. Cell

118: 431–438.

9. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, et al.

(2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/

IgH translocations. Cell 135: 1028–1038.

10. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, et al. (2000)

Class switch recombination and hypermutation require activation-induced

cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553–563.

11. Burkitt D (1962) A children’s cancer dependent on climatic factors. Nature 194:

232–234.

12. Morrow RH, Jr. (1985) Epidemiological evidence for the role of falciparum

malaria in the pathogenesis of Burkitt’s lymphoma. IARC Sci Publ: 177–186.

13. Kieff E, Rickinson AB (2007) Epstein-Barr Virus and Its Replication. In: Knipe

DM, Howley PM, editors. Fields Virology. 5th ed. Philadelphia: Lippincott

Williams & Wilkins. pp. 2603–2654.

14. Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and

the origins of associated lymphomas. N Engl J Med 350: 1328–1337.

15. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA (1998) EBV persistence

in memory B cells in vivo. Immunity 9: 395–404.

16. Thorley-Lawson DA (2001) Epstein-Barr virus: exploiting the immune system.

Nat Rev Immunol 1: 75–82.

17. Babcock GJ, Hochberg D, Thorley-Lawson AD (2000) The expression pattern

of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation

stage of the infected B cell. Immunity 13: 497–506.

18. Roughan JE, Thorley-Lawson DA (2009) The intersection of Epstein-Barr virus

with the germinal center. J Virol 83: 3968–3976.

19. Paschos K, Parker GA, Watanatanasup E, White RE, Allday MJ (2012) BIM

promoter directly targeted by EBNA3C in polycomb-mediated repression by

EBV. Nucleic Acids Res 40: 7233–7246.

20. Vereide DT, Seto E, Chiu YF, Hayes M, Tagawa T, et al. (2013) Epstein-Barr

virus maintains lymphomas via its miRNAs. Oncogene 33: 1258–1264.

21. Westhoff Smith D, Sugden B (2013) Potential cellular functions of Epstein-Barr

Nuclear Antigen 1 (EBNA1) of Epstein-Barr Virus. Viruses 5: 226–240.

22. Thorley-Lawson DA, Allday MJ (2008) The curious case of the tumour virus: 50

years of Burkitt’s lymphoma. Nat Rev Microbiol 6: 913–924.

23. Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, et al.
(2004) Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype

in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A 101:
239–244.

24. Moormann AM, Chelimo K, Sumba PO, Tisch DJ, Rochford R, et al. (2007)
Exposure to holoendemic malaria results in suppression of Epstein-Barr virus-

specific T cell immunosurveillance in Kenyan children. J Infect Dis 195: 799–

808.

25. Moormann AM, Chelimo K, Sumba OP, Lutzke ML, Ploutz-Snyder R, et al.

(2005) Exposure to holoendemic malaria results in elevated Epstein-Barr virus
loads in children. J Infect Dis 191: 1233–1238.

26. Rasti N, Falk KI, Donati D, Gyan BA, Goka BQ, et al. (2005) Circulating
epstein-barr virus in children living in malaria-endemic areas. Scand J Immunol

61: 461–465.

27. Babcock GJ, Decker LL, Freeman RB, Thorley-Lawson DA (1999) Epstein-barr

virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate
in the peripheral blood of immunosuppressed patients. J Exp Med 190: 567–576.

28. Hopwood P, Crawford DH (2000) The role of EBV in post-transplant

malignancies: a review. J Clin Pathol 53: 248–254.

29. Xu Z, Pone EJ, Al-Qahtani A, Park SR, Zan H, et al. (2007) Regulation of aicda

expression and AID activity: relevance to somatic hypermutation and class
switch DNA recombination. Crit Rev Immunol 27: 367–397.

30. Arese P, Schwarzer E (1997) Malarial pigment (haemozoin): a very active ‘inert’
substance. Ann Trop Med Parasitol 91: 501–516.

31. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, et al. (2005) Toll-like receptor 9
mediates innate immune activation by the malaria pigment hemozoin. J Exp

Med 201: 19–25.

32. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, et al. (2007) Malaria

hemozoin is immunologically inert but radically enhances innate responses by
presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104:

1919–1924.

33. Smit LA, Bende RJ, Aten J, Guikema JE, Aarts WM, et al. (2003) Expression of
activation-induced cytidine deaminase is confined to B-cell non-Hodgkin’s

lymphomas of germinal-center phenotype. Cancer Res 63: 3894–3898.

34. Cutrona G, Dono M, Pastorino S, Ulivi M, Burgio VL, et al. (1997) The

propensity to apoptosis of centrocytes and centroblasts correlates with elevated
levels of intracellular myc protein. Eur J Immunol 27: 234–238.

35. Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, et al. (2012) The
proto-oncogene MYC is required for selection in the germinal center and cyclic

reentry. Nat Immunol 13: 1083–1091.

36. Klein U, Tu Y, Stolovitzky GA, Keller JL, Haddad J, Jr., et al. (2003)

Transcriptional analysis of the B cell germinal center reaction. Proc Natl Acad

Sci U S A 100: 2639–2644.

37. Martinez-Valdez H, Guret C, de Bouteiller O, Fugier I, Banchereau J, et al.

(1996) Human germinal center B cells express the apoptosis-inducing genes Fas,
c-myc, P53, and Bax but not the survival gene bcl-2. J Exp Med 183: 971–977.

38. Liu YJ, Arpin C (1997) Germinal center development. Immunol Rev 156: 111–
126.

39. MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12: 117–139.

40. Allen CD, Okada T, Tang HL, Cyster JG (2007) Imaging of germinal center

selection events during affinity maturation. Science 315: 528–531.

41. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann

M, et al. (2010) Germinal center dynamics revealed by multiphoton microscopy

with a photoactivatable fluorescent reporter. Cell 143: 592–605.

Role of Malaria in Burkitt’s Lymphoma

PLOS Pathogens | www.plospathogens.org 13 May 2014 | Volume 10 | Issue 5 | e1004170



42. Epeldegui M, Hung YP, McQuay A, Ambinder RF, Martinez-Maza O (2007)

Infection of human B cells with Epstein-Barr virus results in the expression of
somatic hypermutation-inducing molecules and in the accrual of oncogene

mutations. Mol Immunol 44: 934–942.

43. Heath E, Begue-Pastor N, Chaganti S, Croom-Carter D, Shannon-Lowe C,
et al. (2012) Epstein-Barr virus infection of naive B cells in vitro frequently selects

clones with mutated immunoglobulin genotypes: implications for virus biology.
PLoS Pathog 8: e1002697.

44. He B, Raab-Traub N, Casali P, Cerutti A (2003) EBV-encoded latent

membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T
cell-independent Ig heavy chain class switching. J Immunol 171: 5215–5224.

45. Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, et al. (1995)
Switches in expression of Plasmodium falciparum var genes correlate with changes in

antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82: 101–110.
46. Donati D, Zhang LP, Chene A, Chen Q, Flick K, et al. (2004) Identification of a

polyclonal B-cell activator in Plasmodium falciparum. Infect Immun 72: 5412–5418.

47. Griffith JW, Sun T, McIntosh MT, Bucala R (2009) Pure Hemozoin is
inflammatory in vivo and activates the NALP3 inflammasome via release of uric

acid. J Immunol 183: 5208–5220.

48. Jaramillo M, Bellemare MJ, Martel C, Shio MT, Contreras AP, et al. (2009)

Synthetic Plasmodium-like hemozoin activates the immune response: a
morphology - function study. PLoS One 4: e6957.

49. Roughan JE, Torgbor C, Thorley-Lawson DA (2010) Germinal center B cells

latently infected with Epstein-Barr virus proliferate extensively but do not
increase in number. J Virol 84: 1158–1168.

50. Gross AJ, Hochberg D, Rand WM, Thorley-Lawson DA (2005) EBV and
systemic lupus erythematosus: a new perspective. J Immunol 174: 6599–6607.

51. Ho M, Webster HK, Looareesuwan S, Supanaranond W, Phillips RE, et al.

(1986) Antigen-specific immunosuppression in human malaria due to Plasmo-
dium falciparum. J Infect Dis 153: 763–771.

52. Hadinoto V, Shapiro M, Greenough TC, Sullivan JL, Luzuriaga K, et al. (2008)
On the dynamics of acute EBV infection and the pathogenesis of infectious

mononucleosis. Blood 111: 1420–1427.
53. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture.

Science 193: 673–675.

54. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, et al. (2008) Silica
crystals and aluminum salts activate the NALP3 inflammasome through

phagosomal destabilization. Nat Immunol 9: 847–856.

Role of Malaria in Burkitt’s Lymphoma

PLOS Pathogens | www.plospathogens.org 14 May 2014 | Volume 10 | Issue 5 | e1004170


	A multifactorial role for P. falciparum malaria in endemic Burkitt's lymphoma pathogenesis
	Let us know how access to this document benefits you.
	Repository Citation

	ppat.1004170 1..14

